1 | /* $Id: CPUMAllRegs.cpp 80253 2019-08-13 15:49:33Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * CPUM - CPU Monitor(/Manager) - Getters and Setters.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2019 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define VBOX_BUGREF_9217_PART_I
|
---|
23 | #define LOG_GROUP LOG_GROUP_CPUM
|
---|
24 | #include <VBox/vmm/cpum.h>
|
---|
25 | #include <VBox/vmm/dbgf.h>
|
---|
26 | #include <VBox/vmm/apic.h>
|
---|
27 | #include <VBox/vmm/pgm.h>
|
---|
28 | #include <VBox/vmm/mm.h>
|
---|
29 | #include <VBox/vmm/em.h>
|
---|
30 | #include <VBox/vmm/nem.h>
|
---|
31 | #include <VBox/vmm/hm.h>
|
---|
32 | #include "CPUMInternal.h"
|
---|
33 | #include <VBox/vmm/vmcc.h>
|
---|
34 | #include <VBox/err.h>
|
---|
35 | #include <VBox/dis.h>
|
---|
36 | #include <VBox/log.h>
|
---|
37 | #include <VBox/vmm/hm.h>
|
---|
38 | #include <VBox/vmm/tm.h>
|
---|
39 | #include <iprt/assert.h>
|
---|
40 | #include <iprt/asm.h>
|
---|
41 | #include <iprt/asm-amd64-x86.h>
|
---|
42 | #ifdef IN_RING3
|
---|
43 | # include <iprt/thread.h>
|
---|
44 | #endif
|
---|
45 |
|
---|
46 | /** Disable stack frame pointer generation here. */
|
---|
47 | #if defined(_MSC_VER) && !defined(DEBUG) && defined(RT_ARCH_X86)
|
---|
48 | # pragma optimize("y", off)
|
---|
49 | #endif
|
---|
50 |
|
---|
51 | AssertCompile2MemberOffsets(VM, cpum.s.HostFeatures, cpum.ro.HostFeatures);
|
---|
52 | AssertCompile2MemberOffsets(VM, cpum.s.GuestFeatures, cpum.ro.GuestFeatures);
|
---|
53 |
|
---|
54 |
|
---|
55 | /*********************************************************************************************************************************
|
---|
56 | * Defined Constants And Macros *
|
---|
57 | *********************************************************************************************************************************/
|
---|
58 | /**
|
---|
59 | * Converts a CPUMCPU::Guest pointer into a VMCPU pointer.
|
---|
60 | *
|
---|
61 | * @returns Pointer to the Virtual CPU.
|
---|
62 | * @param a_pGuestCtx Pointer to the guest context.
|
---|
63 | */
|
---|
64 | #define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest)
|
---|
65 |
|
---|
66 | /**
|
---|
67 | * Lazily loads the hidden parts of a selector register when using raw-mode.
|
---|
68 | */
|
---|
69 | #define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \
|
---|
70 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg))
|
---|
71 |
|
---|
72 | /** @def CPUM_INT_ASSERT_NOT_EXTRN
|
---|
73 | * Macro for asserting that @a a_fNotExtrn are present.
|
---|
74 | *
|
---|
75 | * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
76 | * @param a_fNotExtrn Mask of CPUMCTX_EXTRN_XXX bits to check.
|
---|
77 | */
|
---|
78 | #define CPUM_INT_ASSERT_NOT_EXTRN(a_pVCpu, a_fNotExtrn) \
|
---|
79 | AssertMsg(!((a_pVCpu)->cpum.s.Guest.fExtrn & (a_fNotExtrn)), \
|
---|
80 | ("%#RX64; a_fNotExtrn=%#RX64\n", (a_pVCpu)->cpum.s.Guest.fExtrn, (a_fNotExtrn)))
|
---|
81 |
|
---|
82 |
|
---|
83 | VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3)
|
---|
84 | {
|
---|
85 | pVCpu->cpum.s.Hyper.cr3 = cr3;
|
---|
86 | }
|
---|
87 |
|
---|
88 | VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu)
|
---|
89 | {
|
---|
90 | return pVCpu->cpum.s.Hyper.cr3;
|
---|
91 | }
|
---|
92 |
|
---|
93 |
|
---|
94 | /** @def MAYBE_LOAD_DRx
|
---|
95 | * Macro for updating DRx values in raw-mode and ring-0 contexts.
|
---|
96 | */
|
---|
97 | #ifdef IN_RING0
|
---|
98 | # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { a_fnLoad(a_uValue); } while (0)
|
---|
99 | #else
|
---|
100 | # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { } while (0)
|
---|
101 | #endif
|
---|
102 |
|
---|
103 | VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0)
|
---|
104 | {
|
---|
105 | pVCpu->cpum.s.Hyper.dr[0] = uDr0;
|
---|
106 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR0, uDr0);
|
---|
107 | }
|
---|
108 |
|
---|
109 |
|
---|
110 | VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1)
|
---|
111 | {
|
---|
112 | pVCpu->cpum.s.Hyper.dr[1] = uDr1;
|
---|
113 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR1, uDr1);
|
---|
114 | }
|
---|
115 |
|
---|
116 |
|
---|
117 | VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2)
|
---|
118 | {
|
---|
119 | pVCpu->cpum.s.Hyper.dr[2] = uDr2;
|
---|
120 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR2, uDr2);
|
---|
121 | }
|
---|
122 |
|
---|
123 |
|
---|
124 | VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3)
|
---|
125 | {
|
---|
126 | pVCpu->cpum.s.Hyper.dr[3] = uDr3;
|
---|
127 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR3, uDr3);
|
---|
128 | }
|
---|
129 |
|
---|
130 |
|
---|
131 | VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6)
|
---|
132 | {
|
---|
133 | pVCpu->cpum.s.Hyper.dr[6] = uDr6;
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7)
|
---|
138 | {
|
---|
139 | pVCpu->cpum.s.Hyper.dr[7] = uDr7;
|
---|
140 | }
|
---|
141 |
|
---|
142 |
|
---|
143 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu)
|
---|
144 | {
|
---|
145 | return pVCpu->cpum.s.Hyper.dr[0];
|
---|
146 | }
|
---|
147 |
|
---|
148 |
|
---|
149 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu)
|
---|
150 | {
|
---|
151 | return pVCpu->cpum.s.Hyper.dr[1];
|
---|
152 | }
|
---|
153 |
|
---|
154 |
|
---|
155 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu)
|
---|
156 | {
|
---|
157 | return pVCpu->cpum.s.Hyper.dr[2];
|
---|
158 | }
|
---|
159 |
|
---|
160 |
|
---|
161 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu)
|
---|
162 | {
|
---|
163 | return pVCpu->cpum.s.Hyper.dr[3];
|
---|
164 | }
|
---|
165 |
|
---|
166 |
|
---|
167 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu)
|
---|
168 | {
|
---|
169 | return pVCpu->cpum.s.Hyper.dr[6];
|
---|
170 | }
|
---|
171 |
|
---|
172 |
|
---|
173 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu)
|
---|
174 | {
|
---|
175 | return pVCpu->cpum.s.Hyper.dr[7];
|
---|
176 | }
|
---|
177 |
|
---|
178 |
|
---|
179 | /**
|
---|
180 | * Gets the pointer to the internal CPUMCTXCORE structure.
|
---|
181 | * This is only for reading in order to save a few calls.
|
---|
182 | *
|
---|
183 | * @param pVCpu The cross context virtual CPU structure.
|
---|
184 | */
|
---|
185 | VMMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVMCPU pVCpu)
|
---|
186 | {
|
---|
187 | return CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
|
---|
188 | }
|
---|
189 |
|
---|
190 |
|
---|
191 | /**
|
---|
192 | * Queries the pointer to the internal CPUMCTX structure.
|
---|
193 | *
|
---|
194 | * @returns The CPUMCTX pointer.
|
---|
195 | * @param pVCpu The cross context virtual CPU structure.
|
---|
196 | */
|
---|
197 | VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu)
|
---|
198 | {
|
---|
199 | return &pVCpu->cpum.s.Guest;
|
---|
200 | }
|
---|
201 |
|
---|
202 |
|
---|
203 | /**
|
---|
204 | * Queries the pointer to the internal CPUMCTXMSRS structure.
|
---|
205 | *
|
---|
206 | * This is for NEM only.
|
---|
207 | *
|
---|
208 | * @returns The CPUMCTX pointer.
|
---|
209 | * @param pVCpu The cross context virtual CPU structure.
|
---|
210 | */
|
---|
211 | VMM_INT_DECL(PCPUMCTXMSRS) CPUMQueryGuestCtxMsrsPtr(PVMCPU pVCpu)
|
---|
212 | {
|
---|
213 | return &pVCpu->cpum.s.GuestMsrs;
|
---|
214 | }
|
---|
215 |
|
---|
216 |
|
---|
217 | VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
|
---|
218 | {
|
---|
219 | pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit;
|
---|
220 | pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase;
|
---|
221 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_GDTR;
|
---|
222 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR;
|
---|
223 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
224 | }
|
---|
225 |
|
---|
226 |
|
---|
227 | VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
|
---|
228 | {
|
---|
229 | pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit;
|
---|
230 | pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase;
|
---|
231 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_IDTR;
|
---|
232 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR;
|
---|
233 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
234 | }
|
---|
235 |
|
---|
236 |
|
---|
237 | VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr)
|
---|
238 | {
|
---|
239 | pVCpu->cpum.s.Guest.tr.Sel = tr;
|
---|
240 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR;
|
---|
241 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
242 | }
|
---|
243 |
|
---|
244 |
|
---|
245 | VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr)
|
---|
246 | {
|
---|
247 | pVCpu->cpum.s.Guest.ldtr.Sel = ldtr;
|
---|
248 | /* The caller will set more hidden bits if it has them. */
|
---|
249 | pVCpu->cpum.s.Guest.ldtr.ValidSel = 0;
|
---|
250 | pVCpu->cpum.s.Guest.ldtr.fFlags = 0;
|
---|
251 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR;
|
---|
252 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
253 | }
|
---|
254 |
|
---|
255 |
|
---|
256 | /**
|
---|
257 | * Set the guest CR0.
|
---|
258 | *
|
---|
259 | * When called in GC, the hyper CR0 may be updated if that is
|
---|
260 | * required. The caller only has to take special action if AM,
|
---|
261 | * WP, PG or PE changes.
|
---|
262 | *
|
---|
263 | * @returns VINF_SUCCESS (consider it void).
|
---|
264 | * @param pVCpu The cross context virtual CPU structure.
|
---|
265 | * @param cr0 The new CR0 value.
|
---|
266 | */
|
---|
267 | VMMDECL(int) CPUMSetGuestCR0(PVMCPUCC pVCpu, uint64_t cr0)
|
---|
268 | {
|
---|
269 | /*
|
---|
270 | * Check for changes causing TLB flushes (for REM).
|
---|
271 | * The caller is responsible for calling PGM when appropriate.
|
---|
272 | */
|
---|
273 | if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
|
---|
274 | != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
|
---|
275 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
|
---|
276 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0;
|
---|
277 |
|
---|
278 | /*
|
---|
279 | * Let PGM know if the WP goes from 0 to 1 (netware WP0+RO+US hack)
|
---|
280 | */
|
---|
281 | if (((cr0 ^ pVCpu->cpum.s.Guest.cr0) & X86_CR0_WP) && (cr0 & X86_CR0_WP))
|
---|
282 | PGMCr0WpEnabled(pVCpu);
|
---|
283 |
|
---|
284 | /* The ET flag is settable on a 386 and hardwired on 486+. */
|
---|
285 | if ( !(cr0 & X86_CR0_ET)
|
---|
286 | && pVCpu->CTX_SUFF(pVM)->cpum.s.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386)
|
---|
287 | cr0 |= X86_CR0_ET;
|
---|
288 |
|
---|
289 | pVCpu->cpum.s.Guest.cr0 = cr0;
|
---|
290 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR0;
|
---|
291 | return VINF_SUCCESS;
|
---|
292 | }
|
---|
293 |
|
---|
294 |
|
---|
295 | VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2)
|
---|
296 | {
|
---|
297 | pVCpu->cpum.s.Guest.cr2 = cr2;
|
---|
298 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR2;
|
---|
299 | return VINF_SUCCESS;
|
---|
300 | }
|
---|
301 |
|
---|
302 |
|
---|
303 | VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3)
|
---|
304 | {
|
---|
305 | pVCpu->cpum.s.Guest.cr3 = cr3;
|
---|
306 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3;
|
---|
307 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3;
|
---|
308 | return VINF_SUCCESS;
|
---|
309 | }
|
---|
310 |
|
---|
311 |
|
---|
312 | VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4)
|
---|
313 | {
|
---|
314 | /* Note! We don't bother with OSXSAVE and legacy CPUID patches. */
|
---|
315 |
|
---|
316 | if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))
|
---|
317 | != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)))
|
---|
318 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
|
---|
319 |
|
---|
320 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4;
|
---|
321 | pVCpu->cpum.s.Guest.cr4 = cr4;
|
---|
322 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR4;
|
---|
323 | return VINF_SUCCESS;
|
---|
324 | }
|
---|
325 |
|
---|
326 |
|
---|
327 | VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags)
|
---|
328 | {
|
---|
329 | pVCpu->cpum.s.Guest.eflags.u32 = eflags;
|
---|
330 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
|
---|
331 | return VINF_SUCCESS;
|
---|
332 | }
|
---|
333 |
|
---|
334 |
|
---|
335 | VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip)
|
---|
336 | {
|
---|
337 | pVCpu->cpum.s.Guest.eip = eip;
|
---|
338 | return VINF_SUCCESS;
|
---|
339 | }
|
---|
340 |
|
---|
341 |
|
---|
342 | VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax)
|
---|
343 | {
|
---|
344 | pVCpu->cpum.s.Guest.eax = eax;
|
---|
345 | return VINF_SUCCESS;
|
---|
346 | }
|
---|
347 |
|
---|
348 |
|
---|
349 | VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx)
|
---|
350 | {
|
---|
351 | pVCpu->cpum.s.Guest.ebx = ebx;
|
---|
352 | return VINF_SUCCESS;
|
---|
353 | }
|
---|
354 |
|
---|
355 |
|
---|
356 | VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx)
|
---|
357 | {
|
---|
358 | pVCpu->cpum.s.Guest.ecx = ecx;
|
---|
359 | return VINF_SUCCESS;
|
---|
360 | }
|
---|
361 |
|
---|
362 |
|
---|
363 | VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx)
|
---|
364 | {
|
---|
365 | pVCpu->cpum.s.Guest.edx = edx;
|
---|
366 | return VINF_SUCCESS;
|
---|
367 | }
|
---|
368 |
|
---|
369 |
|
---|
370 | VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp)
|
---|
371 | {
|
---|
372 | pVCpu->cpum.s.Guest.esp = esp;
|
---|
373 | return VINF_SUCCESS;
|
---|
374 | }
|
---|
375 |
|
---|
376 |
|
---|
377 | VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp)
|
---|
378 | {
|
---|
379 | pVCpu->cpum.s.Guest.ebp = ebp;
|
---|
380 | return VINF_SUCCESS;
|
---|
381 | }
|
---|
382 |
|
---|
383 |
|
---|
384 | VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi)
|
---|
385 | {
|
---|
386 | pVCpu->cpum.s.Guest.esi = esi;
|
---|
387 | return VINF_SUCCESS;
|
---|
388 | }
|
---|
389 |
|
---|
390 |
|
---|
391 | VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi)
|
---|
392 | {
|
---|
393 | pVCpu->cpum.s.Guest.edi = edi;
|
---|
394 | return VINF_SUCCESS;
|
---|
395 | }
|
---|
396 |
|
---|
397 |
|
---|
398 | VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss)
|
---|
399 | {
|
---|
400 | pVCpu->cpum.s.Guest.ss.Sel = ss;
|
---|
401 | return VINF_SUCCESS;
|
---|
402 | }
|
---|
403 |
|
---|
404 |
|
---|
405 | VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs)
|
---|
406 | {
|
---|
407 | pVCpu->cpum.s.Guest.cs.Sel = cs;
|
---|
408 | return VINF_SUCCESS;
|
---|
409 | }
|
---|
410 |
|
---|
411 |
|
---|
412 | VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds)
|
---|
413 | {
|
---|
414 | pVCpu->cpum.s.Guest.ds.Sel = ds;
|
---|
415 | return VINF_SUCCESS;
|
---|
416 | }
|
---|
417 |
|
---|
418 |
|
---|
419 | VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es)
|
---|
420 | {
|
---|
421 | pVCpu->cpum.s.Guest.es.Sel = es;
|
---|
422 | return VINF_SUCCESS;
|
---|
423 | }
|
---|
424 |
|
---|
425 |
|
---|
426 | VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs)
|
---|
427 | {
|
---|
428 | pVCpu->cpum.s.Guest.fs.Sel = fs;
|
---|
429 | return VINF_SUCCESS;
|
---|
430 | }
|
---|
431 |
|
---|
432 |
|
---|
433 | VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs)
|
---|
434 | {
|
---|
435 | pVCpu->cpum.s.Guest.gs.Sel = gs;
|
---|
436 | return VINF_SUCCESS;
|
---|
437 | }
|
---|
438 |
|
---|
439 |
|
---|
440 | VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val)
|
---|
441 | {
|
---|
442 | pVCpu->cpum.s.Guest.msrEFER = val;
|
---|
443 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_EFER;
|
---|
444 | }
|
---|
445 |
|
---|
446 |
|
---|
447 | VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PCVMCPU pVCpu, uint16_t *pcbLimit)
|
---|
448 | {
|
---|
449 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_IDTR);
|
---|
450 | if (pcbLimit)
|
---|
451 | *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt;
|
---|
452 | return pVCpu->cpum.s.Guest.idtr.pIdt;
|
---|
453 | }
|
---|
454 |
|
---|
455 |
|
---|
456 | VMMDECL(RTSEL) CPUMGetGuestTR(PCVMCPU pVCpu, PCPUMSELREGHID pHidden)
|
---|
457 | {
|
---|
458 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_TR);
|
---|
459 | if (pHidden)
|
---|
460 | *pHidden = pVCpu->cpum.s.Guest.tr;
|
---|
461 | return pVCpu->cpum.s.Guest.tr.Sel;
|
---|
462 | }
|
---|
463 |
|
---|
464 |
|
---|
465 | VMMDECL(RTSEL) CPUMGetGuestCS(PCVMCPU pVCpu)
|
---|
466 | {
|
---|
467 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS);
|
---|
468 | return pVCpu->cpum.s.Guest.cs.Sel;
|
---|
469 | }
|
---|
470 |
|
---|
471 |
|
---|
472 | VMMDECL(RTSEL) CPUMGetGuestDS(PCVMCPU pVCpu)
|
---|
473 | {
|
---|
474 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DS);
|
---|
475 | return pVCpu->cpum.s.Guest.ds.Sel;
|
---|
476 | }
|
---|
477 |
|
---|
478 |
|
---|
479 | VMMDECL(RTSEL) CPUMGetGuestES(PCVMCPU pVCpu)
|
---|
480 | {
|
---|
481 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
482 | return pVCpu->cpum.s.Guest.es.Sel;
|
---|
483 | }
|
---|
484 |
|
---|
485 |
|
---|
486 | VMMDECL(RTSEL) CPUMGetGuestFS(PCVMCPU pVCpu)
|
---|
487 | {
|
---|
488 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_FS);
|
---|
489 | return pVCpu->cpum.s.Guest.fs.Sel;
|
---|
490 | }
|
---|
491 |
|
---|
492 |
|
---|
493 | VMMDECL(RTSEL) CPUMGetGuestGS(PCVMCPU pVCpu)
|
---|
494 | {
|
---|
495 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GS);
|
---|
496 | return pVCpu->cpum.s.Guest.gs.Sel;
|
---|
497 | }
|
---|
498 |
|
---|
499 |
|
---|
500 | VMMDECL(RTSEL) CPUMGetGuestSS(PCVMCPU pVCpu)
|
---|
501 | {
|
---|
502 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_SS);
|
---|
503 | return pVCpu->cpum.s.Guest.ss.Sel;
|
---|
504 | }
|
---|
505 |
|
---|
506 |
|
---|
507 | VMMDECL(uint64_t) CPUMGetGuestFlatPC(PVMCPU pVCpu)
|
---|
508 | {
|
---|
509 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
|
---|
510 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
511 | if ( !CPUMIsGuestInLongMode(pVCpu)
|
---|
512 | || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
|
---|
513 | return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.cs.u64Base;
|
---|
514 | return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.cs.u64Base;
|
---|
515 | }
|
---|
516 |
|
---|
517 |
|
---|
518 | VMMDECL(uint64_t) CPUMGetGuestFlatSP(PVMCPU pVCpu)
|
---|
519 | {
|
---|
520 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
|
---|
521 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss);
|
---|
522 | if ( !CPUMIsGuestInLongMode(pVCpu)
|
---|
523 | || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
|
---|
524 | return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.ss.u64Base;
|
---|
525 | return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.ss.u64Base;
|
---|
526 | }
|
---|
527 |
|
---|
528 |
|
---|
529 | VMMDECL(RTSEL) CPUMGetGuestLDTR(PCVMCPU pVCpu)
|
---|
530 | {
|
---|
531 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
|
---|
532 | return pVCpu->cpum.s.Guest.ldtr.Sel;
|
---|
533 | }
|
---|
534 |
|
---|
535 |
|
---|
536 | VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PCVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit)
|
---|
537 | {
|
---|
538 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
|
---|
539 | *pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base;
|
---|
540 | *pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit;
|
---|
541 | return pVCpu->cpum.s.Guest.ldtr.Sel;
|
---|
542 | }
|
---|
543 |
|
---|
544 |
|
---|
545 | VMMDECL(uint64_t) CPUMGetGuestCR0(PCVMCPU pVCpu)
|
---|
546 | {
|
---|
547 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
548 | return pVCpu->cpum.s.Guest.cr0;
|
---|
549 | }
|
---|
550 |
|
---|
551 |
|
---|
552 | VMMDECL(uint64_t) CPUMGetGuestCR2(PCVMCPU pVCpu)
|
---|
553 | {
|
---|
554 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
|
---|
555 | return pVCpu->cpum.s.Guest.cr2;
|
---|
556 | }
|
---|
557 |
|
---|
558 |
|
---|
559 | VMMDECL(uint64_t) CPUMGetGuestCR3(PCVMCPU pVCpu)
|
---|
560 | {
|
---|
561 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
|
---|
562 | return pVCpu->cpum.s.Guest.cr3;
|
---|
563 | }
|
---|
564 |
|
---|
565 |
|
---|
566 | VMMDECL(uint64_t) CPUMGetGuestCR4(PCVMCPU pVCpu)
|
---|
567 | {
|
---|
568 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
|
---|
569 | return pVCpu->cpum.s.Guest.cr4;
|
---|
570 | }
|
---|
571 |
|
---|
572 |
|
---|
573 | VMMDECL(uint64_t) CPUMGetGuestCR8(PCVMCPUCC pVCpu)
|
---|
574 | {
|
---|
575 | uint64_t u64;
|
---|
576 | int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64);
|
---|
577 | if (RT_FAILURE(rc))
|
---|
578 | u64 = 0;
|
---|
579 | return u64;
|
---|
580 | }
|
---|
581 |
|
---|
582 |
|
---|
583 | VMMDECL(void) CPUMGetGuestGDTR(PCVMCPU pVCpu, PVBOXGDTR pGDTR)
|
---|
584 | {
|
---|
585 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GDTR);
|
---|
586 | *pGDTR = pVCpu->cpum.s.Guest.gdtr;
|
---|
587 | }
|
---|
588 |
|
---|
589 |
|
---|
590 | VMMDECL(uint32_t) CPUMGetGuestEIP(PCVMCPU pVCpu)
|
---|
591 | {
|
---|
592 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
|
---|
593 | return pVCpu->cpum.s.Guest.eip;
|
---|
594 | }
|
---|
595 |
|
---|
596 |
|
---|
597 | VMMDECL(uint64_t) CPUMGetGuestRIP(PCVMCPU pVCpu)
|
---|
598 | {
|
---|
599 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
|
---|
600 | return pVCpu->cpum.s.Guest.rip;
|
---|
601 | }
|
---|
602 |
|
---|
603 |
|
---|
604 | VMMDECL(uint32_t) CPUMGetGuestEAX(PCVMCPU pVCpu)
|
---|
605 | {
|
---|
606 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RAX);
|
---|
607 | return pVCpu->cpum.s.Guest.eax;
|
---|
608 | }
|
---|
609 |
|
---|
610 |
|
---|
611 | VMMDECL(uint32_t) CPUMGetGuestEBX(PCVMCPU pVCpu)
|
---|
612 | {
|
---|
613 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBX);
|
---|
614 | return pVCpu->cpum.s.Guest.ebx;
|
---|
615 | }
|
---|
616 |
|
---|
617 |
|
---|
618 | VMMDECL(uint32_t) CPUMGetGuestECX(PCVMCPU pVCpu)
|
---|
619 | {
|
---|
620 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RCX);
|
---|
621 | return pVCpu->cpum.s.Guest.ecx;
|
---|
622 | }
|
---|
623 |
|
---|
624 |
|
---|
625 | VMMDECL(uint32_t) CPUMGetGuestEDX(PCVMCPU pVCpu)
|
---|
626 | {
|
---|
627 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDX);
|
---|
628 | return pVCpu->cpum.s.Guest.edx;
|
---|
629 | }
|
---|
630 |
|
---|
631 |
|
---|
632 | VMMDECL(uint32_t) CPUMGetGuestESI(PCVMCPU pVCpu)
|
---|
633 | {
|
---|
634 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSI);
|
---|
635 | return pVCpu->cpum.s.Guest.esi;
|
---|
636 | }
|
---|
637 |
|
---|
638 |
|
---|
639 | VMMDECL(uint32_t) CPUMGetGuestEDI(PCVMCPU pVCpu)
|
---|
640 | {
|
---|
641 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDI);
|
---|
642 | return pVCpu->cpum.s.Guest.edi;
|
---|
643 | }
|
---|
644 |
|
---|
645 |
|
---|
646 | VMMDECL(uint32_t) CPUMGetGuestESP(PCVMCPU pVCpu)
|
---|
647 | {
|
---|
648 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP);
|
---|
649 | return pVCpu->cpum.s.Guest.esp;
|
---|
650 | }
|
---|
651 |
|
---|
652 |
|
---|
653 | VMMDECL(uint32_t) CPUMGetGuestEBP(PCVMCPU pVCpu)
|
---|
654 | {
|
---|
655 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBP);
|
---|
656 | return pVCpu->cpum.s.Guest.ebp;
|
---|
657 | }
|
---|
658 |
|
---|
659 |
|
---|
660 | VMMDECL(uint32_t) CPUMGetGuestEFlags(PCVMCPU pVCpu)
|
---|
661 | {
|
---|
662 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RFLAGS);
|
---|
663 | return pVCpu->cpum.s.Guest.eflags.u32;
|
---|
664 | }
|
---|
665 |
|
---|
666 |
|
---|
667 | VMMDECL(int) CPUMGetGuestCRx(PCVMCPUCC pVCpu, unsigned iReg, uint64_t *pValue)
|
---|
668 | {
|
---|
669 | switch (iReg)
|
---|
670 | {
|
---|
671 | case DISCREG_CR0:
|
---|
672 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
673 | *pValue = pVCpu->cpum.s.Guest.cr0;
|
---|
674 | break;
|
---|
675 |
|
---|
676 | case DISCREG_CR2:
|
---|
677 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
|
---|
678 | *pValue = pVCpu->cpum.s.Guest.cr2;
|
---|
679 | break;
|
---|
680 |
|
---|
681 | case DISCREG_CR3:
|
---|
682 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
|
---|
683 | *pValue = pVCpu->cpum.s.Guest.cr3;
|
---|
684 | break;
|
---|
685 |
|
---|
686 | case DISCREG_CR4:
|
---|
687 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
|
---|
688 | *pValue = pVCpu->cpum.s.Guest.cr4;
|
---|
689 | break;
|
---|
690 |
|
---|
691 | case DISCREG_CR8:
|
---|
692 | {
|
---|
693 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
|
---|
694 | uint8_t u8Tpr;
|
---|
695 | int rc = APICGetTpr(pVCpu, &u8Tpr, NULL /* pfPending */, NULL /* pu8PendingIrq */);
|
---|
696 | if (RT_FAILURE(rc))
|
---|
697 | {
|
---|
698 | AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc));
|
---|
699 | *pValue = 0;
|
---|
700 | return rc;
|
---|
701 | }
|
---|
702 | *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0 */
|
---|
703 | break;
|
---|
704 | }
|
---|
705 |
|
---|
706 | default:
|
---|
707 | return VERR_INVALID_PARAMETER;
|
---|
708 | }
|
---|
709 | return VINF_SUCCESS;
|
---|
710 | }
|
---|
711 |
|
---|
712 |
|
---|
713 | VMMDECL(uint64_t) CPUMGetGuestDR0(PCVMCPU pVCpu)
|
---|
714 | {
|
---|
715 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
|
---|
716 | return pVCpu->cpum.s.Guest.dr[0];
|
---|
717 | }
|
---|
718 |
|
---|
719 |
|
---|
720 | VMMDECL(uint64_t) CPUMGetGuestDR1(PCVMCPU pVCpu)
|
---|
721 | {
|
---|
722 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
|
---|
723 | return pVCpu->cpum.s.Guest.dr[1];
|
---|
724 | }
|
---|
725 |
|
---|
726 |
|
---|
727 | VMMDECL(uint64_t) CPUMGetGuestDR2(PCVMCPU pVCpu)
|
---|
728 | {
|
---|
729 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
|
---|
730 | return pVCpu->cpum.s.Guest.dr[2];
|
---|
731 | }
|
---|
732 |
|
---|
733 |
|
---|
734 | VMMDECL(uint64_t) CPUMGetGuestDR3(PCVMCPU pVCpu)
|
---|
735 | {
|
---|
736 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
|
---|
737 | return pVCpu->cpum.s.Guest.dr[3];
|
---|
738 | }
|
---|
739 |
|
---|
740 |
|
---|
741 | VMMDECL(uint64_t) CPUMGetGuestDR6(PCVMCPU pVCpu)
|
---|
742 | {
|
---|
743 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR6);
|
---|
744 | return pVCpu->cpum.s.Guest.dr[6];
|
---|
745 | }
|
---|
746 |
|
---|
747 |
|
---|
748 | VMMDECL(uint64_t) CPUMGetGuestDR7(PCVMCPU pVCpu)
|
---|
749 | {
|
---|
750 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR7);
|
---|
751 | return pVCpu->cpum.s.Guest.dr[7];
|
---|
752 | }
|
---|
753 |
|
---|
754 |
|
---|
755 | VMMDECL(int) CPUMGetGuestDRx(PCVMCPU pVCpu, uint32_t iReg, uint64_t *pValue)
|
---|
756 | {
|
---|
757 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR_MASK);
|
---|
758 | AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
|
---|
759 | /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
|
---|
760 | if (iReg == 4 || iReg == 5)
|
---|
761 | iReg += 2;
|
---|
762 | *pValue = pVCpu->cpum.s.Guest.dr[iReg];
|
---|
763 | return VINF_SUCCESS;
|
---|
764 | }
|
---|
765 |
|
---|
766 |
|
---|
767 | VMMDECL(uint64_t) CPUMGetGuestEFER(PCVMCPU pVCpu)
|
---|
768 | {
|
---|
769 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
|
---|
770 | return pVCpu->cpum.s.Guest.msrEFER;
|
---|
771 | }
|
---|
772 |
|
---|
773 |
|
---|
774 | /**
|
---|
775 | * Looks up a CPUID leaf in the CPUID leaf array, no subleaf.
|
---|
776 | *
|
---|
777 | * @returns Pointer to the leaf if found, NULL if not.
|
---|
778 | *
|
---|
779 | * @param pVM The cross context VM structure.
|
---|
780 | * @param uLeaf The leaf to get.
|
---|
781 | */
|
---|
782 | PCPUMCPUIDLEAF cpumCpuIdGetLeaf(PVM pVM, uint32_t uLeaf)
|
---|
783 | {
|
---|
784 | unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
|
---|
785 | if (iEnd)
|
---|
786 | {
|
---|
787 | unsigned iStart = 0;
|
---|
788 | PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves);
|
---|
789 | for (;;)
|
---|
790 | {
|
---|
791 | unsigned i = iStart + (iEnd - iStart) / 2U;
|
---|
792 | if (uLeaf < paLeaves[i].uLeaf)
|
---|
793 | {
|
---|
794 | if (i <= iStart)
|
---|
795 | return NULL;
|
---|
796 | iEnd = i;
|
---|
797 | }
|
---|
798 | else if (uLeaf > paLeaves[i].uLeaf)
|
---|
799 | {
|
---|
800 | i += 1;
|
---|
801 | if (i >= iEnd)
|
---|
802 | return NULL;
|
---|
803 | iStart = i;
|
---|
804 | }
|
---|
805 | else
|
---|
806 | {
|
---|
807 | if (RT_LIKELY(paLeaves[i].fSubLeafMask == 0 && paLeaves[i].uSubLeaf == 0))
|
---|
808 | return &paLeaves[i];
|
---|
809 |
|
---|
810 | /* This shouldn't normally happen. But in case the it does due
|
---|
811 | to user configuration overrids or something, just return the
|
---|
812 | first sub-leaf. */
|
---|
813 | AssertMsgFailed(("uLeaf=%#x fSubLeafMask=%#x uSubLeaf=%#x\n",
|
---|
814 | uLeaf, paLeaves[i].fSubLeafMask, paLeaves[i].uSubLeaf));
|
---|
815 | while ( paLeaves[i].uSubLeaf != 0
|
---|
816 | && i > 0
|
---|
817 | && uLeaf == paLeaves[i - 1].uLeaf)
|
---|
818 | i--;
|
---|
819 | return &paLeaves[i];
|
---|
820 | }
|
---|
821 | }
|
---|
822 | }
|
---|
823 |
|
---|
824 | return NULL;
|
---|
825 | }
|
---|
826 |
|
---|
827 |
|
---|
828 | /**
|
---|
829 | * Looks up a CPUID leaf in the CPUID leaf array.
|
---|
830 | *
|
---|
831 | * @returns Pointer to the leaf if found, NULL if not.
|
---|
832 | *
|
---|
833 | * @param pVM The cross context VM structure.
|
---|
834 | * @param uLeaf The leaf to get.
|
---|
835 | * @param uSubLeaf The subleaf, if applicable. Just pass 0 if it
|
---|
836 | * isn't.
|
---|
837 | * @param pfExactSubLeafHit Whether we've got an exact subleaf hit or not.
|
---|
838 | */
|
---|
839 | PCPUMCPUIDLEAF cpumCpuIdGetLeafEx(PVM pVM, uint32_t uLeaf, uint32_t uSubLeaf, bool *pfExactSubLeafHit)
|
---|
840 | {
|
---|
841 | unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
|
---|
842 | if (iEnd)
|
---|
843 | {
|
---|
844 | unsigned iStart = 0;
|
---|
845 | PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves);
|
---|
846 | for (;;)
|
---|
847 | {
|
---|
848 | unsigned i = iStart + (iEnd - iStart) / 2U;
|
---|
849 | if (uLeaf < paLeaves[i].uLeaf)
|
---|
850 | {
|
---|
851 | if (i <= iStart)
|
---|
852 | return NULL;
|
---|
853 | iEnd = i;
|
---|
854 | }
|
---|
855 | else if (uLeaf > paLeaves[i].uLeaf)
|
---|
856 | {
|
---|
857 | i += 1;
|
---|
858 | if (i >= iEnd)
|
---|
859 | return NULL;
|
---|
860 | iStart = i;
|
---|
861 | }
|
---|
862 | else
|
---|
863 | {
|
---|
864 | uSubLeaf &= paLeaves[i].fSubLeafMask;
|
---|
865 | if (uSubLeaf == paLeaves[i].uSubLeaf)
|
---|
866 | *pfExactSubLeafHit = true;
|
---|
867 | else
|
---|
868 | {
|
---|
869 | /* Find the right subleaf. We return the last one before
|
---|
870 | uSubLeaf if we don't find an exact match. */
|
---|
871 | if (uSubLeaf < paLeaves[i].uSubLeaf)
|
---|
872 | while ( i > 0
|
---|
873 | && uLeaf == paLeaves[i - 1].uLeaf
|
---|
874 | && uSubLeaf <= paLeaves[i - 1].uSubLeaf)
|
---|
875 | i--;
|
---|
876 | else
|
---|
877 | while ( i + 1 < pVM->cpum.s.GuestInfo.cCpuIdLeaves
|
---|
878 | && uLeaf == paLeaves[i + 1].uLeaf
|
---|
879 | && uSubLeaf >= paLeaves[i + 1].uSubLeaf)
|
---|
880 | i++;
|
---|
881 | *pfExactSubLeafHit = uSubLeaf == paLeaves[i].uSubLeaf;
|
---|
882 | }
|
---|
883 | return &paLeaves[i];
|
---|
884 | }
|
---|
885 | }
|
---|
886 | }
|
---|
887 |
|
---|
888 | *pfExactSubLeafHit = false;
|
---|
889 | return NULL;
|
---|
890 | }
|
---|
891 |
|
---|
892 |
|
---|
893 | /**
|
---|
894 | * Gets a CPUID leaf.
|
---|
895 | *
|
---|
896 | * @param pVCpu The cross context virtual CPU structure.
|
---|
897 | * @param uLeaf The CPUID leaf to get.
|
---|
898 | * @param uSubLeaf The CPUID sub-leaf to get, if applicable.
|
---|
899 | * @param pEax Where to store the EAX value.
|
---|
900 | * @param pEbx Where to store the EBX value.
|
---|
901 | * @param pEcx Where to store the ECX value.
|
---|
902 | * @param pEdx Where to store the EDX value.
|
---|
903 | */
|
---|
904 | VMMDECL(void) CPUMGetGuestCpuId(PVMCPUCC pVCpu, uint32_t uLeaf, uint32_t uSubLeaf,
|
---|
905 | uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
|
---|
906 | {
|
---|
907 | bool fExactSubLeafHit;
|
---|
908 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
909 | PCCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, uSubLeaf, &fExactSubLeafHit);
|
---|
910 | if (pLeaf)
|
---|
911 | {
|
---|
912 | AssertMsg(pLeaf->uLeaf == uLeaf, ("%#x %#x\n", pLeaf->uLeaf, uLeaf));
|
---|
913 | if (fExactSubLeafHit)
|
---|
914 | {
|
---|
915 | *pEax = pLeaf->uEax;
|
---|
916 | *pEbx = pLeaf->uEbx;
|
---|
917 | *pEcx = pLeaf->uEcx;
|
---|
918 | *pEdx = pLeaf->uEdx;
|
---|
919 |
|
---|
920 | /*
|
---|
921 | * Deal with CPU specific information.
|
---|
922 | */
|
---|
923 | if (pLeaf->fFlags & ( CPUMCPUIDLEAF_F_CONTAINS_APIC_ID
|
---|
924 | | CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE
|
---|
925 | | CPUMCPUIDLEAF_F_CONTAINS_APIC ))
|
---|
926 | {
|
---|
927 | if (uLeaf == 1)
|
---|
928 | {
|
---|
929 | /* EBX: Bits 31-24: Initial APIC ID. */
|
---|
930 | Assert(pVCpu->idCpu <= 255);
|
---|
931 | AssertMsg((pLeaf->uEbx >> 24) == 0, ("%#x\n", pLeaf->uEbx)); /* raw-mode assumption */
|
---|
932 | *pEbx = (pLeaf->uEbx & UINT32_C(0x00ffffff)) | (pVCpu->idCpu << 24);
|
---|
933 |
|
---|
934 | /* EDX: Bit 9: AND with APICBASE.EN. */
|
---|
935 | if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
|
---|
936 | *pEdx &= ~X86_CPUID_FEATURE_EDX_APIC;
|
---|
937 |
|
---|
938 | /* ECX: Bit 27: CR4.OSXSAVE mirror. */
|
---|
939 | *pEcx = (pLeaf->uEcx & ~X86_CPUID_FEATURE_ECX_OSXSAVE)
|
---|
940 | | (pVCpu->cpum.s.Guest.cr4 & X86_CR4_OSXSAVE ? X86_CPUID_FEATURE_ECX_OSXSAVE : 0);
|
---|
941 | }
|
---|
942 | else if (uLeaf == 0xb)
|
---|
943 | {
|
---|
944 | /* EDX: Initial extended APIC ID. */
|
---|
945 | AssertMsg(pLeaf->uEdx == 0, ("%#x\n", pLeaf->uEdx)); /* raw-mode assumption */
|
---|
946 | *pEdx = pVCpu->idCpu;
|
---|
947 | Assert(!(pLeaf->fFlags & ~(CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)));
|
---|
948 | }
|
---|
949 | else if (uLeaf == UINT32_C(0x8000001e))
|
---|
950 | {
|
---|
951 | /* EAX: Initial extended APIC ID. */
|
---|
952 | AssertMsg(pLeaf->uEax == 0, ("%#x\n", pLeaf->uEax)); /* raw-mode assumption */
|
---|
953 | *pEax = pVCpu->idCpu;
|
---|
954 | Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC_ID));
|
---|
955 | }
|
---|
956 | else if (uLeaf == UINT32_C(0x80000001))
|
---|
957 | {
|
---|
958 | /* EDX: Bit 9: AND with APICBASE.EN. */
|
---|
959 | if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible)
|
---|
960 | *pEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC;
|
---|
961 | Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC));
|
---|
962 | }
|
---|
963 | else
|
---|
964 | AssertMsgFailed(("uLeaf=%#x\n", uLeaf));
|
---|
965 | }
|
---|
966 | }
|
---|
967 | /*
|
---|
968 | * Out of range sub-leaves aren't quite as easy and pretty as we emulate
|
---|
969 | * them here, but we do the best we can here...
|
---|
970 | */
|
---|
971 | else
|
---|
972 | {
|
---|
973 | *pEax = *pEbx = *pEcx = *pEdx = 0;
|
---|
974 | if (pLeaf->fFlags & CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)
|
---|
975 | {
|
---|
976 | *pEcx = uSubLeaf & 0xff;
|
---|
977 | *pEdx = pVCpu->idCpu;
|
---|
978 | }
|
---|
979 | }
|
---|
980 | }
|
---|
981 | else
|
---|
982 | {
|
---|
983 | /*
|
---|
984 | * Different CPUs have different ways of dealing with unknown CPUID leaves.
|
---|
985 | */
|
---|
986 | switch (pVM->cpum.s.GuestInfo.enmUnknownCpuIdMethod)
|
---|
987 | {
|
---|
988 | default:
|
---|
989 | AssertFailed();
|
---|
990 | RT_FALL_THRU();
|
---|
991 | case CPUMUNKNOWNCPUID_DEFAULTS:
|
---|
992 | case CPUMUNKNOWNCPUID_LAST_STD_LEAF: /* ASSUME this is executed */
|
---|
993 | case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: /** @todo Implement CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX */
|
---|
994 | *pEax = pVM->cpum.s.GuestInfo.DefCpuId.uEax;
|
---|
995 | *pEbx = pVM->cpum.s.GuestInfo.DefCpuId.uEbx;
|
---|
996 | *pEcx = pVM->cpum.s.GuestInfo.DefCpuId.uEcx;
|
---|
997 | *pEdx = pVM->cpum.s.GuestInfo.DefCpuId.uEdx;
|
---|
998 | break;
|
---|
999 | case CPUMUNKNOWNCPUID_PASSTHRU:
|
---|
1000 | *pEax = uLeaf;
|
---|
1001 | *pEbx = 0;
|
---|
1002 | *pEcx = uSubLeaf;
|
---|
1003 | *pEdx = 0;
|
---|
1004 | break;
|
---|
1005 | }
|
---|
1006 | }
|
---|
1007 | Log2(("CPUMGetGuestCpuId: uLeaf=%#010x/%#010x %RX32 %RX32 %RX32 %RX32\n", uLeaf, uSubLeaf, *pEax, *pEbx, *pEcx, *pEdx));
|
---|
1008 | }
|
---|
1009 |
|
---|
1010 |
|
---|
1011 | /**
|
---|
1012 | * Sets the visibility of the X86_CPUID_FEATURE_EDX_APIC and
|
---|
1013 | * X86_CPUID_AMD_FEATURE_EDX_APIC CPUID bits.
|
---|
1014 | *
|
---|
1015 | * @returns Previous value.
|
---|
1016 | * @param pVCpu The cross context virtual CPU structure to make the
|
---|
1017 | * change on. Usually the calling EMT.
|
---|
1018 | * @param fVisible Whether to make it visible (true) or hide it (false).
|
---|
1019 | *
|
---|
1020 | * @remarks This is "VMMDECL" so that it still links with
|
---|
1021 | * the old APIC code which is in VBoxDD2 and not in
|
---|
1022 | * the VMM module.
|
---|
1023 | */
|
---|
1024 | VMMDECL(bool) CPUMSetGuestCpuIdPerCpuApicFeature(PVMCPU pVCpu, bool fVisible)
|
---|
1025 | {
|
---|
1026 | bool fOld = pVCpu->cpum.s.fCpuIdApicFeatureVisible;
|
---|
1027 | pVCpu->cpum.s.fCpuIdApicFeatureVisible = fVisible;
|
---|
1028 | return fOld;
|
---|
1029 | }
|
---|
1030 |
|
---|
1031 |
|
---|
1032 | /**
|
---|
1033 | * Gets the host CPU vendor.
|
---|
1034 | *
|
---|
1035 | * @returns CPU vendor.
|
---|
1036 | * @param pVM The cross context VM structure.
|
---|
1037 | */
|
---|
1038 | VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM)
|
---|
1039 | {
|
---|
1040 | return (CPUMCPUVENDOR)pVM->cpum.s.HostFeatures.enmCpuVendor;
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 |
|
---|
1044 | /**
|
---|
1045 | * Gets the CPU vendor.
|
---|
1046 | *
|
---|
1047 | * @returns CPU vendor.
|
---|
1048 | * @param pVM The cross context VM structure.
|
---|
1049 | */
|
---|
1050 | VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM)
|
---|
1051 | {
|
---|
1052 | return (CPUMCPUVENDOR)pVM->cpum.s.GuestFeatures.enmCpuVendor;
|
---|
1053 | }
|
---|
1054 |
|
---|
1055 |
|
---|
1056 | VMMDECL(int) CPUMSetGuestDR0(PVMCPUCC pVCpu, uint64_t uDr0)
|
---|
1057 | {
|
---|
1058 | pVCpu->cpum.s.Guest.dr[0] = uDr0;
|
---|
1059 | return CPUMRecalcHyperDRx(pVCpu, 0, false);
|
---|
1060 | }
|
---|
1061 |
|
---|
1062 |
|
---|
1063 | VMMDECL(int) CPUMSetGuestDR1(PVMCPUCC pVCpu, uint64_t uDr1)
|
---|
1064 | {
|
---|
1065 | pVCpu->cpum.s.Guest.dr[1] = uDr1;
|
---|
1066 | return CPUMRecalcHyperDRx(pVCpu, 1, false);
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 |
|
---|
1070 | VMMDECL(int) CPUMSetGuestDR2(PVMCPUCC pVCpu, uint64_t uDr2)
|
---|
1071 | {
|
---|
1072 | pVCpu->cpum.s.Guest.dr[2] = uDr2;
|
---|
1073 | return CPUMRecalcHyperDRx(pVCpu, 2, false);
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 |
|
---|
1077 | VMMDECL(int) CPUMSetGuestDR3(PVMCPUCC pVCpu, uint64_t uDr3)
|
---|
1078 | {
|
---|
1079 | pVCpu->cpum.s.Guest.dr[3] = uDr3;
|
---|
1080 | return CPUMRecalcHyperDRx(pVCpu, 3, false);
|
---|
1081 | }
|
---|
1082 |
|
---|
1083 |
|
---|
1084 | VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6)
|
---|
1085 | {
|
---|
1086 | pVCpu->cpum.s.Guest.dr[6] = uDr6;
|
---|
1087 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR6;
|
---|
1088 | return VINF_SUCCESS; /* No need to recalc. */
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 |
|
---|
1092 | VMMDECL(int) CPUMSetGuestDR7(PVMCPUCC pVCpu, uint64_t uDr7)
|
---|
1093 | {
|
---|
1094 | pVCpu->cpum.s.Guest.dr[7] = uDr7;
|
---|
1095 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR7;
|
---|
1096 | return CPUMRecalcHyperDRx(pVCpu, 7, false);
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 |
|
---|
1100 | VMMDECL(int) CPUMSetGuestDRx(PVMCPUCC pVCpu, uint32_t iReg, uint64_t Value)
|
---|
1101 | {
|
---|
1102 | AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
|
---|
1103 | /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
|
---|
1104 | if (iReg == 4 || iReg == 5)
|
---|
1105 | iReg += 2;
|
---|
1106 | pVCpu->cpum.s.Guest.dr[iReg] = Value;
|
---|
1107 | return CPUMRecalcHyperDRx(pVCpu, iReg, false);
|
---|
1108 | }
|
---|
1109 |
|
---|
1110 |
|
---|
1111 | /**
|
---|
1112 | * Recalculates the hypervisor DRx register values based on current guest
|
---|
1113 | * registers and DBGF breakpoints, updating changed registers depending on the
|
---|
1114 | * context.
|
---|
1115 | *
|
---|
1116 | * This is called whenever a guest DRx register is modified (any context) and
|
---|
1117 | * when DBGF sets a hardware breakpoint (ring-3 only, rendezvous).
|
---|
1118 | *
|
---|
1119 | * In raw-mode context this function will reload any (hyper) DRx registers which
|
---|
1120 | * comes out with a different value. It may also have to save the host debug
|
---|
1121 | * registers if that haven't been done already. In this context though, we'll
|
---|
1122 | * be intercepting and emulating all DRx accesses, so the hypervisor DRx values
|
---|
1123 | * are only important when breakpoints are actually enabled.
|
---|
1124 | *
|
---|
1125 | * In ring-0 (HM) context DR0-3 will be relocated by us, while DR7 will be
|
---|
1126 | * reloaded by the HM code if it changes. Further more, we will only use the
|
---|
1127 | * combined register set when the VBox debugger is actually using hardware BPs,
|
---|
1128 | * when it isn't we'll keep the guest DR0-3 + (maybe) DR6 loaded (DR6 doesn't
|
---|
1129 | * concern us here).
|
---|
1130 | *
|
---|
1131 | * In ring-3 we won't be loading anything, so well calculate hypervisor values
|
---|
1132 | * all the time.
|
---|
1133 | *
|
---|
1134 | * @returns VINF_SUCCESS.
|
---|
1135 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1136 | * @param iGstReg The guest debug register number that was modified.
|
---|
1137 | * UINT8_MAX if not guest register.
|
---|
1138 | * @param fForceHyper Used in HM to force hyper registers because of single
|
---|
1139 | * stepping.
|
---|
1140 | */
|
---|
1141 | VMMDECL(int) CPUMRecalcHyperDRx(PVMCPUCC pVCpu, uint8_t iGstReg, bool fForceHyper)
|
---|
1142 | {
|
---|
1143 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1144 | #ifndef IN_RING0
|
---|
1145 | RT_NOREF_PV(iGstReg);
|
---|
1146 | #endif
|
---|
1147 |
|
---|
1148 | /*
|
---|
1149 | * Compare the DR7s first.
|
---|
1150 | *
|
---|
1151 | * We only care about the enabled flags. GD is virtualized when we
|
---|
1152 | * dispatch the #DB, we never enable it. The DBGF DR7 value is will
|
---|
1153 | * always have the LE and GE bits set, so no need to check and disable
|
---|
1154 | * stuff if they're cleared like we have to for the guest DR7.
|
---|
1155 | */
|
---|
1156 | RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu);
|
---|
1157 | /** @todo This isn't correct. BPs work without setting LE and GE under AMD-V. They are also documented as unsupported by P6+. */
|
---|
1158 | if (!(uGstDr7 & (X86_DR7_LE | X86_DR7_GE)))
|
---|
1159 | uGstDr7 = 0;
|
---|
1160 | else if (!(uGstDr7 & X86_DR7_LE))
|
---|
1161 | uGstDr7 &= ~X86_DR7_LE_ALL;
|
---|
1162 | else if (!(uGstDr7 & X86_DR7_GE))
|
---|
1163 | uGstDr7 &= ~X86_DR7_GE_ALL;
|
---|
1164 |
|
---|
1165 | const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM);
|
---|
1166 |
|
---|
1167 | /** @todo r=bird: I'm totally confused by fForceHyper! */
|
---|
1168 | #ifdef IN_RING0
|
---|
1169 | if (!fForceHyper && (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER))
|
---|
1170 | fForceHyper = true;
|
---|
1171 | #endif
|
---|
1172 | if ((!fForceHyper ? uDbgfDr7 : (uGstDr7 | uDbgfDr7)) & X86_DR7_ENABLED_MASK)
|
---|
1173 | {
|
---|
1174 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1175 |
|
---|
1176 | /*
|
---|
1177 | * Ok, something is enabled. Recalc each of the breakpoints, taking
|
---|
1178 | * the VM debugger ones of the guest ones. In raw-mode context we will
|
---|
1179 | * not allow breakpoints with values inside the hypervisor area.
|
---|
1180 | */
|
---|
1181 | RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_RA1_MASK;
|
---|
1182 |
|
---|
1183 | /* bp 0 */
|
---|
1184 | RTGCUINTREG uNewDr0;
|
---|
1185 | if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0))
|
---|
1186 | {
|
---|
1187 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
|
---|
1188 | uNewDr0 = DBGFBpGetDR0(pVM);
|
---|
1189 | }
|
---|
1190 | else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0))
|
---|
1191 | {
|
---|
1192 | uNewDr0 = CPUMGetGuestDR0(pVCpu);
|
---|
1193 | uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
|
---|
1194 | }
|
---|
1195 | else
|
---|
1196 | uNewDr0 = 0;
|
---|
1197 |
|
---|
1198 | /* bp 1 */
|
---|
1199 | RTGCUINTREG uNewDr1;
|
---|
1200 | if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1))
|
---|
1201 | {
|
---|
1202 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
|
---|
1203 | uNewDr1 = DBGFBpGetDR1(pVM);
|
---|
1204 | }
|
---|
1205 | else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1))
|
---|
1206 | {
|
---|
1207 | uNewDr1 = CPUMGetGuestDR1(pVCpu);
|
---|
1208 | uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
|
---|
1209 | }
|
---|
1210 | else
|
---|
1211 | uNewDr1 = 0;
|
---|
1212 |
|
---|
1213 | /* bp 2 */
|
---|
1214 | RTGCUINTREG uNewDr2;
|
---|
1215 | if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2))
|
---|
1216 | {
|
---|
1217 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
|
---|
1218 | uNewDr2 = DBGFBpGetDR2(pVM);
|
---|
1219 | }
|
---|
1220 | else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2))
|
---|
1221 | {
|
---|
1222 | uNewDr2 = CPUMGetGuestDR2(pVCpu);
|
---|
1223 | uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
|
---|
1224 | }
|
---|
1225 | else
|
---|
1226 | uNewDr2 = 0;
|
---|
1227 |
|
---|
1228 | /* bp 3 */
|
---|
1229 | RTGCUINTREG uNewDr3;
|
---|
1230 | if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3))
|
---|
1231 | {
|
---|
1232 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
|
---|
1233 | uNewDr3 = DBGFBpGetDR3(pVM);
|
---|
1234 | }
|
---|
1235 | else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3))
|
---|
1236 | {
|
---|
1237 | uNewDr3 = CPUMGetGuestDR3(pVCpu);
|
---|
1238 | uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
|
---|
1239 | }
|
---|
1240 | else
|
---|
1241 | uNewDr3 = 0;
|
---|
1242 |
|
---|
1243 | /*
|
---|
1244 | * Apply the updates.
|
---|
1245 | */
|
---|
1246 | pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER;
|
---|
1247 | if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3])
|
---|
1248 | CPUMSetHyperDR3(pVCpu, uNewDr3);
|
---|
1249 | if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2])
|
---|
1250 | CPUMSetHyperDR2(pVCpu, uNewDr2);
|
---|
1251 | if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1])
|
---|
1252 | CPUMSetHyperDR1(pVCpu, uNewDr1);
|
---|
1253 | if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0])
|
---|
1254 | CPUMSetHyperDR0(pVCpu, uNewDr0);
|
---|
1255 | if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7])
|
---|
1256 | CPUMSetHyperDR7(pVCpu, uNewDr7);
|
---|
1257 | }
|
---|
1258 | #ifdef IN_RING0
|
---|
1259 | else if (CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1260 | {
|
---|
1261 | /*
|
---|
1262 | * Reload the register that was modified. Normally this won't happen
|
---|
1263 | * as we won't intercept DRx writes when not having the hyper debug
|
---|
1264 | * state loaded, but in case we do for some reason we'll simply deal
|
---|
1265 | * with it.
|
---|
1266 | */
|
---|
1267 | switch (iGstReg)
|
---|
1268 | {
|
---|
1269 | case 0: ASMSetDR0(CPUMGetGuestDR0(pVCpu)); break;
|
---|
1270 | case 1: ASMSetDR1(CPUMGetGuestDR1(pVCpu)); break;
|
---|
1271 | case 2: ASMSetDR2(CPUMGetGuestDR2(pVCpu)); break;
|
---|
1272 | case 3: ASMSetDR3(CPUMGetGuestDR3(pVCpu)); break;
|
---|
1273 | default:
|
---|
1274 | AssertReturn(iGstReg != UINT8_MAX, VERR_INTERNAL_ERROR_3);
|
---|
1275 | }
|
---|
1276 | }
|
---|
1277 | #endif
|
---|
1278 | else
|
---|
1279 | {
|
---|
1280 | /*
|
---|
1281 | * No active debug state any more. In raw-mode this means we have to
|
---|
1282 | * make sure DR7 has everything disabled now, if we armed it already.
|
---|
1283 | * In ring-0 we might end up here when just single stepping.
|
---|
1284 | */
|
---|
1285 | #ifdef IN_RING0
|
---|
1286 | if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER)
|
---|
1287 | {
|
---|
1288 | if (pVCpu->cpum.s.Hyper.dr[0])
|
---|
1289 | ASMSetDR0(0);
|
---|
1290 | if (pVCpu->cpum.s.Hyper.dr[1])
|
---|
1291 | ASMSetDR1(0);
|
---|
1292 | if (pVCpu->cpum.s.Hyper.dr[2])
|
---|
1293 | ASMSetDR2(0);
|
---|
1294 | if (pVCpu->cpum.s.Hyper.dr[3])
|
---|
1295 | ASMSetDR3(0);
|
---|
1296 | pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_DEBUG_REGS_HYPER;
|
---|
1297 | }
|
---|
1298 | #endif
|
---|
1299 | pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER;
|
---|
1300 |
|
---|
1301 | /* Clear all the registers. */
|
---|
1302 | pVCpu->cpum.s.Hyper.dr[7] = X86_DR7_RA1_MASK;
|
---|
1303 | pVCpu->cpum.s.Hyper.dr[3] = 0;
|
---|
1304 | pVCpu->cpum.s.Hyper.dr[2] = 0;
|
---|
1305 | pVCpu->cpum.s.Hyper.dr[1] = 0;
|
---|
1306 | pVCpu->cpum.s.Hyper.dr[0] = 0;
|
---|
1307 |
|
---|
1308 | }
|
---|
1309 | Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n",
|
---|
1310 | pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1],
|
---|
1311 | pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6],
|
---|
1312 | pVCpu->cpum.s.Hyper.dr[7]));
|
---|
1313 |
|
---|
1314 | return VINF_SUCCESS;
|
---|
1315 | }
|
---|
1316 |
|
---|
1317 |
|
---|
1318 | /**
|
---|
1319 | * Set the guest XCR0 register.
|
---|
1320 | *
|
---|
1321 | * Will load additional state if the FPU state is already loaded (in ring-0 &
|
---|
1322 | * raw-mode context).
|
---|
1323 | *
|
---|
1324 | * @returns VINF_SUCCESS on success, VERR_CPUM_RAISE_GP_0 on invalid input
|
---|
1325 | * value.
|
---|
1326 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1327 | * @param uNewValue The new value.
|
---|
1328 | * @thread EMT(pVCpu)
|
---|
1329 | */
|
---|
1330 | VMM_INT_DECL(int) CPUMSetGuestXcr0(PVMCPUCC pVCpu, uint64_t uNewValue)
|
---|
1331 | {
|
---|
1332 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_XCRx);
|
---|
1333 | if ( (uNewValue & ~pVCpu->CTX_SUFF(pVM)->cpum.s.fXStateGuestMask) == 0
|
---|
1334 | /* The X87 bit cannot be cleared. */
|
---|
1335 | && (uNewValue & XSAVE_C_X87)
|
---|
1336 | /* AVX requires SSE. */
|
---|
1337 | && (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM
|
---|
1338 | /* AVX-512 requires YMM, SSE and all of its three components to be enabled. */
|
---|
1339 | && ( (uNewValue & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
|
---|
1340 | || (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
|
---|
1341 | == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI) )
|
---|
1342 | )
|
---|
1343 | {
|
---|
1344 | pVCpu->cpum.s.Guest.aXcr[0] = uNewValue;
|
---|
1345 |
|
---|
1346 | /* If more state components are enabled, we need to take care to load
|
---|
1347 | them if the FPU/SSE state is already loaded. May otherwise leak
|
---|
1348 | host state to the guest. */
|
---|
1349 | uint64_t fNewComponents = ~pVCpu->cpum.s.Guest.fXStateMask & uNewValue;
|
---|
1350 | if (fNewComponents)
|
---|
1351 | {
|
---|
1352 | #ifdef IN_RING0
|
---|
1353 | if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)
|
---|
1354 | {
|
---|
1355 | if (pVCpu->cpum.s.Guest.fXStateMask != 0)
|
---|
1356 | /* Adding more components. */
|
---|
1357 | ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), fNewComponents);
|
---|
1358 | else
|
---|
1359 | {
|
---|
1360 | /* We're switching from FXSAVE/FXRSTOR to XSAVE/XRSTOR. */
|
---|
1361 | pVCpu->cpum.s.Guest.fXStateMask |= XSAVE_C_X87 | XSAVE_C_SSE;
|
---|
1362 | if (uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE))
|
---|
1363 | ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE));
|
---|
1364 | }
|
---|
1365 | }
|
---|
1366 | #endif
|
---|
1367 | pVCpu->cpum.s.Guest.fXStateMask |= uNewValue;
|
---|
1368 | }
|
---|
1369 | return VINF_SUCCESS;
|
---|
1370 | }
|
---|
1371 | return VERR_CPUM_RAISE_GP_0;
|
---|
1372 | }
|
---|
1373 |
|
---|
1374 |
|
---|
1375 | /**
|
---|
1376 | * Tests if the guest has No-Execute Page Protection Enabled (NXE).
|
---|
1377 | *
|
---|
1378 | * @returns true if in real mode, otherwise false.
|
---|
1379 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1380 | */
|
---|
1381 | VMMDECL(bool) CPUMIsGuestNXEnabled(PCVMCPU pVCpu)
|
---|
1382 | {
|
---|
1383 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
|
---|
1384 | return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE);
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 |
|
---|
1388 | /**
|
---|
1389 | * Tests if the guest has the Page Size Extension enabled (PSE).
|
---|
1390 | *
|
---|
1391 | * @returns true if in real mode, otherwise false.
|
---|
1392 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1393 | */
|
---|
1394 | VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PCVMCPU pVCpu)
|
---|
1395 | {
|
---|
1396 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
|
---|
1397 | /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */
|
---|
1398 | return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE));
|
---|
1399 | }
|
---|
1400 |
|
---|
1401 |
|
---|
1402 | /**
|
---|
1403 | * Tests if the guest has the paging enabled (PG).
|
---|
1404 | *
|
---|
1405 | * @returns true if in real mode, otherwise false.
|
---|
1406 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1407 | */
|
---|
1408 | VMMDECL(bool) CPUMIsGuestPagingEnabled(PCVMCPU pVCpu)
|
---|
1409 | {
|
---|
1410 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
1411 | return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG);
|
---|
1412 | }
|
---|
1413 |
|
---|
1414 |
|
---|
1415 | /**
|
---|
1416 | * Tests if the guest has the paging enabled (PG).
|
---|
1417 | *
|
---|
1418 | * @returns true if in real mode, otherwise false.
|
---|
1419 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1420 | */
|
---|
1421 | VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PCVMCPU pVCpu)
|
---|
1422 | {
|
---|
1423 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
1424 | return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP);
|
---|
1425 | }
|
---|
1426 |
|
---|
1427 |
|
---|
1428 | /**
|
---|
1429 | * Tests if the guest is running in real mode or not.
|
---|
1430 | *
|
---|
1431 | * @returns true if in real mode, otherwise false.
|
---|
1432 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1433 | */
|
---|
1434 | VMMDECL(bool) CPUMIsGuestInRealMode(PCVMCPU pVCpu)
|
---|
1435 | {
|
---|
1436 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
1437 | return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
|
---|
1438 | }
|
---|
1439 |
|
---|
1440 |
|
---|
1441 | /**
|
---|
1442 | * Tests if the guest is running in real or virtual 8086 mode.
|
---|
1443 | *
|
---|
1444 | * @returns @c true if it is, @c false if not.
|
---|
1445 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1446 | */
|
---|
1447 | VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PCVMCPU pVCpu)
|
---|
1448 | {
|
---|
1449 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS);
|
---|
1450 | return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
|
---|
1451 | || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 |
|
---|
1455 | /**
|
---|
1456 | * Tests if the guest is running in protected or not.
|
---|
1457 | *
|
---|
1458 | * @returns true if in protected mode, otherwise false.
|
---|
1459 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1460 | */
|
---|
1461 | VMMDECL(bool) CPUMIsGuestInProtectedMode(PCVMCPU pVCpu)
|
---|
1462 | {
|
---|
1463 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
1464 | return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
|
---|
1465 | }
|
---|
1466 |
|
---|
1467 |
|
---|
1468 | /**
|
---|
1469 | * Tests if the guest is running in paged protected or not.
|
---|
1470 | *
|
---|
1471 | * @returns true if in paged protected mode, otherwise false.
|
---|
1472 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1473 | */
|
---|
1474 | VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PCVMCPU pVCpu)
|
---|
1475 | {
|
---|
1476 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
1477 | return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG);
|
---|
1478 | }
|
---|
1479 |
|
---|
1480 |
|
---|
1481 | /**
|
---|
1482 | * Tests if the guest is running in long mode or not.
|
---|
1483 | *
|
---|
1484 | * @returns true if in long mode, otherwise false.
|
---|
1485 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1486 | */
|
---|
1487 | VMMDECL(bool) CPUMIsGuestInLongMode(PCVMCPU pVCpu)
|
---|
1488 | {
|
---|
1489 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
|
---|
1490 | return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA;
|
---|
1491 | }
|
---|
1492 |
|
---|
1493 |
|
---|
1494 | /**
|
---|
1495 | * Tests if the guest is running in PAE mode or not.
|
---|
1496 | *
|
---|
1497 | * @returns true if in PAE mode, otherwise false.
|
---|
1498 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1499 | */
|
---|
1500 | VMMDECL(bool) CPUMIsGuestInPAEMode(PCVMCPU pVCpu)
|
---|
1501 | {
|
---|
1502 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
|
---|
1503 | /* Intel mentions EFER.LMA and EFER.LME in different parts of their spec. We shall use EFER.LMA rather
|
---|
1504 | than EFER.LME as it reflects if the CPU has entered paging with EFER.LME set. */
|
---|
1505 | return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE)
|
---|
1506 | && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG)
|
---|
1507 | && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA);
|
---|
1508 | }
|
---|
1509 |
|
---|
1510 |
|
---|
1511 | /**
|
---|
1512 | * Tests if the guest is running in 64 bits mode or not.
|
---|
1513 | *
|
---|
1514 | * @returns true if in 64 bits protected mode, otherwise false.
|
---|
1515 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1516 | */
|
---|
1517 | VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu)
|
---|
1518 | {
|
---|
1519 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
|
---|
1520 | if (!CPUMIsGuestInLongMode(pVCpu))
|
---|
1521 | return false;
|
---|
1522 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
1523 | return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long;
|
---|
1524 | }
|
---|
1525 |
|
---|
1526 |
|
---|
1527 | /**
|
---|
1528 | * Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS
|
---|
1529 | * registers.
|
---|
1530 | *
|
---|
1531 | * @returns true if in 64 bits protected mode, otherwise false.
|
---|
1532 | * @param pCtx Pointer to the current guest CPU context.
|
---|
1533 | */
|
---|
1534 | VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx)
|
---|
1535 | {
|
---|
1536 | return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx));
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 |
|
---|
1540 | /**
|
---|
1541 | * Sets the specified changed flags (CPUM_CHANGED_*).
|
---|
1542 | *
|
---|
1543 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1544 | * @param fChangedAdd The changed flags to add.
|
---|
1545 | */
|
---|
1546 | VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedAdd)
|
---|
1547 | {
|
---|
1548 | pVCpu->cpum.s.fChanged |= fChangedAdd;
|
---|
1549 | }
|
---|
1550 |
|
---|
1551 |
|
---|
1552 | /**
|
---|
1553 | * Checks if the CPU supports the XSAVE and XRSTOR instruction.
|
---|
1554 | *
|
---|
1555 | * @returns true if supported.
|
---|
1556 | * @returns false if not supported.
|
---|
1557 | * @param pVM The cross context VM structure.
|
---|
1558 | */
|
---|
1559 | VMMDECL(bool) CPUMSupportsXSave(PVM pVM)
|
---|
1560 | {
|
---|
1561 | return pVM->cpum.s.HostFeatures.fXSaveRstor != 0;
|
---|
1562 | }
|
---|
1563 |
|
---|
1564 |
|
---|
1565 | /**
|
---|
1566 | * Checks if the host OS uses the SYSENTER / SYSEXIT instructions.
|
---|
1567 | * @returns true if used.
|
---|
1568 | * @returns false if not used.
|
---|
1569 | * @param pVM The cross context VM structure.
|
---|
1570 | */
|
---|
1571 | VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM)
|
---|
1572 | {
|
---|
1573 | return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER);
|
---|
1574 | }
|
---|
1575 |
|
---|
1576 |
|
---|
1577 | /**
|
---|
1578 | * Checks if the host OS uses the SYSCALL / SYSRET instructions.
|
---|
1579 | * @returns true if used.
|
---|
1580 | * @returns false if not used.
|
---|
1581 | * @param pVM The cross context VM structure.
|
---|
1582 | */
|
---|
1583 | VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM)
|
---|
1584 | {
|
---|
1585 | return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL);
|
---|
1586 | }
|
---|
1587 |
|
---|
1588 |
|
---|
1589 | /**
|
---|
1590 | * Checks if we activated the FPU/XMM state of the guest OS.
|
---|
1591 | *
|
---|
1592 | * This differs from CPUMIsGuestFPUStateLoaded() in that it refers to the next
|
---|
1593 | * time we'll be executing guest code, so it may return true for 64-on-32 when
|
---|
1594 | * we still haven't actually loaded the FPU status, just scheduled it to be
|
---|
1595 | * loaded the next time we go thru the world switcher (CPUM_SYNC_FPU_STATE).
|
---|
1596 | *
|
---|
1597 | * @returns true / false.
|
---|
1598 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1599 | */
|
---|
1600 | VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu)
|
---|
1601 | {
|
---|
1602 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_SYNC_FPU_STATE));
|
---|
1603 | }
|
---|
1604 |
|
---|
1605 |
|
---|
1606 | /**
|
---|
1607 | * Checks if we've really loaded the FPU/XMM state of the guest OS.
|
---|
1608 | *
|
---|
1609 | * @returns true / false.
|
---|
1610 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1611 | */
|
---|
1612 | VMMDECL(bool) CPUMIsGuestFPUStateLoaded(PVMCPU pVCpu)
|
---|
1613 | {
|
---|
1614 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
|
---|
1615 | }
|
---|
1616 |
|
---|
1617 |
|
---|
1618 | /**
|
---|
1619 | * Checks if we saved the FPU/XMM state of the host OS.
|
---|
1620 | *
|
---|
1621 | * @returns true / false.
|
---|
1622 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1623 | */
|
---|
1624 | VMMDECL(bool) CPUMIsHostFPUStateSaved(PVMCPU pVCpu)
|
---|
1625 | {
|
---|
1626 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST);
|
---|
1627 | }
|
---|
1628 |
|
---|
1629 |
|
---|
1630 | /**
|
---|
1631 | * Checks if the guest debug state is active.
|
---|
1632 | *
|
---|
1633 | * @returns boolean
|
---|
1634 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1635 | */
|
---|
1636 | VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu)
|
---|
1637 | {
|
---|
1638 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST);
|
---|
1639 | }
|
---|
1640 |
|
---|
1641 |
|
---|
1642 | /**
|
---|
1643 | * Checks if the guest debug state is to be made active during the world-switch
|
---|
1644 | * (currently only used for the 32->64 switcher case).
|
---|
1645 | *
|
---|
1646 | * @returns boolean
|
---|
1647 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1648 | */
|
---|
1649 | VMMDECL(bool) CPUMIsGuestDebugStateActivePending(PVMCPU pVCpu)
|
---|
1650 | {
|
---|
1651 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_DEBUG_REGS_GUEST);
|
---|
1652 | }
|
---|
1653 |
|
---|
1654 |
|
---|
1655 | /**
|
---|
1656 | * Checks if the hyper debug state is active.
|
---|
1657 | *
|
---|
1658 | * @returns boolean
|
---|
1659 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1660 | */
|
---|
1661 | VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu)
|
---|
1662 | {
|
---|
1663 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER);
|
---|
1664 | }
|
---|
1665 |
|
---|
1666 |
|
---|
1667 | /**
|
---|
1668 | * Checks if the hyper debug state is to be made active during the world-switch
|
---|
1669 | * (currently only used for the 32->64 switcher case).
|
---|
1670 | *
|
---|
1671 | * @returns boolean
|
---|
1672 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1673 | */
|
---|
1674 | VMMDECL(bool) CPUMIsHyperDebugStateActivePending(PVMCPU pVCpu)
|
---|
1675 | {
|
---|
1676 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_DEBUG_REGS_HYPER);
|
---|
1677 | }
|
---|
1678 |
|
---|
1679 |
|
---|
1680 | /**
|
---|
1681 | * Mark the guest's debug state as inactive.
|
---|
1682 | *
|
---|
1683 | * @returns boolean
|
---|
1684 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1685 | * @todo This API doesn't make sense any more.
|
---|
1686 | */
|
---|
1687 | VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu)
|
---|
1688 | {
|
---|
1689 | Assert(!(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HOST)));
|
---|
1690 | NOREF(pVCpu);
|
---|
1691 | }
|
---|
1692 |
|
---|
1693 |
|
---|
1694 | /**
|
---|
1695 | * Get the current privilege level of the guest.
|
---|
1696 | *
|
---|
1697 | * @returns CPL
|
---|
1698 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1699 | */
|
---|
1700 | VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu)
|
---|
1701 | {
|
---|
1702 | /*
|
---|
1703 | * CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not.
|
---|
1704 | *
|
---|
1705 | * Note! We used to check CS.DPL here, assuming it was always equal to
|
---|
1706 | * CPL even if a conforming segment was loaded. But this turned out to
|
---|
1707 | * only apply to older AMD-V. With VT-x we had an ACP2 regression
|
---|
1708 | * during install after a far call to ring 2 with VT-x. Then on newer
|
---|
1709 | * AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl
|
---|
1710 | * as well as ss.Attr.n.u2Dpl to make this (and other) code work right.
|
---|
1711 | *
|
---|
1712 | * So, forget CS.DPL, always use SS.DPL.
|
---|
1713 | *
|
---|
1714 | * Note! The SS RPL is always equal to the CPL, while the CS RPL
|
---|
1715 | * isn't necessarily equal if the segment is conforming.
|
---|
1716 | * See section 4.11.1 in the AMD manual.
|
---|
1717 | *
|
---|
1718 | * Update: Where the heck does it say CS.RPL can differ from CPL other than
|
---|
1719 | * right after real->prot mode switch and when in V8086 mode? That
|
---|
1720 | * section says the RPL specified in a direct transfere (call, jmp,
|
---|
1721 | * ret) is not the one loaded into CS. Besides, if CS.RPL != CPL
|
---|
1722 | * it would be impossible for an exception handle or the iret
|
---|
1723 | * instruction to figure out whether SS:ESP are part of the frame
|
---|
1724 | * or not. VBox or qemu bug must've lead to this misconception.
|
---|
1725 | *
|
---|
1726 | * Update2: On an AMD bulldozer system here, I've no trouble loading a null
|
---|
1727 | * selector into SS with an RPL other than the CPL when CPL != 3 and
|
---|
1728 | * we're in 64-bit mode. The intel dev box doesn't allow this, on
|
---|
1729 | * RPL = CPL. Weird.
|
---|
1730 | */
|
---|
1731 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
|
---|
1732 | uint32_t uCpl;
|
---|
1733 | if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
|
---|
1734 | {
|
---|
1735 | if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
|
---|
1736 | {
|
---|
1737 | if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss))
|
---|
1738 | uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl;
|
---|
1739 | else
|
---|
1740 | uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL);
|
---|
1741 | }
|
---|
1742 | else
|
---|
1743 | uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */
|
---|
1744 | }
|
---|
1745 | else
|
---|
1746 | uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */
|
---|
1747 | return uCpl;
|
---|
1748 | }
|
---|
1749 |
|
---|
1750 |
|
---|
1751 | /**
|
---|
1752 | * Gets the current guest CPU mode.
|
---|
1753 | *
|
---|
1754 | * If paging mode is what you need, check out PGMGetGuestMode().
|
---|
1755 | *
|
---|
1756 | * @returns The CPU mode.
|
---|
1757 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1758 | */
|
---|
1759 | VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu)
|
---|
1760 | {
|
---|
1761 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
|
---|
1762 | CPUMMODE enmMode;
|
---|
1763 | if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
|
---|
1764 | enmMode = CPUMMODE_REAL;
|
---|
1765 | else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
|
---|
1766 | enmMode = CPUMMODE_PROTECTED;
|
---|
1767 | else
|
---|
1768 | enmMode = CPUMMODE_LONG;
|
---|
1769 |
|
---|
1770 | return enmMode;
|
---|
1771 | }
|
---|
1772 |
|
---|
1773 |
|
---|
1774 | /**
|
---|
1775 | * Figure whether the CPU is currently executing 16, 32 or 64 bit code.
|
---|
1776 | *
|
---|
1777 | * @returns 16, 32 or 64.
|
---|
1778 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1779 | */
|
---|
1780 | VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu)
|
---|
1781 | {
|
---|
1782 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
|
---|
1783 |
|
---|
1784 | if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
|
---|
1785 | return 16;
|
---|
1786 |
|
---|
1787 | if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
|
---|
1788 | {
|
---|
1789 | Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
|
---|
1790 | return 16;
|
---|
1791 | }
|
---|
1792 |
|
---|
1793 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
1794 | if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
|
---|
1795 | && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
|
---|
1796 | return 64;
|
---|
1797 |
|
---|
1798 | if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
|
---|
1799 | return 32;
|
---|
1800 |
|
---|
1801 | return 16;
|
---|
1802 | }
|
---|
1803 |
|
---|
1804 |
|
---|
1805 | VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu)
|
---|
1806 | {
|
---|
1807 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
|
---|
1808 |
|
---|
1809 | if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
|
---|
1810 | return DISCPUMODE_16BIT;
|
---|
1811 |
|
---|
1812 | if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
|
---|
1813 | {
|
---|
1814 | Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
|
---|
1815 | return DISCPUMODE_16BIT;
|
---|
1816 | }
|
---|
1817 |
|
---|
1818 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
1819 | if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
|
---|
1820 | && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
|
---|
1821 | return DISCPUMODE_64BIT;
|
---|
1822 |
|
---|
1823 | if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
|
---|
1824 | return DISCPUMODE_32BIT;
|
---|
1825 |
|
---|
1826 | return DISCPUMODE_16BIT;
|
---|
1827 | }
|
---|
1828 |
|
---|
1829 |
|
---|
1830 | /**
|
---|
1831 | * Gets the guest MXCSR_MASK value.
|
---|
1832 | *
|
---|
1833 | * This does not access the x87 state, but the value we determined at VM
|
---|
1834 | * initialization.
|
---|
1835 | *
|
---|
1836 | * @returns MXCSR mask.
|
---|
1837 | * @param pVM The cross context VM structure.
|
---|
1838 | */
|
---|
1839 | VMMDECL(uint32_t) CPUMGetGuestMxCsrMask(PVM pVM)
|
---|
1840 | {
|
---|
1841 | return pVM->cpum.s.GuestInfo.fMxCsrMask;
|
---|
1842 | }
|
---|
1843 |
|
---|
1844 |
|
---|
1845 | /**
|
---|
1846 | * Returns whether the guest has physical interrupts enabled.
|
---|
1847 | *
|
---|
1848 | * @returns @c true if interrupts are enabled, @c false otherwise.
|
---|
1849 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1850 | *
|
---|
1851 | * @remarks Warning! This function does -not- take into account the global-interrupt
|
---|
1852 | * flag (GIF).
|
---|
1853 | */
|
---|
1854 | VMM_INT_DECL(bool) CPUMIsGuestPhysIntrEnabled(PVMCPU pVCpu)
|
---|
1855 | {
|
---|
1856 | if (!CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest))
|
---|
1857 | {
|
---|
1858 | uint32_t const fEFlags = pVCpu->cpum.s.Guest.eflags.u;
|
---|
1859 | return RT_BOOL(fEFlags & X86_EFL_IF);
|
---|
1860 | }
|
---|
1861 |
|
---|
1862 | if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest))
|
---|
1863 | return CPUMIsGuestVmxPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
|
---|
1864 |
|
---|
1865 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.s.Guest));
|
---|
1866 | return CPUMIsGuestSvmPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
|
---|
1867 | }
|
---|
1868 |
|
---|
1869 |
|
---|
1870 | /**
|
---|
1871 | * Returns whether the nested-guest has virtual interrupts enabled.
|
---|
1872 | *
|
---|
1873 | * @returns @c true if interrupts are enabled, @c false otherwise.
|
---|
1874 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1875 | *
|
---|
1876 | * @remarks Warning! This function does -not- take into account the global-interrupt
|
---|
1877 | * flag (GIF).
|
---|
1878 | */
|
---|
1879 | VMM_INT_DECL(bool) CPUMIsGuestVirtIntrEnabled(PVMCPU pVCpu)
|
---|
1880 | {
|
---|
1881 | Assert(CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest));
|
---|
1882 |
|
---|
1883 | if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest))
|
---|
1884 | return CPUMIsGuestVmxVirtIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
|
---|
1885 |
|
---|
1886 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.s.Guest));
|
---|
1887 | return CPUMIsGuestSvmVirtIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
|
---|
1888 | }
|
---|
1889 |
|
---|
1890 |
|
---|
1891 | /**
|
---|
1892 | * Calculates the interruptiblity of the guest.
|
---|
1893 | *
|
---|
1894 | * @returns Interruptibility level.
|
---|
1895 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1896 | */
|
---|
1897 | VMM_INT_DECL(CPUMINTERRUPTIBILITY) CPUMGetGuestInterruptibility(PVMCPU pVCpu)
|
---|
1898 | {
|
---|
1899 | #if 1
|
---|
1900 | /* Global-interrupt flag blocks pretty much everything we care about here. */
|
---|
1901 | if (CPUMGetGuestGif(&pVCpu->cpum.s.Guest))
|
---|
1902 | {
|
---|
1903 | /*
|
---|
1904 | * Physical interrupts are primarily blocked using EFLAGS. However, we cannot access
|
---|
1905 | * it directly here. If and how EFLAGS are used depends on the context (nested-guest
|
---|
1906 | * or raw-mode). Hence we use the function below which handles the details.
|
---|
1907 | */
|
---|
1908 | if ( CPUMIsGuestPhysIntrEnabled(pVCpu)
|
---|
1909 | && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1910 | {
|
---|
1911 | if ( !CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest)
|
---|
1912 | || CPUMIsGuestVirtIntrEnabled(pVCpu))
|
---|
1913 | return CPUMINTERRUPTIBILITY_UNRESTRAINED;
|
---|
1914 |
|
---|
1915 | /* Physical interrupts are enabled, but nested-guest virtual interrupts are disabled. */
|
---|
1916 | return CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED;
|
---|
1917 | }
|
---|
1918 |
|
---|
1919 | /*
|
---|
1920 | * Blocking the delivery of NMIs during an interrupt shadow is CPU implementation
|
---|
1921 | * specific. Therefore, in practice, we can't deliver an NMI in an interrupt shadow.
|
---|
1922 | * However, there is some uncertainity regarding the converse, i.e. whether
|
---|
1923 | * NMI-blocking until IRET blocks delivery of physical interrupts.
|
---|
1924 | *
|
---|
1925 | * See Intel spec. 25.4.1 "Event Blocking".
|
---|
1926 | */
|
---|
1927 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
1928 | return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
|
---|
1929 |
|
---|
1930 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1931 | return CPUMINTERRUPTIBILITY_INT_INHIBITED;
|
---|
1932 |
|
---|
1933 | return CPUMINTERRUPTIBILITY_INT_DISABLED;
|
---|
1934 | }
|
---|
1935 | return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
|
---|
1936 | #else
|
---|
1937 | if (pVCpu->cpum.s.Guest.rflags.Bits.u1IF)
|
---|
1938 | {
|
---|
1939 | if (pVCpu->cpum.s.Guest.hwvirt.fGif)
|
---|
1940 | {
|
---|
1941 | if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1942 | return CPUMINTERRUPTIBILITY_UNRESTRAINED;
|
---|
1943 |
|
---|
1944 | /** @todo does blocking NMIs mean interrupts are also inhibited? */
|
---|
1945 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1946 | {
|
---|
1947 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
1948 | return CPUMINTERRUPTIBILITY_INT_INHIBITED;
|
---|
1949 | return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
|
---|
1950 | }
|
---|
1951 | AssertFailed();
|
---|
1952 | return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
|
---|
1953 | }
|
---|
1954 | return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
|
---|
1955 | }
|
---|
1956 | else
|
---|
1957 | {
|
---|
1958 | if (pVCpu->cpum.s.Guest.hwvirt.fGif)
|
---|
1959 | {
|
---|
1960 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
1961 | return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
|
---|
1962 | return CPUMINTERRUPTIBILITY_INT_DISABLED;
|
---|
1963 | }
|
---|
1964 | return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
|
---|
1965 | }
|
---|
1966 | #endif
|
---|
1967 | }
|
---|
1968 |
|
---|
1969 |
|
---|
1970 | /**
|
---|
1971 | * Gets whether the guest (or nested-guest) is currently blocking delivery of NMIs.
|
---|
1972 | *
|
---|
1973 | * @returns @c true if NMIs are blocked, @c false otherwise.
|
---|
1974 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1975 | */
|
---|
1976 | VMM_INT_DECL(bool) CPUMIsGuestNmiBlocking(PCVMCPU pVCpu)
|
---|
1977 | {
|
---|
1978 | /*
|
---|
1979 | * Return the state of guest-NMI blocking in any of the following cases:
|
---|
1980 | * - We're not executing a nested-guest.
|
---|
1981 | * - We're executing an SVM nested-guest[1].
|
---|
1982 | * - We're executing a VMX nested-guest without virtual-NMIs enabled.
|
---|
1983 | *
|
---|
1984 | * [1] -- SVM does not support virtual-NMIs or virtual-NMI blocking.
|
---|
1985 | * SVM hypervisors must track NMI blocking themselves by intercepting
|
---|
1986 | * the IRET instruction after injection of an NMI.
|
---|
1987 | */
|
---|
1988 | PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
1989 | if ( !CPUMIsGuestInNestedHwvirtMode(pCtx)
|
---|
1990 | || CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
|
---|
1991 | || !CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_VIRT_NMI))
|
---|
1992 | return VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
1993 |
|
---|
1994 | /*
|
---|
1995 | * Return the state of virtual-NMI blocking, if we are executing a
|
---|
1996 | * VMX nested-guest with virtual-NMIs enabled.
|
---|
1997 | */
|
---|
1998 | return CPUMIsGuestVmxVirtNmiBlocking(pVCpu, pCtx);
|
---|
1999 | }
|
---|
2000 |
|
---|
2001 |
|
---|
2002 | /**
|
---|
2003 | * Sets blocking delivery of NMIs to the guest.
|
---|
2004 | *
|
---|
2005 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2006 | * @param fBlock Whether NMIs are blocked or not.
|
---|
2007 | */
|
---|
2008 | VMM_INT_DECL(void) CPUMSetGuestNmiBlocking(PVMCPU pVCpu, bool fBlock)
|
---|
2009 | {
|
---|
2010 | /*
|
---|
2011 | * Set the state of guest-NMI blocking in any of the following cases:
|
---|
2012 | * - We're not executing a nested-guest.
|
---|
2013 | * - We're executing an SVM nested-guest[1].
|
---|
2014 | * - We're executing a VMX nested-guest without virtual-NMIs enabled.
|
---|
2015 | *
|
---|
2016 | * [1] -- SVM does not support virtual-NMIs or virtual-NMI blocking.
|
---|
2017 | * SVM hypervisors must track NMI blocking themselves by intercepting
|
---|
2018 | * the IRET instruction after injection of an NMI.
|
---|
2019 | */
|
---|
2020 | PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
2021 | if ( !CPUMIsGuestInNestedHwvirtMode(pCtx)
|
---|
2022 | || CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
|
---|
2023 | || !CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_VIRT_NMI))
|
---|
2024 | {
|
---|
2025 | if (fBlock)
|
---|
2026 | {
|
---|
2027 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
2028 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
2029 | }
|
---|
2030 | else
|
---|
2031 | {
|
---|
2032 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
2033 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
2034 | }
|
---|
2035 | return;
|
---|
2036 | }
|
---|
2037 |
|
---|
2038 | /*
|
---|
2039 | * Set the state of virtual-NMI blocking, if we are executing a
|
---|
2040 | * VMX nested-guest with virtual-NMIs enabled.
|
---|
2041 | */
|
---|
2042 | return CPUMSetGuestVmxVirtNmiBlocking(pVCpu, pCtx, fBlock);
|
---|
2043 | }
|
---|
2044 |
|
---|
2045 |
|
---|
2046 | /**
|
---|
2047 | * Checks whether the SVM nested-guest has physical interrupts enabled.
|
---|
2048 | *
|
---|
2049 | * @returns true if interrupts are enabled, false otherwise.
|
---|
2050 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2051 | * @param pCtx The guest-CPU context.
|
---|
2052 | *
|
---|
2053 | * @remarks This does -not- take into account the global-interrupt flag.
|
---|
2054 | */
|
---|
2055 | VMM_INT_DECL(bool) CPUMIsGuestSvmPhysIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx)
|
---|
2056 | {
|
---|
2057 | /** @todo Optimization: Avoid this function call and use a pointer to the
|
---|
2058 | * relevant eflags instead (setup during VMRUN instruction emulation). */
|
---|
2059 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
2060 |
|
---|
2061 | X86EFLAGS fEFlags;
|
---|
2062 | if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx))
|
---|
2063 | fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
|
---|
2064 | else
|
---|
2065 | fEFlags.u = pCtx->eflags.u;
|
---|
2066 |
|
---|
2067 | return fEFlags.Bits.u1IF;
|
---|
2068 | }
|
---|
2069 |
|
---|
2070 |
|
---|
2071 | /**
|
---|
2072 | * Checks whether the SVM nested-guest is in a state to receive virtual (setup
|
---|
2073 | * for injection by VMRUN instruction) interrupts.
|
---|
2074 | *
|
---|
2075 | * @returns VBox status code.
|
---|
2076 | * @retval true if it's ready, false otherwise.
|
---|
2077 | *
|
---|
2078 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2079 | * @param pCtx The guest-CPU context.
|
---|
2080 | */
|
---|
2081 | VMM_INT_DECL(bool) CPUMIsGuestSvmVirtIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx)
|
---|
2082 | {
|
---|
2083 | RT_NOREF(pVCpu);
|
---|
2084 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
2085 |
|
---|
2086 | PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
|
---|
2087 | PCSVMINTCTRL pVmcbIntCtrl = &pVmcbCtrl->IntCtrl;
|
---|
2088 | Assert(!pVmcbIntCtrl->n.u1VGifEnable); /* We don't support passing virtual-GIF feature to the guest yet. */
|
---|
2089 | if ( !pVmcbIntCtrl->n.u1IgnoreTPR
|
---|
2090 | && pVmcbIntCtrl->n.u4VIntrPrio <= pVmcbIntCtrl->n.u8VTPR)
|
---|
2091 | return false;
|
---|
2092 |
|
---|
2093 | return RT_BOOL(pCtx->eflags.u & X86_EFL_IF);
|
---|
2094 | }
|
---|
2095 |
|
---|
2096 |
|
---|
2097 | /**
|
---|
2098 | * Gets the pending SVM nested-guest interruptvector.
|
---|
2099 | *
|
---|
2100 | * @returns The nested-guest interrupt to inject.
|
---|
2101 | * @param pCtx The guest-CPU context.
|
---|
2102 | */
|
---|
2103 | VMM_INT_DECL(uint8_t) CPUMGetGuestSvmVirtIntrVector(PCCPUMCTX pCtx)
|
---|
2104 | {
|
---|
2105 | PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
|
---|
2106 | return pVmcbCtrl->IntCtrl.n.u8VIntrVector;
|
---|
2107 | }
|
---|
2108 |
|
---|
2109 |
|
---|
2110 | /**
|
---|
2111 | * Restores the host-state from the host-state save area as part of a \#VMEXIT.
|
---|
2112 | *
|
---|
2113 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2114 | * @param pCtx The guest-CPU context.
|
---|
2115 | */
|
---|
2116 | VMM_INT_DECL(void) CPUMSvmVmExitRestoreHostState(PVMCPUCC pVCpu, PCPUMCTX pCtx)
|
---|
2117 | {
|
---|
2118 | /*
|
---|
2119 | * Reload the guest's "host state".
|
---|
2120 | */
|
---|
2121 | PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
|
---|
2122 | pCtx->es = pHostState->es;
|
---|
2123 | pCtx->cs = pHostState->cs;
|
---|
2124 | pCtx->ss = pHostState->ss;
|
---|
2125 | pCtx->ds = pHostState->ds;
|
---|
2126 | pCtx->gdtr = pHostState->gdtr;
|
---|
2127 | pCtx->idtr = pHostState->idtr;
|
---|
2128 | CPUMSetGuestEferMsrNoChecks(pVCpu, pCtx->msrEFER, pHostState->uEferMsr);
|
---|
2129 | CPUMSetGuestCR0(pVCpu, pHostState->uCr0 | X86_CR0_PE);
|
---|
2130 | pCtx->cr3 = pHostState->uCr3;
|
---|
2131 | CPUMSetGuestCR4(pVCpu, pHostState->uCr4);
|
---|
2132 | pCtx->rflags = pHostState->rflags;
|
---|
2133 | pCtx->rflags.Bits.u1VM = 0;
|
---|
2134 | pCtx->rip = pHostState->uRip;
|
---|
2135 | pCtx->rsp = pHostState->uRsp;
|
---|
2136 | pCtx->rax = pHostState->uRax;
|
---|
2137 | pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
|
---|
2138 | pCtx->dr[7] |= X86_DR7_RA1_MASK;
|
---|
2139 | Assert(pCtx->ss.Attr.n.u2Dpl == 0);
|
---|
2140 |
|
---|
2141 | /** @todo if RIP is not canonical or outside the CS segment limit, we need to
|
---|
2142 | * raise \#GP(0) in the guest. */
|
---|
2143 |
|
---|
2144 | /** @todo check the loaded host-state for consistency. Figure out what
|
---|
2145 | * exactly this involves? */
|
---|
2146 | }
|
---|
2147 |
|
---|
2148 |
|
---|
2149 | /**
|
---|
2150 | * Saves the host-state to the host-state save area as part of a VMRUN.
|
---|
2151 | *
|
---|
2152 | * @param pCtx The guest-CPU context.
|
---|
2153 | * @param cbInstr The length of the VMRUN instruction in bytes.
|
---|
2154 | */
|
---|
2155 | VMM_INT_DECL(void) CPUMSvmVmRunSaveHostState(PCPUMCTX pCtx, uint8_t cbInstr)
|
---|
2156 | {
|
---|
2157 | PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
|
---|
2158 | pHostState->es = pCtx->es;
|
---|
2159 | pHostState->cs = pCtx->cs;
|
---|
2160 | pHostState->ss = pCtx->ss;
|
---|
2161 | pHostState->ds = pCtx->ds;
|
---|
2162 | pHostState->gdtr = pCtx->gdtr;
|
---|
2163 | pHostState->idtr = pCtx->idtr;
|
---|
2164 | pHostState->uEferMsr = pCtx->msrEFER;
|
---|
2165 | pHostState->uCr0 = pCtx->cr0;
|
---|
2166 | pHostState->uCr3 = pCtx->cr3;
|
---|
2167 | pHostState->uCr4 = pCtx->cr4;
|
---|
2168 | pHostState->rflags = pCtx->rflags;
|
---|
2169 | pHostState->uRip = pCtx->rip + cbInstr;
|
---|
2170 | pHostState->uRsp = pCtx->rsp;
|
---|
2171 | pHostState->uRax = pCtx->rax;
|
---|
2172 | }
|
---|
2173 |
|
---|
2174 |
|
---|
2175 | /**
|
---|
2176 | * Applies the TSC offset of a nested-guest if any and returns the TSC value for the
|
---|
2177 | * nested-guest.
|
---|
2178 | *
|
---|
2179 | * @returns The TSC offset after applying any nested-guest TSC offset.
|
---|
2180 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2181 | * @param uTscValue The guest TSC.
|
---|
2182 | *
|
---|
2183 | * @sa CPUMRemoveNestedGuestTscOffset.
|
---|
2184 | */
|
---|
2185 | VMM_INT_DECL(uint64_t) CPUMApplyNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue)
|
---|
2186 | {
|
---|
2187 | PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
2188 | if (CPUMIsGuestInVmxNonRootMode(pCtx))
|
---|
2189 | {
|
---|
2190 | PCVMXVVMCS pVmcs = pCtx->hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2191 | Assert(pVmcs);
|
---|
2192 | if (CPUMIsGuestVmxProcCtlsSet(pVCpu, pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING))
|
---|
2193 | return uTscValue + pVmcs->u64TscOffset.u;
|
---|
2194 | return uTscValue;
|
---|
2195 | }
|
---|
2196 |
|
---|
2197 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
2198 | {
|
---|
2199 | uint64_t offTsc;
|
---|
2200 | if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc))
|
---|
2201 | {
|
---|
2202 | PCSVMVMCB pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
2203 | Assert(pVmcb);
|
---|
2204 | offTsc = pVmcb->ctrl.u64TSCOffset;
|
---|
2205 | }
|
---|
2206 | return uTscValue + offTsc;
|
---|
2207 | }
|
---|
2208 | return uTscValue;
|
---|
2209 | }
|
---|
2210 |
|
---|
2211 |
|
---|
2212 | /**
|
---|
2213 | * Removes the TSC offset of a nested-guest if any and returns the TSC value for the
|
---|
2214 | * guest.
|
---|
2215 | *
|
---|
2216 | * @returns The TSC offset after removing any nested-guest TSC offset.
|
---|
2217 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2218 | * @param uTscValue The nested-guest TSC.
|
---|
2219 | *
|
---|
2220 | * @sa CPUMApplyNestedGuestTscOffset.
|
---|
2221 | */
|
---|
2222 | VMM_INT_DECL(uint64_t) CPUMRemoveNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue)
|
---|
2223 | {
|
---|
2224 | PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
2225 | if (CPUMIsGuestInVmxNonRootMode(pCtx))
|
---|
2226 | {
|
---|
2227 | if (CPUMIsGuestVmxProcCtlsSet(pVCpu, pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING))
|
---|
2228 | {
|
---|
2229 | PCVMXVVMCS pVmcs = pCtx->hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2230 | Assert(pVmcs);
|
---|
2231 | return uTscValue - pVmcs->u64TscOffset.u;
|
---|
2232 | }
|
---|
2233 | return uTscValue;
|
---|
2234 | }
|
---|
2235 |
|
---|
2236 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
2237 | {
|
---|
2238 | uint64_t offTsc;
|
---|
2239 | if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc))
|
---|
2240 | {
|
---|
2241 | PCSVMVMCB pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
2242 | Assert(pVmcb);
|
---|
2243 | offTsc = pVmcb->ctrl.u64TSCOffset;
|
---|
2244 | }
|
---|
2245 | return uTscValue - offTsc;
|
---|
2246 | }
|
---|
2247 | return uTscValue;
|
---|
2248 | }
|
---|
2249 |
|
---|
2250 |
|
---|
2251 | /**
|
---|
2252 | * Used to dynamically imports state residing in NEM or HM.
|
---|
2253 | *
|
---|
2254 | * This is a worker for the CPUM_IMPORT_EXTRN_RET() macro and various IEM ones.
|
---|
2255 | *
|
---|
2256 | * @returns VBox status code.
|
---|
2257 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2258 | * @param fExtrnImport The fields to import.
|
---|
2259 | * @thread EMT(pVCpu)
|
---|
2260 | */
|
---|
2261 | VMM_INT_DECL(int) CPUMImportGuestStateOnDemand(PVMCPUCC pVCpu, uint64_t fExtrnImport)
|
---|
2262 | {
|
---|
2263 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2264 | if (pVCpu->cpum.s.Guest.fExtrn & fExtrnImport)
|
---|
2265 | {
|
---|
2266 | switch (pVCpu->cpum.s.Guest.fExtrn & CPUMCTX_EXTRN_KEEPER_MASK)
|
---|
2267 | {
|
---|
2268 | case CPUMCTX_EXTRN_KEEPER_NEM:
|
---|
2269 | {
|
---|
2270 | int rc = NEMImportStateOnDemand(pVCpu, fExtrnImport);
|
---|
2271 | Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
|
---|
2272 | return rc;
|
---|
2273 | }
|
---|
2274 |
|
---|
2275 | case CPUMCTX_EXTRN_KEEPER_HM:
|
---|
2276 | {
|
---|
2277 | #ifdef IN_RING0
|
---|
2278 | int rc = HMR0ImportStateOnDemand(pVCpu, fExtrnImport);
|
---|
2279 | Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
|
---|
2280 | return rc;
|
---|
2281 | #else
|
---|
2282 | AssertLogRelMsgFailed(("TODO Fetch HM state: %#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport));
|
---|
2283 | return VINF_SUCCESS;
|
---|
2284 | #endif
|
---|
2285 | }
|
---|
2286 | default:
|
---|
2287 | AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2);
|
---|
2288 | }
|
---|
2289 | }
|
---|
2290 | return VINF_SUCCESS;
|
---|
2291 | }
|
---|
2292 |
|
---|
2293 |
|
---|
2294 | /**
|
---|
2295 | * Gets valid CR4 bits for the guest.
|
---|
2296 | *
|
---|
2297 | * @returns Valid CR4 bits.
|
---|
2298 | * @param pVM The cross context VM structure.
|
---|
2299 | */
|
---|
2300 | VMM_INT_DECL(uint64_t) CPUMGetGuestCR4ValidMask(PVM pVM)
|
---|
2301 | {
|
---|
2302 | PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
|
---|
2303 | uint64_t fMask = X86_CR4_VME | X86_CR4_PVI
|
---|
2304 | | X86_CR4_TSD | X86_CR4_DE
|
---|
2305 | | X86_CR4_PSE | X86_CR4_PAE
|
---|
2306 | | X86_CR4_MCE | X86_CR4_PGE
|
---|
2307 | | X86_CR4_PCE
|
---|
2308 | | X86_CR4_OSXMMEEXCPT; /** @todo r=ramshankar: Introduced in Pentium III along with SSE. Check fSse here? */
|
---|
2309 | if (pGuestFeatures->fFxSaveRstor)
|
---|
2310 | fMask |= X86_CR4_OSFXSR;
|
---|
2311 | if (pGuestFeatures->fVmx)
|
---|
2312 | fMask |= X86_CR4_VMXE;
|
---|
2313 | if (pGuestFeatures->fXSaveRstor)
|
---|
2314 | fMask |= X86_CR4_OSXSAVE;
|
---|
2315 | if (pGuestFeatures->fPcid)
|
---|
2316 | fMask |= X86_CR4_PCIDE;
|
---|
2317 | if (pGuestFeatures->fFsGsBase)
|
---|
2318 | fMask |= X86_CR4_FSGSBASE;
|
---|
2319 | return fMask;
|
---|
2320 | }
|
---|
2321 |
|
---|
2322 |
|
---|
2323 | /**
|
---|
2324 | * Gets the read and write permission bits for an MSR in an MSR bitmap.
|
---|
2325 | *
|
---|
2326 | * @returns VMXMSRPM_XXX - the MSR permission.
|
---|
2327 | * @param pvMsrBitmap Pointer to the MSR bitmap.
|
---|
2328 | * @param idMsr The MSR to get permissions for.
|
---|
2329 | *
|
---|
2330 | * @sa hmR0VmxSetMsrPermission.
|
---|
2331 | */
|
---|
2332 | VMM_INT_DECL(uint32_t) CPUMGetVmxMsrPermission(void const *pvMsrBitmap, uint32_t idMsr)
|
---|
2333 | {
|
---|
2334 | AssertPtrReturn(pvMsrBitmap, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
|
---|
2335 |
|
---|
2336 | uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
|
---|
2337 |
|
---|
2338 | /*
|
---|
2339 | * MSR Layout:
|
---|
2340 | * Byte index MSR range Interpreted as
|
---|
2341 | * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
|
---|
2342 | * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
|
---|
2343 | * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
|
---|
2344 | * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
|
---|
2345 | *
|
---|
2346 | * A bit corresponding to an MSR within the above range causes a VM-exit
|
---|
2347 | * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
|
---|
2348 | * the MSR range, it always cause a VM-exit.
|
---|
2349 | *
|
---|
2350 | * See Intel spec. 24.6.9 "MSR-Bitmap Address".
|
---|
2351 | */
|
---|
2352 | uint32_t const offBitmapRead = 0;
|
---|
2353 | uint32_t const offBitmapWrite = 0x800;
|
---|
2354 | uint32_t offMsr;
|
---|
2355 | uint32_t iBit;
|
---|
2356 | if (idMsr <= UINT32_C(0x00001fff))
|
---|
2357 | {
|
---|
2358 | offMsr = 0;
|
---|
2359 | iBit = idMsr;
|
---|
2360 | }
|
---|
2361 | else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
|
---|
2362 | {
|
---|
2363 | offMsr = 0x400;
|
---|
2364 | iBit = idMsr - UINT32_C(0xc0000000);
|
---|
2365 | }
|
---|
2366 | else
|
---|
2367 | {
|
---|
2368 | LogFunc(("Warning! Out of range MSR %#RX32\n", idMsr));
|
---|
2369 | return VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR;
|
---|
2370 | }
|
---|
2371 |
|
---|
2372 | /*
|
---|
2373 | * Get the MSR read permissions.
|
---|
2374 | */
|
---|
2375 | uint32_t fRet;
|
---|
2376 | uint32_t const offMsrRead = offBitmapRead + offMsr;
|
---|
2377 | Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
|
---|
2378 | if (ASMBitTest(pbMsrBitmap + offMsrRead, iBit))
|
---|
2379 | fRet = VMXMSRPM_EXIT_RD;
|
---|
2380 | else
|
---|
2381 | fRet = VMXMSRPM_ALLOW_RD;
|
---|
2382 |
|
---|
2383 | /*
|
---|
2384 | * Get the MSR write permissions.
|
---|
2385 | */
|
---|
2386 | uint32_t const offMsrWrite = offBitmapWrite + offMsr;
|
---|
2387 | Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
|
---|
2388 | if (ASMBitTest(pbMsrBitmap + offMsrWrite, iBit))
|
---|
2389 | fRet |= VMXMSRPM_EXIT_WR;
|
---|
2390 | else
|
---|
2391 | fRet |= VMXMSRPM_ALLOW_WR;
|
---|
2392 |
|
---|
2393 | Assert(VMXMSRPM_IS_FLAG_VALID(fRet));
|
---|
2394 | return fRet;
|
---|
2395 | }
|
---|
2396 |
|
---|
2397 |
|
---|
2398 | /**
|
---|
2399 | * Gets the permission bits for the specified I/O port from the given I/O bitmaps.
|
---|
2400 | *
|
---|
2401 | * @returns @c true if the I/O port access must cause a VM-exit, @c false otherwise.
|
---|
2402 | * @param pvIoBitmapA Pointer to I/O bitmap A.
|
---|
2403 | * @param pvIoBitmapB Pointer to I/O bitmap B.
|
---|
2404 | * @param uPort The I/O port being accessed.
|
---|
2405 | * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
|
---|
2406 | */
|
---|
2407 | VMM_INT_DECL(bool) CPUMGetVmxIoBitmapPermission(void const *pvIoBitmapA, void const *pvIoBitmapB, uint16_t uPort,
|
---|
2408 | uint8_t cbAccess)
|
---|
2409 | {
|
---|
2410 | Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
|
---|
2411 |
|
---|
2412 | /*
|
---|
2413 | * If the I/O port access wraps around the 16-bit port I/O space,
|
---|
2414 | * we must cause a VM-exit.
|
---|
2415 | *
|
---|
2416 | * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
|
---|
2417 | */
|
---|
2418 | /** @todo r=ramshankar: Reading 1, 2, 4 bytes at ports 0xffff, 0xfffe and 0xfffc
|
---|
2419 | * respectively are valid and do not constitute a wrap around from what I
|
---|
2420 | * understand. Verify this later. */
|
---|
2421 | uint32_t const uPortLast = uPort + cbAccess;
|
---|
2422 | if (uPortLast > 0x10000)
|
---|
2423 | return true;
|
---|
2424 |
|
---|
2425 | /* Read the appropriate bit from the corresponding IO bitmap. */
|
---|
2426 | void const *pvIoBitmap = uPort < 0x8000 ? pvIoBitmapA : pvIoBitmapB;
|
---|
2427 | return ASMBitTest(pvIoBitmap, uPort);
|
---|
2428 | }
|
---|
2429 |
|
---|
2430 |
|
---|
2431 | /**
|
---|
2432 | * Returns whether the given VMCS field is valid and supported for the guest.
|
---|
2433 | *
|
---|
2434 | * @param pVM The cross context VM structure.
|
---|
2435 | * @param u64VmcsField The VMCS field.
|
---|
2436 | *
|
---|
2437 | * @remarks This takes into account the CPU features exposed to the guest.
|
---|
2438 | */
|
---|
2439 | VMM_INT_DECL(bool) CPUMIsGuestVmxVmcsFieldValid(PVMCC pVM, uint64_t u64VmcsField)
|
---|
2440 | {
|
---|
2441 | uint32_t const uFieldEncHi = RT_HI_U32(u64VmcsField);
|
---|
2442 | uint32_t const uFieldEncLo = RT_LO_U32(u64VmcsField);
|
---|
2443 | if (!uFieldEncHi)
|
---|
2444 | { /* likely */ }
|
---|
2445 | else
|
---|
2446 | return false;
|
---|
2447 |
|
---|
2448 | PCCPUMFEATURES pFeat = &pVM->cpum.s.GuestFeatures;
|
---|
2449 | switch (uFieldEncLo)
|
---|
2450 | {
|
---|
2451 | /*
|
---|
2452 | * 16-bit fields.
|
---|
2453 | */
|
---|
2454 | /* Control fields. */
|
---|
2455 | case VMX_VMCS16_VPID: return pFeat->fVmxVpid;
|
---|
2456 | case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt;
|
---|
2457 | case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe;
|
---|
2458 |
|
---|
2459 | /* Guest-state fields. */
|
---|
2460 | case VMX_VMCS16_GUEST_ES_SEL:
|
---|
2461 | case VMX_VMCS16_GUEST_CS_SEL:
|
---|
2462 | case VMX_VMCS16_GUEST_SS_SEL:
|
---|
2463 | case VMX_VMCS16_GUEST_DS_SEL:
|
---|
2464 | case VMX_VMCS16_GUEST_FS_SEL:
|
---|
2465 | case VMX_VMCS16_GUEST_GS_SEL:
|
---|
2466 | case VMX_VMCS16_GUEST_LDTR_SEL:
|
---|
2467 | case VMX_VMCS16_GUEST_TR_SEL: return true;
|
---|
2468 | case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery;
|
---|
2469 | case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml;
|
---|
2470 |
|
---|
2471 | /* Host-state fields. */
|
---|
2472 | case VMX_VMCS16_HOST_ES_SEL:
|
---|
2473 | case VMX_VMCS16_HOST_CS_SEL:
|
---|
2474 | case VMX_VMCS16_HOST_SS_SEL:
|
---|
2475 | case VMX_VMCS16_HOST_DS_SEL:
|
---|
2476 | case VMX_VMCS16_HOST_FS_SEL:
|
---|
2477 | case VMX_VMCS16_HOST_GS_SEL:
|
---|
2478 | case VMX_VMCS16_HOST_TR_SEL: return true;
|
---|
2479 |
|
---|
2480 | /*
|
---|
2481 | * 64-bit fields.
|
---|
2482 | */
|
---|
2483 | /* Control fields. */
|
---|
2484 | case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
|
---|
2485 | case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH:
|
---|
2486 | case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
|
---|
2487 | case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps;
|
---|
2488 | case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
|
---|
2489 | case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps;
|
---|
2490 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
|
---|
2491 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH:
|
---|
2492 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
|
---|
2493 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH:
|
---|
2494 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
|
---|
2495 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH:
|
---|
2496 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
|
---|
2497 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true;
|
---|
2498 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL:
|
---|
2499 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml;
|
---|
2500 | case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
|
---|
2501 | case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true;
|
---|
2502 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
|
---|
2503 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow;
|
---|
2504 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
|
---|
2505 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess;
|
---|
2506 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL:
|
---|
2507 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt;
|
---|
2508 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
|
---|
2509 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc;
|
---|
2510 | case VMX_VMCS64_CTRL_EPTP_FULL:
|
---|
2511 | case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt;
|
---|
2512 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL:
|
---|
2513 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH:
|
---|
2514 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL:
|
---|
2515 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH:
|
---|
2516 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL:
|
---|
2517 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH:
|
---|
2518 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL:
|
---|
2519 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery;
|
---|
2520 | case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
|
---|
2521 | case VMX_VMCS64_CTRL_EPTP_LIST_HIGH:
|
---|
2522 | {
|
---|
2523 | PCVMCPU pVCpu = pVM->CTX_SUFF(apCpus)[0];
|
---|
2524 | uint64_t const uVmFuncMsr = pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs.u64VmFunc;
|
---|
2525 | return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING));
|
---|
2526 | }
|
---|
2527 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL:
|
---|
2528 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH:
|
---|
2529 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL:
|
---|
2530 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing;
|
---|
2531 | case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL:
|
---|
2532 | case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe;
|
---|
2533 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL:
|
---|
2534 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors;
|
---|
2535 | case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL:
|
---|
2536 | case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH: return false;
|
---|
2537 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL:
|
---|
2538 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling;
|
---|
2539 |
|
---|
2540 | /* Read-only data fields. */
|
---|
2541 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL:
|
---|
2542 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt;
|
---|
2543 |
|
---|
2544 | /* Guest-state fields. */
|
---|
2545 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
|
---|
2546 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH:
|
---|
2547 | case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
|
---|
2548 | case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true;
|
---|
2549 | case VMX_VMCS64_GUEST_PAT_FULL:
|
---|
2550 | case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr;
|
---|
2551 | case VMX_VMCS64_GUEST_EFER_FULL:
|
---|
2552 | case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr;
|
---|
2553 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
|
---|
2554 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH: return false;
|
---|
2555 | case VMX_VMCS64_GUEST_PDPTE0_FULL:
|
---|
2556 | case VMX_VMCS64_GUEST_PDPTE0_HIGH:
|
---|
2557 | case VMX_VMCS64_GUEST_PDPTE1_FULL:
|
---|
2558 | case VMX_VMCS64_GUEST_PDPTE1_HIGH:
|
---|
2559 | case VMX_VMCS64_GUEST_PDPTE2_FULL:
|
---|
2560 | case VMX_VMCS64_GUEST_PDPTE2_HIGH:
|
---|
2561 | case VMX_VMCS64_GUEST_PDPTE3_FULL:
|
---|
2562 | case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt;
|
---|
2563 | case VMX_VMCS64_GUEST_BNDCFGS_FULL:
|
---|
2564 | case VMX_VMCS64_GUEST_BNDCFGS_HIGH: return false;
|
---|
2565 |
|
---|
2566 | /* Host-state fields. */
|
---|
2567 | case VMX_VMCS64_HOST_PAT_FULL:
|
---|
2568 | case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr;
|
---|
2569 | case VMX_VMCS64_HOST_EFER_FULL:
|
---|
2570 | case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr;
|
---|
2571 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
|
---|
2572 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH: return false;
|
---|
2573 |
|
---|
2574 | /*
|
---|
2575 | * 32-bit fields.
|
---|
2576 | */
|
---|
2577 | /* Control fields. */
|
---|
2578 | case VMX_VMCS32_CTRL_PIN_EXEC:
|
---|
2579 | case VMX_VMCS32_CTRL_PROC_EXEC:
|
---|
2580 | case VMX_VMCS32_CTRL_EXCEPTION_BITMAP:
|
---|
2581 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK:
|
---|
2582 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH:
|
---|
2583 | case VMX_VMCS32_CTRL_CR3_TARGET_COUNT:
|
---|
2584 | case VMX_VMCS32_CTRL_EXIT:
|
---|
2585 | case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT:
|
---|
2586 | case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT:
|
---|
2587 | case VMX_VMCS32_CTRL_ENTRY:
|
---|
2588 | case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT:
|
---|
2589 | case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO:
|
---|
2590 | case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE:
|
---|
2591 | case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true;
|
---|
2592 | case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow;
|
---|
2593 | case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls;
|
---|
2594 | case VMX_VMCS32_CTRL_PLE_GAP:
|
---|
2595 | case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit;
|
---|
2596 |
|
---|
2597 | /* Read-only data fields. */
|
---|
2598 | case VMX_VMCS32_RO_VM_INSTR_ERROR:
|
---|
2599 | case VMX_VMCS32_RO_EXIT_REASON:
|
---|
2600 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
|
---|
2601 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
|
---|
2602 | case VMX_VMCS32_RO_IDT_VECTORING_INFO:
|
---|
2603 | case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE:
|
---|
2604 | case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
|
---|
2605 | case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true;
|
---|
2606 |
|
---|
2607 | /* Guest-state fields. */
|
---|
2608 | case VMX_VMCS32_GUEST_ES_LIMIT:
|
---|
2609 | case VMX_VMCS32_GUEST_CS_LIMIT:
|
---|
2610 | case VMX_VMCS32_GUEST_SS_LIMIT:
|
---|
2611 | case VMX_VMCS32_GUEST_DS_LIMIT:
|
---|
2612 | case VMX_VMCS32_GUEST_FS_LIMIT:
|
---|
2613 | case VMX_VMCS32_GUEST_GS_LIMIT:
|
---|
2614 | case VMX_VMCS32_GUEST_LDTR_LIMIT:
|
---|
2615 | case VMX_VMCS32_GUEST_TR_LIMIT:
|
---|
2616 | case VMX_VMCS32_GUEST_GDTR_LIMIT:
|
---|
2617 | case VMX_VMCS32_GUEST_IDTR_LIMIT:
|
---|
2618 | case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
|
---|
2619 | case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
|
---|
2620 | case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
|
---|
2621 | case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
|
---|
2622 | case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
|
---|
2623 | case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
|
---|
2624 | case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
|
---|
2625 | case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
|
---|
2626 | case VMX_VMCS32_GUEST_INT_STATE:
|
---|
2627 | case VMX_VMCS32_GUEST_ACTIVITY_STATE:
|
---|
2628 | case VMX_VMCS32_GUEST_SMBASE:
|
---|
2629 | case VMX_VMCS32_GUEST_SYSENTER_CS: return true;
|
---|
2630 | case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer;
|
---|
2631 |
|
---|
2632 | /* Host-state fields. */
|
---|
2633 | case VMX_VMCS32_HOST_SYSENTER_CS: return true;
|
---|
2634 |
|
---|
2635 | /*
|
---|
2636 | * Natural-width fields.
|
---|
2637 | */
|
---|
2638 | /* Control fields. */
|
---|
2639 | case VMX_VMCS_CTRL_CR0_MASK:
|
---|
2640 | case VMX_VMCS_CTRL_CR4_MASK:
|
---|
2641 | case VMX_VMCS_CTRL_CR0_READ_SHADOW:
|
---|
2642 | case VMX_VMCS_CTRL_CR4_READ_SHADOW:
|
---|
2643 | case VMX_VMCS_CTRL_CR3_TARGET_VAL0:
|
---|
2644 | case VMX_VMCS_CTRL_CR3_TARGET_VAL1:
|
---|
2645 | case VMX_VMCS_CTRL_CR3_TARGET_VAL2:
|
---|
2646 | case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true;
|
---|
2647 |
|
---|
2648 | /* Read-only data fields. */
|
---|
2649 | case VMX_VMCS_RO_EXIT_QUALIFICATION:
|
---|
2650 | case VMX_VMCS_RO_IO_RCX:
|
---|
2651 | case VMX_VMCS_RO_IO_RSI:
|
---|
2652 | case VMX_VMCS_RO_IO_RDI:
|
---|
2653 | case VMX_VMCS_RO_IO_RIP:
|
---|
2654 | case VMX_VMCS_RO_GUEST_LINEAR_ADDR: return true;
|
---|
2655 |
|
---|
2656 | /* Guest-state fields. */
|
---|
2657 | case VMX_VMCS_GUEST_CR0:
|
---|
2658 | case VMX_VMCS_GUEST_CR3:
|
---|
2659 | case VMX_VMCS_GUEST_CR4:
|
---|
2660 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
2661 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
2662 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
2663 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
2664 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
2665 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
2666 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
2667 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
2668 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
2669 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
2670 | case VMX_VMCS_GUEST_DR7:
|
---|
2671 | case VMX_VMCS_GUEST_RSP:
|
---|
2672 | case VMX_VMCS_GUEST_RIP:
|
---|
2673 | case VMX_VMCS_GUEST_RFLAGS:
|
---|
2674 | case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS:
|
---|
2675 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
2676 | case VMX_VMCS_GUEST_SYSENTER_EIP: return true;
|
---|
2677 |
|
---|
2678 | /* Host-state fields. */
|
---|
2679 | case VMX_VMCS_HOST_CR0:
|
---|
2680 | case VMX_VMCS_HOST_CR3:
|
---|
2681 | case VMX_VMCS_HOST_CR4:
|
---|
2682 | case VMX_VMCS_HOST_FS_BASE:
|
---|
2683 | case VMX_VMCS_HOST_GS_BASE:
|
---|
2684 | case VMX_VMCS_HOST_TR_BASE:
|
---|
2685 | case VMX_VMCS_HOST_GDTR_BASE:
|
---|
2686 | case VMX_VMCS_HOST_IDTR_BASE:
|
---|
2687 | case VMX_VMCS_HOST_SYSENTER_ESP:
|
---|
2688 | case VMX_VMCS_HOST_SYSENTER_EIP:
|
---|
2689 | case VMX_VMCS_HOST_RSP:
|
---|
2690 | case VMX_VMCS_HOST_RIP: return true;
|
---|
2691 | }
|
---|
2692 |
|
---|
2693 | return false;
|
---|
2694 | }
|
---|
2695 |
|
---|
2696 |
|
---|
2697 | /**
|
---|
2698 | * Checks whether the given I/O access should cause a nested-guest VM-exit.
|
---|
2699 | *
|
---|
2700 | * @returns @c true if it causes a VM-exit, @c false otherwise.
|
---|
2701 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2702 | * @param u16Port The I/O port being accessed.
|
---|
2703 | * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
|
---|
2704 | */
|
---|
2705 | VMM_INT_DECL(bool) CPUMIsGuestVmxIoInterceptSet(PCVMCPU pVCpu, uint16_t u16Port, uint8_t cbAccess)
|
---|
2706 | {
|
---|
2707 | PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
2708 | if (CPUMIsGuestVmxProcCtlsSet(pVCpu, pCtx, VMX_PROC_CTLS_UNCOND_IO_EXIT))
|
---|
2709 | return true;
|
---|
2710 |
|
---|
2711 | if (CPUMIsGuestVmxProcCtlsSet(pVCpu, pCtx, VMX_PROC_CTLS_USE_IO_BITMAPS))
|
---|
2712 | {
|
---|
2713 | uint8_t const *pbIoBitmapA = (uint8_t const *)pCtx->hwvirt.vmx.CTX_SUFF(pvIoBitmap);
|
---|
2714 | uint8_t const *pbIoBitmapB = (uint8_t const *)pCtx->hwvirt.vmx.CTX_SUFF(pvIoBitmap) + VMX_V_IO_BITMAP_A_SIZE;
|
---|
2715 | Assert(pbIoBitmapA);
|
---|
2716 | Assert(pbIoBitmapB);
|
---|
2717 | return CPUMGetVmxIoBitmapPermission(pbIoBitmapA, pbIoBitmapB, u16Port, cbAccess);
|
---|
2718 | }
|
---|
2719 |
|
---|
2720 | return false;
|
---|
2721 | }
|
---|
2722 |
|
---|
2723 |
|
---|
2724 | /**
|
---|
2725 | * Checks whether the Mov-to-CR3 instruction causes a nested-guest VM-exit.
|
---|
2726 | *
|
---|
2727 | * @returns @c true if it causes a VM-exit, @c false otherwise.
|
---|
2728 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2729 | * @param uNewCr3 The CR3 value being written.
|
---|
2730 | */
|
---|
2731 | VMM_INT_DECL(bool) CPUMIsGuestVmxMovToCr3InterceptSet(PVMCPU pVCpu, uint64_t uNewCr3)
|
---|
2732 | {
|
---|
2733 | /*
|
---|
2734 | * If the CR3-load exiting control is set and the new CR3 value does not
|
---|
2735 | * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
|
---|
2736 | *
|
---|
2737 | * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
|
---|
2738 | */
|
---|
2739 | PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
2740 | PCVMXVVMCS pVmcs = pCtx->hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2741 | if (CPUMIsGuestVmxProcCtlsSet(pVCpu, pCtx, VMX_PROC_CTLS_CR3_LOAD_EXIT))
|
---|
2742 | {
|
---|
2743 | uint32_t const uCr3TargetCount = pVmcs->u32Cr3TargetCount;
|
---|
2744 | Assert(uCr3TargetCount <= VMX_V_CR3_TARGET_COUNT);
|
---|
2745 |
|
---|
2746 | /* If the CR3-target count is 0, cause a VM-exit. */
|
---|
2747 | if (uCr3TargetCount == 0)
|
---|
2748 | return true;
|
---|
2749 |
|
---|
2750 | /* If the CR3 being written doesn't match any of the target values, cause a VM-exit. */
|
---|
2751 | AssertCompile(VMX_V_CR3_TARGET_COUNT == 4);
|
---|
2752 | if ( uNewCr3 != pVmcs->u64Cr3Target0.u
|
---|
2753 | && uNewCr3 != pVmcs->u64Cr3Target1.u
|
---|
2754 | && uNewCr3 != pVmcs->u64Cr3Target2.u
|
---|
2755 | && uNewCr3 != pVmcs->u64Cr3Target3.u)
|
---|
2756 | return true;
|
---|
2757 | }
|
---|
2758 | return false;
|
---|
2759 | }
|
---|
2760 |
|
---|
2761 |
|
---|
2762 | /**
|
---|
2763 | * Checks whether a VMREAD or VMWRITE instruction for the given VMCS field causes a
|
---|
2764 | * VM-exit or not.
|
---|
2765 | *
|
---|
2766 | * @returns @c true if the VMREAD/VMWRITE is intercepted, @c false otherwise.
|
---|
2767 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2768 | * @param uExitReason The VM-exit reason (VMX_EXIT_VMREAD or
|
---|
2769 | * VMX_EXIT_VMREAD).
|
---|
2770 | * @param u64VmcsField The VMCS field.
|
---|
2771 | */
|
---|
2772 | VMM_INT_DECL(bool) CPUMIsGuestVmxVmreadVmwriteInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint64_t u64VmcsField)
|
---|
2773 | {
|
---|
2774 | Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest));
|
---|
2775 | Assert( uExitReason == VMX_EXIT_VMREAD
|
---|
2776 | || uExitReason == VMX_EXIT_VMWRITE);
|
---|
2777 |
|
---|
2778 | /*
|
---|
2779 | * Without VMCS shadowing, all VMREAD and VMWRITE instructions are intercepted.
|
---|
2780 | */
|
---|
2781 | if (!CPUMIsGuestVmxProcCtls2Set(pVCpu, &pVCpu->cpum.s.Guest, VMX_PROC_CTLS2_VMCS_SHADOWING))
|
---|
2782 | return true;
|
---|
2783 |
|
---|
2784 | /*
|
---|
2785 | * If any reserved bit in the 64-bit VMCS field encoding is set, the VMREAD/VMWRITE
|
---|
2786 | * is intercepted. This excludes any reserved bits in the valid parts of the field
|
---|
2787 | * encoding (i.e. bit 12).
|
---|
2788 | */
|
---|
2789 | if (u64VmcsField & VMX_VMCSFIELD_RSVD_MASK)
|
---|
2790 | return true;
|
---|
2791 |
|
---|
2792 | /*
|
---|
2793 | * Finally, consult the VMREAD/VMWRITE bitmap whether to intercept the instruction or not.
|
---|
2794 | */
|
---|
2795 | uint32_t const u32VmcsField = RT_LO_U32(u64VmcsField);
|
---|
2796 | uint8_t const *pbBitmap = uExitReason == VMX_EXIT_VMREAD
|
---|
2797 | ? (uint8_t const *)pVCpu->cpum.s.Guest.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap)
|
---|
2798 | : (uint8_t const *)pVCpu->cpum.s.Guest.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap);
|
---|
2799 | Assert(pbBitmap);
|
---|
2800 | Assert(u32VmcsField >> 3 < VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
|
---|
2801 | return ASMBitTest(pbBitmap + (u32VmcsField >> 3), u32VmcsField & 7);
|
---|
2802 | }
|
---|
2803 |
|
---|
2804 |
|
---|
2805 |
|
---|
2806 | /**
|
---|
2807 | * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
|
---|
2808 | *
|
---|
2809 | * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
|
---|
2810 | * @param u16Port The IO port being accessed.
|
---|
2811 | * @param enmIoType The type of IO access.
|
---|
2812 | * @param cbReg The IO operand size in bytes.
|
---|
2813 | * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
|
---|
2814 | * @param iEffSeg The effective segment number.
|
---|
2815 | * @param fRep Whether this is a repeating IO instruction (REP prefix).
|
---|
2816 | * @param fStrIo Whether this is a string IO instruction.
|
---|
2817 | * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO struct to be filled.
|
---|
2818 | * Optional, can be NULL.
|
---|
2819 | */
|
---|
2820 | VMM_INT_DECL(bool) CPUMIsSvmIoInterceptSet(void *pvIoBitmap, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
|
---|
2821 | uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo,
|
---|
2822 | PSVMIOIOEXITINFO pIoExitInfo)
|
---|
2823 | {
|
---|
2824 | Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
|
---|
2825 | Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
|
---|
2826 |
|
---|
2827 | /*
|
---|
2828 | * The IOPM layout:
|
---|
2829 | * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or
|
---|
2830 | * two 4K pages.
|
---|
2831 | *
|
---|
2832 | * For IO instructions that access more than a single byte, the permission bits
|
---|
2833 | * for all bytes are checked; if any bit is set to 1, the IO access is intercepted.
|
---|
2834 | *
|
---|
2835 | * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes),
|
---|
2836 | * we need 3 extra bits beyond the second 4K page.
|
---|
2837 | */
|
---|
2838 | static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 };
|
---|
2839 |
|
---|
2840 | uint16_t const offIopm = u16Port >> 3;
|
---|
2841 | uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7];
|
---|
2842 | uint8_t const cShift = u16Port - (offIopm << 3);
|
---|
2843 | uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift);
|
---|
2844 |
|
---|
2845 | uint8_t const *pbIopm = (uint8_t *)pvIoBitmap;
|
---|
2846 | Assert(pbIopm);
|
---|
2847 | pbIopm += offIopm;
|
---|
2848 | uint16_t const u16Iopm = *(uint16_t *)pbIopm;
|
---|
2849 | if (u16Iopm & fIopmMask)
|
---|
2850 | {
|
---|
2851 | if (pIoExitInfo)
|
---|
2852 | {
|
---|
2853 | static const uint32_t s_auIoOpSize[] =
|
---|
2854 | { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 };
|
---|
2855 |
|
---|
2856 | static const uint32_t s_auIoAddrSize[] =
|
---|
2857 | { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 };
|
---|
2858 |
|
---|
2859 | pIoExitInfo->u = s_auIoOpSize[cbReg & 7];
|
---|
2860 | pIoExitInfo->u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7];
|
---|
2861 | pIoExitInfo->n.u1Str = fStrIo;
|
---|
2862 | pIoExitInfo->n.u1Rep = fRep;
|
---|
2863 | pIoExitInfo->n.u3Seg = iEffSeg & 7;
|
---|
2864 | pIoExitInfo->n.u1Type = enmIoType;
|
---|
2865 | pIoExitInfo->n.u16Port = u16Port;
|
---|
2866 | }
|
---|
2867 | return true;
|
---|
2868 | }
|
---|
2869 |
|
---|
2870 | /** @todo remove later (for debugging as VirtualBox always traps all IO
|
---|
2871 | * intercepts). */
|
---|
2872 | AssertMsgFailed(("CPUMSvmIsIOInterceptActive: We expect an IO intercept here!\n"));
|
---|
2873 | return false;
|
---|
2874 | }
|
---|
2875 |
|
---|
2876 |
|
---|
2877 | /**
|
---|
2878 | * Gets the MSR permission bitmap byte and bit offset for the specified MSR.
|
---|
2879 | *
|
---|
2880 | * @returns VBox status code.
|
---|
2881 | * @param idMsr The MSR being requested.
|
---|
2882 | * @param pbOffMsrpm Where to store the byte offset in the MSR permission
|
---|
2883 | * bitmap for @a idMsr.
|
---|
2884 | * @param puMsrpmBit Where to store the bit offset starting at the byte
|
---|
2885 | * returned in @a pbOffMsrpm.
|
---|
2886 | */
|
---|
2887 | VMM_INT_DECL(int) CPUMGetSvmMsrpmOffsetAndBit(uint32_t idMsr, uint16_t *pbOffMsrpm, uint8_t *puMsrpmBit)
|
---|
2888 | {
|
---|
2889 | Assert(pbOffMsrpm);
|
---|
2890 | Assert(puMsrpmBit);
|
---|
2891 |
|
---|
2892 | /*
|
---|
2893 | * MSRPM Layout:
|
---|
2894 | * Byte offset MSR range
|
---|
2895 | * 0x000 - 0x7ff 0x00000000 - 0x00001fff
|
---|
2896 | * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
|
---|
2897 | * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
|
---|
2898 | * 0x1800 - 0x1fff Reserved
|
---|
2899 | *
|
---|
2900 | * Each MSR is represented by 2 permission bits (read and write).
|
---|
2901 | */
|
---|
2902 | if (idMsr <= 0x00001fff)
|
---|
2903 | {
|
---|
2904 | /* Pentium-compatible MSRs. */
|
---|
2905 | uint32_t const bitoffMsr = idMsr << 1;
|
---|
2906 | *pbOffMsrpm = bitoffMsr >> 3;
|
---|
2907 | *puMsrpmBit = bitoffMsr & 7;
|
---|
2908 | return VINF_SUCCESS;
|
---|
2909 | }
|
---|
2910 |
|
---|
2911 | if ( idMsr >= 0xc0000000
|
---|
2912 | && idMsr <= 0xc0001fff)
|
---|
2913 | {
|
---|
2914 | /* AMD Sixth Generation x86 Processor MSRs. */
|
---|
2915 | uint32_t const bitoffMsr = (idMsr - 0xc0000000) << 1;
|
---|
2916 | *pbOffMsrpm = 0x800 + (bitoffMsr >> 3);
|
---|
2917 | *puMsrpmBit = bitoffMsr & 7;
|
---|
2918 | return VINF_SUCCESS;
|
---|
2919 | }
|
---|
2920 |
|
---|
2921 | if ( idMsr >= 0xc0010000
|
---|
2922 | && idMsr <= 0xc0011fff)
|
---|
2923 | {
|
---|
2924 | /* AMD Seventh and Eighth Generation Processor MSRs. */
|
---|
2925 | uint32_t const bitoffMsr = (idMsr - 0xc0010000) << 1;
|
---|
2926 | *pbOffMsrpm = 0x1000 + (bitoffMsr >> 3);
|
---|
2927 | *puMsrpmBit = bitoffMsr & 7;
|
---|
2928 | return VINF_SUCCESS;
|
---|
2929 | }
|
---|
2930 |
|
---|
2931 | *pbOffMsrpm = 0;
|
---|
2932 | *puMsrpmBit = 0;
|
---|
2933 | return VERR_OUT_OF_RANGE;
|
---|
2934 | }
|
---|
2935 |
|
---|