VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp@ 90250

Last change on this file since 90250 was 88290, checked in by vboxsync, 4 years ago

Intel IOMMU: bugref:9967 PDM: Added CPUMGetGuestAddrWidths and PDM interface for getting number of physical and linear address bits supported by the guest. Will be used by upcoming changes to Intel IOMMU.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 98.1 KB
Line 
1/* $Id: CPUMAllRegs.cpp 88290 2021-03-25 11:54:08Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor(/Manager) - Getters and Setters.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_CPUM
23#include <VBox/vmm/cpum.h>
24#include <VBox/vmm/dbgf.h>
25#include <VBox/vmm/apic.h>
26#include <VBox/vmm/pgm.h>
27#include <VBox/vmm/mm.h>
28#include <VBox/vmm/em.h>
29#include <VBox/vmm/nem.h>
30#include <VBox/vmm/hm.h>
31#include "CPUMInternal.h"
32#include <VBox/vmm/vmcc.h>
33#include <VBox/err.h>
34#include <VBox/dis.h>
35#include <VBox/log.h>
36#include <VBox/vmm/hm.h>
37#include <VBox/vmm/tm.h>
38#include <iprt/assert.h>
39#include <iprt/asm.h>
40#include <iprt/asm-amd64-x86.h>
41#ifdef IN_RING3
42# include <iprt/thread.h>
43#endif
44
45/** Disable stack frame pointer generation here. */
46#if defined(_MSC_VER) && !defined(DEBUG) && defined(RT_ARCH_X86)
47# pragma optimize("y", off)
48#endif
49
50AssertCompile2MemberOffsets(VM, cpum.s.HostFeatures, cpum.ro.HostFeatures);
51AssertCompile2MemberOffsets(VM, cpum.s.GuestFeatures, cpum.ro.GuestFeatures);
52
53
54/*********************************************************************************************************************************
55* Defined Constants And Macros *
56*********************************************************************************************************************************/
57/**
58 * Converts a CPUMCPU::Guest pointer into a VMCPU pointer.
59 *
60 * @returns Pointer to the Virtual CPU.
61 * @param a_pGuestCtx Pointer to the guest context.
62 */
63#define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest)
64
65/**
66 * Lazily loads the hidden parts of a selector register when using raw-mode.
67 */
68#define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \
69 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg))
70
71/** @def CPUM_INT_ASSERT_NOT_EXTRN
72 * Macro for asserting that @a a_fNotExtrn are present.
73 *
74 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
75 * @param a_fNotExtrn Mask of CPUMCTX_EXTRN_XXX bits to check.
76 */
77#define CPUM_INT_ASSERT_NOT_EXTRN(a_pVCpu, a_fNotExtrn) \
78 AssertMsg(!((a_pVCpu)->cpum.s.Guest.fExtrn & (a_fNotExtrn)), \
79 ("%#RX64; a_fNotExtrn=%#RX64\n", (a_pVCpu)->cpum.s.Guest.fExtrn, (a_fNotExtrn)))
80
81
82VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3)
83{
84 pVCpu->cpum.s.Hyper.cr3 = cr3;
85}
86
87VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu)
88{
89 return pVCpu->cpum.s.Hyper.cr3;
90}
91
92
93/** @def MAYBE_LOAD_DRx
94 * Macro for updating DRx values in raw-mode and ring-0 contexts.
95 */
96#ifdef IN_RING0
97# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { a_fnLoad(a_uValue); } while (0)
98#else
99# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { } while (0)
100#endif
101
102VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0)
103{
104 pVCpu->cpum.s.Hyper.dr[0] = uDr0;
105 MAYBE_LOAD_DRx(pVCpu, ASMSetDR0, uDr0);
106}
107
108
109VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1)
110{
111 pVCpu->cpum.s.Hyper.dr[1] = uDr1;
112 MAYBE_LOAD_DRx(pVCpu, ASMSetDR1, uDr1);
113}
114
115
116VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2)
117{
118 pVCpu->cpum.s.Hyper.dr[2] = uDr2;
119 MAYBE_LOAD_DRx(pVCpu, ASMSetDR2, uDr2);
120}
121
122
123VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3)
124{
125 pVCpu->cpum.s.Hyper.dr[3] = uDr3;
126 MAYBE_LOAD_DRx(pVCpu, ASMSetDR3, uDr3);
127}
128
129
130VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6)
131{
132 pVCpu->cpum.s.Hyper.dr[6] = uDr6;
133}
134
135
136VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7)
137{
138 pVCpu->cpum.s.Hyper.dr[7] = uDr7;
139}
140
141
142VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu)
143{
144 return pVCpu->cpum.s.Hyper.dr[0];
145}
146
147
148VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu)
149{
150 return pVCpu->cpum.s.Hyper.dr[1];
151}
152
153
154VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu)
155{
156 return pVCpu->cpum.s.Hyper.dr[2];
157}
158
159
160VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu)
161{
162 return pVCpu->cpum.s.Hyper.dr[3];
163}
164
165
166VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu)
167{
168 return pVCpu->cpum.s.Hyper.dr[6];
169}
170
171
172VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu)
173{
174 return pVCpu->cpum.s.Hyper.dr[7];
175}
176
177
178/**
179 * Gets the pointer to the internal CPUMCTXCORE structure.
180 * This is only for reading in order to save a few calls.
181 *
182 * @param pVCpu The cross context virtual CPU structure.
183 */
184VMMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVMCPU pVCpu)
185{
186 return CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
187}
188
189
190/**
191 * Queries the pointer to the internal CPUMCTX structure.
192 *
193 * @returns The CPUMCTX pointer.
194 * @param pVCpu The cross context virtual CPU structure.
195 */
196VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu)
197{
198 return &pVCpu->cpum.s.Guest;
199}
200
201
202/**
203 * Queries the pointer to the internal CPUMCTXMSRS structure.
204 *
205 * This is for NEM only.
206 *
207 * @returns The CPUMCTX pointer.
208 * @param pVCpu The cross context virtual CPU structure.
209 */
210VMM_INT_DECL(PCPUMCTXMSRS) CPUMQueryGuestCtxMsrsPtr(PVMCPU pVCpu)
211{
212 return &pVCpu->cpum.s.GuestMsrs;
213}
214
215
216VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
217{
218 pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit;
219 pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase;
220 pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_GDTR;
221 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR;
222 return VINF_SUCCESS; /* formality, consider it void. */
223}
224
225
226VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
227{
228 pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit;
229 pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase;
230 pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_IDTR;
231 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR;
232 return VINF_SUCCESS; /* formality, consider it void. */
233}
234
235
236VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr)
237{
238 pVCpu->cpum.s.Guest.tr.Sel = tr;
239 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR;
240 return VINF_SUCCESS; /* formality, consider it void. */
241}
242
243
244VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr)
245{
246 pVCpu->cpum.s.Guest.ldtr.Sel = ldtr;
247 /* The caller will set more hidden bits if it has them. */
248 pVCpu->cpum.s.Guest.ldtr.ValidSel = 0;
249 pVCpu->cpum.s.Guest.ldtr.fFlags = 0;
250 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR;
251 return VINF_SUCCESS; /* formality, consider it void. */
252}
253
254
255/**
256 * Set the guest CR0.
257 *
258 * When called in GC, the hyper CR0 may be updated if that is
259 * required. The caller only has to take special action if AM,
260 * WP, PG or PE changes.
261 *
262 * @returns VINF_SUCCESS (consider it void).
263 * @param pVCpu The cross context virtual CPU structure.
264 * @param cr0 The new CR0 value.
265 */
266VMMDECL(int) CPUMSetGuestCR0(PVMCPUCC pVCpu, uint64_t cr0)
267{
268 /*
269 * Check for changes causing TLB flushes (for REM).
270 * The caller is responsible for calling PGM when appropriate.
271 */
272 if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
273 != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
274 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
275 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0;
276
277 /*
278 * Let PGM know if the WP goes from 0 to 1 (netware WP0+RO+US hack)
279 */
280 if (((cr0 ^ pVCpu->cpum.s.Guest.cr0) & X86_CR0_WP) && (cr0 & X86_CR0_WP))
281 PGMCr0WpEnabled(pVCpu);
282
283 /* The ET flag is settable on a 386 and hardwired on 486+. */
284 if ( !(cr0 & X86_CR0_ET)
285 && pVCpu->CTX_SUFF(pVM)->cpum.s.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386)
286 cr0 |= X86_CR0_ET;
287
288 pVCpu->cpum.s.Guest.cr0 = cr0;
289 pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR0;
290 return VINF_SUCCESS;
291}
292
293
294VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2)
295{
296 pVCpu->cpum.s.Guest.cr2 = cr2;
297 pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR2;
298 return VINF_SUCCESS;
299}
300
301
302VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3)
303{
304 pVCpu->cpum.s.Guest.cr3 = cr3;
305 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3;
306 pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3;
307 return VINF_SUCCESS;
308}
309
310
311VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4)
312{
313 /* Note! We don't bother with OSXSAVE and legacy CPUID patches. */
314
315 if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))
316 != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)))
317 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
318
319 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4;
320 pVCpu->cpum.s.Guest.cr4 = cr4;
321 pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR4;
322 return VINF_SUCCESS;
323}
324
325
326VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags)
327{
328 pVCpu->cpum.s.Guest.eflags.u32 = eflags;
329 pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
330 return VINF_SUCCESS;
331}
332
333
334VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip)
335{
336 pVCpu->cpum.s.Guest.eip = eip;
337 return VINF_SUCCESS;
338}
339
340
341VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax)
342{
343 pVCpu->cpum.s.Guest.eax = eax;
344 return VINF_SUCCESS;
345}
346
347
348VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx)
349{
350 pVCpu->cpum.s.Guest.ebx = ebx;
351 return VINF_SUCCESS;
352}
353
354
355VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx)
356{
357 pVCpu->cpum.s.Guest.ecx = ecx;
358 return VINF_SUCCESS;
359}
360
361
362VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx)
363{
364 pVCpu->cpum.s.Guest.edx = edx;
365 return VINF_SUCCESS;
366}
367
368
369VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp)
370{
371 pVCpu->cpum.s.Guest.esp = esp;
372 return VINF_SUCCESS;
373}
374
375
376VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp)
377{
378 pVCpu->cpum.s.Guest.ebp = ebp;
379 return VINF_SUCCESS;
380}
381
382
383VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi)
384{
385 pVCpu->cpum.s.Guest.esi = esi;
386 return VINF_SUCCESS;
387}
388
389
390VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi)
391{
392 pVCpu->cpum.s.Guest.edi = edi;
393 return VINF_SUCCESS;
394}
395
396
397VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss)
398{
399 pVCpu->cpum.s.Guest.ss.Sel = ss;
400 return VINF_SUCCESS;
401}
402
403
404VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs)
405{
406 pVCpu->cpum.s.Guest.cs.Sel = cs;
407 return VINF_SUCCESS;
408}
409
410
411VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds)
412{
413 pVCpu->cpum.s.Guest.ds.Sel = ds;
414 return VINF_SUCCESS;
415}
416
417
418VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es)
419{
420 pVCpu->cpum.s.Guest.es.Sel = es;
421 return VINF_SUCCESS;
422}
423
424
425VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs)
426{
427 pVCpu->cpum.s.Guest.fs.Sel = fs;
428 return VINF_SUCCESS;
429}
430
431
432VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs)
433{
434 pVCpu->cpum.s.Guest.gs.Sel = gs;
435 return VINF_SUCCESS;
436}
437
438
439VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val)
440{
441 pVCpu->cpum.s.Guest.msrEFER = val;
442 pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_EFER;
443}
444
445
446VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PCVMCPU pVCpu, uint16_t *pcbLimit)
447{
448 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_IDTR);
449 if (pcbLimit)
450 *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt;
451 return pVCpu->cpum.s.Guest.idtr.pIdt;
452}
453
454
455VMMDECL(RTSEL) CPUMGetGuestTR(PCVMCPU pVCpu, PCPUMSELREGHID pHidden)
456{
457 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_TR);
458 if (pHidden)
459 *pHidden = pVCpu->cpum.s.Guest.tr;
460 return pVCpu->cpum.s.Guest.tr.Sel;
461}
462
463
464VMMDECL(RTSEL) CPUMGetGuestCS(PCVMCPU pVCpu)
465{
466 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS);
467 return pVCpu->cpum.s.Guest.cs.Sel;
468}
469
470
471VMMDECL(RTSEL) CPUMGetGuestDS(PCVMCPU pVCpu)
472{
473 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DS);
474 return pVCpu->cpum.s.Guest.ds.Sel;
475}
476
477
478VMMDECL(RTSEL) CPUMGetGuestES(PCVMCPU pVCpu)
479{
480 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_ES);
481 return pVCpu->cpum.s.Guest.es.Sel;
482}
483
484
485VMMDECL(RTSEL) CPUMGetGuestFS(PCVMCPU pVCpu)
486{
487 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_FS);
488 return pVCpu->cpum.s.Guest.fs.Sel;
489}
490
491
492VMMDECL(RTSEL) CPUMGetGuestGS(PCVMCPU pVCpu)
493{
494 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GS);
495 return pVCpu->cpum.s.Guest.gs.Sel;
496}
497
498
499VMMDECL(RTSEL) CPUMGetGuestSS(PCVMCPU pVCpu)
500{
501 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_SS);
502 return pVCpu->cpum.s.Guest.ss.Sel;
503}
504
505
506VMMDECL(uint64_t) CPUMGetGuestFlatPC(PVMCPU pVCpu)
507{
508 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
509 CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
510 if ( !CPUMIsGuestInLongMode(pVCpu)
511 || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
512 return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.cs.u64Base;
513 return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.cs.u64Base;
514}
515
516
517VMMDECL(uint64_t) CPUMGetGuestFlatSP(PVMCPU pVCpu)
518{
519 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
520 CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss);
521 if ( !CPUMIsGuestInLongMode(pVCpu)
522 || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
523 return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.ss.u64Base;
524 return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.ss.u64Base;
525}
526
527
528VMMDECL(RTSEL) CPUMGetGuestLDTR(PCVMCPU pVCpu)
529{
530 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
531 return pVCpu->cpum.s.Guest.ldtr.Sel;
532}
533
534
535VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PCVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit)
536{
537 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
538 *pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base;
539 *pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit;
540 return pVCpu->cpum.s.Guest.ldtr.Sel;
541}
542
543
544VMMDECL(uint64_t) CPUMGetGuestCR0(PCVMCPU pVCpu)
545{
546 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
547 return pVCpu->cpum.s.Guest.cr0;
548}
549
550
551VMMDECL(uint64_t) CPUMGetGuestCR2(PCVMCPU pVCpu)
552{
553 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
554 return pVCpu->cpum.s.Guest.cr2;
555}
556
557
558VMMDECL(uint64_t) CPUMGetGuestCR3(PCVMCPU pVCpu)
559{
560 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
561 return pVCpu->cpum.s.Guest.cr3;
562}
563
564
565VMMDECL(uint64_t) CPUMGetGuestCR4(PCVMCPU pVCpu)
566{
567 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
568 return pVCpu->cpum.s.Guest.cr4;
569}
570
571
572VMMDECL(uint64_t) CPUMGetGuestCR8(PCVMCPUCC pVCpu)
573{
574 uint64_t u64;
575 int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64);
576 if (RT_FAILURE(rc))
577 u64 = 0;
578 return u64;
579}
580
581
582VMMDECL(void) CPUMGetGuestGDTR(PCVMCPU pVCpu, PVBOXGDTR pGDTR)
583{
584 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GDTR);
585 *pGDTR = pVCpu->cpum.s.Guest.gdtr;
586}
587
588
589VMMDECL(uint32_t) CPUMGetGuestEIP(PCVMCPU pVCpu)
590{
591 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
592 return pVCpu->cpum.s.Guest.eip;
593}
594
595
596VMMDECL(uint64_t) CPUMGetGuestRIP(PCVMCPU pVCpu)
597{
598 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
599 return pVCpu->cpum.s.Guest.rip;
600}
601
602
603VMMDECL(uint32_t) CPUMGetGuestEAX(PCVMCPU pVCpu)
604{
605 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RAX);
606 return pVCpu->cpum.s.Guest.eax;
607}
608
609
610VMMDECL(uint32_t) CPUMGetGuestEBX(PCVMCPU pVCpu)
611{
612 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBX);
613 return pVCpu->cpum.s.Guest.ebx;
614}
615
616
617VMMDECL(uint32_t) CPUMGetGuestECX(PCVMCPU pVCpu)
618{
619 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RCX);
620 return pVCpu->cpum.s.Guest.ecx;
621}
622
623
624VMMDECL(uint32_t) CPUMGetGuestEDX(PCVMCPU pVCpu)
625{
626 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDX);
627 return pVCpu->cpum.s.Guest.edx;
628}
629
630
631VMMDECL(uint32_t) CPUMGetGuestESI(PCVMCPU pVCpu)
632{
633 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSI);
634 return pVCpu->cpum.s.Guest.esi;
635}
636
637
638VMMDECL(uint32_t) CPUMGetGuestEDI(PCVMCPU pVCpu)
639{
640 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDI);
641 return pVCpu->cpum.s.Guest.edi;
642}
643
644
645VMMDECL(uint32_t) CPUMGetGuestESP(PCVMCPU pVCpu)
646{
647 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP);
648 return pVCpu->cpum.s.Guest.esp;
649}
650
651
652VMMDECL(uint32_t) CPUMGetGuestEBP(PCVMCPU pVCpu)
653{
654 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBP);
655 return pVCpu->cpum.s.Guest.ebp;
656}
657
658
659VMMDECL(uint32_t) CPUMGetGuestEFlags(PCVMCPU pVCpu)
660{
661 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RFLAGS);
662 return pVCpu->cpum.s.Guest.eflags.u32;
663}
664
665
666VMMDECL(int) CPUMGetGuestCRx(PCVMCPUCC pVCpu, unsigned iReg, uint64_t *pValue)
667{
668 switch (iReg)
669 {
670 case DISCREG_CR0:
671 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
672 *pValue = pVCpu->cpum.s.Guest.cr0;
673 break;
674
675 case DISCREG_CR2:
676 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
677 *pValue = pVCpu->cpum.s.Guest.cr2;
678 break;
679
680 case DISCREG_CR3:
681 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
682 *pValue = pVCpu->cpum.s.Guest.cr3;
683 break;
684
685 case DISCREG_CR4:
686 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
687 *pValue = pVCpu->cpum.s.Guest.cr4;
688 break;
689
690 case DISCREG_CR8:
691 {
692 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
693 uint8_t u8Tpr;
694 int rc = APICGetTpr(pVCpu, &u8Tpr, NULL /* pfPending */, NULL /* pu8PendingIrq */);
695 if (RT_FAILURE(rc))
696 {
697 AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc));
698 *pValue = 0;
699 return rc;
700 }
701 *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0 */
702 break;
703 }
704
705 default:
706 return VERR_INVALID_PARAMETER;
707 }
708 return VINF_SUCCESS;
709}
710
711
712VMMDECL(uint64_t) CPUMGetGuestDR0(PCVMCPU pVCpu)
713{
714 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
715 return pVCpu->cpum.s.Guest.dr[0];
716}
717
718
719VMMDECL(uint64_t) CPUMGetGuestDR1(PCVMCPU pVCpu)
720{
721 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
722 return pVCpu->cpum.s.Guest.dr[1];
723}
724
725
726VMMDECL(uint64_t) CPUMGetGuestDR2(PCVMCPU pVCpu)
727{
728 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
729 return pVCpu->cpum.s.Guest.dr[2];
730}
731
732
733VMMDECL(uint64_t) CPUMGetGuestDR3(PCVMCPU pVCpu)
734{
735 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
736 return pVCpu->cpum.s.Guest.dr[3];
737}
738
739
740VMMDECL(uint64_t) CPUMGetGuestDR6(PCVMCPU pVCpu)
741{
742 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR6);
743 return pVCpu->cpum.s.Guest.dr[6];
744}
745
746
747VMMDECL(uint64_t) CPUMGetGuestDR7(PCVMCPU pVCpu)
748{
749 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR7);
750 return pVCpu->cpum.s.Guest.dr[7];
751}
752
753
754VMMDECL(int) CPUMGetGuestDRx(PCVMCPU pVCpu, uint32_t iReg, uint64_t *pValue)
755{
756 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR_MASK);
757 AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
758 /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
759 if (iReg == 4 || iReg == 5)
760 iReg += 2;
761 *pValue = pVCpu->cpum.s.Guest.dr[iReg];
762 return VINF_SUCCESS;
763}
764
765
766VMMDECL(uint64_t) CPUMGetGuestEFER(PCVMCPU pVCpu)
767{
768 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
769 return pVCpu->cpum.s.Guest.msrEFER;
770}
771
772
773/**
774 * Looks up a CPUID leaf in the CPUID leaf array, no subleaf.
775 *
776 * @returns Pointer to the leaf if found, NULL if not.
777 *
778 * @param pVM The cross context VM structure.
779 * @param uLeaf The leaf to get.
780 */
781PCPUMCPUIDLEAF cpumCpuIdGetLeaf(PVM pVM, uint32_t uLeaf)
782{
783 unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
784 if (iEnd)
785 {
786 unsigned iStart = 0;
787 PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves);
788 for (;;)
789 {
790 unsigned i = iStart + (iEnd - iStart) / 2U;
791 if (uLeaf < paLeaves[i].uLeaf)
792 {
793 if (i <= iStart)
794 return NULL;
795 iEnd = i;
796 }
797 else if (uLeaf > paLeaves[i].uLeaf)
798 {
799 i += 1;
800 if (i >= iEnd)
801 return NULL;
802 iStart = i;
803 }
804 else
805 {
806 if (RT_LIKELY(paLeaves[i].fSubLeafMask == 0 && paLeaves[i].uSubLeaf == 0))
807 return &paLeaves[i];
808
809 /* This shouldn't normally happen. But in case the it does due
810 to user configuration overrids or something, just return the
811 first sub-leaf. */
812 AssertMsgFailed(("uLeaf=%#x fSubLeafMask=%#x uSubLeaf=%#x\n",
813 uLeaf, paLeaves[i].fSubLeafMask, paLeaves[i].uSubLeaf));
814 while ( paLeaves[i].uSubLeaf != 0
815 && i > 0
816 && uLeaf == paLeaves[i - 1].uLeaf)
817 i--;
818 return &paLeaves[i];
819 }
820 }
821 }
822
823 return NULL;
824}
825
826
827/**
828 * Looks up a CPUID leaf in the CPUID leaf array.
829 *
830 * @returns Pointer to the leaf if found, NULL if not.
831 *
832 * @param pVM The cross context VM structure.
833 * @param uLeaf The leaf to get.
834 * @param uSubLeaf The subleaf, if applicable. Just pass 0 if it
835 * isn't.
836 * @param pfExactSubLeafHit Whether we've got an exact subleaf hit or not.
837 */
838PCPUMCPUIDLEAF cpumCpuIdGetLeafEx(PVM pVM, uint32_t uLeaf, uint32_t uSubLeaf, bool *pfExactSubLeafHit)
839{
840 unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
841 if (iEnd)
842 {
843 unsigned iStart = 0;
844 PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves);
845 for (;;)
846 {
847 unsigned i = iStart + (iEnd - iStart) / 2U;
848 if (uLeaf < paLeaves[i].uLeaf)
849 {
850 if (i <= iStart)
851 return NULL;
852 iEnd = i;
853 }
854 else if (uLeaf > paLeaves[i].uLeaf)
855 {
856 i += 1;
857 if (i >= iEnd)
858 return NULL;
859 iStart = i;
860 }
861 else
862 {
863 uSubLeaf &= paLeaves[i].fSubLeafMask;
864 if (uSubLeaf == paLeaves[i].uSubLeaf)
865 *pfExactSubLeafHit = true;
866 else
867 {
868 /* Find the right subleaf. We return the last one before
869 uSubLeaf if we don't find an exact match. */
870 if (uSubLeaf < paLeaves[i].uSubLeaf)
871 while ( i > 0
872 && uLeaf == paLeaves[i - 1].uLeaf
873 && uSubLeaf <= paLeaves[i - 1].uSubLeaf)
874 i--;
875 else
876 while ( i + 1 < pVM->cpum.s.GuestInfo.cCpuIdLeaves
877 && uLeaf == paLeaves[i + 1].uLeaf
878 && uSubLeaf >= paLeaves[i + 1].uSubLeaf)
879 i++;
880 *pfExactSubLeafHit = uSubLeaf == paLeaves[i].uSubLeaf;
881 }
882 return &paLeaves[i];
883 }
884 }
885 }
886
887 *pfExactSubLeafHit = false;
888 return NULL;
889}
890
891
892/**
893 * Gets a CPUID leaf.
894 *
895 * @param pVCpu The cross context virtual CPU structure.
896 * @param uLeaf The CPUID leaf to get.
897 * @param uSubLeaf The CPUID sub-leaf to get, if applicable.
898 * @param pEax Where to store the EAX value.
899 * @param pEbx Where to store the EBX value.
900 * @param pEcx Where to store the ECX value.
901 * @param pEdx Where to store the EDX value.
902 */
903VMMDECL(void) CPUMGetGuestCpuId(PVMCPUCC pVCpu, uint32_t uLeaf, uint32_t uSubLeaf,
904 uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
905{
906 bool fExactSubLeafHit;
907 PVM pVM = pVCpu->CTX_SUFF(pVM);
908 PCCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, uSubLeaf, &fExactSubLeafHit);
909 if (pLeaf)
910 {
911 AssertMsg(pLeaf->uLeaf == uLeaf, ("%#x %#x\n", pLeaf->uLeaf, uLeaf));
912 if (fExactSubLeafHit)
913 {
914 *pEax = pLeaf->uEax;
915 *pEbx = pLeaf->uEbx;
916 *pEcx = pLeaf->uEcx;
917 *pEdx = pLeaf->uEdx;
918
919 /*
920 * Deal with CPU specific information.
921 */
922 if (pLeaf->fFlags & ( CPUMCPUIDLEAF_F_CONTAINS_APIC_ID
923 | CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE
924 | CPUMCPUIDLEAF_F_CONTAINS_APIC ))
925 {
926 if (uLeaf == 1)
927 {
928 /* EBX: Bits 31-24: Initial APIC ID. */
929 Assert(pVCpu->idCpu <= 255);
930 AssertMsg((pLeaf->uEbx >> 24) == 0, ("%#x\n", pLeaf->uEbx)); /* raw-mode assumption */
931 *pEbx = (pLeaf->uEbx & UINT32_C(0x00ffffff)) | (pVCpu->idCpu << 24);
932
933 /* EDX: Bit 9: AND with APICBASE.EN. */
934 if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
935 *pEdx &= ~X86_CPUID_FEATURE_EDX_APIC;
936
937 /* ECX: Bit 27: CR4.OSXSAVE mirror. */
938 *pEcx = (pLeaf->uEcx & ~X86_CPUID_FEATURE_ECX_OSXSAVE)
939 | (pVCpu->cpum.s.Guest.cr4 & X86_CR4_OSXSAVE ? X86_CPUID_FEATURE_ECX_OSXSAVE : 0);
940 }
941 else if (uLeaf == 0xb)
942 {
943 /* EDX: Initial extended APIC ID. */
944 AssertMsg(pLeaf->uEdx == 0, ("%#x\n", pLeaf->uEdx)); /* raw-mode assumption */
945 *pEdx = pVCpu->idCpu;
946 Assert(!(pLeaf->fFlags & ~(CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)));
947 }
948 else if (uLeaf == UINT32_C(0x8000001e))
949 {
950 /* EAX: Initial extended APIC ID. */
951 AssertMsg(pLeaf->uEax == 0, ("%#x\n", pLeaf->uEax)); /* raw-mode assumption */
952 *pEax = pVCpu->idCpu;
953 Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC_ID));
954 }
955 else if (uLeaf == UINT32_C(0x80000001))
956 {
957 /* EDX: Bit 9: AND with APICBASE.EN. */
958 if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible)
959 *pEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC;
960 Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC));
961 }
962 else
963 AssertMsgFailed(("uLeaf=%#x\n", uLeaf));
964 }
965 }
966 /*
967 * Out of range sub-leaves aren't quite as easy and pretty as we emulate
968 * them here, but we do the best we can here...
969 */
970 else
971 {
972 *pEax = *pEbx = *pEcx = *pEdx = 0;
973 if (pLeaf->fFlags & CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)
974 {
975 *pEcx = uSubLeaf & 0xff;
976 *pEdx = pVCpu->idCpu;
977 }
978 }
979 }
980 else
981 {
982 /*
983 * Different CPUs have different ways of dealing with unknown CPUID leaves.
984 */
985 switch (pVM->cpum.s.GuestInfo.enmUnknownCpuIdMethod)
986 {
987 default:
988 AssertFailed();
989 RT_FALL_THRU();
990 case CPUMUNKNOWNCPUID_DEFAULTS:
991 case CPUMUNKNOWNCPUID_LAST_STD_LEAF: /* ASSUME this is executed */
992 case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: /** @todo Implement CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX */
993 *pEax = pVM->cpum.s.GuestInfo.DefCpuId.uEax;
994 *pEbx = pVM->cpum.s.GuestInfo.DefCpuId.uEbx;
995 *pEcx = pVM->cpum.s.GuestInfo.DefCpuId.uEcx;
996 *pEdx = pVM->cpum.s.GuestInfo.DefCpuId.uEdx;
997 break;
998 case CPUMUNKNOWNCPUID_PASSTHRU:
999 *pEax = uLeaf;
1000 *pEbx = 0;
1001 *pEcx = uSubLeaf;
1002 *pEdx = 0;
1003 break;
1004 }
1005 }
1006 Log2(("CPUMGetGuestCpuId: uLeaf=%#010x/%#010x %RX32 %RX32 %RX32 %RX32\n", uLeaf, uSubLeaf, *pEax, *pEbx, *pEcx, *pEdx));
1007}
1008
1009
1010/**
1011 * Sets the visibility of the X86_CPUID_FEATURE_EDX_APIC and
1012 * X86_CPUID_AMD_FEATURE_EDX_APIC CPUID bits.
1013 *
1014 * @returns Previous value.
1015 * @param pVCpu The cross context virtual CPU structure to make the
1016 * change on. Usually the calling EMT.
1017 * @param fVisible Whether to make it visible (true) or hide it (false).
1018 *
1019 * @remarks This is "VMMDECL" so that it still links with
1020 * the old APIC code which is in VBoxDD2 and not in
1021 * the VMM module.
1022 */
1023VMMDECL(bool) CPUMSetGuestCpuIdPerCpuApicFeature(PVMCPU pVCpu, bool fVisible)
1024{
1025 bool fOld = pVCpu->cpum.s.fCpuIdApicFeatureVisible;
1026 pVCpu->cpum.s.fCpuIdApicFeatureVisible = fVisible;
1027 return fOld;
1028}
1029
1030
1031/**
1032 * Gets the host CPU vendor.
1033 *
1034 * @returns CPU vendor.
1035 * @param pVM The cross context VM structure.
1036 */
1037VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM)
1038{
1039 return (CPUMCPUVENDOR)pVM->cpum.s.HostFeatures.enmCpuVendor;
1040}
1041
1042
1043/**
1044 * Gets the host CPU microarchitecture.
1045 *
1046 * @returns CPU microarchitecture.
1047 * @param pVM The cross context VM structure.
1048 */
1049VMMDECL(CPUMMICROARCH) CPUMGetHostMicroarch(PCVM pVM)
1050{
1051 return pVM->cpum.s.HostFeatures.enmMicroarch;
1052}
1053
1054
1055/**
1056 * Gets the guest CPU vendor.
1057 *
1058 * @returns CPU vendor.
1059 * @param pVM The cross context VM structure.
1060 */
1061VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM)
1062{
1063 return (CPUMCPUVENDOR)pVM->cpum.s.GuestFeatures.enmCpuVendor;
1064}
1065
1066
1067/**
1068 * Gets the guest CPU microarchitecture.
1069 *
1070 * @returns CPU microarchitecture.
1071 * @param pVM The cross context VM structure.
1072 */
1073VMMDECL(CPUMMICROARCH) CPUMGetGuestMicroarch(PCVM pVM)
1074{
1075 return pVM->cpum.s.GuestFeatures.enmMicroarch;
1076}
1077
1078
1079/**
1080 * Gets the maximum number of physical and linear address bits supported by the
1081 * guest.
1082 *
1083 * @param pVM The cross context VM structure.
1084 * @param pcPhysAddrWidth Where to store the physical address width.
1085 * @param pcLinearAddrWidth Where to store the linear address width.
1086 */
1087VMMDECL(void) CPUMGetGuestAddrWidths(PCVM pVM, uint8_t *pcPhysAddrWidth, uint8_t *pcLinearAddrWidth)
1088{
1089 AssertPtr(pVM);
1090 AssertReturnVoid(pcPhysAddrWidth);
1091 AssertReturnVoid(pcLinearAddrWidth);
1092 *pcPhysAddrWidth = pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth;
1093 *pcLinearAddrWidth = pVM->cpum.s.GuestFeatures.cMaxLinearAddrWidth;
1094}
1095
1096
1097VMMDECL(int) CPUMSetGuestDR0(PVMCPUCC pVCpu, uint64_t uDr0)
1098{
1099 pVCpu->cpum.s.Guest.dr[0] = uDr0;
1100 return CPUMRecalcHyperDRx(pVCpu, 0);
1101}
1102
1103
1104VMMDECL(int) CPUMSetGuestDR1(PVMCPUCC pVCpu, uint64_t uDr1)
1105{
1106 pVCpu->cpum.s.Guest.dr[1] = uDr1;
1107 return CPUMRecalcHyperDRx(pVCpu, 1);
1108}
1109
1110
1111VMMDECL(int) CPUMSetGuestDR2(PVMCPUCC pVCpu, uint64_t uDr2)
1112{
1113 pVCpu->cpum.s.Guest.dr[2] = uDr2;
1114 return CPUMRecalcHyperDRx(pVCpu, 2);
1115}
1116
1117
1118VMMDECL(int) CPUMSetGuestDR3(PVMCPUCC pVCpu, uint64_t uDr3)
1119{
1120 pVCpu->cpum.s.Guest.dr[3] = uDr3;
1121 return CPUMRecalcHyperDRx(pVCpu, 3);
1122}
1123
1124
1125VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6)
1126{
1127 pVCpu->cpum.s.Guest.dr[6] = uDr6;
1128 pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR6;
1129 return VINF_SUCCESS; /* No need to recalc. */
1130}
1131
1132
1133VMMDECL(int) CPUMSetGuestDR7(PVMCPUCC pVCpu, uint64_t uDr7)
1134{
1135 pVCpu->cpum.s.Guest.dr[7] = uDr7;
1136 pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR7;
1137 return CPUMRecalcHyperDRx(pVCpu, 7);
1138}
1139
1140
1141VMMDECL(int) CPUMSetGuestDRx(PVMCPUCC pVCpu, uint32_t iReg, uint64_t Value)
1142{
1143 AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
1144 /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
1145 if (iReg == 4 || iReg == 5)
1146 iReg += 2;
1147 pVCpu->cpum.s.Guest.dr[iReg] = Value;
1148 return CPUMRecalcHyperDRx(pVCpu, iReg);
1149}
1150
1151
1152/**
1153 * Recalculates the hypervisor DRx register values based on current guest
1154 * registers and DBGF breakpoints, updating changed registers depending on the
1155 * context.
1156 *
1157 * This is called whenever a guest DRx register is modified (any context) and
1158 * when DBGF sets a hardware breakpoint (ring-3 only, rendezvous).
1159 *
1160 * In raw-mode context this function will reload any (hyper) DRx registers which
1161 * comes out with a different value. It may also have to save the host debug
1162 * registers if that haven't been done already. In this context though, we'll
1163 * be intercepting and emulating all DRx accesses, so the hypervisor DRx values
1164 * are only important when breakpoints are actually enabled.
1165 *
1166 * In ring-0 (HM) context DR0-3 will be relocated by us, while DR7 will be
1167 * reloaded by the HM code if it changes. Further more, we will only use the
1168 * combined register set when the VBox debugger is actually using hardware BPs,
1169 * when it isn't we'll keep the guest DR0-3 + (maybe) DR6 loaded (DR6 doesn't
1170 * concern us here).
1171 *
1172 * In ring-3 we won't be loading anything, so well calculate hypervisor values
1173 * all the time.
1174 *
1175 * @returns VINF_SUCCESS.
1176 * @param pVCpu The cross context virtual CPU structure.
1177 * @param iGstReg The guest debug register number that was modified.
1178 * UINT8_MAX if not guest register.
1179 */
1180VMMDECL(int) CPUMRecalcHyperDRx(PVMCPUCC pVCpu, uint8_t iGstReg)
1181{
1182 PVM pVM = pVCpu->CTX_SUFF(pVM);
1183#ifndef IN_RING0
1184 RT_NOREF_PV(iGstReg);
1185#endif
1186
1187 /*
1188 * Compare the DR7s first.
1189 *
1190 * We only care about the enabled flags. GD is virtualized when we
1191 * dispatch the #DB, we never enable it. The DBGF DR7 value is will
1192 * always have the LE and GE bits set, so no need to check and disable
1193 * stuff if they're cleared like we have to for the guest DR7.
1194 */
1195 RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu);
1196 /** @todo This isn't correct. BPs work without setting LE and GE under AMD-V. They are also documented as unsupported by P6+. */
1197 if (!(uGstDr7 & (X86_DR7_LE | X86_DR7_GE)))
1198 uGstDr7 = 0;
1199 else if (!(uGstDr7 & X86_DR7_LE))
1200 uGstDr7 &= ~X86_DR7_LE_ALL;
1201 else if (!(uGstDr7 & X86_DR7_GE))
1202 uGstDr7 &= ~X86_DR7_GE_ALL;
1203
1204 const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM);
1205 if ((uGstDr7 | uDbgfDr7) & X86_DR7_ENABLED_MASK)
1206 {
1207 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1208
1209 /*
1210 * Ok, something is enabled. Recalc each of the breakpoints, taking
1211 * the VM debugger ones of the guest ones. In raw-mode context we will
1212 * not allow breakpoints with values inside the hypervisor area.
1213 */
1214 RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_RA1_MASK;
1215
1216 /* bp 0 */
1217 RTGCUINTREG uNewDr0;
1218 if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0))
1219 {
1220 uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
1221 uNewDr0 = DBGFBpGetDR0(pVM);
1222 }
1223 else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0))
1224 {
1225 uNewDr0 = CPUMGetGuestDR0(pVCpu);
1226 uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
1227 }
1228 else
1229 uNewDr0 = 0;
1230
1231 /* bp 1 */
1232 RTGCUINTREG uNewDr1;
1233 if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1))
1234 {
1235 uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
1236 uNewDr1 = DBGFBpGetDR1(pVM);
1237 }
1238 else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1))
1239 {
1240 uNewDr1 = CPUMGetGuestDR1(pVCpu);
1241 uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
1242 }
1243 else
1244 uNewDr1 = 0;
1245
1246 /* bp 2 */
1247 RTGCUINTREG uNewDr2;
1248 if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2))
1249 {
1250 uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
1251 uNewDr2 = DBGFBpGetDR2(pVM);
1252 }
1253 else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2))
1254 {
1255 uNewDr2 = CPUMGetGuestDR2(pVCpu);
1256 uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
1257 }
1258 else
1259 uNewDr2 = 0;
1260
1261 /* bp 3 */
1262 RTGCUINTREG uNewDr3;
1263 if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3))
1264 {
1265 uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
1266 uNewDr3 = DBGFBpGetDR3(pVM);
1267 }
1268 else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3))
1269 {
1270 uNewDr3 = CPUMGetGuestDR3(pVCpu);
1271 uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
1272 }
1273 else
1274 uNewDr3 = 0;
1275
1276 /*
1277 * Apply the updates.
1278 */
1279 pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER;
1280 if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3])
1281 CPUMSetHyperDR3(pVCpu, uNewDr3);
1282 if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2])
1283 CPUMSetHyperDR2(pVCpu, uNewDr2);
1284 if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1])
1285 CPUMSetHyperDR1(pVCpu, uNewDr1);
1286 if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0])
1287 CPUMSetHyperDR0(pVCpu, uNewDr0);
1288 if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7])
1289 CPUMSetHyperDR7(pVCpu, uNewDr7);
1290 }
1291#ifdef IN_RING0
1292 else if (CPUMIsGuestDebugStateActive(pVCpu))
1293 {
1294 /*
1295 * Reload the register that was modified. Normally this won't happen
1296 * as we won't intercept DRx writes when not having the hyper debug
1297 * state loaded, but in case we do for some reason we'll simply deal
1298 * with it.
1299 */
1300 switch (iGstReg)
1301 {
1302 case 0: ASMSetDR0(CPUMGetGuestDR0(pVCpu)); break;
1303 case 1: ASMSetDR1(CPUMGetGuestDR1(pVCpu)); break;
1304 case 2: ASMSetDR2(CPUMGetGuestDR2(pVCpu)); break;
1305 case 3: ASMSetDR3(CPUMGetGuestDR3(pVCpu)); break;
1306 default:
1307 AssertReturn(iGstReg != UINT8_MAX, VERR_INTERNAL_ERROR_3);
1308 }
1309 }
1310#endif
1311 else
1312 {
1313 /*
1314 * No active debug state any more. In raw-mode this means we have to
1315 * make sure DR7 has everything disabled now, if we armed it already.
1316 * In ring-0 we might end up here when just single stepping.
1317 */
1318#ifdef IN_RING0
1319 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER)
1320 {
1321 if (pVCpu->cpum.s.Hyper.dr[0])
1322 ASMSetDR0(0);
1323 if (pVCpu->cpum.s.Hyper.dr[1])
1324 ASMSetDR1(0);
1325 if (pVCpu->cpum.s.Hyper.dr[2])
1326 ASMSetDR2(0);
1327 if (pVCpu->cpum.s.Hyper.dr[3])
1328 ASMSetDR3(0);
1329 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_DEBUG_REGS_HYPER;
1330 }
1331#endif
1332 pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER;
1333
1334 /* Clear all the registers. */
1335 pVCpu->cpum.s.Hyper.dr[7] = X86_DR7_RA1_MASK;
1336 pVCpu->cpum.s.Hyper.dr[3] = 0;
1337 pVCpu->cpum.s.Hyper.dr[2] = 0;
1338 pVCpu->cpum.s.Hyper.dr[1] = 0;
1339 pVCpu->cpum.s.Hyper.dr[0] = 0;
1340
1341 }
1342 Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n",
1343 pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1],
1344 pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6],
1345 pVCpu->cpum.s.Hyper.dr[7]));
1346
1347 return VINF_SUCCESS;
1348}
1349
1350
1351/**
1352 * Set the guest XCR0 register.
1353 *
1354 * Will load additional state if the FPU state is already loaded (in ring-0 &
1355 * raw-mode context).
1356 *
1357 * @returns VINF_SUCCESS on success, VERR_CPUM_RAISE_GP_0 on invalid input
1358 * value.
1359 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1360 * @param uNewValue The new value.
1361 * @thread EMT(pVCpu)
1362 */
1363VMM_INT_DECL(int) CPUMSetGuestXcr0(PVMCPUCC pVCpu, uint64_t uNewValue)
1364{
1365 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_XCRx);
1366 if ( (uNewValue & ~pVCpu->CTX_SUFF(pVM)->cpum.s.fXStateGuestMask) == 0
1367 /* The X87 bit cannot be cleared. */
1368 && (uNewValue & XSAVE_C_X87)
1369 /* AVX requires SSE. */
1370 && (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM
1371 /* AVX-512 requires YMM, SSE and all of its three components to be enabled. */
1372 && ( (uNewValue & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
1373 || (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
1374 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI) )
1375 )
1376 {
1377 pVCpu->cpum.s.Guest.aXcr[0] = uNewValue;
1378
1379 /* If more state components are enabled, we need to take care to load
1380 them if the FPU/SSE state is already loaded. May otherwise leak
1381 host state to the guest. */
1382 uint64_t fNewComponents = ~pVCpu->cpum.s.Guest.fXStateMask & uNewValue;
1383 if (fNewComponents)
1384 {
1385#ifdef IN_RING0
1386 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)
1387 {
1388 if (pVCpu->cpum.s.Guest.fXStateMask != 0)
1389 /* Adding more components. */
1390 ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), fNewComponents);
1391 else
1392 {
1393 /* We're switching from FXSAVE/FXRSTOR to XSAVE/XRSTOR. */
1394 pVCpu->cpum.s.Guest.fXStateMask |= XSAVE_C_X87 | XSAVE_C_SSE;
1395 if (uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE))
1396 ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE));
1397 }
1398 }
1399#endif
1400 pVCpu->cpum.s.Guest.fXStateMask |= uNewValue;
1401 }
1402 return VINF_SUCCESS;
1403 }
1404 return VERR_CPUM_RAISE_GP_0;
1405}
1406
1407
1408/**
1409 * Tests if the guest has No-Execute Page Protection Enabled (NXE).
1410 *
1411 * @returns true if in real mode, otherwise false.
1412 * @param pVCpu The cross context virtual CPU structure.
1413 */
1414VMMDECL(bool) CPUMIsGuestNXEnabled(PCVMCPU pVCpu)
1415{
1416 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
1417 return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE);
1418}
1419
1420
1421/**
1422 * Tests if the guest has the Page Size Extension enabled (PSE).
1423 *
1424 * @returns true if in real mode, otherwise false.
1425 * @param pVCpu The cross context virtual CPU structure.
1426 */
1427VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PCVMCPU pVCpu)
1428{
1429 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
1430 /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */
1431 return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE));
1432}
1433
1434
1435/**
1436 * Tests if the guest has the paging enabled (PG).
1437 *
1438 * @returns true if in real mode, otherwise false.
1439 * @param pVCpu The cross context virtual CPU structure.
1440 */
1441VMMDECL(bool) CPUMIsGuestPagingEnabled(PCVMCPU pVCpu)
1442{
1443 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
1444 return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG);
1445}
1446
1447
1448/**
1449 * Tests if the guest has the paging enabled (PG).
1450 *
1451 * @returns true if in real mode, otherwise false.
1452 * @param pVCpu The cross context virtual CPU structure.
1453 */
1454VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PCVMCPU pVCpu)
1455{
1456 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
1457 return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP);
1458}
1459
1460
1461/**
1462 * Tests if the guest is running in real mode or not.
1463 *
1464 * @returns true if in real mode, otherwise false.
1465 * @param pVCpu The cross context virtual CPU structure.
1466 */
1467VMMDECL(bool) CPUMIsGuestInRealMode(PCVMCPU pVCpu)
1468{
1469 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
1470 return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
1471}
1472
1473
1474/**
1475 * Tests if the guest is running in real or virtual 8086 mode.
1476 *
1477 * @returns @c true if it is, @c false if not.
1478 * @param pVCpu The cross context virtual CPU structure.
1479 */
1480VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PCVMCPU pVCpu)
1481{
1482 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS);
1483 return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
1484 || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */
1485}
1486
1487
1488/**
1489 * Tests if the guest is running in protected or not.
1490 *
1491 * @returns true if in protected mode, otherwise false.
1492 * @param pVCpu The cross context virtual CPU structure.
1493 */
1494VMMDECL(bool) CPUMIsGuestInProtectedMode(PCVMCPU pVCpu)
1495{
1496 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
1497 return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
1498}
1499
1500
1501/**
1502 * Tests if the guest is running in paged protected or not.
1503 *
1504 * @returns true if in paged protected mode, otherwise false.
1505 * @param pVCpu The cross context virtual CPU structure.
1506 */
1507VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PCVMCPU pVCpu)
1508{
1509 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
1510 return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG);
1511}
1512
1513
1514/**
1515 * Tests if the guest is running in long mode or not.
1516 *
1517 * @returns true if in long mode, otherwise false.
1518 * @param pVCpu The cross context virtual CPU structure.
1519 */
1520VMMDECL(bool) CPUMIsGuestInLongMode(PCVMCPU pVCpu)
1521{
1522 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
1523 return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA;
1524}
1525
1526
1527/**
1528 * Tests if the guest is running in PAE mode or not.
1529 *
1530 * @returns true if in PAE mode, otherwise false.
1531 * @param pVCpu The cross context virtual CPU structure.
1532 */
1533VMMDECL(bool) CPUMIsGuestInPAEMode(PCVMCPU pVCpu)
1534{
1535 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
1536 /* Intel mentions EFER.LMA and EFER.LME in different parts of their spec. We shall use EFER.LMA rather
1537 than EFER.LME as it reflects if the CPU has entered paging with EFER.LME set. */
1538 return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE)
1539 && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG)
1540 && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA);
1541}
1542
1543
1544/**
1545 * Tests if the guest is running in 64 bits mode or not.
1546 *
1547 * @returns true if in 64 bits protected mode, otherwise false.
1548 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1549 */
1550VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu)
1551{
1552 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
1553 if (!CPUMIsGuestInLongMode(pVCpu))
1554 return false;
1555 CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
1556 return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long;
1557}
1558
1559
1560/**
1561 * Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS
1562 * registers.
1563 *
1564 * @returns true if in 64 bits protected mode, otherwise false.
1565 * @param pCtx Pointer to the current guest CPU context.
1566 */
1567VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx)
1568{
1569 return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx));
1570}
1571
1572
1573/**
1574 * Sets the specified changed flags (CPUM_CHANGED_*).
1575 *
1576 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1577 * @param fChangedAdd The changed flags to add.
1578 */
1579VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedAdd)
1580{
1581 pVCpu->cpum.s.fChanged |= fChangedAdd;
1582}
1583
1584
1585/**
1586 * Checks if the CPU supports the XSAVE and XRSTOR instruction.
1587 *
1588 * @returns true if supported.
1589 * @returns false if not supported.
1590 * @param pVM The cross context VM structure.
1591 */
1592VMMDECL(bool) CPUMSupportsXSave(PVM pVM)
1593{
1594 return pVM->cpum.s.HostFeatures.fXSaveRstor != 0;
1595}
1596
1597
1598/**
1599 * Checks if the host OS uses the SYSENTER / SYSEXIT instructions.
1600 * @returns true if used.
1601 * @returns false if not used.
1602 * @param pVM The cross context VM structure.
1603 */
1604VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM)
1605{
1606 return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER);
1607}
1608
1609
1610/**
1611 * Checks if the host OS uses the SYSCALL / SYSRET instructions.
1612 * @returns true if used.
1613 * @returns false if not used.
1614 * @param pVM The cross context VM structure.
1615 */
1616VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM)
1617{
1618 return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL);
1619}
1620
1621
1622/**
1623 * Checks if we activated the FPU/XMM state of the guest OS.
1624 *
1625 * Obsolete: This differs from CPUMIsGuestFPUStateLoaded() in that it refers to
1626 * the next time we'll be executing guest code, so it may return true for
1627 * 64-on-32 when we still haven't actually loaded the FPU status, just scheduled
1628 * it to be loaded the next time we go thru the world switcher
1629 * (CPUM_SYNC_FPU_STATE).
1630 *
1631 * @returns true / false.
1632 * @param pVCpu The cross context virtual CPU structure.
1633 */
1634VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu)
1635{
1636 bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
1637 AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet));
1638 return fRet;
1639}
1640
1641
1642/**
1643 * Checks if we've really loaded the FPU/XMM state of the guest OS.
1644 *
1645 * @returns true / false.
1646 * @param pVCpu The cross context virtual CPU structure.
1647 */
1648VMMDECL(bool) CPUMIsGuestFPUStateLoaded(PVMCPU pVCpu)
1649{
1650 bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
1651 AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet));
1652 return fRet;
1653}
1654
1655
1656/**
1657 * Checks if we saved the FPU/XMM state of the host OS.
1658 *
1659 * @returns true / false.
1660 * @param pVCpu The cross context virtual CPU structure.
1661 */
1662VMMDECL(bool) CPUMIsHostFPUStateSaved(PVMCPU pVCpu)
1663{
1664 return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST);
1665}
1666
1667
1668/**
1669 * Checks if the guest debug state is active.
1670 *
1671 * @returns boolean
1672 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1673 */
1674VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu)
1675{
1676 return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST);
1677}
1678
1679
1680/**
1681 * Checks if the hyper debug state is active.
1682 *
1683 * @returns boolean
1684 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1685 */
1686VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu)
1687{
1688 return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER);
1689}
1690
1691
1692/**
1693 * Mark the guest's debug state as inactive.
1694 *
1695 * @returns boolean
1696 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1697 * @todo This API doesn't make sense any more.
1698 */
1699VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu)
1700{
1701 Assert(!(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HOST)));
1702 NOREF(pVCpu);
1703}
1704
1705
1706/**
1707 * Get the current privilege level of the guest.
1708 *
1709 * @returns CPL
1710 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1711 */
1712VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu)
1713{
1714 /*
1715 * CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not.
1716 *
1717 * Note! We used to check CS.DPL here, assuming it was always equal to
1718 * CPL even if a conforming segment was loaded. But this turned out to
1719 * only apply to older AMD-V. With VT-x we had an ACP2 regression
1720 * during install after a far call to ring 2 with VT-x. Then on newer
1721 * AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl
1722 * as well as ss.Attr.n.u2Dpl to make this (and other) code work right.
1723 *
1724 * So, forget CS.DPL, always use SS.DPL.
1725 *
1726 * Note! The SS RPL is always equal to the CPL, while the CS RPL
1727 * isn't necessarily equal if the segment is conforming.
1728 * See section 4.11.1 in the AMD manual.
1729 *
1730 * Update: Where the heck does it say CS.RPL can differ from CPL other than
1731 * right after real->prot mode switch and when in V8086 mode? That
1732 * section says the RPL specified in a direct transfere (call, jmp,
1733 * ret) is not the one loaded into CS. Besides, if CS.RPL != CPL
1734 * it would be impossible for an exception handle or the iret
1735 * instruction to figure out whether SS:ESP are part of the frame
1736 * or not. VBox or qemu bug must've lead to this misconception.
1737 *
1738 * Update2: On an AMD bulldozer system here, I've no trouble loading a null
1739 * selector into SS with an RPL other than the CPL when CPL != 3 and
1740 * we're in 64-bit mode. The intel dev box doesn't allow this, on
1741 * RPL = CPL. Weird.
1742 */
1743 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
1744 uint32_t uCpl;
1745 if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
1746 {
1747 if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
1748 {
1749 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss))
1750 uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl;
1751 else
1752 uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL);
1753 }
1754 else
1755 uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */
1756 }
1757 else
1758 uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */
1759 return uCpl;
1760}
1761
1762
1763/**
1764 * Gets the current guest CPU mode.
1765 *
1766 * If paging mode is what you need, check out PGMGetGuestMode().
1767 *
1768 * @returns The CPU mode.
1769 * @param pVCpu The cross context virtual CPU structure.
1770 */
1771VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu)
1772{
1773 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
1774 CPUMMODE enmMode;
1775 if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
1776 enmMode = CPUMMODE_REAL;
1777 else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
1778 enmMode = CPUMMODE_PROTECTED;
1779 else
1780 enmMode = CPUMMODE_LONG;
1781
1782 return enmMode;
1783}
1784
1785
1786/**
1787 * Figure whether the CPU is currently executing 16, 32 or 64 bit code.
1788 *
1789 * @returns 16, 32 or 64.
1790 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1791 */
1792VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu)
1793{
1794 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
1795
1796 if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
1797 return 16;
1798
1799 if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
1800 {
1801 Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
1802 return 16;
1803 }
1804
1805 CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
1806 if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
1807 && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
1808 return 64;
1809
1810 if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
1811 return 32;
1812
1813 return 16;
1814}
1815
1816
1817VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu)
1818{
1819 CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
1820
1821 if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
1822 return DISCPUMODE_16BIT;
1823
1824 if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
1825 {
1826 Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
1827 return DISCPUMODE_16BIT;
1828 }
1829
1830 CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
1831 if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
1832 && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
1833 return DISCPUMODE_64BIT;
1834
1835 if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
1836 return DISCPUMODE_32BIT;
1837
1838 return DISCPUMODE_16BIT;
1839}
1840
1841
1842/**
1843 * Gets the guest MXCSR_MASK value.
1844 *
1845 * This does not access the x87 state, but the value we determined at VM
1846 * initialization.
1847 *
1848 * @returns MXCSR mask.
1849 * @param pVM The cross context VM structure.
1850 */
1851VMMDECL(uint32_t) CPUMGetGuestMxCsrMask(PVM pVM)
1852{
1853 return pVM->cpum.s.GuestInfo.fMxCsrMask;
1854}
1855
1856
1857/**
1858 * Returns whether the guest has physical interrupts enabled.
1859 *
1860 * @returns @c true if interrupts are enabled, @c false otherwise.
1861 * @param pVCpu The cross context virtual CPU structure.
1862 *
1863 * @remarks Warning! This function does -not- take into account the global-interrupt
1864 * flag (GIF).
1865 */
1866VMM_INT_DECL(bool) CPUMIsGuestPhysIntrEnabled(PVMCPU pVCpu)
1867{
1868 if (!CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest))
1869 {
1870 uint32_t const fEFlags = pVCpu->cpum.s.Guest.eflags.u;
1871 return RT_BOOL(fEFlags & X86_EFL_IF);
1872 }
1873
1874 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest))
1875 return CPUMIsGuestVmxPhysIntrEnabled(&pVCpu->cpum.s.Guest);
1876
1877 Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.s.Guest));
1878 return CPUMIsGuestSvmPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
1879}
1880
1881
1882/**
1883 * Returns whether the nested-guest has virtual interrupts enabled.
1884 *
1885 * @returns @c true if interrupts are enabled, @c false otherwise.
1886 * @param pVCpu The cross context virtual CPU structure.
1887 *
1888 * @remarks Warning! This function does -not- take into account the global-interrupt
1889 * flag (GIF).
1890 */
1891VMM_INT_DECL(bool) CPUMIsGuestVirtIntrEnabled(PVMCPU pVCpu)
1892{
1893 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1894 Assert(CPUMIsGuestInNestedHwvirtMode(pCtx));
1895
1896 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1897 return CPUMIsGuestVmxVirtIntrEnabled(pCtx);
1898
1899 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
1900 return CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
1901}
1902
1903
1904/**
1905 * Calculates the interruptiblity of the guest.
1906 *
1907 * @returns Interruptibility level.
1908 * @param pVCpu The cross context virtual CPU structure.
1909 */
1910VMM_INT_DECL(CPUMINTERRUPTIBILITY) CPUMGetGuestInterruptibility(PVMCPU pVCpu)
1911{
1912#if 1
1913 /* Global-interrupt flag blocks pretty much everything we care about here. */
1914 if (CPUMGetGuestGif(&pVCpu->cpum.s.Guest))
1915 {
1916 /*
1917 * Physical interrupts are primarily blocked using EFLAGS. However, we cannot access
1918 * it directly here. If and how EFLAGS are used depends on the context (nested-guest
1919 * or raw-mode). Hence we use the function below which handles the details.
1920 */
1921 if ( CPUMIsGuestPhysIntrEnabled(pVCpu)
1922 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS))
1923 {
1924 if ( !CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest)
1925 || CPUMIsGuestVirtIntrEnabled(pVCpu))
1926 return CPUMINTERRUPTIBILITY_UNRESTRAINED;
1927
1928 /* Physical interrupts are enabled, but nested-guest virtual interrupts are disabled. */
1929 return CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED;
1930 }
1931
1932 /*
1933 * Blocking the delivery of NMIs during an interrupt shadow is CPU implementation
1934 * specific. Therefore, in practice, we can't deliver an NMI in an interrupt shadow.
1935 * However, there is some uncertainity regarding the converse, i.e. whether
1936 * NMI-blocking until IRET blocks delivery of physical interrupts.
1937 *
1938 * See Intel spec. 25.4.1 "Event Blocking".
1939 */
1940 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1941 return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
1942
1943 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1944 return CPUMINTERRUPTIBILITY_INT_INHIBITED;
1945
1946 return CPUMINTERRUPTIBILITY_INT_DISABLED;
1947 }
1948 return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
1949#else
1950 if (pVCpu->cpum.s.Guest.rflags.Bits.u1IF)
1951 {
1952 if (pVCpu->cpum.s.Guest.hwvirt.fGif)
1953 {
1954 if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS))
1955 return CPUMINTERRUPTIBILITY_UNRESTRAINED;
1956
1957 /** @todo does blocking NMIs mean interrupts are also inhibited? */
1958 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1959 {
1960 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1961 return CPUMINTERRUPTIBILITY_INT_INHIBITED;
1962 return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
1963 }
1964 AssertFailed();
1965 return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
1966 }
1967 return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
1968 }
1969 else
1970 {
1971 if (pVCpu->cpum.s.Guest.hwvirt.fGif)
1972 {
1973 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1974 return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
1975 return CPUMINTERRUPTIBILITY_INT_DISABLED;
1976 }
1977 return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
1978 }
1979#endif
1980}
1981
1982
1983/**
1984 * Gets whether the guest (or nested-guest) is currently blocking delivery of NMIs.
1985 *
1986 * @returns @c true if NMIs are blocked, @c false otherwise.
1987 * @param pVCpu The cross context virtual CPU structure.
1988 */
1989VMM_INT_DECL(bool) CPUMIsGuestNmiBlocking(PCVMCPU pVCpu)
1990{
1991 /*
1992 * Return the state of guest-NMI blocking in any of the following cases:
1993 * - We're not executing a nested-guest.
1994 * - We're executing an SVM nested-guest[1].
1995 * - We're executing a VMX nested-guest without virtual-NMIs enabled.
1996 *
1997 * [1] -- SVM does not support virtual-NMIs or virtual-NMI blocking.
1998 * SVM hypervisors must track NMI blocking themselves by intercepting
1999 * the IRET instruction after injection of an NMI.
2000 */
2001 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2002 if ( !CPUMIsGuestInNestedHwvirtMode(pCtx)
2003 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
2004 || !CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_VIRT_NMI))
2005 return VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
2006
2007 /*
2008 * Return the state of virtual-NMI blocking, if we are executing a
2009 * VMX nested-guest with virtual-NMIs enabled.
2010 */
2011 return CPUMIsGuestVmxVirtNmiBlocking(pCtx);
2012}
2013
2014
2015/**
2016 * Sets blocking delivery of NMIs to the guest.
2017 *
2018 * @param pVCpu The cross context virtual CPU structure.
2019 * @param fBlock Whether NMIs are blocked or not.
2020 */
2021VMM_INT_DECL(void) CPUMSetGuestNmiBlocking(PVMCPU pVCpu, bool fBlock)
2022{
2023 /*
2024 * Set the state of guest-NMI blocking in any of the following cases:
2025 * - We're not executing a nested-guest.
2026 * - We're executing an SVM nested-guest[1].
2027 * - We're executing a VMX nested-guest without virtual-NMIs enabled.
2028 *
2029 * [1] -- SVM does not support virtual-NMIs or virtual-NMI blocking.
2030 * SVM hypervisors must track NMI blocking themselves by intercepting
2031 * the IRET instruction after injection of an NMI.
2032 */
2033 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2034 if ( !CPUMIsGuestInNestedHwvirtMode(pCtx)
2035 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
2036 || !CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_VIRT_NMI))
2037 {
2038 if (fBlock)
2039 {
2040 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
2041 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
2042 }
2043 else
2044 {
2045 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
2046 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
2047 }
2048 return;
2049 }
2050
2051 /*
2052 * Set the state of virtual-NMI blocking, if we are executing a
2053 * VMX nested-guest with virtual-NMIs enabled.
2054 */
2055 return CPUMSetGuestVmxVirtNmiBlocking(pCtx, fBlock);
2056}
2057
2058
2059/**
2060 * Checks whether the SVM nested-guest has physical interrupts enabled.
2061 *
2062 * @returns true if interrupts are enabled, false otherwise.
2063 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2064 * @param pCtx The guest-CPU context.
2065 *
2066 * @remarks This does -not- take into account the global-interrupt flag.
2067 */
2068VMM_INT_DECL(bool) CPUMIsGuestSvmPhysIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx)
2069{
2070 /** @todo Optimization: Avoid this function call and use a pointer to the
2071 * relevant eflags instead (setup during VMRUN instruction emulation). */
2072 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
2073
2074 X86EFLAGS fEFlags;
2075 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx))
2076 fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
2077 else
2078 fEFlags.u = pCtx->eflags.u;
2079
2080 return fEFlags.Bits.u1IF;
2081}
2082
2083
2084/**
2085 * Checks whether the SVM nested-guest is in a state to receive virtual (setup
2086 * for injection by VMRUN instruction) interrupts.
2087 *
2088 * @returns VBox status code.
2089 * @retval true if it's ready, false otherwise.
2090 *
2091 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2092 * @param pCtx The guest-CPU context.
2093 */
2094VMM_INT_DECL(bool) CPUMIsGuestSvmVirtIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx)
2095{
2096 RT_NOREF(pVCpu);
2097 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
2098
2099 PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
2100 PCSVMINTCTRL pVmcbIntCtrl = &pVmcbCtrl->IntCtrl;
2101 Assert(!pVmcbIntCtrl->n.u1VGifEnable); /* We don't support passing virtual-GIF feature to the guest yet. */
2102 if ( !pVmcbIntCtrl->n.u1IgnoreTPR
2103 && pVmcbIntCtrl->n.u4VIntrPrio <= pVmcbIntCtrl->n.u8VTPR)
2104 return false;
2105
2106 return RT_BOOL(pCtx->eflags.u & X86_EFL_IF);
2107}
2108
2109
2110/**
2111 * Gets the pending SVM nested-guest interruptvector.
2112 *
2113 * @returns The nested-guest interrupt to inject.
2114 * @param pCtx The guest-CPU context.
2115 */
2116VMM_INT_DECL(uint8_t) CPUMGetGuestSvmVirtIntrVector(PCCPUMCTX pCtx)
2117{
2118 PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
2119 return pVmcbCtrl->IntCtrl.n.u8VIntrVector;
2120}
2121
2122
2123/**
2124 * Restores the host-state from the host-state save area as part of a \#VMEXIT.
2125 *
2126 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2127 * @param pCtx The guest-CPU context.
2128 */
2129VMM_INT_DECL(void) CPUMSvmVmExitRestoreHostState(PVMCPUCC pVCpu, PCPUMCTX pCtx)
2130{
2131 /*
2132 * Reload the guest's "host state".
2133 */
2134 PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
2135 pCtx->es = pHostState->es;
2136 pCtx->cs = pHostState->cs;
2137 pCtx->ss = pHostState->ss;
2138 pCtx->ds = pHostState->ds;
2139 pCtx->gdtr = pHostState->gdtr;
2140 pCtx->idtr = pHostState->idtr;
2141 CPUMSetGuestEferMsrNoChecks(pVCpu, pCtx->msrEFER, pHostState->uEferMsr);
2142 CPUMSetGuestCR0(pVCpu, pHostState->uCr0 | X86_CR0_PE);
2143 pCtx->cr3 = pHostState->uCr3;
2144 CPUMSetGuestCR4(pVCpu, pHostState->uCr4);
2145 pCtx->rflags = pHostState->rflags;
2146 pCtx->rflags.Bits.u1VM = 0;
2147 pCtx->rip = pHostState->uRip;
2148 pCtx->rsp = pHostState->uRsp;
2149 pCtx->rax = pHostState->uRax;
2150 pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2151 pCtx->dr[7] |= X86_DR7_RA1_MASK;
2152 Assert(pCtx->ss.Attr.n.u2Dpl == 0);
2153
2154 /** @todo if RIP is not canonical or outside the CS segment limit, we need to
2155 * raise \#GP(0) in the guest. */
2156
2157 /** @todo check the loaded host-state for consistency. Figure out what
2158 * exactly this involves? */
2159}
2160
2161
2162/**
2163 * Saves the host-state to the host-state save area as part of a VMRUN.
2164 *
2165 * @param pCtx The guest-CPU context.
2166 * @param cbInstr The length of the VMRUN instruction in bytes.
2167 */
2168VMM_INT_DECL(void) CPUMSvmVmRunSaveHostState(PCPUMCTX pCtx, uint8_t cbInstr)
2169{
2170 PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
2171 pHostState->es = pCtx->es;
2172 pHostState->cs = pCtx->cs;
2173 pHostState->ss = pCtx->ss;
2174 pHostState->ds = pCtx->ds;
2175 pHostState->gdtr = pCtx->gdtr;
2176 pHostState->idtr = pCtx->idtr;
2177 pHostState->uEferMsr = pCtx->msrEFER;
2178 pHostState->uCr0 = pCtx->cr0;
2179 pHostState->uCr3 = pCtx->cr3;
2180 pHostState->uCr4 = pCtx->cr4;
2181 pHostState->rflags = pCtx->rflags;
2182 pHostState->uRip = pCtx->rip + cbInstr;
2183 pHostState->uRsp = pCtx->rsp;
2184 pHostState->uRax = pCtx->rax;
2185}
2186
2187
2188/**
2189 * Applies the TSC offset of a nested-guest if any and returns the TSC value for the
2190 * nested-guest.
2191 *
2192 * @returns The TSC offset after applying any nested-guest TSC offset.
2193 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2194 * @param uTscValue The guest TSC.
2195 *
2196 * @sa CPUMRemoveNestedGuestTscOffset.
2197 */
2198VMM_INT_DECL(uint64_t) CPUMApplyNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue)
2199{
2200 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2201 if (CPUMIsGuestInVmxNonRootMode(pCtx))
2202 {
2203 PCVMXVVMCS pVmcs = pCtx->hwvirt.vmx.CTX_SUFF(pVmcs);
2204 Assert(pVmcs);
2205 if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING))
2206 return uTscValue + pVmcs->u64TscOffset.u;
2207 return uTscValue;
2208 }
2209
2210 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2211 {
2212 uint64_t offTsc;
2213 if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc))
2214 {
2215 PCSVMVMCB pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2216 Assert(pVmcb);
2217 offTsc = pVmcb->ctrl.u64TSCOffset;
2218 }
2219 return uTscValue + offTsc;
2220 }
2221 return uTscValue;
2222}
2223
2224
2225/**
2226 * Removes the TSC offset of a nested-guest if any and returns the TSC value for the
2227 * guest.
2228 *
2229 * @returns The TSC offset after removing any nested-guest TSC offset.
2230 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2231 * @param uTscValue The nested-guest TSC.
2232 *
2233 * @sa CPUMApplyNestedGuestTscOffset.
2234 */
2235VMM_INT_DECL(uint64_t) CPUMRemoveNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue)
2236{
2237 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2238 if (CPUMIsGuestInVmxNonRootMode(pCtx))
2239 {
2240 if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING))
2241 {
2242 PCVMXVVMCS pVmcs = pCtx->hwvirt.vmx.CTX_SUFF(pVmcs);
2243 Assert(pVmcs);
2244 return uTscValue - pVmcs->u64TscOffset.u;
2245 }
2246 return uTscValue;
2247 }
2248
2249 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2250 {
2251 uint64_t offTsc;
2252 if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc))
2253 {
2254 PCSVMVMCB pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2255 Assert(pVmcb);
2256 offTsc = pVmcb->ctrl.u64TSCOffset;
2257 }
2258 return uTscValue - offTsc;
2259 }
2260 return uTscValue;
2261}
2262
2263
2264/**
2265 * Used to dynamically imports state residing in NEM or HM.
2266 *
2267 * This is a worker for the CPUM_IMPORT_EXTRN_RET() macro and various IEM ones.
2268 *
2269 * @returns VBox status code.
2270 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2271 * @param fExtrnImport The fields to import.
2272 * @thread EMT(pVCpu)
2273 */
2274VMM_INT_DECL(int) CPUMImportGuestStateOnDemand(PVMCPUCC pVCpu, uint64_t fExtrnImport)
2275{
2276 VMCPU_ASSERT_EMT(pVCpu);
2277 if (pVCpu->cpum.s.Guest.fExtrn & fExtrnImport)
2278 {
2279 switch (pVCpu->cpum.s.Guest.fExtrn & CPUMCTX_EXTRN_KEEPER_MASK)
2280 {
2281 case CPUMCTX_EXTRN_KEEPER_NEM:
2282 {
2283 int rc = NEMImportStateOnDemand(pVCpu, fExtrnImport);
2284 Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
2285 return rc;
2286 }
2287
2288 case CPUMCTX_EXTRN_KEEPER_HM:
2289 {
2290#ifdef IN_RING0
2291 int rc = HMR0ImportStateOnDemand(pVCpu, fExtrnImport);
2292 Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
2293 return rc;
2294#else
2295 AssertLogRelMsgFailed(("TODO Fetch HM state: %#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport));
2296 return VINF_SUCCESS;
2297#endif
2298 }
2299 default:
2300 AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2);
2301 }
2302 }
2303 return VINF_SUCCESS;
2304}
2305
2306
2307/**
2308 * Gets valid CR4 bits for the guest.
2309 *
2310 * @returns Valid CR4 bits.
2311 * @param pVM The cross context VM structure.
2312 */
2313VMM_INT_DECL(uint64_t) CPUMGetGuestCR4ValidMask(PVM pVM)
2314{
2315 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
2316 uint64_t fMask = X86_CR4_VME | X86_CR4_PVI
2317 | X86_CR4_TSD | X86_CR4_DE
2318 | X86_CR4_PSE | X86_CR4_PAE
2319 | X86_CR4_MCE | X86_CR4_PGE
2320 | X86_CR4_PCE
2321 | X86_CR4_OSXMMEEXCPT; /** @todo r=ramshankar: Introduced in Pentium III along with SSE. Check fSse here? */
2322 if (pGuestFeatures->fFxSaveRstor)
2323 fMask |= X86_CR4_OSFXSR;
2324 if (pGuestFeatures->fVmx)
2325 fMask |= X86_CR4_VMXE;
2326 if (pGuestFeatures->fXSaveRstor)
2327 fMask |= X86_CR4_OSXSAVE;
2328 if (pGuestFeatures->fPcid)
2329 fMask |= X86_CR4_PCIDE;
2330 if (pGuestFeatures->fFsGsBase)
2331 fMask |= X86_CR4_FSGSBASE;
2332 return fMask;
2333}
2334
2335
2336/**
2337 * Starts a VMX-preemption timer to expire as specified by the nested hypervisor.
2338 *
2339 * @returns VBox status code.
2340 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2341 * @param uTimer The VMCS preemption timer value.
2342 * @param cShift The VMX-preemption timer shift (usually based on guest
2343 * VMX MSR rate).
2344 * @param pu64EntryTick Where to store the current tick when the timer is
2345 * programmed.
2346 * @thread EMT(pVCpu)
2347 */
2348VMM_INT_DECL(int) CPUMStartGuestVmxPremptTimer(PVMCPUCC pVCpu, uint32_t uTimer, uint8_t cShift, uint64_t *pu64EntryTick)
2349{
2350 Assert(uTimer);
2351 Assert(cShift <= 31);
2352 Assert(pu64EntryTick);
2353 VMCPU_ASSERT_EMT(pVCpu);
2354 uint64_t const cTicksToNext = uTimer << cShift;
2355 return TMTimerSetRelative(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.s.hNestedVmxPreemptTimer, cTicksToNext, pu64EntryTick);
2356}
2357
2358
2359/**
2360 * Stops the VMX-preemption timer from firing.
2361 *
2362 * @returns VBox status code.
2363 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2364 * @thread EMT.
2365 *
2366 * @remarks This can be called during VM reset, so we cannot assume it will be on
2367 * the EMT corresponding to @c pVCpu.
2368 */
2369VMM_INT_DECL(int) CPUMStopGuestVmxPremptTimer(PVMCPUCC pVCpu)
2370{
2371 /*
2372 * CPUM gets initialized before TM, so we defer creation of timers till CPUMR3InitCompleted().
2373 * However, we still get called during CPUMR3Init() and hence we need to check if we have
2374 * a valid timer object before trying to stop it.
2375 */
2376 int rc;
2377 TMTIMERHANDLE hTimer = pVCpu->cpum.s.hNestedVmxPreemptTimer;
2378 if (hTimer != NIL_TMTIMERHANDLE)
2379 {
2380 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2381 rc = TMTimerLock(pVM, hTimer, VERR_IGNORED);
2382 if (rc == VINF_SUCCESS)
2383 {
2384 if (TMTimerIsActive(pVM, hTimer))
2385 TMTimerStop(pVM, hTimer);
2386 TMTimerUnlock(pVM, hTimer);
2387 }
2388 }
2389 else
2390 rc = VERR_NOT_FOUND;
2391 return rc;
2392}
2393
2394
2395/**
2396 * Gets the read and write permission bits for an MSR in an MSR bitmap.
2397 *
2398 * @returns VMXMSRPM_XXX - the MSR permission.
2399 * @param pvMsrBitmap Pointer to the MSR bitmap.
2400 * @param idMsr The MSR to get permissions for.
2401 *
2402 * @sa hmR0VmxSetMsrPermission.
2403 */
2404VMM_INT_DECL(uint32_t) CPUMGetVmxMsrPermission(void const *pvMsrBitmap, uint32_t idMsr)
2405{
2406 AssertPtrReturn(pvMsrBitmap, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
2407
2408 uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
2409
2410 /*
2411 * MSR Layout:
2412 * Byte index MSR range Interpreted as
2413 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
2414 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
2415 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
2416 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
2417 *
2418 * A bit corresponding to an MSR within the above range causes a VM-exit
2419 * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
2420 * the MSR range, it always cause a VM-exit.
2421 *
2422 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
2423 */
2424 uint32_t const offBitmapRead = 0;
2425 uint32_t const offBitmapWrite = 0x800;
2426 uint32_t offMsr;
2427 uint32_t iBit;
2428 if (idMsr <= UINT32_C(0x00001fff))
2429 {
2430 offMsr = 0;
2431 iBit = idMsr;
2432 }
2433 else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
2434 {
2435 offMsr = 0x400;
2436 iBit = idMsr - UINT32_C(0xc0000000);
2437 }
2438 else
2439 {
2440 LogFunc(("Warning! Out of range MSR %#RX32\n", idMsr));
2441 return VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR;
2442 }
2443
2444 /*
2445 * Get the MSR read permissions.
2446 */
2447 uint32_t fRet;
2448 uint32_t const offMsrRead = offBitmapRead + offMsr;
2449 Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
2450 if (ASMBitTest(pbMsrBitmap + offMsrRead, iBit))
2451 fRet = VMXMSRPM_EXIT_RD;
2452 else
2453 fRet = VMXMSRPM_ALLOW_RD;
2454
2455 /*
2456 * Get the MSR write permissions.
2457 */
2458 uint32_t const offMsrWrite = offBitmapWrite + offMsr;
2459 Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
2460 if (ASMBitTest(pbMsrBitmap + offMsrWrite, iBit))
2461 fRet |= VMXMSRPM_EXIT_WR;
2462 else
2463 fRet |= VMXMSRPM_ALLOW_WR;
2464
2465 Assert(VMXMSRPM_IS_FLAG_VALID(fRet));
2466 return fRet;
2467}
2468
2469
2470/**
2471 * Checks the permission bits for the specified I/O port from the given I/O bitmap
2472 * to see if causes a VM-exit.
2473 *
2474 * @returns @c true if the I/O port access must cause a VM-exit, @c false otherwise.
2475 * @param pvIoBitmap Pointer to I/O bitmap.
2476 * @param uPort The I/O port being accessed.
2477 * @param cbAccess e size of the I/O access in bytes (1, 2 or 4 bytes).
2478 */
2479static bool cpumGetVmxIoBitmapPermission(void const *pvIoBitmap, uint16_t uPort, uint8_t cbAccess)
2480{
2481 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
2482
2483 /*
2484 * If the I/O port access wraps around the 16-bit port I/O space, we must cause a
2485 * VM-exit.
2486 *
2487 * Reading 1, 2, 4 bytes at ports 0xffff, 0xfffe and 0xfffc are valid and do not
2488 * constitute a wrap around. However, reading 2 bytes at port 0xffff or 4 bytes
2489 * from port 0xffff/0xfffe/0xfffd constitute a wrap around. In other words, any
2490 * access to -both- ports 0xffff and port 0 is a wrap around.
2491 *
2492 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
2493 */
2494 uint32_t const uPortLast = uPort + cbAccess;
2495 if (uPortLast > 0x10000)
2496 return true;
2497
2498 /*
2499 * If any bit corresponding to the I/O access is set, we must cause a VM-exit.
2500 */
2501 uint8_t const *pbIoBitmap = (uint8_t const *)pvIoBitmap;
2502 uint16_t const offPerm = uPort >> 3; /* Byte offset of the port. */
2503 uint16_t const idxPermBit = uPort - (offPerm << 3); /* Bit offset within byte. */
2504 Assert(idxPermBit < 8);
2505 static const uint8_t s_afMask[] = { 0x0, 0x1, 0x3, 0x7, 0xf }; /* Bit-mask for all access sizes. */
2506 uint16_t const fMask = s_afMask[cbAccess] << idxPermBit; /* Bit-mask of the access. */
2507
2508 /* Fetch 8 or 16-bits depending on whether the access spans 8-bit boundary. */
2509 RTUINT16U uPerm;
2510 uPerm.s.Lo = *(pbIoBitmap + offPerm);
2511 if (idxPermBit + cbAccess > 8)
2512 uPerm.s.Hi = *(pbIoBitmap + 1 + offPerm);
2513 else
2514 uPerm.s.Hi = 0;
2515
2516 /* If any bit for the access is 1, we must cause a VM-exit. */
2517 if (uPerm.u & fMask)
2518 return true;
2519
2520 return false;
2521}
2522
2523
2524/**
2525 * Returns whether the given VMCS field is valid and supported for the guest.
2526 *
2527 * @param pVM The cross context VM structure.
2528 * @param u64VmcsField The VMCS field.
2529 *
2530 * @remarks This takes into account the CPU features exposed to the guest.
2531 */
2532VMM_INT_DECL(bool) CPUMIsGuestVmxVmcsFieldValid(PVMCC pVM, uint64_t u64VmcsField)
2533{
2534 uint32_t const uFieldEncHi = RT_HI_U32(u64VmcsField);
2535 uint32_t const uFieldEncLo = RT_LO_U32(u64VmcsField);
2536 if (!uFieldEncHi)
2537 { /* likely */ }
2538 else
2539 return false;
2540
2541 PCCPUMFEATURES pFeat = &pVM->cpum.s.GuestFeatures;
2542 switch (uFieldEncLo)
2543 {
2544 /*
2545 * 16-bit fields.
2546 */
2547 /* Control fields. */
2548 case VMX_VMCS16_VPID: return pFeat->fVmxVpid;
2549 case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt;
2550 case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe;
2551
2552 /* Guest-state fields. */
2553 case VMX_VMCS16_GUEST_ES_SEL:
2554 case VMX_VMCS16_GUEST_CS_SEL:
2555 case VMX_VMCS16_GUEST_SS_SEL:
2556 case VMX_VMCS16_GUEST_DS_SEL:
2557 case VMX_VMCS16_GUEST_FS_SEL:
2558 case VMX_VMCS16_GUEST_GS_SEL:
2559 case VMX_VMCS16_GUEST_LDTR_SEL:
2560 case VMX_VMCS16_GUEST_TR_SEL: return true;
2561 case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery;
2562 case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml;
2563
2564 /* Host-state fields. */
2565 case VMX_VMCS16_HOST_ES_SEL:
2566 case VMX_VMCS16_HOST_CS_SEL:
2567 case VMX_VMCS16_HOST_SS_SEL:
2568 case VMX_VMCS16_HOST_DS_SEL:
2569 case VMX_VMCS16_HOST_FS_SEL:
2570 case VMX_VMCS16_HOST_GS_SEL:
2571 case VMX_VMCS16_HOST_TR_SEL: return true;
2572
2573 /*
2574 * 64-bit fields.
2575 */
2576 /* Control fields. */
2577 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
2578 case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH:
2579 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
2580 case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps;
2581 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
2582 case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps;
2583 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
2584 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH:
2585 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
2586 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH:
2587 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
2588 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH:
2589 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
2590 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true;
2591 case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL:
2592 case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml;
2593 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
2594 case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true;
2595 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
2596 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow;
2597 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
2598 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess;
2599 case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL:
2600 case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt;
2601 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
2602 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc;
2603 case VMX_VMCS64_CTRL_EPTP_FULL:
2604 case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt;
2605 case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL:
2606 case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH:
2607 case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL:
2608 case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH:
2609 case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL:
2610 case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH:
2611 case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL:
2612 case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery;
2613 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
2614 case VMX_VMCS64_CTRL_EPTP_LIST_HIGH:
2615 {
2616 PCVMCPU pVCpu = pVM->CTX_SUFF(apCpus)[0];
2617 uint64_t const uVmFuncMsr = pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs.u64VmFunc;
2618 return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING));
2619 }
2620 case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL:
2621 case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH:
2622 case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL:
2623 case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing;
2624 case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL:
2625 case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe;
2626 case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL:
2627 case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors;
2628 case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL:
2629 case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH: return false;
2630 case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL:
2631 case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling;
2632
2633 /* Read-only data fields. */
2634 case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL:
2635 case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt;
2636
2637 /* Guest-state fields. */
2638 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
2639 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH:
2640 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
2641 case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true;
2642 case VMX_VMCS64_GUEST_PAT_FULL:
2643 case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr;
2644 case VMX_VMCS64_GUEST_EFER_FULL:
2645 case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr;
2646 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
2647 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH: return false;
2648 case VMX_VMCS64_GUEST_PDPTE0_FULL:
2649 case VMX_VMCS64_GUEST_PDPTE0_HIGH:
2650 case VMX_VMCS64_GUEST_PDPTE1_FULL:
2651 case VMX_VMCS64_GUEST_PDPTE1_HIGH:
2652 case VMX_VMCS64_GUEST_PDPTE2_FULL:
2653 case VMX_VMCS64_GUEST_PDPTE2_HIGH:
2654 case VMX_VMCS64_GUEST_PDPTE3_FULL:
2655 case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt;
2656 case VMX_VMCS64_GUEST_BNDCFGS_FULL:
2657 case VMX_VMCS64_GUEST_BNDCFGS_HIGH: return false;
2658
2659 /* Host-state fields. */
2660 case VMX_VMCS64_HOST_PAT_FULL:
2661 case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr;
2662 case VMX_VMCS64_HOST_EFER_FULL:
2663 case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr;
2664 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
2665 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH: return false;
2666
2667 /*
2668 * 32-bit fields.
2669 */
2670 /* Control fields. */
2671 case VMX_VMCS32_CTRL_PIN_EXEC:
2672 case VMX_VMCS32_CTRL_PROC_EXEC:
2673 case VMX_VMCS32_CTRL_EXCEPTION_BITMAP:
2674 case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK:
2675 case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH:
2676 case VMX_VMCS32_CTRL_CR3_TARGET_COUNT:
2677 case VMX_VMCS32_CTRL_EXIT:
2678 case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT:
2679 case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT:
2680 case VMX_VMCS32_CTRL_ENTRY:
2681 case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT:
2682 case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO:
2683 case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE:
2684 case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true;
2685 case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow;
2686 case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls;
2687 case VMX_VMCS32_CTRL_PLE_GAP:
2688 case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit;
2689
2690 /* Read-only data fields. */
2691 case VMX_VMCS32_RO_VM_INSTR_ERROR:
2692 case VMX_VMCS32_RO_EXIT_REASON:
2693 case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
2694 case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
2695 case VMX_VMCS32_RO_IDT_VECTORING_INFO:
2696 case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE:
2697 case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
2698 case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true;
2699
2700 /* Guest-state fields. */
2701 case VMX_VMCS32_GUEST_ES_LIMIT:
2702 case VMX_VMCS32_GUEST_CS_LIMIT:
2703 case VMX_VMCS32_GUEST_SS_LIMIT:
2704 case VMX_VMCS32_GUEST_DS_LIMIT:
2705 case VMX_VMCS32_GUEST_FS_LIMIT:
2706 case VMX_VMCS32_GUEST_GS_LIMIT:
2707 case VMX_VMCS32_GUEST_LDTR_LIMIT:
2708 case VMX_VMCS32_GUEST_TR_LIMIT:
2709 case VMX_VMCS32_GUEST_GDTR_LIMIT:
2710 case VMX_VMCS32_GUEST_IDTR_LIMIT:
2711 case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
2712 case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
2713 case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
2714 case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
2715 case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
2716 case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
2717 case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
2718 case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
2719 case VMX_VMCS32_GUEST_INT_STATE:
2720 case VMX_VMCS32_GUEST_ACTIVITY_STATE:
2721 case VMX_VMCS32_GUEST_SMBASE:
2722 case VMX_VMCS32_GUEST_SYSENTER_CS: return true;
2723 case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer;
2724
2725 /* Host-state fields. */
2726 case VMX_VMCS32_HOST_SYSENTER_CS: return true;
2727
2728 /*
2729 * Natural-width fields.
2730 */
2731 /* Control fields. */
2732 case VMX_VMCS_CTRL_CR0_MASK:
2733 case VMX_VMCS_CTRL_CR4_MASK:
2734 case VMX_VMCS_CTRL_CR0_READ_SHADOW:
2735 case VMX_VMCS_CTRL_CR4_READ_SHADOW:
2736 case VMX_VMCS_CTRL_CR3_TARGET_VAL0:
2737 case VMX_VMCS_CTRL_CR3_TARGET_VAL1:
2738 case VMX_VMCS_CTRL_CR3_TARGET_VAL2:
2739 case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true;
2740
2741 /* Read-only data fields. */
2742 case VMX_VMCS_RO_EXIT_QUALIFICATION:
2743 case VMX_VMCS_RO_IO_RCX:
2744 case VMX_VMCS_RO_IO_RSI:
2745 case VMX_VMCS_RO_IO_RDI:
2746 case VMX_VMCS_RO_IO_RIP:
2747 case VMX_VMCS_RO_GUEST_LINEAR_ADDR: return true;
2748
2749 /* Guest-state fields. */
2750 case VMX_VMCS_GUEST_CR0:
2751 case VMX_VMCS_GUEST_CR3:
2752 case VMX_VMCS_GUEST_CR4:
2753 case VMX_VMCS_GUEST_ES_BASE:
2754 case VMX_VMCS_GUEST_CS_BASE:
2755 case VMX_VMCS_GUEST_SS_BASE:
2756 case VMX_VMCS_GUEST_DS_BASE:
2757 case VMX_VMCS_GUEST_FS_BASE:
2758 case VMX_VMCS_GUEST_GS_BASE:
2759 case VMX_VMCS_GUEST_LDTR_BASE:
2760 case VMX_VMCS_GUEST_TR_BASE:
2761 case VMX_VMCS_GUEST_GDTR_BASE:
2762 case VMX_VMCS_GUEST_IDTR_BASE:
2763 case VMX_VMCS_GUEST_DR7:
2764 case VMX_VMCS_GUEST_RSP:
2765 case VMX_VMCS_GUEST_RIP:
2766 case VMX_VMCS_GUEST_RFLAGS:
2767 case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS:
2768 case VMX_VMCS_GUEST_SYSENTER_ESP:
2769 case VMX_VMCS_GUEST_SYSENTER_EIP: return true;
2770
2771 /* Host-state fields. */
2772 case VMX_VMCS_HOST_CR0:
2773 case VMX_VMCS_HOST_CR3:
2774 case VMX_VMCS_HOST_CR4:
2775 case VMX_VMCS_HOST_FS_BASE:
2776 case VMX_VMCS_HOST_GS_BASE:
2777 case VMX_VMCS_HOST_TR_BASE:
2778 case VMX_VMCS_HOST_GDTR_BASE:
2779 case VMX_VMCS_HOST_IDTR_BASE:
2780 case VMX_VMCS_HOST_SYSENTER_ESP:
2781 case VMX_VMCS_HOST_SYSENTER_EIP:
2782 case VMX_VMCS_HOST_RSP:
2783 case VMX_VMCS_HOST_RIP: return true;
2784 }
2785
2786 return false;
2787}
2788
2789
2790/**
2791 * Checks whether the given I/O access should cause a nested-guest VM-exit.
2792 *
2793 * @returns @c true if it causes a VM-exit, @c false otherwise.
2794 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2795 * @param u16Port The I/O port being accessed.
2796 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
2797 */
2798VMM_INT_DECL(bool) CPUMIsGuestVmxIoInterceptSet(PCVMCPU pVCpu, uint16_t u16Port, uint8_t cbAccess)
2799{
2800 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2801 if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_UNCOND_IO_EXIT))
2802 return true;
2803
2804 if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_IO_BITMAPS))
2805 {
2806 uint8_t const *pbIoBitmap = (uint8_t const *)pCtx->hwvirt.vmx.CTX_SUFF(pvIoBitmap);
2807 Assert(pbIoBitmap);
2808 return cpumGetVmxIoBitmapPermission(pbIoBitmap, u16Port, cbAccess);
2809 }
2810
2811 return false;
2812}
2813
2814
2815/**
2816 * Checks whether the Mov-to-CR3 instruction causes a nested-guest VM-exit.
2817 *
2818 * @returns @c true if it causes a VM-exit, @c false otherwise.
2819 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2820 * @param uNewCr3 The CR3 value being written.
2821 */
2822VMM_INT_DECL(bool) CPUMIsGuestVmxMovToCr3InterceptSet(PVMCPU pVCpu, uint64_t uNewCr3)
2823{
2824 /*
2825 * If the CR3-load exiting control is set and the new CR3 value does not
2826 * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
2827 *
2828 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
2829 */
2830 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2831 PCVMXVVMCS pVmcs = pCtx->hwvirt.vmx.CTX_SUFF(pVmcs);
2832 if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_CR3_LOAD_EXIT))
2833 {
2834 uint32_t const uCr3TargetCount = pVmcs->u32Cr3TargetCount;
2835 Assert(uCr3TargetCount <= VMX_V_CR3_TARGET_COUNT);
2836
2837 /* If the CR3-target count is 0, cause a VM-exit. */
2838 if (uCr3TargetCount == 0)
2839 return true;
2840
2841 /* If the CR3 being written doesn't match any of the target values, cause a VM-exit. */
2842 AssertCompile(VMX_V_CR3_TARGET_COUNT == 4);
2843 if ( uNewCr3 != pVmcs->u64Cr3Target0.u
2844 && uNewCr3 != pVmcs->u64Cr3Target1.u
2845 && uNewCr3 != pVmcs->u64Cr3Target2.u
2846 && uNewCr3 != pVmcs->u64Cr3Target3.u)
2847 return true;
2848 }
2849 return false;
2850}
2851
2852
2853/**
2854 * Checks whether a VMREAD or VMWRITE instruction for the given VMCS field causes a
2855 * VM-exit or not.
2856 *
2857 * @returns @c true if the VMREAD/VMWRITE is intercepted, @c false otherwise.
2858 * @param pVCpu The cross context virtual CPU structure.
2859 * @param uExitReason The VM-exit reason (VMX_EXIT_VMREAD or
2860 * VMX_EXIT_VMREAD).
2861 * @param u64VmcsField The VMCS field.
2862 */
2863VMM_INT_DECL(bool) CPUMIsGuestVmxVmreadVmwriteInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint64_t u64VmcsField)
2864{
2865 Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest));
2866 Assert( uExitReason == VMX_EXIT_VMREAD
2867 || uExitReason == VMX_EXIT_VMWRITE);
2868
2869 /*
2870 * Without VMCS shadowing, all VMREAD and VMWRITE instructions are intercepted.
2871 */
2872 if (!CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.s.Guest, VMX_PROC_CTLS2_VMCS_SHADOWING))
2873 return true;
2874
2875 /*
2876 * If any reserved bit in the 64-bit VMCS field encoding is set, the VMREAD/VMWRITE
2877 * is intercepted. This excludes any reserved bits in the valid parts of the field
2878 * encoding (i.e. bit 12).
2879 */
2880 if (u64VmcsField & VMX_VMCSFIELD_RSVD_MASK)
2881 return true;
2882
2883 /*
2884 * Finally, consult the VMREAD/VMWRITE bitmap whether to intercept the instruction or not.
2885 */
2886 uint32_t const u32VmcsField = RT_LO_U32(u64VmcsField);
2887 uint8_t const *pbBitmap = uExitReason == VMX_EXIT_VMREAD
2888 ? (uint8_t const *)pVCpu->cpum.s.Guest.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap)
2889 : (uint8_t const *)pVCpu->cpum.s.Guest.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap);
2890 Assert(pbBitmap);
2891 Assert(u32VmcsField >> 3 < VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2892 return ASMBitTest(pbBitmap + (u32VmcsField >> 3), u32VmcsField & 7);
2893}
2894
2895
2896
2897/**
2898 * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
2899 *
2900 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
2901 * @param u16Port The IO port being accessed.
2902 * @param enmIoType The type of IO access.
2903 * @param cbReg The IO operand size in bytes.
2904 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
2905 * @param iEffSeg The effective segment number.
2906 * @param fRep Whether this is a repeating IO instruction (REP prefix).
2907 * @param fStrIo Whether this is a string IO instruction.
2908 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO struct to be filled.
2909 * Optional, can be NULL.
2910 */
2911VMM_INT_DECL(bool) CPUMIsSvmIoInterceptSet(void *pvIoBitmap, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
2912 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo,
2913 PSVMIOIOEXITINFO pIoExitInfo)
2914{
2915 Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
2916 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
2917
2918 /*
2919 * The IOPM layout:
2920 * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or
2921 * two 4K pages.
2922 *
2923 * For IO instructions that access more than a single byte, the permission bits
2924 * for all bytes are checked; if any bit is set to 1, the IO access is intercepted.
2925 *
2926 * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes),
2927 * we need 3 extra bits beyond the second 4K page.
2928 */
2929 static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 };
2930
2931 uint16_t const offIopm = u16Port >> 3;
2932 uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7];
2933 uint8_t const cShift = u16Port - (offIopm << 3);
2934 uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift);
2935
2936 uint8_t const *pbIopm = (uint8_t *)pvIoBitmap;
2937 Assert(pbIopm);
2938 pbIopm += offIopm;
2939 uint16_t const u16Iopm = *(uint16_t *)pbIopm;
2940 if (u16Iopm & fIopmMask)
2941 {
2942 if (pIoExitInfo)
2943 {
2944 static const uint32_t s_auIoOpSize[] =
2945 { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 };
2946
2947 static const uint32_t s_auIoAddrSize[] =
2948 { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 };
2949
2950 pIoExitInfo->u = s_auIoOpSize[cbReg & 7];
2951 pIoExitInfo->u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7];
2952 pIoExitInfo->n.u1Str = fStrIo;
2953 pIoExitInfo->n.u1Rep = fRep;
2954 pIoExitInfo->n.u3Seg = iEffSeg & 7;
2955 pIoExitInfo->n.u1Type = enmIoType;
2956 pIoExitInfo->n.u16Port = u16Port;
2957 }
2958 return true;
2959 }
2960
2961 /** @todo remove later (for debugging as VirtualBox always traps all IO
2962 * intercepts). */
2963 AssertMsgFailed(("CPUMSvmIsIOInterceptActive: We expect an IO intercept here!\n"));
2964 return false;
2965}
2966
2967
2968/**
2969 * Gets the MSR permission bitmap byte and bit offset for the specified MSR.
2970 *
2971 * @returns VBox status code.
2972 * @param idMsr The MSR being requested.
2973 * @param pbOffMsrpm Where to store the byte offset in the MSR permission
2974 * bitmap for @a idMsr.
2975 * @param puMsrpmBit Where to store the bit offset starting at the byte
2976 * returned in @a pbOffMsrpm.
2977 */
2978VMM_INT_DECL(int) CPUMGetSvmMsrpmOffsetAndBit(uint32_t idMsr, uint16_t *pbOffMsrpm, uint8_t *puMsrpmBit)
2979{
2980 Assert(pbOffMsrpm);
2981 Assert(puMsrpmBit);
2982
2983 /*
2984 * MSRPM Layout:
2985 * Byte offset MSR range
2986 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
2987 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
2988 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
2989 * 0x1800 - 0x1fff Reserved
2990 *
2991 * Each MSR is represented by 2 permission bits (read and write).
2992 */
2993 if (idMsr <= 0x00001fff)
2994 {
2995 /* Pentium-compatible MSRs. */
2996 uint32_t const bitoffMsr = idMsr << 1;
2997 *pbOffMsrpm = bitoffMsr >> 3;
2998 *puMsrpmBit = bitoffMsr & 7;
2999 return VINF_SUCCESS;
3000 }
3001
3002 if ( idMsr >= 0xc0000000
3003 && idMsr <= 0xc0001fff)
3004 {
3005 /* AMD Sixth Generation x86 Processor MSRs. */
3006 uint32_t const bitoffMsr = (idMsr - 0xc0000000) << 1;
3007 *pbOffMsrpm = 0x800 + (bitoffMsr >> 3);
3008 *puMsrpmBit = bitoffMsr & 7;
3009 return VINF_SUCCESS;
3010 }
3011
3012 if ( idMsr >= 0xc0010000
3013 && idMsr <= 0xc0011fff)
3014 {
3015 /* AMD Seventh and Eighth Generation Processor MSRs. */
3016 uint32_t const bitoffMsr = (idMsr - 0xc0010000) << 1;
3017 *pbOffMsrpm = 0x1000 + (bitoffMsr >> 3);
3018 *puMsrpmBit = bitoffMsr & 7;
3019 return VINF_SUCCESS;
3020 }
3021
3022 *pbOffMsrpm = 0;
3023 *puMsrpmBit = 0;
3024 return VERR_OUT_OF_RANGE;
3025}
3026
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette