VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 54834

Last change on this file since 54834 was 54737, checked in by vboxsync, 10 years ago

VMM,REM: CPUID revamp - almost there now.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 141.8 KB
Line 
1/* $Id: EMAll.cpp 54737 2015-03-12 21:02:21Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2014 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_EM
22#include <VBox/vmm/em.h>
23#include <VBox/vmm/mm.h>
24#include <VBox/vmm/selm.h>
25#include <VBox/vmm/patm.h>
26#include <VBox/vmm/csam.h>
27#include <VBox/vmm/pgm.h>
28#ifdef VBOX_WITH_IEM
29# include <VBox/vmm/iem.h>
30#endif
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/stam.h>
33#include "EMInternal.h"
34#include <VBox/vmm/vm.h>
35#include <VBox/vmm/vmm.h>
36#include <VBox/vmm/hm.h>
37#include <VBox/vmm/tm.h>
38#include <VBox/vmm/pdmapi.h>
39#include <VBox/param.h>
40#include <VBox/err.h>
41#include <VBox/dis.h>
42#include <VBox/disopcode.h>
43#include <VBox/log.h>
44#include "internal/pgm.h"
45#include <iprt/assert.h>
46#include <iprt/asm.h>
47#include <iprt/string.h>
48
49#ifndef IN_RC
50#undef VBOX_WITH_IEM
51#endif
52#ifdef VBOX_WITH_IEM
53//# define VBOX_COMPARE_IEM_AND_EM /* debugging... */
54//# define VBOX_SAME_AS_EM
55//# define VBOX_COMPARE_IEM_LAST
56#endif
57
58#ifdef VBOX_WITH_RAW_RING1
59# define EM_EMULATE_SMSW
60#endif
61
62
63/*******************************************************************************
64* Defined Constants And Macros *
65*******************************************************************************/
66/** @def EM_ASSERT_FAULT_RETURN
67 * Safety check.
68 *
69 * Could in theory misfire on a cross page boundary access...
70 *
71 * Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
72 * turns up an alias page instead of the original faulting one and annoying the
73 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
74 */
75#if 0
76# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
77#else
78# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
79#endif
80
81
82/*******************************************************************************
83* Internal Functions *
84*******************************************************************************/
85#if !defined(VBOX_WITH_IEM) || defined(VBOX_COMPARE_IEM_AND_EM)
86DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPUOuter(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
87 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize);
88#endif
89
90
91/*******************************************************************************
92* Global Variables *
93*******************************************************************************/
94#ifdef VBOX_COMPARE_IEM_AND_EM
95static const uint32_t g_fInterestingFFs = VMCPU_FF_TO_R3
96 | VMCPU_FF_CSAM_PENDING_ACTION | VMCPU_FF_CSAM_SCAN_PAGE | VMCPU_FF_INHIBIT_INTERRUPTS
97 | VMCPU_FF_SELM_SYNC_LDT | VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_TSS | VMCPU_FF_TRPM_SYNC_IDT
98 | VMCPU_FF_TLB_FLUSH | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL;
99static uint32_t g_fIncomingFFs;
100static CPUMCTX g_IncomingCtx;
101static bool g_fIgnoreRaxRdx = false;
102
103static uint32_t g_fEmFFs;
104static CPUMCTX g_EmCtx;
105static uint8_t g_abEmWrote[256];
106static size_t g_cbEmWrote;
107
108static uint32_t g_fIemFFs;
109static CPUMCTX g_IemCtx;
110extern uint8_t g_abIemWrote[256];
111#if defined(VBOX_COMPARE_IEM_FIRST) || defined(VBOX_COMPARE_IEM_LAST)
112extern size_t g_cbIemWrote;
113#else
114static size_t g_cbIemWrote;
115#endif
116#endif
117
118
119/**
120 * Get the current execution manager status.
121 *
122 * @returns Current status.
123 * @param pVCpu Pointer to the VMCPU.
124 */
125VMM_INT_DECL(EMSTATE) EMGetState(PVMCPU pVCpu)
126{
127 return pVCpu->em.s.enmState;
128}
129
130/**
131 * Sets the current execution manager status. (use only when you know what you're doing!)
132 *
133 * @param pVCpu Pointer to the VMCPU.
134 */
135VMM_INT_DECL(void) EMSetState(PVMCPU pVCpu, EMSTATE enmNewState)
136{
137 /* Only allowed combination: */
138 Assert(pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI && enmNewState == EMSTATE_HALTED);
139 pVCpu->em.s.enmState = enmNewState;
140}
141
142
143/**
144 * Sets the PC for which interrupts should be inhibited.
145 *
146 * @param pVCpu Pointer to the VMCPU.
147 * @param PC The PC.
148 */
149VMMDECL(void) EMSetInhibitInterruptsPC(PVMCPU pVCpu, RTGCUINTPTR PC)
150{
151 pVCpu->em.s.GCPtrInhibitInterrupts = PC;
152 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
153}
154
155
156/**
157 * Gets the PC for which interrupts should be inhibited.
158 *
159 * There are a few instructions which inhibits or delays interrupts
160 * for the instruction following them. These instructions are:
161 * - STI
162 * - MOV SS, r/m16
163 * - POP SS
164 *
165 * @returns The PC for which interrupts should be inhibited.
166 * @param pVCpu Pointer to the VMCPU.
167 *
168 */
169VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVMCPU pVCpu)
170{
171 return pVCpu->em.s.GCPtrInhibitInterrupts;
172}
173
174
175/**
176 * Prepare an MWAIT - essentials of the MONITOR instruction.
177 *
178 * @returns VINF_SUCCESS
179 * @param pVCpu The current CPU.
180 * @param rax The content of RAX.
181 * @param rcx The content of RCX.
182 * @param rdx The content of RDX.
183 * @param GCPhys The physical address corresponding to rax.
184 */
185VMM_INT_DECL(int) EMMonitorWaitPrepare(PVMCPU pVCpu, uint64_t rax, uint64_t rcx, uint64_t rdx, RTGCPHYS GCPhys)
186{
187 pVCpu->em.s.MWait.uMonitorRAX = rax;
188 pVCpu->em.s.MWait.uMonitorRCX = rcx;
189 pVCpu->em.s.MWait.uMonitorRDX = rdx;
190 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_MONITOR_ACTIVE;
191 /** @todo Make use of GCPhys. */
192 NOREF(GCPhys);
193 /** @todo Complete MONITOR implementation. */
194 return VINF_SUCCESS;
195}
196
197
198/**
199 * Performs an MWAIT.
200 *
201 * @returns VINF_SUCCESS
202 * @param pVCpu The current CPU.
203 * @param rax The content of RAX.
204 * @param rcx The content of RCX.
205 */
206VMM_INT_DECL(int) EMMonitorWaitPerform(PVMCPU pVCpu, uint64_t rax, uint64_t rcx)
207{
208 pVCpu->em.s.MWait.uMWaitRAX = rax;
209 pVCpu->em.s.MWait.uMWaitRCX = rcx;
210 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_ACTIVE;
211 if (rcx)
212 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_BREAKIRQIF0;
213 else
214 pVCpu->em.s.MWait.fWait &= ~EMMWAIT_FLAG_BREAKIRQIF0;
215 /** @todo not completely correct?? */
216 return VINF_EM_HALT;
217}
218
219
220
221/**
222 * Determine if we should continue after encountering a mwait instruction.
223 *
224 * Clears MWAIT flags if returning @c true.
225 *
226 * @returns true if we should continue, false if we should halt.
227 * @param pVCpu Pointer to the VMCPU.
228 * @param pCtx Current CPU context.
229 */
230VMM_INT_DECL(bool) EMMonitorWaitShouldContinue(PVMCPU pVCpu, PCPUMCTX pCtx)
231{
232 if ( pCtx->eflags.Bits.u1IF
233 || ( (pVCpu->em.s.MWait.fWait & (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0))
234 == (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)) )
235 {
236 if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
237 {
238 pVCpu->em.s.MWait.fWait &= ~(EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0);
239 return true;
240 }
241 }
242
243 return false;
244}
245
246
247/**
248 * Determine if we should continue after encountering a hlt instruction.
249 *
250 * @returns true if we should continue, false if we should halt.
251 * @param pVCpu Pointer to the VMCPU.
252 * @param pCtx Current CPU context.
253 */
254VMM_INT_DECL(bool) EMShouldContinueAfterHalt(PVMCPU pVCpu, PCPUMCTX pCtx)
255{
256 if (pCtx->eflags.Bits.u1IF)
257 return !!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC));
258 return false;
259}
260
261
262/**
263 * Locks REM execution to a single VCPU.
264 *
265 * @param pVM Pointer to the VM.
266 */
267VMMDECL(void) EMRemLock(PVM pVM)
268{
269#ifdef VBOX_WITH_REM
270 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
271 return; /* early init */
272
273 Assert(!PGMIsLockOwner(pVM));
274 Assert(!IOMIsLockWriteOwner(pVM));
275 int rc = PDMCritSectEnter(&pVM->em.s.CritSectREM, VERR_SEM_BUSY);
276 AssertRCSuccess(rc);
277#endif
278}
279
280
281/**
282 * Unlocks REM execution
283 *
284 * @param pVM Pointer to the VM.
285 */
286VMMDECL(void) EMRemUnlock(PVM pVM)
287{
288#ifdef VBOX_WITH_REM
289 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
290 return; /* early init */
291
292 PDMCritSectLeave(&pVM->em.s.CritSectREM);
293#endif
294}
295
296
297/**
298 * Check if this VCPU currently owns the REM lock.
299 *
300 * @returns bool owner/not owner
301 * @param pVM Pointer to the VM.
302 */
303VMMDECL(bool) EMRemIsLockOwner(PVM pVM)
304{
305#ifdef VBOX_WITH_REM
306 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
307 return true; /* early init */
308
309 return PDMCritSectIsOwner(&pVM->em.s.CritSectREM);
310#else
311 return true;
312#endif
313}
314
315
316/**
317 * Try to acquire the REM lock.
318 *
319 * @returns VBox status code
320 * @param pVM Pointer to the VM.
321 */
322VMM_INT_DECL(int) EMRemTryLock(PVM pVM)
323{
324#ifdef VBOX_WITH_REM
325 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
326 return VINF_SUCCESS; /* early init */
327
328 return PDMCritSectTryEnter(&pVM->em.s.CritSectREM);
329#else
330 return VINF_SUCCESS;
331#endif
332}
333
334
335/**
336 * @callback_method_impl{FNDISREADBYTES}
337 */
338static DECLCALLBACK(int) emReadBytes(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
339{
340 PVMCPU pVCpu = (PVMCPU)pDis->pvUser;
341#if defined(IN_RC) || defined(IN_RING3)
342 PVM pVM = pVCpu->CTX_SUFF(pVM);
343#endif
344 RTUINTPTR uSrcAddr = pDis->uInstrAddr + offInstr;
345 int rc;
346
347 /*
348 * Figure how much we can or must read.
349 */
350 size_t cbToRead = PAGE_SIZE - (uSrcAddr & PAGE_OFFSET_MASK);
351 if (cbToRead > cbMaxRead)
352 cbToRead = cbMaxRead;
353 else if (cbToRead < cbMinRead)
354 cbToRead = cbMinRead;
355
356#if defined(VBOX_WITH_RAW_MODE) && (defined(IN_RC) || defined(IN_RING3))
357 /*
358 * We might be called upon to interpret an instruction in a patch.
359 */
360 if (PATMIsPatchGCAddr(pVCpu->CTX_SUFF(pVM), uSrcAddr))
361 {
362# ifdef IN_RC
363 memcpy(&pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
364# else
365 memcpy(&pDis->abInstr[offInstr], PATMR3GCPtrToHCPtr(pVCpu->CTX_SUFF(pVM), uSrcAddr), cbToRead);
366# endif
367 rc = VINF_SUCCESS;
368 }
369 else
370#endif
371 {
372# ifdef IN_RC
373 /*
374 * Try access it thru the shadow page tables first. Fall back on the
375 * slower PGM method if it fails because the TLB or page table was
376 * modified recently.
377 */
378 rc = MMGCRamRead(pVCpu->pVMRC, &pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
379 if (rc == VERR_ACCESS_DENIED && cbToRead > cbMinRead)
380 {
381 cbToRead = cbMinRead;
382 rc = MMGCRamRead(pVCpu->pVMRC, &pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
383 }
384 if (rc == VERR_ACCESS_DENIED)
385#endif
386 {
387 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pDis->abInstr[offInstr], uSrcAddr, cbToRead);
388 if (RT_FAILURE(rc))
389 {
390 if (cbToRead > cbMinRead)
391 {
392 cbToRead = cbMinRead;
393 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pDis->abInstr[offInstr], uSrcAddr, cbToRead);
394 }
395 if (RT_FAILURE(rc))
396 {
397#ifndef IN_RC
398 /*
399 * If we fail to find the page via the guest's page tables
400 * we invalidate the page in the host TLB (pertaining to
401 * the guest in the NestedPaging case). See @bugref{6043}.
402 */
403 if (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
404 {
405 HMInvalidatePage(pVCpu, uSrcAddr);
406 if (((uSrcAddr + cbToRead - 1) >> PAGE_SHIFT) != (uSrcAddr >> PAGE_SHIFT))
407 HMInvalidatePage(pVCpu, uSrcAddr + cbToRead - 1);
408 }
409#endif
410 }
411 }
412 }
413 }
414
415 pDis->cbCachedInstr = offInstr + (uint8_t)cbToRead;
416 return rc;
417}
418
419
420DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
421{
422 NOREF(pVM);
423 return DISInstrWithReader(InstrGC, (DISCPUMODE)pDis->uCpuMode, emReadBytes, pVCpu, pDis, pOpsize);
424}
425
426
427/**
428 * Disassembles the current instruction.
429 *
430 * @returns VBox status code, see SELMToFlatEx and EMInterpretDisasOneEx for
431 * details.
432 *
433 * @param pVM Pointer to the VM.
434 * @param pVCpu Pointer to the VMCPU.
435 * @param pDis Where to return the parsed instruction info.
436 * @param pcbInstr Where to return the instruction size. (optional)
437 */
438VMM_INT_DECL(int) EMInterpretDisasCurrent(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, unsigned *pcbInstr)
439{
440 PCPUMCTXCORE pCtxCore = CPUMCTX2CORE(CPUMQueryGuestCtxPtr(pVCpu));
441 RTGCPTR GCPtrInstr;
442#if 0
443 int rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
444#else
445/** @todo Get the CPU mode as well while we're at it! */
446 int rc = SELMValidateAndConvertCSAddr(pVCpu, pCtxCore->eflags, pCtxCore->ss.Sel, pCtxCore->cs.Sel, &pCtxCore->cs,
447 pCtxCore->rip, &GCPtrInstr);
448#endif
449 if (RT_FAILURE(rc))
450 {
451 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
452 pCtxCore->cs.Sel, (RTGCPTR)pCtxCore->rip, pCtxCore->ss.Sel & X86_SEL_RPL, rc));
453 return rc;
454 }
455 return EMInterpretDisasOneEx(pVM, pVCpu, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pDis, pcbInstr);
456}
457
458
459/**
460 * Disassembles one instruction.
461 *
462 * This is used by internally by the interpreter and by trap/access handlers.
463 *
464 * @returns VBox status code.
465 *
466 * @param pVM Pointer to the VM.
467 * @param pVCpu Pointer to the VMCPU.
468 * @param GCPtrInstr The flat address of the instruction.
469 * @param pCtxCore The context core (used to determine the cpu mode).
470 * @param pDis Where to return the parsed instruction info.
471 * @param pcbInstr Where to return the instruction size. (optional)
472 */
473VMM_INT_DECL(int) EMInterpretDisasOneEx(PVM pVM, PVMCPU pVCpu, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore,
474 PDISCPUSTATE pDis, unsigned *pcbInstr)
475{
476 NOREF(pVM);
477 Assert(pCtxCore == CPUMGetGuestCtxCore(pVCpu));
478 DISCPUMODE enmCpuMode = CPUMGetGuestDisMode(pVCpu);
479 /** @todo Deal with too long instruction (=> \#GP), opcode read errors (=>
480 * \#PF, \#GP, \#??), undefined opcodes (=> \#UD), and such. */
481 int rc = DISInstrWithReader(GCPtrInstr, enmCpuMode, emReadBytes, pVCpu, pDis, pcbInstr);
482 if (RT_SUCCESS(rc))
483 return VINF_SUCCESS;
484 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
485 return rc;
486}
487
488
489#if defined(VBOX_COMPARE_IEM_FIRST) || defined(VBOX_COMPARE_IEM_LAST)
490static void emCompareWithIem(PVMCPU pVCpu, PCCPUMCTX pEmCtx, PCCPUMCTX pIemCtx,
491 VBOXSTRICTRC rcEm, VBOXSTRICTRC rcIem,
492 uint32_t cbEm, uint32_t cbIem)
493{
494 /* Quick compare. */
495 if ( rcEm == rcIem
496 && cbEm == cbIem
497 && g_cbEmWrote == g_cbIemWrote
498 && memcmp(g_abIemWrote, g_abEmWrote, g_cbIemWrote) == 0
499 && memcmp(pIemCtx, pEmCtx, sizeof(*pIemCtx)) == 0
500 && (g_fEmFFs & g_fInterestingFFs) == (g_fIemFFs & g_fInterestingFFs)
501 )
502 return;
503
504 /* Report exact differences. */
505 RTLogPrintf("! EM and IEM differs at %04x:%08RGv !\n", g_IncomingCtx.cs.Sel, g_IncomingCtx.rip);
506 if (rcEm != rcIem)
507 RTLogPrintf(" * rcIem=%Rrc rcEm=%Rrc\n", VBOXSTRICTRC_VAL(rcIem), VBOXSTRICTRC_VAL(rcEm));
508 else if (cbEm != cbIem)
509 RTLogPrintf(" * cbIem=%#x cbEm=%#x\n", cbIem, cbEm);
510
511 if (RT_SUCCESS(rcEm) && RT_SUCCESS(rcIem))
512 {
513 if (g_cbIemWrote != g_cbEmWrote)
514 RTLogPrintf("!! g_cbIemWrote=%#x g_cbEmWrote=%#x\n", g_cbIemWrote, g_cbEmWrote);
515 else if (memcmp(g_abIemWrote, g_abEmWrote, g_cbIemWrote))
516 {
517 RTLogPrintf("!! IemWrote %.*Rhxs\n", RT_MIN(RT_MAX(1, g_cbIemWrote), 64), g_abIemWrote);
518 RTLogPrintf("!! EemWrote %.*Rhxs\n", RT_MIN(RT_MAX(1, g_cbIemWrote), 64), g_abIemWrote);
519 }
520
521 if ((g_fEmFFs & g_fInterestingFFs) != (g_fIemFFs & g_fInterestingFFs))
522 RTLogPrintf("!! g_fIemFFs=%#x g_fEmFFs=%#x (diff=%#x)\n", g_fIemFFs & g_fInterestingFFs,
523 g_fEmFFs & g_fInterestingFFs, (g_fIemFFs ^ g_fEmFFs) & g_fInterestingFFs);
524
525# define CHECK_FIELD(a_Field) \
526 do \
527 { \
528 if (pEmCtx->a_Field != pIemCtx->a_Field) \
529 { \
530 switch (sizeof(pEmCtx->a_Field)) \
531 { \
532 case 1: RTLogPrintf("!! %8s differs - iem=%02x - em=%02x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
533 case 2: RTLogPrintf("!! %8s differs - iem=%04x - em=%04x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
534 case 4: RTLogPrintf("!! %8s differs - iem=%08x - em=%08x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
535 case 8: RTLogPrintf("!! %8s differs - iem=%016llx - em=%016llx\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
536 default: RTLogPrintf("!! %8s differs\n", #a_Field); break; \
537 } \
538 cDiffs++; \
539 } \
540 } while (0)
541
542# define CHECK_BIT_FIELD(a_Field) \
543 do \
544 { \
545 if (pEmCtx->a_Field != pIemCtx->a_Field) \
546 { \
547 RTLogPrintf("!! %8s differs - iem=%02x - em=%02x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); \
548 cDiffs++; \
549 } \
550 } while (0)
551
552# define CHECK_SEL(a_Sel) \
553 do \
554 { \
555 CHECK_FIELD(a_Sel.Sel); \
556 CHECK_FIELD(a_Sel.Attr.u); \
557 CHECK_FIELD(a_Sel.u64Base); \
558 CHECK_FIELD(a_Sel.u32Limit); \
559 CHECK_FIELD(a_Sel.fFlags); \
560 } while (0)
561
562 unsigned cDiffs = 0;
563 if (memcmp(&pEmCtx->fpu, &pIemCtx->fpu, sizeof(pIemCtx->fpu)))
564 {
565 RTLogPrintf(" the FPU state differs\n");
566 cDiffs++;
567 CHECK_FIELD(fpu.FCW);
568 CHECK_FIELD(fpu.FSW);
569 CHECK_FIELD(fpu.FTW);
570 CHECK_FIELD(fpu.FOP);
571 CHECK_FIELD(fpu.FPUIP);
572 CHECK_FIELD(fpu.CS);
573 CHECK_FIELD(fpu.Rsrvd1);
574 CHECK_FIELD(fpu.FPUDP);
575 CHECK_FIELD(fpu.DS);
576 CHECK_FIELD(fpu.Rsrvd2);
577 CHECK_FIELD(fpu.MXCSR);
578 CHECK_FIELD(fpu.MXCSR_MASK);
579 CHECK_FIELD(fpu.aRegs[0].au64[0]); CHECK_FIELD(fpu.aRegs[0].au64[1]);
580 CHECK_FIELD(fpu.aRegs[1].au64[0]); CHECK_FIELD(fpu.aRegs[1].au64[1]);
581 CHECK_FIELD(fpu.aRegs[2].au64[0]); CHECK_FIELD(fpu.aRegs[2].au64[1]);
582 CHECK_FIELD(fpu.aRegs[3].au64[0]); CHECK_FIELD(fpu.aRegs[3].au64[1]);
583 CHECK_FIELD(fpu.aRegs[4].au64[0]); CHECK_FIELD(fpu.aRegs[4].au64[1]);
584 CHECK_FIELD(fpu.aRegs[5].au64[0]); CHECK_FIELD(fpu.aRegs[5].au64[1]);
585 CHECK_FIELD(fpu.aRegs[6].au64[0]); CHECK_FIELD(fpu.aRegs[6].au64[1]);
586 CHECK_FIELD(fpu.aRegs[7].au64[0]); CHECK_FIELD(fpu.aRegs[7].au64[1]);
587 CHECK_FIELD(fpu.aXMM[ 0].au64[0]); CHECK_FIELD(fpu.aXMM[ 0].au64[1]);
588 CHECK_FIELD(fpu.aXMM[ 1].au64[0]); CHECK_FIELD(fpu.aXMM[ 1].au64[1]);
589 CHECK_FIELD(fpu.aXMM[ 2].au64[0]); CHECK_FIELD(fpu.aXMM[ 2].au64[1]);
590 CHECK_FIELD(fpu.aXMM[ 3].au64[0]); CHECK_FIELD(fpu.aXMM[ 3].au64[1]);
591 CHECK_FIELD(fpu.aXMM[ 4].au64[0]); CHECK_FIELD(fpu.aXMM[ 4].au64[1]);
592 CHECK_FIELD(fpu.aXMM[ 5].au64[0]); CHECK_FIELD(fpu.aXMM[ 5].au64[1]);
593 CHECK_FIELD(fpu.aXMM[ 6].au64[0]); CHECK_FIELD(fpu.aXMM[ 6].au64[1]);
594 CHECK_FIELD(fpu.aXMM[ 7].au64[0]); CHECK_FIELD(fpu.aXMM[ 7].au64[1]);
595 CHECK_FIELD(fpu.aXMM[ 8].au64[0]); CHECK_FIELD(fpu.aXMM[ 8].au64[1]);
596 CHECK_FIELD(fpu.aXMM[ 9].au64[0]); CHECK_FIELD(fpu.aXMM[ 9].au64[1]);
597 CHECK_FIELD(fpu.aXMM[10].au64[0]); CHECK_FIELD(fpu.aXMM[10].au64[1]);
598 CHECK_FIELD(fpu.aXMM[11].au64[0]); CHECK_FIELD(fpu.aXMM[11].au64[1]);
599 CHECK_FIELD(fpu.aXMM[12].au64[0]); CHECK_FIELD(fpu.aXMM[12].au64[1]);
600 CHECK_FIELD(fpu.aXMM[13].au64[0]); CHECK_FIELD(fpu.aXMM[13].au64[1]);
601 CHECK_FIELD(fpu.aXMM[14].au64[0]); CHECK_FIELD(fpu.aXMM[14].au64[1]);
602 CHECK_FIELD(fpu.aXMM[15].au64[0]); CHECK_FIELD(fpu.aXMM[15].au64[1]);
603 for (unsigned i = 0; i < RT_ELEMENTS(pEmCtx->fpu.au32RsrvdRest); i++)
604 CHECK_FIELD(fpu.au32RsrvdRest[i]);
605 }
606 CHECK_FIELD(rip);
607 if (pEmCtx->rflags.u != pIemCtx->rflags.u)
608 {
609 RTLogPrintf("!! rflags differs - iem=%08llx em=%08llx\n", pIemCtx->rflags.u, pEmCtx->rflags.u);
610 CHECK_BIT_FIELD(rflags.Bits.u1CF);
611 CHECK_BIT_FIELD(rflags.Bits.u1Reserved0);
612 CHECK_BIT_FIELD(rflags.Bits.u1PF);
613 CHECK_BIT_FIELD(rflags.Bits.u1Reserved1);
614 CHECK_BIT_FIELD(rflags.Bits.u1AF);
615 CHECK_BIT_FIELD(rflags.Bits.u1Reserved2);
616 CHECK_BIT_FIELD(rflags.Bits.u1ZF);
617 CHECK_BIT_FIELD(rflags.Bits.u1SF);
618 CHECK_BIT_FIELD(rflags.Bits.u1TF);
619 CHECK_BIT_FIELD(rflags.Bits.u1IF);
620 CHECK_BIT_FIELD(rflags.Bits.u1DF);
621 CHECK_BIT_FIELD(rflags.Bits.u1OF);
622 CHECK_BIT_FIELD(rflags.Bits.u2IOPL);
623 CHECK_BIT_FIELD(rflags.Bits.u1NT);
624 CHECK_BIT_FIELD(rflags.Bits.u1Reserved3);
625 CHECK_BIT_FIELD(rflags.Bits.u1RF);
626 CHECK_BIT_FIELD(rflags.Bits.u1VM);
627 CHECK_BIT_FIELD(rflags.Bits.u1AC);
628 CHECK_BIT_FIELD(rflags.Bits.u1VIF);
629 CHECK_BIT_FIELD(rflags.Bits.u1VIP);
630 CHECK_BIT_FIELD(rflags.Bits.u1ID);
631 }
632
633 if (!g_fIgnoreRaxRdx)
634 CHECK_FIELD(rax);
635 CHECK_FIELD(rcx);
636 if (!g_fIgnoreRaxRdx)
637 CHECK_FIELD(rdx);
638 CHECK_FIELD(rbx);
639 CHECK_FIELD(rsp);
640 CHECK_FIELD(rbp);
641 CHECK_FIELD(rsi);
642 CHECK_FIELD(rdi);
643 CHECK_FIELD(r8);
644 CHECK_FIELD(r9);
645 CHECK_FIELD(r10);
646 CHECK_FIELD(r11);
647 CHECK_FIELD(r12);
648 CHECK_FIELD(r13);
649 CHECK_SEL(cs);
650 CHECK_SEL(ss);
651 CHECK_SEL(ds);
652 CHECK_SEL(es);
653 CHECK_SEL(fs);
654 CHECK_SEL(gs);
655 CHECK_FIELD(cr0);
656 CHECK_FIELD(cr2);
657 CHECK_FIELD(cr3);
658 CHECK_FIELD(cr4);
659 CHECK_FIELD(dr[0]);
660 CHECK_FIELD(dr[1]);
661 CHECK_FIELD(dr[2]);
662 CHECK_FIELD(dr[3]);
663 CHECK_FIELD(dr[6]);
664 CHECK_FIELD(dr[7]);
665 CHECK_FIELD(gdtr.cbGdt);
666 CHECK_FIELD(gdtr.pGdt);
667 CHECK_FIELD(idtr.cbIdt);
668 CHECK_FIELD(idtr.pIdt);
669 CHECK_SEL(ldtr);
670 CHECK_SEL(tr);
671 CHECK_FIELD(SysEnter.cs);
672 CHECK_FIELD(SysEnter.eip);
673 CHECK_FIELD(SysEnter.esp);
674 CHECK_FIELD(msrEFER);
675 CHECK_FIELD(msrSTAR);
676 CHECK_FIELD(msrPAT);
677 CHECK_FIELD(msrLSTAR);
678 CHECK_FIELD(msrCSTAR);
679 CHECK_FIELD(msrSFMASK);
680 CHECK_FIELD(msrKERNELGSBASE);
681
682# undef CHECK_FIELD
683# undef CHECK_BIT_FIELD
684 }
685}
686#endif /* VBOX_COMPARE_IEM_AND_EM */
687
688
689/**
690 * Interprets the current instruction.
691 *
692 * @returns VBox status code.
693 * @retval VINF_* Scheduling instructions.
694 * @retval VERR_EM_INTERPRETER Something we can't cope with.
695 * @retval VERR_* Fatal errors.
696 *
697 * @param pVCpu Pointer to the VMCPU.
698 * @param pRegFrame The register frame.
699 * Updates the EIP if an instruction was executed successfully.
700 * @param pvFault The fault address (CR2).
701 * @param pcbSize Size of the write (if applicable).
702 *
703 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
704 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
705 * to worry about e.g. invalid modrm combinations (!)
706 */
707VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstruction(PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
708{
709 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
710 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
711#ifdef VBOX_WITH_IEM
712 NOREF(pvFault);
713
714# ifdef VBOX_COMPARE_IEM_AND_EM
715 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
716 g_IncomingCtx = *pCtx;
717 g_fIncomingFFs = pVCpu->fLocalForcedActions;
718 g_cbEmWrote = g_cbIemWrote = 0;
719
720# ifdef VBOX_COMPARE_IEM_FIRST
721 /* IEM */
722 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
723 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
724 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
725 rcIem = VERR_EM_INTERPRETER;
726 g_IemCtx = *pCtx;
727 g_fIemFFs = pVCpu->fLocalForcedActions;
728 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
729 *pCtx = g_IncomingCtx;
730# endif
731
732 /* EM */
733 RTGCPTR pbCode;
734 VBOXSTRICTRC rcEm = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
735 if (RT_SUCCESS(rcEm))
736 {
737 uint32_t cbOp;
738 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
739 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
740 rcEm = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
741 if (RT_SUCCESS(rcEm))
742 {
743 Assert(cbOp == pDis->cbInstr);
744 uint32_t cbIgnored;
745 rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbIgnored);
746 if (RT_SUCCESS(rcEm))
747 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
748
749 }
750 rcEm = VERR_EM_INTERPRETER;
751 }
752 else
753 rcEm = VERR_EM_INTERPRETER;
754# ifdef VBOX_SAME_AS_EM
755 if (rcEm == VERR_EM_INTERPRETER)
756 {
757 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
758 return rcEm;
759 }
760# endif
761 g_EmCtx = *pCtx;
762 g_fEmFFs = pVCpu->fLocalForcedActions;
763 VBOXSTRICTRC rc = rcEm;
764
765# ifdef VBOX_COMPARE_IEM_LAST
766 /* IEM */
767 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
768 *pCtx = g_IncomingCtx;
769 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
770 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
771 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
772 rcIem = VERR_EM_INTERPRETER;
773 g_IemCtx = *pCtx;
774 g_fIemFFs = pVCpu->fLocalForcedActions;
775 rc = rcIem;
776# endif
777
778# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
779 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, 0, 0);
780# endif
781
782# else
783 VBOXSTRICTRC rc = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
784 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
785 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
786 rc = VERR_EM_INTERPRETER;
787# endif
788 if (rc != VINF_SUCCESS)
789 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
790
791 return rc;
792#else
793 RTGCPTR pbCode;
794 VBOXSTRICTRC rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
795 if (RT_SUCCESS(rc))
796 {
797 uint32_t cbOp;
798 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
799 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
800 rc = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
801 if (RT_SUCCESS(rc))
802 {
803 Assert(cbOp == pDis->cbInstr);
804 uint32_t cbIgnored;
805 rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbIgnored);
806 if (RT_SUCCESS(rc))
807 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
808
809 return rc;
810 }
811 }
812 return VERR_EM_INTERPRETER;
813#endif
814}
815
816
817/**
818 * Interprets the current instruction.
819 *
820 * @returns VBox status code.
821 * @retval VINF_* Scheduling instructions.
822 * @retval VERR_EM_INTERPRETER Something we can't cope with.
823 * @retval VERR_* Fatal errors.
824 *
825 * @param pVM Pointer to the VM.
826 * @param pVCpu Pointer to the VMCPU.
827 * @param pRegFrame The register frame.
828 * Updates the EIP if an instruction was executed successfully.
829 * @param pvFault The fault address (CR2).
830 * @param pcbWritten Size of the write (if applicable).
831 *
832 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
833 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
834 * to worry about e.g. invalid modrm combinations (!)
835 */
836VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstructionEx(PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbWritten)
837{
838 LogFlow(("EMInterpretInstructionEx %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
839 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
840#ifdef VBOX_WITH_IEM
841 NOREF(pvFault);
842
843# ifdef VBOX_COMPARE_IEM_AND_EM
844 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
845 g_IncomingCtx = *pCtx;
846 g_fIncomingFFs = pVCpu->fLocalForcedActions;
847 g_cbEmWrote = g_cbIemWrote = 0;
848
849# ifdef VBOX_COMPARE_IEM_FIRST
850 /* IEM */
851 uint32_t cbIemWritten = 0;
852 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, &cbIemWritten);
853 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
854 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
855 rcIem = VERR_EM_INTERPRETER;
856 g_IemCtx = *pCtx;
857 g_fIemFFs = pVCpu->fLocalForcedActions;
858 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
859 *pCtx = g_IncomingCtx;
860# endif
861
862 /* EM */
863 uint32_t cbEmWritten = 0;
864 RTGCPTR pbCode;
865 VBOXSTRICTRC rcEm = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
866 if (RT_SUCCESS(rcEm))
867 {
868 uint32_t cbOp;
869 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
870 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
871 rcEm = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
872 if (RT_SUCCESS(rcEm))
873 {
874 Assert(cbOp == pDis->cbInstr);
875 rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbEmWritten);
876 if (RT_SUCCESS(rcEm))
877 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
878
879 }
880 else
881 rcEm = VERR_EM_INTERPRETER;
882 }
883 else
884 rcEm = VERR_EM_INTERPRETER;
885# ifdef VBOX_SAME_AS_EM
886 if (rcEm == VERR_EM_INTERPRETER)
887 {
888 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
889 return rcEm;
890 }
891# endif
892 g_EmCtx = *pCtx;
893 g_fEmFFs = pVCpu->fLocalForcedActions;
894 *pcbWritten = cbEmWritten;
895 VBOXSTRICTRC rc = rcEm;
896
897# ifdef VBOX_COMPARE_IEM_LAST
898 /* IEM */
899 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
900 *pCtx = g_IncomingCtx;
901 uint32_t cbIemWritten = 0;
902 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, &cbIemWritten);
903 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
904 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
905 rcIem = VERR_EM_INTERPRETER;
906 g_IemCtx = *pCtx;
907 g_fIemFFs = pVCpu->fLocalForcedActions;
908 *pcbWritten = cbIemWritten;
909 rc = rcIem;
910# endif
911
912# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
913 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, cbEmWritten, cbIemWritten);
914# endif
915
916# else
917 VBOXSTRICTRC rc = IEMExecOneBypassEx(pVCpu, pRegFrame, pcbWritten);
918 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
919 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
920 rc = VERR_EM_INTERPRETER;
921# endif
922 if (rc != VINF_SUCCESS)
923 Log(("EMInterpretInstructionEx: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
924
925 return rc;
926#else
927 RTGCPTR pbCode;
928 VBOXSTRICTRC rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
929 if (RT_SUCCESS(rc))
930 {
931 uint32_t cbOp;
932 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
933 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
934 rc = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
935 if (RT_SUCCESS(rc))
936 {
937 Assert(cbOp == pDis->cbInstr);
938 rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, pcbWritten);
939 if (RT_SUCCESS(rc))
940 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
941
942 return rc;
943 }
944 }
945 return VERR_EM_INTERPRETER;
946#endif
947}
948
949
950/**
951 * Interprets the current instruction using the supplied DISCPUSTATE structure.
952 *
953 * IP/EIP/RIP *IS* updated!
954 *
955 * @returns VBox strict status code.
956 * @retval VINF_* Scheduling instructions. When these are returned, it
957 * starts to get a bit tricky to know whether code was
958 * executed or not... We'll address this when it becomes a problem.
959 * @retval VERR_EM_INTERPRETER Something we can't cope with.
960 * @retval VERR_* Fatal errors.
961 *
962 * @param pVM Pointer to the VM.
963 * @param pVCpu Pointer to the VMCPU.
964 * @param pDis The disassembler cpu state for the instruction to be
965 * interpreted.
966 * @param pRegFrame The register frame. IP/EIP/RIP *IS* changed!
967 * @param pvFault The fault address (CR2).
968 * @param pcbSize Size of the write (if applicable).
969 * @param enmCodeType Code type (user/supervisor)
970 *
971 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
972 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
973 * to worry about e.g. invalid modrm combinations (!)
974 *
975 * @todo At this time we do NOT check if the instruction overwrites vital information.
976 * Make sure this can't happen!! (will add some assertions/checks later)
977 */
978VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstructionDisasState(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
979 RTGCPTR pvFault, EMCODETYPE enmCodeType)
980{
981 LogFlow(("EMInterpretInstructionDisasState %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
982 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
983#ifdef VBOX_WITH_IEM
984 NOREF(pDis); NOREF(pvFault); NOREF(enmCodeType);
985
986# ifdef VBOX_COMPARE_IEM_AND_EM
987 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
988 g_IncomingCtx = *pCtx;
989 g_fIncomingFFs = pVCpu->fLocalForcedActions;
990 g_cbEmWrote = g_cbIemWrote = 0;
991
992# ifdef VBOX_COMPARE_IEM_FIRST
993 VBOXSTRICTRC rcIem = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
994 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
995 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
996 rcIem = VERR_EM_INTERPRETER;
997 g_IemCtx = *pCtx;
998 g_fIemFFs = pVCpu->fLocalForcedActions;
999 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
1000 *pCtx = g_IncomingCtx;
1001# endif
1002
1003 /* EM */
1004 uint32_t cbIgnored;
1005 VBOXSTRICTRC rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, enmCodeType, &cbIgnored);
1006 if (RT_SUCCESS(rcEm))
1007 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
1008# ifdef VBOX_SAME_AS_EM
1009 if (rcEm == VERR_EM_INTERPRETER)
1010 {
1011 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
1012 return rcEm;
1013 }
1014# endif
1015 g_EmCtx = *pCtx;
1016 g_fEmFFs = pVCpu->fLocalForcedActions;
1017 VBOXSTRICTRC rc = rcEm;
1018
1019# ifdef VBOX_COMPARE_IEM_LAST
1020 /* IEM */
1021 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
1022 *pCtx = g_IncomingCtx;
1023 VBOXSTRICTRC rcIem = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
1024 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1025 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1026 rcIem = VERR_EM_INTERPRETER;
1027 g_IemCtx = *pCtx;
1028 g_fIemFFs = pVCpu->fLocalForcedActions;
1029 rc = rcIem;
1030# endif
1031
1032# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
1033 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, 0, 0);
1034# endif
1035
1036# else
1037 VBOXSTRICTRC rc = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
1038 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1039 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1040 rc = VERR_EM_INTERPRETER;
1041# endif
1042
1043 if (rc != VINF_SUCCESS)
1044 Log(("EMInterpretInstructionDisasState: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
1045
1046 return rc;
1047#else
1048 uint32_t cbIgnored;
1049 VBOXSTRICTRC rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, enmCodeType, &cbIgnored);
1050 if (RT_SUCCESS(rc))
1051 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
1052 return rc;
1053#endif
1054}
1055
1056#ifdef IN_RC
1057
1058DECLINLINE(int) emRCStackRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
1059{
1060 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
1061 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
1062 return rc;
1063 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
1064}
1065
1066
1067/**
1068 * Interpret IRET (currently only to V86 code) - PATM only.
1069 *
1070 * @returns VBox status code.
1071 * @param pVM Pointer to the VM.
1072 * @param pVCpu Pointer to the VMCPU.
1073 * @param pRegFrame The register frame.
1074 *
1075 */
1076VMM_INT_DECL(int) EMInterpretIretV86ForPatm(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1077{
1078 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1079 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
1080 int rc;
1081
1082 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1083 Assert(!CPUMIsGuestIn64BitCode(pVCpu));
1084 /** @todo Rainy day: Test what happens when VERR_EM_INTERPRETER is returned by
1085 * this function. Fear that it may guru on us, thus not converted to
1086 * IEM. */
1087
1088 rc = emRCStackRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1089 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1090 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1091 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1092 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1093
1094 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1095 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1096 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &es, (RTGCPTR)(pIretStack + 20), 4);
1097 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ds, (RTGCPTR)(pIretStack + 24), 4);
1098 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &fs, (RTGCPTR)(pIretStack + 28), 4);
1099 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &gs, (RTGCPTR)(pIretStack + 32), 4);
1100 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1101
1102 pRegFrame->eip = eip & 0xffff;
1103 pRegFrame->cs.Sel = cs;
1104
1105 /* Mask away all reserved bits */
1106 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1107 eflags &= uMask;
1108
1109 CPUMRawSetEFlags(pVCpu, eflags);
1110 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1111
1112 pRegFrame->esp = esp;
1113 pRegFrame->ss.Sel = ss;
1114 pRegFrame->ds.Sel = ds;
1115 pRegFrame->es.Sel = es;
1116 pRegFrame->fs.Sel = fs;
1117 pRegFrame->gs.Sel = gs;
1118
1119 return VINF_SUCCESS;
1120}
1121
1122/**
1123 * IRET Emulation.
1124 */
1125static int emInterpretIret(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1126{
1127#ifdef VBOX_WITH_RAW_RING1
1128 NOREF(pvFault); NOREF(pcbSize);
1129 if (EMIsRawRing1Enabled(pVM))
1130 {
1131 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1132 RTGCUINTPTR eip, cs, esp, ss, eflags, uMask;
1133 int rc;
1134 uint32_t cpl, rpl;
1135
1136 /* We only execute 32-bits protected mode code in raw mode, so no need to bother to check for 16-bits code here. */
1137 /* @todo: we don't verify all the edge cases that generate #GP faults */
1138
1139 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1140 Assert(!CPUMIsGuestIn64BitCode(pVCpu));
1141 /** @todo Rainy day: Test what happens when VERR_EM_INTERPRETER is returned by
1142 * this function. Fear that it may guru on us, thus not converted to
1143 * IEM. */
1144
1145 rc = emRCStackRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1146 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1147 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1148 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1149 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1150
1151 /* Deal with V86 above. */
1152 if (eflags & X86_EFL_VM)
1153 return EMInterpretIretV86ForPatm(pVM, pVCpu, pRegFrame);
1154
1155 cpl = CPUMRCGetGuestCPL(pVCpu, pRegFrame);
1156 rpl = cs & X86_SEL_RPL;
1157
1158 Log(("emInterpretIret: iret to CS:EIP=%04X:%08X eflags=%x\n", cs, eip, eflags));
1159 if (rpl != cpl)
1160 {
1161 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1162 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1163 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1164 Log(("emInterpretIret: return to different privilege level (rpl=%d cpl=%d)\n", rpl, cpl));
1165 Log(("emInterpretIret: SS:ESP=%04X:08X\n", ss, esp));
1166 pRegFrame->ss.Sel = ss;
1167 pRegFrame->esp = esp;
1168 }
1169 pRegFrame->cs.Sel = cs;
1170 pRegFrame->eip = eip;
1171
1172 /* Adjust CS & SS as required. */
1173 CPUMRCRecheckRawState(pVCpu, pRegFrame);
1174
1175 /* Mask away all reserved bits */
1176 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1177 eflags &= uMask;
1178
1179 CPUMRawSetEFlags(pVCpu, eflags);
1180 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1181 return VINF_SUCCESS;
1182 }
1183#else
1184 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
1185#endif
1186 return VERR_EM_INTERPRETER;
1187}
1188
1189#endif /* IN_RC */
1190
1191
1192
1193/*
1194 *
1195 * Old interpreter primitives used by HM, move/eliminate later.
1196 * Old interpreter primitives used by HM, move/eliminate later.
1197 * Old interpreter primitives used by HM, move/eliminate later.
1198 * Old interpreter primitives used by HM, move/eliminate later.
1199 * Old interpreter primitives used by HM, move/eliminate later.
1200 *
1201 */
1202
1203
1204/**
1205 * Interpret CPUID given the parameters in the CPU context.
1206 *
1207 * @returns VBox status code.
1208 * @param pVM Pointer to the VM.
1209 * @param pVCpu Pointer to the VMCPU.
1210 * @param pRegFrame The register frame.
1211 *
1212 */
1213VMM_INT_DECL(int) EMInterpretCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1214{
1215 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1216 uint32_t iLeaf = pRegFrame->eax;
1217 uint32_t iSubLeaf = pRegFrame->ecx;
1218 NOREF(pVM);
1219
1220 /* cpuid clears the high dwords of the affected 64 bits registers. */
1221 pRegFrame->rax = 0;
1222 pRegFrame->rbx = 0;
1223 pRegFrame->rcx = 0;
1224 pRegFrame->rdx = 0;
1225
1226 /* Note: operates the same in 64 and non-64 bits mode. */
1227 CPUMGetGuestCpuId(pVCpu, iLeaf, iSubLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
1228 Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
1229 return VINF_SUCCESS;
1230}
1231
1232
1233/**
1234 * Interpret RDTSC.
1235 *
1236 * @returns VBox status code.
1237 * @param pVM Pointer to the VM.
1238 * @param pVCpu Pointer to the VMCPU.
1239 * @param pRegFrame The register frame.
1240 *
1241 */
1242VMM_INT_DECL(int) EMInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1243{
1244 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1245 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
1246
1247 if (uCR4 & X86_CR4_TSD)
1248 return VERR_EM_INTERPRETER; /* genuine #GP */
1249
1250 uint64_t uTicks = TMCpuTickGet(pVCpu);
1251
1252 /* Same behaviour in 32 & 64 bits mode */
1253 pRegFrame->rax = (uint32_t)uTicks;
1254 pRegFrame->rdx = (uTicks >> 32ULL);
1255#ifdef VBOX_COMPARE_IEM_AND_EM
1256 g_fIgnoreRaxRdx = true;
1257#endif
1258
1259 NOREF(pVM);
1260 return VINF_SUCCESS;
1261}
1262
1263/**
1264 * Interpret RDTSCP.
1265 *
1266 * @returns VBox status code.
1267 * @param pVM Pointer to the VM.
1268 * @param pVCpu Pointer to the VMCPU.
1269 * @param pCtx The CPU context.
1270 *
1271 */
1272VMM_INT_DECL(int) EMInterpretRdtscp(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1273{
1274 Assert(pCtx == CPUMQueryGuestCtxPtr(pVCpu));
1275 uint32_t uCR4 = CPUMGetGuestCR4(pVCpu);
1276
1277 if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1278 {
1279 AssertFailed();
1280 return VERR_EM_INTERPRETER; /* genuine #UD */
1281 }
1282
1283 if (uCR4 & X86_CR4_TSD)
1284 return VERR_EM_INTERPRETER; /* genuine #GP */
1285
1286 uint64_t uTicks = TMCpuTickGet(pVCpu);
1287
1288 /* Same behaviour in 32 & 64 bits mode */
1289 pCtx->rax = (uint32_t)uTicks;
1290 pCtx->rdx = (uTicks >> 32ULL);
1291#ifdef VBOX_COMPARE_IEM_AND_EM
1292 g_fIgnoreRaxRdx = true;
1293#endif
1294 /* Low dword of the TSC_AUX msr only. */
1295 VBOXSTRICTRC rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pCtx->rcx); Assert(rc2 == VINF_SUCCESS);
1296 pCtx->rcx &= UINT32_C(0xffffffff);
1297
1298 return VINF_SUCCESS;
1299}
1300
1301/**
1302 * Interpret RDPMC.
1303 *
1304 * @returns VBox status code.
1305 * @param pVM Pointer to the VM.
1306 * @param pVCpu Pointer to the VMCPU.
1307 * @param pRegFrame The register frame.
1308 *
1309 */
1310VMM_INT_DECL(int) EMInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1311{
1312 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1313 uint32_t uCR4 = CPUMGetGuestCR4(pVCpu);
1314
1315 /* If X86_CR4_PCE is not set, then CPL must be zero. */
1316 if ( !(uCR4 & X86_CR4_PCE)
1317 && CPUMGetGuestCPL(pVCpu) != 0)
1318 {
1319 Assert(CPUMGetGuestCR0(pVCpu) & X86_CR0_PE);
1320 return VERR_EM_INTERPRETER; /* genuine #GP */
1321 }
1322
1323 /* Just return zero here; rather tricky to properly emulate this, especially as the specs are a mess. */
1324 pRegFrame->rax = 0;
1325 pRegFrame->rdx = 0;
1326 /** @todo We should trigger a #GP here if the CPU doesn't support the index in ecx
1327 * but see @bugref{3472}! */
1328
1329 NOREF(pVM);
1330 return VINF_SUCCESS;
1331}
1332
1333
1334/**
1335 * MWAIT Emulation.
1336 */
1337VMM_INT_DECL(VBOXSTRICTRC) EMInterpretMWait(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1338{
1339 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1340 uint32_t u32Dummy, u32ExtFeatures, cpl, u32MWaitFeatures;
1341 NOREF(pVM);
1342
1343 /* Get the current privilege level. */
1344 cpl = CPUMGetGuestCPL(pVCpu);
1345 if (cpl != 0)
1346 return VERR_EM_INTERPRETER; /* supervisor only */
1347
1348 CPUMGetGuestCpuId(pVCpu, 1, 0, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
1349 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
1350 return VERR_EM_INTERPRETER; /* not supported */
1351
1352 /*
1353 * CPUID.05H.ECX[0] defines support for power management extensions (eax)
1354 * CPUID.05H.ECX[1] defines support for interrupts as break events for mwait even when IF=0
1355 */
1356 CPUMGetGuestCpuId(pVCpu, 5, 0, &u32Dummy, &u32Dummy, &u32MWaitFeatures, &u32Dummy);
1357 if (pRegFrame->ecx > 1)
1358 {
1359 Log(("EMInterpretMWait: unexpected ecx value %x -> recompiler\n", pRegFrame->ecx));
1360 return VERR_EM_INTERPRETER; /* illegal value. */
1361 }
1362
1363 if (pRegFrame->ecx && !(u32MWaitFeatures & X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
1364 {
1365 Log(("EMInterpretMWait: unsupported X86_CPUID_MWAIT_ECX_BREAKIRQIF0 -> recompiler\n"));
1366 return VERR_EM_INTERPRETER; /* illegal value. */
1367 }
1368
1369 return EMMonitorWaitPerform(pVCpu, pRegFrame->rax, pRegFrame->rcx);
1370}
1371
1372
1373/**
1374 * MONITOR Emulation.
1375 */
1376VMM_INT_DECL(int) EMInterpretMonitor(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1377{
1378 uint32_t u32Dummy, u32ExtFeatures, cpl;
1379 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1380 NOREF(pVM);
1381
1382 if (pRegFrame->ecx != 0)
1383 {
1384 Log(("emInterpretMonitor: unexpected ecx=%x -> recompiler!!\n", pRegFrame->ecx));
1385 return VERR_EM_INTERPRETER; /* illegal value. */
1386 }
1387
1388 /* Get the current privilege level. */
1389 cpl = CPUMGetGuestCPL(pVCpu);
1390 if (cpl != 0)
1391 return VERR_EM_INTERPRETER; /* supervisor only */
1392
1393 CPUMGetGuestCpuId(pVCpu, 1, 0, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
1394 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
1395 return VERR_EM_INTERPRETER; /* not supported */
1396
1397 EMMonitorWaitPrepare(pVCpu, pRegFrame->rax, pRegFrame->rcx, pRegFrame->rdx, NIL_RTGCPHYS);
1398 return VINF_SUCCESS;
1399}
1400
1401
1402/* VT-x only: */
1403
1404/**
1405 * Interpret INVLPG.
1406 *
1407 * @returns VBox status code.
1408 * @param pVM Pointer to the VM.
1409 * @param pVCpu Pointer to the VMCPU.
1410 * @param pRegFrame The register frame.
1411 * @param pAddrGC Operand address.
1412 *
1413 */
1414VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
1415{
1416 /** @todo is addr always a flat linear address or ds based
1417 * (in absence of segment override prefixes)????
1418 */
1419 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1420 NOREF(pVM); NOREF(pRegFrame);
1421#ifdef IN_RC
1422 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
1423#endif
1424 VBOXSTRICTRC rc = PGMInvalidatePage(pVCpu, pAddrGC);
1425 if ( rc == VINF_SUCCESS
1426 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1427 return VINF_SUCCESS;
1428 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
1429 ("%Rrc addr=%RGv\n", VBOXSTRICTRC_VAL(rc), pAddrGC),
1430 VERR_EM_INTERPRETER);
1431 return rc;
1432}
1433
1434
1435/**
1436 * Update CRx.
1437 *
1438 * @returns VBox status code.
1439 * @param pVM Pointer to the VM.
1440 * @param pVCpu Pointer to the VMCPU.
1441 * @param pRegFrame The register frame.
1442 * @param DestRegCRx CRx register index (DISUSE_REG_CR*)
1443 * @param val New CRx value
1444 *
1445 */
1446static int emUpdateCRx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
1447{
1448 uint64_t oldval;
1449 uint64_t msrEFER;
1450 uint32_t fValid;
1451 int rc, rc2;
1452 NOREF(pVM);
1453
1454 /** @todo Clean up this mess. */
1455 LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
1456 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1457 switch (DestRegCrx)
1458 {
1459 case DISCREG_CR0:
1460 oldval = CPUMGetGuestCR0(pVCpu);
1461#ifdef IN_RC
1462 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
1463 if ( (val & (X86_CR0_WP | X86_CR0_AM))
1464 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
1465 return VERR_EM_INTERPRETER;
1466#endif
1467 rc = VINF_SUCCESS;
1468#if !defined(VBOX_COMPARE_IEM_AND_EM) || !defined(VBOX_COMPARE_IEM_LAST)
1469 CPUMSetGuestCR0(pVCpu, val);
1470#else
1471 CPUMQueryGuestCtxPtr(pVCpu)->cr0 = val | X86_CR0_ET;
1472#endif
1473 val = CPUMGetGuestCR0(pVCpu);
1474 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
1475 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
1476 {
1477 /* global flush */
1478 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
1479 AssertRCReturn(rc, rc);
1480 }
1481
1482 /* Deal with long mode enabling/disabling. */
1483 msrEFER = CPUMGetGuestEFER(pVCpu);
1484 if (msrEFER & MSR_K6_EFER_LME)
1485 {
1486 if ( !(oldval & X86_CR0_PG)
1487 && (val & X86_CR0_PG))
1488 {
1489 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1490 if (pRegFrame->cs.Attr.n.u1Long)
1491 {
1492 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
1493 return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
1494 }
1495
1496 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1497 if (!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE))
1498 {
1499 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
1500 return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
1501 }
1502 msrEFER |= MSR_K6_EFER_LMA;
1503 }
1504 else
1505 if ( (oldval & X86_CR0_PG)
1506 && !(val & X86_CR0_PG))
1507 {
1508 msrEFER &= ~MSR_K6_EFER_LMA;
1509 /** @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
1510 }
1511 CPUMSetGuestEFER(pVCpu, msrEFER);
1512 }
1513 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
1514 return rc2 == VINF_SUCCESS ? rc : rc2;
1515
1516 case DISCREG_CR2:
1517 rc = CPUMSetGuestCR2(pVCpu, val); AssertRC(rc);
1518 return VINF_SUCCESS;
1519
1520 case DISCREG_CR3:
1521 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
1522 rc = CPUMSetGuestCR3(pVCpu, val); AssertRC(rc);
1523 if (CPUMGetGuestCR0(pVCpu) & X86_CR0_PG)
1524 {
1525 /* flush */
1526 rc = PGMFlushTLB(pVCpu, val, !(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE));
1527 AssertRC(rc);
1528 }
1529 return rc;
1530
1531 case DISCREG_CR4:
1532 oldval = CPUMGetGuestCR4(pVCpu);
1533 rc = CPUMSetGuestCR4(pVCpu, val); AssertRC(rc);
1534 val = CPUMGetGuestCR4(pVCpu);
1535
1536 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1537 msrEFER = CPUMGetGuestEFER(pVCpu);
1538 if ( (msrEFER & MSR_K6_EFER_LMA)
1539 && (oldval & X86_CR4_PAE)
1540 && !(val & X86_CR4_PAE))
1541 {
1542 return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
1543 }
1544
1545 /* From IEM iemCImpl_load_CrX. */
1546 /** @todo Check guest CPUID bits for determining corresponding valid bits. */
1547 fValid = X86_CR4_VME | X86_CR4_PVI
1548 | X86_CR4_TSD | X86_CR4_DE
1549 | X86_CR4_PSE | X86_CR4_PAE
1550 | X86_CR4_MCE | X86_CR4_PGE
1551 | X86_CR4_PCE | X86_CR4_OSFSXR
1552 | X86_CR4_OSXMMEEXCPT;
1553 //if (xxx)
1554 // fValid |= X86_CR4_VMXE;
1555 //if (xxx)
1556 // fValid |= X86_CR4_OSXSAVE;
1557 if (val & ~(uint64_t)fValid)
1558 {
1559 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", val, val & ~(uint64_t)fValid));
1560 return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
1561 }
1562
1563 rc = VINF_SUCCESS;
1564 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
1565 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
1566 {
1567 /* global flush */
1568 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
1569 AssertRCReturn(rc, rc);
1570 }
1571
1572 /* Feeling extremely lazy. */
1573# ifdef IN_RC
1574 if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
1575 != (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
1576 {
1577 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
1578 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
1579 }
1580# endif
1581# ifdef VBOX_WITH_RAW_MODE
1582 if (((val ^ oldval) & X86_CR4_VME) && !HMIsEnabled(pVM))
1583 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1584# endif
1585
1586 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
1587 return rc2 == VINF_SUCCESS ? rc : rc2;
1588
1589 case DISCREG_CR8:
1590 return PDMApicSetTPR(pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1591
1592 default:
1593 AssertFailed();
1594 case DISCREG_CR1: /* illegal op */
1595 break;
1596 }
1597 return VERR_EM_INTERPRETER;
1598}
1599
1600
1601/**
1602 * Interpret CRx write.
1603 *
1604 * @returns VBox status code.
1605 * @param pVM Pointer to the VM.
1606 * @param pVCpu Pointer to the VMCPU.
1607 * @param pRegFrame The register frame.
1608 * @param DestRegCRx CRx register index (DISUSE_REG_CR*)
1609 * @param SrcRegGen General purpose register index (USE_REG_E**))
1610 *
1611 */
1612VMM_INT_DECL(int) EMInterpretCRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
1613{
1614 uint64_t val;
1615 int rc;
1616 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1617
1618 if (CPUMIsGuestIn64BitCode(pVCpu))
1619 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
1620 else
1621 {
1622 uint32_t val32;
1623 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
1624 val = val32;
1625 }
1626
1627 if (RT_SUCCESS(rc))
1628 return emUpdateCRx(pVM, pVCpu, pRegFrame, DestRegCrx, val);
1629
1630 return VERR_EM_INTERPRETER;
1631}
1632
1633/**
1634 * Interpret LMSW.
1635 *
1636 * @returns VBox status code.
1637 * @param pVM Pointer to the VM.
1638 * @param pVCpu Pointer to the VMCPU.
1639 * @param pRegFrame The register frame.
1640 * @param u16Data LMSW source data.
1641 *
1642 */
1643VMM_INT_DECL(int) EMInterpretLMSW(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
1644{
1645 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1646 uint64_t OldCr0 = CPUMGetGuestCR0(pVCpu);
1647
1648 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
1649 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
1650 | (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
1651
1652 return emUpdateCRx(pVM, pVCpu, pRegFrame, DISCREG_CR0, NewCr0);
1653}
1654
1655
1656/**
1657 * Interpret CLTS.
1658 *
1659 * @returns VBox status code.
1660 * @param pVM Pointer to the VM.
1661 * @param pVCpu Pointer to the VMCPU.
1662 *
1663 */
1664VMM_INT_DECL(int) EMInterpretCLTS(PVM pVM, PVMCPU pVCpu)
1665{
1666 NOREF(pVM);
1667
1668 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
1669 if (!(cr0 & X86_CR0_TS))
1670 return VINF_SUCCESS;
1671 return CPUMSetGuestCR0(pVCpu, cr0 & ~X86_CR0_TS);
1672}
1673
1674
1675#ifdef LOG_ENABLED
1676static const char *emMSRtoString(uint32_t uMsr)
1677{
1678 switch (uMsr)
1679 {
1680 case MSR_IA32_APICBASE: return "MSR_IA32_APICBASE";
1681 case MSR_IA32_CR_PAT: return "MSR_IA32_CR_PAT";
1682 case MSR_IA32_SYSENTER_CS: return "MSR_IA32_SYSENTER_CS";
1683 case MSR_IA32_SYSENTER_EIP: return "MSR_IA32_SYSENTER_EIP";
1684 case MSR_IA32_SYSENTER_ESP: return "MSR_IA32_SYSENTER_ESP";
1685 case MSR_K6_EFER: return "MSR_K6_EFER";
1686 case MSR_K8_SF_MASK: return "MSR_K8_SF_MASK";
1687 case MSR_K6_STAR: return "MSR_K6_STAR";
1688 case MSR_K8_LSTAR: return "MSR_K8_LSTAR";
1689 case MSR_K8_CSTAR: return "MSR_K8_CSTAR";
1690 case MSR_K8_FS_BASE: return "MSR_K8_FS_BASE";
1691 case MSR_K8_GS_BASE: return "MSR_K8_GS_BASE";
1692 case MSR_K8_KERNEL_GS_BASE: return "MSR_K8_KERNEL_GS_BASE";
1693 case MSR_K8_TSC_AUX: return "MSR_K8_TSC_AUX";
1694 case MSR_IA32_BIOS_SIGN_ID: return "Unsupported MSR_IA32_BIOS_SIGN_ID";
1695 case MSR_IA32_PLATFORM_ID: return "Unsupported MSR_IA32_PLATFORM_ID";
1696 case MSR_IA32_BIOS_UPDT_TRIG: return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
1697 case MSR_IA32_TSC: return "MSR_IA32_TSC";
1698 case MSR_IA32_MISC_ENABLE: return "MSR_IA32_MISC_ENABLE";
1699 case MSR_IA32_MTRR_CAP: return "MSR_IA32_MTRR_CAP";
1700 case MSR_IA32_MCG_CAP: return "Unsupported MSR_IA32_MCG_CAP";
1701 case MSR_IA32_MCG_STATUS: return "Unsupported MSR_IA32_MCG_STATUS";
1702 case MSR_IA32_MCG_CTRL: return "Unsupported MSR_IA32_MCG_CTRL";
1703 case MSR_IA32_MTRR_DEF_TYPE: return "MSR_IA32_MTRR_DEF_TYPE";
1704 case MSR_K7_EVNTSEL0: return "Unsupported MSR_K7_EVNTSEL0";
1705 case MSR_K7_EVNTSEL1: return "Unsupported MSR_K7_EVNTSEL1";
1706 case MSR_K7_EVNTSEL2: return "Unsupported MSR_K7_EVNTSEL2";
1707 case MSR_K7_EVNTSEL3: return "Unsupported MSR_K7_EVNTSEL3";
1708 case MSR_IA32_MC0_CTL: return "Unsupported MSR_IA32_MC0_CTL";
1709 case MSR_IA32_MC0_STATUS: return "Unsupported MSR_IA32_MC0_STATUS";
1710 case MSR_IA32_PERFEVTSEL0: return "Unsupported MSR_IA32_PERFEVTSEL0";
1711 case MSR_IA32_PERFEVTSEL1: return "Unsupported MSR_IA32_PERFEVTSEL1";
1712 case MSR_IA32_PERF_STATUS: return "MSR_IA32_PERF_STATUS";
1713 case MSR_IA32_PLATFORM_INFO: return "MSR_IA32_PLATFORM_INFO";
1714 case MSR_IA32_PERF_CTL: return "Unsupported MSR_IA32_PERF_CTL";
1715 case MSR_K7_PERFCTR0: return "Unsupported MSR_K7_PERFCTR0";
1716 case MSR_K7_PERFCTR1: return "Unsupported MSR_K7_PERFCTR1";
1717 case MSR_K7_PERFCTR2: return "Unsupported MSR_K7_PERFCTR2";
1718 case MSR_K7_PERFCTR3: return "Unsupported MSR_K7_PERFCTR3";
1719 case MSR_IA32_PMC0: return "Unsupported MSR_IA32_PMC0";
1720 case MSR_IA32_PMC1: return "Unsupported MSR_IA32_PMC1";
1721 case MSR_IA32_PMC2: return "Unsupported MSR_IA32_PMC2";
1722 case MSR_IA32_PMC3: return "Unsupported MSR_IA32_PMC3";
1723 }
1724 return "Unknown MSR";
1725}
1726#endif /* LOG_ENABLED */
1727
1728
1729/**
1730 * Interpret RDMSR
1731 *
1732 * @returns VBox status code.
1733 * @param pVM Pointer to the VM.
1734 * @param pVCpu Pointer to the VMCPU.
1735 * @param pRegFrame The register frame.
1736 */
1737VMM_INT_DECL(int) EMInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1738{
1739 NOREF(pVM);
1740
1741 /* Get the current privilege level. */
1742 if (CPUMGetGuestCPL(pVCpu) != 0)
1743 {
1744 Log4(("EM: Refuse RDMSR: CPL != 0\n"));
1745 return VERR_EM_INTERPRETER; /* supervisor only */
1746 }
1747
1748 uint64_t uValue;
1749 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pRegFrame->ecx, &uValue);
1750 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
1751 {
1752 Log4(("EM: Refuse RDMSR: rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1753 Assert(rcStrict == VERR_CPUM_RAISE_GP_0 || rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_CPUM_R3_MSR_READ);
1754 return VERR_EM_INTERPRETER;
1755 }
1756 pRegFrame->rax = (uint32_t) uValue;
1757 pRegFrame->rdx = (uint32_t)(uValue >> 32);
1758 LogFlow(("EMInterpretRdmsr %s (%x) -> %RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, uValue));
1759 return VINF_SUCCESS;
1760}
1761
1762
1763/**
1764 * Interpret WRMSR
1765 *
1766 * @returns VBox status code.
1767 * @param pVM Pointer to the VM.
1768 * @param pVCpu Pointer to the VMCPU.
1769 * @param pRegFrame The register frame.
1770 */
1771VMM_INT_DECL(int) EMInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1772{
1773 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1774
1775 /* Check the current privilege level, this instruction is supervisor only. */
1776 if (CPUMGetGuestCPL(pVCpu) != 0)
1777 {
1778 Log4(("EM: Refuse WRMSR: CPL != 0\n"));
1779 return VERR_EM_INTERPRETER; /** @todo raise \#GP(0) */
1780 }
1781
1782 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pRegFrame->ecx, RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx));
1783 if (rcStrict != VINF_SUCCESS)
1784 {
1785 Log4(("EM: Refuse WRMSR: CPUMSetGuestMsr returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1786 Assert(rcStrict == VERR_CPUM_RAISE_GP_0 || rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_CPUM_R3_MSR_WRITE);
1787 return VERR_EM_INTERPRETER;
1788 }
1789 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx,
1790 RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx)));
1791 NOREF(pVM);
1792 return VINF_SUCCESS;
1793}
1794
1795
1796/**
1797 * Interpret CRx read.
1798 *
1799 * @returns VBox status code.
1800 * @param pVM Pointer to the VM.
1801 * @param pVCpu Pointer to the VMCPU.
1802 * @param pRegFrame The register frame.
1803 * @param DestRegGen General purpose register index (USE_REG_E**))
1804 * @param SrcRegCRx CRx register index (DISUSE_REG_CR*)
1805 *
1806 */
1807VMM_INT_DECL(int) EMInterpretCRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
1808{
1809 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1810 uint64_t val64;
1811 int rc = CPUMGetGuestCRx(pVCpu, SrcRegCrx, &val64);
1812 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
1813 NOREF(pVM);
1814
1815 if (CPUMIsGuestIn64BitCode(pVCpu))
1816 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1817 else
1818 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
1819
1820 if (RT_SUCCESS(rc))
1821 {
1822 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
1823 return VINF_SUCCESS;
1824 }
1825 return VERR_EM_INTERPRETER;
1826}
1827
1828
1829/**
1830 * Interpret DRx write.
1831 *
1832 * @returns VBox status code.
1833 * @param pVM Pointer to the VM.
1834 * @param pVCpu Pointer to the VMCPU.
1835 * @param pRegFrame The register frame.
1836 * @param DestRegDRx DRx register index (USE_REG_DR*)
1837 * @param SrcRegGen General purpose register index (USE_REG_E**))
1838 *
1839 */
1840VMM_INT_DECL(int) EMInterpretDRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
1841{
1842 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1843 uint64_t uNewDrX;
1844 int rc;
1845 NOREF(pVM);
1846
1847 if (CPUMIsGuestIn64BitCode(pVCpu))
1848 rc = DISFetchReg64(pRegFrame, SrcRegGen, &uNewDrX);
1849 else
1850 {
1851 uint32_t val32;
1852 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
1853 uNewDrX = val32;
1854 }
1855
1856 if (RT_SUCCESS(rc))
1857 {
1858 if (DestRegDrx == 6)
1859 {
1860 uNewDrX |= X86_DR6_RA1_MASK;
1861 uNewDrX &= ~X86_DR6_RAZ_MASK;
1862 }
1863 else if (DestRegDrx == 7)
1864 {
1865 uNewDrX |= X86_DR7_RA1_MASK;
1866 uNewDrX &= ~X86_DR7_RAZ_MASK;
1867 }
1868
1869 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
1870 rc = CPUMSetGuestDRx(pVCpu, DestRegDrx, uNewDrX);
1871 if (RT_SUCCESS(rc))
1872 return rc;
1873 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
1874 }
1875 return VERR_EM_INTERPRETER;
1876}
1877
1878
1879/**
1880 * Interpret DRx read.
1881 *
1882 * @returns VBox status code.
1883 * @param pVM Pointer to the VM.
1884 * @param pVCpu Pointer to the VMCPU.
1885 * @param pRegFrame The register frame.
1886 * @param DestRegGen General purpose register index (USE_REG_E**))
1887 * @param SrcRegDRx DRx register index (USE_REG_DR*)
1888 *
1889 */
1890VMM_INT_DECL(int) EMInterpretDRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
1891{
1892 uint64_t val64;
1893 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1894 NOREF(pVM);
1895
1896 int rc = CPUMGetGuestDRx(pVCpu, SrcRegDrx, &val64);
1897 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
1898 if (CPUMIsGuestIn64BitCode(pVCpu))
1899 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1900 else
1901 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
1902
1903 if (RT_SUCCESS(rc))
1904 return VINF_SUCCESS;
1905
1906 return VERR_EM_INTERPRETER;
1907}
1908
1909
1910#if !defined(VBOX_WITH_IEM) || defined(VBOX_COMPARE_IEM_AND_EM)
1911
1912
1913
1914
1915
1916
1917/*
1918 *
1919 * The old interpreter.
1920 * The old interpreter.
1921 * The old interpreter.
1922 * The old interpreter.
1923 * The old interpreter.
1924 *
1925 */
1926
1927DECLINLINE(int) emRamRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
1928{
1929#ifdef IN_RC
1930 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
1931 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
1932 return rc;
1933 /*
1934 * The page pool cache may end up here in some cases because it
1935 * flushed one of the shadow mappings used by the trapping
1936 * instruction and it either flushed the TLB or the CPU reused it.
1937 */
1938#else
1939 NOREF(pVM);
1940#endif
1941 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
1942}
1943
1944
1945DECLINLINE(int) emRamWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, uint32_t cb)
1946{
1947 /* Don't use MMGCRamWrite here as it does not respect zero pages, shared
1948 pages or write monitored pages. */
1949 NOREF(pVM);
1950#if !defined(VBOX_COMPARE_IEM_AND_EM) || !defined(VBOX_COMPARE_IEM_LAST)
1951 int rc = PGMPhysInterpretedWriteNoHandlers(pVCpu, pCtxCore, GCPtrDst, pvSrc, cb, /*fMayTrap*/ false);
1952#else
1953 int rc = VINF_SUCCESS;
1954#endif
1955#ifdef VBOX_COMPARE_IEM_AND_EM
1956 Log(("EM Wrote: %RGv %.*Rhxs rc=%Rrc\n", GCPtrDst, RT_MAX(RT_MIN(cb, 64), 1), pvSrc, rc));
1957 g_cbEmWrote = cb;
1958 memcpy(g_abEmWrote, pvSrc, RT_MIN(cb, sizeof(g_abEmWrote)));
1959#endif
1960 return rc;
1961}
1962
1963
1964/** Convert sel:addr to a flat GC address. */
1965DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, PDISOPPARAM pParam, RTGCPTR pvAddr)
1966{
1967 DISSELREG enmPrefixSeg = DISDetectSegReg(pDis, pParam);
1968 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
1969}
1970
1971
1972#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
1973/**
1974 * Get the mnemonic for the disassembled instruction.
1975 *
1976 * GC/R0 doesn't include the strings in the DIS tables because
1977 * of limited space.
1978 */
1979static const char *emGetMnemonic(PDISCPUSTATE pDis)
1980{
1981 switch (pDis->pCurInstr->uOpcode)
1982 {
1983 case OP_XCHG: return "Xchg";
1984 case OP_DEC: return "Dec";
1985 case OP_INC: return "Inc";
1986 case OP_POP: return "Pop";
1987 case OP_OR: return "Or";
1988 case OP_AND: return "And";
1989 case OP_MOV: return "Mov";
1990 case OP_INVLPG: return "InvlPg";
1991 case OP_CPUID: return "CpuId";
1992 case OP_MOV_CR: return "MovCRx";
1993 case OP_MOV_DR: return "MovDRx";
1994 case OP_LLDT: return "LLdt";
1995 case OP_LGDT: return "LGdt";
1996 case OP_LIDT: return "LIdt";
1997 case OP_CLTS: return "Clts";
1998 case OP_MONITOR: return "Monitor";
1999 case OP_MWAIT: return "MWait";
2000 case OP_RDMSR: return "Rdmsr";
2001 case OP_WRMSR: return "Wrmsr";
2002 case OP_ADD: return "Add";
2003 case OP_ADC: return "Adc";
2004 case OP_SUB: return "Sub";
2005 case OP_SBB: return "Sbb";
2006 case OP_RDTSC: return "Rdtsc";
2007 case OP_STI: return "Sti";
2008 case OP_CLI: return "Cli";
2009 case OP_XADD: return "XAdd";
2010 case OP_HLT: return "Hlt";
2011 case OP_IRET: return "Iret";
2012 case OP_MOVNTPS: return "MovNTPS";
2013 case OP_STOSWD: return "StosWD";
2014 case OP_WBINVD: return "WbInvd";
2015 case OP_XOR: return "Xor";
2016 case OP_BTR: return "Btr";
2017 case OP_BTS: return "Bts";
2018 case OP_BTC: return "Btc";
2019 case OP_LMSW: return "Lmsw";
2020 case OP_SMSW: return "Smsw";
2021 case OP_CMPXCHG: return pDis->fPrefix & DISPREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
2022 case OP_CMPXCHG8B: return pDis->fPrefix & DISPREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
2023
2024 default:
2025 Log(("Unknown opcode %d\n", pDis->pCurInstr->uOpcode));
2026 return "???";
2027 }
2028}
2029#endif /* VBOX_STRICT || LOG_ENABLED */
2030
2031
2032/**
2033 * XCHG instruction emulation.
2034 */
2035static int emInterpretXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2036{
2037 DISQPVPARAMVAL param1, param2;
2038 NOREF(pvFault);
2039
2040 /* Source to make DISQueryParamVal read the register value - ugly hack */
2041 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2042 if(RT_FAILURE(rc))
2043 return VERR_EM_INTERPRETER;
2044
2045 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2046 if(RT_FAILURE(rc))
2047 return VERR_EM_INTERPRETER;
2048
2049#ifdef IN_RC
2050 if (TRPMHasTrap(pVCpu))
2051 {
2052 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2053 {
2054#endif
2055 RTGCPTR pParam1 = 0, pParam2 = 0;
2056 uint64_t valpar1, valpar2;
2057
2058 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
2059 switch(param1.type)
2060 {
2061 case DISQPV_TYPE_IMMEDIATE: /* register type is translated to this one too */
2062 valpar1 = param1.val.val64;
2063 break;
2064
2065 case DISQPV_TYPE_ADDRESS:
2066 pParam1 = (RTGCPTR)param1.val.val64;
2067 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2068 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2069 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2070 if (RT_FAILURE(rc))
2071 {
2072 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2073 return VERR_EM_INTERPRETER;
2074 }
2075 break;
2076
2077 default:
2078 AssertFailed();
2079 return VERR_EM_INTERPRETER;
2080 }
2081
2082 switch(param2.type)
2083 {
2084 case DISQPV_TYPE_ADDRESS:
2085 pParam2 = (RTGCPTR)param2.val.val64;
2086 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param2, pParam2);
2087 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
2088 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar2, pParam2, param2.size);
2089 if (RT_FAILURE(rc))
2090 {
2091 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2092 }
2093 break;
2094
2095 case DISQPV_TYPE_IMMEDIATE:
2096 valpar2 = param2.val.val64;
2097 break;
2098
2099 default:
2100 AssertFailed();
2101 return VERR_EM_INTERPRETER;
2102 }
2103
2104 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
2105 if (pParam1 == 0)
2106 {
2107 Assert(param1.type == DISQPV_TYPE_IMMEDIATE); /* register actually */
2108 switch(param1.size)
2109 {
2110 case 1: //special case for AH etc
2111 rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t )valpar2); break;
2112 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)valpar2); break;
2113 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)valpar2); break;
2114 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param1.Base.idxGenReg, valpar2); break;
2115 default: AssertFailedReturn(VERR_EM_INTERPRETER);
2116 }
2117 if (RT_FAILURE(rc))
2118 return VERR_EM_INTERPRETER;
2119 }
2120 else
2121 {
2122 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar2, param1.size);
2123 if (RT_FAILURE(rc))
2124 {
2125 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2126 return VERR_EM_INTERPRETER;
2127 }
2128 }
2129
2130 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
2131 if (pParam2 == 0)
2132 {
2133 Assert(param2.type == DISQPV_TYPE_IMMEDIATE); /* register actually */
2134 switch(param2.size)
2135 {
2136 case 1: //special case for AH etc
2137 rc = DISWriteReg8(pRegFrame, pDis->Param2.Base.idxGenReg, (uint8_t )valpar1); break;
2138 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param2.Base.idxGenReg, (uint16_t)valpar1); break;
2139 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param2.Base.idxGenReg, (uint32_t)valpar1); break;
2140 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param2.Base.idxGenReg, valpar1); break;
2141 default: AssertFailedReturn(VERR_EM_INTERPRETER);
2142 }
2143 if (RT_FAILURE(rc))
2144 return VERR_EM_INTERPRETER;
2145 }
2146 else
2147 {
2148 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam2, &valpar1, param2.size);
2149 if (RT_FAILURE(rc))
2150 {
2151 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2152 return VERR_EM_INTERPRETER;
2153 }
2154 }
2155
2156 *pcbSize = param2.size;
2157 return VINF_SUCCESS;
2158#ifdef IN_RC
2159 }
2160 }
2161 return VERR_EM_INTERPRETER;
2162#endif
2163}
2164
2165
2166/**
2167 * INC and DEC emulation.
2168 */
2169static int emInterpretIncDec(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2170 PFNEMULATEPARAM2 pfnEmulate)
2171{
2172 DISQPVPARAMVAL param1;
2173 NOREF(pvFault);
2174
2175 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2176 if(RT_FAILURE(rc))
2177 return VERR_EM_INTERPRETER;
2178
2179#ifdef IN_RC
2180 if (TRPMHasTrap(pVCpu))
2181 {
2182 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2183 {
2184#endif
2185 RTGCPTR pParam1 = 0;
2186 uint64_t valpar1;
2187
2188 if (param1.type == DISQPV_TYPE_ADDRESS)
2189 {
2190 pParam1 = (RTGCPTR)param1.val.val64;
2191 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2192#ifdef IN_RC
2193 /* Safety check (in theory it could cross a page boundary and fault there though) */
2194 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2195#endif
2196 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2197 if (RT_FAILURE(rc))
2198 {
2199 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2200 return VERR_EM_INTERPRETER;
2201 }
2202 }
2203 else
2204 {
2205 AssertFailed();
2206 return VERR_EM_INTERPRETER;
2207 }
2208
2209 uint32_t eflags;
2210
2211 eflags = pfnEmulate(&valpar1, param1.size);
2212
2213 /* Write result back */
2214 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2215 if (RT_FAILURE(rc))
2216 {
2217 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2218 return VERR_EM_INTERPRETER;
2219 }
2220
2221 /* Update guest's eflags and finish. */
2222 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2223 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2224
2225 /* All done! */
2226 *pcbSize = param1.size;
2227 return VINF_SUCCESS;
2228#ifdef IN_RC
2229 }
2230 }
2231 return VERR_EM_INTERPRETER;
2232#endif
2233}
2234
2235
2236/**
2237 * POP Emulation.
2238 */
2239static int emInterpretPop(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2240{
2241 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
2242 DISQPVPARAMVAL param1;
2243 NOREF(pvFault);
2244
2245 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2246 if(RT_FAILURE(rc))
2247 return VERR_EM_INTERPRETER;
2248
2249#ifdef IN_RC
2250 if (TRPMHasTrap(pVCpu))
2251 {
2252 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2253 {
2254#endif
2255 RTGCPTR pParam1 = 0;
2256 uint32_t valpar1;
2257 RTGCPTR pStackVal;
2258
2259 /* Read stack value first */
2260 if (CPUMGetGuestCodeBits(pVCpu) == 16)
2261 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
2262
2263 /* Convert address; don't bother checking limits etc, as we only read here */
2264 pStackVal = SELMToFlat(pVM, DISSELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
2265 if (pStackVal == 0)
2266 return VERR_EM_INTERPRETER;
2267
2268 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pStackVal, param1.size);
2269 if (RT_FAILURE(rc))
2270 {
2271 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2272 return VERR_EM_INTERPRETER;
2273 }
2274
2275 if (param1.type == DISQPV_TYPE_ADDRESS)
2276 {
2277 pParam1 = (RTGCPTR)param1.val.val64;
2278
2279 /* pop [esp+xx] uses esp after the actual pop! */
2280 AssertCompile(DISGREG_ESP == DISGREG_SP);
2281 if ( (pDis->Param1.fUse & DISUSE_BASE)
2282 && (pDis->Param1.fUse & (DISUSE_REG_GEN16|DISUSE_REG_GEN32))
2283 && pDis->Param1.Base.idxGenReg == DISGREG_ESP
2284 )
2285 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
2286
2287 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2288 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
2289 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2290 if (RT_FAILURE(rc))
2291 {
2292 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2293 return VERR_EM_INTERPRETER;
2294 }
2295
2296 /* Update ESP as the last step */
2297 pRegFrame->esp += param1.size;
2298 }
2299 else
2300 {
2301#ifndef DEBUG_bird // annoying assertion.
2302 AssertFailed();
2303#endif
2304 return VERR_EM_INTERPRETER;
2305 }
2306
2307 /* All done! */
2308 *pcbSize = param1.size;
2309 return VINF_SUCCESS;
2310#ifdef IN_RC
2311 }
2312 }
2313 return VERR_EM_INTERPRETER;
2314#endif
2315}
2316
2317
2318/**
2319 * XOR/OR/AND Emulation.
2320 */
2321static int emInterpretOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2322 PFNEMULATEPARAM3 pfnEmulate)
2323{
2324 DISQPVPARAMVAL param1, param2;
2325 NOREF(pvFault);
2326
2327 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2328 if(RT_FAILURE(rc))
2329 return VERR_EM_INTERPRETER;
2330
2331 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2332 if(RT_FAILURE(rc))
2333 return VERR_EM_INTERPRETER;
2334
2335#ifdef IN_RC
2336 if (TRPMHasTrap(pVCpu))
2337 {
2338 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2339 {
2340#endif
2341 RTGCPTR pParam1;
2342 uint64_t valpar1, valpar2;
2343
2344 if (pDis->Param1.cb != pDis->Param2.cb)
2345 {
2346 if (pDis->Param1.cb < pDis->Param2.cb)
2347 {
2348 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb)); /* should never happen! */
2349 return VERR_EM_INTERPRETER;
2350 }
2351 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2352 pDis->Param2.cb = pDis->Param1.cb;
2353 param2.size = param1.size;
2354 }
2355
2356 /* The destination is always a virtual address */
2357 if (param1.type == DISQPV_TYPE_ADDRESS)
2358 {
2359 pParam1 = (RTGCPTR)param1.val.val64;
2360 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2361 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2362 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2363 if (RT_FAILURE(rc))
2364 {
2365 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2366 return VERR_EM_INTERPRETER;
2367 }
2368 }
2369 else
2370 {
2371 AssertFailed();
2372 return VERR_EM_INTERPRETER;
2373 }
2374
2375 /* Register or immediate data */
2376 switch(param2.type)
2377 {
2378 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2379 valpar2 = param2.val.val64;
2380 break;
2381
2382 default:
2383 AssertFailed();
2384 return VERR_EM_INTERPRETER;
2385 }
2386
2387 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pDis), pParam1, valpar1, valpar2, param2.size, param1.size));
2388
2389 /* Data read, emulate instruction. */
2390 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
2391
2392 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pDis), valpar1));
2393
2394 /* Update guest's eflags and finish. */
2395 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2396 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2397
2398 /* And write it back */
2399 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2400 if (RT_SUCCESS(rc))
2401 {
2402 /* All done! */
2403 *pcbSize = param2.size;
2404 return VINF_SUCCESS;
2405 }
2406#ifdef IN_RC
2407 }
2408 }
2409#endif
2410 return VERR_EM_INTERPRETER;
2411}
2412
2413
2414#ifndef VBOX_COMPARE_IEM_AND_EM
2415/**
2416 * LOCK XOR/OR/AND Emulation.
2417 */
2418static int emInterpretLockOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
2419 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
2420{
2421 void *pvParam1;
2422 DISQPVPARAMVAL param1, param2;
2423 NOREF(pvFault);
2424
2425#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
2426 Assert(pDis->Param1.cb <= 4);
2427#endif
2428
2429 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2430 if(RT_FAILURE(rc))
2431 return VERR_EM_INTERPRETER;
2432
2433 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2434 if(RT_FAILURE(rc))
2435 return VERR_EM_INTERPRETER;
2436
2437 if (pDis->Param1.cb != pDis->Param2.cb)
2438 {
2439 AssertMsgReturn(pDis->Param1.cb >= pDis->Param2.cb, /* should never happen! */
2440 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb),
2441 VERR_EM_INTERPRETER);
2442
2443 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2444 pDis->Param2.cb = pDis->Param1.cb;
2445 param2.size = param1.size;
2446 }
2447
2448#ifdef IN_RC
2449 /* Safety check (in theory it could cross a page boundary and fault there though) */
2450 Assert( TRPMHasTrap(pVCpu)
2451 && (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW));
2452 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
2453#endif
2454
2455 /* Register and immediate data == DISQPV_TYPE_IMMEDIATE */
2456 AssertReturn(param2.type == DISQPV_TYPE_IMMEDIATE, VERR_EM_INTERPRETER);
2457 RTGCUINTREG ValPar2 = param2.val.val64;
2458
2459 /* The destination is always a virtual address */
2460 AssertReturn(param1.type == DISQPV_TYPE_ADDRESS, VERR_EM_INTERPRETER);
2461
2462 RTGCPTR GCPtrPar1 = param1.val.val64;
2463 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2464 PGMPAGEMAPLOCK Lock;
2465 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2466 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2467
2468 /* Try emulate it with a one-shot #PF handler in place. (RC) */
2469 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2470
2471 RTGCUINTREG32 eflags = 0;
2472 rc = pfnEmulate(pvParam1, ValPar2, pDis->Param2.cb, &eflags);
2473 PGMPhysReleasePageMappingLock(pVM, &Lock);
2474 if (RT_FAILURE(rc))
2475 {
2476 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2477 return VERR_EM_INTERPRETER;
2478 }
2479
2480 /* Update guest's eflags and finish. */
2481 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2482 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2483
2484 *pcbSize = param2.size;
2485 return VINF_SUCCESS;
2486}
2487#endif /* !VBOX_COMPARE_IEM_AND_EM */
2488
2489
2490/**
2491 * ADD, ADC & SUB Emulation.
2492 */
2493static int emInterpretAddSub(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2494 PFNEMULATEPARAM3 pfnEmulate)
2495{
2496 NOREF(pvFault);
2497 DISQPVPARAMVAL param1, param2;
2498 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2499 if(RT_FAILURE(rc))
2500 return VERR_EM_INTERPRETER;
2501
2502 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2503 if(RT_FAILURE(rc))
2504 return VERR_EM_INTERPRETER;
2505
2506#ifdef IN_RC
2507 if (TRPMHasTrap(pVCpu))
2508 {
2509 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2510 {
2511#endif
2512 RTGCPTR pParam1;
2513 uint64_t valpar1, valpar2;
2514
2515 if (pDis->Param1.cb != pDis->Param2.cb)
2516 {
2517 if (pDis->Param1.cb < pDis->Param2.cb)
2518 {
2519 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb)); /* should never happen! */
2520 return VERR_EM_INTERPRETER;
2521 }
2522 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2523 pDis->Param2.cb = pDis->Param1.cb;
2524 param2.size = param1.size;
2525 }
2526
2527 /* The destination is always a virtual address */
2528 if (param1.type == DISQPV_TYPE_ADDRESS)
2529 {
2530 pParam1 = (RTGCPTR)param1.val.val64;
2531 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2532 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2533 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2534 if (RT_FAILURE(rc))
2535 {
2536 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2537 return VERR_EM_INTERPRETER;
2538 }
2539 }
2540 else
2541 {
2542#ifndef DEBUG_bird
2543 AssertFailed();
2544#endif
2545 return VERR_EM_INTERPRETER;
2546 }
2547
2548 /* Register or immediate data */
2549 switch(param2.type)
2550 {
2551 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2552 valpar2 = param2.val.val64;
2553 break;
2554
2555 default:
2556 AssertFailed();
2557 return VERR_EM_INTERPRETER;
2558 }
2559
2560 /* Data read, emulate instruction. */
2561 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
2562
2563 /* Update guest's eflags and finish. */
2564 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2565 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2566
2567 /* And write it back */
2568 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2569 if (RT_SUCCESS(rc))
2570 {
2571 /* All done! */
2572 *pcbSize = param2.size;
2573 return VINF_SUCCESS;
2574 }
2575#ifdef IN_RC
2576 }
2577 }
2578#endif
2579 return VERR_EM_INTERPRETER;
2580}
2581
2582
2583/**
2584 * ADC Emulation.
2585 */
2586static int emInterpretAdc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2587{
2588 if (pRegFrame->eflags.Bits.u1CF)
2589 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
2590 else
2591 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
2592}
2593
2594
2595/**
2596 * BTR/C/S Emulation.
2597 */
2598static int emInterpretBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2599 PFNEMULATEPARAM2UINT32 pfnEmulate)
2600{
2601 DISQPVPARAMVAL param1, param2;
2602 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2603 if(RT_FAILURE(rc))
2604 return VERR_EM_INTERPRETER;
2605
2606 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2607 if(RT_FAILURE(rc))
2608 return VERR_EM_INTERPRETER;
2609
2610#ifdef IN_RC
2611 if (TRPMHasTrap(pVCpu))
2612 {
2613 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2614 {
2615#endif
2616 RTGCPTR pParam1;
2617 uint64_t valpar1 = 0, valpar2;
2618 uint32_t eflags;
2619
2620 /* The destination is always a virtual address */
2621 if (param1.type != DISQPV_TYPE_ADDRESS)
2622 return VERR_EM_INTERPRETER;
2623
2624 pParam1 = (RTGCPTR)param1.val.val64;
2625 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2626
2627 /* Register or immediate data */
2628 switch(param2.type)
2629 {
2630 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2631 valpar2 = param2.val.val64;
2632 break;
2633
2634 default:
2635 AssertFailed();
2636 return VERR_EM_INTERPRETER;
2637 }
2638
2639 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pDis), pvFault, pParam1, valpar2));
2640 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
2641 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
2642 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, 1);
2643 if (RT_FAILURE(rc))
2644 {
2645 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2646 return VERR_EM_INTERPRETER;
2647 }
2648
2649 Log2(("emInterpretBtx: val=%x\n", valpar1));
2650 /* Data read, emulate bit test instruction. */
2651 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
2652
2653 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
2654
2655 /* Update guest's eflags and finish. */
2656 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2657 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2658
2659 /* And write it back */
2660 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, 1);
2661 if (RT_SUCCESS(rc))
2662 {
2663 /* All done! */
2664 *pcbSize = 1;
2665 return VINF_SUCCESS;
2666 }
2667#ifdef IN_RC
2668 }
2669 }
2670#endif
2671 return VERR_EM_INTERPRETER;
2672}
2673
2674
2675#ifndef VBOX_COMPARE_IEM_AND_EM
2676/**
2677 * LOCK BTR/C/S Emulation.
2678 */
2679static int emInterpretLockBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
2680 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
2681{
2682 void *pvParam1;
2683
2684 DISQPVPARAMVAL param1, param2;
2685 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2686 if(RT_FAILURE(rc))
2687 return VERR_EM_INTERPRETER;
2688
2689 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2690 if(RT_FAILURE(rc))
2691 return VERR_EM_INTERPRETER;
2692
2693 /* The destination is always a virtual address */
2694 if (param1.type != DISQPV_TYPE_ADDRESS)
2695 return VERR_EM_INTERPRETER;
2696
2697 /* Register and immediate data == DISQPV_TYPE_IMMEDIATE */
2698 AssertReturn(param2.type == DISQPV_TYPE_IMMEDIATE, VERR_EM_INTERPRETER);
2699 uint64_t ValPar2 = param2.val.val64;
2700
2701 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
2702 RTGCPTR GCPtrPar1 = param1.val.val64;
2703 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
2704 ValPar2 &= 7;
2705
2706 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2707#ifdef IN_RC
2708 Assert(TRPMHasTrap(pVCpu));
2709 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
2710#endif
2711
2712 PGMPAGEMAPLOCK Lock;
2713 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2714 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2715
2716 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pDis), pvFault, GCPtrPar1, ValPar2));
2717
2718 /* Try emulate it with a one-shot #PF handler in place. (RC) */
2719 RTGCUINTREG32 eflags = 0;
2720 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
2721 PGMPhysReleasePageMappingLock(pVM, &Lock);
2722 if (RT_FAILURE(rc))
2723 {
2724 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
2725 emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2726 return VERR_EM_INTERPRETER;
2727 }
2728
2729 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pDis), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
2730
2731 /* Update guest's eflags and finish. */
2732 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2733 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2734
2735 *pcbSize = 1;
2736 return VINF_SUCCESS;
2737}
2738#endif /* !VBOX_COMPARE_IEM_AND_EM */
2739
2740
2741/**
2742 * MOV emulation.
2743 */
2744static int emInterpretMov(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2745{
2746 NOREF(pvFault);
2747 DISQPVPARAMVAL param1, param2;
2748 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2749 if(RT_FAILURE(rc))
2750 return VERR_EM_INTERPRETER;
2751
2752 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2753 if(RT_FAILURE(rc))
2754 return VERR_EM_INTERPRETER;
2755
2756 /* If destination is a segment register, punt. We can't handle it here.
2757 * NB: Source can be a register and still trigger a #PF!
2758 */
2759 if (RT_UNLIKELY(pDis->Param1.fUse == DISUSE_REG_SEG))
2760 return VERR_EM_INTERPRETER;
2761
2762 if (param1.type == DISQPV_TYPE_ADDRESS)
2763 {
2764 RTGCPTR pDest;
2765 uint64_t val64;
2766
2767 switch(param1.type)
2768 {
2769 case DISQPV_TYPE_IMMEDIATE:
2770 if(!(param1.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
2771 return VERR_EM_INTERPRETER;
2772 /* fallthru */
2773
2774 case DISQPV_TYPE_ADDRESS:
2775 pDest = (RTGCPTR)param1.val.val64;
2776 pDest = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pDest);
2777 break;
2778
2779 default:
2780 AssertFailed();
2781 return VERR_EM_INTERPRETER;
2782 }
2783
2784 switch(param2.type)
2785 {
2786 case DISQPV_TYPE_IMMEDIATE: /* register type is translated to this one too */
2787 val64 = param2.val.val64;
2788 break;
2789
2790 default:
2791 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
2792 return VERR_EM_INTERPRETER;
2793 }
2794#ifdef LOG_ENABLED
2795 if (pDis->uCpuMode == DISCPUMODE_64BIT)
2796 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
2797 else
2798 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
2799#endif
2800
2801 Assert(param2.size <= 8 && param2.size > 0);
2802 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
2803 rc = emRamWrite(pVM, pVCpu, pRegFrame, pDest, &val64, param2.size);
2804 if (RT_FAILURE(rc))
2805 return VERR_EM_INTERPRETER;
2806
2807 *pcbSize = param2.size;
2808 }
2809#if defined(IN_RC) && defined(VBOX_WITH_RAW_RING1)
2810 /* mov xx, cs instruction is dangerous in raw mode and replaced by an 'int3' by csam/patm. */
2811 else if ( param1.type == DISQPV_TYPE_REGISTER
2812 && param2.type == DISQPV_TYPE_REGISTER)
2813 {
2814 AssertReturn((pDis->Param1.fUse & (DISUSE_REG_GEN8|DISUSE_REG_GEN16|DISUSE_REG_GEN32)), VERR_EM_INTERPRETER);
2815 AssertReturn(pDis->Param2.fUse == DISUSE_REG_SEG, VERR_EM_INTERPRETER);
2816 AssertReturn(pDis->Param2.Base.idxSegReg == DISSELREG_CS, VERR_EM_INTERPRETER);
2817
2818 uint32_t u32Cpl = CPUMRCGetGuestCPL(pVCpu, pRegFrame);
2819 uint32_t uValCS = (pRegFrame->cs.Sel & ~X86_SEL_RPL) | u32Cpl;
2820
2821 Log(("EMInterpretInstruction: OP_MOV cs=%x->%x\n", pRegFrame->cs.Sel, uValCS));
2822 switch (param1.size)
2823 {
2824 case 1: rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t) uValCS); break;
2825 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)uValCS); break;
2826 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)uValCS); break;
2827 default:
2828 AssertFailed();
2829 return VERR_EM_INTERPRETER;
2830 }
2831 AssertRCReturn(rc, rc);
2832 }
2833#endif
2834 else
2835 { /* read fault */
2836 RTGCPTR pSrc;
2837 uint64_t val64;
2838
2839 /* Source */
2840 switch(param2.type)
2841 {
2842 case DISQPV_TYPE_IMMEDIATE:
2843 if(!(param2.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
2844 return VERR_EM_INTERPRETER;
2845 /* fallthru */
2846
2847 case DISQPV_TYPE_ADDRESS:
2848 pSrc = (RTGCPTR)param2.val.val64;
2849 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param2, pSrc);
2850 break;
2851
2852 default:
2853 return VERR_EM_INTERPRETER;
2854 }
2855
2856 Assert(param1.size <= 8 && param1.size > 0);
2857 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
2858 rc = emRamRead(pVM, pVCpu, pRegFrame, &val64, pSrc, param1.size);
2859 if (RT_FAILURE(rc))
2860 return VERR_EM_INTERPRETER;
2861
2862 /* Destination */
2863 switch(param1.type)
2864 {
2865 case DISQPV_TYPE_REGISTER:
2866 switch(param1.size)
2867 {
2868 case 1: rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t) val64); break;
2869 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)val64); break;
2870 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)val64); break;
2871 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param1.Base.idxGenReg, val64); break;
2872 default:
2873 return VERR_EM_INTERPRETER;
2874 }
2875 if (RT_FAILURE(rc))
2876 return rc;
2877 break;
2878
2879 default:
2880 return VERR_EM_INTERPRETER;
2881 }
2882#ifdef LOG_ENABLED
2883 if (pDis->uCpuMode == DISCPUMODE_64BIT)
2884 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
2885 else
2886 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
2887#endif
2888 }
2889 return VINF_SUCCESS;
2890}
2891
2892
2893#ifndef IN_RC
2894/**
2895 * [REP] STOSWD emulation
2896 */
2897static int emInterpretStosWD(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2898{
2899 int rc;
2900 RTGCPTR GCDest, GCOffset;
2901 uint32_t cbSize;
2902 uint64_t cTransfers;
2903 int offIncrement;
2904 NOREF(pvFault);
2905
2906 /* Don't support any but these three prefix bytes. */
2907 if ((pDis->fPrefix & ~(DISPREFIX_ADDRSIZE|DISPREFIX_OPSIZE|DISPREFIX_REP|DISPREFIX_REX)))
2908 return VERR_EM_INTERPRETER;
2909
2910 switch (pDis->uAddrMode)
2911 {
2912 case DISCPUMODE_16BIT:
2913 GCOffset = pRegFrame->di;
2914 cTransfers = pRegFrame->cx;
2915 break;
2916 case DISCPUMODE_32BIT:
2917 GCOffset = pRegFrame->edi;
2918 cTransfers = pRegFrame->ecx;
2919 break;
2920 case DISCPUMODE_64BIT:
2921 GCOffset = pRegFrame->rdi;
2922 cTransfers = pRegFrame->rcx;
2923 break;
2924 default:
2925 AssertFailed();
2926 return VERR_EM_INTERPRETER;
2927 }
2928
2929 GCDest = SELMToFlat(pVM, DISSELREG_ES, pRegFrame, GCOffset);
2930 switch (pDis->uOpMode)
2931 {
2932 case DISCPUMODE_16BIT:
2933 cbSize = 2;
2934 break;
2935 case DISCPUMODE_32BIT:
2936 cbSize = 4;
2937 break;
2938 case DISCPUMODE_64BIT:
2939 cbSize = 8;
2940 break;
2941 default:
2942 AssertFailed();
2943 return VERR_EM_INTERPRETER;
2944 }
2945
2946 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
2947
2948 if (!(pDis->fPrefix & DISPREFIX_REP))
2949 {
2950 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es.Sel, GCOffset, GCDest, cbSize));
2951
2952 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
2953 if (RT_FAILURE(rc))
2954 return VERR_EM_INTERPRETER;
2955 Assert(rc == VINF_SUCCESS);
2956
2957 /* Update (e/r)di. */
2958 switch (pDis->uAddrMode)
2959 {
2960 case DISCPUMODE_16BIT:
2961 pRegFrame->di += offIncrement;
2962 break;
2963 case DISCPUMODE_32BIT:
2964 pRegFrame->edi += offIncrement;
2965 break;
2966 case DISCPUMODE_64BIT:
2967 pRegFrame->rdi += offIncrement;
2968 break;
2969 default:
2970 AssertFailed();
2971 return VERR_EM_INTERPRETER;
2972 }
2973
2974 }
2975 else
2976 {
2977 if (!cTransfers)
2978 return VINF_SUCCESS;
2979
2980 /*
2981 * Do *not* try emulate cross page stuff here because we don't know what might
2982 * be waiting for us on the subsequent pages. The caller has only asked us to
2983 * ignore access handlers fro the current page.
2984 * This also fends off big stores which would quickly kill PGMR0DynMap.
2985 */
2986 if ( cbSize > PAGE_SIZE
2987 || cTransfers > PAGE_SIZE
2988 || (GCDest >> PAGE_SHIFT) != ((GCDest + offIncrement * cTransfers) >> PAGE_SHIFT))
2989 {
2990 Log(("STOSWD is crosses pages, chicken out to the recompiler; GCDest=%RGv cbSize=%#x offIncrement=%d cTransfers=%#x\n",
2991 GCDest, cbSize, offIncrement, cTransfers));
2992 return VERR_EM_INTERPRETER;
2993 }
2994
2995 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es.Sel, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
2996 /* Access verification first; we currently can't recover properly from traps inside this instruction */
2997 rc = PGMVerifyAccess(pVCpu, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
2998 cTransfers * cbSize,
2999 X86_PTE_RW | (CPUMGetGuestCPL(pVCpu) == 3 ? X86_PTE_US : 0));
3000 if (rc != VINF_SUCCESS)
3001 {
3002 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
3003 return VERR_EM_INTERPRETER;
3004 }
3005
3006 /* REP case */
3007 while (cTransfers)
3008 {
3009 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
3010 if (RT_FAILURE(rc))
3011 {
3012 rc = VERR_EM_INTERPRETER;
3013 break;
3014 }
3015
3016 Assert(rc == VINF_SUCCESS);
3017 GCOffset += offIncrement;
3018 GCDest += offIncrement;
3019 cTransfers--;
3020 }
3021
3022 /* Update the registers. */
3023 switch (pDis->uAddrMode)
3024 {
3025 case DISCPUMODE_16BIT:
3026 pRegFrame->di = GCOffset;
3027 pRegFrame->cx = cTransfers;
3028 break;
3029 case DISCPUMODE_32BIT:
3030 pRegFrame->edi = GCOffset;
3031 pRegFrame->ecx = cTransfers;
3032 break;
3033 case DISCPUMODE_64BIT:
3034 pRegFrame->rdi = GCOffset;
3035 pRegFrame->rcx = cTransfers;
3036 break;
3037 default:
3038 AssertFailed();
3039 return VERR_EM_INTERPRETER;
3040 }
3041 }
3042
3043 *pcbSize = cbSize;
3044 return rc;
3045}
3046#endif /* !IN_RC */
3047
3048
3049/**
3050 * [LOCK] CMPXCHG emulation.
3051 */
3052static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3053{
3054 DISQPVPARAMVAL param1, param2;
3055 NOREF(pvFault);
3056
3057#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
3058 Assert(pDis->Param1.cb <= 4);
3059#endif
3060
3061 /* Source to make DISQueryParamVal read the register value - ugly hack */
3062 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3063 if(RT_FAILURE(rc))
3064 return VERR_EM_INTERPRETER;
3065
3066 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
3067 if(RT_FAILURE(rc))
3068 return VERR_EM_INTERPRETER;
3069
3070 uint64_t valpar;
3071 switch(param2.type)
3072 {
3073 case DISQPV_TYPE_IMMEDIATE: /* register actually */
3074 valpar = param2.val.val64;
3075 break;
3076
3077 default:
3078 return VERR_EM_INTERPRETER;
3079 }
3080
3081 PGMPAGEMAPLOCK Lock;
3082 RTGCPTR GCPtrPar1;
3083 void *pvParam1;
3084 uint64_t eflags;
3085
3086 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
3087 switch(param1.type)
3088 {
3089 case DISQPV_TYPE_ADDRESS:
3090 GCPtrPar1 = param1.val.val64;
3091 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
3092
3093 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
3094 AssertRCReturn(rc, VERR_EM_INTERPRETER);
3095 break;
3096
3097 default:
3098 return VERR_EM_INTERPRETER;
3099 }
3100
3101 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar));
3102
3103#ifndef VBOX_COMPARE_IEM_AND_EM
3104 if (pDis->fPrefix & DISPREFIX_LOCK)
3105 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->Param2.cb);
3106 else
3107 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->Param2.cb);
3108#else /* VBOX_COMPARE_IEM_AND_EM */
3109 uint64_t u64;
3110 switch (pDis->Param2.cb)
3111 {
3112 case 1: u64 = *(uint8_t *)pvParam1; break;
3113 case 2: u64 = *(uint16_t *)pvParam1; break;
3114 case 4: u64 = *(uint32_t *)pvParam1; break;
3115 default:
3116 case 8: u64 = *(uint64_t *)pvParam1; break;
3117 }
3118 eflags = EMEmulateCmpXchg(&u64, &pRegFrame->rax, valpar, pDis->Param2.cb);
3119 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, pDis->Param2.cb); AssertRCSuccess(rc2);
3120#endif /* VBOX_COMPARE_IEM_AND_EM */
3121
3122 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
3123
3124 /* Update guest's eflags and finish. */
3125 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
3126 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
3127
3128 *pcbSize = param2.size;
3129 PGMPhysReleasePageMappingLock(pVM, &Lock);
3130 return VINF_SUCCESS;
3131}
3132
3133
3134/**
3135 * [LOCK] CMPXCHG8B emulation.
3136 */
3137static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3138{
3139 DISQPVPARAMVAL param1;
3140 NOREF(pvFault);
3141
3142 /* Source to make DISQueryParamVal read the register value - ugly hack */
3143 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3144 if(RT_FAILURE(rc))
3145 return VERR_EM_INTERPRETER;
3146
3147 RTGCPTR GCPtrPar1;
3148 void *pvParam1;
3149 uint64_t eflags;
3150 PGMPAGEMAPLOCK Lock;
3151
3152 AssertReturn(pDis->Param1.cb == 8, VERR_EM_INTERPRETER);
3153 switch(param1.type)
3154 {
3155 case DISQPV_TYPE_ADDRESS:
3156 GCPtrPar1 = param1.val.val64;
3157 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
3158
3159 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
3160 AssertRCReturn(rc, VERR_EM_INTERPRETER);
3161 break;
3162
3163 default:
3164 return VERR_EM_INTERPRETER;
3165 }
3166
3167 LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax));
3168
3169#ifndef VBOX_COMPARE_IEM_AND_EM
3170 if (pDis->fPrefix & DISPREFIX_LOCK)
3171 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
3172 else
3173 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
3174#else /* VBOX_COMPARE_IEM_AND_EM */
3175 uint64_t u64 = *(uint64_t *)pvParam1;
3176 eflags = EMEmulateCmpXchg8b(&u64, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
3177 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, sizeof(u64)); AssertRCSuccess(rc2);
3178#endif /* VBOX_COMPARE_IEM_AND_EM */
3179
3180 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
3181
3182 /* Update guest's eflags and finish; note that *only* ZF is affected. */
3183 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
3184 | (eflags & (X86_EFL_ZF));
3185
3186 *pcbSize = 8;
3187 PGMPhysReleasePageMappingLock(pVM, &Lock);
3188 return VINF_SUCCESS;
3189}
3190
3191
3192#ifdef IN_RC /** @todo test+enable for HM as well. */
3193/**
3194 * [LOCK] XADD emulation.
3195 */
3196static int emInterpretXAdd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3197{
3198 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
3199 DISQPVPARAMVAL param1;
3200 void *pvParamReg2;
3201 size_t cbParamReg2;
3202 NOREF(pvFault);
3203
3204 /* Source to make DISQueryParamVal read the register value - ugly hack */
3205 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3206 if(RT_FAILURE(rc))
3207 return VERR_EM_INTERPRETER;
3208
3209 rc = DISQueryParamRegPtr(pRegFrame, pDis, &pDis->Param2, &pvParamReg2, &cbParamReg2);
3210 Assert(cbParamReg2 <= 4);
3211 if(RT_FAILURE(rc))
3212 return VERR_EM_INTERPRETER;
3213
3214#ifdef IN_RC
3215 if (TRPMHasTrap(pVCpu))
3216 {
3217 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
3218 {
3219#endif
3220 RTGCPTR GCPtrPar1;
3221 void *pvParam1;
3222 uint32_t eflags;
3223 PGMPAGEMAPLOCK Lock;
3224
3225 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
3226 switch(param1.type)
3227 {
3228 case DISQPV_TYPE_ADDRESS:
3229 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, (RTRCUINTPTR)param1.val.val64);
3230#ifdef IN_RC
3231 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
3232#endif
3233
3234 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
3235 AssertRCReturn(rc, VERR_EM_INTERPRETER);
3236 break;
3237
3238 default:
3239 return VERR_EM_INTERPRETER;
3240 }
3241
3242 LogFlow(("XAdd %RGv=%p reg=%08llx\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2));
3243
3244#ifndef VBOX_COMPARE_IEM_AND_EM
3245 if (pDis->fPrefix & DISPREFIX_LOCK)
3246 eflags = EMEmulateLockXAdd(pvParam1, pvParamReg2, cbParamReg2);
3247 else
3248 eflags = EMEmulateXAdd(pvParam1, pvParamReg2, cbParamReg2);
3249#else /* VBOX_COMPARE_IEM_AND_EM */
3250 uint64_t u64;
3251 switch (cbParamReg2)
3252 {
3253 case 1: u64 = *(uint8_t *)pvParam1; break;
3254 case 2: u64 = *(uint16_t *)pvParam1; break;
3255 case 4: u64 = *(uint32_t *)pvParam1; break;
3256 default:
3257 case 8: u64 = *(uint64_t *)pvParam1; break;
3258 }
3259 eflags = EMEmulateXAdd(&u64, pvParamReg2, cbParamReg2);
3260 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, pDis->Param2.cb); AssertRCSuccess(rc2);
3261#endif /* VBOX_COMPARE_IEM_AND_EM */
3262
3263 LogFlow(("XAdd %RGv=%p reg=%08llx ZF=%d\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2, !!(eflags & X86_EFL_ZF) ));
3264
3265 /* Update guest's eflags and finish. */
3266 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
3267 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
3268
3269 *pcbSize = cbParamReg2;
3270 PGMPhysReleasePageMappingLock(pVM, &Lock);
3271 return VINF_SUCCESS;
3272#ifdef IN_RC
3273 }
3274 }
3275
3276 return VERR_EM_INTERPRETER;
3277#endif
3278}
3279#endif /* IN_RC */
3280
3281
3282/**
3283 * WBINVD Emulation.
3284 */
3285static int emInterpretWbInvd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3286{
3287 /* Nothing to do. */
3288 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3289 return VINF_SUCCESS;
3290}
3291
3292
3293/**
3294 * INVLPG Emulation.
3295 */
3296static VBOXSTRICTRC emInterpretInvlPg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3297{
3298 DISQPVPARAMVAL param1;
3299 RTGCPTR addr;
3300 NOREF(pvFault); NOREF(pVM); NOREF(pcbSize);
3301
3302 VBOXSTRICTRC rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3303 if(RT_FAILURE(rc))
3304 return VERR_EM_INTERPRETER;
3305
3306 switch(param1.type)
3307 {
3308 case DISQPV_TYPE_IMMEDIATE:
3309 case DISQPV_TYPE_ADDRESS:
3310 if(!(param1.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
3311 return VERR_EM_INTERPRETER;
3312 addr = (RTGCPTR)param1.val.val64;
3313 break;
3314
3315 default:
3316 return VERR_EM_INTERPRETER;
3317 }
3318
3319 /** @todo is addr always a flat linear address or ds based
3320 * (in absence of segment override prefixes)????
3321 */
3322#ifdef IN_RC
3323 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
3324#endif
3325 rc = PGMInvalidatePage(pVCpu, addr);
3326 if ( rc == VINF_SUCCESS
3327 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
3328 return VINF_SUCCESS;
3329 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
3330 ("%Rrc addr=%RGv\n", VBOXSTRICTRC_VAL(rc), addr),
3331 VERR_EM_INTERPRETER);
3332 return rc;
3333}
3334
3335/** @todo change all these EMInterpretXXX methods to VBOXSTRICTRC. */
3336
3337/**
3338 * CPUID Emulation.
3339 */
3340static int emInterpretCpuId(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3341{
3342 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3343 int rc = EMInterpretCpuId(pVM, pVCpu, pRegFrame);
3344 return rc;
3345}
3346
3347
3348/**
3349 * CLTS Emulation.
3350 */
3351static int emInterpretClts(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3352{
3353 NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3354 return EMInterpretCLTS(pVM, pVCpu);
3355}
3356
3357
3358/**
3359 * LMSW Emulation.
3360 */
3361static int emInterpretLmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3362{
3363 DISQPVPARAMVAL param1;
3364 uint32_t val;
3365 NOREF(pvFault); NOREF(pcbSize);
3366
3367 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3368 if(RT_FAILURE(rc))
3369 return VERR_EM_INTERPRETER;
3370
3371 switch(param1.type)
3372 {
3373 case DISQPV_TYPE_IMMEDIATE:
3374 case DISQPV_TYPE_ADDRESS:
3375 if(!(param1.flags & DISQPV_FLAG_16))
3376 return VERR_EM_INTERPRETER;
3377 val = param1.val.val32;
3378 break;
3379
3380 default:
3381 return VERR_EM_INTERPRETER;
3382 }
3383
3384 LogFlow(("emInterpretLmsw %x\n", val));
3385 return EMInterpretLMSW(pVM, pVCpu, pRegFrame, val);
3386}
3387
3388#ifdef EM_EMULATE_SMSW
3389/**
3390 * SMSW Emulation.
3391 */
3392static int emInterpretSmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3393{
3394 NOREF(pvFault); NOREF(pcbSize);
3395 DISQPVPARAMVAL param1;
3396 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
3397
3398 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3399 if(RT_FAILURE(rc))
3400 return VERR_EM_INTERPRETER;
3401
3402 switch(param1.type)
3403 {
3404 case DISQPV_TYPE_IMMEDIATE:
3405 if(param1.size != sizeof(uint16_t))
3406 return VERR_EM_INTERPRETER;
3407 LogFlow(("emInterpretSmsw %d <- cr0 (%x)\n", pDis->Param1.Base.idxGenReg, cr0));
3408 rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, cr0);
3409 break;
3410
3411 case DISQPV_TYPE_ADDRESS:
3412 {
3413 RTGCPTR pParam1;
3414
3415 /* Actually forced to 16 bits regardless of the operand size. */
3416 if(param1.size != sizeof(uint16_t))
3417 return VERR_EM_INTERPRETER;
3418
3419 pParam1 = (RTGCPTR)param1.val.val64;
3420 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
3421 LogFlow(("emInterpretSmsw %RGv <- cr0 (%x)\n", pParam1, cr0));
3422
3423 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &cr0, sizeof(uint16_t));
3424 if (RT_FAILURE(rc))
3425 {
3426 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
3427 return VERR_EM_INTERPRETER;
3428 }
3429 break;
3430 }
3431
3432 default:
3433 return VERR_EM_INTERPRETER;
3434 }
3435
3436 LogFlow(("emInterpretSmsw %x\n", cr0));
3437 return rc;
3438}
3439#endif
3440
3441/**
3442 * MOV CRx
3443 */
3444static int emInterpretMovCRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3445{
3446 NOREF(pvFault); NOREF(pcbSize);
3447 if ((pDis->Param1.fUse == DISUSE_REG_GEN32 || pDis->Param1.fUse == DISUSE_REG_GEN64) && pDis->Param2.fUse == DISUSE_REG_CR)
3448 return EMInterpretCRxRead(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxGenReg, pDis->Param2.Base.idxCtrlReg);
3449
3450 if (pDis->Param1.fUse == DISUSE_REG_CR && (pDis->Param2.fUse == DISUSE_REG_GEN32 || pDis->Param2.fUse == DISUSE_REG_GEN64))
3451 return EMInterpretCRxWrite(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxCtrlReg, pDis->Param2.Base.idxGenReg);
3452
3453 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
3454}
3455
3456
3457/**
3458 * MOV DRx
3459 */
3460static int emInterpretMovDRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3461{
3462 int rc = VERR_EM_INTERPRETER;
3463 NOREF(pvFault); NOREF(pcbSize);
3464
3465 if((pDis->Param1.fUse == DISUSE_REG_GEN32 || pDis->Param1.fUse == DISUSE_REG_GEN64) && pDis->Param2.fUse == DISUSE_REG_DBG)
3466 {
3467 rc = EMInterpretDRxRead(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxGenReg, pDis->Param2.Base.idxDbgReg);
3468 }
3469 else
3470 if(pDis->Param1.fUse == DISUSE_REG_DBG && (pDis->Param2.fUse == DISUSE_REG_GEN32 || pDis->Param2.fUse == DISUSE_REG_GEN64))
3471 {
3472 rc = EMInterpretDRxWrite(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxDbgReg, pDis->Param2.Base.idxGenReg);
3473 }
3474 else
3475 AssertMsgFailed(("Unexpected debug register move\n"));
3476
3477 return rc;
3478}
3479
3480
3481/**
3482 * LLDT Emulation.
3483 */
3484static int emInterpretLLdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3485{
3486 DISQPVPARAMVAL param1;
3487 RTSEL sel;
3488 NOREF(pVM); NOREF(pvFault); NOREF(pcbSize);
3489
3490 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3491 if(RT_FAILURE(rc))
3492 return VERR_EM_INTERPRETER;
3493
3494 switch(param1.type)
3495 {
3496 case DISQPV_TYPE_ADDRESS:
3497 return VERR_EM_INTERPRETER; //feeling lazy right now
3498
3499 case DISQPV_TYPE_IMMEDIATE:
3500 if(!(param1.flags & DISQPV_FLAG_16))
3501 return VERR_EM_INTERPRETER;
3502 sel = (RTSEL)param1.val.val16;
3503 break;
3504
3505 default:
3506 return VERR_EM_INTERPRETER;
3507 }
3508
3509#ifdef IN_RING0
3510 /* Only for the VT-x real-mode emulation case. */
3511 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
3512 CPUMSetGuestLDTR(pVCpu, sel);
3513 return VINF_SUCCESS;
3514#else
3515 if (sel == 0)
3516 {
3517 if (CPUMGetHyperLDTR(pVCpu) == 0)
3518 {
3519 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
3520 return VINF_SUCCESS;
3521 }
3522 }
3523 //still feeling lazy
3524 return VERR_EM_INTERPRETER;
3525#endif
3526}
3527
3528#ifdef IN_RING0
3529/**
3530 * LIDT/LGDT Emulation.
3531 */
3532static int emInterpretLIGdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3533{
3534 DISQPVPARAMVAL param1;
3535 RTGCPTR pParam1;
3536 X86XDTR32 dtr32;
3537 NOREF(pvFault); NOREF(pcbSize);
3538
3539 Log(("Emulate %s at %RGv\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip));
3540
3541 /* Only for the VT-x real-mode emulation case. */
3542 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
3543
3544 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3545 if(RT_FAILURE(rc))
3546 return VERR_EM_INTERPRETER;
3547
3548 switch(param1.type)
3549 {
3550 case DISQPV_TYPE_ADDRESS:
3551 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, param1.val.val16);
3552 break;
3553
3554 default:
3555 return VERR_EM_INTERPRETER;
3556 }
3557
3558 rc = emRamRead(pVM, pVCpu, pRegFrame, &dtr32, pParam1, sizeof(dtr32));
3559 AssertRCReturn(rc, VERR_EM_INTERPRETER);
3560
3561 if (!(pDis->fPrefix & DISPREFIX_OPSIZE))
3562 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
3563
3564 if (pDis->pCurInstr->uOpcode == OP_LIDT)
3565 CPUMSetGuestIDTR(pVCpu, dtr32.uAddr, dtr32.cb);
3566 else
3567 CPUMSetGuestGDTR(pVCpu, dtr32.uAddr, dtr32.cb);
3568
3569 return VINF_SUCCESS;
3570}
3571#endif
3572
3573
3574#ifdef IN_RC
3575/**
3576 * STI Emulation.
3577 *
3578 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
3579 */
3580static int emInterpretSti(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3581{
3582 NOREF(pcbSize);
3583 PPATMGCSTATE pGCState = PATMGetGCState(pVM);
3584
3585 if(!pGCState)
3586 {
3587 Assert(pGCState);
3588 return VERR_EM_INTERPRETER;
3589 }
3590 pGCState->uVMFlags |= X86_EFL_IF;
3591
3592 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
3593 Assert(pvFault == SELMToFlat(pVM, DISSELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
3594
3595 pVCpu->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pDis->cbInstr;
3596 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3597
3598 return VINF_SUCCESS;
3599}
3600#endif /* IN_RC */
3601
3602
3603/**
3604 * HLT Emulation.
3605 */
3606static VBOXSTRICTRC
3607emInterpretHlt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3608{
3609 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3610 return VINF_EM_HALT;
3611}
3612
3613
3614/**
3615 * RDTSC Emulation.
3616 */
3617static int emInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3618{
3619 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3620 return EMInterpretRdtsc(pVM, pVCpu, pRegFrame);
3621}
3622
3623/**
3624 * RDPMC Emulation
3625 */
3626static int emInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3627{
3628 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3629 return EMInterpretRdpmc(pVM, pVCpu, pRegFrame);
3630}
3631
3632
3633static int emInterpretMonitor(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3634{
3635 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3636 return EMInterpretMonitor(pVM, pVCpu, pRegFrame);
3637}
3638
3639
3640static VBOXSTRICTRC emInterpretMWait(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3641{
3642 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3643 return EMInterpretMWait(pVM, pVCpu, pRegFrame);
3644}
3645
3646
3647/**
3648 * RDMSR Emulation.
3649 */
3650static int emInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3651{
3652 /* Note: The Intel manual claims there's a REX version of RDMSR that's slightly
3653 different, so we play safe by completely disassembling the instruction. */
3654 Assert(!(pDis->fPrefix & DISPREFIX_REX));
3655 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3656 return EMInterpretRdmsr(pVM, pVCpu, pRegFrame);
3657}
3658
3659
3660/**
3661 * WRMSR Emulation.
3662 */
3663static int emInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3664{
3665 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3666 return EMInterpretWrmsr(pVM, pVCpu, pRegFrame);
3667}
3668
3669
3670/**
3671 * Internal worker.
3672 * @copydoc emInterpretInstructionCPUOuter
3673 */
3674DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
3675 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize)
3676{
3677 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
3678 Assert(enmCodeType == EMCODETYPE_SUPERVISOR || enmCodeType == EMCODETYPE_ALL);
3679 Assert(pcbSize);
3680 *pcbSize = 0;
3681
3682 if (enmCodeType == EMCODETYPE_SUPERVISOR)
3683 {
3684 /*
3685 * Only supervisor guest code!!
3686 * And no complicated prefixes.
3687 */
3688 /* Get the current privilege level. */
3689 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
3690#ifdef VBOX_WITH_RAW_RING1
3691 if ( !EMIsRawRing1Enabled(pVM)
3692 || cpl > 1
3693 || pRegFrame->eflags.Bits.u2IOPL > cpl
3694 )
3695#endif
3696 {
3697 if ( cpl != 0
3698 && pDis->pCurInstr->uOpcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
3699 {
3700 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
3701 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
3702 return VERR_EM_INTERPRETER;
3703 }
3704 }
3705 }
3706 else
3707 Log2(("emInterpretInstructionCPU allowed to interpret user-level code!!\n"));
3708
3709#ifdef IN_RC
3710 if ( (pDis->fPrefix & (DISPREFIX_REPNE | DISPREFIX_REP))
3711 || ( (pDis->fPrefix & DISPREFIX_LOCK)
3712 && pDis->pCurInstr->uOpcode != OP_CMPXCHG
3713 && pDis->pCurInstr->uOpcode != OP_CMPXCHG8B
3714 && pDis->pCurInstr->uOpcode != OP_XADD
3715 && pDis->pCurInstr->uOpcode != OP_OR
3716 && pDis->pCurInstr->uOpcode != OP_AND
3717 && pDis->pCurInstr->uOpcode != OP_XOR
3718 && pDis->pCurInstr->uOpcode != OP_BTR
3719 )
3720 )
3721#else
3722 if ( (pDis->fPrefix & DISPREFIX_REPNE)
3723 || ( (pDis->fPrefix & DISPREFIX_REP)
3724 && pDis->pCurInstr->uOpcode != OP_STOSWD
3725 )
3726 || ( (pDis->fPrefix & DISPREFIX_LOCK)
3727 && pDis->pCurInstr->uOpcode != OP_OR
3728 && pDis->pCurInstr->uOpcode != OP_AND
3729 && pDis->pCurInstr->uOpcode != OP_XOR
3730 && pDis->pCurInstr->uOpcode != OP_BTR
3731 && pDis->pCurInstr->uOpcode != OP_CMPXCHG
3732 && pDis->pCurInstr->uOpcode != OP_CMPXCHG8B
3733 )
3734 )
3735#endif
3736 {
3737 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
3738 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
3739 Log4(("EM: Refuse %u on REP/REPNE/LOCK prefix grounds\n", pDis->pCurInstr->uOpcode));
3740 return VERR_EM_INTERPRETER;
3741 }
3742
3743#if HC_ARCH_BITS == 32
3744 /*
3745 * Unable to emulate most >4 bytes accesses in 32 bits mode.
3746 * Whitelisted instructions are safe.
3747 */
3748 if ( pDis->Param1.cb > 4
3749 && CPUMIsGuestIn64BitCode(pVCpu))
3750 {
3751 uint32_t uOpCode = pDis->pCurInstr->uOpcode;
3752 if ( uOpCode != OP_STOSWD
3753 && uOpCode != OP_MOV
3754 && uOpCode != OP_CMPXCHG8B
3755 && uOpCode != OP_XCHG
3756 && uOpCode != OP_BTS
3757 && uOpCode != OP_BTR
3758 && uOpCode != OP_BTC
3759# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0
3760 && uOpCode != OP_CMPXCHG /* solaris */
3761 && uOpCode != OP_AND /* windows */
3762 && uOpCode != OP_OR /* windows */
3763 && uOpCode != OP_XOR /* because we can */
3764 && uOpCode != OP_ADD /* windows (dripple) */
3765 && uOpCode != OP_ADC /* because we can */
3766 && uOpCode != OP_SUB /* because we can */
3767 /** @todo OP_BTS or is that a different kind of failure? */
3768# endif
3769 )
3770 {
3771# ifdef VBOX_WITH_STATISTICS
3772 switch (pDis->pCurInstr->uOpcode)
3773 {
3774# define INTERPRET_FAILED_CASE(opcode, Instr) \
3775 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
3776 INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
3777 INTERPRET_FAILED_CASE(OP_DEC,Dec);
3778 INTERPRET_FAILED_CASE(OP_INC,Inc);
3779 INTERPRET_FAILED_CASE(OP_POP,Pop);
3780 INTERPRET_FAILED_CASE(OP_OR, Or);
3781 INTERPRET_FAILED_CASE(OP_XOR,Xor);
3782 INTERPRET_FAILED_CASE(OP_AND,And);
3783 INTERPRET_FAILED_CASE(OP_MOV,Mov);
3784 INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
3785 INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
3786 INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
3787 INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
3788 INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
3789 INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
3790 INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
3791 INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
3792 INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
3793 INTERPRET_FAILED_CASE(OP_CLTS,Clts);
3794 INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
3795 INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
3796 INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
3797 INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
3798 INTERPRET_FAILED_CASE(OP_ADD,Add);
3799 INTERPRET_FAILED_CASE(OP_SUB,Sub);
3800 INTERPRET_FAILED_CASE(OP_ADC,Adc);
3801 INTERPRET_FAILED_CASE(OP_BTR,Btr);
3802 INTERPRET_FAILED_CASE(OP_BTS,Bts);
3803 INTERPRET_FAILED_CASE(OP_BTC,Btc);
3804 INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
3805 INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
3806 INTERPRET_FAILED_CASE(OP_STI, Sti);
3807 INTERPRET_FAILED_CASE(OP_XADD,XAdd);
3808 INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
3809 INTERPRET_FAILED_CASE(OP_HLT, Hlt);
3810 INTERPRET_FAILED_CASE(OP_IRET,Iret);
3811 INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
3812 INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
3813# undef INTERPRET_FAILED_CASE
3814 default:
3815 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3816 break;
3817 }
3818# endif /* VBOX_WITH_STATISTICS */
3819 Log4(("EM: Refuse %u on grounds of accessing %u bytes\n", pDis->pCurInstr->uOpcode, pDis->Param1.cb));
3820 return VERR_EM_INTERPRETER;
3821 }
3822 }
3823#endif
3824
3825 VBOXSTRICTRC rc;
3826#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
3827 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pDis)));
3828#endif
3829 switch (pDis->pCurInstr->uOpcode)
3830 {
3831 /*
3832 * Macros for generating the right case statements.
3833 */
3834# ifndef VBOX_COMPARE_IEM_AND_EM
3835# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3836 case opcode:\
3837 if (pDis->fPrefix & DISPREFIX_LOCK) \
3838 rc = emInterpretLock##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
3839 else \
3840 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3841 if (RT_SUCCESS(rc)) \
3842 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3843 else \
3844 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3845 return rc
3846# else /* VBOX_COMPARE_IEM_AND_EM */
3847# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3848 case opcode:\
3849 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3850 if (RT_SUCCESS(rc)) \
3851 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3852 else \
3853 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3854 return rc
3855# endif /* VBOX_COMPARE_IEM_AND_EM */
3856
3857#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
3858 case opcode:\
3859 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3860 if (RT_SUCCESS(rc)) \
3861 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3862 else \
3863 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3864 return rc
3865
3866#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
3867 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
3868#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3869 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
3870
3871#define INTERPRET_CASE(opcode, Instr) \
3872 case opcode:\
3873 rc = emInterpret##Instr(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3874 if (RT_SUCCESS(rc)) \
3875 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3876 else \
3877 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3878 return rc
3879
3880#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
3881 case opcode:\
3882 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3883 if (RT_SUCCESS(rc)) \
3884 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3885 else \
3886 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3887 return rc
3888
3889#define INTERPRET_STAT_CASE(opcode, Instr) \
3890 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
3891
3892 /*
3893 * The actual case statements.
3894 */
3895 INTERPRET_CASE(OP_XCHG,Xchg);
3896 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
3897 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3898 INTERPRET_CASE(OP_POP,Pop);
3899 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3900 INTERPRET_CASE_EX_LOCK_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor, EMEmulateLockXor);
3901 INTERPRET_CASE_EX_LOCK_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd, EMEmulateLockAnd);
3902 INTERPRET_CASE(OP_MOV,Mov);
3903#ifndef IN_RC
3904 INTERPRET_CASE(OP_STOSWD,StosWD);
3905#endif
3906 INTERPRET_CASE(OP_INVLPG,InvlPg);
3907 INTERPRET_CASE(OP_CPUID,CpuId);
3908 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3909 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3910#ifdef IN_RING0
3911 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3912 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3913#endif
3914 INTERPRET_CASE(OP_LLDT,LLdt);
3915 INTERPRET_CASE(OP_LMSW,Lmsw);
3916#ifdef EM_EMULATE_SMSW
3917 INTERPRET_CASE(OP_SMSW,Smsw);
3918#endif
3919 INTERPRET_CASE(OP_CLTS,Clts);
3920 INTERPRET_CASE(OP_MONITOR, Monitor);
3921 INTERPRET_CASE(OP_MWAIT, MWait);
3922 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3923 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3924 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3925 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3926 INTERPRET_CASE(OP_ADC,Adc);
3927 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3928 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3929 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3930 INTERPRET_CASE(OP_RDPMC,Rdpmc);
3931 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3932 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3933#ifdef IN_RC
3934 INTERPRET_CASE(OP_STI,Sti);
3935 INTERPRET_CASE(OP_XADD, XAdd);
3936 INTERPRET_CASE(OP_IRET,Iret);
3937#endif
3938 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3939 INTERPRET_CASE(OP_HLT,Hlt);
3940 INTERPRET_CASE(OP_WBINVD,WbInvd);
3941#ifdef VBOX_WITH_STATISTICS
3942# ifndef IN_RC
3943 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3944# endif
3945 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3946#endif
3947
3948 default:
3949 Log3(("emInterpretInstructionCPU: opcode=%d\n", pDis->pCurInstr->uOpcode));
3950 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3951 return VERR_EM_INTERPRETER;
3952
3953#undef INTERPRET_CASE_EX_PARAM2
3954#undef INTERPRET_STAT_CASE
3955#undef INTERPRET_CASE_EX
3956#undef INTERPRET_CASE
3957 } /* switch (opcode) */
3958 /* not reached */
3959}
3960
3961/**
3962 * Interprets the current instruction using the supplied DISCPUSTATE structure.
3963 *
3964 * EIP is *NOT* updated!
3965 *
3966 * @returns VBox strict status code.
3967 * @retval VINF_* Scheduling instructions. When these are returned, it
3968 * starts to get a bit tricky to know whether code was
3969 * executed or not... We'll address this when it becomes a problem.
3970 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3971 * @retval VERR_* Fatal errors.
3972 *
3973 * @param pVCpu Pointer to the VMCPU.
3974 * @param pDis The disassembler cpu state for the instruction to be
3975 * interpreted.
3976 * @param pRegFrame The register frame. EIP is *NOT* changed!
3977 * @param pvFault The fault address (CR2).
3978 * @param pcbSize Size of the write (if applicable).
3979 * @param enmCodeType Code type (user/supervisor)
3980 *
3981 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
3982 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
3983 * to worry about e.g. invalid modrm combinations (!)
3984 *
3985 * @todo At this time we do NOT check if the instruction overwrites vital information.
3986 * Make sure this can't happen!! (will add some assertions/checks later)
3987 */
3988DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPUOuter(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
3989 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize)
3990{
3991 STAM_PROFILE_START(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
3992 VBOXSTRICTRC rc = emInterpretInstructionCPU(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, pRegFrame, pvFault, enmCodeType, pcbSize);
3993 STAM_PROFILE_STOP(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
3994 if (RT_SUCCESS(rc))
3995 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
3996 else
3997 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
3998 return rc;
3999}
4000
4001
4002#endif /* !VBOX_WITH_IEM */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette