VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 15184

Last change on this file since 15184 was 15184, checked in by vboxsync, 16 years ago

typos

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 100.8 KB
Line 
1/* $Id: EMAll.cpp 15184 2008-12-09 14:56:56Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_EM
26#include <VBox/em.h>
27#include <VBox/mm.h>
28#include <VBox/selm.h>
29#include <VBox/patm.h>
30#include <VBox/csam.h>
31#include <VBox/pgm.h>
32#include <VBox/iom.h>
33#include <VBox/stam.h>
34#include "EMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/vmm.h>
37#include <VBox/hwaccm.h>
38#include <VBox/tm.h>
39#include <VBox/pdmapi.h>
40
41#include <VBox/param.h>
42#include <VBox/err.h>
43#include <VBox/dis.h>
44#include <VBox/disopcode.h>
45#include <VBox/log.h>
46#include <iprt/assert.h>
47#include <iprt/asm.h>
48#include <iprt/string.h>
49
50
51/*******************************************************************************
52* Defined Constants And Macros *
53*******************************************************************************/
54/** @def EM_ASSERT_FAULT_RETURN
55 * Safety check.
56 *
57 * Could in theory it misfire on a cross page boundary access...
58 *
59 * Currently disabled because the CSAM (+ PATM) patch monitoring occationally
60 * turns up an alias page instead of the original faulting one and annoying the
61 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
62 */
63#if 0
64# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
65#else
66# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
67#endif
68
69
70/*******************************************************************************
71* Internal Functions *
72*******************************************************************************/
73DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize);
74
75
76
77/**
78 * Get the current execution manager status.
79 *
80 * @returns Current status.
81 */
82VMMDECL(EMSTATE) EMGetState(PVM pVM)
83{
84 return pVM->em.s.enmState;
85}
86
87#ifndef IN_RC
88
89/**
90 * Read callback for disassembly function; supports reading bytes that cross a page boundary
91 *
92 * @returns VBox status code.
93 * @param pSrc GC source pointer
94 * @param pDest HC destination pointer
95 * @param cb Number of bytes to read
96 * @param dwUserdata Callback specific user data (pCpu)
97 *
98 */
99DECLCALLBACK(int) EMReadBytes(RTUINTPTR pSrc, uint8_t *pDest, unsigned cb, void *pvUserdata)
100{
101 DISCPUSTATE *pCpu = (DISCPUSTATE *)pvUserdata;
102 PVM pVM = (PVM)pCpu->apvUserData[0];
103# ifdef IN_RING0
104 int rc = PGMPhysSimpleReadGCPtr(pVM, pDest, pSrc, cb);
105 AssertMsgRC(rc, ("PGMPhysSimpleReadGCPtr failed for pSrc=%RGv cb=%x\n", pSrc, cb));
106# else /* IN_RING3 */
107 if (!PATMIsPatchGCAddr(pVM, pSrc))
108 {
109 int rc = PGMPhysSimpleReadGCPtr(pVM, pDest, pSrc, cb);
110 AssertRC(rc);
111 }
112 else
113 {
114 for (uint32_t i = 0; i < cb; i++)
115 {
116 uint8_t opcode;
117 if (RT_SUCCESS(PATMR3QueryOpcode(pVM, (RTGCPTR)pSrc + i, &opcode)))
118 {
119 *(pDest+i) = opcode;
120 }
121 }
122 }
123# endif /* IN_RING3 */
124 return VINF_SUCCESS;
125}
126
127DECLINLINE(int) emDisCoreOne(PVM pVM, DISCPUSTATE *pCpu, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
128{
129 return DISCoreOneEx(InstrGC, pCpu->mode, EMReadBytes, pVM, pCpu, pOpsize);
130}
131
132#else /* IN_RC */
133
134DECLINLINE(int) emDisCoreOne(PVM pVM, DISCPUSTATE *pCpu, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
135{
136 return DISCoreOne(pCpu, InstrGC, pOpsize);
137}
138
139#endif /* IN_RC */
140
141
142/**
143 * Disassembles one instruction.
144 *
145 * @param pVM The VM handle.
146 * @param pCtxCore The context core (used for both the mode and instruction).
147 * @param pCpu Where to return the parsed instruction info.
148 * @param pcbInstr Where to return the instruction size. (optional)
149 */
150VMMDECL(int) EMInterpretDisasOne(PVM pVM, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, unsigned *pcbInstr)
151{
152 RTGCPTR GCPtrInstr;
153 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
154 if (RT_FAILURE(rc))
155 {
156 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
157 pCtxCore->cs, (RTGCPTR)pCtxCore->rip, pCtxCore->ss & X86_SEL_RPL, rc));
158 return rc;
159 }
160 return EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pCpu, pcbInstr);
161}
162
163
164/**
165 * Disassembles one instruction.
166 *
167 * This is used by internally by the interpreter and by trap/access handlers.
168 *
169 * @param pVM The VM handle.
170 * @param GCPtrInstr The flat address of the instruction.
171 * @param pCtxCore The context core (used to determin the cpu mode).
172 * @param pCpu Where to return the parsed instruction info.
173 * @param pcbInstr Where to return the instruction size. (optional)
174 */
175VMMDECL(int) EMInterpretDisasOneEx(PVM pVM, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, unsigned *pcbInstr)
176{
177 int rc = DISCoreOneEx(GCPtrInstr, SELMGetCpuModeFromSelector(pVM, pCtxCore->eflags, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid),
178#ifdef IN_RC
179 NULL, NULL,
180#else
181 EMReadBytes, pVM,
182#endif
183 pCpu, pcbInstr);
184 if (RT_SUCCESS(rc))
185 return VINF_SUCCESS;
186 AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
187 return VERR_INTERNAL_ERROR;
188}
189
190
191/**
192 * Interprets the current instruction.
193 *
194 * @returns VBox status code.
195 * @retval VINF_* Scheduling instructions.
196 * @retval VERR_EM_INTERPRETER Something we can't cope with.
197 * @retval VERR_* Fatal errors.
198 *
199 * @param pVM The VM handle.
200 * @param pRegFrame The register frame.
201 * Updates the EIP if an instruction was executed successfully.
202 * @param pvFault The fault address (CR2).
203 * @param pcbSize Size of the write (if applicable).
204 *
205 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
206 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
207 * to worry about e.g. invalid modrm combinations (!)
208 */
209VMMDECL(int) EMInterpretInstruction(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
210{
211 RTGCPTR pbCode;
212
213 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
214 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
215 if (RT_SUCCESS(rc))
216 {
217 uint32_t cbOp;
218 DISCPUSTATE Cpu;
219 Cpu.mode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
220 rc = emDisCoreOne(pVM, &Cpu, (RTGCUINTPTR)pbCode, &cbOp);
221 if (RT_SUCCESS(rc))
222 {
223 Assert(cbOp == Cpu.opsize);
224 rc = EMInterpretInstructionCPU(pVM, &Cpu, pRegFrame, pvFault, pcbSize);
225 if (RT_SUCCESS(rc))
226 {
227 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
228 }
229 return rc;
230 }
231 }
232 return VERR_EM_INTERPRETER;
233}
234
235
236/**
237 * Interprets the current instruction using the supplied DISCPUSTATE structure.
238 *
239 * EIP is *NOT* updated!
240 *
241 * @returns VBox status code.
242 * @retval VINF_* Scheduling instructions. When these are returned, it
243 * starts to get a bit tricky to know whether code was
244 * executed or not... We'll address this when it becomes a problem.
245 * @retval VERR_EM_INTERPRETER Something we can't cope with.
246 * @retval VERR_* Fatal errors.
247 *
248 * @param pVM The VM handle.
249 * @param pCpu The disassembler cpu state for the instruction to be interpreted.
250 * @param pRegFrame The register frame. EIP is *NOT* changed!
251 * @param pvFault The fault address (CR2).
252 * @param pcbSize Size of the write (if applicable).
253 *
254 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
255 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
256 * to worry about e.g. invalid modrm combinations (!)
257 *
258 * @todo At this time we do NOT check if the instruction overwrites vital information.
259 * Make sure this can't happen!! (will add some assertions/checks later)
260 */
261VMMDECL(int) EMInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
262{
263 STAM_PROFILE_START(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
264 int rc = emInterpretInstructionCPU(pVM, pCpu, pRegFrame, pvFault, pcbSize);
265 STAM_PROFILE_STOP(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
266 if (RT_SUCCESS(rc))
267 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
268 else
269 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
270 return rc;
271}
272
273
274/**
275 * Interpret a port I/O instruction.
276 *
277 * @returns VBox status code suitable for scheduling.
278 * @param pVM The VM handle.
279 * @param pCtxCore The context core. This will be updated on successful return.
280 * @param pCpu The instruction to interpret.
281 * @param cbOp The size of the instruction.
282 * @remark This may raise exceptions.
283 */
284VMMDECL(int) EMInterpretPortIO(PVM pVM, PCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, uint32_t cbOp)
285{
286 /*
287 * Hand it on to IOM.
288 */
289#ifdef IN_RC
290 int rc = IOMGCIOPortHandler(pVM, pCtxCore, pCpu);
291 if (IOM_SUCCESS(rc))
292 pCtxCore->rip += cbOp;
293 return rc;
294#else
295 AssertReleaseMsgFailed(("not implemented\n"));
296 return VERR_NOT_IMPLEMENTED;
297#endif
298}
299
300
301DECLINLINE(int) emRamRead(PVM pVM, void *pDest, RTGCPTR GCSrc, uint32_t cb)
302{
303#ifdef IN_RC
304 int rc = MMGCRamRead(pVM, pDest, (void *)GCSrc, cb);
305 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
306 return rc;
307 /*
308 * The page pool cache may end up here in some cases because it
309 * flushed one of the shadow mappings used by the trapping
310 * instruction and it either flushed the TLB or the CPU reused it.
311 */
312 RTGCPHYS GCPhys;
313 rc = PGMPhysGCPtr2GCPhys(pVM, GCSrc, &GCPhys);
314 AssertRCReturn(rc, rc);
315 PGMPhysRead(pVM, GCPhys, pDest, cb);
316 return VINF_SUCCESS;
317#else
318 return PGMPhysReadGCPtr(pVM, pDest, GCSrc, cb);
319#endif
320}
321
322
323DECLINLINE(int) emRamWrite(PVM pVM, RTGCPTR GCDest, void *pSrc, uint32_t cb)
324{
325#ifdef IN_RC
326 int rc = MMGCRamWrite(pVM, (void *)GCDest, pSrc, cb);
327 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
328 return rc;
329 /*
330 * The page pool cache may end up here in some cases because it
331 * flushed one of the shadow mappings used by the trapping
332 * instruction and it either flushed the TLB or the CPU reused it.
333 * We want to play safe here, verifying that we've got write
334 * access doesn't cost us much (see PGMPhysGCPtr2GCPhys()).
335 */
336 uint64_t fFlags;
337 RTGCPHYS GCPhys;
338 rc = PGMGstGetPage(pVM, GCDest, &fFlags, &GCPhys);
339 if (RT_FAILURE(rc))
340 return rc;
341 if ( !(fFlags & X86_PTE_RW)
342 && (CPUMGetGuestCR0(pVM) & X86_CR0_WP))
343 return VERR_ACCESS_DENIED;
344
345 PGMPhysWrite(pVM, GCPhys + ((RTGCUINTPTR)GCDest & PAGE_OFFSET_MASK), pSrc, cb);
346 return VINF_SUCCESS;
347
348#else
349 return PGMPhysWriteGCPtr(pVM, GCDest, pSrc, cb);
350#endif
351}
352
353
354/** Convert sel:addr to a flat GC address. */
355DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, POP_PARAMETER pParam, RTGCPTR pvAddr)
356{
357 DIS_SELREG enmPrefixSeg = DISDetectSegReg(pCpu, pParam);
358 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
359}
360
361
362#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
363/**
364 * Get the mnemonic for the disassembled instruction.
365 *
366 * GC/R0 doesn't include the strings in the DIS tables because
367 * of limited space.
368 */
369static const char *emGetMnemonic(PDISCPUSTATE pCpu)
370{
371 switch (pCpu->pCurInstr->opcode)
372 {
373 case OP_XCHG: return "Xchg";
374 case OP_DEC: return "Dec";
375 case OP_INC: return "Inc";
376 case OP_POP: return "Pop";
377 case OP_OR: return "Or";
378 case OP_AND: return "And";
379 case OP_MOV: return "Mov";
380 case OP_INVLPG: return "InvlPg";
381 case OP_CPUID: return "CpuId";
382 case OP_MOV_CR: return "MovCRx";
383 case OP_MOV_DR: return "MovDRx";
384 case OP_LLDT: return "LLdt";
385 case OP_LGDT: return "LGdt";
386 case OP_LIDT: return "LGdt";
387 case OP_CLTS: return "Clts";
388 case OP_MONITOR: return "Monitor";
389 case OP_MWAIT: return "MWait";
390 case OP_RDMSR: return "Rdmsr";
391 case OP_WRMSR: return "Wrmsr";
392 case OP_ADD: return "Add";
393 case OP_ADC: return "Adc";
394 case OP_SUB: return "Sub";
395 case OP_SBB: return "Sbb";
396 case OP_RDTSC: return "Rdtsc";
397 case OP_STI: return "Sti";
398 case OP_XADD: return "XAdd";
399 case OP_HLT: return "Hlt";
400 case OP_IRET: return "Iret";
401 case OP_MOVNTPS: return "MovNTPS";
402 case OP_STOSWD: return "StosWD";
403 case OP_WBINVD: return "WbInvd";
404 case OP_XOR: return "Xor";
405 case OP_BTR: return "Btr";
406 case OP_BTS: return "Bts";
407 case OP_BTC: return "Btc";
408 case OP_LMSW: return "Lmsw";
409 case OP_CMPXCHG: return pCpu->prefix & PREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
410 case OP_CMPXCHG8B: return pCpu->prefix & PREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
411
412 default:
413 Log(("Unknown opcode %d\n", pCpu->pCurInstr->opcode));
414 return "???";
415 }
416}
417#endif /* VBOX_STRICT || LOG_ENABLED */
418
419
420/**
421 * XCHG instruction emulation.
422 */
423static int emInterpretXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
424{
425 OP_PARAMVAL param1, param2;
426
427 /* Source to make DISQueryParamVal read the register value - ugly hack */
428 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
429 if(RT_FAILURE(rc))
430 return VERR_EM_INTERPRETER;
431
432 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
433 if(RT_FAILURE(rc))
434 return VERR_EM_INTERPRETER;
435
436#ifdef IN_RC
437 if (TRPMHasTrap(pVM))
438 {
439 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
440 {
441#endif
442 RTGCPTR pParam1 = 0, pParam2 = 0;
443 uint64_t valpar1, valpar2;
444
445 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
446 switch(param1.type)
447 {
448 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
449 valpar1 = param1.val.val64;
450 break;
451
452 case PARMTYPE_ADDRESS:
453 pParam1 = (RTGCPTR)param1.val.val64;
454 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
455 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
456 rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
457 if (RT_FAILURE(rc))
458 {
459 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
460 return VERR_EM_INTERPRETER;
461 }
462 break;
463
464 default:
465 AssertFailed();
466 return VERR_EM_INTERPRETER;
467 }
468
469 switch(param2.type)
470 {
471 case PARMTYPE_ADDRESS:
472 pParam2 = (RTGCPTR)param2.val.val64;
473 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param2, pParam2);
474 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
475 rc = emRamRead(pVM, &valpar2, pParam2, param2.size);
476 if (RT_FAILURE(rc))
477 {
478 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
479 }
480 break;
481
482 case PARMTYPE_IMMEDIATE:
483 valpar2 = param2.val.val64;
484 break;
485
486 default:
487 AssertFailed();
488 return VERR_EM_INTERPRETER;
489 }
490
491 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
492 if (pParam1 == 0)
493 {
494 Assert(param1.type == PARMTYPE_IMMEDIATE); /* register actually */
495 switch(param1.size)
496 {
497 case 1: //special case for AH etc
498 rc = DISWriteReg8(pRegFrame, pCpu->param1.base.reg_gen, (uint8_t )valpar2); break;
499 case 2: rc = DISWriteReg16(pRegFrame, pCpu->param1.base.reg_gen, (uint16_t)valpar2); break;
500 case 4: rc = DISWriteReg32(pRegFrame, pCpu->param1.base.reg_gen, (uint32_t)valpar2); break;
501 case 8: rc = DISWriteReg64(pRegFrame, pCpu->param1.base.reg_gen, valpar2); break;
502 default: AssertFailedReturn(VERR_EM_INTERPRETER);
503 }
504 if (RT_FAILURE(rc))
505 return VERR_EM_INTERPRETER;
506 }
507 else
508 {
509 rc = emRamWrite(pVM, pParam1, &valpar2, param1.size);
510 if (RT_FAILURE(rc))
511 {
512 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
513 return VERR_EM_INTERPRETER;
514 }
515 }
516
517 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
518 if (pParam2 == 0)
519 {
520 Assert(param2.type == PARMTYPE_IMMEDIATE); /* register actually */
521 switch(param2.size)
522 {
523 case 1: //special case for AH etc
524 rc = DISWriteReg8(pRegFrame, pCpu->param2.base.reg_gen, (uint8_t )valpar1); break;
525 case 2: rc = DISWriteReg16(pRegFrame, pCpu->param2.base.reg_gen, (uint16_t)valpar1); break;
526 case 4: rc = DISWriteReg32(pRegFrame, pCpu->param2.base.reg_gen, (uint32_t)valpar1); break;
527 case 8: rc = DISWriteReg64(pRegFrame, pCpu->param2.base.reg_gen, valpar1); break;
528 default: AssertFailedReturn(VERR_EM_INTERPRETER);
529 }
530 if (RT_FAILURE(rc))
531 return VERR_EM_INTERPRETER;
532 }
533 else
534 {
535 rc = emRamWrite(pVM, pParam2, &valpar1, param2.size);
536 if (RT_FAILURE(rc))
537 {
538 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
539 return VERR_EM_INTERPRETER;
540 }
541 }
542
543 *pcbSize = param2.size;
544 return VINF_SUCCESS;
545#ifdef IN_RC
546 }
547 }
548#endif
549 return VERR_EM_INTERPRETER;
550}
551
552
553/**
554 * INC and DEC emulation.
555 */
556static int emInterpretIncDec(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
557 PFNEMULATEPARAM2 pfnEmulate)
558{
559 OP_PARAMVAL param1;
560
561 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
562 if(RT_FAILURE(rc))
563 return VERR_EM_INTERPRETER;
564
565#ifdef IN_RC
566 if (TRPMHasTrap(pVM))
567 {
568 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
569 {
570#endif
571 RTGCPTR pParam1 = 0;
572 uint64_t valpar1;
573
574 if (param1.type == PARMTYPE_ADDRESS)
575 {
576 pParam1 = (RTGCPTR)param1.val.val64;
577 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
578#ifdef IN_RC
579 /* Safety check (in theory it could cross a page boundary and fault there though) */
580 AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
581#endif
582 rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
583 if (RT_FAILURE(rc))
584 {
585 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
586 return VERR_EM_INTERPRETER;
587 }
588 }
589 else
590 {
591 AssertFailed();
592 return VERR_EM_INTERPRETER;
593 }
594
595 uint32_t eflags;
596
597 eflags = pfnEmulate(&valpar1, param1.size);
598
599 /* Write result back */
600 rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
601 if (RT_FAILURE(rc))
602 {
603 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
604 return VERR_EM_INTERPRETER;
605 }
606
607 /* Update guest's eflags and finish. */
608 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
609 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
610
611 /* All done! */
612 *pcbSize = param1.size;
613 return VINF_SUCCESS;
614#ifdef IN_RC
615 }
616 }
617#endif
618 return VERR_EM_INTERPRETER;
619}
620
621
622/**
623 * POP Emulation.
624 */
625static int emInterpretPop(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
626{
627 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
628 OP_PARAMVAL param1;
629 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
630 if(RT_FAILURE(rc))
631 return VERR_EM_INTERPRETER;
632
633#ifdef IN_RC
634 if (TRPMHasTrap(pVM))
635 {
636 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
637 {
638#endif
639 RTGCPTR pParam1 = 0;
640 uint32_t valpar1;
641 RTGCPTR pStackVal;
642
643 /* Read stack value first */
644 if (SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid) == CPUMODE_16BIT)
645 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
646
647 /* Convert address; don't bother checking limits etc, as we only read here */
648 pStackVal = SELMToFlat(pVM, DIS_SELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
649 if (pStackVal == 0)
650 return VERR_EM_INTERPRETER;
651
652 rc = emRamRead(pVM, &valpar1, pStackVal, param1.size);
653 if (RT_FAILURE(rc))
654 {
655 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
656 return VERR_EM_INTERPRETER;
657 }
658
659 if (param1.type == PARMTYPE_ADDRESS)
660 {
661 pParam1 = (RTGCPTR)param1.val.val64;
662
663 /* pop [esp+xx] uses esp after the actual pop! */
664 AssertCompile(USE_REG_ESP == USE_REG_SP);
665 if ( (pCpu->param1.flags & USE_BASE)
666 && (pCpu->param1.flags & (USE_REG_GEN16|USE_REG_GEN32))
667 && pCpu->param1.base.reg_gen == USE_REG_ESP
668 )
669 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
670
671 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
672 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
673 rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
674 if (RT_FAILURE(rc))
675 {
676 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
677 return VERR_EM_INTERPRETER;
678 }
679
680 /* Update ESP as the last step */
681 pRegFrame->esp += param1.size;
682 }
683 else
684 {
685#ifndef DEBUG_bird // annoying assertion.
686 AssertFailed();
687#endif
688 return VERR_EM_INTERPRETER;
689 }
690
691 /* All done! */
692 *pcbSize = param1.size;
693 return VINF_SUCCESS;
694#ifdef IN_RC
695 }
696 }
697#endif
698 return VERR_EM_INTERPRETER;
699}
700
701
702/**
703 * XOR/OR/AND Emulation.
704 */
705static int emInterpretOrXorAnd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
706 PFNEMULATEPARAM3 pfnEmulate)
707{
708 OP_PARAMVAL param1, param2;
709
710 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
711 if(RT_FAILURE(rc))
712 return VERR_EM_INTERPRETER;
713
714 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
715 if(RT_FAILURE(rc))
716 return VERR_EM_INTERPRETER;
717
718#ifdef IN_RC
719 if (TRPMHasTrap(pVM))
720 {
721 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
722 {
723#endif
724 RTGCPTR pParam1;
725 uint64_t valpar1, valpar2;
726
727 if (pCpu->param1.size != pCpu->param2.size)
728 {
729 if (pCpu->param1.size < pCpu->param2.size)
730 {
731 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size)); /* should never happen! */
732 return VERR_EM_INTERPRETER;
733 }
734 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
735 pCpu->param2.size = pCpu->param1.size;
736 param2.size = param1.size;
737 }
738
739 /* The destination is always a virtual address */
740 if (param1.type == PARMTYPE_ADDRESS)
741 {
742 pParam1 = (RTGCPTR)param1.val.val64;
743 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
744 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
745 rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
746 if (RT_FAILURE(rc))
747 {
748 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
749 return VERR_EM_INTERPRETER;
750 }
751 }
752 else
753 {
754 AssertFailed();
755 return VERR_EM_INTERPRETER;
756 }
757
758 /* Register or immediate data */
759 switch(param2.type)
760 {
761 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
762 valpar2 = param2.val.val64;
763 break;
764
765 default:
766 AssertFailed();
767 return VERR_EM_INTERPRETER;
768 }
769
770 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pCpu), pParam1, valpar1, valpar2, param2.size, param1.size));
771
772 /* Data read, emulate instruction. */
773 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
774
775 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pCpu), valpar1));
776
777 /* Update guest's eflags and finish. */
778 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
779 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
780
781 /* And write it back */
782 rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
783 if (RT_SUCCESS(rc))
784 {
785 /* All done! */
786 *pcbSize = param2.size;
787 return VINF_SUCCESS;
788 }
789#ifdef IN_RC
790 }
791 }
792#endif
793 return VERR_EM_INTERPRETER;
794}
795
796
797/**
798 * LOCK XOR/OR/AND Emulation.
799 */
800static int emInterpretLockOrXorAnd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
801 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
802{
803 void *pvParam1;
804 OP_PARAMVAL param1, param2;
805
806#if HC_ARCH_BITS == 32
807 Assert(pCpu->param1.size <= 4);
808#endif
809
810 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
811 if(RT_FAILURE(rc))
812 return VERR_EM_INTERPRETER;
813
814 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
815 if(RT_FAILURE(rc))
816 return VERR_EM_INTERPRETER;
817
818 if (pCpu->param1.size != pCpu->param2.size)
819 {
820 AssertMsgReturn(pCpu->param1.size >= pCpu->param2.size, /* should never happen! */
821 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size),
822 VERR_EM_INTERPRETER);
823
824 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
825 pCpu->param2.size = pCpu->param1.size;
826 param2.size = param1.size;
827 }
828
829#ifdef IN_RC
830 /* Safety check (in theory it could cross a page boundary and fault there though) */
831 Assert( TRPMHasTrap(pVM)
832 && (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW));
833 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
834#endif
835
836 /* Register and immediate data == PARMTYPE_IMMEDIATE */
837 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
838 RTGCUINTREG ValPar2 = param2.val.val64;
839
840 /* The destination is always a virtual address */
841 AssertReturn(param1.type == PARMTYPE_ADDRESS, VERR_EM_INTERPRETER);
842
843 RTGCPTR GCPtrPar1 = param1.val.val64;
844 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
845#ifdef IN_RC
846 pvParam1 = (void *)GCPtrPar1;
847#else
848 PGMPAGEMAPLOCK Lock;
849 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
850 AssertRCReturn(rc, VERR_EM_INTERPRETER);
851#endif
852
853 /* Try emulate it with a one-shot #PF handler in place. (RC) */
854 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
855
856 RTGCUINTREG32 eflags = 0;
857#ifdef IN_RC
858 MMGCRamRegisterTrapHandler(pVM);
859#endif
860 rc = pfnEmulate(pvParam1, ValPar2, pCpu->param2.size, &eflags);
861#ifdef IN_RC
862 MMGCRamDeregisterTrapHandler(pVM);
863#else
864 PGMPhysReleasePageMappingLock(pVM, &Lock);
865#endif
866 if (RT_FAILURE(rc))
867 {
868 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
869 return VERR_EM_INTERPRETER;
870 }
871
872 /* Update guest's eflags and finish. */
873 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
874 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
875
876 *pcbSize = param2.size;
877 return VINF_SUCCESS;
878}
879
880
881/**
882 * ADD, ADC & SUB Emulation.
883 */
884static int emInterpretAddSub(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
885 PFNEMULATEPARAM3 pfnEmulate)
886{
887 OP_PARAMVAL param1, param2;
888 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
889 if(RT_FAILURE(rc))
890 return VERR_EM_INTERPRETER;
891
892 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
893 if(RT_FAILURE(rc))
894 return VERR_EM_INTERPRETER;
895
896#ifdef IN_RC
897 if (TRPMHasTrap(pVM))
898 {
899 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
900 {
901#endif
902 RTGCPTR pParam1;
903 uint64_t valpar1, valpar2;
904
905 if (pCpu->param1.size != pCpu->param2.size)
906 {
907 if (pCpu->param1.size < pCpu->param2.size)
908 {
909 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size)); /* should never happen! */
910 return VERR_EM_INTERPRETER;
911 }
912 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
913 pCpu->param2.size = pCpu->param1.size;
914 param2.size = param1.size;
915 }
916
917 /* The destination is always a virtual address */
918 if (param1.type == PARMTYPE_ADDRESS)
919 {
920 pParam1 = (RTGCPTR)param1.val.val64;
921 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
922 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
923 rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
924 if (RT_FAILURE(rc))
925 {
926 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
927 return VERR_EM_INTERPRETER;
928 }
929 }
930 else
931 {
932#ifndef DEBUG_bird
933 AssertFailed();
934#endif
935 return VERR_EM_INTERPRETER;
936 }
937
938 /* Register or immediate data */
939 switch(param2.type)
940 {
941 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
942 valpar2 = param2.val.val64;
943 break;
944
945 default:
946 AssertFailed();
947 return VERR_EM_INTERPRETER;
948 }
949
950 /* Data read, emulate instruction. */
951 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
952
953 /* Update guest's eflags and finish. */
954 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
955 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
956
957 /* And write it back */
958 rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
959 if (RT_SUCCESS(rc))
960 {
961 /* All done! */
962 *pcbSize = param2.size;
963 return VINF_SUCCESS;
964 }
965#ifdef IN_RC
966 }
967 }
968#endif
969 return VERR_EM_INTERPRETER;
970}
971
972
973/**
974 * ADC Emulation.
975 */
976static int emInterpretAdc(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
977{
978 if (pRegFrame->eflags.Bits.u1CF)
979 return emInterpretAddSub(pVM, pCpu, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
980 else
981 return emInterpretAddSub(pVM, pCpu, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
982}
983
984
985/**
986 * BTR/C/S Emulation.
987 */
988static int emInterpretBitTest(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
989 PFNEMULATEPARAM2UINT32 pfnEmulate)
990{
991 OP_PARAMVAL param1, param2;
992 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
993 if(RT_FAILURE(rc))
994 return VERR_EM_INTERPRETER;
995
996 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
997 if(RT_FAILURE(rc))
998 return VERR_EM_INTERPRETER;
999
1000#ifdef IN_RC
1001 if (TRPMHasTrap(pVM))
1002 {
1003 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1004 {
1005#endif
1006 RTGCPTR pParam1;
1007 uint64_t valpar1 = 0, valpar2;
1008 uint32_t eflags;
1009
1010 /* The destination is always a virtual address */
1011 if (param1.type != PARMTYPE_ADDRESS)
1012 return VERR_EM_INTERPRETER;
1013
1014 pParam1 = (RTGCPTR)param1.val.val64;
1015 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
1016
1017 /* Register or immediate data */
1018 switch(param2.type)
1019 {
1020 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1021 valpar2 = param2.val.val64;
1022 break;
1023
1024 default:
1025 AssertFailed();
1026 return VERR_EM_INTERPRETER;
1027 }
1028
1029 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pCpu), pvFault, pParam1, valpar2));
1030 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
1031 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
1032 rc = emRamRead(pVM, &valpar1, pParam1, 1);
1033 if (RT_FAILURE(rc))
1034 {
1035 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1036 return VERR_EM_INTERPRETER;
1037 }
1038
1039 Log2(("emInterpretBtx: val=%x\n", valpar1));
1040 /* Data read, emulate bit test instruction. */
1041 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
1042
1043 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
1044
1045 /* Update guest's eflags and finish. */
1046 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1047 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1048
1049 /* And write it back */
1050 rc = emRamWrite(pVM, pParam1, &valpar1, 1);
1051 if (RT_SUCCESS(rc))
1052 {
1053 /* All done! */
1054 *pcbSize = 1;
1055 return VINF_SUCCESS;
1056 }
1057#ifdef IN_RC
1058 }
1059 }
1060#endif
1061 return VERR_EM_INTERPRETER;
1062}
1063
1064
1065/**
1066 * LOCK BTR/C/S Emulation.
1067 */
1068static int emInterpretLockBitTest(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
1069 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
1070{
1071 void *pvParam1;
1072
1073 OP_PARAMVAL param1, param2;
1074 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
1075 if(RT_FAILURE(rc))
1076 return VERR_EM_INTERPRETER;
1077
1078 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1079 if(RT_FAILURE(rc))
1080 return VERR_EM_INTERPRETER;
1081
1082 /* The destination is always a virtual address */
1083 if (param1.type != PARMTYPE_ADDRESS)
1084 return VERR_EM_INTERPRETER;
1085
1086 /* Register and immediate data == PARMTYPE_IMMEDIATE */
1087 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
1088 uint64_t ValPar2 = param2.val.val64;
1089
1090 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
1091 RTGCPTR GCPtrPar1 = param1.val.val64;
1092 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
1093 ValPar2 &= 7;
1094
1095 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
1096#ifdef IN_RC
1097 Assert(TRPMHasTrap(pVM));
1098 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
1099#endif
1100
1101#ifdef IN_RC
1102 pvParam1 = (void *)GCPtrPar1;
1103#else
1104 PGMPAGEMAPLOCK Lock;
1105 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
1106 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1107#endif
1108
1109 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pCpu), pvFault, GCPtrPar1, ValPar2));
1110
1111 /* Try emulate it with a one-shot #PF handler in place. (RC) */
1112 RTGCUINTREG32 eflags = 0;
1113#ifdef IN_RC
1114 MMGCRamRegisterTrapHandler(pVM);
1115#endif
1116 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
1117#ifdef IN_RC
1118 MMGCRamDeregisterTrapHandler(pVM);
1119#else
1120 PGMPhysReleasePageMappingLock(pVM, &Lock);
1121#endif
1122 if (RT_FAILURE(rc))
1123 {
1124 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
1125 emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
1126 return VERR_EM_INTERPRETER;
1127 }
1128
1129 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pCpu), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
1130
1131 /* Update guest's eflags and finish. */
1132 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1133 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1134
1135 *pcbSize = 1;
1136 return VINF_SUCCESS;
1137}
1138
1139
1140/**
1141 * MOV emulation.
1142 */
1143static int emInterpretMov(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1144{
1145 OP_PARAMVAL param1, param2;
1146 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
1147 if(RT_FAILURE(rc))
1148 return VERR_EM_INTERPRETER;
1149
1150 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1151 if(RT_FAILURE(rc))
1152 return VERR_EM_INTERPRETER;
1153
1154#ifdef IN_RC
1155 if (TRPMHasTrap(pVM))
1156 {
1157 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1158 {
1159#else
1160 /** @todo Make this the default and don't rely on TRPM information. */
1161 if (param1.type == PARMTYPE_ADDRESS)
1162 {
1163#endif
1164 RTGCPTR pDest;
1165 uint64_t val64;
1166
1167 switch(param1.type)
1168 {
1169 case PARMTYPE_IMMEDIATE:
1170 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1171 return VERR_EM_INTERPRETER;
1172 /* fallthru */
1173
1174 case PARMTYPE_ADDRESS:
1175 pDest = (RTGCPTR)param1.val.val64;
1176 pDest = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pDest);
1177 break;
1178
1179 default:
1180 AssertFailed();
1181 return VERR_EM_INTERPRETER;
1182 }
1183
1184 switch(param2.type)
1185 {
1186 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
1187 val64 = param2.val.val64;
1188 break;
1189
1190 default:
1191 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
1192 return VERR_EM_INTERPRETER;
1193 }
1194#ifdef LOG_ENABLED
1195 if (pCpu->mode == CPUMODE_64BIT)
1196 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
1197 else
1198 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
1199#endif
1200
1201 Assert(param2.size <= 8 && param2.size > 0);
1202 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
1203 rc = emRamWrite(pVM, pDest, &val64, param2.size);
1204 if (RT_FAILURE(rc))
1205 return VERR_EM_INTERPRETER;
1206
1207 *pcbSize = param2.size;
1208 }
1209 else
1210 { /* read fault */
1211 RTGCPTR pSrc;
1212 uint64_t val64;
1213
1214 /* Source */
1215 switch(param2.type)
1216 {
1217 case PARMTYPE_IMMEDIATE:
1218 if(!(param2.flags & (PARAM_VAL32|PARAM_VAL64)))
1219 return VERR_EM_INTERPRETER;
1220 /* fallthru */
1221
1222 case PARMTYPE_ADDRESS:
1223 pSrc = (RTGCPTR)param2.val.val64;
1224 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param2, pSrc);
1225 break;
1226
1227 default:
1228 return VERR_EM_INTERPRETER;
1229 }
1230
1231 Assert(param1.size <= 8 && param1.size > 0);
1232 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
1233 rc = emRamRead(pVM, &val64, pSrc, param1.size);
1234 if (RT_FAILURE(rc))
1235 return VERR_EM_INTERPRETER;
1236
1237 /* Destination */
1238 switch(param1.type)
1239 {
1240 case PARMTYPE_REGISTER:
1241 switch(param1.size)
1242 {
1243 case 1: rc = DISWriteReg8(pRegFrame, pCpu->param1.base.reg_gen, (uint8_t) val64); break;
1244 case 2: rc = DISWriteReg16(pRegFrame, pCpu->param1.base.reg_gen, (uint16_t)val64); break;
1245 case 4: rc = DISWriteReg32(pRegFrame, pCpu->param1.base.reg_gen, (uint32_t)val64); break;
1246 case 8: rc = DISWriteReg64(pRegFrame, pCpu->param1.base.reg_gen, val64); break;
1247 default:
1248 return VERR_EM_INTERPRETER;
1249 }
1250 if (RT_FAILURE(rc))
1251 return rc;
1252 break;
1253
1254 default:
1255 return VERR_EM_INTERPRETER;
1256 }
1257#ifdef LOG_ENABLED
1258 if (pCpu->mode == CPUMODE_64BIT)
1259 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
1260 else
1261 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
1262#endif
1263 }
1264 return VINF_SUCCESS;
1265#ifdef IN_RC
1266 }
1267#endif
1268 return VERR_EM_INTERPRETER;
1269}
1270
1271
1272#ifndef IN_RC
1273/**
1274 * [REP] STOSWD emulation
1275 */
1276static int emInterpretStosWD(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1277{
1278 int rc;
1279 RTGCPTR GCDest, GCOffset;
1280 uint32_t cbSize;
1281 uint64_t cTransfers;
1282 int offIncrement;
1283
1284 /* Don't support any but these three prefix bytes. */
1285 if ((pCpu->prefix & ~(PREFIX_ADDRSIZE|PREFIX_OPSIZE|PREFIX_REP|PREFIX_REX)))
1286 return VERR_EM_INTERPRETER;
1287
1288 switch (pCpu->addrmode)
1289 {
1290 case CPUMODE_16BIT:
1291 GCOffset = pRegFrame->di;
1292 cTransfers = pRegFrame->cx;
1293 break;
1294 case CPUMODE_32BIT:
1295 GCOffset = pRegFrame->edi;
1296 cTransfers = pRegFrame->ecx;
1297 break;
1298 case CPUMODE_64BIT:
1299 GCOffset = pRegFrame->rdi;
1300 cTransfers = pRegFrame->rcx;
1301 break;
1302 default:
1303 AssertFailed();
1304 return VERR_EM_INTERPRETER;
1305 }
1306
1307 GCDest = SELMToFlat(pVM, DIS_SELREG_ES, pRegFrame, GCOffset);
1308 switch (pCpu->opmode)
1309 {
1310 case CPUMODE_16BIT:
1311 cbSize = 2;
1312 break;
1313 case CPUMODE_32BIT:
1314 cbSize = 4;
1315 break;
1316 case CPUMODE_64BIT:
1317 cbSize = 8;
1318 break;
1319 default:
1320 AssertFailed();
1321 return VERR_EM_INTERPRETER;
1322 }
1323
1324 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
1325
1326 if (!(pCpu->prefix & PREFIX_REP))
1327 {
1328 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize));
1329
1330 rc = PGMPhysWriteGCPtr(pVM, GCDest, &pRegFrame->rax, cbSize);
1331 if (RT_FAILURE(rc))
1332 return VERR_EM_INTERPRETER;
1333 Assert(rc == VINF_SUCCESS);
1334
1335 /* Update (e/r)di. */
1336 switch (pCpu->addrmode)
1337 {
1338 case CPUMODE_16BIT:
1339 pRegFrame->di += offIncrement;
1340 break;
1341 case CPUMODE_32BIT:
1342 pRegFrame->edi += offIncrement;
1343 break;
1344 case CPUMODE_64BIT:
1345 pRegFrame->rdi += offIncrement;
1346 break;
1347 default:
1348 AssertFailed();
1349 return VERR_EM_INTERPRETER;
1350 }
1351
1352 }
1353 else
1354 {
1355 if (!cTransfers)
1356 return VINF_SUCCESS;
1357
1358 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
1359 /* Access verification first; we currently can't recover properly from traps inside this instruction */
1360 rc = PGMVerifyAccess(pVM, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)), cTransfers * cbSize, X86_PTE_RW | X86_PTE_US);
1361 if (rc != VINF_SUCCESS)
1362 {
1363 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
1364 return VERR_EM_INTERPRETER;
1365 }
1366
1367 /* REP case */
1368 while (cTransfers)
1369 {
1370 rc = PGMPhysWriteGCPtr(pVM, GCDest, &pRegFrame->rax, cbSize);
1371 if (RT_FAILURE(rc))
1372 {
1373 rc = VERR_EM_INTERPRETER;
1374 break;
1375 }
1376
1377 Assert(rc == VINF_SUCCESS);
1378 GCOffset += offIncrement;
1379 GCDest += offIncrement;
1380 cTransfers--;
1381 }
1382
1383 /* Update the registers. */
1384 switch (pCpu->addrmode)
1385 {
1386 case CPUMODE_16BIT:
1387 pRegFrame->di = GCOffset;
1388 pRegFrame->cx = cTransfers;
1389 break;
1390 case CPUMODE_32BIT:
1391 pRegFrame->edi = GCOffset;
1392 pRegFrame->ecx = cTransfers;
1393 break;
1394 case CPUMODE_64BIT:
1395 pRegFrame->rdi = GCOffset;
1396 pRegFrame->rcx = cTransfers;
1397 break;
1398 default:
1399 AssertFailed();
1400 return VERR_EM_INTERPRETER;
1401 }
1402 }
1403
1404 *pcbSize = cbSize;
1405 return rc;
1406}
1407#endif /* !IN_RC */
1408
1409#ifndef IN_RC
1410
1411/**
1412 * [LOCK] CMPXCHG emulation.
1413 */
1414static int emInterpretCmpXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1415{
1416 OP_PARAMVAL param1, param2;
1417
1418#if HC_ARCH_BITS == 32
1419 Assert(pCpu->param1.size <= 4);
1420#endif
1421
1422 /* Source to make DISQueryParamVal read the register value - ugly hack */
1423 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1424 if(RT_FAILURE(rc))
1425 return VERR_EM_INTERPRETER;
1426
1427 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1428 if(RT_FAILURE(rc))
1429 return VERR_EM_INTERPRETER;
1430
1431 uint64_t valpar;
1432 switch(param2.type)
1433 {
1434 case PARMTYPE_IMMEDIATE: /* register actually */
1435 valpar = param2.val.val64;
1436 break;
1437
1438 default:
1439 return VERR_EM_INTERPRETER;
1440 }
1441
1442 PGMPAGEMAPLOCK Lock;
1443 RTGCPTR GCPtrPar1;
1444 void *pvParam1;
1445 uint64_t eflags;
1446
1447 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
1448 switch(param1.type)
1449 {
1450 case PARMTYPE_ADDRESS:
1451 GCPtrPar1 = param1.val.val64;
1452 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
1453
1454 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
1455 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1456 break;
1457
1458 default:
1459 return VERR_EM_INTERPRETER;
1460 }
1461
1462 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pCpu), GCPtrPar1, pRegFrame->rax, valpar));
1463
1464 if (pCpu->prefix & PREFIX_LOCK)
1465 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pCpu->param2.size);
1466 else
1467 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pCpu->param2.size);
1468
1469 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pCpu), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
1470
1471 /* Update guest's eflags and finish. */
1472 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1473 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1474
1475 *pcbSize = param2.size;
1476 PGMPhysReleasePageMappingLock(pVM, &Lock);
1477 return VINF_SUCCESS;
1478}
1479
1480
1481/**
1482 * [LOCK] CMPXCHG8B emulation.
1483 */
1484static int emInterpretCmpXchg8b(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1485{
1486 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1487 OP_PARAMVAL param1;
1488
1489 /* Source to make DISQueryParamVal read the register value - ugly hack */
1490 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1491 if(RT_FAILURE(rc))
1492 return VERR_EM_INTERPRETER;
1493
1494 RTGCPTR GCPtrPar1;
1495 void *pvParam1;
1496 uint64_t eflags;
1497 PGMPAGEMAPLOCK Lock;
1498
1499 AssertReturn(pCpu->param1.size == 8, VERR_EM_INTERPRETER);
1500 switch(param1.type)
1501 {
1502 case PARMTYPE_ADDRESS:
1503 GCPtrPar1 = param1.val.val64;
1504 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
1505
1506 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
1507 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1508 break;
1509
1510 default:
1511 return VERR_EM_INTERPRETER;
1512 }
1513
1514 LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pCpu), pvParam1, pRegFrame->eax));
1515
1516 if (pCpu->prefix & PREFIX_LOCK)
1517 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1518 else
1519 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1520
1521 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pCpu), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1522
1523 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1524 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1525 | (eflags & (X86_EFL_ZF));
1526
1527 *pcbSize = 8;
1528 PGMPhysReleasePageMappingLock(pVM, &Lock);
1529 return VINF_SUCCESS;
1530}
1531
1532#else /* IN_RC */
1533
1534/**
1535 * [LOCK] CMPXCHG emulation.
1536 */
1537static int emInterpretCmpXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1538{
1539 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1540 OP_PARAMVAL param1, param2;
1541
1542 /* Source to make DISQueryParamVal read the register value - ugly hack */
1543 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1544 if(RT_FAILURE(rc))
1545 return VERR_EM_INTERPRETER;
1546
1547 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1548 if(RT_FAILURE(rc))
1549 return VERR_EM_INTERPRETER;
1550
1551 if (TRPMHasTrap(pVM))
1552 {
1553 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1554 {
1555 RTRCPTR pParam1;
1556 uint32_t valpar, eflags;
1557
1558 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
1559 switch(param1.type)
1560 {
1561 case PARMTYPE_ADDRESS:
1562 pParam1 = (RTRCPTR)param1.val.val64;
1563 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1564 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1565 break;
1566
1567 default:
1568 return VERR_EM_INTERPRETER;
1569 }
1570
1571 switch(param2.type)
1572 {
1573 case PARMTYPE_IMMEDIATE: /* register actually */
1574 valpar = param2.val.val32;
1575 break;
1576
1577 default:
1578 return VERR_EM_INTERPRETER;
1579 }
1580
1581 LogFlow(("%s %RRv eax=%08x %08x\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar));
1582
1583 MMGCRamRegisterTrapHandler(pVM);
1584 if (pCpu->prefix & PREFIX_LOCK)
1585 rc = EMGCEmulateLockCmpXchg(pParam1, &pRegFrame->eax, valpar, pCpu->param2.size, &eflags);
1586 else
1587 rc = EMGCEmulateCmpXchg(pParam1, &pRegFrame->eax, valpar, pCpu->param2.size, &eflags);
1588 MMGCRamDeregisterTrapHandler(pVM);
1589
1590 if (RT_FAILURE(rc))
1591 {
1592 Log(("%s %RGv eax=%08x %08x -> emulation failed due to page fault!\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar));
1593 return VERR_EM_INTERPRETER;
1594 }
1595
1596 LogFlow(("%s %RRv eax=%08x %08x ZF=%d\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar, !!(eflags & X86_EFL_ZF)));
1597
1598 /* Update guest's eflags and finish. */
1599 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1600 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1601
1602 *pcbSize = param2.size;
1603 return VINF_SUCCESS;
1604 }
1605 }
1606 return VERR_EM_INTERPRETER;
1607}
1608
1609
1610/**
1611 * [LOCK] CMPXCHG8B emulation.
1612 */
1613static int emInterpretCmpXchg8b(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1614{
1615 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1616 OP_PARAMVAL param1;
1617
1618 /* Source to make DISQueryParamVal read the register value - ugly hack */
1619 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1620 if(RT_FAILURE(rc))
1621 return VERR_EM_INTERPRETER;
1622
1623 if (TRPMHasTrap(pVM))
1624 {
1625 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1626 {
1627 RTRCPTR pParam1;
1628 uint32_t eflags;
1629
1630 AssertReturn(pCpu->param1.size == 8, VERR_EM_INTERPRETER);
1631 switch(param1.type)
1632 {
1633 case PARMTYPE_ADDRESS:
1634 pParam1 = (RTRCPTR)param1.val.val64;
1635 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1636 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1637 break;
1638
1639 default:
1640 return VERR_EM_INTERPRETER;
1641 }
1642
1643 LogFlow(("%s %RRv=%08x eax=%08x\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax));
1644
1645 MMGCRamRegisterTrapHandler(pVM);
1646 if (pCpu->prefix & PREFIX_LOCK)
1647 rc = EMGCEmulateLockCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
1648 else
1649 rc = EMGCEmulateCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
1650 MMGCRamDeregisterTrapHandler(pVM);
1651
1652 if (RT_FAILURE(rc))
1653 {
1654 Log(("%s %RGv=%08x eax=%08x -> emulation failed due to page fault!\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax));
1655 return VERR_EM_INTERPRETER;
1656 }
1657
1658 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1659
1660 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1661 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1662 | (eflags & (X86_EFL_ZF));
1663
1664 *pcbSize = 8;
1665 return VINF_SUCCESS;
1666 }
1667 }
1668 return VERR_EM_INTERPRETER;
1669}
1670
1671#endif /* IN_RC */
1672
1673#ifdef IN_RC
1674/**
1675 * [LOCK] XADD emulation.
1676 */
1677static int emInterpretXAdd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1678{
1679 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1680 OP_PARAMVAL param1;
1681 uint32_t *pParamReg2;
1682 size_t cbSizeParamReg2;
1683
1684 /* Source to make DISQueryParamVal read the register value - ugly hack */
1685 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1686 if(RT_FAILURE(rc))
1687 return VERR_EM_INTERPRETER;
1688
1689 rc = DISQueryParamRegPtr(pRegFrame, pCpu, &pCpu->param2, (void **)&pParamReg2, &cbSizeParamReg2);
1690 Assert(cbSizeParamReg2 <= 4);
1691 if(RT_FAILURE(rc))
1692 return VERR_EM_INTERPRETER;
1693
1694 if (TRPMHasTrap(pVM))
1695 {
1696 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1697 {
1698 RTRCPTR pParam1;
1699 uint32_t eflags;
1700
1701 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
1702 switch(param1.type)
1703 {
1704 case PARMTYPE_ADDRESS:
1705 pParam1 = (RTRCPTR)param1.val.val64;
1706 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1707 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1708 break;
1709
1710 default:
1711 return VERR_EM_INTERPRETER;
1712 }
1713
1714 LogFlow(("XAdd %RRv=%08x reg=%08x\n", pParam1, *pParamReg2));
1715
1716 MMGCRamRegisterTrapHandler(pVM);
1717 if (pCpu->prefix & PREFIX_LOCK)
1718 rc = EMGCEmulateLockXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
1719 else
1720 rc = EMGCEmulateXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
1721 MMGCRamDeregisterTrapHandler(pVM);
1722
1723 if (RT_FAILURE(rc))
1724 {
1725 Log(("XAdd %RGv reg=%08x -> emulation failed due to page fault!\n", pParam1, *pParamReg2));
1726 return VERR_EM_INTERPRETER;
1727 }
1728
1729 LogFlow(("XAdd %RGv reg=%08x ZF=%d\n", pParam1, *pParamReg2, !!(eflags & X86_EFL_ZF)));
1730
1731 /* Update guest's eflags and finish. */
1732 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1733 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1734
1735 *pcbSize = cbSizeParamReg2;
1736 return VINF_SUCCESS;
1737 }
1738 }
1739 return VERR_EM_INTERPRETER;
1740}
1741#endif /* IN_RC */
1742
1743
1744#ifdef IN_RC
1745/**
1746 * Interpret IRET (currently only to V86 code)
1747 *
1748 * @returns VBox status code.
1749 * @param pVM The VM handle.
1750 * @param pRegFrame The register frame.
1751 *
1752 */
1753VMMDECL(int) EMInterpretIret(PVM pVM, PCPUMCTXCORE pRegFrame)
1754{
1755 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1756 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
1757 int rc;
1758
1759 Assert(!CPUMIsGuestIn64BitCode(pVM, pRegFrame));
1760
1761 rc = emRamRead(pVM, &eip, (RTGCPTR)pIretStack , 4);
1762 rc |= emRamRead(pVM, &cs, (RTGCPTR)(pIretStack + 4), 4);
1763 rc |= emRamRead(pVM, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1764 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1765 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1766
1767 rc |= emRamRead(pVM, &esp, (RTGCPTR)(pIretStack + 12), 4);
1768 rc |= emRamRead(pVM, &ss, (RTGCPTR)(pIretStack + 16), 4);
1769 rc |= emRamRead(pVM, &es, (RTGCPTR)(pIretStack + 20), 4);
1770 rc |= emRamRead(pVM, &ds, (RTGCPTR)(pIretStack + 24), 4);
1771 rc |= emRamRead(pVM, &fs, (RTGCPTR)(pIretStack + 28), 4);
1772 rc |= emRamRead(pVM, &gs, (RTGCPTR)(pIretStack + 32), 4);
1773 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1774
1775 pRegFrame->eip = eip & 0xffff;
1776 pRegFrame->cs = cs;
1777
1778 /* Mask away all reserved bits */
1779 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1780 eflags &= uMask;
1781
1782#ifndef IN_RING0
1783 CPUMRawSetEFlags(pVM, pRegFrame, eflags);
1784#endif
1785 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1786
1787 pRegFrame->esp = esp;
1788 pRegFrame->ss = ss;
1789 pRegFrame->ds = ds;
1790 pRegFrame->es = es;
1791 pRegFrame->fs = fs;
1792 pRegFrame->gs = gs;
1793
1794 return VINF_SUCCESS;
1795}
1796#endif /* IN_RC */
1797
1798
1799/**
1800 * IRET Emulation.
1801 */
1802static int emInterpretIret(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1803{
1804 /* only allow direct calls to EMInterpretIret for now */
1805 return VERR_EM_INTERPRETER;
1806}
1807
1808/**
1809 * WBINVD Emulation.
1810 */
1811static int emInterpretWbInvd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1812{
1813 /* Nothing to do. */
1814 return VINF_SUCCESS;
1815}
1816
1817
1818/**
1819 * Interpret INVLPG
1820 *
1821 * @returns VBox status code.
1822 * @param pVM The VM handle.
1823 * @param pRegFrame The register frame.
1824 * @param pAddrGC Operand address
1825 *
1826 */
1827VMMDECL(int) EMInterpretInvlpg(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
1828{
1829 int rc;
1830
1831 /** @todo is addr always a flat linear address or ds based
1832 * (in absence of segment override prefixes)????
1833 */
1834#ifdef IN_RC
1835 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
1836#endif
1837 rc = PGMInvalidatePage(pVM, pAddrGC);
1838 if ( rc == VINF_SUCCESS
1839 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1840 return VINF_SUCCESS;
1841 AssertMsgReturn( rc == VERR_REM_FLUSHED_PAGES_OVERFLOW
1842 || rc == VINF_EM_RAW_EMULATE_INSTR,
1843 ("%Rrc addr=%RGv\n", rc, pAddrGC),
1844 VERR_EM_INTERPRETER);
1845 return rc;
1846}
1847
1848
1849/**
1850 * INVLPG Emulation.
1851 */
1852static int emInterpretInvlPg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1853{
1854 OP_PARAMVAL param1;
1855 RTGCPTR addr;
1856
1857 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1858 if(RT_FAILURE(rc))
1859 return VERR_EM_INTERPRETER;
1860
1861 switch(param1.type)
1862 {
1863 case PARMTYPE_IMMEDIATE:
1864 case PARMTYPE_ADDRESS:
1865 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1866 return VERR_EM_INTERPRETER;
1867 addr = (RTGCPTR)param1.val.val64;
1868 break;
1869
1870 default:
1871 return VERR_EM_INTERPRETER;
1872 }
1873
1874 /** @todo is addr always a flat linear address or ds based
1875 * (in absence of segment override prefixes)????
1876 */
1877#ifdef IN_RC
1878 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
1879#endif
1880 rc = PGMInvalidatePage(pVM, addr);
1881 if ( rc == VINF_SUCCESS
1882 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1883 return VINF_SUCCESS;
1884 AssertMsgReturn( rc == VERR_REM_FLUSHED_PAGES_OVERFLOW
1885 || rc == VINF_EM_RAW_EMULATE_INSTR,
1886 ("%Rrc addr=%RGv\n", rc, addr),
1887 VERR_EM_INTERPRETER);
1888 return rc;
1889}
1890
1891
1892/**
1893 * Interpret CPUID given the parameters in the CPU context
1894 *
1895 * @returns VBox status code.
1896 * @param pVM The VM handle.
1897 * @param pRegFrame The register frame.
1898 *
1899 */
1900VMMDECL(int) EMInterpretCpuId(PVM pVM, PCPUMCTXCORE pRegFrame)
1901{
1902 uint32_t iLeaf = pRegFrame->eax;
1903
1904 /* cpuid clears the high dwords of the affected 64 bits registers. */
1905 pRegFrame->rax = 0;
1906 pRegFrame->rbx = 0;
1907 pRegFrame->rcx = 0;
1908 pRegFrame->rdx = 0;
1909
1910 /* Note: operates the same in 64 and non-64 bits mode. */
1911 CPUMGetGuestCpuId(pVM, iLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
1912 Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
1913 return VINF_SUCCESS;
1914}
1915
1916
1917/**
1918 * CPUID Emulation.
1919 */
1920static int emInterpretCpuId(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1921{
1922 int rc = EMInterpretCpuId(pVM, pRegFrame);
1923 return rc;
1924}
1925
1926
1927/**
1928 * Interpret CRx read
1929 *
1930 * @returns VBox status code.
1931 * @param pVM The VM handle.
1932 * @param pRegFrame The register frame.
1933 * @param DestRegGen General purpose register index (USE_REG_E**))
1934 * @param SrcRegCRx CRx register index (USE_REG_CR*)
1935 *
1936 */
1937VMMDECL(int) EMInterpretCRxRead(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
1938{
1939 int rc;
1940 uint64_t val64;
1941
1942 if (SrcRegCrx == USE_REG_CR8)
1943 {
1944 val64 = 0;
1945 rc = PDMApicGetTPR(pVM, (uint8_t *)&val64, NULL);
1946 AssertMsgRCReturn(rc, ("PDMApicGetTPR failed\n"), VERR_EM_INTERPRETER);
1947 }
1948 else
1949 {
1950 rc = CPUMGetGuestCRx(pVM, SrcRegCrx, &val64);
1951 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
1952 }
1953
1954 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
1955 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1956 else
1957 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
1958
1959 if(RT_SUCCESS(rc))
1960 {
1961 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
1962 return VINF_SUCCESS;
1963 }
1964 return VERR_EM_INTERPRETER;
1965}
1966
1967
1968
1969/**
1970 * Interpret CLTS
1971 *
1972 * @returns VBox status code.
1973 * @param pVM The VM handle.
1974 *
1975 */
1976VMMDECL(int) EMInterpretCLTS(PVM pVM)
1977{
1978 uint64_t cr0 = CPUMGetGuestCR0(pVM);
1979 if (!(cr0 & X86_CR0_TS))
1980 return VINF_SUCCESS;
1981 return CPUMSetGuestCR0(pVM, cr0 & ~X86_CR0_TS);
1982}
1983
1984/**
1985 * CLTS Emulation.
1986 */
1987static int emInterpretClts(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1988{
1989 return EMInterpretCLTS(pVM);
1990}
1991
1992
1993/**
1994 * Update CRx
1995 *
1996 * @returns VBox status code.
1997 * @param pVM The VM handle.
1998 * @param pRegFrame The register frame.
1999 * @param DestRegCRx CRx register index (USE_REG_CR*)
2000 * @param val New CRx value
2001 *
2002 */
2003static int EMUpdateCRx(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
2004{
2005 uint64_t oldval;
2006 uint64_t msrEFER;
2007 int rc;
2008
2009 /** @todo Clean up this mess. */
2010 LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
2011 switch (DestRegCrx)
2012 {
2013 case USE_REG_CR0:
2014 oldval = CPUMGetGuestCR0(pVM);
2015#ifdef IN_RC
2016 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
2017 if ( (val & (X86_CR0_WP | X86_CR0_AM))
2018 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
2019 return VERR_EM_INTERPRETER;
2020#endif
2021 CPUMSetGuestCR0(pVM, val);
2022 val = CPUMGetGuestCR0(pVM);
2023 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
2024 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
2025 {
2026 /* global flush */
2027 rc = PGMFlushTLB(pVM, CPUMGetGuestCR3(pVM), true /* global */);
2028 AssertRCReturn(rc, rc);
2029 }
2030
2031 /* Deal with long mode enabling/disabling. */
2032 msrEFER = CPUMGetGuestEFER(pVM);
2033 if (msrEFER & MSR_K6_EFER_LME)
2034 {
2035 if ( !(oldval & X86_CR0_PG)
2036 && (val & X86_CR0_PG))
2037 {
2038 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2039 if (pRegFrame->csHid.Attr.n.u1Long)
2040 {
2041 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
2042 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2043 }
2044
2045 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2046 if (!(CPUMGetGuestCR4(pVM) & X86_CR4_PAE))
2047 {
2048 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
2049 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2050 }
2051 msrEFER |= MSR_K6_EFER_LMA;
2052 }
2053 else
2054 if ( (oldval & X86_CR0_PG)
2055 && !(val & X86_CR0_PG))
2056 {
2057 msrEFER &= ~MSR_K6_EFER_LMA;
2058 /* @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
2059 }
2060 CPUMSetGuestEFER(pVM, msrEFER);
2061 }
2062 return PGMChangeMode(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR4(pVM), CPUMGetGuestEFER(pVM));
2063
2064 case USE_REG_CR2:
2065 rc = CPUMSetGuestCR2(pVM, val); AssertRC(rc);
2066 return VINF_SUCCESS;
2067
2068 case USE_REG_CR3:
2069 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
2070 rc = CPUMSetGuestCR3(pVM, val); AssertRC(rc);
2071 if (CPUMGetGuestCR0(pVM) & X86_CR0_PG)
2072 {
2073 /* flush */
2074 rc = PGMFlushTLB(pVM, val, !(CPUMGetGuestCR4(pVM) & X86_CR4_PGE));
2075 AssertRCReturn(rc, rc);
2076 }
2077 return VINF_SUCCESS;
2078
2079 case USE_REG_CR4:
2080 oldval = CPUMGetGuestCR4(pVM);
2081 rc = CPUMSetGuestCR4(pVM, val); AssertRC(rc);
2082 val = CPUMGetGuestCR4(pVM);
2083
2084 msrEFER = CPUMGetGuestEFER(pVM);
2085 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2086 if ( (msrEFER & MSR_K6_EFER_LMA)
2087 && (oldval & X86_CR4_PAE)
2088 && !(val & X86_CR4_PAE))
2089 {
2090 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2091 }
2092
2093 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
2094 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
2095 {
2096 /* global flush */
2097 rc = PGMFlushTLB(pVM, CPUMGetGuestCR3(pVM), true /* global */);
2098 AssertRCReturn(rc, rc);
2099 }
2100# ifdef IN_RC
2101 /* Feeling extremely lazy. */
2102 if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
2103 != (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
2104 {
2105 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
2106 VM_FF_SET(pVM, VM_FF_TO_R3);
2107 }
2108# endif
2109 return PGMChangeMode(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR4(pVM), CPUMGetGuestEFER(pVM));
2110
2111 case USE_REG_CR8:
2112 return PDMApicSetTPR(pVM, val);
2113
2114 default:
2115 AssertFailed();
2116 case USE_REG_CR1: /* illegal op */
2117 break;
2118 }
2119 return VERR_EM_INTERPRETER;
2120}
2121
2122/**
2123 * Interpret CRx write
2124 *
2125 * @returns VBox status code.
2126 * @param pVM The VM handle.
2127 * @param pRegFrame The register frame.
2128 * @param DestRegCRx CRx register index (USE_REG_CR*)
2129 * @param SrcRegGen General purpose register index (USE_REG_E**))
2130 *
2131 */
2132VMMDECL(int) EMInterpretCRxWrite(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
2133{
2134 uint64_t val;
2135 int rc;
2136
2137 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
2138 {
2139 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2140 }
2141 else
2142 {
2143 uint32_t val32;
2144 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2145 val = val32;
2146 }
2147
2148 if (RT_SUCCESS(rc))
2149 return EMUpdateCRx(pVM, pRegFrame, DestRegCrx, val);
2150
2151 return VERR_EM_INTERPRETER;
2152}
2153
2154/**
2155 * Interpret LMSW
2156 *
2157 * @returns VBox status code.
2158 * @param pVM The VM handle.
2159 * @param pRegFrame The register frame.
2160 * @param u16Data LMSW source data.
2161 *
2162 */
2163VMMDECL(int) EMInterpretLMSW(PVM pVM, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
2164{
2165 uint64_t OldCr0 = CPUMGetGuestCR0(pVM);
2166
2167 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
2168 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
2169 | (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
2170
2171 return EMUpdateCRx(pVM, pRegFrame, USE_REG_CR0, NewCr0);
2172}
2173
2174/**
2175 * LMSW Emulation.
2176 */
2177static int emInterpretLmsw(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2178{
2179 OP_PARAMVAL param1;
2180 uint32_t val;
2181
2182 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2183 if(RT_FAILURE(rc))
2184 return VERR_EM_INTERPRETER;
2185
2186 switch(param1.type)
2187 {
2188 case PARMTYPE_IMMEDIATE:
2189 case PARMTYPE_ADDRESS:
2190 if(!(param1.flags & PARAM_VAL16))
2191 return VERR_EM_INTERPRETER;
2192 val = param1.val.val32;
2193 break;
2194
2195 default:
2196 return VERR_EM_INTERPRETER;
2197 }
2198
2199 LogFlow(("emInterpretLmsw %x\n", val));
2200 return EMInterpretLMSW(pVM, pRegFrame, val);
2201}
2202
2203/**
2204 * MOV CRx
2205 */
2206static int emInterpretMovCRx(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2207{
2208 if ((pCpu->param1.flags == USE_REG_GEN32 || pCpu->param1.flags == USE_REG_GEN64) && pCpu->param2.flags == USE_REG_CR)
2209 return EMInterpretCRxRead(pVM, pRegFrame, pCpu->param1.base.reg_gen, pCpu->param2.base.reg_ctrl);
2210
2211 if (pCpu->param1.flags == USE_REG_CR && (pCpu->param2.flags == USE_REG_GEN32 || pCpu->param2.flags == USE_REG_GEN64))
2212 return EMInterpretCRxWrite(pVM, pRegFrame, pCpu->param1.base.reg_ctrl, pCpu->param2.base.reg_gen);
2213
2214 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
2215 return VERR_EM_INTERPRETER;
2216}
2217
2218
2219/**
2220 * Interpret DRx write
2221 *
2222 * @returns VBox status code.
2223 * @param pVM The VM handle.
2224 * @param pRegFrame The register frame.
2225 * @param DestRegDRx DRx register index (USE_REG_DR*)
2226 * @param SrcRegGen General purpose register index (USE_REG_E**))
2227 *
2228 */
2229VMMDECL(int) EMInterpretDRxWrite(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
2230{
2231 uint64_t val;
2232 int rc;
2233
2234 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
2235 {
2236 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2237 }
2238 else
2239 {
2240 uint32_t val32;
2241 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2242 val = val32;
2243 }
2244
2245 if (RT_SUCCESS(rc))
2246 {
2247 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
2248 rc = CPUMSetGuestDRx(pVM, DestRegDrx, val);
2249 if (RT_SUCCESS(rc))
2250 return rc;
2251 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
2252 }
2253 return VERR_EM_INTERPRETER;
2254}
2255
2256
2257/**
2258 * Interpret DRx read
2259 *
2260 * @returns VBox status code.
2261 * @param pVM The VM handle.
2262 * @param pRegFrame The register frame.
2263 * @param DestRegGen General purpose register index (USE_REG_E**))
2264 * @param SrcRegDRx DRx register index (USE_REG_DR*)
2265 *
2266 */
2267VMMDECL(int) EMInterpretDRxRead(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
2268{
2269 uint64_t val64;
2270
2271 int rc = CPUMGetGuestDRx(pVM, SrcRegDrx, &val64);
2272 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
2273 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
2274 {
2275 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
2276 }
2277 else
2278 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
2279
2280 if (RT_SUCCESS(rc))
2281 return VINF_SUCCESS;
2282
2283 return VERR_EM_INTERPRETER;
2284}
2285
2286
2287/**
2288 * MOV DRx
2289 */
2290static int emInterpretMovDRx(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2291{
2292 int rc = VERR_EM_INTERPRETER;
2293
2294 if((pCpu->param1.flags == USE_REG_GEN32 || pCpu->param1.flags == USE_REG_GEN64) && pCpu->param2.flags == USE_REG_DBG)
2295 {
2296 rc = EMInterpretDRxRead(pVM, pRegFrame, pCpu->param1.base.reg_gen, pCpu->param2.base.reg_dbg);
2297 }
2298 else
2299 if(pCpu->param1.flags == USE_REG_DBG && (pCpu->param2.flags == USE_REG_GEN32 || pCpu->param2.flags == USE_REG_GEN64))
2300 {
2301 rc = EMInterpretDRxWrite(pVM, pRegFrame, pCpu->param1.base.reg_dbg, pCpu->param2.base.reg_gen);
2302 }
2303 else
2304 AssertMsgFailed(("Unexpected debug register move\n"));
2305
2306 return rc;
2307}
2308
2309
2310/**
2311 * LLDT Emulation.
2312 */
2313static int emInterpretLLdt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2314{
2315 OP_PARAMVAL param1;
2316 RTSEL sel;
2317
2318 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2319 if(RT_FAILURE(rc))
2320 return VERR_EM_INTERPRETER;
2321
2322 switch(param1.type)
2323 {
2324 case PARMTYPE_ADDRESS:
2325 return VERR_EM_INTERPRETER; //feeling lazy right now
2326
2327 case PARMTYPE_IMMEDIATE:
2328 if(!(param1.flags & PARAM_VAL16))
2329 return VERR_EM_INTERPRETER;
2330 sel = (RTSEL)param1.val.val16;
2331 break;
2332
2333 default:
2334 return VERR_EM_INTERPRETER;
2335 }
2336
2337 if (sel == 0)
2338 {
2339 if (CPUMGetHyperLDTR(pVM) == 0)
2340 {
2341 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
2342 return VINF_SUCCESS;
2343 }
2344 }
2345 //still feeling lazy
2346 return VERR_EM_INTERPRETER;
2347}
2348
2349#ifdef IN_RING0
2350/**
2351 * LIDT/LGDT Emulation.
2352 */
2353static int emInterpretLIGdt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2354{
2355 OP_PARAMVAL param1;
2356 RTGCPTR pParam1;
2357 X86XDTR32 dtr32;
2358
2359 Log(("Emulate %s at %RGv\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip));
2360
2361 /* Only for the VT-x real-mode emulation case. */
2362 if (!CPUMIsGuestInRealMode(pVM))
2363 return VERR_EM_INTERPRETER;
2364
2365 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2366 if(RT_FAILURE(rc))
2367 return VERR_EM_INTERPRETER;
2368
2369 switch(param1.type)
2370 {
2371 case PARMTYPE_ADDRESS:
2372 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, param1.val.val16);
2373 break;
2374
2375 default:
2376 return VERR_EM_INTERPRETER;
2377 }
2378
2379 rc = emRamRead(pVM, &dtr32, pParam1, sizeof(dtr32));
2380 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2381
2382 if (!(pCpu->prefix & PREFIX_OPSIZE))
2383 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
2384
2385 if (pCpu->pCurInstr->opcode == OP_LIDT)
2386 CPUMSetGuestIDTR(pVM, dtr32.uAddr, dtr32.cb);
2387 else
2388 CPUMSetGuestGDTR(pVM, dtr32.uAddr, dtr32.cb);
2389
2390 return VINF_SUCCESS;
2391}
2392#endif
2393
2394
2395#ifdef IN_RC
2396/**
2397 * STI Emulation.
2398 *
2399 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
2400 */
2401static int emInterpretSti(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2402{
2403 PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
2404
2405 if(!pGCState)
2406 {
2407 Assert(pGCState);
2408 return VERR_EM_INTERPRETER;
2409 }
2410 pGCState->uVMFlags |= X86_EFL_IF;
2411
2412 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
2413 Assert(pvFault == SELMToFlat(pVM, DIS_SELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
2414
2415 pVM->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pCpu->opsize;
2416 VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
2417
2418 return VINF_SUCCESS;
2419}
2420#endif /* IN_RC */
2421
2422
2423/**
2424 * HLT Emulation.
2425 */
2426static int emInterpretHlt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2427{
2428 return VINF_EM_HALT;
2429}
2430
2431
2432/**
2433 * Interpret RDTSC
2434 *
2435 * @returns VBox status code.
2436 * @param pVM The VM handle.
2437 * @param pRegFrame The register frame.
2438 *
2439 */
2440VMMDECL(int) EMInterpretRdtsc(PVM pVM, PCPUMCTXCORE pRegFrame)
2441{
2442 unsigned uCR4 = CPUMGetGuestCR4(pVM);
2443
2444 if (uCR4 & X86_CR4_TSD)
2445 return VERR_EM_INTERPRETER; /* genuine #GP */
2446
2447 uint64_t uTicks = TMCpuTickGet(pVM);
2448
2449 /* Same behaviour in 32 & 64 bits mode */
2450 pRegFrame->rax = (uint32_t)uTicks;
2451 pRegFrame->rdx = (uTicks >> 32ULL);
2452
2453 return VINF_SUCCESS;
2454}
2455
2456VMMDECL(int) EMInterpretRdtscp(PVM pVM, PCPUMCTX pCtx)
2457{
2458 unsigned uCR4 = CPUMGetGuestCR4(pVM);
2459
2460 if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
2461 {
2462 AssertFailed();
2463 return VERR_EM_INTERPRETER; /* genuine #UD */
2464 }
2465
2466 if (uCR4 & X86_CR4_TSD)
2467 return VERR_EM_INTERPRETER; /* genuine #GP */
2468
2469 uint64_t uTicks = TMCpuTickGet(pVM);
2470
2471 /* Same behaviour in 32 & 64 bits mode */
2472 pCtx->rax = (uint32_t)uTicks;
2473 pCtx->rdx = (uTicks >> 32ULL);
2474 /* Low dword of the TSC_AUX msr only. */
2475 pCtx->rcx = (uint32_t)CPUMGetGuestMsr(pVM, MSR_K8_TSC_AUX);
2476
2477 return VINF_SUCCESS;
2478}
2479
2480/**
2481 * RDTSC Emulation.
2482 */
2483static int emInterpretRdtsc(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2484{
2485 return EMInterpretRdtsc(pVM, pRegFrame);
2486}
2487
2488
2489/**
2490 * MONITOR Emulation.
2491 */
2492static int emInterpretMonitor(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2493{
2494 uint32_t u32Dummy, u32ExtFeatures, cpl;
2495
2496 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
2497 if (pRegFrame->ecx != 0)
2498 return VERR_EM_INTERPRETER; /* illegal value. */
2499
2500 /* Get the current privilege level. */
2501 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2502 if (cpl != 0)
2503 return VERR_EM_INTERPRETER; /* supervisor only */
2504
2505 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2506 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2507 return VERR_EM_INTERPRETER; /* not supported */
2508
2509 return VINF_SUCCESS;
2510}
2511
2512
2513/**
2514 * MWAIT Emulation.
2515 */
2516static int emInterpretMWait(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2517{
2518 uint32_t u32Dummy, u32ExtFeatures, cpl;
2519
2520 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
2521 if (pRegFrame->ecx != 0)
2522 return VERR_EM_INTERPRETER; /* illegal value. */
2523
2524 /* Get the current privilege level. */
2525 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2526 if (cpl != 0)
2527 return VERR_EM_INTERPRETER; /* supervisor only */
2528
2529 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2530 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2531 return VERR_EM_INTERPRETER; /* not supported */
2532
2533 /** @todo not completely correct */
2534 return VINF_EM_HALT;
2535}
2536
2537
2538#ifdef LOG_ENABLED
2539static const char *emMSRtoString(uint32_t uMsr)
2540{
2541 switch (uMsr)
2542 {
2543 case MSR_IA32_APICBASE:
2544 return "MSR_IA32_APICBASE";
2545 case MSR_IA32_CR_PAT:
2546 return "MSR_IA32_CR_PAT";
2547 case MSR_IA32_SYSENTER_CS:
2548 return "MSR_IA32_SYSENTER_CS";
2549 case MSR_IA32_SYSENTER_EIP:
2550 return "MSR_IA32_SYSENTER_EIP";
2551 case MSR_IA32_SYSENTER_ESP:
2552 return "MSR_IA32_SYSENTER_ESP";
2553 case MSR_K6_EFER:
2554 return "MSR_K6_EFER";
2555 case MSR_K8_SF_MASK:
2556 return "MSR_K8_SF_MASK";
2557 case MSR_K6_STAR:
2558 return "MSR_K6_STAR";
2559 case MSR_K8_LSTAR:
2560 return "MSR_K8_LSTAR";
2561 case MSR_K8_CSTAR:
2562 return "MSR_K8_CSTAR";
2563 case MSR_K8_FS_BASE:
2564 return "MSR_K8_FS_BASE";
2565 case MSR_K8_GS_BASE:
2566 return "MSR_K8_GS_BASE";
2567 case MSR_K8_KERNEL_GS_BASE:
2568 return "MSR_K8_KERNEL_GS_BASE";
2569 case MSR_K8_TSC_AUX:
2570 return "MSR_K8_TSC_AUX";
2571 case MSR_IA32_BIOS_SIGN_ID:
2572 return "Unsupported MSR_IA32_BIOS_SIGN_ID";
2573 case MSR_IA32_PLATFORM_ID:
2574 return "Unsupported MSR_IA32_PLATFORM_ID";
2575 case MSR_IA32_BIOS_UPDT_TRIG:
2576 return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
2577 case MSR_IA32_TSC:
2578 return "Unsupported MSR_IA32_TSC";
2579 case MSR_IA32_MTRR_CAP:
2580 return "Unsupported MSR_IA32_MTRR_CAP";
2581 case MSR_IA32_MCP_CAP:
2582 return "Unsupported MSR_IA32_MCP_CAP";
2583 case MSR_IA32_MCP_STATUS:
2584 return "Unsupported MSR_IA32_MCP_STATUS";
2585 case MSR_IA32_MCP_CTRL:
2586 return "Unsupported MSR_IA32_MCP_CTRL";
2587 case MSR_IA32_MTRR_DEF_TYPE:
2588 return "Unsupported MSR_IA32_MTRR_DEF_TYPE";
2589 case MSR_K7_EVNTSEL0:
2590 return "Unsupported MSR_K7_EVNTSEL0";
2591 case MSR_K7_EVNTSEL1:
2592 return "Unsupported MSR_K7_EVNTSEL1";
2593 case MSR_K7_EVNTSEL2:
2594 return "Unsupported MSR_K7_EVNTSEL2";
2595 case MSR_K7_EVNTSEL3:
2596 return "Unsupported MSR_K7_EVNTSEL3";
2597 case MSR_IA32_MC0_CTL:
2598 return "Unsupported MSR_IA32_MC0_CTL";
2599 case MSR_IA32_MC0_STATUS:
2600 return "Unsupported MSR_IA32_MC0_STATUS";
2601 }
2602 return "Unknown MSR";
2603}
2604#endif /* LOG_ENABLED */
2605
2606
2607/**
2608 * Interpret RDMSR
2609 *
2610 * @returns VBox status code.
2611 * @param pVM The VM handle.
2612 * @param pRegFrame The register frame.
2613 *
2614 */
2615VMMDECL(int) EMInterpretRdmsr(PVM pVM, PCPUMCTXCORE pRegFrame)
2616{
2617 uint32_t u32Dummy, u32Features, cpl;
2618 uint64_t val;
2619 CPUMCTX *pCtx;
2620 int rc = VINF_SUCCESS;
2621
2622 /** @todo According to the Intel manuals, there's a REX version of RDMSR that is slightly different.
2623 * That version clears the high dwords of both RDX & RAX */
2624 pCtx = CPUMQueryGuestCtxPtr(pVM);
2625
2626 /* Get the current privilege level. */
2627 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2628 if (cpl != 0)
2629 return VERR_EM_INTERPRETER; /* supervisor only */
2630
2631 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2632 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2633 return VERR_EM_INTERPRETER; /* not supported */
2634
2635 switch (pRegFrame->ecx)
2636 {
2637 case MSR_IA32_APICBASE:
2638 rc = PDMApicGetBase(pVM, &val);
2639 AssertRC(rc);
2640 break;
2641
2642 case MSR_IA32_CR_PAT:
2643 val = pCtx->msrPAT;
2644 break;
2645
2646 case MSR_IA32_SYSENTER_CS:
2647 val = pCtx->SysEnter.cs;
2648 break;
2649
2650 case MSR_IA32_SYSENTER_EIP:
2651 val = pCtx->SysEnter.eip;
2652 break;
2653
2654 case MSR_IA32_SYSENTER_ESP:
2655 val = pCtx->SysEnter.esp;
2656 break;
2657
2658 case MSR_K6_EFER:
2659 val = pCtx->msrEFER;
2660 break;
2661
2662 case MSR_K8_SF_MASK:
2663 val = pCtx->msrSFMASK;
2664 break;
2665
2666 case MSR_K6_STAR:
2667 val = pCtx->msrSTAR;
2668 break;
2669
2670 case MSR_K8_LSTAR:
2671 val = pCtx->msrLSTAR;
2672 break;
2673
2674 case MSR_K8_CSTAR:
2675 val = pCtx->msrCSTAR;
2676 break;
2677
2678 case MSR_K8_FS_BASE:
2679 val = pCtx->fsHid.u64Base;
2680 break;
2681
2682 case MSR_K8_GS_BASE:
2683 val = pCtx->gsHid.u64Base;
2684 break;
2685
2686 case MSR_K8_KERNEL_GS_BASE:
2687 val = pCtx->msrKERNELGSBASE;
2688 break;
2689
2690 case MSR_K8_TSC_AUX:
2691 val = CPUMGetGuestMsr(pVM, MSR_K8_TSC_AUX);
2692 break;
2693
2694#if 0 /*def IN_RING0 */
2695 case MSR_IA32_PLATFORM_ID:
2696 case MSR_IA32_BIOS_SIGN_ID:
2697 if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL)
2698 {
2699 /* Available since the P6 family. VT-x implies that this feature is present. */
2700 if (pRegFrame->ecx == MSR_IA32_PLATFORM_ID)
2701 val = ASMRdMsr(MSR_IA32_PLATFORM_ID);
2702 else
2703 if (pRegFrame->ecx == MSR_IA32_BIOS_SIGN_ID)
2704 val = ASMRdMsr(MSR_IA32_BIOS_SIGN_ID);
2705 break;
2706 }
2707 /* no break */
2708#endif
2709 default:
2710 /* In X2APIC specification this range is reserved for APIC control. */
2711 if ((pRegFrame->ecx >= MSR_IA32_APIC_START) && (pRegFrame->ecx < MSR_IA32_APIC_END))
2712 rc = PDMApicReadMSR(pVM, VMMGetCpuId(pVM), pRegFrame->ecx, &val);
2713 else
2714 /* We should actually trigger a #GP here, but don't as that might cause more trouble. */
2715 val = 0;
2716 break;
2717 }
2718 LogFlow(("EMInterpretRdmsr %s (%x) -> val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2719 if (rc == VINF_SUCCESS)
2720 {
2721 pRegFrame->rax = (uint32_t) val;
2722 pRegFrame->rdx = (uint32_t) (val >> 32ULL);
2723 }
2724 return rc;
2725}
2726
2727
2728/**
2729 * RDMSR Emulation.
2730 */
2731static int emInterpretRdmsr(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2732{
2733 /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2734 Assert(!(pCpu->prefix & PREFIX_REX));
2735 return EMInterpretRdmsr(pVM, pRegFrame);
2736}
2737
2738
2739/**
2740 * Interpret WRMSR
2741 *
2742 * @returns VBox status code.
2743 * @param pVM The VM handle.
2744 * @param pRegFrame The register frame.
2745 */
2746VMMDECL(int) EMInterpretWrmsr(PVM pVM, PCPUMCTXCORE pRegFrame)
2747{
2748 uint32_t u32Dummy, u32Features, cpl;
2749 uint64_t val;
2750 CPUMCTX *pCtx;
2751
2752 /* Note: works the same in 32 and 64 bits modes. */
2753 pCtx = CPUMQueryGuestCtxPtr(pVM);
2754
2755 /* Get the current privilege level. */
2756 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2757 if (cpl != 0)
2758 return VERR_EM_INTERPRETER; /* supervisor only */
2759
2760 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2761 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2762 return VERR_EM_INTERPRETER; /* not supported */
2763
2764 val = RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx);
2765 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2766 switch (pRegFrame->ecx)
2767 {
2768 case MSR_IA32_APICBASE:
2769 {
2770 int rc = PDMApicSetBase(pVM, val);
2771 AssertRC(rc);
2772 break;
2773 }
2774
2775 case MSR_IA32_CR_PAT:
2776 pCtx->msrPAT = val;
2777 break;
2778
2779 case MSR_IA32_SYSENTER_CS:
2780 pCtx->SysEnter.cs = val & 0xffff; /* 16 bits selector */
2781 break;
2782
2783 case MSR_IA32_SYSENTER_EIP:
2784 pCtx->SysEnter.eip = val;
2785 break;
2786
2787 case MSR_IA32_SYSENTER_ESP:
2788 pCtx->SysEnter.esp = val;
2789 break;
2790
2791 case MSR_K6_EFER:
2792 {
2793 uint64_t uMask = 0;
2794 uint64_t oldval = pCtx->msrEFER;
2795
2796 /* Filter out those bits the guest is allowed to change. (e.g. LMA is read-only) */
2797 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2798 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_NX)
2799 uMask |= MSR_K6_EFER_NXE;
2800 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE)
2801 uMask |= MSR_K6_EFER_LME;
2802 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_SEP)
2803 uMask |= MSR_K6_EFER_SCE;
2804 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
2805 uMask |= MSR_K6_EFER_FFXSR;
2806
2807 /* Check for illegal MSR_K6_EFER_LME transitions: not allowed to change LME if paging is enabled. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2808 if ( ((pCtx->msrEFER & MSR_K6_EFER_LME) != (val & uMask & MSR_K6_EFER_LME))
2809 && (pCtx->cr0 & X86_CR0_PG))
2810 {
2811 AssertMsgFailed(("Illegal MSR_K6_EFER_LME change: paging is enabled!!\n"));
2812 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2813 }
2814
2815 /* There are a few more: e.g. MSR_K6_EFER_LMSLE */
2816 AssertMsg(!(val & ~(MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA /* ignored anyway */ |MSR_K6_EFER_SCE|MSR_K6_EFER_FFXSR)), ("Unexpected value %RX64\n", val));
2817 pCtx->msrEFER = (pCtx->msrEFER & ~uMask) | (val & uMask);
2818
2819 /* AMD64 Achitecture Programmer's Manual: 15.15 TLB Control; flush the TLB if MSR_K6_EFER_NXE, MSR_K6_EFER_LME or MSR_K6_EFER_LMA are changed. */
2820 if ((oldval & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)) != (pCtx->msrEFER & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)))
2821 HWACCMFlushTLB(pVM);
2822
2823 break;
2824 }
2825
2826 case MSR_K8_SF_MASK:
2827 pCtx->msrSFMASK = val;
2828 break;
2829
2830 case MSR_K6_STAR:
2831 pCtx->msrSTAR = val;
2832 break;
2833
2834 case MSR_K8_LSTAR:
2835 pCtx->msrLSTAR = val;
2836 break;
2837
2838 case MSR_K8_CSTAR:
2839 pCtx->msrCSTAR = val;
2840 break;
2841
2842 case MSR_K8_FS_BASE:
2843 pCtx->fsHid.u64Base = val;
2844 break;
2845
2846 case MSR_K8_GS_BASE:
2847 pCtx->gsHid.u64Base = val;
2848 break;
2849
2850 case MSR_K8_KERNEL_GS_BASE:
2851 pCtx->msrKERNELGSBASE = val;
2852 break;
2853
2854 case MSR_K8_TSC_AUX:
2855 CPUMSetGuestMsr(pVM, MSR_K8_TSC_AUX, val);
2856 break;
2857
2858 default:
2859 /* In X2APIC specification this range is reserved for APIC control. */
2860 if ((pRegFrame->ecx >= MSR_IA32_APIC_START) && (pRegFrame->ecx < MSR_IA32_APIC_END))
2861 return PDMApicWriteMSR(pVM, VMMGetCpuId(pVM), pRegFrame->ecx, val);
2862
2863 /* We should actually trigger a #GP here, but don't as that might cause more trouble. */
2864 break;
2865 }
2866 return VINF_SUCCESS;
2867}
2868
2869
2870/**
2871 * WRMSR Emulation.
2872 */
2873static int emInterpretWrmsr(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2874{
2875 return EMInterpretWrmsr(pVM, pRegFrame);
2876}
2877
2878
2879/**
2880 * Internal worker.
2881 * @copydoc EMInterpretInstructionCPU
2882 */
2883DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2884{
2885 Assert(pcbSize);
2886 *pcbSize = 0;
2887
2888 /*
2889 * Only supervisor guest code!!
2890 * And no complicated prefixes.
2891 */
2892 /* Get the current privilege level. */
2893 uint32_t cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2894 if ( cpl != 0
2895 && pCpu->pCurInstr->opcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
2896 {
2897 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
2898 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
2899 return VERR_EM_INTERPRETER;
2900 }
2901
2902#ifdef IN_RC
2903 if ( (pCpu->prefix & (PREFIX_REPNE | PREFIX_REP))
2904 || ( (pCpu->prefix & PREFIX_LOCK)
2905 && pCpu->pCurInstr->opcode != OP_CMPXCHG
2906 && pCpu->pCurInstr->opcode != OP_CMPXCHG8B
2907 && pCpu->pCurInstr->opcode != OP_XADD
2908 && pCpu->pCurInstr->opcode != OP_OR
2909 && pCpu->pCurInstr->opcode != OP_BTR
2910 )
2911 )
2912#else
2913 if ( (pCpu->prefix & PREFIX_REPNE)
2914 || ( (pCpu->prefix & PREFIX_REP)
2915 && pCpu->pCurInstr->opcode != OP_STOSWD
2916 )
2917 || ( (pCpu->prefix & PREFIX_LOCK)
2918 && pCpu->pCurInstr->opcode != OP_OR
2919 && pCpu->pCurInstr->opcode != OP_BTR
2920 && pCpu->pCurInstr->opcode != OP_CMPXCHG
2921 && pCpu->pCurInstr->opcode != OP_CMPXCHG8B
2922 )
2923 )
2924#endif
2925 {
2926 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
2927 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
2928 return VERR_EM_INTERPRETER;
2929 }
2930
2931#if HC_ARCH_BITS == 32
2932 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
2933 {
2934 /* Unable to emulate in 32 bits mode.
2935 * Whitelisted instructions are safe.
2936 */
2937 if ( pCpu->param1.size > 4
2938 && pCpu->pCurInstr->opcode != OP_STOSWD
2939 && pCpu->pCurInstr->opcode != OP_MOV
2940 && pCpu->pCurInstr->opcode != OP_CMPXCHG8B)
2941 return VERR_EM_INTERPRETER;
2942 }
2943#endif
2944
2945 int rc;
2946#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
2947 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pCpu)));
2948#endif
2949 switch (pCpu->pCurInstr->opcode)
2950 {
2951# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
2952 case opcode:\
2953 if (pCpu->prefix & PREFIX_LOCK) \
2954 rc = emInterpretLock##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
2955 else \
2956 rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulate); \
2957 if (RT_SUCCESS(rc)) \
2958 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
2959 else \
2960 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
2961 return rc
2962#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
2963 case opcode:\
2964 rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulate); \
2965 if (RT_SUCCESS(rc)) \
2966 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
2967 else \
2968 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
2969 return rc
2970
2971#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
2972 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
2973#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
2974 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
2975
2976#define INTERPRET_CASE(opcode, Instr) \
2977 case opcode:\
2978 rc = emInterpret##Instr(pVM, pCpu, pRegFrame, pvFault, pcbSize); \
2979 if (RT_SUCCESS(rc)) \
2980 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
2981 else \
2982 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
2983 return rc
2984
2985#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
2986 case opcode:\
2987 rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize); \
2988 if (RT_SUCCESS(rc)) \
2989 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
2990 else \
2991 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
2992 return rc
2993
2994#define INTERPRET_STAT_CASE(opcode, Instr) \
2995 case opcode: STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
2996
2997 INTERPRET_CASE(OP_XCHG,Xchg);
2998 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
2999 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3000 INTERPRET_CASE(OP_POP,Pop);
3001 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3002 INTERPRET_CASE_EX_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor);
3003 INTERPRET_CASE_EX_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd);
3004 INTERPRET_CASE(OP_MOV,Mov);
3005#ifndef IN_RC
3006 INTERPRET_CASE(OP_STOSWD,StosWD);
3007#endif
3008 INTERPRET_CASE(OP_INVLPG,InvlPg);
3009 INTERPRET_CASE(OP_CPUID,CpuId);
3010 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3011 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3012 INTERPRET_CASE(OP_LLDT,LLdt);
3013#ifdef IN_RING0
3014 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3015 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3016#endif
3017 INTERPRET_CASE(OP_LMSW,Lmsw);
3018 INTERPRET_CASE(OP_CLTS,Clts);
3019 INTERPRET_CASE(OP_MONITOR, Monitor);
3020 INTERPRET_CASE(OP_MWAIT, MWait);
3021 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3022 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3023 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3024 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3025 INTERPRET_CASE(OP_ADC,Adc);
3026 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3027 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3028 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3029 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3030 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3031#ifdef IN_RC
3032 INTERPRET_CASE(OP_STI,Sti);
3033 INTERPRET_CASE(OP_XADD, XAdd);
3034#endif
3035 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3036 INTERPRET_CASE(OP_HLT,Hlt);
3037 INTERPRET_CASE(OP_IRET,Iret);
3038 INTERPRET_CASE(OP_WBINVD,WbInvd);
3039#ifdef VBOX_WITH_STATISTICS
3040#ifndef IN_RC
3041 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3042#endif
3043 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3044#endif
3045 default:
3046 Log3(("emInterpretInstructionCPU: opcode=%d\n", pCpu->pCurInstr->opcode));
3047 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3048 return VERR_EM_INTERPRETER;
3049#undef INTERPRET_CASE_EX_PARAM2
3050#undef INTERPRET_STAT_CASE
3051#undef INTERPRET_CASE_EX
3052#undef INTERPRET_CASE
3053 }
3054 AssertFailed();
3055 return VERR_INTERNAL_ERROR;
3056}
3057
3058
3059/**
3060 * Sets the PC for which interrupts should be inhibited.
3061 *
3062 * @param pVM The VM handle.
3063 * @param PC The PC.
3064 */
3065VMMDECL(void) EMSetInhibitInterruptsPC(PVM pVM, RTGCUINTPTR PC)
3066{
3067 pVM->em.s.GCPtrInhibitInterrupts = PC;
3068 VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
3069}
3070
3071
3072/**
3073 * Gets the PC for which interrupts should be inhibited.
3074 *
3075 * There are a few instructions which inhibits or delays interrupts
3076 * for the instruction following them. These instructions are:
3077 * - STI
3078 * - MOV SS, r/m16
3079 * - POP SS
3080 *
3081 * @returns The PC for which interrupts should be inhibited.
3082 * @param pVM VM handle.
3083 *
3084 */
3085VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVM pVM)
3086{
3087 return pVM->em.s.GCPtrInhibitInterrupts;
3088}
3089
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette