VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 15420

Last change on this file since 15420 was 15420, checked in by vboxsync, 16 years ago

EMAll: ADD, ADC and SUB - the first is used a bit by windows.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 103.9 KB
Line 
1/* $Id: EMAll.cpp 15420 2008-12-13 07:21:55Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_EM
26#include <VBox/em.h>
27#include <VBox/mm.h>
28#include <VBox/selm.h>
29#include <VBox/patm.h>
30#include <VBox/csam.h>
31#include <VBox/pgm.h>
32#include <VBox/iom.h>
33#include <VBox/stam.h>
34#include "EMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/vmm.h>
37#include <VBox/hwaccm.h>
38#include <VBox/tm.h>
39#include <VBox/pdmapi.h>
40
41#include <VBox/param.h>
42#include <VBox/err.h>
43#include <VBox/dis.h>
44#include <VBox/disopcode.h>
45#include <VBox/log.h>
46#include <iprt/assert.h>
47#include <iprt/asm.h>
48#include <iprt/string.h>
49
50
51/*******************************************************************************
52* Defined Constants And Macros *
53*******************************************************************************/
54/** @def EM_ASSERT_FAULT_RETURN
55 * Safety check.
56 *
57 * Could in theory misfire on a cross page boundary access...
58 *
59 * Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
60 * turns up an alias page instead of the original faulting one and annoying the
61 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
62 */
63#if 0
64# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
65#else
66# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
67#endif
68
69
70/*******************************************************************************
71* Internal Functions *
72*******************************************************************************/
73DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize);
74
75
76
77/**
78 * Get the current execution manager status.
79 *
80 * @returns Current status.
81 */
82VMMDECL(EMSTATE) EMGetState(PVM pVM)
83{
84 return pVM->em.s.enmState;
85}
86
87#ifndef IN_RC
88
89/**
90 * Read callback for disassembly function; supports reading bytes that cross a page boundary
91 *
92 * @returns VBox status code.
93 * @param pSrc GC source pointer
94 * @param pDest HC destination pointer
95 * @param cb Number of bytes to read
96 * @param dwUserdata Callback specific user data (pCpu)
97 *
98 */
99DECLCALLBACK(int) EMReadBytes(RTUINTPTR pSrc, uint8_t *pDest, unsigned cb, void *pvUserdata)
100{
101 DISCPUSTATE *pCpu = (DISCPUSTATE *)pvUserdata;
102 PVM pVM = (PVM)pCpu->apvUserData[0];
103# ifdef IN_RING0
104 int rc = PGMPhysSimpleReadGCPtr(pVM, pDest, pSrc, cb);
105 AssertMsgRC(rc, ("PGMPhysSimpleReadGCPtr failed for pSrc=%RGv cb=%x\n", pSrc, cb));
106# else /* IN_RING3 */
107 if (!PATMIsPatchGCAddr(pVM, pSrc))
108 {
109 int rc = PGMPhysSimpleReadGCPtr(pVM, pDest, pSrc, cb);
110 AssertRC(rc);
111 }
112 else
113 {
114 for (uint32_t i = 0; i < cb; i++)
115 {
116 uint8_t opcode;
117 if (RT_SUCCESS(PATMR3QueryOpcode(pVM, (RTGCPTR)pSrc + i, &opcode)))
118 {
119 *(pDest+i) = opcode;
120 }
121 }
122 }
123# endif /* IN_RING3 */
124 return VINF_SUCCESS;
125}
126
127DECLINLINE(int) emDisCoreOne(PVM pVM, DISCPUSTATE *pCpu, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
128{
129 return DISCoreOneEx(InstrGC, pCpu->mode, EMReadBytes, pVM, pCpu, pOpsize);
130}
131
132#else /* IN_RC */
133
134DECLINLINE(int) emDisCoreOne(PVM pVM, DISCPUSTATE *pCpu, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
135{
136 return DISCoreOne(pCpu, InstrGC, pOpsize);
137}
138
139#endif /* IN_RC */
140
141
142/**
143 * Disassembles one instruction.
144 *
145 * @param pVM The VM handle.
146 * @param pCtxCore The context core (used for both the mode and instruction).
147 * @param pCpu Where to return the parsed instruction info.
148 * @param pcbInstr Where to return the instruction size. (optional)
149 */
150VMMDECL(int) EMInterpretDisasOne(PVM pVM, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, unsigned *pcbInstr)
151{
152 RTGCPTR GCPtrInstr;
153 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
154 if (RT_FAILURE(rc))
155 {
156 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
157 pCtxCore->cs, (RTGCPTR)pCtxCore->rip, pCtxCore->ss & X86_SEL_RPL, rc));
158 return rc;
159 }
160 return EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pCpu, pcbInstr);
161}
162
163
164/**
165 * Disassembles one instruction.
166 *
167 * This is used by internally by the interpreter and by trap/access handlers.
168 *
169 * @param pVM The VM handle.
170 * @param GCPtrInstr The flat address of the instruction.
171 * @param pCtxCore The context core (used to determine the cpu mode).
172 * @param pCpu Where to return the parsed instruction info.
173 * @param pcbInstr Where to return the instruction size. (optional)
174 */
175VMMDECL(int) EMInterpretDisasOneEx(PVM pVM, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, unsigned *pcbInstr)
176{
177 int rc = DISCoreOneEx(GCPtrInstr, SELMGetCpuModeFromSelector(pVM, pCtxCore->eflags, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid),
178#ifdef IN_RC
179 NULL, NULL,
180#else
181 EMReadBytes, pVM,
182#endif
183 pCpu, pcbInstr);
184 if (RT_SUCCESS(rc))
185 return VINF_SUCCESS;
186 AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
187 return VERR_INTERNAL_ERROR;
188}
189
190
191/**
192 * Interprets the current instruction.
193 *
194 * @returns VBox status code.
195 * @retval VINF_* Scheduling instructions.
196 * @retval VERR_EM_INTERPRETER Something we can't cope with.
197 * @retval VERR_* Fatal errors.
198 *
199 * @param pVM The VM handle.
200 * @param pRegFrame The register frame.
201 * Updates the EIP if an instruction was executed successfully.
202 * @param pvFault The fault address (CR2).
203 * @param pcbSize Size of the write (if applicable).
204 *
205 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
206 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
207 * to worry about e.g. invalid modrm combinations (!)
208 */
209VMMDECL(int) EMInterpretInstruction(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
210{
211 RTGCPTR pbCode;
212
213 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
214 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
215 if (RT_SUCCESS(rc))
216 {
217 uint32_t cbOp;
218 DISCPUSTATE Cpu;
219 Cpu.mode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
220 rc = emDisCoreOne(pVM, &Cpu, (RTGCUINTPTR)pbCode, &cbOp);
221 if (RT_SUCCESS(rc))
222 {
223 Assert(cbOp == Cpu.opsize);
224 rc = EMInterpretInstructionCPU(pVM, &Cpu, pRegFrame, pvFault, pcbSize);
225 if (RT_SUCCESS(rc))
226 {
227 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
228 }
229 return rc;
230 }
231 }
232 return VERR_EM_INTERPRETER;
233}
234
235
236/**
237 * Interprets the current instruction using the supplied DISCPUSTATE structure.
238 *
239 * EIP is *NOT* updated!
240 *
241 * @returns VBox status code.
242 * @retval VINF_* Scheduling instructions. When these are returned, it
243 * starts to get a bit tricky to know whether code was
244 * executed or not... We'll address this when it becomes a problem.
245 * @retval VERR_EM_INTERPRETER Something we can't cope with.
246 * @retval VERR_* Fatal errors.
247 *
248 * @param pVM The VM handle.
249 * @param pCpu The disassembler cpu state for the instruction to be interpreted.
250 * @param pRegFrame The register frame. EIP is *NOT* changed!
251 * @param pvFault The fault address (CR2).
252 * @param pcbSize Size of the write (if applicable).
253 *
254 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
255 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
256 * to worry about e.g. invalid modrm combinations (!)
257 *
258 * @todo At this time we do NOT check if the instruction overwrites vital information.
259 * Make sure this can't happen!! (will add some assertions/checks later)
260 */
261VMMDECL(int) EMInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
262{
263 STAM_PROFILE_START(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
264 int rc = emInterpretInstructionCPU(pVM, pCpu, pRegFrame, pvFault, pcbSize);
265 STAM_PROFILE_STOP(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
266 if (RT_SUCCESS(rc))
267 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
268 else
269 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
270 return rc;
271}
272
273
274/**
275 * Interpret a port I/O instruction.
276 *
277 * @returns VBox status code suitable for scheduling.
278 * @param pVM The VM handle.
279 * @param pCtxCore The context core. This will be updated on successful return.
280 * @param pCpu The instruction to interpret.
281 * @param cbOp The size of the instruction.
282 * @remark This may raise exceptions.
283 */
284VMMDECL(int) EMInterpretPortIO(PVM pVM, PCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, uint32_t cbOp)
285{
286 /*
287 * Hand it on to IOM.
288 */
289#ifdef IN_RC
290 int rc = IOMGCIOPortHandler(pVM, pCtxCore, pCpu);
291 if (IOM_SUCCESS(rc))
292 pCtxCore->rip += cbOp;
293 return rc;
294#else
295 AssertReleaseMsgFailed(("not implemented\n"));
296 return VERR_NOT_IMPLEMENTED;
297#endif
298}
299
300
301DECLINLINE(int) emRamRead(PVM pVM, void *pDest, RTGCPTR GCSrc, uint32_t cb)
302{
303#ifdef IN_RC
304 int rc = MMGCRamRead(pVM, pDest, (void *)GCSrc, cb);
305 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
306 return rc;
307 /*
308 * The page pool cache may end up here in some cases because it
309 * flushed one of the shadow mappings used by the trapping
310 * instruction and it either flushed the TLB or the CPU reused it.
311 */
312 RTGCPHYS GCPhys;
313 rc = PGMPhysGCPtr2GCPhys(pVM, GCSrc, &GCPhys);
314 AssertRCReturn(rc, rc);
315 PGMPhysRead(pVM, GCPhys, pDest, cb);
316 return VINF_SUCCESS;
317#else
318 return PGMPhysReadGCPtr(pVM, pDest, GCSrc, cb);
319#endif
320}
321
322
323DECLINLINE(int) emRamWrite(PVM pVM, RTGCPTR GCDest, void *pSrc, uint32_t cb)
324{
325#ifdef IN_RC
326 int rc = MMGCRamWrite(pVM, (void *)GCDest, pSrc, cb);
327 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
328 return rc;
329 /*
330 * The page pool cache may end up here in some cases because it
331 * flushed one of the shadow mappings used by the trapping
332 * instruction and it either flushed the TLB or the CPU reused it.
333 * We want to play safe here, verifying that we've got write
334 * access doesn't cost us much (see PGMPhysGCPtr2GCPhys()).
335 */
336 uint64_t fFlags;
337 RTGCPHYS GCPhys;
338 rc = PGMGstGetPage(pVM, GCDest, &fFlags, &GCPhys);
339 if (RT_FAILURE(rc))
340 return rc;
341 if ( !(fFlags & X86_PTE_RW)
342 && (CPUMGetGuestCR0(pVM) & X86_CR0_WP))
343 return VERR_ACCESS_DENIED;
344
345 PGMPhysWrite(pVM, GCPhys + ((RTGCUINTPTR)GCDest & PAGE_OFFSET_MASK), pSrc, cb);
346 return VINF_SUCCESS;
347
348#else
349 return PGMPhysWriteGCPtr(pVM, GCDest, pSrc, cb);
350#endif
351}
352
353
354/** Convert sel:addr to a flat GC address. */
355DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, POP_PARAMETER pParam, RTGCPTR pvAddr)
356{
357 DIS_SELREG enmPrefixSeg = DISDetectSegReg(pCpu, pParam);
358 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
359}
360
361
362#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
363/**
364 * Get the mnemonic for the disassembled instruction.
365 *
366 * GC/R0 doesn't include the strings in the DIS tables because
367 * of limited space.
368 */
369static const char *emGetMnemonic(PDISCPUSTATE pCpu)
370{
371 switch (pCpu->pCurInstr->opcode)
372 {
373 case OP_XCHG: return "Xchg";
374 case OP_DEC: return "Dec";
375 case OP_INC: return "Inc";
376 case OP_POP: return "Pop";
377 case OP_OR: return "Or";
378 case OP_AND: return "And";
379 case OP_MOV: return "Mov";
380 case OP_INVLPG: return "InvlPg";
381 case OP_CPUID: return "CpuId";
382 case OP_MOV_CR: return "MovCRx";
383 case OP_MOV_DR: return "MovDRx";
384 case OP_LLDT: return "LLdt";
385 case OP_LGDT: return "LGdt";
386 case OP_LIDT: return "LGdt";
387 case OP_CLTS: return "Clts";
388 case OP_MONITOR: return "Monitor";
389 case OP_MWAIT: return "MWait";
390 case OP_RDMSR: return "Rdmsr";
391 case OP_WRMSR: return "Wrmsr";
392 case OP_ADD: return "Add";
393 case OP_ADC: return "Adc";
394 case OP_SUB: return "Sub";
395 case OP_SBB: return "Sbb";
396 case OP_RDTSC: return "Rdtsc";
397 case OP_STI: return "Sti";
398 case OP_XADD: return "XAdd";
399 case OP_HLT: return "Hlt";
400 case OP_IRET: return "Iret";
401 case OP_MOVNTPS: return "MovNTPS";
402 case OP_STOSWD: return "StosWD";
403 case OP_WBINVD: return "WbInvd";
404 case OP_XOR: return "Xor";
405 case OP_BTR: return "Btr";
406 case OP_BTS: return "Bts";
407 case OP_BTC: return "Btc";
408 case OP_LMSW: return "Lmsw";
409 case OP_CMPXCHG: return pCpu->prefix & PREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
410 case OP_CMPXCHG8B: return pCpu->prefix & PREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
411
412 default:
413 Log(("Unknown opcode %d\n", pCpu->pCurInstr->opcode));
414 return "???";
415 }
416}
417#endif /* VBOX_STRICT || LOG_ENABLED */
418
419
420/**
421 * XCHG instruction emulation.
422 */
423static int emInterpretXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
424{
425 OP_PARAMVAL param1, param2;
426
427 /* Source to make DISQueryParamVal read the register value - ugly hack */
428 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
429 if(RT_FAILURE(rc))
430 return VERR_EM_INTERPRETER;
431
432 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
433 if(RT_FAILURE(rc))
434 return VERR_EM_INTERPRETER;
435
436#ifdef IN_RC
437 if (TRPMHasTrap(pVM))
438 {
439 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
440 {
441#endif
442 RTGCPTR pParam1 = 0, pParam2 = 0;
443 uint64_t valpar1, valpar2;
444
445 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
446 switch(param1.type)
447 {
448 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
449 valpar1 = param1.val.val64;
450 break;
451
452 case PARMTYPE_ADDRESS:
453 pParam1 = (RTGCPTR)param1.val.val64;
454 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
455 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
456 rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
457 if (RT_FAILURE(rc))
458 {
459 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
460 return VERR_EM_INTERPRETER;
461 }
462 break;
463
464 default:
465 AssertFailed();
466 return VERR_EM_INTERPRETER;
467 }
468
469 switch(param2.type)
470 {
471 case PARMTYPE_ADDRESS:
472 pParam2 = (RTGCPTR)param2.val.val64;
473 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param2, pParam2);
474 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
475 rc = emRamRead(pVM, &valpar2, pParam2, param2.size);
476 if (RT_FAILURE(rc))
477 {
478 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
479 }
480 break;
481
482 case PARMTYPE_IMMEDIATE:
483 valpar2 = param2.val.val64;
484 break;
485
486 default:
487 AssertFailed();
488 return VERR_EM_INTERPRETER;
489 }
490
491 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
492 if (pParam1 == 0)
493 {
494 Assert(param1.type == PARMTYPE_IMMEDIATE); /* register actually */
495 switch(param1.size)
496 {
497 case 1: //special case for AH etc
498 rc = DISWriteReg8(pRegFrame, pCpu->param1.base.reg_gen, (uint8_t )valpar2); break;
499 case 2: rc = DISWriteReg16(pRegFrame, pCpu->param1.base.reg_gen, (uint16_t)valpar2); break;
500 case 4: rc = DISWriteReg32(pRegFrame, pCpu->param1.base.reg_gen, (uint32_t)valpar2); break;
501 case 8: rc = DISWriteReg64(pRegFrame, pCpu->param1.base.reg_gen, valpar2); break;
502 default: AssertFailedReturn(VERR_EM_INTERPRETER);
503 }
504 if (RT_FAILURE(rc))
505 return VERR_EM_INTERPRETER;
506 }
507 else
508 {
509 rc = emRamWrite(pVM, pParam1, &valpar2, param1.size);
510 if (RT_FAILURE(rc))
511 {
512 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
513 return VERR_EM_INTERPRETER;
514 }
515 }
516
517 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
518 if (pParam2 == 0)
519 {
520 Assert(param2.type == PARMTYPE_IMMEDIATE); /* register actually */
521 switch(param2.size)
522 {
523 case 1: //special case for AH etc
524 rc = DISWriteReg8(pRegFrame, pCpu->param2.base.reg_gen, (uint8_t )valpar1); break;
525 case 2: rc = DISWriteReg16(pRegFrame, pCpu->param2.base.reg_gen, (uint16_t)valpar1); break;
526 case 4: rc = DISWriteReg32(pRegFrame, pCpu->param2.base.reg_gen, (uint32_t)valpar1); break;
527 case 8: rc = DISWriteReg64(pRegFrame, pCpu->param2.base.reg_gen, valpar1); break;
528 default: AssertFailedReturn(VERR_EM_INTERPRETER);
529 }
530 if (RT_FAILURE(rc))
531 return VERR_EM_INTERPRETER;
532 }
533 else
534 {
535 rc = emRamWrite(pVM, pParam2, &valpar1, param2.size);
536 if (RT_FAILURE(rc))
537 {
538 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
539 return VERR_EM_INTERPRETER;
540 }
541 }
542
543 *pcbSize = param2.size;
544 return VINF_SUCCESS;
545#ifdef IN_RC
546 }
547 }
548#endif
549 return VERR_EM_INTERPRETER;
550}
551
552
553/**
554 * INC and DEC emulation.
555 */
556static int emInterpretIncDec(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
557 PFNEMULATEPARAM2 pfnEmulate)
558{
559 OP_PARAMVAL param1;
560
561 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
562 if(RT_FAILURE(rc))
563 return VERR_EM_INTERPRETER;
564
565#ifdef IN_RC
566 if (TRPMHasTrap(pVM))
567 {
568 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
569 {
570#endif
571 RTGCPTR pParam1 = 0;
572 uint64_t valpar1;
573
574 if (param1.type == PARMTYPE_ADDRESS)
575 {
576 pParam1 = (RTGCPTR)param1.val.val64;
577 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
578#ifdef IN_RC
579 /* Safety check (in theory it could cross a page boundary and fault there though) */
580 AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
581#endif
582 rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
583 if (RT_FAILURE(rc))
584 {
585 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
586 return VERR_EM_INTERPRETER;
587 }
588 }
589 else
590 {
591 AssertFailed();
592 return VERR_EM_INTERPRETER;
593 }
594
595 uint32_t eflags;
596
597 eflags = pfnEmulate(&valpar1, param1.size);
598
599 /* Write result back */
600 rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
601 if (RT_FAILURE(rc))
602 {
603 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
604 return VERR_EM_INTERPRETER;
605 }
606
607 /* Update guest's eflags and finish. */
608 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
609 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
610
611 /* All done! */
612 *pcbSize = param1.size;
613 return VINF_SUCCESS;
614#ifdef IN_RC
615 }
616 }
617#endif
618 return VERR_EM_INTERPRETER;
619}
620
621
622/**
623 * POP Emulation.
624 */
625static int emInterpretPop(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
626{
627 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
628 OP_PARAMVAL param1;
629 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
630 if(RT_FAILURE(rc))
631 return VERR_EM_INTERPRETER;
632
633#ifdef IN_RC
634 if (TRPMHasTrap(pVM))
635 {
636 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
637 {
638#endif
639 RTGCPTR pParam1 = 0;
640 uint32_t valpar1;
641 RTGCPTR pStackVal;
642
643 /* Read stack value first */
644 if (SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid) == CPUMODE_16BIT)
645 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
646
647 /* Convert address; don't bother checking limits etc, as we only read here */
648 pStackVal = SELMToFlat(pVM, DIS_SELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
649 if (pStackVal == 0)
650 return VERR_EM_INTERPRETER;
651
652 rc = emRamRead(pVM, &valpar1, pStackVal, param1.size);
653 if (RT_FAILURE(rc))
654 {
655 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
656 return VERR_EM_INTERPRETER;
657 }
658
659 if (param1.type == PARMTYPE_ADDRESS)
660 {
661 pParam1 = (RTGCPTR)param1.val.val64;
662
663 /* pop [esp+xx] uses esp after the actual pop! */
664 AssertCompile(USE_REG_ESP == USE_REG_SP);
665 if ( (pCpu->param1.flags & USE_BASE)
666 && (pCpu->param1.flags & (USE_REG_GEN16|USE_REG_GEN32))
667 && pCpu->param1.base.reg_gen == USE_REG_ESP
668 )
669 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
670
671 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
672 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
673 rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
674 if (RT_FAILURE(rc))
675 {
676 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
677 return VERR_EM_INTERPRETER;
678 }
679
680 /* Update ESP as the last step */
681 pRegFrame->esp += param1.size;
682 }
683 else
684 {
685#ifndef DEBUG_bird // annoying assertion.
686 AssertFailed();
687#endif
688 return VERR_EM_INTERPRETER;
689 }
690
691 /* All done! */
692 *pcbSize = param1.size;
693 return VINF_SUCCESS;
694#ifdef IN_RC
695 }
696 }
697#endif
698 return VERR_EM_INTERPRETER;
699}
700
701
702/**
703 * XOR/OR/AND Emulation.
704 */
705static int emInterpretOrXorAnd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
706 PFNEMULATEPARAM3 pfnEmulate)
707{
708 OP_PARAMVAL param1, param2;
709
710 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
711 if(RT_FAILURE(rc))
712 return VERR_EM_INTERPRETER;
713
714 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
715 if(RT_FAILURE(rc))
716 return VERR_EM_INTERPRETER;
717
718#ifdef IN_RC
719 if (TRPMHasTrap(pVM))
720 {
721 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
722 {
723#endif
724 RTGCPTR pParam1;
725 uint64_t valpar1, valpar2;
726
727 if (pCpu->param1.size != pCpu->param2.size)
728 {
729 if (pCpu->param1.size < pCpu->param2.size)
730 {
731 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size)); /* should never happen! */
732 return VERR_EM_INTERPRETER;
733 }
734 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
735 pCpu->param2.size = pCpu->param1.size;
736 param2.size = param1.size;
737 }
738
739 /* The destination is always a virtual address */
740 if (param1.type == PARMTYPE_ADDRESS)
741 {
742 pParam1 = (RTGCPTR)param1.val.val64;
743 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
744 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
745 rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
746 if (RT_FAILURE(rc))
747 {
748 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
749 return VERR_EM_INTERPRETER;
750 }
751 }
752 else
753 {
754 AssertFailed();
755 return VERR_EM_INTERPRETER;
756 }
757
758 /* Register or immediate data */
759 switch(param2.type)
760 {
761 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
762 valpar2 = param2.val.val64;
763 break;
764
765 default:
766 AssertFailed();
767 return VERR_EM_INTERPRETER;
768 }
769
770 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pCpu), pParam1, valpar1, valpar2, param2.size, param1.size));
771
772 /* Data read, emulate instruction. */
773 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
774
775 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pCpu), valpar1));
776
777 /* Update guest's eflags and finish. */
778 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
779 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
780
781 /* And write it back */
782 rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
783 if (RT_SUCCESS(rc))
784 {
785 /* All done! */
786 *pcbSize = param2.size;
787 return VINF_SUCCESS;
788 }
789#ifdef IN_RC
790 }
791 }
792#endif
793 return VERR_EM_INTERPRETER;
794}
795
796
797/**
798 * LOCK XOR/OR/AND Emulation.
799 */
800static int emInterpretLockOrXorAnd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
801 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
802{
803 void *pvParam1;
804 OP_PARAMVAL param1, param2;
805
806#if HC_ARCH_BITS == 32
807 Assert(pCpu->param1.size <= 4);
808#endif
809
810 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
811 if(RT_FAILURE(rc))
812 return VERR_EM_INTERPRETER;
813
814 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
815 if(RT_FAILURE(rc))
816 return VERR_EM_INTERPRETER;
817
818 if (pCpu->param1.size != pCpu->param2.size)
819 {
820 AssertMsgReturn(pCpu->param1.size >= pCpu->param2.size, /* should never happen! */
821 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size),
822 VERR_EM_INTERPRETER);
823
824 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
825 pCpu->param2.size = pCpu->param1.size;
826 param2.size = param1.size;
827 }
828
829#ifdef IN_RC
830 /* Safety check (in theory it could cross a page boundary and fault there though) */
831 Assert( TRPMHasTrap(pVM)
832 && (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW));
833 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
834#endif
835
836 /* Register and immediate data == PARMTYPE_IMMEDIATE */
837 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
838 RTGCUINTREG ValPar2 = param2.val.val64;
839
840 /* The destination is always a virtual address */
841 AssertReturn(param1.type == PARMTYPE_ADDRESS, VERR_EM_INTERPRETER);
842
843 RTGCPTR GCPtrPar1 = param1.val.val64;
844 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
845#ifdef IN_RC
846 pvParam1 = (void *)GCPtrPar1;
847#else
848 PGMPAGEMAPLOCK Lock;
849 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
850 AssertRCReturn(rc, VERR_EM_INTERPRETER);
851#endif
852
853 /* Try emulate it with a one-shot #PF handler in place. (RC) */
854 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
855
856 RTGCUINTREG32 eflags = 0;
857#ifdef IN_RC
858 MMGCRamRegisterTrapHandler(pVM);
859#endif
860 rc = pfnEmulate(pvParam1, ValPar2, pCpu->param2.size, &eflags);
861#ifdef IN_RC
862 MMGCRamDeregisterTrapHandler(pVM);
863#else
864 PGMPhysReleasePageMappingLock(pVM, &Lock);
865#endif
866 if (RT_FAILURE(rc))
867 {
868 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
869 return VERR_EM_INTERPRETER;
870 }
871
872 /* Update guest's eflags and finish. */
873 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
874 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
875
876 *pcbSize = param2.size;
877 return VINF_SUCCESS;
878}
879
880
881/**
882 * ADD, ADC & SUB Emulation.
883 */
884static int emInterpretAddSub(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
885 PFNEMULATEPARAM3 pfnEmulate)
886{
887 OP_PARAMVAL param1, param2;
888 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
889 if(RT_FAILURE(rc))
890 return VERR_EM_INTERPRETER;
891
892 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
893 if(RT_FAILURE(rc))
894 return VERR_EM_INTERPRETER;
895
896#ifdef IN_RC
897 if (TRPMHasTrap(pVM))
898 {
899 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
900 {
901#endif
902 RTGCPTR pParam1;
903 uint64_t valpar1, valpar2;
904
905 if (pCpu->param1.size != pCpu->param2.size)
906 {
907 if (pCpu->param1.size < pCpu->param2.size)
908 {
909 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size)); /* should never happen! */
910 return VERR_EM_INTERPRETER;
911 }
912 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
913 pCpu->param2.size = pCpu->param1.size;
914 param2.size = param1.size;
915 }
916
917 /* The destination is always a virtual address */
918 if (param1.type == PARMTYPE_ADDRESS)
919 {
920 pParam1 = (RTGCPTR)param1.val.val64;
921 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
922 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
923 rc = emRamRead(pVM, &valpar1, pParam1, param1.size);
924 if (RT_FAILURE(rc))
925 {
926 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
927 return VERR_EM_INTERPRETER;
928 }
929 }
930 else
931 {
932#ifndef DEBUG_bird
933 AssertFailed();
934#endif
935 return VERR_EM_INTERPRETER;
936 }
937
938 /* Register or immediate data */
939 switch(param2.type)
940 {
941 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
942 valpar2 = param2.val.val64;
943 break;
944
945 default:
946 AssertFailed();
947 return VERR_EM_INTERPRETER;
948 }
949
950 /* Data read, emulate instruction. */
951 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
952
953 /* Update guest's eflags and finish. */
954 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
955 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
956
957 /* And write it back */
958 rc = emRamWrite(pVM, pParam1, &valpar1, param1.size);
959 if (RT_SUCCESS(rc))
960 {
961 /* All done! */
962 *pcbSize = param2.size;
963 return VINF_SUCCESS;
964 }
965#ifdef IN_RC
966 }
967 }
968#endif
969 return VERR_EM_INTERPRETER;
970}
971
972
973/**
974 * ADC Emulation.
975 */
976static int emInterpretAdc(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
977{
978 if (pRegFrame->eflags.Bits.u1CF)
979 return emInterpretAddSub(pVM, pCpu, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
980 else
981 return emInterpretAddSub(pVM, pCpu, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
982}
983
984
985/**
986 * BTR/C/S Emulation.
987 */
988static int emInterpretBitTest(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
989 PFNEMULATEPARAM2UINT32 pfnEmulate)
990{
991 OP_PARAMVAL param1, param2;
992 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
993 if(RT_FAILURE(rc))
994 return VERR_EM_INTERPRETER;
995
996 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
997 if(RT_FAILURE(rc))
998 return VERR_EM_INTERPRETER;
999
1000#ifdef IN_RC
1001 if (TRPMHasTrap(pVM))
1002 {
1003 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1004 {
1005#endif
1006 RTGCPTR pParam1;
1007 uint64_t valpar1 = 0, valpar2;
1008 uint32_t eflags;
1009
1010 /* The destination is always a virtual address */
1011 if (param1.type != PARMTYPE_ADDRESS)
1012 return VERR_EM_INTERPRETER;
1013
1014 pParam1 = (RTGCPTR)param1.val.val64;
1015 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
1016
1017 /* Register or immediate data */
1018 switch(param2.type)
1019 {
1020 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1021 valpar2 = param2.val.val64;
1022 break;
1023
1024 default:
1025 AssertFailed();
1026 return VERR_EM_INTERPRETER;
1027 }
1028
1029 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pCpu), pvFault, pParam1, valpar2));
1030 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
1031 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
1032 rc = emRamRead(pVM, &valpar1, pParam1, 1);
1033 if (RT_FAILURE(rc))
1034 {
1035 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1036 return VERR_EM_INTERPRETER;
1037 }
1038
1039 Log2(("emInterpretBtx: val=%x\n", valpar1));
1040 /* Data read, emulate bit test instruction. */
1041 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
1042
1043 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
1044
1045 /* Update guest's eflags and finish. */
1046 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1047 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1048
1049 /* And write it back */
1050 rc = emRamWrite(pVM, pParam1, &valpar1, 1);
1051 if (RT_SUCCESS(rc))
1052 {
1053 /* All done! */
1054 *pcbSize = 1;
1055 return VINF_SUCCESS;
1056 }
1057#ifdef IN_RC
1058 }
1059 }
1060#endif
1061 return VERR_EM_INTERPRETER;
1062}
1063
1064
1065/**
1066 * LOCK BTR/C/S Emulation.
1067 */
1068static int emInterpretLockBitTest(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
1069 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
1070{
1071 void *pvParam1;
1072
1073 OP_PARAMVAL param1, param2;
1074 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
1075 if(RT_FAILURE(rc))
1076 return VERR_EM_INTERPRETER;
1077
1078 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1079 if(RT_FAILURE(rc))
1080 return VERR_EM_INTERPRETER;
1081
1082 /* The destination is always a virtual address */
1083 if (param1.type != PARMTYPE_ADDRESS)
1084 return VERR_EM_INTERPRETER;
1085
1086 /* Register and immediate data == PARMTYPE_IMMEDIATE */
1087 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
1088 uint64_t ValPar2 = param2.val.val64;
1089
1090 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
1091 RTGCPTR GCPtrPar1 = param1.val.val64;
1092 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
1093 ValPar2 &= 7;
1094
1095 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
1096#ifdef IN_RC
1097 Assert(TRPMHasTrap(pVM));
1098 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
1099#endif
1100
1101#ifdef IN_RC
1102 pvParam1 = (void *)GCPtrPar1;
1103#else
1104 PGMPAGEMAPLOCK Lock;
1105 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
1106 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1107#endif
1108
1109 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pCpu), pvFault, GCPtrPar1, ValPar2));
1110
1111 /* Try emulate it with a one-shot #PF handler in place. (RC) */
1112 RTGCUINTREG32 eflags = 0;
1113#ifdef IN_RC
1114 MMGCRamRegisterTrapHandler(pVM);
1115#endif
1116 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
1117#ifdef IN_RC
1118 MMGCRamDeregisterTrapHandler(pVM);
1119#else
1120 PGMPhysReleasePageMappingLock(pVM, &Lock);
1121#endif
1122 if (RT_FAILURE(rc))
1123 {
1124 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
1125 emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
1126 return VERR_EM_INTERPRETER;
1127 }
1128
1129 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pCpu), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
1130
1131 /* Update guest's eflags and finish. */
1132 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1133 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1134
1135 *pcbSize = 1;
1136 return VINF_SUCCESS;
1137}
1138
1139
1140/**
1141 * MOV emulation.
1142 */
1143static int emInterpretMov(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1144{
1145 OP_PARAMVAL param1, param2;
1146 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
1147 if(RT_FAILURE(rc))
1148 return VERR_EM_INTERPRETER;
1149
1150 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1151 if(RT_FAILURE(rc))
1152 return VERR_EM_INTERPRETER;
1153
1154#ifdef IN_RC
1155 if (TRPMHasTrap(pVM))
1156 {
1157 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1158 {
1159#else
1160 /** @todo Make this the default and don't rely on TRPM information. */
1161 if (param1.type == PARMTYPE_ADDRESS)
1162 {
1163#endif
1164 RTGCPTR pDest;
1165 uint64_t val64;
1166
1167 switch(param1.type)
1168 {
1169 case PARMTYPE_IMMEDIATE:
1170 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1171 return VERR_EM_INTERPRETER;
1172 /* fallthru */
1173
1174 case PARMTYPE_ADDRESS:
1175 pDest = (RTGCPTR)param1.val.val64;
1176 pDest = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pDest);
1177 break;
1178
1179 default:
1180 AssertFailed();
1181 return VERR_EM_INTERPRETER;
1182 }
1183
1184 switch(param2.type)
1185 {
1186 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
1187 val64 = param2.val.val64;
1188 break;
1189
1190 default:
1191 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
1192 return VERR_EM_INTERPRETER;
1193 }
1194#ifdef LOG_ENABLED
1195 if (pCpu->mode == CPUMODE_64BIT)
1196 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
1197 else
1198 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
1199#endif
1200
1201 Assert(param2.size <= 8 && param2.size > 0);
1202 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
1203 rc = emRamWrite(pVM, pDest, &val64, param2.size);
1204 if (RT_FAILURE(rc))
1205 return VERR_EM_INTERPRETER;
1206
1207 *pcbSize = param2.size;
1208 }
1209 else
1210 { /* read fault */
1211 RTGCPTR pSrc;
1212 uint64_t val64;
1213
1214 /* Source */
1215 switch(param2.type)
1216 {
1217 case PARMTYPE_IMMEDIATE:
1218 if(!(param2.flags & (PARAM_VAL32|PARAM_VAL64)))
1219 return VERR_EM_INTERPRETER;
1220 /* fallthru */
1221
1222 case PARMTYPE_ADDRESS:
1223 pSrc = (RTGCPTR)param2.val.val64;
1224 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param2, pSrc);
1225 break;
1226
1227 default:
1228 return VERR_EM_INTERPRETER;
1229 }
1230
1231 Assert(param1.size <= 8 && param1.size > 0);
1232 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
1233 rc = emRamRead(pVM, &val64, pSrc, param1.size);
1234 if (RT_FAILURE(rc))
1235 return VERR_EM_INTERPRETER;
1236
1237 /* Destination */
1238 switch(param1.type)
1239 {
1240 case PARMTYPE_REGISTER:
1241 switch(param1.size)
1242 {
1243 case 1: rc = DISWriteReg8(pRegFrame, pCpu->param1.base.reg_gen, (uint8_t) val64); break;
1244 case 2: rc = DISWriteReg16(pRegFrame, pCpu->param1.base.reg_gen, (uint16_t)val64); break;
1245 case 4: rc = DISWriteReg32(pRegFrame, pCpu->param1.base.reg_gen, (uint32_t)val64); break;
1246 case 8: rc = DISWriteReg64(pRegFrame, pCpu->param1.base.reg_gen, val64); break;
1247 default:
1248 return VERR_EM_INTERPRETER;
1249 }
1250 if (RT_FAILURE(rc))
1251 return rc;
1252 break;
1253
1254 default:
1255 return VERR_EM_INTERPRETER;
1256 }
1257#ifdef LOG_ENABLED
1258 if (pCpu->mode == CPUMODE_64BIT)
1259 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
1260 else
1261 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
1262#endif
1263 }
1264 return VINF_SUCCESS;
1265#ifdef IN_RC
1266 }
1267#endif
1268 return VERR_EM_INTERPRETER;
1269}
1270
1271
1272#ifndef IN_RC
1273/**
1274 * [REP] STOSWD emulation
1275 */
1276static int emInterpretStosWD(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1277{
1278 int rc;
1279 RTGCPTR GCDest, GCOffset;
1280 uint32_t cbSize;
1281 uint64_t cTransfers;
1282 int offIncrement;
1283
1284 /* Don't support any but these three prefix bytes. */
1285 if ((pCpu->prefix & ~(PREFIX_ADDRSIZE|PREFIX_OPSIZE|PREFIX_REP|PREFIX_REX)))
1286 return VERR_EM_INTERPRETER;
1287
1288 switch (pCpu->addrmode)
1289 {
1290 case CPUMODE_16BIT:
1291 GCOffset = pRegFrame->di;
1292 cTransfers = pRegFrame->cx;
1293 break;
1294 case CPUMODE_32BIT:
1295 GCOffset = pRegFrame->edi;
1296 cTransfers = pRegFrame->ecx;
1297 break;
1298 case CPUMODE_64BIT:
1299 GCOffset = pRegFrame->rdi;
1300 cTransfers = pRegFrame->rcx;
1301 break;
1302 default:
1303 AssertFailed();
1304 return VERR_EM_INTERPRETER;
1305 }
1306
1307 GCDest = SELMToFlat(pVM, DIS_SELREG_ES, pRegFrame, GCOffset);
1308 switch (pCpu->opmode)
1309 {
1310 case CPUMODE_16BIT:
1311 cbSize = 2;
1312 break;
1313 case CPUMODE_32BIT:
1314 cbSize = 4;
1315 break;
1316 case CPUMODE_64BIT:
1317 cbSize = 8;
1318 break;
1319 default:
1320 AssertFailed();
1321 return VERR_EM_INTERPRETER;
1322 }
1323
1324 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
1325
1326 if (!(pCpu->prefix & PREFIX_REP))
1327 {
1328 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize));
1329
1330 rc = PGMPhysWriteGCPtr(pVM, GCDest, &pRegFrame->rax, cbSize);
1331 if (RT_FAILURE(rc))
1332 return VERR_EM_INTERPRETER;
1333 Assert(rc == VINF_SUCCESS);
1334
1335 /* Update (e/r)di. */
1336 switch (pCpu->addrmode)
1337 {
1338 case CPUMODE_16BIT:
1339 pRegFrame->di += offIncrement;
1340 break;
1341 case CPUMODE_32BIT:
1342 pRegFrame->edi += offIncrement;
1343 break;
1344 case CPUMODE_64BIT:
1345 pRegFrame->rdi += offIncrement;
1346 break;
1347 default:
1348 AssertFailed();
1349 return VERR_EM_INTERPRETER;
1350 }
1351
1352 }
1353 else
1354 {
1355 if (!cTransfers)
1356 return VINF_SUCCESS;
1357
1358 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
1359 /* Access verification first; we currently can't recover properly from traps inside this instruction */
1360 rc = PGMVerifyAccess(pVM, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
1361 cTransfers * cbSize,
1362 X86_PTE_RW | (CPUMGetGuestCPL(pVM, pRegFrame) == 3 ? X86_PTE_US : 0));
1363 if (rc != VINF_SUCCESS)
1364 {
1365 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
1366 return VERR_EM_INTERPRETER;
1367 }
1368
1369 /* REP case */
1370 while (cTransfers)
1371 {
1372 rc = PGMPhysWriteGCPtr(pVM, GCDest, &pRegFrame->rax, cbSize);
1373 if (RT_FAILURE(rc))
1374 {
1375 rc = VERR_EM_INTERPRETER;
1376 break;
1377 }
1378
1379 Assert(rc == VINF_SUCCESS);
1380 GCOffset += offIncrement;
1381 GCDest += offIncrement;
1382 cTransfers--;
1383 }
1384
1385 /* Update the registers. */
1386 switch (pCpu->addrmode)
1387 {
1388 case CPUMODE_16BIT:
1389 pRegFrame->di = GCOffset;
1390 pRegFrame->cx = cTransfers;
1391 break;
1392 case CPUMODE_32BIT:
1393 pRegFrame->edi = GCOffset;
1394 pRegFrame->ecx = cTransfers;
1395 break;
1396 case CPUMODE_64BIT:
1397 pRegFrame->rdi = GCOffset;
1398 pRegFrame->rcx = cTransfers;
1399 break;
1400 default:
1401 AssertFailed();
1402 return VERR_EM_INTERPRETER;
1403 }
1404 }
1405
1406 *pcbSize = cbSize;
1407 return rc;
1408}
1409#endif /* !IN_RC */
1410
1411#ifndef IN_RC
1412
1413/**
1414 * [LOCK] CMPXCHG emulation.
1415 */
1416static int emInterpretCmpXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1417{
1418 OP_PARAMVAL param1, param2;
1419
1420#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
1421 Assert(pCpu->param1.size <= 4);
1422#endif
1423
1424 /* Source to make DISQueryParamVal read the register value - ugly hack */
1425 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1426 if(RT_FAILURE(rc))
1427 return VERR_EM_INTERPRETER;
1428
1429 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1430 if(RT_FAILURE(rc))
1431 return VERR_EM_INTERPRETER;
1432
1433 uint64_t valpar;
1434 switch(param2.type)
1435 {
1436 case PARMTYPE_IMMEDIATE: /* register actually */
1437 valpar = param2.val.val64;
1438 break;
1439
1440 default:
1441 return VERR_EM_INTERPRETER;
1442 }
1443
1444 PGMPAGEMAPLOCK Lock;
1445 RTGCPTR GCPtrPar1;
1446 void *pvParam1;
1447 uint64_t eflags;
1448
1449 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
1450 switch(param1.type)
1451 {
1452 case PARMTYPE_ADDRESS:
1453 GCPtrPar1 = param1.val.val64;
1454 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
1455
1456 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
1457 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1458 break;
1459
1460 default:
1461 return VERR_EM_INTERPRETER;
1462 }
1463
1464 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pCpu), GCPtrPar1, pRegFrame->rax, valpar));
1465
1466 if (pCpu->prefix & PREFIX_LOCK)
1467 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pCpu->param2.size);
1468 else
1469 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pCpu->param2.size);
1470
1471 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pCpu), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
1472
1473 /* Update guest's eflags and finish. */
1474 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1475 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1476
1477 *pcbSize = param2.size;
1478 PGMPhysReleasePageMappingLock(pVM, &Lock);
1479 return VINF_SUCCESS;
1480}
1481
1482
1483/**
1484 * [LOCK] CMPXCHG8B emulation.
1485 */
1486static int emInterpretCmpXchg8b(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1487{
1488 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1489 OP_PARAMVAL param1;
1490
1491 /* Source to make DISQueryParamVal read the register value - ugly hack */
1492 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1493 if(RT_FAILURE(rc))
1494 return VERR_EM_INTERPRETER;
1495
1496 RTGCPTR GCPtrPar1;
1497 void *pvParam1;
1498 uint64_t eflags;
1499 PGMPAGEMAPLOCK Lock;
1500
1501 AssertReturn(pCpu->param1.size == 8, VERR_EM_INTERPRETER);
1502 switch(param1.type)
1503 {
1504 case PARMTYPE_ADDRESS:
1505 GCPtrPar1 = param1.val.val64;
1506 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
1507
1508 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
1509 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1510 break;
1511
1512 default:
1513 return VERR_EM_INTERPRETER;
1514 }
1515
1516 LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pCpu), pvParam1, pRegFrame->eax));
1517
1518 if (pCpu->prefix & PREFIX_LOCK)
1519 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1520 else
1521 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1522
1523 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pCpu), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1524
1525 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1526 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1527 | (eflags & (X86_EFL_ZF));
1528
1529 *pcbSize = 8;
1530 PGMPhysReleasePageMappingLock(pVM, &Lock);
1531 return VINF_SUCCESS;
1532}
1533
1534#else /* IN_RC */
1535
1536/**
1537 * [LOCK] CMPXCHG emulation.
1538 */
1539static int emInterpretCmpXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1540{
1541 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1542 OP_PARAMVAL param1, param2;
1543
1544 /* Source to make DISQueryParamVal read the register value - ugly hack */
1545 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1546 if(RT_FAILURE(rc))
1547 return VERR_EM_INTERPRETER;
1548
1549 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1550 if(RT_FAILURE(rc))
1551 return VERR_EM_INTERPRETER;
1552
1553 if (TRPMHasTrap(pVM))
1554 {
1555 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1556 {
1557 RTRCPTR pParam1;
1558 uint32_t valpar, eflags;
1559
1560 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
1561 switch(param1.type)
1562 {
1563 case PARMTYPE_ADDRESS:
1564 pParam1 = (RTRCPTR)param1.val.val64;
1565 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1566 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1567 break;
1568
1569 default:
1570 return VERR_EM_INTERPRETER;
1571 }
1572
1573 switch(param2.type)
1574 {
1575 case PARMTYPE_IMMEDIATE: /* register actually */
1576 valpar = param2.val.val32;
1577 break;
1578
1579 default:
1580 return VERR_EM_INTERPRETER;
1581 }
1582
1583 LogFlow(("%s %RRv eax=%08x %08x\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar));
1584
1585 MMGCRamRegisterTrapHandler(pVM);
1586 if (pCpu->prefix & PREFIX_LOCK)
1587 rc = EMGCEmulateLockCmpXchg(pParam1, &pRegFrame->eax, valpar, pCpu->param2.size, &eflags);
1588 else
1589 rc = EMGCEmulateCmpXchg(pParam1, &pRegFrame->eax, valpar, pCpu->param2.size, &eflags);
1590 MMGCRamDeregisterTrapHandler(pVM);
1591
1592 if (RT_FAILURE(rc))
1593 {
1594 Log(("%s %RGv eax=%08x %08x -> emulation failed due to page fault!\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar));
1595 return VERR_EM_INTERPRETER;
1596 }
1597
1598 LogFlow(("%s %RRv eax=%08x %08x ZF=%d\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar, !!(eflags & X86_EFL_ZF)));
1599
1600 /* Update guest's eflags and finish. */
1601 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1602 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1603
1604 *pcbSize = param2.size;
1605 return VINF_SUCCESS;
1606 }
1607 }
1608 return VERR_EM_INTERPRETER;
1609}
1610
1611
1612/**
1613 * [LOCK] CMPXCHG8B emulation.
1614 */
1615static int emInterpretCmpXchg8b(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1616{
1617 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1618 OP_PARAMVAL param1;
1619
1620 /* Source to make DISQueryParamVal read the register value - ugly hack */
1621 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1622 if(RT_FAILURE(rc))
1623 return VERR_EM_INTERPRETER;
1624
1625 if (TRPMHasTrap(pVM))
1626 {
1627 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1628 {
1629 RTRCPTR pParam1;
1630 uint32_t eflags;
1631
1632 AssertReturn(pCpu->param1.size == 8, VERR_EM_INTERPRETER);
1633 switch(param1.type)
1634 {
1635 case PARMTYPE_ADDRESS:
1636 pParam1 = (RTRCPTR)param1.val.val64;
1637 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1638 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1639 break;
1640
1641 default:
1642 return VERR_EM_INTERPRETER;
1643 }
1644
1645 LogFlow(("%s %RRv=%08x eax=%08x\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax));
1646
1647 MMGCRamRegisterTrapHandler(pVM);
1648 if (pCpu->prefix & PREFIX_LOCK)
1649 rc = EMGCEmulateLockCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
1650 else
1651 rc = EMGCEmulateCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
1652 MMGCRamDeregisterTrapHandler(pVM);
1653
1654 if (RT_FAILURE(rc))
1655 {
1656 Log(("%s %RGv=%08x eax=%08x -> emulation failed due to page fault!\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax));
1657 return VERR_EM_INTERPRETER;
1658 }
1659
1660 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1661
1662 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1663 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1664 | (eflags & (X86_EFL_ZF));
1665
1666 *pcbSize = 8;
1667 return VINF_SUCCESS;
1668 }
1669 }
1670 return VERR_EM_INTERPRETER;
1671}
1672
1673#endif /* IN_RC */
1674
1675#ifdef IN_RC
1676/**
1677 * [LOCK] XADD emulation.
1678 */
1679static int emInterpretXAdd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1680{
1681 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1682 OP_PARAMVAL param1;
1683 uint32_t *pParamReg2;
1684 size_t cbSizeParamReg2;
1685
1686 /* Source to make DISQueryParamVal read the register value - ugly hack */
1687 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1688 if(RT_FAILURE(rc))
1689 return VERR_EM_INTERPRETER;
1690
1691 rc = DISQueryParamRegPtr(pRegFrame, pCpu, &pCpu->param2, (void **)&pParamReg2, &cbSizeParamReg2);
1692 Assert(cbSizeParamReg2 <= 4);
1693 if(RT_FAILURE(rc))
1694 return VERR_EM_INTERPRETER;
1695
1696 if (TRPMHasTrap(pVM))
1697 {
1698 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1699 {
1700 RTRCPTR pParam1;
1701 uint32_t eflags;
1702
1703 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
1704 switch(param1.type)
1705 {
1706 case PARMTYPE_ADDRESS:
1707 pParam1 = (RTRCPTR)param1.val.val64;
1708 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1709 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1710 break;
1711
1712 default:
1713 return VERR_EM_INTERPRETER;
1714 }
1715
1716 LogFlow(("XAdd %RRv=%08x reg=%08x\n", pParam1, *pParamReg2));
1717
1718 MMGCRamRegisterTrapHandler(pVM);
1719 if (pCpu->prefix & PREFIX_LOCK)
1720 rc = EMGCEmulateLockXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
1721 else
1722 rc = EMGCEmulateXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
1723 MMGCRamDeregisterTrapHandler(pVM);
1724
1725 if (RT_FAILURE(rc))
1726 {
1727 Log(("XAdd %RGv reg=%08x -> emulation failed due to page fault!\n", pParam1, *pParamReg2));
1728 return VERR_EM_INTERPRETER;
1729 }
1730
1731 LogFlow(("XAdd %RGv reg=%08x ZF=%d\n", pParam1, *pParamReg2, !!(eflags & X86_EFL_ZF)));
1732
1733 /* Update guest's eflags and finish. */
1734 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1735 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1736
1737 *pcbSize = cbSizeParamReg2;
1738 return VINF_SUCCESS;
1739 }
1740 }
1741 return VERR_EM_INTERPRETER;
1742}
1743#endif /* IN_RC */
1744
1745
1746#ifdef IN_RC
1747/**
1748 * Interpret IRET (currently only to V86 code)
1749 *
1750 * @returns VBox status code.
1751 * @param pVM The VM handle.
1752 * @param pRegFrame The register frame.
1753 *
1754 */
1755VMMDECL(int) EMInterpretIret(PVM pVM, PCPUMCTXCORE pRegFrame)
1756{
1757 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1758 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
1759 int rc;
1760
1761 Assert(!CPUMIsGuestIn64BitCode(pVM, pRegFrame));
1762
1763 rc = emRamRead(pVM, &eip, (RTGCPTR)pIretStack , 4);
1764 rc |= emRamRead(pVM, &cs, (RTGCPTR)(pIretStack + 4), 4);
1765 rc |= emRamRead(pVM, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1766 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1767 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1768
1769 rc |= emRamRead(pVM, &esp, (RTGCPTR)(pIretStack + 12), 4);
1770 rc |= emRamRead(pVM, &ss, (RTGCPTR)(pIretStack + 16), 4);
1771 rc |= emRamRead(pVM, &es, (RTGCPTR)(pIretStack + 20), 4);
1772 rc |= emRamRead(pVM, &ds, (RTGCPTR)(pIretStack + 24), 4);
1773 rc |= emRamRead(pVM, &fs, (RTGCPTR)(pIretStack + 28), 4);
1774 rc |= emRamRead(pVM, &gs, (RTGCPTR)(pIretStack + 32), 4);
1775 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1776
1777 pRegFrame->eip = eip & 0xffff;
1778 pRegFrame->cs = cs;
1779
1780 /* Mask away all reserved bits */
1781 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1782 eflags &= uMask;
1783
1784#ifndef IN_RING0
1785 CPUMRawSetEFlags(pVM, pRegFrame, eflags);
1786#endif
1787 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1788
1789 pRegFrame->esp = esp;
1790 pRegFrame->ss = ss;
1791 pRegFrame->ds = ds;
1792 pRegFrame->es = es;
1793 pRegFrame->fs = fs;
1794 pRegFrame->gs = gs;
1795
1796 return VINF_SUCCESS;
1797}
1798#endif /* IN_RC */
1799
1800
1801/**
1802 * IRET Emulation.
1803 */
1804static int emInterpretIret(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1805{
1806 /* only allow direct calls to EMInterpretIret for now */
1807 return VERR_EM_INTERPRETER;
1808}
1809
1810/**
1811 * WBINVD Emulation.
1812 */
1813static int emInterpretWbInvd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1814{
1815 /* Nothing to do. */
1816 return VINF_SUCCESS;
1817}
1818
1819
1820/**
1821 * Interpret INVLPG
1822 *
1823 * @returns VBox status code.
1824 * @param pVM The VM handle.
1825 * @param pRegFrame The register frame.
1826 * @param pAddrGC Operand address
1827 *
1828 */
1829VMMDECL(int) EMInterpretInvlpg(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
1830{
1831 int rc;
1832
1833 /** @todo is addr always a flat linear address or ds based
1834 * (in absence of segment override prefixes)????
1835 */
1836#ifdef IN_RC
1837 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
1838#endif
1839 rc = PGMInvalidatePage(pVM, pAddrGC);
1840 if ( rc == VINF_SUCCESS
1841 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1842 return VINF_SUCCESS;
1843 AssertMsgReturn( rc == VERR_REM_FLUSHED_PAGES_OVERFLOW
1844 || rc == VINF_EM_RAW_EMULATE_INSTR,
1845 ("%Rrc addr=%RGv\n", rc, pAddrGC),
1846 VERR_EM_INTERPRETER);
1847 return rc;
1848}
1849
1850
1851/**
1852 * INVLPG Emulation.
1853 */
1854static int emInterpretInvlPg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1855{
1856 OP_PARAMVAL param1;
1857 RTGCPTR addr;
1858
1859 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1860 if(RT_FAILURE(rc))
1861 return VERR_EM_INTERPRETER;
1862
1863 switch(param1.type)
1864 {
1865 case PARMTYPE_IMMEDIATE:
1866 case PARMTYPE_ADDRESS:
1867 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1868 return VERR_EM_INTERPRETER;
1869 addr = (RTGCPTR)param1.val.val64;
1870 break;
1871
1872 default:
1873 return VERR_EM_INTERPRETER;
1874 }
1875
1876 /** @todo is addr always a flat linear address or ds based
1877 * (in absence of segment override prefixes)????
1878 */
1879#ifdef IN_RC
1880 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
1881#endif
1882 rc = PGMInvalidatePage(pVM, addr);
1883 if ( rc == VINF_SUCCESS
1884 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1885 return VINF_SUCCESS;
1886 AssertMsgReturn( rc == VERR_REM_FLUSHED_PAGES_OVERFLOW
1887 || rc == VINF_EM_RAW_EMULATE_INSTR,
1888 ("%Rrc addr=%RGv\n", rc, addr),
1889 VERR_EM_INTERPRETER);
1890 return rc;
1891}
1892
1893
1894/**
1895 * Interpret CPUID given the parameters in the CPU context
1896 *
1897 * @returns VBox status code.
1898 * @param pVM The VM handle.
1899 * @param pRegFrame The register frame.
1900 *
1901 */
1902VMMDECL(int) EMInterpretCpuId(PVM pVM, PCPUMCTXCORE pRegFrame)
1903{
1904 uint32_t iLeaf = pRegFrame->eax;
1905
1906 /* cpuid clears the high dwords of the affected 64 bits registers. */
1907 pRegFrame->rax = 0;
1908 pRegFrame->rbx = 0;
1909 pRegFrame->rcx = 0;
1910 pRegFrame->rdx = 0;
1911
1912 /* Note: operates the same in 64 and non-64 bits mode. */
1913 CPUMGetGuestCpuId(pVM, iLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
1914 Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
1915 return VINF_SUCCESS;
1916}
1917
1918
1919/**
1920 * CPUID Emulation.
1921 */
1922static int emInterpretCpuId(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1923{
1924 int rc = EMInterpretCpuId(pVM, pRegFrame);
1925 return rc;
1926}
1927
1928
1929/**
1930 * Interpret CRx read
1931 *
1932 * @returns VBox status code.
1933 * @param pVM The VM handle.
1934 * @param pRegFrame The register frame.
1935 * @param DestRegGen General purpose register index (USE_REG_E**))
1936 * @param SrcRegCRx CRx register index (USE_REG_CR*)
1937 *
1938 */
1939VMMDECL(int) EMInterpretCRxRead(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
1940{
1941 int rc;
1942 uint64_t val64;
1943
1944 if (SrcRegCrx == USE_REG_CR8)
1945 {
1946 val64 = 0;
1947 rc = PDMApicGetTPR(pVM, (uint8_t *)&val64, NULL);
1948 AssertMsgRCReturn(rc, ("PDMApicGetTPR failed\n"), VERR_EM_INTERPRETER);
1949 }
1950 else
1951 {
1952 rc = CPUMGetGuestCRx(pVM, SrcRegCrx, &val64);
1953 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
1954 }
1955
1956 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
1957 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1958 else
1959 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
1960
1961 if(RT_SUCCESS(rc))
1962 {
1963 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
1964 return VINF_SUCCESS;
1965 }
1966 return VERR_EM_INTERPRETER;
1967}
1968
1969
1970
1971/**
1972 * Interpret CLTS
1973 *
1974 * @returns VBox status code.
1975 * @param pVM The VM handle.
1976 *
1977 */
1978VMMDECL(int) EMInterpretCLTS(PVM pVM)
1979{
1980 uint64_t cr0 = CPUMGetGuestCR0(pVM);
1981 if (!(cr0 & X86_CR0_TS))
1982 return VINF_SUCCESS;
1983 return CPUMSetGuestCR0(pVM, cr0 & ~X86_CR0_TS);
1984}
1985
1986/**
1987 * CLTS Emulation.
1988 */
1989static int emInterpretClts(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1990{
1991 return EMInterpretCLTS(pVM);
1992}
1993
1994
1995/**
1996 * Update CRx
1997 *
1998 * @returns VBox status code.
1999 * @param pVM The VM handle.
2000 * @param pRegFrame The register frame.
2001 * @param DestRegCRx CRx register index (USE_REG_CR*)
2002 * @param val New CRx value
2003 *
2004 */
2005static int EMUpdateCRx(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
2006{
2007 uint64_t oldval;
2008 uint64_t msrEFER;
2009 int rc;
2010
2011 /** @todo Clean up this mess. */
2012 LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
2013 switch (DestRegCrx)
2014 {
2015 case USE_REG_CR0:
2016 oldval = CPUMGetGuestCR0(pVM);
2017#ifdef IN_RC
2018 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
2019 if ( (val & (X86_CR0_WP | X86_CR0_AM))
2020 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
2021 return VERR_EM_INTERPRETER;
2022#endif
2023 CPUMSetGuestCR0(pVM, val);
2024 val = CPUMGetGuestCR0(pVM);
2025 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
2026 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
2027 {
2028 /* global flush */
2029 rc = PGMFlushTLB(pVM, CPUMGetGuestCR3(pVM), true /* global */);
2030 AssertRCReturn(rc, rc);
2031 }
2032
2033 /* Deal with long mode enabling/disabling. */
2034 msrEFER = CPUMGetGuestEFER(pVM);
2035 if (msrEFER & MSR_K6_EFER_LME)
2036 {
2037 if ( !(oldval & X86_CR0_PG)
2038 && (val & X86_CR0_PG))
2039 {
2040 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2041 if (pRegFrame->csHid.Attr.n.u1Long)
2042 {
2043 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
2044 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2045 }
2046
2047 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2048 if (!(CPUMGetGuestCR4(pVM) & X86_CR4_PAE))
2049 {
2050 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
2051 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2052 }
2053 msrEFER |= MSR_K6_EFER_LMA;
2054 }
2055 else
2056 if ( (oldval & X86_CR0_PG)
2057 && !(val & X86_CR0_PG))
2058 {
2059 msrEFER &= ~MSR_K6_EFER_LMA;
2060 /* @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
2061 }
2062 CPUMSetGuestEFER(pVM, msrEFER);
2063 }
2064 return PGMChangeMode(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR4(pVM), CPUMGetGuestEFER(pVM));
2065
2066 case USE_REG_CR2:
2067 rc = CPUMSetGuestCR2(pVM, val); AssertRC(rc);
2068 return VINF_SUCCESS;
2069
2070 case USE_REG_CR3:
2071 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
2072 rc = CPUMSetGuestCR3(pVM, val); AssertRC(rc);
2073 if (CPUMGetGuestCR0(pVM) & X86_CR0_PG)
2074 {
2075 /* flush */
2076 rc = PGMFlushTLB(pVM, val, !(CPUMGetGuestCR4(pVM) & X86_CR4_PGE));
2077 AssertRCReturn(rc, rc);
2078 }
2079 return VINF_SUCCESS;
2080
2081 case USE_REG_CR4:
2082 oldval = CPUMGetGuestCR4(pVM);
2083 rc = CPUMSetGuestCR4(pVM, val); AssertRC(rc);
2084 val = CPUMGetGuestCR4(pVM);
2085
2086 msrEFER = CPUMGetGuestEFER(pVM);
2087 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2088 if ( (msrEFER & MSR_K6_EFER_LMA)
2089 && (oldval & X86_CR4_PAE)
2090 && !(val & X86_CR4_PAE))
2091 {
2092 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2093 }
2094
2095 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
2096 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
2097 {
2098 /* global flush */
2099 rc = PGMFlushTLB(pVM, CPUMGetGuestCR3(pVM), true /* global */);
2100 AssertRCReturn(rc, rc);
2101 }
2102# ifdef IN_RC
2103 /* Feeling extremely lazy. */
2104 if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
2105 != (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
2106 {
2107 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
2108 VM_FF_SET(pVM, VM_FF_TO_R3);
2109 }
2110# endif
2111 return PGMChangeMode(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR4(pVM), CPUMGetGuestEFER(pVM));
2112
2113 case USE_REG_CR8:
2114 return PDMApicSetTPR(pVM, val);
2115
2116 default:
2117 AssertFailed();
2118 case USE_REG_CR1: /* illegal op */
2119 break;
2120 }
2121 return VERR_EM_INTERPRETER;
2122}
2123
2124/**
2125 * Interpret CRx write
2126 *
2127 * @returns VBox status code.
2128 * @param pVM The VM handle.
2129 * @param pRegFrame The register frame.
2130 * @param DestRegCRx CRx register index (USE_REG_CR*)
2131 * @param SrcRegGen General purpose register index (USE_REG_E**))
2132 *
2133 */
2134VMMDECL(int) EMInterpretCRxWrite(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
2135{
2136 uint64_t val;
2137 int rc;
2138
2139 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
2140 {
2141 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2142 }
2143 else
2144 {
2145 uint32_t val32;
2146 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2147 val = val32;
2148 }
2149
2150 if (RT_SUCCESS(rc))
2151 return EMUpdateCRx(pVM, pRegFrame, DestRegCrx, val);
2152
2153 return VERR_EM_INTERPRETER;
2154}
2155
2156/**
2157 * Interpret LMSW
2158 *
2159 * @returns VBox status code.
2160 * @param pVM The VM handle.
2161 * @param pRegFrame The register frame.
2162 * @param u16Data LMSW source data.
2163 *
2164 */
2165VMMDECL(int) EMInterpretLMSW(PVM pVM, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
2166{
2167 uint64_t OldCr0 = CPUMGetGuestCR0(pVM);
2168
2169 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
2170 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
2171 | (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
2172
2173 return EMUpdateCRx(pVM, pRegFrame, USE_REG_CR0, NewCr0);
2174}
2175
2176/**
2177 * LMSW Emulation.
2178 */
2179static int emInterpretLmsw(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2180{
2181 OP_PARAMVAL param1;
2182 uint32_t val;
2183
2184 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2185 if(RT_FAILURE(rc))
2186 return VERR_EM_INTERPRETER;
2187
2188 switch(param1.type)
2189 {
2190 case PARMTYPE_IMMEDIATE:
2191 case PARMTYPE_ADDRESS:
2192 if(!(param1.flags & PARAM_VAL16))
2193 return VERR_EM_INTERPRETER;
2194 val = param1.val.val32;
2195 break;
2196
2197 default:
2198 return VERR_EM_INTERPRETER;
2199 }
2200
2201 LogFlow(("emInterpretLmsw %x\n", val));
2202 return EMInterpretLMSW(pVM, pRegFrame, val);
2203}
2204
2205/**
2206 * MOV CRx
2207 */
2208static int emInterpretMovCRx(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2209{
2210 if ((pCpu->param1.flags == USE_REG_GEN32 || pCpu->param1.flags == USE_REG_GEN64) && pCpu->param2.flags == USE_REG_CR)
2211 return EMInterpretCRxRead(pVM, pRegFrame, pCpu->param1.base.reg_gen, pCpu->param2.base.reg_ctrl);
2212
2213 if (pCpu->param1.flags == USE_REG_CR && (pCpu->param2.flags == USE_REG_GEN32 || pCpu->param2.flags == USE_REG_GEN64))
2214 return EMInterpretCRxWrite(pVM, pRegFrame, pCpu->param1.base.reg_ctrl, pCpu->param2.base.reg_gen);
2215
2216 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
2217 return VERR_EM_INTERPRETER;
2218}
2219
2220
2221/**
2222 * Interpret DRx write
2223 *
2224 * @returns VBox status code.
2225 * @param pVM The VM handle.
2226 * @param pRegFrame The register frame.
2227 * @param DestRegDRx DRx register index (USE_REG_DR*)
2228 * @param SrcRegGen General purpose register index (USE_REG_E**))
2229 *
2230 */
2231VMMDECL(int) EMInterpretDRxWrite(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
2232{
2233 uint64_t val;
2234 int rc;
2235
2236 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
2237 {
2238 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2239 }
2240 else
2241 {
2242 uint32_t val32;
2243 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2244 val = val32;
2245 }
2246
2247 if (RT_SUCCESS(rc))
2248 {
2249 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
2250 rc = CPUMSetGuestDRx(pVM, DestRegDrx, val);
2251 if (RT_SUCCESS(rc))
2252 return rc;
2253 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
2254 }
2255 return VERR_EM_INTERPRETER;
2256}
2257
2258
2259/**
2260 * Interpret DRx read
2261 *
2262 * @returns VBox status code.
2263 * @param pVM The VM handle.
2264 * @param pRegFrame The register frame.
2265 * @param DestRegGen General purpose register index (USE_REG_E**))
2266 * @param SrcRegDRx DRx register index (USE_REG_DR*)
2267 *
2268 */
2269VMMDECL(int) EMInterpretDRxRead(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
2270{
2271 uint64_t val64;
2272
2273 int rc = CPUMGetGuestDRx(pVM, SrcRegDrx, &val64);
2274 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
2275 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
2276 {
2277 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
2278 }
2279 else
2280 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
2281
2282 if (RT_SUCCESS(rc))
2283 return VINF_SUCCESS;
2284
2285 return VERR_EM_INTERPRETER;
2286}
2287
2288
2289/**
2290 * MOV DRx
2291 */
2292static int emInterpretMovDRx(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2293{
2294 int rc = VERR_EM_INTERPRETER;
2295
2296 if((pCpu->param1.flags == USE_REG_GEN32 || pCpu->param1.flags == USE_REG_GEN64) && pCpu->param2.flags == USE_REG_DBG)
2297 {
2298 rc = EMInterpretDRxRead(pVM, pRegFrame, pCpu->param1.base.reg_gen, pCpu->param2.base.reg_dbg);
2299 }
2300 else
2301 if(pCpu->param1.flags == USE_REG_DBG && (pCpu->param2.flags == USE_REG_GEN32 || pCpu->param2.flags == USE_REG_GEN64))
2302 {
2303 rc = EMInterpretDRxWrite(pVM, pRegFrame, pCpu->param1.base.reg_dbg, pCpu->param2.base.reg_gen);
2304 }
2305 else
2306 AssertMsgFailed(("Unexpected debug register move\n"));
2307
2308 return rc;
2309}
2310
2311
2312/**
2313 * LLDT Emulation.
2314 */
2315static int emInterpretLLdt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2316{
2317 OP_PARAMVAL param1;
2318 RTSEL sel;
2319
2320 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2321 if(RT_FAILURE(rc))
2322 return VERR_EM_INTERPRETER;
2323
2324 switch(param1.type)
2325 {
2326 case PARMTYPE_ADDRESS:
2327 return VERR_EM_INTERPRETER; //feeling lazy right now
2328
2329 case PARMTYPE_IMMEDIATE:
2330 if(!(param1.flags & PARAM_VAL16))
2331 return VERR_EM_INTERPRETER;
2332 sel = (RTSEL)param1.val.val16;
2333 break;
2334
2335 default:
2336 return VERR_EM_INTERPRETER;
2337 }
2338
2339 if (sel == 0)
2340 {
2341 if (CPUMGetHyperLDTR(pVM) == 0)
2342 {
2343 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
2344 return VINF_SUCCESS;
2345 }
2346 }
2347 //still feeling lazy
2348 return VERR_EM_INTERPRETER;
2349}
2350
2351#ifdef IN_RING0
2352/**
2353 * LIDT/LGDT Emulation.
2354 */
2355static int emInterpretLIGdt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2356{
2357 OP_PARAMVAL param1;
2358 RTGCPTR pParam1;
2359 X86XDTR32 dtr32;
2360
2361 Log(("Emulate %s at %RGv\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip));
2362
2363 /* Only for the VT-x real-mode emulation case. */
2364 if (!CPUMIsGuestInRealMode(pVM))
2365 return VERR_EM_INTERPRETER;
2366
2367 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2368 if(RT_FAILURE(rc))
2369 return VERR_EM_INTERPRETER;
2370
2371 switch(param1.type)
2372 {
2373 case PARMTYPE_ADDRESS:
2374 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, param1.val.val16);
2375 break;
2376
2377 default:
2378 return VERR_EM_INTERPRETER;
2379 }
2380
2381 rc = emRamRead(pVM, &dtr32, pParam1, sizeof(dtr32));
2382 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2383
2384 if (!(pCpu->prefix & PREFIX_OPSIZE))
2385 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
2386
2387 if (pCpu->pCurInstr->opcode == OP_LIDT)
2388 CPUMSetGuestIDTR(pVM, dtr32.uAddr, dtr32.cb);
2389 else
2390 CPUMSetGuestGDTR(pVM, dtr32.uAddr, dtr32.cb);
2391
2392 return VINF_SUCCESS;
2393}
2394#endif
2395
2396
2397#ifdef IN_RC
2398/**
2399 * STI Emulation.
2400 *
2401 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
2402 */
2403static int emInterpretSti(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2404{
2405 PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
2406
2407 if(!pGCState)
2408 {
2409 Assert(pGCState);
2410 return VERR_EM_INTERPRETER;
2411 }
2412 pGCState->uVMFlags |= X86_EFL_IF;
2413
2414 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
2415 Assert(pvFault == SELMToFlat(pVM, DIS_SELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
2416
2417 pVM->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pCpu->opsize;
2418 VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
2419
2420 return VINF_SUCCESS;
2421}
2422#endif /* IN_RC */
2423
2424
2425/**
2426 * HLT Emulation.
2427 */
2428static int emInterpretHlt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2429{
2430 return VINF_EM_HALT;
2431}
2432
2433
2434/**
2435 * Interpret RDTSC
2436 *
2437 * @returns VBox status code.
2438 * @param pVM The VM handle.
2439 * @param pRegFrame The register frame.
2440 *
2441 */
2442VMMDECL(int) EMInterpretRdtsc(PVM pVM, PCPUMCTXCORE pRegFrame)
2443{
2444 unsigned uCR4 = CPUMGetGuestCR4(pVM);
2445
2446 if (uCR4 & X86_CR4_TSD)
2447 return VERR_EM_INTERPRETER; /* genuine #GP */
2448
2449 uint64_t uTicks = TMCpuTickGet(pVM);
2450
2451 /* Same behaviour in 32 & 64 bits mode */
2452 pRegFrame->rax = (uint32_t)uTicks;
2453 pRegFrame->rdx = (uTicks >> 32ULL);
2454
2455 return VINF_SUCCESS;
2456}
2457
2458VMMDECL(int) EMInterpretRdtscp(PVM pVM, PCPUMCTX pCtx)
2459{
2460 unsigned uCR4 = CPUMGetGuestCR4(pVM);
2461
2462 if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
2463 {
2464 AssertFailed();
2465 return VERR_EM_INTERPRETER; /* genuine #UD */
2466 }
2467
2468 if (uCR4 & X86_CR4_TSD)
2469 return VERR_EM_INTERPRETER; /* genuine #GP */
2470
2471 uint64_t uTicks = TMCpuTickGet(pVM);
2472
2473 /* Same behaviour in 32 & 64 bits mode */
2474 pCtx->rax = (uint32_t)uTicks;
2475 pCtx->rdx = (uTicks >> 32ULL);
2476 /* Low dword of the TSC_AUX msr only. */
2477 pCtx->rcx = (uint32_t)CPUMGetGuestMsr(pVM, MSR_K8_TSC_AUX);
2478
2479 return VINF_SUCCESS;
2480}
2481
2482/**
2483 * RDTSC Emulation.
2484 */
2485static int emInterpretRdtsc(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2486{
2487 return EMInterpretRdtsc(pVM, pRegFrame);
2488}
2489
2490
2491/**
2492 * MONITOR Emulation.
2493 */
2494static int emInterpretMonitor(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2495{
2496 uint32_t u32Dummy, u32ExtFeatures, cpl;
2497
2498 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
2499 if (pRegFrame->ecx != 0)
2500 return VERR_EM_INTERPRETER; /* illegal value. */
2501
2502 /* Get the current privilege level. */
2503 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2504 if (cpl != 0)
2505 return VERR_EM_INTERPRETER; /* supervisor only */
2506
2507 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2508 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2509 return VERR_EM_INTERPRETER; /* not supported */
2510
2511 return VINF_SUCCESS;
2512}
2513
2514
2515/**
2516 * MWAIT Emulation.
2517 */
2518static int emInterpretMWait(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2519{
2520 uint32_t u32Dummy, u32ExtFeatures, cpl;
2521
2522 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
2523 if (pRegFrame->ecx != 0)
2524 return VERR_EM_INTERPRETER; /* illegal value. */
2525
2526 /* Get the current privilege level. */
2527 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2528 if (cpl != 0)
2529 return VERR_EM_INTERPRETER; /* supervisor only */
2530
2531 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2532 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2533 return VERR_EM_INTERPRETER; /* not supported */
2534
2535 /** @todo not completely correct */
2536 return VINF_EM_HALT;
2537}
2538
2539
2540#ifdef LOG_ENABLED
2541static const char *emMSRtoString(uint32_t uMsr)
2542{
2543 switch (uMsr)
2544 {
2545 case MSR_IA32_APICBASE:
2546 return "MSR_IA32_APICBASE";
2547 case MSR_IA32_CR_PAT:
2548 return "MSR_IA32_CR_PAT";
2549 case MSR_IA32_SYSENTER_CS:
2550 return "MSR_IA32_SYSENTER_CS";
2551 case MSR_IA32_SYSENTER_EIP:
2552 return "MSR_IA32_SYSENTER_EIP";
2553 case MSR_IA32_SYSENTER_ESP:
2554 return "MSR_IA32_SYSENTER_ESP";
2555 case MSR_K6_EFER:
2556 return "MSR_K6_EFER";
2557 case MSR_K8_SF_MASK:
2558 return "MSR_K8_SF_MASK";
2559 case MSR_K6_STAR:
2560 return "MSR_K6_STAR";
2561 case MSR_K8_LSTAR:
2562 return "MSR_K8_LSTAR";
2563 case MSR_K8_CSTAR:
2564 return "MSR_K8_CSTAR";
2565 case MSR_K8_FS_BASE:
2566 return "MSR_K8_FS_BASE";
2567 case MSR_K8_GS_BASE:
2568 return "MSR_K8_GS_BASE";
2569 case MSR_K8_KERNEL_GS_BASE:
2570 return "MSR_K8_KERNEL_GS_BASE";
2571 case MSR_K8_TSC_AUX:
2572 return "MSR_K8_TSC_AUX";
2573 case MSR_IA32_BIOS_SIGN_ID:
2574 return "Unsupported MSR_IA32_BIOS_SIGN_ID";
2575 case MSR_IA32_PLATFORM_ID:
2576 return "Unsupported MSR_IA32_PLATFORM_ID";
2577 case MSR_IA32_BIOS_UPDT_TRIG:
2578 return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
2579 case MSR_IA32_TSC:
2580 return "Unsupported MSR_IA32_TSC";
2581 case MSR_IA32_MTRR_CAP:
2582 return "Unsupported MSR_IA32_MTRR_CAP";
2583 case MSR_IA32_MCP_CAP:
2584 return "Unsupported MSR_IA32_MCP_CAP";
2585 case MSR_IA32_MCP_STATUS:
2586 return "Unsupported MSR_IA32_MCP_STATUS";
2587 case MSR_IA32_MCP_CTRL:
2588 return "Unsupported MSR_IA32_MCP_CTRL";
2589 case MSR_IA32_MTRR_DEF_TYPE:
2590 return "Unsupported MSR_IA32_MTRR_DEF_TYPE";
2591 case MSR_K7_EVNTSEL0:
2592 return "Unsupported MSR_K7_EVNTSEL0";
2593 case MSR_K7_EVNTSEL1:
2594 return "Unsupported MSR_K7_EVNTSEL1";
2595 case MSR_K7_EVNTSEL2:
2596 return "Unsupported MSR_K7_EVNTSEL2";
2597 case MSR_K7_EVNTSEL3:
2598 return "Unsupported MSR_K7_EVNTSEL3";
2599 case MSR_IA32_MC0_CTL:
2600 return "Unsupported MSR_IA32_MC0_CTL";
2601 case MSR_IA32_MC0_STATUS:
2602 return "Unsupported MSR_IA32_MC0_STATUS";
2603 }
2604 return "Unknown MSR";
2605}
2606#endif /* LOG_ENABLED */
2607
2608
2609/**
2610 * Interpret RDMSR
2611 *
2612 * @returns VBox status code.
2613 * @param pVM The VM handle.
2614 * @param pRegFrame The register frame.
2615 *
2616 */
2617VMMDECL(int) EMInterpretRdmsr(PVM pVM, PCPUMCTXCORE pRegFrame)
2618{
2619 uint32_t u32Dummy, u32Features, cpl;
2620 uint64_t val;
2621 CPUMCTX *pCtx;
2622 int rc = VINF_SUCCESS;
2623
2624 /** @todo According to the Intel manuals, there's a REX version of RDMSR that is slightly different.
2625 * That version clears the high dwords of both RDX & RAX */
2626 pCtx = CPUMQueryGuestCtxPtr(pVM);
2627
2628 /* Get the current privilege level. */
2629 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2630 if (cpl != 0)
2631 return VERR_EM_INTERPRETER; /* supervisor only */
2632
2633 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2634 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2635 return VERR_EM_INTERPRETER; /* not supported */
2636
2637 switch (pRegFrame->ecx)
2638 {
2639 case MSR_IA32_APICBASE:
2640 rc = PDMApicGetBase(pVM, &val);
2641 AssertRC(rc);
2642 break;
2643
2644 case MSR_IA32_CR_PAT:
2645 val = pCtx->msrPAT;
2646 break;
2647
2648 case MSR_IA32_SYSENTER_CS:
2649 val = pCtx->SysEnter.cs;
2650 break;
2651
2652 case MSR_IA32_SYSENTER_EIP:
2653 val = pCtx->SysEnter.eip;
2654 break;
2655
2656 case MSR_IA32_SYSENTER_ESP:
2657 val = pCtx->SysEnter.esp;
2658 break;
2659
2660 case MSR_K6_EFER:
2661 val = pCtx->msrEFER;
2662 break;
2663
2664 case MSR_K8_SF_MASK:
2665 val = pCtx->msrSFMASK;
2666 break;
2667
2668 case MSR_K6_STAR:
2669 val = pCtx->msrSTAR;
2670 break;
2671
2672 case MSR_K8_LSTAR:
2673 val = pCtx->msrLSTAR;
2674 break;
2675
2676 case MSR_K8_CSTAR:
2677 val = pCtx->msrCSTAR;
2678 break;
2679
2680 case MSR_K8_FS_BASE:
2681 val = pCtx->fsHid.u64Base;
2682 break;
2683
2684 case MSR_K8_GS_BASE:
2685 val = pCtx->gsHid.u64Base;
2686 break;
2687
2688 case MSR_K8_KERNEL_GS_BASE:
2689 val = pCtx->msrKERNELGSBASE;
2690 break;
2691
2692 case MSR_K8_TSC_AUX:
2693 val = CPUMGetGuestMsr(pVM, MSR_K8_TSC_AUX);
2694 break;
2695
2696#if 0 /*def IN_RING0 */
2697 case MSR_IA32_PLATFORM_ID:
2698 case MSR_IA32_BIOS_SIGN_ID:
2699 if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL)
2700 {
2701 /* Available since the P6 family. VT-x implies that this feature is present. */
2702 if (pRegFrame->ecx == MSR_IA32_PLATFORM_ID)
2703 val = ASMRdMsr(MSR_IA32_PLATFORM_ID);
2704 else
2705 if (pRegFrame->ecx == MSR_IA32_BIOS_SIGN_ID)
2706 val = ASMRdMsr(MSR_IA32_BIOS_SIGN_ID);
2707 break;
2708 }
2709 /* no break */
2710#endif
2711 default:
2712 /* In X2APIC specification this range is reserved for APIC control. */
2713 if ((pRegFrame->ecx >= MSR_IA32_APIC_START) && (pRegFrame->ecx < MSR_IA32_APIC_END))
2714 rc = PDMApicReadMSR(pVM, VMMGetCpuId(pVM), pRegFrame->ecx, &val);
2715 else
2716 /* We should actually trigger a #GP here, but don't as that might cause more trouble. */
2717 val = 0;
2718 break;
2719 }
2720 LogFlow(("EMInterpretRdmsr %s (%x) -> val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2721 if (rc == VINF_SUCCESS)
2722 {
2723 pRegFrame->rax = (uint32_t) val;
2724 pRegFrame->rdx = (uint32_t) (val >> 32ULL);
2725 }
2726 return rc;
2727}
2728
2729
2730/**
2731 * RDMSR Emulation.
2732 */
2733static int emInterpretRdmsr(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2734{
2735 /* Note: the Intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2736 Assert(!(pCpu->prefix & PREFIX_REX));
2737 return EMInterpretRdmsr(pVM, pRegFrame);
2738}
2739
2740
2741/**
2742 * Interpret WRMSR
2743 *
2744 * @returns VBox status code.
2745 * @param pVM The VM handle.
2746 * @param pRegFrame The register frame.
2747 */
2748VMMDECL(int) EMInterpretWrmsr(PVM pVM, PCPUMCTXCORE pRegFrame)
2749{
2750 uint32_t u32Dummy, u32Features, cpl;
2751 uint64_t val;
2752 CPUMCTX *pCtx;
2753
2754 /* Note: works the same in 32 and 64 bits modes. */
2755 pCtx = CPUMQueryGuestCtxPtr(pVM);
2756
2757 /* Get the current privilege level. */
2758 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2759 if (cpl != 0)
2760 return VERR_EM_INTERPRETER; /* supervisor only */
2761
2762 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2763 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2764 return VERR_EM_INTERPRETER; /* not supported */
2765
2766 val = RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx);
2767 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2768 switch (pRegFrame->ecx)
2769 {
2770 case MSR_IA32_APICBASE:
2771 {
2772 int rc = PDMApicSetBase(pVM, val);
2773 AssertRC(rc);
2774 break;
2775 }
2776
2777 case MSR_IA32_CR_PAT:
2778 pCtx->msrPAT = val;
2779 break;
2780
2781 case MSR_IA32_SYSENTER_CS:
2782 pCtx->SysEnter.cs = val & 0xffff; /* 16 bits selector */
2783 break;
2784
2785 case MSR_IA32_SYSENTER_EIP:
2786 pCtx->SysEnter.eip = val;
2787 break;
2788
2789 case MSR_IA32_SYSENTER_ESP:
2790 pCtx->SysEnter.esp = val;
2791 break;
2792
2793 case MSR_K6_EFER:
2794 {
2795 uint64_t uMask = 0;
2796 uint64_t oldval = pCtx->msrEFER;
2797
2798 /* Filter out those bits the guest is allowed to change. (e.g. LMA is read-only) */
2799 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2800 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_NX)
2801 uMask |= MSR_K6_EFER_NXE;
2802 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE)
2803 uMask |= MSR_K6_EFER_LME;
2804 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_SEP)
2805 uMask |= MSR_K6_EFER_SCE;
2806 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
2807 uMask |= MSR_K6_EFER_FFXSR;
2808
2809 /* Check for illegal MSR_K6_EFER_LME transitions: not allowed to change LME if paging is enabled. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2810 if ( ((pCtx->msrEFER & MSR_K6_EFER_LME) != (val & uMask & MSR_K6_EFER_LME))
2811 && (pCtx->cr0 & X86_CR0_PG))
2812 {
2813 AssertMsgFailed(("Illegal MSR_K6_EFER_LME change: paging is enabled!!\n"));
2814 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2815 }
2816
2817 /* There are a few more: e.g. MSR_K6_EFER_LMSLE */
2818 AssertMsg(!(val & ~(MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA /* ignored anyway */ |MSR_K6_EFER_SCE|MSR_K6_EFER_FFXSR)), ("Unexpected value %RX64\n", val));
2819 pCtx->msrEFER = (pCtx->msrEFER & ~uMask) | (val & uMask);
2820
2821 /* AMD64 Architecture Programmer's Manual: 15.15 TLB Control; flush the TLB if MSR_K6_EFER_NXE, MSR_K6_EFER_LME or MSR_K6_EFER_LMA are changed. */
2822 if ((oldval & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)) != (pCtx->msrEFER & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)))
2823 HWACCMFlushTLB(pVM);
2824
2825 break;
2826 }
2827
2828 case MSR_K8_SF_MASK:
2829 pCtx->msrSFMASK = val;
2830 break;
2831
2832 case MSR_K6_STAR:
2833 pCtx->msrSTAR = val;
2834 break;
2835
2836 case MSR_K8_LSTAR:
2837 pCtx->msrLSTAR = val;
2838 break;
2839
2840 case MSR_K8_CSTAR:
2841 pCtx->msrCSTAR = val;
2842 break;
2843
2844 case MSR_K8_FS_BASE:
2845 pCtx->fsHid.u64Base = val;
2846 break;
2847
2848 case MSR_K8_GS_BASE:
2849 pCtx->gsHid.u64Base = val;
2850 break;
2851
2852 case MSR_K8_KERNEL_GS_BASE:
2853 pCtx->msrKERNELGSBASE = val;
2854 break;
2855
2856 case MSR_K8_TSC_AUX:
2857 CPUMSetGuestMsr(pVM, MSR_K8_TSC_AUX, val);
2858 break;
2859
2860 default:
2861 /* In X2APIC specification this range is reserved for APIC control. */
2862 if ((pRegFrame->ecx >= MSR_IA32_APIC_START) && (pRegFrame->ecx < MSR_IA32_APIC_END))
2863 return PDMApicWriteMSR(pVM, VMMGetCpuId(pVM), pRegFrame->ecx, val);
2864
2865 /* We should actually trigger a #GP here, but don't as that might cause more trouble. */
2866 break;
2867 }
2868 return VINF_SUCCESS;
2869}
2870
2871
2872/**
2873 * WRMSR Emulation.
2874 */
2875static int emInterpretWrmsr(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2876{
2877 return EMInterpretWrmsr(pVM, pRegFrame);
2878}
2879
2880
2881/**
2882 * Internal worker.
2883 * @copydoc EMInterpretInstructionCPU
2884 */
2885DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2886{
2887 Assert(pcbSize);
2888 *pcbSize = 0;
2889
2890 /*
2891 * Only supervisor guest code!!
2892 * And no complicated prefixes.
2893 */
2894 /* Get the current privilege level. */
2895 uint32_t cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2896 if ( cpl != 0
2897 && pCpu->pCurInstr->opcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
2898 {
2899 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
2900 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
2901 return VERR_EM_INTERPRETER;
2902 }
2903
2904#ifdef IN_RC
2905 if ( (pCpu->prefix & (PREFIX_REPNE | PREFIX_REP))
2906 || ( (pCpu->prefix & PREFIX_LOCK)
2907 && pCpu->pCurInstr->opcode != OP_CMPXCHG
2908 && pCpu->pCurInstr->opcode != OP_CMPXCHG8B
2909 && pCpu->pCurInstr->opcode != OP_XADD
2910 && pCpu->pCurInstr->opcode != OP_OR
2911 && pCpu->pCurInstr->opcode != OP_BTR
2912 )
2913 )
2914#else
2915 if ( (pCpu->prefix & PREFIX_REPNE)
2916 || ( (pCpu->prefix & PREFIX_REP)
2917 && pCpu->pCurInstr->opcode != OP_STOSWD
2918 )
2919 || ( (pCpu->prefix & PREFIX_LOCK)
2920 && pCpu->pCurInstr->opcode != OP_OR
2921 && pCpu->pCurInstr->opcode != OP_BTR
2922 && pCpu->pCurInstr->opcode != OP_CMPXCHG
2923 && pCpu->pCurInstr->opcode != OP_CMPXCHG8B
2924 )
2925 )
2926#endif
2927 {
2928 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
2929 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
2930 return VERR_EM_INTERPRETER;
2931 }
2932
2933#if HC_ARCH_BITS == 32
2934 /*
2935 * Unable to emulate most >4 bytes accesses in 32 bits mode.
2936 * Whitelisted instructions are safe.
2937 */
2938 if ( pCpu->param1.size > 4
2939 && CPUMIsGuestIn64BitCode(pVM, pRegFrame))
2940 {
2941 uint32_t uOpCode = pCpu->pCurInstr->opcode;
2942 if ( uOpCode != OP_STOSWD
2943 && uOpCode != OP_MOV
2944 && uOpCode != OP_CMPXCHG8B
2945 && uOpCode != OP_XCHG
2946# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0
2947 && uOpCode != OP_CMPXCHG /* solaris */
2948 && uOpCode != OP_AND /* windows */
2949 && uOpCode != OP_OR /* windows */
2950 && uOpCode != OP_XOR /* because we can */
2951 && uOpCode != OP_ADD /* windows (dripple) */
2952 && uOpCode != OP_ADC /* because we can */
2953 && uOpCode != OP_SUB /* because we can */
2954 /** @todo OP_BTS or is that a different kind of failure? */
2955# endif
2956 )
2957 {
2958# ifdef VBOX_WITH_STATISTICS
2959 switch (pCpu->pCurInstr->opcode)
2960 {
2961# define INTERPRET_FAILED_CASE(opcode, Instr) \
2962 case opcode: STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
2963 INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
2964 INTERPRET_FAILED_CASE(OP_DEC,Dec);
2965 INTERPRET_FAILED_CASE(OP_INC,Inc);
2966 INTERPRET_FAILED_CASE(OP_POP,Pop);
2967 INTERPRET_FAILED_CASE(OP_OR, Or);
2968 INTERPRET_FAILED_CASE(OP_XOR,Xor);
2969 INTERPRET_FAILED_CASE(OP_AND,And);
2970 INTERPRET_FAILED_CASE(OP_MOV,Mov);
2971 INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
2972 INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
2973 INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
2974 INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
2975 INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
2976 INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
2977 INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
2978 INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
2979 INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
2980 INTERPRET_FAILED_CASE(OP_CLTS,Clts);
2981 INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
2982 INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
2983 INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
2984 INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
2985 INTERPRET_FAILED_CASE(OP_ADD,Add);
2986 INTERPRET_FAILED_CASE(OP_SUB,Sub);
2987 INTERPRET_FAILED_CASE(OP_ADC,Adc);
2988 INTERPRET_FAILED_CASE(OP_BTR,Btr);
2989 INTERPRET_FAILED_CASE(OP_BTS,Bts);
2990 INTERPRET_FAILED_CASE(OP_BTC,Btc);
2991 INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
2992 INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
2993 INTERPRET_FAILED_CASE(OP_STI, Sti);
2994 INTERPRET_FAILED_CASE(OP_XADD,XAdd);
2995 INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
2996 INTERPRET_FAILED_CASE(OP_HLT, Hlt);
2997 INTERPRET_FAILED_CASE(OP_IRET,Iret);
2998 INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
2999 INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
3000# undef INTERPRET_FAILED_CASE
3001 default:
3002 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3003 break;
3004 }
3005# endif /* VBOX_WITH_STATISTICS */
3006 return VERR_EM_INTERPRETER;
3007 }
3008 }
3009#endif
3010
3011 int rc;
3012#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
3013 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pCpu)));
3014#endif
3015 switch (pCpu->pCurInstr->opcode)
3016 {
3017# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3018 case opcode:\
3019 if (pCpu->prefix & PREFIX_LOCK) \
3020 rc = emInterpretLock##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
3021 else \
3022 rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3023 if (RT_SUCCESS(rc)) \
3024 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3025 else \
3026 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3027 return rc
3028#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
3029 case opcode:\
3030 rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3031 if (RT_SUCCESS(rc)) \
3032 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3033 else \
3034 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3035 return rc
3036
3037#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
3038 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
3039#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3040 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
3041
3042#define INTERPRET_CASE(opcode, Instr) \
3043 case opcode:\
3044 rc = emInterpret##Instr(pVM, pCpu, pRegFrame, pvFault, pcbSize); \
3045 if (RT_SUCCESS(rc)) \
3046 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3047 else \
3048 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3049 return rc
3050
3051#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
3052 case opcode:\
3053 rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize); \
3054 if (RT_SUCCESS(rc)) \
3055 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3056 else \
3057 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3058 return rc
3059
3060#define INTERPRET_STAT_CASE(opcode, Instr) \
3061 case opcode: STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
3062
3063 INTERPRET_CASE(OP_XCHG,Xchg);
3064 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
3065 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3066 INTERPRET_CASE(OP_POP,Pop);
3067 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3068 INTERPRET_CASE_EX_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor);
3069 INTERPRET_CASE_EX_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd);
3070 INTERPRET_CASE(OP_MOV,Mov);
3071#ifndef IN_RC
3072 INTERPRET_CASE(OP_STOSWD,StosWD);
3073#endif
3074 INTERPRET_CASE(OP_INVLPG,InvlPg);
3075 INTERPRET_CASE(OP_CPUID,CpuId);
3076 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3077 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3078 INTERPRET_CASE(OP_LLDT,LLdt);
3079#ifdef IN_RING0
3080 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3081 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3082#endif
3083 INTERPRET_CASE(OP_LMSW,Lmsw);
3084 INTERPRET_CASE(OP_CLTS,Clts);
3085 INTERPRET_CASE(OP_MONITOR, Monitor);
3086 INTERPRET_CASE(OP_MWAIT, MWait);
3087 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3088 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3089 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3090 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3091 INTERPRET_CASE(OP_ADC,Adc);
3092 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3093 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3094 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3095 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3096 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3097#ifdef IN_RC
3098 INTERPRET_CASE(OP_STI,Sti);
3099 INTERPRET_CASE(OP_XADD, XAdd);
3100#endif
3101 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3102 INTERPRET_CASE(OP_HLT,Hlt);
3103 INTERPRET_CASE(OP_IRET,Iret);
3104 INTERPRET_CASE(OP_WBINVD,WbInvd);
3105#ifdef VBOX_WITH_STATISTICS
3106#ifndef IN_RC
3107 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3108#endif
3109 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3110#endif
3111 default:
3112 Log3(("emInterpretInstructionCPU: opcode=%d\n", pCpu->pCurInstr->opcode));
3113 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3114 return VERR_EM_INTERPRETER;
3115#undef INTERPRET_CASE_EX_PARAM2
3116#undef INTERPRET_STAT_CASE
3117#undef INTERPRET_CASE_EX
3118#undef INTERPRET_CASE
3119 }
3120 AssertFailed();
3121 return VERR_INTERNAL_ERROR;
3122}
3123
3124
3125/**
3126 * Sets the PC for which interrupts should be inhibited.
3127 *
3128 * @param pVM The VM handle.
3129 * @param PC The PC.
3130 */
3131VMMDECL(void) EMSetInhibitInterruptsPC(PVM pVM, RTGCUINTPTR PC)
3132{
3133 pVM->em.s.GCPtrInhibitInterrupts = PC;
3134 VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
3135}
3136
3137
3138/**
3139 * Gets the PC for which interrupts should be inhibited.
3140 *
3141 * There are a few instructions which inhibits or delays interrupts
3142 * for the instruction following them. These instructions are:
3143 * - STI
3144 * - MOV SS, r/m16
3145 * - POP SS
3146 *
3147 * @returns The PC for which interrupts should be inhibited.
3148 * @param pVM VM handle.
3149 *
3150 */
3151VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVM pVM)
3152{
3153 return pVM->em.s.GCPtrInhibitInterrupts;
3154}
3155
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette