VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 18976

Last change on this file since 18976 was 18927, checked in by vboxsync, 16 years ago

Big step to separate VMM data structures for guest SMP. (pgm, em)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 112.9 KB
Line 
1/* $Id: EMAll.cpp 18927 2009-04-16 11:41:38Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_EM
26#include <VBox/em.h>
27#include <VBox/mm.h>
28#include <VBox/selm.h>
29#include <VBox/patm.h>
30#include <VBox/csam.h>
31#include <VBox/pgm.h>
32#include <VBox/iom.h>
33#include <VBox/stam.h>
34#include "EMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/vmm.h>
37#include <VBox/hwaccm.h>
38#include <VBox/tm.h>
39#include <VBox/pdmapi.h>
40
41#include <VBox/param.h>
42#include <VBox/err.h>
43#include <VBox/dis.h>
44#include <VBox/disopcode.h>
45#include <VBox/log.h>
46#include <iprt/assert.h>
47#include <iprt/asm.h>
48#include <iprt/string.h>
49
50
51/*******************************************************************************
52* Defined Constants And Macros *
53*******************************************************************************/
54/** @def EM_ASSERT_FAULT_RETURN
55 * Safety check.
56 *
57 * Could in theory misfire on a cross page boundary access...
58 *
59 * Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
60 * turns up an alias page instead of the original faulting one and annoying the
61 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
62 */
63#if 0
64# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
65#else
66# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
67#endif
68
69/* Used to pass information during instruction disassembly. */
70typedef struct
71{
72 PVM pVM;
73 PVMCPU pVCpu;
74} EMDISSTATE, *PEMDISSTATE;
75
76/*******************************************************************************
77* Internal Functions *
78*******************************************************************************/
79DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize);
80
81
82
83/**
84 * Get the current execution manager status.
85 *
86 * @returns Current status.
87 */
88VMMDECL(EMSTATE) EMGetState(PVMCPU pVCpu)
89{
90 return pVCpu->em.s.enmState;
91}
92
93#ifndef IN_RC
94
95/**
96 * Read callback for disassembly function; supports reading bytes that cross a page boundary
97 *
98 * @returns VBox status code.
99 * @param pSrc GC source pointer
100 * @param pDest HC destination pointer
101 * @param cb Number of bytes to read
102 * @param dwUserdata Callback specific user data (pDISState)
103 *
104 */
105DECLCALLBACK(int) EMReadBytes(RTUINTPTR pSrc, uint8_t *pDest, unsigned cb, void *pvUserdata)
106{
107 DISCPUSTATE *pDISState = (DISCPUSTATE *)pvUserdata;
108 PEMDISSTATE pState = (PEMDISSTATE)pDISState->apvUserData[0];
109 PVM pVM = pState->pVM;
110 PVMCPU pVCpu = pState->pVCpu;
111
112# ifdef IN_RING0
113 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
114 AssertMsgRC(rc, ("PGMPhysSimpleReadGCPtr failed for pSrc=%RGv cb=%x\n", pSrc, cb));
115# else /* IN_RING3 */
116 if (!PATMIsPatchGCAddr(pVM, pSrc))
117 {
118 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pDest, pSrc, cb);
119 AssertRC(rc);
120 }
121 else
122 {
123 for (uint32_t i = 0; i < cb; i++)
124 {
125 uint8_t opcode;
126 if (RT_SUCCESS(PATMR3QueryOpcode(pVM, (RTGCPTR)pSrc + i, &opcode)))
127 *(pDest+i) = opcode;
128
129 }
130 }
131# endif /* IN_RING3 */
132 return VINF_SUCCESS;
133}
134
135DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, DISCPUSTATE *pDISState, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
136{
137 EMDISSTATE State;
138
139 State.pVM = pVM;
140 State.pVCpu = pVCpu;
141
142 return DISCoreOneEx(InstrGC, pDISState->mode, EMReadBytes, &State, pDISState, pOpsize);
143}
144
145#else /* IN_RC */
146
147DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, DISCPUSTATE *pDISState, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
148{
149 NOREF(pVCpu);
150 NOREF(pVM);
151 return DISCoreOne(pDISState, InstrGC, pOpsize);
152}
153
154#endif /* IN_RC */
155
156
157/**
158 * Disassembles one instruction.
159 *
160 * @returns VBox status code, see SELMToFlatEx and EMInterpretDisasOneEx for
161 * details.
162 * @retval VERR_INTERNAL_ERROR on DISCoreOneEx failure.
163 *
164 * @param pVM The VM handle.
165 * @param pVCpu The VMCPU handle.
166 * @param pCtxCore The context core (used for both the mode and instruction).
167 * @param pDISState Where to return the parsed instruction info.
168 * @param pcbInstr Where to return the instruction size. (optional)
169 */
170VMMDECL(int) EMInterpretDisasOne(PVM pVM, PVMCPU pVCpu, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDISState, unsigned *pcbInstr)
171{
172 RTGCPTR GCPtrInstr;
173 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
174 if (RT_FAILURE(rc))
175 {
176 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
177 pCtxCore->cs, (RTGCPTR)pCtxCore->rip, pCtxCore->ss & X86_SEL_RPL, rc));
178 return rc;
179 }
180 return EMInterpretDisasOneEx(pVM, pVCpu, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pDISState, pcbInstr);
181}
182
183
184/**
185 * Disassembles one instruction.
186 *
187 * This is used by internally by the interpreter and by trap/access handlers.
188 *
189 * @returns VBox status code.
190 * @retval VERR_INTERNAL_ERROR on DISCoreOneEx failure.
191 *
192 * @param pVM The VM handle.
193 * @param pVCpu The VMCPU handle.
194 * @param GCPtrInstr The flat address of the instruction.
195 * @param pCtxCore The context core (used to determine the cpu mode).
196 * @param pDISState Where to return the parsed instruction info.
197 * @param pcbInstr Where to return the instruction size. (optional)
198 */
199VMMDECL(int) EMInterpretDisasOneEx(PVM pVM, PVMCPU pVCpu, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDISState, unsigned *pcbInstr)
200{
201#ifndef IN_RC
202 EMDISSTATE State;
203
204 State.pVM = pVM;
205 State.pVCpu = pVCpu;
206#endif
207
208 int rc = DISCoreOneEx(GCPtrInstr, SELMGetCpuModeFromSelector(pVM, pCtxCore->eflags, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid),
209#ifdef IN_RC
210 NULL, NULL,
211#else
212 EMReadBytes, &State,
213#endif
214 pDISState, pcbInstr);
215 if (RT_SUCCESS(rc))
216 return VINF_SUCCESS;
217 AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
218 return VERR_INTERNAL_ERROR;
219}
220
221
222/**
223 * Interprets the current instruction.
224 *
225 * @returns VBox status code.
226 * @retval VINF_* Scheduling instructions.
227 * @retval VERR_EM_INTERPRETER Something we can't cope with.
228 * @retval VERR_* Fatal errors.
229 *
230 * @param pVM The VM handle.
231 * @param pVCpu The VMCPU handle.
232 * @param pRegFrame The register frame.
233 * Updates the EIP if an instruction was executed successfully.
234 * @param pvFault The fault address (CR2).
235 * @param pcbSize Size of the write (if applicable).
236 *
237 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
238 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
239 * to worry about e.g. invalid modrm combinations (!)
240 */
241VMMDECL(int) EMInterpretInstruction(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
242{
243 RTGCPTR pbCode;
244
245 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
246 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
247 if (RT_SUCCESS(rc))
248 {
249 uint32_t cbOp;
250 DISCPUSTATE Cpu;
251 Cpu.mode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
252 rc = emDisCoreOne(pVM, pVCpu, &Cpu, (RTGCUINTPTR)pbCode, &cbOp);
253 if (RT_SUCCESS(rc))
254 {
255 Assert(cbOp == Cpu.opsize);
256 rc = EMInterpretInstructionCPU(pVM, pVCpu, &Cpu, pRegFrame, pvFault, pcbSize);
257 if (RT_SUCCESS(rc))
258 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
259
260 return rc;
261 }
262 }
263 return VERR_EM_INTERPRETER;
264}
265
266
267/**
268 * Interprets the current instruction using the supplied DISCPUSTATE structure.
269 *
270 * EIP is *NOT* updated!
271 *
272 * @returns VBox status code.
273 * @retval VINF_* Scheduling instructions. When these are returned, it
274 * starts to get a bit tricky to know whether code was
275 * executed or not... We'll address this when it becomes a problem.
276 * @retval VERR_EM_INTERPRETER Something we can't cope with.
277 * @retval VERR_* Fatal errors.
278 *
279 * @param pVM The VM handle.
280 * @param pVCpu The VMCPU handle.
281 * @param pDISState The disassembler cpu state for the instruction to be interpreted.
282 * @param pRegFrame The register frame. EIP is *NOT* changed!
283 * @param pvFault The fault address (CR2).
284 * @param pcbSize Size of the write (if applicable).
285 *
286 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
287 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
288 * to worry about e.g. invalid modrm combinations (!)
289 *
290 * @todo At this time we do NOT check if the instruction overwrites vital information.
291 * Make sure this can't happen!! (will add some assertions/checks later)
292 */
293VMMDECL(int) EMInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
294{
295 STAM_PROFILE_START(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
296 int rc = emInterpretInstructionCPU(pVM, pVCpu, pDISState, pRegFrame, pvFault, pcbSize);
297 STAM_PROFILE_STOP(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
298 if (RT_SUCCESS(rc))
299 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
300 else
301 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
302 return rc;
303}
304
305
306/**
307 * Interpret a port I/O instruction.
308 *
309 * @returns VBox status code suitable for scheduling.
310 * @param pVM The VM handle.
311 * @param pVCpu The VMCPU handle.
312 * @param pCtxCore The context core. This will be updated on successful return.
313 * @param pDISState The instruction to interpret.
314 * @param cbOp The size of the instruction.
315 * @remark This may raise exceptions.
316 */
317VMMDECL(int) EMInterpretPortIO(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, PDISCPUSTATE pDISState, uint32_t cbOp)
318{
319 /*
320 * Hand it on to IOM.
321 */
322#ifdef IN_RC
323 int rc = IOMGCIOPortHandler(pVM, pCtxCore, pDISState);
324 if (IOM_SUCCESS(rc))
325 pCtxCore->rip += cbOp;
326 return rc;
327#else
328 AssertReleaseMsgFailed(("not implemented\n"));
329 return VERR_NOT_IMPLEMENTED;
330#endif
331}
332
333
334DECLINLINE(int) emRamRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
335{
336#ifdef IN_RC
337 int rc = MMGCRamRead(pVM, pvDst, (void *)GCPtrSrc, cb);
338 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
339 return rc;
340 /*
341 * The page pool cache may end up here in some cases because it
342 * flushed one of the shadow mappings used by the trapping
343 * instruction and it either flushed the TLB or the CPU reused it.
344 */
345#endif
346 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
347}
348
349
350DECLINLINE(int) emRamWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, uint32_t cb)
351{
352#ifdef IN_RC
353 int rc = MMGCRamWrite(pVM, (void *)(uintptr_t)GCPtrDst, (void *)pvSrc, cb);
354 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
355 return rc;
356 /*
357 * The page pool cache may end up here in some cases because it
358 * flushed one of the shadow mappings used by the trapping
359 * instruction and it either flushed the TLB or the CPU reused it.
360 * We want to play safe here, verifying that we've got write
361 * access doesn't cost us much (see PGMPhysGCPtr2GCPhys()).
362 */
363#endif
364 return PGMPhysInterpretedWriteNoHandlers(pVCpu, pCtxCore, GCPtrDst, pvSrc, cb, /*fMayTrap*/ false);
365}
366
367
368/** Convert sel:addr to a flat GC address. */
369DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDISState, POP_PARAMETER pParam, RTGCPTR pvAddr)
370{
371 DIS_SELREG enmPrefixSeg = DISDetectSegReg(pDISState, pParam);
372 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
373}
374
375
376#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
377/**
378 * Get the mnemonic for the disassembled instruction.
379 *
380 * GC/R0 doesn't include the strings in the DIS tables because
381 * of limited space.
382 */
383static const char *emGetMnemonic(PDISCPUSTATE pDISState)
384{
385 switch (pDISState->pCurInstr->opcode)
386 {
387 case OP_XCHG: return "Xchg";
388 case OP_DEC: return "Dec";
389 case OP_INC: return "Inc";
390 case OP_POP: return "Pop";
391 case OP_OR: return "Or";
392 case OP_AND: return "And";
393 case OP_MOV: return "Mov";
394 case OP_INVLPG: return "InvlPg";
395 case OP_CPUID: return "CpuId";
396 case OP_MOV_CR: return "MovCRx";
397 case OP_MOV_DR: return "MovDRx";
398 case OP_LLDT: return "LLdt";
399 case OP_LGDT: return "LGdt";
400 case OP_LIDT: return "LGdt";
401 case OP_CLTS: return "Clts";
402 case OP_MONITOR: return "Monitor";
403 case OP_MWAIT: return "MWait";
404 case OP_RDMSR: return "Rdmsr";
405 case OP_WRMSR: return "Wrmsr";
406 case OP_ADD: return "Add";
407 case OP_ADC: return "Adc";
408 case OP_SUB: return "Sub";
409 case OP_SBB: return "Sbb";
410 case OP_RDTSC: return "Rdtsc";
411 case OP_STI: return "Sti";
412 case OP_CLI: return "Cli";
413 case OP_XADD: return "XAdd";
414 case OP_HLT: return "Hlt";
415 case OP_IRET: return "Iret";
416 case OP_MOVNTPS: return "MovNTPS";
417 case OP_STOSWD: return "StosWD";
418 case OP_WBINVD: return "WbInvd";
419 case OP_XOR: return "Xor";
420 case OP_BTR: return "Btr";
421 case OP_BTS: return "Bts";
422 case OP_BTC: return "Btc";
423 case OP_LMSW: return "Lmsw";
424 case OP_SMSW: return "Smsw";
425 case OP_CMPXCHG: return pDISState->prefix & PREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
426 case OP_CMPXCHG8B: return pDISState->prefix & PREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
427
428 default:
429 Log(("Unknown opcode %d\n", pDISState->pCurInstr->opcode));
430 return "???";
431 }
432}
433#endif /* VBOX_STRICT || LOG_ENABLED */
434
435
436/**
437 * XCHG instruction emulation.
438 */
439static int emInterpretXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
440{
441 OP_PARAMVAL param1, param2;
442
443 /* Source to make DISQueryParamVal read the register value - ugly hack */
444 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_SOURCE);
445 if(RT_FAILURE(rc))
446 return VERR_EM_INTERPRETER;
447
448 rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param2, &param2, PARAM_SOURCE);
449 if(RT_FAILURE(rc))
450 return VERR_EM_INTERPRETER;
451
452#ifdef IN_RC
453 if (TRPMHasTrap(pVM))
454 {
455 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
456 {
457#endif
458 RTGCPTR pParam1 = 0, pParam2 = 0;
459 uint64_t valpar1, valpar2;
460
461 AssertReturn(pDISState->param1.size == pDISState->param2.size, VERR_EM_INTERPRETER);
462 switch(param1.type)
463 {
464 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
465 valpar1 = param1.val.val64;
466 break;
467
468 case PARMTYPE_ADDRESS:
469 pParam1 = (RTGCPTR)param1.val.val64;
470 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, pParam1);
471 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
472 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
473 if (RT_FAILURE(rc))
474 {
475 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
476 return VERR_EM_INTERPRETER;
477 }
478 break;
479
480 default:
481 AssertFailed();
482 return VERR_EM_INTERPRETER;
483 }
484
485 switch(param2.type)
486 {
487 case PARMTYPE_ADDRESS:
488 pParam2 = (RTGCPTR)param2.val.val64;
489 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param2, pParam2);
490 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
491 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar2, pParam2, param2.size);
492 if (RT_FAILURE(rc))
493 {
494 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
495 }
496 break;
497
498 case PARMTYPE_IMMEDIATE:
499 valpar2 = param2.val.val64;
500 break;
501
502 default:
503 AssertFailed();
504 return VERR_EM_INTERPRETER;
505 }
506
507 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
508 if (pParam1 == 0)
509 {
510 Assert(param1.type == PARMTYPE_IMMEDIATE); /* register actually */
511 switch(param1.size)
512 {
513 case 1: //special case for AH etc
514 rc = DISWriteReg8(pRegFrame, pDISState->param1.base.reg_gen, (uint8_t )valpar2); break;
515 case 2: rc = DISWriteReg16(pRegFrame, pDISState->param1.base.reg_gen, (uint16_t)valpar2); break;
516 case 4: rc = DISWriteReg32(pRegFrame, pDISState->param1.base.reg_gen, (uint32_t)valpar2); break;
517 case 8: rc = DISWriteReg64(pRegFrame, pDISState->param1.base.reg_gen, valpar2); break;
518 default: AssertFailedReturn(VERR_EM_INTERPRETER);
519 }
520 if (RT_FAILURE(rc))
521 return VERR_EM_INTERPRETER;
522 }
523 else
524 {
525 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar2, param1.size);
526 if (RT_FAILURE(rc))
527 {
528 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
529 return VERR_EM_INTERPRETER;
530 }
531 }
532
533 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
534 if (pParam2 == 0)
535 {
536 Assert(param2.type == PARMTYPE_IMMEDIATE); /* register actually */
537 switch(param2.size)
538 {
539 case 1: //special case for AH etc
540 rc = DISWriteReg8(pRegFrame, pDISState->param2.base.reg_gen, (uint8_t )valpar1); break;
541 case 2: rc = DISWriteReg16(pRegFrame, pDISState->param2.base.reg_gen, (uint16_t)valpar1); break;
542 case 4: rc = DISWriteReg32(pRegFrame, pDISState->param2.base.reg_gen, (uint32_t)valpar1); break;
543 case 8: rc = DISWriteReg64(pRegFrame, pDISState->param2.base.reg_gen, valpar1); break;
544 default: AssertFailedReturn(VERR_EM_INTERPRETER);
545 }
546 if (RT_FAILURE(rc))
547 return VERR_EM_INTERPRETER;
548 }
549 else
550 {
551 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam2, &valpar1, param2.size);
552 if (RT_FAILURE(rc))
553 {
554 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
555 return VERR_EM_INTERPRETER;
556 }
557 }
558
559 *pcbSize = param2.size;
560 return VINF_SUCCESS;
561#ifdef IN_RC
562 }
563 }
564#endif
565 return VERR_EM_INTERPRETER;
566}
567
568
569/**
570 * INC and DEC emulation.
571 */
572static int emInterpretIncDec(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
573 PFNEMULATEPARAM2 pfnEmulate)
574{
575 OP_PARAMVAL param1;
576
577 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_DEST);
578 if(RT_FAILURE(rc))
579 return VERR_EM_INTERPRETER;
580
581#ifdef IN_RC
582 if (TRPMHasTrap(pVM))
583 {
584 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
585 {
586#endif
587 RTGCPTR pParam1 = 0;
588 uint64_t valpar1;
589
590 if (param1.type == PARMTYPE_ADDRESS)
591 {
592 pParam1 = (RTGCPTR)param1.val.val64;
593 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, pParam1);
594#ifdef IN_RC
595 /* Safety check (in theory it could cross a page boundary and fault there though) */
596 AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
597#endif
598 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
599 if (RT_FAILURE(rc))
600 {
601 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
602 return VERR_EM_INTERPRETER;
603 }
604 }
605 else
606 {
607 AssertFailed();
608 return VERR_EM_INTERPRETER;
609 }
610
611 uint32_t eflags;
612
613 eflags = pfnEmulate(&valpar1, param1.size);
614
615 /* Write result back */
616 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
617 if (RT_FAILURE(rc))
618 {
619 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
620 return VERR_EM_INTERPRETER;
621 }
622
623 /* Update guest's eflags and finish. */
624 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
625 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
626
627 /* All done! */
628 *pcbSize = param1.size;
629 return VINF_SUCCESS;
630#ifdef IN_RC
631 }
632 }
633#endif
634 return VERR_EM_INTERPRETER;
635}
636
637
638/**
639 * POP Emulation.
640 */
641static int emInterpretPop(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
642{
643 Assert(pDISState->mode != CPUMODE_64BIT); /** @todo check */
644 OP_PARAMVAL param1;
645 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_DEST);
646 if(RT_FAILURE(rc))
647 return VERR_EM_INTERPRETER;
648
649#ifdef IN_RC
650 if (TRPMHasTrap(pVM))
651 {
652 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
653 {
654#endif
655 RTGCPTR pParam1 = 0;
656 uint32_t valpar1;
657 RTGCPTR pStackVal;
658
659 /* Read stack value first */
660 if (SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid) == CPUMODE_16BIT)
661 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
662
663 /* Convert address; don't bother checking limits etc, as we only read here */
664 pStackVal = SELMToFlat(pVM, DIS_SELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
665 if (pStackVal == 0)
666 return VERR_EM_INTERPRETER;
667
668 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pStackVal, param1.size);
669 if (RT_FAILURE(rc))
670 {
671 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
672 return VERR_EM_INTERPRETER;
673 }
674
675 if (param1.type == PARMTYPE_ADDRESS)
676 {
677 pParam1 = (RTGCPTR)param1.val.val64;
678
679 /* pop [esp+xx] uses esp after the actual pop! */
680 AssertCompile(USE_REG_ESP == USE_REG_SP);
681 if ( (pDISState->param1.flags & USE_BASE)
682 && (pDISState->param1.flags & (USE_REG_GEN16|USE_REG_GEN32))
683 && pDISState->param1.base.reg_gen == USE_REG_ESP
684 )
685 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
686
687 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, pParam1);
688 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
689 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
690 if (RT_FAILURE(rc))
691 {
692 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
693 return VERR_EM_INTERPRETER;
694 }
695
696 /* Update ESP as the last step */
697 pRegFrame->esp += param1.size;
698 }
699 else
700 {
701#ifndef DEBUG_bird // annoying assertion.
702 AssertFailed();
703#endif
704 return VERR_EM_INTERPRETER;
705 }
706
707 /* All done! */
708 *pcbSize = param1.size;
709 return VINF_SUCCESS;
710#ifdef IN_RC
711 }
712 }
713#endif
714 return VERR_EM_INTERPRETER;
715}
716
717
718/**
719 * XOR/OR/AND Emulation.
720 */
721static int emInterpretOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
722 PFNEMULATEPARAM3 pfnEmulate)
723{
724 OP_PARAMVAL param1, param2;
725
726 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_DEST);
727 if(RT_FAILURE(rc))
728 return VERR_EM_INTERPRETER;
729
730 rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param2, &param2, PARAM_SOURCE);
731 if(RT_FAILURE(rc))
732 return VERR_EM_INTERPRETER;
733
734#ifdef IN_RC
735 if (TRPMHasTrap(pVM))
736 {
737 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
738 {
739#endif
740 RTGCPTR pParam1;
741 uint64_t valpar1, valpar2;
742
743 if (pDISState->param1.size != pDISState->param2.size)
744 {
745 if (pDISState->param1.size < pDISState->param2.size)
746 {
747 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDISState), (RTGCPTR)pRegFrame->rip, pDISState->param1.size, pDISState->param2.size)); /* should never happen! */
748 return VERR_EM_INTERPRETER;
749 }
750 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
751 pDISState->param2.size = pDISState->param1.size;
752 param2.size = param1.size;
753 }
754
755 /* The destination is always a virtual address */
756 if (param1.type == PARMTYPE_ADDRESS)
757 {
758 pParam1 = (RTGCPTR)param1.val.val64;
759 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, pParam1);
760 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
761 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
762 if (RT_FAILURE(rc))
763 {
764 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
765 return VERR_EM_INTERPRETER;
766 }
767 }
768 else
769 {
770 AssertFailed();
771 return VERR_EM_INTERPRETER;
772 }
773
774 /* Register or immediate data */
775 switch(param2.type)
776 {
777 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
778 valpar2 = param2.val.val64;
779 break;
780
781 default:
782 AssertFailed();
783 return VERR_EM_INTERPRETER;
784 }
785
786 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pDISState), pParam1, valpar1, valpar2, param2.size, param1.size));
787
788 /* Data read, emulate instruction. */
789 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
790
791 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pDISState), valpar1));
792
793 /* Update guest's eflags and finish. */
794 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
795 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
796
797 /* And write it back */
798 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
799 if (RT_SUCCESS(rc))
800 {
801 /* All done! */
802 *pcbSize = param2.size;
803 return VINF_SUCCESS;
804 }
805#ifdef IN_RC
806 }
807 }
808#endif
809 return VERR_EM_INTERPRETER;
810}
811
812
813/**
814 * LOCK XOR/OR/AND Emulation.
815 */
816static int emInterpretLockOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
817 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
818{
819 void *pvParam1;
820 OP_PARAMVAL param1, param2;
821
822#if HC_ARCH_BITS == 32
823 Assert(pDISState->param1.size <= 4);
824#endif
825
826 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_DEST);
827 if(RT_FAILURE(rc))
828 return VERR_EM_INTERPRETER;
829
830 rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param2, &param2, PARAM_SOURCE);
831 if(RT_FAILURE(rc))
832 return VERR_EM_INTERPRETER;
833
834 if (pDISState->param1.size != pDISState->param2.size)
835 {
836 AssertMsgReturn(pDISState->param1.size >= pDISState->param2.size, /* should never happen! */
837 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDISState), (RTGCPTR)pRegFrame->rip, pDISState->param1.size, pDISState->param2.size),
838 VERR_EM_INTERPRETER);
839
840 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
841 pDISState->param2.size = pDISState->param1.size;
842 param2.size = param1.size;
843 }
844
845#ifdef IN_RC
846 /* Safety check (in theory it could cross a page boundary and fault there though) */
847 Assert( TRPMHasTrap(pVM)
848 && (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW));
849 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
850#endif
851
852 /* Register and immediate data == PARMTYPE_IMMEDIATE */
853 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
854 RTGCUINTREG ValPar2 = param2.val.val64;
855
856 /* The destination is always a virtual address */
857 AssertReturn(param1.type == PARMTYPE_ADDRESS, VERR_EM_INTERPRETER);
858
859 RTGCPTR GCPtrPar1 = param1.val.val64;
860 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, GCPtrPar1);
861#ifdef IN_RC
862 pvParam1 = (void *)GCPtrPar1;
863#else
864 PGMPAGEMAPLOCK Lock;
865 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
866 AssertRCReturn(rc, VERR_EM_INTERPRETER);
867#endif
868
869 /* Try emulate it with a one-shot #PF handler in place. (RC) */
870 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pDISState), GCPtrPar1, pDISState->param2.size*8, ValPar2));
871
872 RTGCUINTREG32 eflags = 0;
873#ifdef IN_RC
874 MMGCRamRegisterTrapHandler(pVM);
875#endif
876 rc = pfnEmulate(pvParam1, ValPar2, pDISState->param2.size, &eflags);
877#ifdef IN_RC
878 MMGCRamDeregisterTrapHandler(pVM);
879#else
880 PGMPhysReleasePageMappingLock(pVM, &Lock);
881#endif
882 if (RT_FAILURE(rc))
883 {
884 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pDISState), GCPtrPar1, pDISState->param2.size*8, ValPar2));
885 return VERR_EM_INTERPRETER;
886 }
887
888 /* Update guest's eflags and finish. */
889 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
890 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
891
892 *pcbSize = param2.size;
893 return VINF_SUCCESS;
894}
895
896
897/**
898 * ADD, ADC & SUB Emulation.
899 */
900static int emInterpretAddSub(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
901 PFNEMULATEPARAM3 pfnEmulate)
902{
903 OP_PARAMVAL param1, param2;
904 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_DEST);
905 if(RT_FAILURE(rc))
906 return VERR_EM_INTERPRETER;
907
908 rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param2, &param2, PARAM_SOURCE);
909 if(RT_FAILURE(rc))
910 return VERR_EM_INTERPRETER;
911
912#ifdef IN_RC
913 if (TRPMHasTrap(pVM))
914 {
915 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
916 {
917#endif
918 RTGCPTR pParam1;
919 uint64_t valpar1, valpar2;
920
921 if (pDISState->param1.size != pDISState->param2.size)
922 {
923 if (pDISState->param1.size < pDISState->param2.size)
924 {
925 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDISState), (RTGCPTR)pRegFrame->rip, pDISState->param1.size, pDISState->param2.size)); /* should never happen! */
926 return VERR_EM_INTERPRETER;
927 }
928 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
929 pDISState->param2.size = pDISState->param1.size;
930 param2.size = param1.size;
931 }
932
933 /* The destination is always a virtual address */
934 if (param1.type == PARMTYPE_ADDRESS)
935 {
936 pParam1 = (RTGCPTR)param1.val.val64;
937 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, pParam1);
938 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
939 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
940 if (RT_FAILURE(rc))
941 {
942 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
943 return VERR_EM_INTERPRETER;
944 }
945 }
946 else
947 {
948#ifndef DEBUG_bird
949 AssertFailed();
950#endif
951 return VERR_EM_INTERPRETER;
952 }
953
954 /* Register or immediate data */
955 switch(param2.type)
956 {
957 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
958 valpar2 = param2.val.val64;
959 break;
960
961 default:
962 AssertFailed();
963 return VERR_EM_INTERPRETER;
964 }
965
966 /* Data read, emulate instruction. */
967 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
968
969 /* Update guest's eflags and finish. */
970 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
971 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
972
973 /* And write it back */
974 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
975 if (RT_SUCCESS(rc))
976 {
977 /* All done! */
978 *pcbSize = param2.size;
979 return VINF_SUCCESS;
980 }
981#ifdef IN_RC
982 }
983 }
984#endif
985 return VERR_EM_INTERPRETER;
986}
987
988
989/**
990 * ADC Emulation.
991 */
992static int emInterpretAdc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
993{
994 if (pRegFrame->eflags.Bits.u1CF)
995 return emInterpretAddSub(pVM, pVCpu, pDISState, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
996 else
997 return emInterpretAddSub(pVM, pVCpu, pDISState, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
998}
999
1000
1001/**
1002 * BTR/C/S Emulation.
1003 */
1004static int emInterpretBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
1005 PFNEMULATEPARAM2UINT32 pfnEmulate)
1006{
1007 OP_PARAMVAL param1, param2;
1008 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_DEST);
1009 if(RT_FAILURE(rc))
1010 return VERR_EM_INTERPRETER;
1011
1012 rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param2, &param2, PARAM_SOURCE);
1013 if(RT_FAILURE(rc))
1014 return VERR_EM_INTERPRETER;
1015
1016#ifdef IN_RC
1017 if (TRPMHasTrap(pVM))
1018 {
1019 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1020 {
1021#endif
1022 RTGCPTR pParam1;
1023 uint64_t valpar1 = 0, valpar2;
1024 uint32_t eflags;
1025
1026 /* The destination is always a virtual address */
1027 if (param1.type != PARMTYPE_ADDRESS)
1028 return VERR_EM_INTERPRETER;
1029
1030 pParam1 = (RTGCPTR)param1.val.val64;
1031 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, pParam1);
1032
1033 /* Register or immediate data */
1034 switch(param2.type)
1035 {
1036 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1037 valpar2 = param2.val.val64;
1038 break;
1039
1040 default:
1041 AssertFailed();
1042 return VERR_EM_INTERPRETER;
1043 }
1044
1045 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pDISState), pvFault, pParam1, valpar2));
1046 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
1047 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
1048 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, 1);
1049 if (RT_FAILURE(rc))
1050 {
1051 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1052 return VERR_EM_INTERPRETER;
1053 }
1054
1055 Log2(("emInterpretBtx: val=%x\n", valpar1));
1056 /* Data read, emulate bit test instruction. */
1057 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
1058
1059 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
1060
1061 /* Update guest's eflags and finish. */
1062 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1063 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1064
1065 /* And write it back */
1066 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, 1);
1067 if (RT_SUCCESS(rc))
1068 {
1069 /* All done! */
1070 *pcbSize = 1;
1071 return VINF_SUCCESS;
1072 }
1073#ifdef IN_RC
1074 }
1075 }
1076#endif
1077 return VERR_EM_INTERPRETER;
1078}
1079
1080
1081/**
1082 * LOCK BTR/C/S Emulation.
1083 */
1084static int emInterpretLockBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
1085 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
1086{
1087 void *pvParam1;
1088
1089 OP_PARAMVAL param1, param2;
1090 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_DEST);
1091 if(RT_FAILURE(rc))
1092 return VERR_EM_INTERPRETER;
1093
1094 rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param2, &param2, PARAM_SOURCE);
1095 if(RT_FAILURE(rc))
1096 return VERR_EM_INTERPRETER;
1097
1098 /* The destination is always a virtual address */
1099 if (param1.type != PARMTYPE_ADDRESS)
1100 return VERR_EM_INTERPRETER;
1101
1102 /* Register and immediate data == PARMTYPE_IMMEDIATE */
1103 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
1104 uint64_t ValPar2 = param2.val.val64;
1105
1106 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
1107 RTGCPTR GCPtrPar1 = param1.val.val64;
1108 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
1109 ValPar2 &= 7;
1110
1111 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, GCPtrPar1);
1112#ifdef IN_RC
1113 Assert(TRPMHasTrap(pVM));
1114 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
1115#endif
1116
1117#ifdef IN_RC
1118 pvParam1 = (void *)GCPtrPar1;
1119#else
1120 PGMPAGEMAPLOCK Lock;
1121 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1122 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1123#endif
1124
1125 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pDISState), pvFault, GCPtrPar1, ValPar2));
1126
1127 /* Try emulate it with a one-shot #PF handler in place. (RC) */
1128 RTGCUINTREG32 eflags = 0;
1129#ifdef IN_RC
1130 MMGCRamRegisterTrapHandler(pVM);
1131#endif
1132 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
1133#ifdef IN_RC
1134 MMGCRamDeregisterTrapHandler(pVM);
1135#else
1136 PGMPhysReleasePageMappingLock(pVM, &Lock);
1137#endif
1138 if (RT_FAILURE(rc))
1139 {
1140 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
1141 emGetMnemonic(pDISState), GCPtrPar1, pDISState->param2.size*8, ValPar2));
1142 return VERR_EM_INTERPRETER;
1143 }
1144
1145 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pDISState), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
1146
1147 /* Update guest's eflags and finish. */
1148 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1149 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1150
1151 *pcbSize = 1;
1152 return VINF_SUCCESS;
1153}
1154
1155
1156/**
1157 * MOV emulation.
1158 */
1159static int emInterpretMov(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1160{
1161 OP_PARAMVAL param1, param2;
1162 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_DEST);
1163 if(RT_FAILURE(rc))
1164 return VERR_EM_INTERPRETER;
1165
1166 rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param2, &param2, PARAM_SOURCE);
1167 if(RT_FAILURE(rc))
1168 return VERR_EM_INTERPRETER;
1169
1170#ifdef IN_RC
1171 if (TRPMHasTrap(pVM))
1172 {
1173 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1174 {
1175#else
1176 /** @todo Make this the default and don't rely on TRPM information. */
1177 if (param1.type == PARMTYPE_ADDRESS)
1178 {
1179#endif
1180 RTGCPTR pDest;
1181 uint64_t val64;
1182
1183 switch(param1.type)
1184 {
1185 case PARMTYPE_IMMEDIATE:
1186 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1187 return VERR_EM_INTERPRETER;
1188 /* fallthru */
1189
1190 case PARMTYPE_ADDRESS:
1191 pDest = (RTGCPTR)param1.val.val64;
1192 pDest = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, pDest);
1193 break;
1194
1195 default:
1196 AssertFailed();
1197 return VERR_EM_INTERPRETER;
1198 }
1199
1200 switch(param2.type)
1201 {
1202 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
1203 val64 = param2.val.val64;
1204 break;
1205
1206 default:
1207 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
1208 return VERR_EM_INTERPRETER;
1209 }
1210#ifdef LOG_ENABLED
1211 if (pDISState->mode == CPUMODE_64BIT)
1212 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
1213 else
1214 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
1215#endif
1216
1217 Assert(param2.size <= 8 && param2.size > 0);
1218 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
1219 rc = emRamWrite(pVM, pVCpu, pRegFrame, pDest, &val64, param2.size);
1220 if (RT_FAILURE(rc))
1221 return VERR_EM_INTERPRETER;
1222
1223 *pcbSize = param2.size;
1224 }
1225 else
1226 { /* read fault */
1227 RTGCPTR pSrc;
1228 uint64_t val64;
1229
1230 /* Source */
1231 switch(param2.type)
1232 {
1233 case PARMTYPE_IMMEDIATE:
1234 if(!(param2.flags & (PARAM_VAL32|PARAM_VAL64)))
1235 return VERR_EM_INTERPRETER;
1236 /* fallthru */
1237
1238 case PARMTYPE_ADDRESS:
1239 pSrc = (RTGCPTR)param2.val.val64;
1240 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param2, pSrc);
1241 break;
1242
1243 default:
1244 return VERR_EM_INTERPRETER;
1245 }
1246
1247 Assert(param1.size <= 8 && param1.size > 0);
1248 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
1249 rc = emRamRead(pVM, pVCpu, pRegFrame, &val64, pSrc, param1.size);
1250 if (RT_FAILURE(rc))
1251 return VERR_EM_INTERPRETER;
1252
1253 /* Destination */
1254 switch(param1.type)
1255 {
1256 case PARMTYPE_REGISTER:
1257 switch(param1.size)
1258 {
1259 case 1: rc = DISWriteReg8(pRegFrame, pDISState->param1.base.reg_gen, (uint8_t) val64); break;
1260 case 2: rc = DISWriteReg16(pRegFrame, pDISState->param1.base.reg_gen, (uint16_t)val64); break;
1261 case 4: rc = DISWriteReg32(pRegFrame, pDISState->param1.base.reg_gen, (uint32_t)val64); break;
1262 case 8: rc = DISWriteReg64(pRegFrame, pDISState->param1.base.reg_gen, val64); break;
1263 default:
1264 return VERR_EM_INTERPRETER;
1265 }
1266 if (RT_FAILURE(rc))
1267 return rc;
1268 break;
1269
1270 default:
1271 return VERR_EM_INTERPRETER;
1272 }
1273#ifdef LOG_ENABLED
1274 if (pDISState->mode == CPUMODE_64BIT)
1275 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
1276 else
1277 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
1278#endif
1279 }
1280 return VINF_SUCCESS;
1281#ifdef IN_RC
1282 }
1283#endif
1284 return VERR_EM_INTERPRETER;
1285}
1286
1287
1288#ifndef IN_RC
1289/**
1290 * [REP] STOSWD emulation
1291 */
1292static int emInterpretStosWD(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1293{
1294 int rc;
1295 RTGCPTR GCDest, GCOffset;
1296 uint32_t cbSize;
1297 uint64_t cTransfers;
1298 int offIncrement;
1299
1300 /* Don't support any but these three prefix bytes. */
1301 if ((pDISState->prefix & ~(PREFIX_ADDRSIZE|PREFIX_OPSIZE|PREFIX_REP|PREFIX_REX)))
1302 return VERR_EM_INTERPRETER;
1303
1304 switch (pDISState->addrmode)
1305 {
1306 case CPUMODE_16BIT:
1307 GCOffset = pRegFrame->di;
1308 cTransfers = pRegFrame->cx;
1309 break;
1310 case CPUMODE_32BIT:
1311 GCOffset = pRegFrame->edi;
1312 cTransfers = pRegFrame->ecx;
1313 break;
1314 case CPUMODE_64BIT:
1315 GCOffset = pRegFrame->rdi;
1316 cTransfers = pRegFrame->rcx;
1317 break;
1318 default:
1319 AssertFailed();
1320 return VERR_EM_INTERPRETER;
1321 }
1322
1323 GCDest = SELMToFlat(pVM, DIS_SELREG_ES, pRegFrame, GCOffset);
1324 switch (pDISState->opmode)
1325 {
1326 case CPUMODE_16BIT:
1327 cbSize = 2;
1328 break;
1329 case CPUMODE_32BIT:
1330 cbSize = 4;
1331 break;
1332 case CPUMODE_64BIT:
1333 cbSize = 8;
1334 break;
1335 default:
1336 AssertFailed();
1337 return VERR_EM_INTERPRETER;
1338 }
1339
1340 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
1341
1342 if (!(pDISState->prefix & PREFIX_REP))
1343 {
1344 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize));
1345
1346 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1347 if (RT_FAILURE(rc))
1348 return VERR_EM_INTERPRETER;
1349 Assert(rc == VINF_SUCCESS);
1350
1351 /* Update (e/r)di. */
1352 switch (pDISState->addrmode)
1353 {
1354 case CPUMODE_16BIT:
1355 pRegFrame->di += offIncrement;
1356 break;
1357 case CPUMODE_32BIT:
1358 pRegFrame->edi += offIncrement;
1359 break;
1360 case CPUMODE_64BIT:
1361 pRegFrame->rdi += offIncrement;
1362 break;
1363 default:
1364 AssertFailed();
1365 return VERR_EM_INTERPRETER;
1366 }
1367
1368 }
1369 else
1370 {
1371 if (!cTransfers)
1372 return VINF_SUCCESS;
1373
1374 /*
1375 * Do *not* try emulate cross page stuff here because we don't know what might
1376 * be waiting for us on the subsequent pages. The caller has only asked us to
1377 * ignore access handlers fro the current page.
1378 * This also fends off big stores which would quickly kill PGMR0DynMap.
1379 */
1380 if ( cbSize > PAGE_SIZE
1381 || cTransfers > PAGE_SIZE
1382 || (GCDest >> PAGE_SHIFT) != ((GCDest + offIncrement * cTransfers) >> PAGE_SHIFT))
1383 {
1384 Log(("STOSWD is crosses pages, chicken out to the recompiler; GCDest=%RGv cbSize=%#x offIncrement=%d cTransfers=%#x\n",
1385 GCDest, cbSize, offIncrement, cTransfers));
1386 return VERR_EM_INTERPRETER;
1387 }
1388
1389 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
1390 /* Access verification first; we currently can't recover properly from traps inside this instruction */
1391 rc = PGMVerifyAccess(pVM, pVCpu, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
1392 cTransfers * cbSize,
1393 X86_PTE_RW | (CPUMGetGuestCPL(pVCpu, pRegFrame) == 3 ? X86_PTE_US : 0));
1394 if (rc != VINF_SUCCESS)
1395 {
1396 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
1397 return VERR_EM_INTERPRETER;
1398 }
1399
1400 /* REP case */
1401 while (cTransfers)
1402 {
1403 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1404 if (RT_FAILURE(rc))
1405 {
1406 rc = VERR_EM_INTERPRETER;
1407 break;
1408 }
1409
1410 Assert(rc == VINF_SUCCESS);
1411 GCOffset += offIncrement;
1412 GCDest += offIncrement;
1413 cTransfers--;
1414 }
1415
1416 /* Update the registers. */
1417 switch (pDISState->addrmode)
1418 {
1419 case CPUMODE_16BIT:
1420 pRegFrame->di = GCOffset;
1421 pRegFrame->cx = cTransfers;
1422 break;
1423 case CPUMODE_32BIT:
1424 pRegFrame->edi = GCOffset;
1425 pRegFrame->ecx = cTransfers;
1426 break;
1427 case CPUMODE_64BIT:
1428 pRegFrame->rdi = GCOffset;
1429 pRegFrame->rcx = cTransfers;
1430 break;
1431 default:
1432 AssertFailed();
1433 return VERR_EM_INTERPRETER;
1434 }
1435 }
1436
1437 *pcbSize = cbSize;
1438 return rc;
1439}
1440#endif /* !IN_RC */
1441
1442#ifndef IN_RC
1443
1444/**
1445 * [LOCK] CMPXCHG emulation.
1446 */
1447static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1448{
1449 OP_PARAMVAL param1, param2;
1450
1451#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
1452 Assert(pDISState->param1.size <= 4);
1453#endif
1454
1455 /* Source to make DISQueryParamVal read the register value - ugly hack */
1456 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_SOURCE);
1457 if(RT_FAILURE(rc))
1458 return VERR_EM_INTERPRETER;
1459
1460 rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param2, &param2, PARAM_SOURCE);
1461 if(RT_FAILURE(rc))
1462 return VERR_EM_INTERPRETER;
1463
1464 uint64_t valpar;
1465 switch(param2.type)
1466 {
1467 case PARMTYPE_IMMEDIATE: /* register actually */
1468 valpar = param2.val.val64;
1469 break;
1470
1471 default:
1472 return VERR_EM_INTERPRETER;
1473 }
1474
1475 PGMPAGEMAPLOCK Lock;
1476 RTGCPTR GCPtrPar1;
1477 void *pvParam1;
1478 uint64_t eflags;
1479
1480 AssertReturn(pDISState->param1.size == pDISState->param2.size, VERR_EM_INTERPRETER);
1481 switch(param1.type)
1482 {
1483 case PARMTYPE_ADDRESS:
1484 GCPtrPar1 = param1.val.val64;
1485 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, GCPtrPar1);
1486
1487 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1488 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1489 break;
1490
1491 default:
1492 return VERR_EM_INTERPRETER;
1493 }
1494
1495 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pDISState), GCPtrPar1, pRegFrame->rax, valpar));
1496
1497 if (pDISState->prefix & PREFIX_LOCK)
1498 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDISState->param2.size);
1499 else
1500 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDISState->param2.size);
1501
1502 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pDISState), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
1503
1504 /* Update guest's eflags and finish. */
1505 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1506 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1507
1508 *pcbSize = param2.size;
1509 PGMPhysReleasePageMappingLock(pVM, &Lock);
1510 return VINF_SUCCESS;
1511}
1512
1513
1514/**
1515 * [LOCK] CMPXCHG8B emulation.
1516 */
1517static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1518{
1519 Assert(pDISState->mode != CPUMODE_64BIT); /** @todo check */
1520 OP_PARAMVAL param1;
1521
1522 /* Source to make DISQueryParamVal read the register value - ugly hack */
1523 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_SOURCE);
1524 if(RT_FAILURE(rc))
1525 return VERR_EM_INTERPRETER;
1526
1527 RTGCPTR GCPtrPar1;
1528 void *pvParam1;
1529 uint64_t eflags;
1530 PGMPAGEMAPLOCK Lock;
1531
1532 AssertReturn(pDISState->param1.size == 8, VERR_EM_INTERPRETER);
1533 switch(param1.type)
1534 {
1535 case PARMTYPE_ADDRESS:
1536 GCPtrPar1 = param1.val.val64;
1537 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, GCPtrPar1);
1538
1539 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1540 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1541 break;
1542
1543 default:
1544 return VERR_EM_INTERPRETER;
1545 }
1546
1547 LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pDISState), pvParam1, pRegFrame->eax));
1548
1549 if (pDISState->prefix & PREFIX_LOCK)
1550 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1551 else
1552 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1553
1554 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pDISState), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1555
1556 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1557 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1558 | (eflags & (X86_EFL_ZF));
1559
1560 *pcbSize = 8;
1561 PGMPhysReleasePageMappingLock(pVM, &Lock);
1562 return VINF_SUCCESS;
1563}
1564
1565#else /* IN_RC */
1566
1567/**
1568 * [LOCK] CMPXCHG emulation.
1569 */
1570static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1571{
1572 Assert(pDISState->mode != CPUMODE_64BIT); /** @todo check */
1573 OP_PARAMVAL param1, param2;
1574
1575 /* Source to make DISQueryParamVal read the register value - ugly hack */
1576 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_SOURCE);
1577 if(RT_FAILURE(rc))
1578 return VERR_EM_INTERPRETER;
1579
1580 rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param2, &param2, PARAM_SOURCE);
1581 if(RT_FAILURE(rc))
1582 return VERR_EM_INTERPRETER;
1583
1584 if (TRPMHasTrap(pVM))
1585 {
1586 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1587 {
1588 RTRCPTR pParam1;
1589 uint32_t valpar, eflags;
1590
1591 AssertReturn(pDISState->param1.size == pDISState->param2.size, VERR_EM_INTERPRETER);
1592 switch(param1.type)
1593 {
1594 case PARMTYPE_ADDRESS:
1595 pParam1 = (RTRCPTR)param1.val.val64;
1596 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1597 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1598 break;
1599
1600 default:
1601 return VERR_EM_INTERPRETER;
1602 }
1603
1604 switch(param2.type)
1605 {
1606 case PARMTYPE_IMMEDIATE: /* register actually */
1607 valpar = param2.val.val32;
1608 break;
1609
1610 default:
1611 return VERR_EM_INTERPRETER;
1612 }
1613
1614 LogFlow(("%s %RRv eax=%08x %08x\n", emGetMnemonic(pDISState), pParam1, pRegFrame->eax, valpar));
1615
1616 MMGCRamRegisterTrapHandler(pVM);
1617 if (pDISState->prefix & PREFIX_LOCK)
1618 rc = EMGCEmulateLockCmpXchg(pParam1, &pRegFrame->eax, valpar, pDISState->param2.size, &eflags);
1619 else
1620 rc = EMGCEmulateCmpXchg(pParam1, &pRegFrame->eax, valpar, pDISState->param2.size, &eflags);
1621 MMGCRamDeregisterTrapHandler(pVM);
1622
1623 if (RT_FAILURE(rc))
1624 {
1625 Log(("%s %RGv eax=%08x %08x -> emulation failed due to page fault!\n", emGetMnemonic(pDISState), pParam1, pRegFrame->eax, valpar));
1626 return VERR_EM_INTERPRETER;
1627 }
1628
1629 LogFlow(("%s %RRv eax=%08x %08x ZF=%d\n", emGetMnemonic(pDISState), pParam1, pRegFrame->eax, valpar, !!(eflags & X86_EFL_ZF)));
1630
1631 /* Update guest's eflags and finish. */
1632 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1633 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1634
1635 *pcbSize = param2.size;
1636 return VINF_SUCCESS;
1637 }
1638 }
1639 return VERR_EM_INTERPRETER;
1640}
1641
1642
1643/**
1644 * [LOCK] CMPXCHG8B emulation.
1645 */
1646static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1647{
1648 Assert(pDISState->mode != CPUMODE_64BIT); /** @todo check */
1649 OP_PARAMVAL param1;
1650
1651 /* Source to make DISQueryParamVal read the register value - ugly hack */
1652 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_SOURCE);
1653 if(RT_FAILURE(rc))
1654 return VERR_EM_INTERPRETER;
1655
1656 if (TRPMHasTrap(pVM))
1657 {
1658 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1659 {
1660 RTRCPTR pParam1;
1661 uint32_t eflags;
1662
1663 AssertReturn(pDISState->param1.size == 8, VERR_EM_INTERPRETER);
1664 switch(param1.type)
1665 {
1666 case PARMTYPE_ADDRESS:
1667 pParam1 = (RTRCPTR)param1.val.val64;
1668 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1669 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1670 break;
1671
1672 default:
1673 return VERR_EM_INTERPRETER;
1674 }
1675
1676 LogFlow(("%s %RRv=%08x eax=%08x\n", emGetMnemonic(pDISState), pParam1, pRegFrame->eax));
1677
1678 MMGCRamRegisterTrapHandler(pVM);
1679 if (pDISState->prefix & PREFIX_LOCK)
1680 rc = EMGCEmulateLockCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
1681 else
1682 rc = EMGCEmulateCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
1683 MMGCRamDeregisterTrapHandler(pVM);
1684
1685 if (RT_FAILURE(rc))
1686 {
1687 Log(("%s %RGv=%08x eax=%08x -> emulation failed due to page fault!\n", emGetMnemonic(pDISState), pParam1, pRegFrame->eax));
1688 return VERR_EM_INTERPRETER;
1689 }
1690
1691 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pDISState), pParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1692
1693 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1694 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1695 | (eflags & (X86_EFL_ZF));
1696
1697 *pcbSize = 8;
1698 return VINF_SUCCESS;
1699 }
1700 }
1701 return VERR_EM_INTERPRETER;
1702}
1703
1704#endif /* IN_RC */
1705
1706#ifdef IN_RC
1707/**
1708 * [LOCK] XADD emulation.
1709 */
1710static int emInterpretXAdd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1711{
1712 Assert(pDISState->mode != CPUMODE_64BIT); /** @todo check */
1713 OP_PARAMVAL param1;
1714 uint32_t *pParamReg2;
1715 size_t cbSizeParamReg2;
1716
1717 /* Source to make DISQueryParamVal read the register value - ugly hack */
1718 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_SOURCE);
1719 if(RT_FAILURE(rc))
1720 return VERR_EM_INTERPRETER;
1721
1722 rc = DISQueryParamRegPtr(pRegFrame, pDISState, &pDISState->param2, (void **)&pParamReg2, &cbSizeParamReg2);
1723 Assert(cbSizeParamReg2 <= 4);
1724 if(RT_FAILURE(rc))
1725 return VERR_EM_INTERPRETER;
1726
1727 if (TRPMHasTrap(pVM))
1728 {
1729 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1730 {
1731 RTRCPTR pParam1;
1732 uint32_t eflags;
1733
1734 AssertReturn(pDISState->param1.size == pDISState->param2.size, VERR_EM_INTERPRETER);
1735 switch(param1.type)
1736 {
1737 case PARMTYPE_ADDRESS:
1738 pParam1 = (RTRCPTR)param1.val.val64;
1739 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1740 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1741 break;
1742
1743 default:
1744 return VERR_EM_INTERPRETER;
1745 }
1746
1747 LogFlow(("XAdd %RRv=%08x reg=%08x\n", pParam1, *pParamReg2));
1748
1749 MMGCRamRegisterTrapHandler(pVM);
1750 if (pDISState->prefix & PREFIX_LOCK)
1751 rc = EMGCEmulateLockXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
1752 else
1753 rc = EMGCEmulateXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
1754 MMGCRamDeregisterTrapHandler(pVM);
1755
1756 if (RT_FAILURE(rc))
1757 {
1758 Log(("XAdd %RGv reg=%08x -> emulation failed due to page fault!\n", pParam1, *pParamReg2));
1759 return VERR_EM_INTERPRETER;
1760 }
1761
1762 LogFlow(("XAdd %RGv reg=%08x ZF=%d\n", pParam1, *pParamReg2, !!(eflags & X86_EFL_ZF)));
1763
1764 /* Update guest's eflags and finish. */
1765 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1766 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1767
1768 *pcbSize = cbSizeParamReg2;
1769 return VINF_SUCCESS;
1770 }
1771 }
1772 return VERR_EM_INTERPRETER;
1773}
1774#endif /* IN_RC */
1775
1776
1777#ifdef IN_RC
1778/**
1779 * Interpret IRET (currently only to V86 code)
1780 *
1781 * @returns VBox status code.
1782 * @param pVM The VM handle.
1783 * @param pVCpu The VMCPU handle.
1784 * @param pRegFrame The register frame.
1785 *
1786 */
1787VMMDECL(int) EMInterpretIret(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1788{
1789 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1790 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
1791 int rc;
1792
1793 Assert(!CPUMIsGuestIn64BitCode(pVCpu, pRegFrame));
1794
1795 rc = emRamRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1796 rc |= emRamRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1797 rc |= emRamRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1798 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1799 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1800
1801 rc |= emRamRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1802 rc |= emRamRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1803 rc |= emRamRead(pVM, pVCpu, pRegFrame, &es, (RTGCPTR)(pIretStack + 20), 4);
1804 rc |= emRamRead(pVM, pVCpu, pRegFrame, &ds, (RTGCPTR)(pIretStack + 24), 4);
1805 rc |= emRamRead(pVM, pVCpu, pRegFrame, &fs, (RTGCPTR)(pIretStack + 28), 4);
1806 rc |= emRamRead(pVM, pVCpu, pRegFrame, &gs, (RTGCPTR)(pIretStack + 32), 4);
1807 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1808
1809 pRegFrame->eip = eip & 0xffff;
1810 pRegFrame->cs = cs;
1811
1812 /* Mask away all reserved bits */
1813 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1814 eflags &= uMask;
1815
1816#ifndef IN_RING0
1817 CPUMRawSetEFlags(pVCpu, pRegFrame, eflags);
1818#endif
1819 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1820
1821 pRegFrame->esp = esp;
1822 pRegFrame->ss = ss;
1823 pRegFrame->ds = ds;
1824 pRegFrame->es = es;
1825 pRegFrame->fs = fs;
1826 pRegFrame->gs = gs;
1827
1828 return VINF_SUCCESS;
1829}
1830#endif /* IN_RC */
1831
1832
1833/**
1834 * IRET Emulation.
1835 */
1836static int emInterpretIret(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1837{
1838 /* only allow direct calls to EMInterpretIret for now */
1839 return VERR_EM_INTERPRETER;
1840}
1841
1842/**
1843 * WBINVD Emulation.
1844 */
1845static int emInterpretWbInvd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1846{
1847 /* Nothing to do. */
1848 return VINF_SUCCESS;
1849}
1850
1851
1852/**
1853 * Interpret INVLPG
1854 *
1855 * @returns VBox status code.
1856 * @param pVM The VM handle.
1857 * @param pVCpu The VMCPU handle.
1858 * @param pRegFrame The register frame.
1859 * @param pAddrGC Operand address
1860 *
1861 */
1862VMMDECL(int) EMInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
1863{
1864 int rc;
1865
1866 /** @todo is addr always a flat linear address or ds based
1867 * (in absence of segment override prefixes)????
1868 */
1869#ifdef IN_RC
1870 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
1871#endif
1872 rc = PGMInvalidatePage(pVM, pVCpu, pAddrGC);
1873 if ( rc == VINF_SUCCESS
1874 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1875 return VINF_SUCCESS;
1876 AssertMsgReturn( rc == VERR_REM_FLUSHED_PAGES_OVERFLOW
1877 || rc == VINF_EM_RAW_EMULATE_INSTR,
1878 ("%Rrc addr=%RGv\n", rc, pAddrGC),
1879 VERR_EM_INTERPRETER);
1880 return rc;
1881}
1882
1883
1884/**
1885 * INVLPG Emulation.
1886 */
1887static int emInterpretInvlPg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1888{
1889 OP_PARAMVAL param1;
1890 RTGCPTR addr;
1891
1892 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_SOURCE);
1893 if(RT_FAILURE(rc))
1894 return VERR_EM_INTERPRETER;
1895
1896 switch(param1.type)
1897 {
1898 case PARMTYPE_IMMEDIATE:
1899 case PARMTYPE_ADDRESS:
1900 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1901 return VERR_EM_INTERPRETER;
1902 addr = (RTGCPTR)param1.val.val64;
1903 break;
1904
1905 default:
1906 return VERR_EM_INTERPRETER;
1907 }
1908
1909 /** @todo is addr always a flat linear address or ds based
1910 * (in absence of segment override prefixes)????
1911 */
1912#ifdef IN_RC
1913 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
1914#endif
1915 rc = PGMInvalidatePage(pVM, pVCpu, addr);
1916 if ( rc == VINF_SUCCESS
1917 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1918 return VINF_SUCCESS;
1919 AssertMsgReturn( rc == VERR_REM_FLUSHED_PAGES_OVERFLOW
1920 || rc == VINF_EM_RAW_EMULATE_INSTR,
1921 ("%Rrc addr=%RGv\n", rc, addr),
1922 VERR_EM_INTERPRETER);
1923 return rc;
1924}
1925
1926
1927/**
1928 * Interpret CPUID given the parameters in the CPU context
1929 *
1930 * @returns VBox status code.
1931 * @param pVM The VM handle.
1932 * @param pVCpu The VMCPU handle.
1933 * @param pRegFrame The register frame.
1934 *
1935 */
1936VMMDECL(int) EMInterpretCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1937{
1938 uint32_t iLeaf = pRegFrame->eax;
1939
1940 /* cpuid clears the high dwords of the affected 64 bits registers. */
1941 pRegFrame->rax = 0;
1942 pRegFrame->rbx = 0;
1943 pRegFrame->rcx = 0;
1944 pRegFrame->rdx = 0;
1945
1946 /* Note: operates the same in 64 and non-64 bits mode. */
1947 CPUMGetGuestCpuId(pVM, iLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
1948 Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
1949 return VINF_SUCCESS;
1950}
1951
1952
1953/**
1954 * CPUID Emulation.
1955 */
1956static int emInterpretCpuId(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1957{
1958 int rc = EMInterpretCpuId(pVM, pVCpu, pRegFrame);
1959 return rc;
1960}
1961
1962
1963/**
1964 * Interpret CRx read
1965 *
1966 * @returns VBox status code.
1967 * @param pVM The VM handle.
1968 * @param pVCpu The VMCPU handle.
1969 * @param pRegFrame The register frame.
1970 * @param DestRegGen General purpose register index (USE_REG_E**))
1971 * @param SrcRegCRx CRx register index (USE_REG_CR*)
1972 *
1973 */
1974VMMDECL(int) EMInterpretCRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
1975{
1976 int rc;
1977 uint64_t val64;
1978
1979 if (SrcRegCrx == USE_REG_CR8)
1980 {
1981 val64 = 0;
1982 rc = PDMApicGetTPR(pVM, (uint8_t *)&val64, NULL);
1983 AssertMsgRCReturn(rc, ("PDMApicGetTPR failed\n"), VERR_EM_INTERPRETER);
1984 }
1985 else
1986 {
1987 rc = CPUMGetGuestCRx(pVCpu, SrcRegCrx, &val64);
1988 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
1989 }
1990
1991 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
1992 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1993 else
1994 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
1995
1996 if(RT_SUCCESS(rc))
1997 {
1998 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
1999 return VINF_SUCCESS;
2000 }
2001 return VERR_EM_INTERPRETER;
2002}
2003
2004
2005
2006/**
2007 * Interpret CLTS
2008 *
2009 * @returns VBox status code.
2010 * @param pVM The VM handle.
2011 * @param pVCpu The VMCPU handle.
2012 *
2013 */
2014VMMDECL(int) EMInterpretCLTS(PVM pVM, PVMCPU pVCpu)
2015{
2016 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
2017 if (!(cr0 & X86_CR0_TS))
2018 return VINF_SUCCESS;
2019 return CPUMSetGuestCR0(pVCpu, cr0 & ~X86_CR0_TS);
2020}
2021
2022/**
2023 * CLTS Emulation.
2024 */
2025static int emInterpretClts(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2026{
2027 return EMInterpretCLTS(pVM, pVCpu);
2028}
2029
2030
2031/**
2032 * Update CRx
2033 *
2034 * @returns VBox status code.
2035 * @param pVM The VM handle.
2036 * @param pVCpu The VMCPU handle.
2037 * @param pRegFrame The register frame.
2038 * @param DestRegCRx CRx register index (USE_REG_CR*)
2039 * @param val New CRx value
2040 *
2041 */
2042static int emUpdateCRx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
2043{
2044 uint64_t oldval;
2045 uint64_t msrEFER;
2046 int rc, rc2;
2047
2048 /** @todo Clean up this mess. */
2049 LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
2050 switch (DestRegCrx)
2051 {
2052 case USE_REG_CR0:
2053 oldval = CPUMGetGuestCR0(pVCpu);
2054#ifdef IN_RC
2055 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
2056 if ( (val & (X86_CR0_WP | X86_CR0_AM))
2057 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
2058 return VERR_EM_INTERPRETER;
2059#endif
2060 rc = VINF_SUCCESS;
2061 CPUMSetGuestCR0(pVCpu, val);
2062 val = CPUMGetGuestCR0(pVCpu);
2063 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
2064 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
2065 {
2066 /* global flush */
2067 rc = PGMFlushTLB(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
2068 AssertRCReturn(rc, rc);
2069 }
2070
2071 /* Deal with long mode enabling/disabling. */
2072 msrEFER = CPUMGetGuestEFER(pVCpu);
2073 if (msrEFER & MSR_K6_EFER_LME)
2074 {
2075 if ( !(oldval & X86_CR0_PG)
2076 && (val & X86_CR0_PG))
2077 {
2078 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2079 if (pRegFrame->csHid.Attr.n.u1Long)
2080 {
2081 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
2082 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2083 }
2084
2085 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2086 if (!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE))
2087 {
2088 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
2089 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2090 }
2091 msrEFER |= MSR_K6_EFER_LMA;
2092 }
2093 else
2094 if ( (oldval & X86_CR0_PG)
2095 && !(val & X86_CR0_PG))
2096 {
2097 msrEFER &= ~MSR_K6_EFER_LMA;
2098 /* @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
2099 }
2100 CPUMSetGuestEFER(pVCpu, msrEFER);
2101 }
2102 rc2 = PGMChangeMode(pVM, pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2103 return rc2 == VINF_SUCCESS ? rc : rc2;
2104
2105 case USE_REG_CR2:
2106 rc = CPUMSetGuestCR2(pVCpu, val); AssertRC(rc);
2107 return VINF_SUCCESS;
2108
2109 case USE_REG_CR3:
2110 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
2111 rc = CPUMSetGuestCR3(pVCpu, val); AssertRC(rc);
2112 if (CPUMGetGuestCR0(pVCpu) & X86_CR0_PG)
2113 {
2114 /* flush */
2115 rc = PGMFlushTLB(pVM, pVCpu, val, !(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE));
2116 AssertRCReturn(rc, rc);
2117 }
2118 return rc;
2119
2120 case USE_REG_CR4:
2121 oldval = CPUMGetGuestCR4(pVCpu);
2122 rc = CPUMSetGuestCR4(pVCpu, val); AssertRC(rc);
2123 val = CPUMGetGuestCR4(pVCpu);
2124
2125 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2126 msrEFER = CPUMGetGuestEFER(pVCpu);
2127 if ( (msrEFER & MSR_K6_EFER_LMA)
2128 && (oldval & X86_CR4_PAE)
2129 && !(val & X86_CR4_PAE))
2130 {
2131 return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
2132 }
2133
2134 rc = VINF_SUCCESS;
2135 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
2136 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
2137 {
2138 /* global flush */
2139 rc = PGMFlushTLB(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
2140 AssertRCReturn(rc, rc);
2141 }
2142
2143 /* Feeling extremely lazy. */
2144# ifdef IN_RC
2145 if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
2146 != (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
2147 {
2148 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
2149 VM_FF_SET(pVM, VM_FF_TO_R3);
2150 }
2151# endif
2152 if ((val ^ oldval) & X86_CR4_VME)
2153 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2154
2155 rc2 = PGMChangeMode(pVM, pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2156 return rc2 == VINF_SUCCESS ? rc : rc2;
2157
2158 case USE_REG_CR8:
2159 return PDMApicSetTPR(pVM, val);
2160
2161 default:
2162 AssertFailed();
2163 case USE_REG_CR1: /* illegal op */
2164 break;
2165 }
2166 return VERR_EM_INTERPRETER;
2167}
2168
2169/**
2170 * Interpret CRx write
2171 *
2172 * @returns VBox status code.
2173 * @param pVM The VM handle.
2174 * @param pVCpu The VMCPU handle.
2175 * @param pRegFrame The register frame.
2176 * @param DestRegCRx CRx register index (USE_REG_CR*)
2177 * @param SrcRegGen General purpose register index (USE_REG_E**))
2178 *
2179 */
2180VMMDECL(int) EMInterpretCRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
2181{
2182 uint64_t val;
2183 int rc;
2184
2185 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2186 {
2187 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2188 }
2189 else
2190 {
2191 uint32_t val32;
2192 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2193 val = val32;
2194 }
2195
2196 if (RT_SUCCESS(rc))
2197 return emUpdateCRx(pVM, pVCpu, pRegFrame, DestRegCrx, val);
2198
2199 return VERR_EM_INTERPRETER;
2200}
2201
2202/**
2203 * Interpret LMSW
2204 *
2205 * @returns VBox status code.
2206 * @param pVM The VM handle.
2207 * @param pVCpu The VMCPU handle.
2208 * @param pRegFrame The register frame.
2209 * @param u16Data LMSW source data.
2210 *
2211 */
2212VMMDECL(int) EMInterpretLMSW(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
2213{
2214 uint64_t OldCr0 = CPUMGetGuestCR0(pVCpu);
2215
2216 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
2217 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
2218 | (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
2219
2220 return emUpdateCRx(pVM, pVCpu, pRegFrame, USE_REG_CR0, NewCr0);
2221}
2222
2223/**
2224 * LMSW Emulation.
2225 */
2226static int emInterpretLmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2227{
2228 OP_PARAMVAL param1;
2229 uint32_t val;
2230
2231 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_SOURCE);
2232 if(RT_FAILURE(rc))
2233 return VERR_EM_INTERPRETER;
2234
2235 switch(param1.type)
2236 {
2237 case PARMTYPE_IMMEDIATE:
2238 case PARMTYPE_ADDRESS:
2239 if(!(param1.flags & PARAM_VAL16))
2240 return VERR_EM_INTERPRETER;
2241 val = param1.val.val32;
2242 break;
2243
2244 default:
2245 return VERR_EM_INTERPRETER;
2246 }
2247
2248 LogFlow(("emInterpretLmsw %x\n", val));
2249 return EMInterpretLMSW(pVM, pVCpu, pRegFrame, val);
2250}
2251
2252#ifdef EM_EMULATE_SMSW
2253/**
2254 * SMSW Emulation.
2255 */
2256static int emInterpretSmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2257{
2258 OP_PARAMVAL param1;
2259 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
2260
2261 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_SOURCE);
2262 if(RT_FAILURE(rc))
2263 return VERR_EM_INTERPRETER;
2264
2265 switch(param1.type)
2266 {
2267 case PARMTYPE_IMMEDIATE:
2268 if(param1.size != sizeof(uint16_t))
2269 return VERR_EM_INTERPRETER;
2270 LogFlow(("emInterpretSmsw %d <- cr0 (%x)\n", pDISState->param1.base.reg_gen, cr0));
2271 rc = DISWriteReg16(pRegFrame, pDISState->param1.base.reg_gen, cr0);
2272 break;
2273
2274 case PARMTYPE_ADDRESS:
2275 {
2276 RTGCPTR pParam1;
2277
2278 /* Actually forced to 16 bits regardless of the operand size. */
2279 if(param1.size != sizeof(uint16_t))
2280 return VERR_EM_INTERPRETER;
2281
2282 pParam1 = (RTGCPTR)param1.val.val64;
2283 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, pParam1);
2284 LogFlow(("emInterpretSmsw %VGv <- cr0 (%x)\n", pParam1, cr0));
2285
2286 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &cr0, sizeof(uint16_t));
2287 if (RT_FAILURE(rc))
2288 {
2289 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2290 return VERR_EM_INTERPRETER;
2291 }
2292 break;
2293 }
2294
2295 default:
2296 return VERR_EM_INTERPRETER;
2297 }
2298
2299 LogFlow(("emInterpretSmsw %x\n", cr0));
2300 return rc;
2301}
2302#endif
2303
2304/**
2305 * MOV CRx
2306 */
2307static int emInterpretMovCRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2308{
2309 if ((pDISState->param1.flags == USE_REG_GEN32 || pDISState->param1.flags == USE_REG_GEN64) && pDISState->param2.flags == USE_REG_CR)
2310 return EMInterpretCRxRead(pVM, pVCpu, pRegFrame, pDISState->param1.base.reg_gen, pDISState->param2.base.reg_ctrl);
2311
2312 if (pDISState->param1.flags == USE_REG_CR && (pDISState->param2.flags == USE_REG_GEN32 || pDISState->param2.flags == USE_REG_GEN64))
2313 return EMInterpretCRxWrite(pVM, pVCpu, pRegFrame, pDISState->param1.base.reg_ctrl, pDISState->param2.base.reg_gen);
2314
2315 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
2316 return VERR_EM_INTERPRETER;
2317}
2318
2319
2320/**
2321 * Interpret DRx write
2322 *
2323 * @returns VBox status code.
2324 * @param pVM The VM handle.
2325 * @param pVCpu The VMCPU handle.
2326 * @param pRegFrame The register frame.
2327 * @param DestRegDRx DRx register index (USE_REG_DR*)
2328 * @param SrcRegGen General purpose register index (USE_REG_E**))
2329 *
2330 */
2331VMMDECL(int) EMInterpretDRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
2332{
2333 uint64_t val;
2334 int rc;
2335
2336 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2337 {
2338 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2339 }
2340 else
2341 {
2342 uint32_t val32;
2343 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2344 val = val32;
2345 }
2346
2347 if (RT_SUCCESS(rc))
2348 {
2349 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
2350 rc = CPUMSetGuestDRx(pVCpu, DestRegDrx, val);
2351 if (RT_SUCCESS(rc))
2352 return rc;
2353 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
2354 }
2355 return VERR_EM_INTERPRETER;
2356}
2357
2358
2359/**
2360 * Interpret DRx read
2361 *
2362 * @returns VBox status code.
2363 * @param pVM The VM handle.
2364 * @param pVCpu The VMCPU handle.
2365 * @param pRegFrame The register frame.
2366 * @param DestRegGen General purpose register index (USE_REG_E**))
2367 * @param SrcRegDRx DRx register index (USE_REG_DR*)
2368 *
2369 */
2370VMMDECL(int) EMInterpretDRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
2371{
2372 uint64_t val64;
2373
2374 int rc = CPUMGetGuestDRx(pVCpu, SrcRegDrx, &val64);
2375 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
2376 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2377 {
2378 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
2379 }
2380 else
2381 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
2382
2383 if (RT_SUCCESS(rc))
2384 return VINF_SUCCESS;
2385
2386 return VERR_EM_INTERPRETER;
2387}
2388
2389
2390/**
2391 * MOV DRx
2392 */
2393static int emInterpretMovDRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2394{
2395 int rc = VERR_EM_INTERPRETER;
2396
2397 if((pDISState->param1.flags == USE_REG_GEN32 || pDISState->param1.flags == USE_REG_GEN64) && pDISState->param2.flags == USE_REG_DBG)
2398 {
2399 rc = EMInterpretDRxRead(pVM, pVCpu, pRegFrame, pDISState->param1.base.reg_gen, pDISState->param2.base.reg_dbg);
2400 }
2401 else
2402 if(pDISState->param1.flags == USE_REG_DBG && (pDISState->param2.flags == USE_REG_GEN32 || pDISState->param2.flags == USE_REG_GEN64))
2403 {
2404 rc = EMInterpretDRxWrite(pVM, pVCpu, pRegFrame, pDISState->param1.base.reg_dbg, pDISState->param2.base.reg_gen);
2405 }
2406 else
2407 AssertMsgFailed(("Unexpected debug register move\n"));
2408
2409 return rc;
2410}
2411
2412
2413/**
2414 * LLDT Emulation.
2415 */
2416static int emInterpretLLdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2417{
2418 OP_PARAMVAL param1;
2419 RTSEL sel;
2420
2421 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_SOURCE);
2422 if(RT_FAILURE(rc))
2423 return VERR_EM_INTERPRETER;
2424
2425 switch(param1.type)
2426 {
2427 case PARMTYPE_ADDRESS:
2428 return VERR_EM_INTERPRETER; //feeling lazy right now
2429
2430 case PARMTYPE_IMMEDIATE:
2431 if(!(param1.flags & PARAM_VAL16))
2432 return VERR_EM_INTERPRETER;
2433 sel = (RTSEL)param1.val.val16;
2434 break;
2435
2436 default:
2437 return VERR_EM_INTERPRETER;
2438 }
2439
2440#ifdef IN_RING0
2441 /* Only for the VT-x real-mode emulation case. */
2442 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
2443 CPUMSetGuestLDTR(pVCpu, sel);
2444 return VINF_SUCCESS;
2445#else
2446 if (sel == 0)
2447 {
2448 if (CPUMGetHyperLDTR(pVCpu) == 0)
2449 {
2450 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
2451 return VINF_SUCCESS;
2452 }
2453 }
2454 //still feeling lazy
2455 return VERR_EM_INTERPRETER;
2456#endif
2457}
2458
2459#ifdef IN_RING0
2460/**
2461 * LIDT/LGDT Emulation.
2462 */
2463static int emInterpretLIGdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2464{
2465 OP_PARAMVAL param1;
2466 RTGCPTR pParam1;
2467 X86XDTR32 dtr32;
2468
2469 Log(("Emulate %s at %RGv\n", emGetMnemonic(pDISState), (RTGCPTR)pRegFrame->rip));
2470
2471 /* Only for the VT-x real-mode emulation case. */
2472 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
2473
2474 int rc = DISQueryParamVal(pRegFrame, pDISState, &pDISState->param1, &param1, PARAM_SOURCE);
2475 if(RT_FAILURE(rc))
2476 return VERR_EM_INTERPRETER;
2477
2478 switch(param1.type)
2479 {
2480 case PARMTYPE_ADDRESS:
2481 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDISState, &pDISState->param1, param1.val.val16);
2482 break;
2483
2484 default:
2485 return VERR_EM_INTERPRETER;
2486 }
2487
2488 rc = emRamRead(pVM, pVCpu, pRegFrame, &dtr32, pParam1, sizeof(dtr32));
2489 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2490
2491 if (!(pDISState->prefix & PREFIX_OPSIZE))
2492 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
2493
2494 if (pDISState->pCurInstr->opcode == OP_LIDT)
2495 CPUMSetGuestIDTR(pVCpu, dtr32.uAddr, dtr32.cb);
2496 else
2497 CPUMSetGuestGDTR(pVCpu, dtr32.uAddr, dtr32.cb);
2498
2499 return VINF_SUCCESS;
2500}
2501#endif
2502
2503
2504#ifdef IN_RC
2505/**
2506 * STI Emulation.
2507 *
2508 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
2509 */
2510static int emInterpretSti(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2511{
2512 PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
2513
2514 if(!pGCState)
2515 {
2516 Assert(pGCState);
2517 return VERR_EM_INTERPRETER;
2518 }
2519 pGCState->uVMFlags |= X86_EFL_IF;
2520
2521 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
2522 Assert(pvFault == SELMToFlat(pVM, DIS_SELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
2523
2524 pVCpu->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pDISState->opsize;
2525 VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
2526
2527 return VINF_SUCCESS;
2528}
2529#endif /* IN_RC */
2530
2531
2532/**
2533 * HLT Emulation.
2534 */
2535static int emInterpretHlt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2536{
2537 return VINF_EM_HALT;
2538}
2539
2540
2541/**
2542 * Interpret RDTSC
2543 *
2544 * @returns VBox status code.
2545 * @param pVM The VM handle.
2546 * @param pVCpu The VMCPU handle.
2547 * @param pRegFrame The register frame.
2548 *
2549 */
2550VMMDECL(int) EMInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2551{
2552 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2553
2554 if (uCR4 & X86_CR4_TSD)
2555 return VERR_EM_INTERPRETER; /* genuine #GP */
2556
2557 uint64_t uTicks = TMCpuTickGet(pVM);
2558
2559 /* Same behaviour in 32 & 64 bits mode */
2560 pRegFrame->rax = (uint32_t)uTicks;
2561 pRegFrame->rdx = (uTicks >> 32ULL);
2562
2563 return VINF_SUCCESS;
2564}
2565
2566/**
2567 * Interpret RDTSCP
2568 *
2569 * @returns VBox status code.
2570 * @param pVM The VM handle.
2571 * @param pVCpu The VMCPU handle.
2572 * @param pCtx The CPU context.
2573 *
2574 */
2575VMMDECL(int) EMInterpretRdtscp(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2576{
2577 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2578
2579 if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
2580 {
2581 AssertFailed();
2582 return VERR_EM_INTERPRETER; /* genuine #UD */
2583 }
2584
2585 if (uCR4 & X86_CR4_TSD)
2586 return VERR_EM_INTERPRETER; /* genuine #GP */
2587
2588 uint64_t uTicks = TMCpuTickGet(pVM);
2589
2590 /* Same behaviour in 32 & 64 bits mode */
2591 pCtx->rax = (uint32_t)uTicks;
2592 pCtx->rdx = (uTicks >> 32ULL);
2593 /* Low dword of the TSC_AUX msr only. */
2594 pCtx->rcx = (uint32_t)CPUMGetGuestMsr(pVCpu, MSR_K8_TSC_AUX);
2595
2596 return VINF_SUCCESS;
2597}
2598
2599/**
2600 * RDTSC Emulation.
2601 */
2602static int emInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2603{
2604 return EMInterpretRdtsc(pVM, pVCpu, pRegFrame);
2605}
2606
2607/**
2608 * Interpret RDPMC
2609 *
2610 * @returns VBox status code.
2611 * @param pVM The VM handle.
2612 * @param pVCpu The VMCPU handle.
2613 * @param pRegFrame The register frame.
2614 *
2615 */
2616VMMDECL(int) EMInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2617{
2618 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2619
2620 /* If X86_CR4_PCE is not set, then CPL must be zero. */
2621 if ( !(uCR4 & X86_CR4_PCE)
2622 && CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
2623 {
2624 Assert(CPUMGetGuestCR0(pVCpu) & X86_CR0_PE);
2625 return VERR_EM_INTERPRETER; /* genuine #GP */
2626 }
2627
2628 /* Just return zero here; rather tricky to properly emulate this, especially as the specs are a mess. */
2629 pRegFrame->rax = 0;
2630 pRegFrame->rdx = 0;
2631 /* @todo We should trigger a #GP here if the cpu doesn't support the index in ecx. */
2632 return VINF_SUCCESS;
2633}
2634
2635/**
2636 * RDPMC Emulation
2637 */
2638static int emInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2639{
2640 return EMInterpretRdpmc(pVM, pVCpu, pRegFrame);
2641}
2642
2643/**
2644 * MONITOR Emulation.
2645 */
2646static int emInterpretMonitor(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2647{
2648 uint32_t u32Dummy, u32ExtFeatures, cpl;
2649
2650 Assert(pDISState->mode != CPUMODE_64BIT); /** @todo check */
2651 if (pRegFrame->ecx != 0)
2652 return VERR_EM_INTERPRETER; /* illegal value. */
2653
2654 /* Get the current privilege level. */
2655 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2656 if (cpl != 0)
2657 return VERR_EM_INTERPRETER; /* supervisor only */
2658
2659 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2660 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2661 return VERR_EM_INTERPRETER; /* not supported */
2662
2663 return VINF_SUCCESS;
2664}
2665
2666
2667/**
2668 * MWAIT Emulation.
2669 */
2670static int emInterpretMWait(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2671{
2672 uint32_t u32Dummy, u32ExtFeatures, cpl;
2673
2674 Assert(pDISState->mode != CPUMODE_64BIT); /** @todo check */
2675 if (pRegFrame->ecx != 0)
2676 return VERR_EM_INTERPRETER; /* illegal value. */
2677
2678 /* Get the current privilege level. */
2679 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2680 if (cpl != 0)
2681 return VERR_EM_INTERPRETER; /* supervisor only */
2682
2683 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2684 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2685 return VERR_EM_INTERPRETER; /* not supported */
2686
2687 /** @todo not completely correct */
2688 return VINF_EM_HALT;
2689}
2690
2691
2692#ifdef LOG_ENABLED
2693static const char *emMSRtoString(uint32_t uMsr)
2694{
2695 switch (uMsr)
2696 {
2697 case MSR_IA32_APICBASE:
2698 return "MSR_IA32_APICBASE";
2699 case MSR_IA32_CR_PAT:
2700 return "MSR_IA32_CR_PAT";
2701 case MSR_IA32_SYSENTER_CS:
2702 return "MSR_IA32_SYSENTER_CS";
2703 case MSR_IA32_SYSENTER_EIP:
2704 return "MSR_IA32_SYSENTER_EIP";
2705 case MSR_IA32_SYSENTER_ESP:
2706 return "MSR_IA32_SYSENTER_ESP";
2707 case MSR_K6_EFER:
2708 return "MSR_K6_EFER";
2709 case MSR_K8_SF_MASK:
2710 return "MSR_K8_SF_MASK";
2711 case MSR_K6_STAR:
2712 return "MSR_K6_STAR";
2713 case MSR_K8_LSTAR:
2714 return "MSR_K8_LSTAR";
2715 case MSR_K8_CSTAR:
2716 return "MSR_K8_CSTAR";
2717 case MSR_K8_FS_BASE:
2718 return "MSR_K8_FS_BASE";
2719 case MSR_K8_GS_BASE:
2720 return "MSR_K8_GS_BASE";
2721 case MSR_K8_KERNEL_GS_BASE:
2722 return "MSR_K8_KERNEL_GS_BASE";
2723 case MSR_K8_TSC_AUX:
2724 return "MSR_K8_TSC_AUX";
2725 case MSR_IA32_BIOS_SIGN_ID:
2726 return "Unsupported MSR_IA32_BIOS_SIGN_ID";
2727 case MSR_IA32_PLATFORM_ID:
2728 return "Unsupported MSR_IA32_PLATFORM_ID";
2729 case MSR_IA32_BIOS_UPDT_TRIG:
2730 return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
2731 case MSR_IA32_TSC:
2732 return "MSR_IA32_TSC";
2733 case MSR_IA32_MTRR_CAP:
2734 return "Unsupported MSR_IA32_MTRR_CAP";
2735 case MSR_IA32_MCP_CAP:
2736 return "Unsupported MSR_IA32_MCP_CAP";
2737 case MSR_IA32_MCP_STATUS:
2738 return "Unsupported MSR_IA32_MCP_STATUS";
2739 case MSR_IA32_MCP_CTRL:
2740 return "Unsupported MSR_IA32_MCP_CTRL";
2741 case MSR_IA32_MTRR_DEF_TYPE:
2742 return "Unsupported MSR_IA32_MTRR_DEF_TYPE";
2743 case MSR_K7_EVNTSEL0:
2744 return "Unsupported MSR_K7_EVNTSEL0";
2745 case MSR_K7_EVNTSEL1:
2746 return "Unsupported MSR_K7_EVNTSEL1";
2747 case MSR_K7_EVNTSEL2:
2748 return "Unsupported MSR_K7_EVNTSEL2";
2749 case MSR_K7_EVNTSEL3:
2750 return "Unsupported MSR_K7_EVNTSEL3";
2751 case MSR_IA32_MC0_CTL:
2752 return "Unsupported MSR_IA32_MC0_CTL";
2753 case MSR_IA32_MC0_STATUS:
2754 return "Unsupported MSR_IA32_MC0_STATUS";
2755 case MSR_IA32_PERFEVTSEL0:
2756 return "Unsupported MSR_IA32_PERFEVTSEL0";
2757 case MSR_IA32_PERFEVTSEL1:
2758 return "Unsupported MSR_IA32_PERFEVTSEL1";
2759 case MSR_IA32_PERF_STATUS:
2760 return "Unsupported MSR_IA32_PERF_STATUS";
2761 case MSR_IA32_PERF_CTL:
2762 return "Unsupported MSR_IA32_PERF_CTL";
2763 }
2764 return "Unknown MSR";
2765}
2766#endif /* LOG_ENABLED */
2767
2768
2769/**
2770 * Interpret RDMSR
2771 *
2772 * @returns VBox status code.
2773 * @param pVM The VM handle.
2774 * @param pVCpu The VMCPU handle.
2775 * @param pRegFrame The register frame.
2776 *
2777 */
2778VMMDECL(int) EMInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2779{
2780 uint32_t u32Dummy, u32Features, cpl;
2781 uint64_t val;
2782 CPUMCTX *pCtx;
2783 int rc = VINF_SUCCESS;
2784
2785 /** @todo According to the Intel manuals, there's a REX version of RDMSR that is slightly different.
2786 * That version clears the high dwords of both RDX & RAX */
2787 pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2788
2789 /* Get the current privilege level. */
2790 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2791 if (cpl != 0)
2792 return VERR_EM_INTERPRETER; /* supervisor only */
2793
2794 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2795 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2796 return VERR_EM_INTERPRETER; /* not supported */
2797
2798 switch (pRegFrame->ecx)
2799 {
2800 case MSR_IA32_TSC:
2801 val = TMCpuTickGet(pVM);
2802 break;
2803
2804 case MSR_IA32_APICBASE:
2805 rc = PDMApicGetBase(pVM, &val);
2806 AssertRC(rc);
2807 break;
2808
2809 case MSR_IA32_CR_PAT:
2810 val = pCtx->msrPAT;
2811 break;
2812
2813 case MSR_IA32_SYSENTER_CS:
2814 val = pCtx->SysEnter.cs;
2815 break;
2816
2817 case MSR_IA32_SYSENTER_EIP:
2818 val = pCtx->SysEnter.eip;
2819 break;
2820
2821 case MSR_IA32_SYSENTER_ESP:
2822 val = pCtx->SysEnter.esp;
2823 break;
2824
2825 case MSR_K6_EFER:
2826 val = pCtx->msrEFER;
2827 break;
2828
2829 case MSR_K8_SF_MASK:
2830 val = pCtx->msrSFMASK;
2831 break;
2832
2833 case MSR_K6_STAR:
2834 val = pCtx->msrSTAR;
2835 break;
2836
2837 case MSR_K8_LSTAR:
2838 val = pCtx->msrLSTAR;
2839 break;
2840
2841 case MSR_K8_CSTAR:
2842 val = pCtx->msrCSTAR;
2843 break;
2844
2845 case MSR_K8_FS_BASE:
2846 val = pCtx->fsHid.u64Base;
2847 break;
2848
2849 case MSR_K8_GS_BASE:
2850 val = pCtx->gsHid.u64Base;
2851 break;
2852
2853 case MSR_K8_KERNEL_GS_BASE:
2854 val = pCtx->msrKERNELGSBASE;
2855 break;
2856
2857 case MSR_K8_TSC_AUX:
2858 val = CPUMGetGuestMsr(pVCpu, MSR_K8_TSC_AUX);
2859 break;
2860
2861#if 0 /*def IN_RING0 */
2862 case MSR_IA32_PLATFORM_ID:
2863 case MSR_IA32_BIOS_SIGN_ID:
2864 if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL)
2865 {
2866 /* Available since the P6 family. VT-x implies that this feature is present. */
2867 if (pRegFrame->ecx == MSR_IA32_PLATFORM_ID)
2868 val = ASMRdMsr(MSR_IA32_PLATFORM_ID);
2869 else
2870 if (pRegFrame->ecx == MSR_IA32_BIOS_SIGN_ID)
2871 val = ASMRdMsr(MSR_IA32_BIOS_SIGN_ID);
2872 break;
2873 }
2874 /* no break */
2875#endif
2876 default:
2877 /* In X2APIC specification this range is reserved for APIC control. */
2878 if ((pRegFrame->ecx >= MSR_IA32_APIC_START) && (pRegFrame->ecx < MSR_IA32_APIC_END))
2879 rc = PDMApicReadMSR(pVM, pVCpu->idCpu, pRegFrame->ecx, &val);
2880 else
2881 /* We should actually trigger a #GP here, but don't as that might cause more trouble. */
2882 val = 0;
2883 break;
2884 }
2885 LogFlow(("EMInterpretRdmsr %s (%x) -> val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2886 if (rc == VINF_SUCCESS)
2887 {
2888 pRegFrame->rax = (uint32_t) val;
2889 pRegFrame->rdx = (uint32_t) (val >> 32ULL);
2890 }
2891 return rc;
2892}
2893
2894
2895/**
2896 * RDMSR Emulation.
2897 */
2898static int emInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2899{
2900 /* Note: the Intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2901 Assert(!(pDISState->prefix & PREFIX_REX));
2902 return EMInterpretRdmsr(pVM, pVCpu, pRegFrame);
2903}
2904
2905
2906/**
2907 * Interpret WRMSR
2908 *
2909 * @returns VBox status code.
2910 * @param pVM The VM handle.
2911 * @param pVCpu The VMCPU handle.
2912 * @param pRegFrame The register frame.
2913 */
2914VMMDECL(int) EMInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2915{
2916 uint32_t u32Dummy, u32Features, cpl;
2917 uint64_t val;
2918 CPUMCTX *pCtx;
2919
2920 /* Note: works the same in 32 and 64 bits modes. */
2921 pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2922
2923 /* Get the current privilege level. */
2924 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2925 if (cpl != 0)
2926 return VERR_EM_INTERPRETER; /* supervisor only */
2927
2928 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2929 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2930 return VERR_EM_INTERPRETER; /* not supported */
2931
2932 val = RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx);
2933 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2934 switch (pRegFrame->ecx)
2935 {
2936 case MSR_IA32_APICBASE:
2937 {
2938 int rc = PDMApicSetBase(pVM, val);
2939 AssertRC(rc);
2940 break;
2941 }
2942
2943 case MSR_IA32_CR_PAT:
2944 pCtx->msrPAT = val;
2945 break;
2946
2947 case MSR_IA32_SYSENTER_CS:
2948 pCtx->SysEnter.cs = val & 0xffff; /* 16 bits selector */
2949 break;
2950
2951 case MSR_IA32_SYSENTER_EIP:
2952 pCtx->SysEnter.eip = val;
2953 break;
2954
2955 case MSR_IA32_SYSENTER_ESP:
2956 pCtx->SysEnter.esp = val;
2957 break;
2958
2959 case MSR_K6_EFER:
2960 {
2961 uint64_t uMask = 0;
2962 uint64_t oldval = pCtx->msrEFER;
2963
2964 /* Filter out those bits the guest is allowed to change. (e.g. LMA is read-only) */
2965 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2966 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_NX)
2967 uMask |= MSR_K6_EFER_NXE;
2968 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE)
2969 uMask |= MSR_K6_EFER_LME;
2970 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_SEP)
2971 uMask |= MSR_K6_EFER_SCE;
2972 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
2973 uMask |= MSR_K6_EFER_FFXSR;
2974
2975 /* Check for illegal MSR_K6_EFER_LME transitions: not allowed to change LME if paging is enabled. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2976 if ( ((pCtx->msrEFER & MSR_K6_EFER_LME) != (val & uMask & MSR_K6_EFER_LME))
2977 && (pCtx->cr0 & X86_CR0_PG))
2978 {
2979 AssertMsgFailed(("Illegal MSR_K6_EFER_LME change: paging is enabled!!\n"));
2980 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2981 }
2982
2983 /* There are a few more: e.g. MSR_K6_EFER_LMSLE */
2984 AssertMsg(!(val & ~(MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA /* ignored anyway */ |MSR_K6_EFER_SCE|MSR_K6_EFER_FFXSR)), ("Unexpected value %RX64\n", val));
2985 pCtx->msrEFER = (pCtx->msrEFER & ~uMask) | (val & uMask);
2986
2987 /* AMD64 Architecture Programmer's Manual: 15.15 TLB Control; flush the TLB if MSR_K6_EFER_NXE, MSR_K6_EFER_LME or MSR_K6_EFER_LMA are changed. */
2988 if ((oldval & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)) != (pCtx->msrEFER & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)))
2989 HWACCMFlushTLB(pVM);
2990
2991 break;
2992 }
2993
2994 case MSR_K8_SF_MASK:
2995 pCtx->msrSFMASK = val;
2996 break;
2997
2998 case MSR_K6_STAR:
2999 pCtx->msrSTAR = val;
3000 break;
3001
3002 case MSR_K8_LSTAR:
3003 pCtx->msrLSTAR = val;
3004 break;
3005
3006 case MSR_K8_CSTAR:
3007 pCtx->msrCSTAR = val;
3008 break;
3009
3010 case MSR_K8_FS_BASE:
3011 pCtx->fsHid.u64Base = val;
3012 break;
3013
3014 case MSR_K8_GS_BASE:
3015 pCtx->gsHid.u64Base = val;
3016 break;
3017
3018 case MSR_K8_KERNEL_GS_BASE:
3019 pCtx->msrKERNELGSBASE = val;
3020 break;
3021
3022 case MSR_K8_TSC_AUX:
3023 CPUMSetGuestMsr(pVCpu, MSR_K8_TSC_AUX, val);
3024 break;
3025
3026 default:
3027 /* In X2APIC specification this range is reserved for APIC control. */
3028 if ((pRegFrame->ecx >= MSR_IA32_APIC_START) && (pRegFrame->ecx < MSR_IA32_APIC_END))
3029 return PDMApicWriteMSR(pVM, pVCpu->idCpu, pRegFrame->ecx, val);
3030
3031 /* We should actually trigger a #GP here, but don't as that might cause more trouble. */
3032 break;
3033 }
3034 return VINF_SUCCESS;
3035}
3036
3037
3038/**
3039 * WRMSR Emulation.
3040 */
3041static int emInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3042{
3043 return EMInterpretWrmsr(pVM, pVCpu, pRegFrame);
3044}
3045
3046
3047/**
3048 * Internal worker.
3049 * @copydoc EMInterpretInstructionCPU
3050 */
3051DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDISState, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3052{
3053 Assert(pcbSize);
3054 *pcbSize = 0;
3055
3056 /*
3057 * Only supervisor guest code!!
3058 * And no complicated prefixes.
3059 */
3060 /* Get the current privilege level. */
3061 uint32_t cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
3062 if ( cpl != 0
3063 && pDISState->pCurInstr->opcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
3064 {
3065 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
3066 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
3067 return VERR_EM_INTERPRETER;
3068 }
3069
3070#ifdef IN_RC
3071 if ( (pDISState->prefix & (PREFIX_REPNE | PREFIX_REP))
3072 || ( (pDISState->prefix & PREFIX_LOCK)
3073 && pDISState->pCurInstr->opcode != OP_CMPXCHG
3074 && pDISState->pCurInstr->opcode != OP_CMPXCHG8B
3075 && pDISState->pCurInstr->opcode != OP_XADD
3076 && pDISState->pCurInstr->opcode != OP_OR
3077 && pDISState->pCurInstr->opcode != OP_BTR
3078 )
3079 )
3080#else
3081 if ( (pDISState->prefix & PREFIX_REPNE)
3082 || ( (pDISState->prefix & PREFIX_REP)
3083 && pDISState->pCurInstr->opcode != OP_STOSWD
3084 )
3085 || ( (pDISState->prefix & PREFIX_LOCK)
3086 && pDISState->pCurInstr->opcode != OP_OR
3087 && pDISState->pCurInstr->opcode != OP_BTR
3088 && pDISState->pCurInstr->opcode != OP_CMPXCHG
3089 && pDISState->pCurInstr->opcode != OP_CMPXCHG8B
3090 )
3091 )
3092#endif
3093 {
3094 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
3095 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
3096 return VERR_EM_INTERPRETER;
3097 }
3098
3099#if HC_ARCH_BITS == 32
3100 /*
3101 * Unable to emulate most >4 bytes accesses in 32 bits mode.
3102 * Whitelisted instructions are safe.
3103 */
3104 if ( pDISState->param1.size > 4
3105 && CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
3106 {
3107 uint32_t uOpCode = pDISState->pCurInstr->opcode;
3108 if ( uOpCode != OP_STOSWD
3109 && uOpCode != OP_MOV
3110 && uOpCode != OP_CMPXCHG8B
3111 && uOpCode != OP_XCHG
3112 && uOpCode != OP_BTS
3113 && uOpCode != OP_BTR
3114 && uOpCode != OP_BTC
3115# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0
3116 && uOpCode != OP_CMPXCHG /* solaris */
3117 && uOpCode != OP_AND /* windows */
3118 && uOpCode != OP_OR /* windows */
3119 && uOpCode != OP_XOR /* because we can */
3120 && uOpCode != OP_ADD /* windows (dripple) */
3121 && uOpCode != OP_ADC /* because we can */
3122 && uOpCode != OP_SUB /* because we can */
3123 /** @todo OP_BTS or is that a different kind of failure? */
3124# endif
3125 )
3126 {
3127# ifdef VBOX_WITH_STATISTICS
3128 switch (pDISState->pCurInstr->opcode)
3129 {
3130# define INTERPRET_FAILED_CASE(opcode, Instr) \
3131 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
3132 INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
3133 INTERPRET_FAILED_CASE(OP_DEC,Dec);
3134 INTERPRET_FAILED_CASE(OP_INC,Inc);
3135 INTERPRET_FAILED_CASE(OP_POP,Pop);
3136 INTERPRET_FAILED_CASE(OP_OR, Or);
3137 INTERPRET_FAILED_CASE(OP_XOR,Xor);
3138 INTERPRET_FAILED_CASE(OP_AND,And);
3139 INTERPRET_FAILED_CASE(OP_MOV,Mov);
3140 INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
3141 INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
3142 INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
3143 INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
3144 INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
3145 INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
3146 INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
3147 INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
3148 INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
3149 INTERPRET_FAILED_CASE(OP_CLTS,Clts);
3150 INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
3151 INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
3152 INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
3153 INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
3154 INTERPRET_FAILED_CASE(OP_ADD,Add);
3155 INTERPRET_FAILED_CASE(OP_SUB,Sub);
3156 INTERPRET_FAILED_CASE(OP_ADC,Adc);
3157 INTERPRET_FAILED_CASE(OP_BTR,Btr);
3158 INTERPRET_FAILED_CASE(OP_BTS,Bts);
3159 INTERPRET_FAILED_CASE(OP_BTC,Btc);
3160 INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
3161 INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
3162 INTERPRET_FAILED_CASE(OP_STI, Sti);
3163 INTERPRET_FAILED_CASE(OP_XADD,XAdd);
3164 INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
3165 INTERPRET_FAILED_CASE(OP_HLT, Hlt);
3166 INTERPRET_FAILED_CASE(OP_IRET,Iret);
3167 INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
3168 INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
3169# undef INTERPRET_FAILED_CASE
3170 default:
3171 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3172 break;
3173 }
3174# endif /* VBOX_WITH_STATISTICS */
3175 return VERR_EM_INTERPRETER;
3176 }
3177 }
3178#endif
3179
3180 int rc;
3181#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
3182 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pDISState)));
3183#endif
3184 switch (pDISState->pCurInstr->opcode)
3185 {
3186 /*
3187 * Macros for generating the right case statements.
3188 */
3189# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3190 case opcode:\
3191 if (pDISState->prefix & PREFIX_LOCK) \
3192 rc = emInterpretLock##InstrFn(pVM, pVCpu, pDISState, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
3193 else \
3194 rc = emInterpret##InstrFn(pVM, pVCpu, pDISState, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3195 if (RT_SUCCESS(rc)) \
3196 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3197 else \
3198 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3199 return rc
3200#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
3201 case opcode:\
3202 rc = emInterpret##InstrFn(pVM, pVCpu, pDISState, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3203 if (RT_SUCCESS(rc)) \
3204 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3205 else \
3206 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3207 return rc
3208
3209#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
3210 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
3211#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3212 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
3213
3214#define INTERPRET_CASE(opcode, Instr) \
3215 case opcode:\
3216 rc = emInterpret##Instr(pVM, pVCpu, pDISState, pRegFrame, pvFault, pcbSize); \
3217 if (RT_SUCCESS(rc)) \
3218 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3219 else \
3220 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3221 return rc
3222
3223#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
3224 case opcode:\
3225 rc = emInterpret##InstrFn(pVM, pVCpu, pDISState, pRegFrame, pvFault, pcbSize); \
3226 if (RT_SUCCESS(rc)) \
3227 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3228 else \
3229 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3230 return rc
3231
3232#define INTERPRET_STAT_CASE(opcode, Instr) \
3233 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
3234
3235 /*
3236 * The actual case statements.
3237 */
3238 INTERPRET_CASE(OP_XCHG,Xchg);
3239 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
3240 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3241 INTERPRET_CASE(OP_POP,Pop);
3242 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3243 INTERPRET_CASE_EX_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor);
3244 INTERPRET_CASE_EX_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd);
3245 INTERPRET_CASE(OP_MOV,Mov);
3246#ifndef IN_RC
3247 INTERPRET_CASE(OP_STOSWD,StosWD);
3248#endif
3249 INTERPRET_CASE(OP_INVLPG,InvlPg);
3250 INTERPRET_CASE(OP_CPUID,CpuId);
3251 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3252 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3253#ifdef IN_RING0
3254 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3255 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3256#endif
3257 INTERPRET_CASE(OP_LLDT,LLdt);
3258 INTERPRET_CASE(OP_LMSW,Lmsw);
3259#ifdef EM_EMULATE_SMSW
3260 INTERPRET_CASE(OP_SMSW,Smsw);
3261#endif
3262 INTERPRET_CASE(OP_CLTS,Clts);
3263 INTERPRET_CASE(OP_MONITOR, Monitor);
3264 INTERPRET_CASE(OP_MWAIT, MWait);
3265 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3266 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3267 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3268 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3269 INTERPRET_CASE(OP_ADC,Adc);
3270 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3271 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3272 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3273 INTERPRET_CASE(OP_RDPMC,Rdpmc);
3274 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3275 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3276#ifdef IN_RC
3277 INTERPRET_CASE(OP_STI,Sti);
3278 INTERPRET_CASE(OP_XADD, XAdd);
3279#endif
3280 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3281 INTERPRET_CASE(OP_HLT,Hlt);
3282 INTERPRET_CASE(OP_IRET,Iret);
3283 INTERPRET_CASE(OP_WBINVD,WbInvd);
3284#ifdef VBOX_WITH_STATISTICS
3285# ifndef IN_RC
3286 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3287# endif
3288 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3289#endif
3290
3291 default:
3292 Log3(("emInterpretInstructionCPU: opcode=%d\n", pDISState->pCurInstr->opcode));
3293 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3294 return VERR_EM_INTERPRETER;
3295
3296#undef INTERPRET_CASE_EX_PARAM2
3297#undef INTERPRET_STAT_CASE
3298#undef INTERPRET_CASE_EX
3299#undef INTERPRET_CASE
3300 } /* switch (opcode) */
3301 AssertFailed();
3302 return VERR_INTERNAL_ERROR;
3303}
3304
3305
3306/**
3307 * Sets the PC for which interrupts should be inhibited.
3308 *
3309 * @param pVM The VM handle.
3310 * @param pVCpu The VMCPU handle.
3311 * @param PC The PC.
3312 */
3313VMMDECL(void) EMSetInhibitInterruptsPC(PVM pVM, PVMCPU pVCpu, RTGCUINTPTR PC)
3314{
3315 pVCpu->em.s.GCPtrInhibitInterrupts = PC;
3316 VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
3317}
3318
3319
3320/**
3321 * Gets the PC for which interrupts should be inhibited.
3322 *
3323 * There are a few instructions which inhibits or delays interrupts
3324 * for the instruction following them. These instructions are:
3325 * - STI
3326 * - MOV SS, r/m16
3327 * - POP SS
3328 *
3329 * @returns The PC for which interrupts should be inhibited.
3330 * @param pVM VM handle.
3331 * @param pVCpu The VMCPU handle.
3332 *
3333 */
3334VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVM pVM, PVMCPU pVCpu)
3335{
3336 return pVCpu->em.s.GCPtrInhibitInterrupts;
3337}
3338
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette