VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 41744

Last change on this file since 41744 was 41744, checked in by vboxsync, 12 years ago

DISOPPARAM: s/base.reg_*/Base.idx*Reg/ + docs

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 114.9 KB
Line 
1/* $Id: EMAll.cpp 41744 2012-06-15 02:29:09Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_EM
22#include <VBox/vmm/em.h>
23#include <VBox/vmm/mm.h>
24#include <VBox/vmm/selm.h>
25#include <VBox/vmm/patm.h>
26#include <VBox/vmm/csam.h>
27#include <VBox/vmm/pgm.h>
28#ifdef VBOX_WITH_IEM
29# include <VBox/vmm/iem.h>
30#endif
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/stam.h>
33#include "EMInternal.h"
34#include <VBox/vmm/vm.h>
35#include <VBox/vmm/vmm.h>
36#include <VBox/vmm/hwaccm.h>
37#include <VBox/vmm/tm.h>
38#include <VBox/vmm/pdmapi.h>
39#include <VBox/param.h>
40#include <VBox/err.h>
41#include <VBox/dis.h>
42#include <VBox/disopcode.h>
43#include <VBox/log.h>
44#include "internal/pgm.h"
45#include <iprt/assert.h>
46#include <iprt/asm.h>
47#include <iprt/string.h>
48
49
50/*******************************************************************************
51* Defined Constants And Macros *
52*******************************************************************************/
53/** @def EM_ASSERT_FAULT_RETURN
54 * Safety check.
55 *
56 * Could in theory misfire on a cross page boundary access...
57 *
58 * Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
59 * turns up an alias page instead of the original faulting one and annoying the
60 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
61 */
62#if 0
63# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
64#else
65# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
66#endif
67
68/** Used to pass information during instruction disassembly. */
69typedef struct
70{
71 PVM pVM;
72 PVMCPU pVCpu;
73 RTGCPTR GCPtr;
74 uint8_t aOpcode[8];
75} EMDISSTATE, *PEMDISSTATE;
76
77/*******************************************************************************
78* Internal Functions *
79*******************************************************************************/
80#ifndef VBOX_WITH_IEM
81DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPUOuter(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
82 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize);
83#endif
84
85
86
87/**
88 * Get the current execution manager status.
89 *
90 * @returns Current status.
91 * @param pVCpu The VMCPU to operate on.
92 */
93VMMDECL(EMSTATE) EMGetState(PVMCPU pVCpu)
94{
95 return pVCpu->em.s.enmState;
96}
97
98/**
99 * Sets the current execution manager status. (use only when you know what you're doing!)
100 *
101 * @param pVCpu The VMCPU to operate on.
102 */
103VMMDECL(void) EMSetState(PVMCPU pVCpu, EMSTATE enmNewState)
104{
105 /* Only allowed combination: */
106 Assert(pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI && enmNewState == EMSTATE_HALTED);
107 pVCpu->em.s.enmState = enmNewState;
108}
109
110
111/**
112 * Sets the PC for which interrupts should be inhibited.
113 *
114 * @param pVCpu The VMCPU handle.
115 * @param PC The PC.
116 */
117VMMDECL(void) EMSetInhibitInterruptsPC(PVMCPU pVCpu, RTGCUINTPTR PC)
118{
119 pVCpu->em.s.GCPtrInhibitInterrupts = PC;
120 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
121}
122
123
124/**
125 * Gets the PC for which interrupts should be inhibited.
126 *
127 * There are a few instructions which inhibits or delays interrupts
128 * for the instruction following them. These instructions are:
129 * - STI
130 * - MOV SS, r/m16
131 * - POP SS
132 *
133 * @returns The PC for which interrupts should be inhibited.
134 * @param pVCpu The VMCPU handle.
135 *
136 */
137VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVMCPU pVCpu)
138{
139 return pVCpu->em.s.GCPtrInhibitInterrupts;
140}
141
142
143/**
144 * Prepare an MWAIT - essentials of the MONITOR instruction.
145 *
146 * @returns VINF_SUCCESS
147 * @param pVCpu The current CPU.
148 * @param rax The content of RAX.
149 * @param rcx The content of RCX.
150 * @param rdx The content of RDX.
151 */
152VMM_INT_DECL(int) EMMonitorWaitPrepare(PVMCPU pVCpu, uint64_t rax, uint64_t rcx, uint64_t rdx)
153{
154 pVCpu->em.s.MWait.uMonitorRAX = rax;
155 pVCpu->em.s.MWait.uMonitorRCX = rcx;
156 pVCpu->em.s.MWait.uMonitorRDX = rdx;
157 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_MONITOR_ACTIVE;
158 /** @todo Complete MONITOR implementation. */
159 return VINF_SUCCESS;
160}
161
162
163/**
164 * Performs an MWAIT.
165 *
166 * @returns VINF_SUCCESS
167 * @param pVCpu The current CPU.
168 * @param rax The content of RAX.
169 * @param rcx The content of RCX.
170 */
171VMM_INT_DECL(int) EMMonitorWaitPerform(PVMCPU pVCpu, uint64_t rax, uint64_t rcx)
172{
173 pVCpu->em.s.MWait.uMWaitRAX = rax;
174 pVCpu->em.s.MWait.uMWaitRCX = rcx;
175 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_ACTIVE;
176 if (rcx)
177 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_BREAKIRQIF0;
178 else
179 pVCpu->em.s.MWait.fWait &= ~EMMWAIT_FLAG_BREAKIRQIF0;
180 /** @todo not completely correct?? */
181 return VINF_EM_HALT;
182}
183
184
185
186/**
187 * Determine if we should continue after encountering a hlt or mwait
188 * instruction.
189 *
190 * Clears MWAIT flags if returning @c true.
191 *
192 * @returns boolean
193 * @param pVCpu The VMCPU to operate on.
194 * @param pCtx Current CPU context.
195 */
196VMM_INT_DECL(bool) EMShouldContinueAfterHalt(PVMCPU pVCpu, PCPUMCTX pCtx)
197{
198 if ( pCtx->eflags.Bits.u1IF
199 || ( (pVCpu->em.s.MWait.fWait & (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0))
200 == (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)) )
201 {
202 pVCpu->em.s.MWait.fWait &= ~(EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0);
203 return !!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC));
204 }
205
206 return false;
207}
208
209
210/**
211 * Locks REM execution to a single VCpu
212 *
213 * @param pVM VM handle.
214 */
215VMMDECL(void) EMRemLock(PVM pVM)
216{
217#ifdef VBOX_WITH_REM
218 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
219 return; /* early init */
220
221 Assert(!PGMIsLockOwner(pVM));
222 Assert(!IOMIsLockOwner(pVM));
223 int rc = PDMCritSectEnter(&pVM->em.s.CritSectREM, VERR_SEM_BUSY);
224 AssertRCSuccess(rc);
225#endif
226}
227
228
229/**
230 * Unlocks REM execution
231 *
232 * @param pVM VM handle.
233 */
234VMMDECL(void) EMRemUnlock(PVM pVM)
235{
236#ifdef VBOX_WITH_REM
237 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
238 return; /* early init */
239
240 PDMCritSectLeave(&pVM->em.s.CritSectREM);
241#endif
242}
243
244
245/**
246 * Check if this VCPU currently owns the REM lock.
247 *
248 * @returns bool owner/not owner
249 * @param pVM The VM to operate on.
250 */
251VMMDECL(bool) EMRemIsLockOwner(PVM pVM)
252{
253#ifdef VBOX_WITH_REM
254 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
255 return true; /* early init */
256
257 return PDMCritSectIsOwner(&pVM->em.s.CritSectREM);
258#else
259 return true;
260#endif
261}
262
263
264/**
265 * Try to acquire the REM lock.
266 *
267 * @returns VBox status code
268 * @param pVM The VM to operate on.
269 */
270VMMDECL(int) EMRemTryLock(PVM pVM)
271{
272#ifdef VBOX_WITH_REM
273 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
274 return VINF_SUCCESS; /* early init */
275
276 return PDMCritSectTryEnter(&pVM->em.s.CritSectREM);
277#else
278 return VINF_SUCCESS;
279#endif
280}
281
282
283/**
284 * @callback_method_impl{FNDISREADBYTES}
285 */
286static DECLCALLBACK(int) emReadBytes(PDISCPUSTATE pDisState, uint8_t *pbDst, RTUINTPTR uSrcAddr, uint32_t cbToRead)
287{
288 PEMDISSTATE pState = (PEMDISSTATE)pDisState->pvUser;
289# ifndef IN_RING0
290 PVM pVM = pState->pVM;
291# endif
292 PVMCPU pVCpu = pState->pVCpu;
293
294# ifdef IN_RING0
295 int rc;
296
297 if ( pState->GCPtr
298 && uSrcAddr + cbToRead <= pState->GCPtr + sizeof(pState->aOpcode))
299 {
300 unsigned offset = uSrcAddr - pState->GCPtr;
301 Assert(uSrcAddr >= pState->GCPtr);
302
303 for (unsigned i = 0; i < cbToRead; i++)
304 pbDst[i] = pState->aOpcode[offset + i];
305 return VINF_SUCCESS;
306 }
307
308 rc = PGMPhysSimpleReadGCPtr(pVCpu, pbDst, uSrcAddr, cbToRead);
309 AssertMsgRC(rc, ("PGMPhysSimpleReadGCPtr failed for uSrcAddr=%RTptr cbToRead=%x rc=%d\n", uSrcAddr, cbToRead, rc));
310# elif defined(IN_RING3)
311 if (!PATMIsPatchGCAddr(pVM, uSrcAddr))
312 {
313 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pbDst, uSrcAddr, cbToRead);
314 AssertRC(rc);
315 }
316 else
317 memcpy(pbDst, PATMR3GCPtrToHCPtr(pVM, uSrcAddr), cbToRead);
318
319# elif defined(IN_RC)
320 if (!PATMIsPatchGCAddr(pVM, uSrcAddr))
321 {
322 int rc = MMGCRamRead(pVM, pbDst, (void *)(uintptr_t)uSrcAddr, cbToRead);
323 if (rc == VERR_ACCESS_DENIED)
324 {
325 /* Recently flushed; access the data manually. */
326 rc = PGMPhysSimpleReadGCPtr(pVCpu, pbDst, uSrcAddr, cbToRead);
327 AssertRC(rc);
328 }
329 }
330 else /* the hypervisor region is always present. */
331 memcpy(pbDst, (RTRCPTR)(uintptr_t)uSrcAddr, cbToRead);
332
333# endif /* IN_RING3 */
334 return VINF_SUCCESS;
335}
336
337#ifndef IN_RC
338
339DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
340{
341 EMDISSTATE State;
342
343 State.pVM = pVM;
344 State.pVCpu = pVCpu;
345 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &State.aOpcode, InstrGC, sizeof(State.aOpcode));
346 if (RT_SUCCESS(rc))
347 {
348 State.GCPtr = InstrGC;
349 }
350 else
351 {
352 if (PAGE_ADDRESS(InstrGC) == PAGE_ADDRESS(InstrGC + sizeof(State.aOpcode) - 1))
353 {
354 /*
355 * If we fail to find the page via the guest's page tables we invalidate the page
356 * in the host TLB (pertaining to the guest in the NestedPaging case). See #6043
357 */
358 if (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
359 HWACCMInvalidatePage(pVCpu, InstrGC);
360
361 Log(("emDisCoreOne: read failed with %d\n", rc));
362 return rc;
363 }
364 State.GCPtr = NIL_RTGCPTR;
365 }
366 return DISInstrWithReader(InstrGC, (DISCPUMODE)pDis->uCpuMode, emReadBytes, &State, pDis, pOpsize);
367}
368
369#else /* IN_RC */
370
371DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
372{
373 EMDISSTATE State;
374
375 State.pVM = pVM;
376 State.pVCpu = pVCpu;
377 State.GCPtr = InstrGC;
378
379 return DISInstrWithReader(InstrGC, (DISCPUMODE)pDis->uCpuMode, emReadBytes, &State, pDis, pOpsize);
380}
381
382#endif /* IN_RC */
383
384
385/**
386 * Disassembles one instruction.
387 *
388 * @returns VBox status code, see SELMToFlatEx and EMInterpretDisasOneEx for
389 * details.
390 * @retval VERR_EM_INTERNAL_DISAS_ERROR on DISCoreOneEx failure.
391 *
392 * @param pVM The VM handle.
393 * @param pVCpu The VMCPU handle.
394 * @param pCtxCore The context core (used for both the mode and instruction).
395 * @param pDis Where to return the parsed instruction info.
396 * @param pcbInstr Where to return the instruction size. (optional)
397 */
398VMMDECL(int) EMInterpretDisasOne(PVM pVM, PVMCPU pVCpu, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, unsigned *pcbInstr)
399{
400 RTGCPTR GCPtrInstr;
401 int rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
402 if (RT_FAILURE(rc))
403 {
404 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
405 pCtxCore->cs, (RTGCPTR)pCtxCore->rip, pCtxCore->ss & X86_SEL_RPL, rc));
406 return rc;
407 }
408 return EMInterpretDisasOneEx(pVM, pVCpu, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pDis, pcbInstr);
409}
410
411
412/**
413 * Disassembles one instruction.
414 *
415 * This is used by internally by the interpreter and by trap/access handlers.
416 *
417 * @returns VBox status code.
418 * @retval VERR_EM_INTERNAL_DISAS_ERROR on DISCoreOneEx failure.
419 *
420 * @param pVM The VM handle.
421 * @param pVCpu The VMCPU handle.
422 * @param GCPtrInstr The flat address of the instruction.
423 * @param pCtxCore The context core (used to determine the cpu mode).
424 * @param pDis Where to return the parsed instruction info.
425 * @param pcbInstr Where to return the instruction size. (optional)
426 */
427VMMDECL(int) EMInterpretDisasOneEx(PVM pVM, PVMCPU pVCpu, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pDis, unsigned *pcbInstr)
428{
429 int rc;
430 EMDISSTATE State;
431
432 State.pVM = pVM;
433 State.pVCpu = pVCpu;
434
435#ifdef IN_RC
436 State.GCPtr = GCPtrInstr;
437#else /* ring 0/3 */
438 rc = PGMPhysSimpleReadGCPtr(pVCpu, &State.aOpcode, GCPtrInstr, sizeof(State.aOpcode));
439 if (RT_SUCCESS(rc))
440 {
441 State.GCPtr = GCPtrInstr;
442 }
443 else
444 {
445 if (PAGE_ADDRESS(GCPtrInstr) == PAGE_ADDRESS(GCPtrInstr + sizeof(State.aOpcode) - 1))
446 {
447 /*
448 * If we fail to find the page via the guest's page tables we invalidate the page
449 * in the host TLB (pertaining to the guest in the NestedPaging case). See #6043
450 */
451 if (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
452 HWACCMInvalidatePage(pVCpu, GCPtrInstr);
453
454 Log(("EMInterpretDisasOneEx: read failed with %d\n", rc));
455 return rc;
456 }
457 State.GCPtr = NIL_RTGCPTR;
458 }
459#endif
460
461 DISCPUMODE enmCpuMode = SELMGetCpuModeFromSelector(pVCpu, pCtxCore->eflags, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid);
462 rc = DISInstrWithReader(GCPtrInstr, enmCpuMode, emReadBytes, &State, pDis, pcbInstr);
463 if (RT_SUCCESS(rc))
464 return VINF_SUCCESS;
465 AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
466 return VERR_EM_INTERNAL_DISAS_ERROR;
467}
468
469
470/**
471 * Interprets the current instruction.
472 *
473 * @returns VBox status code.
474 * @retval VINF_* Scheduling instructions.
475 * @retval VERR_EM_INTERPRETER Something we can't cope with.
476 * @retval VERR_* Fatal errors.
477 *
478 * @param pVCpu The VMCPU handle.
479 * @param pRegFrame The register frame.
480 * Updates the EIP if an instruction was executed successfully.
481 * @param pvFault The fault address (CR2).
482 * @param pcbSize Size of the write (if applicable).
483 *
484 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
485 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
486 * to worry about e.g. invalid modrm combinations (!)
487 */
488VMMDECL(VBOXSTRICTRC) EMInterpretInstruction(PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
489{
490 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
491#ifdef VBOX_WITH_IEM
492 NOREF(pvFault);
493 VBOXSTRICTRC rc = IEMExecOneEx(pVCpu, pRegFrame, NULL);
494 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
495 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
496 return VERR_EM_INTERPRETER;
497 return rc;
498#else
499 RTGCPTR pbCode;
500 VBOXSTRICTRC rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
501 if (RT_SUCCESS(rc))
502 {
503 uint32_t cbOp;
504 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
505 pDis->uCpuMode = SELMGetCpuModeFromSelector(pVCpu, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
506 rc = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
507 if (RT_SUCCESS(rc))
508 {
509 Assert(cbOp == pDis->cbInstr);
510 uint32_t cbIgnored;
511 rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbIgnored);
512 if (RT_SUCCESS(rc))
513 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
514
515 return rc;
516 }
517 }
518 return VERR_EM_INTERPRETER;
519#endif
520}
521
522
523/**
524 * Interprets the current instruction.
525 *
526 * @returns VBox status code.
527 * @retval VINF_* Scheduling instructions.
528 * @retval VERR_EM_INTERPRETER Something we can't cope with.
529 * @retval VERR_* Fatal errors.
530 *
531 * @param pVM The VM handle.
532 * @param pVCpu The VMCPU handle.
533 * @param pRegFrame The register frame.
534 * Updates the EIP if an instruction was executed successfully.
535 * @param pvFault The fault address (CR2).
536 * @param pcbWritten Size of the write (if applicable).
537 *
538 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
539 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
540 * to worry about e.g. invalid modrm combinations (!)
541 */
542VMMDECL(VBOXSTRICTRC) EMInterpretInstructionEx(PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbWritten)
543{
544 LogFlow(("EMInterpretInstructionEx %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
545#ifdef VBOX_WITH_IEM
546 NOREF(pvFault);
547 VBOXSTRICTRC rc = IEMExecOneEx(pVCpu, pRegFrame, pcbWritten);
548 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
549 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
550 return VERR_EM_INTERPRETER;
551 return rc;
552#else
553 RTGCPTR pbCode;
554 VBOXSTRICTRC rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
555 if (RT_SUCCESS(rc))
556 {
557 uint32_t cbOp;
558 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
559 pDis->uCpuMode = SELMGetCpuModeFromSelector(pVCpu, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
560 rc = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
561 if (RT_SUCCESS(rc))
562 {
563 Assert(cbOp == pDis->cbInstr);
564 rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, pcbWritten);
565 if (RT_SUCCESS(rc))
566 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
567
568 return rc;
569 }
570 }
571 return VERR_EM_INTERPRETER;
572#endif
573}
574
575
576/**
577 * Interprets the current instruction using the supplied DISCPUSTATE structure.
578 *
579 * IP/EIP/RIP *IS* updated!
580 *
581 * @returns VBox strict status code.
582 * @retval VINF_* Scheduling instructions. When these are returned, it
583 * starts to get a bit tricky to know whether code was
584 * executed or not... We'll address this when it becomes a problem.
585 * @retval VERR_EM_INTERPRETER Something we can't cope with.
586 * @retval VERR_* Fatal errors.
587 *
588 * @param pVM The VM handle.
589 * @param pVCpu The VMCPU handle.
590 * @param pDis The disassembler cpu state for the instruction to be
591 * interpreted.
592 * @param pRegFrame The register frame. IP/EIP/RIP *IS* changed!
593 * @param pvFault The fault address (CR2).
594 * @param pcbSize Size of the write (if applicable).
595 * @param enmCodeType Code type (user/supervisor)
596 *
597 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
598 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
599 * to worry about e.g. invalid modrm combinations (!)
600 *
601 * @todo At this time we do NOT check if the instruction overwrites vital information.
602 * Make sure this can't happen!! (will add some assertions/checks later)
603 */
604VMMDECL(VBOXSTRICTRC) EMInterpretInstructionDisasState(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
605 RTGCPTR pvFault, EMCODETYPE enmCodeType)
606{
607 LogFlow(("EMInterpretInstructionDisasState %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
608#ifdef VBOX_WITH_IEM
609 NOREF(pDis); NOREF(pvFault); NOREF(enmCodeType);
610 VBOXSTRICTRC rc = IEMExecOneEx(pVCpu, pRegFrame, NULL);
611 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
612 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
613 return VERR_EM_INTERPRETER;
614 return rc;
615#else
616 uint32_t cbIgnored;
617 VBOXSTRICTRC rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, enmCodeType, &cbIgnored);
618 if (RT_SUCCESS(rc))
619 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
620 return rc;
621#endif
622}
623
624#if defined(IN_RC) /*&& defined(VBOX_WITH_PATM)*/
625
626DECLINLINE(int) emRCStackRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
627{
628 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
629 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
630 return rc;
631 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
632}
633
634
635/**
636 * Interpret IRET (currently only to V86 code) - PATM only.
637 *
638 * @returns VBox status code.
639 * @param pVM The VM handle.
640 * @param pVCpu The VMCPU handle.
641 * @param pRegFrame The register frame.
642 *
643 */
644VMMDECL(int) EMInterpretIretV86ForPatm(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
645{
646 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
647 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
648 int rc;
649
650 Assert(!CPUMIsGuestIn64BitCode(pVCpu, pRegFrame));
651 /** @todo Rainy day: Test what happens when VERR_EM_INTERPRETER is returned by
652 * this function. Fear that it may guru on us, thus not converted to
653 * IEM. */
654
655 rc = emRCStackRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
656 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
657 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
658 AssertRCReturn(rc, VERR_EM_INTERPRETER);
659 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
660
661 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
662 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
663 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &es, (RTGCPTR)(pIretStack + 20), 4);
664 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ds, (RTGCPTR)(pIretStack + 24), 4);
665 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &fs, (RTGCPTR)(pIretStack + 28), 4);
666 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &gs, (RTGCPTR)(pIretStack + 32), 4);
667 AssertRCReturn(rc, VERR_EM_INTERPRETER);
668
669 pRegFrame->eip = eip & 0xffff;
670 pRegFrame->cs = cs;
671
672 /* Mask away all reserved bits */
673 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
674 eflags &= uMask;
675
676 CPUMRawSetEFlags(pVCpu, pRegFrame, eflags);
677 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
678
679 pRegFrame->esp = esp;
680 pRegFrame->ss = ss;
681 pRegFrame->ds = ds;
682 pRegFrame->es = es;
683 pRegFrame->fs = fs;
684 pRegFrame->gs = gs;
685
686 return VINF_SUCCESS;
687}
688
689#endif /* IN_RC && VBOX_WITH_PATM */
690#ifndef VBOX_WITH_IEM
691
692
693
694
695
696
697/*
698 *
699 * The old interpreter.
700 * The old interpreter.
701 * The old interpreter.
702 * The old interpreter.
703 * The old interpreter.
704 *
705 */
706
707DECLINLINE(int) emRamRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
708{
709#ifdef IN_RC
710 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
711 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
712 return rc;
713 /*
714 * The page pool cache may end up here in some cases because it
715 * flushed one of the shadow mappings used by the trapping
716 * instruction and it either flushed the TLB or the CPU reused it.
717 */
718#else
719 NOREF(pVM);
720#endif
721 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
722}
723
724
725DECLINLINE(int) emRamWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, uint32_t cb)
726{
727 /* Don't use MMGCRamWrite here as it does not respect zero pages, shared
728 pages or write monitored pages. */
729 NOREF(pVM);
730 return PGMPhysInterpretedWriteNoHandlers(pVCpu, pCtxCore, GCPtrDst, pvSrc, cb, /*fMayTrap*/ false);
731}
732
733
734/** Convert sel:addr to a flat GC address. */
735DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, PDISOPPARAM pParam, RTGCPTR pvAddr)
736{
737 DISSELREG enmPrefixSeg = DISDetectSegReg(pDis, pParam);
738 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
739}
740
741
742#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
743/**
744 * Get the mnemonic for the disassembled instruction.
745 *
746 * GC/R0 doesn't include the strings in the DIS tables because
747 * of limited space.
748 */
749static const char *emGetMnemonic(PDISCPUSTATE pDis)
750{
751 switch (pDis->pCurInstr->uOpcode)
752 {
753 case OP_XCHG: return "Xchg";
754 case OP_DEC: return "Dec";
755 case OP_INC: return "Inc";
756 case OP_POP: return "Pop";
757 case OP_OR: return "Or";
758 case OP_AND: return "And";
759 case OP_MOV: return "Mov";
760 case OP_INVLPG: return "InvlPg";
761 case OP_CPUID: return "CpuId";
762 case OP_MOV_CR: return "MovCRx";
763 case OP_MOV_DR: return "MovDRx";
764 case OP_LLDT: return "LLdt";
765 case OP_LGDT: return "LGdt";
766 case OP_LIDT: return "LIdt";
767 case OP_CLTS: return "Clts";
768 case OP_MONITOR: return "Monitor";
769 case OP_MWAIT: return "MWait";
770 case OP_RDMSR: return "Rdmsr";
771 case OP_WRMSR: return "Wrmsr";
772 case OP_ADD: return "Add";
773 case OP_ADC: return "Adc";
774 case OP_SUB: return "Sub";
775 case OP_SBB: return "Sbb";
776 case OP_RDTSC: return "Rdtsc";
777 case OP_STI: return "Sti";
778 case OP_CLI: return "Cli";
779 case OP_XADD: return "XAdd";
780 case OP_HLT: return "Hlt";
781 case OP_IRET: return "Iret";
782 case OP_MOVNTPS: return "MovNTPS";
783 case OP_STOSWD: return "StosWD";
784 case OP_WBINVD: return "WbInvd";
785 case OP_XOR: return "Xor";
786 case OP_BTR: return "Btr";
787 case OP_BTS: return "Bts";
788 case OP_BTC: return "Btc";
789 case OP_LMSW: return "Lmsw";
790 case OP_SMSW: return "Smsw";
791 case OP_CMPXCHG: return pDis->fPrefix & DISPREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
792 case OP_CMPXCHG8B: return pDis->fPrefix & DISPREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
793
794 default:
795 Log(("Unknown opcode %d\n", pDis->pCurInstr->uOpcode));
796 return "???";
797 }
798}
799#endif /* VBOX_STRICT || LOG_ENABLED */
800
801
802/**
803 * XCHG instruction emulation.
804 */
805static int emInterpretXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
806{
807 DISQPVPARAMVAL param1, param2;
808 NOREF(pvFault);
809
810 /* Source to make DISQueryParamVal read the register value - ugly hack */
811 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
812 if(RT_FAILURE(rc))
813 return VERR_EM_INTERPRETER;
814
815 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
816 if(RT_FAILURE(rc))
817 return VERR_EM_INTERPRETER;
818
819#ifdef IN_RC
820 if (TRPMHasTrap(pVCpu))
821 {
822 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
823 {
824#endif
825 RTGCPTR pParam1 = 0, pParam2 = 0;
826 uint64_t valpar1, valpar2;
827
828 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
829 switch(param1.type)
830 {
831 case DISQPV_TYPE_IMMEDIATE: /* register type is translated to this one too */
832 valpar1 = param1.val.val64;
833 break;
834
835 case DISQPV_TYPE_ADDRESS:
836 pParam1 = (RTGCPTR)param1.val.val64;
837 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
838 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
839 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
840 if (RT_FAILURE(rc))
841 {
842 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
843 return VERR_EM_INTERPRETER;
844 }
845 break;
846
847 default:
848 AssertFailed();
849 return VERR_EM_INTERPRETER;
850 }
851
852 switch(param2.type)
853 {
854 case DISQPV_TYPE_ADDRESS:
855 pParam2 = (RTGCPTR)param2.val.val64;
856 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param2, pParam2);
857 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
858 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar2, pParam2, param2.size);
859 if (RT_FAILURE(rc))
860 {
861 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
862 }
863 break;
864
865 case DISQPV_TYPE_IMMEDIATE:
866 valpar2 = param2.val.val64;
867 break;
868
869 default:
870 AssertFailed();
871 return VERR_EM_INTERPRETER;
872 }
873
874 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
875 if (pParam1 == 0)
876 {
877 Assert(param1.type == DISQPV_TYPE_IMMEDIATE); /* register actually */
878 switch(param1.size)
879 {
880 case 1: //special case for AH etc
881 rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t )valpar2); break;
882 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)valpar2); break;
883 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)valpar2); break;
884 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param1.Base.idxGenReg, valpar2); break;
885 default: AssertFailedReturn(VERR_EM_INTERPRETER);
886 }
887 if (RT_FAILURE(rc))
888 return VERR_EM_INTERPRETER;
889 }
890 else
891 {
892 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar2, param1.size);
893 if (RT_FAILURE(rc))
894 {
895 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
896 return VERR_EM_INTERPRETER;
897 }
898 }
899
900 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
901 if (pParam2 == 0)
902 {
903 Assert(param2.type == DISQPV_TYPE_IMMEDIATE); /* register actually */
904 switch(param2.size)
905 {
906 case 1: //special case for AH etc
907 rc = DISWriteReg8(pRegFrame, pDis->Param2.Base.idxGenReg, (uint8_t )valpar1); break;
908 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param2.Base.idxGenReg, (uint16_t)valpar1); break;
909 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param2.Base.idxGenReg, (uint32_t)valpar1); break;
910 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param2.Base.idxGenReg, valpar1); break;
911 default: AssertFailedReturn(VERR_EM_INTERPRETER);
912 }
913 if (RT_FAILURE(rc))
914 return VERR_EM_INTERPRETER;
915 }
916 else
917 {
918 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam2, &valpar1, param2.size);
919 if (RT_FAILURE(rc))
920 {
921 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
922 return VERR_EM_INTERPRETER;
923 }
924 }
925
926 *pcbSize = param2.size;
927 return VINF_SUCCESS;
928#ifdef IN_RC
929 }
930 }
931 return VERR_EM_INTERPRETER;
932#endif
933}
934
935
936/**
937 * INC and DEC emulation.
938 */
939static int emInterpretIncDec(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
940 PFNEMULATEPARAM2 pfnEmulate)
941{
942 DISQPVPARAMVAL param1;
943 NOREF(pvFault);
944
945 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
946 if(RT_FAILURE(rc))
947 return VERR_EM_INTERPRETER;
948
949#ifdef IN_RC
950 if (TRPMHasTrap(pVCpu))
951 {
952 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
953 {
954#endif
955 RTGCPTR pParam1 = 0;
956 uint64_t valpar1;
957
958 if (param1.type == DISQPV_TYPE_ADDRESS)
959 {
960 pParam1 = (RTGCPTR)param1.val.val64;
961 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
962#ifdef IN_RC
963 /* Safety check (in theory it could cross a page boundary and fault there though) */
964 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
965#endif
966 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
967 if (RT_FAILURE(rc))
968 {
969 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
970 return VERR_EM_INTERPRETER;
971 }
972 }
973 else
974 {
975 AssertFailed();
976 return VERR_EM_INTERPRETER;
977 }
978
979 uint32_t eflags;
980
981 eflags = pfnEmulate(&valpar1, param1.size);
982
983 /* Write result back */
984 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
985 if (RT_FAILURE(rc))
986 {
987 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
988 return VERR_EM_INTERPRETER;
989 }
990
991 /* Update guest's eflags and finish. */
992 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
993 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
994
995 /* All done! */
996 *pcbSize = param1.size;
997 return VINF_SUCCESS;
998#ifdef IN_RC
999 }
1000 }
1001 return VERR_EM_INTERPRETER;
1002#endif
1003}
1004
1005
1006/**
1007 * POP Emulation.
1008 */
1009static int emInterpretPop(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1010{
1011 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
1012 DISQPVPARAMVAL param1;
1013 NOREF(pvFault);
1014
1015 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
1016 if(RT_FAILURE(rc))
1017 return VERR_EM_INTERPRETER;
1018
1019#ifdef IN_RC
1020 if (TRPMHasTrap(pVCpu))
1021 {
1022 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1023 {
1024#endif
1025 RTGCPTR pParam1 = 0;
1026 uint32_t valpar1;
1027 RTGCPTR pStackVal;
1028
1029 /* Read stack value first */
1030 if (SELMGetCpuModeFromSelector(pVCpu, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid) == DISCPUMODE_16BIT)
1031 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
1032
1033 /* Convert address; don't bother checking limits etc, as we only read here */
1034 pStackVal = SELMToFlat(pVM, DISSELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
1035 if (pStackVal == 0)
1036 return VERR_EM_INTERPRETER;
1037
1038 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pStackVal, param1.size);
1039 if (RT_FAILURE(rc))
1040 {
1041 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1042 return VERR_EM_INTERPRETER;
1043 }
1044
1045 if (param1.type == DISQPV_TYPE_ADDRESS)
1046 {
1047 pParam1 = (RTGCPTR)param1.val.val64;
1048
1049 /* pop [esp+xx] uses esp after the actual pop! */
1050 AssertCompile(DISGREG_ESP == DISGREG_SP);
1051 if ( (pDis->Param1.fUse & DISUSE_BASE)
1052 && (pDis->Param1.fUse & (DISUSE_REG_GEN16|DISUSE_REG_GEN32))
1053 && pDis->Param1.Base.idxGenReg == DISGREG_ESP
1054 )
1055 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
1056
1057 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
1058 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
1059 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
1060 if (RT_FAILURE(rc))
1061 {
1062 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1063 return VERR_EM_INTERPRETER;
1064 }
1065
1066 /* Update ESP as the last step */
1067 pRegFrame->esp += param1.size;
1068 }
1069 else
1070 {
1071#ifndef DEBUG_bird // annoying assertion.
1072 AssertFailed();
1073#endif
1074 return VERR_EM_INTERPRETER;
1075 }
1076
1077 /* All done! */
1078 *pcbSize = param1.size;
1079 return VINF_SUCCESS;
1080#ifdef IN_RC
1081 }
1082 }
1083 return VERR_EM_INTERPRETER;
1084#endif
1085}
1086
1087
1088/**
1089 * XOR/OR/AND Emulation.
1090 */
1091static int emInterpretOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
1092 PFNEMULATEPARAM3 pfnEmulate)
1093{
1094 DISQPVPARAMVAL param1, param2;
1095 NOREF(pvFault);
1096
1097 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
1098 if(RT_FAILURE(rc))
1099 return VERR_EM_INTERPRETER;
1100
1101 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
1102 if(RT_FAILURE(rc))
1103 return VERR_EM_INTERPRETER;
1104
1105#ifdef IN_RC
1106 if (TRPMHasTrap(pVCpu))
1107 {
1108 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1109 {
1110#endif
1111 RTGCPTR pParam1;
1112 uint64_t valpar1, valpar2;
1113
1114 if (pDis->Param1.cb != pDis->Param2.cb)
1115 {
1116 if (pDis->Param1.cb < pDis->Param2.cb)
1117 {
1118 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb)); /* should never happen! */
1119 return VERR_EM_INTERPRETER;
1120 }
1121 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
1122 pDis->Param2.cb = pDis->Param1.cb;
1123 param2.size = param1.size;
1124 }
1125
1126 /* The destination is always a virtual address */
1127 if (param1.type == DISQPV_TYPE_ADDRESS)
1128 {
1129 pParam1 = (RTGCPTR)param1.val.val64;
1130 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
1131 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
1132 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
1133 if (RT_FAILURE(rc))
1134 {
1135 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1136 return VERR_EM_INTERPRETER;
1137 }
1138 }
1139 else
1140 {
1141 AssertFailed();
1142 return VERR_EM_INTERPRETER;
1143 }
1144
1145 /* Register or immediate data */
1146 switch(param2.type)
1147 {
1148 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1149 valpar2 = param2.val.val64;
1150 break;
1151
1152 default:
1153 AssertFailed();
1154 return VERR_EM_INTERPRETER;
1155 }
1156
1157 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pDis), pParam1, valpar1, valpar2, param2.size, param1.size));
1158
1159 /* Data read, emulate instruction. */
1160 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
1161
1162 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pDis), valpar1));
1163
1164 /* Update guest's eflags and finish. */
1165 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1166 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1167
1168 /* And write it back */
1169 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
1170 if (RT_SUCCESS(rc))
1171 {
1172 /* All done! */
1173 *pcbSize = param2.size;
1174 return VINF_SUCCESS;
1175 }
1176#ifdef IN_RC
1177 }
1178 }
1179#endif
1180 return VERR_EM_INTERPRETER;
1181}
1182
1183
1184/**
1185 * LOCK XOR/OR/AND Emulation.
1186 */
1187static int emInterpretLockOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
1188 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
1189{
1190 void *pvParam1;
1191 DISQPVPARAMVAL param1, param2;
1192 NOREF(pvFault);
1193
1194#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
1195 Assert(pDis->Param1.cb <= 4);
1196#endif
1197
1198 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
1199 if(RT_FAILURE(rc))
1200 return VERR_EM_INTERPRETER;
1201
1202 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
1203 if(RT_FAILURE(rc))
1204 return VERR_EM_INTERPRETER;
1205
1206 if (pDis->Param1.cb != pDis->Param2.cb)
1207 {
1208 AssertMsgReturn(pDis->Param1.cb >= pDis->Param2.cb, /* should never happen! */
1209 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb),
1210 VERR_EM_INTERPRETER);
1211
1212 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
1213 pDis->Param2.cb = pDis->Param1.cb;
1214 param2.size = param1.size;
1215 }
1216
1217#ifdef IN_RC
1218 /* Safety check (in theory it could cross a page boundary and fault there though) */
1219 Assert( TRPMHasTrap(pVCpu)
1220 && (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW));
1221 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
1222#endif
1223
1224 /* Register and immediate data == DISQPV_TYPE_IMMEDIATE */
1225 AssertReturn(param2.type == DISQPV_TYPE_IMMEDIATE, VERR_EM_INTERPRETER);
1226 RTGCUINTREG ValPar2 = param2.val.val64;
1227
1228 /* The destination is always a virtual address */
1229 AssertReturn(param1.type == DISQPV_TYPE_ADDRESS, VERR_EM_INTERPRETER);
1230
1231 RTGCPTR GCPtrPar1 = param1.val.val64;
1232 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
1233 PGMPAGEMAPLOCK Lock;
1234 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1235 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1236
1237 /* Try emulate it with a one-shot #PF handler in place. (RC) */
1238 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
1239
1240 RTGCUINTREG32 eflags = 0;
1241 rc = pfnEmulate(pvParam1, ValPar2, pDis->Param2.cb, &eflags);
1242 PGMPhysReleasePageMappingLock(pVM, &Lock);
1243 if (RT_FAILURE(rc))
1244 {
1245 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
1246 return VERR_EM_INTERPRETER;
1247 }
1248
1249 /* Update guest's eflags and finish. */
1250 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1251 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1252
1253 *pcbSize = param2.size;
1254 return VINF_SUCCESS;
1255}
1256
1257
1258/**
1259 * ADD, ADC & SUB Emulation.
1260 */
1261static int emInterpretAddSub(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
1262 PFNEMULATEPARAM3 pfnEmulate)
1263{
1264 NOREF(pvFault);
1265 DISQPVPARAMVAL param1, param2;
1266 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
1267 if(RT_FAILURE(rc))
1268 return VERR_EM_INTERPRETER;
1269
1270 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
1271 if(RT_FAILURE(rc))
1272 return VERR_EM_INTERPRETER;
1273
1274#ifdef IN_RC
1275 if (TRPMHasTrap(pVCpu))
1276 {
1277 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1278 {
1279#endif
1280 RTGCPTR pParam1;
1281 uint64_t valpar1, valpar2;
1282
1283 if (pDis->Param1.cb != pDis->Param2.cb)
1284 {
1285 if (pDis->Param1.cb < pDis->Param2.cb)
1286 {
1287 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb)); /* should never happen! */
1288 return VERR_EM_INTERPRETER;
1289 }
1290 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
1291 pDis->Param2.cb = pDis->Param1.cb;
1292 param2.size = param1.size;
1293 }
1294
1295 /* The destination is always a virtual address */
1296 if (param1.type == DISQPV_TYPE_ADDRESS)
1297 {
1298 pParam1 = (RTGCPTR)param1.val.val64;
1299 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
1300 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
1301 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
1302 if (RT_FAILURE(rc))
1303 {
1304 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1305 return VERR_EM_INTERPRETER;
1306 }
1307 }
1308 else
1309 {
1310#ifndef DEBUG_bird
1311 AssertFailed();
1312#endif
1313 return VERR_EM_INTERPRETER;
1314 }
1315
1316 /* Register or immediate data */
1317 switch(param2.type)
1318 {
1319 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1320 valpar2 = param2.val.val64;
1321 break;
1322
1323 default:
1324 AssertFailed();
1325 return VERR_EM_INTERPRETER;
1326 }
1327
1328 /* Data read, emulate instruction. */
1329 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
1330
1331 /* Update guest's eflags and finish. */
1332 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1333 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1334
1335 /* And write it back */
1336 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
1337 if (RT_SUCCESS(rc))
1338 {
1339 /* All done! */
1340 *pcbSize = param2.size;
1341 return VINF_SUCCESS;
1342 }
1343#ifdef IN_RC
1344 }
1345 }
1346#endif
1347 return VERR_EM_INTERPRETER;
1348}
1349
1350
1351/**
1352 * ADC Emulation.
1353 */
1354static int emInterpretAdc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1355{
1356 if (pRegFrame->eflags.Bits.u1CF)
1357 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
1358 else
1359 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
1360}
1361
1362
1363/**
1364 * BTR/C/S Emulation.
1365 */
1366static int emInterpretBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
1367 PFNEMULATEPARAM2UINT32 pfnEmulate)
1368{
1369 DISQPVPARAMVAL param1, param2;
1370 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
1371 if(RT_FAILURE(rc))
1372 return VERR_EM_INTERPRETER;
1373
1374 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
1375 if(RT_FAILURE(rc))
1376 return VERR_EM_INTERPRETER;
1377
1378#ifdef IN_RC
1379 if (TRPMHasTrap(pVCpu))
1380 {
1381 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1382 {
1383#endif
1384 RTGCPTR pParam1;
1385 uint64_t valpar1 = 0, valpar2;
1386 uint32_t eflags;
1387
1388 /* The destination is always a virtual address */
1389 if (param1.type != DISQPV_TYPE_ADDRESS)
1390 return VERR_EM_INTERPRETER;
1391
1392 pParam1 = (RTGCPTR)param1.val.val64;
1393 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
1394
1395 /* Register or immediate data */
1396 switch(param2.type)
1397 {
1398 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1399 valpar2 = param2.val.val64;
1400 break;
1401
1402 default:
1403 AssertFailed();
1404 return VERR_EM_INTERPRETER;
1405 }
1406
1407 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pDis), pvFault, pParam1, valpar2));
1408 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
1409 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
1410 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, 1);
1411 if (RT_FAILURE(rc))
1412 {
1413 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1414 return VERR_EM_INTERPRETER;
1415 }
1416
1417 Log2(("emInterpretBtx: val=%x\n", valpar1));
1418 /* Data read, emulate bit test instruction. */
1419 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
1420
1421 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
1422
1423 /* Update guest's eflags and finish. */
1424 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1425 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1426
1427 /* And write it back */
1428 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, 1);
1429 if (RT_SUCCESS(rc))
1430 {
1431 /* All done! */
1432 *pcbSize = 1;
1433 return VINF_SUCCESS;
1434 }
1435#ifdef IN_RC
1436 }
1437 }
1438#endif
1439 return VERR_EM_INTERPRETER;
1440}
1441
1442
1443/**
1444 * LOCK BTR/C/S Emulation.
1445 */
1446static int emInterpretLockBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
1447 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
1448{
1449 void *pvParam1;
1450
1451 DISQPVPARAMVAL param1, param2;
1452 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
1453 if(RT_FAILURE(rc))
1454 return VERR_EM_INTERPRETER;
1455
1456 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
1457 if(RT_FAILURE(rc))
1458 return VERR_EM_INTERPRETER;
1459
1460 /* The destination is always a virtual address */
1461 if (param1.type != DISQPV_TYPE_ADDRESS)
1462 return VERR_EM_INTERPRETER;
1463
1464 /* Register and immediate data == DISQPV_TYPE_IMMEDIATE */
1465 AssertReturn(param2.type == DISQPV_TYPE_IMMEDIATE, VERR_EM_INTERPRETER);
1466 uint64_t ValPar2 = param2.val.val64;
1467
1468 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
1469 RTGCPTR GCPtrPar1 = param1.val.val64;
1470 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
1471 ValPar2 &= 7;
1472
1473 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
1474#ifdef IN_RC
1475 Assert(TRPMHasTrap(pVCpu));
1476 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
1477#endif
1478
1479 PGMPAGEMAPLOCK Lock;
1480 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1481 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1482
1483 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pDis), pvFault, GCPtrPar1, ValPar2));
1484
1485 /* Try emulate it with a one-shot #PF handler in place. (RC) */
1486 RTGCUINTREG32 eflags = 0;
1487 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
1488 PGMPhysReleasePageMappingLock(pVM, &Lock);
1489 if (RT_FAILURE(rc))
1490 {
1491 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
1492 emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
1493 return VERR_EM_INTERPRETER;
1494 }
1495
1496 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pDis), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
1497
1498 /* Update guest's eflags and finish. */
1499 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1500 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1501
1502 *pcbSize = 1;
1503 return VINF_SUCCESS;
1504}
1505
1506
1507/**
1508 * MOV emulation.
1509 */
1510static int emInterpretMov(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1511{
1512 NOREF(pvFault);
1513 DISQPVPARAMVAL param1, param2;
1514 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
1515 if(RT_FAILURE(rc))
1516 return VERR_EM_INTERPRETER;
1517
1518 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
1519 if(RT_FAILURE(rc))
1520 return VERR_EM_INTERPRETER;
1521
1522#ifdef IN_RC
1523 if (TRPMHasTrap(pVCpu))
1524 {
1525 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1526 {
1527#else
1528 /** @todo Make this the default and don't rely on TRPM information. */
1529 if (param1.type == DISQPV_TYPE_ADDRESS)
1530 {
1531#endif
1532 RTGCPTR pDest;
1533 uint64_t val64;
1534
1535 switch(param1.type)
1536 {
1537 case DISQPV_TYPE_IMMEDIATE:
1538 if(!(param1.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
1539 return VERR_EM_INTERPRETER;
1540 /* fallthru */
1541
1542 case DISQPV_TYPE_ADDRESS:
1543 pDest = (RTGCPTR)param1.val.val64;
1544 pDest = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pDest);
1545 break;
1546
1547 default:
1548 AssertFailed();
1549 return VERR_EM_INTERPRETER;
1550 }
1551
1552 switch(param2.type)
1553 {
1554 case DISQPV_TYPE_IMMEDIATE: /* register type is translated to this one too */
1555 val64 = param2.val.val64;
1556 break;
1557
1558 default:
1559 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
1560 return VERR_EM_INTERPRETER;
1561 }
1562#ifdef LOG_ENABLED
1563 if (pDis->uCpuMode == DISCPUMODE_64BIT)
1564 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
1565 else
1566 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
1567#endif
1568
1569 Assert(param2.size <= 8 && param2.size > 0);
1570 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
1571 rc = emRamWrite(pVM, pVCpu, pRegFrame, pDest, &val64, param2.size);
1572 if (RT_FAILURE(rc))
1573 return VERR_EM_INTERPRETER;
1574
1575 *pcbSize = param2.size;
1576 }
1577 else
1578 { /* read fault */
1579 RTGCPTR pSrc;
1580 uint64_t val64;
1581
1582 /* Source */
1583 switch(param2.type)
1584 {
1585 case DISQPV_TYPE_IMMEDIATE:
1586 if(!(param2.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
1587 return VERR_EM_INTERPRETER;
1588 /* fallthru */
1589
1590 case DISQPV_TYPE_ADDRESS:
1591 pSrc = (RTGCPTR)param2.val.val64;
1592 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param2, pSrc);
1593 break;
1594
1595 default:
1596 return VERR_EM_INTERPRETER;
1597 }
1598
1599 Assert(param1.size <= 8 && param1.size > 0);
1600 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
1601 rc = emRamRead(pVM, pVCpu, pRegFrame, &val64, pSrc, param1.size);
1602 if (RT_FAILURE(rc))
1603 return VERR_EM_INTERPRETER;
1604
1605 /* Destination */
1606 switch(param1.type)
1607 {
1608 case DISQPV_TYPE_REGISTER:
1609 switch(param1.size)
1610 {
1611 case 1: rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t) val64); break;
1612 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)val64); break;
1613 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)val64); break;
1614 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param1.Base.idxGenReg, val64); break;
1615 default:
1616 return VERR_EM_INTERPRETER;
1617 }
1618 if (RT_FAILURE(rc))
1619 return rc;
1620 break;
1621
1622 default:
1623 return VERR_EM_INTERPRETER;
1624 }
1625#ifdef LOG_ENABLED
1626 if (pDis->uCpuMode == DISCPUMODE_64BIT)
1627 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
1628 else
1629 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
1630#endif
1631 }
1632 return VINF_SUCCESS;
1633#ifdef IN_RC
1634 }
1635 return VERR_EM_INTERPRETER;
1636#endif
1637}
1638
1639
1640#ifndef IN_RC
1641/**
1642 * [REP] STOSWD emulation
1643 */
1644static int emInterpretStosWD(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1645{
1646 int rc;
1647 RTGCPTR GCDest, GCOffset;
1648 uint32_t cbSize;
1649 uint64_t cTransfers;
1650 int offIncrement;
1651 NOREF(pvFault);
1652
1653 /* Don't support any but these three prefix bytes. */
1654 if ((pDis->fPrefix & ~(DISPREFIX_ADDRSIZE|DISPREFIX_OPSIZE|DISPREFIX_REP|DISPREFIX_REX)))
1655 return VERR_EM_INTERPRETER;
1656
1657 switch (pDis->uAddrMode)
1658 {
1659 case DISCPUMODE_16BIT:
1660 GCOffset = pRegFrame->di;
1661 cTransfers = pRegFrame->cx;
1662 break;
1663 case DISCPUMODE_32BIT:
1664 GCOffset = pRegFrame->edi;
1665 cTransfers = pRegFrame->ecx;
1666 break;
1667 case DISCPUMODE_64BIT:
1668 GCOffset = pRegFrame->rdi;
1669 cTransfers = pRegFrame->rcx;
1670 break;
1671 default:
1672 AssertFailed();
1673 return VERR_EM_INTERPRETER;
1674 }
1675
1676 GCDest = SELMToFlat(pVM, DISSELREG_ES, pRegFrame, GCOffset);
1677 switch (pDis->uOpMode)
1678 {
1679 case DISCPUMODE_16BIT:
1680 cbSize = 2;
1681 break;
1682 case DISCPUMODE_32BIT:
1683 cbSize = 4;
1684 break;
1685 case DISCPUMODE_64BIT:
1686 cbSize = 8;
1687 break;
1688 default:
1689 AssertFailed();
1690 return VERR_EM_INTERPRETER;
1691 }
1692
1693 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
1694
1695 if (!(pDis->fPrefix & DISPREFIX_REP))
1696 {
1697 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize));
1698
1699 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1700 if (RT_FAILURE(rc))
1701 return VERR_EM_INTERPRETER;
1702 Assert(rc == VINF_SUCCESS);
1703
1704 /* Update (e/r)di. */
1705 switch (pDis->uAddrMode)
1706 {
1707 case DISCPUMODE_16BIT:
1708 pRegFrame->di += offIncrement;
1709 break;
1710 case DISCPUMODE_32BIT:
1711 pRegFrame->edi += offIncrement;
1712 break;
1713 case DISCPUMODE_64BIT:
1714 pRegFrame->rdi += offIncrement;
1715 break;
1716 default:
1717 AssertFailed();
1718 return VERR_EM_INTERPRETER;
1719 }
1720
1721 }
1722 else
1723 {
1724 if (!cTransfers)
1725 return VINF_SUCCESS;
1726
1727 /*
1728 * Do *not* try emulate cross page stuff here because we don't know what might
1729 * be waiting for us on the subsequent pages. The caller has only asked us to
1730 * ignore access handlers fro the current page.
1731 * This also fends off big stores which would quickly kill PGMR0DynMap.
1732 */
1733 if ( cbSize > PAGE_SIZE
1734 || cTransfers > PAGE_SIZE
1735 || (GCDest >> PAGE_SHIFT) != ((GCDest + offIncrement * cTransfers) >> PAGE_SHIFT))
1736 {
1737 Log(("STOSWD is crosses pages, chicken out to the recompiler; GCDest=%RGv cbSize=%#x offIncrement=%d cTransfers=%#x\n",
1738 GCDest, cbSize, offIncrement, cTransfers));
1739 return VERR_EM_INTERPRETER;
1740 }
1741
1742 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
1743 /* Access verification first; we currently can't recover properly from traps inside this instruction */
1744 rc = PGMVerifyAccess(pVCpu, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
1745 cTransfers * cbSize,
1746 X86_PTE_RW | (CPUMGetGuestCPL(pVCpu, pRegFrame) == 3 ? X86_PTE_US : 0));
1747 if (rc != VINF_SUCCESS)
1748 {
1749 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
1750 return VERR_EM_INTERPRETER;
1751 }
1752
1753 /* REP case */
1754 while (cTransfers)
1755 {
1756 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1757 if (RT_FAILURE(rc))
1758 {
1759 rc = VERR_EM_INTERPRETER;
1760 break;
1761 }
1762
1763 Assert(rc == VINF_SUCCESS);
1764 GCOffset += offIncrement;
1765 GCDest += offIncrement;
1766 cTransfers--;
1767 }
1768
1769 /* Update the registers. */
1770 switch (pDis->uAddrMode)
1771 {
1772 case DISCPUMODE_16BIT:
1773 pRegFrame->di = GCOffset;
1774 pRegFrame->cx = cTransfers;
1775 break;
1776 case DISCPUMODE_32BIT:
1777 pRegFrame->edi = GCOffset;
1778 pRegFrame->ecx = cTransfers;
1779 break;
1780 case DISCPUMODE_64BIT:
1781 pRegFrame->rdi = GCOffset;
1782 pRegFrame->rcx = cTransfers;
1783 break;
1784 default:
1785 AssertFailed();
1786 return VERR_EM_INTERPRETER;
1787 }
1788 }
1789
1790 *pcbSize = cbSize;
1791 return rc;
1792}
1793#endif /* !IN_RC */
1794
1795
1796/**
1797 * [LOCK] CMPXCHG emulation.
1798 */
1799static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1800{
1801 DISQPVPARAMVAL param1, param2;
1802 NOREF(pvFault);
1803
1804#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
1805 Assert(pDis->Param1.cb <= 4);
1806#endif
1807
1808 /* Source to make DISQueryParamVal read the register value - ugly hack */
1809 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
1810 if(RT_FAILURE(rc))
1811 return VERR_EM_INTERPRETER;
1812
1813 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
1814 if(RT_FAILURE(rc))
1815 return VERR_EM_INTERPRETER;
1816
1817 uint64_t valpar;
1818 switch(param2.type)
1819 {
1820 case DISQPV_TYPE_IMMEDIATE: /* register actually */
1821 valpar = param2.val.val64;
1822 break;
1823
1824 default:
1825 return VERR_EM_INTERPRETER;
1826 }
1827
1828 PGMPAGEMAPLOCK Lock;
1829 RTGCPTR GCPtrPar1;
1830 void *pvParam1;
1831 uint64_t eflags;
1832
1833 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
1834 switch(param1.type)
1835 {
1836 case DISQPV_TYPE_ADDRESS:
1837 GCPtrPar1 = param1.val.val64;
1838 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
1839
1840 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1841 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1842 break;
1843
1844 default:
1845 return VERR_EM_INTERPRETER;
1846 }
1847
1848 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar));
1849
1850 if (pDis->fPrefix & DISPREFIX_LOCK)
1851 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->Param2.cb);
1852 else
1853 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->Param2.cb);
1854
1855 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
1856
1857 /* Update guest's eflags and finish. */
1858 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1859 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1860
1861 *pcbSize = param2.size;
1862 PGMPhysReleasePageMappingLock(pVM, &Lock);
1863 return VINF_SUCCESS;
1864}
1865
1866
1867/**
1868 * [LOCK] CMPXCHG8B emulation.
1869 */
1870static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1871{
1872 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
1873 DISQPVPARAMVAL param1;
1874 NOREF(pvFault);
1875
1876 /* Source to make DISQueryParamVal read the register value - ugly hack */
1877 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
1878 if(RT_FAILURE(rc))
1879 return VERR_EM_INTERPRETER;
1880
1881 RTGCPTR GCPtrPar1;
1882 void *pvParam1;
1883 uint64_t eflags;
1884 PGMPAGEMAPLOCK Lock;
1885
1886 AssertReturn(pDis->Param1.cb == 8, VERR_EM_INTERPRETER);
1887 switch(param1.type)
1888 {
1889 case DISQPV_TYPE_ADDRESS:
1890 GCPtrPar1 = param1.val.val64;
1891 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
1892
1893 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1894 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1895 break;
1896
1897 default:
1898 return VERR_EM_INTERPRETER;
1899 }
1900
1901 LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax));
1902
1903 if (pDis->fPrefix & DISPREFIX_LOCK)
1904 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1905 else
1906 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1907
1908 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pDis), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1909
1910 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1911 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1912 | (eflags & (X86_EFL_ZF));
1913
1914 *pcbSize = 8;
1915 PGMPhysReleasePageMappingLock(pVM, &Lock);
1916 return VINF_SUCCESS;
1917}
1918
1919
1920#ifdef IN_RC /** @todo test+enable for HWACCM as well. */
1921/**
1922 * [LOCK] XADD emulation.
1923 */
1924static int emInterpretXAdd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1925{
1926 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
1927 DISQPVPARAMVAL param1;
1928 void *pvParamReg2;
1929 size_t cbParamReg2;
1930 NOREF(pvFault);
1931
1932 /* Source to make DISQueryParamVal read the register value - ugly hack */
1933 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
1934 if(RT_FAILURE(rc))
1935 return VERR_EM_INTERPRETER;
1936
1937 rc = DISQueryParamRegPtr(pRegFrame, pDis, &pDis->Param2, &pvParamReg2, &cbParamReg2);
1938 Assert(cbParamReg2 <= 4);
1939 if(RT_FAILURE(rc))
1940 return VERR_EM_INTERPRETER;
1941
1942#ifdef IN_RC
1943 if (TRPMHasTrap(pVCpu))
1944 {
1945 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1946 {
1947#endif
1948 RTGCPTR GCPtrPar1;
1949 void *pvParam1;
1950 uint32_t eflags;
1951 PGMPAGEMAPLOCK Lock;
1952
1953 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
1954 switch(param1.type)
1955 {
1956 case DISQPV_TYPE_ADDRESS:
1957 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, (RTRCUINTPTR)param1.val.val64);
1958#ifdef IN_RC
1959 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
1960#endif
1961
1962 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
1963 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1964 break;
1965
1966 default:
1967 return VERR_EM_INTERPRETER;
1968 }
1969
1970 LogFlow(("XAdd %RGv=%p reg=%08llx\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2));
1971
1972 if (pDis->fPrefix & DISPREFIX_LOCK)
1973 eflags = EMEmulateLockXAdd(pvParam1, pvParamReg2, cbParamReg2);
1974 else
1975 eflags = EMEmulateXAdd(pvParam1, pvParamReg2, cbParamReg2);
1976
1977 LogFlow(("XAdd %RGv=%p reg=%08llx ZF=%d\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2, !!(eflags & X86_EFL_ZF) ));
1978
1979 /* Update guest's eflags and finish. */
1980 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1981 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1982
1983 *pcbSize = cbParamReg2;
1984 PGMPhysReleasePageMappingLock(pVM, &Lock);
1985 return VINF_SUCCESS;
1986#ifdef IN_RC
1987 }
1988 }
1989
1990 return VERR_EM_INTERPRETER;
1991#endif
1992}
1993#endif /* IN_RC */
1994
1995
1996/**
1997 * IRET Emulation.
1998 */
1999static int emInterpretIret(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2000{
2001 /* only allow direct calls to EMInterpretIret for now */
2002 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
2003 return VERR_EM_INTERPRETER;
2004}
2005
2006/**
2007 * WBINVD Emulation.
2008 */
2009static int emInterpretWbInvd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2010{
2011 /* Nothing to do. */
2012 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
2013 return VINF_SUCCESS;
2014}
2015
2016
2017/**
2018 * Interpret INVLPG
2019 *
2020 * @returns VBox status code.
2021 * @param pVM The VM handle.
2022 * @param pVCpu The VMCPU handle.
2023 * @param pRegFrame The register frame.
2024 * @param pAddrGC Operand address
2025 *
2026 */
2027VMMDECL(VBOXSTRICTRC) EMInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
2028{
2029 /** @todo is addr always a flat linear address or ds based
2030 * (in absence of segment override prefixes)????
2031 */
2032 NOREF(pVM); NOREF(pRegFrame);
2033#ifdef IN_RC
2034 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
2035#endif
2036 VBOXSTRICTRC rc = PGMInvalidatePage(pVCpu, pAddrGC);
2037 if ( rc == VINF_SUCCESS
2038 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
2039 return VINF_SUCCESS;
2040 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
2041 ("%Rrc addr=%RGv\n", VBOXSTRICTRC_VAL(rc), pAddrGC),
2042 VERR_EM_INTERPRETER);
2043 return rc;
2044}
2045
2046
2047/**
2048 * INVLPG Emulation.
2049 */
2050static VBOXSTRICTRC emInterpretInvlPg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2051{
2052 DISQPVPARAMVAL param1;
2053 RTGCPTR addr;
2054 NOREF(pvFault); NOREF(pVM); NOREF(pcbSize);
2055
2056 VBOXSTRICTRC rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2057 if(RT_FAILURE(rc))
2058 return VERR_EM_INTERPRETER;
2059
2060 switch(param1.type)
2061 {
2062 case DISQPV_TYPE_IMMEDIATE:
2063 case DISQPV_TYPE_ADDRESS:
2064 if(!(param1.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
2065 return VERR_EM_INTERPRETER;
2066 addr = (RTGCPTR)param1.val.val64;
2067 break;
2068
2069 default:
2070 return VERR_EM_INTERPRETER;
2071 }
2072
2073 /** @todo is addr always a flat linear address or ds based
2074 * (in absence of segment override prefixes)????
2075 */
2076#ifdef IN_RC
2077 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
2078#endif
2079 rc = PGMInvalidatePage(pVCpu, addr);
2080 if ( rc == VINF_SUCCESS
2081 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
2082 return VINF_SUCCESS;
2083 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
2084 ("%Rrc addr=%RGv\n", VBOXSTRICTRC_VAL(rc), addr),
2085 VERR_EM_INTERPRETER);
2086 return rc;
2087}
2088
2089/** @todo change all these EMInterpretXXX methods to VBOXSTRICTRC. */
2090
2091/**
2092 * Interpret CPUID given the parameters in the CPU context
2093 *
2094 * @returns VBox status code.
2095 * @param pVM The VM handle.
2096 * @param pVCpu The VMCPU handle.
2097 * @param pRegFrame The register frame.
2098 *
2099 */
2100VMMDECL(int) EMInterpretCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2101{
2102 uint32_t iLeaf = pRegFrame->eax;
2103 NOREF(pVM);
2104
2105 /* cpuid clears the high dwords of the affected 64 bits registers. */
2106 pRegFrame->rax = 0;
2107 pRegFrame->rbx = 0;
2108 pRegFrame->rcx &= UINT64_C(0x00000000ffffffff);
2109 pRegFrame->rdx = 0;
2110
2111 /* Note: operates the same in 64 and non-64 bits mode. */
2112 CPUMGetGuestCpuId(pVCpu, iLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
2113 Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
2114 return VINF_SUCCESS;
2115}
2116
2117
2118/**
2119 * CPUID Emulation.
2120 */
2121static int emInterpretCpuId(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2122{
2123 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
2124 int rc = EMInterpretCpuId(pVM, pVCpu, pRegFrame);
2125 return rc;
2126}
2127
2128
2129/**
2130 * Interpret CRx read
2131 *
2132 * @returns VBox status code.
2133 * @param pVM The VM handle.
2134 * @param pVCpu The VMCPU handle.
2135 * @param pRegFrame The register frame.
2136 * @param DestRegGen General purpose register index (USE_REG_E**))
2137 * @param SrcRegCRx CRx register index (DISUSE_REG_CR*)
2138 *
2139 */
2140VMMDECL(int) EMInterpretCRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
2141{
2142 uint64_t val64;
2143 int rc = CPUMGetGuestCRx(pVCpu, SrcRegCrx, &val64);
2144 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
2145 NOREF(pVM);
2146
2147 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2148 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
2149 else
2150 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
2151
2152 if (RT_SUCCESS(rc))
2153 {
2154 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
2155 return VINF_SUCCESS;
2156 }
2157 return VERR_EM_INTERPRETER;
2158}
2159
2160
2161
2162/**
2163 * Interpret CLTS
2164 *
2165 * @returns VBox status code.
2166 * @param pVM The VM handle.
2167 * @param pVCpu The VMCPU handle.
2168 *
2169 */
2170VMMDECL(int) EMInterpretCLTS(PVM pVM, PVMCPU pVCpu)
2171{
2172 NOREF(pVM);
2173 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
2174 if (!(cr0 & X86_CR0_TS))
2175 return VINF_SUCCESS;
2176 return CPUMSetGuestCR0(pVCpu, cr0 & ~X86_CR0_TS);
2177}
2178
2179/**
2180 * CLTS Emulation.
2181 */
2182static int emInterpretClts(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2183{
2184 NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
2185 return EMInterpretCLTS(pVM, pVCpu);
2186}
2187
2188
2189/**
2190 * Update CRx
2191 *
2192 * @returns VBox status code.
2193 * @param pVM The VM handle.
2194 * @param pVCpu The VMCPU handle.
2195 * @param pRegFrame The register frame.
2196 * @param DestRegCRx CRx register index (DISUSE_REG_CR*)
2197 * @param val New CRx value
2198 *
2199 */
2200static int emUpdateCRx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
2201{
2202 uint64_t oldval;
2203 uint64_t msrEFER;
2204 int rc, rc2;
2205 NOREF(pVM);
2206
2207 /** @todo Clean up this mess. */
2208 LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
2209 switch (DestRegCrx)
2210 {
2211 case DISCREG_CR0:
2212 oldval = CPUMGetGuestCR0(pVCpu);
2213#ifdef IN_RC
2214 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
2215 if ( (val & (X86_CR0_WP | X86_CR0_AM))
2216 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
2217 return VERR_EM_INTERPRETER;
2218#endif
2219 rc = VINF_SUCCESS;
2220 CPUMSetGuestCR0(pVCpu, val);
2221 val = CPUMGetGuestCR0(pVCpu);
2222 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
2223 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
2224 {
2225 /* global flush */
2226 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
2227 AssertRCReturn(rc, rc);
2228 }
2229
2230 /* Deal with long mode enabling/disabling. */
2231 msrEFER = CPUMGetGuestEFER(pVCpu);
2232 if (msrEFER & MSR_K6_EFER_LME)
2233 {
2234 if ( !(oldval & X86_CR0_PG)
2235 && (val & X86_CR0_PG))
2236 {
2237 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2238 if (pRegFrame->csHid.Attr.n.u1Long)
2239 {
2240 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
2241 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2242 }
2243
2244 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2245 if (!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE))
2246 {
2247 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
2248 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2249 }
2250 msrEFER |= MSR_K6_EFER_LMA;
2251 }
2252 else
2253 if ( (oldval & X86_CR0_PG)
2254 && !(val & X86_CR0_PG))
2255 {
2256 msrEFER &= ~MSR_K6_EFER_LMA;
2257 /* @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
2258 }
2259 CPUMSetGuestEFER(pVCpu, msrEFER);
2260 }
2261 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2262 return rc2 == VINF_SUCCESS ? rc : rc2;
2263
2264 case DISCREG_CR2:
2265 rc = CPUMSetGuestCR2(pVCpu, val); AssertRC(rc);
2266 return VINF_SUCCESS;
2267
2268 case DISCREG_CR3:
2269 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
2270 rc = CPUMSetGuestCR3(pVCpu, val); AssertRC(rc);
2271 if (CPUMGetGuestCR0(pVCpu) & X86_CR0_PG)
2272 {
2273 /* flush */
2274 rc = PGMFlushTLB(pVCpu, val, !(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE));
2275 AssertRC(rc);
2276 }
2277 return rc;
2278
2279 case DISCREG_CR4:
2280 oldval = CPUMGetGuestCR4(pVCpu);
2281 rc = CPUMSetGuestCR4(pVCpu, val); AssertRC(rc);
2282 val = CPUMGetGuestCR4(pVCpu);
2283
2284 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2285 msrEFER = CPUMGetGuestEFER(pVCpu);
2286 if ( (msrEFER & MSR_K6_EFER_LMA)
2287 && (oldval & X86_CR4_PAE)
2288 && !(val & X86_CR4_PAE))
2289 {
2290 return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
2291 }
2292
2293 rc = VINF_SUCCESS;
2294 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
2295 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
2296 {
2297 /* global flush */
2298 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
2299 AssertRCReturn(rc, rc);
2300 }
2301
2302 /* Feeling extremely lazy. */
2303# ifdef IN_RC
2304 if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
2305 != (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
2306 {
2307 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
2308 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
2309 }
2310# endif
2311 if ((val ^ oldval) & X86_CR4_VME)
2312 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2313
2314 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2315 return rc2 == VINF_SUCCESS ? rc : rc2;
2316
2317 case DISCREG_CR8:
2318 return PDMApicSetTPR(pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
2319
2320 default:
2321 AssertFailed();
2322 case DISCREG_CR1: /* illegal op */
2323 break;
2324 }
2325 return VERR_EM_INTERPRETER;
2326}
2327
2328/**
2329 * Interpret CRx write
2330 *
2331 * @returns VBox status code.
2332 * @param pVM The VM handle.
2333 * @param pVCpu The VMCPU handle.
2334 * @param pRegFrame The register frame.
2335 * @param DestRegCRx CRx register index (DISUSE_REG_CR*)
2336 * @param SrcRegGen General purpose register index (USE_REG_E**))
2337 *
2338 */
2339VMMDECL(int) EMInterpretCRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
2340{
2341 uint64_t val;
2342 int rc;
2343
2344 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2345 {
2346 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2347 }
2348 else
2349 {
2350 uint32_t val32;
2351 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2352 val = val32;
2353 }
2354
2355 if (RT_SUCCESS(rc))
2356 return emUpdateCRx(pVM, pVCpu, pRegFrame, DestRegCrx, val);
2357
2358 return VERR_EM_INTERPRETER;
2359}
2360
2361/**
2362 * Interpret LMSW
2363 *
2364 * @returns VBox status code.
2365 * @param pVM The VM handle.
2366 * @param pVCpu The VMCPU handle.
2367 * @param pRegFrame The register frame.
2368 * @param u16Data LMSW source data.
2369 *
2370 */
2371VMMDECL(int) EMInterpretLMSW(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
2372{
2373 uint64_t OldCr0 = CPUMGetGuestCR0(pVCpu);
2374
2375 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
2376 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
2377 | (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
2378
2379 return emUpdateCRx(pVM, pVCpu, pRegFrame, DISCREG_CR0, NewCr0);
2380}
2381
2382/**
2383 * LMSW Emulation.
2384 */
2385static int emInterpretLmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2386{
2387 DISQPVPARAMVAL param1;
2388 uint32_t val;
2389 NOREF(pvFault); NOREF(pcbSize);
2390
2391 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2392 if(RT_FAILURE(rc))
2393 return VERR_EM_INTERPRETER;
2394
2395 switch(param1.type)
2396 {
2397 case DISQPV_TYPE_IMMEDIATE:
2398 case DISQPV_TYPE_ADDRESS:
2399 if(!(param1.flags & DISQPV_FLAG_16))
2400 return VERR_EM_INTERPRETER;
2401 val = param1.val.val32;
2402 break;
2403
2404 default:
2405 return VERR_EM_INTERPRETER;
2406 }
2407
2408 LogFlow(("emInterpretLmsw %x\n", val));
2409 return EMInterpretLMSW(pVM, pVCpu, pRegFrame, val);
2410}
2411
2412#ifdef EM_EMULATE_SMSW
2413/**
2414 * SMSW Emulation.
2415 */
2416static int emInterpretSmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2417{
2418 DISQPVPARAMVAL param1;
2419 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
2420
2421 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2422 if(RT_FAILURE(rc))
2423 return VERR_EM_INTERPRETER;
2424
2425 switch(param1.type)
2426 {
2427 case DISQPV_TYPE_IMMEDIATE:
2428 if(param1.size != sizeof(uint16_t))
2429 return VERR_EM_INTERPRETER;
2430 LogFlow(("emInterpretSmsw %d <- cr0 (%x)\n", pDis->Param1.Base.idxGenReg, cr0));
2431 rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, cr0);
2432 break;
2433
2434 case DISQPV_TYPE_ADDRESS:
2435 {
2436 RTGCPTR pParam1;
2437
2438 /* Actually forced to 16 bits regardless of the operand size. */
2439 if(param1.size != sizeof(uint16_t))
2440 return VERR_EM_INTERPRETER;
2441
2442 pParam1 = (RTGCPTR)param1.val.val64;
2443 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2444 LogFlow(("emInterpretSmsw %RGv <- cr0 (%x)\n", pParam1, cr0));
2445
2446 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &cr0, sizeof(uint16_t));
2447 if (RT_FAILURE(rc))
2448 {
2449 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2450 return VERR_EM_INTERPRETER;
2451 }
2452 break;
2453 }
2454
2455 default:
2456 return VERR_EM_INTERPRETER;
2457 }
2458
2459 LogFlow(("emInterpretSmsw %x\n", cr0));
2460 return rc;
2461}
2462#endif
2463
2464/**
2465 * MOV CRx
2466 */
2467static int emInterpretMovCRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2468{
2469 NOREF(pvFault); NOREF(pcbSize);
2470 if ((pDis->Param1.fUse == DISUSE_REG_GEN32 || pDis->Param1.fUse == DISUSE_REG_GEN64) && pDis->Param2.fUse == DISUSE_REG_CR)
2471 return EMInterpretCRxRead(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxGenReg, pDis->Param2.Base.idxCtrlReg);
2472
2473 if (pDis->Param1.fUse == DISUSE_REG_CR && (pDis->Param2.fUse == DISUSE_REG_GEN32 || pDis->Param2.fUse == DISUSE_REG_GEN64))
2474 return EMInterpretCRxWrite(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxCtrlReg, pDis->Param2.Base.idxGenReg);
2475
2476 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
2477}
2478
2479
2480/**
2481 * Interpret DRx write
2482 *
2483 * @returns VBox status code.
2484 * @param pVM The VM handle.
2485 * @param pVCpu The VMCPU handle.
2486 * @param pRegFrame The register frame.
2487 * @param DestRegDRx DRx register index (USE_REG_DR*)
2488 * @param SrcRegGen General purpose register index (USE_REG_E**))
2489 *
2490 */
2491VMMDECL(int) EMInterpretDRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
2492{
2493 uint64_t val;
2494 int rc;
2495 NOREF(pVM);
2496
2497 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2498 {
2499 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2500 }
2501 else
2502 {
2503 uint32_t val32;
2504 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2505 val = val32;
2506 }
2507
2508 if (RT_SUCCESS(rc))
2509 {
2510 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
2511 rc = CPUMSetGuestDRx(pVCpu, DestRegDrx, val);
2512 if (RT_SUCCESS(rc))
2513 return rc;
2514 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
2515 }
2516 return VERR_EM_INTERPRETER;
2517}
2518
2519
2520/**
2521 * Interpret DRx read
2522 *
2523 * @returns VBox status code.
2524 * @param pVM The VM handle.
2525 * @param pVCpu The VMCPU handle.
2526 * @param pRegFrame The register frame.
2527 * @param DestRegGen General purpose register index (USE_REG_E**))
2528 * @param SrcRegDRx DRx register index (USE_REG_DR*)
2529 *
2530 */
2531VMMDECL(int) EMInterpretDRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
2532{
2533 uint64_t val64;
2534 NOREF(pVM);
2535
2536 int rc = CPUMGetGuestDRx(pVCpu, SrcRegDrx, &val64);
2537 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
2538 if (CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
2539 {
2540 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
2541 }
2542 else
2543 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
2544
2545 if (RT_SUCCESS(rc))
2546 return VINF_SUCCESS;
2547
2548 return VERR_EM_INTERPRETER;
2549}
2550
2551
2552/**
2553 * MOV DRx
2554 */
2555static int emInterpretMovDRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2556{
2557 int rc = VERR_EM_INTERPRETER;
2558 NOREF(pvFault); NOREF(pcbSize);
2559
2560 if((pDis->Param1.fUse == DISUSE_REG_GEN32 || pDis->Param1.fUse == DISUSE_REG_GEN64) && pDis->Param2.fUse == DISUSE_REG_DBG)
2561 {
2562 rc = EMInterpretDRxRead(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxGenReg, pDis->Param2.Base.idxDbgReg);
2563 }
2564 else
2565 if(pDis->Param1.fUse == DISUSE_REG_DBG && (pDis->Param2.fUse == DISUSE_REG_GEN32 || pDis->Param2.fUse == DISUSE_REG_GEN64))
2566 {
2567 rc = EMInterpretDRxWrite(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxDbgReg, pDis->Param2.Base.idxGenReg);
2568 }
2569 else
2570 AssertMsgFailed(("Unexpected debug register move\n"));
2571
2572 return rc;
2573}
2574
2575
2576/**
2577 * LLDT Emulation.
2578 */
2579static int emInterpretLLdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2580{
2581 DISQPVPARAMVAL param1;
2582 RTSEL sel;
2583 NOREF(pVM); NOREF(pvFault); NOREF(pcbSize);
2584
2585 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2586 if(RT_FAILURE(rc))
2587 return VERR_EM_INTERPRETER;
2588
2589 switch(param1.type)
2590 {
2591 case DISQPV_TYPE_ADDRESS:
2592 return VERR_EM_INTERPRETER; //feeling lazy right now
2593
2594 case DISQPV_TYPE_IMMEDIATE:
2595 if(!(param1.flags & DISQPV_FLAG_16))
2596 return VERR_EM_INTERPRETER;
2597 sel = (RTSEL)param1.val.val16;
2598 break;
2599
2600 default:
2601 return VERR_EM_INTERPRETER;
2602 }
2603
2604#ifdef IN_RING0
2605 /* Only for the VT-x real-mode emulation case. */
2606 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
2607 CPUMSetGuestLDTR(pVCpu, sel);
2608 return VINF_SUCCESS;
2609#else
2610 if (sel == 0)
2611 {
2612 if (CPUMGetHyperLDTR(pVCpu) == 0)
2613 {
2614 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
2615 return VINF_SUCCESS;
2616 }
2617 }
2618 //still feeling lazy
2619 return VERR_EM_INTERPRETER;
2620#endif
2621}
2622
2623#ifdef IN_RING0
2624/**
2625 * LIDT/LGDT Emulation.
2626 */
2627static int emInterpretLIGdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2628{
2629 DISQPVPARAMVAL param1;
2630 RTGCPTR pParam1;
2631 X86XDTR32 dtr32;
2632 NOREF(pvFault); NOREF(pcbSize);
2633
2634 Log(("Emulate %s at %RGv\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip));
2635
2636 /* Only for the VT-x real-mode emulation case. */
2637 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
2638
2639 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2640 if(RT_FAILURE(rc))
2641 return VERR_EM_INTERPRETER;
2642
2643 switch(param1.type)
2644 {
2645 case DISQPV_TYPE_ADDRESS:
2646 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, param1.val.val16);
2647 break;
2648
2649 default:
2650 return VERR_EM_INTERPRETER;
2651 }
2652
2653 rc = emRamRead(pVM, pVCpu, pRegFrame, &dtr32, pParam1, sizeof(dtr32));
2654 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2655
2656 if (!(pDis->fPrefix & DISPREFIX_OPSIZE))
2657 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
2658
2659 if (pDis->pCurInstr->uOpcode == OP_LIDT)
2660 CPUMSetGuestIDTR(pVCpu, dtr32.uAddr, dtr32.cb);
2661 else
2662 CPUMSetGuestGDTR(pVCpu, dtr32.uAddr, dtr32.cb);
2663
2664 return VINF_SUCCESS;
2665}
2666#endif
2667
2668
2669#ifdef IN_RC
2670/**
2671 * STI Emulation.
2672 *
2673 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
2674 */
2675static int emInterpretSti(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2676{
2677 NOREF(pcbSize);
2678 PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
2679
2680 if(!pGCState)
2681 {
2682 Assert(pGCState);
2683 return VERR_EM_INTERPRETER;
2684 }
2685 pGCState->uVMFlags |= X86_EFL_IF;
2686
2687 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
2688 Assert(pvFault == SELMToFlat(pVM, DISSELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
2689
2690 pVCpu->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pDis->cbInstr;
2691 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2692
2693 return VINF_SUCCESS;
2694}
2695#endif /* IN_RC */
2696
2697
2698/**
2699 * HLT Emulation.
2700 */
2701static VBOXSTRICTRC
2702emInterpretHlt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2703{
2704 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
2705 return VINF_EM_HALT;
2706}
2707
2708
2709/**
2710 * Interpret RDTSC
2711 *
2712 * @returns VBox status code.
2713 * @param pVM The VM handle.
2714 * @param pVCpu The VMCPU handle.
2715 * @param pRegFrame The register frame.
2716 *
2717 */
2718VMMDECL(int) EMInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2719{
2720 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2721
2722 if (uCR4 & X86_CR4_TSD)
2723 return VERR_EM_INTERPRETER; /* genuine #GP */
2724
2725 uint64_t uTicks = TMCpuTickGet(pVCpu);
2726
2727 /* Same behaviour in 32 & 64 bits mode */
2728 pRegFrame->rax = (uint32_t)uTicks;
2729 pRegFrame->rdx = (uTicks >> 32ULL);
2730
2731 NOREF(pVM);
2732 return VINF_SUCCESS;
2733}
2734
2735/**
2736 * Interpret RDTSCP
2737 *
2738 * @returns VBox status code.
2739 * @param pVM The VM handle.
2740 * @param pVCpu The VMCPU handle.
2741 * @param pCtx The CPU context.
2742 *
2743 */
2744VMMDECL(int) EMInterpretRdtscp(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2745{
2746 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2747
2748 if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
2749 {
2750 AssertFailed();
2751 return VERR_EM_INTERPRETER; /* genuine #UD */
2752 }
2753
2754 if (uCR4 & X86_CR4_TSD)
2755 return VERR_EM_INTERPRETER; /* genuine #GP */
2756
2757 uint64_t uTicks = TMCpuTickGet(pVCpu);
2758
2759 /* Same behaviour in 32 & 64 bits mode */
2760 pCtx->rax = (uint32_t)uTicks;
2761 pCtx->rdx = (uTicks >> 32ULL);
2762 /* Low dword of the TSC_AUX msr only. */
2763 CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pCtx->rcx);
2764 pCtx->rcx &= UINT32_C(0xffffffff);
2765
2766 return VINF_SUCCESS;
2767}
2768
2769/**
2770 * RDTSC Emulation.
2771 */
2772static int emInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2773{
2774 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
2775 return EMInterpretRdtsc(pVM, pVCpu, pRegFrame);
2776}
2777
2778/**
2779 * Interpret RDPMC
2780 *
2781 * @returns VBox status code.
2782 * @param pVM The VM handle.
2783 * @param pVCpu The VMCPU handle.
2784 * @param pRegFrame The register frame.
2785 *
2786 */
2787VMMDECL(int) EMInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2788{
2789 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
2790
2791 /* If X86_CR4_PCE is not set, then CPL must be zero. */
2792 if ( !(uCR4 & X86_CR4_PCE)
2793 && CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
2794 {
2795 Assert(CPUMGetGuestCR0(pVCpu) & X86_CR0_PE);
2796 return VERR_EM_INTERPRETER; /* genuine #GP */
2797 }
2798
2799 /* Just return zero here; rather tricky to properly emulate this, especially as the specs are a mess. */
2800 pRegFrame->rax = 0;
2801 pRegFrame->rdx = 0;
2802 /** @todo We should trigger a #GP here if the cpu doesn't support the index in ecx. */
2803
2804 NOREF(pVM);
2805 return VINF_SUCCESS;
2806}
2807
2808/**
2809 * RDPMC Emulation
2810 */
2811static int emInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2812{
2813 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
2814 return EMInterpretRdpmc(pVM, pVCpu, pRegFrame);
2815}
2816
2817
2818/**
2819 * MONITOR Emulation.
2820 */
2821VMMDECL(int) EMInterpretMonitor(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2822{
2823 uint32_t u32Dummy, u32ExtFeatures, cpl;
2824 NOREF(pVM);
2825
2826 if (pRegFrame->ecx != 0)
2827 {
2828 Log(("emInterpretMonitor: unexpected ecx=%x -> recompiler!!\n", pRegFrame->ecx));
2829 return VERR_EM_INTERPRETER; /* illegal value. */
2830 }
2831
2832 /* Get the current privilege level. */
2833 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2834 if (cpl != 0)
2835 return VERR_EM_INTERPRETER; /* supervisor only */
2836
2837 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2838 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2839 return VERR_EM_INTERPRETER; /* not supported */
2840
2841 EMMonitorWaitPrepare(pVCpu, pRegFrame->rax, pRegFrame->rcx, pRegFrame->rdx);
2842 return VINF_SUCCESS;
2843}
2844
2845static int emInterpretMonitor(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2846{
2847 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
2848 return EMInterpretMonitor(pVM, pVCpu, pRegFrame);
2849}
2850
2851
2852/**
2853 * MWAIT Emulation.
2854 */
2855VMMDECL(VBOXSTRICTRC) EMInterpretMWait(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
2856{
2857 uint32_t u32Dummy, u32ExtFeatures, cpl, u32MWaitFeatures;
2858 NOREF(pVM);
2859
2860 /* Get the current privilege level. */
2861 cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
2862 if (cpl != 0)
2863 return VERR_EM_INTERPRETER; /* supervisor only */
2864
2865 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2866 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2867 return VERR_EM_INTERPRETER; /* not supported */
2868
2869 /*
2870 * CPUID.05H.ECX[0] defines support for power management extensions (eax)
2871 * CPUID.05H.ECX[1] defines support for interrupts as break events for mwait even when IF=0
2872 */
2873 CPUMGetGuestCpuId(pVCpu, 5, &u32Dummy, &u32Dummy, &u32MWaitFeatures, &u32Dummy);
2874 if (pRegFrame->ecx > 1)
2875 {
2876 Log(("EMInterpretMWait: unexpected ecx value %x -> recompiler\n", pRegFrame->ecx));
2877 return VERR_EM_INTERPRETER; /* illegal value. */
2878 }
2879
2880 if (pRegFrame->ecx && !(u32MWaitFeatures & X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
2881 {
2882 Log(("EMInterpretMWait: unsupported X86_CPUID_MWAIT_ECX_BREAKIRQIF0 -> recompiler\n"));
2883 return VERR_EM_INTERPRETER; /* illegal value. */
2884 }
2885
2886 return EMMonitorWaitPerform(pVCpu, pRegFrame->rax, pRegFrame->rcx);
2887}
2888
2889static VBOXSTRICTRC emInterpretMWait(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2890{
2891 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
2892 return EMInterpretMWait(pVM, pVCpu, pRegFrame);
2893}
2894
2895
2896#ifdef LOG_ENABLED
2897static const char *emMSRtoString(uint32_t uMsr)
2898{
2899 switch (uMsr)
2900 {
2901 case MSR_IA32_APICBASE:
2902 return "MSR_IA32_APICBASE";
2903 case MSR_IA32_CR_PAT:
2904 return "MSR_IA32_CR_PAT";
2905 case MSR_IA32_SYSENTER_CS:
2906 return "MSR_IA32_SYSENTER_CS";
2907 case MSR_IA32_SYSENTER_EIP:
2908 return "MSR_IA32_SYSENTER_EIP";
2909 case MSR_IA32_SYSENTER_ESP:
2910 return "MSR_IA32_SYSENTER_ESP";
2911 case MSR_K6_EFER:
2912 return "MSR_K6_EFER";
2913 case MSR_K8_SF_MASK:
2914 return "MSR_K8_SF_MASK";
2915 case MSR_K6_STAR:
2916 return "MSR_K6_STAR";
2917 case MSR_K8_LSTAR:
2918 return "MSR_K8_LSTAR";
2919 case MSR_K8_CSTAR:
2920 return "MSR_K8_CSTAR";
2921 case MSR_K8_FS_BASE:
2922 return "MSR_K8_FS_BASE";
2923 case MSR_K8_GS_BASE:
2924 return "MSR_K8_GS_BASE";
2925 case MSR_K8_KERNEL_GS_BASE:
2926 return "MSR_K8_KERNEL_GS_BASE";
2927 case MSR_K8_TSC_AUX:
2928 return "MSR_K8_TSC_AUX";
2929 case MSR_IA32_BIOS_SIGN_ID:
2930 return "Unsupported MSR_IA32_BIOS_SIGN_ID";
2931 case MSR_IA32_PLATFORM_ID:
2932 return "Unsupported MSR_IA32_PLATFORM_ID";
2933 case MSR_IA32_BIOS_UPDT_TRIG:
2934 return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
2935 case MSR_IA32_TSC:
2936 return "MSR_IA32_TSC";
2937 case MSR_IA32_MISC_ENABLE:
2938 return "MSR_IA32_MISC_ENABLE";
2939 case MSR_IA32_MTRR_CAP:
2940 return "MSR_IA32_MTRR_CAP";
2941 case MSR_IA32_MCP_CAP:
2942 return "Unsupported MSR_IA32_MCP_CAP";
2943 case MSR_IA32_MCP_STATUS:
2944 return "Unsupported MSR_IA32_MCP_STATUS";
2945 case MSR_IA32_MCP_CTRL:
2946 return "Unsupported MSR_IA32_MCP_CTRL";
2947 case MSR_IA32_MTRR_DEF_TYPE:
2948 return "MSR_IA32_MTRR_DEF_TYPE";
2949 case MSR_K7_EVNTSEL0:
2950 return "Unsupported MSR_K7_EVNTSEL0";
2951 case MSR_K7_EVNTSEL1:
2952 return "Unsupported MSR_K7_EVNTSEL1";
2953 case MSR_K7_EVNTSEL2:
2954 return "Unsupported MSR_K7_EVNTSEL2";
2955 case MSR_K7_EVNTSEL3:
2956 return "Unsupported MSR_K7_EVNTSEL3";
2957 case MSR_IA32_MC0_CTL:
2958 return "Unsupported MSR_IA32_MC0_CTL";
2959 case MSR_IA32_MC0_STATUS:
2960 return "Unsupported MSR_IA32_MC0_STATUS";
2961 case MSR_IA32_PERFEVTSEL0:
2962 return "Unsupported MSR_IA32_PERFEVTSEL0";
2963 case MSR_IA32_PERFEVTSEL1:
2964 return "Unsupported MSR_IA32_PERFEVTSEL1";
2965 case MSR_IA32_PERF_STATUS:
2966 return "MSR_IA32_PERF_STATUS";
2967 case MSR_IA32_PLATFORM_INFO:
2968 return "MSR_IA32_PLATFORM_INFO";
2969 case MSR_IA32_PERF_CTL:
2970 return "Unsupported MSR_IA32_PERF_CTL";
2971 case MSR_K7_PERFCTR0:
2972 return "Unsupported MSR_K7_PERFCTR0";
2973 case MSR_K7_PERFCTR1:
2974 return "Unsupported MSR_K7_PERFCTR1";
2975 case MSR_K7_PERFCTR2:
2976 return "Unsupported MSR_K7_PERFCTR2";
2977 case MSR_K7_PERFCTR3:
2978 return "Unsupported MSR_K7_PERFCTR3";
2979 case MSR_IA32_PMC0:
2980 return "Unsupported MSR_IA32_PMC0";
2981 case MSR_IA32_PMC1:
2982 return "Unsupported MSR_IA32_PMC1";
2983 case MSR_IA32_PMC2:
2984 return "Unsupported MSR_IA32_PMC2";
2985 case MSR_IA32_PMC3:
2986 return "Unsupported MSR_IA32_PMC3";
2987 }
2988 return "Unknown MSR";
2989}
2990#endif /* LOG_ENABLED */
2991
2992
2993/**
2994 * Interpret RDMSR
2995 *
2996 * @returns VBox status code.
2997 * @param pVM The VM handle.
2998 * @param pVCpu The VMCPU handle.
2999 * @param pRegFrame The register frame.
3000 */
3001VMMDECL(int) EMInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3002{
3003 /** @todo According to the Intel manuals, there's a REX version of RDMSR that is slightly different.
3004 * That version clears the high dwords of both RDX & RAX */
3005 NOREF(pVM);
3006
3007 /* Get the current privilege level. */
3008 if (CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
3009 return VERR_EM_INTERPRETER; /* supervisor only */
3010
3011 uint64_t uValue;
3012 int rc = CPUMQueryGuestMsr(pVCpu, pRegFrame->ecx, &uValue);
3013 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3014 {
3015 Assert(rc == VERR_CPUM_RAISE_GP_0);
3016 return VERR_EM_INTERPRETER;
3017 }
3018 pRegFrame->rax = (uint32_t) uValue;
3019 pRegFrame->rdx = (uint32_t)(uValue >> 32);
3020 LogFlow(("EMInterpretRdmsr %s (%x) -> %RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, uValue));
3021 return rc;
3022}
3023
3024
3025/**
3026 * RDMSR Emulation.
3027 */
3028static int emInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3029{
3030 /* Note: The Intel manual claims there's a REX version of RDMSR that's slightly
3031 different, so we play safe by completely disassembling the instruction. */
3032 Assert(!(pDis->fPrefix & DISPREFIX_REX));
3033 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3034 return EMInterpretRdmsr(pVM, pVCpu, pRegFrame);
3035}
3036
3037
3038/**
3039 * Interpret WRMSR
3040 *
3041 * @returns VBox status code.
3042 * @param pVM The VM handle.
3043 * @param pVCpu The VMCPU handle.
3044 * @param pRegFrame The register frame.
3045 */
3046VMMDECL(int) EMInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3047{
3048 /* Check the current privilege level, this instruction is supervisor only. */
3049 if (CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
3050 return VERR_EM_INTERPRETER; /** @todo raise \#GP(0) */
3051
3052 int rc = CPUMSetGuestMsr(pVCpu, pRegFrame->ecx, RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx));
3053 if (rc != VINF_SUCCESS)
3054 {
3055 Assert(rc == VERR_CPUM_RAISE_GP_0);
3056 return VERR_EM_INTERPRETER;
3057 }
3058 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx,
3059 RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx)));
3060 NOREF(pVM);
3061 return rc;
3062}
3063
3064
3065/**
3066 * WRMSR Emulation.
3067 */
3068static int emInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3069{
3070 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3071 return EMInterpretWrmsr(pVM, pVCpu, pRegFrame);
3072}
3073
3074
3075/**
3076 * Internal worker.
3077 * @copydoc emInterpretInstructionCPUOuter
3078 */
3079DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
3080 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize)
3081{
3082 Assert(enmCodeType == EMCODETYPE_SUPERVISOR || enmCodeType == EMCODETYPE_ALL);
3083 Assert(pcbSize);
3084 *pcbSize = 0;
3085
3086 if (enmCodeType == EMCODETYPE_SUPERVISOR)
3087 {
3088 /*
3089 * Only supervisor guest code!!
3090 * And no complicated prefixes.
3091 */
3092 /* Get the current privilege level. */
3093 uint32_t cpl = CPUMGetGuestCPL(pVCpu, pRegFrame);
3094 if ( cpl != 0
3095 && pDis->pCurInstr->uOpcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
3096 {
3097 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
3098 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
3099 return VERR_EM_INTERPRETER;
3100 }
3101 }
3102 else
3103 Log2(("emInterpretInstructionCPU allowed to interpret user-level code!!\n"));
3104
3105#ifdef IN_RC
3106 if ( (pDis->fPrefix & (DISPREFIX_REPNE | DISPREFIX_REP))
3107 || ( (pDis->fPrefix & DISPREFIX_LOCK)
3108 && pDis->pCurInstr->uOpcode != OP_CMPXCHG
3109 && pDis->pCurInstr->uOpcode != OP_CMPXCHG8B
3110 && pDis->pCurInstr->uOpcode != OP_XADD
3111 && pDis->pCurInstr->uOpcode != OP_OR
3112 && pDis->pCurInstr->uOpcode != OP_AND
3113 && pDis->pCurInstr->uOpcode != OP_XOR
3114 && pDis->pCurInstr->uOpcode != OP_BTR
3115 )
3116 )
3117#else
3118 if ( (pDis->fPrefix & DISPREFIX_REPNE)
3119 || ( (pDis->fPrefix & DISPREFIX_REP)
3120 && pDis->pCurInstr->uOpcode != OP_STOSWD
3121 )
3122 || ( (pDis->fPrefix & DISPREFIX_LOCK)
3123 && pDis->pCurInstr->uOpcode != OP_OR
3124 && pDis->pCurInstr->uOpcode != OP_AND
3125 && pDis->pCurInstr->uOpcode != OP_XOR
3126 && pDis->pCurInstr->uOpcode != OP_BTR
3127 && pDis->pCurInstr->uOpcode != OP_CMPXCHG
3128 && pDis->pCurInstr->uOpcode != OP_CMPXCHG8B
3129 )
3130 )
3131#endif
3132 {
3133 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
3134 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
3135 return VERR_EM_INTERPRETER;
3136 }
3137
3138#if HC_ARCH_BITS == 32
3139 /*
3140 * Unable to emulate most >4 bytes accesses in 32 bits mode.
3141 * Whitelisted instructions are safe.
3142 */
3143 if ( pDis->Param1.cb > 4
3144 && CPUMIsGuestIn64BitCode(pVCpu, pRegFrame))
3145 {
3146 uint32_t uOpCode = pDis->pCurInstr->uOpcode;
3147 if ( uOpCode != OP_STOSWD
3148 && uOpCode != OP_MOV
3149 && uOpCode != OP_CMPXCHG8B
3150 && uOpCode != OP_XCHG
3151 && uOpCode != OP_BTS
3152 && uOpCode != OP_BTR
3153 && uOpCode != OP_BTC
3154# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0
3155 && uOpCode != OP_CMPXCHG /* solaris */
3156 && uOpCode != OP_AND /* windows */
3157 && uOpCode != OP_OR /* windows */
3158 && uOpCode != OP_XOR /* because we can */
3159 && uOpCode != OP_ADD /* windows (dripple) */
3160 && uOpCode != OP_ADC /* because we can */
3161 && uOpCode != OP_SUB /* because we can */
3162 /** @todo OP_BTS or is that a different kind of failure? */
3163# endif
3164 )
3165 {
3166# ifdef VBOX_WITH_STATISTICS
3167 switch (pDis->pCurInstr->uOpcode)
3168 {
3169# define INTERPRET_FAILED_CASE(opcode, Instr) \
3170 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
3171 INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
3172 INTERPRET_FAILED_CASE(OP_DEC,Dec);
3173 INTERPRET_FAILED_CASE(OP_INC,Inc);
3174 INTERPRET_FAILED_CASE(OP_POP,Pop);
3175 INTERPRET_FAILED_CASE(OP_OR, Or);
3176 INTERPRET_FAILED_CASE(OP_XOR,Xor);
3177 INTERPRET_FAILED_CASE(OP_AND,And);
3178 INTERPRET_FAILED_CASE(OP_MOV,Mov);
3179 INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
3180 INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
3181 INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
3182 INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
3183 INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
3184 INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
3185 INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
3186 INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
3187 INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
3188 INTERPRET_FAILED_CASE(OP_CLTS,Clts);
3189 INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
3190 INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
3191 INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
3192 INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
3193 INTERPRET_FAILED_CASE(OP_ADD,Add);
3194 INTERPRET_FAILED_CASE(OP_SUB,Sub);
3195 INTERPRET_FAILED_CASE(OP_ADC,Adc);
3196 INTERPRET_FAILED_CASE(OP_BTR,Btr);
3197 INTERPRET_FAILED_CASE(OP_BTS,Bts);
3198 INTERPRET_FAILED_CASE(OP_BTC,Btc);
3199 INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
3200 INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
3201 INTERPRET_FAILED_CASE(OP_STI, Sti);
3202 INTERPRET_FAILED_CASE(OP_XADD,XAdd);
3203 INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
3204 INTERPRET_FAILED_CASE(OP_HLT, Hlt);
3205 INTERPRET_FAILED_CASE(OP_IRET,Iret);
3206 INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
3207 INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
3208# undef INTERPRET_FAILED_CASE
3209 default:
3210 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3211 break;
3212 }
3213# endif /* VBOX_WITH_STATISTICS */
3214 return VERR_EM_INTERPRETER;
3215 }
3216 }
3217#endif
3218
3219 VBOXSTRICTRC rc;
3220#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
3221 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pDis)));
3222#endif
3223 switch (pDis->pCurInstr->uOpcode)
3224 {
3225 /*
3226 * Macros for generating the right case statements.
3227 */
3228# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3229 case opcode:\
3230 if (pDis->fPrefix & DISPREFIX_LOCK) \
3231 rc = emInterpretLock##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
3232 else \
3233 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3234 if (RT_SUCCESS(rc)) \
3235 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3236 else \
3237 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3238 return rc
3239#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
3240 case opcode:\
3241 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3242 if (RT_SUCCESS(rc)) \
3243 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3244 else \
3245 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3246 return rc
3247
3248#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
3249 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
3250#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3251 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
3252
3253#define INTERPRET_CASE(opcode, Instr) \
3254 case opcode:\
3255 rc = emInterpret##Instr(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3256 if (RT_SUCCESS(rc)) \
3257 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3258 else \
3259 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3260 return rc
3261
3262#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
3263 case opcode:\
3264 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3265 if (RT_SUCCESS(rc)) \
3266 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3267 else \
3268 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3269 return rc
3270
3271#define INTERPRET_STAT_CASE(opcode, Instr) \
3272 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
3273
3274 /*
3275 * The actual case statements.
3276 */
3277 INTERPRET_CASE(OP_XCHG,Xchg);
3278 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
3279 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3280 INTERPRET_CASE(OP_POP,Pop);
3281 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3282 INTERPRET_CASE_EX_LOCK_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor, EMEmulateLockXor);
3283 INTERPRET_CASE_EX_LOCK_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd, EMEmulateLockAnd);
3284 INTERPRET_CASE(OP_MOV,Mov);
3285#ifndef IN_RC
3286 INTERPRET_CASE(OP_STOSWD,StosWD);
3287#endif
3288 INTERPRET_CASE(OP_INVLPG,InvlPg);
3289 INTERPRET_CASE(OP_CPUID,CpuId);
3290 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3291 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3292#ifdef IN_RING0
3293 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3294 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3295#endif
3296 INTERPRET_CASE(OP_LLDT,LLdt);
3297 INTERPRET_CASE(OP_LMSW,Lmsw);
3298#ifdef EM_EMULATE_SMSW
3299 INTERPRET_CASE(OP_SMSW,Smsw);
3300#endif
3301 INTERPRET_CASE(OP_CLTS,Clts);
3302 INTERPRET_CASE(OP_MONITOR, Monitor);
3303 INTERPRET_CASE(OP_MWAIT, MWait);
3304 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3305 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3306 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3307 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3308 INTERPRET_CASE(OP_ADC,Adc);
3309 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3310 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3311 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3312 INTERPRET_CASE(OP_RDPMC,Rdpmc);
3313 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3314 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3315#ifdef IN_RC
3316 INTERPRET_CASE(OP_STI,Sti);
3317 INTERPRET_CASE(OP_XADD, XAdd);
3318#endif
3319 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3320 INTERPRET_CASE(OP_HLT,Hlt);
3321 INTERPRET_CASE(OP_IRET,Iret);
3322 INTERPRET_CASE(OP_WBINVD,WbInvd);
3323#ifdef VBOX_WITH_STATISTICS
3324# ifndef IN_RC
3325 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3326# endif
3327 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3328#endif
3329
3330 default:
3331 Log3(("emInterpretInstructionCPU: opcode=%d\n", pDis->pCurInstr->uOpcode));
3332 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3333 return VERR_EM_INTERPRETER;
3334
3335#undef INTERPRET_CASE_EX_PARAM2
3336#undef INTERPRET_STAT_CASE
3337#undef INTERPRET_CASE_EX
3338#undef INTERPRET_CASE
3339 } /* switch (opcode) */
3340 /* not reached */
3341}
3342
3343/**
3344 * Interprets the current instruction using the supplied DISCPUSTATE structure.
3345 *
3346 * EIP is *NOT* updated!
3347 *
3348 * @returns VBox strict status code.
3349 * @retval VINF_* Scheduling instructions. When these are returned, it
3350 * starts to get a bit tricky to know whether code was
3351 * executed or not... We'll address this when it becomes a problem.
3352 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3353 * @retval VERR_* Fatal errors.
3354 *
3355 * @param pVCpu The VMCPU handle.
3356 * @param pDis The disassembler cpu state for the instruction to be
3357 * interpreted.
3358 * @param pRegFrame The register frame. EIP is *NOT* changed!
3359 * @param pvFault The fault address (CR2).
3360 * @param pcbSize Size of the write (if applicable).
3361 * @param enmCodeType Code type (user/supervisor)
3362 *
3363 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
3364 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
3365 * to worry about e.g. invalid modrm combinations (!)
3366 *
3367 * @todo At this time we do NOT check if the instruction overwrites vital information.
3368 * Make sure this can't happen!! (will add some assertions/checks later)
3369 */
3370DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPUOuter(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
3371 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize)
3372{
3373 STAM_PROFILE_START(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
3374 VBOXSTRICTRC rc = emInterpretInstructionCPU(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, pRegFrame, pvFault, enmCodeType, pcbSize);
3375 STAM_PROFILE_STOP(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
3376 if (RT_SUCCESS(rc))
3377 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
3378 else
3379 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
3380 return rc;
3381}
3382
3383
3384#endif /* !VBOX_WITH_IEM */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette