VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 60852

Last change on this file since 60852 was 60804, checked in by vboxsync, 9 years ago

VMM: Introduced the new APIC update force-flag and relevant fixes, Win8.1 SMP boots now.
VMM/HMVMXR0: Fixed the HLT exit to use instruction length and also keep the INHIBIT force-flag
more in sync with the VT-x's guest-interruptibility state.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 142.1 KB
Line 
1/* $Id: EMAll.cpp 60804 2016-05-03 14:13:51Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_EM
23#include <VBox/vmm/em.h>
24#include <VBox/vmm/mm.h>
25#include <VBox/vmm/selm.h>
26#include <VBox/vmm/patm.h>
27#include <VBox/vmm/csam.h>
28#include <VBox/vmm/pgm.h>
29#ifdef VBOX_WITH_IEM
30# include <VBox/vmm/iem.h>
31#endif
32#include <VBox/vmm/iom.h>
33#include <VBox/vmm/stam.h>
34#include "EMInternal.h"
35#include <VBox/vmm/vm.h>
36#include <VBox/vmm/vmm.h>
37#include <VBox/vmm/hm.h>
38#include <VBox/vmm/tm.h>
39#include <VBox/vmm/pdmapi.h>
40#include <VBox/param.h>
41#include <VBox/err.h>
42#include <VBox/dis.h>
43#include <VBox/disopcode.h>
44#include <VBox/log.h>
45#include "internal/pgm.h"
46#include <iprt/assert.h>
47#include <iprt/asm.h>
48#include <iprt/string.h>
49
50#ifndef IN_RC
51#undef VBOX_WITH_IEM
52#endif
53#ifdef VBOX_WITH_IEM
54//# define VBOX_COMPARE_IEM_AND_EM /* debugging... */
55//# define VBOX_SAME_AS_EM
56//# define VBOX_COMPARE_IEM_LAST
57#endif
58
59#ifdef VBOX_WITH_RAW_RING1
60# define EM_EMULATE_SMSW
61#endif
62
63
64/*********************************************************************************************************************************
65* Defined Constants And Macros *
66*********************************************************************************************************************************/
67/** @def EM_ASSERT_FAULT_RETURN
68 * Safety check.
69 *
70 * Could in theory misfire on a cross page boundary access...
71 *
72 * Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
73 * turns up an alias page instead of the original faulting one and annoying the
74 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
75 */
76#if 0
77# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
78#else
79# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
80#endif
81
82
83/*********************************************************************************************************************************
84* Internal Functions *
85*********************************************************************************************************************************/
86#if !defined(VBOX_WITH_IEM) || defined(VBOX_COMPARE_IEM_AND_EM)
87DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPUOuter(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
88 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize);
89#endif
90
91
92/*********************************************************************************************************************************
93* Global Variables *
94*********************************************************************************************************************************/
95#ifdef VBOX_COMPARE_IEM_AND_EM
96static const uint32_t g_fInterestingFFs = VMCPU_FF_TO_R3
97 | VMCPU_FF_CSAM_PENDING_ACTION | VMCPU_FF_CSAM_SCAN_PAGE | VMCPU_FF_INHIBIT_INTERRUPTS
98 | VMCPU_FF_SELM_SYNC_LDT | VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_TSS | VMCPU_FF_TRPM_SYNC_IDT
99 | VMCPU_FF_TLB_FLUSH | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL;
100static uint32_t g_fIncomingFFs;
101static CPUMCTX g_IncomingCtx;
102static bool g_fIgnoreRaxRdx = false;
103
104static uint32_t g_fEmFFs;
105static CPUMCTX g_EmCtx;
106static uint8_t g_abEmWrote[256];
107static size_t g_cbEmWrote;
108
109static uint32_t g_fIemFFs;
110static CPUMCTX g_IemCtx;
111extern uint8_t g_abIemWrote[256];
112#if defined(VBOX_COMPARE_IEM_FIRST) || defined(VBOX_COMPARE_IEM_LAST)
113extern size_t g_cbIemWrote;
114#else
115static size_t g_cbIemWrote;
116#endif
117#endif
118
119
120/**
121 * Get the current execution manager status.
122 *
123 * @returns Current status.
124 * @param pVCpu The cross context virtual CPU structure.
125 */
126VMM_INT_DECL(EMSTATE) EMGetState(PVMCPU pVCpu)
127{
128 return pVCpu->em.s.enmState;
129}
130
131
132/**
133 * Sets the current execution manager status. (use only when you know what you're doing!)
134 *
135 * @param pVCpu The cross context virtual CPU structure.
136 * @param enmNewState The new state, EMSTATE_WAIT_SIPI or EMSTATE_HALTED.
137 */
138VMM_INT_DECL(void) EMSetState(PVMCPU pVCpu, EMSTATE enmNewState)
139{
140 /* Only allowed combination: */
141 Assert(pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI && enmNewState == EMSTATE_HALTED);
142 pVCpu->em.s.enmState = enmNewState;
143}
144
145
146/**
147 * Sets the PC for which interrupts should be inhibited.
148 *
149 * @param pVCpu The cross context virtual CPU structure.
150 * @param PC The PC.
151 */
152VMMDECL(void) EMSetInhibitInterruptsPC(PVMCPU pVCpu, RTGCUINTPTR PC)
153{
154 pVCpu->em.s.GCPtrInhibitInterrupts = PC;
155 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
156}
157
158
159/**
160 * Gets the PC for which interrupts should be inhibited.
161 *
162 * There are a few instructions which inhibits or delays interrupts
163 * for the instruction following them. These instructions are:
164 * - STI
165 * - MOV SS, r/m16
166 * - POP SS
167 *
168 * @returns The PC for which interrupts should be inhibited.
169 * @param pVCpu The cross context virtual CPU structure.
170 *
171 */
172VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVMCPU pVCpu)
173{
174 return pVCpu->em.s.GCPtrInhibitInterrupts;
175}
176
177
178/**
179 * Prepare an MWAIT - essentials of the MONITOR instruction.
180 *
181 * @returns VINF_SUCCESS
182 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
183 * @param rax The content of RAX.
184 * @param rcx The content of RCX.
185 * @param rdx The content of RDX.
186 * @param GCPhys The physical address corresponding to rax.
187 */
188VMM_INT_DECL(int) EMMonitorWaitPrepare(PVMCPU pVCpu, uint64_t rax, uint64_t rcx, uint64_t rdx, RTGCPHYS GCPhys)
189{
190 pVCpu->em.s.MWait.uMonitorRAX = rax;
191 pVCpu->em.s.MWait.uMonitorRCX = rcx;
192 pVCpu->em.s.MWait.uMonitorRDX = rdx;
193 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_MONITOR_ACTIVE;
194 /** @todo Make use of GCPhys. */
195 NOREF(GCPhys);
196 /** @todo Complete MONITOR implementation. */
197 return VINF_SUCCESS;
198}
199
200
201/**
202 * Performs an MWAIT.
203 *
204 * @returns VINF_SUCCESS
205 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
206 * @param rax The content of RAX.
207 * @param rcx The content of RCX.
208 */
209VMM_INT_DECL(int) EMMonitorWaitPerform(PVMCPU pVCpu, uint64_t rax, uint64_t rcx)
210{
211 pVCpu->em.s.MWait.uMWaitRAX = rax;
212 pVCpu->em.s.MWait.uMWaitRCX = rcx;
213 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_ACTIVE;
214 if (rcx)
215 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_BREAKIRQIF0;
216 else
217 pVCpu->em.s.MWait.fWait &= ~EMMWAIT_FLAG_BREAKIRQIF0;
218 /** @todo not completely correct?? */
219 return VINF_EM_HALT;
220}
221
222
223
224/**
225 * Determine if we should continue execution in HM after encountering an mwait
226 * instruction.
227 *
228 * Clears MWAIT flags if returning @c true.
229 *
230 * @returns true if we should continue, false if we should halt.
231 * @param pVCpu The cross context virtual CPU structure.
232 * @param pCtx Current CPU context.
233 */
234VMM_INT_DECL(bool) EMMonitorWaitShouldContinue(PVMCPU pVCpu, PCPUMCTX pCtx)
235{
236 if ( pCtx->eflags.Bits.u1IF
237 || ( (pVCpu->em.s.MWait.fWait & (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0))
238 == (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)) )
239 {
240 if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
241 {
242 pVCpu->em.s.MWait.fWait &= ~(EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0);
243 return true;
244 }
245 }
246
247 return false;
248}
249
250
251/**
252 * Determine if we should continue execution in HM after encountering a hlt
253 * instruction.
254 *
255 * @returns true if we should continue, false if we should halt.
256 * @param pVCpu The cross context virtual CPU structure.
257 * @param pCtx Current CPU context.
258 */
259VMM_INT_DECL(bool) EMShouldContinueAfterHalt(PVMCPU pVCpu, PCPUMCTX pCtx)
260{
261 if (pCtx->eflags.Bits.u1IF)
262 return !!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC));
263 return false;
264}
265
266
267/**
268 * Locks REM execution to a single VCPU.
269 *
270 * @param pVM The cross context VM structure.
271 */
272VMMDECL(void) EMRemLock(PVM pVM)
273{
274#ifdef VBOX_WITH_REM
275 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
276 return; /* early init */
277
278 Assert(!PGMIsLockOwner(pVM));
279 Assert(!IOMIsLockWriteOwner(pVM));
280 int rc = PDMCritSectEnter(&pVM->em.s.CritSectREM, VERR_SEM_BUSY);
281 AssertRCSuccess(rc);
282#endif
283}
284
285
286/**
287 * Unlocks REM execution
288 *
289 * @param pVM The cross context VM structure.
290 */
291VMMDECL(void) EMRemUnlock(PVM pVM)
292{
293#ifdef VBOX_WITH_REM
294 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
295 return; /* early init */
296
297 PDMCritSectLeave(&pVM->em.s.CritSectREM);
298#endif
299}
300
301
302/**
303 * Check if this VCPU currently owns the REM lock.
304 *
305 * @returns bool owner/not owner
306 * @param pVM The cross context VM structure.
307 */
308VMMDECL(bool) EMRemIsLockOwner(PVM pVM)
309{
310#ifdef VBOX_WITH_REM
311 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
312 return true; /* early init */
313
314 return PDMCritSectIsOwner(&pVM->em.s.CritSectREM);
315#else
316 return true;
317#endif
318}
319
320
321/**
322 * Try to acquire the REM lock.
323 *
324 * @returns VBox status code
325 * @param pVM The cross context VM structure.
326 */
327VMM_INT_DECL(int) EMRemTryLock(PVM pVM)
328{
329#ifdef VBOX_WITH_REM
330 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
331 return VINF_SUCCESS; /* early init */
332
333 return PDMCritSectTryEnter(&pVM->em.s.CritSectREM);
334#else
335 return VINF_SUCCESS;
336#endif
337}
338
339
340/**
341 * @callback_method_impl{FNDISREADBYTES}
342 */
343static DECLCALLBACK(int) emReadBytes(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
344{
345 PVMCPU pVCpu = (PVMCPU)pDis->pvUser;
346#if defined(IN_RC) || defined(IN_RING3)
347 PVM pVM = pVCpu->CTX_SUFF(pVM);
348#endif
349 RTUINTPTR uSrcAddr = pDis->uInstrAddr + offInstr;
350 int rc;
351
352 /*
353 * Figure how much we can or must read.
354 */
355 size_t cbToRead = PAGE_SIZE - (uSrcAddr & PAGE_OFFSET_MASK);
356 if (cbToRead > cbMaxRead)
357 cbToRead = cbMaxRead;
358 else if (cbToRead < cbMinRead)
359 cbToRead = cbMinRead;
360
361#if defined(VBOX_WITH_RAW_MODE) && (defined(IN_RC) || defined(IN_RING3))
362 /*
363 * We might be called upon to interpret an instruction in a patch.
364 */
365 if (PATMIsPatchGCAddr(pVCpu->CTX_SUFF(pVM), uSrcAddr))
366 {
367# ifdef IN_RC
368 memcpy(&pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
369# else
370 memcpy(&pDis->abInstr[offInstr], PATMR3GCPtrToHCPtr(pVCpu->CTX_SUFF(pVM), uSrcAddr), cbToRead);
371# endif
372 rc = VINF_SUCCESS;
373 }
374 else
375#endif
376 {
377# ifdef IN_RC
378 /*
379 * Try access it thru the shadow page tables first. Fall back on the
380 * slower PGM method if it fails because the TLB or page table was
381 * modified recently.
382 */
383 rc = MMGCRamRead(pVCpu->pVMRC, &pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
384 if (rc == VERR_ACCESS_DENIED && cbToRead > cbMinRead)
385 {
386 cbToRead = cbMinRead;
387 rc = MMGCRamRead(pVCpu->pVMRC, &pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
388 }
389 if (rc == VERR_ACCESS_DENIED)
390#endif
391 {
392 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pDis->abInstr[offInstr], uSrcAddr, cbToRead);
393 if (RT_FAILURE(rc))
394 {
395 if (cbToRead > cbMinRead)
396 {
397 cbToRead = cbMinRead;
398 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pDis->abInstr[offInstr], uSrcAddr, cbToRead);
399 }
400 if (RT_FAILURE(rc))
401 {
402#ifndef IN_RC
403 /*
404 * If we fail to find the page via the guest's page tables
405 * we invalidate the page in the host TLB (pertaining to
406 * the guest in the NestedPaging case). See @bugref{6043}.
407 */
408 if (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
409 {
410 HMInvalidatePage(pVCpu, uSrcAddr);
411 if (((uSrcAddr + cbToRead - 1) >> PAGE_SHIFT) != (uSrcAddr >> PAGE_SHIFT))
412 HMInvalidatePage(pVCpu, uSrcAddr + cbToRead - 1);
413 }
414#endif
415 }
416 }
417 }
418 }
419
420 pDis->cbCachedInstr = offInstr + (uint8_t)cbToRead;
421 return rc;
422}
423
424
425DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
426{
427 NOREF(pVM);
428 return DISInstrWithReader(InstrGC, (DISCPUMODE)pDis->uCpuMode, emReadBytes, pVCpu, pDis, pOpsize);
429}
430
431
432/**
433 * Disassembles the current instruction.
434 *
435 * @returns VBox status code, see SELMToFlatEx and EMInterpretDisasOneEx for
436 * details.
437 *
438 * @param pVM The cross context VM structure.
439 * @param pVCpu The cross context virtual CPU structure.
440 * @param pDis Where to return the parsed instruction info.
441 * @param pcbInstr Where to return the instruction size. (optional)
442 */
443VMM_INT_DECL(int) EMInterpretDisasCurrent(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, unsigned *pcbInstr)
444{
445 PCPUMCTXCORE pCtxCore = CPUMCTX2CORE(CPUMQueryGuestCtxPtr(pVCpu));
446 RTGCPTR GCPtrInstr;
447#if 0
448 int rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
449#else
450/** @todo Get the CPU mode as well while we're at it! */
451 int rc = SELMValidateAndConvertCSAddr(pVCpu, pCtxCore->eflags, pCtxCore->ss.Sel, pCtxCore->cs.Sel, &pCtxCore->cs,
452 pCtxCore->rip, &GCPtrInstr);
453#endif
454 if (RT_FAILURE(rc))
455 {
456 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
457 pCtxCore->cs.Sel, (RTGCPTR)pCtxCore->rip, pCtxCore->ss.Sel & X86_SEL_RPL, rc));
458 return rc;
459 }
460 return EMInterpretDisasOneEx(pVM, pVCpu, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pDis, pcbInstr);
461}
462
463
464/**
465 * Disassembles one instruction.
466 *
467 * This is used by internally by the interpreter and by trap/access handlers.
468 *
469 * @returns VBox status code.
470 *
471 * @param pVM The cross context VM structure.
472 * @param pVCpu The cross context virtual CPU structure.
473 * @param GCPtrInstr The flat address of the instruction.
474 * @param pCtxCore The context core (used to determine the cpu mode).
475 * @param pDis Where to return the parsed instruction info.
476 * @param pcbInstr Where to return the instruction size. (optional)
477 */
478VMM_INT_DECL(int) EMInterpretDisasOneEx(PVM pVM, PVMCPU pVCpu, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore,
479 PDISCPUSTATE pDis, unsigned *pcbInstr)
480{
481 NOREF(pVM);
482 Assert(pCtxCore == CPUMGetGuestCtxCore(pVCpu)); NOREF(pCtxCore);
483 DISCPUMODE enmCpuMode = CPUMGetGuestDisMode(pVCpu);
484 /** @todo Deal with too long instruction (=> \#GP), opcode read errors (=>
485 * \#PF, \#GP, \#??), undefined opcodes (=> \#UD), and such. */
486 int rc = DISInstrWithReader(GCPtrInstr, enmCpuMode, emReadBytes, pVCpu, pDis, pcbInstr);
487 if (RT_SUCCESS(rc))
488 return VINF_SUCCESS;
489 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
490 return rc;
491}
492
493
494#if defined(VBOX_COMPARE_IEM_FIRST) || defined(VBOX_COMPARE_IEM_LAST)
495static void emCompareWithIem(PVMCPU pVCpu, PCCPUMCTX pEmCtx, PCCPUMCTX pIemCtx,
496 VBOXSTRICTRC rcEm, VBOXSTRICTRC rcIem,
497 uint32_t cbEm, uint32_t cbIem)
498{
499 /* Quick compare. */
500 if ( rcEm == rcIem
501 && cbEm == cbIem
502 && g_cbEmWrote == g_cbIemWrote
503 && memcmp(g_abIemWrote, g_abEmWrote, g_cbIemWrote) == 0
504 && memcmp(pIemCtx, pEmCtx, sizeof(*pIemCtx)) == 0
505 && (g_fEmFFs & g_fInterestingFFs) == (g_fIemFFs & g_fInterestingFFs)
506 )
507 return;
508
509 /* Report exact differences. */
510 RTLogPrintf("! EM and IEM differs at %04x:%08RGv !\n", g_IncomingCtx.cs.Sel, g_IncomingCtx.rip);
511 if (rcEm != rcIem)
512 RTLogPrintf(" * rcIem=%Rrc rcEm=%Rrc\n", VBOXSTRICTRC_VAL(rcIem), VBOXSTRICTRC_VAL(rcEm));
513 else if (cbEm != cbIem)
514 RTLogPrintf(" * cbIem=%#x cbEm=%#x\n", cbIem, cbEm);
515
516 if (RT_SUCCESS(rcEm) && RT_SUCCESS(rcIem))
517 {
518 if (g_cbIemWrote != g_cbEmWrote)
519 RTLogPrintf("!! g_cbIemWrote=%#x g_cbEmWrote=%#x\n", g_cbIemWrote, g_cbEmWrote);
520 else if (memcmp(g_abIemWrote, g_abEmWrote, g_cbIemWrote))
521 {
522 RTLogPrintf("!! IemWrote %.*Rhxs\n", RT_MIN(RT_MAX(1, g_cbIemWrote), 64), g_abIemWrote);
523 RTLogPrintf("!! EemWrote %.*Rhxs\n", RT_MIN(RT_MAX(1, g_cbIemWrote), 64), g_abIemWrote);
524 }
525
526 if ((g_fEmFFs & g_fInterestingFFs) != (g_fIemFFs & g_fInterestingFFs))
527 RTLogPrintf("!! g_fIemFFs=%#x g_fEmFFs=%#x (diff=%#x)\n", g_fIemFFs & g_fInterestingFFs,
528 g_fEmFFs & g_fInterestingFFs, (g_fIemFFs ^ g_fEmFFs) & g_fInterestingFFs);
529
530# define CHECK_FIELD(a_Field) \
531 do \
532 { \
533 if (pEmCtx->a_Field != pIemCtx->a_Field) \
534 { \
535 switch (sizeof(pEmCtx->a_Field)) \
536 { \
537 case 1: RTLogPrintf("!! %8s differs - iem=%02x - em=%02x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
538 case 2: RTLogPrintf("!! %8s differs - iem=%04x - em=%04x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
539 case 4: RTLogPrintf("!! %8s differs - iem=%08x - em=%08x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
540 case 8: RTLogPrintf("!! %8s differs - iem=%016llx - em=%016llx\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
541 default: RTLogPrintf("!! %8s differs\n", #a_Field); break; \
542 } \
543 cDiffs++; \
544 } \
545 } while (0)
546
547# define CHECK_BIT_FIELD(a_Field) \
548 do \
549 { \
550 if (pEmCtx->a_Field != pIemCtx->a_Field) \
551 { \
552 RTLogPrintf("!! %8s differs - iem=%02x - em=%02x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); \
553 cDiffs++; \
554 } \
555 } while (0)
556
557# define CHECK_SEL(a_Sel) \
558 do \
559 { \
560 CHECK_FIELD(a_Sel.Sel); \
561 CHECK_FIELD(a_Sel.Attr.u); \
562 CHECK_FIELD(a_Sel.u64Base); \
563 CHECK_FIELD(a_Sel.u32Limit); \
564 CHECK_FIELD(a_Sel.fFlags); \
565 } while (0)
566
567 unsigned cDiffs = 0;
568 if (memcmp(&pEmCtx->fpu, &pIemCtx->fpu, sizeof(pIemCtx->fpu)))
569 {
570 RTLogPrintf(" the FPU state differs\n");
571 cDiffs++;
572 CHECK_FIELD(fpu.FCW);
573 CHECK_FIELD(fpu.FSW);
574 CHECK_FIELD(fpu.FTW);
575 CHECK_FIELD(fpu.FOP);
576 CHECK_FIELD(fpu.FPUIP);
577 CHECK_FIELD(fpu.CS);
578 CHECK_FIELD(fpu.Rsrvd1);
579 CHECK_FIELD(fpu.FPUDP);
580 CHECK_FIELD(fpu.DS);
581 CHECK_FIELD(fpu.Rsrvd2);
582 CHECK_FIELD(fpu.MXCSR);
583 CHECK_FIELD(fpu.MXCSR_MASK);
584 CHECK_FIELD(fpu.aRegs[0].au64[0]); CHECK_FIELD(fpu.aRegs[0].au64[1]);
585 CHECK_FIELD(fpu.aRegs[1].au64[0]); CHECK_FIELD(fpu.aRegs[1].au64[1]);
586 CHECK_FIELD(fpu.aRegs[2].au64[0]); CHECK_FIELD(fpu.aRegs[2].au64[1]);
587 CHECK_FIELD(fpu.aRegs[3].au64[0]); CHECK_FIELD(fpu.aRegs[3].au64[1]);
588 CHECK_FIELD(fpu.aRegs[4].au64[0]); CHECK_FIELD(fpu.aRegs[4].au64[1]);
589 CHECK_FIELD(fpu.aRegs[5].au64[0]); CHECK_FIELD(fpu.aRegs[5].au64[1]);
590 CHECK_FIELD(fpu.aRegs[6].au64[0]); CHECK_FIELD(fpu.aRegs[6].au64[1]);
591 CHECK_FIELD(fpu.aRegs[7].au64[0]); CHECK_FIELD(fpu.aRegs[7].au64[1]);
592 CHECK_FIELD(fpu.aXMM[ 0].au64[0]); CHECK_FIELD(fpu.aXMM[ 0].au64[1]);
593 CHECK_FIELD(fpu.aXMM[ 1].au64[0]); CHECK_FIELD(fpu.aXMM[ 1].au64[1]);
594 CHECK_FIELD(fpu.aXMM[ 2].au64[0]); CHECK_FIELD(fpu.aXMM[ 2].au64[1]);
595 CHECK_FIELD(fpu.aXMM[ 3].au64[0]); CHECK_FIELD(fpu.aXMM[ 3].au64[1]);
596 CHECK_FIELD(fpu.aXMM[ 4].au64[0]); CHECK_FIELD(fpu.aXMM[ 4].au64[1]);
597 CHECK_FIELD(fpu.aXMM[ 5].au64[0]); CHECK_FIELD(fpu.aXMM[ 5].au64[1]);
598 CHECK_FIELD(fpu.aXMM[ 6].au64[0]); CHECK_FIELD(fpu.aXMM[ 6].au64[1]);
599 CHECK_FIELD(fpu.aXMM[ 7].au64[0]); CHECK_FIELD(fpu.aXMM[ 7].au64[1]);
600 CHECK_FIELD(fpu.aXMM[ 8].au64[0]); CHECK_FIELD(fpu.aXMM[ 8].au64[1]);
601 CHECK_FIELD(fpu.aXMM[ 9].au64[0]); CHECK_FIELD(fpu.aXMM[ 9].au64[1]);
602 CHECK_FIELD(fpu.aXMM[10].au64[0]); CHECK_FIELD(fpu.aXMM[10].au64[1]);
603 CHECK_FIELD(fpu.aXMM[11].au64[0]); CHECK_FIELD(fpu.aXMM[11].au64[1]);
604 CHECK_FIELD(fpu.aXMM[12].au64[0]); CHECK_FIELD(fpu.aXMM[12].au64[1]);
605 CHECK_FIELD(fpu.aXMM[13].au64[0]); CHECK_FIELD(fpu.aXMM[13].au64[1]);
606 CHECK_FIELD(fpu.aXMM[14].au64[0]); CHECK_FIELD(fpu.aXMM[14].au64[1]);
607 CHECK_FIELD(fpu.aXMM[15].au64[0]); CHECK_FIELD(fpu.aXMM[15].au64[1]);
608 for (unsigned i = 0; i < RT_ELEMENTS(pEmCtx->fpu.au32RsrvdRest); i++)
609 CHECK_FIELD(fpu.au32RsrvdRest[i]);
610 }
611 CHECK_FIELD(rip);
612 if (pEmCtx->rflags.u != pIemCtx->rflags.u)
613 {
614 RTLogPrintf("!! rflags differs - iem=%08llx em=%08llx\n", pIemCtx->rflags.u, pEmCtx->rflags.u);
615 CHECK_BIT_FIELD(rflags.Bits.u1CF);
616 CHECK_BIT_FIELD(rflags.Bits.u1Reserved0);
617 CHECK_BIT_FIELD(rflags.Bits.u1PF);
618 CHECK_BIT_FIELD(rflags.Bits.u1Reserved1);
619 CHECK_BIT_FIELD(rflags.Bits.u1AF);
620 CHECK_BIT_FIELD(rflags.Bits.u1Reserved2);
621 CHECK_BIT_FIELD(rflags.Bits.u1ZF);
622 CHECK_BIT_FIELD(rflags.Bits.u1SF);
623 CHECK_BIT_FIELD(rflags.Bits.u1TF);
624 CHECK_BIT_FIELD(rflags.Bits.u1IF);
625 CHECK_BIT_FIELD(rflags.Bits.u1DF);
626 CHECK_BIT_FIELD(rflags.Bits.u1OF);
627 CHECK_BIT_FIELD(rflags.Bits.u2IOPL);
628 CHECK_BIT_FIELD(rflags.Bits.u1NT);
629 CHECK_BIT_FIELD(rflags.Bits.u1Reserved3);
630 CHECK_BIT_FIELD(rflags.Bits.u1RF);
631 CHECK_BIT_FIELD(rflags.Bits.u1VM);
632 CHECK_BIT_FIELD(rflags.Bits.u1AC);
633 CHECK_BIT_FIELD(rflags.Bits.u1VIF);
634 CHECK_BIT_FIELD(rflags.Bits.u1VIP);
635 CHECK_BIT_FIELD(rflags.Bits.u1ID);
636 }
637
638 if (!g_fIgnoreRaxRdx)
639 CHECK_FIELD(rax);
640 CHECK_FIELD(rcx);
641 if (!g_fIgnoreRaxRdx)
642 CHECK_FIELD(rdx);
643 CHECK_FIELD(rbx);
644 CHECK_FIELD(rsp);
645 CHECK_FIELD(rbp);
646 CHECK_FIELD(rsi);
647 CHECK_FIELD(rdi);
648 CHECK_FIELD(r8);
649 CHECK_FIELD(r9);
650 CHECK_FIELD(r10);
651 CHECK_FIELD(r11);
652 CHECK_FIELD(r12);
653 CHECK_FIELD(r13);
654 CHECK_SEL(cs);
655 CHECK_SEL(ss);
656 CHECK_SEL(ds);
657 CHECK_SEL(es);
658 CHECK_SEL(fs);
659 CHECK_SEL(gs);
660 CHECK_FIELD(cr0);
661 CHECK_FIELD(cr2);
662 CHECK_FIELD(cr3);
663 CHECK_FIELD(cr4);
664 CHECK_FIELD(dr[0]);
665 CHECK_FIELD(dr[1]);
666 CHECK_FIELD(dr[2]);
667 CHECK_FIELD(dr[3]);
668 CHECK_FIELD(dr[6]);
669 CHECK_FIELD(dr[7]);
670 CHECK_FIELD(gdtr.cbGdt);
671 CHECK_FIELD(gdtr.pGdt);
672 CHECK_FIELD(idtr.cbIdt);
673 CHECK_FIELD(idtr.pIdt);
674 CHECK_SEL(ldtr);
675 CHECK_SEL(tr);
676 CHECK_FIELD(SysEnter.cs);
677 CHECK_FIELD(SysEnter.eip);
678 CHECK_FIELD(SysEnter.esp);
679 CHECK_FIELD(msrEFER);
680 CHECK_FIELD(msrSTAR);
681 CHECK_FIELD(msrPAT);
682 CHECK_FIELD(msrLSTAR);
683 CHECK_FIELD(msrCSTAR);
684 CHECK_FIELD(msrSFMASK);
685 CHECK_FIELD(msrKERNELGSBASE);
686
687# undef CHECK_FIELD
688# undef CHECK_BIT_FIELD
689 }
690}
691#endif /* VBOX_COMPARE_IEM_AND_EM */
692
693
694/**
695 * Interprets the current instruction.
696 *
697 * @returns VBox status code.
698 * @retval VINF_* Scheduling instructions.
699 * @retval VERR_EM_INTERPRETER Something we can't cope with.
700 * @retval VERR_* Fatal errors.
701 *
702 * @param pVCpu The cross context virtual CPU structure.
703 * @param pRegFrame The register frame.
704 * Updates the EIP if an instruction was executed successfully.
705 * @param pvFault The fault address (CR2).
706 *
707 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
708 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
709 * to worry about e.g. invalid modrm combinations (!)
710 */
711VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstruction(PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
712{
713 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
714 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
715#ifdef VBOX_WITH_IEM
716 NOREF(pvFault);
717
718# ifdef VBOX_COMPARE_IEM_AND_EM
719 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
720 g_IncomingCtx = *pCtx;
721 g_fIncomingFFs = pVCpu->fLocalForcedActions;
722 g_cbEmWrote = g_cbIemWrote = 0;
723
724# ifdef VBOX_COMPARE_IEM_FIRST
725 /* IEM */
726 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
727 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
728 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
729 rcIem = VERR_EM_INTERPRETER;
730 g_IemCtx = *pCtx;
731 g_fIemFFs = pVCpu->fLocalForcedActions;
732 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
733 *pCtx = g_IncomingCtx;
734# endif
735
736 /* EM */
737 RTGCPTR pbCode;
738 VBOXSTRICTRC rcEm = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
739 if (RT_SUCCESS(rcEm))
740 {
741 uint32_t cbOp;
742 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
743 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
744 rcEm = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
745 if (RT_SUCCESS(rcEm))
746 {
747 Assert(cbOp == pDis->cbInstr);
748 uint32_t cbIgnored;
749 rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbIgnored);
750 if (RT_SUCCESS(rcEm))
751 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
752
753 }
754 rcEm = VERR_EM_INTERPRETER;
755 }
756 else
757 rcEm = VERR_EM_INTERPRETER;
758# ifdef VBOX_SAME_AS_EM
759 if (rcEm == VERR_EM_INTERPRETER)
760 {
761 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
762 return rcEm;
763 }
764# endif
765 g_EmCtx = *pCtx;
766 g_fEmFFs = pVCpu->fLocalForcedActions;
767 VBOXSTRICTRC rc = rcEm;
768
769# ifdef VBOX_COMPARE_IEM_LAST
770 /* IEM */
771 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
772 *pCtx = g_IncomingCtx;
773 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
774 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
775 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
776 rcIem = VERR_EM_INTERPRETER;
777 g_IemCtx = *pCtx;
778 g_fIemFFs = pVCpu->fLocalForcedActions;
779 rc = rcIem;
780# endif
781
782# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
783 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, 0, 0);
784# endif
785
786# else
787 VBOXSTRICTRC rc = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
788 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
789 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
790 rc = VERR_EM_INTERPRETER;
791# endif
792 if (rc != VINF_SUCCESS)
793 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
794
795 return rc;
796#else
797 RTGCPTR pbCode;
798 VBOXSTRICTRC rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
799 if (RT_SUCCESS(rc))
800 {
801 uint32_t cbOp;
802 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
803 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
804 rc = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
805 if (RT_SUCCESS(rc))
806 {
807 Assert(cbOp == pDis->cbInstr);
808 uint32_t cbIgnored;
809 rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbIgnored);
810 if (RT_SUCCESS(rc))
811 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
812
813 return rc;
814 }
815 }
816 return VERR_EM_INTERPRETER;
817#endif
818}
819
820
821/**
822 * Interprets the current instruction.
823 *
824 * @returns VBox status code.
825 * @retval VINF_* Scheduling instructions.
826 * @retval VERR_EM_INTERPRETER Something we can't cope with.
827 * @retval VERR_* Fatal errors.
828 *
829 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
830 * @param pRegFrame The register frame.
831 * Updates the EIP if an instruction was executed successfully.
832 * @param pvFault The fault address (CR2).
833 * @param pcbWritten Size of the write (if applicable).
834 *
835 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
836 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
837 * to worry about e.g. invalid modrm combinations (!)
838 */
839VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstructionEx(PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbWritten)
840{
841 LogFlow(("EMInterpretInstructionEx %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
842 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
843#ifdef VBOX_WITH_IEM
844 NOREF(pvFault);
845
846# ifdef VBOX_COMPARE_IEM_AND_EM
847 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
848 g_IncomingCtx = *pCtx;
849 g_fIncomingFFs = pVCpu->fLocalForcedActions;
850 g_cbEmWrote = g_cbIemWrote = 0;
851
852# ifdef VBOX_COMPARE_IEM_FIRST
853 /* IEM */
854 uint32_t cbIemWritten = 0;
855 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, &cbIemWritten);
856 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
857 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
858 rcIem = VERR_EM_INTERPRETER;
859 g_IemCtx = *pCtx;
860 g_fIemFFs = pVCpu->fLocalForcedActions;
861 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
862 *pCtx = g_IncomingCtx;
863# endif
864
865 /* EM */
866 uint32_t cbEmWritten = 0;
867 RTGCPTR pbCode;
868 VBOXSTRICTRC rcEm = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
869 if (RT_SUCCESS(rcEm))
870 {
871 uint32_t cbOp;
872 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
873 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
874 rcEm = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
875 if (RT_SUCCESS(rcEm))
876 {
877 Assert(cbOp == pDis->cbInstr);
878 rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbEmWritten);
879 if (RT_SUCCESS(rcEm))
880 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
881
882 }
883 else
884 rcEm = VERR_EM_INTERPRETER;
885 }
886 else
887 rcEm = VERR_EM_INTERPRETER;
888# ifdef VBOX_SAME_AS_EM
889 if (rcEm == VERR_EM_INTERPRETER)
890 {
891 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
892 return rcEm;
893 }
894# endif
895 g_EmCtx = *pCtx;
896 g_fEmFFs = pVCpu->fLocalForcedActions;
897 *pcbWritten = cbEmWritten;
898 VBOXSTRICTRC rc = rcEm;
899
900# ifdef VBOX_COMPARE_IEM_LAST
901 /* IEM */
902 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
903 *pCtx = g_IncomingCtx;
904 uint32_t cbIemWritten = 0;
905 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, &cbIemWritten);
906 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
907 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
908 rcIem = VERR_EM_INTERPRETER;
909 g_IemCtx = *pCtx;
910 g_fIemFFs = pVCpu->fLocalForcedActions;
911 *pcbWritten = cbIemWritten;
912 rc = rcIem;
913# endif
914
915# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
916 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, cbEmWritten, cbIemWritten);
917# endif
918
919# else
920 VBOXSTRICTRC rc = IEMExecOneBypassEx(pVCpu, pRegFrame, pcbWritten);
921 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
922 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
923 rc = VERR_EM_INTERPRETER;
924# endif
925 if (rc != VINF_SUCCESS)
926 Log(("EMInterpretInstructionEx: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
927
928 return rc;
929#else
930 RTGCPTR pbCode;
931 VBOXSTRICTRC rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
932 if (RT_SUCCESS(rc))
933 {
934 uint32_t cbOp;
935 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
936 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
937 rc = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
938 if (RT_SUCCESS(rc))
939 {
940 Assert(cbOp == pDis->cbInstr);
941 rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, pcbWritten);
942 if (RT_SUCCESS(rc))
943 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
944
945 return rc;
946 }
947 }
948 return VERR_EM_INTERPRETER;
949#endif
950}
951
952
953/**
954 * Interprets the current instruction using the supplied DISCPUSTATE structure.
955 *
956 * IP/EIP/RIP *IS* updated!
957 *
958 * @returns VBox strict status code.
959 * @retval VINF_* Scheduling instructions. When these are returned, it
960 * starts to get a bit tricky to know whether code was
961 * executed or not... We'll address this when it becomes a problem.
962 * @retval VERR_EM_INTERPRETER Something we can't cope with.
963 * @retval VERR_* Fatal errors.
964 *
965 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
966 * @param pDis The disassembler cpu state for the instruction to be
967 * interpreted.
968 * @param pRegFrame The register frame. IP/EIP/RIP *IS* changed!
969 * @param pvFault The fault address (CR2).
970 * @param enmCodeType Code type (user/supervisor)
971 *
972 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
973 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
974 * to worry about e.g. invalid modrm combinations (!)
975 *
976 * @todo At this time we do NOT check if the instruction overwrites vital information.
977 * Make sure this can't happen!! (will add some assertions/checks later)
978 */
979VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstructionDisasState(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
980 RTGCPTR pvFault, EMCODETYPE enmCodeType)
981{
982 LogFlow(("EMInterpretInstructionDisasState %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
983 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
984#ifdef VBOX_WITH_IEM
985 NOREF(pDis); NOREF(pvFault); NOREF(enmCodeType);
986
987# ifdef VBOX_COMPARE_IEM_AND_EM
988 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
989 g_IncomingCtx = *pCtx;
990 g_fIncomingFFs = pVCpu->fLocalForcedActions;
991 g_cbEmWrote = g_cbIemWrote = 0;
992
993# ifdef VBOX_COMPARE_IEM_FIRST
994 VBOXSTRICTRC rcIem = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
995 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
996 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
997 rcIem = VERR_EM_INTERPRETER;
998 g_IemCtx = *pCtx;
999 g_fIemFFs = pVCpu->fLocalForcedActions;
1000 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
1001 *pCtx = g_IncomingCtx;
1002# endif
1003
1004 /* EM */
1005 uint32_t cbIgnored;
1006 VBOXSTRICTRC rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, enmCodeType, &cbIgnored);
1007 if (RT_SUCCESS(rcEm))
1008 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
1009# ifdef VBOX_SAME_AS_EM
1010 if (rcEm == VERR_EM_INTERPRETER)
1011 {
1012 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
1013 return rcEm;
1014 }
1015# endif
1016 g_EmCtx = *pCtx;
1017 g_fEmFFs = pVCpu->fLocalForcedActions;
1018 VBOXSTRICTRC rc = rcEm;
1019
1020# ifdef VBOX_COMPARE_IEM_LAST
1021 /* IEM */
1022 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
1023 *pCtx = g_IncomingCtx;
1024 VBOXSTRICTRC rcIem = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
1025 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1026 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1027 rcIem = VERR_EM_INTERPRETER;
1028 g_IemCtx = *pCtx;
1029 g_fIemFFs = pVCpu->fLocalForcedActions;
1030 rc = rcIem;
1031# endif
1032
1033# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
1034 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, 0, 0);
1035# endif
1036
1037# else
1038 VBOXSTRICTRC rc = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
1039 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1040 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1041 rc = VERR_EM_INTERPRETER;
1042# endif
1043
1044 if (rc != VINF_SUCCESS)
1045 Log(("EMInterpretInstructionDisasState: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
1046
1047 return rc;
1048#else
1049 uint32_t cbIgnored;
1050 VBOXSTRICTRC rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, enmCodeType, &cbIgnored);
1051 if (RT_SUCCESS(rc))
1052 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
1053 return rc;
1054#endif
1055}
1056
1057#ifdef IN_RC
1058
1059DECLINLINE(int) emRCStackRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
1060{
1061 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
1062 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
1063 return rc;
1064 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
1065}
1066
1067
1068/**
1069 * Interpret IRET (currently only to V86 code) - PATM only.
1070 *
1071 * @returns VBox status code.
1072 * @param pVM The cross context VM structure.
1073 * @param pVCpu The cross context virtual CPU structure.
1074 * @param pRegFrame The register frame.
1075 *
1076 */
1077VMM_INT_DECL(int) EMInterpretIretV86ForPatm(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1078{
1079 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1080 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
1081 int rc;
1082
1083 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1084 Assert(!CPUMIsGuestIn64BitCode(pVCpu));
1085 /** @todo Rainy day: Test what happens when VERR_EM_INTERPRETER is returned by
1086 * this function. Fear that it may guru on us, thus not converted to
1087 * IEM. */
1088
1089 rc = emRCStackRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1090 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1091 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1092 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1093 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1094
1095 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1096 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1097 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &es, (RTGCPTR)(pIretStack + 20), 4);
1098 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ds, (RTGCPTR)(pIretStack + 24), 4);
1099 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &fs, (RTGCPTR)(pIretStack + 28), 4);
1100 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &gs, (RTGCPTR)(pIretStack + 32), 4);
1101 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1102
1103 pRegFrame->eip = eip & 0xffff;
1104 pRegFrame->cs.Sel = cs;
1105
1106 /* Mask away all reserved bits */
1107 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1108 eflags &= uMask;
1109
1110 CPUMRawSetEFlags(pVCpu, eflags);
1111 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1112
1113 pRegFrame->esp = esp;
1114 pRegFrame->ss.Sel = ss;
1115 pRegFrame->ds.Sel = ds;
1116 pRegFrame->es.Sel = es;
1117 pRegFrame->fs.Sel = fs;
1118 pRegFrame->gs.Sel = gs;
1119
1120 return VINF_SUCCESS;
1121}
1122
1123/**
1124 * IRET Emulation.
1125 */
1126static int emInterpretIret(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1127{
1128#ifdef VBOX_WITH_RAW_RING1
1129 NOREF(pvFault); NOREF(pcbSize);
1130 if (EMIsRawRing1Enabled(pVM))
1131 {
1132 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1133 RTGCUINTPTR eip, cs, esp, ss, eflags, uMask;
1134 int rc;
1135 uint32_t cpl, rpl;
1136
1137 /* We only execute 32-bits protected mode code in raw mode, so no need to bother to check for 16-bits code here. */
1138 /* @todo: we don't verify all the edge cases that generate #GP faults */
1139
1140 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1141 Assert(!CPUMIsGuestIn64BitCode(pVCpu));
1142 /** @todo Rainy day: Test what happens when VERR_EM_INTERPRETER is returned by
1143 * this function. Fear that it may guru on us, thus not converted to
1144 * IEM. */
1145
1146 rc = emRCStackRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1147 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1148 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1149 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1150 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1151
1152 /* Deal with V86 above. */
1153 if (eflags & X86_EFL_VM)
1154 return EMInterpretIretV86ForPatm(pVM, pVCpu, pRegFrame);
1155
1156 cpl = CPUMRCGetGuestCPL(pVCpu, pRegFrame);
1157 rpl = cs & X86_SEL_RPL;
1158
1159 Log(("emInterpretIret: iret to CS:EIP=%04X:%08X eflags=%x\n", cs, eip, eflags));
1160 if (rpl != cpl)
1161 {
1162 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1163 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1164 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1165 Log(("emInterpretIret: return to different privilege level (rpl=%d cpl=%d)\n", rpl, cpl));
1166 Log(("emInterpretIret: SS:ESP=%04x:%08x\n", ss, esp));
1167 pRegFrame->ss.Sel = ss;
1168 pRegFrame->esp = esp;
1169 }
1170 pRegFrame->cs.Sel = cs;
1171 pRegFrame->eip = eip;
1172
1173 /* Adjust CS & SS as required. */
1174 CPUMRCRecheckRawState(pVCpu, pRegFrame);
1175
1176 /* Mask away all reserved bits */
1177 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1178 eflags &= uMask;
1179
1180 CPUMRawSetEFlags(pVCpu, eflags);
1181 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1182 return VINF_SUCCESS;
1183 }
1184#else
1185 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
1186#endif
1187 return VERR_EM_INTERPRETER;
1188}
1189
1190#endif /* IN_RC */
1191
1192
1193
1194/*
1195 *
1196 * Old interpreter primitives used by HM, move/eliminate later.
1197 * Old interpreter primitives used by HM, move/eliminate later.
1198 * Old interpreter primitives used by HM, move/eliminate later.
1199 * Old interpreter primitives used by HM, move/eliminate later.
1200 * Old interpreter primitives used by HM, move/eliminate later.
1201 *
1202 */
1203
1204
1205/**
1206 * Interpret CPUID given the parameters in the CPU context.
1207 *
1208 * @returns VBox status code.
1209 * @param pVM The cross context VM structure.
1210 * @param pVCpu The cross context virtual CPU structure.
1211 * @param pRegFrame The register frame.
1212 *
1213 */
1214VMM_INT_DECL(int) EMInterpretCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1215{
1216 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1217 uint32_t iLeaf = pRegFrame->eax;
1218 uint32_t iSubLeaf = pRegFrame->ecx;
1219 NOREF(pVM);
1220
1221 /* cpuid clears the high dwords of the affected 64 bits registers. */
1222 pRegFrame->rax = 0;
1223 pRegFrame->rbx = 0;
1224 pRegFrame->rcx = 0;
1225 pRegFrame->rdx = 0;
1226
1227 /* Note: operates the same in 64 and non-64 bits mode. */
1228 CPUMGetGuestCpuId(pVCpu, iLeaf, iSubLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
1229 Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
1230 return VINF_SUCCESS;
1231}
1232
1233
1234/**
1235 * Interpret RDTSC.
1236 *
1237 * @returns VBox status code.
1238 * @param pVM The cross context VM structure.
1239 * @param pVCpu The cross context virtual CPU structure.
1240 * @param pRegFrame The register frame.
1241 *
1242 */
1243VMM_INT_DECL(int) EMInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1244{
1245 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1246 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
1247
1248 if (uCR4 & X86_CR4_TSD)
1249 return VERR_EM_INTERPRETER; /* genuine #GP */
1250
1251 uint64_t uTicks = TMCpuTickGet(pVCpu);
1252
1253 /* Same behaviour in 32 & 64 bits mode */
1254 pRegFrame->rax = (uint32_t)uTicks;
1255 pRegFrame->rdx = (uTicks >> 32ULL);
1256#ifdef VBOX_COMPARE_IEM_AND_EM
1257 g_fIgnoreRaxRdx = true;
1258#endif
1259
1260 NOREF(pVM);
1261 return VINF_SUCCESS;
1262}
1263
1264/**
1265 * Interpret RDTSCP.
1266 *
1267 * @returns VBox status code.
1268 * @param pVM The cross context VM structure.
1269 * @param pVCpu The cross context virtual CPU structure.
1270 * @param pCtx The CPU context.
1271 *
1272 */
1273VMM_INT_DECL(int) EMInterpretRdtscp(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1274{
1275 Assert(pCtx == CPUMQueryGuestCtxPtr(pVCpu));
1276 uint32_t uCR4 = CPUMGetGuestCR4(pVCpu);
1277
1278 if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1279 {
1280 AssertFailed();
1281 return VERR_EM_INTERPRETER; /* genuine #UD */
1282 }
1283
1284 if (uCR4 & X86_CR4_TSD)
1285 return VERR_EM_INTERPRETER; /* genuine #GP */
1286
1287 uint64_t uTicks = TMCpuTickGet(pVCpu);
1288
1289 /* Same behaviour in 32 & 64 bits mode */
1290 pCtx->rax = (uint32_t)uTicks;
1291 pCtx->rdx = (uTicks >> 32ULL);
1292#ifdef VBOX_COMPARE_IEM_AND_EM
1293 g_fIgnoreRaxRdx = true;
1294#endif
1295 /* Low dword of the TSC_AUX msr only. */
1296 VBOXSTRICTRC rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pCtx->rcx); Assert(rc2 == VINF_SUCCESS); NOREF(rc2);
1297 pCtx->rcx &= UINT32_C(0xffffffff);
1298
1299 return VINF_SUCCESS;
1300}
1301
1302/**
1303 * Interpret RDPMC.
1304 *
1305 * @returns VBox status code.
1306 * @param pVM The cross context VM structure.
1307 * @param pVCpu The cross context virtual CPU structure.
1308 * @param pRegFrame The register frame.
1309 *
1310 */
1311VMM_INT_DECL(int) EMInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1312{
1313 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1314 uint32_t uCR4 = CPUMGetGuestCR4(pVCpu);
1315
1316 /* If X86_CR4_PCE is not set, then CPL must be zero. */
1317 if ( !(uCR4 & X86_CR4_PCE)
1318 && CPUMGetGuestCPL(pVCpu) != 0)
1319 {
1320 Assert(CPUMGetGuestCR0(pVCpu) & X86_CR0_PE);
1321 return VERR_EM_INTERPRETER; /* genuine #GP */
1322 }
1323
1324 /* Just return zero here; rather tricky to properly emulate this, especially as the specs are a mess. */
1325 pRegFrame->rax = 0;
1326 pRegFrame->rdx = 0;
1327 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
1328 * ecx but see @bugref{3472}! */
1329
1330 NOREF(pVM);
1331 return VINF_SUCCESS;
1332}
1333
1334
1335/**
1336 * MWAIT Emulation.
1337 */
1338VMM_INT_DECL(VBOXSTRICTRC) EMInterpretMWait(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1339{
1340 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1341 uint32_t u32Dummy, u32ExtFeatures, cpl, u32MWaitFeatures;
1342 NOREF(pVM);
1343
1344 /* Get the current privilege level. */
1345 cpl = CPUMGetGuestCPL(pVCpu);
1346 if (cpl != 0)
1347 return VERR_EM_INTERPRETER; /* supervisor only */
1348
1349 CPUMGetGuestCpuId(pVCpu, 1, 0, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
1350 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
1351 return VERR_EM_INTERPRETER; /* not supported */
1352
1353 /*
1354 * CPUID.05H.ECX[0] defines support for power management extensions (eax)
1355 * CPUID.05H.ECX[1] defines support for interrupts as break events for mwait even when IF=0
1356 */
1357 CPUMGetGuestCpuId(pVCpu, 5, 0, &u32Dummy, &u32Dummy, &u32MWaitFeatures, &u32Dummy);
1358 if (pRegFrame->ecx > 1)
1359 {
1360 Log(("EMInterpretMWait: unexpected ecx value %x -> recompiler\n", pRegFrame->ecx));
1361 return VERR_EM_INTERPRETER; /* illegal value. */
1362 }
1363
1364 if (pRegFrame->ecx && !(u32MWaitFeatures & X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
1365 {
1366 Log(("EMInterpretMWait: unsupported X86_CPUID_MWAIT_ECX_BREAKIRQIF0 -> recompiler\n"));
1367 return VERR_EM_INTERPRETER; /* illegal value. */
1368 }
1369
1370 return EMMonitorWaitPerform(pVCpu, pRegFrame->rax, pRegFrame->rcx);
1371}
1372
1373
1374/**
1375 * MONITOR Emulation.
1376 */
1377VMM_INT_DECL(int) EMInterpretMonitor(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1378{
1379 uint32_t u32Dummy, u32ExtFeatures, cpl;
1380 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1381 NOREF(pVM);
1382
1383 if (pRegFrame->ecx != 0)
1384 {
1385 Log(("emInterpretMonitor: unexpected ecx=%x -> recompiler!!\n", pRegFrame->ecx));
1386 return VERR_EM_INTERPRETER; /* illegal value. */
1387 }
1388
1389 /* Get the current privilege level. */
1390 cpl = CPUMGetGuestCPL(pVCpu);
1391 if (cpl != 0)
1392 return VERR_EM_INTERPRETER; /* supervisor only */
1393
1394 CPUMGetGuestCpuId(pVCpu, 1, 0, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
1395 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
1396 return VERR_EM_INTERPRETER; /* not supported */
1397
1398 EMMonitorWaitPrepare(pVCpu, pRegFrame->rax, pRegFrame->rcx, pRegFrame->rdx, NIL_RTGCPHYS);
1399 return VINF_SUCCESS;
1400}
1401
1402
1403/* VT-x only: */
1404
1405/**
1406 * Interpret INVLPG.
1407 *
1408 * @returns VBox status code.
1409 * @param pVM The cross context VM structure.
1410 * @param pVCpu The cross context virtual CPU structure.
1411 * @param pRegFrame The register frame.
1412 * @param pAddrGC Operand address.
1413 *
1414 */
1415VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
1416{
1417 /** @todo is addr always a flat linear address or ds based
1418 * (in absence of segment override prefixes)????
1419 */
1420 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1421 NOREF(pVM); NOREF(pRegFrame);
1422#ifdef IN_RC
1423 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
1424#endif
1425 VBOXSTRICTRC rc = PGMInvalidatePage(pVCpu, pAddrGC);
1426 if ( rc == VINF_SUCCESS
1427 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1428 return VINF_SUCCESS;
1429 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
1430 ("%Rrc addr=%RGv\n", VBOXSTRICTRC_VAL(rc), pAddrGC),
1431 VERR_EM_INTERPRETER);
1432 return rc;
1433}
1434
1435
1436/**
1437 * Update CRx.
1438 *
1439 * @returns VBox status code.
1440 * @param pVM The cross context VM structure.
1441 * @param pVCpu The cross context virtual CPU structure.
1442 * @param pRegFrame The register frame.
1443 * @param DestRegCrx CRx register index (DISUSE_REG_CR*)
1444 * @param val New CRx value
1445 *
1446 */
1447static int emUpdateCRx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
1448{
1449 uint64_t oldval;
1450 uint64_t msrEFER;
1451 uint32_t fValid;
1452 int rc, rc2;
1453 NOREF(pVM);
1454
1455 /** @todo Clean up this mess. */
1456 LogFlow(("emInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
1457 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1458 switch (DestRegCrx)
1459 {
1460 case DISCREG_CR0:
1461 oldval = CPUMGetGuestCR0(pVCpu);
1462#ifdef IN_RC
1463 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
1464 if ( (val & (X86_CR0_WP | X86_CR0_AM))
1465 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
1466 return VERR_EM_INTERPRETER;
1467#endif
1468 rc = VINF_SUCCESS;
1469#if !defined(VBOX_COMPARE_IEM_AND_EM) || !defined(VBOX_COMPARE_IEM_LAST)
1470 CPUMSetGuestCR0(pVCpu, val);
1471#else
1472 CPUMQueryGuestCtxPtr(pVCpu)->cr0 = val | X86_CR0_ET;
1473#endif
1474 val = CPUMGetGuestCR0(pVCpu);
1475 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
1476 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
1477 {
1478 /* global flush */
1479 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
1480 AssertRCReturn(rc, rc);
1481 }
1482
1483 /* Deal with long mode enabling/disabling. */
1484 msrEFER = CPUMGetGuestEFER(pVCpu);
1485 if (msrEFER & MSR_K6_EFER_LME)
1486 {
1487 if ( !(oldval & X86_CR0_PG)
1488 && (val & X86_CR0_PG))
1489 {
1490 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1491 if (pRegFrame->cs.Attr.n.u1Long)
1492 {
1493 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
1494 return VERR_EM_INTERPRETER; /** @todo generate \#GP(0) */
1495 }
1496
1497 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1498 if (!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE))
1499 {
1500 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
1501 return VERR_EM_INTERPRETER; /** @todo generate \#GP(0) */
1502 }
1503 msrEFER |= MSR_K6_EFER_LMA;
1504 }
1505 else
1506 if ( (oldval & X86_CR0_PG)
1507 && !(val & X86_CR0_PG))
1508 {
1509 msrEFER &= ~MSR_K6_EFER_LMA;
1510 /** @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
1511 }
1512 CPUMSetGuestEFER(pVCpu, msrEFER);
1513 }
1514 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
1515 return rc2 == VINF_SUCCESS ? rc : rc2;
1516
1517 case DISCREG_CR2:
1518 rc = CPUMSetGuestCR2(pVCpu, val); AssertRC(rc);
1519 return VINF_SUCCESS;
1520
1521 case DISCREG_CR3:
1522 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
1523 rc = CPUMSetGuestCR3(pVCpu, val); AssertRC(rc);
1524 if (CPUMGetGuestCR0(pVCpu) & X86_CR0_PG)
1525 {
1526 /* flush */
1527 rc = PGMFlushTLB(pVCpu, val, !(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE));
1528 AssertRC(rc);
1529 }
1530 return rc;
1531
1532 case DISCREG_CR4:
1533 oldval = CPUMGetGuestCR4(pVCpu);
1534 rc = CPUMSetGuestCR4(pVCpu, val); AssertRC(rc);
1535 val = CPUMGetGuestCR4(pVCpu);
1536
1537 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1538 msrEFER = CPUMGetGuestEFER(pVCpu);
1539 if ( (msrEFER & MSR_K6_EFER_LMA)
1540 && (oldval & X86_CR4_PAE)
1541 && !(val & X86_CR4_PAE))
1542 {
1543 return VERR_EM_INTERPRETER; /** @todo generate \#GP(0) */
1544 }
1545
1546 /* From IEM iemCImpl_load_CrX. */
1547 /** @todo Check guest CPUID bits for determining corresponding valid bits. */
1548 fValid = X86_CR4_VME | X86_CR4_PVI
1549 | X86_CR4_TSD | X86_CR4_DE
1550 | X86_CR4_PSE | X86_CR4_PAE
1551 | X86_CR4_MCE | X86_CR4_PGE
1552 | X86_CR4_PCE | X86_CR4_OSFXSR
1553 | X86_CR4_OSXMMEEXCPT;
1554 //if (xxx)
1555 // fValid |= X86_CR4_VMXE;
1556 //if (xxx)
1557 // fValid |= X86_CR4_OSXSAVE;
1558 if (val & ~(uint64_t)fValid)
1559 {
1560 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", val, val & ~(uint64_t)fValid));
1561 return VERR_EM_INTERPRETER; /** @todo generate \#GP(0) */
1562 }
1563
1564 rc = VINF_SUCCESS;
1565 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
1566 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
1567 {
1568 /* global flush */
1569 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
1570 AssertRCReturn(rc, rc);
1571 }
1572
1573 /* Feeling extremely lazy. */
1574# ifdef IN_RC
1575 if ( (oldval & (X86_CR4_OSFXSR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
1576 != (val & (X86_CR4_OSFXSR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
1577 {
1578 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
1579 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
1580 }
1581# endif
1582# ifdef VBOX_WITH_RAW_MODE
1583 if (((val ^ oldval) & X86_CR4_VME) && !HMIsEnabled(pVM))
1584 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1585# endif
1586
1587 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
1588 return rc2 == VINF_SUCCESS ? rc : rc2;
1589
1590 case DISCREG_CR8:
1591 return PDMApicSetTPR(pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
1592
1593 default:
1594 AssertFailed();
1595 case DISCREG_CR1: /* illegal op */
1596 break;
1597 }
1598 return VERR_EM_INTERPRETER;
1599}
1600
1601
1602/**
1603 * Interpret CRx write.
1604 *
1605 * @returns VBox status code.
1606 * @param pVM The cross context VM structure.
1607 * @param pVCpu The cross context virtual CPU structure.
1608 * @param pRegFrame The register frame.
1609 * @param DestRegCrx CRx register index (DISUSE_REG_CR*)
1610 * @param SrcRegGen General purpose register index (USE_REG_E**))
1611 *
1612 */
1613static int emInterpretCRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
1614{
1615 uint64_t val;
1616 int rc;
1617 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1618
1619 if (CPUMIsGuestIn64BitCode(pVCpu))
1620 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
1621 else
1622 {
1623 uint32_t val32;
1624 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
1625 val = val32;
1626 }
1627
1628 if (RT_SUCCESS(rc))
1629 return emUpdateCRx(pVM, pVCpu, pRegFrame, DestRegCrx, val);
1630
1631 return VERR_EM_INTERPRETER;
1632}
1633
1634
1635#ifdef LOG_ENABLED
1636static const char *emMSRtoString(uint32_t uMsr)
1637{
1638 switch (uMsr)
1639 {
1640 case MSR_IA32_APICBASE: return "MSR_IA32_APICBASE";
1641 case MSR_IA32_CR_PAT: return "MSR_IA32_CR_PAT";
1642 case MSR_IA32_SYSENTER_CS: return "MSR_IA32_SYSENTER_CS";
1643 case MSR_IA32_SYSENTER_EIP: return "MSR_IA32_SYSENTER_EIP";
1644 case MSR_IA32_SYSENTER_ESP: return "MSR_IA32_SYSENTER_ESP";
1645 case MSR_K6_EFER: return "MSR_K6_EFER";
1646 case MSR_K8_SF_MASK: return "MSR_K8_SF_MASK";
1647 case MSR_K6_STAR: return "MSR_K6_STAR";
1648 case MSR_K8_LSTAR: return "MSR_K8_LSTAR";
1649 case MSR_K8_CSTAR: return "MSR_K8_CSTAR";
1650 case MSR_K8_FS_BASE: return "MSR_K8_FS_BASE";
1651 case MSR_K8_GS_BASE: return "MSR_K8_GS_BASE";
1652 case MSR_K8_KERNEL_GS_BASE: return "MSR_K8_KERNEL_GS_BASE";
1653 case MSR_K8_TSC_AUX: return "MSR_K8_TSC_AUX";
1654 case MSR_IA32_BIOS_SIGN_ID: return "Unsupported MSR_IA32_BIOS_SIGN_ID";
1655 case MSR_IA32_PLATFORM_ID: return "Unsupported MSR_IA32_PLATFORM_ID";
1656 case MSR_IA32_BIOS_UPDT_TRIG: return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
1657 case MSR_IA32_TSC: return "MSR_IA32_TSC";
1658 case MSR_IA32_MISC_ENABLE: return "MSR_IA32_MISC_ENABLE";
1659 case MSR_IA32_MTRR_CAP: return "MSR_IA32_MTRR_CAP";
1660 case MSR_IA32_MCG_CAP: return "Unsupported MSR_IA32_MCG_CAP";
1661 case MSR_IA32_MCG_STATUS: return "Unsupported MSR_IA32_MCG_STATUS";
1662 case MSR_IA32_MCG_CTRL: return "Unsupported MSR_IA32_MCG_CTRL";
1663 case MSR_IA32_MTRR_DEF_TYPE: return "MSR_IA32_MTRR_DEF_TYPE";
1664 case MSR_K7_EVNTSEL0: return "Unsupported MSR_K7_EVNTSEL0";
1665 case MSR_K7_EVNTSEL1: return "Unsupported MSR_K7_EVNTSEL1";
1666 case MSR_K7_EVNTSEL2: return "Unsupported MSR_K7_EVNTSEL2";
1667 case MSR_K7_EVNTSEL3: return "Unsupported MSR_K7_EVNTSEL3";
1668 case MSR_IA32_MC0_CTL: return "Unsupported MSR_IA32_MC0_CTL";
1669 case MSR_IA32_MC0_STATUS: return "Unsupported MSR_IA32_MC0_STATUS";
1670 case MSR_IA32_PERFEVTSEL0: return "Unsupported MSR_IA32_PERFEVTSEL0";
1671 case MSR_IA32_PERFEVTSEL1: return "Unsupported MSR_IA32_PERFEVTSEL1";
1672 case MSR_IA32_PERF_STATUS: return "MSR_IA32_PERF_STATUS";
1673 case MSR_IA32_PLATFORM_INFO: return "MSR_IA32_PLATFORM_INFO";
1674 case MSR_IA32_PERF_CTL: return "Unsupported MSR_IA32_PERF_CTL";
1675 case MSR_K7_PERFCTR0: return "Unsupported MSR_K7_PERFCTR0";
1676 case MSR_K7_PERFCTR1: return "Unsupported MSR_K7_PERFCTR1";
1677 case MSR_K7_PERFCTR2: return "Unsupported MSR_K7_PERFCTR2";
1678 case MSR_K7_PERFCTR3: return "Unsupported MSR_K7_PERFCTR3";
1679 case MSR_IA32_PMC0: return "Unsupported MSR_IA32_PMC0";
1680 case MSR_IA32_PMC1: return "Unsupported MSR_IA32_PMC1";
1681 case MSR_IA32_PMC2: return "Unsupported MSR_IA32_PMC2";
1682 case MSR_IA32_PMC3: return "Unsupported MSR_IA32_PMC3";
1683 }
1684 return "Unknown MSR";
1685}
1686#endif /* LOG_ENABLED */
1687
1688
1689/**
1690 * Interpret RDMSR
1691 *
1692 * @returns VBox status code.
1693 * @param pVM The cross context VM structure.
1694 * @param pVCpu The cross context virtual CPU structure.
1695 * @param pRegFrame The register frame.
1696 */
1697VMM_INT_DECL(int) EMInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1698{
1699 NOREF(pVM);
1700
1701 /* Get the current privilege level. */
1702 if (CPUMGetGuestCPL(pVCpu) != 0)
1703 {
1704 Log4(("EM: Refuse RDMSR: CPL != 0\n"));
1705 return VERR_EM_INTERPRETER; /* supervisor only */
1706 }
1707
1708 uint64_t uValue;
1709 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pRegFrame->ecx, &uValue);
1710 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
1711 {
1712 Log4(("EM: Refuse RDMSR: rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1713 Assert(rcStrict == VERR_CPUM_RAISE_GP_0 || rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_CPUM_R3_MSR_READ);
1714 return VERR_EM_INTERPRETER;
1715 }
1716 pRegFrame->rax = (uint32_t) uValue;
1717 pRegFrame->rdx = (uint32_t)(uValue >> 32);
1718 LogFlow(("EMInterpretRdmsr %s (%x) -> %RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, uValue));
1719 return VINF_SUCCESS;
1720}
1721
1722
1723/**
1724 * Interpret WRMSR
1725 *
1726 * @returns VBox status code.
1727 * @param pVM The cross context VM structure.
1728 * @param pVCpu The cross context virtual CPU structure.
1729 * @param pRegFrame The register frame.
1730 */
1731VMM_INT_DECL(int) EMInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1732{
1733 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1734
1735 /* Check the current privilege level, this instruction is supervisor only. */
1736 if (CPUMGetGuestCPL(pVCpu) != 0)
1737 {
1738 Log4(("EM: Refuse WRMSR: CPL != 0\n"));
1739 return VERR_EM_INTERPRETER; /** @todo raise \#GP(0) */
1740 }
1741
1742 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pRegFrame->ecx, RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx));
1743 if (rcStrict != VINF_SUCCESS)
1744 {
1745 Log4(("EM: Refuse WRMSR: CPUMSetGuestMsr returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1746 Assert(rcStrict == VERR_CPUM_RAISE_GP_0 || rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_CPUM_R3_MSR_WRITE);
1747 return VERR_EM_INTERPRETER;
1748 }
1749 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx,
1750 RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx)));
1751 NOREF(pVM);
1752 return VINF_SUCCESS;
1753}
1754
1755
1756/**
1757 * Interpret CRx read.
1758 *
1759 * @returns VBox status code.
1760 * @param pVM The cross context VM structure.
1761 * @param pVCpu The cross context virtual CPU structure.
1762 * @param pRegFrame The register frame.
1763 * @param DestRegGen General purpose register index (USE_REG_E**))
1764 * @param SrcRegCrx CRx register index (DISUSE_REG_CR*)
1765 *
1766 */
1767static int emInterpretCRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
1768{
1769 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1770 uint64_t val64;
1771 int rc = CPUMGetGuestCRx(pVCpu, SrcRegCrx, &val64);
1772 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
1773 NOREF(pVM);
1774
1775 if (CPUMIsGuestIn64BitCode(pVCpu))
1776 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1777 else
1778 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
1779
1780 if (RT_SUCCESS(rc))
1781 {
1782 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
1783 return VINF_SUCCESS;
1784 }
1785 return VERR_EM_INTERPRETER;
1786}
1787
1788
1789/**
1790 * Interpret DRx write.
1791 *
1792 * @returns VBox status code.
1793 * @param pVM The cross context VM structure.
1794 * @param pVCpu The cross context virtual CPU structure.
1795 * @param pRegFrame The register frame.
1796 * @param DestRegDrx DRx register index (USE_REG_DR*)
1797 * @param SrcRegGen General purpose register index (USE_REG_E**))
1798 *
1799 */
1800VMM_INT_DECL(int) EMInterpretDRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
1801{
1802 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1803 uint64_t uNewDrX;
1804 int rc;
1805 NOREF(pVM);
1806
1807 if (CPUMIsGuestIn64BitCode(pVCpu))
1808 rc = DISFetchReg64(pRegFrame, SrcRegGen, &uNewDrX);
1809 else
1810 {
1811 uint32_t val32;
1812 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
1813 uNewDrX = val32;
1814 }
1815
1816 if (RT_SUCCESS(rc))
1817 {
1818 if (DestRegDrx == 6)
1819 {
1820 uNewDrX |= X86_DR6_RA1_MASK;
1821 uNewDrX &= ~X86_DR6_RAZ_MASK;
1822 }
1823 else if (DestRegDrx == 7)
1824 {
1825 uNewDrX |= X86_DR7_RA1_MASK;
1826 uNewDrX &= ~X86_DR7_RAZ_MASK;
1827 }
1828
1829 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
1830 rc = CPUMSetGuestDRx(pVCpu, DestRegDrx, uNewDrX);
1831 if (RT_SUCCESS(rc))
1832 return rc;
1833 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
1834 }
1835 return VERR_EM_INTERPRETER;
1836}
1837
1838
1839/**
1840 * Interpret DRx read.
1841 *
1842 * @returns VBox status code.
1843 * @param pVM The cross context VM structure.
1844 * @param pVCpu The cross context virtual CPU structure.
1845 * @param pRegFrame The register frame.
1846 * @param DestRegGen General purpose register index (USE_REG_E**))
1847 * @param SrcRegDrx DRx register index (USE_REG_DR*)
1848 */
1849VMM_INT_DECL(int) EMInterpretDRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
1850{
1851 uint64_t val64;
1852 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1853 NOREF(pVM);
1854
1855 int rc = CPUMGetGuestDRx(pVCpu, SrcRegDrx, &val64);
1856 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
1857 if (CPUMIsGuestIn64BitCode(pVCpu))
1858 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1859 else
1860 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
1861
1862 if (RT_SUCCESS(rc))
1863 return VINF_SUCCESS;
1864
1865 return VERR_EM_INTERPRETER;
1866}
1867
1868
1869#if !defined(VBOX_WITH_IEM) || defined(VBOX_COMPARE_IEM_AND_EM)
1870
1871
1872
1873
1874
1875
1876/*
1877 *
1878 * The old interpreter.
1879 * The old interpreter.
1880 * The old interpreter.
1881 * The old interpreter.
1882 * The old interpreter.
1883 *
1884 */
1885
1886DECLINLINE(int) emRamRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
1887{
1888#ifdef IN_RC
1889 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
1890 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
1891 return rc;
1892 /*
1893 * The page pool cache may end up here in some cases because it
1894 * flushed one of the shadow mappings used by the trapping
1895 * instruction and it either flushed the TLB or the CPU reused it.
1896 */
1897#else
1898 NOREF(pVM);
1899#endif
1900 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
1901}
1902
1903
1904DECLINLINE(int) emRamWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, uint32_t cb)
1905{
1906 /* Don't use MMGCRamWrite here as it does not respect zero pages, shared
1907 pages or write monitored pages. */
1908 NOREF(pVM);
1909#if !defined(VBOX_COMPARE_IEM_AND_EM) || !defined(VBOX_COMPARE_IEM_LAST)
1910 int rc = PGMPhysInterpretedWriteNoHandlers(pVCpu, pCtxCore, GCPtrDst, pvSrc, cb, /*fMayTrap*/ false);
1911#else
1912 int rc = VINF_SUCCESS;
1913#endif
1914#ifdef VBOX_COMPARE_IEM_AND_EM
1915 Log(("EM Wrote: %RGv %.*Rhxs rc=%Rrc\n", GCPtrDst, RT_MAX(RT_MIN(cb, 64), 1), pvSrc, rc));
1916 g_cbEmWrote = cb;
1917 memcpy(g_abEmWrote, pvSrc, RT_MIN(cb, sizeof(g_abEmWrote)));
1918#endif
1919 return rc;
1920}
1921
1922
1923/** Convert sel:addr to a flat GC address. */
1924DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, PDISOPPARAM pParam, RTGCPTR pvAddr)
1925{
1926 DISSELREG enmPrefixSeg = DISDetectSegReg(pDis, pParam);
1927 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
1928}
1929
1930
1931#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
1932/**
1933 * Get the mnemonic for the disassembled instruction.
1934 *
1935 * GC/R0 doesn't include the strings in the DIS tables because
1936 * of limited space.
1937 */
1938static const char *emGetMnemonic(PDISCPUSTATE pDis)
1939{
1940 switch (pDis->pCurInstr->uOpcode)
1941 {
1942 case OP_XCHG: return "Xchg";
1943 case OP_DEC: return "Dec";
1944 case OP_INC: return "Inc";
1945 case OP_POP: return "Pop";
1946 case OP_OR: return "Or";
1947 case OP_AND: return "And";
1948 case OP_MOV: return "Mov";
1949 case OP_INVLPG: return "InvlPg";
1950 case OP_CPUID: return "CpuId";
1951 case OP_MOV_CR: return "MovCRx";
1952 case OP_MOV_DR: return "MovDRx";
1953 case OP_LLDT: return "LLdt";
1954 case OP_LGDT: return "LGdt";
1955 case OP_LIDT: return "LIdt";
1956 case OP_CLTS: return "Clts";
1957 case OP_MONITOR: return "Monitor";
1958 case OP_MWAIT: return "MWait";
1959 case OP_RDMSR: return "Rdmsr";
1960 case OP_WRMSR: return "Wrmsr";
1961 case OP_ADD: return "Add";
1962 case OP_ADC: return "Adc";
1963 case OP_SUB: return "Sub";
1964 case OP_SBB: return "Sbb";
1965 case OP_RDTSC: return "Rdtsc";
1966 case OP_STI: return "Sti";
1967 case OP_CLI: return "Cli";
1968 case OP_XADD: return "XAdd";
1969 case OP_HLT: return "Hlt";
1970 case OP_IRET: return "Iret";
1971 case OP_MOVNTPS: return "MovNTPS";
1972 case OP_STOSWD: return "StosWD";
1973 case OP_WBINVD: return "WbInvd";
1974 case OP_XOR: return "Xor";
1975 case OP_BTR: return "Btr";
1976 case OP_BTS: return "Bts";
1977 case OP_BTC: return "Btc";
1978 case OP_LMSW: return "Lmsw";
1979 case OP_SMSW: return "Smsw";
1980 case OP_CMPXCHG: return pDis->fPrefix & DISPREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
1981 case OP_CMPXCHG8B: return pDis->fPrefix & DISPREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
1982
1983 default:
1984 Log(("Unknown opcode %d\n", pDis->pCurInstr->uOpcode));
1985 return "???";
1986 }
1987}
1988#endif /* VBOX_STRICT || LOG_ENABLED */
1989
1990
1991/**
1992 * XCHG instruction emulation.
1993 */
1994static int emInterpretXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1995{
1996 DISQPVPARAMVAL param1, param2;
1997 NOREF(pvFault);
1998
1999 /* Source to make DISQueryParamVal read the register value - ugly hack */
2000 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2001 if(RT_FAILURE(rc))
2002 return VERR_EM_INTERPRETER;
2003
2004 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2005 if(RT_FAILURE(rc))
2006 return VERR_EM_INTERPRETER;
2007
2008#ifdef IN_RC
2009 if (TRPMHasTrap(pVCpu))
2010 {
2011 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2012 {
2013#endif
2014 RTGCPTR pParam1 = 0, pParam2 = 0;
2015 uint64_t valpar1, valpar2;
2016
2017 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
2018 switch(param1.type)
2019 {
2020 case DISQPV_TYPE_IMMEDIATE: /* register type is translated to this one too */
2021 valpar1 = param1.val.val64;
2022 break;
2023
2024 case DISQPV_TYPE_ADDRESS:
2025 pParam1 = (RTGCPTR)param1.val.val64;
2026 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2027 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2028 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2029 if (RT_FAILURE(rc))
2030 {
2031 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2032 return VERR_EM_INTERPRETER;
2033 }
2034 break;
2035
2036 default:
2037 AssertFailed();
2038 return VERR_EM_INTERPRETER;
2039 }
2040
2041 switch(param2.type)
2042 {
2043 case DISQPV_TYPE_ADDRESS:
2044 pParam2 = (RTGCPTR)param2.val.val64;
2045 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param2, pParam2);
2046 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
2047 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar2, pParam2, param2.size);
2048 if (RT_FAILURE(rc))
2049 {
2050 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2051 }
2052 break;
2053
2054 case DISQPV_TYPE_IMMEDIATE:
2055 valpar2 = param2.val.val64;
2056 break;
2057
2058 default:
2059 AssertFailed();
2060 return VERR_EM_INTERPRETER;
2061 }
2062
2063 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
2064 if (pParam1 == 0)
2065 {
2066 Assert(param1.type == DISQPV_TYPE_IMMEDIATE); /* register actually */
2067 switch(param1.size)
2068 {
2069 case 1: //special case for AH etc
2070 rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t )valpar2); break;
2071 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)valpar2); break;
2072 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)valpar2); break;
2073 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param1.Base.idxGenReg, valpar2); break;
2074 default: AssertFailedReturn(VERR_EM_INTERPRETER);
2075 }
2076 if (RT_FAILURE(rc))
2077 return VERR_EM_INTERPRETER;
2078 }
2079 else
2080 {
2081 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar2, param1.size);
2082 if (RT_FAILURE(rc))
2083 {
2084 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2085 return VERR_EM_INTERPRETER;
2086 }
2087 }
2088
2089 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
2090 if (pParam2 == 0)
2091 {
2092 Assert(param2.type == DISQPV_TYPE_IMMEDIATE); /* register actually */
2093 switch(param2.size)
2094 {
2095 case 1: //special case for AH etc
2096 rc = DISWriteReg8(pRegFrame, pDis->Param2.Base.idxGenReg, (uint8_t )valpar1); break;
2097 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param2.Base.idxGenReg, (uint16_t)valpar1); break;
2098 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param2.Base.idxGenReg, (uint32_t)valpar1); break;
2099 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param2.Base.idxGenReg, valpar1); break;
2100 default: AssertFailedReturn(VERR_EM_INTERPRETER);
2101 }
2102 if (RT_FAILURE(rc))
2103 return VERR_EM_INTERPRETER;
2104 }
2105 else
2106 {
2107 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam2, &valpar1, param2.size);
2108 if (RT_FAILURE(rc))
2109 {
2110 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2111 return VERR_EM_INTERPRETER;
2112 }
2113 }
2114
2115 *pcbSize = param2.size;
2116 return VINF_SUCCESS;
2117#ifdef IN_RC
2118 }
2119 }
2120 return VERR_EM_INTERPRETER;
2121#endif
2122}
2123
2124
2125/**
2126 * INC and DEC emulation.
2127 */
2128static int emInterpretIncDec(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2129 PFNEMULATEPARAM2 pfnEmulate)
2130{
2131 DISQPVPARAMVAL param1;
2132 NOREF(pvFault);
2133
2134 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2135 if(RT_FAILURE(rc))
2136 return VERR_EM_INTERPRETER;
2137
2138#ifdef IN_RC
2139 if (TRPMHasTrap(pVCpu))
2140 {
2141 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2142 {
2143#endif
2144 RTGCPTR pParam1 = 0;
2145 uint64_t valpar1;
2146
2147 if (param1.type == DISQPV_TYPE_ADDRESS)
2148 {
2149 pParam1 = (RTGCPTR)param1.val.val64;
2150 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2151#ifdef IN_RC
2152 /* Safety check (in theory it could cross a page boundary and fault there though) */
2153 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2154#endif
2155 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2156 if (RT_FAILURE(rc))
2157 {
2158 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2159 return VERR_EM_INTERPRETER;
2160 }
2161 }
2162 else
2163 {
2164 AssertFailed();
2165 return VERR_EM_INTERPRETER;
2166 }
2167
2168 uint32_t eflags;
2169
2170 eflags = pfnEmulate(&valpar1, param1.size);
2171
2172 /* Write result back */
2173 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2174 if (RT_FAILURE(rc))
2175 {
2176 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2177 return VERR_EM_INTERPRETER;
2178 }
2179
2180 /* Update guest's eflags and finish. */
2181 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2182 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2183
2184 /* All done! */
2185 *pcbSize = param1.size;
2186 return VINF_SUCCESS;
2187#ifdef IN_RC
2188 }
2189 }
2190 return VERR_EM_INTERPRETER;
2191#endif
2192}
2193
2194
2195/**
2196 * POP Emulation.
2197 */
2198static int emInterpretPop(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2199{
2200 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
2201 DISQPVPARAMVAL param1;
2202 NOREF(pvFault);
2203
2204 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2205 if(RT_FAILURE(rc))
2206 return VERR_EM_INTERPRETER;
2207
2208#ifdef IN_RC
2209 if (TRPMHasTrap(pVCpu))
2210 {
2211 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2212 {
2213#endif
2214 RTGCPTR pParam1 = 0;
2215 uint32_t valpar1;
2216 RTGCPTR pStackVal;
2217
2218 /* Read stack value first */
2219 if (CPUMGetGuestCodeBits(pVCpu) == 16)
2220 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
2221
2222 /* Convert address; don't bother checking limits etc, as we only read here */
2223 pStackVal = SELMToFlat(pVM, DISSELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
2224 if (pStackVal == 0)
2225 return VERR_EM_INTERPRETER;
2226
2227 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pStackVal, param1.size);
2228 if (RT_FAILURE(rc))
2229 {
2230 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2231 return VERR_EM_INTERPRETER;
2232 }
2233
2234 if (param1.type == DISQPV_TYPE_ADDRESS)
2235 {
2236 pParam1 = (RTGCPTR)param1.val.val64;
2237
2238 /* pop [esp+xx] uses esp after the actual pop! */
2239 AssertCompile(DISGREG_ESP == DISGREG_SP);
2240 if ( (pDis->Param1.fUse & DISUSE_BASE)
2241 && (pDis->Param1.fUse & (DISUSE_REG_GEN16|DISUSE_REG_GEN32))
2242 && pDis->Param1.Base.idxGenReg == DISGREG_ESP
2243 )
2244 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
2245
2246 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2247 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
2248 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2249 if (RT_FAILURE(rc))
2250 {
2251 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2252 return VERR_EM_INTERPRETER;
2253 }
2254
2255 /* Update ESP as the last step */
2256 pRegFrame->esp += param1.size;
2257 }
2258 else
2259 {
2260#ifndef DEBUG_bird // annoying assertion.
2261 AssertFailed();
2262#endif
2263 return VERR_EM_INTERPRETER;
2264 }
2265
2266 /* All done! */
2267 *pcbSize = param1.size;
2268 return VINF_SUCCESS;
2269#ifdef IN_RC
2270 }
2271 }
2272 return VERR_EM_INTERPRETER;
2273#endif
2274}
2275
2276
2277/**
2278 * XOR/OR/AND Emulation.
2279 */
2280static int emInterpretOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2281 PFNEMULATEPARAM3 pfnEmulate)
2282{
2283 DISQPVPARAMVAL param1, param2;
2284 NOREF(pvFault);
2285
2286 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2287 if(RT_FAILURE(rc))
2288 return VERR_EM_INTERPRETER;
2289
2290 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2291 if(RT_FAILURE(rc))
2292 return VERR_EM_INTERPRETER;
2293
2294#ifdef IN_RC
2295 if (TRPMHasTrap(pVCpu))
2296 {
2297 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2298 {
2299#endif
2300 RTGCPTR pParam1;
2301 uint64_t valpar1, valpar2;
2302
2303 if (pDis->Param1.cb != pDis->Param2.cb)
2304 {
2305 if (pDis->Param1.cb < pDis->Param2.cb)
2306 {
2307 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb)); /* should never happen! */
2308 return VERR_EM_INTERPRETER;
2309 }
2310 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2311 pDis->Param2.cb = pDis->Param1.cb;
2312 param2.size = param1.size;
2313 }
2314
2315 /* The destination is always a virtual address */
2316 if (param1.type == DISQPV_TYPE_ADDRESS)
2317 {
2318 pParam1 = (RTGCPTR)param1.val.val64;
2319 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2320 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2321 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2322 if (RT_FAILURE(rc))
2323 {
2324 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2325 return VERR_EM_INTERPRETER;
2326 }
2327 }
2328 else
2329 {
2330 AssertFailed();
2331 return VERR_EM_INTERPRETER;
2332 }
2333
2334 /* Register or immediate data */
2335 switch(param2.type)
2336 {
2337 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2338 valpar2 = param2.val.val64;
2339 break;
2340
2341 default:
2342 AssertFailed();
2343 return VERR_EM_INTERPRETER;
2344 }
2345
2346 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pDis), pParam1, valpar1, valpar2, param2.size, param1.size));
2347
2348 /* Data read, emulate instruction. */
2349 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
2350
2351 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pDis), valpar1));
2352
2353 /* Update guest's eflags and finish. */
2354 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2355 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2356
2357 /* And write it back */
2358 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2359 if (RT_SUCCESS(rc))
2360 {
2361 /* All done! */
2362 *pcbSize = param2.size;
2363 return VINF_SUCCESS;
2364 }
2365#ifdef IN_RC
2366 }
2367 }
2368#endif
2369 return VERR_EM_INTERPRETER;
2370}
2371
2372
2373#ifndef VBOX_COMPARE_IEM_AND_EM
2374/**
2375 * LOCK XOR/OR/AND Emulation.
2376 */
2377static int emInterpretLockOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
2378 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
2379{
2380 void *pvParam1;
2381 DISQPVPARAMVAL param1, param2;
2382 NOREF(pvFault);
2383
2384#if HC_ARCH_BITS == 32
2385 Assert(pDis->Param1.cb <= 4);
2386#endif
2387
2388 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2389 if(RT_FAILURE(rc))
2390 return VERR_EM_INTERPRETER;
2391
2392 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2393 if(RT_FAILURE(rc))
2394 return VERR_EM_INTERPRETER;
2395
2396 if (pDis->Param1.cb != pDis->Param2.cb)
2397 {
2398 AssertMsgReturn(pDis->Param1.cb >= pDis->Param2.cb, /* should never happen! */
2399 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb),
2400 VERR_EM_INTERPRETER);
2401
2402 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2403 pDis->Param2.cb = pDis->Param1.cb;
2404 param2.size = param1.size;
2405 }
2406
2407#ifdef IN_RC
2408 /* Safety check (in theory it could cross a page boundary and fault there though) */
2409 Assert( TRPMHasTrap(pVCpu)
2410 && (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW));
2411 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
2412#endif
2413
2414 /* Register and immediate data == DISQPV_TYPE_IMMEDIATE */
2415 AssertReturn(param2.type == DISQPV_TYPE_IMMEDIATE, VERR_EM_INTERPRETER);
2416 RTGCUINTREG ValPar2 = param2.val.val64;
2417
2418 /* The destination is always a virtual address */
2419 AssertReturn(param1.type == DISQPV_TYPE_ADDRESS, VERR_EM_INTERPRETER);
2420
2421 RTGCPTR GCPtrPar1 = param1.val.val64;
2422 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2423 PGMPAGEMAPLOCK Lock;
2424 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2425 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2426
2427 /* Try emulate it with a one-shot #PF handler in place. (RC) */
2428 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2429
2430 RTGCUINTREG32 eflags = 0;
2431 rc = pfnEmulate(pvParam1, ValPar2, pDis->Param2.cb, &eflags);
2432 PGMPhysReleasePageMappingLock(pVM, &Lock);
2433 if (RT_FAILURE(rc))
2434 {
2435 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2436 return VERR_EM_INTERPRETER;
2437 }
2438
2439 /* Update guest's eflags and finish. */
2440 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2441 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2442
2443 *pcbSize = param2.size;
2444 return VINF_SUCCESS;
2445}
2446#endif /* !VBOX_COMPARE_IEM_AND_EM */
2447
2448
2449/**
2450 * ADD, ADC & SUB Emulation.
2451 */
2452static int emInterpretAddSub(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2453 PFNEMULATEPARAM3 pfnEmulate)
2454{
2455 NOREF(pvFault);
2456 DISQPVPARAMVAL param1, param2;
2457 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2458 if(RT_FAILURE(rc))
2459 return VERR_EM_INTERPRETER;
2460
2461 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2462 if(RT_FAILURE(rc))
2463 return VERR_EM_INTERPRETER;
2464
2465#ifdef IN_RC
2466 if (TRPMHasTrap(pVCpu))
2467 {
2468 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2469 {
2470#endif
2471 RTGCPTR pParam1;
2472 uint64_t valpar1, valpar2;
2473
2474 if (pDis->Param1.cb != pDis->Param2.cb)
2475 {
2476 if (pDis->Param1.cb < pDis->Param2.cb)
2477 {
2478 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb)); /* should never happen! */
2479 return VERR_EM_INTERPRETER;
2480 }
2481 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2482 pDis->Param2.cb = pDis->Param1.cb;
2483 param2.size = param1.size;
2484 }
2485
2486 /* The destination is always a virtual address */
2487 if (param1.type == DISQPV_TYPE_ADDRESS)
2488 {
2489 pParam1 = (RTGCPTR)param1.val.val64;
2490 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2491 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2492 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2493 if (RT_FAILURE(rc))
2494 {
2495 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2496 return VERR_EM_INTERPRETER;
2497 }
2498 }
2499 else
2500 {
2501#ifndef DEBUG_bird
2502 AssertFailed();
2503#endif
2504 return VERR_EM_INTERPRETER;
2505 }
2506
2507 /* Register or immediate data */
2508 switch(param2.type)
2509 {
2510 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2511 valpar2 = param2.val.val64;
2512 break;
2513
2514 default:
2515 AssertFailed();
2516 return VERR_EM_INTERPRETER;
2517 }
2518
2519 /* Data read, emulate instruction. */
2520 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
2521
2522 /* Update guest's eflags and finish. */
2523 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2524 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2525
2526 /* And write it back */
2527 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2528 if (RT_SUCCESS(rc))
2529 {
2530 /* All done! */
2531 *pcbSize = param2.size;
2532 return VINF_SUCCESS;
2533 }
2534#ifdef IN_RC
2535 }
2536 }
2537#endif
2538 return VERR_EM_INTERPRETER;
2539}
2540
2541
2542/**
2543 * ADC Emulation.
2544 */
2545static int emInterpretAdc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2546{
2547 if (pRegFrame->eflags.Bits.u1CF)
2548 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
2549 else
2550 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
2551}
2552
2553
2554/**
2555 * BTR/C/S Emulation.
2556 */
2557static int emInterpretBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2558 PFNEMULATEPARAM2UINT32 pfnEmulate)
2559{
2560 DISQPVPARAMVAL param1, param2;
2561 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2562 if(RT_FAILURE(rc))
2563 return VERR_EM_INTERPRETER;
2564
2565 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2566 if(RT_FAILURE(rc))
2567 return VERR_EM_INTERPRETER;
2568
2569#ifdef IN_RC
2570 if (TRPMHasTrap(pVCpu))
2571 {
2572 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2573 {
2574#endif
2575 RTGCPTR pParam1;
2576 uint64_t valpar1 = 0, valpar2;
2577 uint32_t eflags;
2578
2579 /* The destination is always a virtual address */
2580 if (param1.type != DISQPV_TYPE_ADDRESS)
2581 return VERR_EM_INTERPRETER;
2582
2583 pParam1 = (RTGCPTR)param1.val.val64;
2584 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2585
2586 /* Register or immediate data */
2587 switch(param2.type)
2588 {
2589 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2590 valpar2 = param2.val.val64;
2591 break;
2592
2593 default:
2594 AssertFailed();
2595 return VERR_EM_INTERPRETER;
2596 }
2597
2598 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pDis), pvFault, pParam1, valpar2));
2599 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
2600 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER); NOREF(pvFault);
2601 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, 1);
2602 if (RT_FAILURE(rc))
2603 {
2604 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2605 return VERR_EM_INTERPRETER;
2606 }
2607
2608 Log2(("emInterpretBtx: val=%x\n", valpar1));
2609 /* Data read, emulate bit test instruction. */
2610 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
2611
2612 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
2613
2614 /* Update guest's eflags and finish. */
2615 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2616 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2617
2618 /* And write it back */
2619 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, 1);
2620 if (RT_SUCCESS(rc))
2621 {
2622 /* All done! */
2623 *pcbSize = 1;
2624 return VINF_SUCCESS;
2625 }
2626#ifdef IN_RC
2627 }
2628 }
2629#endif
2630 return VERR_EM_INTERPRETER;
2631}
2632
2633
2634#ifndef VBOX_COMPARE_IEM_AND_EM
2635/**
2636 * LOCK BTR/C/S Emulation.
2637 */
2638static int emInterpretLockBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
2639 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
2640{
2641 void *pvParam1;
2642
2643 DISQPVPARAMVAL param1, param2;
2644 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2645 if(RT_FAILURE(rc))
2646 return VERR_EM_INTERPRETER;
2647
2648 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2649 if(RT_FAILURE(rc))
2650 return VERR_EM_INTERPRETER;
2651
2652 /* The destination is always a virtual address */
2653 if (param1.type != DISQPV_TYPE_ADDRESS)
2654 return VERR_EM_INTERPRETER;
2655
2656 /* Register and immediate data == DISQPV_TYPE_IMMEDIATE */
2657 AssertReturn(param2.type == DISQPV_TYPE_IMMEDIATE, VERR_EM_INTERPRETER);
2658 uint64_t ValPar2 = param2.val.val64;
2659
2660 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
2661 RTGCPTR GCPtrPar1 = param1.val.val64;
2662 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
2663 ValPar2 &= 7;
2664
2665 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2666#ifdef IN_RC
2667 Assert(TRPMHasTrap(pVCpu));
2668 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
2669#endif
2670
2671 PGMPAGEMAPLOCK Lock;
2672 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2673 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2674
2675 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pDis), pvFault, GCPtrPar1, ValPar2));
2676 NOREF(pvFault);
2677
2678 /* Try emulate it with a one-shot #PF handler in place. (RC) */
2679 RTGCUINTREG32 eflags = 0;
2680 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
2681 PGMPhysReleasePageMappingLock(pVM, &Lock);
2682 if (RT_FAILURE(rc))
2683 {
2684 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
2685 emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2686 return VERR_EM_INTERPRETER;
2687 }
2688
2689 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pDis), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
2690
2691 /* Update guest's eflags and finish. */
2692 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2693 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2694
2695 *pcbSize = 1;
2696 return VINF_SUCCESS;
2697}
2698#endif /* !VBOX_COMPARE_IEM_AND_EM */
2699
2700
2701/**
2702 * MOV emulation.
2703 */
2704static int emInterpretMov(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2705{
2706 NOREF(pvFault);
2707 DISQPVPARAMVAL param1, param2;
2708 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2709 if(RT_FAILURE(rc))
2710 return VERR_EM_INTERPRETER;
2711
2712 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2713 if(RT_FAILURE(rc))
2714 return VERR_EM_INTERPRETER;
2715
2716 /* If destination is a segment register, punt. We can't handle it here.
2717 * NB: Source can be a register and still trigger a #PF!
2718 */
2719 if (RT_UNLIKELY(pDis->Param1.fUse == DISUSE_REG_SEG))
2720 return VERR_EM_INTERPRETER;
2721
2722 if (param1.type == DISQPV_TYPE_ADDRESS)
2723 {
2724 RTGCPTR pDest;
2725 uint64_t val64;
2726
2727 switch(param1.type)
2728 {
2729 case DISQPV_TYPE_IMMEDIATE:
2730 if(!(param1.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
2731 return VERR_EM_INTERPRETER;
2732 /* fallthru */
2733
2734 case DISQPV_TYPE_ADDRESS:
2735 pDest = (RTGCPTR)param1.val.val64;
2736 pDest = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pDest);
2737 break;
2738
2739 default:
2740 AssertFailed();
2741 return VERR_EM_INTERPRETER;
2742 }
2743
2744 switch(param2.type)
2745 {
2746 case DISQPV_TYPE_IMMEDIATE: /* register type is translated to this one too */
2747 val64 = param2.val.val64;
2748 break;
2749
2750 default:
2751 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
2752 return VERR_EM_INTERPRETER;
2753 }
2754#ifdef LOG_ENABLED
2755 if (pDis->uCpuMode == DISCPUMODE_64BIT)
2756 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
2757 else
2758 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
2759#endif
2760
2761 Assert(param2.size <= 8 && param2.size > 0);
2762 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
2763 rc = emRamWrite(pVM, pVCpu, pRegFrame, pDest, &val64, param2.size);
2764 if (RT_FAILURE(rc))
2765 return VERR_EM_INTERPRETER;
2766
2767 *pcbSize = param2.size;
2768 }
2769#if defined(IN_RC) && defined(VBOX_WITH_RAW_RING1)
2770 /* mov xx, cs instruction is dangerous in raw mode and replaced by an 'int3' by csam/patm. */
2771 else if ( param1.type == DISQPV_TYPE_REGISTER
2772 && param2.type == DISQPV_TYPE_REGISTER)
2773 {
2774 AssertReturn((pDis->Param1.fUse & (DISUSE_REG_GEN8|DISUSE_REG_GEN16|DISUSE_REG_GEN32)), VERR_EM_INTERPRETER);
2775 AssertReturn(pDis->Param2.fUse == DISUSE_REG_SEG, VERR_EM_INTERPRETER);
2776 AssertReturn(pDis->Param2.Base.idxSegReg == DISSELREG_CS, VERR_EM_INTERPRETER);
2777
2778 uint32_t u32Cpl = CPUMRCGetGuestCPL(pVCpu, pRegFrame);
2779 uint32_t uValCS = (pRegFrame->cs.Sel & ~X86_SEL_RPL) | u32Cpl;
2780
2781 Log(("EMInterpretInstruction: OP_MOV cs=%x->%x\n", pRegFrame->cs.Sel, uValCS));
2782 switch (param1.size)
2783 {
2784 case 1: rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t) uValCS); break;
2785 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)uValCS); break;
2786 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)uValCS); break;
2787 default:
2788 AssertFailed();
2789 return VERR_EM_INTERPRETER;
2790 }
2791 AssertRCReturn(rc, rc);
2792 }
2793#endif
2794 else
2795 { /* read fault */
2796 RTGCPTR pSrc;
2797 uint64_t val64;
2798
2799 /* Source */
2800 switch(param2.type)
2801 {
2802 case DISQPV_TYPE_IMMEDIATE:
2803 if(!(param2.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
2804 return VERR_EM_INTERPRETER;
2805 /* fallthru */
2806
2807 case DISQPV_TYPE_ADDRESS:
2808 pSrc = (RTGCPTR)param2.val.val64;
2809 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param2, pSrc);
2810 break;
2811
2812 default:
2813 return VERR_EM_INTERPRETER;
2814 }
2815
2816 Assert(param1.size <= 8 && param1.size > 0);
2817 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
2818 rc = emRamRead(pVM, pVCpu, pRegFrame, &val64, pSrc, param1.size);
2819 if (RT_FAILURE(rc))
2820 return VERR_EM_INTERPRETER;
2821
2822 /* Destination */
2823 switch(param1.type)
2824 {
2825 case DISQPV_TYPE_REGISTER:
2826 switch(param1.size)
2827 {
2828 case 1: rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t) val64); break;
2829 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)val64); break;
2830 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)val64); break;
2831 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param1.Base.idxGenReg, val64); break;
2832 default:
2833 return VERR_EM_INTERPRETER;
2834 }
2835 if (RT_FAILURE(rc))
2836 return rc;
2837 break;
2838
2839 default:
2840 return VERR_EM_INTERPRETER;
2841 }
2842#ifdef LOG_ENABLED
2843 if (pDis->uCpuMode == DISCPUMODE_64BIT)
2844 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
2845 else
2846 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
2847#endif
2848 }
2849 return VINF_SUCCESS;
2850}
2851
2852
2853#ifndef IN_RC
2854/**
2855 * [REP] STOSWD emulation
2856 */
2857static int emInterpretStosWD(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2858{
2859 int rc;
2860 RTGCPTR GCDest, GCOffset;
2861 uint32_t cbSize;
2862 uint64_t cTransfers;
2863 int offIncrement;
2864 NOREF(pvFault);
2865
2866 /* Don't support any but these three prefix bytes. */
2867 if ((pDis->fPrefix & ~(DISPREFIX_ADDRSIZE|DISPREFIX_OPSIZE|DISPREFIX_REP|DISPREFIX_REX)))
2868 return VERR_EM_INTERPRETER;
2869
2870 switch (pDis->uAddrMode)
2871 {
2872 case DISCPUMODE_16BIT:
2873 GCOffset = pRegFrame->di;
2874 cTransfers = pRegFrame->cx;
2875 break;
2876 case DISCPUMODE_32BIT:
2877 GCOffset = pRegFrame->edi;
2878 cTransfers = pRegFrame->ecx;
2879 break;
2880 case DISCPUMODE_64BIT:
2881 GCOffset = pRegFrame->rdi;
2882 cTransfers = pRegFrame->rcx;
2883 break;
2884 default:
2885 AssertFailed();
2886 return VERR_EM_INTERPRETER;
2887 }
2888
2889 GCDest = SELMToFlat(pVM, DISSELREG_ES, pRegFrame, GCOffset);
2890 switch (pDis->uOpMode)
2891 {
2892 case DISCPUMODE_16BIT:
2893 cbSize = 2;
2894 break;
2895 case DISCPUMODE_32BIT:
2896 cbSize = 4;
2897 break;
2898 case DISCPUMODE_64BIT:
2899 cbSize = 8;
2900 break;
2901 default:
2902 AssertFailed();
2903 return VERR_EM_INTERPRETER;
2904 }
2905
2906 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
2907
2908 if (!(pDis->fPrefix & DISPREFIX_REP))
2909 {
2910 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es.Sel, GCOffset, GCDest, cbSize));
2911
2912 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
2913 if (RT_FAILURE(rc))
2914 return VERR_EM_INTERPRETER;
2915 Assert(rc == VINF_SUCCESS);
2916
2917 /* Update (e/r)di. */
2918 switch (pDis->uAddrMode)
2919 {
2920 case DISCPUMODE_16BIT:
2921 pRegFrame->di += offIncrement;
2922 break;
2923 case DISCPUMODE_32BIT:
2924 pRegFrame->edi += offIncrement;
2925 break;
2926 case DISCPUMODE_64BIT:
2927 pRegFrame->rdi += offIncrement;
2928 break;
2929 default:
2930 AssertFailed();
2931 return VERR_EM_INTERPRETER;
2932 }
2933
2934 }
2935 else
2936 {
2937 if (!cTransfers)
2938 return VINF_SUCCESS;
2939
2940 /*
2941 * Do *not* try emulate cross page stuff here because we don't know what might
2942 * be waiting for us on the subsequent pages. The caller has only asked us to
2943 * ignore access handlers fro the current page.
2944 * This also fends off big stores which would quickly kill PGMR0DynMap.
2945 */
2946 if ( cbSize > PAGE_SIZE
2947 || cTransfers > PAGE_SIZE
2948 || (GCDest >> PAGE_SHIFT) != ((GCDest + offIncrement * cTransfers) >> PAGE_SHIFT))
2949 {
2950 Log(("STOSWD is crosses pages, chicken out to the recompiler; GCDest=%RGv cbSize=%#x offIncrement=%d cTransfers=%#x\n",
2951 GCDest, cbSize, offIncrement, cTransfers));
2952 return VERR_EM_INTERPRETER;
2953 }
2954
2955 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es.Sel, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
2956 /* Access verification first; we currently can't recover properly from traps inside this instruction */
2957 rc = PGMVerifyAccess(pVCpu, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
2958 cTransfers * cbSize,
2959 X86_PTE_RW | (CPUMGetGuestCPL(pVCpu) == 3 ? X86_PTE_US : 0));
2960 if (rc != VINF_SUCCESS)
2961 {
2962 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
2963 return VERR_EM_INTERPRETER;
2964 }
2965
2966 /* REP case */
2967 while (cTransfers)
2968 {
2969 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
2970 if (RT_FAILURE(rc))
2971 {
2972 rc = VERR_EM_INTERPRETER;
2973 break;
2974 }
2975
2976 Assert(rc == VINF_SUCCESS);
2977 GCOffset += offIncrement;
2978 GCDest += offIncrement;
2979 cTransfers--;
2980 }
2981
2982 /* Update the registers. */
2983 switch (pDis->uAddrMode)
2984 {
2985 case DISCPUMODE_16BIT:
2986 pRegFrame->di = GCOffset;
2987 pRegFrame->cx = cTransfers;
2988 break;
2989 case DISCPUMODE_32BIT:
2990 pRegFrame->edi = GCOffset;
2991 pRegFrame->ecx = cTransfers;
2992 break;
2993 case DISCPUMODE_64BIT:
2994 pRegFrame->rdi = GCOffset;
2995 pRegFrame->rcx = cTransfers;
2996 break;
2997 default:
2998 AssertFailed();
2999 return VERR_EM_INTERPRETER;
3000 }
3001 }
3002
3003 *pcbSize = cbSize;
3004 return rc;
3005}
3006#endif /* !IN_RC */
3007
3008
3009/**
3010 * [LOCK] CMPXCHG emulation.
3011 */
3012static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3013{
3014 DISQPVPARAMVAL param1, param2;
3015 NOREF(pvFault);
3016
3017#if HC_ARCH_BITS == 32
3018 Assert(pDis->Param1.cb <= 4);
3019#endif
3020
3021 /* Source to make DISQueryParamVal read the register value - ugly hack */
3022 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3023 if(RT_FAILURE(rc))
3024 return VERR_EM_INTERPRETER;
3025
3026 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
3027 if(RT_FAILURE(rc))
3028 return VERR_EM_INTERPRETER;
3029
3030 uint64_t valpar;
3031 switch(param2.type)
3032 {
3033 case DISQPV_TYPE_IMMEDIATE: /* register actually */
3034 valpar = param2.val.val64;
3035 break;
3036
3037 default:
3038 return VERR_EM_INTERPRETER;
3039 }
3040
3041 PGMPAGEMAPLOCK Lock;
3042 RTGCPTR GCPtrPar1;
3043 void *pvParam1;
3044 uint64_t eflags;
3045
3046 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
3047 switch(param1.type)
3048 {
3049 case DISQPV_TYPE_ADDRESS:
3050 GCPtrPar1 = param1.val.val64;
3051 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
3052
3053 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
3054 AssertRCReturn(rc, VERR_EM_INTERPRETER);
3055 break;
3056
3057 default:
3058 return VERR_EM_INTERPRETER;
3059 }
3060
3061 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar));
3062
3063#ifndef VBOX_COMPARE_IEM_AND_EM
3064 if (pDis->fPrefix & DISPREFIX_LOCK)
3065 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->Param2.cb);
3066 else
3067 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->Param2.cb);
3068#else /* VBOX_COMPARE_IEM_AND_EM */
3069 uint64_t u64;
3070 switch (pDis->Param2.cb)
3071 {
3072 case 1: u64 = *(uint8_t *)pvParam1; break;
3073 case 2: u64 = *(uint16_t *)pvParam1; break;
3074 case 4: u64 = *(uint32_t *)pvParam1; break;
3075 default:
3076 case 8: u64 = *(uint64_t *)pvParam1; break;
3077 }
3078 eflags = EMEmulateCmpXchg(&u64, &pRegFrame->rax, valpar, pDis->Param2.cb);
3079 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, pDis->Param2.cb); AssertRCSuccess(rc2);
3080#endif /* VBOX_COMPARE_IEM_AND_EM */
3081
3082 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
3083
3084 /* Update guest's eflags and finish. */
3085 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
3086 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
3087
3088 *pcbSize = param2.size;
3089 PGMPhysReleasePageMappingLock(pVM, &Lock);
3090 return VINF_SUCCESS;
3091}
3092
3093
3094/**
3095 * [LOCK] CMPXCHG8B emulation.
3096 */
3097static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3098{
3099 DISQPVPARAMVAL param1;
3100 NOREF(pvFault);
3101
3102 /* Source to make DISQueryParamVal read the register value - ugly hack */
3103 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3104 if(RT_FAILURE(rc))
3105 return VERR_EM_INTERPRETER;
3106
3107 RTGCPTR GCPtrPar1;
3108 void *pvParam1;
3109 uint64_t eflags;
3110 PGMPAGEMAPLOCK Lock;
3111
3112 AssertReturn(pDis->Param1.cb == 8, VERR_EM_INTERPRETER);
3113 switch(param1.type)
3114 {
3115 case DISQPV_TYPE_ADDRESS:
3116 GCPtrPar1 = param1.val.val64;
3117 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
3118
3119 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
3120 AssertRCReturn(rc, VERR_EM_INTERPRETER);
3121 break;
3122
3123 default:
3124 return VERR_EM_INTERPRETER;
3125 }
3126
3127 LogFlow(("%s %RGv=%p eax=%08x\n", emGetMnemonic(pDis), GCPtrPar1, pvParam1, pRegFrame->eax));
3128
3129#ifndef VBOX_COMPARE_IEM_AND_EM
3130 if (pDis->fPrefix & DISPREFIX_LOCK)
3131 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
3132 else
3133 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
3134#else /* VBOX_COMPARE_IEM_AND_EM */
3135 uint64_t u64 = *(uint64_t *)pvParam1;
3136 eflags = EMEmulateCmpXchg8b(&u64, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
3137 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, sizeof(u64)); AssertRCSuccess(rc2);
3138#endif /* VBOX_COMPARE_IEM_AND_EM */
3139
3140 LogFlow(("%s %RGv=%p eax=%08x ZF=%d\n", emGetMnemonic(pDis), GCPtrPar1, pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
3141
3142 /* Update guest's eflags and finish; note that *only* ZF is affected. */
3143 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
3144 | (eflags & (X86_EFL_ZF));
3145
3146 *pcbSize = 8;
3147 PGMPhysReleasePageMappingLock(pVM, &Lock);
3148 return VINF_SUCCESS;
3149}
3150
3151
3152#ifdef IN_RC /** @todo test+enable for HM as well. */
3153/**
3154 * [LOCK] XADD emulation.
3155 */
3156static int emInterpretXAdd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3157{
3158 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
3159 DISQPVPARAMVAL param1;
3160 void *pvParamReg2;
3161 size_t cbParamReg2;
3162 NOREF(pvFault);
3163
3164 /* Source to make DISQueryParamVal read the register value - ugly hack */
3165 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3166 if(RT_FAILURE(rc))
3167 return VERR_EM_INTERPRETER;
3168
3169 rc = DISQueryParamRegPtr(pRegFrame, pDis, &pDis->Param2, &pvParamReg2, &cbParamReg2);
3170 Assert(cbParamReg2 <= 4);
3171 if(RT_FAILURE(rc))
3172 return VERR_EM_INTERPRETER;
3173
3174#ifdef IN_RC
3175 if (TRPMHasTrap(pVCpu))
3176 {
3177 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
3178 {
3179#endif
3180 RTGCPTR GCPtrPar1;
3181 void *pvParam1;
3182 uint32_t eflags;
3183 PGMPAGEMAPLOCK Lock;
3184
3185 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
3186 switch(param1.type)
3187 {
3188 case DISQPV_TYPE_ADDRESS:
3189 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, (RTRCUINTPTR)param1.val.val64);
3190#ifdef IN_RC
3191 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
3192#endif
3193
3194 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
3195 AssertRCReturn(rc, VERR_EM_INTERPRETER);
3196 break;
3197
3198 default:
3199 return VERR_EM_INTERPRETER;
3200 }
3201
3202 LogFlow(("XAdd %RGv=%p reg=%08llx\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2));
3203
3204#ifndef VBOX_COMPARE_IEM_AND_EM
3205 if (pDis->fPrefix & DISPREFIX_LOCK)
3206 eflags = EMEmulateLockXAdd(pvParam1, pvParamReg2, cbParamReg2);
3207 else
3208 eflags = EMEmulateXAdd(pvParam1, pvParamReg2, cbParamReg2);
3209#else /* VBOX_COMPARE_IEM_AND_EM */
3210 uint64_t u64;
3211 switch (cbParamReg2)
3212 {
3213 case 1: u64 = *(uint8_t *)pvParam1; break;
3214 case 2: u64 = *(uint16_t *)pvParam1; break;
3215 case 4: u64 = *(uint32_t *)pvParam1; break;
3216 default:
3217 case 8: u64 = *(uint64_t *)pvParam1; break;
3218 }
3219 eflags = EMEmulateXAdd(&u64, pvParamReg2, cbParamReg2);
3220 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, pDis->Param2.cb); AssertRCSuccess(rc2);
3221#endif /* VBOX_COMPARE_IEM_AND_EM */
3222
3223 LogFlow(("XAdd %RGv=%p reg=%08llx ZF=%d\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2, !!(eflags & X86_EFL_ZF) ));
3224
3225 /* Update guest's eflags and finish. */
3226 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
3227 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
3228
3229 *pcbSize = cbParamReg2;
3230 PGMPhysReleasePageMappingLock(pVM, &Lock);
3231 return VINF_SUCCESS;
3232#ifdef IN_RC
3233 }
3234 }
3235
3236 return VERR_EM_INTERPRETER;
3237#endif
3238}
3239#endif /* IN_RC */
3240
3241
3242/**
3243 * WBINVD Emulation.
3244 */
3245static int emInterpretWbInvd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3246{
3247 /* Nothing to do. */
3248 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3249 return VINF_SUCCESS;
3250}
3251
3252
3253/**
3254 * INVLPG Emulation.
3255 */
3256static VBOXSTRICTRC emInterpretInvlPg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3257{
3258 DISQPVPARAMVAL param1;
3259 RTGCPTR addr;
3260 NOREF(pvFault); NOREF(pVM); NOREF(pcbSize);
3261
3262 VBOXSTRICTRC rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3263 if(RT_FAILURE(rc))
3264 return VERR_EM_INTERPRETER;
3265
3266 switch(param1.type)
3267 {
3268 case DISQPV_TYPE_IMMEDIATE:
3269 case DISQPV_TYPE_ADDRESS:
3270 if(!(param1.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
3271 return VERR_EM_INTERPRETER;
3272 addr = (RTGCPTR)param1.val.val64;
3273 break;
3274
3275 default:
3276 return VERR_EM_INTERPRETER;
3277 }
3278
3279 /** @todo is addr always a flat linear address or ds based
3280 * (in absence of segment override prefixes)????
3281 */
3282#ifdef IN_RC
3283 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
3284#endif
3285 rc = PGMInvalidatePage(pVCpu, addr);
3286 if ( rc == VINF_SUCCESS
3287 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
3288 return VINF_SUCCESS;
3289 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
3290 ("%Rrc addr=%RGv\n", VBOXSTRICTRC_VAL(rc), addr),
3291 VERR_EM_INTERPRETER);
3292 return rc;
3293}
3294
3295/** @todo change all these EMInterpretXXX methods to VBOXSTRICTRC. */
3296
3297/**
3298 * CPUID Emulation.
3299 */
3300static int emInterpretCpuId(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3301{
3302 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3303 int rc = EMInterpretCpuId(pVM, pVCpu, pRegFrame);
3304 return rc;
3305}
3306
3307
3308/**
3309 * CLTS Emulation.
3310 */
3311static int emInterpretClts(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3312{
3313 NOREF(pVM); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3314
3315 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
3316 if (!(cr0 & X86_CR0_TS))
3317 return VINF_SUCCESS;
3318 return CPUMSetGuestCR0(pVCpu, cr0 & ~X86_CR0_TS);
3319}
3320
3321
3322/**
3323 * LMSW Emulation.
3324 */
3325static int emInterpretLmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3326{
3327 DISQPVPARAMVAL param1;
3328 uint32_t val;
3329 NOREF(pvFault); NOREF(pcbSize);
3330 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
3331
3332 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3333 if(RT_FAILURE(rc))
3334 return VERR_EM_INTERPRETER;
3335
3336 switch(param1.type)
3337 {
3338 case DISQPV_TYPE_IMMEDIATE:
3339 case DISQPV_TYPE_ADDRESS:
3340 if(!(param1.flags & DISQPV_FLAG_16))
3341 return VERR_EM_INTERPRETER;
3342 val = param1.val.val32;
3343 break;
3344
3345 default:
3346 return VERR_EM_INTERPRETER;
3347 }
3348
3349 LogFlow(("emInterpretLmsw %x\n", val));
3350 uint64_t OldCr0 = CPUMGetGuestCR0(pVCpu);
3351
3352 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
3353 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
3354 | (val & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
3355
3356 return emUpdateCRx(pVM, pVCpu, pRegFrame, DISCREG_CR0, NewCr0);
3357
3358}
3359
3360#ifdef EM_EMULATE_SMSW
3361/**
3362 * SMSW Emulation.
3363 */
3364static int emInterpretSmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3365{
3366 NOREF(pvFault); NOREF(pcbSize);
3367 DISQPVPARAMVAL param1;
3368 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
3369
3370 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3371 if(RT_FAILURE(rc))
3372 return VERR_EM_INTERPRETER;
3373
3374 switch(param1.type)
3375 {
3376 case DISQPV_TYPE_IMMEDIATE:
3377 if(param1.size != sizeof(uint16_t))
3378 return VERR_EM_INTERPRETER;
3379 LogFlow(("emInterpretSmsw %d <- cr0 (%x)\n", pDis->Param1.Base.idxGenReg, cr0));
3380 rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, cr0);
3381 break;
3382
3383 case DISQPV_TYPE_ADDRESS:
3384 {
3385 RTGCPTR pParam1;
3386
3387 /* Actually forced to 16 bits regardless of the operand size. */
3388 if(param1.size != sizeof(uint16_t))
3389 return VERR_EM_INTERPRETER;
3390
3391 pParam1 = (RTGCPTR)param1.val.val64;
3392 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
3393 LogFlow(("emInterpretSmsw %RGv <- cr0 (%x)\n", pParam1, cr0));
3394
3395 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &cr0, sizeof(uint16_t));
3396 if (RT_FAILURE(rc))
3397 {
3398 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
3399 return VERR_EM_INTERPRETER;
3400 }
3401 break;
3402 }
3403
3404 default:
3405 return VERR_EM_INTERPRETER;
3406 }
3407
3408 LogFlow(("emInterpretSmsw %x\n", cr0));
3409 return rc;
3410}
3411#endif
3412
3413/**
3414 * MOV CRx
3415 */
3416static int emInterpretMovCRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3417{
3418 NOREF(pvFault); NOREF(pcbSize);
3419 if ((pDis->Param1.fUse == DISUSE_REG_GEN32 || pDis->Param1.fUse == DISUSE_REG_GEN64) && pDis->Param2.fUse == DISUSE_REG_CR)
3420 return emInterpretCRxRead(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxGenReg, pDis->Param2.Base.idxCtrlReg);
3421
3422 if (pDis->Param1.fUse == DISUSE_REG_CR && (pDis->Param2.fUse == DISUSE_REG_GEN32 || pDis->Param2.fUse == DISUSE_REG_GEN64))
3423 return emInterpretCRxWrite(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxCtrlReg, pDis->Param2.Base.idxGenReg);
3424
3425 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
3426}
3427
3428
3429/**
3430 * MOV DRx
3431 */
3432static int emInterpretMovDRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3433{
3434 int rc = VERR_EM_INTERPRETER;
3435 NOREF(pvFault); NOREF(pcbSize);
3436
3437 if((pDis->Param1.fUse == DISUSE_REG_GEN32 || pDis->Param1.fUse == DISUSE_REG_GEN64) && pDis->Param2.fUse == DISUSE_REG_DBG)
3438 {
3439 rc = EMInterpretDRxRead(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxGenReg, pDis->Param2.Base.idxDbgReg);
3440 }
3441 else
3442 if(pDis->Param1.fUse == DISUSE_REG_DBG && (pDis->Param2.fUse == DISUSE_REG_GEN32 || pDis->Param2.fUse == DISUSE_REG_GEN64))
3443 {
3444 rc = EMInterpretDRxWrite(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxDbgReg, pDis->Param2.Base.idxGenReg);
3445 }
3446 else
3447 AssertMsgFailed(("Unexpected debug register move\n"));
3448
3449 return rc;
3450}
3451
3452
3453/**
3454 * LLDT Emulation.
3455 */
3456static int emInterpretLLdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3457{
3458 DISQPVPARAMVAL param1;
3459 RTSEL sel;
3460 NOREF(pVM); NOREF(pvFault); NOREF(pcbSize);
3461
3462 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3463 if(RT_FAILURE(rc))
3464 return VERR_EM_INTERPRETER;
3465
3466 switch(param1.type)
3467 {
3468 case DISQPV_TYPE_ADDRESS:
3469 return VERR_EM_INTERPRETER; //feeling lazy right now
3470
3471 case DISQPV_TYPE_IMMEDIATE:
3472 if(!(param1.flags & DISQPV_FLAG_16))
3473 return VERR_EM_INTERPRETER;
3474 sel = (RTSEL)param1.val.val16;
3475 break;
3476
3477 default:
3478 return VERR_EM_INTERPRETER;
3479 }
3480
3481#ifdef IN_RING0
3482 /* Only for the VT-x real-mode emulation case. */
3483 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
3484 CPUMSetGuestLDTR(pVCpu, sel);
3485 return VINF_SUCCESS;
3486#else
3487 if (sel == 0)
3488 {
3489 if (CPUMGetHyperLDTR(pVCpu) == 0)
3490 {
3491 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
3492 return VINF_SUCCESS;
3493 }
3494 }
3495 //still feeling lazy
3496 return VERR_EM_INTERPRETER;
3497#endif
3498}
3499
3500#ifdef IN_RING0
3501/**
3502 * LIDT/LGDT Emulation.
3503 */
3504static int emInterpretLIGdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3505{
3506 DISQPVPARAMVAL param1;
3507 RTGCPTR pParam1;
3508 X86XDTR32 dtr32;
3509 NOREF(pvFault); NOREF(pcbSize);
3510
3511 Log(("Emulate %s at %RGv\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip));
3512
3513 /* Only for the VT-x real-mode emulation case. */
3514 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
3515
3516 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3517 if(RT_FAILURE(rc))
3518 return VERR_EM_INTERPRETER;
3519
3520 switch(param1.type)
3521 {
3522 case DISQPV_TYPE_ADDRESS:
3523 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, param1.val.val16);
3524 break;
3525
3526 default:
3527 return VERR_EM_INTERPRETER;
3528 }
3529
3530 rc = emRamRead(pVM, pVCpu, pRegFrame, &dtr32, pParam1, sizeof(dtr32));
3531 AssertRCReturn(rc, VERR_EM_INTERPRETER);
3532
3533 if (!(pDis->fPrefix & DISPREFIX_OPSIZE))
3534 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
3535
3536 if (pDis->pCurInstr->uOpcode == OP_LIDT)
3537 CPUMSetGuestIDTR(pVCpu, dtr32.uAddr, dtr32.cb);
3538 else
3539 CPUMSetGuestGDTR(pVCpu, dtr32.uAddr, dtr32.cb);
3540
3541 return VINF_SUCCESS;
3542}
3543#endif
3544
3545
3546#ifdef IN_RC
3547/**
3548 * STI Emulation.
3549 *
3550 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
3551 */
3552static int emInterpretSti(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3553{
3554 NOREF(pcbSize);
3555 PPATMGCSTATE pGCState = PATMGetGCState(pVM);
3556
3557 if(!pGCState)
3558 {
3559 Assert(pGCState);
3560 return VERR_EM_INTERPRETER;
3561 }
3562 pGCState->uVMFlags |= X86_EFL_IF;
3563
3564 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
3565 Assert(pvFault == SELMToFlat(pVM, DISSELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
3566
3567 pVCpu->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pDis->cbInstr;
3568 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3569
3570 return VINF_SUCCESS;
3571}
3572#endif /* IN_RC */
3573
3574
3575/**
3576 * HLT Emulation.
3577 */
3578static VBOXSTRICTRC
3579emInterpretHlt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3580{
3581 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3582 return VINF_EM_HALT;
3583}
3584
3585
3586/**
3587 * RDTSC Emulation.
3588 */
3589static int emInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3590{
3591 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3592 return EMInterpretRdtsc(pVM, pVCpu, pRegFrame);
3593}
3594
3595/**
3596 * RDPMC Emulation
3597 */
3598static int emInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3599{
3600 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3601 return EMInterpretRdpmc(pVM, pVCpu, pRegFrame);
3602}
3603
3604
3605static int emInterpretMonitor(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3606{
3607 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3608 return EMInterpretMonitor(pVM, pVCpu, pRegFrame);
3609}
3610
3611
3612static VBOXSTRICTRC emInterpretMWait(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3613{
3614 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3615 return EMInterpretMWait(pVM, pVCpu, pRegFrame);
3616}
3617
3618
3619/**
3620 * RDMSR Emulation.
3621 */
3622static int emInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3623{
3624 /* Note: The Intel manual claims there's a REX version of RDMSR that's slightly
3625 different, so we play safe by completely disassembling the instruction. */
3626 Assert(!(pDis->fPrefix & DISPREFIX_REX));
3627 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3628 return EMInterpretRdmsr(pVM, pVCpu, pRegFrame);
3629}
3630
3631
3632/**
3633 * WRMSR Emulation.
3634 */
3635static int emInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3636{
3637 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3638 return EMInterpretWrmsr(pVM, pVCpu, pRegFrame);
3639}
3640
3641
3642/**
3643 * Internal worker.
3644 * @copydoc emInterpretInstructionCPUOuter
3645 * @param pVM The cross context VM structure.
3646 */
3647DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
3648 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize)
3649{
3650 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
3651 Assert(enmCodeType == EMCODETYPE_SUPERVISOR || enmCodeType == EMCODETYPE_ALL);
3652 Assert(pcbSize);
3653 *pcbSize = 0;
3654
3655 if (enmCodeType == EMCODETYPE_SUPERVISOR)
3656 {
3657 /*
3658 * Only supervisor guest code!!
3659 * And no complicated prefixes.
3660 */
3661 /* Get the current privilege level. */
3662 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
3663#ifdef VBOX_WITH_RAW_RING1
3664 if ( !EMIsRawRing1Enabled(pVM)
3665 || cpl > 1
3666 || pRegFrame->eflags.Bits.u2IOPL > cpl
3667 )
3668#endif
3669 {
3670 if ( cpl != 0
3671 && pDis->pCurInstr->uOpcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
3672 {
3673 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
3674 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
3675 return VERR_EM_INTERPRETER;
3676 }
3677 }
3678 }
3679 else
3680 Log2(("emInterpretInstructionCPU allowed to interpret user-level code!!\n"));
3681
3682#ifdef IN_RC
3683 if ( (pDis->fPrefix & (DISPREFIX_REPNE | DISPREFIX_REP))
3684 || ( (pDis->fPrefix & DISPREFIX_LOCK)
3685 && pDis->pCurInstr->uOpcode != OP_CMPXCHG
3686 && pDis->pCurInstr->uOpcode != OP_CMPXCHG8B
3687 && pDis->pCurInstr->uOpcode != OP_XADD
3688 && pDis->pCurInstr->uOpcode != OP_OR
3689 && pDis->pCurInstr->uOpcode != OP_AND
3690 && pDis->pCurInstr->uOpcode != OP_XOR
3691 && pDis->pCurInstr->uOpcode != OP_BTR
3692 )
3693 )
3694#else
3695 if ( (pDis->fPrefix & DISPREFIX_REPNE)
3696 || ( (pDis->fPrefix & DISPREFIX_REP)
3697 && pDis->pCurInstr->uOpcode != OP_STOSWD
3698 )
3699 || ( (pDis->fPrefix & DISPREFIX_LOCK)
3700 && pDis->pCurInstr->uOpcode != OP_OR
3701 && pDis->pCurInstr->uOpcode != OP_AND
3702 && pDis->pCurInstr->uOpcode != OP_XOR
3703 && pDis->pCurInstr->uOpcode != OP_BTR
3704 && pDis->pCurInstr->uOpcode != OP_CMPXCHG
3705 && pDis->pCurInstr->uOpcode != OP_CMPXCHG8B
3706 )
3707 )
3708#endif
3709 {
3710 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
3711 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
3712 Log4(("EM: Refuse %u on REP/REPNE/LOCK prefix grounds\n", pDis->pCurInstr->uOpcode));
3713 return VERR_EM_INTERPRETER;
3714 }
3715
3716#if HC_ARCH_BITS == 32
3717 /*
3718 * Unable to emulate most >4 bytes accesses in 32 bits mode.
3719 * Whitelisted instructions are safe.
3720 */
3721 if ( pDis->Param1.cb > 4
3722 && CPUMIsGuestIn64BitCode(pVCpu))
3723 {
3724 uint32_t uOpCode = pDis->pCurInstr->uOpcode;
3725 if ( uOpCode != OP_STOSWD
3726 && uOpCode != OP_MOV
3727 && uOpCode != OP_CMPXCHG8B
3728 && uOpCode != OP_XCHG
3729 && uOpCode != OP_BTS
3730 && uOpCode != OP_BTR
3731 && uOpCode != OP_BTC
3732 )
3733 {
3734# ifdef VBOX_WITH_STATISTICS
3735 switch (pDis->pCurInstr->uOpcode)
3736 {
3737# define INTERPRET_FAILED_CASE(opcode, Instr) \
3738 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
3739 INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
3740 INTERPRET_FAILED_CASE(OP_DEC,Dec);
3741 INTERPRET_FAILED_CASE(OP_INC,Inc);
3742 INTERPRET_FAILED_CASE(OP_POP,Pop);
3743 INTERPRET_FAILED_CASE(OP_OR, Or);
3744 INTERPRET_FAILED_CASE(OP_XOR,Xor);
3745 INTERPRET_FAILED_CASE(OP_AND,And);
3746 INTERPRET_FAILED_CASE(OP_MOV,Mov);
3747 INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
3748 INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
3749 INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
3750 INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
3751 INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
3752 INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
3753 INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
3754 INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
3755 INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
3756 INTERPRET_FAILED_CASE(OP_CLTS,Clts);
3757 INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
3758 INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
3759 INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
3760 INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
3761 INTERPRET_FAILED_CASE(OP_ADD,Add);
3762 INTERPRET_FAILED_CASE(OP_SUB,Sub);
3763 INTERPRET_FAILED_CASE(OP_ADC,Adc);
3764 INTERPRET_FAILED_CASE(OP_BTR,Btr);
3765 INTERPRET_FAILED_CASE(OP_BTS,Bts);
3766 INTERPRET_FAILED_CASE(OP_BTC,Btc);
3767 INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
3768 INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
3769 INTERPRET_FAILED_CASE(OP_STI, Sti);
3770 INTERPRET_FAILED_CASE(OP_XADD,XAdd);
3771 INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
3772 INTERPRET_FAILED_CASE(OP_HLT, Hlt);
3773 INTERPRET_FAILED_CASE(OP_IRET,Iret);
3774 INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
3775 INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
3776# undef INTERPRET_FAILED_CASE
3777 default:
3778 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3779 break;
3780 }
3781# endif /* VBOX_WITH_STATISTICS */
3782 Log4(("EM: Refuse %u on grounds of accessing %u bytes\n", pDis->pCurInstr->uOpcode, pDis->Param1.cb));
3783 return VERR_EM_INTERPRETER;
3784 }
3785 }
3786#endif
3787
3788 VBOXSTRICTRC rc;
3789#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
3790 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pDis)));
3791#endif
3792 switch (pDis->pCurInstr->uOpcode)
3793 {
3794 /*
3795 * Macros for generating the right case statements.
3796 */
3797# ifndef VBOX_COMPARE_IEM_AND_EM
3798# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3799 case opcode:\
3800 if (pDis->fPrefix & DISPREFIX_LOCK) \
3801 rc = emInterpretLock##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
3802 else \
3803 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3804 if (RT_SUCCESS(rc)) \
3805 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3806 else \
3807 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3808 return rc
3809# else /* VBOX_COMPARE_IEM_AND_EM */
3810# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3811 case opcode:\
3812 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3813 if (RT_SUCCESS(rc)) \
3814 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3815 else \
3816 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3817 return rc
3818# endif /* VBOX_COMPARE_IEM_AND_EM */
3819
3820#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
3821 case opcode:\
3822 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3823 if (RT_SUCCESS(rc)) \
3824 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3825 else \
3826 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3827 return rc
3828
3829#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
3830 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
3831#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3832 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
3833
3834#define INTERPRET_CASE(opcode, Instr) \
3835 case opcode:\
3836 rc = emInterpret##Instr(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3837 if (RT_SUCCESS(rc)) \
3838 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3839 else \
3840 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3841 return rc
3842
3843#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
3844 case opcode:\
3845 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3846 if (RT_SUCCESS(rc)) \
3847 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3848 else \
3849 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3850 return rc
3851
3852#define INTERPRET_STAT_CASE(opcode, Instr) \
3853 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
3854
3855 /*
3856 * The actual case statements.
3857 */
3858 INTERPRET_CASE(OP_XCHG,Xchg);
3859 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
3860 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3861 INTERPRET_CASE(OP_POP,Pop);
3862 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3863 INTERPRET_CASE_EX_LOCK_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor, EMEmulateLockXor);
3864 INTERPRET_CASE_EX_LOCK_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd, EMEmulateLockAnd);
3865 INTERPRET_CASE(OP_MOV,Mov);
3866#ifndef IN_RC
3867 INTERPRET_CASE(OP_STOSWD,StosWD);
3868#endif
3869 INTERPRET_CASE(OP_INVLPG,InvlPg);
3870 INTERPRET_CASE(OP_CPUID,CpuId);
3871 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3872 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3873#ifdef IN_RING0
3874 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3875 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3876#endif
3877 INTERPRET_CASE(OP_LLDT,LLdt);
3878 INTERPRET_CASE(OP_LMSW,Lmsw);
3879#ifdef EM_EMULATE_SMSW
3880 INTERPRET_CASE(OP_SMSW,Smsw);
3881#endif
3882 INTERPRET_CASE(OP_CLTS,Clts);
3883 INTERPRET_CASE(OP_MONITOR, Monitor);
3884 INTERPRET_CASE(OP_MWAIT, MWait);
3885 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3886 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3887 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3888 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3889 INTERPRET_CASE(OP_ADC,Adc);
3890 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3891 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3892 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3893 INTERPRET_CASE(OP_RDPMC,Rdpmc);
3894 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3895 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3896#ifdef IN_RC
3897 INTERPRET_CASE(OP_STI,Sti);
3898 INTERPRET_CASE(OP_XADD, XAdd);
3899 INTERPRET_CASE(OP_IRET,Iret);
3900#endif
3901 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3902 INTERPRET_CASE(OP_HLT,Hlt);
3903 INTERPRET_CASE(OP_WBINVD,WbInvd);
3904#ifdef VBOX_WITH_STATISTICS
3905# ifndef IN_RC
3906 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3907# endif
3908 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3909#endif
3910
3911 default:
3912 Log3(("emInterpretInstructionCPU: opcode=%d\n", pDis->pCurInstr->uOpcode));
3913 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3914 return VERR_EM_INTERPRETER;
3915
3916#undef INTERPRET_CASE_EX_PARAM2
3917#undef INTERPRET_STAT_CASE
3918#undef INTERPRET_CASE_EX
3919#undef INTERPRET_CASE
3920 } /* switch (opcode) */
3921 /* not reached */
3922}
3923
3924/**
3925 * Interprets the current instruction using the supplied DISCPUSTATE structure.
3926 *
3927 * EIP is *NOT* updated!
3928 *
3929 * @returns VBox strict status code.
3930 * @retval VINF_* Scheduling instructions. When these are returned, it
3931 * starts to get a bit tricky to know whether code was
3932 * executed or not... We'll address this when it becomes a problem.
3933 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3934 * @retval VERR_* Fatal errors.
3935 *
3936 * @param pVCpu The cross context virtual CPU structure.
3937 * @param pDis The disassembler cpu state for the instruction to be
3938 * interpreted.
3939 * @param pRegFrame The register frame. EIP is *NOT* changed!
3940 * @param pvFault The fault address (CR2).
3941 * @param pcbSize Size of the write (if applicable).
3942 * @param enmCodeType Code type (user/supervisor)
3943 *
3944 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
3945 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
3946 * to worry about e.g. invalid modrm combinations (!)
3947 *
3948 * @todo At this time we do NOT check if the instruction overwrites vital information.
3949 * Make sure this can't happen!! (will add some assertions/checks later)
3950 */
3951DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPUOuter(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
3952 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize)
3953{
3954 STAM_PROFILE_START(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
3955 VBOXSTRICTRC rc = emInterpretInstructionCPU(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, pRegFrame, pvFault, enmCodeType, pcbSize);
3956 STAM_PROFILE_STOP(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
3957 if (RT_SUCCESS(rc))
3958 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
3959 else
3960 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
3961 return rc;
3962}
3963
3964
3965#endif /* !VBOX_WITH_IEM */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette