VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 71586

Last change on this file since 71586 was 71341, checked in by vboxsync, 7 years ago

VMM/EM: Todo comment and removed superfluous double negation in EMShouldContinueAfterHalt.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 144.4 KB
Line 
1/* $Id: EMAll.cpp 71341 2018-03-15 06:13:31Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define VBOX_WITH_IEM
23#define LOG_GROUP LOG_GROUP_EM
24#include <VBox/vmm/em.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/vmm/selm.h>
27#include <VBox/vmm/patm.h>
28#include <VBox/vmm/csam.h>
29#include <VBox/vmm/pgm.h>
30#ifdef VBOX_WITH_IEM
31# include <VBox/vmm/iem.h>
32#endif
33#include <VBox/vmm/iom.h>
34#include <VBox/vmm/stam.h>
35#include "EMInternal.h"
36#include <VBox/vmm/vm.h>
37#include <VBox/vmm/vmm.h>
38#include <VBox/vmm/hm.h>
39#include <VBox/vmm/tm.h>
40#include <VBox/vmm/pdmapi.h>
41#include <VBox/param.h>
42#include <VBox/err.h>
43#include <VBox/dis.h>
44#include <VBox/disopcode.h>
45#include <VBox/log.h>
46#include <iprt/assert.h>
47#include <iprt/asm.h>
48#include <iprt/string.h>
49
50#ifdef VBOX_WITH_IEM
51//# define VBOX_COMPARE_IEM_AND_EM /* debugging... */
52//# define VBOX_SAME_AS_EM
53//# define VBOX_COMPARE_IEM_LAST
54#endif
55
56#ifdef VBOX_WITH_RAW_RING1
57# define EM_EMULATE_SMSW
58#endif
59
60
61/*********************************************************************************************************************************
62* Defined Constants And Macros *
63*********************************************************************************************************************************/
64/** @def EM_ASSERT_FAULT_RETURN
65 * Safety check.
66 *
67 * Could in theory misfire on a cross page boundary access...
68 *
69 * Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
70 * turns up an alias page instead of the original faulting one and annoying the
71 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
72 */
73#if 0
74# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
75#else
76# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
77#endif
78
79
80/*********************************************************************************************************************************
81* Internal Functions *
82*********************************************************************************************************************************/
83#if !defined(VBOX_WITH_IEM) || defined(VBOX_COMPARE_IEM_AND_EM)
84DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPUOuter(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
85 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize);
86#endif
87
88
89/*********************************************************************************************************************************
90* Global Variables *
91*********************************************************************************************************************************/
92#ifdef VBOX_COMPARE_IEM_AND_EM
93static const uint32_t g_fInterestingFFs = VMCPU_FF_TO_R3
94 | VMCPU_FF_CSAM_PENDING_ACTION | VMCPU_FF_CSAM_SCAN_PAGE | VMCPU_FF_INHIBIT_INTERRUPTS
95 | VMCPU_FF_SELM_SYNC_LDT | VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_TSS | VMCPU_FF_TRPM_SYNC_IDT
96 | VMCPU_FF_TLB_FLUSH | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL;
97static uint32_t g_fIncomingFFs;
98static CPUMCTX g_IncomingCtx;
99static bool g_fIgnoreRaxRdx = false;
100
101static uint32_t g_fEmFFs;
102static CPUMCTX g_EmCtx;
103static uint8_t g_abEmWrote[256];
104static size_t g_cbEmWrote;
105
106static uint32_t g_fIemFFs;
107static CPUMCTX g_IemCtx;
108extern uint8_t g_abIemWrote[256];
109#if defined(VBOX_COMPARE_IEM_FIRST) || defined(VBOX_COMPARE_IEM_LAST)
110extern size_t g_cbIemWrote;
111#else
112static size_t g_cbIemWrote;
113#endif
114#endif
115
116
117/**
118 * Get the current execution manager status.
119 *
120 * @returns Current status.
121 * @param pVCpu The cross context virtual CPU structure.
122 */
123VMM_INT_DECL(EMSTATE) EMGetState(PVMCPU pVCpu)
124{
125 return pVCpu->em.s.enmState;
126}
127
128
129/**
130 * Sets the current execution manager status. (use only when you know what you're doing!)
131 *
132 * @param pVCpu The cross context virtual CPU structure.
133 * @param enmNewState The new state, EMSTATE_WAIT_SIPI or EMSTATE_HALTED.
134 */
135VMM_INT_DECL(void) EMSetState(PVMCPU pVCpu, EMSTATE enmNewState)
136{
137 /* Only allowed combination: */
138 Assert(pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI && enmNewState == EMSTATE_HALTED);
139 pVCpu->em.s.enmState = enmNewState;
140}
141
142
143/**
144 * Sets the PC for which interrupts should be inhibited.
145 *
146 * @param pVCpu The cross context virtual CPU structure.
147 * @param PC The PC.
148 */
149VMMDECL(void) EMSetInhibitInterruptsPC(PVMCPU pVCpu, RTGCUINTPTR PC)
150{
151 pVCpu->em.s.GCPtrInhibitInterrupts = PC;
152 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
153}
154
155
156/**
157 * Gets the PC for which interrupts should be inhibited.
158 *
159 * There are a few instructions which inhibits or delays interrupts
160 * for the instruction following them. These instructions are:
161 * - STI
162 * - MOV SS, r/m16
163 * - POP SS
164 *
165 * @returns The PC for which interrupts should be inhibited.
166 * @param pVCpu The cross context virtual CPU structure.
167 *
168 */
169VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVMCPU pVCpu)
170{
171 return pVCpu->em.s.GCPtrInhibitInterrupts;
172}
173
174
175/**
176 * Prepare an MWAIT - essentials of the MONITOR instruction.
177 *
178 * @returns VINF_SUCCESS
179 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
180 * @param rax The content of RAX.
181 * @param rcx The content of RCX.
182 * @param rdx The content of RDX.
183 * @param GCPhys The physical address corresponding to rax.
184 */
185VMM_INT_DECL(int) EMMonitorWaitPrepare(PVMCPU pVCpu, uint64_t rax, uint64_t rcx, uint64_t rdx, RTGCPHYS GCPhys)
186{
187 pVCpu->em.s.MWait.uMonitorRAX = rax;
188 pVCpu->em.s.MWait.uMonitorRCX = rcx;
189 pVCpu->em.s.MWait.uMonitorRDX = rdx;
190 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_MONITOR_ACTIVE;
191 /** @todo Make use of GCPhys. */
192 NOREF(GCPhys);
193 /** @todo Complete MONITOR implementation. */
194 return VINF_SUCCESS;
195}
196
197
198/**
199 * Checks if the monitor hardware is armed / active.
200 *
201 * @returns true if armed, false otherwise.
202 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
203 */
204VMM_INT_DECL(bool) EMMonitorIsArmed(PVMCPU pVCpu)
205{
206 return RT_BOOL(pVCpu->em.s.MWait.fWait & EMMWAIT_FLAG_MONITOR_ACTIVE);
207}
208
209
210/**
211 * Performs an MWAIT.
212 *
213 * @returns VINF_SUCCESS
214 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
215 * @param rax The content of RAX.
216 * @param rcx The content of RCX.
217 */
218VMM_INT_DECL(int) EMMonitorWaitPerform(PVMCPU pVCpu, uint64_t rax, uint64_t rcx)
219{
220 pVCpu->em.s.MWait.uMWaitRAX = rax;
221 pVCpu->em.s.MWait.uMWaitRCX = rcx;
222 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_ACTIVE;
223 if (rcx)
224 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_BREAKIRQIF0;
225 else
226 pVCpu->em.s.MWait.fWait &= ~EMMWAIT_FLAG_BREAKIRQIF0;
227 /** @todo not completely correct?? */
228 return VINF_EM_HALT;
229}
230
231
232
233/**
234 * Determine if we should continue execution in HM after encountering an mwait
235 * instruction.
236 *
237 * Clears MWAIT flags if returning @c true.
238 *
239 * @returns true if we should continue, false if we should halt.
240 * @param pVCpu The cross context virtual CPU structure.
241 * @param pCtx Current CPU context.
242 */
243VMM_INT_DECL(bool) EMMonitorWaitShouldContinue(PVMCPU pVCpu, PCPUMCTX pCtx)
244{
245 if ( pCtx->eflags.Bits.u1IF
246 || ( (pVCpu->em.s.MWait.fWait & (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0))
247 == (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)) )
248 {
249 if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
250 {
251 pVCpu->em.s.MWait.fWait &= ~(EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0);
252 return true;
253 }
254 }
255
256 return false;
257}
258
259
260/**
261 * Determine if we should continue execution in HM after encountering a hlt
262 * instruction.
263 *
264 * @returns true if we should continue, false if we should halt.
265 * @param pVCpu The cross context virtual CPU structure.
266 * @param pCtx Current CPU context.
267 */
268VMM_INT_DECL(bool) EMShouldContinueAfterHalt(PVMCPU pVCpu, PCPUMCTX pCtx)
269{
270 /** @todo Shouldn't we be checking GIF here? */
271 if (pCtx->eflags.Bits.u1IF)
272 return VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC));
273 return false;
274}
275
276
277/**
278 * Unhalts and wakes up the given CPU.
279 *
280 * This is an API for assisting the KVM hypercall API in implementing KICK_CPU.
281 * It sets VMCPU_FF_UNHALT for @a pVCpuDst and makes sure it is woken up. If
282 * the CPU isn't currently in a halt, the next HLT instruction it executes will
283 * be affected.
284 *
285 * @returns GVMMR0SchedWakeUpEx result or VINF_SUCCESS depending on context.
286 * @param pVM The cross context VM structure.
287 * @param pVCpuDst The cross context virtual CPU structure of the
288 * CPU to unhalt and wake up. This is usually not the
289 * same as the caller.
290 * @thread EMT
291 */
292VMM_INT_DECL(int) EMUnhaltAndWakeUp(PVM pVM, PVMCPU pVCpuDst)
293{
294 /*
295 * Flag the current(/next) HLT to unhalt immediately.
296 */
297 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_UNHALT);
298
299 /*
300 * Wake up the EMT (technically should be abstracted by VMM/VMEmt, but
301 * just do it here for now).
302 */
303#ifdef IN_RING0
304 /* We might be here with preemption disabled or enabled (i.e. depending on
305 thread-context hooks being used), so don't try obtaining the GVMMR0 used
306 lock here. See @bugref{7270#c148}. */
307 int rc = GVMMR0SchedWakeUpNoGVMNoLock(pVM, pVCpuDst->idCpu);
308 AssertRC(rc);
309
310#elif defined(IN_RING3)
311 int rc = SUPR3CallVMMR0(pVM->pVMR0, pVCpuDst->idCpu, VMMR0_DO_GVMM_SCHED_WAKE_UP, NULL /* pvArg */);
312 AssertRC(rc);
313
314#else
315 /* Nothing to do for raw-mode, shouldn't really be used by raw-mode guests anyway. */
316 Assert(pVM->cCpus == 1); NOREF(pVM);
317 int rc = VINF_SUCCESS;
318#endif
319 return rc;
320}
321
322
323/**
324 * Locks REM execution to a single VCPU.
325 *
326 * @param pVM The cross context VM structure.
327 */
328VMMDECL(void) EMRemLock(PVM pVM)
329{
330#ifdef VBOX_WITH_REM
331 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
332 return; /* early init */
333
334 Assert(!PGMIsLockOwner(pVM));
335 Assert(!IOMIsLockWriteOwner(pVM));
336 int rc = PDMCritSectEnter(&pVM->em.s.CritSectREM, VERR_SEM_BUSY);
337 AssertRCSuccess(rc);
338#else
339 RT_NOREF(pVM);
340#endif
341}
342
343
344/**
345 * Unlocks REM execution
346 *
347 * @param pVM The cross context VM structure.
348 */
349VMMDECL(void) EMRemUnlock(PVM pVM)
350{
351#ifdef VBOX_WITH_REM
352 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
353 return; /* early init */
354
355 PDMCritSectLeave(&pVM->em.s.CritSectREM);
356#else
357 RT_NOREF(pVM);
358#endif
359}
360
361
362/**
363 * Check if this VCPU currently owns the REM lock.
364 *
365 * @returns bool owner/not owner
366 * @param pVM The cross context VM structure.
367 */
368VMMDECL(bool) EMRemIsLockOwner(PVM pVM)
369{
370#ifdef VBOX_WITH_REM
371 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
372 return true; /* early init */
373
374 return PDMCritSectIsOwner(&pVM->em.s.CritSectREM);
375#else
376 RT_NOREF(pVM);
377 return true;
378#endif
379}
380
381
382/**
383 * Try to acquire the REM lock.
384 *
385 * @returns VBox status code
386 * @param pVM The cross context VM structure.
387 */
388VMM_INT_DECL(int) EMRemTryLock(PVM pVM)
389{
390#ifdef VBOX_WITH_REM
391 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM))
392 return VINF_SUCCESS; /* early init */
393
394 return PDMCritSectTryEnter(&pVM->em.s.CritSectREM);
395#else
396 RT_NOREF(pVM);
397 return VINF_SUCCESS;
398#endif
399}
400
401
402/**
403 * @callback_method_impl{FNDISREADBYTES}
404 */
405static DECLCALLBACK(int) emReadBytes(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
406{
407 PVMCPU pVCpu = (PVMCPU)pDis->pvUser;
408#if defined(VBOX_WITH_RAW_MODE) && (defined(IN_RC) || defined(IN_RING3))
409 PVM pVM = pVCpu->CTX_SUFF(pVM);
410#endif
411 RTUINTPTR uSrcAddr = pDis->uInstrAddr + offInstr;
412 int rc;
413
414 /*
415 * Figure how much we can or must read.
416 */
417 size_t cbToRead = PAGE_SIZE - (uSrcAddr & PAGE_OFFSET_MASK);
418 if (cbToRead > cbMaxRead)
419 cbToRead = cbMaxRead;
420 else if (cbToRead < cbMinRead)
421 cbToRead = cbMinRead;
422
423#if defined(VBOX_WITH_RAW_MODE) && (defined(IN_RC) || defined(IN_RING3))
424 /*
425 * We might be called upon to interpret an instruction in a patch.
426 */
427 if (PATMIsPatchGCAddr(pVM, uSrcAddr))
428 {
429# ifdef IN_RC
430 memcpy(&pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
431# else
432 memcpy(&pDis->abInstr[offInstr], PATMR3GCPtrToHCPtr(pVM, uSrcAddr), cbToRead);
433# endif
434 rc = VINF_SUCCESS;
435 }
436 else
437#endif
438 {
439# ifdef IN_RC
440 /*
441 * Try access it thru the shadow page tables first. Fall back on the
442 * slower PGM method if it fails because the TLB or page table was
443 * modified recently.
444 */
445 rc = MMGCRamRead(pVCpu->pVMRC, &pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
446 if (rc == VERR_ACCESS_DENIED && cbToRead > cbMinRead)
447 {
448 cbToRead = cbMinRead;
449 rc = MMGCRamRead(pVCpu->pVMRC, &pDis->abInstr[offInstr], (void *)(uintptr_t)uSrcAddr, cbToRead);
450 }
451 if (rc == VERR_ACCESS_DENIED)
452#endif
453 {
454 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pDis->abInstr[offInstr], uSrcAddr, cbToRead);
455 if (RT_FAILURE(rc))
456 {
457 if (cbToRead > cbMinRead)
458 {
459 cbToRead = cbMinRead;
460 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pDis->abInstr[offInstr], uSrcAddr, cbToRead);
461 }
462 if (RT_FAILURE(rc))
463 {
464#ifndef IN_RC
465 /*
466 * If we fail to find the page via the guest's page tables
467 * we invalidate the page in the host TLB (pertaining to
468 * the guest in the NestedPaging case). See @bugref{6043}.
469 */
470 if (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
471 {
472 HMInvalidatePage(pVCpu, uSrcAddr);
473 if (((uSrcAddr + cbToRead - 1) >> PAGE_SHIFT) != (uSrcAddr >> PAGE_SHIFT))
474 HMInvalidatePage(pVCpu, uSrcAddr + cbToRead - 1);
475 }
476#endif
477 }
478 }
479 }
480 }
481
482 pDis->cbCachedInstr = offInstr + (uint8_t)cbToRead;
483 return rc;
484}
485
486
487#if !defined(VBOX_WITH_IEM) || defined(VBOX_COMPARE_IEM_AND_EM)
488DECLINLINE(int) emDisCoreOne(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
489{
490 NOREF(pVM);
491 return DISInstrWithReader(InstrGC, (DISCPUMODE)pDis->uCpuMode, emReadBytes, pVCpu, pDis, pOpsize);
492}
493#endif
494
495
496/**
497 * Disassembles the current instruction.
498 *
499 * @returns VBox status code, see SELMToFlatEx and EMInterpretDisasOneEx for
500 * details.
501 *
502 * @param pVM The cross context VM structure.
503 * @param pVCpu The cross context virtual CPU structure.
504 * @param pDis Where to return the parsed instruction info.
505 * @param pcbInstr Where to return the instruction size. (optional)
506 */
507VMM_INT_DECL(int) EMInterpretDisasCurrent(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, unsigned *pcbInstr)
508{
509 PCPUMCTXCORE pCtxCore = CPUMCTX2CORE(CPUMQueryGuestCtxPtr(pVCpu));
510 RTGCPTR GCPtrInstr;
511#if 0
512 int rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
513#else
514/** @todo Get the CPU mode as well while we're at it! */
515 int rc = SELMValidateAndConvertCSAddr(pVCpu, pCtxCore->eflags, pCtxCore->ss.Sel, pCtxCore->cs.Sel, &pCtxCore->cs,
516 pCtxCore->rip, &GCPtrInstr);
517#endif
518 if (RT_FAILURE(rc))
519 {
520 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
521 pCtxCore->cs.Sel, (RTGCPTR)pCtxCore->rip, pCtxCore->ss.Sel & X86_SEL_RPL, rc));
522 return rc;
523 }
524 return EMInterpretDisasOneEx(pVM, pVCpu, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pDis, pcbInstr);
525}
526
527
528/**
529 * Disassembles one instruction.
530 *
531 * This is used by internally by the interpreter and by trap/access handlers.
532 *
533 * @returns VBox status code.
534 *
535 * @param pVM The cross context VM structure.
536 * @param pVCpu The cross context virtual CPU structure.
537 * @param GCPtrInstr The flat address of the instruction.
538 * @param pCtxCore The context core (used to determine the cpu mode).
539 * @param pDis Where to return the parsed instruction info.
540 * @param pcbInstr Where to return the instruction size. (optional)
541 */
542VMM_INT_DECL(int) EMInterpretDisasOneEx(PVM pVM, PVMCPU pVCpu, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore,
543 PDISCPUSTATE pDis, unsigned *pcbInstr)
544{
545 NOREF(pVM);
546 Assert(pCtxCore == CPUMGetGuestCtxCore(pVCpu)); NOREF(pCtxCore);
547 DISCPUMODE enmCpuMode = CPUMGetGuestDisMode(pVCpu);
548 /** @todo Deal with too long instruction (=> \#GP), opcode read errors (=>
549 * \#PF, \#GP, \#??), undefined opcodes (=> \#UD), and such. */
550 int rc = DISInstrWithReader(GCPtrInstr, enmCpuMode, emReadBytes, pVCpu, pDis, pcbInstr);
551 if (RT_SUCCESS(rc))
552 return VINF_SUCCESS;
553 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
554 return rc;
555}
556
557
558#if defined(VBOX_COMPARE_IEM_FIRST) || defined(VBOX_COMPARE_IEM_LAST)
559static void emCompareWithIem(PVMCPU pVCpu, PCCPUMCTX pEmCtx, PCCPUMCTX pIemCtx,
560 VBOXSTRICTRC rcEm, VBOXSTRICTRC rcIem,
561 uint32_t cbEm, uint32_t cbIem)
562{
563 /* Quick compare. */
564 if ( rcEm == rcIem
565 && cbEm == cbIem
566 && g_cbEmWrote == g_cbIemWrote
567 && memcmp(g_abIemWrote, g_abEmWrote, g_cbIemWrote) == 0
568 && memcmp(pIemCtx, pEmCtx, sizeof(*pIemCtx)) == 0
569 && (g_fEmFFs & g_fInterestingFFs) == (g_fIemFFs & g_fInterestingFFs)
570 )
571 return;
572
573 /* Report exact differences. */
574 RTLogPrintf("! EM and IEM differs at %04x:%08RGv !\n", g_IncomingCtx.cs.Sel, g_IncomingCtx.rip);
575 if (rcEm != rcIem)
576 RTLogPrintf(" * rcIem=%Rrc rcEm=%Rrc\n", VBOXSTRICTRC_VAL(rcIem), VBOXSTRICTRC_VAL(rcEm));
577 else if (cbEm != cbIem)
578 RTLogPrintf(" * cbIem=%#x cbEm=%#x\n", cbIem, cbEm);
579
580 if (RT_SUCCESS(rcEm) && RT_SUCCESS(rcIem))
581 {
582 if (g_cbIemWrote != g_cbEmWrote)
583 RTLogPrintf("!! g_cbIemWrote=%#x g_cbEmWrote=%#x\n", g_cbIemWrote, g_cbEmWrote);
584 else if (memcmp(g_abIemWrote, g_abEmWrote, g_cbIemWrote))
585 {
586 RTLogPrintf("!! IemWrote %.*Rhxs\n", RT_MIN(RT_MAX(1, g_cbIemWrote), 64), g_abIemWrote);
587 RTLogPrintf("!! EemWrote %.*Rhxs\n", RT_MIN(RT_MAX(1, g_cbIemWrote), 64), g_abIemWrote);
588 }
589
590 if ((g_fEmFFs & g_fInterestingFFs) != (g_fIemFFs & g_fInterestingFFs))
591 RTLogPrintf("!! g_fIemFFs=%#x g_fEmFFs=%#x (diff=%#x)\n", g_fIemFFs & g_fInterestingFFs,
592 g_fEmFFs & g_fInterestingFFs, (g_fIemFFs ^ g_fEmFFs) & g_fInterestingFFs);
593
594# define CHECK_FIELD(a_Field) \
595 do \
596 { \
597 if (pEmCtx->a_Field != pIemCtx->a_Field) \
598 { \
599 switch (sizeof(pEmCtx->a_Field)) \
600 { \
601 case 1: RTLogPrintf("!! %8s differs - iem=%02x - em=%02x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
602 case 2: RTLogPrintf("!! %8s differs - iem=%04x - em=%04x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
603 case 4: RTLogPrintf("!! %8s differs - iem=%08x - em=%08x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
604 case 8: RTLogPrintf("!! %8s differs - iem=%016llx - em=%016llx\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); break; \
605 default: RTLogPrintf("!! %8s differs\n", #a_Field); break; \
606 } \
607 cDiffs++; \
608 } \
609 } while (0)
610
611# define CHECK_BIT_FIELD(a_Field) \
612 do \
613 { \
614 if (pEmCtx->a_Field != pIemCtx->a_Field) \
615 { \
616 RTLogPrintf("!! %8s differs - iem=%02x - em=%02x\n", #a_Field, pIemCtx->a_Field, pEmCtx->a_Field); \
617 cDiffs++; \
618 } \
619 } while (0)
620
621# define CHECK_SEL(a_Sel) \
622 do \
623 { \
624 CHECK_FIELD(a_Sel.Sel); \
625 CHECK_FIELD(a_Sel.Attr.u); \
626 CHECK_FIELD(a_Sel.u64Base); \
627 CHECK_FIELD(a_Sel.u32Limit); \
628 CHECK_FIELD(a_Sel.fFlags); \
629 } while (0)
630
631 unsigned cDiffs = 0;
632 if (memcmp(&pEmCtx->fpu, &pIemCtx->fpu, sizeof(pIemCtx->fpu)))
633 {
634 RTLogPrintf(" the FPU state differs\n");
635 cDiffs++;
636 CHECK_FIELD(fpu.FCW);
637 CHECK_FIELD(fpu.FSW);
638 CHECK_FIELD(fpu.FTW);
639 CHECK_FIELD(fpu.FOP);
640 CHECK_FIELD(fpu.FPUIP);
641 CHECK_FIELD(fpu.CS);
642 CHECK_FIELD(fpu.Rsrvd1);
643 CHECK_FIELD(fpu.FPUDP);
644 CHECK_FIELD(fpu.DS);
645 CHECK_FIELD(fpu.Rsrvd2);
646 CHECK_FIELD(fpu.MXCSR);
647 CHECK_FIELD(fpu.MXCSR_MASK);
648 CHECK_FIELD(fpu.aRegs[0].au64[0]); CHECK_FIELD(fpu.aRegs[0].au64[1]);
649 CHECK_FIELD(fpu.aRegs[1].au64[0]); CHECK_FIELD(fpu.aRegs[1].au64[1]);
650 CHECK_FIELD(fpu.aRegs[2].au64[0]); CHECK_FIELD(fpu.aRegs[2].au64[1]);
651 CHECK_FIELD(fpu.aRegs[3].au64[0]); CHECK_FIELD(fpu.aRegs[3].au64[1]);
652 CHECK_FIELD(fpu.aRegs[4].au64[0]); CHECK_FIELD(fpu.aRegs[4].au64[1]);
653 CHECK_FIELD(fpu.aRegs[5].au64[0]); CHECK_FIELD(fpu.aRegs[5].au64[1]);
654 CHECK_FIELD(fpu.aRegs[6].au64[0]); CHECK_FIELD(fpu.aRegs[6].au64[1]);
655 CHECK_FIELD(fpu.aRegs[7].au64[0]); CHECK_FIELD(fpu.aRegs[7].au64[1]);
656 CHECK_FIELD(fpu.aXMM[ 0].au64[0]); CHECK_FIELD(fpu.aXMM[ 0].au64[1]);
657 CHECK_FIELD(fpu.aXMM[ 1].au64[0]); CHECK_FIELD(fpu.aXMM[ 1].au64[1]);
658 CHECK_FIELD(fpu.aXMM[ 2].au64[0]); CHECK_FIELD(fpu.aXMM[ 2].au64[1]);
659 CHECK_FIELD(fpu.aXMM[ 3].au64[0]); CHECK_FIELD(fpu.aXMM[ 3].au64[1]);
660 CHECK_FIELD(fpu.aXMM[ 4].au64[0]); CHECK_FIELD(fpu.aXMM[ 4].au64[1]);
661 CHECK_FIELD(fpu.aXMM[ 5].au64[0]); CHECK_FIELD(fpu.aXMM[ 5].au64[1]);
662 CHECK_FIELD(fpu.aXMM[ 6].au64[0]); CHECK_FIELD(fpu.aXMM[ 6].au64[1]);
663 CHECK_FIELD(fpu.aXMM[ 7].au64[0]); CHECK_FIELD(fpu.aXMM[ 7].au64[1]);
664 CHECK_FIELD(fpu.aXMM[ 8].au64[0]); CHECK_FIELD(fpu.aXMM[ 8].au64[1]);
665 CHECK_FIELD(fpu.aXMM[ 9].au64[0]); CHECK_FIELD(fpu.aXMM[ 9].au64[1]);
666 CHECK_FIELD(fpu.aXMM[10].au64[0]); CHECK_FIELD(fpu.aXMM[10].au64[1]);
667 CHECK_FIELD(fpu.aXMM[11].au64[0]); CHECK_FIELD(fpu.aXMM[11].au64[1]);
668 CHECK_FIELD(fpu.aXMM[12].au64[0]); CHECK_FIELD(fpu.aXMM[12].au64[1]);
669 CHECK_FIELD(fpu.aXMM[13].au64[0]); CHECK_FIELD(fpu.aXMM[13].au64[1]);
670 CHECK_FIELD(fpu.aXMM[14].au64[0]); CHECK_FIELD(fpu.aXMM[14].au64[1]);
671 CHECK_FIELD(fpu.aXMM[15].au64[0]); CHECK_FIELD(fpu.aXMM[15].au64[1]);
672 for (unsigned i = 0; i < RT_ELEMENTS(pEmCtx->fpu.au32RsrvdRest); i++)
673 CHECK_FIELD(fpu.au32RsrvdRest[i]);
674 }
675 CHECK_FIELD(rip);
676 if (pEmCtx->rflags.u != pIemCtx->rflags.u)
677 {
678 RTLogPrintf("!! rflags differs - iem=%08llx em=%08llx\n", pIemCtx->rflags.u, pEmCtx->rflags.u);
679 CHECK_BIT_FIELD(rflags.Bits.u1CF);
680 CHECK_BIT_FIELD(rflags.Bits.u1Reserved0);
681 CHECK_BIT_FIELD(rflags.Bits.u1PF);
682 CHECK_BIT_FIELD(rflags.Bits.u1Reserved1);
683 CHECK_BIT_FIELD(rflags.Bits.u1AF);
684 CHECK_BIT_FIELD(rflags.Bits.u1Reserved2);
685 CHECK_BIT_FIELD(rflags.Bits.u1ZF);
686 CHECK_BIT_FIELD(rflags.Bits.u1SF);
687 CHECK_BIT_FIELD(rflags.Bits.u1TF);
688 CHECK_BIT_FIELD(rflags.Bits.u1IF);
689 CHECK_BIT_FIELD(rflags.Bits.u1DF);
690 CHECK_BIT_FIELD(rflags.Bits.u1OF);
691 CHECK_BIT_FIELD(rflags.Bits.u2IOPL);
692 CHECK_BIT_FIELD(rflags.Bits.u1NT);
693 CHECK_BIT_FIELD(rflags.Bits.u1Reserved3);
694 CHECK_BIT_FIELD(rflags.Bits.u1RF);
695 CHECK_BIT_FIELD(rflags.Bits.u1VM);
696 CHECK_BIT_FIELD(rflags.Bits.u1AC);
697 CHECK_BIT_FIELD(rflags.Bits.u1VIF);
698 CHECK_BIT_FIELD(rflags.Bits.u1VIP);
699 CHECK_BIT_FIELD(rflags.Bits.u1ID);
700 }
701
702 if (!g_fIgnoreRaxRdx)
703 CHECK_FIELD(rax);
704 CHECK_FIELD(rcx);
705 if (!g_fIgnoreRaxRdx)
706 CHECK_FIELD(rdx);
707 CHECK_FIELD(rbx);
708 CHECK_FIELD(rsp);
709 CHECK_FIELD(rbp);
710 CHECK_FIELD(rsi);
711 CHECK_FIELD(rdi);
712 CHECK_FIELD(r8);
713 CHECK_FIELD(r9);
714 CHECK_FIELD(r10);
715 CHECK_FIELD(r11);
716 CHECK_FIELD(r12);
717 CHECK_FIELD(r13);
718 CHECK_SEL(cs);
719 CHECK_SEL(ss);
720 CHECK_SEL(ds);
721 CHECK_SEL(es);
722 CHECK_SEL(fs);
723 CHECK_SEL(gs);
724 CHECK_FIELD(cr0);
725 CHECK_FIELD(cr2);
726 CHECK_FIELD(cr3);
727 CHECK_FIELD(cr4);
728 CHECK_FIELD(dr[0]);
729 CHECK_FIELD(dr[1]);
730 CHECK_FIELD(dr[2]);
731 CHECK_FIELD(dr[3]);
732 CHECK_FIELD(dr[6]);
733 CHECK_FIELD(dr[7]);
734 CHECK_FIELD(gdtr.cbGdt);
735 CHECK_FIELD(gdtr.pGdt);
736 CHECK_FIELD(idtr.cbIdt);
737 CHECK_FIELD(idtr.pIdt);
738 CHECK_SEL(ldtr);
739 CHECK_SEL(tr);
740 CHECK_FIELD(SysEnter.cs);
741 CHECK_FIELD(SysEnter.eip);
742 CHECK_FIELD(SysEnter.esp);
743 CHECK_FIELD(msrEFER);
744 CHECK_FIELD(msrSTAR);
745 CHECK_FIELD(msrPAT);
746 CHECK_FIELD(msrLSTAR);
747 CHECK_FIELD(msrCSTAR);
748 CHECK_FIELD(msrSFMASK);
749 CHECK_FIELD(msrKERNELGSBASE);
750
751# undef CHECK_FIELD
752# undef CHECK_BIT_FIELD
753 }
754}
755#endif /* VBOX_COMPARE_IEM_AND_EM */
756
757
758/**
759 * Interprets the current instruction.
760 *
761 * @returns VBox status code.
762 * @retval VINF_* Scheduling instructions.
763 * @retval VERR_EM_INTERPRETER Something we can't cope with.
764 * @retval VERR_* Fatal errors.
765 *
766 * @param pVCpu The cross context virtual CPU structure.
767 * @param pRegFrame The register frame.
768 * Updates the EIP if an instruction was executed successfully.
769 * @param pvFault The fault address (CR2).
770 *
771 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
772 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
773 * to worry about e.g. invalid modrm combinations (!)
774 */
775VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstruction(PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
776{
777 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
778 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
779#ifdef VBOX_WITH_IEM
780 NOREF(pvFault);
781
782# ifdef VBOX_COMPARE_IEM_AND_EM
783 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
784 g_IncomingCtx = *pCtx;
785 g_fIncomingFFs = pVCpu->fLocalForcedActions;
786 g_cbEmWrote = g_cbIemWrote = 0;
787
788# ifdef VBOX_COMPARE_IEM_FIRST
789 /* IEM */
790 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
791 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
792 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
793 rcIem = VERR_EM_INTERPRETER;
794 g_IemCtx = *pCtx;
795 g_fIemFFs = pVCpu->fLocalForcedActions;
796 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
797 *pCtx = g_IncomingCtx;
798# endif
799
800 /* EM */
801 RTGCPTR pbCode;
802 VBOXSTRICTRC rcEm = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
803 if (RT_SUCCESS(rcEm))
804 {
805 uint32_t cbOp;
806 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
807 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
808 rcEm = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
809 if (RT_SUCCESS(rcEm))
810 {
811 Assert(cbOp == pDis->cbInstr);
812 uint32_t cbIgnored;
813 rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbIgnored);
814 if (RT_SUCCESS(rcEm))
815 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
816
817 }
818 rcEm = VERR_EM_INTERPRETER;
819 }
820 else
821 rcEm = VERR_EM_INTERPRETER;
822# ifdef VBOX_SAME_AS_EM
823 if (rcEm == VERR_EM_INTERPRETER)
824 {
825 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
826 return rcEm;
827 }
828# endif
829 g_EmCtx = *pCtx;
830 g_fEmFFs = pVCpu->fLocalForcedActions;
831 VBOXSTRICTRC rc = rcEm;
832
833# ifdef VBOX_COMPARE_IEM_LAST
834 /* IEM */
835 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
836 *pCtx = g_IncomingCtx;
837 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
838 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
839 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
840 rcIem = VERR_EM_INTERPRETER;
841 g_IemCtx = *pCtx;
842 g_fIemFFs = pVCpu->fLocalForcedActions;
843 rc = rcIem;
844# endif
845
846# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
847 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, 0, 0);
848# endif
849
850# else
851 VBOXSTRICTRC rc = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
852 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
853 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
854 rc = VERR_EM_INTERPRETER;
855# endif
856 if (rc != VINF_SUCCESS)
857 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
858
859 return rc;
860#else
861 RTGCPTR pbCode;
862 VBOXSTRICTRC rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
863 if (RT_SUCCESS(rc))
864 {
865 uint32_t cbOp;
866 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
867 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
868 rc = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
869 if (RT_SUCCESS(rc))
870 {
871 Assert(cbOp == pDis->cbInstr);
872 uint32_t cbIgnored;
873 rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbIgnored);
874 if (RT_SUCCESS(rc))
875 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
876
877 return rc;
878 }
879 }
880 return VERR_EM_INTERPRETER;
881#endif
882}
883
884
885/**
886 * Interprets the current instruction.
887 *
888 * @returns VBox status code.
889 * @retval VINF_* Scheduling instructions.
890 * @retval VERR_EM_INTERPRETER Something we can't cope with.
891 * @retval VERR_* Fatal errors.
892 *
893 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
894 * @param pRegFrame The register frame.
895 * Updates the EIP if an instruction was executed successfully.
896 * @param pvFault The fault address (CR2).
897 * @param pcbWritten Size of the write (if applicable).
898 *
899 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
900 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
901 * to worry about e.g. invalid modrm combinations (!)
902 */
903VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstructionEx(PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbWritten)
904{
905 LogFlow(("EMInterpretInstructionEx %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
906 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
907#ifdef VBOX_WITH_IEM
908 NOREF(pvFault);
909
910# ifdef VBOX_COMPARE_IEM_AND_EM
911 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
912 g_IncomingCtx = *pCtx;
913 g_fIncomingFFs = pVCpu->fLocalForcedActions;
914 g_cbEmWrote = g_cbIemWrote = 0;
915
916# ifdef VBOX_COMPARE_IEM_FIRST
917 /* IEM */
918 uint32_t cbIemWritten = 0;
919 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, &cbIemWritten);
920 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
921 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
922 rcIem = VERR_EM_INTERPRETER;
923 g_IemCtx = *pCtx;
924 g_fIemFFs = pVCpu->fLocalForcedActions;
925 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
926 *pCtx = g_IncomingCtx;
927# endif
928
929 /* EM */
930 uint32_t cbEmWritten = 0;
931 RTGCPTR pbCode;
932 VBOXSTRICTRC rcEm = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
933 if (RT_SUCCESS(rcEm))
934 {
935 uint32_t cbOp;
936 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
937 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
938 rcEm = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
939 if (RT_SUCCESS(rcEm))
940 {
941 Assert(cbOp == pDis->cbInstr);
942 rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, &cbEmWritten);
943 if (RT_SUCCESS(rcEm))
944 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
945
946 }
947 else
948 rcEm = VERR_EM_INTERPRETER;
949 }
950 else
951 rcEm = VERR_EM_INTERPRETER;
952# ifdef VBOX_SAME_AS_EM
953 if (rcEm == VERR_EM_INTERPRETER)
954 {
955 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
956 return rcEm;
957 }
958# endif
959 g_EmCtx = *pCtx;
960 g_fEmFFs = pVCpu->fLocalForcedActions;
961 *pcbWritten = cbEmWritten;
962 VBOXSTRICTRC rc = rcEm;
963
964# ifdef VBOX_COMPARE_IEM_LAST
965 /* IEM */
966 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
967 *pCtx = g_IncomingCtx;
968 uint32_t cbIemWritten = 0;
969 VBOXSTRICTRC rcIem = IEMExecOneBypassEx(pVCpu, pRegFrame, &cbIemWritten);
970 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
971 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
972 rcIem = VERR_EM_INTERPRETER;
973 g_IemCtx = *pCtx;
974 g_fIemFFs = pVCpu->fLocalForcedActions;
975 *pcbWritten = cbIemWritten;
976 rc = rcIem;
977# endif
978
979# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
980 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, cbEmWritten, cbIemWritten);
981# endif
982
983# else
984 VBOXSTRICTRC rc = IEMExecOneBypassEx(pVCpu, pRegFrame, pcbWritten);
985 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
986 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
987 rc = VERR_EM_INTERPRETER;
988# endif
989 if (rc != VINF_SUCCESS)
990 Log(("EMInterpretInstructionEx: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
991
992 return rc;
993#else
994 RTGCPTR pbCode;
995 VBOXSTRICTRC rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
996 if (RT_SUCCESS(rc))
997 {
998 uint32_t cbOp;
999 PDISCPUSTATE pDis = &pVCpu->em.s.DisState;
1000 pDis->uCpuMode = CPUMGetGuestDisMode(pVCpu);
1001 rc = emDisCoreOne(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, (RTGCUINTPTR)pbCode, &cbOp);
1002 if (RT_SUCCESS(rc))
1003 {
1004 Assert(cbOp == pDis->cbInstr);
1005 rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_SUPERVISOR, pcbWritten);
1006 if (RT_SUCCESS(rc))
1007 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
1008
1009 return rc;
1010 }
1011 }
1012 return VERR_EM_INTERPRETER;
1013#endif
1014}
1015
1016
1017/**
1018 * Interprets the current instruction using the supplied DISCPUSTATE structure.
1019 *
1020 * IP/EIP/RIP *IS* updated!
1021 *
1022 * @returns VBox strict status code.
1023 * @retval VINF_* Scheduling instructions. When these are returned, it
1024 * starts to get a bit tricky to know whether code was
1025 * executed or not... We'll address this when it becomes a problem.
1026 * @retval VERR_EM_INTERPRETER Something we can't cope with.
1027 * @retval VERR_* Fatal errors.
1028 *
1029 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1030 * @param pDis The disassembler cpu state for the instruction to be
1031 * interpreted.
1032 * @param pRegFrame The register frame. IP/EIP/RIP *IS* changed!
1033 * @param pvFault The fault address (CR2).
1034 * @param enmCodeType Code type (user/supervisor)
1035 *
1036 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
1037 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
1038 * to worry about e.g. invalid modrm combinations (!)
1039 *
1040 * @todo At this time we do NOT check if the instruction overwrites vital information.
1041 * Make sure this can't happen!! (will add some assertions/checks later)
1042 */
1043VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstructionDisasState(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
1044 RTGCPTR pvFault, EMCODETYPE enmCodeType)
1045{
1046 LogFlow(("EMInterpretInstructionDisasState %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
1047 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1048#ifdef VBOX_WITH_IEM
1049 NOREF(pDis); NOREF(pvFault); NOREF(enmCodeType);
1050
1051# ifdef VBOX_COMPARE_IEM_AND_EM
1052 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1053 g_IncomingCtx = *pCtx;
1054 g_fIncomingFFs = pVCpu->fLocalForcedActions;
1055 g_cbEmWrote = g_cbIemWrote = 0;
1056
1057# ifdef VBOX_COMPARE_IEM_FIRST
1058 VBOXSTRICTRC rcIem = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
1059 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1060 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1061 rcIem = VERR_EM_INTERPRETER;
1062 g_IemCtx = *pCtx;
1063 g_fIemFFs = pVCpu->fLocalForcedActions;
1064 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
1065 *pCtx = g_IncomingCtx;
1066# endif
1067
1068 /* EM */
1069 uint32_t cbIgnored;
1070 VBOXSTRICTRC rcEm = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, enmCodeType, &cbIgnored);
1071 if (RT_SUCCESS(rcEm))
1072 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
1073# ifdef VBOX_SAME_AS_EM
1074 if (rcEm == VERR_EM_INTERPRETER)
1075 {
1076 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rcEm)));
1077 return rcEm;
1078 }
1079# endif
1080 g_EmCtx = *pCtx;
1081 g_fEmFFs = pVCpu->fLocalForcedActions;
1082 VBOXSTRICTRC rc = rcEm;
1083
1084# ifdef VBOX_COMPARE_IEM_LAST
1085 /* IEM */
1086 pVCpu->fLocalForcedActions = (pVCpu->fLocalForcedActions & ~g_fInterestingFFs) | (g_fIncomingFFs & g_fInterestingFFs);
1087 *pCtx = g_IncomingCtx;
1088 VBOXSTRICTRC rcIem = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
1089 if (RT_UNLIKELY( rcIem == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1090 || rcIem == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1091 rcIem = VERR_EM_INTERPRETER;
1092 g_IemCtx = *pCtx;
1093 g_fIemFFs = pVCpu->fLocalForcedActions;
1094 rc = rcIem;
1095# endif
1096
1097# if defined(VBOX_COMPARE_IEM_LAST) || defined(VBOX_COMPARE_IEM_FIRST)
1098 emCompareWithIem(pVCpu, &g_EmCtx, &g_IemCtx, rcEm, rcIem, 0, 0);
1099# endif
1100
1101# else
1102 VBOXSTRICTRC rc = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
1103 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1104 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1105 rc = VERR_EM_INTERPRETER;
1106# endif
1107
1108 if (rc != VINF_SUCCESS)
1109 Log(("EMInterpretInstructionDisasState: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
1110
1111 return rc;
1112#else
1113 uint32_t cbIgnored;
1114 VBOXSTRICTRC rc = emInterpretInstructionCPUOuter(pVCpu, pDis, pRegFrame, pvFault, enmCodeType, &cbIgnored);
1115 if (RT_SUCCESS(rc))
1116 pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */
1117 return rc;
1118#endif
1119}
1120
1121#ifdef IN_RC
1122
1123DECLINLINE(int) emRCStackRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
1124{
1125 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
1126 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
1127 return rc;
1128 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
1129}
1130
1131
1132/**
1133 * Interpret IRET (currently only to V86 code) - PATM only.
1134 *
1135 * @returns VBox status code.
1136 * @param pVM The cross context VM structure.
1137 * @param pVCpu The cross context virtual CPU structure.
1138 * @param pRegFrame The register frame.
1139 *
1140 */
1141VMM_INT_DECL(int) EMInterpretIretV86ForPatm(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1142{
1143 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1144 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
1145 int rc;
1146
1147 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1148 Assert(!CPUMIsGuestIn64BitCode(pVCpu));
1149 /** @todo Rainy day: Test what happens when VERR_EM_INTERPRETER is returned by
1150 * this function. Fear that it may guru on us, thus not converted to
1151 * IEM. */
1152
1153 rc = emRCStackRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1154 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1155 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1156 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1157 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1158
1159 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1160 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1161 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &es, (RTGCPTR)(pIretStack + 20), 4);
1162 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ds, (RTGCPTR)(pIretStack + 24), 4);
1163 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &fs, (RTGCPTR)(pIretStack + 28), 4);
1164 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &gs, (RTGCPTR)(pIretStack + 32), 4);
1165 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1166
1167 pRegFrame->eip = eip & 0xffff;
1168 pRegFrame->cs.Sel = cs;
1169
1170 /* Mask away all reserved bits */
1171 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1172 eflags &= uMask;
1173
1174 CPUMRawSetEFlags(pVCpu, eflags);
1175 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1176
1177 pRegFrame->esp = esp;
1178 pRegFrame->ss.Sel = ss;
1179 pRegFrame->ds.Sel = ds;
1180 pRegFrame->es.Sel = es;
1181 pRegFrame->fs.Sel = fs;
1182 pRegFrame->gs.Sel = gs;
1183
1184 return VINF_SUCCESS;
1185}
1186
1187# ifndef VBOX_WITH_IEM
1188/**
1189 * IRET Emulation.
1190 */
1191static int emInterpretIret(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1192{
1193#ifdef VBOX_WITH_RAW_RING1
1194 NOREF(pvFault); NOREF(pcbSize); NOREF(pDis);
1195 if (EMIsRawRing1Enabled(pVM))
1196 {
1197 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1198 RTGCUINTPTR eip, cs, esp, ss, eflags, uMask;
1199 int rc;
1200 uint32_t cpl, rpl;
1201
1202 /* We only execute 32-bits protected mode code in raw mode, so no need to bother to check for 16-bits code here. */
1203 /** @todo we don't verify all the edge cases that generate #GP faults */
1204
1205 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1206 Assert(!CPUMIsGuestIn64BitCode(pVCpu));
1207 /** @todo Rainy day: Test what happens when VERR_EM_INTERPRETER is returned by
1208 * this function. Fear that it may guru on us, thus not converted to
1209 * IEM. */
1210
1211 rc = emRCStackRead(pVM, pVCpu, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1212 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1213 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1214 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1215 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1216
1217 /* Deal with V86 above. */
1218 if (eflags & X86_EFL_VM)
1219 return EMInterpretIretV86ForPatm(pVM, pVCpu, pRegFrame);
1220
1221 cpl = CPUMRCGetGuestCPL(pVCpu, pRegFrame);
1222 rpl = cs & X86_SEL_RPL;
1223
1224 Log(("emInterpretIret: iret to CS:EIP=%04X:%08X eflags=%x\n", cs, eip, eflags));
1225 if (rpl != cpl)
1226 {
1227 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1228 rc |= emRCStackRead(pVM, pVCpu, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1229 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1230 Log(("emInterpretIret: return to different privilege level (rpl=%d cpl=%d)\n", rpl, cpl));
1231 Log(("emInterpretIret: SS:ESP=%04x:%08x\n", ss, esp));
1232 pRegFrame->ss.Sel = ss;
1233 pRegFrame->esp = esp;
1234 }
1235 pRegFrame->cs.Sel = cs;
1236 pRegFrame->eip = eip;
1237
1238 /* Adjust CS & SS as required. */
1239 CPUMRCRecheckRawState(pVCpu, pRegFrame);
1240
1241 /* Mask away all reserved bits */
1242 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1243 eflags &= uMask;
1244
1245 CPUMRawSetEFlags(pVCpu, eflags);
1246 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1247 return VINF_SUCCESS;
1248 }
1249#else
1250 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
1251#endif
1252 return VERR_EM_INTERPRETER;
1253}
1254# endif /* !VBOX_WITH_IEM */
1255
1256#endif /* IN_RC */
1257
1258
1259
1260/*
1261 *
1262 * Old interpreter primitives used by HM, move/eliminate later.
1263 * Old interpreter primitives used by HM, move/eliminate later.
1264 * Old interpreter primitives used by HM, move/eliminate later.
1265 * Old interpreter primitives used by HM, move/eliminate later.
1266 * Old interpreter primitives used by HM, move/eliminate later.
1267 *
1268 */
1269
1270
1271/**
1272 * Interpret CPUID given the parameters in the CPU context.
1273 *
1274 * @returns VBox status code.
1275 * @param pVM The cross context VM structure.
1276 * @param pVCpu The cross context virtual CPU structure.
1277 * @param pRegFrame The register frame.
1278 *
1279 */
1280VMM_INT_DECL(int) EMInterpretCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1281{
1282 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1283 uint32_t iLeaf = pRegFrame->eax;
1284 uint32_t iSubLeaf = pRegFrame->ecx;
1285 NOREF(pVM);
1286
1287 /* cpuid clears the high dwords of the affected 64 bits registers. */
1288 pRegFrame->rax = 0;
1289 pRegFrame->rbx = 0;
1290 pRegFrame->rcx = 0;
1291 pRegFrame->rdx = 0;
1292
1293 /* Note: operates the same in 64 and non-64 bits mode. */
1294 CPUMGetGuestCpuId(pVCpu, iLeaf, iSubLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
1295 Log(("Emulate: CPUID %x/%x -> %08x %08x %08x %08x\n", iLeaf, iSubLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
1296 return VINF_SUCCESS;
1297}
1298
1299
1300/**
1301 * Interpret RDTSC.
1302 *
1303 * @returns VBox status code.
1304 * @param pVM The cross context VM structure.
1305 * @param pVCpu The cross context virtual CPU structure.
1306 * @param pRegFrame The register frame.
1307 *
1308 */
1309VMM_INT_DECL(int) EMInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1310{
1311 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1312 unsigned uCR4 = CPUMGetGuestCR4(pVCpu);
1313
1314 if (uCR4 & X86_CR4_TSD)
1315 return VERR_EM_INTERPRETER; /* genuine #GP */
1316
1317 uint64_t uTicks = TMCpuTickGet(pVCpu);
1318#ifdef VBOX_WITH_NESTED_HWVIRT
1319 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
1320#endif
1321
1322 /* Same behaviour in 32 & 64 bits mode */
1323 pRegFrame->rax = RT_LO_U32(uTicks);
1324 pRegFrame->rdx = RT_HI_U32(uTicks);
1325#ifdef VBOX_COMPARE_IEM_AND_EM
1326 g_fIgnoreRaxRdx = true;
1327#endif
1328
1329 NOREF(pVM);
1330 return VINF_SUCCESS;
1331}
1332
1333/**
1334 * Interpret RDTSCP.
1335 *
1336 * @returns VBox status code.
1337 * @param pVM The cross context VM structure.
1338 * @param pVCpu The cross context virtual CPU structure.
1339 * @param pCtx The CPU context.
1340 *
1341 */
1342VMM_INT_DECL(int) EMInterpretRdtscp(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1343{
1344 Assert(pCtx == CPUMQueryGuestCtxPtr(pVCpu));
1345 uint32_t uCR4 = CPUMGetGuestCR4(pVCpu);
1346
1347 if (!pVM->cpum.ro.GuestFeatures.fRdTscP)
1348 {
1349 AssertFailed();
1350 return VERR_EM_INTERPRETER; /* genuine #UD */
1351 }
1352
1353 if (uCR4 & X86_CR4_TSD)
1354 return VERR_EM_INTERPRETER; /* genuine #GP */
1355
1356 uint64_t uTicks = TMCpuTickGet(pVCpu);
1357#ifdef VBOX_WITH_NESTED_HWVIRT
1358 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
1359#endif
1360
1361 /* Same behaviour in 32 & 64 bits mode */
1362 pCtx->rax = RT_LO_U32(uTicks);
1363 pCtx->rdx = RT_HI_U32(uTicks);
1364#ifdef VBOX_COMPARE_IEM_AND_EM
1365 g_fIgnoreRaxRdx = true;
1366#endif
1367 /* Low dword of the TSC_AUX msr only. */
1368 VBOXSTRICTRC rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pCtx->rcx); Assert(rc2 == VINF_SUCCESS); NOREF(rc2);
1369 pCtx->rcx &= UINT32_C(0xffffffff);
1370
1371 return VINF_SUCCESS;
1372}
1373
1374/**
1375 * Interpret RDPMC.
1376 *
1377 * @returns VBox status code.
1378 * @param pVM The cross context VM structure.
1379 * @param pVCpu The cross context virtual CPU structure.
1380 * @param pRegFrame The register frame.
1381 *
1382 */
1383VMM_INT_DECL(int) EMInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1384{
1385 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1386 uint32_t uCR4 = CPUMGetGuestCR4(pVCpu);
1387
1388 /* If X86_CR4_PCE is not set, then CPL must be zero. */
1389 if ( !(uCR4 & X86_CR4_PCE)
1390 && CPUMGetGuestCPL(pVCpu) != 0)
1391 {
1392 Assert(CPUMGetGuestCR0(pVCpu) & X86_CR0_PE);
1393 return VERR_EM_INTERPRETER; /* genuine #GP */
1394 }
1395
1396 /* Just return zero here; rather tricky to properly emulate this, especially as the specs are a mess. */
1397 pRegFrame->rax = 0;
1398 pRegFrame->rdx = 0;
1399 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
1400 * ecx but see @bugref{3472}! */
1401
1402 NOREF(pVM);
1403 return VINF_SUCCESS;
1404}
1405
1406
1407/**
1408 * MWAIT Emulation.
1409 */
1410VMM_INT_DECL(VBOXSTRICTRC) EMInterpretMWait(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1411{
1412 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1413 uint32_t u32Dummy, u32ExtFeatures, cpl, u32MWaitFeatures;
1414 NOREF(pVM);
1415
1416 /* Get the current privilege level. */
1417 cpl = CPUMGetGuestCPL(pVCpu);
1418 if (cpl != 0)
1419 return VERR_EM_INTERPRETER; /* supervisor only */
1420
1421 CPUMGetGuestCpuId(pVCpu, 1, 0, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
1422 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
1423 return VERR_EM_INTERPRETER; /* not supported */
1424
1425 /*
1426 * CPUID.05H.ECX[0] defines support for power management extensions (eax)
1427 * CPUID.05H.ECX[1] defines support for interrupts as break events for mwait even when IF=0
1428 */
1429 CPUMGetGuestCpuId(pVCpu, 5, 0, &u32Dummy, &u32Dummy, &u32MWaitFeatures, &u32Dummy);
1430 if (pRegFrame->ecx > 1)
1431 {
1432 Log(("EMInterpretMWait: unexpected ecx value %x -> recompiler\n", pRegFrame->ecx));
1433 return VERR_EM_INTERPRETER; /* illegal value. */
1434 }
1435
1436 if (pRegFrame->ecx && !(u32MWaitFeatures & X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
1437 {
1438 Log(("EMInterpretMWait: unsupported X86_CPUID_MWAIT_ECX_BREAKIRQIF0 -> recompiler\n"));
1439 return VERR_EM_INTERPRETER; /* illegal value. */
1440 }
1441
1442 return EMMonitorWaitPerform(pVCpu, pRegFrame->rax, pRegFrame->rcx);
1443}
1444
1445
1446/**
1447 * MONITOR Emulation.
1448 */
1449VMM_INT_DECL(int) EMInterpretMonitor(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1450{
1451 uint32_t u32Dummy, u32ExtFeatures, cpl;
1452 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1453 NOREF(pVM);
1454
1455 if (pRegFrame->ecx != 0)
1456 {
1457 Log(("emInterpretMonitor: unexpected ecx=%x -> recompiler!!\n", pRegFrame->ecx));
1458 return VERR_EM_INTERPRETER; /* illegal value. */
1459 }
1460
1461 /* Get the current privilege level. */
1462 cpl = CPUMGetGuestCPL(pVCpu);
1463 if (cpl != 0)
1464 return VERR_EM_INTERPRETER; /* supervisor only */
1465
1466 CPUMGetGuestCpuId(pVCpu, 1, 0, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
1467 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
1468 return VERR_EM_INTERPRETER; /* not supported */
1469
1470 EMMonitorWaitPrepare(pVCpu, pRegFrame->rax, pRegFrame->rcx, pRegFrame->rdx, NIL_RTGCPHYS);
1471 return VINF_SUCCESS;
1472}
1473
1474
1475/* VT-x only: */
1476
1477/**
1478 * Interpret INVLPG.
1479 *
1480 * @returns VBox status code.
1481 * @param pVM The cross context VM structure.
1482 * @param pVCpu The cross context virtual CPU structure.
1483 * @param pRegFrame The register frame.
1484 * @param pAddrGC Operand address.
1485 *
1486 */
1487VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
1488{
1489 /** @todo is addr always a flat linear address or ds based
1490 * (in absence of segment override prefixes)????
1491 */
1492 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1493 NOREF(pVM); NOREF(pRegFrame);
1494#ifdef IN_RC
1495 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
1496#endif
1497 VBOXSTRICTRC rc = PGMInvalidatePage(pVCpu, pAddrGC);
1498 if ( rc == VINF_SUCCESS
1499 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1500 return VINF_SUCCESS;
1501 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
1502 ("%Rrc addr=%RGv\n", VBOXSTRICTRC_VAL(rc), pAddrGC),
1503 VERR_EM_INTERPRETER);
1504 return rc;
1505}
1506
1507
1508#ifdef LOG_ENABLED
1509static const char *emMSRtoString(uint32_t uMsr)
1510{
1511 switch (uMsr)
1512 {
1513 case MSR_IA32_APICBASE: return "MSR_IA32_APICBASE";
1514 case MSR_IA32_CR_PAT: return "MSR_IA32_CR_PAT";
1515 case MSR_IA32_SYSENTER_CS: return "MSR_IA32_SYSENTER_CS";
1516 case MSR_IA32_SYSENTER_EIP: return "MSR_IA32_SYSENTER_EIP";
1517 case MSR_IA32_SYSENTER_ESP: return "MSR_IA32_SYSENTER_ESP";
1518 case MSR_K6_EFER: return "MSR_K6_EFER";
1519 case MSR_K8_SF_MASK: return "MSR_K8_SF_MASK";
1520 case MSR_K6_STAR: return "MSR_K6_STAR";
1521 case MSR_K8_LSTAR: return "MSR_K8_LSTAR";
1522 case MSR_K8_CSTAR: return "MSR_K8_CSTAR";
1523 case MSR_K8_FS_BASE: return "MSR_K8_FS_BASE";
1524 case MSR_K8_GS_BASE: return "MSR_K8_GS_BASE";
1525 case MSR_K8_KERNEL_GS_BASE: return "MSR_K8_KERNEL_GS_BASE";
1526 case MSR_K8_TSC_AUX: return "MSR_K8_TSC_AUX";
1527 case MSR_IA32_BIOS_SIGN_ID: return "Unsupported MSR_IA32_BIOS_SIGN_ID";
1528 case MSR_IA32_PLATFORM_ID: return "Unsupported MSR_IA32_PLATFORM_ID";
1529 case MSR_IA32_BIOS_UPDT_TRIG: return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
1530 case MSR_IA32_TSC: return "MSR_IA32_TSC";
1531 case MSR_IA32_MISC_ENABLE: return "MSR_IA32_MISC_ENABLE";
1532 case MSR_IA32_MTRR_CAP: return "MSR_IA32_MTRR_CAP";
1533 case MSR_IA32_MCG_CAP: return "Unsupported MSR_IA32_MCG_CAP";
1534 case MSR_IA32_MCG_STATUS: return "Unsupported MSR_IA32_MCG_STATUS";
1535 case MSR_IA32_MCG_CTRL: return "Unsupported MSR_IA32_MCG_CTRL";
1536 case MSR_IA32_MTRR_DEF_TYPE: return "MSR_IA32_MTRR_DEF_TYPE";
1537 case MSR_K7_EVNTSEL0: return "Unsupported MSR_K7_EVNTSEL0";
1538 case MSR_K7_EVNTSEL1: return "Unsupported MSR_K7_EVNTSEL1";
1539 case MSR_K7_EVNTSEL2: return "Unsupported MSR_K7_EVNTSEL2";
1540 case MSR_K7_EVNTSEL3: return "Unsupported MSR_K7_EVNTSEL3";
1541 case MSR_IA32_MC0_CTL: return "Unsupported MSR_IA32_MC0_CTL";
1542 case MSR_IA32_MC0_STATUS: return "Unsupported MSR_IA32_MC0_STATUS";
1543 case MSR_IA32_PERFEVTSEL0: return "Unsupported MSR_IA32_PERFEVTSEL0";
1544 case MSR_IA32_PERFEVTSEL1: return "Unsupported MSR_IA32_PERFEVTSEL1";
1545 case MSR_IA32_PERF_STATUS: return "MSR_IA32_PERF_STATUS";
1546 case MSR_IA32_PLATFORM_INFO: return "MSR_IA32_PLATFORM_INFO";
1547 case MSR_IA32_PERF_CTL: return "Unsupported MSR_IA32_PERF_CTL";
1548 case MSR_K7_PERFCTR0: return "Unsupported MSR_K7_PERFCTR0";
1549 case MSR_K7_PERFCTR1: return "Unsupported MSR_K7_PERFCTR1";
1550 case MSR_K7_PERFCTR2: return "Unsupported MSR_K7_PERFCTR2";
1551 case MSR_K7_PERFCTR3: return "Unsupported MSR_K7_PERFCTR3";
1552 case MSR_IA32_PMC0: return "Unsupported MSR_IA32_PMC0";
1553 case MSR_IA32_PMC1: return "Unsupported MSR_IA32_PMC1";
1554 case MSR_IA32_PMC2: return "Unsupported MSR_IA32_PMC2";
1555 case MSR_IA32_PMC3: return "Unsupported MSR_IA32_PMC3";
1556 }
1557 return "Unknown MSR";
1558}
1559#endif /* LOG_ENABLED */
1560
1561
1562/**
1563 * Interpret RDMSR
1564 *
1565 * @returns VBox status code.
1566 * @param pVM The cross context VM structure.
1567 * @param pVCpu The cross context virtual CPU structure.
1568 * @param pRegFrame The register frame.
1569 */
1570VMM_INT_DECL(int) EMInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1571{
1572 NOREF(pVM);
1573
1574 /* Get the current privilege level. */
1575 if (CPUMGetGuestCPL(pVCpu) != 0)
1576 {
1577 Log4(("EM: Refuse RDMSR: CPL != 0\n"));
1578 return VERR_EM_INTERPRETER; /* supervisor only */
1579 }
1580
1581 uint64_t uValue;
1582 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pRegFrame->ecx, &uValue);
1583 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
1584 {
1585 Log4(("EM: Refuse RDMSR: rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1586 Assert(rcStrict == VERR_CPUM_RAISE_GP_0 || rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_CPUM_R3_MSR_READ);
1587 return VERR_EM_INTERPRETER;
1588 }
1589 pRegFrame->rax = RT_LO_U32(uValue);
1590 pRegFrame->rdx = RT_HI_U32(uValue);
1591 LogFlow(("EMInterpretRdmsr %s (%x) -> %RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, uValue));
1592 return VINF_SUCCESS;
1593}
1594
1595
1596/**
1597 * Interpret WRMSR
1598 *
1599 * @returns VBox status code.
1600 * @param pVM The cross context VM structure.
1601 * @param pVCpu The cross context virtual CPU structure.
1602 * @param pRegFrame The register frame.
1603 */
1604VMM_INT_DECL(int) EMInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1605{
1606 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1607
1608 /* Check the current privilege level, this instruction is supervisor only. */
1609 if (CPUMGetGuestCPL(pVCpu) != 0)
1610 {
1611 Log4(("EM: Refuse WRMSR: CPL != 0\n"));
1612 return VERR_EM_INTERPRETER; /** @todo raise \#GP(0) */
1613 }
1614
1615 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pRegFrame->ecx, RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx));
1616 if (rcStrict != VINF_SUCCESS)
1617 {
1618 Log4(("EM: Refuse WRMSR: CPUMSetGuestMsr returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1619 Assert(rcStrict == VERR_CPUM_RAISE_GP_0 || rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_CPUM_R3_MSR_WRITE);
1620 return VERR_EM_INTERPRETER;
1621 }
1622 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx,
1623 RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx)));
1624 NOREF(pVM);
1625 return VINF_SUCCESS;
1626}
1627
1628
1629/**
1630 * Interpret DRx write.
1631 *
1632 * @returns VBox status code.
1633 * @param pVM The cross context VM structure.
1634 * @param pVCpu The cross context virtual CPU structure.
1635 * @param pRegFrame The register frame.
1636 * @param DestRegDrx DRx register index (USE_REG_DR*)
1637 * @param SrcRegGen General purpose register index (USE_REG_E**))
1638 *
1639 */
1640VMM_INT_DECL(int) EMInterpretDRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
1641{
1642 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1643 uint64_t uNewDrX;
1644 int rc;
1645 NOREF(pVM);
1646
1647 if (CPUMIsGuestIn64BitCode(pVCpu))
1648 rc = DISFetchReg64(pRegFrame, SrcRegGen, &uNewDrX);
1649 else
1650 {
1651 uint32_t val32;
1652 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
1653 uNewDrX = val32;
1654 }
1655
1656 if (RT_SUCCESS(rc))
1657 {
1658 if (DestRegDrx == 6)
1659 {
1660 uNewDrX |= X86_DR6_RA1_MASK;
1661 uNewDrX &= ~X86_DR6_RAZ_MASK;
1662 }
1663 else if (DestRegDrx == 7)
1664 {
1665 uNewDrX |= X86_DR7_RA1_MASK;
1666 uNewDrX &= ~X86_DR7_RAZ_MASK;
1667 }
1668
1669 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
1670 rc = CPUMSetGuestDRx(pVCpu, DestRegDrx, uNewDrX);
1671 if (RT_SUCCESS(rc))
1672 return rc;
1673 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
1674 }
1675 return VERR_EM_INTERPRETER;
1676}
1677
1678
1679/**
1680 * Interpret DRx read.
1681 *
1682 * @returns VBox status code.
1683 * @param pVM The cross context VM structure.
1684 * @param pVCpu The cross context virtual CPU structure.
1685 * @param pRegFrame The register frame.
1686 * @param DestRegGen General purpose register index (USE_REG_E**))
1687 * @param SrcRegDrx DRx register index (USE_REG_DR*)
1688 */
1689VMM_INT_DECL(int) EMInterpretDRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
1690{
1691 uint64_t val64;
1692 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1693 NOREF(pVM);
1694
1695 int rc = CPUMGetGuestDRx(pVCpu, SrcRegDrx, &val64);
1696 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
1697 if (CPUMIsGuestIn64BitCode(pVCpu))
1698 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1699 else
1700 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
1701
1702 if (RT_SUCCESS(rc))
1703 return VINF_SUCCESS;
1704
1705 return VERR_EM_INTERPRETER;
1706}
1707
1708
1709#if !defined(VBOX_WITH_IEM) || defined(VBOX_COMPARE_IEM_AND_EM)
1710
1711
1712
1713
1714
1715
1716/*
1717 *
1718 * The old interpreter.
1719 * The old interpreter.
1720 * The old interpreter.
1721 * The old interpreter.
1722 * The old interpreter.
1723 *
1724 */
1725
1726DECLINLINE(int) emRamRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
1727{
1728#ifdef IN_RC
1729 int rc = MMGCRamRead(pVM, pvDst, (void *)(uintptr_t)GCPtrSrc, cb);
1730 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
1731 return rc;
1732 /*
1733 * The page pool cache may end up here in some cases because it
1734 * flushed one of the shadow mappings used by the trapping
1735 * instruction and it either flushed the TLB or the CPU reused it.
1736 */
1737#else
1738 NOREF(pVM);
1739#endif
1740 return PGMPhysInterpretedReadNoHandlers(pVCpu, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
1741}
1742
1743
1744DECLINLINE(int) emRamWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, uint32_t cb)
1745{
1746 /* Don't use MMGCRamWrite here as it does not respect zero pages, shared
1747 pages or write monitored pages. */
1748 NOREF(pVM);
1749#if !defined(VBOX_COMPARE_IEM_AND_EM) || !defined(VBOX_COMPARE_IEM_LAST)
1750 int rc = PGMPhysInterpretedWriteNoHandlers(pVCpu, pCtxCore, GCPtrDst, pvSrc, cb, /*fMayTrap*/ false);
1751#else
1752 int rc = VINF_SUCCESS;
1753#endif
1754#ifdef VBOX_COMPARE_IEM_AND_EM
1755 Log(("EM Wrote: %RGv %.*Rhxs rc=%Rrc\n", GCPtrDst, RT_MAX(RT_MIN(cb, 64), 1), pvSrc, rc));
1756 g_cbEmWrote = cb;
1757 memcpy(g_abEmWrote, pvSrc, RT_MIN(cb, sizeof(g_abEmWrote)));
1758#endif
1759 return rc;
1760}
1761
1762
1763/** Convert sel:addr to a flat GC address. */
1764DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, PDISOPPARAM pParam, RTGCPTR pvAddr)
1765{
1766 DISSELREG enmPrefixSeg = DISDetectSegReg(pDis, pParam);
1767 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
1768}
1769
1770
1771#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
1772/**
1773 * Get the mnemonic for the disassembled instruction.
1774 *
1775 * GC/R0 doesn't include the strings in the DIS tables because
1776 * of limited space.
1777 */
1778static const char *emGetMnemonic(PDISCPUSTATE pDis)
1779{
1780 switch (pDis->pCurInstr->uOpcode)
1781 {
1782 case OP_XCHG: return "Xchg";
1783 case OP_DEC: return "Dec";
1784 case OP_INC: return "Inc";
1785 case OP_POP: return "Pop";
1786 case OP_OR: return "Or";
1787 case OP_AND: return "And";
1788 case OP_MOV: return "Mov";
1789 case OP_INVLPG: return "InvlPg";
1790 case OP_CPUID: return "CpuId";
1791 case OP_MOV_CR: return "MovCRx";
1792 case OP_MOV_DR: return "MovDRx";
1793 case OP_LLDT: return "LLdt";
1794 case OP_LGDT: return "LGdt";
1795 case OP_LIDT: return "LIdt";
1796 case OP_CLTS: return "Clts";
1797 case OP_MONITOR: return "Monitor";
1798 case OP_MWAIT: return "MWait";
1799 case OP_RDMSR: return "Rdmsr";
1800 case OP_WRMSR: return "Wrmsr";
1801 case OP_ADD: return "Add";
1802 case OP_ADC: return "Adc";
1803 case OP_SUB: return "Sub";
1804 case OP_SBB: return "Sbb";
1805 case OP_RDTSC: return "Rdtsc";
1806 case OP_STI: return "Sti";
1807 case OP_CLI: return "Cli";
1808 case OP_XADD: return "XAdd";
1809 case OP_HLT: return "Hlt";
1810 case OP_IRET: return "Iret";
1811 case OP_MOVNTPS: return "MovNTPS";
1812 case OP_STOSWD: return "StosWD";
1813 case OP_WBINVD: return "WbInvd";
1814 case OP_XOR: return "Xor";
1815 case OP_BTR: return "Btr";
1816 case OP_BTS: return "Bts";
1817 case OP_BTC: return "Btc";
1818 case OP_LMSW: return "Lmsw";
1819 case OP_SMSW: return "Smsw";
1820 case OP_CMPXCHG: return pDis->fPrefix & DISPREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
1821 case OP_CMPXCHG8B: return pDis->fPrefix & DISPREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
1822
1823 default:
1824 Log(("Unknown opcode %d\n", pDis->pCurInstr->uOpcode));
1825 return "???";
1826 }
1827}
1828#endif /* VBOX_STRICT || LOG_ENABLED */
1829
1830
1831/**
1832 * XCHG instruction emulation.
1833 */
1834static int emInterpretXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1835{
1836 DISQPVPARAMVAL param1, param2;
1837 NOREF(pvFault);
1838
1839 /* Source to make DISQueryParamVal read the register value - ugly hack */
1840 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
1841 if(RT_FAILURE(rc))
1842 return VERR_EM_INTERPRETER;
1843
1844 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
1845 if(RT_FAILURE(rc))
1846 return VERR_EM_INTERPRETER;
1847
1848#ifdef IN_RC
1849 if (TRPMHasTrap(pVCpu))
1850 {
1851 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1852 {
1853#endif
1854 RTGCPTR pParam1 = 0, pParam2 = 0;
1855 uint64_t valpar1, valpar2;
1856
1857 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
1858 switch(param1.type)
1859 {
1860 case DISQPV_TYPE_IMMEDIATE: /* register type is translated to this one too */
1861 valpar1 = param1.val.val64;
1862 break;
1863
1864 case DISQPV_TYPE_ADDRESS:
1865 pParam1 = (RTGCPTR)param1.val.val64;
1866 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
1867 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
1868 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
1869 if (RT_FAILURE(rc))
1870 {
1871 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1872 return VERR_EM_INTERPRETER;
1873 }
1874 break;
1875
1876 default:
1877 AssertFailed();
1878 return VERR_EM_INTERPRETER;
1879 }
1880
1881 switch(param2.type)
1882 {
1883 case DISQPV_TYPE_ADDRESS:
1884 pParam2 = (RTGCPTR)param2.val.val64;
1885 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param2, pParam2);
1886 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
1887 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar2, pParam2, param2.size);
1888 if (RT_FAILURE(rc))
1889 {
1890 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1891 }
1892 break;
1893
1894 case DISQPV_TYPE_IMMEDIATE:
1895 valpar2 = param2.val.val64;
1896 break;
1897
1898 default:
1899 AssertFailed();
1900 return VERR_EM_INTERPRETER;
1901 }
1902
1903 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
1904 if (pParam1 == 0)
1905 {
1906 Assert(param1.type == DISQPV_TYPE_IMMEDIATE); /* register actually */
1907 switch(param1.size)
1908 {
1909 case 1: //special case for AH etc
1910 rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t )valpar2); break;
1911 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)valpar2); break;
1912 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)valpar2); break;
1913 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param1.Base.idxGenReg, valpar2); break;
1914 default: AssertFailedReturn(VERR_EM_INTERPRETER);
1915 }
1916 if (RT_FAILURE(rc))
1917 return VERR_EM_INTERPRETER;
1918 }
1919 else
1920 {
1921 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar2, param1.size);
1922 if (RT_FAILURE(rc))
1923 {
1924 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1925 return VERR_EM_INTERPRETER;
1926 }
1927 }
1928
1929 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
1930 if (pParam2 == 0)
1931 {
1932 Assert(param2.type == DISQPV_TYPE_IMMEDIATE); /* register actually */
1933 switch(param2.size)
1934 {
1935 case 1: //special case for AH etc
1936 rc = DISWriteReg8(pRegFrame, pDis->Param2.Base.idxGenReg, (uint8_t )valpar1); break;
1937 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param2.Base.idxGenReg, (uint16_t)valpar1); break;
1938 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param2.Base.idxGenReg, (uint32_t)valpar1); break;
1939 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param2.Base.idxGenReg, valpar1); break;
1940 default: AssertFailedReturn(VERR_EM_INTERPRETER);
1941 }
1942 if (RT_FAILURE(rc))
1943 return VERR_EM_INTERPRETER;
1944 }
1945 else
1946 {
1947 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam2, &valpar1, param2.size);
1948 if (RT_FAILURE(rc))
1949 {
1950 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1951 return VERR_EM_INTERPRETER;
1952 }
1953 }
1954
1955 *pcbSize = param2.size;
1956 return VINF_SUCCESS;
1957#ifdef IN_RC
1958 }
1959 }
1960 return VERR_EM_INTERPRETER;
1961#endif
1962}
1963
1964
1965/**
1966 * INC and DEC emulation.
1967 */
1968static int emInterpretIncDec(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
1969 PFNEMULATEPARAM2 pfnEmulate)
1970{
1971 DISQPVPARAMVAL param1;
1972 NOREF(pvFault);
1973
1974 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
1975 if(RT_FAILURE(rc))
1976 return VERR_EM_INTERPRETER;
1977
1978#ifdef IN_RC
1979 if (TRPMHasTrap(pVCpu))
1980 {
1981 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
1982 {
1983#endif
1984 RTGCPTR pParam1 = 0;
1985 uint64_t valpar1;
1986
1987 if (param1.type == DISQPV_TYPE_ADDRESS)
1988 {
1989 pParam1 = (RTGCPTR)param1.val.val64;
1990 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
1991#ifdef IN_RC
1992 /* Safety check (in theory it could cross a page boundary and fault there though) */
1993 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
1994#endif
1995 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
1996 if (RT_FAILURE(rc))
1997 {
1998 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1999 return VERR_EM_INTERPRETER;
2000 }
2001 }
2002 else
2003 {
2004 AssertFailed();
2005 return VERR_EM_INTERPRETER;
2006 }
2007
2008 uint32_t eflags;
2009
2010 eflags = pfnEmulate(&valpar1, param1.size);
2011
2012 /* Write result back */
2013 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2014 if (RT_FAILURE(rc))
2015 {
2016 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2017 return VERR_EM_INTERPRETER;
2018 }
2019
2020 /* Update guest's eflags and finish. */
2021 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2022 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2023
2024 /* All done! */
2025 *pcbSize = param1.size;
2026 return VINF_SUCCESS;
2027#ifdef IN_RC
2028 }
2029 }
2030 return VERR_EM_INTERPRETER;
2031#endif
2032}
2033
2034
2035/**
2036 * POP Emulation.
2037 */
2038static int emInterpretPop(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2039{
2040 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
2041 DISQPVPARAMVAL param1;
2042 NOREF(pvFault);
2043
2044 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2045 if(RT_FAILURE(rc))
2046 return VERR_EM_INTERPRETER;
2047
2048#ifdef IN_RC
2049 if (TRPMHasTrap(pVCpu))
2050 {
2051 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2052 {
2053#endif
2054 RTGCPTR pParam1 = 0;
2055 uint32_t valpar1;
2056 RTGCPTR pStackVal;
2057
2058 /* Read stack value first */
2059 if (CPUMGetGuestCodeBits(pVCpu) == 16)
2060 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
2061
2062 /* Convert address; don't bother checking limits etc, as we only read here */
2063 pStackVal = SELMToFlat(pVM, DISSELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
2064 if (pStackVal == 0)
2065 return VERR_EM_INTERPRETER;
2066
2067 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pStackVal, param1.size);
2068 if (RT_FAILURE(rc))
2069 {
2070 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2071 return VERR_EM_INTERPRETER;
2072 }
2073
2074 if (param1.type == DISQPV_TYPE_ADDRESS)
2075 {
2076 pParam1 = (RTGCPTR)param1.val.val64;
2077
2078 /* pop [esp+xx] uses esp after the actual pop! */
2079 AssertCompile(DISGREG_ESP == DISGREG_SP);
2080 if ( (pDis->Param1.fUse & DISUSE_BASE)
2081 && (pDis->Param1.fUse & (DISUSE_REG_GEN16|DISUSE_REG_GEN32))
2082 && pDis->Param1.Base.idxGenReg == DISGREG_ESP
2083 )
2084 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
2085
2086 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2087 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
2088 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2089 if (RT_FAILURE(rc))
2090 {
2091 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2092 return VERR_EM_INTERPRETER;
2093 }
2094
2095 /* Update ESP as the last step */
2096 pRegFrame->esp += param1.size;
2097 }
2098 else
2099 {
2100#ifndef DEBUG_bird // annoying assertion.
2101 AssertFailed();
2102#endif
2103 return VERR_EM_INTERPRETER;
2104 }
2105
2106 /* All done! */
2107 *pcbSize = param1.size;
2108 return VINF_SUCCESS;
2109#ifdef IN_RC
2110 }
2111 }
2112 return VERR_EM_INTERPRETER;
2113#endif
2114}
2115
2116
2117/**
2118 * XOR/OR/AND Emulation.
2119 */
2120static int emInterpretOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2121 PFNEMULATEPARAM3 pfnEmulate)
2122{
2123 DISQPVPARAMVAL param1, param2;
2124 NOREF(pvFault);
2125
2126 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2127 if(RT_FAILURE(rc))
2128 return VERR_EM_INTERPRETER;
2129
2130 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2131 if(RT_FAILURE(rc))
2132 return VERR_EM_INTERPRETER;
2133
2134#ifdef IN_RC
2135 if (TRPMHasTrap(pVCpu))
2136 {
2137 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2138 {
2139#endif
2140 RTGCPTR pParam1;
2141 uint64_t valpar1, valpar2;
2142
2143 if (pDis->Param1.cb != pDis->Param2.cb)
2144 {
2145 if (pDis->Param1.cb < pDis->Param2.cb)
2146 {
2147 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb)); /* should never happen! */
2148 return VERR_EM_INTERPRETER;
2149 }
2150 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2151 pDis->Param2.cb = pDis->Param1.cb;
2152 param2.size = param1.size;
2153 }
2154
2155 /* The destination is always a virtual address */
2156 if (param1.type == DISQPV_TYPE_ADDRESS)
2157 {
2158 pParam1 = (RTGCPTR)param1.val.val64;
2159 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2160 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2161 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2162 if (RT_FAILURE(rc))
2163 {
2164 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2165 return VERR_EM_INTERPRETER;
2166 }
2167 }
2168 else
2169 {
2170 AssertFailed();
2171 return VERR_EM_INTERPRETER;
2172 }
2173
2174 /* Register or immediate data */
2175 switch(param2.type)
2176 {
2177 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2178 valpar2 = param2.val.val64;
2179 break;
2180
2181 default:
2182 AssertFailed();
2183 return VERR_EM_INTERPRETER;
2184 }
2185
2186 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pDis), pParam1, valpar1, valpar2, param2.size, param1.size));
2187
2188 /* Data read, emulate instruction. */
2189 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
2190
2191 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pDis), valpar1));
2192
2193 /* Update guest's eflags and finish. */
2194 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2195 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2196
2197 /* And write it back */
2198 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2199 if (RT_SUCCESS(rc))
2200 {
2201 /* All done! */
2202 *pcbSize = param2.size;
2203 return VINF_SUCCESS;
2204 }
2205#ifdef IN_RC
2206 }
2207 }
2208#endif
2209 return VERR_EM_INTERPRETER;
2210}
2211
2212
2213#ifndef VBOX_COMPARE_IEM_AND_EM
2214/**
2215 * LOCK XOR/OR/AND Emulation.
2216 */
2217static int emInterpretLockOrXorAnd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
2218 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
2219{
2220 void *pvParam1;
2221 DISQPVPARAMVAL param1, param2;
2222 NOREF(pvFault);
2223
2224#if HC_ARCH_BITS == 32
2225 Assert(pDis->Param1.cb <= 4);
2226#endif
2227
2228 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2229 if(RT_FAILURE(rc))
2230 return VERR_EM_INTERPRETER;
2231
2232 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2233 if(RT_FAILURE(rc))
2234 return VERR_EM_INTERPRETER;
2235
2236 if (pDis->Param1.cb != pDis->Param2.cb)
2237 {
2238 AssertMsgReturn(pDis->Param1.cb >= pDis->Param2.cb, /* should never happen! */
2239 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb),
2240 VERR_EM_INTERPRETER);
2241
2242 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2243 pDis->Param2.cb = pDis->Param1.cb;
2244 param2.size = param1.size;
2245 }
2246
2247#ifdef IN_RC
2248 /* Safety check (in theory it could cross a page boundary and fault there though) */
2249 Assert( TRPMHasTrap(pVCpu)
2250 && (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW));
2251 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
2252#endif
2253
2254 /* Register and immediate data == DISQPV_TYPE_IMMEDIATE */
2255 AssertReturn(param2.type == DISQPV_TYPE_IMMEDIATE, VERR_EM_INTERPRETER);
2256 RTGCUINTREG ValPar2 = param2.val.val64;
2257
2258 /* The destination is always a virtual address */
2259 AssertReturn(param1.type == DISQPV_TYPE_ADDRESS, VERR_EM_INTERPRETER);
2260
2261 RTGCPTR GCPtrPar1 = param1.val.val64;
2262 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2263 PGMPAGEMAPLOCK Lock;
2264 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2265 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2266
2267 /* Try emulate it with a one-shot #PF handler in place. (RC) */
2268 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2269
2270 RTGCUINTREG32 eflags = 0;
2271 rc = pfnEmulate(pvParam1, ValPar2, pDis->Param2.cb, &eflags);
2272 PGMPhysReleasePageMappingLock(pVM, &Lock);
2273 if (RT_FAILURE(rc))
2274 {
2275 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2276 return VERR_EM_INTERPRETER;
2277 }
2278
2279 /* Update guest's eflags and finish. */
2280 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2281 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2282
2283 *pcbSize = param2.size;
2284 return VINF_SUCCESS;
2285}
2286#endif /* !VBOX_COMPARE_IEM_AND_EM */
2287
2288
2289/**
2290 * ADD, ADC & SUB Emulation.
2291 */
2292static int emInterpretAddSub(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2293 PFNEMULATEPARAM3 pfnEmulate)
2294{
2295 NOREF(pvFault);
2296 DISQPVPARAMVAL param1, param2;
2297 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2298 if(RT_FAILURE(rc))
2299 return VERR_EM_INTERPRETER;
2300
2301 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2302 if(RT_FAILURE(rc))
2303 return VERR_EM_INTERPRETER;
2304
2305#ifdef IN_RC
2306 if (TRPMHasTrap(pVCpu))
2307 {
2308 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2309 {
2310#endif
2311 RTGCPTR pParam1;
2312 uint64_t valpar1, valpar2;
2313
2314 if (pDis->Param1.cb != pDis->Param2.cb)
2315 {
2316 if (pDis->Param1.cb < pDis->Param2.cb)
2317 {
2318 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip, pDis->Param1.cb, pDis->Param2.cb)); /* should never happen! */
2319 return VERR_EM_INTERPRETER;
2320 }
2321 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
2322 pDis->Param2.cb = pDis->Param1.cb;
2323 param2.size = param1.size;
2324 }
2325
2326 /* The destination is always a virtual address */
2327 if (param1.type == DISQPV_TYPE_ADDRESS)
2328 {
2329 pParam1 = (RTGCPTR)param1.val.val64;
2330 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2331 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
2332 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, param1.size);
2333 if (RT_FAILURE(rc))
2334 {
2335 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2336 return VERR_EM_INTERPRETER;
2337 }
2338 }
2339 else
2340 {
2341#ifndef DEBUG_bird
2342 AssertFailed();
2343#endif
2344 return VERR_EM_INTERPRETER;
2345 }
2346
2347 /* Register or immediate data */
2348 switch(param2.type)
2349 {
2350 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2351 valpar2 = param2.val.val64;
2352 break;
2353
2354 default:
2355 AssertFailed();
2356 return VERR_EM_INTERPRETER;
2357 }
2358
2359 /* Data read, emulate instruction. */
2360 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
2361
2362 /* Update guest's eflags and finish. */
2363 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2364 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2365
2366 /* And write it back */
2367 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, param1.size);
2368 if (RT_SUCCESS(rc))
2369 {
2370 /* All done! */
2371 *pcbSize = param2.size;
2372 return VINF_SUCCESS;
2373 }
2374#ifdef IN_RC
2375 }
2376 }
2377#endif
2378 return VERR_EM_INTERPRETER;
2379}
2380
2381
2382/**
2383 * ADC Emulation.
2384 */
2385static int emInterpretAdc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2386{
2387 if (pRegFrame->eflags.Bits.u1CF)
2388 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
2389 else
2390 return emInterpretAddSub(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
2391}
2392
2393
2394/**
2395 * BTR/C/S Emulation.
2396 */
2397static int emInterpretBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
2398 PFNEMULATEPARAM2UINT32 pfnEmulate)
2399{
2400 DISQPVPARAMVAL param1, param2;
2401 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2402 if(RT_FAILURE(rc))
2403 return VERR_EM_INTERPRETER;
2404
2405 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2406 if(RT_FAILURE(rc))
2407 return VERR_EM_INTERPRETER;
2408
2409#ifdef IN_RC
2410 if (TRPMHasTrap(pVCpu))
2411 {
2412 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
2413 {
2414#endif
2415 RTGCPTR pParam1;
2416 uint64_t valpar1 = 0, valpar2;
2417 uint32_t eflags;
2418
2419 /* The destination is always a virtual address */
2420 if (param1.type != DISQPV_TYPE_ADDRESS)
2421 return VERR_EM_INTERPRETER;
2422
2423 pParam1 = (RTGCPTR)param1.val.val64;
2424 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
2425
2426 /* Register or immediate data */
2427 switch(param2.type)
2428 {
2429 case DISQPV_TYPE_IMMEDIATE: /* both immediate data and register (ugly) */
2430 valpar2 = param2.val.val64;
2431 break;
2432
2433 default:
2434 AssertFailed();
2435 return VERR_EM_INTERPRETER;
2436 }
2437
2438 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pDis), pvFault, pParam1, valpar2));
2439 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
2440 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER); NOREF(pvFault);
2441 rc = emRamRead(pVM, pVCpu, pRegFrame, &valpar1, pParam1, 1);
2442 if (RT_FAILURE(rc))
2443 {
2444 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2445 return VERR_EM_INTERPRETER;
2446 }
2447
2448 Log2(("emInterpretBtx: val=%x\n", valpar1));
2449 /* Data read, emulate bit test instruction. */
2450 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
2451
2452 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
2453
2454 /* Update guest's eflags and finish. */
2455 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2456 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2457
2458 /* And write it back */
2459 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &valpar1, 1);
2460 if (RT_SUCCESS(rc))
2461 {
2462 /* All done! */
2463 *pcbSize = 1;
2464 return VINF_SUCCESS;
2465 }
2466#ifdef IN_RC
2467 }
2468 }
2469#endif
2470 return VERR_EM_INTERPRETER;
2471}
2472
2473
2474#ifndef VBOX_COMPARE_IEM_AND_EM
2475/**
2476 * LOCK BTR/C/S Emulation.
2477 */
2478static int emInterpretLockBitTest(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
2479 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
2480{
2481 void *pvParam1;
2482
2483 DISQPVPARAMVAL param1, param2;
2484 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2485 if(RT_FAILURE(rc))
2486 return VERR_EM_INTERPRETER;
2487
2488 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2489 if(RT_FAILURE(rc))
2490 return VERR_EM_INTERPRETER;
2491
2492 /* The destination is always a virtual address */
2493 if (param1.type != DISQPV_TYPE_ADDRESS)
2494 return VERR_EM_INTERPRETER;
2495
2496 /* Register and immediate data == DISQPV_TYPE_IMMEDIATE */
2497 AssertReturn(param2.type == DISQPV_TYPE_IMMEDIATE, VERR_EM_INTERPRETER);
2498 uint64_t ValPar2 = param2.val.val64;
2499
2500 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
2501 RTGCPTR GCPtrPar1 = param1.val.val64;
2502 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
2503 ValPar2 &= 7;
2504
2505 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2506#ifdef IN_RC
2507 Assert(TRPMHasTrap(pVCpu));
2508 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
2509#endif
2510
2511 PGMPAGEMAPLOCK Lock;
2512 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2513 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2514
2515 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pDis), pvFault, GCPtrPar1, ValPar2));
2516 NOREF(pvFault);
2517
2518 /* Try emulate it with a one-shot #PF handler in place. (RC) */
2519 RTGCUINTREG32 eflags = 0;
2520 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
2521 PGMPhysReleasePageMappingLock(pVM, &Lock);
2522 if (RT_FAILURE(rc))
2523 {
2524 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
2525 emGetMnemonic(pDis), GCPtrPar1, pDis->Param2.cb*8, ValPar2));
2526 return VERR_EM_INTERPRETER;
2527 }
2528
2529 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pDis), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
2530
2531 /* Update guest's eflags and finish. */
2532 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2533 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2534
2535 *pcbSize = 1;
2536 return VINF_SUCCESS;
2537}
2538#endif /* !VBOX_COMPARE_IEM_AND_EM */
2539
2540
2541/**
2542 * MOV emulation.
2543 */
2544static int emInterpretMov(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2545{
2546 NOREF(pvFault);
2547 DISQPVPARAMVAL param1, param2;
2548 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_DST);
2549 if(RT_FAILURE(rc))
2550 return VERR_EM_INTERPRETER;
2551
2552 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2553 if(RT_FAILURE(rc))
2554 return VERR_EM_INTERPRETER;
2555
2556 /* If destination is a segment register, punt. We can't handle it here.
2557 * NB: Source can be a register and still trigger a #PF!
2558 */
2559 if (RT_UNLIKELY(pDis->Param1.fUse == DISUSE_REG_SEG))
2560 return VERR_EM_INTERPRETER;
2561
2562 if (param1.type == DISQPV_TYPE_ADDRESS)
2563 {
2564 RTGCPTR pDest;
2565 uint64_t val64;
2566
2567 switch(param1.type)
2568 {
2569 case DISQPV_TYPE_IMMEDIATE:
2570 if(!(param1.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
2571 return VERR_EM_INTERPRETER;
2572 RT_FALL_THRU();
2573
2574 case DISQPV_TYPE_ADDRESS:
2575 pDest = (RTGCPTR)param1.val.val64;
2576 pDest = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pDest);
2577 break;
2578
2579 default:
2580 AssertFailed();
2581 return VERR_EM_INTERPRETER;
2582 }
2583
2584 switch(param2.type)
2585 {
2586 case DISQPV_TYPE_IMMEDIATE: /* register type is translated to this one too */
2587 val64 = param2.val.val64;
2588 break;
2589
2590 default:
2591 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
2592 return VERR_EM_INTERPRETER;
2593 }
2594#ifdef LOG_ENABLED
2595 if (pDis->uCpuMode == DISCPUMODE_64BIT)
2596 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
2597 else
2598 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
2599#endif
2600
2601 Assert(param2.size <= 8 && param2.size > 0);
2602 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
2603 rc = emRamWrite(pVM, pVCpu, pRegFrame, pDest, &val64, param2.size);
2604 if (RT_FAILURE(rc))
2605 return VERR_EM_INTERPRETER;
2606
2607 *pcbSize = param2.size;
2608 }
2609#if defined(IN_RC) && defined(VBOX_WITH_RAW_RING1)
2610 /* mov xx, cs instruction is dangerous in raw mode and replaced by an 'int3' by csam/patm. */
2611 else if ( param1.type == DISQPV_TYPE_REGISTER
2612 && param2.type == DISQPV_TYPE_REGISTER)
2613 {
2614 AssertReturn((pDis->Param1.fUse & (DISUSE_REG_GEN8|DISUSE_REG_GEN16|DISUSE_REG_GEN32)), VERR_EM_INTERPRETER);
2615 AssertReturn(pDis->Param2.fUse == DISUSE_REG_SEG, VERR_EM_INTERPRETER);
2616 AssertReturn(pDis->Param2.Base.idxSegReg == DISSELREG_CS, VERR_EM_INTERPRETER);
2617
2618 uint32_t u32Cpl = CPUMRCGetGuestCPL(pVCpu, pRegFrame);
2619 uint32_t uValCS = (pRegFrame->cs.Sel & ~X86_SEL_RPL) | u32Cpl;
2620
2621 Log(("EMInterpretInstruction: OP_MOV cs=%x->%x\n", pRegFrame->cs.Sel, uValCS));
2622 switch (param1.size)
2623 {
2624 case 1: rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t) uValCS); break;
2625 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)uValCS); break;
2626 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)uValCS); break;
2627 default:
2628 AssertFailed();
2629 return VERR_EM_INTERPRETER;
2630 }
2631 AssertRCReturn(rc, rc);
2632 }
2633#endif
2634 else
2635 { /* read fault */
2636 RTGCPTR pSrc;
2637 uint64_t val64;
2638
2639 /* Source */
2640 switch(param2.type)
2641 {
2642 case DISQPV_TYPE_IMMEDIATE:
2643 if(!(param2.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
2644 return VERR_EM_INTERPRETER;
2645 RT_FALL_THRU();
2646
2647 case DISQPV_TYPE_ADDRESS:
2648 pSrc = (RTGCPTR)param2.val.val64;
2649 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param2, pSrc);
2650 break;
2651
2652 default:
2653 return VERR_EM_INTERPRETER;
2654 }
2655
2656 Assert(param1.size <= 8 && param1.size > 0);
2657 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
2658 rc = emRamRead(pVM, pVCpu, pRegFrame, &val64, pSrc, param1.size);
2659 if (RT_FAILURE(rc))
2660 return VERR_EM_INTERPRETER;
2661
2662 /* Destination */
2663 switch(param1.type)
2664 {
2665 case DISQPV_TYPE_REGISTER:
2666 switch(param1.size)
2667 {
2668 case 1: rc = DISWriteReg8(pRegFrame, pDis->Param1.Base.idxGenReg, (uint8_t) val64); break;
2669 case 2: rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, (uint16_t)val64); break;
2670 case 4: rc = DISWriteReg32(pRegFrame, pDis->Param1.Base.idxGenReg, (uint32_t)val64); break;
2671 case 8: rc = DISWriteReg64(pRegFrame, pDis->Param1.Base.idxGenReg, val64); break;
2672 default:
2673 return VERR_EM_INTERPRETER;
2674 }
2675 if (RT_FAILURE(rc))
2676 return rc;
2677 break;
2678
2679 default:
2680 return VERR_EM_INTERPRETER;
2681 }
2682#ifdef LOG_ENABLED
2683 if (pDis->uCpuMode == DISCPUMODE_64BIT)
2684 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
2685 else
2686 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
2687#endif
2688 }
2689 return VINF_SUCCESS;
2690}
2691
2692
2693#ifndef IN_RC
2694/**
2695 * [REP] STOSWD emulation
2696 */
2697static int emInterpretStosWD(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2698{
2699 int rc;
2700 RTGCPTR GCDest, GCOffset;
2701 uint32_t cbSize;
2702 uint64_t cTransfers;
2703 int offIncrement;
2704 NOREF(pvFault);
2705
2706 /* Don't support any but these three prefix bytes. */
2707 if ((pDis->fPrefix & ~(DISPREFIX_ADDRSIZE|DISPREFIX_OPSIZE|DISPREFIX_REP|DISPREFIX_REX)))
2708 return VERR_EM_INTERPRETER;
2709
2710 switch (pDis->uAddrMode)
2711 {
2712 case DISCPUMODE_16BIT:
2713 GCOffset = pRegFrame->di;
2714 cTransfers = pRegFrame->cx;
2715 break;
2716 case DISCPUMODE_32BIT:
2717 GCOffset = pRegFrame->edi;
2718 cTransfers = pRegFrame->ecx;
2719 break;
2720 case DISCPUMODE_64BIT:
2721 GCOffset = pRegFrame->rdi;
2722 cTransfers = pRegFrame->rcx;
2723 break;
2724 default:
2725 AssertFailed();
2726 return VERR_EM_INTERPRETER;
2727 }
2728
2729 GCDest = SELMToFlat(pVM, DISSELREG_ES, pRegFrame, GCOffset);
2730 switch (pDis->uOpMode)
2731 {
2732 case DISCPUMODE_16BIT:
2733 cbSize = 2;
2734 break;
2735 case DISCPUMODE_32BIT:
2736 cbSize = 4;
2737 break;
2738 case DISCPUMODE_64BIT:
2739 cbSize = 8;
2740 break;
2741 default:
2742 AssertFailed();
2743 return VERR_EM_INTERPRETER;
2744 }
2745
2746 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
2747
2748 if (!(pDis->fPrefix & DISPREFIX_REP))
2749 {
2750 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es.Sel, GCOffset, GCDest, cbSize));
2751
2752 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
2753 if (RT_FAILURE(rc))
2754 return VERR_EM_INTERPRETER;
2755 Assert(rc == VINF_SUCCESS);
2756
2757 /* Update (e/r)di. */
2758 switch (pDis->uAddrMode)
2759 {
2760 case DISCPUMODE_16BIT:
2761 pRegFrame->di += offIncrement;
2762 break;
2763 case DISCPUMODE_32BIT:
2764 pRegFrame->edi += offIncrement;
2765 break;
2766 case DISCPUMODE_64BIT:
2767 pRegFrame->rdi += offIncrement;
2768 break;
2769 default:
2770 AssertFailed();
2771 return VERR_EM_INTERPRETER;
2772 }
2773
2774 }
2775 else
2776 {
2777 if (!cTransfers)
2778 return VINF_SUCCESS;
2779
2780 /*
2781 * Do *not* try emulate cross page stuff here because we don't know what might
2782 * be waiting for us on the subsequent pages. The caller has only asked us to
2783 * ignore access handlers fro the current page.
2784 * This also fends off big stores which would quickly kill PGMR0DynMap.
2785 */
2786 if ( cbSize > PAGE_SIZE
2787 || cTransfers > PAGE_SIZE
2788 || (GCDest >> PAGE_SHIFT) != ((GCDest + offIncrement * cTransfers) >> PAGE_SHIFT))
2789 {
2790 Log(("STOSWD is crosses pages, chicken out to the recompiler; GCDest=%RGv cbSize=%#x offIncrement=%d cTransfers=%#x\n",
2791 GCDest, cbSize, offIncrement, cTransfers));
2792 return VERR_EM_INTERPRETER;
2793 }
2794
2795 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es.Sel, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
2796 /* Access verification first; we currently can't recover properly from traps inside this instruction */
2797 rc = PGMVerifyAccess(pVCpu, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
2798 cTransfers * cbSize,
2799 X86_PTE_RW | (CPUMGetGuestCPL(pVCpu) == 3 ? X86_PTE_US : 0));
2800 if (rc != VINF_SUCCESS)
2801 {
2802 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
2803 return VERR_EM_INTERPRETER;
2804 }
2805
2806 /* REP case */
2807 while (cTransfers)
2808 {
2809 rc = emRamWrite(pVM, pVCpu, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
2810 if (RT_FAILURE(rc))
2811 {
2812 rc = VERR_EM_INTERPRETER;
2813 break;
2814 }
2815
2816 Assert(rc == VINF_SUCCESS);
2817 GCOffset += offIncrement;
2818 GCDest += offIncrement;
2819 cTransfers--;
2820 }
2821
2822 /* Update the registers. */
2823 switch (pDis->uAddrMode)
2824 {
2825 case DISCPUMODE_16BIT:
2826 pRegFrame->di = GCOffset;
2827 pRegFrame->cx = cTransfers;
2828 break;
2829 case DISCPUMODE_32BIT:
2830 pRegFrame->edi = GCOffset;
2831 pRegFrame->ecx = cTransfers;
2832 break;
2833 case DISCPUMODE_64BIT:
2834 pRegFrame->rdi = GCOffset;
2835 pRegFrame->rcx = cTransfers;
2836 break;
2837 default:
2838 AssertFailed();
2839 return VERR_EM_INTERPRETER;
2840 }
2841 }
2842
2843 *pcbSize = cbSize;
2844 return rc;
2845}
2846#endif /* !IN_RC */
2847
2848
2849/**
2850 * [LOCK] CMPXCHG emulation.
2851 */
2852static int emInterpretCmpXchg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2853{
2854 DISQPVPARAMVAL param1, param2;
2855 NOREF(pvFault);
2856
2857#if HC_ARCH_BITS == 32
2858 Assert(pDis->Param1.cb <= 4);
2859#endif
2860
2861 /* Source to make DISQueryParamVal read the register value - ugly hack */
2862 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2863 if(RT_FAILURE(rc))
2864 return VERR_EM_INTERPRETER;
2865
2866 rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param2, &param2, DISQPVWHICH_SRC);
2867 if(RT_FAILURE(rc))
2868 return VERR_EM_INTERPRETER;
2869
2870 uint64_t valpar;
2871 switch(param2.type)
2872 {
2873 case DISQPV_TYPE_IMMEDIATE: /* register actually */
2874 valpar = param2.val.val64;
2875 break;
2876
2877 default:
2878 return VERR_EM_INTERPRETER;
2879 }
2880
2881 PGMPAGEMAPLOCK Lock;
2882 RTGCPTR GCPtrPar1;
2883 void *pvParam1;
2884 uint64_t eflags;
2885
2886 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
2887 switch(param1.type)
2888 {
2889 case DISQPV_TYPE_ADDRESS:
2890 GCPtrPar1 = param1.val.val64;
2891 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2892
2893 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2894 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2895 break;
2896
2897 default:
2898 return VERR_EM_INTERPRETER;
2899 }
2900
2901 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar));
2902
2903#ifndef VBOX_COMPARE_IEM_AND_EM
2904 if (pDis->fPrefix & DISPREFIX_LOCK)
2905 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->Param2.cb);
2906 else
2907 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pDis->Param2.cb);
2908#else /* VBOX_COMPARE_IEM_AND_EM */
2909 uint64_t u64;
2910 switch (pDis->Param2.cb)
2911 {
2912 case 1: u64 = *(uint8_t *)pvParam1; break;
2913 case 2: u64 = *(uint16_t *)pvParam1; break;
2914 case 4: u64 = *(uint32_t *)pvParam1; break;
2915 default:
2916 case 8: u64 = *(uint64_t *)pvParam1; break;
2917 }
2918 eflags = EMEmulateCmpXchg(&u64, &pRegFrame->rax, valpar, pDis->Param2.cb);
2919 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, pDis->Param2.cb); AssertRCSuccess(rc2);
2920#endif /* VBOX_COMPARE_IEM_AND_EM */
2921
2922 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pDis), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
2923
2924 /* Update guest's eflags and finish. */
2925 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
2926 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
2927
2928 *pcbSize = param2.size;
2929 PGMPhysReleasePageMappingLock(pVM, &Lock);
2930 return VINF_SUCCESS;
2931}
2932
2933
2934/**
2935 * [LOCK] CMPXCHG8B emulation.
2936 */
2937static int emInterpretCmpXchg8b(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2938{
2939 DISQPVPARAMVAL param1;
2940 NOREF(pvFault);
2941
2942 /* Source to make DISQueryParamVal read the register value - ugly hack */
2943 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
2944 if(RT_FAILURE(rc))
2945 return VERR_EM_INTERPRETER;
2946
2947 RTGCPTR GCPtrPar1;
2948 void *pvParam1;
2949 uint64_t eflags;
2950 PGMPAGEMAPLOCK Lock;
2951
2952 AssertReturn(pDis->Param1.cb == 8, VERR_EM_INTERPRETER);
2953 switch(param1.type)
2954 {
2955 case DISQPV_TYPE_ADDRESS:
2956 GCPtrPar1 = param1.val.val64;
2957 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, GCPtrPar1);
2958
2959 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
2960 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2961 break;
2962
2963 default:
2964 return VERR_EM_INTERPRETER;
2965 }
2966
2967 LogFlow(("%s %RGv=%p eax=%08x\n", emGetMnemonic(pDis), GCPtrPar1, pvParam1, pRegFrame->eax));
2968
2969#ifndef VBOX_COMPARE_IEM_AND_EM
2970 if (pDis->fPrefix & DISPREFIX_LOCK)
2971 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
2972 else
2973 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
2974#else /* VBOX_COMPARE_IEM_AND_EM */
2975 uint64_t u64 = *(uint64_t *)pvParam1;
2976 eflags = EMEmulateCmpXchg8b(&u64, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
2977 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, sizeof(u64)); AssertRCSuccess(rc2);
2978#endif /* VBOX_COMPARE_IEM_AND_EM */
2979
2980 LogFlow(("%s %RGv=%p eax=%08x ZF=%d\n", emGetMnemonic(pDis), GCPtrPar1, pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
2981
2982 /* Update guest's eflags and finish; note that *only* ZF is affected. */
2983 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
2984 | (eflags & (X86_EFL_ZF));
2985
2986 *pcbSize = 8;
2987 PGMPhysReleasePageMappingLock(pVM, &Lock);
2988 return VINF_SUCCESS;
2989}
2990
2991
2992#ifdef IN_RC /** @todo test+enable for HM as well. */
2993/**
2994 * [LOCK] XADD emulation.
2995 */
2996static int emInterpretXAdd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2997{
2998 Assert(pDis->uCpuMode != DISCPUMODE_64BIT); /** @todo check */
2999 DISQPVPARAMVAL param1;
3000 void *pvParamReg2;
3001 size_t cbParamReg2;
3002 NOREF(pvFault);
3003
3004 /* Source to make DISQueryParamVal read the register value - ugly hack */
3005 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3006 if(RT_FAILURE(rc))
3007 return VERR_EM_INTERPRETER;
3008
3009 rc = DISQueryParamRegPtr(pRegFrame, pDis, &pDis->Param2, &pvParamReg2, &cbParamReg2);
3010 Assert(cbParamReg2 <= 4);
3011 if(RT_FAILURE(rc))
3012 return VERR_EM_INTERPRETER;
3013
3014#ifdef IN_RC
3015 if (TRPMHasTrap(pVCpu))
3016 {
3017 if (TRPMGetErrorCode(pVCpu) & X86_TRAP_PF_RW)
3018 {
3019#endif
3020 RTGCPTR GCPtrPar1;
3021 void *pvParam1;
3022 uint32_t eflags;
3023 PGMPAGEMAPLOCK Lock;
3024
3025 AssertReturn(pDis->Param1.cb == pDis->Param2.cb, VERR_EM_INTERPRETER);
3026 switch(param1.type)
3027 {
3028 case DISQPV_TYPE_ADDRESS:
3029 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, (RTRCUINTPTR)param1.val.val64);
3030#ifdef IN_RC
3031 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
3032#endif
3033
3034 rc = PGMPhysGCPtr2CCPtr(pVCpu, GCPtrPar1, &pvParam1, &Lock);
3035 AssertRCReturn(rc, VERR_EM_INTERPRETER);
3036 break;
3037
3038 default:
3039 return VERR_EM_INTERPRETER;
3040 }
3041
3042 LogFlow(("XAdd %RGv=%p reg=%08llx\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2));
3043
3044#ifndef VBOX_COMPARE_IEM_AND_EM
3045 if (pDis->fPrefix & DISPREFIX_LOCK)
3046 eflags = EMEmulateLockXAdd(pvParam1, pvParamReg2, cbParamReg2);
3047 else
3048 eflags = EMEmulateXAdd(pvParam1, pvParamReg2, cbParamReg2);
3049#else /* VBOX_COMPARE_IEM_AND_EM */
3050 uint64_t u64;
3051 switch (cbParamReg2)
3052 {
3053 case 1: u64 = *(uint8_t *)pvParam1; break;
3054 case 2: u64 = *(uint16_t *)pvParam1; break;
3055 case 4: u64 = *(uint32_t *)pvParam1; break;
3056 default:
3057 case 8: u64 = *(uint64_t *)pvParam1; break;
3058 }
3059 eflags = EMEmulateXAdd(&u64, pvParamReg2, cbParamReg2);
3060 int rc2 = emRamWrite(pVM, pVCpu, pRegFrame, GCPtrPar1, &u64, pDis->Param2.cb); AssertRCSuccess(rc2);
3061#endif /* VBOX_COMPARE_IEM_AND_EM */
3062
3063 LogFlow(("XAdd %RGv=%p reg=%08llx ZF=%d\n", GCPtrPar1, pvParam1, *(uint64_t *)pvParamReg2, !!(eflags & X86_EFL_ZF) ));
3064
3065 /* Update guest's eflags and finish. */
3066 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
3067 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
3068
3069 *pcbSize = cbParamReg2;
3070 PGMPhysReleasePageMappingLock(pVM, &Lock);
3071 return VINF_SUCCESS;
3072#ifdef IN_RC
3073 }
3074 }
3075
3076 return VERR_EM_INTERPRETER;
3077#endif
3078}
3079#endif /* IN_RC */
3080
3081
3082/**
3083 * WBINVD Emulation.
3084 */
3085static int emInterpretWbInvd(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3086{
3087 /* Nothing to do. */
3088 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3089 return VINF_SUCCESS;
3090}
3091
3092
3093/**
3094 * INVLPG Emulation.
3095 */
3096static VBOXSTRICTRC emInterpretInvlPg(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3097{
3098 DISQPVPARAMVAL param1;
3099 RTGCPTR addr;
3100 NOREF(pvFault); NOREF(pVM); NOREF(pcbSize);
3101
3102 VBOXSTRICTRC rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3103 if(RT_FAILURE(rc))
3104 return VERR_EM_INTERPRETER;
3105
3106 switch(param1.type)
3107 {
3108 case DISQPV_TYPE_IMMEDIATE:
3109 case DISQPV_TYPE_ADDRESS:
3110 if(!(param1.flags & (DISQPV_FLAG_32|DISQPV_FLAG_64)))
3111 return VERR_EM_INTERPRETER;
3112 addr = (RTGCPTR)param1.val.val64;
3113 break;
3114
3115 default:
3116 return VERR_EM_INTERPRETER;
3117 }
3118
3119 /** @todo is addr always a flat linear address or ds based
3120 * (in absence of segment override prefixes)????
3121 */
3122#ifdef IN_RC
3123 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
3124#endif
3125 rc = PGMInvalidatePage(pVCpu, addr);
3126 if ( rc == VINF_SUCCESS
3127 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
3128 return VINF_SUCCESS;
3129 AssertMsgReturn(rc == VINF_EM_RAW_EMULATE_INSTR,
3130 ("%Rrc addr=%RGv\n", VBOXSTRICTRC_VAL(rc), addr),
3131 VERR_EM_INTERPRETER);
3132 return rc;
3133}
3134
3135/** @todo change all these EMInterpretXXX methods to VBOXSTRICTRC. */
3136
3137/**
3138 * CPUID Emulation.
3139 */
3140static int emInterpretCpuId(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3141{
3142 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3143 int rc = EMInterpretCpuId(pVM, pVCpu, pRegFrame);
3144 return rc;
3145}
3146
3147
3148/**
3149 * CLTS Emulation.
3150 */
3151static int emInterpretClts(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3152{
3153 NOREF(pVM); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3154
3155 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
3156 if (!(cr0 & X86_CR0_TS))
3157 return VINF_SUCCESS;
3158 return CPUMSetGuestCR0(pVCpu, cr0 & ~X86_CR0_TS);
3159}
3160
3161
3162/**
3163 * Update CRx.
3164 *
3165 * @returns VBox status code.
3166 * @param pVM The cross context VM structure.
3167 * @param pVCpu The cross context virtual CPU structure.
3168 * @param pRegFrame The register frame.
3169 * @param DestRegCrx CRx register index (DISUSE_REG_CR*)
3170 * @param val New CRx value
3171 *
3172 */
3173static int emUpdateCRx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
3174{
3175 uint64_t oldval;
3176 uint64_t msrEFER;
3177 uint32_t fValid;
3178 int rc, rc2;
3179 NOREF(pVM);
3180
3181 /** @todo Clean up this mess. */
3182 LogFlow(("emInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
3183 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
3184 switch (DestRegCrx)
3185 {
3186 case DISCREG_CR0:
3187 oldval = CPUMGetGuestCR0(pVCpu);
3188#ifdef IN_RC
3189 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
3190 if ( (val & (X86_CR0_WP | X86_CR0_AM))
3191 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
3192 return VERR_EM_INTERPRETER;
3193#endif
3194 rc = VINF_SUCCESS;
3195#if !defined(VBOX_COMPARE_IEM_AND_EM) || !defined(VBOX_COMPARE_IEM_LAST)
3196 CPUMSetGuestCR0(pVCpu, val);
3197#else
3198 CPUMQueryGuestCtxPtr(pVCpu)->cr0 = val | X86_CR0_ET;
3199#endif
3200 val = CPUMGetGuestCR0(pVCpu);
3201 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
3202 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
3203 {
3204 /* global flush */
3205 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
3206 AssertRCReturn(rc, rc);
3207 }
3208
3209 /* Deal with long mode enabling/disabling. */
3210 msrEFER = CPUMGetGuestEFER(pVCpu);
3211 if (msrEFER & MSR_K6_EFER_LME)
3212 {
3213 if ( !(oldval & X86_CR0_PG)
3214 && (val & X86_CR0_PG))
3215 {
3216 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
3217 if (pRegFrame->cs.Attr.n.u1Long)
3218 {
3219 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
3220 return VERR_EM_INTERPRETER; /** @todo generate \#GP(0) */
3221 }
3222
3223 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
3224 if (!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE))
3225 {
3226 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
3227 return VERR_EM_INTERPRETER; /** @todo generate \#GP(0) */
3228 }
3229 msrEFER |= MSR_K6_EFER_LMA;
3230 }
3231 else
3232 if ( (oldval & X86_CR0_PG)
3233 && !(val & X86_CR0_PG))
3234 {
3235 msrEFER &= ~MSR_K6_EFER_LMA;
3236 /** @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
3237 }
3238 CPUMSetGuestEFER(pVCpu, msrEFER);
3239 }
3240 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
3241 return rc2 == VINF_SUCCESS ? rc : rc2;
3242
3243 case DISCREG_CR2:
3244 rc = CPUMSetGuestCR2(pVCpu, val); AssertRC(rc);
3245 return VINF_SUCCESS;
3246
3247 case DISCREG_CR3:
3248 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
3249 rc = CPUMSetGuestCR3(pVCpu, val); AssertRC(rc);
3250 if (CPUMGetGuestCR0(pVCpu) & X86_CR0_PG)
3251 {
3252 /* flush */
3253 rc = PGMFlushTLB(pVCpu, val, !(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE));
3254 AssertRC(rc);
3255 }
3256 return rc;
3257
3258 case DISCREG_CR4:
3259 oldval = CPUMGetGuestCR4(pVCpu);
3260 rc = CPUMSetGuestCR4(pVCpu, val); AssertRC(rc);
3261 val = CPUMGetGuestCR4(pVCpu);
3262
3263 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
3264 msrEFER = CPUMGetGuestEFER(pVCpu);
3265 if ( (msrEFER & MSR_K6_EFER_LMA)
3266 && (oldval & X86_CR4_PAE)
3267 && !(val & X86_CR4_PAE))
3268 {
3269 return VERR_EM_INTERPRETER; /** @todo generate \#GP(0) */
3270 }
3271
3272 /* From IEM iemCImpl_load_CrX. */
3273 /** @todo Check guest CPUID bits for determining corresponding valid bits. */
3274 fValid = X86_CR4_VME | X86_CR4_PVI
3275 | X86_CR4_TSD | X86_CR4_DE
3276 | X86_CR4_PSE | X86_CR4_PAE
3277 | X86_CR4_MCE | X86_CR4_PGE
3278 | X86_CR4_PCE | X86_CR4_OSFXSR
3279 | X86_CR4_OSXMMEEXCPT;
3280 //if (xxx)
3281 // fValid |= X86_CR4_VMXE;
3282 //if (xxx)
3283 // fValid |= X86_CR4_OSXSAVE;
3284 if (val & ~(uint64_t)fValid)
3285 {
3286 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", val, val & ~(uint64_t)fValid));
3287 return VERR_EM_INTERPRETER; /** @todo generate \#GP(0) */
3288 }
3289
3290 rc = VINF_SUCCESS;
3291 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
3292 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
3293 {
3294 /* global flush */
3295 rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true /* global */);
3296 AssertRCReturn(rc, rc);
3297 }
3298
3299 /* Feeling extremely lazy. */
3300# ifdef IN_RC
3301 if ( (oldval & (X86_CR4_OSFXSR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
3302 != (val & (X86_CR4_OSFXSR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
3303 {
3304 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
3305 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
3306 }
3307# endif
3308# ifdef VBOX_WITH_RAW_MODE
3309 if (((val ^ oldval) & X86_CR4_VME) && VM_IS_RAW_MODE_ENABLED(pVM))
3310 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
3311# endif
3312
3313 rc2 = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
3314 return rc2 == VINF_SUCCESS ? rc : rc2;
3315
3316 case DISCREG_CR8:
3317 return APICSetTpr(pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
3318
3319 default:
3320 AssertFailed();
3321 case DISCREG_CR1: /* illegal op */
3322 break;
3323 }
3324 return VERR_EM_INTERPRETER;
3325}
3326
3327
3328/**
3329 * LMSW Emulation.
3330 */
3331static int emInterpretLmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3332{
3333 DISQPVPARAMVAL param1;
3334 uint32_t val;
3335 NOREF(pvFault); NOREF(pcbSize);
3336 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
3337
3338 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3339 if(RT_FAILURE(rc))
3340 return VERR_EM_INTERPRETER;
3341
3342 switch(param1.type)
3343 {
3344 case DISQPV_TYPE_IMMEDIATE:
3345 case DISQPV_TYPE_ADDRESS:
3346 if(!(param1.flags & DISQPV_FLAG_16))
3347 return VERR_EM_INTERPRETER;
3348 val = param1.val.val32;
3349 break;
3350
3351 default:
3352 return VERR_EM_INTERPRETER;
3353 }
3354
3355 LogFlow(("emInterpretLmsw %x\n", val));
3356 uint64_t OldCr0 = CPUMGetGuestCR0(pVCpu);
3357
3358 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
3359 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
3360 | (val & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
3361
3362 return emUpdateCRx(pVM, pVCpu, pRegFrame, DISCREG_CR0, NewCr0);
3363
3364}
3365
3366#ifdef EM_EMULATE_SMSW
3367/**
3368 * SMSW Emulation.
3369 */
3370static int emInterpretSmsw(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3371{
3372 NOREF(pvFault); NOREF(pcbSize);
3373 DISQPVPARAMVAL param1;
3374 uint64_t cr0 = CPUMGetGuestCR0(pVCpu);
3375
3376 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3377 if(RT_FAILURE(rc))
3378 return VERR_EM_INTERPRETER;
3379
3380 switch(param1.type)
3381 {
3382 case DISQPV_TYPE_IMMEDIATE:
3383 if(param1.size != sizeof(uint16_t))
3384 return VERR_EM_INTERPRETER;
3385 LogFlow(("emInterpretSmsw %d <- cr0 (%x)\n", pDis->Param1.Base.idxGenReg, cr0));
3386 rc = DISWriteReg16(pRegFrame, pDis->Param1.Base.idxGenReg, cr0);
3387 break;
3388
3389 case DISQPV_TYPE_ADDRESS:
3390 {
3391 RTGCPTR pParam1;
3392
3393 /* Actually forced to 16 bits regardless of the operand size. */
3394 if(param1.size != sizeof(uint16_t))
3395 return VERR_EM_INTERPRETER;
3396
3397 pParam1 = (RTGCPTR)param1.val.val64;
3398 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, pParam1);
3399 LogFlow(("emInterpretSmsw %RGv <- cr0 (%x)\n", pParam1, cr0));
3400
3401 rc = emRamWrite(pVM, pVCpu, pRegFrame, pParam1, &cr0, sizeof(uint16_t));
3402 if (RT_FAILURE(rc))
3403 {
3404 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
3405 return VERR_EM_INTERPRETER;
3406 }
3407 break;
3408 }
3409
3410 default:
3411 return VERR_EM_INTERPRETER;
3412 }
3413
3414 LogFlow(("emInterpretSmsw %x\n", cr0));
3415 return rc;
3416}
3417#endif
3418
3419
3420/**
3421 * Interpret CRx read.
3422 *
3423 * @returns VBox status code.
3424 * @param pVM The cross context VM structure.
3425 * @param pVCpu The cross context virtual CPU structure.
3426 * @param pRegFrame The register frame.
3427 * @param DestRegGen General purpose register index (USE_REG_E**))
3428 * @param SrcRegCrx CRx register index (DISUSE_REG_CR*)
3429 *
3430 */
3431static int emInterpretCRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
3432{
3433 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
3434 uint64_t val64;
3435 int rc = CPUMGetGuestCRx(pVCpu, SrcRegCrx, &val64);
3436 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
3437 NOREF(pVM);
3438
3439 if (CPUMIsGuestIn64BitCode(pVCpu))
3440 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
3441 else
3442 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
3443
3444 if (RT_SUCCESS(rc))
3445 {
3446 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
3447 return VINF_SUCCESS;
3448 }
3449 return VERR_EM_INTERPRETER;
3450}
3451
3452
3453/**
3454 * Interpret CRx write.
3455 *
3456 * @returns VBox status code.
3457 * @param pVM The cross context VM structure.
3458 * @param pVCpu The cross context virtual CPU structure.
3459 * @param pRegFrame The register frame.
3460 * @param DestRegCrx CRx register index (DISUSE_REG_CR*)
3461 * @param SrcRegGen General purpose register index (USE_REG_E**))
3462 *
3463 */
3464static int emInterpretCRxWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
3465{
3466 uint64_t val;
3467 int rc;
3468 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
3469
3470 if (CPUMIsGuestIn64BitCode(pVCpu))
3471 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
3472 else
3473 {
3474 uint32_t val32;
3475 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
3476 val = val32;
3477 }
3478
3479 if (RT_SUCCESS(rc))
3480 return emUpdateCRx(pVM, pVCpu, pRegFrame, DestRegCrx, val);
3481
3482 return VERR_EM_INTERPRETER;
3483}
3484
3485
3486/**
3487 * MOV CRx
3488 */
3489static int emInterpretMovCRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3490{
3491 NOREF(pvFault); NOREF(pcbSize);
3492 if ((pDis->Param1.fUse == DISUSE_REG_GEN32 || pDis->Param1.fUse == DISUSE_REG_GEN64) && pDis->Param2.fUse == DISUSE_REG_CR)
3493 return emInterpretCRxRead(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxGenReg, pDis->Param2.Base.idxCtrlReg);
3494
3495 if (pDis->Param1.fUse == DISUSE_REG_CR && (pDis->Param2.fUse == DISUSE_REG_GEN32 || pDis->Param2.fUse == DISUSE_REG_GEN64))
3496 return emInterpretCRxWrite(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxCtrlReg, pDis->Param2.Base.idxGenReg);
3497
3498 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
3499}
3500
3501
3502/**
3503 * MOV DRx
3504 */
3505static int emInterpretMovDRx(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3506{
3507 int rc = VERR_EM_INTERPRETER;
3508 NOREF(pvFault); NOREF(pcbSize);
3509
3510 if((pDis->Param1.fUse == DISUSE_REG_GEN32 || pDis->Param1.fUse == DISUSE_REG_GEN64) && pDis->Param2.fUse == DISUSE_REG_DBG)
3511 {
3512 rc = EMInterpretDRxRead(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxGenReg, pDis->Param2.Base.idxDbgReg);
3513 }
3514 else
3515 if(pDis->Param1.fUse == DISUSE_REG_DBG && (pDis->Param2.fUse == DISUSE_REG_GEN32 || pDis->Param2.fUse == DISUSE_REG_GEN64))
3516 {
3517 rc = EMInterpretDRxWrite(pVM, pVCpu, pRegFrame, pDis->Param1.Base.idxDbgReg, pDis->Param2.Base.idxGenReg);
3518 }
3519 else
3520 AssertMsgFailed(("Unexpected debug register move\n"));
3521
3522 return rc;
3523}
3524
3525
3526/**
3527 * LLDT Emulation.
3528 */
3529static int emInterpretLLdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3530{
3531 DISQPVPARAMVAL param1;
3532 RTSEL sel;
3533 NOREF(pVM); NOREF(pvFault); NOREF(pcbSize);
3534
3535 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3536 if(RT_FAILURE(rc))
3537 return VERR_EM_INTERPRETER;
3538
3539 switch(param1.type)
3540 {
3541 case DISQPV_TYPE_ADDRESS:
3542 return VERR_EM_INTERPRETER; //feeling lazy right now
3543
3544 case DISQPV_TYPE_IMMEDIATE:
3545 if(!(param1.flags & DISQPV_FLAG_16))
3546 return VERR_EM_INTERPRETER;
3547 sel = (RTSEL)param1.val.val16;
3548 break;
3549
3550 default:
3551 return VERR_EM_INTERPRETER;
3552 }
3553
3554#ifdef IN_RING0
3555 /* Only for the VT-x real-mode emulation case. */
3556 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
3557 CPUMSetGuestLDTR(pVCpu, sel);
3558 return VINF_SUCCESS;
3559#else
3560 if (sel == 0)
3561 {
3562 if (CPUMGetHyperLDTR(pVCpu) == 0)
3563 {
3564 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
3565 return VINF_SUCCESS;
3566 }
3567 }
3568 //still feeling lazy
3569 return VERR_EM_INTERPRETER;
3570#endif
3571}
3572
3573#ifdef IN_RING0
3574/**
3575 * LIDT/LGDT Emulation.
3576 */
3577static int emInterpretLIGdt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3578{
3579 DISQPVPARAMVAL param1;
3580 RTGCPTR pParam1;
3581 X86XDTR32 dtr32;
3582 NOREF(pvFault); NOREF(pcbSize);
3583
3584 Log(("Emulate %s at %RGv\n", emGetMnemonic(pDis), (RTGCPTR)pRegFrame->rip));
3585
3586 /* Only for the VT-x real-mode emulation case. */
3587 AssertReturn(CPUMIsGuestInRealMode(pVCpu), VERR_EM_INTERPRETER);
3588
3589 int rc = DISQueryParamVal(pRegFrame, pDis, &pDis->Param1, &param1, DISQPVWHICH_SRC);
3590 if(RT_FAILURE(rc))
3591 return VERR_EM_INTERPRETER;
3592
3593 switch(param1.type)
3594 {
3595 case DISQPV_TYPE_ADDRESS:
3596 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pDis, &pDis->Param1, param1.val.val16);
3597 break;
3598
3599 default:
3600 return VERR_EM_INTERPRETER;
3601 }
3602
3603 rc = emRamRead(pVM, pVCpu, pRegFrame, &dtr32, pParam1, sizeof(dtr32));
3604 AssertRCReturn(rc, VERR_EM_INTERPRETER);
3605
3606 if (!(pDis->fPrefix & DISPREFIX_OPSIZE))
3607 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
3608
3609 if (pDis->pCurInstr->uOpcode == OP_LIDT)
3610 CPUMSetGuestIDTR(pVCpu, dtr32.uAddr, dtr32.cb);
3611 else
3612 CPUMSetGuestGDTR(pVCpu, dtr32.uAddr, dtr32.cb);
3613
3614 return VINF_SUCCESS;
3615}
3616#endif
3617
3618
3619#ifdef IN_RC
3620/**
3621 * STI Emulation.
3622 *
3623 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
3624 */
3625static int emInterpretSti(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3626{
3627 NOREF(pcbSize);
3628 PPATMGCSTATE pGCState = PATMGetGCState(pVM);
3629
3630 if(!pGCState)
3631 {
3632 Assert(pGCState);
3633 return VERR_EM_INTERPRETER;
3634 }
3635 pGCState->uVMFlags |= X86_EFL_IF;
3636
3637 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
3638 Assert(pvFault == SELMToFlat(pVM, DISSELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
3639
3640 pVCpu->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pDis->cbInstr;
3641 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3642
3643 return VINF_SUCCESS;
3644}
3645#endif /* IN_RC */
3646
3647
3648/**
3649 * HLT Emulation.
3650 */
3651static VBOXSTRICTRC
3652emInterpretHlt(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3653{
3654 NOREF(pVM); NOREF(pVCpu); NOREF(pDis); NOREF(pRegFrame); NOREF(pvFault); NOREF(pcbSize);
3655 return VINF_EM_HALT;
3656}
3657
3658
3659/**
3660 * RDTSC Emulation.
3661 */
3662static int emInterpretRdtsc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3663{
3664 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3665 return EMInterpretRdtsc(pVM, pVCpu, pRegFrame);
3666}
3667
3668/**
3669 * RDPMC Emulation
3670 */
3671static int emInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3672{
3673 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3674 return EMInterpretRdpmc(pVM, pVCpu, pRegFrame);
3675}
3676
3677
3678static int emInterpretMonitor(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3679{
3680 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3681 return EMInterpretMonitor(pVM, pVCpu, pRegFrame);
3682}
3683
3684
3685static VBOXSTRICTRC emInterpretMWait(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3686{
3687 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3688 return EMInterpretMWait(pVM, pVCpu, pRegFrame);
3689}
3690
3691
3692/**
3693 * RDMSR Emulation.
3694 */
3695static int emInterpretRdmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3696{
3697 /* Note: The Intel manual claims there's a REX version of RDMSR that's slightly
3698 different, so we play safe by completely disassembling the instruction. */
3699 Assert(!(pDis->fPrefix & DISPREFIX_REX));
3700 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3701 return EMInterpretRdmsr(pVM, pVCpu, pRegFrame);
3702}
3703
3704
3705/**
3706 * WRMSR Emulation.
3707 */
3708static int emInterpretWrmsr(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
3709{
3710 NOREF(pDis); NOREF(pvFault); NOREF(pcbSize);
3711 return EMInterpretWrmsr(pVM, pVCpu, pRegFrame);
3712}
3713
3714
3715/**
3716 * Internal worker.
3717 * @copydoc emInterpretInstructionCPUOuter
3718 * @param pVM The cross context VM structure.
3719 */
3720DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPU(PVM pVM, PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
3721 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize)
3722{
3723 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
3724 Assert(enmCodeType == EMCODETYPE_SUPERVISOR || enmCodeType == EMCODETYPE_ALL);
3725 Assert(pcbSize);
3726 *pcbSize = 0;
3727
3728 if (enmCodeType == EMCODETYPE_SUPERVISOR)
3729 {
3730 /*
3731 * Only supervisor guest code!!
3732 * And no complicated prefixes.
3733 */
3734 /* Get the current privilege level. */
3735 uint32_t cpl = CPUMGetGuestCPL(pVCpu);
3736#ifdef VBOX_WITH_RAW_RING1
3737 if ( !EMIsRawRing1Enabled(pVM)
3738 || cpl > 1
3739 || pRegFrame->eflags.Bits.u2IOPL > cpl
3740 )
3741#endif
3742 {
3743 if ( cpl != 0
3744 && pDis->pCurInstr->uOpcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
3745 {
3746 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
3747 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
3748 return VERR_EM_INTERPRETER;
3749 }
3750 }
3751 }
3752 else
3753 Log2(("emInterpretInstructionCPU allowed to interpret user-level code!!\n"));
3754
3755#ifdef IN_RC
3756 if ( (pDis->fPrefix & (DISPREFIX_REPNE | DISPREFIX_REP))
3757 || ( (pDis->fPrefix & DISPREFIX_LOCK)
3758 && pDis->pCurInstr->uOpcode != OP_CMPXCHG
3759 && pDis->pCurInstr->uOpcode != OP_CMPXCHG8B
3760 && pDis->pCurInstr->uOpcode != OP_XADD
3761 && pDis->pCurInstr->uOpcode != OP_OR
3762 && pDis->pCurInstr->uOpcode != OP_AND
3763 && pDis->pCurInstr->uOpcode != OP_XOR
3764 && pDis->pCurInstr->uOpcode != OP_BTR
3765 )
3766 )
3767#else
3768 if ( (pDis->fPrefix & DISPREFIX_REPNE)
3769 || ( (pDis->fPrefix & DISPREFIX_REP)
3770 && pDis->pCurInstr->uOpcode != OP_STOSWD
3771 )
3772 || ( (pDis->fPrefix & DISPREFIX_LOCK)
3773 && pDis->pCurInstr->uOpcode != OP_OR
3774 && pDis->pCurInstr->uOpcode != OP_AND
3775 && pDis->pCurInstr->uOpcode != OP_XOR
3776 && pDis->pCurInstr->uOpcode != OP_BTR
3777 && pDis->pCurInstr->uOpcode != OP_CMPXCHG
3778 && pDis->pCurInstr->uOpcode != OP_CMPXCHG8B
3779 )
3780 )
3781#endif
3782 {
3783 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
3784 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
3785 Log4(("EM: Refuse %u on REP/REPNE/LOCK prefix grounds\n", pDis->pCurInstr->uOpcode));
3786 return VERR_EM_INTERPRETER;
3787 }
3788
3789#if HC_ARCH_BITS == 32
3790 /*
3791 * Unable to emulate most >4 bytes accesses in 32 bits mode.
3792 * Whitelisted instructions are safe.
3793 */
3794 if ( pDis->Param1.cb > 4
3795 && CPUMIsGuestIn64BitCode(pVCpu))
3796 {
3797 uint32_t uOpCode = pDis->pCurInstr->uOpcode;
3798 if ( uOpCode != OP_STOSWD
3799 && uOpCode != OP_MOV
3800 && uOpCode != OP_CMPXCHG8B
3801 && uOpCode != OP_XCHG
3802 && uOpCode != OP_BTS
3803 && uOpCode != OP_BTR
3804 && uOpCode != OP_BTC
3805 )
3806 {
3807# ifdef VBOX_WITH_STATISTICS
3808 switch (pDis->pCurInstr->uOpcode)
3809 {
3810# define INTERPRET_FAILED_CASE(opcode, Instr) \
3811 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
3812 INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
3813 INTERPRET_FAILED_CASE(OP_DEC,Dec);
3814 INTERPRET_FAILED_CASE(OP_INC,Inc);
3815 INTERPRET_FAILED_CASE(OP_POP,Pop);
3816 INTERPRET_FAILED_CASE(OP_OR, Or);
3817 INTERPRET_FAILED_CASE(OP_XOR,Xor);
3818 INTERPRET_FAILED_CASE(OP_AND,And);
3819 INTERPRET_FAILED_CASE(OP_MOV,Mov);
3820 INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
3821 INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
3822 INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
3823 INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
3824 INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
3825 INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
3826 INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
3827 INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
3828 INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
3829 INTERPRET_FAILED_CASE(OP_CLTS,Clts);
3830 INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
3831 INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
3832 INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
3833 INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
3834 INTERPRET_FAILED_CASE(OP_ADD,Add);
3835 INTERPRET_FAILED_CASE(OP_SUB,Sub);
3836 INTERPRET_FAILED_CASE(OP_ADC,Adc);
3837 INTERPRET_FAILED_CASE(OP_BTR,Btr);
3838 INTERPRET_FAILED_CASE(OP_BTS,Bts);
3839 INTERPRET_FAILED_CASE(OP_BTC,Btc);
3840 INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
3841 INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
3842 INTERPRET_FAILED_CASE(OP_STI, Sti);
3843 INTERPRET_FAILED_CASE(OP_XADD,XAdd);
3844 INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
3845 INTERPRET_FAILED_CASE(OP_HLT, Hlt);
3846 INTERPRET_FAILED_CASE(OP_IRET,Iret);
3847 INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
3848 INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
3849# undef INTERPRET_FAILED_CASE
3850 default:
3851 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3852 break;
3853 }
3854# endif /* VBOX_WITH_STATISTICS */
3855 Log4(("EM: Refuse %u on grounds of accessing %u bytes\n", pDis->pCurInstr->uOpcode, pDis->Param1.cb));
3856 return VERR_EM_INTERPRETER;
3857 }
3858 }
3859#endif
3860
3861 VBOXSTRICTRC rc;
3862#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
3863 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pDis)));
3864#endif
3865 switch (pDis->pCurInstr->uOpcode)
3866 {
3867 /*
3868 * Macros for generating the right case statements.
3869 */
3870# ifndef VBOX_COMPARE_IEM_AND_EM
3871# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3872 case opcode:\
3873 if (pDis->fPrefix & DISPREFIX_LOCK) \
3874 rc = emInterpretLock##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
3875 else \
3876 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3877 if (RT_SUCCESS(rc)) \
3878 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3879 else \
3880 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3881 return rc
3882# else /* VBOX_COMPARE_IEM_AND_EM */
3883# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3884 case opcode:\
3885 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3886 if (RT_SUCCESS(rc)) \
3887 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3888 else \
3889 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3890 return rc
3891# endif /* VBOX_COMPARE_IEM_AND_EM */
3892
3893#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
3894 case opcode:\
3895 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3896 if (RT_SUCCESS(rc)) \
3897 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3898 else \
3899 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3900 return rc
3901
3902#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
3903 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
3904#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3905 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
3906
3907#define INTERPRET_CASE(opcode, Instr) \
3908 case opcode:\
3909 rc = emInterpret##Instr(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3910 if (RT_SUCCESS(rc)) \
3911 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3912 else \
3913 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3914 return rc
3915
3916#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
3917 case opcode:\
3918 rc = emInterpret##InstrFn(pVM, pVCpu, pDis, pRegFrame, pvFault, pcbSize); \
3919 if (RT_SUCCESS(rc)) \
3920 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3921 else \
3922 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3923 return rc
3924
3925#define INTERPRET_STAT_CASE(opcode, Instr) \
3926 case opcode: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
3927
3928 /*
3929 * The actual case statements.
3930 */
3931 INTERPRET_CASE(OP_XCHG,Xchg);
3932 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
3933 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3934 INTERPRET_CASE(OP_POP,Pop);
3935 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3936 INTERPRET_CASE_EX_LOCK_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor, EMEmulateLockXor);
3937 INTERPRET_CASE_EX_LOCK_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd, EMEmulateLockAnd);
3938 INTERPRET_CASE(OP_MOV,Mov);
3939#ifndef IN_RC
3940 INTERPRET_CASE(OP_STOSWD,StosWD);
3941#endif
3942 INTERPRET_CASE(OP_INVLPG,InvlPg);
3943 INTERPRET_CASE(OP_CPUID,CpuId);
3944 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3945 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3946#ifdef IN_RING0
3947 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3948 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3949#endif
3950 INTERPRET_CASE(OP_LLDT,LLdt);
3951 INTERPRET_CASE(OP_LMSW,Lmsw);
3952#ifdef EM_EMULATE_SMSW
3953 INTERPRET_CASE(OP_SMSW,Smsw);
3954#endif
3955 INTERPRET_CASE(OP_CLTS,Clts);
3956 INTERPRET_CASE(OP_MONITOR, Monitor);
3957 INTERPRET_CASE(OP_MWAIT, MWait);
3958 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3959 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3960 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3961 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3962 INTERPRET_CASE(OP_ADC,Adc);
3963 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3964 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3965 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3966 INTERPRET_CASE(OP_RDPMC,Rdpmc);
3967 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3968 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3969#ifdef IN_RC
3970 INTERPRET_CASE(OP_STI,Sti);
3971 INTERPRET_CASE(OP_XADD, XAdd);
3972 INTERPRET_CASE(OP_IRET,Iret);
3973#endif
3974 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3975 INTERPRET_CASE(OP_HLT,Hlt);
3976 INTERPRET_CASE(OP_WBINVD,WbInvd);
3977#ifdef VBOX_WITH_STATISTICS
3978# ifndef IN_RC
3979 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3980# endif
3981 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3982#endif
3983
3984 default:
3985 Log3(("emInterpretInstructionCPU: opcode=%d\n", pDis->pCurInstr->uOpcode));
3986 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3987 return VERR_EM_INTERPRETER;
3988
3989#undef INTERPRET_CASE_EX_PARAM2
3990#undef INTERPRET_STAT_CASE
3991#undef INTERPRET_CASE_EX
3992#undef INTERPRET_CASE
3993 } /* switch (opcode) */
3994 /* not reached */
3995}
3996
3997/**
3998 * Interprets the current instruction using the supplied DISCPUSTATE structure.
3999 *
4000 * EIP is *NOT* updated!
4001 *
4002 * @returns VBox strict status code.
4003 * @retval VINF_* Scheduling instructions. When these are returned, it
4004 * starts to get a bit tricky to know whether code was
4005 * executed or not... We'll address this when it becomes a problem.
4006 * @retval VERR_EM_INTERPRETER Something we can't cope with.
4007 * @retval VERR_* Fatal errors.
4008 *
4009 * @param pVCpu The cross context virtual CPU structure.
4010 * @param pDis The disassembler cpu state for the instruction to be
4011 * interpreted.
4012 * @param pRegFrame The register frame. EIP is *NOT* changed!
4013 * @param pvFault The fault address (CR2).
4014 * @param pcbSize Size of the write (if applicable).
4015 * @param enmCodeType Code type (user/supervisor)
4016 *
4017 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
4018 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
4019 * to worry about e.g. invalid modrm combinations (!)
4020 *
4021 * @todo At this time we do NOT check if the instruction overwrites vital information.
4022 * Make sure this can't happen!! (will add some assertions/checks later)
4023 */
4024DECLINLINE(VBOXSTRICTRC) emInterpretInstructionCPUOuter(PVMCPU pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
4025 RTGCPTR pvFault, EMCODETYPE enmCodeType, uint32_t *pcbSize)
4026{
4027 STAM_PROFILE_START(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
4028 VBOXSTRICTRC rc = emInterpretInstructionCPU(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, pRegFrame, pvFault, enmCodeType, pcbSize);
4029 STAM_PROFILE_STOP(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
4030 if (RT_SUCCESS(rc))
4031 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
4032 else
4033 STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
4034 return rc;
4035}
4036
4037
4038#endif /* !VBOX_WITH_IEM */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette