VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 93368

Last change on this file since 93368 was 93115, checked in by vboxsync, 3 years ago

scm --update-copyright-year

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 46.1 KB
Line 
1/* $Id: EMAll.cpp 93115 2022-01-01 11:31:46Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_EM
23#include <VBox/vmm/em.h>
24#include <VBox/vmm/mm.h>
25#include <VBox/vmm/selm.h>
26#include <VBox/vmm/pgm.h>
27#include <VBox/vmm/iem.h>
28#include <VBox/vmm/iom.h>
29#include <VBox/vmm/hm.h>
30#include <VBox/vmm/pdmapi.h>
31#include <VBox/vmm/vmm.h>
32#include <VBox/vmm/stam.h>
33#include "EMInternal.h"
34#include <VBox/vmm/vmcc.h>
35#include <VBox/param.h>
36#include <VBox/err.h>
37#include <VBox/dis.h>
38#include <VBox/disopcode.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/string.h>
42
43
44
45
46/**
47 * Get the current execution manager status.
48 *
49 * @returns Current status.
50 * @param pVCpu The cross context virtual CPU structure.
51 */
52VMM_INT_DECL(EMSTATE) EMGetState(PVMCPU pVCpu)
53{
54 return pVCpu->em.s.enmState;
55}
56
57
58/**
59 * Sets the current execution manager status. (use only when you know what you're doing!)
60 *
61 * @param pVCpu The cross context virtual CPU structure.
62 * @param enmNewState The new state, EMSTATE_WAIT_SIPI or EMSTATE_HALTED.
63 */
64VMM_INT_DECL(void) EMSetState(PVMCPU pVCpu, EMSTATE enmNewState)
65{
66 /* Only allowed combination: */
67 Assert(pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI && enmNewState == EMSTATE_HALTED);
68 pVCpu->em.s.enmState = enmNewState;
69}
70
71
72/**
73 * Sets the PC for which interrupts should be inhibited.
74 *
75 * @param pVCpu The cross context virtual CPU structure.
76 * @param PC The PC.
77 */
78VMMDECL(void) EMSetInhibitInterruptsPC(PVMCPU pVCpu, RTGCUINTPTR PC)
79{
80 pVCpu->em.s.GCPtrInhibitInterrupts = PC;
81 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
82}
83
84
85/**
86 * Gets the PC for which interrupts should be inhibited.
87 *
88 * There are a few instructions which inhibits or delays interrupts
89 * for the instruction following them. These instructions are:
90 * - STI
91 * - MOV SS, r/m16
92 * - POP SS
93 *
94 * @returns The PC for which interrupts should be inhibited.
95 * @param pVCpu The cross context virtual CPU structure.
96 *
97 */
98VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVMCPU pVCpu)
99{
100 return pVCpu->em.s.GCPtrInhibitInterrupts;
101}
102
103
104/**
105 * Checks if interrupt inhibiting is enabled for the current instruction.
106 *
107 * @returns true if interrupts are inhibited, false if not.
108 * @param pVCpu The cross context virtual CPU structure.
109 */
110VMMDECL(bool) EMIsInhibitInterruptsActive(PVMCPU pVCpu)
111{
112 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
113 return false;
114 if (pVCpu->em.s.GCPtrInhibitInterrupts == CPUMGetGuestRIP(pVCpu))
115 return true;
116 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
117 return false;
118}
119
120
121/**
122 * Enables / disable hypercall instructions.
123 *
124 * This interface is used by GIM to tell the execution monitors whether the
125 * hypercall instruction (VMMCALL & VMCALL) are allowed or should \#UD.
126 *
127 * @param pVCpu The cross context virtual CPU structure this applies to.
128 * @param fEnabled Whether hypercall instructions are enabled (true) or not.
129 */
130VMMDECL(void) EMSetHypercallInstructionsEnabled(PVMCPU pVCpu, bool fEnabled)
131{
132 pVCpu->em.s.fHypercallEnabled = fEnabled;
133}
134
135
136/**
137 * Checks if hypercall instructions (VMMCALL & VMCALL) are enabled or not.
138 *
139 * @returns true if enabled, false if not.
140 * @param pVCpu The cross context virtual CPU structure.
141 *
142 * @note If this call becomes a performance factor, we can make the data
143 * field available thru a read-only view in VMCPU. See VM::cpum.ro.
144 */
145VMMDECL(bool) EMAreHypercallInstructionsEnabled(PVMCPU pVCpu)
146{
147 return pVCpu->em.s.fHypercallEnabled;
148}
149
150
151/**
152 * Prepare an MWAIT - essentials of the MONITOR instruction.
153 *
154 * @returns VINF_SUCCESS
155 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
156 * @param rax The content of RAX.
157 * @param rcx The content of RCX.
158 * @param rdx The content of RDX.
159 * @param GCPhys The physical address corresponding to rax.
160 */
161VMM_INT_DECL(int) EMMonitorWaitPrepare(PVMCPU pVCpu, uint64_t rax, uint64_t rcx, uint64_t rdx, RTGCPHYS GCPhys)
162{
163 pVCpu->em.s.MWait.uMonitorRAX = rax;
164 pVCpu->em.s.MWait.uMonitorRCX = rcx;
165 pVCpu->em.s.MWait.uMonitorRDX = rdx;
166 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_MONITOR_ACTIVE;
167 /** @todo Make use of GCPhys. */
168 NOREF(GCPhys);
169 /** @todo Complete MONITOR implementation. */
170 return VINF_SUCCESS;
171}
172
173
174/**
175 * Checks if the monitor hardware is armed / active.
176 *
177 * @returns true if armed, false otherwise.
178 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
179 */
180VMM_INT_DECL(bool) EMMonitorIsArmed(PVMCPU pVCpu)
181{
182 return RT_BOOL(pVCpu->em.s.MWait.fWait & EMMWAIT_FLAG_MONITOR_ACTIVE);
183}
184
185
186/**
187 * Checks if we're in a MWAIT.
188 *
189 * @retval 1 if regular,
190 * @retval > 1 if MWAIT with EMMWAIT_FLAG_BREAKIRQIF0
191 * @retval 0 if not armed
192 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
193 */
194VMM_INT_DECL(unsigned) EMMonitorWaitIsActive(PVMCPU pVCpu)
195{
196 uint32_t fWait = pVCpu->em.s.MWait.fWait;
197 AssertCompile(EMMWAIT_FLAG_ACTIVE == 1);
198 AssertCompile(EMMWAIT_FLAG_BREAKIRQIF0 == 2);
199 AssertCompile((EMMWAIT_FLAG_ACTIVE << 1) == EMMWAIT_FLAG_BREAKIRQIF0);
200 return fWait & (EMMWAIT_FLAG_ACTIVE | ((fWait & EMMWAIT_FLAG_ACTIVE) << 1));
201}
202
203
204/**
205 * Performs an MWAIT.
206 *
207 * @returns VINF_SUCCESS
208 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
209 * @param rax The content of RAX.
210 * @param rcx The content of RCX.
211 */
212VMM_INT_DECL(int) EMMonitorWaitPerform(PVMCPU pVCpu, uint64_t rax, uint64_t rcx)
213{
214 pVCpu->em.s.MWait.uMWaitRAX = rax;
215 pVCpu->em.s.MWait.uMWaitRCX = rcx;
216 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_ACTIVE;
217 if (rcx)
218 pVCpu->em.s.MWait.fWait |= EMMWAIT_FLAG_BREAKIRQIF0;
219 else
220 pVCpu->em.s.MWait.fWait &= ~EMMWAIT_FLAG_BREAKIRQIF0;
221 /** @todo not completely correct?? */
222 return VINF_EM_HALT;
223}
224
225
226/**
227 * Clears any address-range monitoring that is active.
228 *
229 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
230 */
231VMM_INT_DECL(void) EMMonitorWaitClear(PVMCPU pVCpu)
232{
233 LogFlowFunc(("Clearing MWAIT\n"));
234 pVCpu->em.s.MWait.fWait &= ~(EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0);
235}
236
237
238/**
239 * Determine if we should continue execution in HM after encountering an mwait
240 * instruction.
241 *
242 * Clears MWAIT flags if returning @c true.
243 *
244 * @returns true if we should continue, false if we should halt.
245 * @param pVCpu The cross context virtual CPU structure.
246 * @param pCtx Current CPU context.
247 */
248VMM_INT_DECL(bool) EMMonitorWaitShouldContinue(PVMCPU pVCpu, PCPUMCTX pCtx)
249{
250 if (CPUMGetGuestGif(pCtx))
251 {
252 if ( CPUMIsGuestPhysIntrEnabled(pVCpu)
253 || ( CPUMIsGuestInNestedHwvirtMode(pCtx)
254 && CPUMIsGuestVirtIntrEnabled(pVCpu))
255 || ( (pVCpu->em.s.MWait.fWait & (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0))
256 == (EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0)) )
257 {
258 if (VMCPU_FF_IS_ANY_SET(pVCpu, ( VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
259 | VMCPU_FF_INTERRUPT_NESTED_GUEST)))
260 {
261 pVCpu->em.s.MWait.fWait &= ~(EMMWAIT_FLAG_ACTIVE | EMMWAIT_FLAG_BREAKIRQIF0);
262 return true;
263 }
264 }
265 }
266
267 return false;
268}
269
270
271/**
272 * Determine if we should continue execution in HM after encountering a hlt
273 * instruction.
274 *
275 * @returns true if we should continue, false if we should halt.
276 * @param pVCpu The cross context virtual CPU structure.
277 * @param pCtx Current CPU context.
278 */
279VMM_INT_DECL(bool) EMShouldContinueAfterHalt(PVMCPU pVCpu, PCPUMCTX pCtx)
280{
281 if (CPUMGetGuestGif(pCtx))
282 {
283 if (CPUMIsGuestPhysIntrEnabled(pVCpu))
284 return VMCPU_FF_IS_ANY_SET(pVCpu, (VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC));
285
286 if ( CPUMIsGuestInNestedHwvirtMode(pCtx)
287 && CPUMIsGuestVirtIntrEnabled(pVCpu))
288 return VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
289 }
290 return false;
291}
292
293
294/**
295 * Unhalts and wakes up the given CPU.
296 *
297 * This is an API for assisting the KVM hypercall API in implementing KICK_CPU.
298 * It sets VMCPU_FF_UNHALT for @a pVCpuDst and makes sure it is woken up. If
299 * the CPU isn't currently in a halt, the next HLT instruction it executes will
300 * be affected.
301 *
302 * @returns GVMMR0SchedWakeUpEx result or VINF_SUCCESS depending on context.
303 * @param pVM The cross context VM structure.
304 * @param pVCpuDst The cross context virtual CPU structure of the
305 * CPU to unhalt and wake up. This is usually not the
306 * same as the caller.
307 * @thread EMT
308 */
309VMM_INT_DECL(int) EMUnhaltAndWakeUp(PVMCC pVM, PVMCPUCC pVCpuDst)
310{
311 /*
312 * Flag the current(/next) HLT to unhalt immediately.
313 */
314 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_UNHALT);
315
316 /*
317 * Wake up the EMT (technically should be abstracted by VMM/VMEmt, but
318 * just do it here for now).
319 */
320#ifdef IN_RING0
321 /* We might be here with preemption disabled or enabled (i.e. depending on
322 thread-context hooks being used), so don't try obtaining the GVMMR0 used
323 lock here. See @bugref{7270#c148}. */
324 int rc = GVMMR0SchedWakeUpNoGVMNoLock(pVM, pVCpuDst->idCpu);
325 AssertRC(rc);
326
327#elif defined(IN_RING3)
328 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, 0 /*fFlags*/);
329 int rc = VINF_SUCCESS;
330 RT_NOREF(pVM);
331
332#else
333 /* Nothing to do for raw-mode, shouldn't really be used by raw-mode guests anyway. */
334 Assert(pVM->cCpus == 1); NOREF(pVM);
335 int rc = VINF_SUCCESS;
336#endif
337 return rc;
338}
339
340#ifndef IN_RING3
341
342/**
343 * Makes an I/O port write pending for ring-3 processing.
344 *
345 * @returns VINF_EM_PENDING_R3_IOPORT_READ
346 * @param pVCpu The cross context virtual CPU structure.
347 * @param uPort The I/O port.
348 * @param cbInstr The instruction length (for RIP updating).
349 * @param cbValue The write size.
350 * @param uValue The value being written.
351 * @sa emR3ExecutePendingIoPortWrite
352 *
353 * @note Must not be used when I/O port breakpoints are pending or when single stepping.
354 */
355VMMRZ_INT_DECL(VBOXSTRICTRC)
356EMRZSetPendingIoPortWrite(PVMCPU pVCpu, RTIOPORT uPort, uint8_t cbInstr, uint8_t cbValue, uint32_t uValue)
357{
358 Assert(pVCpu->em.s.PendingIoPortAccess.cbValue == 0);
359 pVCpu->em.s.PendingIoPortAccess.uPort = uPort;
360 pVCpu->em.s.PendingIoPortAccess.cbValue = cbValue;
361 pVCpu->em.s.PendingIoPortAccess.cbInstr = cbInstr;
362 pVCpu->em.s.PendingIoPortAccess.uValue = uValue;
363 return VINF_EM_PENDING_R3_IOPORT_WRITE;
364}
365
366
367/**
368 * Makes an I/O port read pending for ring-3 processing.
369 *
370 * @returns VINF_EM_PENDING_R3_IOPORT_READ
371 * @param pVCpu The cross context virtual CPU structure.
372 * @param uPort The I/O port.
373 * @param cbInstr The instruction length (for RIP updating).
374 * @param cbValue The read size.
375 * @sa emR3ExecutePendingIoPortRead
376 *
377 * @note Must not be used when I/O port breakpoints are pending or when single stepping.
378 */
379VMMRZ_INT_DECL(VBOXSTRICTRC)
380EMRZSetPendingIoPortRead(PVMCPU pVCpu, RTIOPORT uPort, uint8_t cbInstr, uint8_t cbValue)
381{
382 Assert(pVCpu->em.s.PendingIoPortAccess.cbValue == 0);
383 pVCpu->em.s.PendingIoPortAccess.uPort = uPort;
384 pVCpu->em.s.PendingIoPortAccess.cbValue = cbValue;
385 pVCpu->em.s.PendingIoPortAccess.cbInstr = cbInstr;
386 pVCpu->em.s.PendingIoPortAccess.uValue = UINT32_C(0x52454144); /* 'READ' */
387 return VINF_EM_PENDING_R3_IOPORT_READ;
388}
389
390#endif /* IN_RING3 */
391
392
393/**
394 * Worker for EMHistoryExec that checks for ring-3 returns and flags
395 * continuation of the EMHistoryExec run there.
396 */
397DECL_FORCE_INLINE(void) emHistoryExecSetContinueExitRecIdx(PVMCPU pVCpu, VBOXSTRICTRC rcStrict, PCEMEXITREC pExitRec)
398{
399 pVCpu->em.s.idxContinueExitRec = UINT16_MAX;
400#ifdef IN_RING3
401 RT_NOREF_PV(rcStrict); RT_NOREF_PV(pExitRec);
402#else
403 switch (VBOXSTRICTRC_VAL(rcStrict))
404 {
405 case VINF_SUCCESS:
406 default:
407 break;
408
409 /*
410 * Only status codes that EMHandleRCTmpl.h will resume EMHistoryExec with.
411 */
412 case VINF_IOM_R3_IOPORT_READ: /* -> emR3ExecuteIOInstruction */
413 case VINF_IOM_R3_IOPORT_WRITE: /* -> emR3ExecuteIOInstruction */
414 case VINF_IOM_R3_IOPORT_COMMIT_WRITE: /* -> VMCPU_FF_IOM -> VINF_EM_RESUME_R3_HISTORY_EXEC -> emR3ExecuteIOInstruction */
415 case VINF_IOM_R3_MMIO_READ: /* -> emR3ExecuteInstruction */
416 case VINF_IOM_R3_MMIO_WRITE: /* -> emR3ExecuteInstruction */
417 case VINF_IOM_R3_MMIO_READ_WRITE: /* -> emR3ExecuteInstruction */
418 case VINF_IOM_R3_MMIO_COMMIT_WRITE: /* -> VMCPU_FF_IOM -> VINF_EM_RESUME_R3_HISTORY_EXEC -> emR3ExecuteIOInstruction */
419 case VINF_CPUM_R3_MSR_READ: /* -> emR3ExecuteInstruction */
420 case VINF_CPUM_R3_MSR_WRITE: /* -> emR3ExecuteInstruction */
421 case VINF_GIM_R3_HYPERCALL: /* -> emR3ExecuteInstruction */
422 pVCpu->em.s.idxContinueExitRec = (uint16_t)(pExitRec - &pVCpu->em.s.aExitRecords[0]);
423 break;
424 }
425#endif /* !IN_RING3 */
426}
427
428
429/**
430 * Execute using history.
431 *
432 * This function will be called when EMHistoryAddExit() and friends returns a
433 * non-NULL result. This happens in response to probing or when probing has
434 * uncovered adjacent exits which can more effectively be reached by using IEM
435 * than restarting execution using the main execution engine and fielding an
436 * regular exit.
437 *
438 * @returns VBox strict status code, see IEMExecForExits.
439 * @param pVCpu The cross context virtual CPU structure.
440 * @param pExitRec The exit record return by a previous history add
441 * or update call.
442 * @param fWillExit Flags indicating to IEM what will cause exits, TBD.
443 */
444VMM_INT_DECL(VBOXSTRICTRC) EMHistoryExec(PVMCPUCC pVCpu, PCEMEXITREC pExitRec, uint32_t fWillExit)
445{
446 Assert(pExitRec);
447 VMCPU_ASSERT_EMT(pVCpu);
448 IEMEXECFOREXITSTATS ExecStats;
449 switch (pExitRec->enmAction)
450 {
451 /*
452 * Executes multiple instruction stopping only when we've gone a given
453 * number without perceived exits.
454 */
455 case EMEXITACTION_EXEC_WITH_MAX:
456 {
457 STAM_REL_PROFILE_START(&pVCpu->em.s.StatHistoryExec, a);
458 LogFlow(("EMHistoryExec/EXEC_WITH_MAX: %RX64, max %u\n", pExitRec->uFlatPC, pExitRec->cMaxInstructionsWithoutExit));
459 VBOXSTRICTRC rcStrict = IEMExecForExits(pVCpu, fWillExit,
460 pExitRec->cMaxInstructionsWithoutExit /* cMinInstructions*/,
461 pVCpu->em.s.cHistoryExecMaxInstructions,
462 pExitRec->cMaxInstructionsWithoutExit,
463 &ExecStats);
464 LogFlow(("EMHistoryExec/EXEC_WITH_MAX: %Rrc cExits=%u cMaxExitDistance=%u cInstructions=%u\n",
465 VBOXSTRICTRC_VAL(rcStrict), ExecStats.cExits, ExecStats.cMaxExitDistance, ExecStats.cInstructions));
466 emHistoryExecSetContinueExitRecIdx(pVCpu, rcStrict, pExitRec);
467
468 /* Ignore instructions IEM doesn't know about. */
469 if ( ( rcStrict != VERR_IEM_INSTR_NOT_IMPLEMENTED
470 && rcStrict != VERR_IEM_ASPECT_NOT_IMPLEMENTED)
471 || ExecStats.cInstructions == 0)
472 { /* likely */ }
473 else
474 rcStrict = VINF_SUCCESS;
475
476 if (ExecStats.cExits > 1)
477 STAM_REL_COUNTER_ADD(&pVCpu->em.s.StatHistoryExecSavedExits, ExecStats.cExits - 1);
478 STAM_REL_COUNTER_ADD(&pVCpu->em.s.StatHistoryExecInstructions, ExecStats.cInstructions);
479 STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatHistoryExec, a);
480 return rcStrict;
481 }
482
483 /*
484 * Probe a exit for close by exits.
485 */
486 case EMEXITACTION_EXEC_PROBE:
487 {
488 STAM_REL_PROFILE_START(&pVCpu->em.s.StatHistoryProbe, b);
489 LogFlow(("EMHistoryExec/EXEC_PROBE: %RX64\n", pExitRec->uFlatPC));
490 PEMEXITREC pExitRecUnconst = (PEMEXITREC)pExitRec;
491 VBOXSTRICTRC rcStrict = IEMExecForExits(pVCpu, fWillExit,
492 pVCpu->em.s.cHistoryProbeMinInstructions,
493 pVCpu->em.s.cHistoryExecMaxInstructions,
494 pVCpu->em.s.cHistoryProbeMaxInstructionsWithoutExit,
495 &ExecStats);
496 LogFlow(("EMHistoryExec/EXEC_PROBE: %Rrc cExits=%u cMaxExitDistance=%u cInstructions=%u\n",
497 VBOXSTRICTRC_VAL(rcStrict), ExecStats.cExits, ExecStats.cMaxExitDistance, ExecStats.cInstructions));
498 emHistoryExecSetContinueExitRecIdx(pVCpu, rcStrict, pExitRecUnconst);
499 if ( ExecStats.cExits >= 2
500 && RT_SUCCESS(rcStrict))
501 {
502 Assert(ExecStats.cMaxExitDistance > 0 && ExecStats.cMaxExitDistance <= 32);
503 pExitRecUnconst->cMaxInstructionsWithoutExit = ExecStats.cMaxExitDistance;
504 pExitRecUnconst->enmAction = EMEXITACTION_EXEC_WITH_MAX;
505 LogFlow(("EMHistoryExec/EXEC_PROBE: -> EXEC_WITH_MAX %u\n", ExecStats.cMaxExitDistance));
506 STAM_REL_COUNTER_INC(&pVCpu->em.s.StatHistoryProbedExecWithMax);
507 }
508#ifndef IN_RING3
509 else if ( pVCpu->em.s.idxContinueExitRec != UINT16_MAX
510 && RT_SUCCESS(rcStrict))
511 {
512 STAM_REL_COUNTER_INC(&pVCpu->em.s.StatHistoryProbedToRing3);
513 LogFlow(("EMHistoryExec/EXEC_PROBE: -> ring-3\n"));
514 }
515#endif
516 else
517 {
518 pExitRecUnconst->enmAction = EMEXITACTION_NORMAL_PROBED;
519 pVCpu->em.s.idxContinueExitRec = UINT16_MAX;
520 LogFlow(("EMHistoryExec/EXEC_PROBE: -> PROBED\n"));
521 STAM_REL_COUNTER_INC(&pVCpu->em.s.StatHistoryProbedNormal);
522 if ( rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED
523 || rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED)
524 rcStrict = VINF_SUCCESS;
525 }
526 STAM_REL_COUNTER_ADD(&pVCpu->em.s.StatHistoryProbeInstructions, ExecStats.cInstructions);
527 STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatHistoryProbe, b);
528 return rcStrict;
529 }
530
531 /* We shouldn't ever see these here! */
532 case EMEXITACTION_FREE_RECORD:
533 case EMEXITACTION_NORMAL:
534 case EMEXITACTION_NORMAL_PROBED:
535 break;
536
537 /* No default case, want compiler warnings. */
538 }
539 AssertLogRelFailedReturn(VERR_EM_INTERNAL_ERROR);
540}
541
542
543/**
544 * Worker for emHistoryAddOrUpdateRecord.
545 */
546DECL_FORCE_INLINE(PCEMEXITREC) emHistoryRecordInit(PEMEXITREC pExitRec, uint64_t uFlatPC, uint32_t uFlagsAndType, uint64_t uExitNo)
547{
548 pExitRec->uFlatPC = uFlatPC;
549 pExitRec->uFlagsAndType = uFlagsAndType;
550 pExitRec->enmAction = EMEXITACTION_NORMAL;
551 pExitRec->bUnused = 0;
552 pExitRec->cMaxInstructionsWithoutExit = 64;
553 pExitRec->uLastExitNo = uExitNo;
554 pExitRec->cHits = 1;
555 return NULL;
556}
557
558
559/**
560 * Worker for emHistoryAddOrUpdateRecord.
561 */
562DECL_FORCE_INLINE(PCEMEXITREC) emHistoryRecordInitNew(PVMCPU pVCpu, PEMEXITENTRY pHistEntry, uintptr_t idxSlot,
563 PEMEXITREC pExitRec, uint64_t uFlatPC,
564 uint32_t uFlagsAndType, uint64_t uExitNo)
565{
566 pHistEntry->idxSlot = (uint32_t)idxSlot;
567 pVCpu->em.s.cExitRecordUsed++;
568 LogFlow(("emHistoryRecordInitNew: [%#x] = %#07x %016RX64; (%u of %u used)\n", idxSlot, uFlagsAndType, uFlatPC,
569 pVCpu->em.s.cExitRecordUsed, RT_ELEMENTS(pVCpu->em.s.aExitRecords) ));
570 return emHistoryRecordInit(pExitRec, uFlatPC, uFlagsAndType, uExitNo);
571}
572
573
574/**
575 * Worker for emHistoryAddOrUpdateRecord.
576 */
577DECL_FORCE_INLINE(PCEMEXITREC) emHistoryRecordInitReplacement(PEMEXITENTRY pHistEntry, uintptr_t idxSlot,
578 PEMEXITREC pExitRec, uint64_t uFlatPC,
579 uint32_t uFlagsAndType, uint64_t uExitNo)
580{
581 pHistEntry->idxSlot = (uint32_t)idxSlot;
582 LogFlow(("emHistoryRecordInitReplacement: [%#x] = %#07x %016RX64 replacing %#07x %016RX64 with %u hits, %u exits old\n",
583 idxSlot, uFlagsAndType, uFlatPC, pExitRec->uFlagsAndType, pExitRec->uFlatPC, pExitRec->cHits,
584 uExitNo - pExitRec->uLastExitNo));
585 return emHistoryRecordInit(pExitRec, uFlatPC, uFlagsAndType, uExitNo);
586}
587
588
589/**
590 * Adds or updates the EMEXITREC for this PC/type and decide on an action.
591 *
592 * @returns Pointer to an exit record if special action should be taken using
593 * EMHistoryExec(). Take normal exit action when NULL.
594 *
595 * @param pVCpu The cross context virtual CPU structure.
596 * @param uFlagsAndType Combined flags and type, EMEXIT_F_KIND_EM set and
597 * both EMEXIT_F_CS_EIP and EMEXIT_F_UNFLATTENED_PC are clear.
598 * @param uFlatPC The flattened program counter.
599 * @param pHistEntry The exit history entry.
600 * @param uExitNo The current exit number.
601 */
602static PCEMEXITREC emHistoryAddOrUpdateRecord(PVMCPU pVCpu, uint64_t uFlagsAndType, uint64_t uFlatPC,
603 PEMEXITENTRY pHistEntry, uint64_t uExitNo)
604{
605# ifdef IN_RING0
606 /* Disregard the hm flag. */
607 uFlagsAndType &= ~EMEXIT_F_HM;
608# endif
609
610 /*
611 * Work the hash table.
612 */
613 AssertCompile(RT_ELEMENTS(pVCpu->em.s.aExitRecords) == 1024);
614# define EM_EXIT_RECORDS_IDX_MASK 0x3ff
615 uintptr_t idxSlot = ((uintptr_t)uFlatPC >> 1) & EM_EXIT_RECORDS_IDX_MASK;
616 PEMEXITREC pExitRec = &pVCpu->em.s.aExitRecords[idxSlot];
617 if (pExitRec->uFlatPC == uFlatPC)
618 {
619 Assert(pExitRec->enmAction != EMEXITACTION_FREE_RECORD);
620 pHistEntry->idxSlot = (uint32_t)idxSlot;
621 if (pExitRec->uFlagsAndType == uFlagsAndType)
622 {
623 pExitRec->uLastExitNo = uExitNo;
624 STAM_REL_COUNTER_INC(&pVCpu->em.s.aStatHistoryRecHits[0]);
625 }
626 else
627 {
628 STAM_REL_COUNTER_INC(&pVCpu->em.s.aStatHistoryRecTypeChanged[0]);
629 return emHistoryRecordInit(pExitRec, uFlatPC, uFlagsAndType, uExitNo);
630 }
631 }
632 else if (pExitRec->enmAction == EMEXITACTION_FREE_RECORD)
633 {
634 STAM_REL_COUNTER_INC(&pVCpu->em.s.aStatHistoryRecNew[0]);
635 return emHistoryRecordInitNew(pVCpu, pHistEntry, idxSlot, pExitRec, uFlatPC, uFlagsAndType, uExitNo);
636 }
637 else
638 {
639 /*
640 * Collision. We calculate a new hash for stepping away from the first,
641 * doing up to 8 steps away before replacing the least recently used record.
642 */
643 uintptr_t idxOldest = idxSlot;
644 uint64_t uOldestExitNo = pExitRec->uLastExitNo;
645 unsigned iOldestStep = 0;
646 unsigned iStep = 1;
647 uintptr_t const idxAdd = (uintptr_t)(uFlatPC >> 11) & (EM_EXIT_RECORDS_IDX_MASK / 4);
648 for (;;)
649 {
650 Assert(iStep < RT_ELEMENTS(pVCpu->em.s.aStatHistoryRecHits));
651 AssertCompile(RT_ELEMENTS(pVCpu->em.s.aStatHistoryRecNew) == RT_ELEMENTS(pVCpu->em.s.aStatHistoryRecHits));
652 AssertCompile(RT_ELEMENTS(pVCpu->em.s.aStatHistoryRecReplaced) == RT_ELEMENTS(pVCpu->em.s.aStatHistoryRecHits));
653 AssertCompile(RT_ELEMENTS(pVCpu->em.s.aStatHistoryRecTypeChanged) == RT_ELEMENTS(pVCpu->em.s.aStatHistoryRecHits));
654
655 /* Step to the next slot. */
656 idxSlot += idxAdd;
657 idxSlot &= EM_EXIT_RECORDS_IDX_MASK;
658 pExitRec = &pVCpu->em.s.aExitRecords[idxSlot];
659
660 /* Does it match? */
661 if (pExitRec->uFlatPC == uFlatPC)
662 {
663 Assert(pExitRec->enmAction != EMEXITACTION_FREE_RECORD);
664 pHistEntry->idxSlot = (uint32_t)idxSlot;
665 if (pExitRec->uFlagsAndType == uFlagsAndType)
666 {
667 pExitRec->uLastExitNo = uExitNo;
668 STAM_REL_COUNTER_INC(&pVCpu->em.s.aStatHistoryRecHits[iStep]);
669 break;
670 }
671 STAM_REL_COUNTER_INC(&pVCpu->em.s.aStatHistoryRecTypeChanged[iStep]);
672 return emHistoryRecordInit(pExitRec, uFlatPC, uFlagsAndType, uExitNo);
673 }
674
675 /* Is it free? */
676 if (pExitRec->enmAction == EMEXITACTION_FREE_RECORD)
677 {
678 STAM_REL_COUNTER_INC(&pVCpu->em.s.aStatHistoryRecNew[iStep]);
679 return emHistoryRecordInitNew(pVCpu, pHistEntry, idxSlot, pExitRec, uFlatPC, uFlagsAndType, uExitNo);
680 }
681
682 /* Is it the least recently used one? */
683 if (pExitRec->uLastExitNo < uOldestExitNo)
684 {
685 uOldestExitNo = pExitRec->uLastExitNo;
686 idxOldest = idxSlot;
687 iOldestStep = iStep;
688 }
689
690 /* Next iteration? */
691 iStep++;
692 Assert(iStep < RT_ELEMENTS(pVCpu->em.s.aStatHistoryRecReplaced));
693 if (RT_LIKELY(iStep < 8 + 1))
694 { /* likely */ }
695 else
696 {
697 /* Replace the least recently used slot. */
698 STAM_REL_COUNTER_INC(&pVCpu->em.s.aStatHistoryRecReplaced[iOldestStep]);
699 pExitRec = &pVCpu->em.s.aExitRecords[idxOldest];
700 return emHistoryRecordInitReplacement(pHistEntry, idxOldest, pExitRec, uFlatPC, uFlagsAndType, uExitNo);
701 }
702 }
703 }
704
705 /*
706 * Found an existing record.
707 */
708 switch (pExitRec->enmAction)
709 {
710 case EMEXITACTION_NORMAL:
711 {
712 uint64_t const cHits = ++pExitRec->cHits;
713 if (cHits < 256)
714 return NULL;
715 LogFlow(("emHistoryAddOrUpdateRecord: [%#x] %#07x %16RX64: -> EXEC_PROBE\n", idxSlot, uFlagsAndType, uFlatPC));
716 pExitRec->enmAction = EMEXITACTION_EXEC_PROBE;
717 return pExitRec;
718 }
719
720 case EMEXITACTION_NORMAL_PROBED:
721 pExitRec->cHits += 1;
722 return NULL;
723
724 default:
725 pExitRec->cHits += 1;
726 return pExitRec;
727
728 /* This will happen if the caller ignores or cannot serve the probe
729 request (forced to ring-3, whatever). We retry this 256 times. */
730 case EMEXITACTION_EXEC_PROBE:
731 {
732 uint64_t const cHits = ++pExitRec->cHits;
733 if (cHits < 512)
734 return pExitRec;
735 pExitRec->enmAction = EMEXITACTION_NORMAL_PROBED;
736 LogFlow(("emHistoryAddOrUpdateRecord: [%#x] %#07x %16RX64: -> PROBED\n", idxSlot, uFlagsAndType, uFlatPC));
737 return NULL;
738 }
739 }
740}
741
742
743/**
744 * Adds an exit to the history for this CPU.
745 *
746 * @returns Pointer to an exit record if special action should be taken using
747 * EMHistoryExec(). Take normal exit action when NULL.
748 *
749 * @param pVCpu The cross context virtual CPU structure.
750 * @param uFlagsAndType Combined flags and type (see EMEXIT_MAKE_FLAGS_AND_TYPE).
751 * @param uFlatPC The flattened program counter (RIP). UINT64_MAX if not available.
752 * @param uTimestamp The TSC value for the exit, 0 if not available.
753 * @thread EMT(pVCpu)
754 */
755VMM_INT_DECL(PCEMEXITREC) EMHistoryAddExit(PVMCPUCC pVCpu, uint32_t uFlagsAndType, uint64_t uFlatPC, uint64_t uTimestamp)
756{
757 VMCPU_ASSERT_EMT(pVCpu);
758
759 /*
760 * Add the exit history entry.
761 */
762 AssertCompile(RT_ELEMENTS(pVCpu->em.s.aExitHistory) == 256);
763 uint64_t uExitNo = pVCpu->em.s.iNextExit++;
764 PEMEXITENTRY pHistEntry = &pVCpu->em.s.aExitHistory[(uintptr_t)uExitNo & 0xff];
765 pHistEntry->uFlatPC = uFlatPC;
766 pHistEntry->uTimestamp = uTimestamp;
767 pHistEntry->uFlagsAndType = uFlagsAndType;
768 pHistEntry->idxSlot = UINT32_MAX;
769
770 /*
771 * If common exit type, we will insert/update the exit into the exit record hash table.
772 */
773 if ( (uFlagsAndType & (EMEXIT_F_KIND_MASK | EMEXIT_F_CS_EIP | EMEXIT_F_UNFLATTENED_PC)) == EMEXIT_F_KIND_EM
774#ifdef IN_RING0
775 && pVCpu->em.s.fExitOptimizationEnabledR0
776 && ( !(uFlagsAndType & EMEXIT_F_HM) || pVCpu->em.s.fExitOptimizationEnabledR0PreemptDisabled)
777#else
778 && pVCpu->em.s.fExitOptimizationEnabled
779#endif
780 && uFlatPC != UINT64_MAX
781 )
782 return emHistoryAddOrUpdateRecord(pVCpu, uFlagsAndType, uFlatPC, pHistEntry, uExitNo);
783 return NULL;
784}
785
786
787/**
788 * Interface that VT-x uses to supply the PC of an exit when CS:RIP is being read.
789 *
790 * @param pVCpu The cross context virtual CPU structure.
791 * @param uFlatPC The flattened program counter (RIP).
792 * @param fFlattened Set if RIP was subjected to CS.BASE, clear if not.
793 */
794VMM_INT_DECL(void) EMHistoryUpdatePC(PVMCPUCC pVCpu, uint64_t uFlatPC, bool fFlattened)
795{
796 VMCPU_ASSERT_EMT(pVCpu);
797
798 AssertCompile(RT_ELEMENTS(pVCpu->em.s.aExitHistory) == 256);
799 uint64_t uExitNo = pVCpu->em.s.iNextExit - 1;
800 PEMEXITENTRY pHistEntry = &pVCpu->em.s.aExitHistory[(uintptr_t)uExitNo & 0xff];
801 pHistEntry->uFlatPC = uFlatPC;
802 if (fFlattened)
803 pHistEntry->uFlagsAndType &= ~EMEXIT_F_UNFLATTENED_PC;
804 else
805 pHistEntry->uFlagsAndType |= EMEXIT_F_UNFLATTENED_PC;
806}
807
808
809/**
810 * Interface for convering a engine specific exit to a generic one and get guidance.
811 *
812 * @returns Pointer to an exit record if special action should be taken using
813 * EMHistoryExec(). Take normal exit action when NULL.
814 *
815 * @param pVCpu The cross context virtual CPU structure.
816 * @param uFlagsAndType Combined flags and type (see EMEXIT_MAKE_FLAGS_AND_TYPE).
817 * @thread EMT(pVCpu)
818 */
819VMM_INT_DECL(PCEMEXITREC) EMHistoryUpdateFlagsAndType(PVMCPUCC pVCpu, uint32_t uFlagsAndType)
820{
821 VMCPU_ASSERT_EMT(pVCpu);
822
823 /*
824 * Do the updating.
825 */
826 AssertCompile(RT_ELEMENTS(pVCpu->em.s.aExitHistory) == 256);
827 uint64_t uExitNo = pVCpu->em.s.iNextExit - 1;
828 PEMEXITENTRY pHistEntry = &pVCpu->em.s.aExitHistory[(uintptr_t)uExitNo & 0xff];
829 pHistEntry->uFlagsAndType = uFlagsAndType | (pHistEntry->uFlagsAndType & (EMEXIT_F_CS_EIP | EMEXIT_F_UNFLATTENED_PC));
830
831 /*
832 * If common exit type, we will insert/update the exit into the exit record hash table.
833 */
834 if ( (uFlagsAndType & (EMEXIT_F_KIND_MASK | EMEXIT_F_CS_EIP | EMEXIT_F_UNFLATTENED_PC)) == EMEXIT_F_KIND_EM
835#ifdef IN_RING0
836 && pVCpu->em.s.fExitOptimizationEnabledR0
837 && ( !(uFlagsAndType & EMEXIT_F_HM) || pVCpu->em.s.fExitOptimizationEnabledR0PreemptDisabled)
838#else
839 && pVCpu->em.s.fExitOptimizationEnabled
840#endif
841 && pHistEntry->uFlatPC != UINT64_MAX
842 )
843 return emHistoryAddOrUpdateRecord(pVCpu, uFlagsAndType, pHistEntry->uFlatPC, pHistEntry, uExitNo);
844 return NULL;
845}
846
847
848/**
849 * Interface for convering a engine specific exit to a generic one and get
850 * guidance, supplying flattened PC too.
851 *
852 * @returns Pointer to an exit record if special action should be taken using
853 * EMHistoryExec(). Take normal exit action when NULL.
854 *
855 * @param pVCpu The cross context virtual CPU structure.
856 * @param uFlagsAndType Combined flags and type (see EMEXIT_MAKE_FLAGS_AND_TYPE).
857 * @param uFlatPC The flattened program counter (RIP).
858 * @thread EMT(pVCpu)
859 */
860VMM_INT_DECL(PCEMEXITREC) EMHistoryUpdateFlagsAndTypeAndPC(PVMCPUCC pVCpu, uint32_t uFlagsAndType, uint64_t uFlatPC)
861{
862 VMCPU_ASSERT_EMT(pVCpu);
863 Assert(uFlatPC != UINT64_MAX);
864
865 /*
866 * Do the updating.
867 */
868 AssertCompile(RT_ELEMENTS(pVCpu->em.s.aExitHistory) == 256);
869 uint64_t uExitNo = pVCpu->em.s.iNextExit - 1;
870 PEMEXITENTRY pHistEntry = &pVCpu->em.s.aExitHistory[(uintptr_t)uExitNo & 0xff];
871 pHistEntry->uFlagsAndType = uFlagsAndType;
872 pHistEntry->uFlatPC = uFlatPC;
873
874 /*
875 * If common exit type, we will insert/update the exit into the exit record hash table.
876 */
877 if ( (uFlagsAndType & (EMEXIT_F_KIND_MASK | EMEXIT_F_CS_EIP | EMEXIT_F_UNFLATTENED_PC)) == EMEXIT_F_KIND_EM
878#ifdef IN_RING0
879 && pVCpu->em.s.fExitOptimizationEnabledR0
880 && ( !(uFlagsAndType & EMEXIT_F_HM) || pVCpu->em.s.fExitOptimizationEnabledR0PreemptDisabled)
881#else
882 && pVCpu->em.s.fExitOptimizationEnabled
883#endif
884 )
885 return emHistoryAddOrUpdateRecord(pVCpu, uFlagsAndType, uFlatPC, pHistEntry, uExitNo);
886 return NULL;
887}
888
889
890/**
891 * @callback_method_impl{FNDISREADBYTES}
892 */
893static DECLCALLBACK(int) emReadBytes(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
894{
895 PVMCPUCC pVCpu = (PVMCPUCC)pDis->pvUser;
896 RTUINTPTR uSrcAddr = pDis->uInstrAddr + offInstr;
897
898 /*
899 * Figure how much we can or must read.
900 */
901 size_t cbToRead = PAGE_SIZE - (uSrcAddr & PAGE_OFFSET_MASK);
902 if (cbToRead > cbMaxRead)
903 cbToRead = cbMaxRead;
904 else if (cbToRead < cbMinRead)
905 cbToRead = cbMinRead;
906
907 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &pDis->abInstr[offInstr], uSrcAddr, cbToRead);
908 if (RT_FAILURE(rc))
909 {
910 if (cbToRead > cbMinRead)
911 {
912 cbToRead = cbMinRead;
913 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pDis->abInstr[offInstr], uSrcAddr, cbToRead);
914 }
915 if (RT_FAILURE(rc))
916 {
917 /*
918 * If we fail to find the page via the guest's page tables
919 * we invalidate the page in the host TLB (pertaining to
920 * the guest in the NestedPaging case). See @bugref{6043}.
921 */
922 if (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
923 {
924 HMInvalidatePage(pVCpu, uSrcAddr);
925 if (((uSrcAddr + cbToRead - 1) >> PAGE_SHIFT) != (uSrcAddr >> PAGE_SHIFT))
926 HMInvalidatePage(pVCpu, uSrcAddr + cbToRead - 1);
927 }
928 }
929 }
930
931 pDis->cbCachedInstr = offInstr + (uint8_t)cbToRead;
932 return rc;
933}
934
935
936/**
937 * Disassembles the current instruction.
938 *
939 * @returns VBox status code, see SELMToFlatEx and EMInterpretDisasOneEx for
940 * details.
941 *
942 * @param pVM The cross context VM structure.
943 * @param pVCpu The cross context virtual CPU structure.
944 * @param pDis Where to return the parsed instruction info.
945 * @param pcbInstr Where to return the instruction size. (optional)
946 */
947VMM_INT_DECL(int) EMInterpretDisasCurrent(PVMCC pVM, PVMCPUCC pVCpu, PDISCPUSTATE pDis, unsigned *pcbInstr)
948{
949 PCPUMCTXCORE pCtxCore = CPUMCTX2CORE(CPUMQueryGuestCtxPtr(pVCpu));
950 RTGCPTR GCPtrInstr;
951#if 0
952 int rc = SELMToFlatEx(pVCpu, DISSELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
953#else
954/** @todo Get the CPU mode as well while we're at it! */
955 int rc = SELMValidateAndConvertCSAddr(pVCpu, pCtxCore->eflags, pCtxCore->ss.Sel, pCtxCore->cs.Sel, &pCtxCore->cs,
956 pCtxCore->rip, &GCPtrInstr);
957#endif
958 if (RT_FAILURE(rc))
959 {
960 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
961 pCtxCore->cs.Sel, (RTGCPTR)pCtxCore->rip, pCtxCore->ss.Sel & X86_SEL_RPL, rc));
962 return rc;
963 }
964 return EMInterpretDisasOneEx(pVM, pVCpu, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pDis, pcbInstr);
965}
966
967
968/**
969 * Disassembles one instruction.
970 *
971 * This is used by internally by the interpreter and by trap/access handlers.
972 *
973 * @returns VBox status code.
974 *
975 * @param pVM The cross context VM structure.
976 * @param pVCpu The cross context virtual CPU structure.
977 * @param GCPtrInstr The flat address of the instruction.
978 * @param pCtxCore The context core (used to determine the cpu mode).
979 * @param pDis Where to return the parsed instruction info.
980 * @param pcbInstr Where to return the instruction size. (optional)
981 */
982VMM_INT_DECL(int) EMInterpretDisasOneEx(PVMCC pVM, PVMCPUCC pVCpu, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore,
983 PDISCPUSTATE pDis, unsigned *pcbInstr)
984{
985 NOREF(pVM);
986 Assert(pCtxCore == CPUMGetGuestCtxCore(pVCpu)); NOREF(pCtxCore);
987 DISCPUMODE enmCpuMode = CPUMGetGuestDisMode(pVCpu);
988 /** @todo Deal with too long instruction (=> \#GP), opcode read errors (=>
989 * \#PF, \#GP, \#??), undefined opcodes (=> \#UD), and such. */
990 int rc = DISInstrWithReader(GCPtrInstr, enmCpuMode, emReadBytes, pVCpu, pDis, pcbInstr);
991 if (RT_SUCCESS(rc))
992 return VINF_SUCCESS;
993 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
994 return rc;
995}
996
997
998/**
999 * Interprets the current instruction.
1000 *
1001 * @returns VBox status code.
1002 * @retval VINF_* Scheduling instructions.
1003 * @retval VERR_EM_INTERPRETER Something we can't cope with.
1004 * @retval VERR_* Fatal errors.
1005 *
1006 * @param pVCpu The cross context virtual CPU structure.
1007 * @param pRegFrame The register frame.
1008 * Updates the EIP if an instruction was executed successfully.
1009 * @param pvFault The fault address (CR2).
1010 *
1011 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
1012 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
1013 * to worry about e.g. invalid modrm combinations (!)
1014 */
1015VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstruction(PVMCPUCC pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
1016{
1017 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1018 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
1019 NOREF(pvFault);
1020
1021 VBOXSTRICTRC rc = IEMExecOneBypassEx(pVCpu, pRegFrame, NULL);
1022 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1023 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1024 rc = VERR_EM_INTERPRETER;
1025 if (rc != VINF_SUCCESS)
1026 Log(("EMInterpretInstruction: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
1027
1028 return rc;
1029}
1030
1031
1032/**
1033 * Interprets the current instruction.
1034 *
1035 * @returns VBox status code.
1036 * @retval VINF_* Scheduling instructions.
1037 * @retval VERR_EM_INTERPRETER Something we can't cope with.
1038 * @retval VERR_* Fatal errors.
1039 *
1040 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1041 * @param pRegFrame The register frame.
1042 * Updates the EIP if an instruction was executed successfully.
1043 * @param pvFault The fault address (CR2).
1044 * @param pcbWritten Size of the write (if applicable).
1045 *
1046 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
1047 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
1048 * to worry about e.g. invalid modrm combinations (!)
1049 */
1050VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstructionEx(PVMCPUCC pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbWritten)
1051{
1052 LogFlow(("EMInterpretInstructionEx %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
1053 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1054 NOREF(pvFault);
1055
1056 VBOXSTRICTRC rc = IEMExecOneBypassEx(pVCpu, pRegFrame, pcbWritten);
1057 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1058 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1059 rc = VERR_EM_INTERPRETER;
1060 if (rc != VINF_SUCCESS)
1061 Log(("EMInterpretInstructionEx: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
1062
1063 return rc;
1064}
1065
1066
1067/**
1068 * Interprets the current instruction using the supplied DISCPUSTATE structure.
1069 *
1070 * IP/EIP/RIP *IS* updated!
1071 *
1072 * @returns VBox strict status code.
1073 * @retval VINF_* Scheduling instructions. When these are returned, it
1074 * starts to get a bit tricky to know whether code was
1075 * executed or not... We'll address this when it becomes a problem.
1076 * @retval VERR_EM_INTERPRETER Something we can't cope with.
1077 * @retval VERR_* Fatal errors.
1078 *
1079 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1080 * @param pDis The disassembler cpu state for the instruction to be
1081 * interpreted.
1082 * @param pRegFrame The register frame. IP/EIP/RIP *IS* changed!
1083 * @param pvFault The fault address (CR2).
1084 * @param enmCodeType Code type (user/supervisor)
1085 *
1086 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
1087 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
1088 * to worry about e.g. invalid modrm combinations (!)
1089 *
1090 * @todo At this time we do NOT check if the instruction overwrites vital information.
1091 * Make sure this can't happen!! (will add some assertions/checks later)
1092 */
1093VMM_INT_DECL(VBOXSTRICTRC) EMInterpretInstructionDisasState(PVMCPUCC pVCpu, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame,
1094 RTGCPTR pvFault, EMCODETYPE enmCodeType)
1095{
1096 LogFlow(("EMInterpretInstructionDisasState %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
1097 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1098 NOREF(pDis); NOREF(pvFault); NOREF(enmCodeType);
1099
1100 VBOXSTRICTRC rc = IEMExecOneBypassWithPrefetchedByPC(pVCpu, pRegFrame, pRegFrame->rip, pDis->abInstr, pDis->cbCachedInstr);
1101 if (RT_UNLIKELY( rc == VERR_IEM_ASPECT_NOT_IMPLEMENTED
1102 || rc == VERR_IEM_INSTR_NOT_IMPLEMENTED))
1103 rc = VERR_EM_INTERPRETER;
1104
1105 if (rc != VINF_SUCCESS)
1106 Log(("EMInterpretInstructionDisasState: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
1107
1108 return rc;
1109}
1110
1111
1112
1113
1114/*
1115 *
1116 * Old interpreter primitives used by HM, move/eliminate later.
1117 * Old interpreter primitives used by HM, move/eliminate later.
1118 * Old interpreter primitives used by HM, move/eliminate later.
1119 * Old interpreter primitives used by HM, move/eliminate later.
1120 * Old interpreter primitives used by HM, move/eliminate later.
1121 *
1122 */
1123
1124
1125/**
1126 * Interpret RDPMC.
1127 *
1128 * @returns VBox status code.
1129 * @param pVM The cross context VM structure.
1130 * @param pVCpu The cross context virtual CPU structure.
1131 * @param pRegFrame The register frame.
1132 *
1133 */
1134VMM_INT_DECL(int) EMInterpretRdpmc(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
1135{
1136 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1137 uint32_t uCR4 = CPUMGetGuestCR4(pVCpu);
1138
1139 /* If X86_CR4_PCE is not set, then CPL must be zero. */
1140 if ( !(uCR4 & X86_CR4_PCE)
1141 && CPUMGetGuestCPL(pVCpu) != 0)
1142 {
1143 Assert(CPUMGetGuestCR0(pVCpu) & X86_CR0_PE);
1144 return VERR_EM_INTERPRETER; /* genuine #GP */
1145 }
1146
1147 /* Just return zero here; rather tricky to properly emulate this, especially as the specs are a mess. */
1148 pRegFrame->rax = 0;
1149 pRegFrame->rdx = 0;
1150 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
1151 * ecx but see @bugref{3472}! */
1152
1153 NOREF(pVM);
1154 return VINF_SUCCESS;
1155}
1156
1157
1158/* VT-x only: */
1159
1160/**
1161 * Interpret DRx write.
1162 *
1163 * @returns VBox status code.
1164 * @param pVM The cross context VM structure.
1165 * @param pVCpu The cross context virtual CPU structure.
1166 * @param pRegFrame The register frame.
1167 * @param DestRegDrx DRx register index (USE_REG_DR*)
1168 * @param SrcRegGen General purpose register index (USE_REG_E**))
1169 *
1170 */
1171VMM_INT_DECL(int) EMInterpretDRxWrite(PVMCC pVM, PVMCPUCC pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
1172{
1173 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1174 uint64_t uNewDrX;
1175 int rc;
1176 NOREF(pVM);
1177
1178 if (CPUMIsGuestIn64BitCode(pVCpu))
1179 rc = DISFetchReg64(pRegFrame, SrcRegGen, &uNewDrX);
1180 else
1181 {
1182 uint32_t val32;
1183 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
1184 uNewDrX = val32;
1185 }
1186
1187 if (RT_SUCCESS(rc))
1188 {
1189 if (DestRegDrx == 6)
1190 {
1191 uNewDrX |= X86_DR6_RA1_MASK;
1192 uNewDrX &= ~X86_DR6_RAZ_MASK;
1193 }
1194 else if (DestRegDrx == 7)
1195 {
1196 uNewDrX |= X86_DR7_RA1_MASK;
1197 uNewDrX &= ~X86_DR7_RAZ_MASK;
1198 }
1199
1200 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
1201 rc = CPUMSetGuestDRx(pVCpu, DestRegDrx, uNewDrX);
1202 if (RT_SUCCESS(rc))
1203 return rc;
1204 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
1205 }
1206 return VERR_EM_INTERPRETER;
1207}
1208
1209
1210/**
1211 * Interpret DRx read.
1212 *
1213 * @returns VBox status code.
1214 * @param pVM The cross context VM structure.
1215 * @param pVCpu The cross context virtual CPU structure.
1216 * @param pRegFrame The register frame.
1217 * @param DestRegGen General purpose register index (USE_REG_E**))
1218 * @param SrcRegDrx DRx register index (USE_REG_DR*)
1219 */
1220VMM_INT_DECL(int) EMInterpretDRxRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
1221{
1222 uint64_t val64;
1223 Assert(pRegFrame == CPUMGetGuestCtxCore(pVCpu));
1224 NOREF(pVM);
1225
1226 int rc = CPUMGetGuestDRx(pVCpu, SrcRegDrx, &val64);
1227 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
1228 if (CPUMIsGuestIn64BitCode(pVCpu))
1229 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1230 else
1231 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
1232
1233 if (RT_SUCCESS(rc))
1234 return VINF_SUCCESS;
1235
1236 return VERR_EM_INTERPRETER;
1237}
1238
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette