VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/GIMAllHv.cpp@ 70310

Last change on this file since 70310 was 69111, checked in by vboxsync, 7 years ago

(C) year

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 54.2 KB
Line 
1/* $Id: GIMAllHv.cpp 69111 2017-10-17 14:26:02Z vboxsync $ */
2/** @file
3 * GIM - Guest Interface Manager, Microsoft Hyper-V, All Contexts.
4 */
5
6/*
7 * Copyright (C) 2014-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_GIM
23#include <VBox/vmm/gim.h>
24#include <VBox/vmm/em.h>
25#include <VBox/vmm/hm.h>
26#include <VBox/vmm/tm.h>
27#include <VBox/vmm/dbgf.h>
28#include <VBox/vmm/pdmdev.h>
29#include <VBox/vmm/pdmapi.h>
30#include <VBox/vmm/pgm.h>
31#include <VBox/vmm/apic.h>
32#include "GIMHvInternal.h"
33#include "GIMInternal.h"
34#include <VBox/vmm/vm.h>
35
36#include <VBox/err.h>
37
38#include <iprt/asm-amd64-x86.h>
39#ifdef IN_RING3
40# include <iprt/mem.h>
41#endif
42
43
44#ifdef IN_RING3
45/**
46 * Read and validate slow hypercall parameters.
47 *
48 * @returns VBox status code.
49 * @param pVM The cross context VM structure.
50 * @param pCtx Pointer to the guest-CPU context.
51 * @param fIs64BitMode Whether the guest is currently in 64-bit mode or not.
52 * @param enmParam The hypercall parameter type.
53 * @param prcHv Where to store the Hyper-V status code. Only valid
54 * to the caller when this function returns
55 * VINF_SUCCESS.
56 */
57static int gimHvReadSlowHypercallParam(PVM pVM, PCPUMCTX pCtx, bool fIs64BitMode, GIMHVHYPERCALLPARAM enmParam, int *prcHv)
58{
59 int rc = VINF_SUCCESS;
60 PGIMHV pHv = &pVM->gim.s.u.Hv;
61 RTGCPHYS GCPhysParam;
62 void *pvDst;
63 if (enmParam == GIMHVHYPERCALLPARAM_IN)
64 {
65 GCPhysParam = fIs64BitMode ? pCtx->rdx : (pCtx->rbx << 32) | pCtx->ecx;
66 pvDst = pHv->pbHypercallIn;
67 pHv->GCPhysHypercallIn = GCPhysParam;
68 }
69 else
70 {
71 GCPhysParam = fIs64BitMode ? pCtx->r8 : (pCtx->rdi << 32) | pCtx->esi;
72 pvDst = pHv->pbHypercallOut;
73 pHv->GCPhysHypercallOut = GCPhysParam;
74 Assert(enmParam == GIMHVHYPERCALLPARAM_OUT);
75 }
76
77 const char *pcszParam = enmParam == GIMHVHYPERCALLPARAM_IN ? "input" : "output"; NOREF(pcszParam);
78 if (RT_ALIGN_64(GCPhysParam, 8) == GCPhysParam)
79 {
80 if (PGMPhysIsGCPhysNormal(pVM, GCPhysParam))
81 {
82 rc = PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysParam, GIM_HV_PAGE_SIZE);
83 if (RT_SUCCESS(rc))
84 {
85 *prcHv = GIM_HV_STATUS_SUCCESS;
86 return VINF_SUCCESS;
87 }
88 LogRel(("GIM: HyperV: Failed reading %s param at %#RGp. rc=%Rrc\n", pcszParam, GCPhysParam, rc));
89 rc = VERR_GIM_HYPERCALL_MEMORY_READ_FAILED;
90 }
91 else
92 {
93 Log(("GIM: HyperV: Invalid %s param address %#RGp\n", pcszParam, GCPhysParam));
94 *prcHv = GIM_HV_STATUS_INVALID_PARAMETER;
95 }
96 }
97 else
98 {
99 Log(("GIM: HyperV: Misaligned %s param address %#RGp\n", pcszParam, GCPhysParam));
100 *prcHv = GIM_HV_STATUS_INVALID_ALIGNMENT;
101 }
102 return rc;
103}
104
105
106/**
107 * Helper for reading and validating slow hypercall input and output parameters.
108 *
109 * @returns VBox status code.
110 * @param pVM The cross context VM structure.
111 * @param pCtx Pointer to the guest-CPU context.
112 * @param fIs64BitMode Whether the guest is currently in 64-bit mode or not.
113 * @param prcHv Where to store the Hyper-V status code. Only valid
114 * to the caller when this function returns
115 * VINF_SUCCESS.
116 */
117static int gimHvReadSlowHypercallParamsInOut(PVM pVM, PCPUMCTX pCtx, bool fIs64BitMode, int *prcHv)
118{
119 int rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, prcHv);
120 if ( RT_SUCCESS(rc)
121 && *prcHv == GIM_HV_STATUS_SUCCESS)
122 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_OUT, prcHv);
123 return rc;
124}
125#endif
126
127
128/**
129 * Handles all Hyper-V hypercalls.
130 *
131 * @returns Strict VBox status code.
132 * @retval VINF_SUCCESS if the hypercall succeeded (even if its operation
133 * failed).
134 * @retval VINF_GIM_R3_HYPERCALL re-start the hypercall from ring-3.
135 * @retval VERR_GIM_HYPERCALLS_NOT_ENABLED hypercalls are disabled by the
136 * guest.
137 * @retval VERR_GIM_HYPERCALL_ACCESS_DENIED CPL is insufficient.
138 * @retval VERR_GIM_HYPERCALL_MEMORY_READ_FAILED hypercall failed while reading
139 * memory.
140 * @retval VERR_GIM_HYPERCALL_MEMORY_WRITE_FAILED hypercall failed while
141 * writing memory.
142 *
143 * @param pVCpu The cross context virtual CPU structure.
144 * @param pCtx Pointer to the guest-CPU context.
145 *
146 * @thread EMT(pVCpu).
147 */
148VMM_INT_DECL(VBOXSTRICTRC) gimHvHypercall(PVMCPU pVCpu, PCPUMCTX pCtx)
149{
150 VMCPU_ASSERT_EMT(pVCpu);
151
152#ifndef IN_RING3
153 RT_NOREF_PV(pVCpu);
154 RT_NOREF_PV(pCtx);
155 return VINF_GIM_R3_HYPERCALL;
156#else
157 PVM pVM = pVCpu->CTX_SUFF(pVM);
158 STAM_REL_COUNTER_INC(&pVM->gim.s.StatHypercalls);
159
160 /*
161 * Verify that hypercalls are enabled by the guest.
162 */
163 if (!gimHvAreHypercallsEnabled(pVCpu))
164 return VERR_GIM_HYPERCALLS_NOT_ENABLED;
165
166 /*
167 * Verify guest is in ring-0 protected mode.
168 */
169 uint32_t uCpl = CPUMGetGuestCPL(pVCpu);
170 if ( uCpl
171 || CPUMIsGuestInRealModeEx(pCtx))
172 {
173 return VERR_GIM_HYPERCALL_ACCESS_DENIED;
174 }
175
176 /*
177 * Get the hypercall operation code and modes.
178 */
179 const bool fIs64BitMode = CPUMIsGuestIn64BitCodeEx(pCtx);
180 const uint64_t uHyperIn = fIs64BitMode ? pCtx->rcx : (pCtx->rdx << 32) | pCtx->eax;
181 const uint16_t uHyperOp = GIM_HV_HYPERCALL_IN_CALL_CODE(uHyperIn);
182 const bool fHyperFast = GIM_HV_HYPERCALL_IN_IS_FAST(uHyperIn);
183 /*const uint16_t cHyperReps = GIM_HV_HYPERCALL_IN_REP_COUNT(uHyperIn); - unused */
184 /*const uint16_t idxHyperRepStart = GIM_HV_HYPERCALL_IN_REP_START_IDX(uHyperIn); - unused */
185 uint64_t cHyperRepsDone = 0;
186
187 int rc = VINF_SUCCESS;
188 int rcHv = GIM_HV_STATUS_OPERATION_DENIED;
189 PGIMHV pHv = &pVM->gim.s.u.Hv;
190
191 /*
192 * Validate common hypercall input parameters.
193 */
194 if ( !GIM_HV_HYPERCALL_IN_RSVD_1(uHyperIn)
195 && !GIM_HV_HYPERCALL_IN_RSVD_2(uHyperIn)
196 && !GIM_HV_HYPERCALL_IN_RSVD_3(uHyperIn))
197 {
198 /*
199 * Perform the hypercall.
200 */
201 switch (uHyperOp)
202 {
203 case GIM_HV_HYPERCALL_OP_RETREIVE_DEBUG_DATA: /* Non-rep, memory IO. */
204 {
205 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING)
206 {
207 rc = gimHvReadSlowHypercallParamsInOut(pVM, pCtx, fIs64BitMode, &rcHv);
208 if ( RT_SUCCESS(rc)
209 && rcHv == GIM_HV_STATUS_SUCCESS)
210 {
211 LogRelMax(1, ("GIM: HyperV: Initiated debug data reception via hypercall\n"));
212 rc = gimR3HvHypercallRetrieveDebugData(pVM, &rcHv);
213 if (RT_FAILURE(rc))
214 LogRelMax(10, ("GIM: HyperV: gimR3HvHypercallRetrieveDebugData failed. rc=%Rrc\n", rc));
215 }
216 }
217 else
218 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
219 break;
220 }
221
222 case GIM_HV_HYPERCALL_OP_POST_DEBUG_DATA: /* Non-rep, memory IO. */
223 {
224 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING)
225 {
226 rc = gimHvReadSlowHypercallParamsInOut(pVM, pCtx, fIs64BitMode, &rcHv);
227 if ( RT_SUCCESS(rc)
228 && rcHv == GIM_HV_STATUS_SUCCESS)
229 {
230 LogRelMax(1, ("GIM: HyperV: Initiated debug data transmission via hypercall\n"));
231 rc = gimR3HvHypercallPostDebugData(pVM, &rcHv);
232 if (RT_FAILURE(rc))
233 LogRelMax(10, ("GIM: HyperV: gimR3HvHypercallPostDebugData failed. rc=%Rrc\n", rc));
234 }
235 }
236 else
237 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
238 break;
239 }
240
241 case GIM_HV_HYPERCALL_OP_RESET_DEBUG_SESSION: /* Non-rep, fast (register IO). */
242 {
243 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING)
244 {
245 uint32_t fFlags = 0;
246 if (!fHyperFast)
247 {
248 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, &rcHv);
249 if ( RT_SUCCESS(rc)
250 && rcHv == GIM_HV_STATUS_SUCCESS)
251 {
252 PGIMHVDEBUGRESETIN pIn = (PGIMHVDEBUGRESETIN)pHv->pbHypercallIn;
253 fFlags = pIn->fFlags;
254 }
255 }
256 else
257 {
258 rcHv = GIM_HV_STATUS_SUCCESS;
259 fFlags = fIs64BitMode ? pCtx->rdx : pCtx->ebx;
260 }
261
262 /*
263 * Nothing to flush on the sending side as we don't maintain our own buffers.
264 */
265 /** @todo We should probably ask the debug receive thread to flush it's buffer. */
266 if (rcHv == GIM_HV_STATUS_SUCCESS)
267 {
268 if (fFlags)
269 LogRel(("GIM: HyperV: Resetting debug session via hypercall\n"));
270 else
271 rcHv = GIM_HV_STATUS_INVALID_PARAMETER;
272 }
273 }
274 else
275 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
276 break;
277 }
278
279 case GIM_HV_HYPERCALL_OP_POST_MESSAGE: /* Non-rep, memory IO. */
280 {
281 if (pHv->fIsInterfaceVs)
282 {
283 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, &rcHv);
284 if ( RT_SUCCESS(rc)
285 && rcHv == GIM_HV_STATUS_SUCCESS)
286 {
287 PGIMHVPOSTMESSAGEIN pMsgIn = (PGIMHVPOSTMESSAGEIN)pHv->pbHypercallIn;
288 PCGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
289 if ( pMsgIn->uConnectionId == GIM_HV_VMBUS_MSG_CONNECTION_ID
290 && pMsgIn->enmMessageType == GIMHVMSGTYPE_VMBUS
291 && !MSR_GIM_HV_SINT_IS_MASKED(pHvCpu->auSintMsrs[GIM_HV_VMBUS_MSG_SINT])
292 && MSR_GIM_HV_SIMP_IS_ENABLED(pHvCpu->uSimpMsr))
293 {
294 RTGCPHYS GCPhysSimp = MSR_GIM_HV_SIMP_GPA(pHvCpu->uSimpMsr);
295 if (PGMPhysIsGCPhysNormal(pVM, GCPhysSimp))
296 {
297 /*
298 * The VMBus client (guest) expects to see 0xf at offsets 4 and 16 and 1 at offset 0.
299 */
300 GIMHVMSG HvMsg;
301 RT_ZERO(HvMsg);
302 HvMsg.MsgHdr.enmMessageType = GIMHVMSGTYPE_VMBUS;
303 HvMsg.MsgHdr.cbPayload = 0xf;
304 HvMsg.aPayload[0] = 0xf;
305 uint16_t const offMsg = GIM_HV_VMBUS_MSG_SINT * sizeof(GIMHVMSG);
306 int rc2 = PGMPhysSimpleWriteGCPhys(pVM, GCPhysSimp + offMsg, &HvMsg, sizeof(HvMsg));
307 if (RT_SUCCESS(rc2))
308 LogRel(("GIM: HyperV: SIMP hypercall faking message at %#RGp:%u\n", GCPhysSimp, offMsg));
309 else
310 {
311 LogRel(("GIM: HyperV: Failed to write SIMP message at %#RGp:%u, rc=%Rrc\n", GCPhysSimp,
312 offMsg, rc));
313 }
314 }
315 }
316
317 /*
318 * Make the call fail after updating the SIMP, so the guest can go back to using
319 * the Hyper-V debug MSR interface. Any error code below GIM_HV_STATUS_NOT_ACKNOWLEDGED
320 * and the guest tries to proceed with initializing VMBus which is totally unnecessary
321 * for what we're trying to accomplish, i.e. convince guest to use Hyper-V debugging. Also,
322 * we don't implement other VMBus/SynIC functionality so the guest would #GP and die.
323 */
324 rcHv = GIM_HV_STATUS_NOT_ACKNOWLEDGED;
325 }
326 else
327 rcHv = GIM_HV_STATUS_INVALID_PARAMETER;
328 }
329 else
330 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
331 break;
332 }
333
334 default:
335 {
336 LogRel(("GIM: HyperV: Unknown/invalid hypercall opcode %#x (%u)\n", uHyperOp, uHyperOp));
337 rcHv = GIM_HV_STATUS_INVALID_HYPERCALL_CODE;
338 break;
339 }
340 }
341 }
342 else
343 rcHv = GIM_HV_STATUS_INVALID_HYPERCALL_INPUT;
344
345 /*
346 * Update the guest with results of the hypercall.
347 */
348 if (RT_SUCCESS(rc))
349 {
350 if (fIs64BitMode)
351 pCtx->rax = (cHyperRepsDone << 32) | rcHv;
352 else
353 {
354 pCtx->edx = cHyperRepsDone;
355 pCtx->eax = rcHv;
356 }
357 }
358
359 return rc;
360#endif
361}
362
363
364/**
365 * Returns whether the guest has configured and enabled the use of Hyper-V's
366 * hypercall interface.
367 *
368 * @returns true if hypercalls are enabled, false otherwise.
369 * @param pVCpu The cross context virtual CPU structure.
370 */
371VMM_INT_DECL(bool) gimHvAreHypercallsEnabled(PVMCPU pVCpu)
372{
373 return RT_BOOL(pVCpu->CTX_SUFF(pVM)->gim.s.u.Hv.u64GuestOsIdMsr != 0);
374}
375
376
377/**
378 * Returns whether the guest has configured and enabled the use of Hyper-V's
379 * paravirtualized TSC.
380 *
381 * @returns true if paravirt. TSC is enabled, false otherwise.
382 * @param pVM The cross context VM structure.
383 */
384VMM_INT_DECL(bool) gimHvIsParavirtTscEnabled(PVM pVM)
385{
386 return MSR_GIM_HV_REF_TSC_IS_ENABLED(pVM->gim.s.u.Hv.u64TscPageMsr);
387}
388
389
390#ifdef IN_RING3
391/**
392 * Gets the descriptive OS ID variant as identified via the
393 * MSR_GIM_HV_GUEST_OS_ID MSR.
394 *
395 * @returns The name.
396 * @param uGuestOsIdMsr The MSR_GIM_HV_GUEST_OS_ID MSR.
397 */
398static const char *gimHvGetGuestOsIdVariantName(uint64_t uGuestOsIdMsr)
399{
400 /* Refer the Hyper-V spec, section 3.6 "Reporting the Guest OS Identity". */
401 uint32_t uVendor = MSR_GIM_HV_GUEST_OS_ID_VENDOR(uGuestOsIdMsr);
402 if (uVendor == 1 /* Microsoft */)
403 {
404 uint32_t uOsVariant = MSR_GIM_HV_GUEST_OS_ID_OS_VARIANT(uGuestOsIdMsr);
405 switch (uOsVariant)
406 {
407 case 0: return "Undefined";
408 case 1: return "MS-DOS";
409 case 2: return "Windows 3.x";
410 case 3: return "Windows 9x";
411 case 4: return "Windows NT or derivative";
412 case 5: return "Windows CE";
413 default: return "Unknown";
414 }
415 }
416 return "Unknown";
417}
418#endif
419
420/**
421 * Gets the time reference count for the current VM.
422 *
423 * @returns The time reference count.
424 * @param pVCpu The cross context virtual CPU structure.
425 */
426DECLINLINE(uint64_t) gimHvGetTimeRefCount(PVMCPU pVCpu)
427{
428 /* Hyper-V reports the time in 100 ns units (10 MHz). */
429 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
430 PCGIMHV pHv = &pVCpu->CTX_SUFF(pVM)->gim.s.u.Hv;
431 uint64_t const u64Tsc = TMCpuTickGet(pVCpu); /** @todo should we be passing VCPU0 always? */
432 uint64_t const u64TscHz = pHv->cTscTicksPerSecond;
433 uint64_t const u64Tsc100NS = u64TscHz / UINT64_C(10000000); /* 100 ns */
434 uint64_t const uTimeRefCount = (u64Tsc / u64Tsc100NS);
435 return uTimeRefCount;
436}
437
438
439/**
440 * Starts the synthetic timer.
441 *
442 * @param pVCpu The cross context virtual CPU structure.
443 * @param pHvStimer Pointer to the Hyper-V synthetic timer.
444 *
445 * @remarks Caller needs to hold the timer critical section.
446 * @thread Any.
447 */
448VMM_INT_DECL(void) gimHvStartStimer(PVMCPU pVCpu, PCGIMHVSTIMER pHvStimer)
449{
450 PTMTIMER pTimer = pHvStimer->CTX_SUFF(pTimer);
451 Assert(TMTimerIsLockOwner(pTimer));
452
453 uint64_t const uTimerCount = pHvStimer->uStimerCountMsr;
454 if (uTimerCount)
455 {
456 uint64_t const uTimerCountNS = uTimerCount * 100;
457
458 /* For periodic timers, 'uTimerCountNS' represents the relative interval. */
459 if (MSR_GIM_HV_STIMER_IS_PERIODIC(pHvStimer->uStimerConfigMsr))
460 {
461 TMTimerSetNano(pTimer, uTimerCountNS);
462 LogFlow(("GIM%u: HyperV: Started relative periodic STIMER%u with uTimerCountNS=%RU64\n", pVCpu->idCpu,
463 pHvStimer->idxStimer, uTimerCountNS));
464 }
465 else
466 {
467 /* For one-shot timers, 'uTimerCountNS' represents an absolute expiration wrt to Hyper-V reference time,
468 we convert it to a relative time and program the timer. */
469 uint64_t const uCurRefTimeNS = gimHvGetTimeRefCount(pVCpu) * 100;
470 if (uTimerCountNS > uCurRefTimeNS)
471 {
472 uint64_t const uRelativeNS = uTimerCountNS - uCurRefTimeNS;
473 TMTimerSetNano(pTimer, uRelativeNS);
474 LogFlow(("GIM%u: HyperV: Started one-shot relative STIMER%u with uRelativeNS=%RU64\n", pVCpu->idCpu,
475 pHvStimer->idxStimer, uRelativeNS));
476 }
477 }
478 /** @todo frequency hinting? */
479 }
480}
481
482
483/**
484 * Stops the synthetic timer for the given VCPU.
485 *
486 * @param pVCpu The cross context virtual CPU structure.
487 * @param pHvStimer Pointer to the Hyper-V synthetic timer.
488 *
489 * @remarks Caller needs to the hold the timer critical section.
490 * @thread EMT(pVCpu).
491 */
492static void gimHvStopStimer(PVMCPU pVCpu, PGIMHVSTIMER pHvStimer)
493{
494 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
495 RT_NOREF(pVCpu);
496
497 PTMTIMER pTimer = pHvStimer->CTX_SUFF(pTimer);
498 Assert(TMTimerIsLockOwner(pTimer));
499 RT_NOREF(pTimer);
500
501 if (TMTimerIsActive(pHvStimer->CTX_SUFF(pTimer)))
502 TMTimerStop(pHvStimer->CTX_SUFF(pTimer));
503}
504
505
506/**
507 * MSR read handler for Hyper-V.
508 *
509 * @returns Strict VBox status code like CPUMQueryGuestMsr().
510 * @retval VINF_CPUM_R3_MSR_READ
511 * @retval VERR_CPUM_RAISE_GP_0
512 *
513 * @param pVCpu The cross context virtual CPU structure.
514 * @param idMsr The MSR being read.
515 * @param pRange The range this MSR belongs to.
516 * @param puValue Where to store the MSR value read.
517 *
518 * @thread EMT.
519 */
520VMM_INT_DECL(VBOXSTRICTRC) gimHvReadMsr(PVMCPU pVCpu, uint32_t idMsr, PCCPUMMSRRANGE pRange, uint64_t *puValue)
521{
522 NOREF(pRange);
523 PVM pVM = pVCpu->CTX_SUFF(pVM);
524 PCGIMHV pHv = &pVM->gim.s.u.Hv;
525
526 switch (idMsr)
527 {
528 case MSR_GIM_HV_TIME_REF_COUNT:
529 *puValue = gimHvGetTimeRefCount(pVCpu);
530 return VINF_SUCCESS;
531
532 case MSR_GIM_HV_VP_INDEX:
533 *puValue = pVCpu->idCpu;
534 return VINF_SUCCESS;
535
536 case MSR_GIM_HV_TPR:
537 *puValue = APICHvGetTpr(pVCpu);
538 return VINF_SUCCESS;
539
540 case MSR_GIM_HV_ICR:
541 *puValue = APICHvGetIcr(pVCpu);
542 return VINF_SUCCESS;
543
544 case MSR_GIM_HV_GUEST_OS_ID:
545 *puValue = pHv->u64GuestOsIdMsr;
546 return VINF_SUCCESS;
547
548 case MSR_GIM_HV_HYPERCALL:
549 *puValue = pHv->u64HypercallMsr;
550 return VINF_SUCCESS;
551
552 case MSR_GIM_HV_REF_TSC:
553 *puValue = pHv->u64TscPageMsr;
554 return VINF_SUCCESS;
555
556 case MSR_GIM_HV_TSC_FREQ:
557 *puValue = TMCpuTicksPerSecond(pVM);
558 return VINF_SUCCESS;
559
560 case MSR_GIM_HV_APIC_FREQ:
561 {
562 int rc = APICGetTimerFreq(pVM, puValue);
563 if (RT_FAILURE(rc))
564 return VERR_CPUM_RAISE_GP_0;
565 return VINF_SUCCESS;
566 }
567
568 case MSR_GIM_HV_SYNTH_DEBUG_STATUS:
569 *puValue = pHv->uDbgStatusMsr;
570 return VINF_SUCCESS;
571
572 case MSR_GIM_HV_SINT0: case MSR_GIM_HV_SINT1: case MSR_GIM_HV_SINT2: case MSR_GIM_HV_SINT3:
573 case MSR_GIM_HV_SINT4: case MSR_GIM_HV_SINT5: case MSR_GIM_HV_SINT6: case MSR_GIM_HV_SINT7:
574 case MSR_GIM_HV_SINT8: case MSR_GIM_HV_SINT9: case MSR_GIM_HV_SINT10: case MSR_GIM_HV_SINT11:
575 case MSR_GIM_HV_SINT12: case MSR_GIM_HV_SINT13: case MSR_GIM_HV_SINT14: case MSR_GIM_HV_SINT15:
576 {
577 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
578 *puValue = pHvCpu->auSintMsrs[idMsr - MSR_GIM_HV_SINT0];
579 return VINF_SUCCESS;
580 }
581
582 case MSR_GIM_HV_STIMER0_CONFIG:
583 case MSR_GIM_HV_STIMER1_CONFIG:
584 case MSR_GIM_HV_STIMER2_CONFIG:
585 case MSR_GIM_HV_STIMER3_CONFIG:
586 {
587 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
588 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1;
589 PCGIMHVSTIMER pcHvStimer = &pHvCpu->aStimers[idxStimer];
590 *puValue = pcHvStimer->uStimerConfigMsr;
591 return VINF_SUCCESS;
592 }
593
594 case MSR_GIM_HV_STIMER0_COUNT:
595 case MSR_GIM_HV_STIMER1_COUNT:
596 case MSR_GIM_HV_STIMER2_COUNT:
597 case MSR_GIM_HV_STIMER3_COUNT:
598 {
599 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
600 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_COUNT) >> 1;
601 PCGIMHVSTIMER pcHvStimer = &pHvCpu->aStimers[idxStimer];
602 *puValue = pcHvStimer->uStimerCountMsr;
603 return VINF_SUCCESS;
604 }
605
606 case MSR_GIM_HV_EOM:
607 {
608 *puValue = 0;
609 return VINF_SUCCESS;
610 }
611
612 case MSR_GIM_HV_SCONTROL:
613 {
614 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
615 *puValue = pHvCpu->uSControlMsr;
616 return VINF_SUCCESS;
617 }
618
619 case MSR_GIM_HV_SIMP:
620 {
621 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
622 *puValue = pHvCpu->uSimpMsr;
623 return VINF_SUCCESS;
624 }
625
626 case MSR_GIM_HV_SVERSION:
627 *puValue = GIM_HV_SVERSION;
628 return VINF_SUCCESS;
629
630 case MSR_GIM_HV_RESET:
631 *puValue = 0;
632 return VINF_SUCCESS;
633
634 case MSR_GIM_HV_CRASH_CTL:
635 *puValue = pHv->uCrashCtlMsr;
636 return VINF_SUCCESS;
637
638 case MSR_GIM_HV_CRASH_P0: *puValue = pHv->uCrashP0Msr; return VINF_SUCCESS;
639 case MSR_GIM_HV_CRASH_P1: *puValue = pHv->uCrashP1Msr; return VINF_SUCCESS;
640 case MSR_GIM_HV_CRASH_P2: *puValue = pHv->uCrashP2Msr; return VINF_SUCCESS;
641 case MSR_GIM_HV_CRASH_P3: *puValue = pHv->uCrashP3Msr; return VINF_SUCCESS;
642 case MSR_GIM_HV_CRASH_P4: *puValue = pHv->uCrashP4Msr; return VINF_SUCCESS;
643
644 case MSR_GIM_HV_DEBUG_OPTIONS_MSR:
645 {
646 if (pHv->fIsVendorMsHv)
647 {
648#ifndef IN_RING3
649 return VINF_CPUM_R3_MSR_READ;
650#else
651 LogRelMax(1, ("GIM: HyperV: Guest querying debug options, suggesting %s interface\n",
652 pHv->fDbgHypercallInterface ? "hypercall" : "MSR"));
653 *puValue = pHv->fDbgHypercallInterface ? GIM_HV_DEBUG_OPTIONS_USE_HYPERCALLS : 0;
654 return VINF_SUCCESS;
655#endif
656 }
657 break;
658 }
659
660 /* Write-only MSRs: */
661 case MSR_GIM_HV_EOI:
662 /* Reserved/unknown MSRs: */
663 default:
664 {
665#ifdef IN_RING3
666 static uint32_t s_cTimes = 0;
667 if (s_cTimes++ < 20)
668 LogRel(("GIM: HyperV: Unknown/invalid RdMsr (%#x) -> #GP(0)\n", idMsr));
669 LogFunc(("Unknown/invalid RdMsr (%#RX32) -> #GP(0)\n", idMsr));
670 break;
671#else
672 return VINF_CPUM_R3_MSR_READ;
673#endif
674 }
675 }
676
677 return VERR_CPUM_RAISE_GP_0;
678}
679
680
681/**
682 * MSR write handler for Hyper-V.
683 *
684 * @returns Strict VBox status code like CPUMSetGuestMsr().
685 * @retval VINF_CPUM_R3_MSR_WRITE
686 * @retval VERR_CPUM_RAISE_GP_0
687 *
688 * @param pVCpu The cross context virtual CPU structure.
689 * @param idMsr The MSR being written.
690 * @param pRange The range this MSR belongs to.
691 * @param uRawValue The raw value with the ignored bits not masked.
692 *
693 * @thread EMT.
694 */
695VMM_INT_DECL(VBOXSTRICTRC) gimHvWriteMsr(PVMCPU pVCpu, uint32_t idMsr, PCCPUMMSRRANGE pRange, uint64_t uRawValue)
696{
697 NOREF(pRange);
698 PVM pVM = pVCpu->CTX_SUFF(pVM);
699 PGIMHV pHv = &pVM->gim.s.u.Hv;
700
701 switch (idMsr)
702 {
703 case MSR_GIM_HV_TPR:
704 return APICHvSetTpr(pVCpu, uRawValue);
705
706 case MSR_GIM_HV_EOI:
707 return APICHvSetEoi(pVCpu, uRawValue);
708
709 case MSR_GIM_HV_ICR:
710 return APICHvSetIcr(pVCpu, uRawValue);
711
712 case MSR_GIM_HV_GUEST_OS_ID:
713 {
714#ifndef IN_RING3
715 return VINF_CPUM_R3_MSR_WRITE;
716#else
717 /* Disable the hypercall-page and hypercalls if 0 is written to this MSR. */
718 if (!uRawValue)
719 {
720 if (MSR_GIM_HV_HYPERCALL_PAGE_IS_ENABLED(pHv->u64HypercallMsr))
721 {
722 gimR3HvDisableHypercallPage(pVM);
723 pHv->u64HypercallMsr &= ~MSR_GIM_HV_HYPERCALL_PAGE_ENABLE;
724 LogRel(("GIM: HyperV: Hypercall page disabled via Guest OS ID MSR\n"));
725 }
726 }
727 else
728 {
729 LogRel(("GIM: HyperV: Guest OS reported ID %#RX64\n", uRawValue));
730 LogRel(("GIM: HyperV: Open-source=%RTbool Vendor=%#x OS=%#x (%s) Major=%u Minor=%u ServicePack=%u Build=%u\n",
731 MSR_GIM_HV_GUEST_OS_ID_IS_OPENSOURCE(uRawValue), MSR_GIM_HV_GUEST_OS_ID_VENDOR(uRawValue),
732 MSR_GIM_HV_GUEST_OS_ID_OS_VARIANT(uRawValue), gimHvGetGuestOsIdVariantName(uRawValue),
733 MSR_GIM_HV_GUEST_OS_ID_MAJOR_VERSION(uRawValue), MSR_GIM_HV_GUEST_OS_ID_MINOR_VERSION(uRawValue),
734 MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue), MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue)));
735
736 /* Update the CPUID leaf, see Hyper-V spec. "Microsoft Hypervisor CPUID Leaves". */
737 CPUMCPUIDLEAF HyperLeaf;
738 RT_ZERO(HyperLeaf);
739 HyperLeaf.uLeaf = UINT32_C(0x40000002);
740 HyperLeaf.uEax = MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue);
741 HyperLeaf.uEbx = MSR_GIM_HV_GUEST_OS_ID_MINOR_VERSION(uRawValue)
742 | (MSR_GIM_HV_GUEST_OS_ID_MAJOR_VERSION(uRawValue) << 16);
743 HyperLeaf.uEcx = MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue);
744 HyperLeaf.uEdx = MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue)
745 | (MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue) << 24);
746 int rc2 = CPUMR3CpuIdInsert(pVM, &HyperLeaf);
747 AssertRC(rc2);
748 }
749
750 pHv->u64GuestOsIdMsr = uRawValue;
751
752 /*
753 * Notify VMM that hypercalls are now disabled/enabled.
754 */
755 for (VMCPUID i = 0; i < pVM->cCpus; i++)
756 {
757 if (uRawValue)
758 VMMHypercallsEnable(&pVM->aCpus[i]);
759 else
760 VMMHypercallsDisable(&pVM->aCpus[i]);
761 }
762
763 return VINF_SUCCESS;
764#endif /* IN_RING3 */
765 }
766
767 case MSR_GIM_HV_HYPERCALL:
768 {
769#ifndef IN_RING3
770 return VINF_CPUM_R3_MSR_WRITE;
771#else
772 /** @todo There is/was a problem with hypercalls for FreeBSD 10.1 guests,
773 * see @bugref{7270#c116}. */
774 /* First, update all but the hypercall page enable bit. */
775 pHv->u64HypercallMsr = (uRawValue & ~MSR_GIM_HV_HYPERCALL_PAGE_ENABLE);
776
777 /* Hypercall page can only be enabled when the guest has enabled hypercalls. */
778 bool fEnable = MSR_GIM_HV_HYPERCALL_PAGE_IS_ENABLED(uRawValue);
779 if ( fEnable
780 && !gimHvAreHypercallsEnabled(pVCpu))
781 {
782 return VINF_SUCCESS;
783 }
784
785 /* Is the guest disabling the hypercall-page? Allow it regardless of the Guest-OS Id Msr. */
786 if (!fEnable)
787 {
788 gimR3HvDisableHypercallPage(pVM);
789 pHv->u64HypercallMsr = uRawValue;
790 return VINF_SUCCESS;
791 }
792
793 /* Enable the hypercall-page. */
794 RTGCPHYS GCPhysHypercallPage = MSR_GIM_HV_HYPERCALL_GUEST_PFN(uRawValue) << PAGE_SHIFT;
795 int rc = gimR3HvEnableHypercallPage(pVM, GCPhysHypercallPage);
796 if (RT_SUCCESS(rc))
797 {
798 pHv->u64HypercallMsr = uRawValue;
799 return VINF_SUCCESS;
800 }
801
802 return VERR_CPUM_RAISE_GP_0;
803#endif
804 }
805
806 case MSR_GIM_HV_REF_TSC:
807 {
808#ifndef IN_RING3
809 return VINF_CPUM_R3_MSR_WRITE;
810#else /* IN_RING3 */
811 /* First, update all but the TSC page enable bit. */
812 pHv->u64TscPageMsr = (uRawValue & ~MSR_GIM_HV_REF_TSC_ENABLE);
813
814 /* Is the guest disabling the TSC page? */
815 bool fEnable = MSR_GIM_HV_REF_TSC_IS_ENABLED(uRawValue);
816 if (!fEnable)
817 {
818 gimR3HvDisableTscPage(pVM);
819 pHv->u64TscPageMsr = uRawValue;
820 return VINF_SUCCESS;
821 }
822
823 /* Enable the TSC page. */
824 RTGCPHYS GCPhysTscPage = MSR_GIM_HV_REF_TSC_GUEST_PFN(uRawValue) << PAGE_SHIFT;
825 int rc = gimR3HvEnableTscPage(pVM, GCPhysTscPage, false /* fUseThisTscSequence */, 0 /* uTscSequence */);
826 if (RT_SUCCESS(rc))
827 {
828 pHv->u64TscPageMsr = uRawValue;
829 return VINF_SUCCESS;
830 }
831
832 return VERR_CPUM_RAISE_GP_0;
833#endif /* IN_RING3 */
834 }
835
836 case MSR_GIM_HV_APIC_ASSIST_PAGE:
837 {
838#ifndef IN_RING3
839 return VINF_CPUM_R3_MSR_WRITE;
840#else /* IN_RING3 */
841 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
842 pHvCpu->uApicAssistPageMsr = uRawValue;
843
844 if (MSR_GIM_HV_APICASSIST_PAGE_IS_ENABLED(uRawValue))
845 {
846 RTGCPHYS GCPhysApicAssistPage = MSR_GIM_HV_APICASSIST_GUEST_PFN(uRawValue) << PAGE_SHIFT;
847 if (PGMPhysIsGCPhysNormal(pVM, GCPhysApicAssistPage))
848 {
849 int rc = gimR3HvEnableApicAssistPage(pVCpu, GCPhysApicAssistPage);
850 if (RT_SUCCESS(rc))
851 {
852 pHvCpu->uApicAssistPageMsr = uRawValue;
853 return VINF_SUCCESS;
854 }
855 }
856 else
857 {
858 LogRelMax(5, ("GIM%u: HyperV: APIC-assist page address %#RGp invalid!\n", pVCpu->idCpu,
859 GCPhysApicAssistPage));
860 }
861 }
862 else
863 gimR3HvDisableApicAssistPage(pVCpu);
864
865 return VERR_CPUM_RAISE_GP_0;
866#endif /* IN_RING3 */
867 }
868
869 case MSR_GIM_HV_RESET:
870 {
871#ifndef IN_RING3
872 return VINF_CPUM_R3_MSR_WRITE;
873#else
874 if (MSR_GIM_HV_RESET_IS_ENABLED(uRawValue))
875 {
876 LogRel(("GIM: HyperV: Reset initiated through MSR\n"));
877 int rc = PDMDevHlpVMReset(pVM->gim.s.pDevInsR3, PDMVMRESET_F_GIM);
878 AssertRC(rc); /* Note! Not allowed to return VINF_EM_RESET / VINF_EM_HALT here, so ignore them. */
879 }
880 /* else: Ignore writes to other bits. */
881 return VINF_SUCCESS;
882#endif /* IN_RING3 */
883 }
884
885 case MSR_GIM_HV_CRASH_CTL:
886 {
887#ifndef IN_RING3
888 return VINF_CPUM_R3_MSR_WRITE;
889#else
890 if (uRawValue & MSR_GIM_HV_CRASH_CTL_NOTIFY)
891 {
892 LogRel(("GIM: HyperV: Guest indicates a fatal condition! P0=%#RX64 P1=%#RX64 P2=%#RX64 P3=%#RX64 P4=%#RX64\n",
893 pHv->uCrashP0Msr, pHv->uCrashP1Msr, pHv->uCrashP2Msr, pHv->uCrashP3Msr, pHv->uCrashP4Msr));
894
895 if (DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_BSOD_MSR))
896 DBGFEventGenericWithArg(pVM, pVCpu, DBGFEVENT_BSOD_MSR, pHv->uCrashP0Msr, DBGFEVENTCTX_OTHER);
897 /* (Do not try pass VINF_EM_DBG_EVENT, doesn't work from here!) */
898 }
899 return VINF_SUCCESS;
900#endif
901 }
902
903 case MSR_GIM_HV_SYNTH_DEBUG_SEND_BUFFER:
904 {
905 if (!pHv->fDbgEnabled)
906 return VERR_CPUM_RAISE_GP_0;
907#ifndef IN_RING3
908 return VINF_CPUM_R3_MSR_WRITE;
909#else
910 RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue;
911 pHv->uDbgSendBufferMsr = GCPhysBuffer;
912 if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer))
913 LogRel(("GIM: HyperV: Set up debug send buffer at %#RGp\n", GCPhysBuffer));
914 else
915 LogRel(("GIM: HyperV: Destroyed debug send buffer\n"));
916 pHv->uDbgSendBufferMsr = uRawValue;
917 return VINF_SUCCESS;
918#endif
919 }
920
921 case MSR_GIM_HV_SYNTH_DEBUG_RECEIVE_BUFFER:
922 {
923 if (!pHv->fDbgEnabled)
924 return VERR_CPUM_RAISE_GP_0;
925#ifndef IN_RING3
926 return VINF_CPUM_R3_MSR_WRITE;
927#else
928 RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue;
929 pHv->uDbgRecvBufferMsr = GCPhysBuffer;
930 if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer))
931 LogRel(("GIM: HyperV: Set up debug receive buffer at %#RGp\n", GCPhysBuffer));
932 else
933 LogRel(("GIM: HyperV: Destroyed debug receive buffer\n"));
934 return VINF_SUCCESS;
935#endif
936 }
937
938 case MSR_GIM_HV_SYNTH_DEBUG_PENDING_BUFFER:
939 {
940 if (!pHv->fDbgEnabled)
941 return VERR_CPUM_RAISE_GP_0;
942#ifndef IN_RING3
943 return VINF_CPUM_R3_MSR_WRITE;
944#else
945 RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue;
946 pHv->uDbgPendingBufferMsr = GCPhysBuffer;
947 if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer))
948 LogRel(("GIM: HyperV: Set up debug pending buffer at %#RGp\n", uRawValue));
949 else
950 LogRel(("GIM: HyperV: Destroyed debug pending buffer\n"));
951 return VINF_SUCCESS;
952#endif
953 }
954
955 case MSR_GIM_HV_SYNTH_DEBUG_CONTROL:
956 {
957 if (!pHv->fDbgEnabled)
958 return VERR_CPUM_RAISE_GP_0;
959#ifndef IN_RING3
960 return VINF_CPUM_R3_MSR_WRITE;
961#else
962 if ( MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_WRITE(uRawValue)
963 && MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_READ(uRawValue))
964 {
965 LogRel(("GIM: HyperV: Requesting both read and write through debug control MSR -> #GP(0)\n"));
966 return VERR_CPUM_RAISE_GP_0;
967 }
968
969 if (MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_WRITE(uRawValue))
970 {
971 uint32_t cbWrite = MSR_GIM_HV_SYNTH_DEBUG_CONTROL_W_LEN(uRawValue);
972 if ( cbWrite > 0
973 && cbWrite < GIM_HV_PAGE_SIZE)
974 {
975 if (PGMPhysIsGCPhysNormal(pVM, (RTGCPHYS)pHv->uDbgSendBufferMsr))
976 {
977 Assert(pHv->pvDbgBuffer);
978 int rc = PGMPhysSimpleReadGCPhys(pVM, pHv->pvDbgBuffer, (RTGCPHYS)pHv->uDbgSendBufferMsr, cbWrite);
979 if (RT_SUCCESS(rc))
980 {
981 LogRelMax(1, ("GIM: HyperV: Initiated debug data transmission via MSR\n"));
982 uint32_t cbWritten = 0;
983 rc = gimR3HvDebugWrite(pVM, pHv->pvDbgBuffer, cbWrite, &cbWritten, false /*fUdpPkt*/);
984 if ( RT_SUCCESS(rc)
985 && cbWrite == cbWritten)
986 pHv->uDbgStatusMsr = MSR_GIM_HV_SYNTH_DEBUG_STATUS_W_SUCCESS;
987 else
988 pHv->uDbgStatusMsr = 0;
989 }
990 else
991 LogRelMax(5, ("GIM: HyperV: Failed to read debug send buffer at %#RGp, rc=%Rrc\n",
992 (RTGCPHYS)pHv->uDbgSendBufferMsr, rc));
993 }
994 else
995 LogRelMax(5, ("GIM: HyperV: Debug send buffer address %#RGp invalid! Ignoring debug write!\n",
996 (RTGCPHYS)pHv->uDbgSendBufferMsr));
997 }
998 else
999 LogRelMax(5, ("GIM: HyperV: Invalid write size %u specified in MSR, ignoring debug write!\n",
1000 MSR_GIM_HV_SYNTH_DEBUG_CONTROL_W_LEN(uRawValue)));
1001 }
1002 else if (MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_READ(uRawValue))
1003 {
1004 if (PGMPhysIsGCPhysNormal(pVM, (RTGCPHYS)pHv->uDbgRecvBufferMsr))
1005 {
1006 LogRelMax(1, ("GIM: HyperV: Initiated debug data reception via MSR\n"));
1007 uint32_t cbReallyRead;
1008 Assert(pHv->pvDbgBuffer);
1009 int rc = gimR3HvDebugRead(pVM, pHv->pvDbgBuffer, PAGE_SIZE, PAGE_SIZE, &cbReallyRead, 0, false /*fUdpPkt*/);
1010 if ( RT_SUCCESS(rc)
1011 && cbReallyRead > 0)
1012 {
1013 rc = PGMPhysSimpleWriteGCPhys(pVM, (RTGCPHYS)pHv->uDbgRecvBufferMsr, pHv->pvDbgBuffer, cbReallyRead);
1014 if (RT_SUCCESS(rc))
1015 {
1016 pHv->uDbgStatusMsr = ((uint16_t)cbReallyRead) << 16;
1017 pHv->uDbgStatusMsr |= MSR_GIM_HV_SYNTH_DEBUG_STATUS_R_SUCCESS;
1018 }
1019 else
1020 {
1021 pHv->uDbgStatusMsr = 0;
1022 LogRelMax(5, ("GIM: HyperV: PGMPhysSimpleWriteGCPhys failed. rc=%Rrc\n", rc));
1023 }
1024 }
1025 else
1026 pHv->uDbgStatusMsr = 0;
1027 }
1028 else
1029 {
1030 LogRelMax(5, ("GIM: HyperV: Debug receive buffer address %#RGp invalid! Ignoring debug read!\n",
1031 (RTGCPHYS)pHv->uDbgRecvBufferMsr));
1032 }
1033 }
1034 return VINF_SUCCESS;
1035#endif
1036 }
1037
1038 case MSR_GIM_HV_SINT0: case MSR_GIM_HV_SINT1: case MSR_GIM_HV_SINT2: case MSR_GIM_HV_SINT3:
1039 case MSR_GIM_HV_SINT4: case MSR_GIM_HV_SINT5: case MSR_GIM_HV_SINT6: case MSR_GIM_HV_SINT7:
1040 case MSR_GIM_HV_SINT8: case MSR_GIM_HV_SINT9: case MSR_GIM_HV_SINT10: case MSR_GIM_HV_SINT11:
1041 case MSR_GIM_HV_SINT12: case MSR_GIM_HV_SINT13: case MSR_GIM_HV_SINT14: case MSR_GIM_HV_SINT15:
1042 {
1043 uint8_t uVector = MSR_GIM_HV_SINT_GET_VECTOR(uRawValue);
1044 bool const fVMBusMsg = RT_BOOL(idMsr == GIM_HV_VMBUS_MSG_SINT);
1045 size_t const idxSintMsr = idMsr - MSR_GIM_HV_SINT0;
1046 const char *pszDesc = fVMBusMsg ? "VMBus Message" : "Generic";
1047 if (uVector < GIM_HV_SINT_VECTOR_VALID_MIN)
1048 {
1049 LogRel(("GIM%u: HyperV: Programmed an invalid vector in SINT%u (%s), uVector=%u -> #GP(0)\n", pVCpu->idCpu,
1050 idxSintMsr, pszDesc, uVector));
1051 return VERR_CPUM_RAISE_GP_0;
1052 }
1053
1054 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1055 pHvCpu->auSintMsrs[idxSintMsr] = uRawValue;
1056 if (fVMBusMsg)
1057 {
1058 if (MSR_GIM_HV_SINT_IS_MASKED(uRawValue))
1059 Log(("GIM%u: HyperV: Masked SINT%u (%s)\n", pVCpu->idCpu, idxSintMsr, pszDesc));
1060 else
1061 Log(("GIM%u: HyperV: Unmasked SINT%u (%s), uVector=%u\n", pVCpu->idCpu, idxSintMsr, pszDesc, uVector));
1062 }
1063 Log(("GIM%u: HyperV: Written SINT%u=%#RX64\n", pVCpu->idCpu, idxSintMsr, uRawValue));
1064 return VINF_SUCCESS;
1065 }
1066
1067 case MSR_GIM_HV_SCONTROL:
1068 {
1069#ifndef IN_RING3
1070 /** @todo make this RZ later? */
1071 return VINF_CPUM_R3_MSR_WRITE;
1072#else
1073 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1074 pHvCpu->uSControlMsr = uRawValue;
1075 if (MSR_GIM_HV_SCONTROL_IS_ENABLED(uRawValue))
1076 LogRel(("GIM%u: HyperV: Synthetic interrupt control enabled\n", pVCpu->idCpu));
1077 else
1078 LogRel(("GIM%u: HyperV: Synthetic interrupt control disabled\n", pVCpu->idCpu));
1079 return VINF_SUCCESS;
1080#endif
1081 }
1082
1083 case MSR_GIM_HV_STIMER0_CONFIG:
1084 case MSR_GIM_HV_STIMER1_CONFIG:
1085 case MSR_GIM_HV_STIMER2_CONFIG:
1086 case MSR_GIM_HV_STIMER3_CONFIG:
1087 {
1088 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1089 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1;
1090
1091 /* Validate the writable bits. */
1092 if (RT_LIKELY(!(uRawValue & ~MSR_GIM_HV_STIMER_RW_VALID)))
1093 {
1094 Assert(idxStimer < RT_ELEMENTS(pHvCpu->aStimers));
1095 PGIMHVSTIMER pHvStimer = &pHvCpu->aStimers[idxStimer];
1096 PTMTIMER pTimer = pHvStimer->CTX_SUFF(pTimer);
1097
1098 /* Lock to prevent concurrent access from the timer callback. */
1099 int rc = TMTimerLock(pTimer, VERR_IGNORED);
1100 if (rc == VINF_SUCCESS)
1101 {
1102 /* Update the MSR value. */
1103 pHvStimer->uStimerConfigMsr = uRawValue;
1104 Log(("GIM%u: HyperV: Set STIMER_CONFIG%u=%#RX64\n", pVCpu->idCpu, idxStimer, uRawValue));
1105
1106 /* Process the MSR bits. */
1107 if ( !MSR_GIM_HV_STIMER_GET_SINTX(uRawValue) /* Writing SINTx as 0 causes the timer to be disabled. */
1108 || !MSR_GIM_HV_STIMER_IS_ENABLED(uRawValue))
1109 {
1110 pHvStimer->uStimerConfigMsr &= ~MSR_GIM_HV_STIMER_ENABLE;
1111 gimHvStopStimer(pVCpu, pHvStimer);
1112 Log(("GIM%u: HyperV: Disabled STIMER_CONFIG%u\n", pVCpu->idCpu, idxStimer));
1113 }
1114 else if (MSR_GIM_HV_STIMER_IS_ENABLED(uRawValue))
1115 {
1116 /* Auto-enable implies writing to the STIMERx_COUNT MSR is what starts the timer. */
1117 if (!MSR_GIM_HV_STIMER_IS_AUTO_ENABLED(uRawValue))
1118 {
1119 if (!TMTimerIsActive(pHvStimer->CTX_SUFF(pTimer)))
1120 {
1121 gimHvStartStimer(pVCpu, pHvStimer);
1122 Log(("GIM%u: HyperV: Started STIMER%u\n", pVCpu->idCpu, idxStimer));
1123 }
1124 else
1125 {
1126 /*
1127 * Enabling a timer that's already enabled is undefined behaviour,
1128 * see Hyper-V spec. 15.3.1 "Synthetic Timer Configuration Register".
1129 *
1130 * Our implementation just re-starts the timer. Guests that comform to
1131 * the Hyper-V specs. should not be doing this anyway.
1132 */
1133 AssertFailed();
1134 gimHvStopStimer(pVCpu, pHvStimer);
1135 gimHvStartStimer(pVCpu, pHvStimer);
1136 }
1137 }
1138 }
1139
1140 TMTimerUnlock(pTimer);
1141 }
1142 return rc;
1143 }
1144#ifndef IN_RING3
1145 return VINF_CPUM_R3_MSR_WRITE;
1146#else
1147 LogRel(("GIM%u: HyperV: Setting reserved bits of STIMER%u MSR (uRawValue=%#RX64) -> #GP(0)\n", pVCpu->idCpu,
1148 idxStimer, uRawValue));
1149 return VERR_CPUM_RAISE_GP_0;
1150#endif
1151 }
1152
1153 case MSR_GIM_HV_STIMER0_COUNT:
1154 case MSR_GIM_HV_STIMER1_COUNT:
1155 case MSR_GIM_HV_STIMER2_COUNT:
1156 case MSR_GIM_HV_STIMER3_COUNT:
1157 {
1158 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1159 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1;
1160 Assert(idxStimer < RT_ELEMENTS(pHvCpu->aStimers));
1161 PGIMHVSTIMER pHvStimer = &pHvCpu->aStimers[idxStimer];
1162 int const rcBusy = VINF_CPUM_R3_MSR_WRITE;
1163
1164 /*
1165 * Writing zero to this MSR disables the timer regardless of whether the auto-enable
1166 * flag is set in the config MSR corresponding to the timer.
1167 */
1168 if (!uRawValue)
1169 {
1170 gimHvStopStimer(pVCpu, pHvStimer);
1171 pHvStimer->uStimerCountMsr = 0;
1172 Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64, stopped timer\n", pVCpu->idCpu, idxStimer, uRawValue));
1173 return VINF_SUCCESS;
1174 }
1175
1176 /*
1177 * Concurrent writes to the config. MSR can't happen as it's serialized by way
1178 * of being done on the same EMT as this.
1179 */
1180 if (MSR_GIM_HV_STIMER_IS_AUTO_ENABLED(pHvStimer->uStimerConfigMsr))
1181 {
1182 PTMTIMER pTimer = pHvStimer->CTX_SUFF(pTimer);
1183 int rc = TMTimerLock(pTimer, rcBusy);
1184 if (rc == VINF_SUCCESS)
1185 {
1186 pHvStimer->uStimerCountMsr = uRawValue;
1187 gimHvStartStimer(pVCpu, pHvStimer);
1188 TMTimerUnlock(pTimer);
1189 Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64 %RU64 msec, auto-started timer\n", pVCpu->idCpu, idxStimer,
1190 uRawValue, (uRawValue * 100) / RT_NS_1MS_64));
1191 }
1192 return rc;
1193 }
1194
1195 /* Simple update of the counter without any timer start/stop side-effects. */
1196 pHvStimer->uStimerCountMsr = uRawValue;
1197 Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64\n", pVCpu->idCpu, idxStimer, uRawValue));
1198 return VINF_SUCCESS;
1199 }
1200
1201 case MSR_GIM_HV_EOM:
1202 {
1203 /** @todo implement EOM. */
1204 Log(("GIM%u: HyperV: EOM\n", pVCpu->idCpu));
1205 return VINF_SUCCESS;
1206 }
1207
1208 case MSR_GIM_HV_SIEFP:
1209 {
1210#ifndef IN_RING3
1211 return VINF_CPUM_R3_MSR_WRITE;
1212#else
1213 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1214 pHvCpu->uSiefpMsr = uRawValue;
1215 if (MSR_GIM_HV_SIEF_PAGE_IS_ENABLED(uRawValue))
1216 {
1217 RTGCPHYS GCPhysSiefPage = MSR_GIM_HV_SIEF_GUEST_PFN(uRawValue) << PAGE_SHIFT;
1218 if (PGMPhysIsGCPhysNormal(pVM, GCPhysSiefPage))
1219 {
1220 int rc = gimR3HvEnableSiefPage(pVCpu, GCPhysSiefPage);
1221 if (RT_SUCCESS(rc))
1222 {
1223 LogRel(("GIM%u: HyperV: Enabled synthetic interrupt event flags page at %#RGp\n", pVCpu->idCpu,
1224 GCPhysSiefPage));
1225 /** @todo SIEF setup. */
1226 return VINF_SUCCESS;
1227 }
1228 }
1229 else
1230 LogRelMax(5, ("GIM%u: HyperV: SIEF page address %#RGp invalid!\n", pVCpu->idCpu, GCPhysSiefPage));
1231 }
1232 else
1233 gimR3HvDisableSiefPage(pVCpu);
1234
1235 return VERR_CPUM_RAISE_GP_0;
1236#endif
1237 break;
1238 }
1239
1240 case MSR_GIM_HV_SIMP:
1241 {
1242#ifndef IN_RING3
1243 return VINF_CPUM_R3_MSR_WRITE;
1244#else
1245 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1246 pHvCpu->uSimpMsr = uRawValue;
1247 if (MSR_GIM_HV_SIMP_IS_ENABLED(uRawValue))
1248 {
1249 RTGCPHYS GCPhysSimp = MSR_GIM_HV_SIMP_GPA(uRawValue);
1250 if (PGMPhysIsGCPhysNormal(pVM, GCPhysSimp))
1251 {
1252 uint8_t abSimp[PAGE_SIZE];
1253 RT_ZERO(abSimp);
1254 int rc2 = PGMPhysSimpleWriteGCPhys(pVM, GCPhysSimp, &abSimp[0], sizeof(abSimp));
1255 if (RT_SUCCESS(rc2))
1256 LogRel(("GIM%u: HyperV: Enabled synthetic interrupt message page at %#RGp\n", pVCpu->idCpu, GCPhysSimp));
1257 else
1258 {
1259 LogRel(("GIM%u: HyperV: Failed to update synthetic interrupt message page at %#RGp. uSimpMsr=%#RX64 rc=%Rrc\n",
1260 pVCpu->idCpu, pHvCpu->uSimpMsr, GCPhysSimp, rc2));
1261 return VERR_CPUM_RAISE_GP_0;
1262 }
1263 }
1264 else
1265 {
1266 LogRel(("GIM%u: HyperV: Enabled synthetic interrupt message page at invalid address %#RGp\n", pVCpu->idCpu,
1267 GCPhysSimp));
1268 }
1269 }
1270 else
1271 LogRel(("GIM%u: HyperV: Disabled synthetic interrupt message page\n", pVCpu->idCpu));
1272 return VINF_SUCCESS;
1273#endif
1274 }
1275
1276 case MSR_GIM_HV_CRASH_P0: pHv->uCrashP0Msr = uRawValue; return VINF_SUCCESS;
1277 case MSR_GIM_HV_CRASH_P1: pHv->uCrashP1Msr = uRawValue; return VINF_SUCCESS;
1278 case MSR_GIM_HV_CRASH_P2: pHv->uCrashP2Msr = uRawValue; return VINF_SUCCESS;
1279 case MSR_GIM_HV_CRASH_P3: pHv->uCrashP3Msr = uRawValue; return VINF_SUCCESS;
1280 case MSR_GIM_HV_CRASH_P4: pHv->uCrashP4Msr = uRawValue; return VINF_SUCCESS;
1281
1282 case MSR_GIM_HV_TIME_REF_COUNT: /* Read-only MSRs. */
1283 case MSR_GIM_HV_VP_INDEX:
1284 case MSR_GIM_HV_TSC_FREQ:
1285 case MSR_GIM_HV_APIC_FREQ:
1286 LogFunc(("WrMsr on read-only MSR %#RX32 -> #GP(0)\n", idMsr));
1287 break;
1288
1289 case MSR_GIM_HV_DEBUG_OPTIONS_MSR:
1290 {
1291 if (pHv->fIsVendorMsHv)
1292 {
1293#ifndef IN_RING3
1294 return VINF_CPUM_R3_MSR_WRITE;
1295#else
1296 LogRelMax(5, ("GIM: HyperV: Write debug options MSR with %#RX64 ignored\n", uRawValue));
1297 return VINF_SUCCESS;
1298#endif
1299 }
1300 return VERR_CPUM_RAISE_GP_0;
1301 }
1302
1303 default:
1304 {
1305#ifdef IN_RING3
1306 static uint32_t s_cTimes = 0;
1307 if (s_cTimes++ < 20)
1308 LogRel(("GIM: HyperV: Unknown/invalid WrMsr (%#x,%#x`%08x) -> #GP(0)\n", idMsr,
1309 uRawValue & UINT64_C(0xffffffff00000000), uRawValue & UINT64_C(0xffffffff)));
1310 LogFunc(("Unknown/invalid WrMsr (%#RX32,%#RX64) -> #GP(0)\n", idMsr, uRawValue));
1311 break;
1312#else
1313 return VINF_CPUM_R3_MSR_WRITE;
1314#endif
1315 }
1316 }
1317
1318 return VERR_CPUM_RAISE_GP_0;
1319}
1320
1321
1322/**
1323 * Whether we need to trap \#UD exceptions in the guest.
1324 *
1325 * We only need to trap \#UD exceptions for raw-mode guests when hypercalls are
1326 * enabled. For HM VMs, the hypercall would be handled via the
1327 * VMCALL/VMMCALL VM-exit.
1328 *
1329 * @param pVCpu The cross context virtual CPU structure.
1330 */
1331VMM_INT_DECL(bool) gimHvShouldTrapXcptUD(PVMCPU pVCpu)
1332{
1333 PVM pVM = pVCpu->CTX_SUFF(pVM);
1334 if ( !HMIsEnabled(pVM)
1335 && gimHvAreHypercallsEnabled(pVCpu))
1336 return true;
1337 return false;
1338}
1339
1340
1341/**
1342 * Checks the currently disassembled instruction and executes the hypercall if
1343 * it's a hypercall instruction.
1344 *
1345 * @returns Strict VBox status code.
1346 * @param pVCpu The cross context virtual CPU structure.
1347 * @param pCtx Pointer to the guest-CPU context.
1348 * @param pDis Pointer to the disassembled instruction state at RIP.
1349 *
1350 * @thread EMT(pVCpu).
1351 *
1352 * @todo Make this function static when @bugref{7270#c168} is addressed.
1353 */
1354VMM_INT_DECL(VBOXSTRICTRC) gimHvExecHypercallInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PDISCPUSTATE pDis)
1355{
1356 Assert(pVCpu);
1357 Assert(pCtx);
1358 Assert(pDis);
1359 VMCPU_ASSERT_EMT(pVCpu);
1360
1361 PVM pVM = pVCpu->CTX_SUFF(pVM);
1362 CPUMCPUVENDOR const enmGuestCpuVendor = CPUMGetGuestCpuVendor(pVM);
1363 if ( ( pDis->pCurInstr->uOpcode == OP_VMCALL
1364 && ( enmGuestCpuVendor == CPUMCPUVENDOR_INTEL
1365 || enmGuestCpuVendor == CPUMCPUVENDOR_VIA))
1366 || ( pDis->pCurInstr->uOpcode == OP_VMMCALL
1367 && enmGuestCpuVendor == CPUMCPUVENDOR_AMD))
1368 {
1369 return gimHvHypercall(pVCpu, pCtx);
1370 }
1371
1372 return VERR_GIM_INVALID_HYPERCALL_INSTR;
1373}
1374
1375
1376/**
1377 * Exception handler for \#UD.
1378 *
1379 * @returns Strict VBox status code.
1380 * @retval VINF_SUCCESS if the hypercall succeeded (even if its operation
1381 * failed).
1382 * @retval VINF_GIM_R3_HYPERCALL re-start the hypercall from ring-3.
1383 * @retval VINF_GIM_HYPERCALL_CONTINUING continue hypercall without updating
1384 * RIP.
1385 * @retval VERR_GIM_HYPERCALL_ACCESS_DENIED CPL is insufficient.
1386 * @retval VERR_GIM_INVALID_HYPERCALL_INSTR instruction at RIP is not a valid
1387 * hypercall instruction.
1388 *
1389 * @param pVCpu The cross context virtual CPU structure.
1390 * @param pCtx Pointer to the guest-CPU context.
1391 * @param pDis Pointer to the disassembled instruction state at RIP.
1392 * Optional, can be NULL.
1393 * @param pcbInstr Where to store the instruction length of the hypercall
1394 * instruction. Optional, can be NULL.
1395 *
1396 * @thread EMT(pVCpu).
1397 */
1398VMM_INT_DECL(VBOXSTRICTRC) gimHvXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PDISCPUSTATE pDis, uint8_t *pcbInstr)
1399{
1400 VMCPU_ASSERT_EMT(pVCpu);
1401
1402 /*
1403 * If we didn't ask for #UD to be trapped, bail.
1404 */
1405 if (!gimHvShouldTrapXcptUD(pVCpu))
1406 return VERR_GIM_IPE_1;
1407
1408 if (!pDis)
1409 {
1410 /*
1411 * Disassemble the instruction at RIP to figure out if it's the Intel VMCALL instruction
1412 * or the AMD VMMCALL instruction and if so, handle it as a hypercall.
1413 */
1414 unsigned cbInstr;
1415 DISCPUSTATE Dis;
1416 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, &Dis, &cbInstr);
1417 if (RT_SUCCESS(rc))
1418 {
1419 if (pcbInstr)
1420 *pcbInstr = (uint8_t)cbInstr;
1421 return gimHvExecHypercallInstr(pVCpu, pCtx, &Dis);
1422 }
1423
1424 Log(("GIM: HyperV: Failed to disassemble instruction at CS:RIP=%04x:%08RX64. rc=%Rrc\n", pCtx->cs.Sel, pCtx->rip, rc));
1425 return rc;
1426 }
1427
1428 return gimHvExecHypercallInstr(pVCpu, pCtx, pDis);
1429}
1430
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette