VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/GIMAllHv.cpp@ 94169

Last change on this file since 94169 was 93725, checked in by vboxsync, 3 years ago

VMM: More arm64 adjustments. bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 56.7 KB
Line 
1/* $Id: GIMAllHv.cpp 93725 2022-02-14 13:46:16Z vboxsync $ */
2/** @file
3 * GIM - Guest Interface Manager, Microsoft Hyper-V, All Contexts.
4 */
5
6/*
7 * Copyright (C) 2014-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_GIM
23#include <VBox/vmm/gim.h>
24#include <VBox/vmm/em.h>
25#include <VBox/vmm/hm.h>
26#include <VBox/vmm/tm.h>
27#include <VBox/vmm/dbgf.h>
28#include <VBox/vmm/pdmdev.h>
29#include <VBox/vmm/pdmapi.h>
30#include <VBox/vmm/pgm.h>
31#include <VBox/vmm/apic.h>
32#include <VBox/vmm/em.h>
33#include "GIMHvInternal.h"
34#include "GIMInternal.h"
35#include <VBox/vmm/vmcc.h>
36
37#include <VBox/err.h>
38
39#ifdef IN_RING3
40# include <iprt/mem.h>
41#endif
42
43
44#ifdef IN_RING3
45/**
46 * Read and validate slow hypercall parameters.
47 *
48 * @returns VBox status code.
49 * @param pVM The cross context VM structure.
50 * @param pCtx Pointer to the guest-CPU context.
51 * @param fIs64BitMode Whether the guest is currently in 64-bit mode or not.
52 * @param enmParam The hypercall parameter type.
53 * @param prcHv Where to store the Hyper-V status code. Only valid
54 * to the caller when this function returns
55 * VINF_SUCCESS.
56 */
57static int gimHvReadSlowHypercallParam(PVM pVM, PCPUMCTX pCtx, bool fIs64BitMode, GIMHVHYPERCALLPARAM enmParam, int *prcHv)
58{
59 int rc = VINF_SUCCESS;
60 PGIMHV pHv = &pVM->gim.s.u.Hv;
61 RTGCPHYS GCPhysParam;
62 void *pvDst;
63 if (enmParam == GIMHVHYPERCALLPARAM_IN)
64 {
65 GCPhysParam = fIs64BitMode ? pCtx->rdx : (pCtx->rbx << 32) | pCtx->ecx;
66 pvDst = pHv->pbHypercallIn;
67 pHv->GCPhysHypercallIn = GCPhysParam;
68 }
69 else
70 {
71 GCPhysParam = fIs64BitMode ? pCtx->r8 : (pCtx->rdi << 32) | pCtx->esi;
72 pvDst = pHv->pbHypercallOut;
73 pHv->GCPhysHypercallOut = GCPhysParam;
74 Assert(enmParam == GIMHVHYPERCALLPARAM_OUT);
75 }
76
77 const char *pcszParam = enmParam == GIMHVHYPERCALLPARAM_IN ? "input" : "output"; NOREF(pcszParam);
78 if (RT_ALIGN_64(GCPhysParam, 8) == GCPhysParam)
79 {
80 if (PGMPhysIsGCPhysNormal(pVM, GCPhysParam))
81 {
82 rc = PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysParam, GIM_HV_PAGE_SIZE);
83 if (RT_SUCCESS(rc))
84 {
85 *prcHv = GIM_HV_STATUS_SUCCESS;
86 return VINF_SUCCESS;
87 }
88 LogRel(("GIM: HyperV: Failed reading %s param at %#RGp. rc=%Rrc\n", pcszParam, GCPhysParam, rc));
89 rc = VERR_GIM_HYPERCALL_MEMORY_READ_FAILED;
90 }
91 else
92 {
93 Log(("GIM: HyperV: Invalid %s param address %#RGp\n", pcszParam, GCPhysParam));
94 *prcHv = GIM_HV_STATUS_INVALID_PARAMETER;
95 }
96 }
97 else
98 {
99 Log(("GIM: HyperV: Misaligned %s param address %#RGp\n", pcszParam, GCPhysParam));
100 *prcHv = GIM_HV_STATUS_INVALID_ALIGNMENT;
101 }
102 return rc;
103}
104
105
106/**
107 * Helper for reading and validating slow hypercall input and output parameters.
108 *
109 * @returns VBox status code.
110 * @param pVM The cross context VM structure.
111 * @param pCtx Pointer to the guest-CPU context.
112 * @param fIs64BitMode Whether the guest is currently in 64-bit mode or not.
113 * @param prcHv Where to store the Hyper-V status code. Only valid
114 * to the caller when this function returns
115 * VINF_SUCCESS.
116 */
117static int gimHvReadSlowHypercallParamsInOut(PVM pVM, PCPUMCTX pCtx, bool fIs64BitMode, int *prcHv)
118{
119 int rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, prcHv);
120 if ( RT_SUCCESS(rc)
121 && *prcHv == GIM_HV_STATUS_SUCCESS)
122 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_OUT, prcHv);
123 return rc;
124}
125#endif
126
127
128/**
129 * Handles all Hyper-V hypercalls.
130 *
131 * @returns Strict VBox status code.
132 * @retval VINF_SUCCESS if the hypercall succeeded (even if its operation
133 * failed).
134 * @retval VINF_GIM_R3_HYPERCALL re-start the hypercall from ring-3.
135 * @retval VERR_GIM_HYPERCALLS_NOT_ENABLED hypercalls are disabled by the
136 * guest.
137 * @retval VERR_GIM_HYPERCALL_ACCESS_DENIED CPL is insufficient.
138 * @retval VERR_GIM_HYPERCALL_MEMORY_READ_FAILED hypercall failed while reading
139 * memory.
140 * @retval VERR_GIM_HYPERCALL_MEMORY_WRITE_FAILED hypercall failed while
141 * writing memory.
142 *
143 * @param pVCpu The cross context virtual CPU structure.
144 * @param pCtx Pointer to the guest-CPU context.
145 *
146 * @thread EMT(pVCpu).
147 */
148VMM_INT_DECL(VBOXSTRICTRC) gimHvHypercall(PVMCPUCC pVCpu, PCPUMCTX pCtx)
149{
150 VMCPU_ASSERT_EMT(pVCpu);
151
152#ifndef IN_RING3
153 RT_NOREF_PV(pVCpu);
154 RT_NOREF_PV(pCtx);
155 return VINF_GIM_R3_HYPERCALL;
156#else
157 PVM pVM = pVCpu->CTX_SUFF(pVM);
158 STAM_REL_COUNTER_INC(&pVM->gim.s.StatHypercalls);
159
160 /*
161 * Verify that hypercalls are enabled by the guest.
162 */
163 if (!gimHvAreHypercallsEnabled(pVM))
164 return VERR_GIM_HYPERCALLS_NOT_ENABLED;
165
166 /*
167 * Verify guest is in ring-0 protected mode.
168 */
169 uint32_t uCpl = CPUMGetGuestCPL(pVCpu);
170 if ( uCpl
171 || CPUMIsGuestInRealModeEx(pCtx))
172 {
173 return VERR_GIM_HYPERCALL_ACCESS_DENIED;
174 }
175
176 /*
177 * Get the hypercall operation code and modes.
178 * Fast hypercalls have only two or fewer inputs but no output parameters.
179 */
180 const bool fIs64BitMode = CPUMIsGuestIn64BitCodeEx(pCtx);
181 const uint64_t uHyperIn = fIs64BitMode ? pCtx->rcx : (pCtx->rdx << 32) | pCtx->eax;
182 const uint16_t uHyperOp = GIM_HV_HYPERCALL_IN_CALL_CODE(uHyperIn);
183 const bool fHyperFast = GIM_HV_HYPERCALL_IN_IS_FAST(uHyperIn);
184 const uint16_t cHyperReps = GIM_HV_HYPERCALL_IN_REP_COUNT(uHyperIn);
185 const uint16_t idxHyperRepStart = GIM_HV_HYPERCALL_IN_REP_START_IDX(uHyperIn);
186 uint64_t cHyperRepsDone = 0;
187
188 /* Currently no repeating hypercalls are supported. */
189 RT_NOREF2(cHyperReps, idxHyperRepStart);
190
191 int rc = VINF_SUCCESS;
192 int rcHv = GIM_HV_STATUS_OPERATION_DENIED;
193 PGIMHV pHv = &pVM->gim.s.u.Hv;
194
195 /*
196 * Validate common hypercall input parameters.
197 */
198 if ( !GIM_HV_HYPERCALL_IN_RSVD_1(uHyperIn)
199 && !GIM_HV_HYPERCALL_IN_RSVD_2(uHyperIn)
200 && !GIM_HV_HYPERCALL_IN_RSVD_3(uHyperIn))
201 {
202 /*
203 * Perform the hypercall.
204 */
205 switch (uHyperOp)
206 {
207 case GIM_HV_HYPERCALL_OP_RETREIVE_DEBUG_DATA: /* Non-rep, memory IO. */
208 {
209 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING)
210 {
211 rc = gimHvReadSlowHypercallParamsInOut(pVM, pCtx, fIs64BitMode, &rcHv);
212 if ( RT_SUCCESS(rc)
213 && rcHv == GIM_HV_STATUS_SUCCESS)
214 {
215 LogRelMax(1, ("GIM: HyperV: Initiated debug data reception via hypercall\n"));
216 rc = gimR3HvHypercallRetrieveDebugData(pVM, &rcHv);
217 if (RT_FAILURE(rc))
218 LogRelMax(10, ("GIM: HyperV: gimR3HvHypercallRetrieveDebugData failed. rc=%Rrc\n", rc));
219 }
220 }
221 else
222 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
223 break;
224 }
225
226 case GIM_HV_HYPERCALL_OP_POST_DEBUG_DATA: /* Non-rep, memory IO. */
227 {
228 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING)
229 {
230 rc = gimHvReadSlowHypercallParamsInOut(pVM, pCtx, fIs64BitMode, &rcHv);
231 if ( RT_SUCCESS(rc)
232 && rcHv == GIM_HV_STATUS_SUCCESS)
233 {
234 LogRelMax(1, ("GIM: HyperV: Initiated debug data transmission via hypercall\n"));
235 rc = gimR3HvHypercallPostDebugData(pVM, &rcHv);
236 if (RT_FAILURE(rc))
237 LogRelMax(10, ("GIM: HyperV: gimR3HvHypercallPostDebugData failed. rc=%Rrc\n", rc));
238 }
239 }
240 else
241 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
242 break;
243 }
244
245 case GIM_HV_HYPERCALL_OP_RESET_DEBUG_SESSION: /* Non-rep, fast (register IO). */
246 {
247 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING)
248 {
249 uint32_t fFlags = 0;
250 if (!fHyperFast)
251 {
252 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, &rcHv);
253 if ( RT_SUCCESS(rc)
254 && rcHv == GIM_HV_STATUS_SUCCESS)
255 {
256 PGIMHVDEBUGRESETIN pIn = (PGIMHVDEBUGRESETIN)pHv->pbHypercallIn;
257 fFlags = pIn->fFlags;
258 }
259 }
260 else
261 {
262 rcHv = GIM_HV_STATUS_SUCCESS;
263 fFlags = fIs64BitMode ? pCtx->rdx : pCtx->ebx;
264 }
265
266 /*
267 * Nothing to flush on the sending side as we don't maintain our own buffers.
268 */
269 /** @todo We should probably ask the debug receive thread to flush it's buffer. */
270 if (rcHv == GIM_HV_STATUS_SUCCESS)
271 {
272 if (fFlags)
273 LogRel(("GIM: HyperV: Resetting debug session via hypercall\n"));
274 else
275 rcHv = GIM_HV_STATUS_INVALID_PARAMETER;
276 }
277 }
278 else
279 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
280 break;
281 }
282
283 case GIM_HV_HYPERCALL_OP_POST_MESSAGE: /* Non-rep, memory IO. */
284 {
285 if (pHv->fIsInterfaceVs)
286 {
287 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, &rcHv);
288 if ( RT_SUCCESS(rc)
289 && rcHv == GIM_HV_STATUS_SUCCESS)
290 {
291 PGIMHVPOSTMESSAGEIN pMsgIn = (PGIMHVPOSTMESSAGEIN)pHv->pbHypercallIn;
292 PCGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
293 if ( pMsgIn->uConnectionId == GIM_HV_VMBUS_MSG_CONNECTION_ID
294 && pMsgIn->enmMessageType == GIMHVMSGTYPE_VMBUS
295 && !MSR_GIM_HV_SINT_IS_MASKED(pHvCpu->auSintMsrs[GIM_HV_VMBUS_MSG_SINT])
296 && MSR_GIM_HV_SIMP_IS_ENABLED(pHvCpu->uSimpMsr))
297 {
298 RTGCPHYS GCPhysSimp = MSR_GIM_HV_SIMP_GPA(pHvCpu->uSimpMsr);
299 if (PGMPhysIsGCPhysNormal(pVM, GCPhysSimp))
300 {
301 /*
302 * The VMBus client (guest) expects to see 0xf at offsets 4 and 16 and 1 at offset 0.
303 */
304 GIMHVMSG HvMsg;
305 RT_ZERO(HvMsg);
306 HvMsg.MsgHdr.enmMessageType = GIMHVMSGTYPE_VMBUS;
307 HvMsg.MsgHdr.cbPayload = 0xf;
308 HvMsg.aPayload[0] = 0xf;
309 uint16_t const offMsg = GIM_HV_VMBUS_MSG_SINT * sizeof(GIMHVMSG);
310 int rc2 = PGMPhysSimpleWriteGCPhys(pVM, GCPhysSimp + offMsg, &HvMsg, sizeof(HvMsg));
311 if (RT_SUCCESS(rc2))
312 LogRel(("GIM: HyperV: SIMP hypercall faking message at %#RGp:%u\n", GCPhysSimp, offMsg));
313 else
314 {
315 LogRel(("GIM: HyperV: Failed to write SIMP message at %#RGp:%u, rc=%Rrc\n", GCPhysSimp,
316 offMsg, rc));
317 }
318 }
319 }
320
321 /*
322 * Make the call fail after updating the SIMP, so the guest can go back to using
323 * the Hyper-V debug MSR interface. Any error code below GIM_HV_STATUS_NOT_ACKNOWLEDGED
324 * and the guest tries to proceed with initializing VMBus which is totally unnecessary
325 * for what we're trying to accomplish, i.e. convince guest to use Hyper-V debugging. Also,
326 * we don't implement other VMBus/SynIC functionality so the guest would #GP and die.
327 */
328 rcHv = GIM_HV_STATUS_NOT_ACKNOWLEDGED;
329 }
330 else
331 rcHv = GIM_HV_STATUS_INVALID_PARAMETER;
332 }
333 else
334 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
335 break;
336 }
337
338 case GIM_HV_EXT_HYPERCALL_OP_QUERY_CAP: /* Non-rep, extended hypercall. */
339 {
340 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_EXTENDED_HYPERCALLS)
341 {
342 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_OUT, &rcHv);
343 if ( RT_SUCCESS(rc)
344 && rcHv == GIM_HV_STATUS_SUCCESS)
345 {
346 rc = gimR3HvHypercallExtQueryCap(pVM, &rcHv);
347 }
348 }
349 else
350 {
351 LogRel(("GIM: HyperV: Denied HvExtCallQueryCapabilities when the feature is not exposed\n"));
352 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
353 }
354 break;
355 }
356
357 case GIM_HV_EXT_HYPERCALL_OP_GET_BOOT_ZEROED_MEM: /* Non-rep, extended hypercall. */
358 {
359 if (pHv->uPartFlags & GIM_HV_PART_FLAGS_EXTENDED_HYPERCALLS)
360 {
361 rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_OUT, &rcHv);
362 if ( RT_SUCCESS(rc)
363 && rcHv == GIM_HV_STATUS_SUCCESS)
364 {
365 rc = gimR3HvHypercallExtGetBootZeroedMem(pVM, &rcHv);
366 }
367 }
368 else
369 {
370 LogRel(("GIM: HyperV: Denied HvExtCallGetBootZeroedMemory when the feature is not exposed\n"));
371 rcHv = GIM_HV_STATUS_ACCESS_DENIED;
372 }
373 break;
374 }
375
376 default:
377 {
378 LogRel(("GIM: HyperV: Unknown/invalid hypercall opcode %#x (%u)\n", uHyperOp, uHyperOp));
379 rcHv = GIM_HV_STATUS_INVALID_HYPERCALL_CODE;
380 break;
381 }
382 }
383 }
384 else
385 rcHv = GIM_HV_STATUS_INVALID_HYPERCALL_INPUT;
386
387 /*
388 * Update the guest with results of the hypercall.
389 */
390 if (RT_SUCCESS(rc))
391 {
392 if (fIs64BitMode)
393 pCtx->rax = (cHyperRepsDone << 32) | rcHv;
394 else
395 {
396 pCtx->edx = cHyperRepsDone;
397 pCtx->eax = rcHv;
398 }
399 }
400
401 return rc;
402#endif
403}
404
405
406/**
407 * Returns a pointer to the MMIO2 regions supported by Hyper-V.
408 *
409 * @returns Pointer to an array of MMIO2 regions.
410 * @param pVM The cross context VM structure.
411 * @param pcRegions Where to store the number of regions in the array.
412 */
413VMM_INT_DECL(PGIMMMIO2REGION) gimHvGetMmio2Regions(PVM pVM, uint32_t *pcRegions)
414{
415 Assert(GIMIsEnabled(pVM));
416 PGIMHV pHv = &pVM->gim.s.u.Hv;
417
418 AssertCompile(RT_ELEMENTS(pHv->aMmio2Regions) <= 8);
419 *pcRegions = RT_ELEMENTS(pHv->aMmio2Regions);
420 return pHv->aMmio2Regions;
421}
422
423
424/**
425 * Returns whether the guest has configured and enabled the use of Hyper-V's
426 * hypercall interface.
427 *
428 * @returns true if hypercalls are enabled, false otherwise.
429 * @param pVM The cross context VM structure.
430 */
431VMM_INT_DECL(bool) gimHvAreHypercallsEnabled(PCVM pVM)
432{
433 return RT_BOOL(pVM->gim.s.u.Hv.u64GuestOsIdMsr != 0);
434}
435
436
437/**
438 * Returns whether the guest has configured and enabled the use of Hyper-V's
439 * paravirtualized TSC.
440 *
441 * @returns true if paravirt. TSC is enabled, false otherwise.
442 * @param pVM The cross context VM structure.
443 */
444VMM_INT_DECL(bool) gimHvIsParavirtTscEnabled(PVM pVM)
445{
446 return MSR_GIM_HV_REF_TSC_IS_ENABLED(pVM->gim.s.u.Hv.u64TscPageMsr);
447}
448
449
450#ifdef IN_RING3
451/**
452 * Gets the descriptive OS ID variant as identified via the
453 * MSR_GIM_HV_GUEST_OS_ID MSR.
454 *
455 * @returns The name.
456 * @param uGuestOsIdMsr The MSR_GIM_HV_GUEST_OS_ID MSR.
457 */
458static const char *gimHvGetGuestOsIdVariantName(uint64_t uGuestOsIdMsr)
459{
460 /* Refer the Hyper-V spec, section 3.6 "Reporting the Guest OS Identity". */
461 uint32_t uVendor = MSR_GIM_HV_GUEST_OS_ID_VENDOR(uGuestOsIdMsr);
462 if (uVendor == 1 /* Microsoft */)
463 {
464 uint32_t uOsVariant = MSR_GIM_HV_GUEST_OS_ID_OS_VARIANT(uGuestOsIdMsr);
465 switch (uOsVariant)
466 {
467 case 0: return "Undefined";
468 case 1: return "MS-DOS";
469 case 2: return "Windows 3.x";
470 case 3: return "Windows 9x";
471 case 4: return "Windows NT or derivative";
472 case 5: return "Windows CE";
473 default: return "Unknown";
474 }
475 }
476 return "Unknown";
477}
478#endif
479
480/**
481 * Gets the time reference count for the current VM.
482 *
483 * @returns The time reference count.
484 * @param pVCpu The cross context virtual CPU structure.
485 */
486DECLINLINE(uint64_t) gimHvGetTimeRefCount(PVMCPUCC pVCpu)
487{
488 /* Hyper-V reports the time in 100 ns units (10 MHz). */
489 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
490 PCGIMHV pHv = &pVCpu->CTX_SUFF(pVM)->gim.s.u.Hv;
491 uint64_t const u64Tsc = TMCpuTickGet(pVCpu); /** @todo should we be passing VCPU0 always? */
492 uint64_t const u64TscHz = pHv->cTscTicksPerSecond;
493 uint64_t const u64Tsc100NS = u64TscHz / UINT64_C(10000000); /* 100 ns */
494 uint64_t const uTimeRefCount = (u64Tsc / u64Tsc100NS);
495 return uTimeRefCount;
496}
497
498
499/**
500 * Starts the synthetic timer.
501 *
502 * @param pVCpu The cross context virtual CPU structure.
503 * @param pHvStimer Pointer to the Hyper-V synthetic timer.
504 *
505 * @remarks Caller needs to hold the timer critical section.
506 * @thread Any.
507 */
508VMM_INT_DECL(void) gimHvStartStimer(PVMCPUCC pVCpu, PCGIMHVSTIMER pHvStimer)
509{
510 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
511 TMTIMERHANDLE hTimer = pHvStimer->hTimer;
512 Assert(TMTimerIsLockOwner(pVM, hTimer));
513
514 uint64_t const uTimerCount = pHvStimer->uStimerCountMsr;
515 if (uTimerCount)
516 {
517 uint64_t const uTimerCountNS = uTimerCount * 100;
518
519 /* For periodic timers, 'uTimerCountNS' represents the relative interval. */
520 if (MSR_GIM_HV_STIMER_IS_PERIODIC(pHvStimer->uStimerConfigMsr))
521 {
522 TMTimerSetNano(pVM, hTimer, uTimerCountNS);
523 LogFlow(("GIM%u: HyperV: Started relative periodic STIMER%u with uTimerCountNS=%RU64\n", pVCpu->idCpu,
524 pHvStimer->idxStimer, uTimerCountNS));
525 }
526 else
527 {
528 /* For one-shot timers, 'uTimerCountNS' represents an absolute expiration wrt to Hyper-V reference time,
529 we convert it to a relative time and program the timer. */
530 uint64_t const uCurRefTimeNS = gimHvGetTimeRefCount(pVCpu) * 100;
531 if (uTimerCountNS > uCurRefTimeNS)
532 {
533 uint64_t const uRelativeNS = uTimerCountNS - uCurRefTimeNS;
534 TMTimerSetNano(pVM, hTimer, uRelativeNS);
535 LogFlow(("GIM%u: HyperV: Started one-shot relative STIMER%u with uRelativeNS=%RU64\n", pVCpu->idCpu,
536 pHvStimer->idxStimer, uRelativeNS));
537 }
538 }
539 /** @todo frequency hinting? */
540 }
541}
542
543
544/**
545 * Stops the synthetic timer for the given VCPU.
546 *
547 * @param pVCpu The cross context virtual CPU structure.
548 * @param pHvStimer Pointer to the Hyper-V synthetic timer.
549 *
550 * @remarks Caller needs to the hold the timer critical section.
551 * @thread EMT(pVCpu).
552 */
553static void gimHvStopStimer(PVMCPUCC pVCpu, PGIMHVSTIMER pHvStimer)
554{
555 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
556 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
557
558 TMTIMERHANDLE hTimer = pHvStimer->hTimer;
559 Assert(TMTimerIsLockOwner(pVM, hTimer));
560
561 if (TMTimerIsActive(pVM, hTimer))
562 TMTimerStop(pVM, hTimer);
563}
564
565
566/**
567 * MSR read handler for Hyper-V.
568 *
569 * @returns Strict VBox status code like CPUMQueryGuestMsr().
570 * @retval VINF_CPUM_R3_MSR_READ
571 * @retval VERR_CPUM_RAISE_GP_0
572 *
573 * @param pVCpu The cross context virtual CPU structure.
574 * @param idMsr The MSR being read.
575 * @param pRange The range this MSR belongs to.
576 * @param puValue Where to store the MSR value read.
577 *
578 * @thread EMT.
579 */
580VMM_INT_DECL(VBOXSTRICTRC) gimHvReadMsr(PVMCPUCC pVCpu, uint32_t idMsr, PCCPUMMSRRANGE pRange, uint64_t *puValue)
581{
582 NOREF(pRange);
583 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
584 PCGIMHV pHv = &pVM->gim.s.u.Hv;
585
586 switch (idMsr)
587 {
588 case MSR_GIM_HV_TIME_REF_COUNT:
589 *puValue = gimHvGetTimeRefCount(pVCpu);
590 return VINF_SUCCESS;
591
592 case MSR_GIM_HV_VP_INDEX:
593 *puValue = pVCpu->idCpu;
594 return VINF_SUCCESS;
595
596 case MSR_GIM_HV_TPR:
597 *puValue = APICHvGetTpr(pVCpu);
598 return VINF_SUCCESS;
599
600 case MSR_GIM_HV_ICR:
601 *puValue = APICHvGetIcr(pVCpu);
602 return VINF_SUCCESS;
603
604 case MSR_GIM_HV_GUEST_OS_ID:
605 *puValue = pHv->u64GuestOsIdMsr;
606 return VINF_SUCCESS;
607
608 case MSR_GIM_HV_HYPERCALL:
609 *puValue = pHv->u64HypercallMsr;
610 return VINF_SUCCESS;
611
612 case MSR_GIM_HV_REF_TSC:
613 *puValue = pHv->u64TscPageMsr;
614 return VINF_SUCCESS;
615
616 case MSR_GIM_HV_TSC_FREQ:
617 *puValue = TMCpuTicksPerSecond(pVM);
618 return VINF_SUCCESS;
619
620 case MSR_GIM_HV_APIC_FREQ:
621 {
622 int rc = APICGetTimerFreq(pVM, puValue);
623 if (RT_FAILURE(rc))
624 return VERR_CPUM_RAISE_GP_0;
625 return VINF_SUCCESS;
626 }
627
628 case MSR_GIM_HV_SYNTH_DEBUG_STATUS:
629 *puValue = pHv->uDbgStatusMsr;
630 return VINF_SUCCESS;
631
632 case MSR_GIM_HV_SINT0: case MSR_GIM_HV_SINT1: case MSR_GIM_HV_SINT2: case MSR_GIM_HV_SINT3:
633 case MSR_GIM_HV_SINT4: case MSR_GIM_HV_SINT5: case MSR_GIM_HV_SINT6: case MSR_GIM_HV_SINT7:
634 case MSR_GIM_HV_SINT8: case MSR_GIM_HV_SINT9: case MSR_GIM_HV_SINT10: case MSR_GIM_HV_SINT11:
635 case MSR_GIM_HV_SINT12: case MSR_GIM_HV_SINT13: case MSR_GIM_HV_SINT14: case MSR_GIM_HV_SINT15:
636 {
637 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
638 *puValue = pHvCpu->auSintMsrs[idMsr - MSR_GIM_HV_SINT0];
639 return VINF_SUCCESS;
640 }
641
642 case MSR_GIM_HV_STIMER0_CONFIG:
643 case MSR_GIM_HV_STIMER1_CONFIG:
644 case MSR_GIM_HV_STIMER2_CONFIG:
645 case MSR_GIM_HV_STIMER3_CONFIG:
646 {
647 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
648 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1;
649 PCGIMHVSTIMER pcHvStimer = &pHvCpu->aStimers[idxStimer];
650 *puValue = pcHvStimer->uStimerConfigMsr;
651 return VINF_SUCCESS;
652 }
653
654 case MSR_GIM_HV_STIMER0_COUNT:
655 case MSR_GIM_HV_STIMER1_COUNT:
656 case MSR_GIM_HV_STIMER2_COUNT:
657 case MSR_GIM_HV_STIMER3_COUNT:
658 {
659 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
660 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_COUNT) >> 1;
661 PCGIMHVSTIMER pcHvStimer = &pHvCpu->aStimers[idxStimer];
662 *puValue = pcHvStimer->uStimerCountMsr;
663 return VINF_SUCCESS;
664 }
665
666 case MSR_GIM_HV_EOM:
667 {
668 *puValue = 0;
669 return VINF_SUCCESS;
670 }
671
672 case MSR_GIM_HV_SCONTROL:
673 {
674 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
675 *puValue = pHvCpu->uSControlMsr;
676 return VINF_SUCCESS;
677 }
678
679 case MSR_GIM_HV_SIMP:
680 {
681 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
682 *puValue = pHvCpu->uSimpMsr;
683 return VINF_SUCCESS;
684 }
685
686 case MSR_GIM_HV_SVERSION:
687 *puValue = GIM_HV_SVERSION;
688 return VINF_SUCCESS;
689
690 case MSR_GIM_HV_RESET:
691 *puValue = 0;
692 return VINF_SUCCESS;
693
694 case MSR_GIM_HV_CRASH_CTL:
695 *puValue = pHv->uCrashCtlMsr;
696 return VINF_SUCCESS;
697
698 case MSR_GIM_HV_CRASH_P0: *puValue = pHv->uCrashP0Msr; return VINF_SUCCESS;
699 case MSR_GIM_HV_CRASH_P1: *puValue = pHv->uCrashP1Msr; return VINF_SUCCESS;
700 case MSR_GIM_HV_CRASH_P2: *puValue = pHv->uCrashP2Msr; return VINF_SUCCESS;
701 case MSR_GIM_HV_CRASH_P3: *puValue = pHv->uCrashP3Msr; return VINF_SUCCESS;
702 case MSR_GIM_HV_CRASH_P4: *puValue = pHv->uCrashP4Msr; return VINF_SUCCESS;
703
704 case MSR_GIM_HV_DEBUG_OPTIONS_MSR:
705 {
706 if (pHv->fIsVendorMsHv)
707 {
708#ifndef IN_RING3
709 return VINF_CPUM_R3_MSR_READ;
710#else
711 LogRelMax(1, ("GIM: HyperV: Guest querying debug options, suggesting %s interface\n",
712 pHv->fDbgHypercallInterface ? "hypercall" : "MSR"));
713 *puValue = pHv->fDbgHypercallInterface ? GIM_HV_DEBUG_OPTIONS_USE_HYPERCALLS : 0;
714 return VINF_SUCCESS;
715#endif
716 }
717 break;
718 }
719
720 /* Write-only MSRs: */
721 case MSR_GIM_HV_EOI:
722 /* Reserved/unknown MSRs: */
723 default:
724 {
725#ifdef IN_RING3
726 static uint32_t s_cTimes = 0;
727 if (s_cTimes++ < 20)
728 LogRel(("GIM: HyperV: Unknown/invalid RdMsr (%#x) -> #GP(0)\n", idMsr));
729 LogFunc(("Unknown/invalid RdMsr (%#RX32) -> #GP(0)\n", idMsr));
730 break;
731#else
732 return VINF_CPUM_R3_MSR_READ;
733#endif
734 }
735 }
736
737 return VERR_CPUM_RAISE_GP_0;
738}
739
740
741/**
742 * MSR write handler for Hyper-V.
743 *
744 * @returns Strict VBox status code like CPUMSetGuestMsr().
745 * @retval VINF_CPUM_R3_MSR_WRITE
746 * @retval VERR_CPUM_RAISE_GP_0
747 *
748 * @param pVCpu The cross context virtual CPU structure.
749 * @param idMsr The MSR being written.
750 * @param pRange The range this MSR belongs to.
751 * @param uRawValue The raw value with the ignored bits not masked.
752 *
753 * @thread EMT.
754 */
755VMM_INT_DECL(VBOXSTRICTRC) gimHvWriteMsr(PVMCPUCC pVCpu, uint32_t idMsr, PCCPUMMSRRANGE pRange, uint64_t uRawValue)
756{
757 NOREF(pRange);
758 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
759 PGIMHV pHv = &pVM->gim.s.u.Hv;
760
761 switch (idMsr)
762 {
763 case MSR_GIM_HV_TPR:
764 return APICHvSetTpr(pVCpu, uRawValue);
765
766 case MSR_GIM_HV_EOI:
767 return APICHvSetEoi(pVCpu, uRawValue);
768
769 case MSR_GIM_HV_ICR:
770 return APICHvSetIcr(pVCpu, uRawValue);
771
772 case MSR_GIM_HV_GUEST_OS_ID:
773 {
774#ifndef IN_RING3
775 return VINF_CPUM_R3_MSR_WRITE;
776#else
777 /* Disable the hypercall-page and hypercalls if 0 is written to this MSR. */
778 if (!uRawValue)
779 {
780 if (MSR_GIM_HV_HYPERCALL_PAGE_IS_ENABLED(pHv->u64HypercallMsr))
781 {
782 gimR3HvDisableHypercallPage(pVM);
783 pHv->u64HypercallMsr &= ~MSR_GIM_HV_HYPERCALL_PAGE_ENABLE;
784 LogRel(("GIM: HyperV: Hypercall page disabled via Guest OS ID MSR\n"));
785 }
786 }
787 else
788 {
789 LogRel(("GIM: HyperV: Guest OS reported ID %#RX64\n", uRawValue));
790 LogRel(("GIM: HyperV: Open-source=%RTbool Vendor=%#x OS=%#x (%s) Major=%u Minor=%u ServicePack=%u Build=%u\n",
791 MSR_GIM_HV_GUEST_OS_ID_IS_OPENSOURCE(uRawValue), MSR_GIM_HV_GUEST_OS_ID_VENDOR(uRawValue),
792 MSR_GIM_HV_GUEST_OS_ID_OS_VARIANT(uRawValue), gimHvGetGuestOsIdVariantName(uRawValue),
793 MSR_GIM_HV_GUEST_OS_ID_MAJOR_VERSION(uRawValue), MSR_GIM_HV_GUEST_OS_ID_MINOR_VERSION(uRawValue),
794 MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue), MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue)));
795
796 /* Update the CPUID leaf, see Hyper-V spec. "Microsoft Hypervisor CPUID Leaves". */
797 CPUMCPUIDLEAF HyperLeaf;
798 RT_ZERO(HyperLeaf);
799 HyperLeaf.uLeaf = UINT32_C(0x40000002);
800 HyperLeaf.uEax = MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue);
801 HyperLeaf.uEbx = MSR_GIM_HV_GUEST_OS_ID_MINOR_VERSION(uRawValue)
802 | (MSR_GIM_HV_GUEST_OS_ID_MAJOR_VERSION(uRawValue) << 16);
803 HyperLeaf.uEcx = MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue);
804 HyperLeaf.uEdx = MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue)
805 | (MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue) << 24);
806 int rc2 = CPUMR3CpuIdInsert(pVM, &HyperLeaf);
807 AssertRC(rc2);
808 }
809
810 pHv->u64GuestOsIdMsr = uRawValue;
811
812 /*
813 * Update EM on hypercall instruction enabled state.
814 */
815 if (uRawValue)
816 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
817 EMSetHypercallInstructionsEnabled(pVM->CTX_SUFF(apCpus)[idCpu], true);
818 else
819 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
820 EMSetHypercallInstructionsEnabled(pVM->CTX_SUFF(apCpus)[idCpu], false);
821
822 return VINF_SUCCESS;
823#endif /* IN_RING3 */
824 }
825
826 case MSR_GIM_HV_HYPERCALL:
827 {
828#ifndef IN_RING3
829 return VINF_CPUM_R3_MSR_WRITE;
830#else
831 /** @todo There is/was a problem with hypercalls for FreeBSD 10.1 guests,
832 * see @bugref{7270#c116}. */
833 /* First, update all but the hypercall page enable bit. */
834 pHv->u64HypercallMsr = (uRawValue & ~MSR_GIM_HV_HYPERCALL_PAGE_ENABLE);
835
836 /* Hypercall page can only be enabled when the guest has enabled hypercalls. */
837 bool fEnable = MSR_GIM_HV_HYPERCALL_PAGE_IS_ENABLED(uRawValue);
838 if ( fEnable
839 && !gimHvAreHypercallsEnabled(pVM))
840 {
841 return VINF_SUCCESS;
842 }
843
844 /* Is the guest disabling the hypercall-page? Allow it regardless of the Guest-OS Id Msr. */
845 if (!fEnable)
846 {
847 gimR3HvDisableHypercallPage(pVM);
848 pHv->u64HypercallMsr = uRawValue;
849 return VINF_SUCCESS;
850 }
851
852 /* Enable the hypercall-page. */
853 RTGCPHYS GCPhysHypercallPage = MSR_GIM_HV_HYPERCALL_GUEST_PFN(uRawValue) << GUEST_PAGE_SHIFT;
854 int rc = gimR3HvEnableHypercallPage(pVM, GCPhysHypercallPage);
855 if (RT_SUCCESS(rc))
856 {
857 pHv->u64HypercallMsr = uRawValue;
858 return VINF_SUCCESS;
859 }
860
861 return VERR_CPUM_RAISE_GP_0;
862#endif
863 }
864
865 case MSR_GIM_HV_REF_TSC:
866 {
867#ifndef IN_RING3
868 return VINF_CPUM_R3_MSR_WRITE;
869#else /* IN_RING3 */
870 /* First, update all but the TSC page enable bit. */
871 pHv->u64TscPageMsr = (uRawValue & ~MSR_GIM_HV_REF_TSC_ENABLE);
872
873 /* Is the guest disabling the TSC page? */
874 bool fEnable = MSR_GIM_HV_REF_TSC_IS_ENABLED(uRawValue);
875 if (!fEnable)
876 {
877 gimR3HvDisableTscPage(pVM);
878 pHv->u64TscPageMsr = uRawValue;
879 return VINF_SUCCESS;
880 }
881
882 /* Enable the TSC page. */
883 RTGCPHYS GCPhysTscPage = MSR_GIM_HV_REF_TSC_GUEST_PFN(uRawValue) << GUEST_PAGE_SHIFT;
884 int rc = gimR3HvEnableTscPage(pVM, GCPhysTscPage, false /* fUseThisTscSequence */, 0 /* uTscSequence */);
885 if (RT_SUCCESS(rc))
886 {
887 pHv->u64TscPageMsr = uRawValue;
888 return VINF_SUCCESS;
889 }
890
891 return VERR_CPUM_RAISE_GP_0;
892#endif /* IN_RING3 */
893 }
894
895 case MSR_GIM_HV_APIC_ASSIST_PAGE:
896 {
897#ifndef IN_RING3
898 return VINF_CPUM_R3_MSR_WRITE;
899#else /* IN_RING3 */
900 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
901 pHvCpu->uApicAssistPageMsr = uRawValue;
902
903 if (MSR_GIM_HV_APICASSIST_PAGE_IS_ENABLED(uRawValue))
904 {
905 RTGCPHYS GCPhysApicAssistPage = MSR_GIM_HV_APICASSIST_GUEST_PFN(uRawValue) << GUEST_PAGE_SHIFT;
906 if (PGMPhysIsGCPhysNormal(pVM, GCPhysApicAssistPage))
907 {
908 int rc = gimR3HvEnableApicAssistPage(pVCpu, GCPhysApicAssistPage);
909 if (RT_SUCCESS(rc))
910 {
911 pHvCpu->uApicAssistPageMsr = uRawValue;
912 return VINF_SUCCESS;
913 }
914 }
915 else
916 {
917 LogRelMax(5, ("GIM%u: HyperV: APIC-assist page address %#RGp invalid!\n", pVCpu->idCpu,
918 GCPhysApicAssistPage));
919 }
920 }
921 else
922 gimR3HvDisableApicAssistPage(pVCpu);
923
924 return VERR_CPUM_RAISE_GP_0;
925#endif /* IN_RING3 */
926 }
927
928 case MSR_GIM_HV_RESET:
929 {
930#ifndef IN_RING3
931 return VINF_CPUM_R3_MSR_WRITE;
932#else
933 if (MSR_GIM_HV_RESET_IS_ENABLED(uRawValue))
934 {
935 LogRel(("GIM: HyperV: Reset initiated through MSR\n"));
936 int rc = PDMDevHlpVMReset(pVM->gim.s.pDevInsR3, PDMVMRESET_F_GIM);
937 AssertRC(rc); /* Note! Not allowed to return VINF_EM_RESET / VINF_EM_HALT here, so ignore them. */
938 }
939 /* else: Ignore writes to other bits. */
940 return VINF_SUCCESS;
941#endif /* IN_RING3 */
942 }
943
944 case MSR_GIM_HV_CRASH_CTL:
945 {
946#ifndef IN_RING3
947 return VINF_CPUM_R3_MSR_WRITE;
948#else
949 if (uRawValue & MSR_GIM_HV_CRASH_CTL_NOTIFY)
950 {
951 LogRel(("GIM: HyperV: Guest indicates a fatal condition! P0=%#RX64 P1=%#RX64 P2=%#RX64 P3=%#RX64 P4=%#RX64\n",
952 pHv->uCrashP0Msr, pHv->uCrashP1Msr, pHv->uCrashP2Msr, pHv->uCrashP3Msr, pHv->uCrashP4Msr));
953 DBGFR3ReportBugCheck(pVM, pVCpu, DBGFEVENT_BSOD_MSR, pHv->uCrashP0Msr, pHv->uCrashP1Msr,
954 pHv->uCrashP2Msr, pHv->uCrashP3Msr, pHv->uCrashP4Msr);
955 /* (Do not try pass VINF_EM_DBG_EVENT, doesn't work from here!) */
956 }
957 return VINF_SUCCESS;
958#endif
959 }
960
961 case MSR_GIM_HV_SYNTH_DEBUG_SEND_BUFFER:
962 {
963 if (!pHv->fDbgEnabled)
964 return VERR_CPUM_RAISE_GP_0;
965#ifndef IN_RING3
966 return VINF_CPUM_R3_MSR_WRITE;
967#else
968 RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue;
969 pHv->uDbgSendBufferMsr = GCPhysBuffer;
970 if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer))
971 LogRel(("GIM: HyperV: Set up debug send buffer at %#RGp\n", GCPhysBuffer));
972 else
973 LogRel(("GIM: HyperV: Destroyed debug send buffer\n"));
974 pHv->uDbgSendBufferMsr = uRawValue;
975 return VINF_SUCCESS;
976#endif
977 }
978
979 case MSR_GIM_HV_SYNTH_DEBUG_RECEIVE_BUFFER:
980 {
981 if (!pHv->fDbgEnabled)
982 return VERR_CPUM_RAISE_GP_0;
983#ifndef IN_RING3
984 return VINF_CPUM_R3_MSR_WRITE;
985#else
986 RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue;
987 pHv->uDbgRecvBufferMsr = GCPhysBuffer;
988 if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer))
989 LogRel(("GIM: HyperV: Set up debug receive buffer at %#RGp\n", GCPhysBuffer));
990 else
991 LogRel(("GIM: HyperV: Destroyed debug receive buffer\n"));
992 return VINF_SUCCESS;
993#endif
994 }
995
996 case MSR_GIM_HV_SYNTH_DEBUG_PENDING_BUFFER:
997 {
998 if (!pHv->fDbgEnabled)
999 return VERR_CPUM_RAISE_GP_0;
1000#ifndef IN_RING3
1001 return VINF_CPUM_R3_MSR_WRITE;
1002#else
1003 RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue;
1004 pHv->uDbgPendingBufferMsr = GCPhysBuffer;
1005 if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer))
1006 LogRel(("GIM: HyperV: Set up debug pending buffer at %#RGp\n", uRawValue));
1007 else
1008 LogRel(("GIM: HyperV: Destroyed debug pending buffer\n"));
1009 return VINF_SUCCESS;
1010#endif
1011 }
1012
1013 case MSR_GIM_HV_SYNTH_DEBUG_CONTROL:
1014 {
1015 if (!pHv->fDbgEnabled)
1016 return VERR_CPUM_RAISE_GP_0;
1017#ifndef IN_RING3
1018 return VINF_CPUM_R3_MSR_WRITE;
1019#else
1020 if ( MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_WRITE(uRawValue)
1021 && MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_READ(uRawValue))
1022 {
1023 LogRel(("GIM: HyperV: Requesting both read and write through debug control MSR -> #GP(0)\n"));
1024 return VERR_CPUM_RAISE_GP_0;
1025 }
1026
1027 if (MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_WRITE(uRawValue))
1028 {
1029 uint32_t cbWrite = MSR_GIM_HV_SYNTH_DEBUG_CONTROL_W_LEN(uRawValue);
1030 if ( cbWrite > 0
1031 && cbWrite < GIM_HV_PAGE_SIZE)
1032 {
1033 if (PGMPhysIsGCPhysNormal(pVM, (RTGCPHYS)pHv->uDbgSendBufferMsr))
1034 {
1035 Assert(pHv->pvDbgBuffer);
1036 int rc = PGMPhysSimpleReadGCPhys(pVM, pHv->pvDbgBuffer, (RTGCPHYS)pHv->uDbgSendBufferMsr, cbWrite);
1037 if (RT_SUCCESS(rc))
1038 {
1039 LogRelMax(1, ("GIM: HyperV: Initiated debug data transmission via MSR\n"));
1040 uint32_t cbWritten = 0;
1041 rc = gimR3HvDebugWrite(pVM, pHv->pvDbgBuffer, cbWrite, &cbWritten, false /*fUdpPkt*/);
1042 if ( RT_SUCCESS(rc)
1043 && cbWrite == cbWritten)
1044 pHv->uDbgStatusMsr = MSR_GIM_HV_SYNTH_DEBUG_STATUS_W_SUCCESS;
1045 else
1046 pHv->uDbgStatusMsr = 0;
1047 }
1048 else
1049 LogRelMax(5, ("GIM: HyperV: Failed to read debug send buffer at %#RGp, rc=%Rrc\n",
1050 (RTGCPHYS)pHv->uDbgSendBufferMsr, rc));
1051 }
1052 else
1053 LogRelMax(5, ("GIM: HyperV: Debug send buffer address %#RGp invalid! Ignoring debug write!\n",
1054 (RTGCPHYS)pHv->uDbgSendBufferMsr));
1055 }
1056 else
1057 LogRelMax(5, ("GIM: HyperV: Invalid write size %u specified in MSR, ignoring debug write!\n",
1058 MSR_GIM_HV_SYNTH_DEBUG_CONTROL_W_LEN(uRawValue)));
1059 }
1060 else if (MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_READ(uRawValue))
1061 {
1062 if (PGMPhysIsGCPhysNormal(pVM, (RTGCPHYS)pHv->uDbgRecvBufferMsr))
1063 {
1064 LogRelMax(1, ("GIM: HyperV: Initiated debug data reception via MSR\n"));
1065 uint32_t cbReallyRead;
1066 Assert(pHv->pvDbgBuffer);
1067 int rc = gimR3HvDebugRead(pVM, pHv->pvDbgBuffer, GIM_HV_PAGE_SIZE, GIM_HV_PAGE_SIZE,
1068 &cbReallyRead, 0, false /*fUdpPkt*/);
1069 if ( RT_SUCCESS(rc)
1070 && cbReallyRead > 0)
1071 {
1072 rc = PGMPhysSimpleWriteGCPhys(pVM, (RTGCPHYS)pHv->uDbgRecvBufferMsr, pHv->pvDbgBuffer, cbReallyRead);
1073 if (RT_SUCCESS(rc))
1074 {
1075 pHv->uDbgStatusMsr = ((uint16_t)cbReallyRead) << 16;
1076 pHv->uDbgStatusMsr |= MSR_GIM_HV_SYNTH_DEBUG_STATUS_R_SUCCESS;
1077 }
1078 else
1079 {
1080 pHv->uDbgStatusMsr = 0;
1081 LogRelMax(5, ("GIM: HyperV: PGMPhysSimpleWriteGCPhys failed. rc=%Rrc\n", rc));
1082 }
1083 }
1084 else
1085 pHv->uDbgStatusMsr = 0;
1086 }
1087 else
1088 {
1089 LogRelMax(5, ("GIM: HyperV: Debug receive buffer address %#RGp invalid! Ignoring debug read!\n",
1090 (RTGCPHYS)pHv->uDbgRecvBufferMsr));
1091 }
1092 }
1093 return VINF_SUCCESS;
1094#endif
1095 }
1096
1097 case MSR_GIM_HV_SINT0: case MSR_GIM_HV_SINT1: case MSR_GIM_HV_SINT2: case MSR_GIM_HV_SINT3:
1098 case MSR_GIM_HV_SINT4: case MSR_GIM_HV_SINT5: case MSR_GIM_HV_SINT6: case MSR_GIM_HV_SINT7:
1099 case MSR_GIM_HV_SINT8: case MSR_GIM_HV_SINT9: case MSR_GIM_HV_SINT10: case MSR_GIM_HV_SINT11:
1100 case MSR_GIM_HV_SINT12: case MSR_GIM_HV_SINT13: case MSR_GIM_HV_SINT14: case MSR_GIM_HV_SINT15:
1101 {
1102 uint8_t uVector = MSR_GIM_HV_SINT_GET_VECTOR(uRawValue);
1103 bool const fVMBusMsg = RT_BOOL(idMsr == GIM_HV_VMBUS_MSG_SINT);
1104 size_t const idxSintMsr = idMsr - MSR_GIM_HV_SINT0;
1105 const char *pszDesc = fVMBusMsg ? "VMBus Message" : "Generic";
1106 if (uVector < GIM_HV_SINT_VECTOR_VALID_MIN)
1107 {
1108 LogRel(("GIM%u: HyperV: Programmed an invalid vector in SINT%u (%s), uVector=%u -> #GP(0)\n", pVCpu->idCpu,
1109 idxSintMsr, pszDesc, uVector));
1110 return VERR_CPUM_RAISE_GP_0;
1111 }
1112
1113 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1114 pHvCpu->auSintMsrs[idxSintMsr] = uRawValue;
1115 if (fVMBusMsg)
1116 {
1117 if (MSR_GIM_HV_SINT_IS_MASKED(uRawValue))
1118 Log(("GIM%u: HyperV: Masked SINT%u (%s)\n", pVCpu->idCpu, idxSintMsr, pszDesc));
1119 else
1120 Log(("GIM%u: HyperV: Unmasked SINT%u (%s), uVector=%u\n", pVCpu->idCpu, idxSintMsr, pszDesc, uVector));
1121 }
1122 Log(("GIM%u: HyperV: Written SINT%u=%#RX64\n", pVCpu->idCpu, idxSintMsr, uRawValue));
1123 return VINF_SUCCESS;
1124 }
1125
1126 case MSR_GIM_HV_SCONTROL:
1127 {
1128#ifndef IN_RING3
1129 /** @todo make this RZ later? */
1130 return VINF_CPUM_R3_MSR_WRITE;
1131#else
1132 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1133 pHvCpu->uSControlMsr = uRawValue;
1134 if (MSR_GIM_HV_SCONTROL_IS_ENABLED(uRawValue))
1135 LogRel(("GIM%u: HyperV: Synthetic interrupt control enabled\n", pVCpu->idCpu));
1136 else
1137 LogRel(("GIM%u: HyperV: Synthetic interrupt control disabled\n", pVCpu->idCpu));
1138 return VINF_SUCCESS;
1139#endif
1140 }
1141
1142 case MSR_GIM_HV_STIMER0_CONFIG:
1143 case MSR_GIM_HV_STIMER1_CONFIG:
1144 case MSR_GIM_HV_STIMER2_CONFIG:
1145 case MSR_GIM_HV_STIMER3_CONFIG:
1146 {
1147 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1148 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1;
1149
1150 /* Validate the writable bits. */
1151 if (RT_LIKELY(!(uRawValue & ~MSR_GIM_HV_STIMER_RW_VALID)))
1152 {
1153 Assert(idxStimer < RT_ELEMENTS(pHvCpu->aStimers));
1154 PGIMHVSTIMER pHvStimer = &pHvCpu->aStimers[idxStimer];
1155
1156 /* Lock to prevent concurrent access from the timer callback. */
1157 int rc = TMTimerLock(pVM, pHvStimer->hTimer, VERR_IGNORED);
1158 if (rc == VINF_SUCCESS)
1159 {
1160 /* Update the MSR value. */
1161 pHvStimer->uStimerConfigMsr = uRawValue;
1162 Log(("GIM%u: HyperV: Set STIMER_CONFIG%u=%#RX64\n", pVCpu->idCpu, idxStimer, uRawValue));
1163
1164 /* Process the MSR bits. */
1165 if ( !MSR_GIM_HV_STIMER_GET_SINTX(uRawValue) /* Writing SINTx as 0 causes the timer to be disabled. */
1166 || !MSR_GIM_HV_STIMER_IS_ENABLED(uRawValue))
1167 {
1168 pHvStimer->uStimerConfigMsr &= ~MSR_GIM_HV_STIMER_ENABLE;
1169 gimHvStopStimer(pVCpu, pHvStimer);
1170 Log(("GIM%u: HyperV: Disabled STIMER_CONFIG%u\n", pVCpu->idCpu, idxStimer));
1171 }
1172 else if (MSR_GIM_HV_STIMER_IS_ENABLED(uRawValue))
1173 {
1174 /* Auto-enable implies writing to the STIMERx_COUNT MSR is what starts the timer. */
1175 if (!MSR_GIM_HV_STIMER_IS_AUTO_ENABLED(uRawValue))
1176 {
1177 if (!TMTimerIsActive(pVM, pHvStimer->hTimer))
1178 {
1179 gimHvStartStimer(pVCpu, pHvStimer);
1180 Log(("GIM%u: HyperV: Started STIMER%u\n", pVCpu->idCpu, idxStimer));
1181 }
1182 else
1183 {
1184 /*
1185 * Enabling a timer that's already enabled is undefined behaviour,
1186 * see Hyper-V spec. 15.3.1 "Synthetic Timer Configuration Register".
1187 *
1188 * Our implementation just re-starts the timer. Guests that comform to
1189 * the Hyper-V specs. should not be doing this anyway.
1190 */
1191 AssertFailed();
1192 gimHvStopStimer(pVCpu, pHvStimer);
1193 gimHvStartStimer(pVCpu, pHvStimer);
1194 }
1195 }
1196 }
1197
1198 TMTimerUnlock(pVM, pHvStimer->hTimer);
1199 }
1200 return rc;
1201 }
1202#ifndef IN_RING3
1203 return VINF_CPUM_R3_MSR_WRITE;
1204#else
1205 LogRel(("GIM%u: HyperV: Setting reserved bits of STIMER%u MSR (uRawValue=%#RX64) -> #GP(0)\n", pVCpu->idCpu,
1206 idxStimer, uRawValue));
1207 return VERR_CPUM_RAISE_GP_0;
1208#endif
1209 }
1210
1211 case MSR_GIM_HV_STIMER0_COUNT:
1212 case MSR_GIM_HV_STIMER1_COUNT:
1213 case MSR_GIM_HV_STIMER2_COUNT:
1214 case MSR_GIM_HV_STIMER3_COUNT:
1215 {
1216 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1217 uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1;
1218 Assert(idxStimer < RT_ELEMENTS(pHvCpu->aStimers));
1219 PGIMHVSTIMER pHvStimer = &pHvCpu->aStimers[idxStimer];
1220 int const rcBusy = VINF_CPUM_R3_MSR_WRITE;
1221
1222 /*
1223 * Writing zero to this MSR disables the timer regardless of whether the auto-enable
1224 * flag is set in the config MSR corresponding to the timer.
1225 */
1226 if (!uRawValue)
1227 {
1228 gimHvStopStimer(pVCpu, pHvStimer);
1229 pHvStimer->uStimerCountMsr = 0;
1230 Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64, stopped timer\n", pVCpu->idCpu, idxStimer, uRawValue));
1231 return VINF_SUCCESS;
1232 }
1233
1234 /*
1235 * Concurrent writes to the config. MSR can't happen as it's serialized by way
1236 * of being done on the same EMT as this.
1237 */
1238 if (MSR_GIM_HV_STIMER_IS_AUTO_ENABLED(pHvStimer->uStimerConfigMsr))
1239 {
1240 int rc = TMTimerLock(pVM, pHvStimer->hTimer, rcBusy);
1241 if (rc == VINF_SUCCESS)
1242 {
1243 pHvStimer->uStimerCountMsr = uRawValue;
1244 gimHvStartStimer(pVCpu, pHvStimer);
1245 TMTimerUnlock(pVM, pHvStimer->hTimer);
1246 Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64 %RU64 msec, auto-started timer\n", pVCpu->idCpu, idxStimer,
1247 uRawValue, (uRawValue * 100) / RT_NS_1MS_64));
1248 }
1249 return rc;
1250 }
1251
1252 /* Simple update of the counter without any timer start/stop side-effects. */
1253 pHvStimer->uStimerCountMsr = uRawValue;
1254 Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64\n", pVCpu->idCpu, idxStimer, uRawValue));
1255 return VINF_SUCCESS;
1256 }
1257
1258 case MSR_GIM_HV_EOM:
1259 {
1260 /** @todo implement EOM. */
1261 Log(("GIM%u: HyperV: EOM\n", pVCpu->idCpu));
1262 return VINF_SUCCESS;
1263 }
1264
1265 case MSR_GIM_HV_SIEFP:
1266 {
1267#ifndef IN_RING3
1268 return VINF_CPUM_R3_MSR_WRITE;
1269#else
1270 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1271 pHvCpu->uSiefpMsr = uRawValue;
1272 if (MSR_GIM_HV_SIEF_PAGE_IS_ENABLED(uRawValue))
1273 {
1274 RTGCPHYS GCPhysSiefPage = MSR_GIM_HV_SIEF_GUEST_PFN(uRawValue) << GUEST_PAGE_SHIFT;
1275 if (PGMPhysIsGCPhysNormal(pVM, GCPhysSiefPage))
1276 {
1277 int rc = gimR3HvEnableSiefPage(pVCpu, GCPhysSiefPage);
1278 if (RT_SUCCESS(rc))
1279 {
1280 LogRel(("GIM%u: HyperV: Enabled synthetic interrupt event flags page at %#RGp\n", pVCpu->idCpu,
1281 GCPhysSiefPage));
1282 /** @todo SIEF setup. */
1283 return VINF_SUCCESS;
1284 }
1285 }
1286 else
1287 LogRelMax(5, ("GIM%u: HyperV: SIEF page address %#RGp invalid!\n", pVCpu->idCpu, GCPhysSiefPage));
1288 }
1289 else
1290 gimR3HvDisableSiefPage(pVCpu);
1291
1292 return VERR_CPUM_RAISE_GP_0;
1293#endif
1294 break;
1295 }
1296
1297 case MSR_GIM_HV_SIMP:
1298 {
1299#ifndef IN_RING3
1300 return VINF_CPUM_R3_MSR_WRITE;
1301#else
1302 PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu;
1303 pHvCpu->uSimpMsr = uRawValue;
1304 if (MSR_GIM_HV_SIMP_IS_ENABLED(uRawValue))
1305 {
1306 RTGCPHYS GCPhysSimp = MSR_GIM_HV_SIMP_GPA(uRawValue);
1307 if (PGMPhysIsGCPhysNormal(pVM, GCPhysSimp))
1308 {
1309 uint8_t abSimp[GIM_HV_PAGE_SIZE];
1310 RT_ZERO(abSimp);
1311 int rc2 = PGMPhysSimpleWriteGCPhys(pVM, GCPhysSimp, &abSimp[0], sizeof(abSimp));
1312 if (RT_SUCCESS(rc2))
1313 LogRel(("GIM%u: HyperV: Enabled synthetic interrupt message page at %#RGp\n", pVCpu->idCpu, GCPhysSimp));
1314 else
1315 {
1316 LogRel(("GIM%u: HyperV: Failed to update synthetic interrupt message page at %#RGp. uSimpMsr=%#RX64 rc=%Rrc\n",
1317 pVCpu->idCpu, pHvCpu->uSimpMsr, GCPhysSimp, rc2));
1318 return VERR_CPUM_RAISE_GP_0;
1319 }
1320 }
1321 else
1322 {
1323 LogRel(("GIM%u: HyperV: Enabled synthetic interrupt message page at invalid address %#RGp\n", pVCpu->idCpu,
1324 GCPhysSimp));
1325 }
1326 }
1327 else
1328 LogRel(("GIM%u: HyperV: Disabled synthetic interrupt message page\n", pVCpu->idCpu));
1329 return VINF_SUCCESS;
1330#endif
1331 }
1332
1333 case MSR_GIM_HV_CRASH_P0: pHv->uCrashP0Msr = uRawValue; return VINF_SUCCESS;
1334 case MSR_GIM_HV_CRASH_P1: pHv->uCrashP1Msr = uRawValue; return VINF_SUCCESS;
1335 case MSR_GIM_HV_CRASH_P2: pHv->uCrashP2Msr = uRawValue; return VINF_SUCCESS;
1336 case MSR_GIM_HV_CRASH_P3: pHv->uCrashP3Msr = uRawValue; return VINF_SUCCESS;
1337 case MSR_GIM_HV_CRASH_P4: pHv->uCrashP4Msr = uRawValue; return VINF_SUCCESS;
1338
1339 case MSR_GIM_HV_TIME_REF_COUNT: /* Read-only MSRs. */
1340 case MSR_GIM_HV_VP_INDEX:
1341 case MSR_GIM_HV_TSC_FREQ:
1342 case MSR_GIM_HV_APIC_FREQ:
1343 LogFunc(("WrMsr on read-only MSR %#RX32 -> #GP(0)\n", idMsr));
1344 break;
1345
1346 case MSR_GIM_HV_DEBUG_OPTIONS_MSR:
1347 {
1348 if (pHv->fIsVendorMsHv)
1349 {
1350#ifndef IN_RING3
1351 return VINF_CPUM_R3_MSR_WRITE;
1352#else
1353 LogRelMax(5, ("GIM: HyperV: Write debug options MSR with %#RX64 ignored\n", uRawValue));
1354 return VINF_SUCCESS;
1355#endif
1356 }
1357 return VERR_CPUM_RAISE_GP_0;
1358 }
1359
1360 default:
1361 {
1362#ifdef IN_RING3
1363 static uint32_t s_cTimes = 0;
1364 if (s_cTimes++ < 20)
1365 LogRel(("GIM: HyperV: Unknown/invalid WrMsr (%#x,%#x`%08x) -> #GP(0)\n", idMsr,
1366 uRawValue & UINT64_C(0xffffffff00000000), uRawValue & UINT64_C(0xffffffff)));
1367 LogFunc(("Unknown/invalid WrMsr (%#RX32,%#RX64) -> #GP(0)\n", idMsr, uRawValue));
1368 break;
1369#else
1370 return VINF_CPUM_R3_MSR_WRITE;
1371#endif
1372 }
1373 }
1374
1375 return VERR_CPUM_RAISE_GP_0;
1376}
1377
1378
1379/**
1380 * Whether we need to trap \#UD exceptions in the guest.
1381 *
1382 * We only needed to trap \#UD exceptions for the old raw-mode guests when
1383 * hypercalls are enabled. For HM VMs, the hypercall would be handled via the
1384 * VMCALL/VMMCALL VM-exit.
1385 *
1386 * @param pVCpu The cross context virtual CPU structure.
1387 */
1388VMM_INT_DECL(bool) gimHvShouldTrapXcptUD(PVMCPU pVCpu)
1389{
1390 RT_NOREF(pVCpu);
1391 return false;
1392}
1393
1394
1395/**
1396 * Checks the instruction and executes the hypercall if it's a valid hypercall
1397 * instruction.
1398 *
1399 * This interface is used by \#UD handlers and IEM.
1400 *
1401 * @returns Strict VBox status code.
1402 * @param pVCpu The cross context virtual CPU structure.
1403 * @param pCtx Pointer to the guest-CPU context.
1404 * @param uDisOpcode The disassembler opcode.
1405 * @param cbInstr The instruction length.
1406 *
1407 * @thread EMT(pVCpu).
1408 */
1409VMM_INT_DECL(VBOXSTRICTRC) gimHvHypercallEx(PVMCPUCC pVCpu, PCPUMCTX pCtx, unsigned uDisOpcode, uint8_t cbInstr)
1410{
1411 Assert(pVCpu);
1412 Assert(pCtx);
1413 VMCPU_ASSERT_EMT(pVCpu);
1414
1415 PVM pVM = pVCpu->CTX_SUFF(pVM);
1416 CPUMCPUVENDOR const enmGuestCpuVendor = (CPUMCPUVENDOR)pVM->cpum.ro.GuestFeatures.enmCpuVendor;
1417 if ( ( uDisOpcode == OP_VMCALL
1418 && ( enmGuestCpuVendor == CPUMCPUVENDOR_INTEL
1419 || enmGuestCpuVendor == CPUMCPUVENDOR_VIA
1420 || enmGuestCpuVendor == CPUMCPUVENDOR_SHANGHAI))
1421 || ( uDisOpcode == OP_VMMCALL
1422 && ( enmGuestCpuVendor == CPUMCPUVENDOR_AMD
1423 || enmGuestCpuVendor == CPUMCPUVENDOR_HYGON)) )
1424 return gimHvHypercall(pVCpu, pCtx);
1425
1426 RT_NOREF_PV(cbInstr);
1427 return VERR_GIM_INVALID_HYPERCALL_INSTR;
1428}
1429
1430
1431/**
1432 * Exception handler for \#UD.
1433 *
1434 * @returns Strict VBox status code.
1435 * @retval VINF_SUCCESS if the hypercall succeeded (even if its operation
1436 * failed).
1437 * @retval VINF_GIM_R3_HYPERCALL re-start the hypercall from ring-3.
1438 * @retval VINF_GIM_HYPERCALL_CONTINUING continue hypercall without updating
1439 * RIP.
1440 * @retval VERR_GIM_HYPERCALL_ACCESS_DENIED CPL is insufficient.
1441 * @retval VERR_GIM_INVALID_HYPERCALL_INSTR instruction at RIP is not a valid
1442 * hypercall instruction.
1443 *
1444 * @param pVCpu The cross context virtual CPU structure.
1445 * @param pCtx Pointer to the guest-CPU context.
1446 * @param pDis Pointer to the disassembled instruction state at RIP.
1447 * Optional, can be NULL.
1448 * @param pcbInstr Where to store the instruction length of the hypercall
1449 * instruction. Optional, can be NULL.
1450 *
1451 * @thread EMT(pVCpu).
1452 */
1453VMM_INT_DECL(VBOXSTRICTRC) gimHvXcptUD(PVMCPUCC pVCpu, PCPUMCTX pCtx, PDISCPUSTATE pDis, uint8_t *pcbInstr)
1454{
1455 VMCPU_ASSERT_EMT(pVCpu);
1456
1457 /*
1458 * If we didn't ask for #UD to be trapped, bail.
1459 */
1460 if (!gimHvShouldTrapXcptUD(pVCpu))
1461 return VERR_GIM_IPE_1;
1462
1463 if (!pDis)
1464 {
1465 /*
1466 * Disassemble the instruction at RIP to figure out if it's the Intel VMCALL instruction
1467 * or the AMD VMMCALL instruction and if so, handle it as a hypercall.
1468 */
1469 unsigned cbInstr;
1470 DISCPUSTATE Dis;
1471 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, &Dis, &cbInstr);
1472 if (RT_SUCCESS(rc))
1473 {
1474 if (pcbInstr)
1475 *pcbInstr = (uint8_t)cbInstr;
1476 return gimHvHypercallEx(pVCpu, pCtx, Dis.pCurInstr->uOpcode, Dis.cbInstr);
1477 }
1478
1479 Log(("GIM: HyperV: Failed to disassemble instruction at CS:RIP=%04x:%08RX64. rc=%Rrc\n", pCtx->cs.Sel, pCtx->rip, rc));
1480 return rc;
1481 }
1482
1483 return gimHvHypercallEx(pVCpu, pCtx, pDis->pCurInstr->uOpcode, pDis->cbInstr);
1484}
1485
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette