VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/HMSVMAll.cpp@ 71529

Last change on this file since 71529 was 71529, checked in by vboxsync, 7 years ago

VMM/HM: Fixes to MSRPM bit accesses. Implemented merging of guest and nested-guest MSRPMs. Other nits and cleanups.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 22.5 KB
Line 
1/* $Id: HMSVMAll.cpp 71529 2018-03-28 06:32:43Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - All contexts.
4 */
5
6/*
7 * Copyright (C) 2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include "HMInternal.h"
25#include <VBox/vmm/apic.h>
26#include <VBox/vmm/gim.h>
27#include <VBox/vmm/hm.h>
28#include <VBox/vmm/iem.h>
29#include <VBox/vmm/vm.h>
30#include <VBox/vmm/hm_svm.h>
31
32
33#ifndef IN_RC
34/**
35 * Emulates a simple MOV TPR (CR8) instruction.
36 *
37 * Used for TPR patching on 32-bit guests. This simply looks up the patch record
38 * at EIP and does the required.
39 *
40 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
41 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
42 * TPR). See hmR3ReplaceTprInstr() for the details.
43 *
44 * @returns VBox status code.
45 * @retval VINF_SUCCESS if the access was handled successfully.
46 * @retval VERR_NOT_FOUND if no patch record for this RIP could be found.
47 * @retval VERR_SVM_UNEXPECTED_PATCH_TYPE if the found patch type is invalid.
48 *
49 * @param pVCpu The cross context virtual CPU structure.
50 * @param pCtx Pointer to the guest-CPU context.
51 * @param pfUpdateRipAndRF Whether the guest RIP/EIP has been updated as
52 * part of the TPR patch operation.
53 */
54static int hmSvmEmulateMovTpr(PVMCPU pVCpu, PCPUMCTX pCtx, bool *pfUpdateRipAndRF)
55{
56 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
57
58 /*
59 * We do this in a loop as we increment the RIP after a successful emulation
60 * and the new RIP may be a patched instruction which needs emulation as well.
61 */
62 bool fUpdateRipAndRF = false;
63 bool fPatchFound = false;
64 PVM pVM = pVCpu->CTX_SUFF(pVM);
65 for (;;)
66 {
67 bool fPending;
68 uint8_t u8Tpr;
69
70 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
71 if (!pPatch)
72 break;
73
74 fPatchFound = true;
75 switch (pPatch->enmType)
76 {
77 case HMTPRINSTR_READ:
78 {
79 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
80 AssertRC(rc);
81
82 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
83 AssertRC(rc);
84 pCtx->rip += pPatch->cbOp;
85 pCtx->eflags.Bits.u1RF = 0;
86 fUpdateRipAndRF = true;
87 break;
88 }
89
90 case HMTPRINSTR_WRITE_REG:
91 case HMTPRINSTR_WRITE_IMM:
92 {
93 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
94 {
95 uint32_t u32Val;
96 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
97 AssertRC(rc);
98 u8Tpr = u32Val;
99 }
100 else
101 u8Tpr = (uint8_t)pPatch->uSrcOperand;
102
103 int rc2 = APICSetTpr(pVCpu, u8Tpr);
104 AssertRC(rc2);
105 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
106
107 pCtx->rip += pPatch->cbOp;
108 pCtx->eflags.Bits.u1RF = 0;
109 fUpdateRipAndRF = true;
110 break;
111 }
112
113 default:
114 {
115 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
116 pVCpu->hm.s.u32HMError = pPatch->enmType;
117 *pfUpdateRipAndRF = fUpdateRipAndRF;
118 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
119 }
120 }
121 }
122
123 *pfUpdateRipAndRF = fUpdateRipAndRF;
124 if (fPatchFound)
125 return VINF_SUCCESS;
126 return VERR_NOT_FOUND;
127}
128
129
130/**
131 * Notification callback for when a \#VMEXIT happens outside SVM R0 code (e.g.
132 * in IEM).
133 *
134 * @param pVCpu The cross context virtual CPU structure.
135 * @param pCtx Pointer to the guest-CPU context.
136 *
137 * @sa hmR0SvmVmRunCacheVmcb.
138 */
139VMM_INT_DECL(void) HMSvmNstGstVmExitNotify(PVMCPU pVCpu, PCPUMCTX pCtx)
140{
141 /*
142 * Restore the nested-guest VMCB fields which have been modified for executing
143 * the nested-guest under SVM R0.
144 */
145 if (pCtx->hwvirt.svm.fHMCachedVmcb)
146 {
147 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
148 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
149 PSVMVMCBSTATESAVE pVmcbNstGstState = &pVmcbNstGst->guest;
150 PSVMNESTEDVMCBCACHE pNstGstVmcbCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
151
152 /*
153 * The fields that are guaranteed to be read-only during SVM guest execution
154 * can safely be restored from our VMCB cache. Other fields like control registers
155 * are already updated by hardware-assisted SVM or by IEM. We only restore those
156 * fields that are potentially modified by hardware-assisted SVM.
157 */
158 pVmcbNstGstCtrl->u16InterceptRdCRx = pNstGstVmcbCache->u16InterceptRdCRx;
159 pVmcbNstGstCtrl->u16InterceptWrCRx = pNstGstVmcbCache->u16InterceptWrCRx;
160 pVmcbNstGstCtrl->u16InterceptRdDRx = pNstGstVmcbCache->u16InterceptRdDRx;
161 pVmcbNstGstCtrl->u16InterceptWrDRx = pNstGstVmcbCache->u16InterceptWrDRx;
162 pVmcbNstGstCtrl->u32InterceptXcpt = pNstGstVmcbCache->u32InterceptXcpt;
163 pVmcbNstGstCtrl->u64InterceptCtrl = pNstGstVmcbCache->u64InterceptCtrl;
164 pVmcbNstGstState->u64DBGCTL = pNstGstVmcbCache->u64DBGCTL;
165 pVmcbNstGstCtrl->u32VmcbCleanBits = pNstGstVmcbCache->u32VmcbCleanBits;
166 pVmcbNstGstCtrl->u64IOPMPhysAddr = pNstGstVmcbCache->u64IOPMPhysAddr;
167 pVmcbNstGstCtrl->u64MSRPMPhysAddr = pNstGstVmcbCache->u64MSRPMPhysAddr;
168 pVmcbNstGstCtrl->u64TSCOffset = pNstGstVmcbCache->u64TSCOffset;
169 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = pNstGstVmcbCache->fVIntrMasking;
170 pVmcbNstGstCtrl->TLBCtrl = pNstGstVmcbCache->TLBCtrl;
171 pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging = pNstGstVmcbCache->u1NestedPaging;
172 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pNstGstVmcbCache->u1LbrVirt;
173 pCtx->hwvirt.svm.fHMCachedVmcb = false;
174 }
175
176 /*
177 * Currently, VMRUN, #VMEXIT transitions involves trips to ring-3 that would flag a full
178 * CPU state change. However, if we exit to ring-3 in response to receiving a physical
179 * interrupt, we skip signaling any CPU state change as normally no change
180 * is done to the execution state (see VINF_EM_RAW_INTERRUPT handling in hmR0SvmExitToRing3).
181 * However, with nested-guests, the state can change for e.g., we might perform a
182 * SVM_EXIT_INTR #VMEXIT for the nested-guest in ring-3. Hence we signal a full CPU
183 * state change here.
184 */
185 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
186}
187
188
189/**
190 * Checks if the Virtual GIF (Global Interrupt Flag) feature is supported and
191 * enabled for the VM.
192 *
193 * @returns @c true if VGIF is enabled, @c false otherwise.
194 * @param pVM The cross context VM structure.
195 *
196 * @remarks This value returned by this functions is expected by the callers not
197 * to change throughout the lifetime of the VM.
198 */
199VMM_INT_DECL(bool) HMSvmIsVGifActive(PVM pVM)
200{
201 bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
202 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
203
204 return HMIsEnabled(pVM) && fVGif && fUseVGif;
205}
206
207
208/**
209 * Applies the TSC offset of an SVM nested-guest if any and returns the new TSC
210 * value for the nested-guest.
211 *
212 * @returns The TSC offset after applying any nested-guest TSC offset.
213 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
214 * @param uTicks The guest TSC.
215 *
216 * @remarks This function looks at the VMCB cache rather than directly at the
217 * nested-guest VMCB. The latter may have been modified for executing
218 * using hardware-assisted SVM.
219 *
220 * @sa CPUMApplyNestedGuestTscOffset.
221 */
222VMM_INT_DECL(uint64_t) HMSvmNstGstApplyTscOffset(PVMCPU pVCpu, uint64_t uTicks)
223{
224 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
225 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
226 Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
227 NOREF(pCtx);
228 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
229 return uTicks + pVmcbNstGstCache->u64TSCOffset;
230}
231#endif /* !IN_RC */
232
233
234/**
235 * Performs the operations necessary that are part of the vmmcall instruction
236 * execution in the guest.
237 *
238 * @returns Strict VBox status code (i.e. informational status codes too).
239 * @retval VINF_SUCCESS on successful handling, no \#UD needs to be thrown,
240 * update RIP and eflags.RF depending on @a pfUpdatedRipAndRF and
241 * continue guest execution.
242 * @retval VINF_GIM_HYPERCALL_CONTINUING continue hypercall without updating
243 * RIP.
244 * @retval VINF_GIM_R3_HYPERCALL re-start the hypercall from ring-3.
245 *
246 * @param pVCpu The cross context virtual CPU structure.
247 * @param pCtx Pointer to the guest-CPU context.
248 * @param pfUpdatedRipAndRF Whether the guest RIP/EIP has been updated as
249 * part of handling the VMMCALL operation.
250 */
251VMM_INT_DECL(VBOXSTRICTRC) HMSvmVmmcall(PVMCPU pVCpu, PCPUMCTX pCtx, bool *pfUpdatedRipAndRF)
252{
253#ifndef IN_RC
254 /*
255 * TPR patched instruction emulation for 32-bit guests.
256 */
257 PVM pVM = pVCpu->CTX_SUFF(pVM);
258 if (pVM->hm.s.fTprPatchingAllowed)
259 {
260 int rc = hmSvmEmulateMovTpr(pVCpu, pCtx, pfUpdatedRipAndRF);
261 if (RT_SUCCESS(rc))
262 return VINF_SUCCESS;
263
264 if (rc != VERR_NOT_FOUND)
265 {
266 Log(("hmSvmExitVmmCall: hmSvmEmulateMovTpr returns %Rrc\n", rc));
267 return rc;
268 }
269 }
270#endif
271
272 /*
273 * Paravirtualized hypercalls.
274 */
275 *pfUpdatedRipAndRF = false;
276 if (pVCpu->hm.s.fHypercallsEnabled)
277 return GIMHypercall(pVCpu, pCtx);
278
279 return VERR_NOT_AVAILABLE;
280}
281
282
283/**
284 * Converts an SVM event type to a TRPM event type.
285 *
286 * @returns The TRPM event type.
287 * @retval TRPM_32BIT_HACK if the specified type of event isn't among the set
288 * of recognized trap types.
289 *
290 * @param pEvent Pointer to the SVM event.
291 */
292VMM_INT_DECL(TRPMEVENT) HMSvmEventToTrpmEventType(PCSVMEVENT pEvent)
293{
294 uint8_t const uType = pEvent->n.u3Type;
295 switch (uType)
296 {
297 case SVM_EVENT_EXTERNAL_IRQ: return TRPM_HARDWARE_INT;
298 case SVM_EVENT_SOFTWARE_INT: return TRPM_SOFTWARE_INT;
299 case SVM_EVENT_EXCEPTION:
300 case SVM_EVENT_NMI: return TRPM_TRAP;
301 default:
302 break;
303 }
304 AssertMsgFailed(("HMSvmEventToTrpmEvent: Invalid pending-event type %#x\n", uType));
305 return TRPM_32BIT_HACK;
306}
307
308
309/**
310 * Gets the MSR permission bitmap byte and bit offset for the specified MSR.
311 *
312 * @returns VBox status code.
313 * @param idMsr The MSR being requested.
314 * @param pbOffMsrpm Where to store the byte offset in the MSR permission
315 * bitmap for @a idMsr.
316 * @param puMsrpmBit Where to store the bit offset starting at the byte
317 * returned in @a pbOffMsrpm.
318 */
319VMM_INT_DECL(int) HMSvmGetMsrpmOffsetAndBit(uint32_t idMsr, uint16_t *pbOffMsrpm, uint8_t *puMsrpmBit)
320{
321 Assert(pbOffMsrpm);
322 Assert(puMsrpmBit);
323
324 /*
325 * MSRPM Layout:
326 * Byte offset MSR range
327 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
328 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
329 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
330 * 0x1800 - 0x1fff Reserved
331 *
332 * Each MSR is represented by 2 permission bits (read and write).
333 */
334 if (idMsr <= 0x00001fff)
335 {
336 /* Pentium-compatible MSRs. */
337 uint32_t const bitoffMsr = idMsr << 1;
338 *pbOffMsrpm = bitoffMsr >> 3;
339 *puMsrpmBit = bitoffMsr & 7;
340 return VINF_SUCCESS;
341 }
342
343 if ( idMsr >= 0xc0000000
344 && idMsr <= 0xc0001fff)
345 {
346 /* AMD Sixth Generation x86 Processor MSRs. */
347 uint32_t const bitoffMsr = (idMsr - 0xc0000000) << 1;
348 *pbOffMsrpm = 0x800 + (bitoffMsr >> 3);
349 *puMsrpmBit = bitoffMsr & 7;
350 return VINF_SUCCESS;
351 }
352
353 if ( idMsr >= 0xc0010000
354 && idMsr <= 0xc0011fff)
355 {
356 /* AMD Seventh and Eighth Generation Processor MSRs. */
357 uint32_t const bitoffMsr = (idMsr - 0xc0010000) << 1;
358 *pbOffMsrpm = 0x1000 + (bitoffMsr >> 3);
359 *puMsrpmBit = bitoffMsr & 7;
360 return VINF_SUCCESS;
361 }
362
363 *pbOffMsrpm = 0;
364 *puMsrpmBit = 0;
365 return VERR_OUT_OF_RANGE;
366}
367
368
369/**
370 * Determines whether an IOIO intercept is active for the nested-guest or not.
371 *
372 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
373 * @param u16Port The IO port being accessed.
374 * @param enmIoType The type of IO access.
375 * @param cbReg The IO operand size in bytes.
376 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
377 * @param iEffSeg The effective segment number.
378 * @param fRep Whether this is a repeating IO instruction (REP prefix).
379 * @param fStrIo Whether this is a string IO instruction.
380 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO struct to be filled.
381 * Optional, can be NULL.
382 */
383VMM_INT_DECL(bool) HMSvmIsIOInterceptActive(void *pvIoBitmap, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
384 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo,
385 PSVMIOIOEXITINFO pIoExitInfo)
386{
387 Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
388 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
389
390 /*
391 * The IOPM layout:
392 * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or
393 * two 4K pages.
394 *
395 * For IO instructions that access more than a single byte, the permission bits
396 * for all bytes are checked; if any bit is set to 1, the IO access is intercepted.
397 *
398 * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes),
399 * we need 3 extra bits beyond the second 4K page.
400 */
401 static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 };
402
403 uint16_t const offIopm = u16Port >> 3;
404 uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7];
405 uint8_t const cShift = u16Port - (offIopm << 3);
406 uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift);
407
408 uint8_t const *pbIopm = (uint8_t *)pvIoBitmap;
409 Assert(pbIopm);
410 pbIopm += offIopm;
411 uint16_t const u16Iopm = *(uint16_t *)pbIopm;
412 if (u16Iopm & fIopmMask)
413 {
414 if (pIoExitInfo)
415 {
416 static const uint32_t s_auIoOpSize[] =
417 { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 };
418
419 static const uint32_t s_auIoAddrSize[] =
420 { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 };
421
422 pIoExitInfo->u = s_auIoOpSize[cbReg & 7];
423 pIoExitInfo->u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7];
424 pIoExitInfo->n.u1STR = fStrIo;
425 pIoExitInfo->n.u1REP = fRep;
426 pIoExitInfo->n.u3SEG = iEffSeg & 7;
427 pIoExitInfo->n.u1Type = enmIoType;
428 pIoExitInfo->n.u16Port = u16Port;
429 }
430 return true;
431 }
432
433 /** @todo remove later (for debugging as VirtualBox always traps all IO
434 * intercepts). */
435 AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n"));
436 return false;
437}
438
439
440/**
441 * Checks if the guest VMCB has the specified ctrl/instruction intercept active.
442 *
443 * @returns @c true if in intercept is set, @c false otherwise.
444 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
445 * @param pCtx Pointer to the context.
446 * @param fIntercept The SVM control/instruction intercept, see
447 * SVM_CTRL_INTERCEPT_*.
448 */
449VMM_INT_DECL(bool) HMIsGuestSvmCtrlInterceptSet(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t fIntercept)
450{
451 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
452 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
453 return RT_BOOL(pVmcbNstGstCache->u64InterceptCtrl & fIntercept);
454}
455
456
457/**
458 * Checks if the guest VMCB has the specified CR read intercept active.
459 *
460 * @returns @c true if in intercept is set, @c false otherwise.
461 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
462 * @param pCtx Pointer to the context.
463 * @param uCr The CR register number (0 to 15).
464 */
465VMM_INT_DECL(bool) HMIsGuestSvmReadCRxInterceptSet(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uCr)
466{
467 Assert(uCr < 16);
468 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
469 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
470 return RT_BOOL(pVmcbNstGstCache->u16InterceptRdCRx & (1 << uCr));
471}
472
473
474/**
475 * Checks if the guest VMCB has the specified CR write intercept
476 * active.
477 *
478 * @returns @c true if in intercept is set, @c false otherwise.
479 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
480 * @param pCtx Pointer to the context.
481 * @param uCr The CR register number (0 to 15).
482 */
483VMM_INT_DECL(bool) HMIsGuestSvmWriteCRxInterceptSet(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uCr)
484{
485 Assert(uCr < 16);
486 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
487 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
488 return RT_BOOL(pVmcbNstGstCache->u16InterceptWrCRx & (1 << uCr));
489}
490
491
492/**
493 * Checks if the guest VMCB has the specified DR read intercept
494 * active.
495 *
496 * @returns @c true if in intercept is set, @c false otherwise.
497 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
498 * @param pCtx Pointer to the context.
499 * @param uDr The DR register number (0 to 15).
500 */
501VMM_INT_DECL(bool) HMIsGuestSvmReadDRxInterceptSet(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uDr)
502{
503 Assert(uDr < 16);
504 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
505 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
506 return RT_BOOL(pVmcbNstGstCache->u16InterceptRdDRx & (1 << uDr));
507}
508
509
510/**
511 * Checks if the guest VMCB has the specified DR write intercept active.
512 *
513 * @returns @c true if in intercept is set, @c false otherwise.
514 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
515 * @param pCtx Pointer to the context.
516 * @param uDr The DR register number (0 to 15).
517 */
518VMM_INT_DECL(bool) HMIsGuestSvmWriteDRxInterceptSet(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uDr)
519{
520 Assert(uDr < 16);
521 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
522 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
523 return RT_BOOL(pVmcbNstGstCache->u16InterceptWrDRx & (1 << uDr));
524}
525
526
527/**
528 * Checks if the guest VMCB has the specified exception intercept active.
529 *
530 * @returns true if in intercept is active, false otherwise.
531 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
532 * @param pCtx Pointer to the context.
533 * @param uVector The exception / interrupt vector.
534 */
535VMM_INT_DECL(bool) HMIsGuestSvmXcptInterceptSet(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uVector)
536{
537 Assert(uVector < 32);
538 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
539 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
540 return RT_BOOL(pVmcbNstGstCache->u32InterceptXcpt & (1 << uVector));
541}
542
543
544/**
545 * Checks whether the SVM nested-guest is in a state to receive physical (APIC)
546 * interrupts.
547 *
548 * @returns true if it's ready, false otherwise.
549 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
550 * @param pCtx The guest-CPU context.
551 *
552 * @remarks This function looks at the VMCB cache rather than directly at the
553 * nested-guest VMCB. The latter may have been modified for executing
554 * using hardware-assisted SVM.
555 *
556 * @sa CPUMCanSvmNstGstTakePhysIntr.
557 */
558VMM_INT_DECL(bool) HMCanSvmNstGstTakePhysIntr(PVMCPU pVCpu, PCCPUMCTX pCtx)
559{
560 Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
561 Assert(pCtx->hwvirt.fGif);
562 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
563 X86EFLAGS fEFlags;
564 if (pVmcbNstGstCache->fVIntrMasking)
565 fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
566 else
567 fEFlags.u = pCtx->eflags.u;
568 return fEFlags.Bits.u1IF;
569}
570
571
572/**
573 * Checks whether the SVM nested-guest is in a state to receive virtual (setup
574 * for injection by VMRUN instruction) interrupts.
575 *
576 * @returns true if it's ready, false otherwise.
577 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
578 * @param pCtx The guest-CPU context.
579 *
580 * @remarks This function looks at the VMCB cache rather than directly at the
581 * nested-guest VMCB. The latter may have been modified for executing
582 * using hardware-assisted SVM.
583 *
584 * @sa CPUMCanSvmNstGstTakeVirtIntr.
585 */
586VMM_INT_DECL(bool) HMCanSvmNstGstTakeVirtIntr(PVMCPU pVCpu, PCCPUMCTX pCtx)
587{
588#ifdef IN_RC
589 RT_NOREF2(pVCpu, pCtx);
590 AssertReleaseFailedReturn(false);
591#else
592 Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
593 Assert(pCtx->hwvirt.fGif);
594 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
595
596 PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
597 if ( !pVmcbCtrl->IntCtrl.n.u1IgnoreTPR
598 && pVmcbCtrl->IntCtrl.n.u4VIntrPrio <= pVmcbCtrl->IntCtrl.n.u8VTPR)
599 return false;
600
601 X86EFLAGS fEFlags;
602 if (pVmcbNstGstCache->fVIntrMasking)
603 fEFlags.u = pCtx->eflags.u;
604 else
605 fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
606 return fEFlags.Bits.u1IF;
607#endif
608}
609
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette