/* $Id: HMSVMAll.cpp 77902 2019-03-27 08:49:11Z vboxsync $ */ /** @file * HM SVM (AMD-V) - All contexts. */ /* * Copyright (C) 2017-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_HM #define VMCPU_INCL_CPUM_GST_CTX #include "HMInternal.h" #include #include #include #include #include #ifndef IN_RC /** * Emulates a simple MOV TPR (CR8) instruction. * * Used for TPR patching on 32-bit guests. This simply looks up the patch record * at EIP and does the required. * * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly * like how we want it to be (e.g. not followed by shr 4 as is usually done for * TPR). See hmR3ReplaceTprInstr() for the details. * * @returns VBox status code. * @retval VINF_SUCCESS if the access was handled successfully, RIP + RFLAGS updated. * @retval VERR_NOT_FOUND if no patch record for this RIP could be found. * @retval VERR_SVM_UNEXPECTED_PATCH_TYPE if the found patch type is invalid. * * @param pVCpu The cross context virtual CPU structure. * @param pCtx Pointer to the guest-CPU context. */ VMM_INT_DECL(int) hmEmulateSvmMovTpr(PVMCPU pVCpu) { PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip)); /* * We do this in a loop as we increment the RIP after a successful emulation * and the new RIP may be a patched instruction which needs emulation as well. */ bool fPatchFound = false; PVM pVM = pVCpu->CTX_SUFF(pVM); for (;;) { PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip); if (!pPatch) break; fPatchFound = true; uint8_t u8Tpr; switch (pPatch->enmType) { case HMTPRINSTR_READ: { bool fPending; int rc = APICGetTpr(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */); AssertRC(rc); rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr); AssertRC(rc); pCtx->rip += pPatch->cbOp; pCtx->eflags.Bits.u1RF = 0; break; } case HMTPRINSTR_WRITE_REG: case HMTPRINSTR_WRITE_IMM: { if (pPatch->enmType == HMTPRINSTR_WRITE_REG) { uint32_t u32Val; int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val); AssertRC(rc); u8Tpr = u32Val; } else u8Tpr = (uint8_t)pPatch->uSrcOperand; int rc2 = APICSetTpr(pVCpu, u8Tpr); AssertRC(rc2); pCtx->rip += pPatch->cbOp; pCtx->eflags.Bits.u1RF = 0; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); break; } default: { AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType)); pVCpu->hm.s.u32HMError = pPatch->enmType; return VERR_SVM_UNEXPECTED_PATCH_TYPE; } } } return fPatchFound ? VINF_SUCCESS : VERR_NOT_FOUND; } # ifdef VBOX_WITH_NESTED_HWVIRT_SVM /** * Notification callback for when a \#VMEXIT happens outside SVM R0 code (e.g. * in IEM). * * @param pVCpu The cross context virtual CPU structure. * @param pCtx Pointer to the guest-CPU context. * * @sa hmR0SvmVmRunCacheVmcb. */ VMM_INT_DECL(void) HMNotifySvmNstGstVmexit(PVMCPU pVCpu, PCPUMCTX pCtx) { PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; if (pVmcbNstGstCache->fCacheValid) { /* * Restore fields as our own code might look at the VMCB controls as part * of the #VMEXIT handling in IEM. Otherwise, strictly speaking we don't need to * restore these fields because currently none of them are written back to memory * by a physical CPU on #VMEXIT. */ PSVMVMCBCTRL pVmcbNstGstCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl; pVmcbNstGstCtrl->u16InterceptRdCRx = pVmcbNstGstCache->u16InterceptRdCRx; pVmcbNstGstCtrl->u16InterceptWrCRx = pVmcbNstGstCache->u16InterceptWrCRx; pVmcbNstGstCtrl->u16InterceptRdDRx = pVmcbNstGstCache->u16InterceptRdDRx; pVmcbNstGstCtrl->u16InterceptWrDRx = pVmcbNstGstCache->u16InterceptWrDRx; pVmcbNstGstCtrl->u16PauseFilterThreshold = pVmcbNstGstCache->u16PauseFilterThreshold; pVmcbNstGstCtrl->u16PauseFilterCount = pVmcbNstGstCache->u16PauseFilterCount; pVmcbNstGstCtrl->u32InterceptXcpt = pVmcbNstGstCache->u32InterceptXcpt; pVmcbNstGstCtrl->u64InterceptCtrl = pVmcbNstGstCache->u64InterceptCtrl; pVmcbNstGstCtrl->u64TSCOffset = pVmcbNstGstCache->u64TSCOffset; pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = pVmcbNstGstCache->fVIntrMasking; pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVmcbNstGstCache->fNestedPaging; pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcbNstGstCache->fLbrVirt; pVmcbNstGstCache->fCacheValid = false; } /* * Transitions to ring-3 flag a full CPU-state change except if we transition to ring-3 * in response to a physical CPU interrupt as no changes to the guest-CPU state are * expected (see VINF_EM_RAW_INTERRUPT handling in hmR0SvmExitToRing3). * * However, with nested-guests, the state -can- change on trips to ring-3 for we might * try to inject a nested-guest physical interrupt and cause a SVM_EXIT_INTR #VMEXIT for * the nested-guest from ring-3. Import the complete state here as we will be swapping * to the guest VMCB after the #VMEXIT. */ CPUMImportGuestStateOnDemand(pVCpu, CPUMCTX_EXTRN_ALL); AssertMsg(!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL), ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", pVCpu->cpum.GstCtx.fExtrn, CPUMCTX_EXTRN_ALL)); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); } # endif /** * Checks if the Virtual GIF (Global Interrupt Flag) feature is supported and * enabled for the VM. * * @returns @c true if VGIF is enabled, @c false otherwise. * @param pVM The cross context VM structure. * * @remarks This value returned by this functions is expected by the callers not * to change throughout the lifetime of the VM. */ VMM_INT_DECL(bool) HMIsSvmVGifActive(PVM pVM) { bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF); bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif; return fVGif && fUseVGif; } /** * Applies the TSC offset of an SVM nested-guest if any and returns the new TSC * value for the nested-guest. * * @returns The TSC offset after applying any nested-guest TSC offset. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uTicks The guest TSC. * * @remarks This function looks at the VMCB cache rather than directly at the * nested-guest VMCB. The latter may have been modified for executing * using hardware-assisted SVM. * * @note If you make any changes to this function, please check if * hmR0SvmNstGstUndoTscOffset() needs adjusting. * * @sa CPUMApplyNestedGuestTscOffset(), hmR0SvmNstGstUndoTscOffset(). */ VMM_INT_DECL(uint64_t) HMApplySvmNstGstTscOffset(PVMCPU pVCpu, uint64_t uTicks) { PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); RT_NOREF(pCtx); PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; Assert(pVmcbNstGstCache->fCacheValid); return uTicks + pVmcbNstGstCache->u64TSCOffset; } /** * Interface used by IEM to handle patched TPR accesses. * * @returns VBox status code * @retval VINF_SUCCESS if hypercall was handled, RIP + RFLAGS all dealt with. * @retval VERR_NOT_FOUND if hypercall was _not_ handled. * @retval VERR_SVM_UNEXPECTED_PATCH_TYPE on IPE. * * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(int) HMHCMaybeMovTprSvmHypercall(PVMCPU pVCpu) { PVM pVM = pVCpu->CTX_SUFF(pVM); if (pVM->hm.s.fTprPatchingAllowed) { int rc = hmEmulateSvmMovTpr(pVCpu); if (RT_SUCCESS(rc)) return VINF_SUCCESS; return rc; } return VERR_NOT_FOUND; } /** * Checks if the current AMD CPU is subject to erratum 170 "In SVM mode, * incorrect code bytes may be fetched after a world-switch". * * @param pu32Family Where to store the CPU family (can be NULL). * @param pu32Model Where to store the CPU model (can be NULL). * @param pu32Stepping Where to store the CPU stepping (can be NULL). * @returns true if the erratum applies, false otherwise. */ VMM_INT_DECL(int) HMIsSubjectToSvmErratum170(uint32_t *pu32Family, uint32_t *pu32Model, uint32_t *pu32Stepping) { /* * Erratum 170 which requires a forced TLB flush for each world switch: * See AMD spec. "Revision Guide for AMD NPT Family 0Fh Processors". * * All BH-G1/2 and DH-G1/2 models include a fix: * Athlon X2: 0x6b 1/2 * 0x68 1/2 * Athlon 64: 0x7f 1 * 0x6f 2 * Sempron: 0x7f 1/2 * 0x6f 2 * 0x6c 2 * 0x7c 2 * Turion 64: 0x68 2 */ uint32_t u32Dummy; uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily; ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy); u32BaseFamily = (u32Version >> 8) & 0xf; u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0); u32Model = ((u32Version >> 4) & 0xf); u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4); u32Stepping = u32Version & 0xf; bool fErratumApplies = false; if ( u32Family == 0xf && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1) && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2)) { fErratumApplies = true; } if (pu32Family) *pu32Family = u32Family; if (pu32Model) *pu32Model = u32Model; if (pu32Stepping) *pu32Stepping = u32Stepping; return fErratumApplies; } #endif /* !IN_RC */ /** * Gets the MSR permission bitmap byte and bit offset for the specified MSR. * * @returns VBox status code. * @param idMsr The MSR being requested. * @param pbOffMsrpm Where to store the byte offset in the MSR permission * bitmap for @a idMsr. * @param puMsrpmBit Where to store the bit offset starting at the byte * returned in @a pbOffMsrpm. */ VMM_INT_DECL(int) HMGetSvmMsrpmOffsetAndBit(uint32_t idMsr, uint16_t *pbOffMsrpm, uint8_t *puMsrpmBit) { Assert(pbOffMsrpm); Assert(puMsrpmBit); /* * MSRPM Layout: * Byte offset MSR range * 0x000 - 0x7ff 0x00000000 - 0x00001fff * 0x800 - 0xfff 0xc0000000 - 0xc0001fff * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff * 0x1800 - 0x1fff Reserved * * Each MSR is represented by 2 permission bits (read and write). */ if (idMsr <= 0x00001fff) { /* Pentium-compatible MSRs. */ uint32_t const bitoffMsr = idMsr << 1; *pbOffMsrpm = bitoffMsr >> 3; *puMsrpmBit = bitoffMsr & 7; return VINF_SUCCESS; } if ( idMsr >= 0xc0000000 && idMsr <= 0xc0001fff) { /* AMD Sixth Generation x86 Processor MSRs. */ uint32_t const bitoffMsr = (idMsr - 0xc0000000) << 1; *pbOffMsrpm = 0x800 + (bitoffMsr >> 3); *puMsrpmBit = bitoffMsr & 7; return VINF_SUCCESS; } if ( idMsr >= 0xc0010000 && idMsr <= 0xc0011fff) { /* AMD Seventh and Eighth Generation Processor MSRs. */ uint32_t const bitoffMsr = (idMsr - 0xc0010000) << 1; *pbOffMsrpm = 0x1000 + (bitoffMsr >> 3); *puMsrpmBit = bitoffMsr & 7; return VINF_SUCCESS; } *pbOffMsrpm = 0; *puMsrpmBit = 0; return VERR_OUT_OF_RANGE; } /** * Determines whether an IOIO intercept is active for the nested-guest or not. * * @param pvIoBitmap Pointer to the nested-guest IO bitmap. * @param u16Port The IO port being accessed. * @param enmIoType The type of IO access. * @param cbReg The IO operand size in bytes. * @param cAddrSizeBits The address size bits (for 16, 32 or 64). * @param iEffSeg The effective segment number. * @param fRep Whether this is a repeating IO instruction (REP prefix). * @param fStrIo Whether this is a string IO instruction. * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO struct to be filled. * Optional, can be NULL. */ VMM_INT_DECL(bool) HMIsSvmIoInterceptActive(void *pvIoBitmap, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg, uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, PSVMIOIOEXITINFO pIoExitInfo) { Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64); Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8); /* * The IOPM layout: * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or * two 4K pages. * * For IO instructions that access more than a single byte, the permission bits * for all bytes are checked; if any bit is set to 1, the IO access is intercepted. * * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes), * we need 3 extra bits beyond the second 4K page. */ static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 }; uint16_t const offIopm = u16Port >> 3; uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7]; uint8_t const cShift = u16Port - (offIopm << 3); uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift); uint8_t const *pbIopm = (uint8_t *)pvIoBitmap; Assert(pbIopm); pbIopm += offIopm; uint16_t const u16Iopm = *(uint16_t *)pbIopm; if (u16Iopm & fIopmMask) { if (pIoExitInfo) { static const uint32_t s_auIoOpSize[] = { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 }; static const uint32_t s_auIoAddrSize[] = { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 }; pIoExitInfo->u = s_auIoOpSize[cbReg & 7]; pIoExitInfo->u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7]; pIoExitInfo->n.u1Str = fStrIo; pIoExitInfo->n.u1Rep = fRep; pIoExitInfo->n.u3Seg = iEffSeg & 7; pIoExitInfo->n.u1Type = enmIoType; pIoExitInfo->n.u16Port = u16Port; } return true; } /** @todo remove later (for debugging as VirtualBox always traps all IO * intercepts). */ AssertMsgFailed(("CPUMSvmIsIOInterceptActive: We expect an IO intercept here!\n")); return false; } /** * Converts an SVM event type to a TRPM event type. * * @returns The TRPM event type. * @retval TRPM_32BIT_HACK if the specified type of event isn't among the set * of recognized trap types. * * @param pEvent Pointer to the SVM event. * @param uVector The vector associated with the event. */ VMM_INT_DECL(TRPMEVENT) HMSvmEventToTrpmEventType(PCSVMEVENT pEvent, uint8_t uVector) { uint8_t const uType = pEvent->n.u3Type; switch (uType) { case SVM_EVENT_EXTERNAL_IRQ: return TRPM_HARDWARE_INT; case SVM_EVENT_SOFTWARE_INT: return TRPM_SOFTWARE_INT; case SVM_EVENT_NMI: return TRPM_TRAP; case SVM_EVENT_EXCEPTION: { if ( uVector == X86_XCPT_BP || uVector == X86_XCPT_OF) return TRPM_SOFTWARE_INT; return TRPM_TRAP; } default: break; } AssertMsgFailed(("HMSvmEventToTrpmEvent: Invalid pending-event type %#x\n", uType)); return TRPM_32BIT_HACK; } /** * Returns whether HM has cached the nested-guest VMCB. * * If the VMCB is cached by HM, it means HM may have potentially modified the * VMCB for execution using hardware-assisted SVM. * * @returns true if HM has cached the nested-guest VMCB, false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMM_INT_DECL(bool) HMHasGuestSvmVmcbCached(PVMCPU pVCpu) { PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; return pVmcbNstGstCache->fCacheValid; } /** * Checks if the nested-guest VMCB has the specified ctrl/instruction intercept * active. * * @returns @c true if in intercept is set, @c false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param fIntercept The SVM control/instruction intercept, see * SVM_CTRL_INTERCEPT_*. */ VMM_INT_DECL(bool) HMIsGuestSvmCtrlInterceptSet(PVMCPU pVCpu, uint64_t fIntercept) { Assert(HMHasGuestSvmVmcbCached(pVCpu)); PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; return RT_BOOL(pVmcbNstGstCache->u64InterceptCtrl & fIntercept); } /** * Checks if the nested-guest VMCB has the specified CR read intercept active. * * @returns @c true if in intercept is set, @c false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uCr The CR register number (0 to 15). */ VMM_INT_DECL(bool) HMIsGuestSvmReadCRxInterceptSet(PVMCPU pVCpu, uint8_t uCr) { Assert(uCr < 16); Assert(HMHasGuestSvmVmcbCached(pVCpu)); PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; return RT_BOOL(pVmcbNstGstCache->u16InterceptRdCRx & (1 << uCr)); } /** * Checks if the nested-guest VMCB has the specified CR write intercept active. * * @returns @c true if in intercept is set, @c false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uCr The CR register number (0 to 15). */ VMM_INT_DECL(bool) HMIsGuestSvmWriteCRxInterceptSet(PVMCPU pVCpu, uint8_t uCr) { Assert(uCr < 16); Assert(HMHasGuestSvmVmcbCached(pVCpu)); PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; return RT_BOOL(pVmcbNstGstCache->u16InterceptWrCRx & (1 << uCr)); } /** * Checks if the nested-guest VMCB has the specified DR read intercept active. * * @returns @c true if in intercept is set, @c false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uDr The DR register number (0 to 15). */ VMM_INT_DECL(bool) HMIsGuestSvmReadDRxInterceptSet(PVMCPU pVCpu, uint8_t uDr) { Assert(uDr < 16); Assert(HMHasGuestSvmVmcbCached(pVCpu)); PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; return RT_BOOL(pVmcbNstGstCache->u16InterceptRdDRx & (1 << uDr)); } /** * Checks if the nested-guest VMCB has the specified DR write intercept active. * * @returns @c true if in intercept is set, @c false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uDr The DR register number (0 to 15). */ VMM_INT_DECL(bool) HMIsGuestSvmWriteDRxInterceptSet(PVMCPU pVCpu, uint8_t uDr) { Assert(uDr < 16); Assert(HMHasGuestSvmVmcbCached(pVCpu)); PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; return RT_BOOL(pVmcbNstGstCache->u16InterceptWrDRx & (1 << uDr)); } /** * Checks if the nested-guest VMCB has the specified exception intercept active. * * @returns true if in intercept is active, false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uVector The exception / interrupt vector. */ VMM_INT_DECL(bool) HMIsGuestSvmXcptInterceptSet(PVMCPU pVCpu, uint8_t uVector) { Assert(uVector < 32); Assert(HMHasGuestSvmVmcbCached(pVCpu)); PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; return RT_BOOL(pVmcbNstGstCache->u32InterceptXcpt & (1 << uVector)); } /** * Checks if the nested-guest VMCB has virtual-interrupts masking enabled. * * @returns true if virtual-interrupts are masked, @c false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMM_INT_DECL(bool) HMIsGuestSvmVirtIntrMasking(PVMCPU pVCpu) { Assert(HMHasGuestSvmVmcbCached(pVCpu)); PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; return pVmcbNstGstCache->fVIntrMasking; } /** * Checks if the nested-guest VMCB has nested-paging enabled. * * @returns true if nested-paging is enabled, @c false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMM_INT_DECL(bool) HMIsGuestSvmNestedPagingEnabled(PVMCPU pVCpu) { Assert(HMHasGuestSvmVmcbCached(pVCpu)); PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; return pVmcbNstGstCache->fNestedPaging; } /** * Returns the nested-guest VMCB pause-filter count. * * @returns The pause-filter count. * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMM_INT_DECL(uint16_t) HMGetGuestSvmPauseFilterCount(PVMCPU pVCpu) { Assert(HMHasGuestSvmVmcbCached(pVCpu)); PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; return pVmcbNstGstCache->u16PauseFilterCount; }