VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/HMSVMAll.cpp@ 71417

Last change on this file since 71417 was 71417, checked in by vboxsync, 7 years ago

VMM/HM: Comment.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 22.6 KB
Line 
1/* $Id: HMSVMAll.cpp 71417 2018-03-21 09:39:31Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - All contexts.
4 */
5
6/*
7 * Copyright (C) 2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include "HMInternal.h"
25#include <VBox/vmm/apic.h>
26#include <VBox/vmm/gim.h>
27#include <VBox/vmm/hm.h>
28#include <VBox/vmm/iem.h>
29#include <VBox/vmm/vm.h>
30#include <VBox/vmm/hm_svm.h>
31
32
33#ifndef IN_RC
34/**
35 * Emulates a simple MOV TPR (CR8) instruction.
36 *
37 * Used for TPR patching on 32-bit guests. This simply looks up the patch record
38 * at EIP and does the required.
39 *
40 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
41 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
42 * TPR). See hmR3ReplaceTprInstr() for the details.
43 *
44 * @returns VBox status code.
45 * @retval VINF_SUCCESS if the access was handled successfully.
46 * @retval VERR_NOT_FOUND if no patch record for this RIP could be found.
47 * @retval VERR_SVM_UNEXPECTED_PATCH_TYPE if the found patch type is invalid.
48 *
49 * @param pVCpu The cross context virtual CPU structure.
50 * @param pCtx Pointer to the guest-CPU context.
51 * @param pfUpdateRipAndRF Whether the guest RIP/EIP has been updated as
52 * part of the TPR patch operation.
53 */
54static int hmSvmEmulateMovTpr(PVMCPU pVCpu, PCPUMCTX pCtx, bool *pfUpdateRipAndRF)
55{
56 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
57
58 /*
59 * We do this in a loop as we increment the RIP after a successful emulation
60 * and the new RIP may be a patched instruction which needs emulation as well.
61 */
62 bool fUpdateRipAndRF = false;
63 bool fPatchFound = false;
64 PVM pVM = pVCpu->CTX_SUFF(pVM);
65 for (;;)
66 {
67 bool fPending;
68 uint8_t u8Tpr;
69
70 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
71 if (!pPatch)
72 break;
73
74 fPatchFound = true;
75 switch (pPatch->enmType)
76 {
77 case HMTPRINSTR_READ:
78 {
79 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
80 AssertRC(rc);
81
82 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
83 AssertRC(rc);
84 pCtx->rip += pPatch->cbOp;
85 pCtx->eflags.Bits.u1RF = 0;
86 fUpdateRipAndRF = true;
87 break;
88 }
89
90 case HMTPRINSTR_WRITE_REG:
91 case HMTPRINSTR_WRITE_IMM:
92 {
93 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
94 {
95 uint32_t u32Val;
96 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
97 AssertRC(rc);
98 u8Tpr = u32Val;
99 }
100 else
101 u8Tpr = (uint8_t)pPatch->uSrcOperand;
102
103 int rc2 = APICSetTpr(pVCpu, u8Tpr);
104 AssertRC(rc2);
105 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
106
107 pCtx->rip += pPatch->cbOp;
108 pCtx->eflags.Bits.u1RF = 0;
109 fUpdateRipAndRF = true;
110 break;
111 }
112
113 default:
114 {
115 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
116 pVCpu->hm.s.u32HMError = pPatch->enmType;
117 *pfUpdateRipAndRF = fUpdateRipAndRF;
118 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
119 }
120 }
121 }
122
123 *pfUpdateRipAndRF = fUpdateRipAndRF;
124 if (fPatchFound)
125 return VINF_SUCCESS;
126 return VERR_NOT_FOUND;
127}
128
129
130/**
131 * Notification callback for when a \#VMEXIT happens outside SVM R0 code (e.g.
132 * in IEM).
133 *
134 * @param pVCpu The cross context virtual CPU structure.
135 * @param pCtx Pointer to the guest-CPU context.
136 *
137 * @sa hmR0SvmVmRunCacheVmcb.
138 */
139VMM_INT_DECL(void) HMSvmNstGstVmExitNotify(PVMCPU pVCpu, PCPUMCTX pCtx)
140{
141 /*
142 * Restore the nested-guest VMCB fields which have been modified for executing
143 * the nested-guest under SVM R0.
144 */
145 if (pCtx->hwvirt.svm.fHMCachedVmcb)
146 {
147 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
148 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
149 PSVMVMCBSTATESAVE pVmcbNstGstState = &pVmcbNstGst->guest;
150 PSVMNESTEDVMCBCACHE pNstGstVmcbCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
151
152 /*
153 * The fields that are guaranteed to be read-only during SVM guest execution
154 * can safely be restored from our VMCB cache. Other fields like control registers
155 * can potentially be modified (if the nested-hypervisor is not intercepting writes)
156 * and thus we restore the actual virtual CPU values of these registers.
157 */
158 pVmcbNstGstCtrl->u16InterceptRdCRx = pNstGstVmcbCache->u16InterceptRdCRx;
159 pVmcbNstGstCtrl->u16InterceptWrCRx = pNstGstVmcbCache->u16InterceptWrCRx;
160 pVmcbNstGstCtrl->u16InterceptRdDRx = pNstGstVmcbCache->u16InterceptRdDRx;
161 pVmcbNstGstCtrl->u16InterceptWrDRx = pNstGstVmcbCache->u16InterceptWrDRx;
162 pVmcbNstGstCtrl->u32InterceptXcpt = pNstGstVmcbCache->u32InterceptXcpt;
163 pVmcbNstGstCtrl->u64InterceptCtrl = pNstGstVmcbCache->u64InterceptCtrl;
164 pVmcbNstGstState->u64CR0 = pCtx->cr0;
165 pVmcbNstGstState->u64CR3 = pCtx->cr3;
166 pVmcbNstGstState->u64CR4 = pCtx->cr4;
167 pVmcbNstGstState->u64EFER = pCtx->msrEFER;
168 pVmcbNstGstState->u64DBGCTL = pNstGstVmcbCache->u64DBGCTL;
169 pVmcbNstGstCtrl->u32VmcbCleanBits = pNstGstVmcbCache->u32VmcbCleanBits;
170 pVmcbNstGstCtrl->u64IOPMPhysAddr = pNstGstVmcbCache->u64IOPMPhysAddr;
171 pVmcbNstGstCtrl->u64MSRPMPhysAddr = pNstGstVmcbCache->u64MSRPMPhysAddr;
172 pVmcbNstGstCtrl->u64TSCOffset = pNstGstVmcbCache->u64TSCOffset;
173 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = pNstGstVmcbCache->fVIntrMasking;
174 pVmcbNstGstCtrl->TLBCtrl = pNstGstVmcbCache->TLBCtrl;
175 pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging = pNstGstVmcbCache->u1NestedPaging;
176 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pNstGstVmcbCache->u1LbrVirt;
177 pCtx->hwvirt.svm.fHMCachedVmcb = false;
178 }
179
180 /*
181 * Currently, VMRUN, #VMEXIT transitions involves trips to ring-3 that would flag a full
182 * CPU state change. However, if we exit to ring-3 in response to receiving a physical
183 * interrupt, we skip signaling any CPU state change as normally no change
184 * is done to the execution state (see VINF_EM_RAW_INTERRUPT handling in hmR0SvmExitToRing3).
185 * However, with nested-guests, the state can change for e.g., we might perform a
186 * SVM_EXIT_INTR #VMEXIT for the nested-guest in ring-3. Hence we signal a full CPU
187 * state change here.
188 */
189 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
190}
191
192
193/**
194 * Checks if the Virtual GIF (Global Interrupt Flag) feature is supported and
195 * enabled for the VM.
196 *
197 * @returns @c true if VGIF is enabled, @c false otherwise.
198 * @param pVM The cross context VM structure.
199 *
200 * @remarks This value returned by this functions is expected by the callers not
201 * to change throughout the lifetime of the VM.
202 */
203VMM_INT_DECL(bool) HMSvmIsVGifActive(PVM pVM)
204{
205 bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
206 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
207
208 return HMIsEnabled(pVM) && fVGif && fUseVGif;
209}
210
211
212/**
213 * Applies the TSC offset of an SVM nested-guest if any and returns the new TSC
214 * value for the nested-guest.
215 *
216 * @returns The TSC offset after applying any nested-guest TSC offset.
217 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
218 * @param uTicks The guest TSC.
219 *
220 * @remarks This function looks at the VMCB cache rather than directly at the
221 * nested-guest VMCB. The latter may have been modified for executing
222 * using hardware-assisted SVM.
223 *
224 * @sa CPUMApplyNestedGuestTscOffset.
225 */
226VMM_INT_DECL(uint64_t) HMSvmNstGstApplyTscOffset(PVMCPU pVCpu, uint64_t uTicks)
227{
228 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
229 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
230 Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
231 NOREF(pCtx);
232 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
233 return uTicks + pVmcbNstGstCache->u64TSCOffset;
234}
235#endif /* !IN_RC */
236
237
238/**
239 * Performs the operations necessary that are part of the vmmcall instruction
240 * execution in the guest.
241 *
242 * @returns Strict VBox status code (i.e. informational status codes too).
243 * @retval VINF_SUCCESS on successful handling, no \#UD needs to be thrown,
244 * update RIP and eflags.RF depending on @a pfUpdatedRipAndRF and
245 * continue guest execution.
246 * @retval VINF_GIM_HYPERCALL_CONTINUING continue hypercall without updating
247 * RIP.
248 * @retval VINF_GIM_R3_HYPERCALL re-start the hypercall from ring-3.
249 *
250 * @param pVCpu The cross context virtual CPU structure.
251 * @param pCtx Pointer to the guest-CPU context.
252 * @param pfUpdatedRipAndRF Whether the guest RIP/EIP has been updated as
253 * part of handling the VMMCALL operation.
254 */
255VMM_INT_DECL(VBOXSTRICTRC) HMSvmVmmcall(PVMCPU pVCpu, PCPUMCTX pCtx, bool *pfUpdatedRipAndRF)
256{
257#ifndef IN_RC
258 /*
259 * TPR patched instruction emulation for 32-bit guests.
260 */
261 PVM pVM = pVCpu->CTX_SUFF(pVM);
262 if (pVM->hm.s.fTprPatchingAllowed)
263 {
264 int rc = hmSvmEmulateMovTpr(pVCpu, pCtx, pfUpdatedRipAndRF);
265 if (RT_SUCCESS(rc))
266 return VINF_SUCCESS;
267
268 if (rc != VERR_NOT_FOUND)
269 {
270 Log(("hmSvmExitVmmCall: hmSvmEmulateMovTpr returns %Rrc\n", rc));
271 return rc;
272 }
273 }
274#endif
275
276 /*
277 * Paravirtualized hypercalls.
278 */
279 *pfUpdatedRipAndRF = false;
280 if (pVCpu->hm.s.fHypercallsEnabled)
281 return GIMHypercall(pVCpu, pCtx);
282
283 return VERR_NOT_AVAILABLE;
284}
285
286
287/**
288 * Converts an SVM event type to a TRPM event type.
289 *
290 * @returns The TRPM event type.
291 * @retval TRPM_32BIT_HACK if the specified type of event isn't among the set
292 * of recognized trap types.
293 *
294 * @param pEvent Pointer to the SVM event.
295 */
296VMM_INT_DECL(TRPMEVENT) HMSvmEventToTrpmEventType(PCSVMEVENT pEvent)
297{
298 uint8_t const uType = pEvent->n.u3Type;
299 switch (uType)
300 {
301 case SVM_EVENT_EXTERNAL_IRQ: return TRPM_HARDWARE_INT;
302 case SVM_EVENT_SOFTWARE_INT: return TRPM_SOFTWARE_INT;
303 case SVM_EVENT_EXCEPTION:
304 case SVM_EVENT_NMI: return TRPM_TRAP;
305 default:
306 break;
307 }
308 AssertMsgFailed(("HMSvmEventToTrpmEvent: Invalid pending-event type %#x\n", uType));
309 return TRPM_32BIT_HACK;
310}
311
312
313/**
314 * Gets the MSR permission bitmap byte and bit offset for the specified MSR.
315 *
316 * @returns VBox status code.
317 * @param idMsr The MSR being requested.
318 * @param pbOffMsrpm Where to store the byte offset in the MSR permission
319 * bitmap for @a idMsr.
320 * @param puMsrpmBit Where to store the bit offset starting at the byte
321 * returned in @a pbOffMsrpm.
322 */
323VMM_INT_DECL(int) HMSvmGetMsrpmOffsetAndBit(uint32_t idMsr, uint16_t *pbOffMsrpm, uint32_t *puMsrpmBit)
324{
325 Assert(pbOffMsrpm);
326 Assert(puMsrpmBit);
327
328 /*
329 * MSRPM Layout:
330 * Byte offset MSR range
331 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
332 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
333 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
334 * 0x1800 - 0x1fff Reserved
335 *
336 * Each MSR is represented by 2 permission bits (read and write).
337 */
338 if (idMsr <= 0x00001fff)
339 {
340 /* Pentium-compatible MSRs. */
341 *pbOffMsrpm = 0;
342 *puMsrpmBit = idMsr << 1;
343 return VINF_SUCCESS;
344 }
345
346 if ( idMsr >= 0xc0000000
347 && idMsr <= 0xc0001fff)
348 {
349 /* AMD Sixth Generation x86 Processor MSRs. */
350 *pbOffMsrpm = 0x800;
351 *puMsrpmBit = (idMsr - 0xc0000000) << 1;
352 return VINF_SUCCESS;
353 }
354
355 if ( idMsr >= 0xc0010000
356 && idMsr <= 0xc0011fff)
357 {
358 /* AMD Seventh and Eighth Generation Processor MSRs. */
359 *pbOffMsrpm = 0x1000;
360 *puMsrpmBit = (idMsr - 0xc0010000) << 1;
361 return VINF_SUCCESS;
362 }
363
364 *pbOffMsrpm = 0;
365 *puMsrpmBit = 0;
366 return VERR_OUT_OF_RANGE;
367}
368
369
370/**
371 * Determines whether an IOIO intercept is active for the nested-guest or not.
372 *
373 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
374 * @param u16Port The IO port being accessed.
375 * @param enmIoType The type of IO access.
376 * @param cbReg The IO operand size in bytes.
377 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
378 * @param iEffSeg The effective segment number.
379 * @param fRep Whether this is a repeating IO instruction (REP prefix).
380 * @param fStrIo Whether this is a string IO instruction.
381 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO struct to be filled.
382 * Optional, can be NULL.
383 */
384VMM_INT_DECL(bool) HMSvmIsIOInterceptActive(void *pvIoBitmap, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
385 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo,
386 PSVMIOIOEXITINFO pIoExitInfo)
387{
388 Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
389 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
390
391 /*
392 * The IOPM layout:
393 * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or
394 * two 4K pages.
395 *
396 * For IO instructions that access more than a single byte, the permission bits
397 * for all bytes are checked; if any bit is set to 1, the IO access is intercepted.
398 *
399 * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes),
400 * we need 3 extra bits beyond the second 4K page.
401 */
402 static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 };
403
404 uint16_t const offIopm = u16Port >> 3;
405 uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7];
406 uint8_t const cShift = u16Port - (offIopm << 3);
407 uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift);
408
409 uint8_t const *pbIopm = (uint8_t *)pvIoBitmap;
410 Assert(pbIopm);
411 pbIopm += offIopm;
412 uint16_t const u16Iopm = *(uint16_t *)pbIopm;
413 if (u16Iopm & fIopmMask)
414 {
415 if (pIoExitInfo)
416 {
417 static const uint32_t s_auIoOpSize[] =
418 { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 };
419
420 static const uint32_t s_auIoAddrSize[] =
421 { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 };
422
423 pIoExitInfo->u = s_auIoOpSize[cbReg & 7];
424 pIoExitInfo->u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7];
425 pIoExitInfo->n.u1STR = fStrIo;
426 pIoExitInfo->n.u1REP = fRep;
427 pIoExitInfo->n.u3SEG = iEffSeg & 7;
428 pIoExitInfo->n.u1Type = enmIoType;
429 pIoExitInfo->n.u16Port = u16Port;
430 }
431 return true;
432 }
433
434 /** @todo remove later (for debugging as VirtualBox always traps all IO
435 * intercepts). */
436 AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n"));
437 return false;
438}
439
440
441/**
442 * Checks if the guest VMCB has the specified ctrl/instruction intercept active.
443 *
444 * @returns @c true if in intercept is set, @c false otherwise.
445 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
446 * @param pCtx Pointer to the context.
447 * @param fIntercept The SVM control/instruction intercept, see
448 * SVM_CTRL_INTERCEPT_*.
449 */
450VMM_INT_DECL(bool) HMIsGuestSvmCtrlInterceptSet(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t fIntercept)
451{
452 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
453 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
454 return RT_BOOL(pVmcbNstGstCache->u64InterceptCtrl & fIntercept);
455}
456
457
458/**
459 * Checks if the guest VMCB has the specified CR read intercept active.
460 *
461 * @returns @c true if in intercept is set, @c false otherwise.
462 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
463 * @param pCtx Pointer to the context.
464 * @param uCr The CR register number (0 to 15).
465 */
466VMM_INT_DECL(bool) HMIsGuestSvmReadCRxInterceptSet(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uCr)
467{
468 Assert(uCr < 16);
469 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
470 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
471 return RT_BOOL(pVmcbNstGstCache->u16InterceptRdCRx & (1 << uCr));
472}
473
474
475/**
476 * Checks if the guest VMCB has the specified CR write intercept
477 * active.
478 *
479 * @returns @c true if in intercept is set, @c false otherwise.
480 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
481 * @param pCtx Pointer to the context.
482 * @param uCr The CR register number (0 to 15).
483 */
484VMM_INT_DECL(bool) HMIsGuestSvmWriteCRxInterceptSet(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uCr)
485{
486 Assert(uCr < 16);
487 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
488 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
489 return RT_BOOL(pVmcbNstGstCache->u16InterceptWrCRx & (1 << uCr));
490}
491
492
493/**
494 * Checks if the guest VMCB has the specified DR read intercept
495 * active.
496 *
497 * @returns @c true if in intercept is set, @c false otherwise.
498 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
499 * @param pCtx Pointer to the context.
500 * @param uDr The DR register number (0 to 15).
501 */
502VMM_INT_DECL(bool) HMIsGuestSvmReadDRxInterceptSet(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uDr)
503{
504 Assert(uDr < 16);
505 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
506 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
507 return RT_BOOL(pVmcbNstGstCache->u16InterceptRdDRx & (1 << uDr));
508}
509
510
511/**
512 * Checks if the guest VMCB has the specified DR write intercept active.
513 *
514 * @returns @c true if in intercept is set, @c false otherwise.
515 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
516 * @param pCtx Pointer to the context.
517 * @param uDr The DR register number (0 to 15).
518 */
519VMM_INT_DECL(bool) HMIsGuestSvmWriteDRxInterceptSet(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uDr)
520{
521 Assert(uDr < 16);
522 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
523 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
524 return RT_BOOL(pVmcbNstGstCache->u16InterceptWrDRx & (1 << uDr));
525}
526
527
528/**
529 * Checks if the guest VMCB has the specified exception intercept active.
530 *
531 * @returns true if in intercept is active, false otherwise.
532 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
533 * @param pCtx Pointer to the context.
534 * @param uVector The exception / interrupt vector.
535 */
536VMM_INT_DECL(bool) HMIsGuestSvmXcptInterceptSet(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uVector)
537{
538 Assert(uVector < 32);
539 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
540 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
541 return RT_BOOL(pVmcbNstGstCache->u32InterceptXcpt & (1 << uVector));
542}
543
544
545/**
546 * Checks whether the SVM nested-guest is in a state to receive physical (APIC)
547 * interrupts.
548 *
549 * @returns true if it's ready, false otherwise.
550 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
551 * @param pCtx The guest-CPU context.
552 *
553 * @remarks This function looks at the VMCB cache rather than directly at the
554 * nested-guest VMCB. The latter may have been modified for executing
555 * using hardware-assisted SVM.
556 *
557 * @sa CPUMCanSvmNstGstTakePhysIntr.
558 */
559VMM_INT_DECL(bool) HMCanSvmNstGstTakePhysIntr(PVMCPU pVCpu, PCCPUMCTX pCtx)
560{
561 Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
562 Assert(pCtx->hwvirt.fGif);
563 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
564 X86EFLAGS fEFlags;
565 if (pVmcbNstGstCache->fVIntrMasking)
566 fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
567 else
568 fEFlags.u = pCtx->eflags.u;
569 return fEFlags.Bits.u1IF;
570}
571
572
573/**
574 * Checks whether the SVM nested-guest is in a state to receive virtual (setup
575 * for injection by VMRUN instruction) interrupts.
576 *
577 * @returns true if it's ready, false otherwise.
578 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
579 * @param pCtx The guest-CPU context.
580 *
581 * @remarks This function looks at the VMCB cache rather than directly at the
582 * nested-guest VMCB. The latter may have been modified for executing
583 * using hardware-assisted SVM.
584 *
585 * @sa CPUMCanSvmNstGstTakeVirtIntr.
586 */
587VMM_INT_DECL(bool) HMCanSvmNstGstTakeVirtIntr(PVMCPU pVCpu, PCCPUMCTX pCtx)
588{
589#ifdef IN_RC
590 RT_NOREF2(pVCpu, pCtx);
591 AssertReleaseFailedReturn(false);
592#else
593 Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
594 Assert(pCtx->hwvirt.fGif);
595 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
596
597 PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
598 if ( !pVmcbCtrl->IntCtrl.n.u1IgnoreTPR
599 && pVmcbCtrl->IntCtrl.n.u4VIntrPrio <= pVmcbCtrl->IntCtrl.n.u8VTPR)
600 return false;
601
602 X86EFLAGS fEFlags;
603 if (pVmcbNstGstCache->fVIntrMasking)
604 fEFlags.u = pCtx->eflags.u;
605 else
606 fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
607 return fEFlags.Bits.u1IF;
608#endif
609}
610
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette