VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/HMSVMAll.cpp@ 75884

Last change on this file since 75884 was 75759, checked in by vboxsync, 6 years ago

VMM: Nested SVM: bugref:7243 Remove super confusing virtual-GIF vs GIF handling.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 22.5 KB
Line 
1/* $Id: HMSVMAll.cpp 75759 2018-11-27 07:10:10Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - All contexts.
4 */
5
6/*
7 * Copyright (C) 2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include "HMInternal.h"
25#include <VBox/vmm/apic.h>
26#include <VBox/vmm/gim.h>
27#include <VBox/vmm/iem.h>
28#include <VBox/vmm/vm.h>
29
30
31#ifndef IN_RC
32
33/**
34 * Emulates a simple MOV TPR (CR8) instruction.
35 *
36 * Used for TPR patching on 32-bit guests. This simply looks up the patch record
37 * at EIP and does the required.
38 *
39 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
40 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
41 * TPR). See hmR3ReplaceTprInstr() for the details.
42 *
43 * @returns VBox status code.
44 * @retval VINF_SUCCESS if the access was handled successfully, RIP + RFLAGS updated.
45 * @retval VERR_NOT_FOUND if no patch record for this RIP could be found.
46 * @retval VERR_SVM_UNEXPECTED_PATCH_TYPE if the found patch type is invalid.
47 *
48 * @param pVCpu The cross context virtual CPU structure.
49 * @param pCtx Pointer to the guest-CPU context.
50 */
51int hmSvmEmulateMovTpr(PVMCPU pVCpu)
52{
53 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
54 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
55
56 /*
57 * We do this in a loop as we increment the RIP after a successful emulation
58 * and the new RIP may be a patched instruction which needs emulation as well.
59 */
60 bool fPatchFound = false;
61 PVM pVM = pVCpu->CTX_SUFF(pVM);
62 for (;;)
63 {
64 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
65 if (!pPatch)
66 break;
67 fPatchFound = true;
68
69 uint8_t u8Tpr;
70 switch (pPatch->enmType)
71 {
72 case HMTPRINSTR_READ:
73 {
74 bool fPending;
75 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
76 AssertRC(rc);
77
78 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
79 AssertRC(rc);
80 pCtx->rip += pPatch->cbOp;
81 pCtx->eflags.Bits.u1RF = 0;
82 break;
83 }
84
85 case HMTPRINSTR_WRITE_REG:
86 case HMTPRINSTR_WRITE_IMM:
87 {
88 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
89 {
90 uint32_t u32Val;
91 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
92 AssertRC(rc);
93 u8Tpr = u32Val;
94 }
95 else
96 u8Tpr = (uint8_t)pPatch->uSrcOperand;
97
98 int rc2 = APICSetTpr(pVCpu, u8Tpr);
99 AssertRC(rc2);
100 pCtx->rip += pPatch->cbOp;
101 pCtx->eflags.Bits.u1RF = 0;
102 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR
103 | HM_CHANGED_GUEST_RIP
104 | HM_CHANGED_GUEST_RFLAGS);
105 break;
106 }
107
108 default:
109 {
110 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
111 pVCpu->hm.s.u32HMError = pPatch->enmType;
112 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
113 }
114 }
115 }
116
117 return fPatchFound ? VINF_SUCCESS : VERR_NOT_FOUND;
118}
119
120# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
121/**
122 * Notification callback for when a \#VMEXIT happens outside SVM R0 code (e.g.
123 * in IEM).
124 *
125 * @param pVCpu The cross context virtual CPU structure.
126 * @param pCtx Pointer to the guest-CPU context.
127 *
128 * @sa hmR0SvmVmRunCacheVmcb.
129 */
130VMM_INT_DECL(void) HMSvmNstGstVmExitNotify(PVMCPU pVCpu, PCPUMCTX pCtx)
131{
132 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
133 if (pVmcbNstGstCache->fCacheValid)
134 {
135 /*
136 * Restore fields as our own code might look at the VMCB controls as part
137 * of the #VMEXIT handling in IEM. Otherwise, strictly speaking we don't need to
138 * restore these fields because currently none of them are written back to memory
139 * by a physical CPU on #VMEXIT.
140 */
141 PSVMVMCBCTRL pVmcbNstGstCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
142 pVmcbNstGstCtrl->u16InterceptRdCRx = pVmcbNstGstCache->u16InterceptRdCRx;
143 pVmcbNstGstCtrl->u16InterceptWrCRx = pVmcbNstGstCache->u16InterceptWrCRx;
144 pVmcbNstGstCtrl->u16InterceptRdDRx = pVmcbNstGstCache->u16InterceptRdDRx;
145 pVmcbNstGstCtrl->u16InterceptWrDRx = pVmcbNstGstCache->u16InterceptWrDRx;
146 pVmcbNstGstCtrl->u16PauseFilterThreshold = pVmcbNstGstCache->u16PauseFilterThreshold;
147 pVmcbNstGstCtrl->u16PauseFilterCount = pVmcbNstGstCache->u16PauseFilterCount;
148 pVmcbNstGstCtrl->u32InterceptXcpt = pVmcbNstGstCache->u32InterceptXcpt;
149 pVmcbNstGstCtrl->u64InterceptCtrl = pVmcbNstGstCache->u64InterceptCtrl;
150 pVmcbNstGstCtrl->u64TSCOffset = pVmcbNstGstCache->u64TSCOffset;
151 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = pVmcbNstGstCache->fVIntrMasking;
152 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVmcbNstGstCache->fNestedPaging;
153 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcbNstGstCache->fLbrVirt;
154 pVmcbNstGstCache->fCacheValid = false;
155 }
156
157 /*
158 * Transitions to ring-3 flag a full CPU-state change except if we transition to ring-3
159 * in response to a physical CPU interrupt as no changes to the guest-CPU state are
160 * expected (see VINF_EM_RAW_INTERRUPT handling in hmR0SvmExitToRing3).
161 *
162 * However, with nested-guests, the state -can- change on trips to ring-3 for we might
163 * try to inject a nested-guest physical interrupt and cause a SVM_EXIT_INTR #VMEXIT for
164 * the nested-guest from ring-3. Import the complete state here as we will be swapping
165 * to the guest VMCB after the #VMEXIT.
166 */
167 CPUMImportGuestStateOnDemand(pVCpu, CPUMCTX_EXTRN_ALL);
168 AssertMsg(!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL),
169 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", pVCpu->cpum.GstCtx.fExtrn, CPUMCTX_EXTRN_ALL));
170 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
171}
172# endif
173
174/**
175 * Checks if the Virtual GIF (Global Interrupt Flag) feature is supported and
176 * enabled for the VM.
177 *
178 * @returns @c true if VGIF is enabled, @c false otherwise.
179 * @param pVM The cross context VM structure.
180 *
181 * @remarks This value returned by this functions is expected by the callers not
182 * to change throughout the lifetime of the VM.
183 */
184VMM_INT_DECL(bool) HMSvmIsVGifActive(PVM pVM)
185{
186 bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
187 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
188 return fVGif && fUseVGif;
189}
190
191
192/**
193 * Applies the TSC offset of an SVM nested-guest if any and returns the new TSC
194 * value for the nested-guest.
195 *
196 * @returns The TSC offset after applying any nested-guest TSC offset.
197 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
198 * @param uTicks The guest TSC.
199 *
200 * @remarks This function looks at the VMCB cache rather than directly at the
201 * nested-guest VMCB. The latter may have been modified for executing
202 * using hardware-assisted SVM.
203 *
204 * @note If you make any changes to this function, please check if
205 * hmR0SvmNstGstUndoTscOffset() needs adjusting.
206 *
207 * @sa CPUMApplyNestedGuestTscOffset(), hmR0SvmNstGstUndoTscOffset().
208 */
209VMM_INT_DECL(uint64_t) HMSvmNstGstApplyTscOffset(PVMCPU pVCpu, uint64_t uTicks)
210{
211 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
212 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); RT_NOREF(pCtx);
213 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
214 Assert(pVmcbNstGstCache->fCacheValid);
215 return uTicks + pVmcbNstGstCache->u64TSCOffset;
216}
217
218
219/**
220 * Interface used by IEM to handle patched TPR accesses.
221 *
222 * @returns VBox status code
223 * @retval VINF_SUCCESS if hypercall was handled, RIP + RFLAGS all dealt with.
224 * @retval VERR_NOT_FOUND if hypercall was _not_ handled.
225 * @retval VERR_SVM_UNEXPECTED_PATCH_TYPE on IPE.
226 *
227 * @param pVCpu The cross context virtual CPU structure.
228 */
229VMM_INT_DECL(int) HMHCSvmMaybeMovTprHypercall(PVMCPU pVCpu)
230{
231 PVM pVM = pVCpu->CTX_SUFF(pVM);
232 if (pVM->hm.s.fTprPatchingAllowed)
233 {
234 int rc = hmSvmEmulateMovTpr(pVCpu);
235 if (RT_SUCCESS(rc))
236 return VINF_SUCCESS;
237 return rc;
238 }
239 return VERR_NOT_FOUND;
240}
241
242
243/**
244 * Checks if the current AMD CPU is subject to erratum 170 "In SVM mode,
245 * incorrect code bytes may be fetched after a world-switch".
246 *
247 * @param pu32Family Where to store the CPU family (can be NULL).
248 * @param pu32Model Where to store the CPU model (can be NULL).
249 * @param pu32Stepping Where to store the CPU stepping (can be NULL).
250 * @returns true if the erratum applies, false otherwise.
251 */
252VMM_INT_DECL(int) HMSvmIsSubjectToErratum170(uint32_t *pu32Family, uint32_t *pu32Model, uint32_t *pu32Stepping)
253{
254 /*
255 * Erratum 170 which requires a forced TLB flush for each world switch:
256 * See AMD spec. "Revision Guide for AMD NPT Family 0Fh Processors".
257 *
258 * All BH-G1/2 and DH-G1/2 models include a fix:
259 * Athlon X2: 0x6b 1/2
260 * 0x68 1/2
261 * Athlon 64: 0x7f 1
262 * 0x6f 2
263 * Sempron: 0x7f 1/2
264 * 0x6f 2
265 * 0x6c 2
266 * 0x7c 2
267 * Turion 64: 0x68 2
268 */
269 uint32_t u32Dummy;
270 uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
271 ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
272 u32BaseFamily = (u32Version >> 8) & 0xf;
273 u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
274 u32Model = ((u32Version >> 4) & 0xf);
275 u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
276 u32Stepping = u32Version & 0xf;
277
278 bool fErratumApplies = false;
279 if ( u32Family == 0xf
280 && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
281 && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
282 {
283 fErratumApplies = true;
284 }
285
286 if (pu32Family)
287 *pu32Family = u32Family;
288 if (pu32Model)
289 *pu32Model = u32Model;
290 if (pu32Stepping)
291 *pu32Stepping = u32Stepping;
292
293 return fErratumApplies;
294}
295
296#endif /* !IN_RC */
297
298/**
299 * Gets the MSR permission bitmap byte and bit offset for the specified MSR.
300 *
301 * @returns VBox status code.
302 * @param idMsr The MSR being requested.
303 * @param pbOffMsrpm Where to store the byte offset in the MSR permission
304 * bitmap for @a idMsr.
305 * @param puMsrpmBit Where to store the bit offset starting at the byte
306 * returned in @a pbOffMsrpm.
307 */
308VMM_INT_DECL(int) HMSvmGetMsrpmOffsetAndBit(uint32_t idMsr, uint16_t *pbOffMsrpm, uint8_t *puMsrpmBit)
309{
310 Assert(pbOffMsrpm);
311 Assert(puMsrpmBit);
312
313 /*
314 * MSRPM Layout:
315 * Byte offset MSR range
316 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
317 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
318 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
319 * 0x1800 - 0x1fff Reserved
320 *
321 * Each MSR is represented by 2 permission bits (read and write).
322 */
323 if (idMsr <= 0x00001fff)
324 {
325 /* Pentium-compatible MSRs. */
326 uint32_t const bitoffMsr = idMsr << 1;
327 *pbOffMsrpm = bitoffMsr >> 3;
328 *puMsrpmBit = bitoffMsr & 7;
329 return VINF_SUCCESS;
330 }
331
332 if ( idMsr >= 0xc0000000
333 && idMsr <= 0xc0001fff)
334 {
335 /* AMD Sixth Generation x86 Processor MSRs. */
336 uint32_t const bitoffMsr = (idMsr - 0xc0000000) << 1;
337 *pbOffMsrpm = 0x800 + (bitoffMsr >> 3);
338 *puMsrpmBit = bitoffMsr & 7;
339 return VINF_SUCCESS;
340 }
341
342 if ( idMsr >= 0xc0010000
343 && idMsr <= 0xc0011fff)
344 {
345 /* AMD Seventh and Eighth Generation Processor MSRs. */
346 uint32_t const bitoffMsr = (idMsr - 0xc0010000) << 1;
347 *pbOffMsrpm = 0x1000 + (bitoffMsr >> 3);
348 *puMsrpmBit = bitoffMsr & 7;
349 return VINF_SUCCESS;
350 }
351
352 *pbOffMsrpm = 0;
353 *puMsrpmBit = 0;
354 return VERR_OUT_OF_RANGE;
355}
356
357
358/**
359 * Determines whether an IOIO intercept is active for the nested-guest or not.
360 *
361 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
362 * @param u16Port The IO port being accessed.
363 * @param enmIoType The type of IO access.
364 * @param cbReg The IO operand size in bytes.
365 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
366 * @param iEffSeg The effective segment number.
367 * @param fRep Whether this is a repeating IO instruction (REP prefix).
368 * @param fStrIo Whether this is a string IO instruction.
369 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO struct to be filled.
370 * Optional, can be NULL.
371 */
372VMM_INT_DECL(bool) HMSvmIsIOInterceptActive(void *pvIoBitmap, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
373 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo,
374 PSVMIOIOEXITINFO pIoExitInfo)
375{
376 Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
377 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
378
379 /*
380 * The IOPM layout:
381 * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or
382 * two 4K pages.
383 *
384 * For IO instructions that access more than a single byte, the permission bits
385 * for all bytes are checked; if any bit is set to 1, the IO access is intercepted.
386 *
387 * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes),
388 * we need 3 extra bits beyond the second 4K page.
389 */
390 static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 };
391
392 uint16_t const offIopm = u16Port >> 3;
393 uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7];
394 uint8_t const cShift = u16Port - (offIopm << 3);
395 uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift);
396
397 uint8_t const *pbIopm = (uint8_t *)pvIoBitmap;
398 Assert(pbIopm);
399 pbIopm += offIopm;
400 uint16_t const u16Iopm = *(uint16_t *)pbIopm;
401 if (u16Iopm & fIopmMask)
402 {
403 if (pIoExitInfo)
404 {
405 static const uint32_t s_auIoOpSize[] =
406 { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 };
407
408 static const uint32_t s_auIoAddrSize[] =
409 { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 };
410
411 pIoExitInfo->u = s_auIoOpSize[cbReg & 7];
412 pIoExitInfo->u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7];
413 pIoExitInfo->n.u1Str = fStrIo;
414 pIoExitInfo->n.u1Rep = fRep;
415 pIoExitInfo->n.u3Seg = iEffSeg & 7;
416 pIoExitInfo->n.u1Type = enmIoType;
417 pIoExitInfo->n.u16Port = u16Port;
418 }
419 return true;
420 }
421
422 /** @todo remove later (for debugging as VirtualBox always traps all IO
423 * intercepts). */
424 AssertMsgFailed(("CPUMSvmIsIOInterceptActive: We expect an IO intercept here!\n"));
425 return false;
426}
427
428
429/**
430 * Converts an SVM event type to a TRPM event type.
431 *
432 * @returns The TRPM event type.
433 * @retval TRPM_32BIT_HACK if the specified type of event isn't among the set
434 * of recognized trap types.
435 *
436 * @param pEvent Pointer to the SVM event.
437 */
438VMM_INT_DECL(TRPMEVENT) HMSvmEventToTrpmEventType(PCSVMEVENT pEvent)
439{
440 uint8_t const uType = pEvent->n.u3Type;
441 switch (uType)
442 {
443 case SVM_EVENT_EXTERNAL_IRQ: return TRPM_HARDWARE_INT;
444 case SVM_EVENT_SOFTWARE_INT: return TRPM_SOFTWARE_INT;
445 case SVM_EVENT_EXCEPTION:
446 case SVM_EVENT_NMI: return TRPM_TRAP;
447 default:
448 break;
449 }
450 AssertMsgFailed(("HMSvmEventToTrpmEvent: Invalid pending-event type %#x\n", uType));
451 return TRPM_32BIT_HACK;
452}
453
454
455/**
456 * Returns whether HM has cached the nested-guest VMCB.
457 *
458 * If the VMCB is cached by HM, it means HM may have potentially modified the
459 * VMCB for execution using hardware-assisted SVM.
460 *
461 * @returns true if HM has cached the nested-guest VMCB, false otherwise.
462 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
463 */
464VMM_INT_DECL(bool) HMHasGuestSvmVmcbCached(PVMCPU pVCpu)
465{
466 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
467 return pVmcbNstGstCache->fCacheValid;
468}
469
470
471/**
472 * Checks if the nested-guest VMCB has the specified ctrl/instruction intercept
473 * active.
474 *
475 * @returns @c true if in intercept is set, @c false otherwise.
476 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
477 * @param fIntercept The SVM control/instruction intercept, see
478 * SVM_CTRL_INTERCEPT_*.
479 */
480VMM_INT_DECL(bool) HMIsGuestSvmCtrlInterceptSet(PVMCPU pVCpu, uint64_t fIntercept)
481{
482 Assert(HMHasGuestSvmVmcbCached(pVCpu));
483 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
484 return RT_BOOL(pVmcbNstGstCache->u64InterceptCtrl & fIntercept);
485}
486
487
488/**
489 * Checks if the nested-guest VMCB has the specified CR read intercept active.
490 *
491 * @returns @c true if in intercept is set, @c false otherwise.
492 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
493 * @param uCr The CR register number (0 to 15).
494 */
495VMM_INT_DECL(bool) HMIsGuestSvmReadCRxInterceptSet(PVMCPU pVCpu, uint8_t uCr)
496{
497 Assert(uCr < 16);
498 Assert(HMHasGuestSvmVmcbCached(pVCpu));
499 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
500 return RT_BOOL(pVmcbNstGstCache->u16InterceptRdCRx & (1 << uCr));
501}
502
503
504/**
505 * Checks if the nested-guest VMCB has the specified CR write intercept active.
506 *
507 * @returns @c true if in intercept is set, @c false otherwise.
508 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
509 * @param uCr The CR register number (0 to 15).
510 */
511VMM_INT_DECL(bool) HMIsGuestSvmWriteCRxInterceptSet(PVMCPU pVCpu, uint8_t uCr)
512{
513 Assert(uCr < 16);
514 Assert(HMHasGuestSvmVmcbCached(pVCpu));
515 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
516 return RT_BOOL(pVmcbNstGstCache->u16InterceptWrCRx & (1 << uCr));
517}
518
519
520/**
521 * Checks if the nested-guest VMCB has the specified DR read intercept active.
522 *
523 * @returns @c true if in intercept is set, @c false otherwise.
524 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
525 * @param uDr The DR register number (0 to 15).
526 */
527VMM_INT_DECL(bool) HMIsGuestSvmReadDRxInterceptSet(PVMCPU pVCpu, uint8_t uDr)
528{
529 Assert(uDr < 16);
530 Assert(HMHasGuestSvmVmcbCached(pVCpu));
531 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
532 return RT_BOOL(pVmcbNstGstCache->u16InterceptRdDRx & (1 << uDr));
533}
534
535
536/**
537 * Checks if the nested-guest VMCB has the specified DR write intercept active.
538 *
539 * @returns @c true if in intercept is set, @c false otherwise.
540 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
541 * @param uDr The DR register number (0 to 15).
542 */
543VMM_INT_DECL(bool) HMIsGuestSvmWriteDRxInterceptSet(PVMCPU pVCpu, uint8_t uDr)
544{
545 Assert(uDr < 16);
546 Assert(HMHasGuestSvmVmcbCached(pVCpu));
547 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
548 return RT_BOOL(pVmcbNstGstCache->u16InterceptWrDRx & (1 << uDr));
549}
550
551
552/**
553 * Checks if the nested-guest VMCB has the specified exception intercept active.
554 *
555 * @returns true if in intercept is active, false otherwise.
556 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
557 * @param uVector The exception / interrupt vector.
558 */
559VMM_INT_DECL(bool) HMIsGuestSvmXcptInterceptSet(PVMCPU pVCpu, uint8_t uVector)
560{
561 Assert(uVector < 32);
562 Assert(HMHasGuestSvmVmcbCached(pVCpu));
563 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
564 return RT_BOOL(pVmcbNstGstCache->u32InterceptXcpt & (1 << uVector));
565}
566
567
568/**
569 * Checks if the nested-guest VMCB has virtual-interrupts masking enabled.
570 *
571 * @returns true if virtual-interrupts are masked, @c false otherwise.
572 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
573 */
574VMM_INT_DECL(bool) HMIsGuestSvmVirtIntrMasking(PVMCPU pVCpu)
575{
576 Assert(HMHasGuestSvmVmcbCached(pVCpu));
577 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
578 return pVmcbNstGstCache->fVIntrMasking;
579}
580
581
582/**
583 * Checks if the nested-guest VMCB has nested-paging enabled.
584 *
585 * @returns true if nested-paging is enabled, @c false otherwise.
586 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
587 */
588VMM_INT_DECL(bool) HMIsGuestSvmNestedPagingEnabled(PVMCPU pVCpu)
589{
590 Assert(HMHasGuestSvmVmcbCached(pVCpu));
591 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
592 return pVmcbNstGstCache->fNestedPaging;
593}
594
595
596/**
597 * Returns the nested-guest VMCB pause-filter count.
598 *
599 * @returns The pause-filter count.
600 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
601 */
602VMM_INT_DECL(uint16_t) HMGetGuestSvmPauseFilterCount(PVMCPU pVCpu)
603{
604 Assert(HMHasGuestSvmVmcbCached(pVCpu));
605 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
606 return pVmcbNstGstCache->u16PauseFilterCount;
607}
608
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette