1 | /* $Id: IEMAll.cpp 108226 2025-02-14 15:54:48Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Interpreted Execution Manager - All Contexts.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2024 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /** @page pg_iem IEM - Interpreted Execution Manager
|
---|
30 | *
|
---|
31 | * The interpreted exeuction manager (IEM) is for executing short guest code
|
---|
32 | * sequences that are causing too many exits / virtualization traps. It will
|
---|
33 | * also be used to interpret single instructions, thus replacing the selective
|
---|
34 | * interpreters in EM and IOM.
|
---|
35 | *
|
---|
36 | * Design goals:
|
---|
37 | * - Relatively small footprint, although we favour speed and correctness
|
---|
38 | * over size.
|
---|
39 | * - Reasonably fast.
|
---|
40 | * - Correctly handle lock prefixed instructions.
|
---|
41 | * - Complete instruction set - eventually.
|
---|
42 | * - Refactorable into a recompiler, maybe.
|
---|
43 | * - Replace EMInterpret*.
|
---|
44 | *
|
---|
45 | * Using the existing disassembler has been considered, however this is thought
|
---|
46 | * to conflict with speed as the disassembler chews things a bit too much while
|
---|
47 | * leaving us with a somewhat complicated state to interpret afterwards.
|
---|
48 | *
|
---|
49 | *
|
---|
50 | * The current code is very much work in progress. You've been warned!
|
---|
51 | *
|
---|
52 | *
|
---|
53 | * @section sec_iem_fpu_instr FPU Instructions
|
---|
54 | *
|
---|
55 | * On x86 and AMD64 hosts, the FPU instructions are implemented by executing the
|
---|
56 | * same or equivalent instructions on the host FPU. To make life easy, we also
|
---|
57 | * let the FPU prioritize the unmasked exceptions for us. This however, only
|
---|
58 | * works reliably when CR0.NE is set, i.e. when using \#MF instead the IRQ 13
|
---|
59 | * for FPU exception delivery, because with CR0.NE=0 there is a window where we
|
---|
60 | * can trigger spurious FPU exceptions.
|
---|
61 | *
|
---|
62 | * The guest FPU state is not loaded into the host CPU and kept there till we
|
---|
63 | * leave IEM because the calling conventions have declared an all year open
|
---|
64 | * season on much of the FPU state. For instance an innocent looking call to
|
---|
65 | * memcpy might end up using a whole bunch of XMM or MM registers if the
|
---|
66 | * particular implementation finds it worthwhile.
|
---|
67 | *
|
---|
68 | *
|
---|
69 | * @section sec_iem_logging Logging
|
---|
70 | *
|
---|
71 | * The IEM code uses the \"IEM\" log group for the main logging. The different
|
---|
72 | * logging levels/flags are generally used for the following purposes:
|
---|
73 | * - Level 1 (Log) : Errors, exceptions, interrupts and such major events.
|
---|
74 | * - Flow (LogFlow) : Basic enter/exit IEM state info.
|
---|
75 | * - Level 2 (Log2) : ?
|
---|
76 | * - Level 3 (Log3) : More detailed enter/exit IEM state info.
|
---|
77 | * - Level 4 (Log4) : Decoding mnemonics w/ EIP.
|
---|
78 | * - Level 5 (Log5) : Decoding details.
|
---|
79 | * - Level 6 (Log6) : Enables/disables the lockstep comparison with REM.
|
---|
80 | * - Level 7 (Log7) : iret++ execution logging.
|
---|
81 | * - Level 8 (Log8) :
|
---|
82 | * - Level 9 (Log9) :
|
---|
83 | * - Level 10 (Log10): TLBs.
|
---|
84 | * - Level 11 (Log11): Unmasked FPU exceptions.
|
---|
85 | *
|
---|
86 | * The \"IEM_MEM\" log group covers most of memory related details logging,
|
---|
87 | * except for errors and exceptions:
|
---|
88 | * - Level 1 (Log) : Reads.
|
---|
89 | * - Level 2 (Log2) : Read fallbacks.
|
---|
90 | * - Level 3 (Log3) : MemMap read.
|
---|
91 | * - Level 4 (Log4) : MemMap read fallbacks.
|
---|
92 | * - Level 5 (Log5) : Writes
|
---|
93 | * - Level 6 (Log6) : Write fallbacks.
|
---|
94 | * - Level 7 (Log7) : MemMap writes and read-writes.
|
---|
95 | * - Level 8 (Log8) : MemMap write and read-write fallbacks.
|
---|
96 | * - Level 9 (Log9) : Stack reads.
|
---|
97 | * - Level 10 (Log10): Stack read fallbacks.
|
---|
98 | * - Level 11 (Log11): Stack writes.
|
---|
99 | * - Level 12 (Log12): Stack write fallbacks.
|
---|
100 | * - Flow (LogFlow) :
|
---|
101 | *
|
---|
102 | * The SVM (AMD-V) and VMX (VT-x) code has the following assignments:
|
---|
103 | * - Level 1 (Log) : Errors and other major events.
|
---|
104 | * - Flow (LogFlow) : Misc flow stuff (cleanup?)
|
---|
105 | * - Level 2 (Log2) : VM exits.
|
---|
106 | *
|
---|
107 | * The syscall logging level assignments:
|
---|
108 | * - Level 1: DOS and BIOS.
|
---|
109 | * - Level 2: Windows 3.x
|
---|
110 | * - Level 3: Linux.
|
---|
111 | */
|
---|
112 |
|
---|
113 | /* Disabled warning C4505: 'iemRaisePageFaultJmp' : unreferenced local function has been removed */
|
---|
114 | #ifdef _MSC_VER
|
---|
115 | # pragma warning(disable:4505)
|
---|
116 | #endif
|
---|
117 |
|
---|
118 |
|
---|
119 | /*********************************************************************************************************************************
|
---|
120 | * Header Files *
|
---|
121 | *********************************************************************************************************************************/
|
---|
122 | #define LOG_GROUP LOG_GROUP_IEM
|
---|
123 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
124 | #ifdef IN_RING0
|
---|
125 | # define VBOX_VMM_TARGET_X86
|
---|
126 | #endif
|
---|
127 | #include <VBox/vmm/iem.h>
|
---|
128 | #include <VBox/vmm/cpum.h>
|
---|
129 | #include <VBox/vmm/pdmapic.h>
|
---|
130 | #include <VBox/vmm/pdm.h>
|
---|
131 | #include <VBox/vmm/pgm.h>
|
---|
132 | #include <VBox/vmm/iom.h>
|
---|
133 | #include <VBox/vmm/em.h>
|
---|
134 | #include <VBox/vmm/hm.h>
|
---|
135 | #include <VBox/vmm/nem.h>
|
---|
136 | #include <VBox/vmm/gcm.h>
|
---|
137 | #include <VBox/vmm/gim.h>
|
---|
138 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
139 | # include <VBox/vmm/em.h>
|
---|
140 | # include <VBox/vmm/hm_svm.h>
|
---|
141 | #endif
|
---|
142 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
143 | # include <VBox/vmm/hmvmxinline.h>
|
---|
144 | #endif
|
---|
145 | #include <VBox/vmm/tm.h>
|
---|
146 | #include <VBox/vmm/dbgf.h>
|
---|
147 | #include <VBox/vmm/dbgftrace.h>
|
---|
148 | #include "IEMInternal.h"
|
---|
149 | #include <VBox/vmm/vmcc.h>
|
---|
150 | #include <VBox/log.h>
|
---|
151 | #include <VBox/err.h>
|
---|
152 | #include <VBox/param.h>
|
---|
153 | #include <VBox/dis.h>
|
---|
154 | #include <iprt/asm-math.h>
|
---|
155 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
156 | # include <iprt/asm-amd64-x86.h>
|
---|
157 | #elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
|
---|
158 | # include <iprt/asm-arm.h>
|
---|
159 | #endif
|
---|
160 | #include <iprt/assert.h>
|
---|
161 | #include <iprt/string.h>
|
---|
162 | #include <iprt/x86.h>
|
---|
163 |
|
---|
164 | #include "IEMInline.h"
|
---|
165 | #ifdef VBOX_VMM_TARGET_X86
|
---|
166 | # include "target-x86/IEMAllTlbInline-x86.h"
|
---|
167 | #endif
|
---|
168 |
|
---|
169 |
|
---|
170 | /*********************************************************************************************************************************
|
---|
171 | * Global Variables *
|
---|
172 | *********************************************************************************************************************************/
|
---|
173 | #if defined(IEM_LOG_MEMORY_WRITES)
|
---|
174 | /** What IEM just wrote. */
|
---|
175 | uint8_t g_abIemWrote[256];
|
---|
176 | /** How much IEM just wrote. */
|
---|
177 | size_t g_cbIemWrote;
|
---|
178 | #endif
|
---|
179 |
|
---|
180 |
|
---|
181 | /**
|
---|
182 | * Calculates IEM_F_BRK_PENDING_XXX (IEM_F_PENDING_BRK_MASK) flags, slow code
|
---|
183 | * path.
|
---|
184 | *
|
---|
185 | * This will also invalidate TLB entries for any pages with active data
|
---|
186 | * breakpoints on them.
|
---|
187 | *
|
---|
188 | * @returns IEM_F_BRK_PENDING_XXX or zero.
|
---|
189 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
190 | * calling thread.
|
---|
191 | *
|
---|
192 | * @note Don't call directly, use iemCalcExecDbgFlags instead.
|
---|
193 | */
|
---|
194 | uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu)
|
---|
195 | {
|
---|
196 | uint32_t fExec = 0;
|
---|
197 |
|
---|
198 | /*
|
---|
199 | * Helper for invalidate the data TLB for breakpoint addresses.
|
---|
200 | *
|
---|
201 | * This is to make sure any access to the page will always trigger a TLB
|
---|
202 | * load for as long as the breakpoint is enabled.
|
---|
203 | */
|
---|
204 | #ifdef IEM_WITH_DATA_TLB
|
---|
205 | # define INVALID_TLB_ENTRY_FOR_BP(a_uValue) do { \
|
---|
206 | RTGCPTR uTagNoRev = (a_uValue); \
|
---|
207 | uTagNoRev = IEMTLB_CALC_TAG_NO_REV(uTagNoRev); \
|
---|
208 | /** @todo do large page accounting */ \
|
---|
209 | uintptr_t const idxEven = IEMTLB_TAG_TO_EVEN_INDEX(uTagNoRev); \
|
---|
210 | if (pVCpu->iem.s.DataTlb.aEntries[idxEven].uTag == (uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevision)) \
|
---|
211 | pVCpu->iem.s.DataTlb.aEntries[idxEven].uTag = 0; \
|
---|
212 | if (pVCpu->iem.s.DataTlb.aEntries[idxEven + 1].uTag == (uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevisionGlobal)) \
|
---|
213 | pVCpu->iem.s.DataTlb.aEntries[idxEven + 1].uTag = 0; \
|
---|
214 | } while (0)
|
---|
215 | #else
|
---|
216 | # define INVALID_TLB_ENTRY_FOR_BP(a_uValue) do { } while (0)
|
---|
217 | #endif
|
---|
218 |
|
---|
219 | /*
|
---|
220 | * Process guest breakpoints.
|
---|
221 | */
|
---|
222 | #define PROCESS_ONE_BP(a_fDr7, a_iBp, a_uValue) do { \
|
---|
223 | if (a_fDr7 & X86_DR7_L_G(a_iBp)) \
|
---|
224 | { \
|
---|
225 | switch (X86_DR7_GET_RW(a_fDr7, a_iBp)) \
|
---|
226 | { \
|
---|
227 | case X86_DR7_RW_EO: \
|
---|
228 | fExec |= IEM_F_PENDING_BRK_INSTR; \
|
---|
229 | break; \
|
---|
230 | case X86_DR7_RW_WO: \
|
---|
231 | case X86_DR7_RW_RW: \
|
---|
232 | fExec |= IEM_F_PENDING_BRK_DATA; \
|
---|
233 | INVALID_TLB_ENTRY_FOR_BP(a_uValue); \
|
---|
234 | break; \
|
---|
235 | case X86_DR7_RW_IO: \
|
---|
236 | fExec |= IEM_F_PENDING_BRK_X86_IO; \
|
---|
237 | break; \
|
---|
238 | } \
|
---|
239 | } \
|
---|
240 | } while (0)
|
---|
241 |
|
---|
242 | uint32_t const fGstDr7 = (uint32_t)pVCpu->cpum.GstCtx.dr[7];
|
---|
243 | if (fGstDr7 & X86_DR7_ENABLED_MASK)
|
---|
244 | {
|
---|
245 | /** @todo extract more details here to simplify matching later. */
|
---|
246 | #ifdef IEM_WITH_DATA_TLB
|
---|
247 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
|
---|
248 | #endif
|
---|
249 | PROCESS_ONE_BP(fGstDr7, 0, pVCpu->cpum.GstCtx.dr[0]);
|
---|
250 | PROCESS_ONE_BP(fGstDr7, 1, pVCpu->cpum.GstCtx.dr[1]);
|
---|
251 | PROCESS_ONE_BP(fGstDr7, 2, pVCpu->cpum.GstCtx.dr[2]);
|
---|
252 | PROCESS_ONE_BP(fGstDr7, 3, pVCpu->cpum.GstCtx.dr[3]);
|
---|
253 | }
|
---|
254 |
|
---|
255 | /*
|
---|
256 | * Process hypervisor breakpoints.
|
---|
257 | */
|
---|
258 | PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
|
---|
259 | uint32_t const fHyperDr7 = DBGFBpGetDR7(pVM);
|
---|
260 | if (fHyperDr7 & X86_DR7_ENABLED_MASK)
|
---|
261 | {
|
---|
262 | /** @todo extract more details here to simplify matching later. */
|
---|
263 | PROCESS_ONE_BP(fHyperDr7, 0, DBGFBpGetDR0(pVM));
|
---|
264 | PROCESS_ONE_BP(fHyperDr7, 1, DBGFBpGetDR1(pVM));
|
---|
265 | PROCESS_ONE_BP(fHyperDr7, 2, DBGFBpGetDR2(pVM));
|
---|
266 | PROCESS_ONE_BP(fHyperDr7, 3, DBGFBpGetDR3(pVM));
|
---|
267 | }
|
---|
268 |
|
---|
269 | return fExec;
|
---|
270 | }
|
---|
271 |
|
---|
272 |
|
---|
273 | /**
|
---|
274 | * Initializes the decoder state.
|
---|
275 | *
|
---|
276 | * iemReInitDecoder is mostly a copy of this function.
|
---|
277 | *
|
---|
278 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
279 | * calling thread.
|
---|
280 | * @param fExecOpts Optional execution flags:
|
---|
281 | * - IEM_F_BYPASS_HANDLERS
|
---|
282 | * - IEM_F_X86_DISREGARD_LOCK
|
---|
283 | */
|
---|
284 | DECLINLINE(void) iemInitDecoder(PVMCPUCC pVCpu, uint32_t fExecOpts)
|
---|
285 | {
|
---|
286 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
287 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
288 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
289 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
290 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
|
---|
291 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
|
---|
292 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.fs));
|
---|
293 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.gs));
|
---|
294 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
|
---|
295 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.tr));
|
---|
296 |
|
---|
297 | /* Execution state: */
|
---|
298 | uint32_t fExec;
|
---|
299 | pVCpu->iem.s.fExec = fExec = iemCalcExecFlags(pVCpu) | fExecOpts;
|
---|
300 |
|
---|
301 | /* Decoder state: */
|
---|
302 | pVCpu->iem.s.enmDefAddrMode = fExec & IEM_F_MODE_CPUMODE_MASK; /** @todo check if this is correct... */
|
---|
303 | pVCpu->iem.s.enmEffAddrMode = fExec & IEM_F_MODE_CPUMODE_MASK;
|
---|
304 | if ((fExec & IEM_F_MODE_CPUMODE_MASK) != IEMMODE_64BIT)
|
---|
305 | {
|
---|
306 | pVCpu->iem.s.enmDefOpSize = fExec & IEM_F_MODE_CPUMODE_MASK; /** @todo check if this is correct... */
|
---|
307 | pVCpu->iem.s.enmEffOpSize = fExec & IEM_F_MODE_CPUMODE_MASK;
|
---|
308 | }
|
---|
309 | else
|
---|
310 | {
|
---|
311 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
312 | pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT;
|
---|
313 | }
|
---|
314 | pVCpu->iem.s.fPrefixes = 0;
|
---|
315 | pVCpu->iem.s.uRexReg = 0;
|
---|
316 | pVCpu->iem.s.uRexB = 0;
|
---|
317 | pVCpu->iem.s.uRexIndex = 0;
|
---|
318 | pVCpu->iem.s.idxPrefix = 0;
|
---|
319 | pVCpu->iem.s.uVex3rdReg = 0;
|
---|
320 | pVCpu->iem.s.uVexLength = 0;
|
---|
321 | pVCpu->iem.s.fEvexStuff = 0;
|
---|
322 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
323 | #ifdef IEM_WITH_CODE_TLB
|
---|
324 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
325 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
326 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
327 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
328 | pVCpu->iem.s.offOpcode = 0;
|
---|
329 | # endif
|
---|
330 | # ifdef VBOX_STRICT
|
---|
331 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
332 | pVCpu->iem.s.cbInstrBuf = UINT16_MAX;
|
---|
333 | pVCpu->iem.s.cbInstrBufTotal = UINT16_MAX;
|
---|
334 | pVCpu->iem.s.uInstrBufPc = UINT64_C(0xc0ffc0ffcff0c0ff);
|
---|
335 | # endif
|
---|
336 | #else
|
---|
337 | pVCpu->iem.s.offOpcode = 0;
|
---|
338 | pVCpu->iem.s.cbOpcode = 0;
|
---|
339 | #endif
|
---|
340 | pVCpu->iem.s.offModRm = 0;
|
---|
341 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
342 | pVCpu->iem.s.iNextMapping = 0;
|
---|
343 | pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
|
---|
344 |
|
---|
345 | #ifdef DBGFTRACE_ENABLED
|
---|
346 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
347 | {
|
---|
348 | case IEMMODE_64BIT:
|
---|
349 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.rip);
|
---|
350 | break;
|
---|
351 | case IEMMODE_32BIT:
|
---|
352 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
353 | break;
|
---|
354 | case IEMMODE_16BIT:
|
---|
355 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
356 | break;
|
---|
357 | }
|
---|
358 | #endif
|
---|
359 | }
|
---|
360 |
|
---|
361 |
|
---|
362 | /**
|
---|
363 | * Reinitializes the decoder state 2nd+ loop of IEMExecLots.
|
---|
364 | *
|
---|
365 | * This is mostly a copy of iemInitDecoder.
|
---|
366 | *
|
---|
367 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
368 | */
|
---|
369 | DECLINLINE(void) iemReInitDecoder(PVMCPUCC pVCpu)
|
---|
370 | {
|
---|
371 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
372 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
373 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
374 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
|
---|
375 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
|
---|
376 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.fs));
|
---|
377 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.gs));
|
---|
378 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
|
---|
379 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.tr));
|
---|
380 |
|
---|
381 | /* ASSUMES: Anyone changing CPU state affecting the fExec bits will update them! */
|
---|
382 | AssertMsg((pVCpu->iem.s.fExec & ~IEM_F_USER_OPTS) == iemCalcExecFlags(pVCpu),
|
---|
383 | ("fExec=%#x iemCalcExecModeFlags=%#x\n", pVCpu->iem.s.fExec, iemCalcExecFlags(pVCpu)));
|
---|
384 |
|
---|
385 | IEMMODE const enmMode = IEM_GET_CPU_MODE(pVCpu);
|
---|
386 | pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */
|
---|
387 | pVCpu->iem.s.enmEffAddrMode = enmMode;
|
---|
388 | if (enmMode != IEMMODE_64BIT)
|
---|
389 | {
|
---|
390 | pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */
|
---|
391 | pVCpu->iem.s.enmEffOpSize = enmMode;
|
---|
392 | }
|
---|
393 | else
|
---|
394 | {
|
---|
395 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
396 | pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT;
|
---|
397 | }
|
---|
398 | pVCpu->iem.s.fPrefixes = 0;
|
---|
399 | pVCpu->iem.s.uRexReg = 0;
|
---|
400 | pVCpu->iem.s.uRexB = 0;
|
---|
401 | pVCpu->iem.s.uRexIndex = 0;
|
---|
402 | pVCpu->iem.s.idxPrefix = 0;
|
---|
403 | pVCpu->iem.s.uVex3rdReg = 0;
|
---|
404 | pVCpu->iem.s.uVexLength = 0;
|
---|
405 | pVCpu->iem.s.fEvexStuff = 0;
|
---|
406 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
407 | #ifdef IEM_WITH_CODE_TLB
|
---|
408 | if (pVCpu->iem.s.pbInstrBuf)
|
---|
409 | {
|
---|
410 | uint64_t off = (enmMode == IEMMODE_64BIT
|
---|
411 | ? pVCpu->cpum.GstCtx.rip
|
---|
412 | : pVCpu->cpum.GstCtx.eip + (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base)
|
---|
413 | - pVCpu->iem.s.uInstrBufPc;
|
---|
414 | if (off < pVCpu->iem.s.cbInstrBufTotal)
|
---|
415 | {
|
---|
416 | pVCpu->iem.s.offInstrNextByte = (uint32_t)off;
|
---|
417 | pVCpu->iem.s.offCurInstrStart = (uint16_t)off;
|
---|
418 | if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal)
|
---|
419 | pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15;
|
---|
420 | else
|
---|
421 | pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal;
|
---|
422 | }
|
---|
423 | else
|
---|
424 | {
|
---|
425 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
426 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
427 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
428 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
429 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
430 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
431 | }
|
---|
432 | }
|
---|
433 | else
|
---|
434 | {
|
---|
435 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
436 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
437 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
438 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
439 | # ifdef VBOX_STRICT
|
---|
440 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
441 | # endif
|
---|
442 | }
|
---|
443 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
444 | pVCpu->iem.s.offOpcode = 0;
|
---|
445 | # endif
|
---|
446 | #else /* !IEM_WITH_CODE_TLB */
|
---|
447 | pVCpu->iem.s.cbOpcode = 0;
|
---|
448 | pVCpu->iem.s.offOpcode = 0;
|
---|
449 | #endif /* !IEM_WITH_CODE_TLB */
|
---|
450 | pVCpu->iem.s.offModRm = 0;
|
---|
451 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
452 | pVCpu->iem.s.iNextMapping = 0;
|
---|
453 | Assert(pVCpu->iem.s.rcPassUp == VINF_SUCCESS);
|
---|
454 | Assert(!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS));
|
---|
455 |
|
---|
456 | #ifdef DBGFTRACE_ENABLED
|
---|
457 | switch (enmMode)
|
---|
458 | {
|
---|
459 | case IEMMODE_64BIT:
|
---|
460 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.rip);
|
---|
461 | break;
|
---|
462 | case IEMMODE_32BIT:
|
---|
463 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
464 | break;
|
---|
465 | case IEMMODE_16BIT:
|
---|
466 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
467 | break;
|
---|
468 | }
|
---|
469 | #endif
|
---|
470 | }
|
---|
471 |
|
---|
472 |
|
---|
473 |
|
---|
474 | /**
|
---|
475 | * Prefetch opcodes the first time when starting executing.
|
---|
476 | *
|
---|
477 | * @returns Strict VBox status code.
|
---|
478 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
479 | * calling thread.
|
---|
480 | * @param fExecOpts Optional execution flags:
|
---|
481 | * - IEM_F_BYPASS_HANDLERS
|
---|
482 | * - IEM_F_X86_DISREGARD_LOCK
|
---|
483 | */
|
---|
484 | static VBOXSTRICTRC iemInitDecoderAndPrefetchOpcodes(PVMCPUCC pVCpu, uint32_t fExecOpts) RT_NOEXCEPT
|
---|
485 | {
|
---|
486 | iemInitDecoder(pVCpu, fExecOpts);
|
---|
487 |
|
---|
488 | #ifndef IEM_WITH_CODE_TLB
|
---|
489 | /*
|
---|
490 | * What we're doing here is very similar to iemMemMap/iemMemBounceBufferMap.
|
---|
491 | *
|
---|
492 | * First translate CS:rIP to a physical address.
|
---|
493 | *
|
---|
494 | * Note! The iemOpcodeFetchMoreBytes code depends on this here code to fetch
|
---|
495 | * all relevant bytes from the first page, as it ASSUMES it's only ever
|
---|
496 | * called for dealing with CS.LIM, page crossing and instructions that
|
---|
497 | * are too long.
|
---|
498 | */
|
---|
499 | uint32_t cbToTryRead;
|
---|
500 | RTGCPTR GCPtrPC;
|
---|
501 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
502 | {
|
---|
503 | cbToTryRead = GUEST_PAGE_SIZE;
|
---|
504 | GCPtrPC = pVCpu->cpum.GstCtx.rip;
|
---|
505 | if (IEM_IS_CANONICAL(GCPtrPC))
|
---|
506 | cbToTryRead = GUEST_PAGE_SIZE - (GCPtrPC & GUEST_PAGE_OFFSET_MASK);
|
---|
507 | else
|
---|
508 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
509 | }
|
---|
510 | else
|
---|
511 | {
|
---|
512 | uint32_t GCPtrPC32 = pVCpu->cpum.GstCtx.eip;
|
---|
513 | AssertMsg(!(GCPtrPC32 & ~(uint32_t)UINT16_MAX) || IEM_IS_32BIT_CODE(pVCpu), ("%04x:%RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
514 | if (GCPtrPC32 <= pVCpu->cpum.GstCtx.cs.u32Limit)
|
---|
515 | cbToTryRead = pVCpu->cpum.GstCtx.cs.u32Limit - GCPtrPC32 + 1;
|
---|
516 | else
|
---|
517 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
518 | if (cbToTryRead) { /* likely */ }
|
---|
519 | else /* overflowed */
|
---|
520 | {
|
---|
521 | Assert(GCPtrPC32 == 0); Assert(pVCpu->cpum.GstCtx.cs.u32Limit == UINT32_MAX);
|
---|
522 | cbToTryRead = UINT32_MAX;
|
---|
523 | }
|
---|
524 | GCPtrPC = (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base + GCPtrPC32;
|
---|
525 | Assert(GCPtrPC <= UINT32_MAX);
|
---|
526 | }
|
---|
527 |
|
---|
528 | PGMPTWALKFAST WalkFast;
|
---|
529 | int rc = PGMGstQueryPageFast(pVCpu, GCPtrPC,
|
---|
530 | IEM_GET_CPL(pVCpu) == 3 ? PGMQPAGE_F_EXECUTE | PGMQPAGE_F_USER_MODE : PGMQPAGE_F_EXECUTE,
|
---|
531 | &WalkFast);
|
---|
532 | if (RT_SUCCESS(rc))
|
---|
533 | Assert(WalkFast.fInfo & PGM_WALKINFO_SUCCEEDED);
|
---|
534 | else
|
---|
535 | {
|
---|
536 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - rc=%Rrc\n", GCPtrPC, rc));
|
---|
537 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
538 | /** @todo This isn't quite right yet, as PGM_GST_SLAT_NAME_EPT(Walk) doesn't
|
---|
539 | * know about what kind of access we're making! See PGM_GST_NAME(WalkFast). */
|
---|
540 | if (WalkFast.fFailed & PGM_WALKFAIL_EPT)
|
---|
541 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &WalkFast, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
542 | # endif
|
---|
543 | return iemRaisePageFault(pVCpu, GCPtrPC, 1, IEM_ACCESS_INSTRUCTION, rc);
|
---|
544 | }
|
---|
545 | #if 0
|
---|
546 | if ((WalkFast.fEffective & X86_PTE_US) || IEM_GET_CPL(pVCpu) != 3) { /* likely */ }
|
---|
547 | else
|
---|
548 | {
|
---|
549 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - supervisor page\n", GCPtrPC));
|
---|
550 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
551 | /** @todo this is completely wrong for EPT. WalkFast.fFailed is always zero here!*/
|
---|
552 | # error completely wrong
|
---|
553 | if (WalkFast.fFailed & PGM_WALKFAIL_EPT)
|
---|
554 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &WalkFast, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
555 | # endif
|
---|
556 | return iemRaisePageFault(pVCpu, GCPtrPC, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
557 | }
|
---|
558 | if (!(WalkFast.fEffective & X86_PTE_PAE_NX) || !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE)) { /* likely */ }
|
---|
559 | else
|
---|
560 | {
|
---|
561 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - NX\n", GCPtrPC));
|
---|
562 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
563 | /** @todo this is completely wrong for EPT. WalkFast.fFailed is always zero here!*/
|
---|
564 | # error completely wrong.
|
---|
565 | if (WalkFast.fFailed & PGM_WALKFAIL_EPT)
|
---|
566 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &WalkFast, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
567 | # endif
|
---|
568 | return iemRaisePageFault(pVCpu, GCPtrPC, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
569 | }
|
---|
570 | #else
|
---|
571 | Assert((WalkFast.fEffective & X86_PTE_US) || IEM_GET_CPL(pVCpu) != 3);
|
---|
572 | Assert(!(WalkFast.fEffective & X86_PTE_PAE_NX) || !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE));
|
---|
573 | #endif
|
---|
574 | RTGCPHYS const GCPhys = WalkFast.GCPhys;
|
---|
575 |
|
---|
576 | /*
|
---|
577 | * Read the bytes at this address.
|
---|
578 | */
|
---|
579 | uint32_t cbLeftOnPage = GUEST_PAGE_SIZE - (GCPtrPC & GUEST_PAGE_OFFSET_MASK);
|
---|
580 | if (cbToTryRead > cbLeftOnPage)
|
---|
581 | cbToTryRead = cbLeftOnPage;
|
---|
582 | if (cbToTryRead > sizeof(pVCpu->iem.s.abOpcode))
|
---|
583 | cbToTryRead = sizeof(pVCpu->iem.s.abOpcode);
|
---|
584 |
|
---|
585 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
586 | {
|
---|
587 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhys, pVCpu->iem.s.abOpcode, cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
588 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
589 | { /* likely */ }
|
---|
590 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
591 | {
|
---|
592 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
593 | GCPtrPC, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
594 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
595 | }
|
---|
596 | else
|
---|
597 | {
|
---|
598 | Log((RT_SUCCESS(rcStrict)
|
---|
599 | ? "iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
600 | : "iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
601 | GCPtrPC, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
602 | return rcStrict;
|
---|
603 | }
|
---|
604 | }
|
---|
605 | else
|
---|
606 | {
|
---|
607 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->iem.s.abOpcode, GCPhys, cbToTryRead);
|
---|
608 | if (RT_SUCCESS(rc))
|
---|
609 | { /* likely */ }
|
---|
610 | else
|
---|
611 | {
|
---|
612 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read error - rc=%Rrc (!!)\n",
|
---|
613 | GCPtrPC, GCPhys, rc, cbToTryRead));
|
---|
614 | return rc;
|
---|
615 | }
|
---|
616 | }
|
---|
617 | pVCpu->iem.s.cbOpcode = cbToTryRead;
|
---|
618 | #endif /* !IEM_WITH_CODE_TLB */
|
---|
619 | return VINF_SUCCESS;
|
---|
620 | }
|
---|
621 |
|
---|
622 |
|
---|
623 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
624 | /**
|
---|
625 | * Worker for iemTlbInvalidateAll.
|
---|
626 | */
|
---|
627 | template<bool a_fGlobal>
|
---|
628 | DECL_FORCE_INLINE(void) iemTlbInvalidateOne(IEMTLB *pTlb)
|
---|
629 | {
|
---|
630 | if (!a_fGlobal)
|
---|
631 | pTlb->cTlsFlushes++;
|
---|
632 | else
|
---|
633 | pTlb->cTlsGlobalFlushes++;
|
---|
634 |
|
---|
635 | pTlb->uTlbRevision += IEMTLB_REVISION_INCR;
|
---|
636 | if (RT_LIKELY(pTlb->uTlbRevision != 0))
|
---|
637 | { /* very likely */ }
|
---|
638 | else
|
---|
639 | {
|
---|
640 | pTlb->uTlbRevision = IEMTLB_REVISION_INCR;
|
---|
641 | pTlb->cTlbRevisionRollovers++;
|
---|
642 | unsigned i = RT_ELEMENTS(pTlb->aEntries) / 2;
|
---|
643 | while (i-- > 0)
|
---|
644 | pTlb->aEntries[i * 2].uTag = 0;
|
---|
645 | }
|
---|
646 |
|
---|
647 | pTlb->cTlbNonGlobalLargePageCurLoads = 0;
|
---|
648 | pTlb->NonGlobalLargePageRange.uLastTag = 0;
|
---|
649 | pTlb->NonGlobalLargePageRange.uFirstTag = UINT64_MAX;
|
---|
650 |
|
---|
651 | if (a_fGlobal)
|
---|
652 | {
|
---|
653 | pTlb->uTlbRevisionGlobal += IEMTLB_REVISION_INCR;
|
---|
654 | if (RT_LIKELY(pTlb->uTlbRevisionGlobal != 0))
|
---|
655 | { /* very likely */ }
|
---|
656 | else
|
---|
657 | {
|
---|
658 | pTlb->uTlbRevisionGlobal = IEMTLB_REVISION_INCR;
|
---|
659 | pTlb->cTlbRevisionRollovers++;
|
---|
660 | unsigned i = RT_ELEMENTS(pTlb->aEntries) / 2;
|
---|
661 | while (i-- > 0)
|
---|
662 | pTlb->aEntries[i * 2 + 1].uTag = 0;
|
---|
663 | }
|
---|
664 |
|
---|
665 | pTlb->cTlbGlobalLargePageCurLoads = 0;
|
---|
666 | pTlb->GlobalLargePageRange.uLastTag = 0;
|
---|
667 | pTlb->GlobalLargePageRange.uFirstTag = UINT64_MAX;
|
---|
668 | }
|
---|
669 | }
|
---|
670 | #endif
|
---|
671 |
|
---|
672 |
|
---|
673 | /**
|
---|
674 | * Worker for IEMTlbInvalidateAll and IEMTlbInvalidateAllGlobal.
|
---|
675 | */
|
---|
676 | template<bool a_fGlobal>
|
---|
677 | DECL_FORCE_INLINE(void) iemTlbInvalidateAll(PVMCPUCC pVCpu)
|
---|
678 | {
|
---|
679 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
680 | Log10(("IEMTlbInvalidateAll\n"));
|
---|
681 |
|
---|
682 | # ifdef IEM_WITH_CODE_TLB
|
---|
683 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
684 | iemTlbInvalidateOne<a_fGlobal>(&pVCpu->iem.s.CodeTlb);
|
---|
685 | if (a_fGlobal)
|
---|
686 | IEMTLBTRACE_FLUSH_GLOBAL(pVCpu, pVCpu->iem.s.CodeTlb.uTlbRevision, pVCpu->iem.s.CodeTlb.uTlbRevisionGlobal, false);
|
---|
687 | else
|
---|
688 | IEMTLBTRACE_FLUSH(pVCpu, pVCpu->iem.s.CodeTlb.uTlbRevision, false);
|
---|
689 | # endif
|
---|
690 |
|
---|
691 | # ifdef IEM_WITH_DATA_TLB
|
---|
692 | iemTlbInvalidateOne<a_fGlobal>(&pVCpu->iem.s.DataTlb);
|
---|
693 | if (a_fGlobal)
|
---|
694 | IEMTLBTRACE_FLUSH_GLOBAL(pVCpu, pVCpu->iem.s.DataTlb.uTlbRevision, pVCpu->iem.s.DataTlb.uTlbRevisionGlobal, true);
|
---|
695 | else
|
---|
696 | IEMTLBTRACE_FLUSH(pVCpu, pVCpu->iem.s.DataTlb.uTlbRevision, true);
|
---|
697 | # endif
|
---|
698 | #else
|
---|
699 | RT_NOREF(pVCpu);
|
---|
700 | #endif
|
---|
701 | }
|
---|
702 |
|
---|
703 |
|
---|
704 | /**
|
---|
705 | * Invalidates non-global the IEM TLB entries.
|
---|
706 | *
|
---|
707 | * This is called internally as well as by PGM when moving GC mappings.
|
---|
708 | *
|
---|
709 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
710 | * thread.
|
---|
711 | */
|
---|
712 | VMM_INT_DECL(void) IEMTlbInvalidateAll(PVMCPUCC pVCpu)
|
---|
713 | {
|
---|
714 | iemTlbInvalidateAll<false>(pVCpu);
|
---|
715 | }
|
---|
716 |
|
---|
717 |
|
---|
718 | /**
|
---|
719 | * Invalidates all the IEM TLB entries.
|
---|
720 | *
|
---|
721 | * This is called internally as well as by PGM when moving GC mappings.
|
---|
722 | *
|
---|
723 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
724 | * thread.
|
---|
725 | */
|
---|
726 | VMM_INT_DECL(void) IEMTlbInvalidateAllGlobal(PVMCPUCC pVCpu)
|
---|
727 | {
|
---|
728 | iemTlbInvalidateAll<true>(pVCpu);
|
---|
729 | }
|
---|
730 |
|
---|
731 |
|
---|
732 | /**
|
---|
733 | * Invalidates a page in the TLBs.
|
---|
734 | *
|
---|
735 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
736 | * thread.
|
---|
737 | * @param GCPtr The address of the page to invalidate
|
---|
738 | * @thread EMT(pVCpu)
|
---|
739 | */
|
---|
740 | VMM_INT_DECL(void) IEMTlbInvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCPtr)
|
---|
741 | {
|
---|
742 | IEMTLBTRACE_INVLPG(pVCpu, GCPtr);
|
---|
743 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
744 | Log10(("IEMTlbInvalidatePage: GCPtr=%RGv\n", GCPtr));
|
---|
745 | GCPtr = IEMTLB_CALC_TAG_NO_REV(GCPtr);
|
---|
746 | Assert(!(GCPtr >> (48 - X86_PAGE_SHIFT)));
|
---|
747 | uintptr_t const idxEven = IEMTLB_TAG_TO_EVEN_INDEX(GCPtr);
|
---|
748 |
|
---|
749 | # ifdef IEM_WITH_CODE_TLB
|
---|
750 | iemTlbInvalidatePageWorker<false>(pVCpu, &pVCpu->iem.s.CodeTlb, GCPtr, idxEven);
|
---|
751 | # endif
|
---|
752 | # ifdef IEM_WITH_DATA_TLB
|
---|
753 | iemTlbInvalidatePageWorker<true>(pVCpu, &pVCpu->iem.s.DataTlb, GCPtr, idxEven);
|
---|
754 | # endif
|
---|
755 | #else
|
---|
756 | NOREF(pVCpu); NOREF(GCPtr);
|
---|
757 | #endif
|
---|
758 | }
|
---|
759 |
|
---|
760 |
|
---|
761 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
762 | /**
|
---|
763 | * Invalid both TLBs slow fashion following a rollover.
|
---|
764 | *
|
---|
765 | * Worker for IEMTlbInvalidateAllPhysical,
|
---|
766 | * IEMTlbInvalidateAllPhysicalAllCpus, iemOpcodeFetchBytesJmp, iemMemMap,
|
---|
767 | * iemMemMapJmp and others.
|
---|
768 | *
|
---|
769 | * @thread EMT(pVCpu)
|
---|
770 | */
|
---|
771 | void iemTlbInvalidateAllPhysicalSlow(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
772 | {
|
---|
773 | Log10(("iemTlbInvalidateAllPhysicalSlow\n"));
|
---|
774 | ASMAtomicWriteU64(&pVCpu->iem.s.CodeTlb.uTlbPhysRev, IEMTLB_PHYS_REV_INCR * 2);
|
---|
775 | ASMAtomicWriteU64(&pVCpu->iem.s.DataTlb.uTlbPhysRev, IEMTLB_PHYS_REV_INCR * 2);
|
---|
776 |
|
---|
777 | unsigned i;
|
---|
778 | # ifdef IEM_WITH_CODE_TLB
|
---|
779 | i = RT_ELEMENTS(pVCpu->iem.s.CodeTlb.aEntries);
|
---|
780 | while (i-- > 0)
|
---|
781 | {
|
---|
782 | pVCpu->iem.s.CodeTlb.aEntries[i].pbMappingR3 = NULL;
|
---|
783 | pVCpu->iem.s.CodeTlb.aEntries[i].fFlagsAndPhysRev &= ~( IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PG_NO_READ
|
---|
784 | | IEMTLBE_F_PG_UNASSIGNED | IEMTLBE_F_PHYS_REV);
|
---|
785 | }
|
---|
786 | pVCpu->iem.s.CodeTlb.cTlbPhysRevRollovers++;
|
---|
787 | pVCpu->iem.s.CodeTlb.cTlbPhysRevFlushes++;
|
---|
788 | # endif
|
---|
789 | # ifdef IEM_WITH_DATA_TLB
|
---|
790 | i = RT_ELEMENTS(pVCpu->iem.s.DataTlb.aEntries);
|
---|
791 | while (i-- > 0)
|
---|
792 | {
|
---|
793 | pVCpu->iem.s.DataTlb.aEntries[i].pbMappingR3 = NULL;
|
---|
794 | pVCpu->iem.s.DataTlb.aEntries[i].fFlagsAndPhysRev &= ~( IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PG_NO_READ
|
---|
795 | | IEMTLBE_F_PG_UNASSIGNED | IEMTLBE_F_PHYS_REV);
|
---|
796 | }
|
---|
797 | pVCpu->iem.s.DataTlb.cTlbPhysRevRollovers++;
|
---|
798 | pVCpu->iem.s.DataTlb.cTlbPhysRevFlushes++;
|
---|
799 | # endif
|
---|
800 |
|
---|
801 | }
|
---|
802 | #endif
|
---|
803 |
|
---|
804 |
|
---|
805 | /**
|
---|
806 | * Invalidates the host physical aspects of the IEM TLBs.
|
---|
807 | *
|
---|
808 | * This is called internally as well as by PGM when moving GC mappings.
|
---|
809 | *
|
---|
810 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
811 | * thread.
|
---|
812 | * @note Currently not used.
|
---|
813 | */
|
---|
814 | VMM_INT_DECL(void) IEMTlbInvalidateAllPhysical(PVMCPUCC pVCpu)
|
---|
815 | {
|
---|
816 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
817 | /* Note! This probably won't end up looking exactly like this, but it give an idea... */
|
---|
818 | Log10(("IEMTlbInvalidateAllPhysical\n"));
|
---|
819 |
|
---|
820 | # ifdef IEM_WITH_CODE_TLB
|
---|
821 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
822 | # endif
|
---|
823 | uint64_t uTlbPhysRev = pVCpu->iem.s.CodeTlb.uTlbPhysRev + IEMTLB_PHYS_REV_INCR;
|
---|
824 | if (RT_LIKELY(uTlbPhysRev > IEMTLB_PHYS_REV_INCR * 2))
|
---|
825 | {
|
---|
826 | pVCpu->iem.s.CodeTlb.uTlbPhysRev = uTlbPhysRev;
|
---|
827 | pVCpu->iem.s.CodeTlb.cTlbPhysRevFlushes++;
|
---|
828 | pVCpu->iem.s.DataTlb.uTlbPhysRev = uTlbPhysRev;
|
---|
829 | pVCpu->iem.s.DataTlb.cTlbPhysRevFlushes++;
|
---|
830 | }
|
---|
831 | else
|
---|
832 | iemTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
833 | #else
|
---|
834 | NOREF(pVCpu);
|
---|
835 | #endif
|
---|
836 | }
|
---|
837 |
|
---|
838 |
|
---|
839 | /**
|
---|
840 | * Invalidates the host physical aspects of the IEM TLBs.
|
---|
841 | *
|
---|
842 | * This is called internally as well as by PGM when moving GC mappings.
|
---|
843 | *
|
---|
844 | * @param pVM The cross context VM structure.
|
---|
845 | * @param idCpuCaller The ID of the calling EMT if available to the caller,
|
---|
846 | * otherwise NIL_VMCPUID.
|
---|
847 | * @param enmReason The reason we're called.
|
---|
848 | *
|
---|
849 | * @remarks Caller holds the PGM lock.
|
---|
850 | */
|
---|
851 | VMM_INT_DECL(void) IEMTlbInvalidateAllPhysicalAllCpus(PVMCC pVM, VMCPUID idCpuCaller, IEMTLBPHYSFLUSHREASON enmReason)
|
---|
852 | {
|
---|
853 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
854 | PVMCPUCC const pVCpuCaller = idCpuCaller >= pVM->cCpus ? VMMGetCpu(pVM) : VMMGetCpuById(pVM, idCpuCaller);
|
---|
855 | if (pVCpuCaller)
|
---|
856 | VMCPU_ASSERT_EMT(pVCpuCaller);
|
---|
857 | Log10(("IEMTlbInvalidateAllPhysicalAllCpus: %d\n", enmReason)); RT_NOREF(enmReason);
|
---|
858 |
|
---|
859 | VMCC_FOR_EACH_VMCPU(pVM)
|
---|
860 | {
|
---|
861 | # ifdef IEM_WITH_CODE_TLB
|
---|
862 | if (pVCpuCaller == pVCpu)
|
---|
863 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
864 | # endif
|
---|
865 |
|
---|
866 | uint64_t const uTlbPhysRevPrev = ASMAtomicUoReadU64(&pVCpu->iem.s.CodeTlb.uTlbPhysRev);
|
---|
867 | uint64_t uTlbPhysRevNew = uTlbPhysRevPrev + IEMTLB_PHYS_REV_INCR;
|
---|
868 | if (RT_LIKELY(uTlbPhysRevNew > IEMTLB_PHYS_REV_INCR * 2))
|
---|
869 | { /* likely */}
|
---|
870 | else if (pVCpuCaller != pVCpu)
|
---|
871 | uTlbPhysRevNew = IEMTLB_PHYS_REV_INCR;
|
---|
872 | else
|
---|
873 | {
|
---|
874 | iemTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
875 | continue;
|
---|
876 | }
|
---|
877 | if (ASMAtomicCmpXchgU64(&pVCpu->iem.s.CodeTlb.uTlbPhysRev, uTlbPhysRevNew, uTlbPhysRevPrev))
|
---|
878 | pVCpu->iem.s.CodeTlb.cTlbPhysRevFlushes++;
|
---|
879 |
|
---|
880 | if (ASMAtomicCmpXchgU64(&pVCpu->iem.s.DataTlb.uTlbPhysRev, uTlbPhysRevNew, uTlbPhysRevPrev))
|
---|
881 | pVCpu->iem.s.DataTlb.cTlbPhysRevFlushes++;
|
---|
882 | }
|
---|
883 | VMCC_FOR_EACH_VMCPU_END(pVM);
|
---|
884 |
|
---|
885 | #else
|
---|
886 | RT_NOREF(pVM, idCpuCaller, enmReason);
|
---|
887 | #endif
|
---|
888 | }
|
---|
889 |
|
---|
890 |
|
---|
891 | /**
|
---|
892 | * Flushes the prefetch buffer, light version.
|
---|
893 | */
|
---|
894 | void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
895 | {
|
---|
896 | #ifndef IEM_WITH_CODE_TLB
|
---|
897 | pVCpu->iem.s.cbOpcode = cbInstr;
|
---|
898 | #else
|
---|
899 | RT_NOREF(pVCpu, cbInstr);
|
---|
900 | #endif
|
---|
901 | }
|
---|
902 |
|
---|
903 |
|
---|
904 | /**
|
---|
905 | * Flushes the prefetch buffer, heavy version.
|
---|
906 | */
|
---|
907 | void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
908 | {
|
---|
909 | #ifndef IEM_WITH_CODE_TLB
|
---|
910 | pVCpu->iem.s.cbOpcode = cbInstr; /* Note! SVM and VT-x may set this to zero on exit, rather than the instruction length. */
|
---|
911 | #elif 1
|
---|
912 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
913 | RT_NOREF(cbInstr);
|
---|
914 | #else
|
---|
915 | RT_NOREF(pVCpu, cbInstr);
|
---|
916 | #endif
|
---|
917 | }
|
---|
918 |
|
---|
919 |
|
---|
920 |
|
---|
921 | #ifdef IEM_WITH_CODE_TLB
|
---|
922 |
|
---|
923 | /**
|
---|
924 | * Tries to fetches @a cbDst opcode bytes, raise the appropriate exception on
|
---|
925 | * failure and jumps.
|
---|
926 | *
|
---|
927 | * We end up here for a number of reasons:
|
---|
928 | * - pbInstrBuf isn't yet initialized.
|
---|
929 | * - Advancing beyond the buffer boundrary (e.g. cross page).
|
---|
930 | * - Advancing beyond the CS segment limit.
|
---|
931 | * - Fetching from non-mappable page (e.g. MMIO).
|
---|
932 | * - TLB loading in the recompiler (@a pvDst = NULL, @a cbDst = 0).
|
---|
933 | *
|
---|
934 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
935 | * calling thread.
|
---|
936 | * @param pvDst Where to return the bytes.
|
---|
937 | * @param cbDst Number of bytes to read. A value of zero is
|
---|
938 | * allowed for initializing pbInstrBuf (the
|
---|
939 | * recompiler does this). In this case it is best
|
---|
940 | * to set pbInstrBuf to NULL prior to the call.
|
---|
941 | */
|
---|
942 | void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
943 | {
|
---|
944 | # ifdef IN_RING3
|
---|
945 | for (;;)
|
---|
946 | {
|
---|
947 | Assert(cbDst <= 8);
|
---|
948 | uint32_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
949 |
|
---|
950 | /*
|
---|
951 | * We might have a partial buffer match, deal with that first to make the
|
---|
952 | * rest simpler. This is the first part of the cross page/buffer case.
|
---|
953 | */
|
---|
954 | uint8_t const * const pbInstrBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
955 | if (pbInstrBuf != NULL)
|
---|
956 | {
|
---|
957 | Assert(cbDst != 0); /* pbInstrBuf shall be NULL in case of a TLB load */
|
---|
958 | uint32_t const cbInstrBuf = pVCpu->iem.s.cbInstrBuf;
|
---|
959 | if (offBuf < cbInstrBuf)
|
---|
960 | {
|
---|
961 | Assert(offBuf + cbDst > cbInstrBuf);
|
---|
962 | uint32_t const cbCopy = cbInstrBuf - offBuf;
|
---|
963 | memcpy(pvDst, &pbInstrBuf[offBuf], cbCopy);
|
---|
964 |
|
---|
965 | cbDst -= cbCopy;
|
---|
966 | pvDst = (uint8_t *)pvDst + cbCopy;
|
---|
967 | offBuf += cbCopy;
|
---|
968 | }
|
---|
969 | }
|
---|
970 |
|
---|
971 | /*
|
---|
972 | * Check segment limit, figuring how much we're allowed to access at this point.
|
---|
973 | *
|
---|
974 | * We will fault immediately if RIP is past the segment limit / in non-canonical
|
---|
975 | * territory. If we do continue, there are one or more bytes to read before we
|
---|
976 | * end up in trouble and we need to do that first before faulting.
|
---|
977 | */
|
---|
978 | RTGCPTR GCPtrFirst;
|
---|
979 | uint32_t cbMaxRead;
|
---|
980 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
981 | {
|
---|
982 | GCPtrFirst = pVCpu->cpum.GstCtx.rip + (offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart);
|
---|
983 | if (RT_LIKELY(IEM_IS_CANONICAL(GCPtrFirst)))
|
---|
984 | { /* likely */ }
|
---|
985 | else
|
---|
986 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
987 | cbMaxRead = X86_PAGE_SIZE - ((uint32_t)GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
988 | }
|
---|
989 | else
|
---|
990 | {
|
---|
991 | GCPtrFirst = pVCpu->cpum.GstCtx.eip + (offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart);
|
---|
992 | /* Assert(!(GCPtrFirst & ~(uint32_t)UINT16_MAX) || IEM_IS_32BIT_CODE(pVCpu)); - this is allowed */
|
---|
993 | if (RT_LIKELY((uint32_t)GCPtrFirst <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
994 | { /* likely */ }
|
---|
995 | else /** @todo For CPUs older than the 386, we should not necessarily generate \#GP here but wrap around! */
|
---|
996 | iemRaiseSelectorBoundsJmp(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
997 | cbMaxRead = pVCpu->cpum.GstCtx.cs.u32Limit - (uint32_t)GCPtrFirst + 1;
|
---|
998 | if (cbMaxRead != 0)
|
---|
999 | { /* likely */ }
|
---|
1000 | else
|
---|
1001 | {
|
---|
1002 | /* Overflowed because address is 0 and limit is max. */
|
---|
1003 | Assert(GCPtrFirst == 0); Assert(pVCpu->cpum.GstCtx.cs.u32Limit == UINT32_MAX);
|
---|
1004 | cbMaxRead = X86_PAGE_SIZE;
|
---|
1005 | }
|
---|
1006 | GCPtrFirst = (uint32_t)GCPtrFirst + (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base;
|
---|
1007 | uint32_t cbMaxRead2 = X86_PAGE_SIZE - ((uint32_t)GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
1008 | if (cbMaxRead2 < cbMaxRead)
|
---|
1009 | cbMaxRead = cbMaxRead2;
|
---|
1010 | /** @todo testcase: unreal modes, both huge 16-bit and 32-bit. */
|
---|
1011 | }
|
---|
1012 |
|
---|
1013 | /*
|
---|
1014 | * Get the TLB entry for this piece of code.
|
---|
1015 | */
|
---|
1016 | uint64_t const uTagNoRev = IEMTLB_CALC_TAG_NO_REV(GCPtrFirst);
|
---|
1017 | PIEMTLBENTRY pTlbe = IEMTLB_TAG_TO_EVEN_ENTRY(&pVCpu->iem.s.CodeTlb, uTagNoRev);
|
---|
1018 | if ( pTlbe->uTag == (uTagNoRev | pVCpu->iem.s.CodeTlb.uTlbRevision)
|
---|
1019 | || (pTlbe = pTlbe + 1)->uTag == (uTagNoRev | pVCpu->iem.s.CodeTlb.uTlbRevisionGlobal))
|
---|
1020 | {
|
---|
1021 | /* likely when executing lots of code, otherwise unlikely */
|
---|
1022 | # ifdef IEM_WITH_TLB_STATISTICS
|
---|
1023 | pVCpu->iem.s.CodeTlb.cTlbCoreHits++;
|
---|
1024 | # endif
|
---|
1025 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_ACCESSED));
|
---|
1026 |
|
---|
1027 | /* Check TLB page table level access flags. */
|
---|
1028 | if (pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PT_NO_USER | IEMTLBE_F_PT_NO_EXEC))
|
---|
1029 | {
|
---|
1030 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_USER) && IEM_GET_CPL(pVCpu) == 3)
|
---|
1031 | {
|
---|
1032 | Log(("iemOpcodeFetchBytesJmp: %RGv - supervisor page\n", GCPtrFirst));
|
---|
1033 | iemRaisePageFaultJmp(pVCpu, GCPtrFirst, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1034 | }
|
---|
1035 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_EXEC) && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE))
|
---|
1036 | {
|
---|
1037 | Log(("iemOpcodeFetchMoreBytes: %RGv - NX\n", GCPtrFirst));
|
---|
1038 | iemRaisePageFaultJmp(pVCpu, GCPtrFirst, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1039 | }
|
---|
1040 | }
|
---|
1041 |
|
---|
1042 | /* Look up the physical page info if necessary. */
|
---|
1043 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PHYS_REV) == pVCpu->iem.s.CodeTlb.uTlbPhysRev)
|
---|
1044 | { /* not necessary */ }
|
---|
1045 | else
|
---|
1046 | {
|
---|
1047 | if (RT_LIKELY(pVCpu->iem.s.CodeTlb.uTlbPhysRev > IEMTLB_PHYS_REV_INCR))
|
---|
1048 | { /* likely */ }
|
---|
1049 | else
|
---|
1050 | iemTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
1051 | pTlbe->fFlagsAndPhysRev &= ~IEMTLBE_GCPHYS2PTR_MASK;
|
---|
1052 | int rc = PGMPhysIemGCPhys2PtrNoLock(pVCpu->CTX_SUFF(pVM), pVCpu, pTlbe->GCPhys, &pVCpu->iem.s.CodeTlb.uTlbPhysRev,
|
---|
1053 | &pTlbe->pbMappingR3, &pTlbe->fFlagsAndPhysRev);
|
---|
1054 | AssertRCStmt(rc, IEM_DO_LONGJMP(pVCpu, rc));
|
---|
1055 | }
|
---|
1056 | }
|
---|
1057 | else
|
---|
1058 | {
|
---|
1059 | pVCpu->iem.s.CodeTlb.cTlbCoreMisses++;
|
---|
1060 |
|
---|
1061 | /* This page table walking will set A bits as required by the access while performing the walk.
|
---|
1062 | ASSUMES these are set when the address is translated rather than on commit... */
|
---|
1063 | /** @todo testcase: check when A bits are actually set by the CPU for code. */
|
---|
1064 | PGMPTWALKFAST WalkFast;
|
---|
1065 | int rc = PGMGstQueryPageFast(pVCpu, GCPtrFirst,
|
---|
1066 | IEM_GET_CPL(pVCpu) == 3 ? PGMQPAGE_F_EXECUTE | PGMQPAGE_F_USER_MODE : PGMQPAGE_F_EXECUTE,
|
---|
1067 | &WalkFast);
|
---|
1068 | if (RT_SUCCESS(rc))
|
---|
1069 | Assert((WalkFast.fInfo & PGM_WALKINFO_SUCCEEDED) && WalkFast.fFailed == PGM_WALKFAIL_SUCCESS);
|
---|
1070 | else
|
---|
1071 | {
|
---|
1072 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
1073 | /** @todo Nested VMX: Need to handle EPT violation/misconfig here? OF COURSE! */
|
---|
1074 | Assert(!(Walk.fFailed & PGM_WALKFAIL_EPT));
|
---|
1075 | # endif
|
---|
1076 | Log(("iemOpcodeFetchMoreBytes: %RGv - rc=%Rrc\n", GCPtrFirst, rc));
|
---|
1077 | iemRaisePageFaultJmp(pVCpu, GCPtrFirst, 1, IEM_ACCESS_INSTRUCTION, rc);
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 | AssertCompile(IEMTLBE_F_PT_NO_EXEC == 1);
|
---|
1081 | if ( !(WalkFast.fEffective & PGM_PTATTRS_G_MASK)
|
---|
1082 | || IEM_GET_CPL(pVCpu) != 0) /* optimization: Only use the PTE.G=1 entries in ring-0. */
|
---|
1083 | {
|
---|
1084 | pTlbe--;
|
---|
1085 | pTlbe->uTag = uTagNoRev | pVCpu->iem.s.CodeTlb.uTlbRevision;
|
---|
1086 | if (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE)
|
---|
1087 | iemTlbLoadedLargePage<false>(pVCpu, &pVCpu->iem.s.CodeTlb, uTagNoRev, RT_BOOL(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE));
|
---|
1088 | # ifdef IEMTLB_WITH_LARGE_PAGE_BITMAP
|
---|
1089 | else
|
---|
1090 | ASMBitClear(pVCpu->iem.s.CodeTlb.bmLargePage, IEMTLB_TAG_TO_EVEN_INDEX(uTagNoRev));
|
---|
1091 | # endif
|
---|
1092 | }
|
---|
1093 | else
|
---|
1094 | {
|
---|
1095 | pVCpu->iem.s.CodeTlb.cTlbCoreGlobalLoads++;
|
---|
1096 | pTlbe->uTag = uTagNoRev | pVCpu->iem.s.CodeTlb.uTlbRevisionGlobal;
|
---|
1097 | if (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE)
|
---|
1098 | iemTlbLoadedLargePage<true>(pVCpu, &pVCpu->iem.s.CodeTlb, uTagNoRev, RT_BOOL(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE));
|
---|
1099 | # ifdef IEMTLB_WITH_LARGE_PAGE_BITMAP
|
---|
1100 | else
|
---|
1101 | ASMBitClear(pVCpu->iem.s.CodeTlb.bmLargePage, IEMTLB_TAG_TO_EVEN_INDEX(uTagNoRev) + 1);
|
---|
1102 | # endif
|
---|
1103 | }
|
---|
1104 | pTlbe->fFlagsAndPhysRev = (~WalkFast.fEffective & (X86_PTE_US | X86_PTE_RW | X86_PTE_D | X86_PTE_A))
|
---|
1105 | | (WalkFast.fEffective >> X86_PTE_PAE_BIT_NX) /*IEMTLBE_F_PT_NO_EXEC*/
|
---|
1106 | | (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE);
|
---|
1107 | RTGCPHYS const GCPhysPg = WalkFast.GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
|
---|
1108 | pTlbe->GCPhys = GCPhysPg;
|
---|
1109 | pTlbe->pbMappingR3 = NULL;
|
---|
1110 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_EXEC) || !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE));
|
---|
1111 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_USER) || IEM_GET_CPL(pVCpu) != 3);
|
---|
1112 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_ACCESSED));
|
---|
1113 |
|
---|
1114 | if (!((uintptr_t)pTlbe & (sizeof(*pTlbe) * 2 - 1)))
|
---|
1115 | IEMTLBTRACE_LOAD( pVCpu, GCPtrFirst, pTlbe->GCPhys, (uint32_t)pTlbe->fFlagsAndPhysRev, false);
|
---|
1116 | else
|
---|
1117 | IEMTLBTRACE_LOAD_GLOBAL(pVCpu, GCPtrFirst, pTlbe->GCPhys, (uint32_t)pTlbe->fFlagsAndPhysRev, false);
|
---|
1118 |
|
---|
1119 | /* Resolve the physical address. */
|
---|
1120 | if (RT_LIKELY(pVCpu->iem.s.CodeTlb.uTlbPhysRev > IEMTLB_PHYS_REV_INCR))
|
---|
1121 | { /* likely */ }
|
---|
1122 | else
|
---|
1123 | iemTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
1124 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_GCPHYS2PTR_MASK));
|
---|
1125 | rc = PGMPhysIemGCPhys2PtrNoLock(pVCpu->CTX_SUFF(pVM), pVCpu, GCPhysPg, &pVCpu->iem.s.CodeTlb.uTlbPhysRev,
|
---|
1126 | &pTlbe->pbMappingR3, &pTlbe->fFlagsAndPhysRev);
|
---|
1127 | AssertRCStmt(rc, IEM_DO_LONGJMP(pVCpu, rc));
|
---|
1128 | }
|
---|
1129 |
|
---|
1130 | # if defined(IN_RING3) || defined(IN_RING0) /** @todo fixme */
|
---|
1131 | /*
|
---|
1132 | * Try do a direct read using the pbMappingR3 pointer.
|
---|
1133 | * Note! Do not recheck the physical TLB revision number here as we have the
|
---|
1134 | * wrong response to changes in the else case. If someone is updating
|
---|
1135 | * pVCpu->iem.s.CodeTlb.uTlbPhysRev in parallel to us, we should be fine
|
---|
1136 | * pretending we always won the race.
|
---|
1137 | */
|
---|
1138 | if ( (pTlbe->fFlagsAndPhysRev & (/*IEMTLBE_F_PHYS_REV |*/ IEMTLBE_F_NO_MAPPINGR3 | IEMTLBE_F_PG_NO_READ))
|
---|
1139 | == /*pVCpu->iem.s.CodeTlb.uTlbPhysRev*/ 0U)
|
---|
1140 | {
|
---|
1141 | uint32_t const offPg = (GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
1142 | pVCpu->iem.s.cbInstrBufTotal = offPg + cbMaxRead;
|
---|
1143 | if (offBuf == (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart)
|
---|
1144 | {
|
---|
1145 | pVCpu->iem.s.cbInstrBuf = offPg + RT_MIN(15, cbMaxRead);
|
---|
1146 | pVCpu->iem.s.offCurInstrStart = (int16_t)offPg;
|
---|
1147 | }
|
---|
1148 | else
|
---|
1149 | {
|
---|
1150 | uint32_t const cbInstr = offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart;
|
---|
1151 | if (cbInstr + (uint32_t)cbDst <= 15)
|
---|
1152 | {
|
---|
1153 | pVCpu->iem.s.cbInstrBuf = offPg + RT_MIN(cbMaxRead + cbInstr, 15) - cbInstr;
|
---|
1154 | pVCpu->iem.s.offCurInstrStart = (int16_t)(offPg - cbInstr);
|
---|
1155 | }
|
---|
1156 | else
|
---|
1157 | {
|
---|
1158 | Log(("iemOpcodeFetchMoreBytes: %04x:%08RX64 LB %#x + %#zx -> #GP(0)\n",
|
---|
1159 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, cbInstr, cbDst));
|
---|
1160 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
1161 | }
|
---|
1162 | }
|
---|
1163 | if (cbDst <= cbMaxRead)
|
---|
1164 | {
|
---|
1165 | pVCpu->iem.s.fTbCrossedPage |= offPg == 0 || pVCpu->iem.s.fTbBranched != 0; /** @todo Spurious load effect on branch handling? */
|
---|
1166 | # if 0 /* unused */
|
---|
1167 | pVCpu->iem.s.GCPhysInstrBufPrev = pVCpu->iem.s.GCPhysInstrBuf;
|
---|
1168 | # endif
|
---|
1169 | pVCpu->iem.s.offInstrNextByte = offPg + (uint32_t)cbDst;
|
---|
1170 | pVCpu->iem.s.uInstrBufPc = GCPtrFirst & ~(RTGCPTR)X86_PAGE_OFFSET_MASK;
|
---|
1171 | pVCpu->iem.s.GCPhysInstrBuf = pTlbe->GCPhys;
|
---|
1172 | pVCpu->iem.s.pbInstrBuf = pTlbe->pbMappingR3;
|
---|
1173 | if (cbDst > 0) /* To make ASAN happy in the TLB load case. */
|
---|
1174 | memcpy(pvDst, &pTlbe->pbMappingR3[offPg], cbDst);
|
---|
1175 | else
|
---|
1176 | Assert(!pvDst);
|
---|
1177 | return;
|
---|
1178 | }
|
---|
1179 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1180 |
|
---|
1181 | memcpy(pvDst, &pTlbe->pbMappingR3[offPg], cbMaxRead);
|
---|
1182 | pVCpu->iem.s.offInstrNextByte = offPg + cbMaxRead;
|
---|
1183 | }
|
---|
1184 | # else
|
---|
1185 | # error "refactor as needed"
|
---|
1186 | /*
|
---|
1187 | * If there is no special read handling, so we can read a bit more and
|
---|
1188 | * put it in the prefetch buffer.
|
---|
1189 | */
|
---|
1190 | if ( cbDst < cbMaxRead
|
---|
1191 | && (pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PHYS_REV | IEMTLBE_F_PG_NO_READ)) == pVCpu->iem.s.CodeTlb.uTlbPhysRev)
|
---|
1192 | {
|
---|
1193 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), pTlbe->GCPhys,
|
---|
1194 | &pVCpu->iem.s.abOpcode[0], cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
1195 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1196 | { /* likely */ }
|
---|
1197 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1198 | {
|
---|
1199 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1200 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1201 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1202 | AssertStmt(rcStrict == VINF_SUCCESS, IEM_DO_LONGJMP(pVCpu, VBOXSTRICRC_VAL(rcStrict)));
|
---|
1203 | }
|
---|
1204 | else
|
---|
1205 | {
|
---|
1206 | Log((RT_SUCCESS(rcStrict)
|
---|
1207 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1208 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1209 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1210 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1211 | }
|
---|
1212 | }
|
---|
1213 | # endif
|
---|
1214 | /*
|
---|
1215 | * Special read handling, so only read exactly what's needed.
|
---|
1216 | * This is a highly unlikely scenario.
|
---|
1217 | */
|
---|
1218 | else
|
---|
1219 | {
|
---|
1220 | pVCpu->iem.s.CodeTlb.cTlbSlowCodeReadPath++;
|
---|
1221 |
|
---|
1222 | /* Check instruction length. */
|
---|
1223 | uint32_t const cbInstr = offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart;
|
---|
1224 | if (RT_LIKELY(cbInstr + cbDst <= 15))
|
---|
1225 | { /* likely */ }
|
---|
1226 | else
|
---|
1227 | {
|
---|
1228 | Log(("iemOpcodeFetchMoreBytes: %04x:%08RX64 LB %#x + %#zx -> #GP(0) [slow]\n",
|
---|
1229 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, cbInstr, cbDst));
|
---|
1230 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | /* Do the reading. */
|
---|
1234 | uint32_t const cbToRead = RT_MIN((uint32_t)cbDst, cbMaxRead);
|
---|
1235 | if (cbToRead > 0)
|
---|
1236 | {
|
---|
1237 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), pTlbe->GCPhys + (GCPtrFirst & X86_PAGE_OFFSET_MASK),
|
---|
1238 | pvDst, cbToRead, PGMACCESSORIGIN_IEM);
|
---|
1239 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1240 | { /* likely */ }
|
---|
1241 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1242 | {
|
---|
1243 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1244 | GCPtrFirst, pTlbe->GCPhys + (GCPtrFirst & X86_PAGE_OFFSET_MASK), VBOXSTRICTRC_VAL(rcStrict), cbToRead));
|
---|
1245 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1246 | AssertStmt(rcStrict == VINF_SUCCESS, IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1247 | }
|
---|
1248 | else
|
---|
1249 | {
|
---|
1250 | Log((RT_SUCCESS(rcStrict)
|
---|
1251 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1252 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1253 | GCPtrFirst, pTlbe->GCPhys + (GCPtrFirst & X86_PAGE_OFFSET_MASK), VBOXSTRICTRC_VAL(rcStrict), cbToRead));
|
---|
1254 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1255 | }
|
---|
1256 | }
|
---|
1257 |
|
---|
1258 | /* Update the state and probably return. */
|
---|
1259 | uint32_t const offPg = (GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
1260 | pVCpu->iem.s.fTbCrossedPage |= offPg == 0 || pVCpu->iem.s.fTbBranched != 0;
|
---|
1261 | # if 0 /* unused */
|
---|
1262 | pVCpu->iem.s.GCPhysInstrBufPrev = pVCpu->iem.s.GCPhysInstrBuf;
|
---|
1263 | # endif
|
---|
1264 | pVCpu->iem.s.offCurInstrStart = (int16_t)(offPg - cbInstr);
|
---|
1265 | pVCpu->iem.s.offInstrNextByte = offPg + cbInstr + cbToRead;
|
---|
1266 | pVCpu->iem.s.cbInstrBuf = offPg + RT_MIN(15, cbMaxRead + cbInstr) - cbToRead - cbInstr;
|
---|
1267 | pVCpu->iem.s.cbInstrBufTotal = X86_PAGE_SIZE; /** @todo ??? */
|
---|
1268 | pVCpu->iem.s.GCPhysInstrBuf = pTlbe->GCPhys;
|
---|
1269 | pVCpu->iem.s.uInstrBufPc = GCPtrFirst & ~(RTGCPTR)X86_PAGE_OFFSET_MASK;
|
---|
1270 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1271 | if (cbToRead == cbDst)
|
---|
1272 | return;
|
---|
1273 | Assert(cbToRead == cbMaxRead);
|
---|
1274 | }
|
---|
1275 |
|
---|
1276 | /*
|
---|
1277 | * More to read, loop.
|
---|
1278 | */
|
---|
1279 | cbDst -= cbMaxRead;
|
---|
1280 | pvDst = (uint8_t *)pvDst + cbMaxRead;
|
---|
1281 | }
|
---|
1282 | # else /* !IN_RING3 */
|
---|
1283 | RT_NOREF(pvDst, cbDst);
|
---|
1284 | if (pvDst || cbDst)
|
---|
1285 | IEM_DO_LONGJMP(pVCpu, VERR_INTERNAL_ERROR);
|
---|
1286 | # endif /* !IN_RING3 */
|
---|
1287 | }
|
---|
1288 |
|
---|
1289 | #else /* !IEM_WITH_CODE_TLB */
|
---|
1290 |
|
---|
1291 | /**
|
---|
1292 | * Try fetch at least @a cbMin bytes more opcodes, raise the appropriate
|
---|
1293 | * exception if it fails.
|
---|
1294 | *
|
---|
1295 | * @returns Strict VBox status code.
|
---|
1296 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1297 | * calling thread.
|
---|
1298 | * @param cbMin The minimum number of bytes relative offOpcode
|
---|
1299 | * that must be read.
|
---|
1300 | */
|
---|
1301 | VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT
|
---|
1302 | {
|
---|
1303 | /*
|
---|
1304 | * What we're doing here is very similar to iemMemMap/iemMemBounceBufferMap.
|
---|
1305 | *
|
---|
1306 | * First translate CS:rIP to a physical address.
|
---|
1307 | */
|
---|
1308 | uint8_t const cbOpcode = pVCpu->iem.s.cbOpcode;
|
---|
1309 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1310 | uint8_t const cbLeft = cbOpcode - offOpcode;
|
---|
1311 | Assert(cbLeft < cbMin);
|
---|
1312 | Assert(cbOpcode <= sizeof(pVCpu->iem.s.abOpcode));
|
---|
1313 |
|
---|
1314 | uint32_t cbToTryRead;
|
---|
1315 | RTGCPTR GCPtrNext;
|
---|
1316 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
1317 | {
|
---|
1318 | GCPtrNext = pVCpu->cpum.GstCtx.rip + cbOpcode;
|
---|
1319 | if (!IEM_IS_CANONICAL(GCPtrNext))
|
---|
1320 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1321 | cbToTryRead = GUEST_PAGE_SIZE - (GCPtrNext & GUEST_PAGE_OFFSET_MASK);
|
---|
1322 | }
|
---|
1323 | else
|
---|
1324 | {
|
---|
1325 | uint32_t GCPtrNext32 = pVCpu->cpum.GstCtx.eip;
|
---|
1326 | /* Assert(!(GCPtrNext32 & ~(uint32_t)UINT16_MAX) || IEM_IS_32BIT_CODE(pVCpu)); - this is allowed */
|
---|
1327 | GCPtrNext32 += cbOpcode;
|
---|
1328 | if (GCPtrNext32 > pVCpu->cpum.GstCtx.cs.u32Limit)
|
---|
1329 | /** @todo For CPUs older than the 386, we should not generate \#GP here but wrap around! */
|
---|
1330 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1331 | cbToTryRead = pVCpu->cpum.GstCtx.cs.u32Limit - GCPtrNext32 + 1;
|
---|
1332 | if (!cbToTryRead) /* overflowed */
|
---|
1333 | {
|
---|
1334 | Assert(GCPtrNext32 == 0); Assert(pVCpu->cpum.GstCtx.cs.u32Limit == UINT32_MAX);
|
---|
1335 | cbToTryRead = UINT32_MAX;
|
---|
1336 | /** @todo check out wrapping around the code segment. */
|
---|
1337 | }
|
---|
1338 | if (cbToTryRead < cbMin - cbLeft)
|
---|
1339 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1340 | GCPtrNext = (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base + GCPtrNext32;
|
---|
1341 |
|
---|
1342 | uint32_t cbLeftOnPage = GUEST_PAGE_SIZE - (GCPtrNext & GUEST_PAGE_OFFSET_MASK);
|
---|
1343 | if (cbToTryRead > cbLeftOnPage)
|
---|
1344 | cbToTryRead = cbLeftOnPage;
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 | /* Restrict to opcode buffer space.
|
---|
1348 |
|
---|
1349 | We're making ASSUMPTIONS here based on work done previously in
|
---|
1350 | iemInitDecoderAndPrefetchOpcodes, where bytes from the first page will
|
---|
1351 | be fetched in case of an instruction crossing two pages. */
|
---|
1352 | if (cbToTryRead > sizeof(pVCpu->iem.s.abOpcode) - cbOpcode)
|
---|
1353 | cbToTryRead = sizeof(pVCpu->iem.s.abOpcode) - cbOpcode;
|
---|
1354 | if (RT_LIKELY(cbToTryRead + cbLeft >= cbMin))
|
---|
1355 | { /* likely */ }
|
---|
1356 | else
|
---|
1357 | {
|
---|
1358 | Log(("iemOpcodeFetchMoreBytes: %04x:%08RX64 LB %#x + %#zx -> #GP(0)\n",
|
---|
1359 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, offOpcode, cbMin));
|
---|
1360 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1361 | }
|
---|
1362 |
|
---|
1363 | PGMPTWALKFAST WalkFast;
|
---|
1364 | int rc = PGMGstQueryPageFast(pVCpu, GCPtrNext,
|
---|
1365 | IEM_GET_CPL(pVCpu) == 3 ? PGMQPAGE_F_EXECUTE | PGMQPAGE_F_USER_MODE : PGMQPAGE_F_EXECUTE,
|
---|
1366 | &WalkFast);
|
---|
1367 | if (RT_SUCCESS(rc))
|
---|
1368 | Assert((WalkFast.fInfo & PGM_WALKINFO_SUCCEEDED) && WalkFast.fFailed == PGM_WALKFAIL_SUCCESS);
|
---|
1369 | else
|
---|
1370 | {
|
---|
1371 | Log(("iemOpcodeFetchMoreBytes: %RGv - rc=%Rrc\n", GCPtrNext, rc));
|
---|
1372 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
1373 | if (WalkFast.fFailed & PGM_WALKFAIL_EPT)
|
---|
1374 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &WalkFast, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
1375 | #endif
|
---|
1376 | return iemRaisePageFault(pVCpu, GCPtrNext, 1, IEM_ACCESS_INSTRUCTION, rc);
|
---|
1377 | }
|
---|
1378 | Assert((WalkFast.fEffective & X86_PTE_US) || IEM_GET_CPL(pVCpu) != 3);
|
---|
1379 | Assert(!(WalkFast.fEffective & X86_PTE_PAE_NX) || !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE));
|
---|
1380 |
|
---|
1381 | RTGCPHYS const GCPhys = WalkFast.GCPhys;
|
---|
1382 | Log5(("GCPtrNext=%RGv GCPhys=%RGp cbOpcodes=%#x\n", GCPtrNext, GCPhys, cbOpcode));
|
---|
1383 |
|
---|
1384 | /*
|
---|
1385 | * Read the bytes at this address.
|
---|
1386 | *
|
---|
1387 | * We read all unpatched bytes in iemInitDecoderAndPrefetchOpcodes already,
|
---|
1388 | * and since PATM should only patch the start of an instruction there
|
---|
1389 | * should be no need to check again here.
|
---|
1390 | */
|
---|
1391 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
1392 | {
|
---|
1393 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhys, &pVCpu->iem.s.abOpcode[cbOpcode],
|
---|
1394 | cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
1395 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1396 | { /* likely */ }
|
---|
1397 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1398 | {
|
---|
1399 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1400 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1401 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1402 | }
|
---|
1403 | else
|
---|
1404 | {
|
---|
1405 | Log((RT_SUCCESS(rcStrict)
|
---|
1406 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1407 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1408 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1409 | return rcStrict;
|
---|
1410 | }
|
---|
1411 | }
|
---|
1412 | else
|
---|
1413 | {
|
---|
1414 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.abOpcode[cbOpcode], GCPhys, cbToTryRead);
|
---|
1415 | if (RT_SUCCESS(rc))
|
---|
1416 | { /* likely */ }
|
---|
1417 | else
|
---|
1418 | {
|
---|
1419 | Log(("iemOpcodeFetchMoreBytes: %RGv - read error - rc=%Rrc (!!)\n", GCPtrNext, rc));
|
---|
1420 | return rc;
|
---|
1421 | }
|
---|
1422 | }
|
---|
1423 | pVCpu->iem.s.cbOpcode = cbOpcode + cbToTryRead;
|
---|
1424 | Log5(("%.*Rhxs\n", pVCpu->iem.s.cbOpcode, pVCpu->iem.s.abOpcode));
|
---|
1425 |
|
---|
1426 | return VINF_SUCCESS;
|
---|
1427 | }
|
---|
1428 |
|
---|
1429 | #endif /* !IEM_WITH_CODE_TLB */
|
---|
1430 | #ifndef IEM_WITH_SETJMP
|
---|
1431 |
|
---|
1432 | /**
|
---|
1433 | * Deals with the problematic cases that iemOpcodeGetNextU8 doesn't like.
|
---|
1434 | *
|
---|
1435 | * @returns Strict VBox status code.
|
---|
1436 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1437 | * calling thread.
|
---|
1438 | * @param pb Where to return the opcode byte.
|
---|
1439 | */
|
---|
1440 | VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT
|
---|
1441 | {
|
---|
1442 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 1);
|
---|
1443 | if (rcStrict == VINF_SUCCESS)
|
---|
1444 | {
|
---|
1445 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1446 | *pb = pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1447 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
1448 | }
|
---|
1449 | else
|
---|
1450 | *pb = 0;
|
---|
1451 | return rcStrict;
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | #else /* IEM_WITH_SETJMP */
|
---|
1455 |
|
---|
1456 | /**
|
---|
1457 | * Deals with the problematic cases that iemOpcodeGetNextU8Jmp doesn't like, longjmp on error.
|
---|
1458 | *
|
---|
1459 | * @returns The opcode byte.
|
---|
1460 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1461 | */
|
---|
1462 | uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1463 | {
|
---|
1464 | # ifdef IEM_WITH_CODE_TLB
|
---|
1465 | uint8_t u8;
|
---|
1466 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u8), &u8);
|
---|
1467 | return u8;
|
---|
1468 | # else
|
---|
1469 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 1);
|
---|
1470 | if (rcStrict == VINF_SUCCESS)
|
---|
1471 | return pVCpu->iem.s.abOpcode[pVCpu->iem.s.offOpcode++];
|
---|
1472 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1473 | # endif
|
---|
1474 | }
|
---|
1475 |
|
---|
1476 | #endif /* IEM_WITH_SETJMP */
|
---|
1477 |
|
---|
1478 | #ifndef IEM_WITH_SETJMP
|
---|
1479 |
|
---|
1480 | /**
|
---|
1481 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU16 doesn't like.
|
---|
1482 | *
|
---|
1483 | * @returns Strict VBox status code.
|
---|
1484 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1485 | * @param pu16 Where to return the opcode dword.
|
---|
1486 | */
|
---|
1487 | VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT
|
---|
1488 | {
|
---|
1489 | uint8_t u8;
|
---|
1490 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1491 | if (rcStrict == VINF_SUCCESS)
|
---|
1492 | *pu16 = (int8_t)u8;
|
---|
1493 | return rcStrict;
|
---|
1494 | }
|
---|
1495 |
|
---|
1496 |
|
---|
1497 | /**
|
---|
1498 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU32 doesn't like.
|
---|
1499 | *
|
---|
1500 | * @returns Strict VBox status code.
|
---|
1501 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1502 | * @param pu32 Where to return the opcode dword.
|
---|
1503 | */
|
---|
1504 | VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
1505 | {
|
---|
1506 | uint8_t u8;
|
---|
1507 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1508 | if (rcStrict == VINF_SUCCESS)
|
---|
1509 | *pu32 = (int8_t)u8;
|
---|
1510 | return rcStrict;
|
---|
1511 | }
|
---|
1512 |
|
---|
1513 |
|
---|
1514 | /**
|
---|
1515 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU64 doesn't like.
|
---|
1516 | *
|
---|
1517 | * @returns Strict VBox status code.
|
---|
1518 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1519 | * @param pu64 Where to return the opcode qword.
|
---|
1520 | */
|
---|
1521 | VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1522 | {
|
---|
1523 | uint8_t u8;
|
---|
1524 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1525 | if (rcStrict == VINF_SUCCESS)
|
---|
1526 | *pu64 = (int8_t)u8;
|
---|
1527 | return rcStrict;
|
---|
1528 | }
|
---|
1529 |
|
---|
1530 | #endif /* !IEM_WITH_SETJMP */
|
---|
1531 |
|
---|
1532 |
|
---|
1533 | #ifndef IEM_WITH_SETJMP
|
---|
1534 |
|
---|
1535 | /**
|
---|
1536 | * Deals with the problematic cases that iemOpcodeGetNextU16 doesn't like.
|
---|
1537 | *
|
---|
1538 | * @returns Strict VBox status code.
|
---|
1539 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1540 | * @param pu16 Where to return the opcode word.
|
---|
1541 | */
|
---|
1542 | VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT
|
---|
1543 | {
|
---|
1544 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1545 | if (rcStrict == VINF_SUCCESS)
|
---|
1546 | {
|
---|
1547 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1548 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1549 | *pu16 = *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1550 | # else
|
---|
1551 | *pu16 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1552 | # endif
|
---|
1553 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
1554 | }
|
---|
1555 | else
|
---|
1556 | *pu16 = 0;
|
---|
1557 | return rcStrict;
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 | #else /* IEM_WITH_SETJMP */
|
---|
1561 |
|
---|
1562 | /**
|
---|
1563 | * Deals with the problematic cases that iemOpcodeGetNextU16Jmp doesn't like, longjmp on error
|
---|
1564 | *
|
---|
1565 | * @returns The opcode word.
|
---|
1566 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1567 | */
|
---|
1568 | uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1569 | {
|
---|
1570 | # ifdef IEM_WITH_CODE_TLB
|
---|
1571 | uint16_t u16;
|
---|
1572 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u16), &u16);
|
---|
1573 | return u16;
|
---|
1574 | # else
|
---|
1575 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1576 | if (rcStrict == VINF_SUCCESS)
|
---|
1577 | {
|
---|
1578 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1579 | pVCpu->iem.s.offOpcode += 2;
|
---|
1580 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1581 | return *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1582 | # else
|
---|
1583 | return RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1584 | # endif
|
---|
1585 | }
|
---|
1586 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1587 | # endif
|
---|
1588 | }
|
---|
1589 |
|
---|
1590 | #endif /* IEM_WITH_SETJMP */
|
---|
1591 |
|
---|
1592 | #ifndef IEM_WITH_SETJMP
|
---|
1593 |
|
---|
1594 | /**
|
---|
1595 | * Deals with the problematic cases that iemOpcodeGetNextU16ZxU32 doesn't like.
|
---|
1596 | *
|
---|
1597 | * @returns Strict VBox status code.
|
---|
1598 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1599 | * @param pu32 Where to return the opcode double word.
|
---|
1600 | */
|
---|
1601 | VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
1602 | {
|
---|
1603 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1604 | if (rcStrict == VINF_SUCCESS)
|
---|
1605 | {
|
---|
1606 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1607 | *pu32 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1608 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
1609 | }
|
---|
1610 | else
|
---|
1611 | *pu32 = 0;
|
---|
1612 | return rcStrict;
|
---|
1613 | }
|
---|
1614 |
|
---|
1615 |
|
---|
1616 | /**
|
---|
1617 | * Deals with the problematic cases that iemOpcodeGetNextU16ZxU64 doesn't like.
|
---|
1618 | *
|
---|
1619 | * @returns Strict VBox status code.
|
---|
1620 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1621 | * @param pu64 Where to return the opcode quad word.
|
---|
1622 | */
|
---|
1623 | VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1624 | {
|
---|
1625 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1626 | if (rcStrict == VINF_SUCCESS)
|
---|
1627 | {
|
---|
1628 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1629 | *pu64 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1630 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
1631 | }
|
---|
1632 | else
|
---|
1633 | *pu64 = 0;
|
---|
1634 | return rcStrict;
|
---|
1635 | }
|
---|
1636 |
|
---|
1637 | #endif /* !IEM_WITH_SETJMP */
|
---|
1638 |
|
---|
1639 | #ifndef IEM_WITH_SETJMP
|
---|
1640 |
|
---|
1641 | /**
|
---|
1642 | * Deals with the problematic cases that iemOpcodeGetNextU32 doesn't like.
|
---|
1643 | *
|
---|
1644 | * @returns Strict VBox status code.
|
---|
1645 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1646 | * @param pu32 Where to return the opcode dword.
|
---|
1647 | */
|
---|
1648 | VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
1649 | {
|
---|
1650 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1651 | if (rcStrict == VINF_SUCCESS)
|
---|
1652 | {
|
---|
1653 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1654 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1655 | *pu32 = *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1656 | # else
|
---|
1657 | *pu32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1658 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1659 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1660 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1661 | # endif
|
---|
1662 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1663 | }
|
---|
1664 | else
|
---|
1665 | *pu32 = 0;
|
---|
1666 | return rcStrict;
|
---|
1667 | }
|
---|
1668 |
|
---|
1669 | #else /* IEM_WITH_SETJMP */
|
---|
1670 |
|
---|
1671 | /**
|
---|
1672 | * Deals with the problematic cases that iemOpcodeGetNextU32Jmp doesn't like, longjmp on error.
|
---|
1673 | *
|
---|
1674 | * @returns The opcode dword.
|
---|
1675 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1676 | */
|
---|
1677 | uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1678 | {
|
---|
1679 | # ifdef IEM_WITH_CODE_TLB
|
---|
1680 | uint32_t u32;
|
---|
1681 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u32), &u32);
|
---|
1682 | return u32;
|
---|
1683 | # else
|
---|
1684 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1685 | if (rcStrict == VINF_SUCCESS)
|
---|
1686 | {
|
---|
1687 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1688 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1689 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1690 | return *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1691 | # else
|
---|
1692 | return RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1693 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1694 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1695 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1696 | # endif
|
---|
1697 | }
|
---|
1698 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1699 | # endif
|
---|
1700 | }
|
---|
1701 |
|
---|
1702 | #endif /* IEM_WITH_SETJMP */
|
---|
1703 |
|
---|
1704 | #ifndef IEM_WITH_SETJMP
|
---|
1705 |
|
---|
1706 | /**
|
---|
1707 | * Deals with the problematic cases that iemOpcodeGetNextU32ZxU64 doesn't like.
|
---|
1708 | *
|
---|
1709 | * @returns Strict VBox status code.
|
---|
1710 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1711 | * @param pu64 Where to return the opcode dword.
|
---|
1712 | */
|
---|
1713 | VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1714 | {
|
---|
1715 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1716 | if (rcStrict == VINF_SUCCESS)
|
---|
1717 | {
|
---|
1718 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1719 | *pu64 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1720 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1721 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1722 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1723 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1724 | }
|
---|
1725 | else
|
---|
1726 | *pu64 = 0;
|
---|
1727 | return rcStrict;
|
---|
1728 | }
|
---|
1729 |
|
---|
1730 |
|
---|
1731 | /**
|
---|
1732 | * Deals with the problematic cases that iemOpcodeGetNextS32SxU64 doesn't like.
|
---|
1733 | *
|
---|
1734 | * @returns Strict VBox status code.
|
---|
1735 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1736 | * @param pu64 Where to return the opcode qword.
|
---|
1737 | */
|
---|
1738 | VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1739 | {
|
---|
1740 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1741 | if (rcStrict == VINF_SUCCESS)
|
---|
1742 | {
|
---|
1743 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1744 | *pu64 = (int32_t)RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1745 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1746 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1747 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1748 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1749 | }
|
---|
1750 | else
|
---|
1751 | *pu64 = 0;
|
---|
1752 | return rcStrict;
|
---|
1753 | }
|
---|
1754 |
|
---|
1755 | #endif /* !IEM_WITH_SETJMP */
|
---|
1756 |
|
---|
1757 | #ifndef IEM_WITH_SETJMP
|
---|
1758 |
|
---|
1759 | /**
|
---|
1760 | * Deals with the problematic cases that iemOpcodeGetNextU64 doesn't like.
|
---|
1761 | *
|
---|
1762 | * @returns Strict VBox status code.
|
---|
1763 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1764 | * @param pu64 Where to return the opcode qword.
|
---|
1765 | */
|
---|
1766 | VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1767 | {
|
---|
1768 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 8);
|
---|
1769 | if (rcStrict == VINF_SUCCESS)
|
---|
1770 | {
|
---|
1771 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1772 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1773 | *pu64 = *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1774 | # else
|
---|
1775 | *pu64 = RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1776 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1777 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1778 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
1779 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
1780 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
1781 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
1782 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
1783 | # endif
|
---|
1784 | pVCpu->iem.s.offOpcode = offOpcode + 8;
|
---|
1785 | }
|
---|
1786 | else
|
---|
1787 | *pu64 = 0;
|
---|
1788 | return rcStrict;
|
---|
1789 | }
|
---|
1790 |
|
---|
1791 | #else /* IEM_WITH_SETJMP */
|
---|
1792 |
|
---|
1793 | /**
|
---|
1794 | * Deals with the problematic cases that iemOpcodeGetNextU64Jmp doesn't like, longjmp on error.
|
---|
1795 | *
|
---|
1796 | * @returns The opcode qword.
|
---|
1797 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1798 | */
|
---|
1799 | uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1800 | {
|
---|
1801 | # ifdef IEM_WITH_CODE_TLB
|
---|
1802 | uint64_t u64;
|
---|
1803 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u64), &u64);
|
---|
1804 | return u64;
|
---|
1805 | # else
|
---|
1806 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 8);
|
---|
1807 | if (rcStrict == VINF_SUCCESS)
|
---|
1808 | {
|
---|
1809 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1810 | pVCpu->iem.s.offOpcode = offOpcode + 8;
|
---|
1811 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1812 | return *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1813 | # else
|
---|
1814 | return RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1815 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1816 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1817 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
1818 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
1819 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
1820 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
1821 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
1822 | # endif
|
---|
1823 | }
|
---|
1824 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1825 | # endif
|
---|
1826 | }
|
---|
1827 |
|
---|
1828 | #endif /* IEM_WITH_SETJMP */
|
---|
1829 |
|
---|
1830 |
|
---|
1831 |
|
---|
1832 | /** @name Register Access.
|
---|
1833 | * @{
|
---|
1834 | */
|
---|
1835 |
|
---|
1836 | /**
|
---|
1837 | * Adds a 8-bit signed jump offset to RIP/EIP/IP.
|
---|
1838 | *
|
---|
1839 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
1840 | * segment limit.
|
---|
1841 | *
|
---|
1842 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1843 | * @param cbInstr Instruction size.
|
---|
1844 | * @param offNextInstr The offset of the next instruction.
|
---|
1845 | * @param enmEffOpSize Effective operand size.
|
---|
1846 | */
|
---|
1847 | VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
|
---|
1848 | IEMMODE enmEffOpSize) RT_NOEXCEPT
|
---|
1849 | {
|
---|
1850 | switch (enmEffOpSize)
|
---|
1851 | {
|
---|
1852 | case IEMMODE_16BIT:
|
---|
1853 | {
|
---|
1854 | uint16_t const uNewIp = pVCpu->cpum.GstCtx.ip + cbInstr + (int16_t)offNextInstr;
|
---|
1855 | if (RT_LIKELY( uNewIp <= pVCpu->cpum.GstCtx.cs.u32Limit
|
---|
1856 | || IEM_IS_64BIT_CODE(pVCpu) /* no CS limit checks in 64-bit mode */))
|
---|
1857 | pVCpu->cpum.GstCtx.rip = uNewIp;
|
---|
1858 | else
|
---|
1859 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1860 | break;
|
---|
1861 | }
|
---|
1862 |
|
---|
1863 | case IEMMODE_32BIT:
|
---|
1864 | {
|
---|
1865 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
1866 | Assert(pVCpu->cpum.GstCtx.rip <= UINT32_MAX);
|
---|
1867 |
|
---|
1868 | uint32_t const uNewEip = pVCpu->cpum.GstCtx.eip + cbInstr + (int32_t)offNextInstr;
|
---|
1869 | if (RT_LIKELY(uNewEip <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
1870 | pVCpu->cpum.GstCtx.rip = uNewEip;
|
---|
1871 | else
|
---|
1872 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1873 | break;
|
---|
1874 | }
|
---|
1875 |
|
---|
1876 | case IEMMODE_64BIT:
|
---|
1877 | {
|
---|
1878 | Assert(IEM_IS_64BIT_CODE(pVCpu));
|
---|
1879 |
|
---|
1880 | uint64_t const uNewRip = pVCpu->cpum.GstCtx.rip + cbInstr + (int64_t)offNextInstr;
|
---|
1881 | if (RT_LIKELY(IEM_IS_CANONICAL(uNewRip)))
|
---|
1882 | pVCpu->cpum.GstCtx.rip = uNewRip;
|
---|
1883 | else
|
---|
1884 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1885 | break;
|
---|
1886 | }
|
---|
1887 |
|
---|
1888 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
1889 | }
|
---|
1890 |
|
---|
1891 | #ifndef IEM_WITH_CODE_TLB
|
---|
1892 | /* Flush the prefetch buffer. */
|
---|
1893 | pVCpu->iem.s.cbOpcode = cbInstr;
|
---|
1894 | #endif
|
---|
1895 |
|
---|
1896 | /*
|
---|
1897 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
1898 | */
|
---|
1899 | return iemRegFinishClearingRF(pVCpu, VINF_SUCCESS);
|
---|
1900 | }
|
---|
1901 |
|
---|
1902 |
|
---|
1903 | /**
|
---|
1904 | * Adds a 16-bit signed jump offset to RIP/EIP/IP.
|
---|
1905 | *
|
---|
1906 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
1907 | * segment limit.
|
---|
1908 | *
|
---|
1909 | * @returns Strict VBox status code.
|
---|
1910 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1911 | * @param cbInstr Instruction size.
|
---|
1912 | * @param offNextInstr The offset of the next instruction.
|
---|
1913 | */
|
---|
1914 | VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT
|
---|
1915 | {
|
---|
1916 | Assert(pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT);
|
---|
1917 |
|
---|
1918 | uint16_t const uNewIp = pVCpu->cpum.GstCtx.ip + cbInstr + offNextInstr;
|
---|
1919 | if (RT_LIKELY( uNewIp <= pVCpu->cpum.GstCtx.cs.u32Limit
|
---|
1920 | || IEM_IS_64BIT_CODE(pVCpu) /* no limit checking in 64-bit mode */))
|
---|
1921 | pVCpu->cpum.GstCtx.rip = uNewIp;
|
---|
1922 | else
|
---|
1923 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1924 |
|
---|
1925 | #ifndef IEM_WITH_CODE_TLB
|
---|
1926 | /* Flush the prefetch buffer. */
|
---|
1927 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
1928 | #endif
|
---|
1929 |
|
---|
1930 | /*
|
---|
1931 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
1932 | */
|
---|
1933 | return iemRegFinishClearingRF(pVCpu, VINF_SUCCESS);
|
---|
1934 | }
|
---|
1935 |
|
---|
1936 |
|
---|
1937 | /**
|
---|
1938 | * Adds a 32-bit signed jump offset to RIP/EIP/IP.
|
---|
1939 | *
|
---|
1940 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
1941 | * segment limit.
|
---|
1942 | *
|
---|
1943 | * @returns Strict VBox status code.
|
---|
1944 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1945 | * @param cbInstr Instruction size.
|
---|
1946 | * @param offNextInstr The offset of the next instruction.
|
---|
1947 | * @param enmEffOpSize Effective operand size.
|
---|
1948 | */
|
---|
1949 | VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
|
---|
1950 | IEMMODE enmEffOpSize) RT_NOEXCEPT
|
---|
1951 | {
|
---|
1952 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
1953 | {
|
---|
1954 | Assert(pVCpu->cpum.GstCtx.rip <= UINT32_MAX); Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
1955 |
|
---|
1956 | uint32_t const uNewEip = pVCpu->cpum.GstCtx.eip + cbInstr + offNextInstr;
|
---|
1957 | if (RT_LIKELY(uNewEip <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
1958 | pVCpu->cpum.GstCtx.rip = uNewEip;
|
---|
1959 | else
|
---|
1960 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1961 | }
|
---|
1962 | else
|
---|
1963 | {
|
---|
1964 | Assert(enmEffOpSize == IEMMODE_64BIT);
|
---|
1965 |
|
---|
1966 | uint64_t const uNewRip = pVCpu->cpum.GstCtx.rip + cbInstr + (int64_t)offNextInstr;
|
---|
1967 | if (RT_LIKELY(IEM_IS_CANONICAL(uNewRip)))
|
---|
1968 | pVCpu->cpum.GstCtx.rip = uNewRip;
|
---|
1969 | else
|
---|
1970 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1971 | }
|
---|
1972 |
|
---|
1973 | #ifndef IEM_WITH_CODE_TLB
|
---|
1974 | /* Flush the prefetch buffer. */
|
---|
1975 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
1976 | #endif
|
---|
1977 |
|
---|
1978 | /*
|
---|
1979 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
1980 | */
|
---|
1981 | return iemRegFinishClearingRF(pVCpu, VINF_SUCCESS);
|
---|
1982 | }
|
---|
1983 |
|
---|
1984 | /** @} */
|
---|
1985 |
|
---|
1986 |
|
---|
1987 | /** @name Memory access.
|
---|
1988 | *
|
---|
1989 | * @{
|
---|
1990 | */
|
---|
1991 |
|
---|
1992 | #undef LOG_GROUP
|
---|
1993 | #define LOG_GROUP LOG_GROUP_IEM_MEM
|
---|
1994 |
|
---|
1995 | #if 0 /*unused*/
|
---|
1996 | /**
|
---|
1997 | * Looks up a memory mapping entry.
|
---|
1998 | *
|
---|
1999 | * @returns The mapping index (positive) or VERR_NOT_FOUND (negative).
|
---|
2000 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2001 | * @param pvMem The memory address.
|
---|
2002 | * @param fAccess The access to.
|
---|
2003 | */
|
---|
2004 | DECLINLINE(int) iemMapLookup(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess)
|
---|
2005 | {
|
---|
2006 | Assert(pVCpu->iem.s.cActiveMappings <= RT_ELEMENTS(pVCpu->iem.s.aMemMappings));
|
---|
2007 | fAccess &= IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK;
|
---|
2008 | if ( pVCpu->iem.s.aMemMappings[0].pv == pvMem
|
---|
2009 | && (pVCpu->iem.s.aMemMappings[0].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
2010 | return 0;
|
---|
2011 | if ( pVCpu->iem.s.aMemMappings[1].pv == pvMem
|
---|
2012 | && (pVCpu->iem.s.aMemMappings[1].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
2013 | return 1;
|
---|
2014 | if ( pVCpu->iem.s.aMemMappings[2].pv == pvMem
|
---|
2015 | && (pVCpu->iem.s.aMemMappings[2].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
2016 | return 2;
|
---|
2017 | return VERR_NOT_FOUND;
|
---|
2018 | }
|
---|
2019 | #endif
|
---|
2020 |
|
---|
2021 | /**
|
---|
2022 | * Finds a free memmap entry when using iNextMapping doesn't work.
|
---|
2023 | *
|
---|
2024 | * @returns Memory mapping index, 1024 on failure.
|
---|
2025 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2026 | */
|
---|
2027 | static unsigned iemMemMapFindFree(PVMCPUCC pVCpu)
|
---|
2028 | {
|
---|
2029 | /*
|
---|
2030 | * The easy case.
|
---|
2031 | */
|
---|
2032 | if (pVCpu->iem.s.cActiveMappings == 0)
|
---|
2033 | {
|
---|
2034 | pVCpu->iem.s.iNextMapping = 1;
|
---|
2035 | return 0;
|
---|
2036 | }
|
---|
2037 |
|
---|
2038 | /* There should be enough mappings for all instructions. */
|
---|
2039 | AssertReturn(pVCpu->iem.s.cActiveMappings < RT_ELEMENTS(pVCpu->iem.s.aMemMappings), 1024);
|
---|
2040 |
|
---|
2041 | for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->iem.s.aMemMappings); i++)
|
---|
2042 | if (pVCpu->iem.s.aMemMappings[i].fAccess == IEM_ACCESS_INVALID)
|
---|
2043 | return i;
|
---|
2044 |
|
---|
2045 | AssertFailedReturn(1024);
|
---|
2046 | }
|
---|
2047 |
|
---|
2048 |
|
---|
2049 | /**
|
---|
2050 | * Commits a bounce buffer that needs writing back and unmaps it.
|
---|
2051 | *
|
---|
2052 | * @returns Strict VBox status code.
|
---|
2053 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2054 | * @param iMemMap The index of the buffer to commit.
|
---|
2055 | * @param fPostponeFail Whether we can postpone writer failures to ring-3.
|
---|
2056 | * Always false in ring-3, obviously.
|
---|
2057 | */
|
---|
2058 | static VBOXSTRICTRC iemMemBounceBufferCommitAndUnmap(PVMCPUCC pVCpu, unsigned iMemMap, bool fPostponeFail)
|
---|
2059 | {
|
---|
2060 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED);
|
---|
2061 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE);
|
---|
2062 | #ifdef IN_RING3
|
---|
2063 | Assert(!fPostponeFail);
|
---|
2064 | RT_NOREF_PV(fPostponeFail);
|
---|
2065 | #endif
|
---|
2066 |
|
---|
2067 | /*
|
---|
2068 | * Do the writing.
|
---|
2069 | */
|
---|
2070 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2071 | if (!pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned)
|
---|
2072 | {
|
---|
2073 | uint16_t const cbFirst = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst;
|
---|
2074 | uint16_t const cbSecond = pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
2075 | uint8_t const *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
2076 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
2077 | {
|
---|
2078 | /*
|
---|
2079 | * Carefully and efficiently dealing with access handler return
|
---|
2080 | * codes make this a little bloated.
|
---|
2081 | */
|
---|
2082 | VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM,
|
---|
2083 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
2084 | pbBuf,
|
---|
2085 | cbFirst,
|
---|
2086 | PGMACCESSORIGIN_IEM);
|
---|
2087 | if (rcStrict == VINF_SUCCESS)
|
---|
2088 | {
|
---|
2089 | if (cbSecond)
|
---|
2090 | {
|
---|
2091 | rcStrict = PGMPhysWrite(pVM,
|
---|
2092 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
2093 | pbBuf + cbFirst,
|
---|
2094 | cbSecond,
|
---|
2095 | PGMACCESSORIGIN_IEM);
|
---|
2096 | if (rcStrict == VINF_SUCCESS)
|
---|
2097 | { /* nothing */ }
|
---|
2098 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
2099 | {
|
---|
2100 | LogEx(LOG_GROUP_IEM,
|
---|
2101 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc\n",
|
---|
2102 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
2103 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2104 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2105 | }
|
---|
2106 | #ifndef IN_RING3
|
---|
2107 | else if (fPostponeFail)
|
---|
2108 | {
|
---|
2109 | LogEx(LOG_GROUP_IEM,
|
---|
2110 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
2111 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
2112 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2113 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
2114 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
2115 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2116 | }
|
---|
2117 | #endif
|
---|
2118 | else
|
---|
2119 | {
|
---|
2120 | LogEx(LOG_GROUP_IEM,
|
---|
2121 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
2122 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
2123 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2124 | return rcStrict;
|
---|
2125 | }
|
---|
2126 | }
|
---|
2127 | }
|
---|
2128 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
2129 | {
|
---|
2130 | if (!cbSecond)
|
---|
2131 | {
|
---|
2132 | LogEx(LOG_GROUP_IEM,
|
---|
2133 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc\n",
|
---|
2134 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2135 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2136 | }
|
---|
2137 | else
|
---|
2138 | {
|
---|
2139 | VBOXSTRICTRC rcStrict2 = PGMPhysWrite(pVM,
|
---|
2140 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
2141 | pbBuf + cbFirst,
|
---|
2142 | cbSecond,
|
---|
2143 | PGMACCESSORIGIN_IEM);
|
---|
2144 | if (rcStrict2 == VINF_SUCCESS)
|
---|
2145 | {
|
---|
2146 | LogEx(LOG_GROUP_IEM,
|
---|
2147 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x\n",
|
---|
2148 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
2149 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
2150 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2151 | }
|
---|
2152 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
|
---|
2153 | {
|
---|
2154 | LogEx(LOG_GROUP_IEM,
|
---|
2155 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x %Rrc\n",
|
---|
2156 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
2157 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
2158 | PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
|
---|
2159 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2160 | }
|
---|
2161 | #ifndef IN_RING3
|
---|
2162 | else if (fPostponeFail)
|
---|
2163 | {
|
---|
2164 | LogEx(LOG_GROUP_IEM,
|
---|
2165 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
2166 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
2167 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2168 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
2169 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
2170 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2171 | }
|
---|
2172 | #endif
|
---|
2173 | else
|
---|
2174 | {
|
---|
2175 | LogEx(LOG_GROUP_IEM,
|
---|
2176 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
2177 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
2178 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
2179 | return rcStrict2;
|
---|
2180 | }
|
---|
2181 | }
|
---|
2182 | }
|
---|
2183 | #ifndef IN_RING3
|
---|
2184 | else if (fPostponeFail)
|
---|
2185 | {
|
---|
2186 | LogEx(LOG_GROUP_IEM,
|
---|
2187 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
2188 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
2189 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2190 | if (!cbSecond)
|
---|
2191 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_1ST;
|
---|
2192 | else
|
---|
2193 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
2194 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
2195 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2196 | }
|
---|
2197 | #endif
|
---|
2198 | else
|
---|
2199 | {
|
---|
2200 | LogEx(LOG_GROUP_IEM,
|
---|
2201 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc [GCPhysSecond=%RGp/%#x] (!!)\n",
|
---|
2202 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
2203 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
2204 | return rcStrict;
|
---|
2205 | }
|
---|
2206 | }
|
---|
2207 | else
|
---|
2208 | {
|
---|
2209 | /*
|
---|
2210 | * No access handlers, much simpler.
|
---|
2211 | */
|
---|
2212 | int rc = PGMPhysSimpleWriteGCPhys(pVM, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, pbBuf, cbFirst);
|
---|
2213 | if (RT_SUCCESS(rc))
|
---|
2214 | {
|
---|
2215 | if (cbSecond)
|
---|
2216 | {
|
---|
2217 | rc = PGMPhysSimpleWriteGCPhys(pVM, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, pbBuf + cbFirst, cbSecond);
|
---|
2218 | if (RT_SUCCESS(rc))
|
---|
2219 | { /* likely */ }
|
---|
2220 | else
|
---|
2221 | {
|
---|
2222 | LogEx(LOG_GROUP_IEM,
|
---|
2223 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysSimpleWriteGCPhys GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
2224 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
2225 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, rc));
|
---|
2226 | return rc;
|
---|
2227 | }
|
---|
2228 | }
|
---|
2229 | }
|
---|
2230 | else
|
---|
2231 | {
|
---|
2232 | LogEx(LOG_GROUP_IEM,
|
---|
2233 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysSimpleWriteGCPhys GCPhysFirst=%RGp/%#x %Rrc [GCPhysSecond=%RGp/%#x] (!!)\n",
|
---|
2234 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, rc,
|
---|
2235 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
2236 | return rc;
|
---|
2237 | }
|
---|
2238 | }
|
---|
2239 | }
|
---|
2240 |
|
---|
2241 | #if defined(IEM_LOG_MEMORY_WRITES)
|
---|
2242 | Log5(("IEM Wrote %RGp: %.*Rhxs\n", pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
2243 | RT_MAX(RT_MIN(pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst, 64), 1), &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0]));
|
---|
2244 | if (pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond)
|
---|
2245 | Log5(("IEM Wrote %RGp: %.*Rhxs [2nd page]\n", pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
2246 | RT_MIN(pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond, 64),
|
---|
2247 | &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst]));
|
---|
2248 |
|
---|
2249 | size_t cbWrote = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst + pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
2250 | g_cbIemWrote = cbWrote;
|
---|
2251 | memcpy(g_abIemWrote, &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0], RT_MIN(cbWrote, sizeof(g_abIemWrote)));
|
---|
2252 | #endif
|
---|
2253 |
|
---|
2254 | /*
|
---|
2255 | * Free the mapping entry.
|
---|
2256 | */
|
---|
2257 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
2258 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
2259 | pVCpu->iem.s.cActiveMappings--;
|
---|
2260 | return VINF_SUCCESS;
|
---|
2261 | }
|
---|
2262 |
|
---|
2263 |
|
---|
2264 | /**
|
---|
2265 | * Helper for iemMemMap, iemMemMapJmp and iemMemBounceBufferMapCrossPage.
|
---|
2266 | * @todo duplicated
|
---|
2267 | */
|
---|
2268 | DECL_FORCE_INLINE(uint32_t)
|
---|
2269 | iemMemCheckDataBreakpoint(PVMCC pVM, PVMCPUCC pVCpu, RTGCPTR GCPtrMem, size_t cbMem, uint32_t fAccess)
|
---|
2270 | {
|
---|
2271 | bool const fSysAccess = (fAccess & IEM_ACCESS_WHAT_MASK) == IEM_ACCESS_WHAT_SYS;
|
---|
2272 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
2273 | return DBGFBpCheckDataWrite(pVM, pVCpu, GCPtrMem, (uint32_t)cbMem, fSysAccess);
|
---|
2274 | return DBGFBpCheckDataRead(pVM, pVCpu, GCPtrMem, (uint32_t)cbMem, fSysAccess);
|
---|
2275 | }
|
---|
2276 |
|
---|
2277 |
|
---|
2278 | /**
|
---|
2279 | * iemMemMap worker that deals with a request crossing pages.
|
---|
2280 | */
|
---|
2281 | VBOXSTRICTRC iemMemBounceBufferMapCrossPage(PVMCPUCC pVCpu, int iMemMap, void **ppvMem, uint8_t *pbUnmapInfo,
|
---|
2282 | size_t cbMem, RTGCPTR GCPtrFirst, uint32_t fAccess) RT_NOEXCEPT
|
---|
2283 | {
|
---|
2284 | STAM_COUNTER_INC(&pVCpu->iem.s.StatMemBounceBufferCrossPage);
|
---|
2285 | Assert(cbMem <= GUEST_PAGE_SIZE);
|
---|
2286 |
|
---|
2287 | /*
|
---|
2288 | * Do the address translations.
|
---|
2289 | */
|
---|
2290 | uint32_t const cbFirstPage = GUEST_PAGE_SIZE - (uint32_t)(GCPtrFirst & GUEST_PAGE_OFFSET_MASK);
|
---|
2291 | RTGCPHYS GCPhysFirst;
|
---|
2292 | VBOXSTRICTRC rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrFirst, cbFirstPage, fAccess, &GCPhysFirst);
|
---|
2293 | if (rcStrict != VINF_SUCCESS)
|
---|
2294 | return rcStrict;
|
---|
2295 | Assert((GCPhysFirst & GUEST_PAGE_OFFSET_MASK) == (GCPtrFirst & GUEST_PAGE_OFFSET_MASK));
|
---|
2296 |
|
---|
2297 | uint32_t const cbSecondPage = (uint32_t)cbMem - cbFirstPage;
|
---|
2298 | RTGCPHYS GCPhysSecond;
|
---|
2299 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, (GCPtrFirst + (cbMem - 1)) & ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK,
|
---|
2300 | cbSecondPage, fAccess, &GCPhysSecond);
|
---|
2301 | if (rcStrict != VINF_SUCCESS)
|
---|
2302 | return rcStrict;
|
---|
2303 | Assert((GCPhysSecond & GUEST_PAGE_OFFSET_MASK) == 0);
|
---|
2304 | GCPhysSecond &= ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; /** @todo why? */
|
---|
2305 |
|
---|
2306 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2307 |
|
---|
2308 | /*
|
---|
2309 | * Check for data breakpoints.
|
---|
2310 | */
|
---|
2311 | if (RT_LIKELY(!(pVCpu->iem.s.fExec & IEM_F_PENDING_BRK_DATA)))
|
---|
2312 | { /* likely */ }
|
---|
2313 | else
|
---|
2314 | {
|
---|
2315 | uint32_t fDataBps = iemMemCheckDataBreakpoint(pVM, pVCpu, GCPtrFirst, cbFirstPage, fAccess);
|
---|
2316 | fDataBps |= iemMemCheckDataBreakpoint(pVM, pVCpu, (GCPtrFirst + (cbMem - 1)) & ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK,
|
---|
2317 | cbSecondPage, fAccess);
|
---|
2318 | pVCpu->cpum.GstCtx.eflags.uBoth |= fDataBps & (CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK);
|
---|
2319 | if (fDataBps > 1)
|
---|
2320 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapCrossPage: Data breakpoint: fDataBps=%#x for %RGv LB %zx; fAccess=%#x cs:rip=%04x:%08RX64\n",
|
---|
2321 | fDataBps, GCPtrFirst, cbMem, fAccess, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2322 | }
|
---|
2323 |
|
---|
2324 | /*
|
---|
2325 | * Read in the current memory content if it's a read, execute or partial
|
---|
2326 | * write access.
|
---|
2327 | */
|
---|
2328 | uint8_t * const pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
2329 |
|
---|
2330 | if (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_PARTIAL_WRITE))
|
---|
2331 | {
|
---|
2332 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
2333 | {
|
---|
2334 | /*
|
---|
2335 | * Must carefully deal with access handler status codes here,
|
---|
2336 | * makes the code a bit bloated.
|
---|
2337 | */
|
---|
2338 | rcStrict = PGMPhysRead(pVM, GCPhysFirst, pbBuf, cbFirstPage, PGMACCESSORIGIN_IEM);
|
---|
2339 | if (rcStrict == VINF_SUCCESS)
|
---|
2340 | {
|
---|
2341 | rcStrict = PGMPhysRead(pVM, GCPhysSecond, pbBuf + cbFirstPage, cbSecondPage, PGMACCESSORIGIN_IEM);
|
---|
2342 | if (rcStrict == VINF_SUCCESS)
|
---|
2343 | { /*likely */ }
|
---|
2344 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
2345 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2346 | else
|
---|
2347 | {
|
---|
2348 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysSecond=%RGp rcStrict2=%Rrc (!!)\n",
|
---|
2349 | GCPhysSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2350 | return rcStrict;
|
---|
2351 | }
|
---|
2352 | }
|
---|
2353 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
2354 | {
|
---|
2355 | VBOXSTRICTRC rcStrict2 = PGMPhysRead(pVM, GCPhysSecond, pbBuf + cbFirstPage, cbSecondPage, PGMACCESSORIGIN_IEM);
|
---|
2356 | if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
|
---|
2357 | {
|
---|
2358 | PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
|
---|
2359 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2360 | }
|
---|
2361 | else
|
---|
2362 | {
|
---|
2363 | LogEx(LOG_GROUP_IEM,
|
---|
2364 | ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysSecond=%RGp rcStrict2=%Rrc (rcStrict=%Rrc) (!!)\n",
|
---|
2365 | GCPhysSecond, VBOXSTRICTRC_VAL(rcStrict2), VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
2366 | return rcStrict2;
|
---|
2367 | }
|
---|
2368 | }
|
---|
2369 | else
|
---|
2370 | {
|
---|
2371 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
2372 | GCPhysFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2373 | return rcStrict;
|
---|
2374 | }
|
---|
2375 | }
|
---|
2376 | else
|
---|
2377 | {
|
---|
2378 | /*
|
---|
2379 | * No informational status codes here, much more straight forward.
|
---|
2380 | */
|
---|
2381 | int rc = PGMPhysSimpleReadGCPhys(pVM, pbBuf, GCPhysFirst, cbFirstPage);
|
---|
2382 | if (RT_SUCCESS(rc))
|
---|
2383 | {
|
---|
2384 | Assert(rc == VINF_SUCCESS);
|
---|
2385 | rc = PGMPhysSimpleReadGCPhys(pVM, pbBuf + cbFirstPage, GCPhysSecond, cbSecondPage);
|
---|
2386 | if (RT_SUCCESS(rc))
|
---|
2387 | Assert(rc == VINF_SUCCESS);
|
---|
2388 | else
|
---|
2389 | {
|
---|
2390 | LogEx(LOG_GROUP_IEM,
|
---|
2391 | ("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysSecond=%RGp rc=%Rrc (!!)\n", GCPhysSecond, rc));
|
---|
2392 | return rc;
|
---|
2393 | }
|
---|
2394 | }
|
---|
2395 | else
|
---|
2396 | {
|
---|
2397 | LogEx(LOG_GROUP_IEM,
|
---|
2398 | ("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysFirst=%RGp rc=%Rrc (!!)\n", GCPhysFirst, rc));
|
---|
2399 | return rc;
|
---|
2400 | }
|
---|
2401 | }
|
---|
2402 | }
|
---|
2403 | #ifdef VBOX_STRICT
|
---|
2404 | else
|
---|
2405 | memset(pbBuf, 0xcc, cbMem);
|
---|
2406 | if (cbMem < sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab))
|
---|
2407 | memset(pbBuf + cbMem, 0xaa, sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab) - cbMem);
|
---|
2408 | #endif
|
---|
2409 | AssertCompileMemberAlignment(VMCPU, iem.s.aBounceBuffers, 64);
|
---|
2410 |
|
---|
2411 | /*
|
---|
2412 | * Commit the bounce buffer entry.
|
---|
2413 | */
|
---|
2414 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst = GCPhysFirst;
|
---|
2415 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond = GCPhysSecond;
|
---|
2416 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst = (uint16_t)cbFirstPage;
|
---|
2417 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond = (uint16_t)cbSecondPage;
|
---|
2418 | pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned = false;
|
---|
2419 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pbBuf;
|
---|
2420 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess | IEM_ACCESS_BOUNCE_BUFFERED;
|
---|
2421 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
2422 | pVCpu->iem.s.cActiveMappings++;
|
---|
2423 |
|
---|
2424 | *ppvMem = pbBuf;
|
---|
2425 | *pbUnmapInfo = iMemMap | 0x08 | ((fAccess & IEM_ACCESS_TYPE_MASK) << 4);
|
---|
2426 | return VINF_SUCCESS;
|
---|
2427 | }
|
---|
2428 |
|
---|
2429 |
|
---|
2430 | /**
|
---|
2431 | * iemMemMap woker that deals with iemMemPageMap failures.
|
---|
2432 | */
|
---|
2433 | VBOXSTRICTRC iemMemBounceBufferMapPhys(PVMCPUCC pVCpu, unsigned iMemMap, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem,
|
---|
2434 | RTGCPHYS GCPhysFirst, uint32_t fAccess, VBOXSTRICTRC rcMap) RT_NOEXCEPT
|
---|
2435 | {
|
---|
2436 | STAM_COUNTER_INC(&pVCpu->iem.s.StatMemBounceBufferMapPhys);
|
---|
2437 |
|
---|
2438 | /*
|
---|
2439 | * Filter out conditions we can handle and the ones which shouldn't happen.
|
---|
2440 | */
|
---|
2441 | if ( rcMap != VERR_PGM_PHYS_TLB_CATCH_WRITE
|
---|
2442 | && rcMap != VERR_PGM_PHYS_TLB_CATCH_ALL
|
---|
2443 | && rcMap != VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
2444 | {
|
---|
2445 | AssertReturn(RT_FAILURE_NP(rcMap), VERR_IEM_IPE_8);
|
---|
2446 | return rcMap;
|
---|
2447 | }
|
---|
2448 | pVCpu->iem.s.cPotentialExits++;
|
---|
2449 |
|
---|
2450 | /*
|
---|
2451 | * Read in the current memory content if it's a read, execute or partial
|
---|
2452 | * write access.
|
---|
2453 | */
|
---|
2454 | uint8_t *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
2455 | if (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_PARTIAL_WRITE))
|
---|
2456 | {
|
---|
2457 | if (rcMap == VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
2458 | memset(pbBuf, 0xff, cbMem);
|
---|
2459 | else
|
---|
2460 | {
|
---|
2461 | int rc;
|
---|
2462 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
2463 | {
|
---|
2464 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhysFirst, pbBuf, cbMem, PGMACCESSORIGIN_IEM);
|
---|
2465 | if (rcStrict == VINF_SUCCESS)
|
---|
2466 | { /* nothing */ }
|
---|
2467 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
2468 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2469 | else
|
---|
2470 | {
|
---|
2471 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
2472 | GCPhysFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2473 | return rcStrict;
|
---|
2474 | }
|
---|
2475 | }
|
---|
2476 | else
|
---|
2477 | {
|
---|
2478 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pbBuf, GCPhysFirst, cbMem);
|
---|
2479 | if (RT_SUCCESS(rc))
|
---|
2480 | { /* likely */ }
|
---|
2481 | else
|
---|
2482 | {
|
---|
2483 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
2484 | GCPhysFirst, rc));
|
---|
2485 | return rc;
|
---|
2486 | }
|
---|
2487 | }
|
---|
2488 | }
|
---|
2489 | }
|
---|
2490 | #ifdef VBOX_STRICT
|
---|
2491 | else
|
---|
2492 | memset(pbBuf, 0xcc, cbMem);
|
---|
2493 | #endif
|
---|
2494 | #ifdef VBOX_STRICT
|
---|
2495 | if (cbMem < sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab))
|
---|
2496 | memset(pbBuf + cbMem, 0xaa, sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab) - cbMem);
|
---|
2497 | #endif
|
---|
2498 |
|
---|
2499 | /*
|
---|
2500 | * Commit the bounce buffer entry.
|
---|
2501 | */
|
---|
2502 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst = GCPhysFirst;
|
---|
2503 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond = NIL_RTGCPHYS;
|
---|
2504 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst = (uint16_t)cbMem;
|
---|
2505 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond = 0;
|
---|
2506 | pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned = rcMap == VERR_PGM_PHYS_TLB_UNASSIGNED;
|
---|
2507 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pbBuf;
|
---|
2508 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess | IEM_ACCESS_BOUNCE_BUFFERED;
|
---|
2509 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
2510 | pVCpu->iem.s.cActiveMappings++;
|
---|
2511 |
|
---|
2512 | *ppvMem = pbBuf;
|
---|
2513 | *pbUnmapInfo = iMemMap | 0x08 | ((fAccess & IEM_ACCESS_TYPE_MASK) << 4);
|
---|
2514 | return VINF_SUCCESS;
|
---|
2515 | }
|
---|
2516 |
|
---|
2517 |
|
---|
2518 |
|
---|
2519 | /**
|
---|
2520 | * Commits the guest memory if bounce buffered and unmaps it.
|
---|
2521 | *
|
---|
2522 | * @returns Strict VBox status code.
|
---|
2523 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2524 | * @param bUnmapInfo Unmap info set by iemMemMap.
|
---|
2525 | */
|
---|
2526 | VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT
|
---|
2527 | {
|
---|
2528 | uintptr_t const iMemMap = bUnmapInfo & 0x7;
|
---|
2529 | AssertMsgReturn( (bUnmapInfo & 0x08)
|
---|
2530 | && iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
2531 | && (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_TYPE_MASK | 0xf)) == ((unsigned)bUnmapInfo >> 4),
|
---|
2532 | ("%#x fAccess=%#x\n", bUnmapInfo, pVCpu->iem.s.aMemMappings[iMemMap].fAccess),
|
---|
2533 | VERR_NOT_FOUND);
|
---|
2534 |
|
---|
2535 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
2536 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
2537 | {
|
---|
2538 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
2539 | return iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, false /*fPostponeFail*/);
|
---|
2540 | }
|
---|
2541 | /* Otherwise unlock it. */
|
---|
2542 | else if (!(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_NOT_LOCKED))
|
---|
2543 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
2544 |
|
---|
2545 | /* Free the entry. */
|
---|
2546 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
2547 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
2548 | pVCpu->iem.s.cActiveMappings--;
|
---|
2549 | return VINF_SUCCESS;
|
---|
2550 | }
|
---|
2551 |
|
---|
2552 |
|
---|
2553 | /**
|
---|
2554 | * Rolls back the guest memory (conceptually only) and unmaps it.
|
---|
2555 | *
|
---|
2556 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2557 | * @param bUnmapInfo Unmap info set by iemMemMap.
|
---|
2558 | */
|
---|
2559 | void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT
|
---|
2560 | {
|
---|
2561 | uintptr_t const iMemMap = bUnmapInfo & 0x7;
|
---|
2562 | AssertMsgReturnVoid( (bUnmapInfo & 0x08)
|
---|
2563 | && iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
2564 | && (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_TYPE_MASK | 0xf))
|
---|
2565 | == ((unsigned)bUnmapInfo >> 4),
|
---|
2566 | ("%#x fAccess=%#x\n", bUnmapInfo, pVCpu->iem.s.aMemMappings[iMemMap].fAccess));
|
---|
2567 |
|
---|
2568 | /* Unlock it if necessary. */
|
---|
2569 | if (!(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_NOT_LOCKED))
|
---|
2570 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
2571 |
|
---|
2572 | /* Free the entry. */
|
---|
2573 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
2574 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
2575 | pVCpu->iem.s.cActiveMappings--;
|
---|
2576 | }
|
---|
2577 |
|
---|
2578 | #ifdef IEM_WITH_SETJMP
|
---|
2579 |
|
---|
2580 | /**
|
---|
2581 | * Commits the guest memory if bounce buffered and unmaps it, longjmp on error.
|
---|
2582 | *
|
---|
2583 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2584 | * @param pvMem The mapping.
|
---|
2585 | * @param fAccess The kind of access.
|
---|
2586 | */
|
---|
2587 | void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
2588 | {
|
---|
2589 | uintptr_t const iMemMap = bUnmapInfo & 0x7;
|
---|
2590 | AssertMsgReturnVoid( (bUnmapInfo & 0x08)
|
---|
2591 | && iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
2592 | && (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_TYPE_MASK | 0xf))
|
---|
2593 | == ((unsigned)bUnmapInfo >> 4),
|
---|
2594 | ("%#x fAccess=%#x\n", bUnmapInfo, pVCpu->iem.s.aMemMappings[iMemMap].fAccess));
|
---|
2595 |
|
---|
2596 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
2597 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
2598 | {
|
---|
2599 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
2600 | {
|
---|
2601 | VBOXSTRICTRC rcStrict = iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, false /*fPostponeFail*/);
|
---|
2602 | if (rcStrict == VINF_SUCCESS)
|
---|
2603 | return;
|
---|
2604 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
2605 | }
|
---|
2606 | }
|
---|
2607 | /* Otherwise unlock it. */
|
---|
2608 | else if (!(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_NOT_LOCKED))
|
---|
2609 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
2610 |
|
---|
2611 | /* Free the entry. */
|
---|
2612 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
2613 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
2614 | pVCpu->iem.s.cActiveMappings--;
|
---|
2615 | }
|
---|
2616 |
|
---|
2617 |
|
---|
2618 | /** Fallback for iemMemCommitAndUnmapRwJmp. */
|
---|
2619 | void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
2620 | {
|
---|
2621 | Assert(((bUnmapInfo >> 4) & IEM_ACCESS_TYPE_MASK) == (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE));
|
---|
2622 | iemMemCommitAndUnmapJmp(pVCpu, bUnmapInfo);
|
---|
2623 | }
|
---|
2624 |
|
---|
2625 |
|
---|
2626 | /** Fallback for iemMemCommitAndUnmapAtJmp. */
|
---|
2627 | void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
2628 | {
|
---|
2629 | Assert(((bUnmapInfo >> 4) & IEM_ACCESS_TYPE_MASK) == (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE));
|
---|
2630 | iemMemCommitAndUnmapJmp(pVCpu, bUnmapInfo);
|
---|
2631 | }
|
---|
2632 |
|
---|
2633 |
|
---|
2634 | /** Fallback for iemMemCommitAndUnmapWoJmp. */
|
---|
2635 | void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
2636 | {
|
---|
2637 | Assert(((bUnmapInfo >> 4) & IEM_ACCESS_TYPE_MASK) == IEM_ACCESS_TYPE_WRITE);
|
---|
2638 | iemMemCommitAndUnmapJmp(pVCpu, bUnmapInfo);
|
---|
2639 | }
|
---|
2640 |
|
---|
2641 |
|
---|
2642 | /** Fallback for iemMemCommitAndUnmapRoJmp. */
|
---|
2643 | void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
2644 | {
|
---|
2645 | Assert(((bUnmapInfo >> 4) & IEM_ACCESS_TYPE_MASK) == IEM_ACCESS_TYPE_READ);
|
---|
2646 | iemMemCommitAndUnmapJmp(pVCpu, bUnmapInfo);
|
---|
2647 | }
|
---|
2648 |
|
---|
2649 |
|
---|
2650 | /** Fallback for iemMemRollbackAndUnmapWo. */
|
---|
2651 | void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT
|
---|
2652 | {
|
---|
2653 | Assert(((bUnmapInfo >> 4) & IEM_ACCESS_TYPE_MASK) == IEM_ACCESS_TYPE_WRITE);
|
---|
2654 | iemMemRollbackAndUnmap(pVCpu, bUnmapInfo);
|
---|
2655 | }
|
---|
2656 |
|
---|
2657 | #endif /* IEM_WITH_SETJMP */
|
---|
2658 |
|
---|
2659 | #ifndef IN_RING3
|
---|
2660 | /**
|
---|
2661 | * Commits the guest memory if bounce buffered and unmaps it, if any bounce
|
---|
2662 | * buffer part shows trouble it will be postponed to ring-3 (sets FF and stuff).
|
---|
2663 | *
|
---|
2664 | * Allows the instruction to be completed and retired, while the IEM user will
|
---|
2665 | * return to ring-3 immediately afterwards and do the postponed writes there.
|
---|
2666 | *
|
---|
2667 | * @returns VBox status code (no strict statuses). Caller must check
|
---|
2668 | * VMCPU_FF_IEM before repeating string instructions and similar stuff.
|
---|
2669 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2670 | * @param pvMem The mapping.
|
---|
2671 | * @param fAccess The kind of access.
|
---|
2672 | */
|
---|
2673 | VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT
|
---|
2674 | {
|
---|
2675 | uintptr_t const iMemMap = bUnmapInfo & 0x7;
|
---|
2676 | AssertMsgReturn( (bUnmapInfo & 0x08)
|
---|
2677 | && iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
2678 | && (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_TYPE_MASK | 0xf))
|
---|
2679 | == ((unsigned)bUnmapInfo >> 4),
|
---|
2680 | ("%#x fAccess=%#x\n", bUnmapInfo, pVCpu->iem.s.aMemMappings[iMemMap].fAccess),
|
---|
2681 | VERR_NOT_FOUND);
|
---|
2682 |
|
---|
2683 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
2684 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
2685 | {
|
---|
2686 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
2687 | return iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, true /*fPostponeFail*/);
|
---|
2688 | }
|
---|
2689 | /* Otherwise unlock it. */
|
---|
2690 | else if (!(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_NOT_LOCKED))
|
---|
2691 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
2692 |
|
---|
2693 | /* Free the entry. */
|
---|
2694 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
2695 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
2696 | pVCpu->iem.s.cActiveMappings--;
|
---|
2697 | return VINF_SUCCESS;
|
---|
2698 | }
|
---|
2699 | #endif
|
---|
2700 |
|
---|
2701 |
|
---|
2702 | /**
|
---|
2703 | * Rollbacks mappings, releasing page locks and such.
|
---|
2704 | *
|
---|
2705 | * The caller shall only call this after checking cActiveMappings.
|
---|
2706 | *
|
---|
2707 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2708 | */
|
---|
2709 | void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2710 | {
|
---|
2711 | Assert(pVCpu->iem.s.cActiveMappings > 0);
|
---|
2712 |
|
---|
2713 | uint32_t iMemMap = RT_ELEMENTS(pVCpu->iem.s.aMemMappings);
|
---|
2714 | while (iMemMap-- > 0)
|
---|
2715 | {
|
---|
2716 | uint32_t const fAccess = pVCpu->iem.s.aMemMappings[iMemMap].fAccess;
|
---|
2717 | if (fAccess != IEM_ACCESS_INVALID)
|
---|
2718 | {
|
---|
2719 | AssertMsg(!(fAccess & ~IEM_ACCESS_VALID_MASK) && fAccess != 0, ("%#x\n", fAccess));
|
---|
2720 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
2721 | if (!(fAccess & (IEM_ACCESS_BOUNCE_BUFFERED | IEM_ACCESS_NOT_LOCKED)))
|
---|
2722 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
2723 | AssertMsg(pVCpu->iem.s.cActiveMappings > 0,
|
---|
2724 | ("iMemMap=%u fAccess=%#x pv=%p GCPhysFirst=%RGp GCPhysSecond=%RGp\n",
|
---|
2725 | iMemMap, fAccess, pVCpu->iem.s.aMemMappings[iMemMap].pv,
|
---|
2726 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond));
|
---|
2727 | pVCpu->iem.s.cActiveMappings--;
|
---|
2728 | }
|
---|
2729 | }
|
---|
2730 | }
|
---|
2731 |
|
---|
2732 | #undef LOG_GROUP
|
---|
2733 | #define LOG_GROUP LOG_GROUP_IEM
|
---|
2734 |
|
---|
2735 | /** @} */
|
---|
2736 |
|
---|
2737 | /** @name Opcode Helpers.
|
---|
2738 | * @{
|
---|
2739 | */
|
---|
2740 |
|
---|
2741 | /**
|
---|
2742 | * Calculates the effective address of a ModR/M memory operand.
|
---|
2743 | *
|
---|
2744 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
2745 | *
|
---|
2746 | * @return Strict VBox status code.
|
---|
2747 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2748 | * @param bRm The ModRM byte.
|
---|
2749 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
2750 | * following the effective address opcode bytes
|
---|
2751 | * (only for RIP relative addressing).
|
---|
2752 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
2753 | * @param pGCPtrEff Where to return the effective address.
|
---|
2754 | */
|
---|
2755 | VBOXSTRICTRC iemOpHlpCalcRmEffAddr(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset, PRTGCPTR pGCPtrEff) RT_NOEXCEPT
|
---|
2756 | {
|
---|
2757 | Log5(("iemOpHlpCalcRmEffAddr: bRm=%#x\n", bRm));
|
---|
2758 | # define SET_SS_DEF() \
|
---|
2759 | do \
|
---|
2760 | { \
|
---|
2761 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
2762 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
2763 | } while (0)
|
---|
2764 |
|
---|
2765 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
2766 | {
|
---|
2767 | /** @todo Check the effective address size crap! */
|
---|
2768 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
2769 | {
|
---|
2770 | uint16_t u16EffAddr;
|
---|
2771 |
|
---|
2772 | /* Handle the disp16 form with no registers first. */
|
---|
2773 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
2774 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
2775 | else
|
---|
2776 | {
|
---|
2777 | /* Get the displacment. */
|
---|
2778 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
2779 | {
|
---|
2780 | case 0: u16EffAddr = 0; break;
|
---|
2781 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
2782 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
2783 | default: AssertFailedReturn(VERR_IEM_IPE_1); /* (caller checked for these) */
|
---|
2784 | }
|
---|
2785 |
|
---|
2786 | /* Add the base and index registers to the disp. */
|
---|
2787 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
2788 | {
|
---|
2789 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
2790 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
2791 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
2792 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
2793 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
2794 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
2795 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
2796 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
2797 | }
|
---|
2798 | }
|
---|
2799 |
|
---|
2800 | *pGCPtrEff = u16EffAddr;
|
---|
2801 | }
|
---|
2802 | else
|
---|
2803 | {
|
---|
2804 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
2805 | uint32_t u32EffAddr;
|
---|
2806 |
|
---|
2807 | /* Handle the disp32 form with no registers first. */
|
---|
2808 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
2809 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
2810 | else
|
---|
2811 | {
|
---|
2812 | /* Get the register (or SIB) value. */
|
---|
2813 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
2814 | {
|
---|
2815 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
2816 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
2817 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
2818 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
2819 | case 4: /* SIB */
|
---|
2820 | {
|
---|
2821 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
2822 |
|
---|
2823 | /* Get the index and scale it. */
|
---|
2824 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
2825 | {
|
---|
2826 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
2827 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
2828 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
2829 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
2830 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
2831 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
2832 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
2833 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
2834 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2835 | }
|
---|
2836 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
2837 |
|
---|
2838 | /* add base */
|
---|
2839 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
2840 | {
|
---|
2841 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
2842 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
2843 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
2844 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
2845 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
2846 | case 5:
|
---|
2847 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
2848 | {
|
---|
2849 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
2850 | SET_SS_DEF();
|
---|
2851 | }
|
---|
2852 | else
|
---|
2853 | {
|
---|
2854 | uint32_t u32Disp;
|
---|
2855 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
2856 | u32EffAddr += u32Disp;
|
---|
2857 | }
|
---|
2858 | break;
|
---|
2859 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
2860 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
2861 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2862 | }
|
---|
2863 | break;
|
---|
2864 | }
|
---|
2865 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
2866 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
2867 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
2868 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2869 | }
|
---|
2870 |
|
---|
2871 | /* Get and add the displacement. */
|
---|
2872 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
2873 | {
|
---|
2874 | case 0:
|
---|
2875 | break;
|
---|
2876 | case 1:
|
---|
2877 | {
|
---|
2878 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
2879 | u32EffAddr += i8Disp;
|
---|
2880 | break;
|
---|
2881 | }
|
---|
2882 | case 2:
|
---|
2883 | {
|
---|
2884 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
2885 | u32EffAddr += u32Disp;
|
---|
2886 | break;
|
---|
2887 | }
|
---|
2888 | default:
|
---|
2889 | AssertFailedReturn(VERR_IEM_IPE_2); /* (caller checked for these) */
|
---|
2890 | }
|
---|
2891 |
|
---|
2892 | }
|
---|
2893 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
2894 | *pGCPtrEff = u32EffAddr;
|
---|
2895 | }
|
---|
2896 | }
|
---|
2897 | else
|
---|
2898 | {
|
---|
2899 | uint64_t u64EffAddr;
|
---|
2900 |
|
---|
2901 | /* Handle the rip+disp32 form with no registers first. */
|
---|
2902 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
2903 | {
|
---|
2904 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
2905 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
2906 | }
|
---|
2907 | else
|
---|
2908 | {
|
---|
2909 | /* Get the register (or SIB) value. */
|
---|
2910 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
2911 | {
|
---|
2912 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
2913 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
2914 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
2915 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
2916 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
2917 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
2918 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
2919 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
2920 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
2921 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
2922 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
2923 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
2924 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
2925 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
2926 | /* SIB */
|
---|
2927 | case 4:
|
---|
2928 | case 12:
|
---|
2929 | {
|
---|
2930 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
2931 |
|
---|
2932 | /* Get the index and scale it. */
|
---|
2933 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
2934 | {
|
---|
2935 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
2936 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
2937 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
2938 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
2939 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
2940 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
2941 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
2942 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
2943 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
2944 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
2945 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
2946 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
2947 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
2948 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
2949 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
2950 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
2951 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2952 | }
|
---|
2953 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
2954 |
|
---|
2955 | /* add base */
|
---|
2956 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
2957 | {
|
---|
2958 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
2959 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
2960 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
2961 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
2962 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
2963 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
2964 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
2965 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
2966 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
2967 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
2968 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
2969 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
2970 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
2971 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
2972 | /* complicated encodings */
|
---|
2973 | case 5:
|
---|
2974 | case 13:
|
---|
2975 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
2976 | {
|
---|
2977 | if (!pVCpu->iem.s.uRexB)
|
---|
2978 | {
|
---|
2979 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
2980 | SET_SS_DEF();
|
---|
2981 | }
|
---|
2982 | else
|
---|
2983 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
2984 | }
|
---|
2985 | else
|
---|
2986 | {
|
---|
2987 | uint32_t u32Disp;
|
---|
2988 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
2989 | u64EffAddr += (int32_t)u32Disp;
|
---|
2990 | }
|
---|
2991 | break;
|
---|
2992 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2993 | }
|
---|
2994 | break;
|
---|
2995 | }
|
---|
2996 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2997 | }
|
---|
2998 |
|
---|
2999 | /* Get and add the displacement. */
|
---|
3000 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
3001 | {
|
---|
3002 | case 0:
|
---|
3003 | break;
|
---|
3004 | case 1:
|
---|
3005 | {
|
---|
3006 | int8_t i8Disp;
|
---|
3007 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
3008 | u64EffAddr += i8Disp;
|
---|
3009 | break;
|
---|
3010 | }
|
---|
3011 | case 2:
|
---|
3012 | {
|
---|
3013 | uint32_t u32Disp;
|
---|
3014 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
3015 | u64EffAddr += (int32_t)u32Disp;
|
---|
3016 | break;
|
---|
3017 | }
|
---|
3018 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* (caller checked for these) */
|
---|
3019 | }
|
---|
3020 |
|
---|
3021 | }
|
---|
3022 |
|
---|
3023 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
3024 | *pGCPtrEff = u64EffAddr;
|
---|
3025 | else
|
---|
3026 | {
|
---|
3027 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
3028 | *pGCPtrEff = u64EffAddr & UINT32_MAX;
|
---|
3029 | }
|
---|
3030 | }
|
---|
3031 |
|
---|
3032 | Log5(("iemOpHlpCalcRmEffAddr: EffAddr=%#010RGv\n", *pGCPtrEff));
|
---|
3033 | return VINF_SUCCESS;
|
---|
3034 | }
|
---|
3035 |
|
---|
3036 |
|
---|
3037 | #ifdef IEM_WITH_SETJMP
|
---|
3038 | /**
|
---|
3039 | * Calculates the effective address of a ModR/M memory operand.
|
---|
3040 | *
|
---|
3041 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
3042 | *
|
---|
3043 | * May longjmp on internal error.
|
---|
3044 | *
|
---|
3045 | * @return The effective address.
|
---|
3046 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3047 | * @param bRm The ModRM byte.
|
---|
3048 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
3049 | * following the effective address opcode bytes
|
---|
3050 | * (only for RIP relative addressing).
|
---|
3051 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
3052 | */
|
---|
3053 | RTGCPTR iemOpHlpCalcRmEffAddrJmp(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
3054 | {
|
---|
3055 | Log5(("iemOpHlpCalcRmEffAddrJmp: bRm=%#x\n", bRm));
|
---|
3056 | # define SET_SS_DEF() \
|
---|
3057 | do \
|
---|
3058 | { \
|
---|
3059 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
3060 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
3061 | } while (0)
|
---|
3062 |
|
---|
3063 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
3064 | {
|
---|
3065 | /** @todo Check the effective address size crap! */
|
---|
3066 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
3067 | {
|
---|
3068 | uint16_t u16EffAddr;
|
---|
3069 |
|
---|
3070 | /* Handle the disp16 form with no registers first. */
|
---|
3071 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
3072 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
3073 | else
|
---|
3074 | {
|
---|
3075 | /* Get the displacment. */
|
---|
3076 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
3077 | {
|
---|
3078 | case 0: u16EffAddr = 0; break;
|
---|
3079 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
3080 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
3081 | default: AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_1)); /* (caller checked for these) */
|
---|
3082 | }
|
---|
3083 |
|
---|
3084 | /* Add the base and index registers to the disp. */
|
---|
3085 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
3086 | {
|
---|
3087 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
3088 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
3089 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
3090 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
3091 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
3092 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
3093 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
3094 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
3095 | }
|
---|
3096 | }
|
---|
3097 |
|
---|
3098 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#06RX16\n", u16EffAddr));
|
---|
3099 | return u16EffAddr;
|
---|
3100 | }
|
---|
3101 |
|
---|
3102 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
3103 | uint32_t u32EffAddr;
|
---|
3104 |
|
---|
3105 | /* Handle the disp32 form with no registers first. */
|
---|
3106 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
3107 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
3108 | else
|
---|
3109 | {
|
---|
3110 | /* Get the register (or SIB) value. */
|
---|
3111 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
3112 | {
|
---|
3113 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
3114 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
3115 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
3116 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
3117 | case 4: /* SIB */
|
---|
3118 | {
|
---|
3119 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
3120 |
|
---|
3121 | /* Get the index and scale it. */
|
---|
3122 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
3123 | {
|
---|
3124 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
3125 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
3126 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
3127 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
3128 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
3129 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
3130 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
3131 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
3132 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
3133 | }
|
---|
3134 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
3135 |
|
---|
3136 | /* add base */
|
---|
3137 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
3138 | {
|
---|
3139 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
3140 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
3141 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
3142 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
3143 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
3144 | case 5:
|
---|
3145 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
3146 | {
|
---|
3147 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
3148 | SET_SS_DEF();
|
---|
3149 | }
|
---|
3150 | else
|
---|
3151 | {
|
---|
3152 | uint32_t u32Disp;
|
---|
3153 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
3154 | u32EffAddr += u32Disp;
|
---|
3155 | }
|
---|
3156 | break;
|
---|
3157 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
3158 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
3159 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
3160 | }
|
---|
3161 | break;
|
---|
3162 | }
|
---|
3163 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
3164 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
3165 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
3166 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
3167 | }
|
---|
3168 |
|
---|
3169 | /* Get and add the displacement. */
|
---|
3170 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
3171 | {
|
---|
3172 | case 0:
|
---|
3173 | break;
|
---|
3174 | case 1:
|
---|
3175 | {
|
---|
3176 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
3177 | u32EffAddr += i8Disp;
|
---|
3178 | break;
|
---|
3179 | }
|
---|
3180 | case 2:
|
---|
3181 | {
|
---|
3182 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
3183 | u32EffAddr += u32Disp;
|
---|
3184 | break;
|
---|
3185 | }
|
---|
3186 | default:
|
---|
3187 | AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_2)); /* (caller checked for these) */
|
---|
3188 | }
|
---|
3189 | }
|
---|
3190 |
|
---|
3191 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
3192 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RX32\n", u32EffAddr));
|
---|
3193 | return u32EffAddr;
|
---|
3194 | }
|
---|
3195 |
|
---|
3196 | uint64_t u64EffAddr;
|
---|
3197 |
|
---|
3198 | /* Handle the rip+disp32 form with no registers first. */
|
---|
3199 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
3200 | {
|
---|
3201 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
3202 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
3203 | }
|
---|
3204 | else
|
---|
3205 | {
|
---|
3206 | /* Get the register (or SIB) value. */
|
---|
3207 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
3208 | {
|
---|
3209 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
3210 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
3211 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
3212 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
3213 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
3214 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
3215 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
3216 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
3217 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
3218 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
3219 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
3220 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
3221 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
3222 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
3223 | /* SIB */
|
---|
3224 | case 4:
|
---|
3225 | case 12:
|
---|
3226 | {
|
---|
3227 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
3228 |
|
---|
3229 | /* Get the index and scale it. */
|
---|
3230 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
3231 | {
|
---|
3232 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
3233 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
3234 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
3235 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
3236 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
3237 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
3238 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
3239 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
3240 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
3241 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
3242 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
3243 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
3244 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
3245 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
3246 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
3247 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
3248 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
3249 | }
|
---|
3250 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
3251 |
|
---|
3252 | /* add base */
|
---|
3253 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
3254 | {
|
---|
3255 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
3256 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
3257 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
3258 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
3259 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
3260 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
3261 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
3262 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
3263 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
3264 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
3265 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
3266 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
3267 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
3268 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
3269 | /* complicated encodings */
|
---|
3270 | case 5:
|
---|
3271 | case 13:
|
---|
3272 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
3273 | {
|
---|
3274 | if (!pVCpu->iem.s.uRexB)
|
---|
3275 | {
|
---|
3276 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
3277 | SET_SS_DEF();
|
---|
3278 | }
|
---|
3279 | else
|
---|
3280 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
3281 | }
|
---|
3282 | else
|
---|
3283 | {
|
---|
3284 | uint32_t u32Disp;
|
---|
3285 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
3286 | u64EffAddr += (int32_t)u32Disp;
|
---|
3287 | }
|
---|
3288 | break;
|
---|
3289 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
3290 | }
|
---|
3291 | break;
|
---|
3292 | }
|
---|
3293 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
3294 | }
|
---|
3295 |
|
---|
3296 | /* Get and add the displacement. */
|
---|
3297 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
3298 | {
|
---|
3299 | case 0:
|
---|
3300 | break;
|
---|
3301 | case 1:
|
---|
3302 | {
|
---|
3303 | int8_t i8Disp;
|
---|
3304 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
3305 | u64EffAddr += i8Disp;
|
---|
3306 | break;
|
---|
3307 | }
|
---|
3308 | case 2:
|
---|
3309 | {
|
---|
3310 | uint32_t u32Disp;
|
---|
3311 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
3312 | u64EffAddr += (int32_t)u32Disp;
|
---|
3313 | break;
|
---|
3314 | }
|
---|
3315 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); /* (caller checked for these) */
|
---|
3316 | }
|
---|
3317 |
|
---|
3318 | }
|
---|
3319 |
|
---|
3320 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
3321 | {
|
---|
3322 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv\n", u64EffAddr));
|
---|
3323 | return u64EffAddr;
|
---|
3324 | }
|
---|
3325 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
3326 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv\n", u64EffAddr & UINT32_MAX));
|
---|
3327 | return u64EffAddr & UINT32_MAX;
|
---|
3328 | }
|
---|
3329 | #endif /* IEM_WITH_SETJMP */
|
---|
3330 |
|
---|
3331 |
|
---|
3332 | /**
|
---|
3333 | * Calculates the effective address of a ModR/M memory operand, extended version
|
---|
3334 | * for use in the recompilers.
|
---|
3335 | *
|
---|
3336 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
3337 | *
|
---|
3338 | * @return Strict VBox status code.
|
---|
3339 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3340 | * @param bRm The ModRM byte.
|
---|
3341 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
3342 | * following the effective address opcode bytes
|
---|
3343 | * (only for RIP relative addressing).
|
---|
3344 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
3345 | * @param pGCPtrEff Where to return the effective address.
|
---|
3346 | * @param puInfo Extra info: 32-bit displacement (bits 31:0) and
|
---|
3347 | * SIB byte (bits 39:32).
|
---|
3348 | */
|
---|
3349 | VBOXSTRICTRC iemOpHlpCalcRmEffAddrEx(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset, PRTGCPTR pGCPtrEff, uint64_t *puInfo) RT_NOEXCEPT
|
---|
3350 | {
|
---|
3351 | Log5(("iemOpHlpCalcRmEffAddr: bRm=%#x\n", bRm));
|
---|
3352 | # define SET_SS_DEF() \
|
---|
3353 | do \
|
---|
3354 | { \
|
---|
3355 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
3356 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
3357 | } while (0)
|
---|
3358 |
|
---|
3359 | uint64_t uInfo;
|
---|
3360 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
3361 | {
|
---|
3362 | /** @todo Check the effective address size crap! */
|
---|
3363 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
3364 | {
|
---|
3365 | uint16_t u16EffAddr;
|
---|
3366 |
|
---|
3367 | /* Handle the disp16 form with no registers first. */
|
---|
3368 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
3369 | {
|
---|
3370 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
3371 | uInfo = u16EffAddr;
|
---|
3372 | }
|
---|
3373 | else
|
---|
3374 | {
|
---|
3375 | /* Get the displacment. */
|
---|
3376 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
3377 | {
|
---|
3378 | case 0: u16EffAddr = 0; break;
|
---|
3379 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
3380 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
3381 | default: AssertFailedReturn(VERR_IEM_IPE_1); /* (caller checked for these) */
|
---|
3382 | }
|
---|
3383 | uInfo = u16EffAddr;
|
---|
3384 |
|
---|
3385 | /* Add the base and index registers to the disp. */
|
---|
3386 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
3387 | {
|
---|
3388 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
3389 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
3390 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
3391 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
3392 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
3393 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
3394 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
3395 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
3396 | }
|
---|
3397 | }
|
---|
3398 |
|
---|
3399 | *pGCPtrEff = u16EffAddr;
|
---|
3400 | }
|
---|
3401 | else
|
---|
3402 | {
|
---|
3403 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
3404 | uint32_t u32EffAddr;
|
---|
3405 |
|
---|
3406 | /* Handle the disp32 form with no registers first. */
|
---|
3407 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
3408 | {
|
---|
3409 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
3410 | uInfo = u32EffAddr;
|
---|
3411 | }
|
---|
3412 | else
|
---|
3413 | {
|
---|
3414 | /* Get the register (or SIB) value. */
|
---|
3415 | uInfo = 0;
|
---|
3416 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
3417 | {
|
---|
3418 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
3419 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
3420 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
3421 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
3422 | case 4: /* SIB */
|
---|
3423 | {
|
---|
3424 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
3425 | uInfo = (uint64_t)bSib << 32;
|
---|
3426 |
|
---|
3427 | /* Get the index and scale it. */
|
---|
3428 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
3429 | {
|
---|
3430 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
3431 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
3432 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
3433 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
3434 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
3435 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
3436 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
3437 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
3438 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
3439 | }
|
---|
3440 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
3441 |
|
---|
3442 | /* add base */
|
---|
3443 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
3444 | {
|
---|
3445 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
3446 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
3447 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
3448 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
3449 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
3450 | case 5:
|
---|
3451 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
3452 | {
|
---|
3453 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
3454 | SET_SS_DEF();
|
---|
3455 | }
|
---|
3456 | else
|
---|
3457 | {
|
---|
3458 | uint32_t u32Disp;
|
---|
3459 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
3460 | u32EffAddr += u32Disp;
|
---|
3461 | uInfo |= u32Disp;
|
---|
3462 | }
|
---|
3463 | break;
|
---|
3464 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
3465 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
3466 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
3467 | }
|
---|
3468 | break;
|
---|
3469 | }
|
---|
3470 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
3471 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
3472 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
3473 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
3474 | }
|
---|
3475 |
|
---|
3476 | /* Get and add the displacement. */
|
---|
3477 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
3478 | {
|
---|
3479 | case 0:
|
---|
3480 | break;
|
---|
3481 | case 1:
|
---|
3482 | {
|
---|
3483 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
3484 | u32EffAddr += i8Disp;
|
---|
3485 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
3486 | break;
|
---|
3487 | }
|
---|
3488 | case 2:
|
---|
3489 | {
|
---|
3490 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
3491 | u32EffAddr += u32Disp;
|
---|
3492 | uInfo |= (uint32_t)u32Disp;
|
---|
3493 | break;
|
---|
3494 | }
|
---|
3495 | default:
|
---|
3496 | AssertFailedReturn(VERR_IEM_IPE_2); /* (caller checked for these) */
|
---|
3497 | }
|
---|
3498 |
|
---|
3499 | }
|
---|
3500 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
3501 | *pGCPtrEff = u32EffAddr;
|
---|
3502 | }
|
---|
3503 | }
|
---|
3504 | else
|
---|
3505 | {
|
---|
3506 | uint64_t u64EffAddr;
|
---|
3507 |
|
---|
3508 | /* Handle the rip+disp32 form with no registers first. */
|
---|
3509 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
3510 | {
|
---|
3511 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
3512 | uInfo = (uint32_t)u64EffAddr;
|
---|
3513 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
3514 | }
|
---|
3515 | else
|
---|
3516 | {
|
---|
3517 | /* Get the register (or SIB) value. */
|
---|
3518 | uInfo = 0;
|
---|
3519 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
3520 | {
|
---|
3521 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
3522 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
3523 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
3524 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
3525 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
3526 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
3527 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
3528 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
3529 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
3530 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
3531 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
3532 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
3533 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
3534 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
3535 | /* SIB */
|
---|
3536 | case 4:
|
---|
3537 | case 12:
|
---|
3538 | {
|
---|
3539 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
3540 | uInfo = (uint64_t)bSib << 32;
|
---|
3541 |
|
---|
3542 | /* Get the index and scale it. */
|
---|
3543 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
3544 | {
|
---|
3545 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
3546 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
3547 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
3548 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
3549 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
3550 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
3551 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
3552 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
3553 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
3554 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
3555 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
3556 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
3557 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
3558 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
3559 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
3560 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
3561 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
3562 | }
|
---|
3563 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
3564 |
|
---|
3565 | /* add base */
|
---|
3566 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
3567 | {
|
---|
3568 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
3569 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
3570 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
3571 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
3572 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
3573 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
3574 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
3575 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
3576 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
3577 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
3578 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
3579 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
3580 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
3581 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
3582 | /* complicated encodings */
|
---|
3583 | case 5:
|
---|
3584 | case 13:
|
---|
3585 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
3586 | {
|
---|
3587 | if (!pVCpu->iem.s.uRexB)
|
---|
3588 | {
|
---|
3589 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
3590 | SET_SS_DEF();
|
---|
3591 | }
|
---|
3592 | else
|
---|
3593 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
3594 | }
|
---|
3595 | else
|
---|
3596 | {
|
---|
3597 | uint32_t u32Disp;
|
---|
3598 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
3599 | u64EffAddr += (int32_t)u32Disp;
|
---|
3600 | uInfo |= u32Disp;
|
---|
3601 | }
|
---|
3602 | break;
|
---|
3603 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
3604 | }
|
---|
3605 | break;
|
---|
3606 | }
|
---|
3607 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
3608 | }
|
---|
3609 |
|
---|
3610 | /* Get and add the displacement. */
|
---|
3611 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
3612 | {
|
---|
3613 | case 0:
|
---|
3614 | break;
|
---|
3615 | case 1:
|
---|
3616 | {
|
---|
3617 | int8_t i8Disp;
|
---|
3618 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
3619 | u64EffAddr += i8Disp;
|
---|
3620 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
3621 | break;
|
---|
3622 | }
|
---|
3623 | case 2:
|
---|
3624 | {
|
---|
3625 | uint32_t u32Disp;
|
---|
3626 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
3627 | u64EffAddr += (int32_t)u32Disp;
|
---|
3628 | uInfo |= u32Disp;
|
---|
3629 | break;
|
---|
3630 | }
|
---|
3631 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* (caller checked for these) */
|
---|
3632 | }
|
---|
3633 |
|
---|
3634 | }
|
---|
3635 |
|
---|
3636 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
3637 | *pGCPtrEff = u64EffAddr;
|
---|
3638 | else
|
---|
3639 | {
|
---|
3640 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
3641 | *pGCPtrEff = u64EffAddr & UINT32_MAX;
|
---|
3642 | }
|
---|
3643 | }
|
---|
3644 | *puInfo = uInfo;
|
---|
3645 |
|
---|
3646 | Log5(("iemOpHlpCalcRmEffAddrEx: EffAddr=%#010RGv uInfo=%RX64\n", *pGCPtrEff, uInfo));
|
---|
3647 | return VINF_SUCCESS;
|
---|
3648 | }
|
---|
3649 |
|
---|
3650 | /** @} */
|
---|
3651 |
|
---|
3652 |
|
---|
3653 | #ifdef LOG_ENABLED
|
---|
3654 | /**
|
---|
3655 | * Logs the current instruction.
|
---|
3656 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
3657 | * @param fSameCtx Set if we have the same context information as the VMM,
|
---|
3658 | * clear if we may have already executed an instruction in
|
---|
3659 | * our debug context. When clear, we assume IEMCPU holds
|
---|
3660 | * valid CPU mode info.
|
---|
3661 | *
|
---|
3662 | * The @a fSameCtx parameter is now misleading and obsolete.
|
---|
3663 | * @param pszFunction The IEM function doing the execution.
|
---|
3664 | */
|
---|
3665 | static void iemLogCurInstr(PVMCPUCC pVCpu, bool fSameCtx, const char *pszFunction) RT_NOEXCEPT
|
---|
3666 | {
|
---|
3667 | # ifdef IN_RING3
|
---|
3668 | if (LogIs2Enabled())
|
---|
3669 | {
|
---|
3670 | char szInstr[256];
|
---|
3671 | uint32_t cbInstr = 0;
|
---|
3672 | if (fSameCtx)
|
---|
3673 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, 0, 0,
|
---|
3674 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
3675 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
3676 | else
|
---|
3677 | {
|
---|
3678 | uint32_t fFlags = 0;
|
---|
3679 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
3680 | {
|
---|
3681 | case IEMMODE_64BIT: fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
|
---|
3682 | case IEMMODE_32BIT: fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
|
---|
3683 | case IEMMODE_16BIT:
|
---|
3684 | if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) || pVCpu->cpum.GstCtx.eflags.Bits.u1VM)
|
---|
3685 | fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
|
---|
3686 | else
|
---|
3687 | fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE;
|
---|
3688 | break;
|
---|
3689 | }
|
---|
3690 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fFlags,
|
---|
3691 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
3692 | }
|
---|
3693 |
|
---|
3694 | PCX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
3695 | Log2(("**** %s fExec=%x\n"
|
---|
3696 | " eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
|
---|
3697 | " eip=%08x esp=%08x ebp=%08x iopl=%d tr=%04x\n"
|
---|
3698 | " cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x efl=%08x\n"
|
---|
3699 | " fsw=%04x fcw=%04x ftw=%02x mxcsr=%04x/%04x\n"
|
---|
3700 | " %s\n"
|
---|
3701 | , pszFunction, pVCpu->iem.s.fExec,
|
---|
3702 | pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ebx, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.esi, pVCpu->cpum.GstCtx.edi,
|
---|
3703 | pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.esp, pVCpu->cpum.GstCtx.ebp, pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL, pVCpu->cpum.GstCtx.tr.Sel,
|
---|
3704 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.es.Sel,
|
---|
3705 | pVCpu->cpum.GstCtx.fs.Sel, pVCpu->cpum.GstCtx.gs.Sel, pVCpu->cpum.GstCtx.eflags.u,
|
---|
3706 | pFpuCtx->FSW, pFpuCtx->FCW, pFpuCtx->FTW, pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK,
|
---|
3707 | szInstr));
|
---|
3708 |
|
---|
3709 | /* This stuff sucks atm. as it fills the log with MSRs. */
|
---|
3710 | //if (LogIs3Enabled())
|
---|
3711 | // DBGFR3InfoEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, "cpumguest", "verbose", NULL);
|
---|
3712 | }
|
---|
3713 | else
|
---|
3714 | # endif
|
---|
3715 | LogFlow(("%s: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x\n", pszFunction, pVCpu->cpum.GstCtx.cs.Sel,
|
---|
3716 | pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u));
|
---|
3717 | RT_NOREF_PV(pVCpu); RT_NOREF_PV(fSameCtx);
|
---|
3718 | }
|
---|
3719 | #endif /* LOG_ENABLED */
|
---|
3720 |
|
---|
3721 |
|
---|
3722 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3723 | /**
|
---|
3724 | * Deals with VMCPU_FF_VMX_APIC_WRITE, VMCPU_FF_VMX_MTF, VMCPU_FF_VMX_NMI_WINDOW,
|
---|
3725 | * VMCPU_FF_VMX_PREEMPT_TIMER and VMCPU_FF_VMX_INT_WINDOW.
|
---|
3726 | *
|
---|
3727 | * @returns Modified rcStrict.
|
---|
3728 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3729 | * @param rcStrict The instruction execution status.
|
---|
3730 | */
|
---|
3731 | static VBOXSTRICTRC iemHandleNestedInstructionBoundaryFFs(PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict) RT_NOEXCEPT
|
---|
3732 | {
|
---|
3733 | Assert(CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)));
|
---|
3734 | if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF))
|
---|
3735 | {
|
---|
3736 | /* VMX preemption timer takes priority over NMI-window exits. */
|
---|
3737 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER))
|
---|
3738 | {
|
---|
3739 | rcStrict = iemVmxVmexitPreemptTimer(pVCpu);
|
---|
3740 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
|
---|
3741 | }
|
---|
3742 | /*
|
---|
3743 | * Check remaining intercepts.
|
---|
3744 | *
|
---|
3745 | * NMI-window and Interrupt-window VM-exits.
|
---|
3746 | * Interrupt shadow (block-by-STI and Mov SS) inhibits interrupts and may also block NMIs.
|
---|
3747 | * Event injection during VM-entry takes priority over NMI-window and interrupt-window VM-exits.
|
---|
3748 | *
|
---|
3749 | * See Intel spec. 26.7.6 "NMI-Window Exiting".
|
---|
3750 | * See Intel spec. 26.7.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
|
---|
3751 | */
|
---|
3752 | else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW | VMCPU_FF_VMX_INT_WINDOW)
|
---|
3753 | && !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)
|
---|
3754 | && !TRPMHasTrap(pVCpu))
|
---|
3755 | {
|
---|
3756 | Assert(CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx));
|
---|
3757 | if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW)
|
---|
3758 | && CPUMIsGuestVmxVirtNmiBlocking(&pVCpu->cpum.GstCtx))
|
---|
3759 | {
|
---|
3760 | rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_NMI_WINDOW, 0 /* u64ExitQual */);
|
---|
3761 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW));
|
---|
3762 | }
|
---|
3763 | else if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW)
|
---|
3764 | && CPUMIsGuestVmxVirtIntrEnabled(&pVCpu->cpum.GstCtx))
|
---|
3765 | {
|
---|
3766 | rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_INT_WINDOW, 0 /* u64ExitQual */);
|
---|
3767 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW));
|
---|
3768 | }
|
---|
3769 | }
|
---|
3770 | }
|
---|
3771 | /* TPR-below threshold/APIC write has the highest priority. */
|
---|
3772 | else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
|
---|
3773 | {
|
---|
3774 | rcStrict = iemVmxApicWriteEmulation(pVCpu);
|
---|
3775 | Assert(!CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx));
|
---|
3776 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
|
---|
3777 | }
|
---|
3778 | /* MTF takes priority over VMX-preemption timer. */
|
---|
3779 | else
|
---|
3780 | {
|
---|
3781 | rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_MTF, 0 /* u64ExitQual */);
|
---|
3782 | Assert(!CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx));
|
---|
3783 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
|
---|
3784 | }
|
---|
3785 | return rcStrict;
|
---|
3786 | }
|
---|
3787 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
3788 |
|
---|
3789 |
|
---|
3790 | /**
|
---|
3791 | * The actual code execution bits of IEMExecOne, IEMExecOneWithPrefetchedByPC,
|
---|
3792 | * IEMExecOneBypass and friends.
|
---|
3793 | *
|
---|
3794 | * Similar code is found in IEMExecLots.
|
---|
3795 | *
|
---|
3796 | * @return Strict VBox status code.
|
---|
3797 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
3798 | * @param fExecuteInhibit If set, execute the instruction following CLI,
|
---|
3799 | * POP SS and MOV SS,GR.
|
---|
3800 | * @param pszFunction The calling function name.
|
---|
3801 | */
|
---|
3802 | DECLINLINE(VBOXSTRICTRC) iemExecOneInner(PVMCPUCC pVCpu, bool fExecuteInhibit, const char *pszFunction)
|
---|
3803 | {
|
---|
3804 | AssertMsg(pVCpu->iem.s.aMemMappings[0].fAccess == IEM_ACCESS_INVALID, ("0: %#x %RGp\n", pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemBbMappings[0].GCPhysFirst));
|
---|
3805 | AssertMsg(pVCpu->iem.s.aMemMappings[1].fAccess == IEM_ACCESS_INVALID, ("1: %#x %RGp\n", pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemBbMappings[1].GCPhysFirst));
|
---|
3806 | AssertMsg(pVCpu->iem.s.aMemMappings[2].fAccess == IEM_ACCESS_INVALID, ("2: %#x %RGp\n", pVCpu->iem.s.aMemMappings[2].fAccess, pVCpu->iem.s.aMemBbMappings[2].GCPhysFirst));
|
---|
3807 | RT_NOREF_PV(pszFunction);
|
---|
3808 |
|
---|
3809 | #ifdef IEM_WITH_SETJMP
|
---|
3810 | VBOXSTRICTRC rcStrict;
|
---|
3811 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
3812 | {
|
---|
3813 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
3814 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
3815 | }
|
---|
3816 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
3817 | {
|
---|
3818 | pVCpu->iem.s.cLongJumps++;
|
---|
3819 | }
|
---|
3820 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
3821 | #else
|
---|
3822 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
3823 | VBOXSTRICTRC rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
3824 | #endif
|
---|
3825 | if (rcStrict == VINF_SUCCESS)
|
---|
3826 | pVCpu->iem.s.cInstructions++;
|
---|
3827 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
3828 | {
|
---|
3829 | Assert(rcStrict != VINF_SUCCESS);
|
---|
3830 | iemMemRollback(pVCpu);
|
---|
3831 | }
|
---|
3832 | AssertMsg(pVCpu->iem.s.aMemMappings[0].fAccess == IEM_ACCESS_INVALID, ("0: %#x %RGp\n", pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemBbMappings[0].GCPhysFirst));
|
---|
3833 | AssertMsg(pVCpu->iem.s.aMemMappings[1].fAccess == IEM_ACCESS_INVALID, ("1: %#x %RGp\n", pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemBbMappings[1].GCPhysFirst));
|
---|
3834 | AssertMsg(pVCpu->iem.s.aMemMappings[2].fAccess == IEM_ACCESS_INVALID, ("2: %#x %RGp\n", pVCpu->iem.s.aMemMappings[2].fAccess, pVCpu->iem.s.aMemBbMappings[2].GCPhysFirst));
|
---|
3835 |
|
---|
3836 | //#ifdef DEBUG
|
---|
3837 | // AssertMsg(IEM_GET_INSTR_LEN(pVCpu) == cbInstr || rcStrict != VINF_SUCCESS, ("%u %u\n", IEM_GET_INSTR_LEN(pVCpu), cbInstr));
|
---|
3838 | //#endif
|
---|
3839 |
|
---|
3840 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3841 | /*
|
---|
3842 | * Perform any VMX nested-guest instruction boundary actions.
|
---|
3843 | *
|
---|
3844 | * If any of these causes a VM-exit, we must skip executing the next
|
---|
3845 | * instruction (would run into stale page tables). A VM-exit makes sure
|
---|
3846 | * there is no interrupt-inhibition, so that should ensure we don't go
|
---|
3847 | * to try execute the next instruction. Clearing fExecuteInhibit is
|
---|
3848 | * problematic because of the setjmp/longjmp clobbering above.
|
---|
3849 | */
|
---|
3850 | if ( !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
3851 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW)
|
---|
3852 | || rcStrict != VINF_SUCCESS)
|
---|
3853 | { /* likely */ }
|
---|
3854 | else
|
---|
3855 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
3856 | #endif
|
---|
3857 |
|
---|
3858 | /* Execute the next instruction as well if a cli, pop ss or
|
---|
3859 | mov ss, Gr has just completed successfully. */
|
---|
3860 | if ( fExecuteInhibit
|
---|
3861 | && rcStrict == VINF_SUCCESS
|
---|
3862 | && CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))
|
---|
3863 | {
|
---|
3864 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, pVCpu->iem.s.fExec & (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK));
|
---|
3865 | if (rcStrict == VINF_SUCCESS)
|
---|
3866 | {
|
---|
3867 | #ifdef LOG_ENABLED
|
---|
3868 | iemLogCurInstr(pVCpu, false, pszFunction);
|
---|
3869 | #endif
|
---|
3870 | #ifdef IEM_WITH_SETJMP
|
---|
3871 | IEM_TRY_SETJMP_AGAIN(pVCpu, rcStrict)
|
---|
3872 | {
|
---|
3873 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
3874 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
3875 | }
|
---|
3876 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
3877 | {
|
---|
3878 | pVCpu->iem.s.cLongJumps++;
|
---|
3879 | }
|
---|
3880 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
3881 | #else
|
---|
3882 | IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
3883 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
3884 | #endif
|
---|
3885 | if (rcStrict == VINF_SUCCESS)
|
---|
3886 | {
|
---|
3887 | pVCpu->iem.s.cInstructions++;
|
---|
3888 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3889 | if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
3890 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW))
|
---|
3891 | { /* likely */ }
|
---|
3892 | else
|
---|
3893 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
3894 | #endif
|
---|
3895 | }
|
---|
3896 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
3897 | {
|
---|
3898 | Assert(rcStrict != VINF_SUCCESS);
|
---|
3899 | iemMemRollback(pVCpu);
|
---|
3900 | }
|
---|
3901 | AssertMsg(pVCpu->iem.s.aMemMappings[0].fAccess == IEM_ACCESS_INVALID, ("0: %#x %RGp\n", pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemBbMappings[0].GCPhysFirst));
|
---|
3902 | AssertMsg(pVCpu->iem.s.aMemMappings[1].fAccess == IEM_ACCESS_INVALID, ("1: %#x %RGp\n", pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemBbMappings[1].GCPhysFirst));
|
---|
3903 | AssertMsg(pVCpu->iem.s.aMemMappings[2].fAccess == IEM_ACCESS_INVALID, ("2: %#x %RGp\n", pVCpu->iem.s.aMemMappings[2].fAccess, pVCpu->iem.s.aMemBbMappings[2].GCPhysFirst));
|
---|
3904 | }
|
---|
3905 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
3906 | iemMemRollback(pVCpu);
|
---|
3907 | /** @todo drop this after we bake this change into RIP advancing. */
|
---|
3908 | CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx); /* hope this is correct for all exceptional cases... */
|
---|
3909 | }
|
---|
3910 |
|
---|
3911 | /*
|
---|
3912 | * Return value fiddling, statistics and sanity assertions.
|
---|
3913 | */
|
---|
3914 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
3915 |
|
---|
3916 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
3917 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
3918 | return rcStrict;
|
---|
3919 | }
|
---|
3920 |
|
---|
3921 |
|
---|
3922 | /**
|
---|
3923 | * Execute one instruction.
|
---|
3924 | *
|
---|
3925 | * @return Strict VBox status code.
|
---|
3926 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
3927 | */
|
---|
3928 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecOne(PVMCPUCC pVCpu)
|
---|
3929 | {
|
---|
3930 | AssertCompile(sizeof(pVCpu->iem.s) <= sizeof(pVCpu->iem.padding)); /* (tstVMStruct can't do it's job w/o instruction stats) */
|
---|
3931 | #ifdef LOG_ENABLED
|
---|
3932 | iemLogCurInstr(pVCpu, true, "IEMExecOne");
|
---|
3933 | #endif
|
---|
3934 |
|
---|
3935 | /*
|
---|
3936 | * Do the decoding and emulation.
|
---|
3937 | */
|
---|
3938 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
3939 | if (rcStrict == VINF_SUCCESS)
|
---|
3940 | rcStrict = iemExecOneInner(pVCpu, true, "IEMExecOne");
|
---|
3941 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
3942 | iemMemRollback(pVCpu);
|
---|
3943 |
|
---|
3944 | if (rcStrict != VINF_SUCCESS)
|
---|
3945 | LogFlow(("IEMExecOne: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
3946 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3947 | return rcStrict;
|
---|
3948 | }
|
---|
3949 |
|
---|
3950 |
|
---|
3951 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecOneWithPrefetchedByPC(PVMCPUCC pVCpu, uint64_t OpcodeBytesPC,
|
---|
3952 | const void *pvOpcodeBytes, size_t cbOpcodeBytes)
|
---|
3953 | {
|
---|
3954 | VBOXSTRICTRC rcStrict;
|
---|
3955 | if ( cbOpcodeBytes
|
---|
3956 | && pVCpu->cpum.GstCtx.rip == OpcodeBytesPC)
|
---|
3957 | {
|
---|
3958 | iemInitDecoder(pVCpu, 0 /*fExecOpts*/);
|
---|
3959 | #ifdef IEM_WITH_CODE_TLB
|
---|
3960 | pVCpu->iem.s.uInstrBufPc = OpcodeBytesPC;
|
---|
3961 | pVCpu->iem.s.pbInstrBuf = (uint8_t const *)pvOpcodeBytes;
|
---|
3962 | pVCpu->iem.s.cbInstrBufTotal = (uint16_t)RT_MIN(X86_PAGE_SIZE, cbOpcodeBytes);
|
---|
3963 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
3964 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
3965 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
3966 | #else
|
---|
3967 | pVCpu->iem.s.cbOpcode = (uint8_t)RT_MIN(cbOpcodeBytes, sizeof(pVCpu->iem.s.abOpcode));
|
---|
3968 | memcpy(pVCpu->iem.s.abOpcode, pvOpcodeBytes, pVCpu->iem.s.cbOpcode);
|
---|
3969 | #endif
|
---|
3970 | rcStrict = VINF_SUCCESS;
|
---|
3971 | }
|
---|
3972 | else
|
---|
3973 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
3974 | if (rcStrict == VINF_SUCCESS)
|
---|
3975 | rcStrict = iemExecOneInner(pVCpu, true, "IEMExecOneWithPrefetchedByPC");
|
---|
3976 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
3977 | iemMemRollback(pVCpu);
|
---|
3978 |
|
---|
3979 | return rcStrict;
|
---|
3980 | }
|
---|
3981 |
|
---|
3982 |
|
---|
3983 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecOneBypass(PVMCPUCC pVCpu)
|
---|
3984 | {
|
---|
3985 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, IEM_F_BYPASS_HANDLERS);
|
---|
3986 | if (rcStrict == VINF_SUCCESS)
|
---|
3987 | rcStrict = iemExecOneInner(pVCpu, false, "IEMExecOneBypass");
|
---|
3988 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
3989 | iemMemRollback(pVCpu);
|
---|
3990 |
|
---|
3991 | return rcStrict;
|
---|
3992 | }
|
---|
3993 |
|
---|
3994 |
|
---|
3995 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecOneBypassWithPrefetchedByPC(PVMCPUCC pVCpu, uint64_t OpcodeBytesPC,
|
---|
3996 | const void *pvOpcodeBytes, size_t cbOpcodeBytes)
|
---|
3997 | {
|
---|
3998 | VBOXSTRICTRC rcStrict;
|
---|
3999 | if ( cbOpcodeBytes
|
---|
4000 | && pVCpu->cpum.GstCtx.rip == OpcodeBytesPC)
|
---|
4001 | {
|
---|
4002 | iemInitDecoder(pVCpu, IEM_F_BYPASS_HANDLERS);
|
---|
4003 | #ifdef IEM_WITH_CODE_TLB
|
---|
4004 | pVCpu->iem.s.uInstrBufPc = OpcodeBytesPC;
|
---|
4005 | pVCpu->iem.s.pbInstrBuf = (uint8_t const *)pvOpcodeBytes;
|
---|
4006 | pVCpu->iem.s.cbInstrBufTotal = (uint16_t)RT_MIN(X86_PAGE_SIZE, cbOpcodeBytes);
|
---|
4007 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
4008 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
4009 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
4010 | #else
|
---|
4011 | pVCpu->iem.s.cbOpcode = (uint8_t)RT_MIN(cbOpcodeBytes, sizeof(pVCpu->iem.s.abOpcode));
|
---|
4012 | memcpy(pVCpu->iem.s.abOpcode, pvOpcodeBytes, pVCpu->iem.s.cbOpcode);
|
---|
4013 | #endif
|
---|
4014 | rcStrict = VINF_SUCCESS;
|
---|
4015 | }
|
---|
4016 | else
|
---|
4017 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, IEM_F_BYPASS_HANDLERS);
|
---|
4018 | if (rcStrict == VINF_SUCCESS)
|
---|
4019 | rcStrict = iemExecOneInner(pVCpu, false, "IEMExecOneBypassWithPrefetchedByPC");
|
---|
4020 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
4021 | iemMemRollback(pVCpu);
|
---|
4022 |
|
---|
4023 | return rcStrict;
|
---|
4024 | }
|
---|
4025 |
|
---|
4026 |
|
---|
4027 | /**
|
---|
4028 | * For handling split cacheline lock operations when the host has split-lock
|
---|
4029 | * detection enabled.
|
---|
4030 | *
|
---|
4031 | * This will cause the interpreter to disregard the lock prefix and implicit
|
---|
4032 | * locking (xchg).
|
---|
4033 | *
|
---|
4034 | * @returns Strict VBox status code.
|
---|
4035 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
4036 | */
|
---|
4037 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecOneIgnoreLock(PVMCPUCC pVCpu)
|
---|
4038 | {
|
---|
4039 | /*
|
---|
4040 | * Do the decoding and emulation.
|
---|
4041 | */
|
---|
4042 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, IEM_F_X86_DISREGARD_LOCK);
|
---|
4043 | if (rcStrict == VINF_SUCCESS)
|
---|
4044 | rcStrict = iemExecOneInner(pVCpu, true, "IEMExecOneIgnoreLock");
|
---|
4045 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
4046 | iemMemRollback(pVCpu);
|
---|
4047 |
|
---|
4048 | if (rcStrict != VINF_SUCCESS)
|
---|
4049 | LogFlow(("IEMExecOneIgnoreLock: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
4050 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4051 | return rcStrict;
|
---|
4052 | }
|
---|
4053 |
|
---|
4054 |
|
---|
4055 | /**
|
---|
4056 | * Code common to IEMExecLots and IEMExecRecompilerThreaded that attempts to
|
---|
4057 | * inject a pending TRPM trap.
|
---|
4058 | */
|
---|
4059 | VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu)
|
---|
4060 | {
|
---|
4061 | Assert(TRPMHasTrap(pVCpu));
|
---|
4062 |
|
---|
4063 | if ( !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)
|
---|
4064 | && !CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx))
|
---|
4065 | {
|
---|
4066 | /** @todo Can we centralize this under CPUMCanInjectInterrupt()? */
|
---|
4067 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
4068 | bool fIntrEnabled = CPUMGetGuestGif(&pVCpu->cpum.GstCtx);
|
---|
4069 | if (fIntrEnabled)
|
---|
4070 | {
|
---|
4071 | if (!CPUMIsGuestInNestedHwvirtMode(IEM_GET_CTX(pVCpu)))
|
---|
4072 | fIntrEnabled = pVCpu->cpum.GstCtx.eflags.Bits.u1IF;
|
---|
4073 | else if (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
|
---|
4074 | fIntrEnabled = CPUMIsGuestVmxPhysIntrEnabled(IEM_GET_CTX(pVCpu));
|
---|
4075 | else
|
---|
4076 | {
|
---|
4077 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
|
---|
4078 | fIntrEnabled = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, IEM_GET_CTX(pVCpu));
|
---|
4079 | }
|
---|
4080 | }
|
---|
4081 | #else
|
---|
4082 | bool fIntrEnabled = pVCpu->cpum.GstCtx.eflags.Bits.u1IF;
|
---|
4083 | #endif
|
---|
4084 | if (fIntrEnabled)
|
---|
4085 | {
|
---|
4086 | uint8_t u8TrapNo;
|
---|
4087 | TRPMEVENT enmType;
|
---|
4088 | uint32_t uErrCode;
|
---|
4089 | RTGCPTR uCr2;
|
---|
4090 | int rc2 = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, NULL /*pu8InstLen*/, NULL /*fIcebp*/);
|
---|
4091 | AssertRC(rc2);
|
---|
4092 | Assert(enmType == TRPM_HARDWARE_INT);
|
---|
4093 | VBOXSTRICTRC rcStrict = IEMInjectTrap(pVCpu, u8TrapNo, enmType, (uint16_t)uErrCode, uCr2, 0 /*cbInstr*/);
|
---|
4094 |
|
---|
4095 | TRPMResetTrap(pVCpu);
|
---|
4096 |
|
---|
4097 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
4098 | /* Injecting an event may cause a VM-exit. */
|
---|
4099 | if ( rcStrict != VINF_SUCCESS
|
---|
4100 | && rcStrict != VINF_IEM_RAISED_XCPT)
|
---|
4101 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
4102 | #else
|
---|
4103 | NOREF(rcStrict);
|
---|
4104 | #endif
|
---|
4105 | }
|
---|
4106 | }
|
---|
4107 |
|
---|
4108 | return VINF_SUCCESS;
|
---|
4109 | }
|
---|
4110 |
|
---|
4111 |
|
---|
4112 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecLots(PVMCPUCC pVCpu, uint32_t cMaxInstructions, uint32_t cPollRate, uint32_t *pcInstructions)
|
---|
4113 | {
|
---|
4114 | uint32_t const cInstructionsAtStart = pVCpu->iem.s.cInstructions;
|
---|
4115 | AssertMsg(RT_IS_POWER_OF_TWO(cPollRate + 1), ("%#x\n", cPollRate));
|
---|
4116 | Assert(cMaxInstructions > 0);
|
---|
4117 |
|
---|
4118 | /*
|
---|
4119 | * See if there is an interrupt pending in TRPM, inject it if we can.
|
---|
4120 | */
|
---|
4121 | /** @todo What if we are injecting an exception and not an interrupt? Is that
|
---|
4122 | * possible here? For now we assert it is indeed only an interrupt. */
|
---|
4123 | if (!TRPMHasTrap(pVCpu))
|
---|
4124 | { /* likely */ }
|
---|
4125 | else
|
---|
4126 | {
|
---|
4127 | VBOXSTRICTRC rcStrict = iemExecInjectPendingTrap(pVCpu);
|
---|
4128 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
4129 | { /*likely */ }
|
---|
4130 | else
|
---|
4131 | return rcStrict;
|
---|
4132 | }
|
---|
4133 |
|
---|
4134 | /*
|
---|
4135 | * Initial decoder init w/ prefetch, then setup setjmp.
|
---|
4136 | */
|
---|
4137 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
4138 | if (rcStrict == VINF_SUCCESS)
|
---|
4139 | {
|
---|
4140 | #ifdef IEM_WITH_SETJMP
|
---|
4141 | pVCpu->iem.s.cActiveMappings = 0; /** @todo wtf? */
|
---|
4142 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
4143 | #endif
|
---|
4144 | {
|
---|
4145 | /*
|
---|
4146 | * The run loop. We limit ourselves to 4096 instructions right now.
|
---|
4147 | */
|
---|
4148 | uint32_t cMaxInstructionsGccStupidity = cMaxInstructions;
|
---|
4149 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4150 | for (;;)
|
---|
4151 | {
|
---|
4152 | /*
|
---|
4153 | * Log the state.
|
---|
4154 | */
|
---|
4155 | #ifdef LOG_ENABLED
|
---|
4156 | iemLogCurInstr(pVCpu, true, "IEMExecLots");
|
---|
4157 | #endif
|
---|
4158 |
|
---|
4159 | /*
|
---|
4160 | * Do the decoding and emulation.
|
---|
4161 | */
|
---|
4162 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
4163 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
4164 | #ifdef VBOX_STRICT
|
---|
4165 | CPUMAssertGuestRFlagsCookie(pVM, pVCpu);
|
---|
4166 | #endif
|
---|
4167 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
4168 | {
|
---|
4169 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
4170 | pVCpu->iem.s.cInstructions++;
|
---|
4171 |
|
---|
4172 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4173 | /* Perform any VMX nested-guest instruction boundary actions. */
|
---|
4174 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
4175 | if (!(fCpu & ( VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
4176 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW)))
|
---|
4177 | { /* likely */ }
|
---|
4178 | else
|
---|
4179 | {
|
---|
4180 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
4181 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
4182 | fCpu = pVCpu->fLocalForcedActions;
|
---|
4183 | else
|
---|
4184 | {
|
---|
4185 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
4186 | break;
|
---|
4187 | }
|
---|
4188 | }
|
---|
4189 | #endif
|
---|
4190 | if (RT_LIKELY(pVCpu->iem.s.rcPassUp == VINF_SUCCESS))
|
---|
4191 | {
|
---|
4192 | #ifndef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4193 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
4194 | #endif
|
---|
4195 | fCpu &= VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
4196 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
4197 | | VMCPU_FF_TLB_FLUSH
|
---|
4198 | | VMCPU_FF_UNHALT );
|
---|
4199 |
|
---|
4200 | if (RT_LIKELY( ( !fCpu
|
---|
4201 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
4202 | && !pVCpu->cpum.GstCtx.rflags.Bits.u1IF) )
|
---|
4203 | && !VM_FF_IS_ANY_SET(pVM, VM_FF_ALL_MASK) ))
|
---|
4204 | {
|
---|
4205 | if (--cMaxInstructionsGccStupidity > 0)
|
---|
4206 | {
|
---|
4207 | /* Poll timers every now an then according to the caller's specs. */
|
---|
4208 | if ( (cMaxInstructionsGccStupidity & cPollRate) != 0
|
---|
4209 | || !TMTimerPollBool(pVM, pVCpu))
|
---|
4210 | {
|
---|
4211 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
4212 | iemReInitDecoder(pVCpu);
|
---|
4213 | continue;
|
---|
4214 | }
|
---|
4215 | }
|
---|
4216 | }
|
---|
4217 | }
|
---|
4218 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
4219 | }
|
---|
4220 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
4221 | iemMemRollback(pVCpu);
|
---|
4222 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
4223 | break;
|
---|
4224 | }
|
---|
4225 | }
|
---|
4226 | #ifdef IEM_WITH_SETJMP
|
---|
4227 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
4228 | {
|
---|
4229 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
4230 | iemMemRollback(pVCpu);
|
---|
4231 | # if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
4232 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
4233 | # endif
|
---|
4234 | pVCpu->iem.s.cLongJumps++;
|
---|
4235 | }
|
---|
4236 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
4237 | #endif
|
---|
4238 |
|
---|
4239 | /*
|
---|
4240 | * Assert hidden register sanity (also done in iemInitDecoder and iemReInitDecoder).
|
---|
4241 | */
|
---|
4242 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
4243 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
4244 | }
|
---|
4245 | else
|
---|
4246 | {
|
---|
4247 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
4248 | iemMemRollback(pVCpu);
|
---|
4249 |
|
---|
4250 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
4251 | /*
|
---|
4252 | * When a nested-guest causes an exception intercept (e.g. #PF) when fetching
|
---|
4253 | * code as part of instruction execution, we need this to fix-up VINF_SVM_VMEXIT.
|
---|
4254 | */
|
---|
4255 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
4256 | #endif
|
---|
4257 | }
|
---|
4258 |
|
---|
4259 | /*
|
---|
4260 | * Maybe re-enter raw-mode and log.
|
---|
4261 | */
|
---|
4262 | if (rcStrict != VINF_SUCCESS)
|
---|
4263 | LogFlow(("IEMExecLots: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
4264 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4265 | if (pcInstructions)
|
---|
4266 | *pcInstructions = pVCpu->iem.s.cInstructions - cInstructionsAtStart;
|
---|
4267 | return rcStrict;
|
---|
4268 | }
|
---|
4269 |
|
---|
4270 |
|
---|
4271 | /**
|
---|
4272 | * Interface used by EMExecuteExec, does exit statistics and limits.
|
---|
4273 | *
|
---|
4274 | * @returns Strict VBox status code.
|
---|
4275 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4276 | * @param fWillExit To be defined.
|
---|
4277 | * @param cMinInstructions Minimum number of instructions to execute before checking for FFs.
|
---|
4278 | * @param cMaxInstructions Maximum number of instructions to execute.
|
---|
4279 | * @param cMaxInstructionsWithoutExits
|
---|
4280 | * The max number of instructions without exits.
|
---|
4281 | * @param pStats Where to return statistics.
|
---|
4282 | */
|
---|
4283 | VMM_INT_DECL(VBOXSTRICTRC)
|
---|
4284 | IEMExecForExits(PVMCPUCC pVCpu, uint32_t fWillExit, uint32_t cMinInstructions, uint32_t cMaxInstructions,
|
---|
4285 | uint32_t cMaxInstructionsWithoutExits, PIEMEXECFOREXITSTATS pStats)
|
---|
4286 | {
|
---|
4287 | NOREF(fWillExit); /** @todo define flexible exit crits */
|
---|
4288 |
|
---|
4289 | /*
|
---|
4290 | * Initialize return stats.
|
---|
4291 | */
|
---|
4292 | pStats->cInstructions = 0;
|
---|
4293 | pStats->cExits = 0;
|
---|
4294 | pStats->cMaxExitDistance = 0;
|
---|
4295 | pStats->cReserved = 0;
|
---|
4296 |
|
---|
4297 | /*
|
---|
4298 | * Initial decoder init w/ prefetch, then setup setjmp.
|
---|
4299 | */
|
---|
4300 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
4301 | if (rcStrict == VINF_SUCCESS)
|
---|
4302 | {
|
---|
4303 | #ifdef IEM_WITH_SETJMP
|
---|
4304 | pVCpu->iem.s.cActiveMappings = 0; /** @todo wtf?!? */
|
---|
4305 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
4306 | #endif
|
---|
4307 | {
|
---|
4308 | #ifdef IN_RING0
|
---|
4309 | bool const fCheckPreemptionPending = !RTThreadPreemptIsPossible() || !RTThreadPreemptIsEnabled(NIL_RTTHREAD);
|
---|
4310 | #endif
|
---|
4311 | uint32_t cInstructionSinceLastExit = 0;
|
---|
4312 |
|
---|
4313 | /*
|
---|
4314 | * The run loop. We limit ourselves to 4096 instructions right now.
|
---|
4315 | */
|
---|
4316 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4317 | for (;;)
|
---|
4318 | {
|
---|
4319 | /*
|
---|
4320 | * Log the state.
|
---|
4321 | */
|
---|
4322 | #ifdef LOG_ENABLED
|
---|
4323 | iemLogCurInstr(pVCpu, true, "IEMExecForExits");
|
---|
4324 | #endif
|
---|
4325 |
|
---|
4326 | /*
|
---|
4327 | * Do the decoding and emulation.
|
---|
4328 | */
|
---|
4329 | uint32_t const cPotentialExits = pVCpu->iem.s.cPotentialExits;
|
---|
4330 |
|
---|
4331 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
4332 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
4333 |
|
---|
4334 | if ( cPotentialExits != pVCpu->iem.s.cPotentialExits
|
---|
4335 | && cInstructionSinceLastExit > 0 /* don't count the first */ )
|
---|
4336 | {
|
---|
4337 | pStats->cExits += 1;
|
---|
4338 | if (cInstructionSinceLastExit > pStats->cMaxExitDistance)
|
---|
4339 | pStats->cMaxExitDistance = cInstructionSinceLastExit;
|
---|
4340 | cInstructionSinceLastExit = 0;
|
---|
4341 | }
|
---|
4342 |
|
---|
4343 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
4344 | {
|
---|
4345 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
4346 | pVCpu->iem.s.cInstructions++;
|
---|
4347 | pStats->cInstructions++;
|
---|
4348 | cInstructionSinceLastExit++;
|
---|
4349 |
|
---|
4350 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4351 | /* Perform any VMX nested-guest instruction boundary actions. */
|
---|
4352 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
4353 | if (!(fCpu & ( VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
4354 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW)))
|
---|
4355 | { /* likely */ }
|
---|
4356 | else
|
---|
4357 | {
|
---|
4358 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
4359 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
4360 | fCpu = pVCpu->fLocalForcedActions;
|
---|
4361 | else
|
---|
4362 | {
|
---|
4363 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
4364 | break;
|
---|
4365 | }
|
---|
4366 | }
|
---|
4367 | #endif
|
---|
4368 | if (RT_LIKELY(pVCpu->iem.s.rcPassUp == VINF_SUCCESS))
|
---|
4369 | {
|
---|
4370 | #ifndef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4371 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
4372 | #endif
|
---|
4373 | fCpu &= VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
4374 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
4375 | | VMCPU_FF_TLB_FLUSH
|
---|
4376 | | VMCPU_FF_UNHALT );
|
---|
4377 | if (RT_LIKELY( ( ( !fCpu
|
---|
4378 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
4379 | && !pVCpu->cpum.GstCtx.rflags.Bits.u1IF))
|
---|
4380 | && !VM_FF_IS_ANY_SET(pVM, VM_FF_ALL_MASK) )
|
---|
4381 | || pStats->cInstructions < cMinInstructions))
|
---|
4382 | {
|
---|
4383 | if (pStats->cInstructions < cMaxInstructions)
|
---|
4384 | {
|
---|
4385 | if (cInstructionSinceLastExit <= cMaxInstructionsWithoutExits)
|
---|
4386 | {
|
---|
4387 | #ifdef IN_RING0
|
---|
4388 | if ( !fCheckPreemptionPending
|
---|
4389 | || !RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
4390 | #endif
|
---|
4391 | {
|
---|
4392 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
4393 | iemReInitDecoder(pVCpu);
|
---|
4394 | continue;
|
---|
4395 | }
|
---|
4396 | #ifdef IN_RING0
|
---|
4397 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
4398 | break;
|
---|
4399 | #endif
|
---|
4400 | }
|
---|
4401 | }
|
---|
4402 | }
|
---|
4403 | Assert(!(fCpu & VMCPU_FF_IEM));
|
---|
4404 | }
|
---|
4405 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
4406 | }
|
---|
4407 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
4408 | iemMemRollback(pVCpu);
|
---|
4409 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
4410 | break;
|
---|
4411 | }
|
---|
4412 | }
|
---|
4413 | #ifdef IEM_WITH_SETJMP
|
---|
4414 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
4415 | {
|
---|
4416 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
4417 | iemMemRollback(pVCpu);
|
---|
4418 | pVCpu->iem.s.cLongJumps++;
|
---|
4419 | }
|
---|
4420 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
4421 | #endif
|
---|
4422 |
|
---|
4423 | /*
|
---|
4424 | * Assert hidden register sanity (also done in iemInitDecoder and iemReInitDecoder).
|
---|
4425 | */
|
---|
4426 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
4427 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
4428 | }
|
---|
4429 | else
|
---|
4430 | {
|
---|
4431 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
4432 | iemMemRollback(pVCpu);
|
---|
4433 |
|
---|
4434 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
4435 | /*
|
---|
4436 | * When a nested-guest causes an exception intercept (e.g. #PF) when fetching
|
---|
4437 | * code as part of instruction execution, we need this to fix-up VINF_SVM_VMEXIT.
|
---|
4438 | */
|
---|
4439 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
4440 | #endif
|
---|
4441 | }
|
---|
4442 |
|
---|
4443 | /*
|
---|
4444 | * Maybe re-enter raw-mode and log.
|
---|
4445 | */
|
---|
4446 | if (rcStrict != VINF_SUCCESS)
|
---|
4447 | LogFlow(("IEMExecForExits: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc; ins=%u exits=%u maxdist=%u\n",
|
---|
4448 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp,
|
---|
4449 | pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict), pStats->cInstructions, pStats->cExits, pStats->cMaxExitDistance));
|
---|
4450 | return rcStrict;
|
---|
4451 | }
|
---|
4452 |
|
---|
4453 |
|
---|
4454 | /**
|
---|
4455 | * Injects a trap, fault, abort, software interrupt or external interrupt.
|
---|
4456 | *
|
---|
4457 | * The parameter list matches TRPMQueryTrapAll pretty closely.
|
---|
4458 | *
|
---|
4459 | * @returns Strict VBox status code.
|
---|
4460 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
4461 | * @param u8TrapNo The trap number.
|
---|
4462 | * @param enmType What type is it (trap/fault/abort), software
|
---|
4463 | * interrupt or hardware interrupt.
|
---|
4464 | * @param uErrCode The error code if applicable.
|
---|
4465 | * @param uCr2 The CR2 value if applicable.
|
---|
4466 | * @param cbInstr The instruction length (only relevant for
|
---|
4467 | * software interrupts).
|
---|
4468 | * @note x86 specific, but difficult to move due to iemInitDecoder dep.
|
---|
4469 | */
|
---|
4470 | VMM_INT_DECL(VBOXSTRICTRC) IEMInjectTrap(PVMCPUCC pVCpu, uint8_t u8TrapNo, TRPMEVENT enmType, uint16_t uErrCode, RTGCPTR uCr2,
|
---|
4471 | uint8_t cbInstr)
|
---|
4472 | {
|
---|
4473 | iemInitDecoder(pVCpu, 0 /*fExecOpts*/); /** @todo wrong init function! */
|
---|
4474 | #ifdef DBGFTRACE_ENABLED
|
---|
4475 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "IEMInjectTrap: %x %d %x %llx",
|
---|
4476 | u8TrapNo, enmType, uErrCode, uCr2);
|
---|
4477 | #endif
|
---|
4478 |
|
---|
4479 | uint32_t fFlags;
|
---|
4480 | switch (enmType)
|
---|
4481 | {
|
---|
4482 | case TRPM_HARDWARE_INT:
|
---|
4483 | Log(("IEMInjectTrap: %#4x ext\n", u8TrapNo));
|
---|
4484 | fFlags = IEM_XCPT_FLAGS_T_EXT_INT;
|
---|
4485 | uErrCode = uCr2 = 0;
|
---|
4486 | break;
|
---|
4487 |
|
---|
4488 | case TRPM_SOFTWARE_INT:
|
---|
4489 | Log(("IEMInjectTrap: %#4x soft\n", u8TrapNo));
|
---|
4490 | fFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
4491 | uErrCode = uCr2 = 0;
|
---|
4492 | break;
|
---|
4493 |
|
---|
4494 | case TRPM_TRAP:
|
---|
4495 | case TRPM_NMI: /** @todo Distinguish NMI from exception 2. */
|
---|
4496 | Log(("IEMInjectTrap: %#4x trap err=%#x cr2=%#RGv\n", u8TrapNo, uErrCode, uCr2));
|
---|
4497 | fFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
4498 | if (u8TrapNo == X86_XCPT_PF)
|
---|
4499 | fFlags |= IEM_XCPT_FLAGS_CR2;
|
---|
4500 | switch (u8TrapNo)
|
---|
4501 | {
|
---|
4502 | case X86_XCPT_DF:
|
---|
4503 | case X86_XCPT_TS:
|
---|
4504 | case X86_XCPT_NP:
|
---|
4505 | case X86_XCPT_SS:
|
---|
4506 | case X86_XCPT_PF:
|
---|
4507 | case X86_XCPT_AC:
|
---|
4508 | case X86_XCPT_GP:
|
---|
4509 | fFlags |= IEM_XCPT_FLAGS_ERR;
|
---|
4510 | break;
|
---|
4511 | }
|
---|
4512 | break;
|
---|
4513 |
|
---|
4514 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
4515 | }
|
---|
4516 |
|
---|
4517 | VBOXSTRICTRC rcStrict = iemRaiseXcptOrInt(pVCpu, cbInstr, u8TrapNo, fFlags, uErrCode, uCr2);
|
---|
4518 |
|
---|
4519 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
4520 | iemMemRollback(pVCpu);
|
---|
4521 |
|
---|
4522 | return rcStrict;
|
---|
4523 | }
|
---|
4524 |
|
---|
4525 |
|
---|
4526 | /**
|
---|
4527 | * Injects the active TRPM event.
|
---|
4528 | *
|
---|
4529 | * @returns Strict VBox status code.
|
---|
4530 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4531 | */
|
---|
4532 | VMM_INT_DECL(VBOXSTRICTRC) IEMInjectTrpmEvent(PVMCPUCC pVCpu)
|
---|
4533 | {
|
---|
4534 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
4535 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Event injection\n"));
|
---|
4536 | #else
|
---|
4537 | uint8_t u8TrapNo;
|
---|
4538 | TRPMEVENT enmType;
|
---|
4539 | uint32_t uErrCode;
|
---|
4540 | RTGCUINTPTR uCr2;
|
---|
4541 | uint8_t cbInstr;
|
---|
4542 | int rc = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, &cbInstr, NULL /* fIcebp */);
|
---|
4543 | if (RT_FAILURE(rc))
|
---|
4544 | return rc;
|
---|
4545 |
|
---|
4546 | /** @todo r=ramshankar: Pass ICEBP info. to IEMInjectTrap() below and handle
|
---|
4547 | * ICEBP \#DB injection as a special case. */
|
---|
4548 | VBOXSTRICTRC rcStrict = IEMInjectTrap(pVCpu, u8TrapNo, enmType, uErrCode, uCr2, cbInstr);
|
---|
4549 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
4550 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
4551 | rcStrict = VINF_SUCCESS;
|
---|
4552 | #endif
|
---|
4553 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4554 | if (rcStrict == VINF_VMX_VMEXIT)
|
---|
4555 | rcStrict = VINF_SUCCESS;
|
---|
4556 | #endif
|
---|
4557 | /** @todo Are there any other codes that imply the event was successfully
|
---|
4558 | * delivered to the guest? See @bugref{6607}. */
|
---|
4559 | if ( rcStrict == VINF_SUCCESS
|
---|
4560 | || rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
4561 | TRPMResetTrap(pVCpu);
|
---|
4562 |
|
---|
4563 | return rcStrict;
|
---|
4564 | #endif
|
---|
4565 | }
|
---|
4566 |
|
---|
4567 |
|
---|
4568 | VMM_INT_DECL(int) IEMBreakpointSet(PVM pVM, RTGCPTR GCPtrBp)
|
---|
4569 | {
|
---|
4570 | RT_NOREF_PV(pVM); RT_NOREF_PV(GCPtrBp);
|
---|
4571 | return VERR_NOT_IMPLEMENTED;
|
---|
4572 | }
|
---|
4573 |
|
---|
4574 |
|
---|
4575 | VMM_INT_DECL(int) IEMBreakpointClear(PVM pVM, RTGCPTR GCPtrBp)
|
---|
4576 | {
|
---|
4577 | RT_NOREF_PV(pVM); RT_NOREF_PV(GCPtrBp);
|
---|
4578 | return VERR_NOT_IMPLEMENTED;
|
---|
4579 | }
|
---|
4580 |
|
---|
4581 | #ifdef IN_RING3
|
---|
4582 |
|
---|
4583 | /**
|
---|
4584 | * Handles the unlikely and probably fatal merge cases.
|
---|
4585 | *
|
---|
4586 | * @returns Merged status code.
|
---|
4587 | * @param rcStrict Current EM status code.
|
---|
4588 | * @param rcStrictCommit The IOM I/O or MMIO write commit status to merge
|
---|
4589 | * with @a rcStrict.
|
---|
4590 | * @param iMemMap The memory mapping index. For error reporting only.
|
---|
4591 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
4592 | * thread, for error reporting only.
|
---|
4593 | */
|
---|
4594 | DECL_NO_INLINE(static, VBOXSTRICTRC) iemR3MergeStatusSlow(VBOXSTRICTRC rcStrict, VBOXSTRICTRC rcStrictCommit,
|
---|
4595 | unsigned iMemMap, PVMCPUCC pVCpu)
|
---|
4596 | {
|
---|
4597 | if (RT_FAILURE_NP(rcStrict))
|
---|
4598 | return rcStrict;
|
---|
4599 |
|
---|
4600 | if (RT_FAILURE_NP(rcStrictCommit))
|
---|
4601 | return rcStrictCommit;
|
---|
4602 |
|
---|
4603 | if (rcStrict == rcStrictCommit)
|
---|
4604 | return rcStrictCommit;
|
---|
4605 |
|
---|
4606 | AssertLogRelMsgFailed(("rcStrictCommit=%Rrc rcStrict=%Rrc iMemMap=%u fAccess=%#x FirstPg=%RGp LB %u SecondPg=%RGp LB %u\n",
|
---|
4607 | VBOXSTRICTRC_VAL(rcStrictCommit), VBOXSTRICTRC_VAL(rcStrict), iMemMap,
|
---|
4608 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess,
|
---|
4609 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst,
|
---|
4610 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond));
|
---|
4611 | return VERR_IOM_FF_STATUS_IPE;
|
---|
4612 | }
|
---|
4613 |
|
---|
4614 |
|
---|
4615 | /**
|
---|
4616 | * Helper for IOMR3ProcessForceFlag.
|
---|
4617 | *
|
---|
4618 | * @returns Merged status code.
|
---|
4619 | * @param rcStrict Current EM status code.
|
---|
4620 | * @param rcStrictCommit The IOM I/O or MMIO write commit status to merge
|
---|
4621 | * with @a rcStrict.
|
---|
4622 | * @param iMemMap The memory mapping index. For error reporting only.
|
---|
4623 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
4624 | * thread, for error reporting only.
|
---|
4625 | */
|
---|
4626 | DECLINLINE(VBOXSTRICTRC) iemR3MergeStatus(VBOXSTRICTRC rcStrict, VBOXSTRICTRC rcStrictCommit, unsigned iMemMap, PVMCPUCC pVCpu)
|
---|
4627 | {
|
---|
4628 | /* Simple. */
|
---|
4629 | if (RT_LIKELY(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RAW_TO_R3))
|
---|
4630 | return rcStrictCommit;
|
---|
4631 |
|
---|
4632 | if (RT_LIKELY(rcStrictCommit == VINF_SUCCESS))
|
---|
4633 | return rcStrict;
|
---|
4634 |
|
---|
4635 | /* EM scheduling status codes. */
|
---|
4636 | if (RT_LIKELY( rcStrict >= VINF_EM_FIRST
|
---|
4637 | && rcStrict <= VINF_EM_LAST))
|
---|
4638 | {
|
---|
4639 | if (RT_LIKELY( rcStrictCommit >= VINF_EM_FIRST
|
---|
4640 | && rcStrictCommit <= VINF_EM_LAST))
|
---|
4641 | return rcStrict < rcStrictCommit ? rcStrict : rcStrictCommit;
|
---|
4642 | }
|
---|
4643 |
|
---|
4644 | /* Unlikely */
|
---|
4645 | return iemR3MergeStatusSlow(rcStrict, rcStrictCommit, iMemMap, pVCpu);
|
---|
4646 | }
|
---|
4647 |
|
---|
4648 |
|
---|
4649 | /**
|
---|
4650 | * Called by force-flag handling code when VMCPU_FF_IEM is set.
|
---|
4651 | *
|
---|
4652 | * @returns Merge between @a rcStrict and what the commit operation returned.
|
---|
4653 | * @param pVM The cross context VM structure.
|
---|
4654 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
4655 | * @param rcStrict The status code returned by ring-0 or raw-mode.
|
---|
4656 | */
|
---|
4657 | VMMR3_INT_DECL(VBOXSTRICTRC) IEMR3ProcessForceFlag(PVM pVM, PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict)
|
---|
4658 | {
|
---|
4659 | /*
|
---|
4660 | * Reset the pending commit.
|
---|
4661 | */
|
---|
4662 | AssertMsg( (pVCpu->iem.s.aMemMappings[0].fAccess | pVCpu->iem.s.aMemMappings[1].fAccess | pVCpu->iem.s.aMemMappings[2].fAccess)
|
---|
4663 | & (IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND),
|
---|
4664 | ("%#x %#x %#x\n",
|
---|
4665 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemMappings[2].fAccess));
|
---|
4666 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_IEM);
|
---|
4667 |
|
---|
4668 | /*
|
---|
4669 | * Commit the pending bounce buffers (usually just one).
|
---|
4670 | */
|
---|
4671 | unsigned cBufs = 0;
|
---|
4672 | unsigned iMemMap = RT_ELEMENTS(pVCpu->iem.s.aMemMappings);
|
---|
4673 | while (iMemMap-- > 0)
|
---|
4674 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND))
|
---|
4675 | {
|
---|
4676 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE);
|
---|
4677 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED);
|
---|
4678 | Assert(!pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned);
|
---|
4679 |
|
---|
4680 | uint16_t const cbFirst = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst;
|
---|
4681 | uint16_t const cbSecond = pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
4682 | uint8_t const *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
4683 |
|
---|
4684 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_PENDING_R3_WRITE_1ST)
|
---|
4685 | {
|
---|
4686 | VBOXSTRICTRC rcStrictCommit1 = PGMPhysWrite(pVM,
|
---|
4687 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
4688 | pbBuf,
|
---|
4689 | cbFirst,
|
---|
4690 | PGMACCESSORIGIN_IEM);
|
---|
4691 | rcStrict = iemR3MergeStatus(rcStrict, rcStrictCommit1, iMemMap, pVCpu);
|
---|
4692 | Log(("IEMR3ProcessForceFlag: iMemMap=%u GCPhysFirst=%RGp LB %#x %Rrc => %Rrc\n",
|
---|
4693 | iMemMap, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
4694 | VBOXSTRICTRC_VAL(rcStrictCommit1), VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4695 | }
|
---|
4696 |
|
---|
4697 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_PENDING_R3_WRITE_2ND)
|
---|
4698 | {
|
---|
4699 | VBOXSTRICTRC rcStrictCommit2 = PGMPhysWrite(pVM,
|
---|
4700 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
4701 | pbBuf + cbFirst,
|
---|
4702 | cbSecond,
|
---|
4703 | PGMACCESSORIGIN_IEM);
|
---|
4704 | rcStrict = iemR3MergeStatus(rcStrict, rcStrictCommit2, iMemMap, pVCpu);
|
---|
4705 | Log(("IEMR3ProcessForceFlag: iMemMap=%u GCPhysSecond=%RGp LB %#x %Rrc => %Rrc\n",
|
---|
4706 | iMemMap, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond,
|
---|
4707 | VBOXSTRICTRC_VAL(rcStrictCommit2), VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4708 | }
|
---|
4709 | cBufs++;
|
---|
4710 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
4711 | }
|
---|
4712 |
|
---|
4713 | AssertMsg(cBufs > 0 && cBufs == pVCpu->iem.s.cActiveMappings,
|
---|
4714 | ("cBufs=%u cActiveMappings=%u - %#x %#x %#x\n", cBufs, pVCpu->iem.s.cActiveMappings,
|
---|
4715 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemMappings[2].fAccess));
|
---|
4716 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
4717 | return rcStrict;
|
---|
4718 | }
|
---|
4719 |
|
---|
4720 | #endif /* IN_RING3 */
|
---|
4721 |
|
---|