1 | /* $Id: IEMAll.cpp 105592 2024-08-05 23:13:46Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Interpreted Execution Manager - All Contexts.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2023 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /** @page pg_iem IEM - Interpreted Execution Manager
|
---|
30 | *
|
---|
31 | * The interpreted exeuction manager (IEM) is for executing short guest code
|
---|
32 | * sequences that are causing too many exits / virtualization traps. It will
|
---|
33 | * also be used to interpret single instructions, thus replacing the selective
|
---|
34 | * interpreters in EM and IOM.
|
---|
35 | *
|
---|
36 | * Design goals:
|
---|
37 | * - Relatively small footprint, although we favour speed and correctness
|
---|
38 | * over size.
|
---|
39 | * - Reasonably fast.
|
---|
40 | * - Correctly handle lock prefixed instructions.
|
---|
41 | * - Complete instruction set - eventually.
|
---|
42 | * - Refactorable into a recompiler, maybe.
|
---|
43 | * - Replace EMInterpret*.
|
---|
44 | *
|
---|
45 | * Using the existing disassembler has been considered, however this is thought
|
---|
46 | * to conflict with speed as the disassembler chews things a bit too much while
|
---|
47 | * leaving us with a somewhat complicated state to interpret afterwards.
|
---|
48 | *
|
---|
49 | *
|
---|
50 | * The current code is very much work in progress. You've been warned!
|
---|
51 | *
|
---|
52 | *
|
---|
53 | * @section sec_iem_fpu_instr FPU Instructions
|
---|
54 | *
|
---|
55 | * On x86 and AMD64 hosts, the FPU instructions are implemented by executing the
|
---|
56 | * same or equivalent instructions on the host FPU. To make life easy, we also
|
---|
57 | * let the FPU prioritize the unmasked exceptions for us. This however, only
|
---|
58 | * works reliably when CR0.NE is set, i.e. when using \#MF instead the IRQ 13
|
---|
59 | * for FPU exception delivery, because with CR0.NE=0 there is a window where we
|
---|
60 | * can trigger spurious FPU exceptions.
|
---|
61 | *
|
---|
62 | * The guest FPU state is not loaded into the host CPU and kept there till we
|
---|
63 | * leave IEM because the calling conventions have declared an all year open
|
---|
64 | * season on much of the FPU state. For instance an innocent looking call to
|
---|
65 | * memcpy might end up using a whole bunch of XMM or MM registers if the
|
---|
66 | * particular implementation finds it worthwhile.
|
---|
67 | *
|
---|
68 | *
|
---|
69 | * @section sec_iem_logging Logging
|
---|
70 | *
|
---|
71 | * The IEM code uses the \"IEM\" log group for the main logging. The different
|
---|
72 | * logging levels/flags are generally used for the following purposes:
|
---|
73 | * - Level 1 (Log) : Errors, exceptions, interrupts and such major events.
|
---|
74 | * - Flow (LogFlow) : Basic enter/exit IEM state info.
|
---|
75 | * - Level 2 (Log2) : ?
|
---|
76 | * - Level 3 (Log3) : More detailed enter/exit IEM state info.
|
---|
77 | * - Level 4 (Log4) : Decoding mnemonics w/ EIP.
|
---|
78 | * - Level 5 (Log5) : Decoding details.
|
---|
79 | * - Level 6 (Log6) : Enables/disables the lockstep comparison with REM.
|
---|
80 | * - Level 7 (Log7) : iret++ execution logging.
|
---|
81 | * - Level 8 (Log8) :
|
---|
82 | * - Level 9 (Log9) :
|
---|
83 | * - Level 10 (Log10): TLBs.
|
---|
84 | * - Level 11 (Log11): Unmasked FPU exceptions.
|
---|
85 | *
|
---|
86 | * The \"IEM_MEM\" log group covers most of memory related details logging,
|
---|
87 | * except for errors and exceptions:
|
---|
88 | * - Level 1 (Log) : Reads.
|
---|
89 | * - Level 2 (Log2) : Read fallbacks.
|
---|
90 | * - Level 3 (Log3) : MemMap read.
|
---|
91 | * - Level 4 (Log4) : MemMap read fallbacks.
|
---|
92 | * - Level 5 (Log5) : Writes
|
---|
93 | * - Level 6 (Log6) : Write fallbacks.
|
---|
94 | * - Level 7 (Log7) : MemMap writes and read-writes.
|
---|
95 | * - Level 8 (Log8) : MemMap write and read-write fallbacks.
|
---|
96 | * - Level 9 (Log9) : Stack reads.
|
---|
97 | * - Level 10 (Log10): Stack read fallbacks.
|
---|
98 | * - Level 11 (Log11): Stack writes.
|
---|
99 | * - Level 12 (Log12): Stack write fallbacks.
|
---|
100 | * - Flow (LogFlow) :
|
---|
101 | *
|
---|
102 | * The SVM (AMD-V) and VMX (VT-x) code has the following assignments:
|
---|
103 | * - Level 1 (Log) : Errors and other major events.
|
---|
104 | * - Flow (LogFlow) : Misc flow stuff (cleanup?)
|
---|
105 | * - Level 2 (Log2) : VM exits.
|
---|
106 | *
|
---|
107 | * The syscall logging level assignments:
|
---|
108 | * - Level 1: DOS and BIOS.
|
---|
109 | * - Level 2: Windows 3.x
|
---|
110 | * - Level 3: Linux.
|
---|
111 | */
|
---|
112 |
|
---|
113 | /* Disabled warning C4505: 'iemRaisePageFaultJmp' : unreferenced local function has been removed */
|
---|
114 | #ifdef _MSC_VER
|
---|
115 | # pragma warning(disable:4505)
|
---|
116 | #endif
|
---|
117 |
|
---|
118 |
|
---|
119 | /*********************************************************************************************************************************
|
---|
120 | * Header Files *
|
---|
121 | *********************************************************************************************************************************/
|
---|
122 | #define LOG_GROUP LOG_GROUP_IEM
|
---|
123 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
124 | #include <VBox/vmm/iem.h>
|
---|
125 | #include <VBox/vmm/cpum.h>
|
---|
126 | #include <VBox/vmm/apic.h>
|
---|
127 | #include <VBox/vmm/pdm.h>
|
---|
128 | #include <VBox/vmm/pgm.h>
|
---|
129 | #include <VBox/vmm/iom.h>
|
---|
130 | #include <VBox/vmm/em.h>
|
---|
131 | #include <VBox/vmm/hm.h>
|
---|
132 | #include <VBox/vmm/nem.h>
|
---|
133 | #include <VBox/vmm/gcm.h>
|
---|
134 | #include <VBox/vmm/gim.h>
|
---|
135 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
136 | # include <VBox/vmm/em.h>
|
---|
137 | # include <VBox/vmm/hm_svm.h>
|
---|
138 | #endif
|
---|
139 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
140 | # include <VBox/vmm/hmvmxinline.h>
|
---|
141 | #endif
|
---|
142 | #include <VBox/vmm/tm.h>
|
---|
143 | #include <VBox/vmm/dbgf.h>
|
---|
144 | #include <VBox/vmm/dbgftrace.h>
|
---|
145 | #include "IEMInternal.h"
|
---|
146 | #include <VBox/vmm/vmcc.h>
|
---|
147 | #include <VBox/log.h>
|
---|
148 | #include <VBox/err.h>
|
---|
149 | #include <VBox/param.h>
|
---|
150 | #include <VBox/dis.h>
|
---|
151 | #include <iprt/asm-math.h>
|
---|
152 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
153 | # include <iprt/asm-amd64-x86.h>
|
---|
154 | #elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
|
---|
155 | # include <iprt/asm-arm.h>
|
---|
156 | #endif
|
---|
157 | #include <iprt/assert.h>
|
---|
158 | #include <iprt/string.h>
|
---|
159 | #include <iprt/x86.h>
|
---|
160 |
|
---|
161 | #include "IEMInline.h"
|
---|
162 |
|
---|
163 |
|
---|
164 | /*********************************************************************************************************************************
|
---|
165 | * Structures and Typedefs *
|
---|
166 | *********************************************************************************************************************************/
|
---|
167 | /**
|
---|
168 | * CPU exception classes.
|
---|
169 | */
|
---|
170 | typedef enum IEMXCPTCLASS
|
---|
171 | {
|
---|
172 | IEMXCPTCLASS_BENIGN,
|
---|
173 | IEMXCPTCLASS_CONTRIBUTORY,
|
---|
174 | IEMXCPTCLASS_PAGE_FAULT,
|
---|
175 | IEMXCPTCLASS_DOUBLE_FAULT
|
---|
176 | } IEMXCPTCLASS;
|
---|
177 |
|
---|
178 |
|
---|
179 | /*********************************************************************************************************************************
|
---|
180 | * Global Variables *
|
---|
181 | *********************************************************************************************************************************/
|
---|
182 | #if defined(IEM_LOG_MEMORY_WRITES)
|
---|
183 | /** What IEM just wrote. */
|
---|
184 | uint8_t g_abIemWrote[256];
|
---|
185 | /** How much IEM just wrote. */
|
---|
186 | size_t g_cbIemWrote;
|
---|
187 | #endif
|
---|
188 |
|
---|
189 |
|
---|
190 | /*********************************************************************************************************************************
|
---|
191 | * Internal Functions *
|
---|
192 | *********************************************************************************************************************************/
|
---|
193 | static VBOXSTRICTRC iemMemFetchSelDescWithErr(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel,
|
---|
194 | uint8_t uXcpt, uint16_t uErrorCode) RT_NOEXCEPT;
|
---|
195 |
|
---|
196 |
|
---|
197 | /**
|
---|
198 | * Calculates IEM_F_BRK_PENDING_XXX (IEM_F_PENDING_BRK_MASK) flags, slow code
|
---|
199 | * path.
|
---|
200 | *
|
---|
201 | * This will also invalidate TLB entries for any pages with active data
|
---|
202 | * breakpoints on them.
|
---|
203 | *
|
---|
204 | * @returns IEM_F_BRK_PENDING_XXX or zero.
|
---|
205 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
206 | * calling thread.
|
---|
207 | *
|
---|
208 | * @note Don't call directly, use iemCalcExecDbgFlags instead.
|
---|
209 | */
|
---|
210 | uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu)
|
---|
211 | {
|
---|
212 | uint32_t fExec = 0;
|
---|
213 |
|
---|
214 | /*
|
---|
215 | * Helper for invalidate the data TLB for breakpoint addresses.
|
---|
216 | *
|
---|
217 | * This is to make sure any access to the page will always trigger a TLB
|
---|
218 | * load for as long as the breakpoint is enabled.
|
---|
219 | */
|
---|
220 | #ifdef IEM_WITH_DATA_TLB
|
---|
221 | # define INVALID_TLB_ENTRY_FOR_BP(a_uValue) do { \
|
---|
222 | RTGCPTR uTagNoRev = (a_uValue); \
|
---|
223 | uTagNoRev = IEMTLB_CALC_TAG_NO_REV(uTagNoRev); \
|
---|
224 | /** @todo do large page accounting */ \
|
---|
225 | uintptr_t const idxEven = IEMTLB_TAG_TO_EVEN_INDEX(uTagNoRev); \
|
---|
226 | if (pVCpu->iem.s.DataTlb.aEntries[idxEven].uTag == (uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevision)) \
|
---|
227 | pVCpu->iem.s.DataTlb.aEntries[idxEven].uTag = 0; \
|
---|
228 | if (pVCpu->iem.s.DataTlb.aEntries[idxEven + 1].uTag == (uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevisionGlobal)) \
|
---|
229 | pVCpu->iem.s.DataTlb.aEntries[idxEven + 1].uTag = 0; \
|
---|
230 | } while (0)
|
---|
231 | #else
|
---|
232 | # define INVALID_TLB_ENTRY_FOR_BP(a_uValue) do { } while (0)
|
---|
233 | #endif
|
---|
234 |
|
---|
235 | /*
|
---|
236 | * Process guest breakpoints.
|
---|
237 | */
|
---|
238 | #define PROCESS_ONE_BP(a_fDr7, a_iBp, a_uValue) do { \
|
---|
239 | if (a_fDr7 & X86_DR7_L_G(a_iBp)) \
|
---|
240 | { \
|
---|
241 | switch (X86_DR7_GET_RW(a_fDr7, a_iBp)) \
|
---|
242 | { \
|
---|
243 | case X86_DR7_RW_EO: \
|
---|
244 | fExec |= IEM_F_PENDING_BRK_INSTR; \
|
---|
245 | break; \
|
---|
246 | case X86_DR7_RW_WO: \
|
---|
247 | case X86_DR7_RW_RW: \
|
---|
248 | fExec |= IEM_F_PENDING_BRK_DATA; \
|
---|
249 | INVALID_TLB_ENTRY_FOR_BP(a_uValue); \
|
---|
250 | break; \
|
---|
251 | case X86_DR7_RW_IO: \
|
---|
252 | fExec |= IEM_F_PENDING_BRK_X86_IO; \
|
---|
253 | break; \
|
---|
254 | } \
|
---|
255 | } \
|
---|
256 | } while (0)
|
---|
257 |
|
---|
258 | uint32_t const fGstDr7 = (uint32_t)pVCpu->cpum.GstCtx.dr[7];
|
---|
259 | if (fGstDr7 & X86_DR7_ENABLED_MASK)
|
---|
260 | {
|
---|
261 | /** @todo extract more details here to simplify matching later. */
|
---|
262 | #ifdef IEM_WITH_DATA_TLB
|
---|
263 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
|
---|
264 | #endif
|
---|
265 | PROCESS_ONE_BP(fGstDr7, 0, pVCpu->cpum.GstCtx.dr[0]);
|
---|
266 | PROCESS_ONE_BP(fGstDr7, 1, pVCpu->cpum.GstCtx.dr[1]);
|
---|
267 | PROCESS_ONE_BP(fGstDr7, 2, pVCpu->cpum.GstCtx.dr[2]);
|
---|
268 | PROCESS_ONE_BP(fGstDr7, 3, pVCpu->cpum.GstCtx.dr[3]);
|
---|
269 | }
|
---|
270 |
|
---|
271 | /*
|
---|
272 | * Process hypervisor breakpoints.
|
---|
273 | */
|
---|
274 | PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
|
---|
275 | uint32_t const fHyperDr7 = DBGFBpGetDR7(pVM);
|
---|
276 | if (fHyperDr7 & X86_DR7_ENABLED_MASK)
|
---|
277 | {
|
---|
278 | /** @todo extract more details here to simplify matching later. */
|
---|
279 | PROCESS_ONE_BP(fHyperDr7, 0, DBGFBpGetDR0(pVM));
|
---|
280 | PROCESS_ONE_BP(fHyperDr7, 1, DBGFBpGetDR1(pVM));
|
---|
281 | PROCESS_ONE_BP(fHyperDr7, 2, DBGFBpGetDR2(pVM));
|
---|
282 | PROCESS_ONE_BP(fHyperDr7, 3, DBGFBpGetDR3(pVM));
|
---|
283 | }
|
---|
284 |
|
---|
285 | return fExec;
|
---|
286 | }
|
---|
287 |
|
---|
288 |
|
---|
289 | /**
|
---|
290 | * Initializes the decoder state.
|
---|
291 | *
|
---|
292 | * iemReInitDecoder is mostly a copy of this function.
|
---|
293 | *
|
---|
294 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
295 | * calling thread.
|
---|
296 | * @param fExecOpts Optional execution flags:
|
---|
297 | * - IEM_F_BYPASS_HANDLERS
|
---|
298 | * - IEM_F_X86_DISREGARD_LOCK
|
---|
299 | */
|
---|
300 | DECLINLINE(void) iemInitDecoder(PVMCPUCC pVCpu, uint32_t fExecOpts)
|
---|
301 | {
|
---|
302 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
303 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
304 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
305 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
306 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
|
---|
307 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
|
---|
308 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.fs));
|
---|
309 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.gs));
|
---|
310 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
|
---|
311 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.tr));
|
---|
312 |
|
---|
313 | /* Execution state: */
|
---|
314 | uint32_t fExec;
|
---|
315 | pVCpu->iem.s.fExec = fExec = iemCalcExecFlags(pVCpu) | fExecOpts;
|
---|
316 |
|
---|
317 | /* Decoder state: */
|
---|
318 | pVCpu->iem.s.enmDefAddrMode = fExec & IEM_F_MODE_CPUMODE_MASK; /** @todo check if this is correct... */
|
---|
319 | pVCpu->iem.s.enmEffAddrMode = fExec & IEM_F_MODE_CPUMODE_MASK;
|
---|
320 | if ((fExec & IEM_F_MODE_CPUMODE_MASK) != IEMMODE_64BIT)
|
---|
321 | {
|
---|
322 | pVCpu->iem.s.enmDefOpSize = fExec & IEM_F_MODE_CPUMODE_MASK; /** @todo check if this is correct... */
|
---|
323 | pVCpu->iem.s.enmEffOpSize = fExec & IEM_F_MODE_CPUMODE_MASK;
|
---|
324 | }
|
---|
325 | else
|
---|
326 | {
|
---|
327 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
328 | pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT;
|
---|
329 | }
|
---|
330 | pVCpu->iem.s.fPrefixes = 0;
|
---|
331 | pVCpu->iem.s.uRexReg = 0;
|
---|
332 | pVCpu->iem.s.uRexB = 0;
|
---|
333 | pVCpu->iem.s.uRexIndex = 0;
|
---|
334 | pVCpu->iem.s.idxPrefix = 0;
|
---|
335 | pVCpu->iem.s.uVex3rdReg = 0;
|
---|
336 | pVCpu->iem.s.uVexLength = 0;
|
---|
337 | pVCpu->iem.s.fEvexStuff = 0;
|
---|
338 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
339 | #ifdef IEM_WITH_CODE_TLB
|
---|
340 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
341 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
342 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
343 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
344 | pVCpu->iem.s.offOpcode = 0;
|
---|
345 | # endif
|
---|
346 | # ifdef VBOX_STRICT
|
---|
347 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
348 | pVCpu->iem.s.cbInstrBuf = UINT16_MAX;
|
---|
349 | pVCpu->iem.s.cbInstrBufTotal = UINT16_MAX;
|
---|
350 | pVCpu->iem.s.uInstrBufPc = UINT64_C(0xc0ffc0ffcff0c0ff);
|
---|
351 | # endif
|
---|
352 | #else
|
---|
353 | pVCpu->iem.s.offOpcode = 0;
|
---|
354 | pVCpu->iem.s.cbOpcode = 0;
|
---|
355 | #endif
|
---|
356 | pVCpu->iem.s.offModRm = 0;
|
---|
357 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
358 | pVCpu->iem.s.iNextMapping = 0;
|
---|
359 | pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
|
---|
360 |
|
---|
361 | #ifdef DBGFTRACE_ENABLED
|
---|
362 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
363 | {
|
---|
364 | case IEMMODE_64BIT:
|
---|
365 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.rip);
|
---|
366 | break;
|
---|
367 | case IEMMODE_32BIT:
|
---|
368 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
369 | break;
|
---|
370 | case IEMMODE_16BIT:
|
---|
371 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
372 | break;
|
---|
373 | }
|
---|
374 | #endif
|
---|
375 | }
|
---|
376 |
|
---|
377 |
|
---|
378 | /**
|
---|
379 | * Reinitializes the decoder state 2nd+ loop of IEMExecLots.
|
---|
380 | *
|
---|
381 | * This is mostly a copy of iemInitDecoder.
|
---|
382 | *
|
---|
383 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
384 | */
|
---|
385 | DECLINLINE(void) iemReInitDecoder(PVMCPUCC pVCpu)
|
---|
386 | {
|
---|
387 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
388 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
389 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
390 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
|
---|
391 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
|
---|
392 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.fs));
|
---|
393 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.gs));
|
---|
394 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
|
---|
395 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.tr));
|
---|
396 |
|
---|
397 | /* ASSUMES: Anyone changing CPU state affecting the fExec bits will update them! */
|
---|
398 | AssertMsg((pVCpu->iem.s.fExec & ~IEM_F_USER_OPTS) == iemCalcExecFlags(pVCpu),
|
---|
399 | ("fExec=%#x iemCalcExecModeFlags=%#x\n", pVCpu->iem.s.fExec, iemCalcExecFlags(pVCpu)));
|
---|
400 |
|
---|
401 | IEMMODE const enmMode = IEM_GET_CPU_MODE(pVCpu);
|
---|
402 | pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */
|
---|
403 | pVCpu->iem.s.enmEffAddrMode = enmMode;
|
---|
404 | if (enmMode != IEMMODE_64BIT)
|
---|
405 | {
|
---|
406 | pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */
|
---|
407 | pVCpu->iem.s.enmEffOpSize = enmMode;
|
---|
408 | }
|
---|
409 | else
|
---|
410 | {
|
---|
411 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
412 | pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT;
|
---|
413 | }
|
---|
414 | pVCpu->iem.s.fPrefixes = 0;
|
---|
415 | pVCpu->iem.s.uRexReg = 0;
|
---|
416 | pVCpu->iem.s.uRexB = 0;
|
---|
417 | pVCpu->iem.s.uRexIndex = 0;
|
---|
418 | pVCpu->iem.s.idxPrefix = 0;
|
---|
419 | pVCpu->iem.s.uVex3rdReg = 0;
|
---|
420 | pVCpu->iem.s.uVexLength = 0;
|
---|
421 | pVCpu->iem.s.fEvexStuff = 0;
|
---|
422 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
423 | #ifdef IEM_WITH_CODE_TLB
|
---|
424 | if (pVCpu->iem.s.pbInstrBuf)
|
---|
425 | {
|
---|
426 | uint64_t off = (enmMode == IEMMODE_64BIT
|
---|
427 | ? pVCpu->cpum.GstCtx.rip
|
---|
428 | : pVCpu->cpum.GstCtx.eip + (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base)
|
---|
429 | - pVCpu->iem.s.uInstrBufPc;
|
---|
430 | if (off < pVCpu->iem.s.cbInstrBufTotal)
|
---|
431 | {
|
---|
432 | pVCpu->iem.s.offInstrNextByte = (uint32_t)off;
|
---|
433 | pVCpu->iem.s.offCurInstrStart = (uint16_t)off;
|
---|
434 | if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal)
|
---|
435 | pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15;
|
---|
436 | else
|
---|
437 | pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal;
|
---|
438 | }
|
---|
439 | else
|
---|
440 | {
|
---|
441 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
442 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
443 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
444 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
445 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
446 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
447 | }
|
---|
448 | }
|
---|
449 | else
|
---|
450 | {
|
---|
451 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
452 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
453 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
454 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
455 | # ifdef VBOX_STRICT
|
---|
456 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
457 | # endif
|
---|
458 | }
|
---|
459 | # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
460 | pVCpu->iem.s.offOpcode = 0;
|
---|
461 | # endif
|
---|
462 | #else /* !IEM_WITH_CODE_TLB */
|
---|
463 | pVCpu->iem.s.cbOpcode = 0;
|
---|
464 | pVCpu->iem.s.offOpcode = 0;
|
---|
465 | #endif /* !IEM_WITH_CODE_TLB */
|
---|
466 | pVCpu->iem.s.offModRm = 0;
|
---|
467 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
468 | pVCpu->iem.s.iNextMapping = 0;
|
---|
469 | Assert(pVCpu->iem.s.rcPassUp == VINF_SUCCESS);
|
---|
470 | Assert(!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS));
|
---|
471 |
|
---|
472 | #ifdef DBGFTRACE_ENABLED
|
---|
473 | switch (enmMode)
|
---|
474 | {
|
---|
475 | case IEMMODE_64BIT:
|
---|
476 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.rip);
|
---|
477 | break;
|
---|
478 | case IEMMODE_32BIT:
|
---|
479 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
480 | break;
|
---|
481 | case IEMMODE_16BIT:
|
---|
482 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
483 | break;
|
---|
484 | }
|
---|
485 | #endif
|
---|
486 | }
|
---|
487 |
|
---|
488 |
|
---|
489 |
|
---|
490 | /**
|
---|
491 | * Prefetch opcodes the first time when starting executing.
|
---|
492 | *
|
---|
493 | * @returns Strict VBox status code.
|
---|
494 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
495 | * calling thread.
|
---|
496 | * @param fExecOpts Optional execution flags:
|
---|
497 | * - IEM_F_BYPASS_HANDLERS
|
---|
498 | * - IEM_F_X86_DISREGARD_LOCK
|
---|
499 | */
|
---|
500 | static VBOXSTRICTRC iemInitDecoderAndPrefetchOpcodes(PVMCPUCC pVCpu, uint32_t fExecOpts) RT_NOEXCEPT
|
---|
501 | {
|
---|
502 | iemInitDecoder(pVCpu, fExecOpts);
|
---|
503 |
|
---|
504 | #ifndef IEM_WITH_CODE_TLB
|
---|
505 | /*
|
---|
506 | * What we're doing here is very similar to iemMemMap/iemMemBounceBufferMap.
|
---|
507 | *
|
---|
508 | * First translate CS:rIP to a physical address.
|
---|
509 | *
|
---|
510 | * Note! The iemOpcodeFetchMoreBytes code depends on this here code to fetch
|
---|
511 | * all relevant bytes from the first page, as it ASSUMES it's only ever
|
---|
512 | * called for dealing with CS.LIM, page crossing and instructions that
|
---|
513 | * are too long.
|
---|
514 | */
|
---|
515 | uint32_t cbToTryRead;
|
---|
516 | RTGCPTR GCPtrPC;
|
---|
517 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
518 | {
|
---|
519 | cbToTryRead = GUEST_PAGE_SIZE;
|
---|
520 | GCPtrPC = pVCpu->cpum.GstCtx.rip;
|
---|
521 | if (IEM_IS_CANONICAL(GCPtrPC))
|
---|
522 | cbToTryRead = GUEST_PAGE_SIZE - (GCPtrPC & GUEST_PAGE_OFFSET_MASK);
|
---|
523 | else
|
---|
524 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
525 | }
|
---|
526 | else
|
---|
527 | {
|
---|
528 | uint32_t GCPtrPC32 = pVCpu->cpum.GstCtx.eip;
|
---|
529 | AssertMsg(!(GCPtrPC32 & ~(uint32_t)UINT16_MAX) || IEM_IS_32BIT_CODE(pVCpu), ("%04x:%RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
530 | if (GCPtrPC32 <= pVCpu->cpum.GstCtx.cs.u32Limit)
|
---|
531 | cbToTryRead = pVCpu->cpum.GstCtx.cs.u32Limit - GCPtrPC32 + 1;
|
---|
532 | else
|
---|
533 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
534 | if (cbToTryRead) { /* likely */ }
|
---|
535 | else /* overflowed */
|
---|
536 | {
|
---|
537 | Assert(GCPtrPC32 == 0); Assert(pVCpu->cpum.GstCtx.cs.u32Limit == UINT32_MAX);
|
---|
538 | cbToTryRead = UINT32_MAX;
|
---|
539 | }
|
---|
540 | GCPtrPC = (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base + GCPtrPC32;
|
---|
541 | Assert(GCPtrPC <= UINT32_MAX);
|
---|
542 | }
|
---|
543 |
|
---|
544 | PGMPTWALKFAST WalkFast;
|
---|
545 | int rc = PGMGstQueryPageFast(pVCpu, GCPtrPC,
|
---|
546 | IEM_GET_CPL(pVCpu) == 3 ? PGMQPAGE_F_EXECUTE | PGMQPAGE_F_USER_MODE : PGMQPAGE_F_EXECUTE,
|
---|
547 | &WalkFast);
|
---|
548 | if (RT_SUCCESS(rc))
|
---|
549 | Assert(WalkFast.fInfo & PGM_WALKINFO_SUCCEEDED);
|
---|
550 | else
|
---|
551 | {
|
---|
552 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - rc=%Rrc\n", GCPtrPC, rc));
|
---|
553 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
554 | /** @todo This isn't quite right yet, as PGM_GST_SLAT_NAME_EPT(Walk) doesn't
|
---|
555 | * know about what kind of access we're making! See PGM_GST_NAME(WalkFast). */
|
---|
556 | if (WalkFast.fFailed & PGM_WALKFAIL_EPT)
|
---|
557 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &WalkFast, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
558 | # endif
|
---|
559 | return iemRaisePageFault(pVCpu, GCPtrPC, 1, IEM_ACCESS_INSTRUCTION, rc);
|
---|
560 | }
|
---|
561 | #if 0
|
---|
562 | if ((WalkFast.fEffective & X86_PTE_US) || IEM_GET_CPL(pVCpu) != 3) { /* likely */ }
|
---|
563 | else
|
---|
564 | {
|
---|
565 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - supervisor page\n", GCPtrPC));
|
---|
566 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
567 | /** @todo this is completely wrong for EPT. WalkFast.fFailed is always zero here!*/
|
---|
568 | # error completely wrong
|
---|
569 | if (WalkFast.fFailed & PGM_WALKFAIL_EPT)
|
---|
570 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &WalkFast, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
571 | # endif
|
---|
572 | return iemRaisePageFault(pVCpu, GCPtrPC, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
573 | }
|
---|
574 | if (!(WalkFast.fEffective & X86_PTE_PAE_NX) || !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE)) { /* likely */ }
|
---|
575 | else
|
---|
576 | {
|
---|
577 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - NX\n", GCPtrPC));
|
---|
578 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
579 | /** @todo this is completely wrong for EPT. WalkFast.fFailed is always zero here!*/
|
---|
580 | # error completely wrong.
|
---|
581 | if (WalkFast.fFailed & PGM_WALKFAIL_EPT)
|
---|
582 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &WalkFast, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
583 | # endif
|
---|
584 | return iemRaisePageFault(pVCpu, GCPtrPC, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
585 | }
|
---|
586 | #else
|
---|
587 | Assert((WalkFast.fEffective & X86_PTE_US) || IEM_GET_CPL(pVCpu) != 3);
|
---|
588 | Assert(!(WalkFast.fEffective & X86_PTE_PAE_NX) || !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE));
|
---|
589 | #endif
|
---|
590 | RTGCPHYS const GCPhys = WalkFast.GCPhys;
|
---|
591 |
|
---|
592 | /*
|
---|
593 | * Read the bytes at this address.
|
---|
594 | */
|
---|
595 | uint32_t cbLeftOnPage = GUEST_PAGE_SIZE - (GCPtrPC & GUEST_PAGE_OFFSET_MASK);
|
---|
596 | if (cbToTryRead > cbLeftOnPage)
|
---|
597 | cbToTryRead = cbLeftOnPage;
|
---|
598 | if (cbToTryRead > sizeof(pVCpu->iem.s.abOpcode))
|
---|
599 | cbToTryRead = sizeof(pVCpu->iem.s.abOpcode);
|
---|
600 |
|
---|
601 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
602 | {
|
---|
603 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhys, pVCpu->iem.s.abOpcode, cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
604 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
605 | { /* likely */ }
|
---|
606 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
607 | {
|
---|
608 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
609 | GCPtrPC, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
610 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
611 | }
|
---|
612 | else
|
---|
613 | {
|
---|
614 | Log((RT_SUCCESS(rcStrict)
|
---|
615 | ? "iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
616 | : "iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
617 | GCPtrPC, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
618 | return rcStrict;
|
---|
619 | }
|
---|
620 | }
|
---|
621 | else
|
---|
622 | {
|
---|
623 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->iem.s.abOpcode, GCPhys, cbToTryRead);
|
---|
624 | if (RT_SUCCESS(rc))
|
---|
625 | { /* likely */ }
|
---|
626 | else
|
---|
627 | {
|
---|
628 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read error - rc=%Rrc (!!)\n",
|
---|
629 | GCPtrPC, GCPhys, rc, cbToTryRead));
|
---|
630 | return rc;
|
---|
631 | }
|
---|
632 | }
|
---|
633 | pVCpu->iem.s.cbOpcode = cbToTryRead;
|
---|
634 | #endif /* !IEM_WITH_CODE_TLB */
|
---|
635 | return VINF_SUCCESS;
|
---|
636 | }
|
---|
637 |
|
---|
638 |
|
---|
639 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
640 | /**
|
---|
641 | * Helper for doing large page accounting at TLB load time.
|
---|
642 | */
|
---|
643 | template<bool const a_fGlobal>
|
---|
644 | DECL_FORCE_INLINE(void) iemTlbLoadedLargePage(IEMTLB *pTlb, RTGCPTR uTagNoRev, bool f2MbLargePages)
|
---|
645 | {
|
---|
646 | if (a_fGlobal)
|
---|
647 | pTlb->cTlbGlobalLargePageCurLoads++;
|
---|
648 | else
|
---|
649 | pTlb->cTlbNonGlobalLargePageCurLoads++;
|
---|
650 |
|
---|
651 | AssertCompile(IEMTLB_CALC_TAG_NO_REV((RTGCPTR)0x8731U << GUEST_PAGE_SHIFT) == 0x8731U);
|
---|
652 | uint32_t const fMask = (f2MbLargePages ? _2M - 1U : _4M - 1U) >> GUEST_PAGE_SHIFT;
|
---|
653 | IEMTLB::LARGEPAGERANGE * const pRange = a_fGlobal
|
---|
654 | ? &pTlb->GlobalLargePageRange
|
---|
655 | : &pTlb->NonGlobalLargePageRange;
|
---|
656 | uTagNoRev &= ~(RTGCPTR)fMask;
|
---|
657 | if (uTagNoRev < pRange->uFirstTag)
|
---|
658 | pRange->uFirstTag = uTagNoRev;
|
---|
659 |
|
---|
660 | uTagNoRev |= fMask;
|
---|
661 | if (uTagNoRev > pRange->uLastTag)
|
---|
662 | pRange->uLastTag = uTagNoRev;
|
---|
663 | }
|
---|
664 | #endif
|
---|
665 |
|
---|
666 |
|
---|
667 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
668 | /**
|
---|
669 | * Worker for iemTlbInvalidateAll.
|
---|
670 | */
|
---|
671 | template<bool a_fGlobal>
|
---|
672 | DECL_FORCE_INLINE(void) iemTlbInvalidateOne(IEMTLB *pTlb)
|
---|
673 | {
|
---|
674 | if (!a_fGlobal)
|
---|
675 | pTlb->cTlsFlushes++;
|
---|
676 | else
|
---|
677 | pTlb->cTlsGlobalFlushes++;
|
---|
678 |
|
---|
679 | pTlb->uTlbRevision += IEMTLB_REVISION_INCR;
|
---|
680 | if (RT_LIKELY(pTlb->uTlbRevision != 0))
|
---|
681 | { /* very likely */ }
|
---|
682 | else
|
---|
683 | {
|
---|
684 | pTlb->uTlbRevision = IEMTLB_REVISION_INCR;
|
---|
685 | pTlb->cTlbRevisionRollovers++;
|
---|
686 | unsigned i = RT_ELEMENTS(pTlb->aEntries) / 2;
|
---|
687 | while (i-- > 0)
|
---|
688 | pTlb->aEntries[i * 2].uTag = 0;
|
---|
689 | }
|
---|
690 |
|
---|
691 | pTlb->cTlbNonGlobalLargePageCurLoads = 0;
|
---|
692 | pTlb->NonGlobalLargePageRange.uLastTag = 0;
|
---|
693 | pTlb->NonGlobalLargePageRange.uFirstTag = UINT64_MAX;
|
---|
694 |
|
---|
695 | if (a_fGlobal)
|
---|
696 | {
|
---|
697 | pTlb->uTlbRevisionGlobal += IEMTLB_REVISION_INCR;
|
---|
698 | if (RT_LIKELY(pTlb->uTlbRevisionGlobal != 0))
|
---|
699 | { /* very likely */ }
|
---|
700 | else
|
---|
701 | {
|
---|
702 | pTlb->uTlbRevisionGlobal = IEMTLB_REVISION_INCR;
|
---|
703 | pTlb->cTlbRevisionRollovers++;
|
---|
704 | unsigned i = RT_ELEMENTS(pTlb->aEntries) / 2;
|
---|
705 | while (i-- > 0)
|
---|
706 | pTlb->aEntries[i * 2 + 1].uTag = 0;
|
---|
707 | }
|
---|
708 |
|
---|
709 | pTlb->cTlbGlobalLargePageCurLoads = 0;
|
---|
710 | pTlb->GlobalLargePageRange.uLastTag = 0;
|
---|
711 | pTlb->GlobalLargePageRange.uFirstTag = UINT64_MAX;
|
---|
712 | }
|
---|
713 | }
|
---|
714 | #endif
|
---|
715 |
|
---|
716 |
|
---|
717 | /**
|
---|
718 | * Worker for IEMTlbInvalidateAll and IEMTlbInvalidateAllGlobal.
|
---|
719 | */
|
---|
720 | template<bool a_fGlobal>
|
---|
721 | DECL_FORCE_INLINE(void) iemTlbInvalidateAll(PVMCPUCC pVCpu)
|
---|
722 | {
|
---|
723 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
724 | Log10(("IEMTlbInvalidateAll\n"));
|
---|
725 |
|
---|
726 | # ifdef IEM_WITH_CODE_TLB
|
---|
727 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
728 | iemTlbInvalidateOne<a_fGlobal>(&pVCpu->iem.s.CodeTlb);
|
---|
729 | if (a_fGlobal)
|
---|
730 | IEMTLBTRACE_FLUSH_GLOBAL(pVCpu, pVCpu->iem.s.CodeTlb.uTlbRevision, pVCpu->iem.s.CodeTlb.uTlbRevisionGlobal, false);
|
---|
731 | else
|
---|
732 | IEMTLBTRACE_FLUSH(pVCpu, pVCpu->iem.s.CodeTlb.uTlbRevision, false);
|
---|
733 | # endif
|
---|
734 |
|
---|
735 | # ifdef IEM_WITH_DATA_TLB
|
---|
736 | iemTlbInvalidateOne<a_fGlobal>(&pVCpu->iem.s.DataTlb);
|
---|
737 | if (a_fGlobal)
|
---|
738 | IEMTLBTRACE_FLUSH_GLOBAL(pVCpu, pVCpu->iem.s.DataTlb.uTlbRevision, pVCpu->iem.s.DataTlb.uTlbRevisionGlobal, true);
|
---|
739 | else
|
---|
740 | IEMTLBTRACE_FLUSH(pVCpu, pVCpu->iem.s.DataTlb.uTlbRevision, true);
|
---|
741 | # endif
|
---|
742 | #else
|
---|
743 | RT_NOREF(pVCpu);
|
---|
744 | #endif
|
---|
745 | }
|
---|
746 |
|
---|
747 |
|
---|
748 | /**
|
---|
749 | * Invalidates non-global the IEM TLB entries.
|
---|
750 | *
|
---|
751 | * This is called internally as well as by PGM when moving GC mappings.
|
---|
752 | *
|
---|
753 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
754 | * thread.
|
---|
755 | */
|
---|
756 | VMM_INT_DECL(void) IEMTlbInvalidateAll(PVMCPUCC pVCpu)
|
---|
757 | {
|
---|
758 | iemTlbInvalidateAll<false>(pVCpu);
|
---|
759 | }
|
---|
760 |
|
---|
761 |
|
---|
762 | /**
|
---|
763 | * Invalidates all the IEM TLB entries.
|
---|
764 | *
|
---|
765 | * This is called internally as well as by PGM when moving GC mappings.
|
---|
766 | *
|
---|
767 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
768 | * thread.
|
---|
769 | */
|
---|
770 | VMM_INT_DECL(void) IEMTlbInvalidateAllGlobal(PVMCPUCC pVCpu)
|
---|
771 | {
|
---|
772 | iemTlbInvalidateAll<true>(pVCpu);
|
---|
773 | }
|
---|
774 |
|
---|
775 |
|
---|
776 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
777 |
|
---|
778 | template<bool const a_fDataTlb, bool const a_f2MbLargePage, bool const a_fGlobal, bool const a_fNonGlobal>
|
---|
779 | DECLINLINE(void) iemTlbInvalidateLargePageWorkerInner(PVMCPUCC pVCpu, IEMTLB *pTlb, RTGCPTR GCPtrTag, RTGCPTR GCPtrInstrBufPcTag)
|
---|
780 | {
|
---|
781 | IEMTLBTRACE_LARGE_SCAN(pVCpu, a_fGlobal, a_fNonGlobal, a_fDataTlb);
|
---|
782 |
|
---|
783 | /*
|
---|
784 | * Combine TAG values with the TLB revisions.
|
---|
785 | */
|
---|
786 | RTGCPTR GCPtrTagGlob = a_fGlobal ? GCPtrTag | pTlb->uTlbRevisionGlobal : 0;
|
---|
787 | if (a_fNonGlobal)
|
---|
788 | GCPtrTag |= pTlb->uTlbRevision;
|
---|
789 |
|
---|
790 | /*
|
---|
791 | * Set up the scan.
|
---|
792 | *
|
---|
793 | * GCPtrTagMask: A 2MB page consists of 512 4K pages, so a 256 TLB will map
|
---|
794 | * offset zero and offset 1MB to the same slot pair. Our GCPtrTag[Globl]
|
---|
795 | * values are for the range 0-1MB, or slots 0-256. So, we construct a mask
|
---|
796 | * that fold large page offsets 1MB-2MB into the 0-1MB range.
|
---|
797 | *
|
---|
798 | * For our example with 2MB pages and a 256 entry TLB: 0xfffffffffffffeff
|
---|
799 | */
|
---|
800 | bool const fPartialScan = IEMTLB_ENTRY_COUNT > (a_f2MbLargePage ? 512 : 1024);
|
---|
801 | uintptr_t idxEven = fPartialScan ? IEMTLB_TAG_TO_EVEN_INDEX(GCPtrTag) : 0;
|
---|
802 | uintptr_t const idxEvenEnd = fPartialScan ? idxEven + ((a_f2MbLargePage ? 512 : 1024) * 2) : IEMTLB_ENTRY_COUNT * 2;
|
---|
803 | RTGCPTR const GCPtrTagMask = fPartialScan ? ~(RTGCPTR)0
|
---|
804 | : ~(RTGCPTR)( (RT_BIT_32(a_f2MbLargePage ? 9 : 10) - 1U)
|
---|
805 | & ~(uint32_t)(RT_BIT_32(IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO) - 1U));
|
---|
806 |
|
---|
807 | /*
|
---|
808 | * Do the scanning.
|
---|
809 | */
|
---|
810 | for (; idxEven < idxEvenEnd; idxEven += 2)
|
---|
811 | {
|
---|
812 | if (a_fNonGlobal)
|
---|
813 | {
|
---|
814 | if ((pTlb->aEntries[idxEven].uTag & GCPtrTagMask) == GCPtrTag)
|
---|
815 | {
|
---|
816 | if (pTlb->aEntries[idxEven].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE)
|
---|
817 | {
|
---|
818 | IEMTLBTRACE_LARGE_EVICT_SLOT(pVCpu, GCPtrTag, pTlb->aEntries[idxEven].GCPhys, idxEven, a_fDataTlb);
|
---|
819 | pTlb->aEntries[idxEven].uTag = 0;
|
---|
820 | if (!a_fDataTlb && GCPtrTag == GCPtrInstrBufPcTag)
|
---|
821 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
822 | }
|
---|
823 | }
|
---|
824 | GCPtrTag++;
|
---|
825 | }
|
---|
826 |
|
---|
827 | if (a_fGlobal)
|
---|
828 | {
|
---|
829 | if ((pTlb->aEntries[idxEven + 1].uTag & GCPtrTagMask) == GCPtrTagGlob)
|
---|
830 | {
|
---|
831 | if (pTlb->aEntries[idxEven + 1].fFlagsAndPhysRev & IEMTLBE_F_PT_LARGE_PAGE)
|
---|
832 | {
|
---|
833 | IEMTLBTRACE_LARGE_EVICT_SLOT(pVCpu, GCPtrTag, pTlb->aEntries[idxEven + 1].GCPhys, idxEven + 1, a_fDataTlb);
|
---|
834 | pTlb->aEntries[idxEven + 1].uTag = 0;
|
---|
835 | if (!a_fDataTlb && GCPtrTag == GCPtrInstrBufPcTag)
|
---|
836 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
837 | }
|
---|
838 | }
|
---|
839 | GCPtrTagGlob++;
|
---|
840 | }
|
---|
841 | }
|
---|
842 |
|
---|
843 | }
|
---|
844 |
|
---|
845 | template<bool const a_fDataTlb, bool const a_f2MbLargePage>
|
---|
846 | DECLINLINE(void) iemTlbInvalidateLargePageWorker(PVMCPUCC pVCpu, IEMTLB *pTlb, RTGCPTR GCPtrTag, RTGCPTR GCPtrInstrBufPcTag)
|
---|
847 | {
|
---|
848 | AssertCompile(IEMTLB_CALC_TAG_NO_REV((RTGCPTR)0x8731U << GUEST_PAGE_SHIFT) == 0x8731U);
|
---|
849 |
|
---|
850 | GCPtrTag &= ~(RTGCPTR)(RT_BIT_64((a_f2MbLargePage ? 21 : 22) - GUEST_PAGE_SHIFT) - 1U);
|
---|
851 | if ( GCPtrTag >= pTlb->GlobalLargePageRange.uFirstTag
|
---|
852 | && GCPtrTag <= pTlb->GlobalLargePageRange.uLastTag)
|
---|
853 | {
|
---|
854 | if ( GCPtrTag < pTlb->NonGlobalLargePageRange.uFirstTag
|
---|
855 | || GCPtrTag > pTlb->NonGlobalLargePageRange.uLastTag)
|
---|
856 | iemTlbInvalidateLargePageWorkerInner<a_fDataTlb, a_f2MbLargePage, true, false>(pVCpu, pTlb, GCPtrTag, GCPtrInstrBufPcTag);
|
---|
857 | else
|
---|
858 | iemTlbInvalidateLargePageWorkerInner<a_fDataTlb, a_f2MbLargePage, true, true>(pVCpu, pTlb, GCPtrTag, GCPtrInstrBufPcTag);
|
---|
859 | }
|
---|
860 | else if ( GCPtrTag < pTlb->NonGlobalLargePageRange.uFirstTag
|
---|
861 | || GCPtrTag > pTlb->NonGlobalLargePageRange.uLastTag)
|
---|
862 | {
|
---|
863 | /* Large pages aren't as likely in the non-global TLB half. */
|
---|
864 | IEMTLBTRACE_LARGE_SCAN(pVCpu, false, false, a_fDataTlb);
|
---|
865 | }
|
---|
866 | else
|
---|
867 | iemTlbInvalidateLargePageWorkerInner<a_fDataTlb, a_f2MbLargePage, false, true>(pVCpu, pTlb, GCPtrTag, GCPtrInstrBufPcTag);
|
---|
868 | }
|
---|
869 |
|
---|
870 | template<bool const a_fDataTlb>
|
---|
871 | DECLINLINE(void) iemTlbInvalidatePageWorker(PVMCPUCC pVCpu, IEMTLB *pTlb, RTGCPTR GCPtrTag, uintptr_t idxEven)
|
---|
872 | {
|
---|
873 | /*
|
---|
874 | * Flush the entry pair.
|
---|
875 | */
|
---|
876 | if (pTlb->aEntries[idxEven].uTag == (GCPtrTag | pTlb->uTlbRevision))
|
---|
877 | {
|
---|
878 | IEMTLBTRACE_EVICT_SLOT(pVCpu, GCPtrTag, pTlb->aEntries[idxEven].GCPhys, idxEven, a_fDataTlb);
|
---|
879 | pTlb->aEntries[idxEven].uTag = 0;
|
---|
880 | if (!a_fDataTlb && GCPtrTag == IEMTLB_CALC_TAG_NO_REV(pVCpu->iem.s.uInstrBufPc))
|
---|
881 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
882 | }
|
---|
883 | if (pTlb->aEntries[idxEven + 1].uTag == (GCPtrTag | pTlb->uTlbRevisionGlobal))
|
---|
884 | {
|
---|
885 | IEMTLBTRACE_EVICT_SLOT(pVCpu, GCPtrTag, pTlb->aEntries[idxEven + 1].GCPhys, idxEven + 1, a_fDataTlb);
|
---|
886 | pTlb->aEntries[idxEven + 1].uTag = 0;
|
---|
887 | if (!a_fDataTlb && GCPtrTag == IEMTLB_CALC_TAG_NO_REV(pVCpu->iem.s.uInstrBufPc))
|
---|
888 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
889 | }
|
---|
890 |
|
---|
891 | /*
|
---|
892 | * If there are (or has been) large pages in the TLB, we must check if the
|
---|
893 | * address being flushed may involve one of those, as then we'd have to
|
---|
894 | * scan for entries relating to the same page and flush those as well.
|
---|
895 | */
|
---|
896 | # if 0 /** @todo do accurate counts or currently loaded large stuff and we can use those */
|
---|
897 | if (pTlb->cTlbGlobalLargePageCurLoads || pTlb->cTlbNonGlobalLargePageCurLoads)
|
---|
898 | # else
|
---|
899 | if (pTlb->GlobalLargePageRange.uLastTag || pTlb->NonGlobalLargePageRange.uLastTag)
|
---|
900 | # endif
|
---|
901 | {
|
---|
902 | RTGCPTR const GCPtrInstrBufPcTag = a_fDataTlb ? 0 : IEMTLB_CALC_TAG_NO_REV(pVCpu->iem.s.uInstrBufPc);
|
---|
903 | if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
|
---|
904 | iemTlbInvalidateLargePageWorker<a_fDataTlb, true>(pVCpu, pTlb, GCPtrTag, GCPtrInstrBufPcTag);
|
---|
905 | else
|
---|
906 | iemTlbInvalidateLargePageWorker<a_fDataTlb, false>(pVCpu, pTlb, GCPtrTag, GCPtrInstrBufPcTag);
|
---|
907 | }
|
---|
908 | }
|
---|
909 |
|
---|
910 | #endif /* defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB) */
|
---|
911 |
|
---|
912 | /**
|
---|
913 | * Invalidates a page in the TLBs.
|
---|
914 | *
|
---|
915 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
916 | * thread.
|
---|
917 | * @param GCPtr The address of the page to invalidate
|
---|
918 | * @thread EMT(pVCpu)
|
---|
919 | */
|
---|
920 | VMM_INT_DECL(void) IEMTlbInvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCPtr)
|
---|
921 | {
|
---|
922 | IEMTLBTRACE_INVLPG(pVCpu, GCPtr);
|
---|
923 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
924 | Log10(("IEMTlbInvalidatePage: GCPtr=%RGv\n", GCPtr));
|
---|
925 | GCPtr = IEMTLB_CALC_TAG_NO_REV(GCPtr);
|
---|
926 | Assert(!(GCPtr >> (48 - X86_PAGE_SHIFT)));
|
---|
927 | uintptr_t const idxEven = IEMTLB_TAG_TO_EVEN_INDEX(GCPtr);
|
---|
928 |
|
---|
929 | # ifdef IEM_WITH_CODE_TLB
|
---|
930 | iemTlbInvalidatePageWorker<false>(pVCpu, &pVCpu->iem.s.CodeTlb, GCPtr, idxEven);
|
---|
931 | # endif
|
---|
932 | # ifdef IEM_WITH_DATA_TLB
|
---|
933 | iemTlbInvalidatePageWorker<true>(pVCpu, &pVCpu->iem.s.DataTlb, GCPtr, idxEven);
|
---|
934 | # endif
|
---|
935 | #else
|
---|
936 | NOREF(pVCpu); NOREF(GCPtr);
|
---|
937 | #endif
|
---|
938 | }
|
---|
939 |
|
---|
940 |
|
---|
941 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
942 | /**
|
---|
943 | * Invalid both TLBs slow fashion following a rollover.
|
---|
944 | *
|
---|
945 | * Worker for IEMTlbInvalidateAllPhysical,
|
---|
946 | * IEMTlbInvalidateAllPhysicalAllCpus, iemOpcodeFetchBytesJmp, iemMemMap,
|
---|
947 | * iemMemMapJmp and others.
|
---|
948 | *
|
---|
949 | * @thread EMT(pVCpu)
|
---|
950 | */
|
---|
951 | static void IEMTlbInvalidateAllPhysicalSlow(PVMCPUCC pVCpu)
|
---|
952 | {
|
---|
953 | Log10(("IEMTlbInvalidateAllPhysicalSlow\n"));
|
---|
954 | ASMAtomicWriteU64(&pVCpu->iem.s.CodeTlb.uTlbPhysRev, IEMTLB_PHYS_REV_INCR * 2);
|
---|
955 | ASMAtomicWriteU64(&pVCpu->iem.s.DataTlb.uTlbPhysRev, IEMTLB_PHYS_REV_INCR * 2);
|
---|
956 |
|
---|
957 | unsigned i;
|
---|
958 | # ifdef IEM_WITH_CODE_TLB
|
---|
959 | i = RT_ELEMENTS(pVCpu->iem.s.CodeTlb.aEntries);
|
---|
960 | while (i-- > 0)
|
---|
961 | {
|
---|
962 | pVCpu->iem.s.CodeTlb.aEntries[i].pbMappingR3 = NULL;
|
---|
963 | pVCpu->iem.s.CodeTlb.aEntries[i].fFlagsAndPhysRev &= ~( IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PG_NO_READ
|
---|
964 | | IEMTLBE_F_PG_UNASSIGNED | IEMTLBE_F_PHYS_REV);
|
---|
965 | }
|
---|
966 | pVCpu->iem.s.CodeTlb.cTlbPhysRevRollovers++;
|
---|
967 | pVCpu->iem.s.CodeTlb.cTlbPhysRevFlushes++;
|
---|
968 | # endif
|
---|
969 | # ifdef IEM_WITH_DATA_TLB
|
---|
970 | i = RT_ELEMENTS(pVCpu->iem.s.DataTlb.aEntries);
|
---|
971 | while (i-- > 0)
|
---|
972 | {
|
---|
973 | pVCpu->iem.s.DataTlb.aEntries[i].pbMappingR3 = NULL;
|
---|
974 | pVCpu->iem.s.DataTlb.aEntries[i].fFlagsAndPhysRev &= ~( IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PG_NO_READ
|
---|
975 | | IEMTLBE_F_PG_UNASSIGNED | IEMTLBE_F_PHYS_REV);
|
---|
976 | }
|
---|
977 | pVCpu->iem.s.DataTlb.cTlbPhysRevRollovers++;
|
---|
978 | pVCpu->iem.s.DataTlb.cTlbPhysRevFlushes++;
|
---|
979 | # endif
|
---|
980 |
|
---|
981 | }
|
---|
982 | #endif
|
---|
983 |
|
---|
984 |
|
---|
985 | /**
|
---|
986 | * Invalidates the host physical aspects of the IEM TLBs.
|
---|
987 | *
|
---|
988 | * This is called internally as well as by PGM when moving GC mappings.
|
---|
989 | *
|
---|
990 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
991 | * thread.
|
---|
992 | * @note Currently not used.
|
---|
993 | */
|
---|
994 | VMM_INT_DECL(void) IEMTlbInvalidateAllPhysical(PVMCPUCC pVCpu)
|
---|
995 | {
|
---|
996 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
997 | /* Note! This probably won't end up looking exactly like this, but it give an idea... */
|
---|
998 | Log10(("IEMTlbInvalidateAllPhysical\n"));
|
---|
999 |
|
---|
1000 | # ifdef IEM_WITH_CODE_TLB
|
---|
1001 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
1002 | # endif
|
---|
1003 | uint64_t uTlbPhysRev = pVCpu->iem.s.CodeTlb.uTlbPhysRev + IEMTLB_PHYS_REV_INCR;
|
---|
1004 | if (RT_LIKELY(uTlbPhysRev > IEMTLB_PHYS_REV_INCR * 2))
|
---|
1005 | {
|
---|
1006 | pVCpu->iem.s.CodeTlb.uTlbPhysRev = uTlbPhysRev;
|
---|
1007 | pVCpu->iem.s.CodeTlb.cTlbPhysRevFlushes++;
|
---|
1008 | pVCpu->iem.s.DataTlb.uTlbPhysRev = uTlbPhysRev;
|
---|
1009 | pVCpu->iem.s.DataTlb.cTlbPhysRevFlushes++;
|
---|
1010 | }
|
---|
1011 | else
|
---|
1012 | IEMTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
1013 | #else
|
---|
1014 | NOREF(pVCpu);
|
---|
1015 | #endif
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 |
|
---|
1019 | /**
|
---|
1020 | * Invalidates the host physical aspects of the IEM TLBs.
|
---|
1021 | *
|
---|
1022 | * This is called internally as well as by PGM when moving GC mappings.
|
---|
1023 | *
|
---|
1024 | * @param pVM The cross context VM structure.
|
---|
1025 | * @param idCpuCaller The ID of the calling EMT if available to the caller,
|
---|
1026 | * otherwise NIL_VMCPUID.
|
---|
1027 | * @param enmReason The reason we're called.
|
---|
1028 | *
|
---|
1029 | * @remarks Caller holds the PGM lock.
|
---|
1030 | */
|
---|
1031 | VMM_INT_DECL(void) IEMTlbInvalidateAllPhysicalAllCpus(PVMCC pVM, VMCPUID idCpuCaller, IEMTLBPHYSFLUSHREASON enmReason)
|
---|
1032 | {
|
---|
1033 | #if defined(IEM_WITH_CODE_TLB) || defined(IEM_WITH_DATA_TLB)
|
---|
1034 | PVMCPUCC const pVCpuCaller = idCpuCaller >= pVM->cCpus ? VMMGetCpu(pVM) : VMMGetCpuById(pVM, idCpuCaller);
|
---|
1035 | if (pVCpuCaller)
|
---|
1036 | VMCPU_ASSERT_EMT(pVCpuCaller);
|
---|
1037 | Log10(("IEMTlbInvalidateAllPhysicalAllCpus: %d\n", enmReason)); RT_NOREF(enmReason);
|
---|
1038 |
|
---|
1039 | VMCC_FOR_EACH_VMCPU(pVM)
|
---|
1040 | {
|
---|
1041 | # ifdef IEM_WITH_CODE_TLB
|
---|
1042 | if (pVCpuCaller == pVCpu)
|
---|
1043 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
1044 | # endif
|
---|
1045 |
|
---|
1046 | uint64_t const uTlbPhysRevPrev = ASMAtomicUoReadU64(&pVCpu->iem.s.CodeTlb.uTlbPhysRev);
|
---|
1047 | uint64_t uTlbPhysRevNew = uTlbPhysRevPrev + IEMTLB_PHYS_REV_INCR;
|
---|
1048 | if (RT_LIKELY(uTlbPhysRevNew > IEMTLB_PHYS_REV_INCR * 2))
|
---|
1049 | { /* likely */}
|
---|
1050 | else if (pVCpuCaller != pVCpu)
|
---|
1051 | uTlbPhysRevNew = IEMTLB_PHYS_REV_INCR;
|
---|
1052 | else
|
---|
1053 | {
|
---|
1054 | IEMTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
1055 | continue;
|
---|
1056 | }
|
---|
1057 | if (ASMAtomicCmpXchgU64(&pVCpu->iem.s.CodeTlb.uTlbPhysRev, uTlbPhysRevNew, uTlbPhysRevPrev))
|
---|
1058 | pVCpu->iem.s.CodeTlb.cTlbPhysRevFlushes++;
|
---|
1059 |
|
---|
1060 | if (ASMAtomicCmpXchgU64(&pVCpu->iem.s.DataTlb.uTlbPhysRev, uTlbPhysRevNew, uTlbPhysRevPrev))
|
---|
1061 | pVCpu->iem.s.DataTlb.cTlbPhysRevFlushes++;
|
---|
1062 | }
|
---|
1063 | VMCC_FOR_EACH_VMCPU_END(pVM);
|
---|
1064 |
|
---|
1065 | #else
|
---|
1066 | RT_NOREF(pVM, idCpuCaller, enmReason);
|
---|
1067 | #endif
|
---|
1068 | }
|
---|
1069 |
|
---|
1070 |
|
---|
1071 | /**
|
---|
1072 | * Flushes the prefetch buffer, light version.
|
---|
1073 | */
|
---|
1074 | void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
1075 | {
|
---|
1076 | #ifndef IEM_WITH_CODE_TLB
|
---|
1077 | pVCpu->iem.s.cbOpcode = cbInstr;
|
---|
1078 | #else
|
---|
1079 | RT_NOREF(pVCpu, cbInstr);
|
---|
1080 | #endif
|
---|
1081 | }
|
---|
1082 |
|
---|
1083 |
|
---|
1084 | /**
|
---|
1085 | * Flushes the prefetch buffer, heavy version.
|
---|
1086 | */
|
---|
1087 | void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
1088 | {
|
---|
1089 | #ifndef IEM_WITH_CODE_TLB
|
---|
1090 | pVCpu->iem.s.cbOpcode = cbInstr; /* Note! SVM and VT-x may set this to zero on exit, rather than the instruction length. */
|
---|
1091 | #elif 1
|
---|
1092 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
1093 | RT_NOREF(cbInstr);
|
---|
1094 | #else
|
---|
1095 | RT_NOREF(pVCpu, cbInstr);
|
---|
1096 | #endif
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 |
|
---|
1100 |
|
---|
1101 | #ifdef IEM_WITH_CODE_TLB
|
---|
1102 |
|
---|
1103 | /**
|
---|
1104 | * Tries to fetches @a cbDst opcode bytes, raise the appropriate exception on
|
---|
1105 | * failure and jumps.
|
---|
1106 | *
|
---|
1107 | * We end up here for a number of reasons:
|
---|
1108 | * - pbInstrBuf isn't yet initialized.
|
---|
1109 | * - Advancing beyond the buffer boundrary (e.g. cross page).
|
---|
1110 | * - Advancing beyond the CS segment limit.
|
---|
1111 | * - Fetching from non-mappable page (e.g. MMIO).
|
---|
1112 | * - TLB loading in the recompiler (@a pvDst = NULL, @a cbDst = 0).
|
---|
1113 | *
|
---|
1114 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1115 | * calling thread.
|
---|
1116 | * @param pvDst Where to return the bytes.
|
---|
1117 | * @param cbDst Number of bytes to read. A value of zero is
|
---|
1118 | * allowed for initializing pbInstrBuf (the
|
---|
1119 | * recompiler does this). In this case it is best
|
---|
1120 | * to set pbInstrBuf to NULL prior to the call.
|
---|
1121 | */
|
---|
1122 | void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1123 | {
|
---|
1124 | # ifdef IN_RING3
|
---|
1125 | for (;;)
|
---|
1126 | {
|
---|
1127 | Assert(cbDst <= 8);
|
---|
1128 | uint32_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
1129 |
|
---|
1130 | /*
|
---|
1131 | * We might have a partial buffer match, deal with that first to make the
|
---|
1132 | * rest simpler. This is the first part of the cross page/buffer case.
|
---|
1133 | */
|
---|
1134 | uint8_t const * const pbInstrBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
1135 | if (pbInstrBuf != NULL)
|
---|
1136 | {
|
---|
1137 | Assert(cbDst != 0); /* pbInstrBuf shall be NULL in case of a TLB load */
|
---|
1138 | uint32_t const cbInstrBuf = pVCpu->iem.s.cbInstrBuf;
|
---|
1139 | if (offBuf < cbInstrBuf)
|
---|
1140 | {
|
---|
1141 | Assert(offBuf + cbDst > cbInstrBuf);
|
---|
1142 | uint32_t const cbCopy = cbInstrBuf - offBuf;
|
---|
1143 | memcpy(pvDst, &pbInstrBuf[offBuf], cbCopy);
|
---|
1144 |
|
---|
1145 | cbDst -= cbCopy;
|
---|
1146 | pvDst = (uint8_t *)pvDst + cbCopy;
|
---|
1147 | offBuf += cbCopy;
|
---|
1148 | }
|
---|
1149 | }
|
---|
1150 |
|
---|
1151 | /*
|
---|
1152 | * Check segment limit, figuring how much we're allowed to access at this point.
|
---|
1153 | *
|
---|
1154 | * We will fault immediately if RIP is past the segment limit / in non-canonical
|
---|
1155 | * territory. If we do continue, there are one or more bytes to read before we
|
---|
1156 | * end up in trouble and we need to do that first before faulting.
|
---|
1157 | */
|
---|
1158 | RTGCPTR GCPtrFirst;
|
---|
1159 | uint32_t cbMaxRead;
|
---|
1160 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
1161 | {
|
---|
1162 | GCPtrFirst = pVCpu->cpum.GstCtx.rip + (offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart);
|
---|
1163 | if (RT_LIKELY(IEM_IS_CANONICAL(GCPtrFirst)))
|
---|
1164 | { /* likely */ }
|
---|
1165 | else
|
---|
1166 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
1167 | cbMaxRead = X86_PAGE_SIZE - ((uint32_t)GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
1168 | }
|
---|
1169 | else
|
---|
1170 | {
|
---|
1171 | GCPtrFirst = pVCpu->cpum.GstCtx.eip + (offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart);
|
---|
1172 | /* Assert(!(GCPtrFirst & ~(uint32_t)UINT16_MAX) || IEM_IS_32BIT_CODE(pVCpu)); - this is allowed */
|
---|
1173 | if (RT_LIKELY((uint32_t)GCPtrFirst <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
1174 | { /* likely */ }
|
---|
1175 | else /** @todo For CPUs older than the 386, we should not necessarily generate \#GP here but wrap around! */
|
---|
1176 | iemRaiseSelectorBoundsJmp(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1177 | cbMaxRead = pVCpu->cpum.GstCtx.cs.u32Limit - (uint32_t)GCPtrFirst + 1;
|
---|
1178 | if (cbMaxRead != 0)
|
---|
1179 | { /* likely */ }
|
---|
1180 | else
|
---|
1181 | {
|
---|
1182 | /* Overflowed because address is 0 and limit is max. */
|
---|
1183 | Assert(GCPtrFirst == 0); Assert(pVCpu->cpum.GstCtx.cs.u32Limit == UINT32_MAX);
|
---|
1184 | cbMaxRead = X86_PAGE_SIZE;
|
---|
1185 | }
|
---|
1186 | GCPtrFirst = (uint32_t)GCPtrFirst + (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base;
|
---|
1187 | uint32_t cbMaxRead2 = X86_PAGE_SIZE - ((uint32_t)GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
1188 | if (cbMaxRead2 < cbMaxRead)
|
---|
1189 | cbMaxRead = cbMaxRead2;
|
---|
1190 | /** @todo testcase: unreal modes, both huge 16-bit and 32-bit. */
|
---|
1191 | }
|
---|
1192 |
|
---|
1193 | /*
|
---|
1194 | * Get the TLB entry for this piece of code.
|
---|
1195 | */
|
---|
1196 | uint64_t const uTagNoRev = IEMTLB_CALC_TAG_NO_REV(GCPtrFirst);
|
---|
1197 | PIEMTLBENTRY pTlbe = IEMTLB_TAG_TO_EVEN_ENTRY(&pVCpu->iem.s.CodeTlb, uTagNoRev);
|
---|
1198 | if ( pTlbe->uTag == (uTagNoRev | pVCpu->iem.s.CodeTlb.uTlbRevision)
|
---|
1199 | || (pTlbe = pTlbe + 1)->uTag == (uTagNoRev | pVCpu->iem.s.CodeTlb.uTlbRevisionGlobal))
|
---|
1200 | {
|
---|
1201 | /* likely when executing lots of code, otherwise unlikely */
|
---|
1202 | # ifdef IEM_WITH_TLB_STATISTICS
|
---|
1203 | pVCpu->iem.s.CodeTlb.cTlbCoreHits++;
|
---|
1204 | # endif
|
---|
1205 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_ACCESSED));
|
---|
1206 |
|
---|
1207 | /* Check TLB page table level access flags. */
|
---|
1208 | if (pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PT_NO_USER | IEMTLBE_F_PT_NO_EXEC))
|
---|
1209 | {
|
---|
1210 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_USER) && IEM_GET_CPL(pVCpu) == 3)
|
---|
1211 | {
|
---|
1212 | Log(("iemOpcodeFetchBytesJmp: %RGv - supervisor page\n", GCPtrFirst));
|
---|
1213 | iemRaisePageFaultJmp(pVCpu, GCPtrFirst, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1214 | }
|
---|
1215 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_EXEC) && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE))
|
---|
1216 | {
|
---|
1217 | Log(("iemOpcodeFetchMoreBytes: %RGv - NX\n", GCPtrFirst));
|
---|
1218 | iemRaisePageFaultJmp(pVCpu, GCPtrFirst, 1, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1219 | }
|
---|
1220 | }
|
---|
1221 |
|
---|
1222 | /* Look up the physical page info if necessary. */
|
---|
1223 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PHYS_REV) == pVCpu->iem.s.CodeTlb.uTlbPhysRev)
|
---|
1224 | { /* not necessary */ }
|
---|
1225 | else
|
---|
1226 | {
|
---|
1227 | if (RT_LIKELY(pVCpu->iem.s.CodeTlb.uTlbPhysRev > IEMTLB_PHYS_REV_INCR))
|
---|
1228 | { /* likely */ }
|
---|
1229 | else
|
---|
1230 | IEMTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
1231 | pTlbe->fFlagsAndPhysRev &= ~IEMTLBE_GCPHYS2PTR_MASK;
|
---|
1232 | int rc = PGMPhysIemGCPhys2PtrNoLock(pVCpu->CTX_SUFF(pVM), pVCpu, pTlbe->GCPhys, &pVCpu->iem.s.CodeTlb.uTlbPhysRev,
|
---|
1233 | &pTlbe->pbMappingR3, &pTlbe->fFlagsAndPhysRev);
|
---|
1234 | AssertRCStmt(rc, IEM_DO_LONGJMP(pVCpu, rc));
|
---|
1235 | }
|
---|
1236 | }
|
---|
1237 | else
|
---|
1238 | {
|
---|
1239 | pVCpu->iem.s.CodeTlb.cTlbCoreMisses++;
|
---|
1240 |
|
---|
1241 | /* This page table walking will set A bits as required by the access while performing the walk.
|
---|
1242 | ASSUMES these are set when the address is translated rather than on commit... */
|
---|
1243 | /** @todo testcase: check when A bits are actually set by the CPU for code. */
|
---|
1244 | PGMPTWALKFAST WalkFast;
|
---|
1245 | int rc = PGMGstQueryPageFast(pVCpu, GCPtrFirst,
|
---|
1246 | IEM_GET_CPL(pVCpu) == 3 ? PGMQPAGE_F_EXECUTE | PGMQPAGE_F_USER_MODE : PGMQPAGE_F_EXECUTE,
|
---|
1247 | &WalkFast);
|
---|
1248 | if (RT_SUCCESS(rc))
|
---|
1249 | Assert((WalkFast.fInfo & PGM_WALKINFO_SUCCEEDED) && WalkFast.fFailed == PGM_WALKFAIL_SUCCESS);
|
---|
1250 | else
|
---|
1251 | {
|
---|
1252 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
1253 | /** @todo Nested VMX: Need to handle EPT violation/misconfig here? OF COURSE! */
|
---|
1254 | Assert(!(Walk.fFailed & PGM_WALKFAIL_EPT));
|
---|
1255 | #endif
|
---|
1256 | Log(("iemOpcodeFetchMoreBytes: %RGv - rc=%Rrc\n", GCPtrFirst, rc));
|
---|
1257 | iemRaisePageFaultJmp(pVCpu, GCPtrFirst, 1, IEM_ACCESS_INSTRUCTION, rc);
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | AssertCompile(IEMTLBE_F_PT_NO_EXEC == 1);
|
---|
1261 | if ( !(WalkFast.fEffective & PGM_PTATTRS_G_MASK)
|
---|
1262 | || IEM_GET_CPL(pVCpu) != 0) /* optimization: Only use the PTE.G=1 entries in ring-0. */
|
---|
1263 | {
|
---|
1264 | pTlbe--;
|
---|
1265 | pTlbe->uTag = uTagNoRev | pVCpu->iem.s.CodeTlb.uTlbRevision;
|
---|
1266 | if (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE)
|
---|
1267 | iemTlbLoadedLargePage<false>(&pVCpu->iem.s.CodeTlb, uTagNoRev, RT_BOOL(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE));
|
---|
1268 | }
|
---|
1269 | else
|
---|
1270 | {
|
---|
1271 | pVCpu->iem.s.CodeTlb.cTlbCoreGlobalLoads++;
|
---|
1272 | pTlbe->uTag = uTagNoRev | pVCpu->iem.s.CodeTlb.uTlbRevisionGlobal;
|
---|
1273 | if (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE)
|
---|
1274 | iemTlbLoadedLargePage<true>(&pVCpu->iem.s.CodeTlb, uTagNoRev, RT_BOOL(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE));
|
---|
1275 | }
|
---|
1276 | pTlbe->fFlagsAndPhysRev = (~WalkFast.fEffective & (X86_PTE_US | X86_PTE_RW | X86_PTE_D | X86_PTE_A))
|
---|
1277 | | (WalkFast.fEffective >> X86_PTE_PAE_BIT_NX) /*IEMTLBE_F_PT_NO_EXEC*/
|
---|
1278 | | (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE);
|
---|
1279 | RTGCPHYS const GCPhysPg = WalkFast.GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
|
---|
1280 | pTlbe->GCPhys = GCPhysPg;
|
---|
1281 | pTlbe->pbMappingR3 = NULL;
|
---|
1282 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_EXEC) || !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE));
|
---|
1283 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_USER) || IEM_GET_CPL(pVCpu) != 3);
|
---|
1284 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_ACCESSED));
|
---|
1285 |
|
---|
1286 | if (!((uintptr_t)pTlbe & (sizeof(*pTlbe) * 2 - 1)))
|
---|
1287 | IEMTLBTRACE_LOAD( pVCpu, GCPtrFirst, pTlbe->GCPhys, (uint32_t)pTlbe->fFlagsAndPhysRev, false);
|
---|
1288 | else
|
---|
1289 | IEMTLBTRACE_LOAD_GLOBAL(pVCpu, GCPtrFirst, pTlbe->GCPhys, (uint32_t)pTlbe->fFlagsAndPhysRev, false);
|
---|
1290 |
|
---|
1291 | /* Resolve the physical address. */
|
---|
1292 | if (RT_LIKELY(pVCpu->iem.s.CodeTlb.uTlbPhysRev > IEMTLB_PHYS_REV_INCR))
|
---|
1293 | { /* likely */ }
|
---|
1294 | else
|
---|
1295 | IEMTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
1296 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_GCPHYS2PTR_MASK));
|
---|
1297 | rc = PGMPhysIemGCPhys2PtrNoLock(pVCpu->CTX_SUFF(pVM), pVCpu, GCPhysPg, &pVCpu->iem.s.CodeTlb.uTlbPhysRev,
|
---|
1298 | &pTlbe->pbMappingR3, &pTlbe->fFlagsAndPhysRev);
|
---|
1299 | AssertRCStmt(rc, IEM_DO_LONGJMP(pVCpu, rc));
|
---|
1300 | }
|
---|
1301 |
|
---|
1302 | # if defined(IN_RING3) || defined(IN_RING0) /** @todo fixme */
|
---|
1303 | /*
|
---|
1304 | * Try do a direct read using the pbMappingR3 pointer.
|
---|
1305 | * Note! Do not recheck the physical TLB revision number here as we have the
|
---|
1306 | * wrong response to changes in the else case. If someone is updating
|
---|
1307 | * pVCpu->iem.s.CodeTlb.uTlbPhysRev in parallel to us, we should be fine
|
---|
1308 | * pretending we always won the race.
|
---|
1309 | */
|
---|
1310 | if ( (pTlbe->fFlagsAndPhysRev & (/*IEMTLBE_F_PHYS_REV |*/ IEMTLBE_F_NO_MAPPINGR3 | IEMTLBE_F_PG_NO_READ))
|
---|
1311 | == /*pVCpu->iem.s.CodeTlb.uTlbPhysRev*/ 0U)
|
---|
1312 | {
|
---|
1313 | uint32_t const offPg = (GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
1314 | pVCpu->iem.s.cbInstrBufTotal = offPg + cbMaxRead;
|
---|
1315 | if (offBuf == (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart)
|
---|
1316 | {
|
---|
1317 | pVCpu->iem.s.cbInstrBuf = offPg + RT_MIN(15, cbMaxRead);
|
---|
1318 | pVCpu->iem.s.offCurInstrStart = (int16_t)offPg;
|
---|
1319 | }
|
---|
1320 | else
|
---|
1321 | {
|
---|
1322 | uint32_t const cbInstr = offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart;
|
---|
1323 | if (cbInstr + (uint32_t)cbDst <= 15)
|
---|
1324 | {
|
---|
1325 | pVCpu->iem.s.cbInstrBuf = offPg + RT_MIN(cbMaxRead + cbInstr, 15) - cbInstr;
|
---|
1326 | pVCpu->iem.s.offCurInstrStart = (int16_t)(offPg - cbInstr);
|
---|
1327 | }
|
---|
1328 | else
|
---|
1329 | {
|
---|
1330 | Log(("iemOpcodeFetchMoreBytes: %04x:%08RX64 LB %#x + %#zx -> #GP(0)\n",
|
---|
1331 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, cbInstr, cbDst));
|
---|
1332 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
1333 | }
|
---|
1334 | }
|
---|
1335 | if (cbDst <= cbMaxRead)
|
---|
1336 | {
|
---|
1337 | pVCpu->iem.s.fTbCrossedPage |= offPg == 0 || pVCpu->iem.s.fTbBranched != 0; /** @todo Spurious load effect on branch handling? */
|
---|
1338 | pVCpu->iem.s.GCPhysInstrBufPrev = pVCpu->iem.s.GCPhysInstrBuf;
|
---|
1339 |
|
---|
1340 | pVCpu->iem.s.offInstrNextByte = offPg + (uint32_t)cbDst;
|
---|
1341 | pVCpu->iem.s.uInstrBufPc = GCPtrFirst & ~(RTGCPTR)X86_PAGE_OFFSET_MASK;
|
---|
1342 | pVCpu->iem.s.GCPhysInstrBuf = pTlbe->GCPhys;
|
---|
1343 | pVCpu->iem.s.pbInstrBuf = pTlbe->pbMappingR3;
|
---|
1344 | if (cbDst > 0) /* To make ASAN happy in the TLB load case. */
|
---|
1345 | memcpy(pvDst, &pTlbe->pbMappingR3[offPg], cbDst);
|
---|
1346 | else
|
---|
1347 | Assert(!pvDst);
|
---|
1348 | return;
|
---|
1349 | }
|
---|
1350 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1351 |
|
---|
1352 | memcpy(pvDst, &pTlbe->pbMappingR3[offPg], cbMaxRead);
|
---|
1353 | pVCpu->iem.s.offInstrNextByte = offPg + cbMaxRead;
|
---|
1354 | }
|
---|
1355 | # else
|
---|
1356 | # error "refactor as needed"
|
---|
1357 | /*
|
---|
1358 | * If there is no special read handling, so we can read a bit more and
|
---|
1359 | * put it in the prefetch buffer.
|
---|
1360 | */
|
---|
1361 | if ( cbDst < cbMaxRead
|
---|
1362 | && (pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PHYS_REV | IEMTLBE_F_PG_NO_READ)) == pVCpu->iem.s.CodeTlb.uTlbPhysRev)
|
---|
1363 | {
|
---|
1364 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), pTlbe->GCPhys,
|
---|
1365 | &pVCpu->iem.s.abOpcode[0], cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
1366 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1367 | { /* likely */ }
|
---|
1368 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1369 | {
|
---|
1370 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1371 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1372 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1373 | AssertStmt(rcStrict == VINF_SUCCESS, IEM_DO_LONGJMP(pVCpu, VBOXSTRICRC_VAL(rcStrict)));
|
---|
1374 | }
|
---|
1375 | else
|
---|
1376 | {
|
---|
1377 | Log((RT_SUCCESS(rcStrict)
|
---|
1378 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1379 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1380 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1381 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1382 | }
|
---|
1383 | }
|
---|
1384 | # endif
|
---|
1385 | /*
|
---|
1386 | * Special read handling, so only read exactly what's needed.
|
---|
1387 | * This is a highly unlikely scenario.
|
---|
1388 | */
|
---|
1389 | else
|
---|
1390 | {
|
---|
1391 | pVCpu->iem.s.CodeTlb.cTlbSlowCodeReadPath++;
|
---|
1392 |
|
---|
1393 | /* Check instruction length. */
|
---|
1394 | uint32_t const cbInstr = offBuf - (uint32_t)(int32_t)pVCpu->iem.s.offCurInstrStart;
|
---|
1395 | if (RT_LIKELY(cbInstr + cbDst <= 15))
|
---|
1396 | { /* likely */ }
|
---|
1397 | else
|
---|
1398 | {
|
---|
1399 | Log(("iemOpcodeFetchMoreBytes: %04x:%08RX64 LB %#x + %#zx -> #GP(0) [slow]\n",
|
---|
1400 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, cbInstr, cbDst));
|
---|
1401 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
1402 | }
|
---|
1403 |
|
---|
1404 | /* Do the reading. */
|
---|
1405 | uint32_t const cbToRead = RT_MIN((uint32_t)cbDst, cbMaxRead);
|
---|
1406 | if (cbToRead > 0)
|
---|
1407 | {
|
---|
1408 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), pTlbe->GCPhys + (GCPtrFirst & X86_PAGE_OFFSET_MASK),
|
---|
1409 | pvDst, cbToRead, PGMACCESSORIGIN_IEM);
|
---|
1410 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1411 | { /* likely */ }
|
---|
1412 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1413 | {
|
---|
1414 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1415 | GCPtrFirst, pTlbe->GCPhys + (GCPtrFirst & X86_PAGE_OFFSET_MASK), VBOXSTRICTRC_VAL(rcStrict), cbToRead));
|
---|
1416 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1417 | AssertStmt(rcStrict == VINF_SUCCESS, IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1418 | }
|
---|
1419 | else
|
---|
1420 | {
|
---|
1421 | Log((RT_SUCCESS(rcStrict)
|
---|
1422 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1423 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1424 | GCPtrFirst, pTlbe->GCPhys + (GCPtrFirst & X86_PAGE_OFFSET_MASK), VBOXSTRICTRC_VAL(rcStrict), cbToRead));
|
---|
1425 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1426 | }
|
---|
1427 | }
|
---|
1428 |
|
---|
1429 | /* Update the state and probably return. */
|
---|
1430 | uint32_t const offPg = (GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
1431 | pVCpu->iem.s.fTbCrossedPage |= offPg == 0 || pVCpu->iem.s.fTbBranched != 0;
|
---|
1432 | pVCpu->iem.s.GCPhysInstrBufPrev = pVCpu->iem.s.GCPhysInstrBuf;
|
---|
1433 |
|
---|
1434 | pVCpu->iem.s.offCurInstrStart = (int16_t)(offPg - cbInstr);
|
---|
1435 | pVCpu->iem.s.offInstrNextByte = offPg + cbInstr + cbToRead;
|
---|
1436 | pVCpu->iem.s.cbInstrBuf = offPg + RT_MIN(15, cbMaxRead + cbInstr) - cbToRead - cbInstr;
|
---|
1437 | pVCpu->iem.s.cbInstrBufTotal = X86_PAGE_SIZE; /** @todo ??? */
|
---|
1438 | pVCpu->iem.s.GCPhysInstrBuf = pTlbe->GCPhys;
|
---|
1439 | pVCpu->iem.s.uInstrBufPc = GCPtrFirst & ~(RTGCPTR)X86_PAGE_OFFSET_MASK;
|
---|
1440 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1441 | if (cbToRead == cbDst)
|
---|
1442 | return;
|
---|
1443 | Assert(cbToRead == cbMaxRead);
|
---|
1444 | }
|
---|
1445 |
|
---|
1446 | /*
|
---|
1447 | * More to read, loop.
|
---|
1448 | */
|
---|
1449 | cbDst -= cbMaxRead;
|
---|
1450 | pvDst = (uint8_t *)pvDst + cbMaxRead;
|
---|
1451 | }
|
---|
1452 | # else /* !IN_RING3 */
|
---|
1453 | RT_NOREF(pvDst, cbDst);
|
---|
1454 | if (pvDst || cbDst)
|
---|
1455 | IEM_DO_LONGJMP(pVCpu, VERR_INTERNAL_ERROR);
|
---|
1456 | # endif /* !IN_RING3 */
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 | #else /* !IEM_WITH_CODE_TLB */
|
---|
1460 |
|
---|
1461 | /**
|
---|
1462 | * Try fetch at least @a cbMin bytes more opcodes, raise the appropriate
|
---|
1463 | * exception if it fails.
|
---|
1464 | *
|
---|
1465 | * @returns Strict VBox status code.
|
---|
1466 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1467 | * calling thread.
|
---|
1468 | * @param cbMin The minimum number of bytes relative offOpcode
|
---|
1469 | * that must be read.
|
---|
1470 | */
|
---|
1471 | VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT
|
---|
1472 | {
|
---|
1473 | /*
|
---|
1474 | * What we're doing here is very similar to iemMemMap/iemMemBounceBufferMap.
|
---|
1475 | *
|
---|
1476 | * First translate CS:rIP to a physical address.
|
---|
1477 | */
|
---|
1478 | uint8_t const cbOpcode = pVCpu->iem.s.cbOpcode;
|
---|
1479 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1480 | uint8_t const cbLeft = cbOpcode - offOpcode;
|
---|
1481 | Assert(cbLeft < cbMin);
|
---|
1482 | Assert(cbOpcode <= sizeof(pVCpu->iem.s.abOpcode));
|
---|
1483 |
|
---|
1484 | uint32_t cbToTryRead;
|
---|
1485 | RTGCPTR GCPtrNext;
|
---|
1486 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
1487 | {
|
---|
1488 | GCPtrNext = pVCpu->cpum.GstCtx.rip + cbOpcode;
|
---|
1489 | if (!IEM_IS_CANONICAL(GCPtrNext))
|
---|
1490 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1491 | cbToTryRead = GUEST_PAGE_SIZE - (GCPtrNext & GUEST_PAGE_OFFSET_MASK);
|
---|
1492 | }
|
---|
1493 | else
|
---|
1494 | {
|
---|
1495 | uint32_t GCPtrNext32 = pVCpu->cpum.GstCtx.eip;
|
---|
1496 | /* Assert(!(GCPtrNext32 & ~(uint32_t)UINT16_MAX) || IEM_IS_32BIT_CODE(pVCpu)); - this is allowed */
|
---|
1497 | GCPtrNext32 += cbOpcode;
|
---|
1498 | if (GCPtrNext32 > pVCpu->cpum.GstCtx.cs.u32Limit)
|
---|
1499 | /** @todo For CPUs older than the 386, we should not generate \#GP here but wrap around! */
|
---|
1500 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1501 | cbToTryRead = pVCpu->cpum.GstCtx.cs.u32Limit - GCPtrNext32 + 1;
|
---|
1502 | if (!cbToTryRead) /* overflowed */
|
---|
1503 | {
|
---|
1504 | Assert(GCPtrNext32 == 0); Assert(pVCpu->cpum.GstCtx.cs.u32Limit == UINT32_MAX);
|
---|
1505 | cbToTryRead = UINT32_MAX;
|
---|
1506 | /** @todo check out wrapping around the code segment. */
|
---|
1507 | }
|
---|
1508 | if (cbToTryRead < cbMin - cbLeft)
|
---|
1509 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1510 | GCPtrNext = (uint32_t)pVCpu->cpum.GstCtx.cs.u64Base + GCPtrNext32;
|
---|
1511 |
|
---|
1512 | uint32_t cbLeftOnPage = GUEST_PAGE_SIZE - (GCPtrNext & GUEST_PAGE_OFFSET_MASK);
|
---|
1513 | if (cbToTryRead > cbLeftOnPage)
|
---|
1514 | cbToTryRead = cbLeftOnPage;
|
---|
1515 | }
|
---|
1516 |
|
---|
1517 | /* Restrict to opcode buffer space.
|
---|
1518 |
|
---|
1519 | We're making ASSUMPTIONS here based on work done previously in
|
---|
1520 | iemInitDecoderAndPrefetchOpcodes, where bytes from the first page will
|
---|
1521 | be fetched in case of an instruction crossing two pages. */
|
---|
1522 | if (cbToTryRead > sizeof(pVCpu->iem.s.abOpcode) - cbOpcode)
|
---|
1523 | cbToTryRead = sizeof(pVCpu->iem.s.abOpcode) - cbOpcode;
|
---|
1524 | if (RT_LIKELY(cbToTryRead + cbLeft >= cbMin))
|
---|
1525 | { /* likely */ }
|
---|
1526 | else
|
---|
1527 | {
|
---|
1528 | Log(("iemOpcodeFetchMoreBytes: %04x:%08RX64 LB %#x + %#zx -> #GP(0)\n",
|
---|
1529 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, offOpcode, cbMin));
|
---|
1530 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1531 | }
|
---|
1532 |
|
---|
1533 | PGMPTWALKFAST WalkFast;
|
---|
1534 | int rc = PGMGstQueryPageFast(pVCpu, GCPtrNext,
|
---|
1535 | IEM_GET_CPL(pVCpu) == 3 ? PGMQPAGE_F_EXECUTE | PGMQPAGE_F_USER_MODE : PGMQPAGE_F_EXECUTE,
|
---|
1536 | &WalkFast);
|
---|
1537 | if (RT_SUCCESS(rc))
|
---|
1538 | Assert((WalkFast.fInfo & PGM_WALKINFO_SUCCEEDED) && WalkFast.fFailed == PGM_WALKFAIL_SUCCESS);
|
---|
1539 | else
|
---|
1540 | {
|
---|
1541 | Log(("iemOpcodeFetchMoreBytes: %RGv - rc=%Rrc\n", GCPtrNext, rc));
|
---|
1542 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
1543 | if (WalkFast.fFailed & PGM_WALKFAIL_EPT)
|
---|
1544 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &WalkFast, IEM_ACCESS_INSTRUCTION, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
1545 | #endif
|
---|
1546 | return iemRaisePageFault(pVCpu, GCPtrNext, 1, IEM_ACCESS_INSTRUCTION, rc);
|
---|
1547 | }
|
---|
1548 | Assert((WalkFast.fEffective & X86_PTE_US) || IEM_GET_CPL(pVCpu) != 3);
|
---|
1549 | Assert(!(WalkFast.fEffective & X86_PTE_PAE_NX) || !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE));
|
---|
1550 |
|
---|
1551 | RTGCPHYS const GCPhys = WalkFast.GCPhys;
|
---|
1552 | Log5(("GCPtrNext=%RGv GCPhys=%RGp cbOpcodes=%#x\n", GCPtrNext, GCPhys, cbOpcode));
|
---|
1553 |
|
---|
1554 | /*
|
---|
1555 | * Read the bytes at this address.
|
---|
1556 | *
|
---|
1557 | * We read all unpatched bytes in iemInitDecoderAndPrefetchOpcodes already,
|
---|
1558 | * and since PATM should only patch the start of an instruction there
|
---|
1559 | * should be no need to check again here.
|
---|
1560 | */
|
---|
1561 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
1562 | {
|
---|
1563 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhys, &pVCpu->iem.s.abOpcode[cbOpcode],
|
---|
1564 | cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
1565 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1566 | { /* likely */ }
|
---|
1567 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1568 | {
|
---|
1569 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1570 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1571 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1572 | }
|
---|
1573 | else
|
---|
1574 | {
|
---|
1575 | Log((RT_SUCCESS(rcStrict)
|
---|
1576 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1577 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1578 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1579 | return rcStrict;
|
---|
1580 | }
|
---|
1581 | }
|
---|
1582 | else
|
---|
1583 | {
|
---|
1584 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.abOpcode[cbOpcode], GCPhys, cbToTryRead);
|
---|
1585 | if (RT_SUCCESS(rc))
|
---|
1586 | { /* likely */ }
|
---|
1587 | else
|
---|
1588 | {
|
---|
1589 | Log(("iemOpcodeFetchMoreBytes: %RGv - read error - rc=%Rrc (!!)\n", GCPtrNext, rc));
|
---|
1590 | return rc;
|
---|
1591 | }
|
---|
1592 | }
|
---|
1593 | pVCpu->iem.s.cbOpcode = cbOpcode + cbToTryRead;
|
---|
1594 | Log5(("%.*Rhxs\n", pVCpu->iem.s.cbOpcode, pVCpu->iem.s.abOpcode));
|
---|
1595 |
|
---|
1596 | return VINF_SUCCESS;
|
---|
1597 | }
|
---|
1598 |
|
---|
1599 | #endif /* !IEM_WITH_CODE_TLB */
|
---|
1600 | #ifndef IEM_WITH_SETJMP
|
---|
1601 |
|
---|
1602 | /**
|
---|
1603 | * Deals with the problematic cases that iemOpcodeGetNextU8 doesn't like.
|
---|
1604 | *
|
---|
1605 | * @returns Strict VBox status code.
|
---|
1606 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1607 | * calling thread.
|
---|
1608 | * @param pb Where to return the opcode byte.
|
---|
1609 | */
|
---|
1610 | VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT
|
---|
1611 | {
|
---|
1612 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 1);
|
---|
1613 | if (rcStrict == VINF_SUCCESS)
|
---|
1614 | {
|
---|
1615 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1616 | *pb = pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1617 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
1618 | }
|
---|
1619 | else
|
---|
1620 | *pb = 0;
|
---|
1621 | return rcStrict;
|
---|
1622 | }
|
---|
1623 |
|
---|
1624 | #else /* IEM_WITH_SETJMP */
|
---|
1625 |
|
---|
1626 | /**
|
---|
1627 | * Deals with the problematic cases that iemOpcodeGetNextU8Jmp doesn't like, longjmp on error.
|
---|
1628 | *
|
---|
1629 | * @returns The opcode byte.
|
---|
1630 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1631 | */
|
---|
1632 | uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1633 | {
|
---|
1634 | # ifdef IEM_WITH_CODE_TLB
|
---|
1635 | uint8_t u8;
|
---|
1636 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u8), &u8);
|
---|
1637 | return u8;
|
---|
1638 | # else
|
---|
1639 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 1);
|
---|
1640 | if (rcStrict == VINF_SUCCESS)
|
---|
1641 | return pVCpu->iem.s.abOpcode[pVCpu->iem.s.offOpcode++];
|
---|
1642 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1643 | # endif
|
---|
1644 | }
|
---|
1645 |
|
---|
1646 | #endif /* IEM_WITH_SETJMP */
|
---|
1647 |
|
---|
1648 | #ifndef IEM_WITH_SETJMP
|
---|
1649 |
|
---|
1650 | /**
|
---|
1651 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU16 doesn't like.
|
---|
1652 | *
|
---|
1653 | * @returns Strict VBox status code.
|
---|
1654 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1655 | * @param pu16 Where to return the opcode dword.
|
---|
1656 | */
|
---|
1657 | VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT
|
---|
1658 | {
|
---|
1659 | uint8_t u8;
|
---|
1660 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1661 | if (rcStrict == VINF_SUCCESS)
|
---|
1662 | *pu16 = (int8_t)u8;
|
---|
1663 | return rcStrict;
|
---|
1664 | }
|
---|
1665 |
|
---|
1666 |
|
---|
1667 | /**
|
---|
1668 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU32 doesn't like.
|
---|
1669 | *
|
---|
1670 | * @returns Strict VBox status code.
|
---|
1671 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1672 | * @param pu32 Where to return the opcode dword.
|
---|
1673 | */
|
---|
1674 | VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
1675 | {
|
---|
1676 | uint8_t u8;
|
---|
1677 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1678 | if (rcStrict == VINF_SUCCESS)
|
---|
1679 | *pu32 = (int8_t)u8;
|
---|
1680 | return rcStrict;
|
---|
1681 | }
|
---|
1682 |
|
---|
1683 |
|
---|
1684 | /**
|
---|
1685 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU64 doesn't like.
|
---|
1686 | *
|
---|
1687 | * @returns Strict VBox status code.
|
---|
1688 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1689 | * @param pu64 Where to return the opcode qword.
|
---|
1690 | */
|
---|
1691 | VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1692 | {
|
---|
1693 | uint8_t u8;
|
---|
1694 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1695 | if (rcStrict == VINF_SUCCESS)
|
---|
1696 | *pu64 = (int8_t)u8;
|
---|
1697 | return rcStrict;
|
---|
1698 | }
|
---|
1699 |
|
---|
1700 | #endif /* !IEM_WITH_SETJMP */
|
---|
1701 |
|
---|
1702 |
|
---|
1703 | #ifndef IEM_WITH_SETJMP
|
---|
1704 |
|
---|
1705 | /**
|
---|
1706 | * Deals with the problematic cases that iemOpcodeGetNextU16 doesn't like.
|
---|
1707 | *
|
---|
1708 | * @returns Strict VBox status code.
|
---|
1709 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1710 | * @param pu16 Where to return the opcode word.
|
---|
1711 | */
|
---|
1712 | VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT
|
---|
1713 | {
|
---|
1714 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1715 | if (rcStrict == VINF_SUCCESS)
|
---|
1716 | {
|
---|
1717 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1718 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1719 | *pu16 = *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1720 | # else
|
---|
1721 | *pu16 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1722 | # endif
|
---|
1723 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
1724 | }
|
---|
1725 | else
|
---|
1726 | *pu16 = 0;
|
---|
1727 | return rcStrict;
|
---|
1728 | }
|
---|
1729 |
|
---|
1730 | #else /* IEM_WITH_SETJMP */
|
---|
1731 |
|
---|
1732 | /**
|
---|
1733 | * Deals with the problematic cases that iemOpcodeGetNextU16Jmp doesn't like, longjmp on error
|
---|
1734 | *
|
---|
1735 | * @returns The opcode word.
|
---|
1736 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1737 | */
|
---|
1738 | uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1739 | {
|
---|
1740 | # ifdef IEM_WITH_CODE_TLB
|
---|
1741 | uint16_t u16;
|
---|
1742 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u16), &u16);
|
---|
1743 | return u16;
|
---|
1744 | # else
|
---|
1745 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1746 | if (rcStrict == VINF_SUCCESS)
|
---|
1747 | {
|
---|
1748 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1749 | pVCpu->iem.s.offOpcode += 2;
|
---|
1750 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1751 | return *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1752 | # else
|
---|
1753 | return RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1754 | # endif
|
---|
1755 | }
|
---|
1756 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1757 | # endif
|
---|
1758 | }
|
---|
1759 |
|
---|
1760 | #endif /* IEM_WITH_SETJMP */
|
---|
1761 |
|
---|
1762 | #ifndef IEM_WITH_SETJMP
|
---|
1763 |
|
---|
1764 | /**
|
---|
1765 | * Deals with the problematic cases that iemOpcodeGetNextU16ZxU32 doesn't like.
|
---|
1766 | *
|
---|
1767 | * @returns Strict VBox status code.
|
---|
1768 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1769 | * @param pu32 Where to return the opcode double word.
|
---|
1770 | */
|
---|
1771 | VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
1772 | {
|
---|
1773 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1774 | if (rcStrict == VINF_SUCCESS)
|
---|
1775 | {
|
---|
1776 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1777 | *pu32 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1778 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
1779 | }
|
---|
1780 | else
|
---|
1781 | *pu32 = 0;
|
---|
1782 | return rcStrict;
|
---|
1783 | }
|
---|
1784 |
|
---|
1785 |
|
---|
1786 | /**
|
---|
1787 | * Deals with the problematic cases that iemOpcodeGetNextU16ZxU64 doesn't like.
|
---|
1788 | *
|
---|
1789 | * @returns Strict VBox status code.
|
---|
1790 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1791 | * @param pu64 Where to return the opcode quad word.
|
---|
1792 | */
|
---|
1793 | VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1794 | {
|
---|
1795 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
1796 | if (rcStrict == VINF_SUCCESS)
|
---|
1797 | {
|
---|
1798 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1799 | *pu64 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
1800 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
1801 | }
|
---|
1802 | else
|
---|
1803 | *pu64 = 0;
|
---|
1804 | return rcStrict;
|
---|
1805 | }
|
---|
1806 |
|
---|
1807 | #endif /* !IEM_WITH_SETJMP */
|
---|
1808 |
|
---|
1809 | #ifndef IEM_WITH_SETJMP
|
---|
1810 |
|
---|
1811 | /**
|
---|
1812 | * Deals with the problematic cases that iemOpcodeGetNextU32 doesn't like.
|
---|
1813 | *
|
---|
1814 | * @returns Strict VBox status code.
|
---|
1815 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1816 | * @param pu32 Where to return the opcode dword.
|
---|
1817 | */
|
---|
1818 | VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
1819 | {
|
---|
1820 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1821 | if (rcStrict == VINF_SUCCESS)
|
---|
1822 | {
|
---|
1823 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1824 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1825 | *pu32 = *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1826 | # else
|
---|
1827 | *pu32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1828 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1829 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1830 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1831 | # endif
|
---|
1832 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1833 | }
|
---|
1834 | else
|
---|
1835 | *pu32 = 0;
|
---|
1836 | return rcStrict;
|
---|
1837 | }
|
---|
1838 |
|
---|
1839 | #else /* IEM_WITH_SETJMP */
|
---|
1840 |
|
---|
1841 | /**
|
---|
1842 | * Deals with the problematic cases that iemOpcodeGetNextU32Jmp doesn't like, longjmp on error.
|
---|
1843 | *
|
---|
1844 | * @returns The opcode dword.
|
---|
1845 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1846 | */
|
---|
1847 | uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1848 | {
|
---|
1849 | # ifdef IEM_WITH_CODE_TLB
|
---|
1850 | uint32_t u32;
|
---|
1851 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u32), &u32);
|
---|
1852 | return u32;
|
---|
1853 | # else
|
---|
1854 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1855 | if (rcStrict == VINF_SUCCESS)
|
---|
1856 | {
|
---|
1857 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1858 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1859 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1860 | return *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1861 | # else
|
---|
1862 | return RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1863 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1864 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1865 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1866 | # endif
|
---|
1867 | }
|
---|
1868 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1869 | # endif
|
---|
1870 | }
|
---|
1871 |
|
---|
1872 | #endif /* IEM_WITH_SETJMP */
|
---|
1873 |
|
---|
1874 | #ifndef IEM_WITH_SETJMP
|
---|
1875 |
|
---|
1876 | /**
|
---|
1877 | * Deals with the problematic cases that iemOpcodeGetNextU32ZxU64 doesn't like.
|
---|
1878 | *
|
---|
1879 | * @returns Strict VBox status code.
|
---|
1880 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1881 | * @param pu64 Where to return the opcode dword.
|
---|
1882 | */
|
---|
1883 | VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1884 | {
|
---|
1885 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1886 | if (rcStrict == VINF_SUCCESS)
|
---|
1887 | {
|
---|
1888 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1889 | *pu64 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1890 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1891 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1892 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1893 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1894 | }
|
---|
1895 | else
|
---|
1896 | *pu64 = 0;
|
---|
1897 | return rcStrict;
|
---|
1898 | }
|
---|
1899 |
|
---|
1900 |
|
---|
1901 | /**
|
---|
1902 | * Deals with the problematic cases that iemOpcodeGetNextS32SxU64 doesn't like.
|
---|
1903 | *
|
---|
1904 | * @returns Strict VBox status code.
|
---|
1905 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1906 | * @param pu64 Where to return the opcode qword.
|
---|
1907 | */
|
---|
1908 | VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1909 | {
|
---|
1910 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
1911 | if (rcStrict == VINF_SUCCESS)
|
---|
1912 | {
|
---|
1913 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1914 | *pu64 = (int32_t)RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1915 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1916 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1917 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1918 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1919 | }
|
---|
1920 | else
|
---|
1921 | *pu64 = 0;
|
---|
1922 | return rcStrict;
|
---|
1923 | }
|
---|
1924 |
|
---|
1925 | #endif /* !IEM_WITH_SETJMP */
|
---|
1926 |
|
---|
1927 | #ifndef IEM_WITH_SETJMP
|
---|
1928 |
|
---|
1929 | /**
|
---|
1930 | * Deals with the problematic cases that iemOpcodeGetNextU64 doesn't like.
|
---|
1931 | *
|
---|
1932 | * @returns Strict VBox status code.
|
---|
1933 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1934 | * @param pu64 Where to return the opcode qword.
|
---|
1935 | */
|
---|
1936 | VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1937 | {
|
---|
1938 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 8);
|
---|
1939 | if (rcStrict == VINF_SUCCESS)
|
---|
1940 | {
|
---|
1941 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1942 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1943 | *pu64 = *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1944 | # else
|
---|
1945 | *pu64 = RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1946 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1947 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1948 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
1949 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
1950 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
1951 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
1952 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
1953 | # endif
|
---|
1954 | pVCpu->iem.s.offOpcode = offOpcode + 8;
|
---|
1955 | }
|
---|
1956 | else
|
---|
1957 | *pu64 = 0;
|
---|
1958 | return rcStrict;
|
---|
1959 | }
|
---|
1960 |
|
---|
1961 | #else /* IEM_WITH_SETJMP */
|
---|
1962 |
|
---|
1963 | /**
|
---|
1964 | * Deals with the problematic cases that iemOpcodeGetNextU64Jmp doesn't like, longjmp on error.
|
---|
1965 | *
|
---|
1966 | * @returns The opcode qword.
|
---|
1967 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1968 | */
|
---|
1969 | uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1970 | {
|
---|
1971 | # ifdef IEM_WITH_CODE_TLB
|
---|
1972 | uint64_t u64;
|
---|
1973 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u64), &u64);
|
---|
1974 | return u64;
|
---|
1975 | # else
|
---|
1976 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 8);
|
---|
1977 | if (rcStrict == VINF_SUCCESS)
|
---|
1978 | {
|
---|
1979 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1980 | pVCpu->iem.s.offOpcode = offOpcode + 8;
|
---|
1981 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1982 | return *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1983 | # else
|
---|
1984 | return RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1985 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1986 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1987 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
1988 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
1989 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
1990 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
1991 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
1992 | # endif
|
---|
1993 | }
|
---|
1994 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
1995 | # endif
|
---|
1996 | }
|
---|
1997 |
|
---|
1998 | #endif /* IEM_WITH_SETJMP */
|
---|
1999 |
|
---|
2000 |
|
---|
2001 |
|
---|
2002 | /** @name Misc Worker Functions.
|
---|
2003 | * @{
|
---|
2004 | */
|
---|
2005 |
|
---|
2006 | /**
|
---|
2007 | * Gets the exception class for the specified exception vector.
|
---|
2008 | *
|
---|
2009 | * @returns The class of the specified exception.
|
---|
2010 | * @param uVector The exception vector.
|
---|
2011 | */
|
---|
2012 | static IEMXCPTCLASS iemGetXcptClass(uint8_t uVector) RT_NOEXCEPT
|
---|
2013 | {
|
---|
2014 | Assert(uVector <= X86_XCPT_LAST);
|
---|
2015 | switch (uVector)
|
---|
2016 | {
|
---|
2017 | case X86_XCPT_DE:
|
---|
2018 | case X86_XCPT_TS:
|
---|
2019 | case X86_XCPT_NP:
|
---|
2020 | case X86_XCPT_SS:
|
---|
2021 | case X86_XCPT_GP:
|
---|
2022 | case X86_XCPT_SX: /* AMD only */
|
---|
2023 | return IEMXCPTCLASS_CONTRIBUTORY;
|
---|
2024 |
|
---|
2025 | case X86_XCPT_PF:
|
---|
2026 | case X86_XCPT_VE: /* Intel only */
|
---|
2027 | return IEMXCPTCLASS_PAGE_FAULT;
|
---|
2028 |
|
---|
2029 | case X86_XCPT_DF:
|
---|
2030 | return IEMXCPTCLASS_DOUBLE_FAULT;
|
---|
2031 | }
|
---|
2032 | return IEMXCPTCLASS_BENIGN;
|
---|
2033 | }
|
---|
2034 |
|
---|
2035 |
|
---|
2036 | /**
|
---|
2037 | * Evaluates how to handle an exception caused during delivery of another event
|
---|
2038 | * (exception / interrupt).
|
---|
2039 | *
|
---|
2040 | * @returns How to handle the recursive exception.
|
---|
2041 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
2042 | * calling thread.
|
---|
2043 | * @param fPrevFlags The flags of the previous event.
|
---|
2044 | * @param uPrevVector The vector of the previous event.
|
---|
2045 | * @param fCurFlags The flags of the current exception.
|
---|
2046 | * @param uCurVector The vector of the current exception.
|
---|
2047 | * @param pfXcptRaiseInfo Where to store additional information about the
|
---|
2048 | * exception condition. Optional.
|
---|
2049 | */
|
---|
2050 | VMM_INT_DECL(IEMXCPTRAISE) IEMEvaluateRecursiveXcpt(PVMCPUCC pVCpu, uint32_t fPrevFlags, uint8_t uPrevVector, uint32_t fCurFlags,
|
---|
2051 | uint8_t uCurVector, PIEMXCPTRAISEINFO pfXcptRaiseInfo)
|
---|
2052 | {
|
---|
2053 | /*
|
---|
2054 | * Only CPU exceptions can be raised while delivering other events, software interrupt
|
---|
2055 | * (INTn/INT3/INTO/ICEBP) generated exceptions cannot occur as the current (second) exception.
|
---|
2056 | */
|
---|
2057 | AssertReturn(fCurFlags & IEM_XCPT_FLAGS_T_CPU_XCPT, IEMXCPTRAISE_INVALID);
|
---|
2058 | Assert(pVCpu); RT_NOREF(pVCpu);
|
---|
2059 | Log2(("IEMEvaluateRecursiveXcpt: uPrevVector=%#x uCurVector=%#x\n", uPrevVector, uCurVector));
|
---|
2060 |
|
---|
2061 | IEMXCPTRAISE enmRaise = IEMXCPTRAISE_CURRENT_XCPT;
|
---|
2062 | IEMXCPTRAISEINFO fRaiseInfo = IEMXCPTRAISEINFO_NONE;
|
---|
2063 | if (fPrevFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
2064 | {
|
---|
2065 | IEMXCPTCLASS enmPrevXcptClass = iemGetXcptClass(uPrevVector);
|
---|
2066 | if (enmPrevXcptClass != IEMXCPTCLASS_BENIGN)
|
---|
2067 | {
|
---|
2068 | IEMXCPTCLASS enmCurXcptClass = iemGetXcptClass(uCurVector);
|
---|
2069 | if ( enmPrevXcptClass == IEMXCPTCLASS_PAGE_FAULT
|
---|
2070 | && ( enmCurXcptClass == IEMXCPTCLASS_PAGE_FAULT
|
---|
2071 | || enmCurXcptClass == IEMXCPTCLASS_CONTRIBUTORY))
|
---|
2072 | {
|
---|
2073 | enmRaise = IEMXCPTRAISE_DOUBLE_FAULT;
|
---|
2074 | fRaiseInfo = enmCurXcptClass == IEMXCPTCLASS_PAGE_FAULT ? IEMXCPTRAISEINFO_PF_PF
|
---|
2075 | : IEMXCPTRAISEINFO_PF_CONTRIBUTORY_XCPT;
|
---|
2076 | Log2(("IEMEvaluateRecursiveXcpt: Vectoring page fault. uPrevVector=%#x uCurVector=%#x uCr2=%#RX64\n", uPrevVector,
|
---|
2077 | uCurVector, pVCpu->cpum.GstCtx.cr2));
|
---|
2078 | }
|
---|
2079 | else if ( enmPrevXcptClass == IEMXCPTCLASS_CONTRIBUTORY
|
---|
2080 | && enmCurXcptClass == IEMXCPTCLASS_CONTRIBUTORY)
|
---|
2081 | {
|
---|
2082 | enmRaise = IEMXCPTRAISE_DOUBLE_FAULT;
|
---|
2083 | Log2(("IEMEvaluateRecursiveXcpt: uPrevVector=%#x uCurVector=%#x -> #DF\n", uPrevVector, uCurVector));
|
---|
2084 | }
|
---|
2085 | else if ( enmPrevXcptClass == IEMXCPTCLASS_DOUBLE_FAULT
|
---|
2086 | && ( enmCurXcptClass == IEMXCPTCLASS_CONTRIBUTORY
|
---|
2087 | || enmCurXcptClass == IEMXCPTCLASS_PAGE_FAULT))
|
---|
2088 | {
|
---|
2089 | enmRaise = IEMXCPTRAISE_TRIPLE_FAULT;
|
---|
2090 | Log2(("IEMEvaluateRecursiveXcpt: #DF handler raised a %#x exception -> triple fault\n", uCurVector));
|
---|
2091 | }
|
---|
2092 | }
|
---|
2093 | else
|
---|
2094 | {
|
---|
2095 | if (uPrevVector == X86_XCPT_NMI)
|
---|
2096 | {
|
---|
2097 | fRaiseInfo = IEMXCPTRAISEINFO_NMI_XCPT;
|
---|
2098 | if (uCurVector == X86_XCPT_PF)
|
---|
2099 | {
|
---|
2100 | fRaiseInfo |= IEMXCPTRAISEINFO_NMI_PF;
|
---|
2101 | Log2(("IEMEvaluateRecursiveXcpt: NMI delivery caused a page fault\n"));
|
---|
2102 | }
|
---|
2103 | }
|
---|
2104 | else if ( uPrevVector == X86_XCPT_AC
|
---|
2105 | && uCurVector == X86_XCPT_AC)
|
---|
2106 | {
|
---|
2107 | enmRaise = IEMXCPTRAISE_CPU_HANG;
|
---|
2108 | fRaiseInfo = IEMXCPTRAISEINFO_AC_AC;
|
---|
2109 | Log2(("IEMEvaluateRecursiveXcpt: Recursive #AC - Bad guest\n"));
|
---|
2110 | }
|
---|
2111 | }
|
---|
2112 | }
|
---|
2113 | else if (fPrevFlags & IEM_XCPT_FLAGS_T_EXT_INT)
|
---|
2114 | {
|
---|
2115 | fRaiseInfo = IEMXCPTRAISEINFO_EXT_INT_XCPT;
|
---|
2116 | if (uCurVector == X86_XCPT_PF)
|
---|
2117 | fRaiseInfo |= IEMXCPTRAISEINFO_EXT_INT_PF;
|
---|
2118 | }
|
---|
2119 | else
|
---|
2120 | {
|
---|
2121 | Assert(fPrevFlags & IEM_XCPT_FLAGS_T_SOFT_INT);
|
---|
2122 | fRaiseInfo = IEMXCPTRAISEINFO_SOFT_INT_XCPT;
|
---|
2123 | }
|
---|
2124 |
|
---|
2125 | if (pfXcptRaiseInfo)
|
---|
2126 | *pfXcptRaiseInfo = fRaiseInfo;
|
---|
2127 | return enmRaise;
|
---|
2128 | }
|
---|
2129 |
|
---|
2130 |
|
---|
2131 | /**
|
---|
2132 | * Enters the CPU shutdown state initiated by a triple fault or other
|
---|
2133 | * unrecoverable conditions.
|
---|
2134 | *
|
---|
2135 | * @returns Strict VBox status code.
|
---|
2136 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
2137 | * calling thread.
|
---|
2138 | */
|
---|
2139 | static VBOXSTRICTRC iemInitiateCpuShutdown(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2140 | {
|
---|
2141 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
2142 | IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(pVCpu, VMX_EXIT_TRIPLE_FAULT, 0 /* u64ExitQual */);
|
---|
2143 |
|
---|
2144 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SHUTDOWN))
|
---|
2145 | {
|
---|
2146 | Log2(("shutdown: Guest intercept -> #VMEXIT\n"));
|
---|
2147 | IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SHUTDOWN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
2148 | }
|
---|
2149 |
|
---|
2150 | RT_NOREF(pVCpu);
|
---|
2151 | return VINF_EM_TRIPLE_FAULT;
|
---|
2152 | }
|
---|
2153 |
|
---|
2154 |
|
---|
2155 | /**
|
---|
2156 | * Validates a new SS segment.
|
---|
2157 | *
|
---|
2158 | * @returns VBox strict status code.
|
---|
2159 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
2160 | * calling thread.
|
---|
2161 | * @param NewSS The new SS selctor.
|
---|
2162 | * @param uCpl The CPL to load the stack for.
|
---|
2163 | * @param pDesc Where to return the descriptor.
|
---|
2164 | */
|
---|
2165 | static VBOXSTRICTRC iemMiscValidateNewSS(PVMCPUCC pVCpu, RTSEL NewSS, uint8_t uCpl, PIEMSELDESC pDesc) RT_NOEXCEPT
|
---|
2166 | {
|
---|
2167 | /* Null selectors are not allowed (we're not called for dispatching
|
---|
2168 | interrupts with SS=0 in long mode). */
|
---|
2169 | if (!(NewSS & X86_SEL_MASK_OFF_RPL))
|
---|
2170 | {
|
---|
2171 | Log(("iemMiscValidateNewSSandRsp: %#x - null selector -> #TS(0)\n", NewSS));
|
---|
2172 | return iemRaiseTaskSwitchFault0(pVCpu);
|
---|
2173 | }
|
---|
2174 |
|
---|
2175 | /** @todo testcase: check that the TSS.ssX RPL is checked. Also check when. */
|
---|
2176 | if ((NewSS & X86_SEL_RPL) != uCpl)
|
---|
2177 | {
|
---|
2178 | Log(("iemMiscValidateNewSSandRsp: %#x - RPL and CPL (%d) differs -> #TS\n", NewSS, uCpl));
|
---|
2179 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
2180 | }
|
---|
2181 |
|
---|
2182 | /*
|
---|
2183 | * Read the descriptor.
|
---|
2184 | */
|
---|
2185 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, pDesc, NewSS, X86_XCPT_TS);
|
---|
2186 | if (rcStrict != VINF_SUCCESS)
|
---|
2187 | return rcStrict;
|
---|
2188 |
|
---|
2189 | /*
|
---|
2190 | * Perform the descriptor validation documented for LSS, POP SS and MOV SS.
|
---|
2191 | */
|
---|
2192 | if (!pDesc->Legacy.Gen.u1DescType)
|
---|
2193 | {
|
---|
2194 | Log(("iemMiscValidateNewSSandRsp: %#x - system selector (%#x) -> #TS\n", NewSS, pDesc->Legacy.Gen.u4Type));
|
---|
2195 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
2196 | }
|
---|
2197 |
|
---|
2198 | if ( (pDesc->Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
2199 | || !(pDesc->Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
2200 | {
|
---|
2201 | Log(("iemMiscValidateNewSSandRsp: %#x - code or read only (%#x) -> #TS\n", NewSS, pDesc->Legacy.Gen.u4Type));
|
---|
2202 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
2203 | }
|
---|
2204 | if (pDesc->Legacy.Gen.u2Dpl != uCpl)
|
---|
2205 | {
|
---|
2206 | Log(("iemMiscValidateNewSSandRsp: %#x - DPL (%d) and CPL (%d) differs -> #TS\n", NewSS, pDesc->Legacy.Gen.u2Dpl, uCpl));
|
---|
2207 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
2208 | }
|
---|
2209 |
|
---|
2210 | /* Is it there? */
|
---|
2211 | /** @todo testcase: Is this checked before the canonical / limit check below? */
|
---|
2212 | if (!pDesc->Legacy.Gen.u1Present)
|
---|
2213 | {
|
---|
2214 | Log(("iemMiscValidateNewSSandRsp: %#x - segment not present -> #NP\n", NewSS));
|
---|
2215 | return iemRaiseSelectorNotPresentBySelector(pVCpu, NewSS);
|
---|
2216 | }
|
---|
2217 |
|
---|
2218 | return VINF_SUCCESS;
|
---|
2219 | }
|
---|
2220 |
|
---|
2221 | /** @} */
|
---|
2222 |
|
---|
2223 |
|
---|
2224 | /** @name Raising Exceptions.
|
---|
2225 | *
|
---|
2226 | * @{
|
---|
2227 | */
|
---|
2228 |
|
---|
2229 |
|
---|
2230 | /**
|
---|
2231 | * Loads the specified stack far pointer from the TSS.
|
---|
2232 | *
|
---|
2233 | * @returns VBox strict status code.
|
---|
2234 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2235 | * @param uCpl The CPL to load the stack for.
|
---|
2236 | * @param pSelSS Where to return the new stack segment.
|
---|
2237 | * @param puEsp Where to return the new stack pointer.
|
---|
2238 | */
|
---|
2239 | static VBOXSTRICTRC iemRaiseLoadStackFromTss32Or16(PVMCPUCC pVCpu, uint8_t uCpl, PRTSEL pSelSS, uint32_t *puEsp) RT_NOEXCEPT
|
---|
2240 | {
|
---|
2241 | VBOXSTRICTRC rcStrict;
|
---|
2242 | Assert(uCpl < 4);
|
---|
2243 |
|
---|
2244 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
|
---|
2245 | switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
|
---|
2246 | {
|
---|
2247 | /*
|
---|
2248 | * 16-bit TSS (X86TSS16).
|
---|
2249 | */
|
---|
2250 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL: AssertFailed(); RT_FALL_THRU();
|
---|
2251 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
2252 | {
|
---|
2253 | uint32_t off = uCpl * 4 + 2;
|
---|
2254 | if (off + 4 <= pVCpu->cpum.GstCtx.tr.u32Limit)
|
---|
2255 | {
|
---|
2256 | /** @todo check actual access pattern here. */
|
---|
2257 | uint32_t u32Tmp = 0; /* gcc maybe... */
|
---|
2258 | rcStrict = iemMemFetchSysU32(pVCpu, &u32Tmp, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + off);
|
---|
2259 | if (rcStrict == VINF_SUCCESS)
|
---|
2260 | {
|
---|
2261 | *puEsp = RT_LOWORD(u32Tmp);
|
---|
2262 | *pSelSS = RT_HIWORD(u32Tmp);
|
---|
2263 | return VINF_SUCCESS;
|
---|
2264 | }
|
---|
2265 | }
|
---|
2266 | else
|
---|
2267 | {
|
---|
2268 | Log(("LoadStackFromTss32Or16: out of bounds! uCpl=%d, u32Limit=%#x TSS16\n", uCpl, pVCpu->cpum.GstCtx.tr.u32Limit));
|
---|
2269 | rcStrict = iemRaiseTaskSwitchFaultCurrentTSS(pVCpu);
|
---|
2270 | }
|
---|
2271 | break;
|
---|
2272 | }
|
---|
2273 |
|
---|
2274 | /*
|
---|
2275 | * 32-bit TSS (X86TSS32).
|
---|
2276 | */
|
---|
2277 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL: AssertFailed(); RT_FALL_THRU();
|
---|
2278 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
2279 | {
|
---|
2280 | uint32_t off = uCpl * 8 + 4;
|
---|
2281 | if (off + 7 <= pVCpu->cpum.GstCtx.tr.u32Limit)
|
---|
2282 | {
|
---|
2283 | /** @todo check actual access pattern here. */
|
---|
2284 | uint64_t u64Tmp;
|
---|
2285 | rcStrict = iemMemFetchSysU64(pVCpu, &u64Tmp, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + off);
|
---|
2286 | if (rcStrict == VINF_SUCCESS)
|
---|
2287 | {
|
---|
2288 | *puEsp = u64Tmp & UINT32_MAX;
|
---|
2289 | *pSelSS = (RTSEL)(u64Tmp >> 32);
|
---|
2290 | return VINF_SUCCESS;
|
---|
2291 | }
|
---|
2292 | }
|
---|
2293 | else
|
---|
2294 | {
|
---|
2295 | Log(("LoadStackFromTss32Or16: out of bounds! uCpl=%d, u32Limit=%#x TSS16\n", uCpl, pVCpu->cpum.GstCtx.tr.u32Limit));
|
---|
2296 | rcStrict = iemRaiseTaskSwitchFaultCurrentTSS(pVCpu);
|
---|
2297 | }
|
---|
2298 | break;
|
---|
2299 | }
|
---|
2300 |
|
---|
2301 | default:
|
---|
2302 | AssertFailed();
|
---|
2303 | rcStrict = VERR_IEM_IPE_4;
|
---|
2304 | break;
|
---|
2305 | }
|
---|
2306 |
|
---|
2307 | *puEsp = 0; /* make gcc happy */
|
---|
2308 | *pSelSS = 0; /* make gcc happy */
|
---|
2309 | return rcStrict;
|
---|
2310 | }
|
---|
2311 |
|
---|
2312 |
|
---|
2313 | /**
|
---|
2314 | * Loads the specified stack pointer from the 64-bit TSS.
|
---|
2315 | *
|
---|
2316 | * @returns VBox strict status code.
|
---|
2317 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2318 | * @param uCpl The CPL to load the stack for.
|
---|
2319 | * @param uIst The interrupt stack table index, 0 if to use uCpl.
|
---|
2320 | * @param puRsp Where to return the new stack pointer.
|
---|
2321 | */
|
---|
2322 | static VBOXSTRICTRC iemRaiseLoadStackFromTss64(PVMCPUCC pVCpu, uint8_t uCpl, uint8_t uIst, uint64_t *puRsp) RT_NOEXCEPT
|
---|
2323 | {
|
---|
2324 | Assert(uCpl < 4);
|
---|
2325 | Assert(uIst < 8);
|
---|
2326 | *puRsp = 0; /* make gcc happy */
|
---|
2327 |
|
---|
2328 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
|
---|
2329 | AssertReturn(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY, VERR_IEM_IPE_5);
|
---|
2330 |
|
---|
2331 | uint32_t off;
|
---|
2332 | if (uIst)
|
---|
2333 | off = (uIst - 1) * sizeof(uint64_t) + RT_UOFFSETOF(X86TSS64, ist1);
|
---|
2334 | else
|
---|
2335 | off = uCpl * sizeof(uint64_t) + RT_UOFFSETOF(X86TSS64, rsp0);
|
---|
2336 | if (off + sizeof(uint64_t) > pVCpu->cpum.GstCtx.tr.u32Limit)
|
---|
2337 | {
|
---|
2338 | Log(("iemRaiseLoadStackFromTss64: out of bounds! uCpl=%d uIst=%d, u32Limit=%#x\n", uCpl, uIst, pVCpu->cpum.GstCtx.tr.u32Limit));
|
---|
2339 | return iemRaiseTaskSwitchFaultCurrentTSS(pVCpu);
|
---|
2340 | }
|
---|
2341 |
|
---|
2342 | return iemMemFetchSysU64(pVCpu, puRsp, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + off);
|
---|
2343 | }
|
---|
2344 |
|
---|
2345 |
|
---|
2346 | /**
|
---|
2347 | * Adjust the CPU state according to the exception being raised.
|
---|
2348 | *
|
---|
2349 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2350 | * @param u8Vector The exception that has been raised.
|
---|
2351 | */
|
---|
2352 | DECLINLINE(void) iemRaiseXcptAdjustState(PVMCPUCC pVCpu, uint8_t u8Vector)
|
---|
2353 | {
|
---|
2354 | switch (u8Vector)
|
---|
2355 | {
|
---|
2356 | case X86_XCPT_DB:
|
---|
2357 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
|
---|
2358 | pVCpu->cpum.GstCtx.dr[7] &= ~X86_DR7_GD;
|
---|
2359 | break;
|
---|
2360 | /** @todo Read the AMD and Intel exception reference... */
|
---|
2361 | }
|
---|
2362 | }
|
---|
2363 |
|
---|
2364 |
|
---|
2365 | /**
|
---|
2366 | * Implements exceptions and interrupts for real mode.
|
---|
2367 | *
|
---|
2368 | * @returns VBox strict status code.
|
---|
2369 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2370 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
2371 | * address.
|
---|
2372 | * @param u8Vector The interrupt / exception vector number.
|
---|
2373 | * @param fFlags The flags.
|
---|
2374 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
2375 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
2376 | */
|
---|
2377 | static VBOXSTRICTRC
|
---|
2378 | iemRaiseXcptOrIntInRealMode(PVMCPUCC pVCpu,
|
---|
2379 | uint8_t cbInstr,
|
---|
2380 | uint8_t u8Vector,
|
---|
2381 | uint32_t fFlags,
|
---|
2382 | uint16_t uErr,
|
---|
2383 | uint64_t uCr2) RT_NOEXCEPT
|
---|
2384 | {
|
---|
2385 | NOREF(uErr); NOREF(uCr2);
|
---|
2386 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
2387 |
|
---|
2388 | /*
|
---|
2389 | * Read the IDT entry.
|
---|
2390 | */
|
---|
2391 | if (pVCpu->cpum.GstCtx.idtr.cbIdt < UINT32_C(4) * u8Vector + 3)
|
---|
2392 | {
|
---|
2393 | Log(("RaiseXcptOrIntInRealMode: %#x is out of bounds (%#x)\n", u8Vector, pVCpu->cpum.GstCtx.idtr.cbIdt));
|
---|
2394 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
2395 | }
|
---|
2396 | RTFAR16 Idte;
|
---|
2397 | VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, (uint32_t *)&Idte, UINT8_MAX, pVCpu->cpum.GstCtx.idtr.pIdt + UINT32_C(4) * u8Vector);
|
---|
2398 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
2399 | {
|
---|
2400 | Log(("iemRaiseXcptOrIntInRealMode: failed to fetch IDT entry! vec=%#x rc=%Rrc\n", u8Vector, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2401 | return rcStrict;
|
---|
2402 | }
|
---|
2403 |
|
---|
2404 | #ifdef LOG_ENABLED
|
---|
2405 | /* If software interrupt, try decode it if logging is enabled and such. */
|
---|
2406 | if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
2407 | && LogIsItEnabled(RTLOGGRPFLAGS_ENABLED, LOG_GROUP_IEM_SYSCALL))
|
---|
2408 | iemLogSyscallRealModeInt(pVCpu, u8Vector, cbInstr);
|
---|
2409 | #endif
|
---|
2410 |
|
---|
2411 | /*
|
---|
2412 | * Push the stack frame.
|
---|
2413 | */
|
---|
2414 | uint8_t bUnmapInfo;
|
---|
2415 | uint16_t *pu16Frame;
|
---|
2416 | uint64_t uNewRsp;
|
---|
2417 | rcStrict = iemMemStackPushBeginSpecial(pVCpu, 6, 3, (void **)&pu16Frame, &bUnmapInfo, &uNewRsp);
|
---|
2418 | if (rcStrict != VINF_SUCCESS)
|
---|
2419 | return rcStrict;
|
---|
2420 |
|
---|
2421 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
|
---|
2422 | #if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
|
---|
2423 | AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
|
---|
2424 | if (pVCpu->iem.s.uTargetCpu <= IEMTARGETCPU_186)
|
---|
2425 | fEfl |= UINT16_C(0xf000);
|
---|
2426 | #endif
|
---|
2427 | pu16Frame[2] = (uint16_t)fEfl;
|
---|
2428 | pu16Frame[1] = (uint16_t)pVCpu->cpum.GstCtx.cs.Sel;
|
---|
2429 | pu16Frame[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pVCpu->cpum.GstCtx.ip + cbInstr : pVCpu->cpum.GstCtx.ip;
|
---|
2430 | rcStrict = iemMemStackPushCommitSpecial(pVCpu, bUnmapInfo, uNewRsp);
|
---|
2431 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
2432 | return rcStrict;
|
---|
2433 |
|
---|
2434 | /*
|
---|
2435 | * Load the vector address into cs:ip and make exception specific state
|
---|
2436 | * adjustments.
|
---|
2437 | */
|
---|
2438 | pVCpu->cpum.GstCtx.cs.Sel = Idte.sel;
|
---|
2439 | pVCpu->cpum.GstCtx.cs.ValidSel = Idte.sel;
|
---|
2440 | pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2441 | pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)Idte.sel << 4;
|
---|
2442 | /** @todo do we load attribs and limit as well? Should we check against limit like far jump? */
|
---|
2443 | pVCpu->cpum.GstCtx.rip = Idte.off;
|
---|
2444 | fEfl &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_AC);
|
---|
2445 | IEMMISC_SET_EFL(pVCpu, fEfl);
|
---|
2446 |
|
---|
2447 | /** @todo do we actually do this in real mode? */
|
---|
2448 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
2449 | iemRaiseXcptAdjustState(pVCpu, u8Vector);
|
---|
2450 |
|
---|
2451 | /*
|
---|
2452 | * Deal with debug events that follows the exception and clear inhibit flags.
|
---|
2453 | */
|
---|
2454 | if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
2455 | || !(pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK))
|
---|
2456 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_INHIBIT_SHADOW);
|
---|
2457 | else
|
---|
2458 | {
|
---|
2459 | Log(("iemRaiseXcptOrIntInRealMode: Raising #DB after %#x; pending=%#x\n",
|
---|
2460 | u8Vector, pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK));
|
---|
2461 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
|
---|
2462 | pVCpu->cpum.GstCtx.dr[6] |= (pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK_NONSILENT)
|
---|
2463 | >> CPUMCTX_DBG_HIT_DRX_SHIFT;
|
---|
2464 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_INHIBIT_SHADOW);
|
---|
2465 | return iemRaiseDebugException(pVCpu);
|
---|
2466 | }
|
---|
2467 |
|
---|
2468 | /* The IEM_F_MODE_XXX and IEM_F_X86_CPL_MASK doesn't really change here,
|
---|
2469 | so best leave them alone in case we're in a weird kind of real mode... */
|
---|
2470 |
|
---|
2471 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
2472 | }
|
---|
2473 |
|
---|
2474 |
|
---|
2475 | /**
|
---|
2476 | * Loads a NULL data selector into when coming from V8086 mode.
|
---|
2477 | *
|
---|
2478 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2479 | * @param pSReg Pointer to the segment register.
|
---|
2480 | */
|
---|
2481 | DECLINLINE(void) iemHlpLoadNullDataSelectorOnV86Xcpt(PVMCPUCC pVCpu, PCPUMSELREG pSReg)
|
---|
2482 | {
|
---|
2483 | pSReg->Sel = 0;
|
---|
2484 | pSReg->ValidSel = 0;
|
---|
2485 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
|
---|
2486 | {
|
---|
2487 | /* VT-x (Intel 3960x) doesn't change the base and limit, clears and sets the following attributes */
|
---|
2488 | pSReg->Attr.u &= X86DESCATTR_DT | X86DESCATTR_TYPE | X86DESCATTR_DPL | X86DESCATTR_G | X86DESCATTR_D;
|
---|
2489 | pSReg->Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2490 | }
|
---|
2491 | else
|
---|
2492 | {
|
---|
2493 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2494 | /** @todo check this on AMD-V */
|
---|
2495 | pSReg->u64Base = 0;
|
---|
2496 | pSReg->u32Limit = 0;
|
---|
2497 | }
|
---|
2498 | }
|
---|
2499 |
|
---|
2500 |
|
---|
2501 | /**
|
---|
2502 | * Loads a segment selector during a task switch in V8086 mode.
|
---|
2503 | *
|
---|
2504 | * @param pSReg Pointer to the segment register.
|
---|
2505 | * @param uSel The selector value to load.
|
---|
2506 | */
|
---|
2507 | DECLINLINE(void) iemHlpLoadSelectorInV86Mode(PCPUMSELREG pSReg, uint16_t uSel)
|
---|
2508 | {
|
---|
2509 | /* See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
|
---|
2510 | pSReg->Sel = uSel;
|
---|
2511 | pSReg->ValidSel = uSel;
|
---|
2512 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2513 | pSReg->u64Base = uSel << 4;
|
---|
2514 | pSReg->u32Limit = 0xffff;
|
---|
2515 | pSReg->Attr.u = 0xf3;
|
---|
2516 | }
|
---|
2517 |
|
---|
2518 |
|
---|
2519 | /**
|
---|
2520 | * Loads a segment selector during a task switch in protected mode.
|
---|
2521 | *
|
---|
2522 | * In this task switch scenario, we would throw \#TS exceptions rather than
|
---|
2523 | * \#GPs.
|
---|
2524 | *
|
---|
2525 | * @returns VBox strict status code.
|
---|
2526 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2527 | * @param pSReg Pointer to the segment register.
|
---|
2528 | * @param uSel The new selector value.
|
---|
2529 | *
|
---|
2530 | * @remarks This does _not_ handle CS or SS.
|
---|
2531 | * @remarks This expects IEM_GET_CPL(pVCpu) to return an up to date value.
|
---|
2532 | */
|
---|
2533 | static VBOXSTRICTRC iemHlpTaskSwitchLoadDataSelectorInProtMode(PVMCPUCC pVCpu, PCPUMSELREG pSReg, uint16_t uSel) RT_NOEXCEPT
|
---|
2534 | {
|
---|
2535 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
2536 |
|
---|
2537 | /* Null data selector. */
|
---|
2538 | if (!(uSel & X86_SEL_MASK_OFF_RPL))
|
---|
2539 | {
|
---|
2540 | iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, uSel);
|
---|
2541 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
2542 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
2543 | return VINF_SUCCESS;
|
---|
2544 | }
|
---|
2545 |
|
---|
2546 | /* Fetch the descriptor. */
|
---|
2547 | IEMSELDESC Desc;
|
---|
2548 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_TS);
|
---|
2549 | if (rcStrict != VINF_SUCCESS)
|
---|
2550 | {
|
---|
2551 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: failed to fetch selector. uSel=%u rc=%Rrc\n", uSel,
|
---|
2552 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2553 | return rcStrict;
|
---|
2554 | }
|
---|
2555 |
|
---|
2556 | /* Must be a data segment or readable code segment. */
|
---|
2557 | if ( !Desc.Legacy.Gen.u1DescType
|
---|
2558 | || (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
2559 | {
|
---|
2560 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: invalid segment type. uSel=%u Desc.u4Type=%#x\n", uSel,
|
---|
2561 | Desc.Legacy.Gen.u4Type));
|
---|
2562 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
2563 | }
|
---|
2564 |
|
---|
2565 | /* Check privileges for data segments and non-conforming code segments. */
|
---|
2566 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
2567 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
2568 | {
|
---|
2569 | /* The RPL and the new CPL must be less than or equal to the DPL. */
|
---|
2570 | if ( (unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
|
---|
2571 | || (IEM_GET_CPL(pVCpu) > Desc.Legacy.Gen.u2Dpl))
|
---|
2572 | {
|
---|
2573 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: Invalid priv. uSel=%u uSel.RPL=%u DPL=%u CPL=%u\n",
|
---|
2574 | uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl, IEM_GET_CPL(pVCpu)));
|
---|
2575 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
2576 | }
|
---|
2577 | }
|
---|
2578 |
|
---|
2579 | /* Is it there? */
|
---|
2580 | if (!Desc.Legacy.Gen.u1Present)
|
---|
2581 | {
|
---|
2582 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: Segment not present. uSel=%u\n", uSel));
|
---|
2583 | return iemRaiseSelectorNotPresentWithErr(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
2584 | }
|
---|
2585 |
|
---|
2586 | /* The base and limit. */
|
---|
2587 | uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
2588 | uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
2589 |
|
---|
2590 | /*
|
---|
2591 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
2592 | * committing the result into the registers.
|
---|
2593 | */
|
---|
2594 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2595 | {
|
---|
2596 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
|
---|
2597 | if (rcStrict != VINF_SUCCESS)
|
---|
2598 | return rcStrict;
|
---|
2599 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2600 | }
|
---|
2601 |
|
---|
2602 | /* Commit */
|
---|
2603 | pSReg->Sel = uSel;
|
---|
2604 | pSReg->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
2605 | pSReg->u32Limit = cbLimit;
|
---|
2606 | pSReg->u64Base = u64Base; /** @todo testcase/investigate: seen claims that the upper half of the base remains unchanged... */
|
---|
2607 | pSReg->ValidSel = uSel;
|
---|
2608 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2609 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
|
---|
2610 | pSReg->Attr.u &= ~X86DESCATTR_UNUSABLE;
|
---|
2611 |
|
---|
2612 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
2613 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
2614 | return VINF_SUCCESS;
|
---|
2615 | }
|
---|
2616 |
|
---|
2617 |
|
---|
2618 | /**
|
---|
2619 | * Performs a task switch.
|
---|
2620 | *
|
---|
2621 | * If the task switch is the result of a JMP, CALL or IRET instruction, the
|
---|
2622 | * caller is responsible for performing the necessary checks (like DPL, TSS
|
---|
2623 | * present etc.) which are specific to JMP/CALL/IRET. See Intel Instruction
|
---|
2624 | * reference for JMP, CALL, IRET.
|
---|
2625 | *
|
---|
2626 | * If the task switch is the due to a software interrupt or hardware exception,
|
---|
2627 | * the caller is responsible for validating the TSS selector and descriptor. See
|
---|
2628 | * Intel Instruction reference for INT n.
|
---|
2629 | *
|
---|
2630 | * @returns VBox strict status code.
|
---|
2631 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2632 | * @param enmTaskSwitch The cause of the task switch.
|
---|
2633 | * @param uNextEip The EIP effective after the task switch.
|
---|
2634 | * @param fFlags The flags, see IEM_XCPT_FLAGS_XXX.
|
---|
2635 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
2636 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
2637 | * @param SelTss The TSS selector of the new task.
|
---|
2638 | * @param pNewDescTss Pointer to the new TSS descriptor.
|
---|
2639 | */
|
---|
2640 | VBOXSTRICTRC
|
---|
2641 | iemTaskSwitch(PVMCPUCC pVCpu,
|
---|
2642 | IEMTASKSWITCH enmTaskSwitch,
|
---|
2643 | uint32_t uNextEip,
|
---|
2644 | uint32_t fFlags,
|
---|
2645 | uint16_t uErr,
|
---|
2646 | uint64_t uCr2,
|
---|
2647 | RTSEL SelTss,
|
---|
2648 | PIEMSELDESC pNewDescTss) RT_NOEXCEPT
|
---|
2649 | {
|
---|
2650 | Assert(!IEM_IS_REAL_MODE(pVCpu));
|
---|
2651 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
2652 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
2653 |
|
---|
2654 | uint32_t const uNewTssType = pNewDescTss->Legacy.Gate.u4Type;
|
---|
2655 | Assert( uNewTssType == X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
2656 | || uNewTssType == X86_SEL_TYPE_SYS_286_TSS_BUSY
|
---|
2657 | || uNewTssType == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
2658 | || uNewTssType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
2659 |
|
---|
2660 | bool const fIsNewTss386 = ( uNewTssType == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
2661 | || uNewTssType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
2662 |
|
---|
2663 | Log(("iemTaskSwitch: enmTaskSwitch=%u NewTss=%#x fIsNewTss386=%RTbool EIP=%#RX32 uNextEip=%#RX32\n", enmTaskSwitch, SelTss,
|
---|
2664 | fIsNewTss386, pVCpu->cpum.GstCtx.eip, uNextEip));
|
---|
2665 |
|
---|
2666 | /* Update CR2 in case it's a page-fault. */
|
---|
2667 | /** @todo This should probably be done much earlier in IEM/PGM. See
|
---|
2668 | * @bugref{5653#c49}. */
|
---|
2669 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
2670 | pVCpu->cpum.GstCtx.cr2 = uCr2;
|
---|
2671 |
|
---|
2672 | /*
|
---|
2673 | * Check the new TSS limit. See Intel spec. 6.15 "Exception and Interrupt Reference"
|
---|
2674 | * subsection "Interrupt 10 - Invalid TSS Exception (#TS)".
|
---|
2675 | */
|
---|
2676 | uint32_t const uNewTssLimit = pNewDescTss->Legacy.Gen.u16LimitLow | (pNewDescTss->Legacy.Gen.u4LimitHigh << 16);
|
---|
2677 | uint32_t const uNewTssLimitMin = fIsNewTss386 ? X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN : X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN;
|
---|
2678 | if (uNewTssLimit < uNewTssLimitMin)
|
---|
2679 | {
|
---|
2680 | Log(("iemTaskSwitch: Invalid new TSS limit. enmTaskSwitch=%u uNewTssLimit=%#x uNewTssLimitMin=%#x -> #TS\n",
|
---|
2681 | enmTaskSwitch, uNewTssLimit, uNewTssLimitMin));
|
---|
2682 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, SelTss & X86_SEL_MASK_OFF_RPL);
|
---|
2683 | }
|
---|
2684 |
|
---|
2685 | /*
|
---|
2686 | * Task switches in VMX non-root mode always cause task switches.
|
---|
2687 | * The new TSS must have been read and validated (DPL, limits etc.) before a
|
---|
2688 | * task-switch VM-exit commences.
|
---|
2689 | *
|
---|
2690 | * See Intel spec. 25.4.2 "Treatment of Task Switches".
|
---|
2691 | */
|
---|
2692 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
2693 | {
|
---|
2694 | Log(("iemTaskSwitch: Guest intercept (source=%u, sel=%#x) -> VM-exit.\n", enmTaskSwitch, SelTss));
|
---|
2695 | IEM_VMX_VMEXIT_TASK_SWITCH_RET(pVCpu, enmTaskSwitch, SelTss, uNextEip - pVCpu->cpum.GstCtx.eip);
|
---|
2696 | }
|
---|
2697 |
|
---|
2698 | /*
|
---|
2699 | * The SVM nested-guest intercept for task-switch takes priority over all exceptions
|
---|
2700 | * after validating the incoming (new) TSS, see AMD spec. 15.14.1 "Task Switch Intercept".
|
---|
2701 | */
|
---|
2702 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TASK_SWITCH))
|
---|
2703 | {
|
---|
2704 | uint64_t const uExitInfo1 = SelTss;
|
---|
2705 | uint64_t uExitInfo2 = uErr;
|
---|
2706 | switch (enmTaskSwitch)
|
---|
2707 | {
|
---|
2708 | case IEMTASKSWITCH_JUMP: uExitInfo2 |= SVM_EXIT2_TASK_SWITCH_JUMP; break;
|
---|
2709 | case IEMTASKSWITCH_IRET: uExitInfo2 |= SVM_EXIT2_TASK_SWITCH_IRET; break;
|
---|
2710 | default: break;
|
---|
2711 | }
|
---|
2712 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
2713 | uExitInfo2 |= SVM_EXIT2_TASK_SWITCH_HAS_ERROR_CODE;
|
---|
2714 | if (pVCpu->cpum.GstCtx.eflags.Bits.u1RF)
|
---|
2715 | uExitInfo2 |= SVM_EXIT2_TASK_SWITCH_EFLAGS_RF;
|
---|
2716 |
|
---|
2717 | Log(("iemTaskSwitch: Guest intercept -> #VMEXIT. uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitInfo1, uExitInfo2));
|
---|
2718 | IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TASK_SWITCH, uExitInfo1, uExitInfo2);
|
---|
2719 | RT_NOREF2(uExitInfo1, uExitInfo2);
|
---|
2720 | }
|
---|
2721 |
|
---|
2722 | /*
|
---|
2723 | * Check the current TSS limit. The last written byte to the current TSS during the
|
---|
2724 | * task switch will be 2 bytes at offset 0x5C (32-bit) and 1 byte at offset 0x28 (16-bit).
|
---|
2725 | * See Intel spec. 7.2.1 "Task-State Segment (TSS)" for static and dynamic fields.
|
---|
2726 | *
|
---|
2727 | * The AMD docs doesn't mention anything about limit checks with LTR which suggests you can
|
---|
2728 | * end up with smaller than "legal" TSS limits.
|
---|
2729 | */
|
---|
2730 | uint32_t const uCurTssLimit = pVCpu->cpum.GstCtx.tr.u32Limit;
|
---|
2731 | uint32_t const uCurTssLimitMin = fIsNewTss386 ? 0x5F : 0x29;
|
---|
2732 | if (uCurTssLimit < uCurTssLimitMin)
|
---|
2733 | {
|
---|
2734 | Log(("iemTaskSwitch: Invalid current TSS limit. enmTaskSwitch=%u uCurTssLimit=%#x uCurTssLimitMin=%#x -> #TS\n",
|
---|
2735 | enmTaskSwitch, uCurTssLimit, uCurTssLimitMin));
|
---|
2736 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, SelTss & X86_SEL_MASK_OFF_RPL);
|
---|
2737 | }
|
---|
2738 |
|
---|
2739 | /*
|
---|
2740 | * Verify that the new TSS can be accessed and map it. Map only the required contents
|
---|
2741 | * and not the entire TSS.
|
---|
2742 | */
|
---|
2743 | uint8_t bUnmapInfoNewTss;
|
---|
2744 | void *pvNewTss;
|
---|
2745 | uint32_t const cbNewTss = uNewTssLimitMin + 1;
|
---|
2746 | RTGCPTR const GCPtrNewTss = X86DESC_BASE(&pNewDescTss->Legacy);
|
---|
2747 | AssertCompile(sizeof(X86TSS32) == X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1);
|
---|
2748 | /** @todo Handle if the TSS crosses a page boundary. Intel specifies that it may
|
---|
2749 | * not perform correct translation if this happens. See Intel spec. 7.2.1
|
---|
2750 | * "Task-State Segment". */
|
---|
2751 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvNewTss, &bUnmapInfoNewTss, cbNewTss, UINT8_MAX, GCPtrNewTss, IEM_ACCESS_SYS_RW, 0);
|
---|
2752 | /** @todo Not cleaning up bUnmapInfoNewTss mapping in any early exits here.
|
---|
2753 | * Consider wrapping the remainder into a function for simpler cleanup. */
|
---|
2754 | if (rcStrict != VINF_SUCCESS)
|
---|
2755 | {
|
---|
2756 | Log(("iemTaskSwitch: Failed to read new TSS. enmTaskSwitch=%u cbNewTss=%u uNewTssLimit=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
2757 | cbNewTss, uNewTssLimit, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2758 | return rcStrict;
|
---|
2759 | }
|
---|
2760 |
|
---|
2761 | /*
|
---|
2762 | * Clear the busy bit in current task's TSS descriptor if it's a task switch due to JMP/IRET.
|
---|
2763 | */
|
---|
2764 | uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
2765 | if ( enmTaskSwitch == IEMTASKSWITCH_JUMP
|
---|
2766 | || enmTaskSwitch == IEMTASKSWITCH_IRET)
|
---|
2767 | {
|
---|
2768 | uint8_t bUnmapInfoDescCurTss;
|
---|
2769 | PX86DESC pDescCurTss;
|
---|
2770 | rcStrict = iemMemMap(pVCpu, (void **)&pDescCurTss, &bUnmapInfoDescCurTss, sizeof(*pDescCurTss), UINT8_MAX,
|
---|
2771 | pVCpu->cpum.GstCtx.gdtr.pGdt + (pVCpu->cpum.GstCtx.tr.Sel & X86_SEL_MASK), IEM_ACCESS_SYS_RW, 0);
|
---|
2772 | if (rcStrict != VINF_SUCCESS)
|
---|
2773 | {
|
---|
2774 | Log(("iemTaskSwitch: Failed to read new TSS descriptor in GDT. enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
2775 | enmTaskSwitch, pVCpu->cpum.GstCtx.gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2776 | return rcStrict;
|
---|
2777 | }
|
---|
2778 |
|
---|
2779 | pDescCurTss->Gate.u4Type &= ~X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
2780 | rcStrict = iemMemCommitAndUnmap(pVCpu, bUnmapInfoDescCurTss);
|
---|
2781 | if (rcStrict != VINF_SUCCESS)
|
---|
2782 | {
|
---|
2783 | Log(("iemTaskSwitch: Failed to commit new TSS descriptor in GDT. enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
2784 | enmTaskSwitch, pVCpu->cpum.GstCtx.gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2785 | return rcStrict;
|
---|
2786 | }
|
---|
2787 |
|
---|
2788 | /* Clear EFLAGS.NT (Nested Task) in the eflags memory image, if it's a task switch due to an IRET. */
|
---|
2789 | if (enmTaskSwitch == IEMTASKSWITCH_IRET)
|
---|
2790 | {
|
---|
2791 | Assert( uNewTssType == X86_SEL_TYPE_SYS_286_TSS_BUSY
|
---|
2792 | || uNewTssType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
2793 | fEFlags &= ~X86_EFL_NT;
|
---|
2794 | }
|
---|
2795 | }
|
---|
2796 |
|
---|
2797 | /*
|
---|
2798 | * Save the CPU state into the current TSS.
|
---|
2799 | */
|
---|
2800 | RTGCPTR const GCPtrCurTss = pVCpu->cpum.GstCtx.tr.u64Base;
|
---|
2801 | if (GCPtrNewTss == GCPtrCurTss)
|
---|
2802 | {
|
---|
2803 | Log(("iemTaskSwitch: Switching to the same TSS! enmTaskSwitch=%u GCPtr[Cur|New]TSS=%#RGv\n", enmTaskSwitch, GCPtrCurTss));
|
---|
2804 | Log(("uCurCr3=%#x uCurEip=%#x uCurEflags=%#x uCurEax=%#x uCurEsp=%#x uCurEbp=%#x uCurCS=%#04x uCurSS=%#04x uCurLdt=%#x\n",
|
---|
2805 | pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, pVCpu->cpum.GstCtx.eax,
|
---|
2806 | pVCpu->cpum.GstCtx.esp, pVCpu->cpum.GstCtx.ebp, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.ss.Sel,
|
---|
2807 | pVCpu->cpum.GstCtx.ldtr.Sel));
|
---|
2808 | }
|
---|
2809 | if (fIsNewTss386)
|
---|
2810 | {
|
---|
2811 | /*
|
---|
2812 | * Verify that the current TSS (32-bit) can be accessed, only the minimum required size.
|
---|
2813 | * See Intel spec. 7.2.1 "Task-State Segment (TSS)" for static and dynamic fields.
|
---|
2814 | */
|
---|
2815 | uint8_t bUnmapInfoCurTss32;
|
---|
2816 | void *pvCurTss32;
|
---|
2817 | uint32_t const offCurTss = RT_UOFFSETOF(X86TSS32, eip);
|
---|
2818 | uint32_t const cbCurTss = RT_UOFFSETOF(X86TSS32, selLdt) - RT_UOFFSETOF(X86TSS32, eip);
|
---|
2819 | AssertCompile(RTASSERT_OFFSET_OF(X86TSS32, selLdt) - RTASSERT_OFFSET_OF(X86TSS32, eip) == 64);
|
---|
2820 | rcStrict = iemMemMap(pVCpu, &pvCurTss32, &bUnmapInfoCurTss32, cbCurTss, UINT8_MAX,
|
---|
2821 | GCPtrCurTss + offCurTss, IEM_ACCESS_SYS_RW, 0);
|
---|
2822 | if (rcStrict != VINF_SUCCESS)
|
---|
2823 | {
|
---|
2824 | Log(("iemTaskSwitch: Failed to read current 32-bit TSS. enmTaskSwitch=%u GCPtrCurTss=%#RGv cb=%u rc=%Rrc\n",
|
---|
2825 | enmTaskSwitch, GCPtrCurTss, cbCurTss, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2826 | return rcStrict;
|
---|
2827 | }
|
---|
2828 |
|
---|
2829 | /* !! WARNING !! Access -only- the members (dynamic fields) that are mapped, i.e interval [offCurTss..cbCurTss). */
|
---|
2830 | PX86TSS32 pCurTss32 = (PX86TSS32)((uintptr_t)pvCurTss32 - offCurTss);
|
---|
2831 | pCurTss32->eip = uNextEip;
|
---|
2832 | pCurTss32->eflags = fEFlags;
|
---|
2833 | pCurTss32->eax = pVCpu->cpum.GstCtx.eax;
|
---|
2834 | pCurTss32->ecx = pVCpu->cpum.GstCtx.ecx;
|
---|
2835 | pCurTss32->edx = pVCpu->cpum.GstCtx.edx;
|
---|
2836 | pCurTss32->ebx = pVCpu->cpum.GstCtx.ebx;
|
---|
2837 | pCurTss32->esp = pVCpu->cpum.GstCtx.esp;
|
---|
2838 | pCurTss32->ebp = pVCpu->cpum.GstCtx.ebp;
|
---|
2839 | pCurTss32->esi = pVCpu->cpum.GstCtx.esi;
|
---|
2840 | pCurTss32->edi = pVCpu->cpum.GstCtx.edi;
|
---|
2841 | pCurTss32->es = pVCpu->cpum.GstCtx.es.Sel;
|
---|
2842 | pCurTss32->cs = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
2843 | pCurTss32->ss = pVCpu->cpum.GstCtx.ss.Sel;
|
---|
2844 | pCurTss32->ds = pVCpu->cpum.GstCtx.ds.Sel;
|
---|
2845 | pCurTss32->fs = pVCpu->cpum.GstCtx.fs.Sel;
|
---|
2846 | pCurTss32->gs = pVCpu->cpum.GstCtx.gs.Sel;
|
---|
2847 |
|
---|
2848 | rcStrict = iemMemCommitAndUnmap(pVCpu, bUnmapInfoCurTss32);
|
---|
2849 | if (rcStrict != VINF_SUCCESS)
|
---|
2850 | {
|
---|
2851 | Log(("iemTaskSwitch: Failed to commit current 32-bit TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
2852 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2853 | return rcStrict;
|
---|
2854 | }
|
---|
2855 | }
|
---|
2856 | else
|
---|
2857 | {
|
---|
2858 | /*
|
---|
2859 | * Verify that the current TSS (16-bit) can be accessed. Again, only the minimum required size.
|
---|
2860 | */
|
---|
2861 | uint8_t bUnmapInfoCurTss16;
|
---|
2862 | void *pvCurTss16;
|
---|
2863 | uint32_t const offCurTss = RT_UOFFSETOF(X86TSS16, ip);
|
---|
2864 | uint32_t const cbCurTss = RT_UOFFSETOF(X86TSS16, selLdt) - RT_UOFFSETOF(X86TSS16, ip);
|
---|
2865 | AssertCompile(RTASSERT_OFFSET_OF(X86TSS16, selLdt) - RTASSERT_OFFSET_OF(X86TSS16, ip) == 28);
|
---|
2866 | rcStrict = iemMemMap(pVCpu, &pvCurTss16, &bUnmapInfoCurTss16, cbCurTss, UINT8_MAX,
|
---|
2867 | GCPtrCurTss + offCurTss, IEM_ACCESS_SYS_RW, 0);
|
---|
2868 | if (rcStrict != VINF_SUCCESS)
|
---|
2869 | {
|
---|
2870 | Log(("iemTaskSwitch: Failed to read current 16-bit TSS. enmTaskSwitch=%u GCPtrCurTss=%#RGv cb=%u rc=%Rrc\n",
|
---|
2871 | enmTaskSwitch, GCPtrCurTss, cbCurTss, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2872 | return rcStrict;
|
---|
2873 | }
|
---|
2874 |
|
---|
2875 | /* !! WARNING !! Access -only- the members (dynamic fields) that are mapped, i.e interval [offCurTss..cbCurTss). */
|
---|
2876 | PX86TSS16 pCurTss16 = (PX86TSS16)((uintptr_t)pvCurTss16 - offCurTss);
|
---|
2877 | pCurTss16->ip = uNextEip;
|
---|
2878 | pCurTss16->flags = (uint16_t)fEFlags;
|
---|
2879 | pCurTss16->ax = pVCpu->cpum.GstCtx.ax;
|
---|
2880 | pCurTss16->cx = pVCpu->cpum.GstCtx.cx;
|
---|
2881 | pCurTss16->dx = pVCpu->cpum.GstCtx.dx;
|
---|
2882 | pCurTss16->bx = pVCpu->cpum.GstCtx.bx;
|
---|
2883 | pCurTss16->sp = pVCpu->cpum.GstCtx.sp;
|
---|
2884 | pCurTss16->bp = pVCpu->cpum.GstCtx.bp;
|
---|
2885 | pCurTss16->si = pVCpu->cpum.GstCtx.si;
|
---|
2886 | pCurTss16->di = pVCpu->cpum.GstCtx.di;
|
---|
2887 | pCurTss16->es = pVCpu->cpum.GstCtx.es.Sel;
|
---|
2888 | pCurTss16->cs = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
2889 | pCurTss16->ss = pVCpu->cpum.GstCtx.ss.Sel;
|
---|
2890 | pCurTss16->ds = pVCpu->cpum.GstCtx.ds.Sel;
|
---|
2891 |
|
---|
2892 | rcStrict = iemMemCommitAndUnmap(pVCpu, bUnmapInfoCurTss16);
|
---|
2893 | if (rcStrict != VINF_SUCCESS)
|
---|
2894 | {
|
---|
2895 | Log(("iemTaskSwitch: Failed to commit current 16-bit TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
2896 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2897 | return rcStrict;
|
---|
2898 | }
|
---|
2899 | }
|
---|
2900 |
|
---|
2901 | /*
|
---|
2902 | * Update the previous task link field for the new TSS, if the task switch is due to a CALL/INT_XCPT.
|
---|
2903 | */
|
---|
2904 | if ( enmTaskSwitch == IEMTASKSWITCH_CALL
|
---|
2905 | || enmTaskSwitch == IEMTASKSWITCH_INT_XCPT)
|
---|
2906 | {
|
---|
2907 | /* 16 or 32-bit TSS doesn't matter, we only access the first, common 16-bit field (selPrev) here. */
|
---|
2908 | PX86TSS32 pNewTSS = (PX86TSS32)pvNewTss;
|
---|
2909 | pNewTSS->selPrev = pVCpu->cpum.GstCtx.tr.Sel;
|
---|
2910 | }
|
---|
2911 |
|
---|
2912 | /*
|
---|
2913 | * Read the state from the new TSS into temporaries. Setting it immediately as the new CPU state is tricky,
|
---|
2914 | * it's done further below with error handling (e.g. CR3 changes will go through PGM).
|
---|
2915 | */
|
---|
2916 | uint32_t uNewCr3, uNewEip, uNewEflags, uNewEax, uNewEcx, uNewEdx, uNewEbx, uNewEsp, uNewEbp, uNewEsi, uNewEdi;
|
---|
2917 | uint16_t uNewES, uNewCS, uNewSS, uNewDS, uNewFS, uNewGS, uNewLdt;
|
---|
2918 | bool fNewDebugTrap;
|
---|
2919 | if (fIsNewTss386)
|
---|
2920 | {
|
---|
2921 | PCX86TSS32 pNewTss32 = (PCX86TSS32)pvNewTss;
|
---|
2922 | uNewCr3 = (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG) ? pNewTss32->cr3 : 0;
|
---|
2923 | uNewEip = pNewTss32->eip;
|
---|
2924 | uNewEflags = pNewTss32->eflags;
|
---|
2925 | uNewEax = pNewTss32->eax;
|
---|
2926 | uNewEcx = pNewTss32->ecx;
|
---|
2927 | uNewEdx = pNewTss32->edx;
|
---|
2928 | uNewEbx = pNewTss32->ebx;
|
---|
2929 | uNewEsp = pNewTss32->esp;
|
---|
2930 | uNewEbp = pNewTss32->ebp;
|
---|
2931 | uNewEsi = pNewTss32->esi;
|
---|
2932 | uNewEdi = pNewTss32->edi;
|
---|
2933 | uNewES = pNewTss32->es;
|
---|
2934 | uNewCS = pNewTss32->cs;
|
---|
2935 | uNewSS = pNewTss32->ss;
|
---|
2936 | uNewDS = pNewTss32->ds;
|
---|
2937 | uNewFS = pNewTss32->fs;
|
---|
2938 | uNewGS = pNewTss32->gs;
|
---|
2939 | uNewLdt = pNewTss32->selLdt;
|
---|
2940 | fNewDebugTrap = RT_BOOL(pNewTss32->fDebugTrap);
|
---|
2941 | }
|
---|
2942 | else
|
---|
2943 | {
|
---|
2944 | PCX86TSS16 pNewTss16 = (PCX86TSS16)pvNewTss;
|
---|
2945 | uNewCr3 = 0;
|
---|
2946 | uNewEip = pNewTss16->ip;
|
---|
2947 | uNewEflags = pNewTss16->flags;
|
---|
2948 | uNewEax = UINT32_C(0xffff0000) | pNewTss16->ax;
|
---|
2949 | uNewEcx = UINT32_C(0xffff0000) | pNewTss16->cx;
|
---|
2950 | uNewEdx = UINT32_C(0xffff0000) | pNewTss16->dx;
|
---|
2951 | uNewEbx = UINT32_C(0xffff0000) | pNewTss16->bx;
|
---|
2952 | uNewEsp = UINT32_C(0xffff0000) | pNewTss16->sp;
|
---|
2953 | uNewEbp = UINT32_C(0xffff0000) | pNewTss16->bp;
|
---|
2954 | uNewEsi = UINT32_C(0xffff0000) | pNewTss16->si;
|
---|
2955 | uNewEdi = UINT32_C(0xffff0000) | pNewTss16->di;
|
---|
2956 | uNewES = pNewTss16->es;
|
---|
2957 | uNewCS = pNewTss16->cs;
|
---|
2958 | uNewSS = pNewTss16->ss;
|
---|
2959 | uNewDS = pNewTss16->ds;
|
---|
2960 | uNewFS = 0;
|
---|
2961 | uNewGS = 0;
|
---|
2962 | uNewLdt = pNewTss16->selLdt;
|
---|
2963 | fNewDebugTrap = false;
|
---|
2964 | }
|
---|
2965 |
|
---|
2966 | if (GCPtrNewTss == GCPtrCurTss)
|
---|
2967 | Log(("uNewCr3=%#x uNewEip=%#x uNewEflags=%#x uNewEax=%#x uNewEsp=%#x uNewEbp=%#x uNewCS=%#04x uNewSS=%#04x uNewLdt=%#x\n",
|
---|
2968 | uNewCr3, uNewEip, uNewEflags, uNewEax, uNewEsp, uNewEbp, uNewCS, uNewSS, uNewLdt));
|
---|
2969 |
|
---|
2970 | /*
|
---|
2971 | * We're done accessing the new TSS.
|
---|
2972 | */
|
---|
2973 | rcStrict = iemMemCommitAndUnmap(pVCpu, bUnmapInfoNewTss);
|
---|
2974 | if (rcStrict != VINF_SUCCESS)
|
---|
2975 | {
|
---|
2976 | Log(("iemTaskSwitch: Failed to commit new TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2977 | return rcStrict;
|
---|
2978 | }
|
---|
2979 |
|
---|
2980 | /*
|
---|
2981 | * Set the busy bit in the new TSS descriptor, if the task switch is a JMP/CALL/INT_XCPT.
|
---|
2982 | */
|
---|
2983 | if (enmTaskSwitch != IEMTASKSWITCH_IRET)
|
---|
2984 | {
|
---|
2985 | rcStrict = iemMemMap(pVCpu, (void **)&pNewDescTss, &bUnmapInfoNewTss, sizeof(*pNewDescTss), UINT8_MAX,
|
---|
2986 | pVCpu->cpum.GstCtx.gdtr.pGdt + (SelTss & X86_SEL_MASK), IEM_ACCESS_SYS_RW, 0);
|
---|
2987 | if (rcStrict != VINF_SUCCESS)
|
---|
2988 | {
|
---|
2989 | Log(("iemTaskSwitch: Failed to read new TSS descriptor in GDT (2). enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
2990 | enmTaskSwitch, pVCpu->cpum.GstCtx.gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2991 | return rcStrict;
|
---|
2992 | }
|
---|
2993 |
|
---|
2994 | /* Check that the descriptor indicates the new TSS is available (not busy). */
|
---|
2995 | AssertMsg( pNewDescTss->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
2996 | || pNewDescTss->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL,
|
---|
2997 | ("Invalid TSS descriptor type=%#x", pNewDescTss->Legacy.Gate.u4Type));
|
---|
2998 |
|
---|
2999 | pNewDescTss->Legacy.Gate.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
3000 | rcStrict = iemMemCommitAndUnmap(pVCpu, bUnmapInfoNewTss);
|
---|
3001 | if (rcStrict != VINF_SUCCESS)
|
---|
3002 | {
|
---|
3003 | Log(("iemTaskSwitch: Failed to commit new TSS descriptor in GDT (2). enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
3004 | enmTaskSwitch, pVCpu->cpum.GstCtx.gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3005 | return rcStrict;
|
---|
3006 | }
|
---|
3007 | }
|
---|
3008 |
|
---|
3009 | /*
|
---|
3010 | * From this point on, we're technically in the new task. We will defer exceptions
|
---|
3011 | * until the completion of the task switch but before executing any instructions in the new task.
|
---|
3012 | */
|
---|
3013 | pVCpu->cpum.GstCtx.tr.Sel = SelTss;
|
---|
3014 | pVCpu->cpum.GstCtx.tr.ValidSel = SelTss;
|
---|
3015 | pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3016 | pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&pNewDescTss->Legacy);
|
---|
3017 | pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&pNewDescTss->Legacy);
|
---|
3018 | pVCpu->cpum.GstCtx.tr.u64Base = X86DESC_BASE(&pNewDescTss->Legacy);
|
---|
3019 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_TR);
|
---|
3020 |
|
---|
3021 | /* Set the busy bit in TR. */
|
---|
3022 | pVCpu->cpum.GstCtx.tr.Attr.n.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
3023 |
|
---|
3024 | /* Set EFLAGS.NT (Nested Task) in the eflags loaded from the new TSS, if it's a task switch due to a CALL/INT_XCPT. */
|
---|
3025 | if ( enmTaskSwitch == IEMTASKSWITCH_CALL
|
---|
3026 | || enmTaskSwitch == IEMTASKSWITCH_INT_XCPT)
|
---|
3027 | {
|
---|
3028 | uNewEflags |= X86_EFL_NT;
|
---|
3029 | }
|
---|
3030 |
|
---|
3031 | pVCpu->cpum.GstCtx.dr[7] &= ~X86_DR7_LE_ALL; /** @todo Should we clear DR7.LE bit too? */
|
---|
3032 | pVCpu->cpum.GstCtx.cr0 |= X86_CR0_TS;
|
---|
3033 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_CR0);
|
---|
3034 |
|
---|
3035 | pVCpu->cpum.GstCtx.eip = uNewEip;
|
---|
3036 | pVCpu->cpum.GstCtx.eax = uNewEax;
|
---|
3037 | pVCpu->cpum.GstCtx.ecx = uNewEcx;
|
---|
3038 | pVCpu->cpum.GstCtx.edx = uNewEdx;
|
---|
3039 | pVCpu->cpum.GstCtx.ebx = uNewEbx;
|
---|
3040 | pVCpu->cpum.GstCtx.esp = uNewEsp;
|
---|
3041 | pVCpu->cpum.GstCtx.ebp = uNewEbp;
|
---|
3042 | pVCpu->cpum.GstCtx.esi = uNewEsi;
|
---|
3043 | pVCpu->cpum.GstCtx.edi = uNewEdi;
|
---|
3044 |
|
---|
3045 | uNewEflags &= X86_EFL_LIVE_MASK;
|
---|
3046 | uNewEflags |= X86_EFL_RA1_MASK;
|
---|
3047 | IEMMISC_SET_EFL(pVCpu, uNewEflags);
|
---|
3048 |
|
---|
3049 | /*
|
---|
3050 | * Switch the selectors here and do the segment checks later. If we throw exceptions, the selectors
|
---|
3051 | * will be valid in the exception handler. We cannot update the hidden parts until we've switched CR3
|
---|
3052 | * due to the hidden part data originating from the guest LDT/GDT which is accessed through paging.
|
---|
3053 | */
|
---|
3054 | pVCpu->cpum.GstCtx.es.Sel = uNewES;
|
---|
3055 | pVCpu->cpum.GstCtx.es.Attr.u &= ~X86DESCATTR_P;
|
---|
3056 |
|
---|
3057 | pVCpu->cpum.GstCtx.cs.Sel = uNewCS;
|
---|
3058 | pVCpu->cpum.GstCtx.cs.Attr.u &= ~X86DESCATTR_P;
|
---|
3059 |
|
---|
3060 | pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
|
---|
3061 | pVCpu->cpum.GstCtx.ss.Attr.u &= ~X86DESCATTR_P;
|
---|
3062 |
|
---|
3063 | pVCpu->cpum.GstCtx.ds.Sel = uNewDS;
|
---|
3064 | pVCpu->cpum.GstCtx.ds.Attr.u &= ~X86DESCATTR_P;
|
---|
3065 |
|
---|
3066 | pVCpu->cpum.GstCtx.fs.Sel = uNewFS;
|
---|
3067 | pVCpu->cpum.GstCtx.fs.Attr.u &= ~X86DESCATTR_P;
|
---|
3068 |
|
---|
3069 | pVCpu->cpum.GstCtx.gs.Sel = uNewGS;
|
---|
3070 | pVCpu->cpum.GstCtx.gs.Attr.u &= ~X86DESCATTR_P;
|
---|
3071 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
3072 |
|
---|
3073 | pVCpu->cpum.GstCtx.ldtr.Sel = uNewLdt;
|
---|
3074 | pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_STALE;
|
---|
3075 | pVCpu->cpum.GstCtx.ldtr.Attr.u &= ~X86DESCATTR_P;
|
---|
3076 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_LDTR);
|
---|
3077 |
|
---|
3078 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
|
---|
3079 | {
|
---|
3080 | pVCpu->cpum.GstCtx.es.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3081 | pVCpu->cpum.GstCtx.cs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3082 | pVCpu->cpum.GstCtx.ss.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3083 | pVCpu->cpum.GstCtx.ds.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3084 | pVCpu->cpum.GstCtx.fs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3085 | pVCpu->cpum.GstCtx.gs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3086 | pVCpu->cpum.GstCtx.ldtr.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3087 | }
|
---|
3088 |
|
---|
3089 | /*
|
---|
3090 | * Switch CR3 for the new task.
|
---|
3091 | */
|
---|
3092 | if ( fIsNewTss386
|
---|
3093 | && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG))
|
---|
3094 | {
|
---|
3095 | /** @todo Should we update and flush TLBs only if CR3 value actually changes? */
|
---|
3096 | int rc = CPUMSetGuestCR3(pVCpu, uNewCr3);
|
---|
3097 | AssertRCSuccessReturn(rc, rc);
|
---|
3098 |
|
---|
3099 | /* Inform PGM. */
|
---|
3100 | /** @todo Should we raise \#GP(0) here when PAE PDPEs are invalid? */
|
---|
3101 | rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE));
|
---|
3102 | AssertRCReturn(rc, rc);
|
---|
3103 | /* ignore informational status codes */
|
---|
3104 |
|
---|
3105 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_CR3);
|
---|
3106 | }
|
---|
3107 |
|
---|
3108 | /*
|
---|
3109 | * Switch LDTR for the new task.
|
---|
3110 | */
|
---|
3111 | if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
|
---|
3112 | iemHlpLoadNullDataSelectorProt(pVCpu, &pVCpu->cpum.GstCtx.ldtr, uNewLdt);
|
---|
3113 | else
|
---|
3114 | {
|
---|
3115 | Assert(!pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present); /* Ensures that LDT.TI check passes in iemMemFetchSelDesc() below. */
|
---|
3116 |
|
---|
3117 | IEMSELDESC DescNewLdt;
|
---|
3118 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescNewLdt, uNewLdt, X86_XCPT_TS);
|
---|
3119 | if (rcStrict != VINF_SUCCESS)
|
---|
3120 | {
|
---|
3121 | Log(("iemTaskSwitch: fetching LDT failed. enmTaskSwitch=%u uNewLdt=%u cbGdt=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
3122 | uNewLdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3123 | return rcStrict;
|
---|
3124 | }
|
---|
3125 | if ( !DescNewLdt.Legacy.Gen.u1Present
|
---|
3126 | || DescNewLdt.Legacy.Gen.u1DescType
|
---|
3127 | || DescNewLdt.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
|
---|
3128 | {
|
---|
3129 | Log(("iemTaskSwitch: Invalid LDT. enmTaskSwitch=%u uNewLdt=%u DescNewLdt.Legacy.u=%#RX64 -> #TS\n", enmTaskSwitch,
|
---|
3130 | uNewLdt, DescNewLdt.Legacy.u));
|
---|
3131 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
3132 | }
|
---|
3133 |
|
---|
3134 | pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
|
---|
3135 | pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3136 | pVCpu->cpum.GstCtx.ldtr.u64Base = X86DESC_BASE(&DescNewLdt.Legacy);
|
---|
3137 | pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&DescNewLdt.Legacy);
|
---|
3138 | pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&DescNewLdt.Legacy);
|
---|
3139 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
|
---|
3140 | pVCpu->cpum.GstCtx.ldtr.Attr.u &= ~X86DESCATTR_UNUSABLE;
|
---|
3141 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
|
---|
3142 | }
|
---|
3143 |
|
---|
3144 | IEMSELDESC DescSS;
|
---|
3145 | if (IEM_IS_V86_MODE(pVCpu))
|
---|
3146 | {
|
---|
3147 | IEM_SET_CPL(pVCpu, 3);
|
---|
3148 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.es, uNewES);
|
---|
3149 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.cs, uNewCS);
|
---|
3150 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.ss, uNewSS);
|
---|
3151 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.ds, uNewDS);
|
---|
3152 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.fs, uNewFS);
|
---|
3153 | iemHlpLoadSelectorInV86Mode(&pVCpu->cpum.GstCtx.gs, uNewGS);
|
---|
3154 |
|
---|
3155 | /* Quick fix: fake DescSS. */ /** @todo fix the code further down? */
|
---|
3156 | DescSS.Legacy.u = 0;
|
---|
3157 | DescSS.Legacy.Gen.u16LimitLow = (uint16_t)pVCpu->cpum.GstCtx.ss.u32Limit;
|
---|
3158 | DescSS.Legacy.Gen.u4LimitHigh = pVCpu->cpum.GstCtx.ss.u32Limit >> 16;
|
---|
3159 | DescSS.Legacy.Gen.u16BaseLow = (uint16_t)pVCpu->cpum.GstCtx.ss.u64Base;
|
---|
3160 | DescSS.Legacy.Gen.u8BaseHigh1 = (uint8_t)(pVCpu->cpum.GstCtx.ss.u64Base >> 16);
|
---|
3161 | DescSS.Legacy.Gen.u8BaseHigh2 = (uint8_t)(pVCpu->cpum.GstCtx.ss.u64Base >> 24);
|
---|
3162 | DescSS.Legacy.Gen.u4Type = X86_SEL_TYPE_RW_ACC;
|
---|
3163 | DescSS.Legacy.Gen.u2Dpl = 3;
|
---|
3164 | }
|
---|
3165 | else
|
---|
3166 | {
|
---|
3167 | uint8_t const uNewCpl = (uNewCS & X86_SEL_RPL);
|
---|
3168 |
|
---|
3169 | /*
|
---|
3170 | * Load the stack segment for the new task.
|
---|
3171 | */
|
---|
3172 | if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
|
---|
3173 | {
|
---|
3174 | Log(("iemTaskSwitch: Null stack segment. enmTaskSwitch=%u uNewSS=%#x -> #TS\n", enmTaskSwitch, uNewSS));
|
---|
3175 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3176 | }
|
---|
3177 |
|
---|
3178 | /* Fetch the descriptor. */
|
---|
3179 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_TS);
|
---|
3180 | if (rcStrict != VINF_SUCCESS)
|
---|
3181 | {
|
---|
3182 | Log(("iemTaskSwitch: failed to fetch SS. uNewSS=%#x rc=%Rrc\n", uNewSS,
|
---|
3183 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3184 | return rcStrict;
|
---|
3185 | }
|
---|
3186 |
|
---|
3187 | /* SS must be a data segment and writable. */
|
---|
3188 | if ( !DescSS.Legacy.Gen.u1DescType
|
---|
3189 | || (DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
3190 | || !(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE))
|
---|
3191 | {
|
---|
3192 | Log(("iemTaskSwitch: SS invalid descriptor type. uNewSS=%#x u1DescType=%u u4Type=%#x\n",
|
---|
3193 | uNewSS, DescSS.Legacy.Gen.u1DescType, DescSS.Legacy.Gen.u4Type));
|
---|
3194 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3195 | }
|
---|
3196 |
|
---|
3197 | /* The SS.RPL, SS.DPL, CS.RPL (CPL) must be equal. */
|
---|
3198 | if ( (uNewSS & X86_SEL_RPL) != uNewCpl
|
---|
3199 | || DescSS.Legacy.Gen.u2Dpl != uNewCpl)
|
---|
3200 | {
|
---|
3201 | Log(("iemTaskSwitch: Invalid priv. for SS. uNewSS=%#x SS.DPL=%u uNewCpl=%u -> #TS\n", uNewSS, DescSS.Legacy.Gen.u2Dpl,
|
---|
3202 | uNewCpl));
|
---|
3203 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3204 | }
|
---|
3205 |
|
---|
3206 | /* Is it there? */
|
---|
3207 | if (!DescSS.Legacy.Gen.u1Present)
|
---|
3208 | {
|
---|
3209 | Log(("iemTaskSwitch: SS not present. uNewSS=%#x -> #NP\n", uNewSS));
|
---|
3210 | return iemRaiseSelectorNotPresentWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3211 | }
|
---|
3212 |
|
---|
3213 | uint32_t cbLimit = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3214 | uint64_t u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
3215 |
|
---|
3216 | /* Set the accessed bit before committing the result into SS. */
|
---|
3217 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3218 | {
|
---|
3219 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
|
---|
3220 | if (rcStrict != VINF_SUCCESS)
|
---|
3221 | return rcStrict;
|
---|
3222 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3223 | }
|
---|
3224 |
|
---|
3225 | /* Commit SS. */
|
---|
3226 | pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
|
---|
3227 | pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
|
---|
3228 | pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
3229 | pVCpu->cpum.GstCtx.ss.u32Limit = cbLimit;
|
---|
3230 | pVCpu->cpum.GstCtx.ss.u64Base = u64Base;
|
---|
3231 | pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3232 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
3233 |
|
---|
3234 | /* CPL has changed, update IEM before loading rest of segments. */
|
---|
3235 | IEM_SET_CPL(pVCpu, uNewCpl);
|
---|
3236 |
|
---|
3237 | /*
|
---|
3238 | * Load the data segments for the new task.
|
---|
3239 | */
|
---|
3240 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pVCpu->cpum.GstCtx.es, uNewES);
|
---|
3241 | if (rcStrict != VINF_SUCCESS)
|
---|
3242 | return rcStrict;
|
---|
3243 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pVCpu->cpum.GstCtx.ds, uNewDS);
|
---|
3244 | if (rcStrict != VINF_SUCCESS)
|
---|
3245 | return rcStrict;
|
---|
3246 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pVCpu->cpum.GstCtx.fs, uNewFS);
|
---|
3247 | if (rcStrict != VINF_SUCCESS)
|
---|
3248 | return rcStrict;
|
---|
3249 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pVCpu->cpum.GstCtx.gs, uNewGS);
|
---|
3250 | if (rcStrict != VINF_SUCCESS)
|
---|
3251 | return rcStrict;
|
---|
3252 |
|
---|
3253 | /*
|
---|
3254 | * Load the code segment for the new task.
|
---|
3255 | */
|
---|
3256 | if (!(uNewCS & X86_SEL_MASK_OFF_RPL))
|
---|
3257 | {
|
---|
3258 | Log(("iemTaskSwitch #TS: Null code segment. enmTaskSwitch=%u uNewCS=%#x\n", enmTaskSwitch, uNewCS));
|
---|
3259 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3260 | }
|
---|
3261 |
|
---|
3262 | /* Fetch the descriptor. */
|
---|
3263 | IEMSELDESC DescCS;
|
---|
3264 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_TS);
|
---|
3265 | if (rcStrict != VINF_SUCCESS)
|
---|
3266 | {
|
---|
3267 | Log(("iemTaskSwitch: failed to fetch CS. uNewCS=%u rc=%Rrc\n", uNewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3268 | return rcStrict;
|
---|
3269 | }
|
---|
3270 |
|
---|
3271 | /* CS must be a code segment. */
|
---|
3272 | if ( !DescCS.Legacy.Gen.u1DescType
|
---|
3273 | || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
3274 | {
|
---|
3275 | Log(("iemTaskSwitch: CS invalid descriptor type. uNewCS=%#x u1DescType=%u u4Type=%#x -> #TS\n", uNewCS,
|
---|
3276 | DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
|
---|
3277 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3278 | }
|
---|
3279 |
|
---|
3280 | /* For conforming CS, DPL must be less than or equal to the RPL. */
|
---|
3281 | if ( (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
3282 | && DescCS.Legacy.Gen.u2Dpl > (uNewCS & X86_SEL_RPL))
|
---|
3283 | {
|
---|
3284 | Log(("iemTaskSwitch: confirming CS DPL > RPL. uNewCS=%#x u4Type=%#x DPL=%u -> #TS\n", uNewCS, DescCS.Legacy.Gen.u4Type,
|
---|
3285 | DescCS.Legacy.Gen.u2Dpl));
|
---|
3286 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3287 | }
|
---|
3288 |
|
---|
3289 | /* For non-conforming CS, DPL must match RPL. */
|
---|
3290 | if ( !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
3291 | && DescCS.Legacy.Gen.u2Dpl != (uNewCS & X86_SEL_RPL))
|
---|
3292 | {
|
---|
3293 | Log(("iemTaskSwitch: non-confirming CS DPL RPL mismatch. uNewCS=%#x u4Type=%#x DPL=%u -> #TS\n", uNewCS,
|
---|
3294 | DescCS.Legacy.Gen.u4Type, DescCS.Legacy.Gen.u2Dpl));
|
---|
3295 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3296 | }
|
---|
3297 |
|
---|
3298 | /* Is it there? */
|
---|
3299 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3300 | {
|
---|
3301 | Log(("iemTaskSwitch: CS not present. uNewCS=%#x -> #NP\n", uNewCS));
|
---|
3302 | return iemRaiseSelectorNotPresentWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3303 | }
|
---|
3304 |
|
---|
3305 | cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3306 | u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3307 |
|
---|
3308 | /* Set the accessed bit before committing the result into CS. */
|
---|
3309 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3310 | {
|
---|
3311 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
|
---|
3312 | if (rcStrict != VINF_SUCCESS)
|
---|
3313 | return rcStrict;
|
---|
3314 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3315 | }
|
---|
3316 |
|
---|
3317 | /* Commit CS. */
|
---|
3318 | pVCpu->cpum.GstCtx.cs.Sel = uNewCS;
|
---|
3319 | pVCpu->cpum.GstCtx.cs.ValidSel = uNewCS;
|
---|
3320 | pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3321 | pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
|
---|
3322 | pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
|
---|
3323 | pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3324 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
3325 | }
|
---|
3326 |
|
---|
3327 | /* Make sure the CPU mode is correct. */
|
---|
3328 | uint32_t const fExecNew = iemCalcExecFlags(pVCpu) | (pVCpu->iem.s.fExec & IEM_F_USER_OPTS);
|
---|
3329 | if (fExecNew != pVCpu->iem.s.fExec)
|
---|
3330 | Log(("iemTaskSwitch: fExec %#x -> %#x (xor %#x)\n", pVCpu->iem.s.fExec, fExecNew, pVCpu->iem.s.fExec ^ fExecNew));
|
---|
3331 | pVCpu->iem.s.fExec = fExecNew;
|
---|
3332 |
|
---|
3333 | /** @todo Debug trap. */
|
---|
3334 | if (fIsNewTss386 && fNewDebugTrap)
|
---|
3335 | Log(("iemTaskSwitch: Debug Trap set in new TSS. Not implemented!\n"));
|
---|
3336 |
|
---|
3337 | /*
|
---|
3338 | * Construct the error code masks based on what caused this task switch.
|
---|
3339 | * See Intel Instruction reference for INT.
|
---|
3340 | */
|
---|
3341 | uint16_t uExt;
|
---|
3342 | if ( enmTaskSwitch == IEMTASKSWITCH_INT_XCPT
|
---|
3343 | && ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3344 | || (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)))
|
---|
3345 | uExt = 1;
|
---|
3346 | else
|
---|
3347 | uExt = 0;
|
---|
3348 |
|
---|
3349 | /*
|
---|
3350 | * Push any error code on to the new stack.
|
---|
3351 | */
|
---|
3352 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3353 | {
|
---|
3354 | Assert(enmTaskSwitch == IEMTASKSWITCH_INT_XCPT);
|
---|
3355 | uint32_t cbLimitSS = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3356 | uint8_t const cbStackFrame = fIsNewTss386 ? 4 : 2;
|
---|
3357 |
|
---|
3358 | /* Check that there is sufficient space on the stack. */
|
---|
3359 | /** @todo Factor out segment limit checking for normal/expand down segments
|
---|
3360 | * into a separate function. */
|
---|
3361 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_DOWN))
|
---|
3362 | {
|
---|
3363 | if ( pVCpu->cpum.GstCtx.esp - 1 > cbLimitSS
|
---|
3364 | || pVCpu->cpum.GstCtx.esp < cbStackFrame)
|
---|
3365 | {
|
---|
3366 | /** @todo Intel says \#SS(EXT) for INT/XCPT, I couldn't figure out AMD yet. */
|
---|
3367 | Log(("iemTaskSwitch: SS=%#x ESP=%#x cbStackFrame=%#x is out of bounds -> #SS\n",
|
---|
3368 | pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.esp, cbStackFrame));
|
---|
3369 | return iemRaiseStackSelectorNotPresentWithErr(pVCpu, uExt);
|
---|
3370 | }
|
---|
3371 | }
|
---|
3372 | else
|
---|
3373 | {
|
---|
3374 | if ( pVCpu->cpum.GstCtx.esp - 1 > (DescSS.Legacy.Gen.u1DefBig ? UINT32_MAX : UINT32_C(0xffff))
|
---|
3375 | || pVCpu->cpum.GstCtx.esp - cbStackFrame < cbLimitSS + UINT32_C(1))
|
---|
3376 | {
|
---|
3377 | Log(("iemTaskSwitch: SS=%#x ESP=%#x cbStackFrame=%#x (expand down) is out of bounds -> #SS\n",
|
---|
3378 | pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.esp, cbStackFrame));
|
---|
3379 | return iemRaiseStackSelectorNotPresentWithErr(pVCpu, uExt);
|
---|
3380 | }
|
---|
3381 | }
|
---|
3382 |
|
---|
3383 |
|
---|
3384 | if (fIsNewTss386)
|
---|
3385 | rcStrict = iemMemStackPushU32(pVCpu, uErr);
|
---|
3386 | else
|
---|
3387 | rcStrict = iemMemStackPushU16(pVCpu, uErr);
|
---|
3388 | if (rcStrict != VINF_SUCCESS)
|
---|
3389 | {
|
---|
3390 | Log(("iemTaskSwitch: Can't push error code to new task's stack. %s-bit TSS. rc=%Rrc\n",
|
---|
3391 | fIsNewTss386 ? "32" : "16", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3392 | return rcStrict;
|
---|
3393 | }
|
---|
3394 | }
|
---|
3395 |
|
---|
3396 | /* Check the new EIP against the new CS limit. */
|
---|
3397 | if (pVCpu->cpum.GstCtx.eip > pVCpu->cpum.GstCtx.cs.u32Limit)
|
---|
3398 | {
|
---|
3399 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: New EIP exceeds CS limit. uNewEIP=%#RX32 CS limit=%u -> #GP(0)\n",
|
---|
3400 | pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.cs.u32Limit));
|
---|
3401 | /** @todo Intel says \#GP(EXT) for INT/XCPT, I couldn't figure out AMD yet. */
|
---|
3402 | return iemRaiseGeneralProtectionFault(pVCpu, uExt);
|
---|
3403 | }
|
---|
3404 |
|
---|
3405 | Log(("iemTaskSwitch: Success! New CS:EIP=%#04x:%#x SS=%#04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
|
---|
3406 | pVCpu->cpum.GstCtx.ss.Sel));
|
---|
3407 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
3408 | }
|
---|
3409 |
|
---|
3410 |
|
---|
3411 | /**
|
---|
3412 | * Implements exceptions and interrupts for protected mode.
|
---|
3413 | *
|
---|
3414 | * @returns VBox strict status code.
|
---|
3415 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3416 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
3417 | * address.
|
---|
3418 | * @param u8Vector The interrupt / exception vector number.
|
---|
3419 | * @param fFlags The flags.
|
---|
3420 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
3421 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
3422 | */
|
---|
3423 | static VBOXSTRICTRC
|
---|
3424 | iemRaiseXcptOrIntInProtMode(PVMCPUCC pVCpu,
|
---|
3425 | uint8_t cbInstr,
|
---|
3426 | uint8_t u8Vector,
|
---|
3427 | uint32_t fFlags,
|
---|
3428 | uint16_t uErr,
|
---|
3429 | uint64_t uCr2) RT_NOEXCEPT
|
---|
3430 | {
|
---|
3431 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
3432 |
|
---|
3433 | /*
|
---|
3434 | * Read the IDT entry.
|
---|
3435 | */
|
---|
3436 | if (pVCpu->cpum.GstCtx.idtr.cbIdt < UINT32_C(8) * u8Vector + 7)
|
---|
3437 | {
|
---|
3438 | Log(("RaiseXcptOrIntInProtMode: %#x is out of bounds (%#x)\n", u8Vector, pVCpu->cpum.GstCtx.idtr.cbIdt));
|
---|
3439 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3440 | }
|
---|
3441 | X86DESC Idte;
|
---|
3442 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &Idte.u, UINT8_MAX,
|
---|
3443 | pVCpu->cpum.GstCtx.idtr.pIdt + UINT32_C(8) * u8Vector);
|
---|
3444 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
3445 | {
|
---|
3446 | Log(("iemRaiseXcptOrIntInProtMode: failed to fetch IDT entry! vec=%#x rc=%Rrc\n", u8Vector, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3447 | return rcStrict;
|
---|
3448 | }
|
---|
3449 | Log(("iemRaiseXcptOrIntInProtMode: vec=%#x P=%u DPL=%u DT=%u:%u A=%u %04x:%04x%04x - from %04x:%08RX64 efl=%#x depth=%d\n",
|
---|
3450 | u8Vector, Idte.Gate.u1Present, Idte.Gate.u2Dpl, Idte.Gate.u1DescType, Idte.Gate.u4Type,
|
---|
3451 | Idte.Gate.u5ParmCount, Idte.Gate.u16Sel, Idte.Gate.u16OffsetHigh, Idte.Gate.u16OffsetLow,
|
---|
3452 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags.u, pVCpu->iem.s.cXcptRecursions));
|
---|
3453 |
|
---|
3454 | /*
|
---|
3455 | * Check the descriptor type, DPL and such.
|
---|
3456 | * ASSUMES this is done in the same order as described for call-gate calls.
|
---|
3457 | */
|
---|
3458 | if (Idte.Gate.u1DescType)
|
---|
3459 | {
|
---|
3460 | Log(("RaiseXcptOrIntInProtMode %#x - not system selector (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3461 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3462 | }
|
---|
3463 | bool fTaskGate = false;
|
---|
3464 | uint8_t f32BitGate = true;
|
---|
3465 | uint32_t fEflToClear = X86_EFL_TF | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM;
|
---|
3466 | switch (Idte.Gate.u4Type)
|
---|
3467 | {
|
---|
3468 | case X86_SEL_TYPE_SYS_UNDEFINED:
|
---|
3469 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
3470 | case X86_SEL_TYPE_SYS_LDT:
|
---|
3471 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
3472 | case X86_SEL_TYPE_SYS_286_CALL_GATE:
|
---|
3473 | case X86_SEL_TYPE_SYS_UNDEFINED2:
|
---|
3474 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
3475 | case X86_SEL_TYPE_SYS_UNDEFINED3:
|
---|
3476 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
3477 | case X86_SEL_TYPE_SYS_386_CALL_GATE:
|
---|
3478 | case X86_SEL_TYPE_SYS_UNDEFINED4:
|
---|
3479 | {
|
---|
3480 | /** @todo check what actually happens when the type is wrong...
|
---|
3481 | * esp. call gates. */
|
---|
3482 | Log(("RaiseXcptOrIntInProtMode %#x - invalid type (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3483 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3484 | }
|
---|
3485 |
|
---|
3486 | case X86_SEL_TYPE_SYS_286_INT_GATE:
|
---|
3487 | f32BitGate = false;
|
---|
3488 | RT_FALL_THRU();
|
---|
3489 | case X86_SEL_TYPE_SYS_386_INT_GATE:
|
---|
3490 | fEflToClear |= X86_EFL_IF;
|
---|
3491 | break;
|
---|
3492 |
|
---|
3493 | case X86_SEL_TYPE_SYS_TASK_GATE:
|
---|
3494 | fTaskGate = true;
|
---|
3495 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
3496 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Task gates\n"));
|
---|
3497 | #endif
|
---|
3498 | break;
|
---|
3499 |
|
---|
3500 | case X86_SEL_TYPE_SYS_286_TRAP_GATE:
|
---|
3501 | f32BitGate = false;
|
---|
3502 | break;
|
---|
3503 | case X86_SEL_TYPE_SYS_386_TRAP_GATE:
|
---|
3504 | break;
|
---|
3505 |
|
---|
3506 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
3507 | }
|
---|
3508 |
|
---|
3509 | /* Check DPL against CPL if applicable. */
|
---|
3510 | if ((fFlags & (IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3511 | {
|
---|
3512 | if (IEM_GET_CPL(pVCpu) > Idte.Gate.u2Dpl)
|
---|
3513 | {
|
---|
3514 | Log(("RaiseXcptOrIntInProtMode %#x - CPL (%d) > DPL (%d) -> #GP\n", u8Vector, IEM_GET_CPL(pVCpu), Idte.Gate.u2Dpl));
|
---|
3515 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3516 | }
|
---|
3517 | }
|
---|
3518 |
|
---|
3519 | /* Is it there? */
|
---|
3520 | if (!Idte.Gate.u1Present)
|
---|
3521 | {
|
---|
3522 | Log(("RaiseXcptOrIntInProtMode %#x - not present -> #NP\n", u8Vector));
|
---|
3523 | return iemRaiseSelectorNotPresentWithErr(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3524 | }
|
---|
3525 |
|
---|
3526 | /* Is it a task-gate? */
|
---|
3527 | if (fTaskGate)
|
---|
3528 | {
|
---|
3529 | /*
|
---|
3530 | * Construct the error code masks based on what caused this task switch.
|
---|
3531 | * See Intel Instruction reference for INT.
|
---|
3532 | */
|
---|
3533 | uint16_t const uExt = ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3534 | && !(fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)) ? 0 : 1;
|
---|
3535 | uint16_t const uSelMask = X86_SEL_MASK_OFF_RPL;
|
---|
3536 | RTSEL SelTss = Idte.Gate.u16Sel;
|
---|
3537 |
|
---|
3538 | /*
|
---|
3539 | * Fetch the TSS descriptor in the GDT.
|
---|
3540 | */
|
---|
3541 | IEMSELDESC DescTSS;
|
---|
3542 | rcStrict = iemMemFetchSelDescWithErr(pVCpu, &DescTSS, SelTss, X86_XCPT_GP, (SelTss & uSelMask) | uExt);
|
---|
3543 | if (rcStrict != VINF_SUCCESS)
|
---|
3544 | {
|
---|
3545 | Log(("RaiseXcptOrIntInProtMode %#x - failed to fetch TSS selector %#x, rc=%Rrc\n", u8Vector, SelTss,
|
---|
3546 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3547 | return rcStrict;
|
---|
3548 | }
|
---|
3549 |
|
---|
3550 | /* The TSS descriptor must be a system segment and be available (not busy). */
|
---|
3551 | if ( DescTSS.Legacy.Gen.u1DescType
|
---|
3552 | || ( DescTSS.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
3553 | && DescTSS.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL))
|
---|
3554 | {
|
---|
3555 | Log(("RaiseXcptOrIntInProtMode %#x - TSS selector %#x of task gate not a system descriptor or not available %#RX64\n",
|
---|
3556 | u8Vector, SelTss, DescTSS.Legacy.au64));
|
---|
3557 | return iemRaiseGeneralProtectionFault(pVCpu, (SelTss & uSelMask) | uExt);
|
---|
3558 | }
|
---|
3559 |
|
---|
3560 | /* The TSS must be present. */
|
---|
3561 | if (!DescTSS.Legacy.Gen.u1Present)
|
---|
3562 | {
|
---|
3563 | Log(("RaiseXcptOrIntInProtMode %#x - TSS selector %#x not present %#RX64\n", u8Vector, SelTss, DescTSS.Legacy.au64));
|
---|
3564 | return iemRaiseSelectorNotPresentWithErr(pVCpu, (SelTss & uSelMask) | uExt);
|
---|
3565 | }
|
---|
3566 |
|
---|
3567 | /* Do the actual task switch. */
|
---|
3568 | return iemTaskSwitch(pVCpu, IEMTASKSWITCH_INT_XCPT,
|
---|
3569 | (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pVCpu->cpum.GstCtx.eip + cbInstr : pVCpu->cpum.GstCtx.eip,
|
---|
3570 | fFlags, uErr, uCr2, SelTss, &DescTSS);
|
---|
3571 | }
|
---|
3572 |
|
---|
3573 | /* A null CS is bad. */
|
---|
3574 | RTSEL NewCS = Idte.Gate.u16Sel;
|
---|
3575 | if (!(NewCS & X86_SEL_MASK_OFF_RPL))
|
---|
3576 | {
|
---|
3577 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x -> #GP\n", u8Vector, NewCS));
|
---|
3578 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3579 | }
|
---|
3580 |
|
---|
3581 | /* Fetch the descriptor for the new CS. */
|
---|
3582 | IEMSELDESC DescCS;
|
---|
3583 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, NewCS, X86_XCPT_GP); /** @todo correct exception? */
|
---|
3584 | if (rcStrict != VINF_SUCCESS)
|
---|
3585 | {
|
---|
3586 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - rc=%Rrc\n", u8Vector, NewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3587 | return rcStrict;
|
---|
3588 | }
|
---|
3589 |
|
---|
3590 | /* Must be a code segment. */
|
---|
3591 | if (!DescCS.Legacy.Gen.u1DescType)
|
---|
3592 | {
|
---|
3593 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - system selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
3594 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3595 | }
|
---|
3596 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
3597 | {
|
---|
3598 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - data selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
3599 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3600 | }
|
---|
3601 |
|
---|
3602 | /* Don't allow lowering the privilege level. */
|
---|
3603 | /** @todo Does the lowering of privileges apply to software interrupts
|
---|
3604 | * only? This has bearings on the more-privileged or
|
---|
3605 | * same-privilege stack behavior further down. A testcase would
|
---|
3606 | * be nice. */
|
---|
3607 | if (DescCS.Legacy.Gen.u2Dpl > IEM_GET_CPL(pVCpu))
|
---|
3608 | {
|
---|
3609 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - DPL (%d) > CPL (%d) -> #GP\n",
|
---|
3610 | u8Vector, NewCS, DescCS.Legacy.Gen.u2Dpl, IEM_GET_CPL(pVCpu)));
|
---|
3611 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3612 | }
|
---|
3613 |
|
---|
3614 | /* Make sure the selector is present. */
|
---|
3615 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3616 | {
|
---|
3617 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - segment not present -> #NP\n", u8Vector, NewCS));
|
---|
3618 | return iemRaiseSelectorNotPresentBySelector(pVCpu, NewCS);
|
---|
3619 | }
|
---|
3620 |
|
---|
3621 | #ifdef LOG_ENABLED
|
---|
3622 | /* If software interrupt, try decode it if logging is enabled and such. */
|
---|
3623 | if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3624 | && LogIsItEnabled(RTLOGGRPFLAGS_ENABLED, LOG_GROUP_IEM_SYSCALL))
|
---|
3625 | iemLogSyscallProtModeInt(pVCpu, u8Vector, cbInstr);
|
---|
3626 | #endif
|
---|
3627 |
|
---|
3628 | /* Check the new EIP against the new CS limit. */
|
---|
3629 | uint32_t const uNewEip = Idte.Gate.u4Type == X86_SEL_TYPE_SYS_286_INT_GATE
|
---|
3630 | || Idte.Gate.u4Type == X86_SEL_TYPE_SYS_286_TRAP_GATE
|
---|
3631 | ? Idte.Gate.u16OffsetLow
|
---|
3632 | : Idte.Gate.u16OffsetLow | ((uint32_t)Idte.Gate.u16OffsetHigh << 16);
|
---|
3633 | uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3634 | if (uNewEip > cbLimitCS)
|
---|
3635 | {
|
---|
3636 | Log(("RaiseXcptOrIntInProtMode %#x - EIP=%#x > cbLimitCS=%#x (CS=%#x) -> #GP(0)\n",
|
---|
3637 | u8Vector, uNewEip, cbLimitCS, NewCS));
|
---|
3638 | return iemRaiseGeneralProtectionFault(pVCpu, 0);
|
---|
3639 | }
|
---|
3640 | Log7(("iemRaiseXcptOrIntInProtMode: new EIP=%#x CS=%#x\n", uNewEip, NewCS));
|
---|
3641 |
|
---|
3642 | /* Calc the flag image to push. */
|
---|
3643 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
|
---|
3644 | if (fFlags & (IEM_XCPT_FLAGS_DRx_INSTR_BP | IEM_XCPT_FLAGS_T_SOFT_INT))
|
---|
3645 | fEfl &= ~X86_EFL_RF;
|
---|
3646 | else
|
---|
3647 | fEfl |= X86_EFL_RF; /* Vagueness is all I've found on this so far... */ /** @todo Automatically pushing EFLAGS.RF. */
|
---|
3648 |
|
---|
3649 | /* From V8086 mode only go to CPL 0. */
|
---|
3650 | uint8_t const uNewCpl = DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF
|
---|
3651 | ? IEM_GET_CPL(pVCpu) : DescCS.Legacy.Gen.u2Dpl;
|
---|
3652 | if ((fEfl & X86_EFL_VM) && uNewCpl != 0) /** @todo When exactly is this raised? */
|
---|
3653 | {
|
---|
3654 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - New CPL (%d) != 0 w/ VM=1 -> #GP\n", u8Vector, NewCS, uNewCpl));
|
---|
3655 | return iemRaiseGeneralProtectionFault(pVCpu, 0);
|
---|
3656 | }
|
---|
3657 |
|
---|
3658 | /*
|
---|
3659 | * If the privilege level changes, we need to get a new stack from the TSS.
|
---|
3660 | * This in turns means validating the new SS and ESP...
|
---|
3661 | */
|
---|
3662 | if (uNewCpl != IEM_GET_CPL(pVCpu))
|
---|
3663 | {
|
---|
3664 | RTSEL NewSS;
|
---|
3665 | uint32_t uNewEsp;
|
---|
3666 | rcStrict = iemRaiseLoadStackFromTss32Or16(pVCpu, uNewCpl, &NewSS, &uNewEsp);
|
---|
3667 | if (rcStrict != VINF_SUCCESS)
|
---|
3668 | return rcStrict;
|
---|
3669 |
|
---|
3670 | IEMSELDESC DescSS;
|
---|
3671 | rcStrict = iemMiscValidateNewSS(pVCpu, NewSS, uNewCpl, &DescSS);
|
---|
3672 | if (rcStrict != VINF_SUCCESS)
|
---|
3673 | return rcStrict;
|
---|
3674 | /* If the new SS is 16-bit, we are only going to use SP, not ESP. */
|
---|
3675 | if (!DescSS.Legacy.Gen.u1DefBig)
|
---|
3676 | {
|
---|
3677 | Log(("iemRaiseXcptOrIntInProtMode: Forcing ESP=%#x to 16 bits\n", uNewEsp));
|
---|
3678 | uNewEsp = (uint16_t)uNewEsp;
|
---|
3679 | }
|
---|
3680 |
|
---|
3681 | Log7(("iemRaiseXcptOrIntInProtMode: New SS=%#x ESP=%#x (from TSS); current SS=%#x ESP=%#x\n", NewSS, uNewEsp, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.esp));
|
---|
3682 |
|
---|
3683 | /* Check that there is sufficient space for the stack frame. */
|
---|
3684 | uint32_t cbLimitSS = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3685 | uint8_t const cbStackFrame = !(fEfl & X86_EFL_VM)
|
---|
3686 | ? (fFlags & IEM_XCPT_FLAGS_ERR ? 12 : 10) << f32BitGate
|
---|
3687 | : (fFlags & IEM_XCPT_FLAGS_ERR ? 20 : 18) << f32BitGate;
|
---|
3688 |
|
---|
3689 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_DOWN))
|
---|
3690 | {
|
---|
3691 | if ( uNewEsp - 1 > cbLimitSS
|
---|
3692 | || uNewEsp < cbStackFrame)
|
---|
3693 | {
|
---|
3694 | Log(("RaiseXcptOrIntInProtMode: %#x - SS=%#x ESP=%#x cbStackFrame=%#x is out of bounds -> #GP\n",
|
---|
3695 | u8Vector, NewSS, uNewEsp, cbStackFrame));
|
---|
3696 | return iemRaiseSelectorBoundsBySelector(pVCpu, NewSS);
|
---|
3697 | }
|
---|
3698 | }
|
---|
3699 | else
|
---|
3700 | {
|
---|
3701 | if ( uNewEsp - 1 > (DescSS.Legacy.Gen.u1DefBig ? UINT32_MAX : UINT16_MAX)
|
---|
3702 | || uNewEsp - cbStackFrame < cbLimitSS + UINT32_C(1))
|
---|
3703 | {
|
---|
3704 | Log(("RaiseXcptOrIntInProtMode: %#x - SS=%#x ESP=%#x cbStackFrame=%#x (expand down) is out of bounds -> #GP\n",
|
---|
3705 | u8Vector, NewSS, uNewEsp, cbStackFrame));
|
---|
3706 | return iemRaiseSelectorBoundsBySelector(pVCpu, NewSS);
|
---|
3707 | }
|
---|
3708 | }
|
---|
3709 |
|
---|
3710 | /*
|
---|
3711 | * Start making changes.
|
---|
3712 | */
|
---|
3713 |
|
---|
3714 | /* Set the new CPL so that stack accesses use it. */
|
---|
3715 | uint8_t const uOldCpl = IEM_GET_CPL(pVCpu);
|
---|
3716 | IEM_SET_CPL(pVCpu, uNewCpl);
|
---|
3717 |
|
---|
3718 | /* Create the stack frame. */
|
---|
3719 | uint8_t bUnmapInfoStackFrame;
|
---|
3720 | RTPTRUNION uStackFrame;
|
---|
3721 | rcStrict = iemMemMap(pVCpu, &uStackFrame.pv, &bUnmapInfoStackFrame, cbStackFrame, UINT8_MAX,
|
---|
3722 | uNewEsp - cbStackFrame + X86DESC_BASE(&DescSS.Legacy),
|
---|
3723 | IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS, 0); /* _SYS is a hack ... */
|
---|
3724 | if (rcStrict != VINF_SUCCESS)
|
---|
3725 | return rcStrict;
|
---|
3726 | if (f32BitGate)
|
---|
3727 | {
|
---|
3728 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3729 | *uStackFrame.pu32++ = uErr;
|
---|
3730 | uStackFrame.pu32[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pVCpu->cpum.GstCtx.eip + cbInstr : pVCpu->cpum.GstCtx.eip;
|
---|
3731 | uStackFrame.pu32[1] = (pVCpu->cpum.GstCtx.cs.Sel & ~X86_SEL_RPL) | uOldCpl;
|
---|
3732 | uStackFrame.pu32[2] = fEfl;
|
---|
3733 | uStackFrame.pu32[3] = pVCpu->cpum.GstCtx.esp;
|
---|
3734 | uStackFrame.pu32[4] = pVCpu->cpum.GstCtx.ss.Sel;
|
---|
3735 | Log7(("iemRaiseXcptOrIntInProtMode: 32-bit push SS=%#x ESP=%#x\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.esp));
|
---|
3736 | if (fEfl & X86_EFL_VM)
|
---|
3737 | {
|
---|
3738 | uStackFrame.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
3739 | uStackFrame.pu32[5] = pVCpu->cpum.GstCtx.es.Sel;
|
---|
3740 | uStackFrame.pu32[6] = pVCpu->cpum.GstCtx.ds.Sel;
|
---|
3741 | uStackFrame.pu32[7] = pVCpu->cpum.GstCtx.fs.Sel;
|
---|
3742 | uStackFrame.pu32[8] = pVCpu->cpum.GstCtx.gs.Sel;
|
---|
3743 | }
|
---|
3744 | }
|
---|
3745 | else
|
---|
3746 | {
|
---|
3747 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3748 | *uStackFrame.pu16++ = uErr;
|
---|
3749 | uStackFrame.pu16[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pVCpu->cpum.GstCtx.ip + cbInstr : pVCpu->cpum.GstCtx.ip;
|
---|
3750 | uStackFrame.pu16[1] = (pVCpu->cpum.GstCtx.cs.Sel & ~X86_SEL_RPL) | uOldCpl;
|
---|
3751 | uStackFrame.pu16[2] = fEfl;
|
---|
3752 | uStackFrame.pu16[3] = pVCpu->cpum.GstCtx.sp;
|
---|
3753 | uStackFrame.pu16[4] = pVCpu->cpum.GstCtx.ss.Sel;
|
---|
3754 | Log7(("iemRaiseXcptOrIntInProtMode: 16-bit push SS=%#x SP=%#x\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.sp));
|
---|
3755 | if (fEfl & X86_EFL_VM)
|
---|
3756 | {
|
---|
3757 | uStackFrame.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
3758 | uStackFrame.pu16[5] = pVCpu->cpum.GstCtx.es.Sel;
|
---|
3759 | uStackFrame.pu16[6] = pVCpu->cpum.GstCtx.ds.Sel;
|
---|
3760 | uStackFrame.pu16[7] = pVCpu->cpum.GstCtx.fs.Sel;
|
---|
3761 | uStackFrame.pu16[8] = pVCpu->cpum.GstCtx.gs.Sel;
|
---|
3762 | }
|
---|
3763 | }
|
---|
3764 | rcStrict = iemMemCommitAndUnmap(pVCpu, bUnmapInfoStackFrame);
|
---|
3765 | if (rcStrict != VINF_SUCCESS)
|
---|
3766 | return rcStrict;
|
---|
3767 |
|
---|
3768 | /* Mark the selectors 'accessed' (hope this is the correct time). */
|
---|
3769 | /** @todo testcase: excatly _when_ are the accessed bits set - before or
|
---|
3770 | * after pushing the stack frame? (Write protect the gdt + stack to
|
---|
3771 | * find out.) */
|
---|
3772 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3773 | {
|
---|
3774 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewCS);
|
---|
3775 | if (rcStrict != VINF_SUCCESS)
|
---|
3776 | return rcStrict;
|
---|
3777 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3778 | }
|
---|
3779 |
|
---|
3780 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3781 | {
|
---|
3782 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewSS);
|
---|
3783 | if (rcStrict != VINF_SUCCESS)
|
---|
3784 | return rcStrict;
|
---|
3785 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3786 | }
|
---|
3787 |
|
---|
3788 | /*
|
---|
3789 | * Start comitting the register changes (joins with the DPL=CPL branch).
|
---|
3790 | */
|
---|
3791 | pVCpu->cpum.GstCtx.ss.Sel = NewSS;
|
---|
3792 | pVCpu->cpum.GstCtx.ss.ValidSel = NewSS;
|
---|
3793 | pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3794 | pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSS;
|
---|
3795 | pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
3796 | pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
3797 | /** @todo When coming from 32-bit code and operating with a 16-bit TSS and
|
---|
3798 | * 16-bit handler, the high word of ESP remains unchanged (i.e. only
|
---|
3799 | * SP is loaded).
|
---|
3800 | * Need to check the other combinations too:
|
---|
3801 | * - 16-bit TSS, 32-bit handler
|
---|
3802 | * - 32-bit TSS, 16-bit handler */
|
---|
3803 | if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
3804 | pVCpu->cpum.GstCtx.sp = (uint16_t)(uNewEsp - cbStackFrame);
|
---|
3805 | else
|
---|
3806 | pVCpu->cpum.GstCtx.rsp = uNewEsp - cbStackFrame;
|
---|
3807 |
|
---|
3808 | if (fEfl & X86_EFL_VM)
|
---|
3809 | {
|
---|
3810 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pVCpu->cpum.GstCtx.gs);
|
---|
3811 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pVCpu->cpum.GstCtx.fs);
|
---|
3812 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pVCpu->cpum.GstCtx.es);
|
---|
3813 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pVCpu->cpum.GstCtx.ds);
|
---|
3814 | }
|
---|
3815 | }
|
---|
3816 | /*
|
---|
3817 | * Same privilege, no stack change and smaller stack frame.
|
---|
3818 | */
|
---|
3819 | else
|
---|
3820 | {
|
---|
3821 | uint64_t uNewRsp;
|
---|
3822 | uint8_t bUnmapInfoStackFrame;
|
---|
3823 | RTPTRUNION uStackFrame;
|
---|
3824 | uint8_t const cbStackFrame = (fFlags & IEM_XCPT_FLAGS_ERR ? 8 : 6) << f32BitGate;
|
---|
3825 | rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbStackFrame, f32BitGate ? 3 : 1,
|
---|
3826 | &uStackFrame.pv, &bUnmapInfoStackFrame, &uNewRsp);
|
---|
3827 | if (rcStrict != VINF_SUCCESS)
|
---|
3828 | return rcStrict;
|
---|
3829 |
|
---|
3830 | if (f32BitGate)
|
---|
3831 | {
|
---|
3832 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3833 | *uStackFrame.pu32++ = uErr;
|
---|
3834 | uStackFrame.pu32[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pVCpu->cpum.GstCtx.eip + cbInstr : pVCpu->cpum.GstCtx.eip;
|
---|
3835 | uStackFrame.pu32[1] = (pVCpu->cpum.GstCtx.cs.Sel & ~X86_SEL_RPL) | IEM_GET_CPL(pVCpu);
|
---|
3836 | uStackFrame.pu32[2] = fEfl;
|
---|
3837 | }
|
---|
3838 | else
|
---|
3839 | {
|
---|
3840 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3841 | *uStackFrame.pu16++ = uErr;
|
---|
3842 | uStackFrame.pu16[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pVCpu->cpum.GstCtx.eip + cbInstr : pVCpu->cpum.GstCtx.eip;
|
---|
3843 | uStackFrame.pu16[1] = (pVCpu->cpum.GstCtx.cs.Sel & ~X86_SEL_RPL) | IEM_GET_CPL(pVCpu);
|
---|
3844 | uStackFrame.pu16[2] = fEfl;
|
---|
3845 | }
|
---|
3846 | rcStrict = iemMemCommitAndUnmap(pVCpu, bUnmapInfoStackFrame); /* don't use the commit here */
|
---|
3847 | if (rcStrict != VINF_SUCCESS)
|
---|
3848 | return rcStrict;
|
---|
3849 |
|
---|
3850 | /* Mark the CS selector as 'accessed'. */
|
---|
3851 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3852 | {
|
---|
3853 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewCS);
|
---|
3854 | if (rcStrict != VINF_SUCCESS)
|
---|
3855 | return rcStrict;
|
---|
3856 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3857 | }
|
---|
3858 |
|
---|
3859 | /*
|
---|
3860 | * Start committing the register changes (joins with the other branch).
|
---|
3861 | */
|
---|
3862 | pVCpu->cpum.GstCtx.rsp = uNewRsp;
|
---|
3863 | }
|
---|
3864 |
|
---|
3865 | /* ... register committing continues. */
|
---|
3866 | pVCpu->cpum.GstCtx.cs.Sel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
3867 | pVCpu->cpum.GstCtx.cs.ValidSel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
3868 | pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3869 | pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
|
---|
3870 | pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3871 | pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3872 |
|
---|
3873 | pVCpu->cpum.GstCtx.rip = uNewEip; /* (The entire register is modified, see pe16_32 bs3kit tests.) */
|
---|
3874 | fEfl &= ~fEflToClear;
|
---|
3875 | IEMMISC_SET_EFL(pVCpu, fEfl);
|
---|
3876 |
|
---|
3877 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
3878 | pVCpu->cpum.GstCtx.cr2 = uCr2;
|
---|
3879 |
|
---|
3880 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
3881 | iemRaiseXcptAdjustState(pVCpu, u8Vector);
|
---|
3882 |
|
---|
3883 | /* Make sure the execution flags are correct. */
|
---|
3884 | uint32_t const fExecNew = iemCalcExecFlags(pVCpu) | (pVCpu->iem.s.fExec & IEM_F_USER_OPTS);
|
---|
3885 | if (fExecNew != pVCpu->iem.s.fExec)
|
---|
3886 | Log(("iemRaiseXcptOrIntInProtMode: fExec %#x -> %#x (xor %#x)\n",
|
---|
3887 | pVCpu->iem.s.fExec, fExecNew, pVCpu->iem.s.fExec ^ fExecNew));
|
---|
3888 | pVCpu->iem.s.fExec = fExecNew;
|
---|
3889 | Assert(IEM_GET_CPL(pVCpu) == uNewCpl);
|
---|
3890 |
|
---|
3891 | /*
|
---|
3892 | * Deal with debug events that follows the exception and clear inhibit flags.
|
---|
3893 | */
|
---|
3894 | if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3895 | || !(pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK))
|
---|
3896 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_INHIBIT_SHADOW);
|
---|
3897 | else
|
---|
3898 | {
|
---|
3899 | Log(("iemRaiseXcptOrIntInProtMode: Raising #DB after %#x; pending=%#x\n",
|
---|
3900 | u8Vector, pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK));
|
---|
3901 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
|
---|
3902 | pVCpu->cpum.GstCtx.dr[6] |= (pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK_NONSILENT)
|
---|
3903 | >> CPUMCTX_DBG_HIT_DRX_SHIFT;
|
---|
3904 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_INHIBIT_SHADOW);
|
---|
3905 | return iemRaiseDebugException(pVCpu);
|
---|
3906 | }
|
---|
3907 |
|
---|
3908 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
3909 | }
|
---|
3910 |
|
---|
3911 |
|
---|
3912 | /**
|
---|
3913 | * Implements exceptions and interrupts for long mode.
|
---|
3914 | *
|
---|
3915 | * @returns VBox strict status code.
|
---|
3916 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3917 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
3918 | * address.
|
---|
3919 | * @param u8Vector The interrupt / exception vector number.
|
---|
3920 | * @param fFlags The flags.
|
---|
3921 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
3922 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
3923 | */
|
---|
3924 | static VBOXSTRICTRC
|
---|
3925 | iemRaiseXcptOrIntInLongMode(PVMCPUCC pVCpu,
|
---|
3926 | uint8_t cbInstr,
|
---|
3927 | uint8_t u8Vector,
|
---|
3928 | uint32_t fFlags,
|
---|
3929 | uint16_t uErr,
|
---|
3930 | uint64_t uCr2) RT_NOEXCEPT
|
---|
3931 | {
|
---|
3932 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
3933 |
|
---|
3934 | /*
|
---|
3935 | * Read the IDT entry.
|
---|
3936 | */
|
---|
3937 | uint16_t offIdt = (uint16_t)u8Vector << 4;
|
---|
3938 | if (pVCpu->cpum.GstCtx.idtr.cbIdt < offIdt + 7)
|
---|
3939 | {
|
---|
3940 | Log(("iemRaiseXcptOrIntInLongMode: %#x is out of bounds (%#x)\n", u8Vector, pVCpu->cpum.GstCtx.idtr.cbIdt));
|
---|
3941 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3942 | }
|
---|
3943 | X86DESC64 Idte;
|
---|
3944 | #ifdef _MSC_VER /* Shut up silly compiler warning. */
|
---|
3945 | Idte.au64[0] = 0;
|
---|
3946 | Idte.au64[1] = 0;
|
---|
3947 | #endif
|
---|
3948 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &Idte.au64[0], UINT8_MAX, pVCpu->cpum.GstCtx.idtr.pIdt + offIdt);
|
---|
3949 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
3950 | rcStrict = iemMemFetchSysU64(pVCpu, &Idte.au64[1], UINT8_MAX, pVCpu->cpum.GstCtx.idtr.pIdt + offIdt + 8);
|
---|
3951 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
3952 | {
|
---|
3953 | Log(("iemRaiseXcptOrIntInLongMode: failed to fetch IDT entry! vec=%#x rc=%Rrc\n", u8Vector, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3954 | return rcStrict;
|
---|
3955 | }
|
---|
3956 | Log(("iemRaiseXcptOrIntInLongMode: vec=%#x P=%u DPL=%u DT=%u:%u IST=%u %04x:%08x%04x%04x\n",
|
---|
3957 | u8Vector, Idte.Gate.u1Present, Idte.Gate.u2Dpl, Idte.Gate.u1DescType, Idte.Gate.u4Type,
|
---|
3958 | Idte.Gate.u3IST, Idte.Gate.u16Sel, Idte.Gate.u32OffsetTop, Idte.Gate.u16OffsetHigh, Idte.Gate.u16OffsetLow));
|
---|
3959 |
|
---|
3960 | /*
|
---|
3961 | * Check the descriptor type, DPL and such.
|
---|
3962 | * ASSUMES this is done in the same order as described for call-gate calls.
|
---|
3963 | */
|
---|
3964 | if (Idte.Gate.u1DescType)
|
---|
3965 | {
|
---|
3966 | Log(("iemRaiseXcptOrIntInLongMode %#x - not system selector (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3967 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3968 | }
|
---|
3969 | uint32_t fEflToClear = X86_EFL_TF | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM;
|
---|
3970 | switch (Idte.Gate.u4Type)
|
---|
3971 | {
|
---|
3972 | case AMD64_SEL_TYPE_SYS_INT_GATE:
|
---|
3973 | fEflToClear |= X86_EFL_IF;
|
---|
3974 | break;
|
---|
3975 | case AMD64_SEL_TYPE_SYS_TRAP_GATE:
|
---|
3976 | break;
|
---|
3977 |
|
---|
3978 | default:
|
---|
3979 | Log(("iemRaiseXcptOrIntInLongMode %#x - invalid type (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3980 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3981 | }
|
---|
3982 |
|
---|
3983 | /* Check DPL against CPL if applicable. */
|
---|
3984 | if ((fFlags & (IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3985 | {
|
---|
3986 | if (IEM_GET_CPL(pVCpu) > Idte.Gate.u2Dpl)
|
---|
3987 | {
|
---|
3988 | Log(("iemRaiseXcptOrIntInLongMode %#x - CPL (%d) > DPL (%d) -> #GP\n", u8Vector, IEM_GET_CPL(pVCpu), Idte.Gate.u2Dpl));
|
---|
3989 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3990 | }
|
---|
3991 | }
|
---|
3992 |
|
---|
3993 | /* Is it there? */
|
---|
3994 | if (!Idte.Gate.u1Present)
|
---|
3995 | {
|
---|
3996 | Log(("iemRaiseXcptOrIntInLongMode %#x - not present -> #NP\n", u8Vector));
|
---|
3997 | return iemRaiseSelectorNotPresentWithErr(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3998 | }
|
---|
3999 |
|
---|
4000 | /* A null CS is bad. */
|
---|
4001 | RTSEL NewCS = Idte.Gate.u16Sel;
|
---|
4002 | if (!(NewCS & X86_SEL_MASK_OFF_RPL))
|
---|
4003 | {
|
---|
4004 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x -> #GP\n", u8Vector, NewCS));
|
---|
4005 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4006 | }
|
---|
4007 |
|
---|
4008 | /* Fetch the descriptor for the new CS. */
|
---|
4009 | IEMSELDESC DescCS;
|
---|
4010 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, NewCS, X86_XCPT_GP);
|
---|
4011 | if (rcStrict != VINF_SUCCESS)
|
---|
4012 | {
|
---|
4013 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - rc=%Rrc\n", u8Vector, NewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4014 | return rcStrict;
|
---|
4015 | }
|
---|
4016 |
|
---|
4017 | /* Must be a 64-bit code segment. */
|
---|
4018 | if (!DescCS.Long.Gen.u1DescType)
|
---|
4019 | {
|
---|
4020 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - system selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
4021 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
4022 | }
|
---|
4023 | if ( !DescCS.Long.Gen.u1Long
|
---|
4024 | || DescCS.Long.Gen.u1DefBig
|
---|
4025 | || !(DescCS.Long.Gen.u4Type & X86_SEL_TYPE_CODE) )
|
---|
4026 | {
|
---|
4027 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - not 64-bit code selector (%#x, L=%u, D=%u) -> #GP\n",
|
---|
4028 | u8Vector, NewCS, DescCS.Legacy.Gen.u4Type, DescCS.Long.Gen.u1Long, DescCS.Long.Gen.u1DefBig));
|
---|
4029 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
4030 | }
|
---|
4031 |
|
---|
4032 | /* Don't allow lowering the privilege level. For non-conforming CS
|
---|
4033 | selectors, the CS.DPL sets the privilege level the trap/interrupt
|
---|
4034 | handler runs at. For conforming CS selectors, the CPL remains
|
---|
4035 | unchanged, but the CS.DPL must be <= CPL. */
|
---|
4036 | /** @todo Testcase: Interrupt handler with CS.DPL=1, interrupt dispatched
|
---|
4037 | * when CPU in Ring-0. Result \#GP? */
|
---|
4038 | if (DescCS.Legacy.Gen.u2Dpl > IEM_GET_CPL(pVCpu))
|
---|
4039 | {
|
---|
4040 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - DPL (%d) > CPL (%d) -> #GP\n",
|
---|
4041 | u8Vector, NewCS, DescCS.Legacy.Gen.u2Dpl, IEM_GET_CPL(pVCpu)));
|
---|
4042 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
4043 | }
|
---|
4044 |
|
---|
4045 |
|
---|
4046 | /* Make sure the selector is present. */
|
---|
4047 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
4048 | {
|
---|
4049 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - segment not present -> #NP\n", u8Vector, NewCS));
|
---|
4050 | return iemRaiseSelectorNotPresentBySelector(pVCpu, NewCS);
|
---|
4051 | }
|
---|
4052 |
|
---|
4053 | /* Check that the new RIP is canonical. */
|
---|
4054 | uint64_t const uNewRip = Idte.Gate.u16OffsetLow
|
---|
4055 | | ((uint32_t)Idte.Gate.u16OffsetHigh << 16)
|
---|
4056 | | ((uint64_t)Idte.Gate.u32OffsetTop << 32);
|
---|
4057 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
4058 | {
|
---|
4059 | Log(("iemRaiseXcptOrIntInLongMode %#x - RIP=%#RX64 - Not canonical -> #GP(0)\n", u8Vector, uNewRip));
|
---|
4060 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4061 | }
|
---|
4062 |
|
---|
4063 | /*
|
---|
4064 | * If the privilege level changes or if the IST isn't zero, we need to get
|
---|
4065 | * a new stack from the TSS.
|
---|
4066 | */
|
---|
4067 | uint64_t uNewRsp;
|
---|
4068 | uint8_t const uNewCpl = DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF
|
---|
4069 | ? IEM_GET_CPL(pVCpu) : DescCS.Legacy.Gen.u2Dpl;
|
---|
4070 | if ( uNewCpl != IEM_GET_CPL(pVCpu)
|
---|
4071 | || Idte.Gate.u3IST != 0)
|
---|
4072 | {
|
---|
4073 | rcStrict = iemRaiseLoadStackFromTss64(pVCpu, uNewCpl, Idte.Gate.u3IST, &uNewRsp);
|
---|
4074 | if (rcStrict != VINF_SUCCESS)
|
---|
4075 | return rcStrict;
|
---|
4076 | }
|
---|
4077 | else
|
---|
4078 | uNewRsp = pVCpu->cpum.GstCtx.rsp;
|
---|
4079 | uNewRsp &= ~(uint64_t)0xf;
|
---|
4080 |
|
---|
4081 | /*
|
---|
4082 | * Calc the flag image to push.
|
---|
4083 | */
|
---|
4084 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
|
---|
4085 | if (fFlags & (IEM_XCPT_FLAGS_DRx_INSTR_BP | IEM_XCPT_FLAGS_T_SOFT_INT))
|
---|
4086 | fEfl &= ~X86_EFL_RF;
|
---|
4087 | else
|
---|
4088 | fEfl |= X86_EFL_RF; /* Vagueness is all I've found on this so far... */ /** @todo Automatically pushing EFLAGS.RF. */
|
---|
4089 |
|
---|
4090 | /*
|
---|
4091 | * Start making changes.
|
---|
4092 | */
|
---|
4093 | /* Set the new CPL so that stack accesses use it. */
|
---|
4094 | uint8_t const uOldCpl = IEM_GET_CPL(pVCpu);
|
---|
4095 | IEM_SET_CPL(pVCpu, uNewCpl);
|
---|
4096 | /** @todo Setting CPL this early seems wrong as it would affect and errors we
|
---|
4097 | * raise accessing the stack and (?) GDT/LDT... */
|
---|
4098 |
|
---|
4099 | /* Create the stack frame. */
|
---|
4100 | uint8_t bUnmapInfoStackFrame;
|
---|
4101 | uint32_t cbStackFrame = sizeof(uint64_t) * (5 + !!(fFlags & IEM_XCPT_FLAGS_ERR));
|
---|
4102 | RTPTRUNION uStackFrame;
|
---|
4103 | rcStrict = iemMemMap(pVCpu, &uStackFrame.pv, &bUnmapInfoStackFrame, cbStackFrame, UINT8_MAX,
|
---|
4104 | uNewRsp - cbStackFrame, IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS, 0); /* _SYS is a hack ... */
|
---|
4105 | if (rcStrict != VINF_SUCCESS)
|
---|
4106 | return rcStrict;
|
---|
4107 |
|
---|
4108 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
4109 | *uStackFrame.pu64++ = uErr;
|
---|
4110 | uStackFrame.pu64[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pVCpu->cpum.GstCtx.rip + cbInstr : pVCpu->cpum.GstCtx.rip;
|
---|
4111 | uStackFrame.pu64[1] = (pVCpu->cpum.GstCtx.cs.Sel & ~X86_SEL_RPL) | uOldCpl; /* CPL paranoia */
|
---|
4112 | uStackFrame.pu64[2] = fEfl;
|
---|
4113 | uStackFrame.pu64[3] = pVCpu->cpum.GstCtx.rsp;
|
---|
4114 | uStackFrame.pu64[4] = pVCpu->cpum.GstCtx.ss.Sel;
|
---|
4115 | rcStrict = iemMemCommitAndUnmap(pVCpu, bUnmapInfoStackFrame);
|
---|
4116 | if (rcStrict != VINF_SUCCESS)
|
---|
4117 | return rcStrict;
|
---|
4118 |
|
---|
4119 | /* Mark the CS selectors 'accessed' (hope this is the correct time). */
|
---|
4120 | /** @todo testcase: excatly _when_ are the accessed bits set - before or
|
---|
4121 | * after pushing the stack frame? (Write protect the gdt + stack to
|
---|
4122 | * find out.) */
|
---|
4123 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
4124 | {
|
---|
4125 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewCS);
|
---|
4126 | if (rcStrict != VINF_SUCCESS)
|
---|
4127 | return rcStrict;
|
---|
4128 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
4129 | }
|
---|
4130 |
|
---|
4131 | /*
|
---|
4132 | * Start comitting the register changes.
|
---|
4133 | */
|
---|
4134 | /** @todo research/testcase: Figure out what VT-x and AMD-V loads into the
|
---|
4135 | * hidden registers when interrupting 32-bit or 16-bit code! */
|
---|
4136 | if (uNewCpl != uOldCpl)
|
---|
4137 | {
|
---|
4138 | pVCpu->cpum.GstCtx.ss.Sel = 0 | uNewCpl;
|
---|
4139 | pVCpu->cpum.GstCtx.ss.ValidSel = 0 | uNewCpl;
|
---|
4140 | pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4141 | pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
|
---|
4142 | pVCpu->cpum.GstCtx.ss.u64Base = 0;
|
---|
4143 | pVCpu->cpum.GstCtx.ss.Attr.u = (uNewCpl << X86DESCATTR_DPL_SHIFT) | X86DESCATTR_UNUSABLE;
|
---|
4144 | }
|
---|
4145 | pVCpu->cpum.GstCtx.rsp = uNewRsp - cbStackFrame;
|
---|
4146 | pVCpu->cpum.GstCtx.cs.Sel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
4147 | pVCpu->cpum.GstCtx.cs.ValidSel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
4148 | pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4149 | pVCpu->cpum.GstCtx.cs.u32Limit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
4150 | pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
4151 | pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
4152 | pVCpu->cpum.GstCtx.rip = uNewRip;
|
---|
4153 |
|
---|
4154 | fEfl &= ~fEflToClear;
|
---|
4155 | IEMMISC_SET_EFL(pVCpu, fEfl);
|
---|
4156 |
|
---|
4157 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
4158 | pVCpu->cpum.GstCtx.cr2 = uCr2;
|
---|
4159 |
|
---|
4160 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
4161 | iemRaiseXcptAdjustState(pVCpu, u8Vector);
|
---|
4162 |
|
---|
4163 | iemRecalcExecModeAndCplAndAcFlags(pVCpu);
|
---|
4164 |
|
---|
4165 | /*
|
---|
4166 | * Deal with debug events that follows the exception and clear inhibit flags.
|
---|
4167 | */
|
---|
4168 | if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
4169 | || !(pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK))
|
---|
4170 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_INHIBIT_SHADOW);
|
---|
4171 | else
|
---|
4172 | {
|
---|
4173 | Log(("iemRaiseXcptOrIntInLongMode: Raising #DB after %#x; pending=%#x\n",
|
---|
4174 | u8Vector, pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK));
|
---|
4175 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
|
---|
4176 | pVCpu->cpum.GstCtx.dr[6] |= (pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK_NONSILENT)
|
---|
4177 | >> CPUMCTX_DBG_HIT_DRX_SHIFT;
|
---|
4178 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_INHIBIT_SHADOW);
|
---|
4179 | return iemRaiseDebugException(pVCpu);
|
---|
4180 | }
|
---|
4181 |
|
---|
4182 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
4183 | }
|
---|
4184 |
|
---|
4185 |
|
---|
4186 | /**
|
---|
4187 | * Implements exceptions and interrupts.
|
---|
4188 | *
|
---|
4189 | * All exceptions and interrupts goes thru this function!
|
---|
4190 | *
|
---|
4191 | * @returns VBox strict status code.
|
---|
4192 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4193 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
4194 | * address.
|
---|
4195 | * @param u8Vector The interrupt / exception vector number.
|
---|
4196 | * @param fFlags The flags.
|
---|
4197 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
4198 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
4199 | */
|
---|
4200 | VBOXSTRICTRC
|
---|
4201 | iemRaiseXcptOrInt(PVMCPUCC pVCpu,
|
---|
4202 | uint8_t cbInstr,
|
---|
4203 | uint8_t u8Vector,
|
---|
4204 | uint32_t fFlags,
|
---|
4205 | uint16_t uErr,
|
---|
4206 | uint64_t uCr2) RT_NOEXCEPT
|
---|
4207 | {
|
---|
4208 | /*
|
---|
4209 | * Get all the state that we might need here.
|
---|
4210 | */
|
---|
4211 | IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
4212 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
|
---|
4213 |
|
---|
4214 | #ifndef IEM_WITH_CODE_TLB /** @todo we're doing it afterwards too, that should suffice... */
|
---|
4215 | /*
|
---|
4216 | * Flush prefetch buffer
|
---|
4217 | */
|
---|
4218 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
4219 | #endif
|
---|
4220 |
|
---|
4221 | /*
|
---|
4222 | * Perform the V8086 IOPL check and upgrade the fault without nesting.
|
---|
4223 | */
|
---|
4224 | if ( pVCpu->cpum.GstCtx.eflags.Bits.u1VM
|
---|
4225 | && pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL != 3
|
---|
4226 | && (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT
|
---|
4227 | | IEM_XCPT_FLAGS_BP_INSTR
|
---|
4228 | | IEM_XCPT_FLAGS_ICEBP_INSTR
|
---|
4229 | | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
|
---|
4230 | && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
|
---|
4231 | {
|
---|
4232 | Log(("iemRaiseXcptOrInt: V8086 IOPL check failed for int %#x -> #GP(0)\n", u8Vector));
|
---|
4233 | fFlags = IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR;
|
---|
4234 | u8Vector = X86_XCPT_GP;
|
---|
4235 | uErr = 0;
|
---|
4236 | }
|
---|
4237 |
|
---|
4238 | PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4239 | #ifdef DBGFTRACE_ENABLED
|
---|
4240 | RTTraceBufAddMsgF(pVM->CTX_SUFF(hTraceBuf), "Xcpt/%u: %02x %u %x %x %llx %04x:%04llx %04x:%04llx",
|
---|
4241 | pVCpu->iem.s.cXcptRecursions, u8Vector, cbInstr, fFlags, uErr, uCr2,
|
---|
4242 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp);
|
---|
4243 | #endif
|
---|
4244 |
|
---|
4245 | /*
|
---|
4246 | * Check if DBGF wants to intercept the exception.
|
---|
4247 | */
|
---|
4248 | if ( (fFlags & (IEM_XCPT_FLAGS_T_EXT_INT | IEM_XCPT_FLAGS_T_SOFT_INT))
|
---|
4249 | || !DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + u8Vector)) )
|
---|
4250 | { /* likely */ }
|
---|
4251 | else
|
---|
4252 | {
|
---|
4253 | VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + u8Vector),
|
---|
4254 | DBGFEVENTCTX_INVALID, 1, (uint64_t)uErr);
|
---|
4255 | if (rcStrict != VINF_SUCCESS)
|
---|
4256 | return rcStrict;
|
---|
4257 | }
|
---|
4258 |
|
---|
4259 | /*
|
---|
4260 | * Evaluate whether NMI blocking should be in effect.
|
---|
4261 | * Normally, NMI blocking is in effect whenever we inject an NMI.
|
---|
4262 | */
|
---|
4263 | bool fBlockNmi = u8Vector == X86_XCPT_NMI
|
---|
4264 | && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT);
|
---|
4265 |
|
---|
4266 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4267 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
4268 | {
|
---|
4269 | VBOXSTRICTRC rcStrict0 = iemVmxVmexitEvent(pVCpu, u8Vector, fFlags, uErr, uCr2, cbInstr);
|
---|
4270 | if (rcStrict0 != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
4271 | return rcStrict0;
|
---|
4272 |
|
---|
4273 | /* If virtual-NMI blocking is in effect for the nested-guest, guest NMIs are not blocked. */
|
---|
4274 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking)
|
---|
4275 | {
|
---|
4276 | Assert(CPUMIsGuestVmxPinCtlsSet(&pVCpu->cpum.GstCtx, VMX_PIN_CTLS_VIRT_NMI));
|
---|
4277 | fBlockNmi = false;
|
---|
4278 | }
|
---|
4279 | }
|
---|
4280 | #endif
|
---|
4281 |
|
---|
4282 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
4283 | if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
|
---|
4284 | {
|
---|
4285 | /*
|
---|
4286 | * If the event is being injected as part of VMRUN, it isn't subject to event
|
---|
4287 | * intercepts in the nested-guest. However, secondary exceptions that occur
|
---|
4288 | * during injection of any event -are- subject to exception intercepts.
|
---|
4289 | *
|
---|
4290 | * See AMD spec. 15.20 "Event Injection".
|
---|
4291 | */
|
---|
4292 | if (!pVCpu->cpum.GstCtx.hwvirt.svm.fInterceptEvents)
|
---|
4293 | pVCpu->cpum.GstCtx.hwvirt.svm.fInterceptEvents = true;
|
---|
4294 | else
|
---|
4295 | {
|
---|
4296 | /*
|
---|
4297 | * Check and handle if the event being raised is intercepted.
|
---|
4298 | */
|
---|
4299 | VBOXSTRICTRC rcStrict0 = iemHandleSvmEventIntercept(pVCpu, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4300 | if (rcStrict0 != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
4301 | return rcStrict0;
|
---|
4302 | }
|
---|
4303 | }
|
---|
4304 | #endif
|
---|
4305 |
|
---|
4306 | /*
|
---|
4307 | * Set NMI blocking if necessary.
|
---|
4308 | */
|
---|
4309 | if (fBlockNmi)
|
---|
4310 | CPUMSetInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx);
|
---|
4311 |
|
---|
4312 | /*
|
---|
4313 | * Do recursion accounting.
|
---|
4314 | */
|
---|
4315 | uint8_t const uPrevXcpt = pVCpu->iem.s.uCurXcpt;
|
---|
4316 | uint32_t const fPrevXcpt = pVCpu->iem.s.fCurXcpt;
|
---|
4317 | if (pVCpu->iem.s.cXcptRecursions == 0)
|
---|
4318 | Log(("iemRaiseXcptOrInt: %#x at %04x:%RGv cbInstr=%#x fFlags=%#x uErr=%#x uCr2=%llx\n",
|
---|
4319 | u8Vector, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, cbInstr, fFlags, uErr, uCr2));
|
---|
4320 | else
|
---|
4321 | {
|
---|
4322 | Log(("iemRaiseXcptOrInt: %#x at %04x:%RGv cbInstr=%#x fFlags=%#x uErr=%#x uCr2=%llx; prev=%#x depth=%d flags=%#x\n",
|
---|
4323 | u8Vector, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, cbInstr, fFlags, uErr, uCr2, pVCpu->iem.s.uCurXcpt,
|
---|
4324 | pVCpu->iem.s.cXcptRecursions + 1, fPrevXcpt));
|
---|
4325 |
|
---|
4326 | if (pVCpu->iem.s.cXcptRecursions >= 4)
|
---|
4327 | {
|
---|
4328 | #ifdef DEBUG_bird
|
---|
4329 | AssertFailed();
|
---|
4330 | #endif
|
---|
4331 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Too many fault nestings.\n"));
|
---|
4332 | }
|
---|
4333 |
|
---|
4334 | /*
|
---|
4335 | * Evaluate the sequence of recurring events.
|
---|
4336 | */
|
---|
4337 | IEMXCPTRAISE enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fPrevXcpt, uPrevXcpt, fFlags, u8Vector,
|
---|
4338 | NULL /* pXcptRaiseInfo */);
|
---|
4339 | if (enmRaise == IEMXCPTRAISE_CURRENT_XCPT)
|
---|
4340 | { /* likely */ }
|
---|
4341 | else if (enmRaise == IEMXCPTRAISE_DOUBLE_FAULT)
|
---|
4342 | {
|
---|
4343 | Log2(("iemRaiseXcptOrInt: Raising double fault. uPrevXcpt=%#x\n", uPrevXcpt));
|
---|
4344 | fFlags = IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR;
|
---|
4345 | u8Vector = X86_XCPT_DF;
|
---|
4346 | uErr = 0;
|
---|
4347 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4348 | /* VMX nested-guest #DF intercept needs to be checked here. */
|
---|
4349 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
4350 | {
|
---|
4351 | VBOXSTRICTRC rcStrict0 = iemVmxVmexitEventDoubleFault(pVCpu);
|
---|
4352 | if (rcStrict0 != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
4353 | return rcStrict0;
|
---|
4354 | }
|
---|
4355 | #endif
|
---|
4356 | /* SVM nested-guest #DF intercepts need to be checked now. See AMD spec. 15.12 "Exception Intercepts". */
|
---|
4357 | if (IEM_SVM_IS_XCPT_INTERCEPT_SET(pVCpu, X86_XCPT_DF))
|
---|
4358 | IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XCPT_DF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
4359 | }
|
---|
4360 | else if (enmRaise == IEMXCPTRAISE_TRIPLE_FAULT)
|
---|
4361 | {
|
---|
4362 | Log2(("iemRaiseXcptOrInt: Raising triple fault. uPrevXcpt=%#x\n", uPrevXcpt));
|
---|
4363 | return iemInitiateCpuShutdown(pVCpu);
|
---|
4364 | }
|
---|
4365 | else if (enmRaise == IEMXCPTRAISE_CPU_HANG)
|
---|
4366 | {
|
---|
4367 | /* If a nested-guest enters an endless CPU loop condition, we'll emulate it; otherwise guru. */
|
---|
4368 | Log2(("iemRaiseXcptOrInt: CPU hang condition detected\n"));
|
---|
4369 | if ( !CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))
|
---|
4370 | && !CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
|
---|
4371 | return VERR_EM_GUEST_CPU_HANG;
|
---|
4372 | }
|
---|
4373 | else
|
---|
4374 | {
|
---|
4375 | AssertMsgFailed(("Unexpected condition! enmRaise=%#x uPrevXcpt=%#x fPrevXcpt=%#x, u8Vector=%#x fFlags=%#x\n",
|
---|
4376 | enmRaise, uPrevXcpt, fPrevXcpt, u8Vector, fFlags));
|
---|
4377 | return VERR_IEM_IPE_9;
|
---|
4378 | }
|
---|
4379 |
|
---|
4380 | /*
|
---|
4381 | * The 'EXT' bit is set when an exception occurs during deliver of an external
|
---|
4382 | * event (such as an interrupt or earlier exception)[1]. Privileged software
|
---|
4383 | * exception (INT1) also sets the EXT bit[2]. Exceptions generated by software
|
---|
4384 | * interrupts and INTO, INT3 instructions, the 'EXT' bit will not be set.
|
---|
4385 | *
|
---|
4386 | * [1] - Intel spec. 6.13 "Error Code"
|
---|
4387 | * [2] - Intel spec. 26.5.1.1 "Details of Vectored-Event Injection".
|
---|
4388 | * [3] - Intel Instruction reference for INT n.
|
---|
4389 | */
|
---|
4390 | if ( (fPrevXcpt & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_EXT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR))
|
---|
4391 | && (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
4392 | && u8Vector != X86_XCPT_PF
|
---|
4393 | && u8Vector != X86_XCPT_DF)
|
---|
4394 | {
|
---|
4395 | uErr |= X86_TRAP_ERR_EXTERNAL;
|
---|
4396 | }
|
---|
4397 | }
|
---|
4398 |
|
---|
4399 | pVCpu->iem.s.cXcptRecursions++;
|
---|
4400 | pVCpu->iem.s.uCurXcpt = u8Vector;
|
---|
4401 | pVCpu->iem.s.fCurXcpt = fFlags;
|
---|
4402 | pVCpu->iem.s.uCurXcptErr = uErr;
|
---|
4403 | pVCpu->iem.s.uCurXcptCr2 = uCr2;
|
---|
4404 |
|
---|
4405 | /*
|
---|
4406 | * Extensive logging.
|
---|
4407 | */
|
---|
4408 | #if defined(LOG_ENABLED) && defined(IN_RING3)
|
---|
4409 | if (LogIs3Enabled())
|
---|
4410 | {
|
---|
4411 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR_MASK);
|
---|
4412 | char szRegs[4096];
|
---|
4413 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
4414 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
4415 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
4416 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
4417 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
4418 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
4419 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
4420 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
4421 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
4422 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
4423 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
4424 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
4425 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
4426 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
4427 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
4428 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
4429 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
4430 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
4431 | " efer=%016VR{efer}\n"
|
---|
4432 | " pat=%016VR{pat}\n"
|
---|
4433 | " sf_mask=%016VR{sf_mask}\n"
|
---|
4434 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
4435 | " lstar=%016VR{lstar}\n"
|
---|
4436 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
4437 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
4438 | );
|
---|
4439 |
|
---|
4440 | char szInstr[256];
|
---|
4441 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
4442 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
4443 | szInstr, sizeof(szInstr), NULL);
|
---|
4444 | Log3(("%s%s\n", szRegs, szInstr));
|
---|
4445 | }
|
---|
4446 | #endif /* LOG_ENABLED */
|
---|
4447 |
|
---|
4448 | /*
|
---|
4449 | * Stats.
|
---|
4450 | */
|
---|
4451 | uint64_t const uTimestamp = ASMReadTSC();
|
---|
4452 | if (!(fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT))
|
---|
4453 | {
|
---|
4454 | STAM_REL_STATS({ pVCpu->iem.s.aStatInts[u8Vector] += 1; });
|
---|
4455 | EMHistoryAddExit(pVCpu,
|
---|
4456 | fFlags & IEM_XCPT_FLAGS_T_EXT_INT
|
---|
4457 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_IEM, u8Vector)
|
---|
4458 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_IEM, u8Vector | 0x100),
|
---|
4459 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base, uTimestamp);
|
---|
4460 | IEMTLBTRACE_IRQ(pVCpu, u8Vector, fFlags, pVCpu->cpum.GstCtx.rflags.uBoth);
|
---|
4461 | }
|
---|
4462 | else
|
---|
4463 | {
|
---|
4464 | if (u8Vector < RT_ELEMENTS(pVCpu->iem.s.aStatXcpts))
|
---|
4465 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.aStatXcpts[u8Vector]);
|
---|
4466 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_XCPT, u8Vector),
|
---|
4467 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base, uTimestamp);
|
---|
4468 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
4469 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_XCPT, u8Vector | EMEXIT_F_XCPT_ERRCD), uErr, uTimestamp);
|
---|
4470 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
4471 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_XCPT, u8Vector | EMEXIT_F_XCPT_CR2), uCr2, uTimestamp);
|
---|
4472 | IEMTLBTRACE_XCPT(pVCpu, u8Vector, fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0, fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0, fFlags);
|
---|
4473 | }
|
---|
4474 |
|
---|
4475 | /*
|
---|
4476 | * Hack alert! Convert incoming debug events to slient on Intel.
|
---|
4477 | * See the dbg+inhibit+ringxfer test in bs3-cpu-weird-1.
|
---|
4478 | */
|
---|
4479 | if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
4480 | || !(pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK_NONSILENT)
|
---|
4481 | || !IEM_IS_GUEST_CPU_INTEL(pVCpu))
|
---|
4482 | { /* ignore */ }
|
---|
4483 | else
|
---|
4484 | {
|
---|
4485 | Log(("iemRaiseXcptOrInt: Converting pending %#x debug events to a silent one (intel hack); vec=%#x\n",
|
---|
4486 | pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK, u8Vector));
|
---|
4487 | pVCpu->cpum.GstCtx.eflags.uBoth = (pVCpu->cpum.GstCtx.eflags.uBoth & ~CPUMCTX_DBG_HIT_DRX_MASK)
|
---|
4488 | | CPUMCTX_DBG_HIT_DRX_SILENT;
|
---|
4489 | }
|
---|
4490 |
|
---|
4491 | /*
|
---|
4492 | * #PF's implies a INVLPG for the CR2 value (see 4.10.1.1 in Intel SDM Vol 3)
|
---|
4493 | * to ensure that a stale TLB or paging cache entry will only cause one
|
---|
4494 | * spurious #PF.
|
---|
4495 | */
|
---|
4496 | if ( u8Vector == X86_XCPT_PF
|
---|
4497 | && (fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_CR2)) == (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_CR2))
|
---|
4498 | IEMTlbInvalidatePage(pVCpu, uCr2);
|
---|
4499 |
|
---|
4500 | /*
|
---|
4501 | * Call the mode specific worker function.
|
---|
4502 | */
|
---|
4503 | VBOXSTRICTRC rcStrict;
|
---|
4504 | if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
|
---|
4505 | rcStrict = iemRaiseXcptOrIntInRealMode(pVCpu, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4506 | else if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA)
|
---|
4507 | rcStrict = iemRaiseXcptOrIntInLongMode(pVCpu, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4508 | else
|
---|
4509 | rcStrict = iemRaiseXcptOrIntInProtMode(pVCpu, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4510 |
|
---|
4511 | /* Flush the prefetch buffer. */
|
---|
4512 | iemOpcodeFlushHeavy(pVCpu, IEM_GET_INSTR_LEN(pVCpu));
|
---|
4513 |
|
---|
4514 | /*
|
---|
4515 | * Unwind.
|
---|
4516 | */
|
---|
4517 | pVCpu->iem.s.cXcptRecursions--;
|
---|
4518 | pVCpu->iem.s.uCurXcpt = uPrevXcpt;
|
---|
4519 | pVCpu->iem.s.fCurXcpt = fPrevXcpt;
|
---|
4520 | Log(("iemRaiseXcptOrInt: returns %Rrc (vec=%#x); cs:rip=%04x:%RGv ss:rsp=%04x:%RGv cpl=%u depth=%d\n",
|
---|
4521 | VBOXSTRICTRC_VAL(rcStrict), u8Vector, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel,
|
---|
4522 | pVCpu->cpum.GstCtx.esp, IEM_GET_CPL(pVCpu), pVCpu->iem.s.cXcptRecursions + 1));
|
---|
4523 | return rcStrict;
|
---|
4524 | }
|
---|
4525 |
|
---|
4526 | #ifdef IEM_WITH_SETJMP
|
---|
4527 | /**
|
---|
4528 | * See iemRaiseXcptOrInt. Will not return.
|
---|
4529 | */
|
---|
4530 | DECL_NO_RETURN(void)
|
---|
4531 | iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu,
|
---|
4532 | uint8_t cbInstr,
|
---|
4533 | uint8_t u8Vector,
|
---|
4534 | uint32_t fFlags,
|
---|
4535 | uint16_t uErr,
|
---|
4536 | uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4537 | {
|
---|
4538 | VBOXSTRICTRC rcStrict = iemRaiseXcptOrInt(pVCpu, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4539 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
4540 | }
|
---|
4541 | #endif
|
---|
4542 |
|
---|
4543 |
|
---|
4544 | /** \#DE - 00. */
|
---|
4545 | VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4546 | {
|
---|
4547 | if (GCMIsInterceptingXcptDE(pVCpu))
|
---|
4548 | {
|
---|
4549 | int rc = GCMXcptDE(pVCpu, &pVCpu->cpum.GstCtx);
|
---|
4550 | if (rc == VINF_SUCCESS)
|
---|
4551 | {
|
---|
4552 | Log(("iemRaiseDivideError: Restarting instruction because of GCMXcptDE\n"));
|
---|
4553 | return VINF_IEM_RAISED_XCPT; /* must return non-zero status here to cause a instruction restart */
|
---|
4554 | }
|
---|
4555 | }
|
---|
4556 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_DE, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4557 | }
|
---|
4558 |
|
---|
4559 |
|
---|
4560 | #ifdef IEM_WITH_SETJMP
|
---|
4561 | /** \#DE - 00. */
|
---|
4562 | DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4563 | {
|
---|
4564 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_DE, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4565 | }
|
---|
4566 | #endif
|
---|
4567 |
|
---|
4568 |
|
---|
4569 | /** \#DB - 01.
|
---|
4570 | * @note This automatically clear DR7.GD. */
|
---|
4571 | VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4572 | {
|
---|
4573 | /* This always clears RF (via IEM_XCPT_FLAGS_DRx_INSTR_BP). */
|
---|
4574 | pVCpu->cpum.GstCtx.dr[7] &= ~X86_DR7_GD;
|
---|
4575 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_DB, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_DRx_INSTR_BP, 0, 0);
|
---|
4576 | }
|
---|
4577 |
|
---|
4578 |
|
---|
4579 | /** \#BR - 05. */
|
---|
4580 | VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4581 | {
|
---|
4582 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_BR, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4583 | }
|
---|
4584 |
|
---|
4585 |
|
---|
4586 | /** \#UD - 06. */
|
---|
4587 | VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4588 | {
|
---|
4589 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4590 | }
|
---|
4591 |
|
---|
4592 |
|
---|
4593 | #ifdef IEM_WITH_SETJMP
|
---|
4594 | /** \#UD - 06. */
|
---|
4595 | DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4596 | {
|
---|
4597 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4598 | }
|
---|
4599 | #endif
|
---|
4600 |
|
---|
4601 |
|
---|
4602 | /** \#NM - 07. */
|
---|
4603 | VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4604 | {
|
---|
4605 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_NM, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4606 | }
|
---|
4607 |
|
---|
4608 |
|
---|
4609 | #ifdef IEM_WITH_SETJMP
|
---|
4610 | /** \#NM - 07. */
|
---|
4611 | DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4612 | {
|
---|
4613 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_NM, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4614 | }
|
---|
4615 | #endif
|
---|
4616 |
|
---|
4617 |
|
---|
4618 | /** \#TS(err) - 0a. */
|
---|
4619 | VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT
|
---|
4620 | {
|
---|
4621 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4622 | }
|
---|
4623 |
|
---|
4624 |
|
---|
4625 | /** \#TS(tr) - 0a. */
|
---|
4626 | VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4627 | {
|
---|
4628 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4629 | pVCpu->cpum.GstCtx.tr.Sel, 0);
|
---|
4630 | }
|
---|
4631 |
|
---|
4632 |
|
---|
4633 | /** \#TS(0) - 0a. */
|
---|
4634 | VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4635 | {
|
---|
4636 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4637 | 0, 0);
|
---|
4638 | }
|
---|
4639 |
|
---|
4640 |
|
---|
4641 | /** \#TS(err) - 0a. */
|
---|
4642 | VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT
|
---|
4643 | {
|
---|
4644 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4645 | uSel & X86_SEL_MASK_OFF_RPL, 0);
|
---|
4646 | }
|
---|
4647 |
|
---|
4648 |
|
---|
4649 | /** \#NP(err) - 0b. */
|
---|
4650 | VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT
|
---|
4651 | {
|
---|
4652 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_NP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4653 | }
|
---|
4654 |
|
---|
4655 |
|
---|
4656 | /** \#NP(sel) - 0b. */
|
---|
4657 | VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT
|
---|
4658 | {
|
---|
4659 | Log(("iemRaiseSelectorNotPresentBySelector: cs:rip=%04x:%RX64 uSel=%#x\n",
|
---|
4660 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uSel));
|
---|
4661 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_NP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4662 | uSel & ~X86_SEL_RPL, 0);
|
---|
4663 | }
|
---|
4664 |
|
---|
4665 |
|
---|
4666 | /** \#SS(seg) - 0c. */
|
---|
4667 | VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT
|
---|
4668 | {
|
---|
4669 | Log(("iemRaiseStackSelectorNotPresentBySelector: cs:rip=%04x:%RX64 uSel=%#x\n",
|
---|
4670 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uSel));
|
---|
4671 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_SS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4672 | uSel & ~X86_SEL_RPL, 0);
|
---|
4673 | }
|
---|
4674 |
|
---|
4675 |
|
---|
4676 | /** \#SS(err) - 0c. */
|
---|
4677 | VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT
|
---|
4678 | {
|
---|
4679 | Log(("iemRaiseStackSelectorNotPresentWithErr: cs:rip=%04x:%RX64 uErr=%#x\n",
|
---|
4680 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uErr));
|
---|
4681 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_SS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4682 | }
|
---|
4683 |
|
---|
4684 |
|
---|
4685 | /** \#GP(n) - 0d. */
|
---|
4686 | VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT
|
---|
4687 | {
|
---|
4688 | Log(("iemRaiseGeneralProtectionFault: cs:rip=%04x:%RX64 uErr=%#x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uErr));
|
---|
4689 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4690 | }
|
---|
4691 |
|
---|
4692 |
|
---|
4693 | /** \#GP(0) - 0d. */
|
---|
4694 | VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4695 | {
|
---|
4696 | Log(("iemRaiseGeneralProtectionFault0: cs:rip=%04x:%RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
4697 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4698 | }
|
---|
4699 |
|
---|
4700 | #ifdef IEM_WITH_SETJMP
|
---|
4701 | /** \#GP(0) - 0d. */
|
---|
4702 | DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4703 | {
|
---|
4704 | Log(("iemRaiseGeneralProtectionFault0Jmp: cs:rip=%04x:%RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
4705 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4706 | }
|
---|
4707 | #endif
|
---|
4708 |
|
---|
4709 |
|
---|
4710 | /** \#GP(sel) - 0d. */
|
---|
4711 | VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT
|
---|
4712 | {
|
---|
4713 | Log(("iemRaiseGeneralProtectionFaultBySelector: cs:rip=%04x:%RX64 Sel=%#x\n",
|
---|
4714 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, Sel));
|
---|
4715 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4716 | Sel & ~X86_SEL_RPL, 0);
|
---|
4717 | }
|
---|
4718 |
|
---|
4719 |
|
---|
4720 | /** \#GP(0) - 0d. */
|
---|
4721 | VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4722 | {
|
---|
4723 | Log(("iemRaiseNotCanonical: cs:rip=%04x:%RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
4724 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4725 | }
|
---|
4726 |
|
---|
4727 |
|
---|
4728 | /** \#GP(sel) - 0d. */
|
---|
4729 | VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT
|
---|
4730 | {
|
---|
4731 | Log(("iemRaiseSelectorBounds: cs:rip=%04x:%RX64 iSegReg=%d fAccess=%#x\n",
|
---|
4732 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, iSegReg, fAccess));
|
---|
4733 | NOREF(iSegReg); NOREF(fAccess);
|
---|
4734 | return iemRaiseXcptOrInt(pVCpu, 0, iSegReg == X86_SREG_SS ? X86_XCPT_SS : X86_XCPT_GP,
|
---|
4735 | IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4736 | }
|
---|
4737 |
|
---|
4738 | #ifdef IEM_WITH_SETJMP
|
---|
4739 | /** \#GP(sel) - 0d, longjmp. */
|
---|
4740 | DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4741 | {
|
---|
4742 | Log(("iemRaiseSelectorBoundsJmp: cs:rip=%04x:%RX64 iSegReg=%d fAccess=%#x\n",
|
---|
4743 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, iSegReg, fAccess));
|
---|
4744 | NOREF(iSegReg); NOREF(fAccess);
|
---|
4745 | iemRaiseXcptOrIntJmp(pVCpu, 0, iSegReg == X86_SREG_SS ? X86_XCPT_SS : X86_XCPT_GP,
|
---|
4746 | IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4747 | }
|
---|
4748 | #endif
|
---|
4749 |
|
---|
4750 | /** \#GP(sel) - 0d. */
|
---|
4751 | VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT
|
---|
4752 | {
|
---|
4753 | Log(("iemRaiseSelectorBoundsBySelector: cs:rip=%04x:%RX64 Sel=%#x\n",
|
---|
4754 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, Sel));
|
---|
4755 | NOREF(Sel);
|
---|
4756 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4757 | }
|
---|
4758 |
|
---|
4759 | #ifdef IEM_WITH_SETJMP
|
---|
4760 | /** \#GP(sel) - 0d, longjmp. */
|
---|
4761 | DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4762 | {
|
---|
4763 | Log(("iemRaiseSelectorBoundsBySelectorJmp: cs:rip=%04x:%RX64 Sel=%#x\n",
|
---|
4764 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, Sel));
|
---|
4765 | NOREF(Sel);
|
---|
4766 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4767 | }
|
---|
4768 | #endif
|
---|
4769 |
|
---|
4770 |
|
---|
4771 | /** \#GP(sel) - 0d. */
|
---|
4772 | VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT
|
---|
4773 | {
|
---|
4774 | Log(("iemRaiseSelectorInvalidAccess: cs:rip=%04x:%RX64 iSegReg=%d fAccess=%#x\n",
|
---|
4775 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, iSegReg, fAccess));
|
---|
4776 | NOREF(iSegReg); NOREF(fAccess);
|
---|
4777 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4778 | }
|
---|
4779 |
|
---|
4780 | #ifdef IEM_WITH_SETJMP
|
---|
4781 | /** \#GP(sel) - 0d, longjmp. */
|
---|
4782 | DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4783 | {
|
---|
4784 | NOREF(iSegReg); NOREF(fAccess);
|
---|
4785 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4786 | }
|
---|
4787 | #endif
|
---|
4788 |
|
---|
4789 |
|
---|
4790 | /** \#PF(n) - 0e. */
|
---|
4791 | VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT
|
---|
4792 | {
|
---|
4793 | uint16_t uErr;
|
---|
4794 | switch (rc)
|
---|
4795 | {
|
---|
4796 | case VERR_PAGE_NOT_PRESENT:
|
---|
4797 | case VERR_PAGE_TABLE_NOT_PRESENT:
|
---|
4798 | case VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT:
|
---|
4799 | case VERR_PAGE_MAP_LEVEL4_NOT_PRESENT:
|
---|
4800 | uErr = 0;
|
---|
4801 | break;
|
---|
4802 |
|
---|
4803 | case VERR_RESERVED_PAGE_TABLE_BITS:
|
---|
4804 | uErr = X86_TRAP_PF_P | X86_TRAP_PF_RSVD;
|
---|
4805 | break;
|
---|
4806 |
|
---|
4807 | default:
|
---|
4808 | AssertMsgFailed(("%Rrc\n", rc));
|
---|
4809 | RT_FALL_THRU();
|
---|
4810 | case VERR_ACCESS_DENIED:
|
---|
4811 | uErr = X86_TRAP_PF_P;
|
---|
4812 | break;
|
---|
4813 | }
|
---|
4814 |
|
---|
4815 | if (IEM_GET_CPL(pVCpu) == 3)
|
---|
4816 | uErr |= X86_TRAP_PF_US;
|
---|
4817 |
|
---|
4818 | if ( (fAccess & IEM_ACCESS_WHAT_MASK) == IEM_ACCESS_WHAT_CODE
|
---|
4819 | && ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
|
---|
4820 | && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE) ) )
|
---|
4821 | uErr |= X86_TRAP_PF_ID;
|
---|
4822 |
|
---|
4823 | #if 0 /* This is so much non-sense, really. Why was it done like that? */
|
---|
4824 | /* Note! RW access callers reporting a WRITE protection fault, will clear
|
---|
4825 | the READ flag before calling. So, read-modify-write accesses (RW)
|
---|
4826 | can safely be reported as READ faults. */
|
---|
4827 | if ((fAccess & (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_TYPE_READ)) == IEM_ACCESS_TYPE_WRITE)
|
---|
4828 | uErr |= X86_TRAP_PF_RW;
|
---|
4829 | #else
|
---|
4830 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
4831 | {
|
---|
4832 | /// @todo r=bird: bs3-cpu-basic-2 wants X86_TRAP_PF_RW for xchg and cmpxchg
|
---|
4833 | /// (regardless of outcome of the comparison in the latter case).
|
---|
4834 | //if (!(fAccess & IEM_ACCESS_TYPE_READ))
|
---|
4835 | uErr |= X86_TRAP_PF_RW;
|
---|
4836 | }
|
---|
4837 | #endif
|
---|
4838 |
|
---|
4839 | /* For FXSAVE and FRSTOR the #PF is typically reported at the max address
|
---|
4840 | of the memory operand rather than at the start of it. (Not sure what
|
---|
4841 | happens if it crosses a page boundrary.) The current heuristics for
|
---|
4842 | this is to report the #PF for the last byte if the access is more than
|
---|
4843 | 64 bytes. This is probably not correct, but we can work that out later,
|
---|
4844 | main objective now is to get FXSAVE to work like for real hardware and
|
---|
4845 | make bs3-cpu-basic2 work. */
|
---|
4846 | if (cbAccess <= 64)
|
---|
4847 | { /* likely*/ }
|
---|
4848 | else
|
---|
4849 | GCPtrWhere += cbAccess - 1;
|
---|
4850 |
|
---|
4851 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_PF, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR | IEM_XCPT_FLAGS_CR2,
|
---|
4852 | uErr, GCPtrWhere);
|
---|
4853 | }
|
---|
4854 |
|
---|
4855 | #ifdef IEM_WITH_SETJMP
|
---|
4856 | /** \#PF(n) - 0e, longjmp. */
|
---|
4857 | DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess,
|
---|
4858 | uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4859 | {
|
---|
4860 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(iemRaisePageFault(pVCpu, GCPtrWhere, cbAccess, fAccess, rc)));
|
---|
4861 | }
|
---|
4862 | #endif
|
---|
4863 |
|
---|
4864 |
|
---|
4865 | /** \#MF(0) - 10. */
|
---|
4866 | VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4867 | {
|
---|
4868 | if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE)
|
---|
4869 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_MF, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4870 |
|
---|
4871 | /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
|
---|
4872 | PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
|
---|
4873 | return iemRegUpdateRipAndFinishClearingRF(pVCpu);
|
---|
4874 | }
|
---|
4875 |
|
---|
4876 | #ifdef IEM_WITH_SETJMP
|
---|
4877 | /** \#MF(0) - 10, longjmp. */
|
---|
4878 | DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4879 | {
|
---|
4880 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(iemRaiseMathFault(pVCpu)));
|
---|
4881 | }
|
---|
4882 | #endif
|
---|
4883 |
|
---|
4884 |
|
---|
4885 | /** \#AC(0) - 11. */
|
---|
4886 | VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4887 | {
|
---|
4888 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_AC, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4889 | }
|
---|
4890 |
|
---|
4891 | #ifdef IEM_WITH_SETJMP
|
---|
4892 | /** \#AC(0) - 11, longjmp. */
|
---|
4893 | DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4894 | {
|
---|
4895 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(iemRaiseAlignmentCheckException(pVCpu)));
|
---|
4896 | }
|
---|
4897 | #endif
|
---|
4898 |
|
---|
4899 |
|
---|
4900 | /** \#XF(0)/\#XM(0) - 19. */
|
---|
4901 | VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4902 | {
|
---|
4903 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_XF, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4904 | }
|
---|
4905 |
|
---|
4906 |
|
---|
4907 | #ifdef IEM_WITH_SETJMP
|
---|
4908 | /** \#XF(0)/\#XM(0) - 19s, longjmp. */
|
---|
4909 | DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
4910 | {
|
---|
4911 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(iemRaiseSimdFpException(pVCpu)));
|
---|
4912 | }
|
---|
4913 | #endif
|
---|
4914 |
|
---|
4915 |
|
---|
4916 | /** Accessed via IEMOP_RAISE_DIVIDE_ERROR. */
|
---|
4917 | IEM_CIMPL_DEF_0(iemCImplRaiseDivideError)
|
---|
4918 | {
|
---|
4919 | NOREF(cbInstr);
|
---|
4920 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_DE, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4921 | }
|
---|
4922 |
|
---|
4923 |
|
---|
4924 | /** Accessed via IEMOP_RAISE_INVALID_LOCK_PREFIX. */
|
---|
4925 | IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix)
|
---|
4926 | {
|
---|
4927 | NOREF(cbInstr);
|
---|
4928 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4929 | }
|
---|
4930 |
|
---|
4931 |
|
---|
4932 | /** Accessed via IEMOP_RAISE_INVALID_OPCODE. */
|
---|
4933 | IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode)
|
---|
4934 | {
|
---|
4935 | NOREF(cbInstr);
|
---|
4936 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4937 | }
|
---|
4938 |
|
---|
4939 |
|
---|
4940 | /** @} */
|
---|
4941 |
|
---|
4942 | /** @name Common opcode decoders.
|
---|
4943 | * @{
|
---|
4944 | */
|
---|
4945 | //#include <iprt/mem.h>
|
---|
4946 |
|
---|
4947 | /**
|
---|
4948 | * Used to add extra details about a stub case.
|
---|
4949 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4950 | */
|
---|
4951 | void iemOpStubMsg2(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
4952 | {
|
---|
4953 | #if defined(LOG_ENABLED) && defined(IN_RING3)
|
---|
4954 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4955 | char szRegs[4096];
|
---|
4956 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
4957 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
4958 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
4959 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
4960 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
4961 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
4962 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
4963 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
4964 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
4965 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
4966 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
4967 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
4968 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
4969 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
4970 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
4971 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
4972 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
4973 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
4974 | " efer=%016VR{efer}\n"
|
---|
4975 | " pat=%016VR{pat}\n"
|
---|
4976 | " sf_mask=%016VR{sf_mask}\n"
|
---|
4977 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
4978 | " lstar=%016VR{lstar}\n"
|
---|
4979 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
4980 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
4981 | );
|
---|
4982 |
|
---|
4983 | char szInstr[256];
|
---|
4984 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
4985 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
4986 | szInstr, sizeof(szInstr), NULL);
|
---|
4987 |
|
---|
4988 | RTAssertMsg2Weak("%s%s\n", szRegs, szInstr);
|
---|
4989 | #else
|
---|
4990 | RTAssertMsg2Weak("cs:rip=%04x:%RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip);
|
---|
4991 | #endif
|
---|
4992 | }
|
---|
4993 |
|
---|
4994 | /** @} */
|
---|
4995 |
|
---|
4996 |
|
---|
4997 |
|
---|
4998 | /** @name Register Access.
|
---|
4999 | * @{
|
---|
5000 | */
|
---|
5001 |
|
---|
5002 | /**
|
---|
5003 | * Adds a 8-bit signed jump offset to RIP/EIP/IP.
|
---|
5004 | *
|
---|
5005 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
5006 | * segment limit.
|
---|
5007 | *
|
---|
5008 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5009 | * @param cbInstr Instruction size.
|
---|
5010 | * @param offNextInstr The offset of the next instruction.
|
---|
5011 | * @param enmEffOpSize Effective operand size.
|
---|
5012 | */
|
---|
5013 | VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
|
---|
5014 | IEMMODE enmEffOpSize) RT_NOEXCEPT
|
---|
5015 | {
|
---|
5016 | switch (enmEffOpSize)
|
---|
5017 | {
|
---|
5018 | case IEMMODE_16BIT:
|
---|
5019 | {
|
---|
5020 | uint16_t const uNewIp = pVCpu->cpum.GstCtx.ip + cbInstr + (int16_t)offNextInstr;
|
---|
5021 | if (RT_LIKELY( uNewIp <= pVCpu->cpum.GstCtx.cs.u32Limit
|
---|
5022 | || IEM_IS_64BIT_CODE(pVCpu) /* no CS limit checks in 64-bit mode */))
|
---|
5023 | pVCpu->cpum.GstCtx.rip = uNewIp;
|
---|
5024 | else
|
---|
5025 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5026 | break;
|
---|
5027 | }
|
---|
5028 |
|
---|
5029 | case IEMMODE_32BIT:
|
---|
5030 | {
|
---|
5031 | Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
5032 | Assert(pVCpu->cpum.GstCtx.rip <= UINT32_MAX);
|
---|
5033 |
|
---|
5034 | uint32_t const uNewEip = pVCpu->cpum.GstCtx.eip + cbInstr + (int32_t)offNextInstr;
|
---|
5035 | if (RT_LIKELY(uNewEip <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
5036 | pVCpu->cpum.GstCtx.rip = uNewEip;
|
---|
5037 | else
|
---|
5038 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5039 | break;
|
---|
5040 | }
|
---|
5041 |
|
---|
5042 | case IEMMODE_64BIT:
|
---|
5043 | {
|
---|
5044 | Assert(IEM_IS_64BIT_CODE(pVCpu));
|
---|
5045 |
|
---|
5046 | uint64_t const uNewRip = pVCpu->cpum.GstCtx.rip + cbInstr + (int64_t)offNextInstr;
|
---|
5047 | if (RT_LIKELY(IEM_IS_CANONICAL(uNewRip)))
|
---|
5048 | pVCpu->cpum.GstCtx.rip = uNewRip;
|
---|
5049 | else
|
---|
5050 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5051 | break;
|
---|
5052 | }
|
---|
5053 |
|
---|
5054 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
5055 | }
|
---|
5056 |
|
---|
5057 | #ifndef IEM_WITH_CODE_TLB
|
---|
5058 | /* Flush the prefetch buffer. */
|
---|
5059 | pVCpu->iem.s.cbOpcode = cbInstr;
|
---|
5060 | #endif
|
---|
5061 |
|
---|
5062 | /*
|
---|
5063 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
5064 | */
|
---|
5065 | return iemRegFinishClearingRF(pVCpu, VINF_SUCCESS);
|
---|
5066 | }
|
---|
5067 |
|
---|
5068 |
|
---|
5069 | /**
|
---|
5070 | * Adds a 16-bit signed jump offset to RIP/EIP/IP.
|
---|
5071 | *
|
---|
5072 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
5073 | * segment limit.
|
---|
5074 | *
|
---|
5075 | * @returns Strict VBox status code.
|
---|
5076 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5077 | * @param cbInstr Instruction size.
|
---|
5078 | * @param offNextInstr The offset of the next instruction.
|
---|
5079 | */
|
---|
5080 | VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT
|
---|
5081 | {
|
---|
5082 | Assert(pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT);
|
---|
5083 |
|
---|
5084 | uint16_t const uNewIp = pVCpu->cpum.GstCtx.ip + cbInstr + offNextInstr;
|
---|
5085 | if (RT_LIKELY( uNewIp <= pVCpu->cpum.GstCtx.cs.u32Limit
|
---|
5086 | || IEM_IS_64BIT_CODE(pVCpu) /* no limit checking in 64-bit mode */))
|
---|
5087 | pVCpu->cpum.GstCtx.rip = uNewIp;
|
---|
5088 | else
|
---|
5089 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5090 |
|
---|
5091 | #ifndef IEM_WITH_CODE_TLB
|
---|
5092 | /* Flush the prefetch buffer. */
|
---|
5093 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
5094 | #endif
|
---|
5095 |
|
---|
5096 | /*
|
---|
5097 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
5098 | */
|
---|
5099 | return iemRegFinishClearingRF(pVCpu, VINF_SUCCESS);
|
---|
5100 | }
|
---|
5101 |
|
---|
5102 |
|
---|
5103 | /**
|
---|
5104 | * Adds a 32-bit signed jump offset to RIP/EIP/IP.
|
---|
5105 | *
|
---|
5106 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
5107 | * segment limit.
|
---|
5108 | *
|
---|
5109 | * @returns Strict VBox status code.
|
---|
5110 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5111 | * @param cbInstr Instruction size.
|
---|
5112 | * @param offNextInstr The offset of the next instruction.
|
---|
5113 | * @param enmEffOpSize Effective operand size.
|
---|
5114 | */
|
---|
5115 | VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
|
---|
5116 | IEMMODE enmEffOpSize) RT_NOEXCEPT
|
---|
5117 | {
|
---|
5118 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
5119 | {
|
---|
5120 | Assert(pVCpu->cpum.GstCtx.rip <= UINT32_MAX); Assert(!IEM_IS_64BIT_CODE(pVCpu));
|
---|
5121 |
|
---|
5122 | uint32_t const uNewEip = pVCpu->cpum.GstCtx.eip + cbInstr + offNextInstr;
|
---|
5123 | if (RT_LIKELY(uNewEip <= pVCpu->cpum.GstCtx.cs.u32Limit))
|
---|
5124 | pVCpu->cpum.GstCtx.rip = uNewEip;
|
---|
5125 | else
|
---|
5126 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5127 | }
|
---|
5128 | else
|
---|
5129 | {
|
---|
5130 | Assert(enmEffOpSize == IEMMODE_64BIT);
|
---|
5131 |
|
---|
5132 | uint64_t const uNewRip = pVCpu->cpum.GstCtx.rip + cbInstr + (int64_t)offNextInstr;
|
---|
5133 | if (RT_LIKELY(IEM_IS_CANONICAL(uNewRip)))
|
---|
5134 | pVCpu->cpum.GstCtx.rip = uNewRip;
|
---|
5135 | else
|
---|
5136 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5137 | }
|
---|
5138 |
|
---|
5139 | #ifndef IEM_WITH_CODE_TLB
|
---|
5140 | /* Flush the prefetch buffer. */
|
---|
5141 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
5142 | #endif
|
---|
5143 |
|
---|
5144 | /*
|
---|
5145 | * Clear RF and finish the instruction (maybe raise #DB).
|
---|
5146 | */
|
---|
5147 | return iemRegFinishClearingRF(pVCpu, VINF_SUCCESS);
|
---|
5148 | }
|
---|
5149 |
|
---|
5150 | /** @} */
|
---|
5151 |
|
---|
5152 |
|
---|
5153 | /** @name FPU access and helpers.
|
---|
5154 | *
|
---|
5155 | * @{
|
---|
5156 | */
|
---|
5157 |
|
---|
5158 | /**
|
---|
5159 | * Updates the x87.DS and FPUDP registers.
|
---|
5160 | *
|
---|
5161 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5162 | * @param pFpuCtx The FPU context.
|
---|
5163 | * @param iEffSeg The effective segment register.
|
---|
5164 | * @param GCPtrEff The effective address relative to @a iEffSeg.
|
---|
5165 | */
|
---|
5166 | DECLINLINE(void) iemFpuUpdateDP(PVMCPUCC pVCpu, PX86FXSTATE pFpuCtx, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
5167 | {
|
---|
5168 | RTSEL sel;
|
---|
5169 | switch (iEffSeg)
|
---|
5170 | {
|
---|
5171 | case X86_SREG_DS: sel = pVCpu->cpum.GstCtx.ds.Sel; break;
|
---|
5172 | case X86_SREG_SS: sel = pVCpu->cpum.GstCtx.ss.Sel; break;
|
---|
5173 | case X86_SREG_CS: sel = pVCpu->cpum.GstCtx.cs.Sel; break;
|
---|
5174 | case X86_SREG_ES: sel = pVCpu->cpum.GstCtx.es.Sel; break;
|
---|
5175 | case X86_SREG_FS: sel = pVCpu->cpum.GstCtx.fs.Sel; break;
|
---|
5176 | case X86_SREG_GS: sel = pVCpu->cpum.GstCtx.gs.Sel; break;
|
---|
5177 | default:
|
---|
5178 | AssertMsgFailed(("%d\n", iEffSeg));
|
---|
5179 | sel = pVCpu->cpum.GstCtx.ds.Sel;
|
---|
5180 | }
|
---|
5181 | /** @todo pFpuCtx->DS and FPUDP needs to be kept seperately. */
|
---|
5182 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
5183 | {
|
---|
5184 | pFpuCtx->DS = 0;
|
---|
5185 | pFpuCtx->FPUDP = (uint32_t)GCPtrEff + ((uint32_t)sel << 4);
|
---|
5186 | }
|
---|
5187 | else if (!IEM_IS_LONG_MODE(pVCpu)) /** @todo this is weird. explain. */
|
---|
5188 | {
|
---|
5189 | pFpuCtx->DS = sel;
|
---|
5190 | pFpuCtx->FPUDP = GCPtrEff;
|
---|
5191 | }
|
---|
5192 | else
|
---|
5193 | *(uint64_t *)&pFpuCtx->FPUDP = GCPtrEff;
|
---|
5194 | }
|
---|
5195 |
|
---|
5196 |
|
---|
5197 | /**
|
---|
5198 | * Rotates the stack registers in the push direction.
|
---|
5199 | *
|
---|
5200 | * @param pFpuCtx The FPU context.
|
---|
5201 | * @remarks This is a complete waste of time, but fxsave stores the registers in
|
---|
5202 | * stack order.
|
---|
5203 | */
|
---|
5204 | DECLINLINE(void) iemFpuRotateStackPush(PX86FXSTATE pFpuCtx)
|
---|
5205 | {
|
---|
5206 | RTFLOAT80U r80Tmp = pFpuCtx->aRegs[7].r80;
|
---|
5207 | pFpuCtx->aRegs[7].r80 = pFpuCtx->aRegs[6].r80;
|
---|
5208 | pFpuCtx->aRegs[6].r80 = pFpuCtx->aRegs[5].r80;
|
---|
5209 | pFpuCtx->aRegs[5].r80 = pFpuCtx->aRegs[4].r80;
|
---|
5210 | pFpuCtx->aRegs[4].r80 = pFpuCtx->aRegs[3].r80;
|
---|
5211 | pFpuCtx->aRegs[3].r80 = pFpuCtx->aRegs[2].r80;
|
---|
5212 | pFpuCtx->aRegs[2].r80 = pFpuCtx->aRegs[1].r80;
|
---|
5213 | pFpuCtx->aRegs[1].r80 = pFpuCtx->aRegs[0].r80;
|
---|
5214 | pFpuCtx->aRegs[0].r80 = r80Tmp;
|
---|
5215 | }
|
---|
5216 |
|
---|
5217 |
|
---|
5218 | /**
|
---|
5219 | * Rotates the stack registers in the pop direction.
|
---|
5220 | *
|
---|
5221 | * @param pFpuCtx The FPU context.
|
---|
5222 | * @remarks This is a complete waste of time, but fxsave stores the registers in
|
---|
5223 | * stack order.
|
---|
5224 | */
|
---|
5225 | DECLINLINE(void) iemFpuRotateStackPop(PX86FXSTATE pFpuCtx)
|
---|
5226 | {
|
---|
5227 | RTFLOAT80U r80Tmp = pFpuCtx->aRegs[0].r80;
|
---|
5228 | pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[1].r80;
|
---|
5229 | pFpuCtx->aRegs[1].r80 = pFpuCtx->aRegs[2].r80;
|
---|
5230 | pFpuCtx->aRegs[2].r80 = pFpuCtx->aRegs[3].r80;
|
---|
5231 | pFpuCtx->aRegs[3].r80 = pFpuCtx->aRegs[4].r80;
|
---|
5232 | pFpuCtx->aRegs[4].r80 = pFpuCtx->aRegs[5].r80;
|
---|
5233 | pFpuCtx->aRegs[5].r80 = pFpuCtx->aRegs[6].r80;
|
---|
5234 | pFpuCtx->aRegs[6].r80 = pFpuCtx->aRegs[7].r80;
|
---|
5235 | pFpuCtx->aRegs[7].r80 = r80Tmp;
|
---|
5236 | }
|
---|
5237 |
|
---|
5238 |
|
---|
5239 | /**
|
---|
5240 | * Updates FSW and pushes a FPU result onto the FPU stack if no pending
|
---|
5241 | * exception prevents it.
|
---|
5242 | *
|
---|
5243 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5244 | * @param pResult The FPU operation result to push.
|
---|
5245 | * @param pFpuCtx The FPU context.
|
---|
5246 | */
|
---|
5247 | static void iemFpuMaybePushResult(PVMCPU pVCpu, PIEMFPURESULT pResult, PX86FXSTATE pFpuCtx) RT_NOEXCEPT
|
---|
5248 | {
|
---|
5249 | /* Update FSW and bail if there are pending exceptions afterwards. */
|
---|
5250 | uint16_t fFsw = pFpuCtx->FSW & ~X86_FSW_C_MASK;
|
---|
5251 | fFsw |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
5252 | if ( (fFsw & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
5253 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
5254 | {
|
---|
5255 | if ((fFsw & X86_FSW_ES) && !(pFpuCtx->FCW & X86_FSW_ES))
|
---|
5256 | Log11(("iemFpuMaybePushResult: %04x:%08RX64: FSW %#x -> %#x\n",
|
---|
5257 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW, fFsw));
|
---|
5258 | pFpuCtx->FSW = fFsw;
|
---|
5259 | return;
|
---|
5260 | }
|
---|
5261 |
|
---|
5262 | uint16_t iNewTop = (X86_FSW_TOP_GET(fFsw) + 7) & X86_FSW_TOP_SMASK;
|
---|
5263 | if (!(pFpuCtx->FTW & RT_BIT(iNewTop)))
|
---|
5264 | {
|
---|
5265 | /* All is fine, push the actual value. */
|
---|
5266 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5267 | pFpuCtx->aRegs[7].r80 = pResult->r80Result;
|
---|
5268 | }
|
---|
5269 | else if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5270 | {
|
---|
5271 | /* Masked stack overflow, push QNaN. */
|
---|
5272 | fFsw |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1;
|
---|
5273 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5274 | }
|
---|
5275 | else
|
---|
5276 | {
|
---|
5277 | /* Raise stack overflow, don't push anything. */
|
---|
5278 | pFpuCtx->FSW |= pResult->FSW & ~X86_FSW_C_MASK;
|
---|
5279 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1 | X86_FSW_B | X86_FSW_ES;
|
---|
5280 | Log11(("iemFpuMaybePushResult: %04x:%08RX64: stack overflow (FSW=%#x)\n",
|
---|
5281 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
5282 | return;
|
---|
5283 | }
|
---|
5284 |
|
---|
5285 | fFsw &= ~X86_FSW_TOP_MASK;
|
---|
5286 | fFsw |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5287 | pFpuCtx->FSW = fFsw;
|
---|
5288 |
|
---|
5289 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5290 | RT_NOREF(pVCpu);
|
---|
5291 | }
|
---|
5292 |
|
---|
5293 |
|
---|
5294 | /**
|
---|
5295 | * Stores a result in a FPU register and updates the FSW and FTW.
|
---|
5296 | *
|
---|
5297 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5298 | * @param pFpuCtx The FPU context.
|
---|
5299 | * @param pResult The result to store.
|
---|
5300 | * @param iStReg Which FPU register to store it in.
|
---|
5301 | */
|
---|
5302 | static void iemFpuStoreResultOnly(PVMCPU pVCpu, PX86FXSTATE pFpuCtx, PIEMFPURESULT pResult, uint8_t iStReg) RT_NOEXCEPT
|
---|
5303 | {
|
---|
5304 | Assert(iStReg < 8);
|
---|
5305 | uint16_t fNewFsw = pFpuCtx->FSW;
|
---|
5306 | uint16_t const iReg = (X86_FSW_TOP_GET(fNewFsw) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
5307 | fNewFsw &= ~X86_FSW_C_MASK;
|
---|
5308 | fNewFsw |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
5309 | if ((fNewFsw & X86_FSW_ES) && !(pFpuCtx->FSW & X86_FSW_ES))
|
---|
5310 | Log11(("iemFpuStoreResultOnly: %04x:%08RX64: FSW %#x -> %#x\n",
|
---|
5311 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW, fNewFsw));
|
---|
5312 | pFpuCtx->FSW = fNewFsw;
|
---|
5313 | pFpuCtx->FTW |= RT_BIT(iReg);
|
---|
5314 | pFpuCtx->aRegs[iStReg].r80 = pResult->r80Result;
|
---|
5315 | RT_NOREF(pVCpu);
|
---|
5316 | }
|
---|
5317 |
|
---|
5318 |
|
---|
5319 | /**
|
---|
5320 | * Only updates the FPU status word (FSW) with the result of the current
|
---|
5321 | * instruction.
|
---|
5322 | *
|
---|
5323 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5324 | * @param pFpuCtx The FPU context.
|
---|
5325 | * @param u16FSW The FSW output of the current instruction.
|
---|
5326 | */
|
---|
5327 | static void iemFpuUpdateFSWOnly(PVMCPU pVCpu, PX86FXSTATE pFpuCtx, uint16_t u16FSW) RT_NOEXCEPT
|
---|
5328 | {
|
---|
5329 | uint16_t fNewFsw = pFpuCtx->FSW;
|
---|
5330 | fNewFsw &= ~X86_FSW_C_MASK;
|
---|
5331 | fNewFsw |= u16FSW & ~X86_FSW_TOP_MASK;
|
---|
5332 | if ((fNewFsw & X86_FSW_ES) && !(pFpuCtx->FSW & X86_FSW_ES))
|
---|
5333 | Log11(("iemFpuStoreResultOnly: %04x:%08RX64: FSW %#x -> %#x\n",
|
---|
5334 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW, fNewFsw));
|
---|
5335 | pFpuCtx->FSW = fNewFsw;
|
---|
5336 | RT_NOREF(pVCpu);
|
---|
5337 | }
|
---|
5338 |
|
---|
5339 |
|
---|
5340 | /**
|
---|
5341 | * Pops one item off the FPU stack if no pending exception prevents it.
|
---|
5342 | *
|
---|
5343 | * @param pFpuCtx The FPU context.
|
---|
5344 | */
|
---|
5345 | static void iemFpuMaybePopOne(PX86FXSTATE pFpuCtx) RT_NOEXCEPT
|
---|
5346 | {
|
---|
5347 | /* Check pending exceptions. */
|
---|
5348 | uint16_t uFSW = pFpuCtx->FSW;
|
---|
5349 | if ( (pFpuCtx->FSW & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
5350 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
5351 | return;
|
---|
5352 |
|
---|
5353 | /* TOP--. */
|
---|
5354 | uint16_t iOldTop = uFSW & X86_FSW_TOP_MASK;
|
---|
5355 | uFSW &= ~X86_FSW_TOP_MASK;
|
---|
5356 | uFSW |= (iOldTop + (UINT16_C(9) << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
5357 | pFpuCtx->FSW = uFSW;
|
---|
5358 |
|
---|
5359 | /* Mark the previous ST0 as empty. */
|
---|
5360 | iOldTop >>= X86_FSW_TOP_SHIFT;
|
---|
5361 | pFpuCtx->FTW &= ~RT_BIT(iOldTop);
|
---|
5362 |
|
---|
5363 | /* Rotate the registers. */
|
---|
5364 | iemFpuRotateStackPop(pFpuCtx);
|
---|
5365 | }
|
---|
5366 |
|
---|
5367 |
|
---|
5368 | /**
|
---|
5369 | * Pushes a FPU result onto the FPU stack if no pending exception prevents it.
|
---|
5370 | *
|
---|
5371 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5372 | * @param pResult The FPU operation result to push.
|
---|
5373 | * @param uFpuOpcode The FPU opcode value.
|
---|
5374 | */
|
---|
5375 | void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5376 | {
|
---|
5377 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5378 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5379 | iemFpuMaybePushResult(pVCpu, pResult, pFpuCtx);
|
---|
5380 | }
|
---|
5381 |
|
---|
5382 |
|
---|
5383 | /**
|
---|
5384 | * Pushes a FPU result onto the FPU stack if no pending exception prevents it,
|
---|
5385 | * and sets FPUDP and FPUDS.
|
---|
5386 | *
|
---|
5387 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5388 | * @param pResult The FPU operation result to push.
|
---|
5389 | * @param iEffSeg The effective segment register.
|
---|
5390 | * @param GCPtrEff The effective address relative to @a iEffSeg.
|
---|
5391 | * @param uFpuOpcode The FPU opcode value.
|
---|
5392 | */
|
---|
5393 | void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff,
|
---|
5394 | uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5395 | {
|
---|
5396 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5397 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5398 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5399 | iemFpuMaybePushResult(pVCpu, pResult, pFpuCtx);
|
---|
5400 | }
|
---|
5401 |
|
---|
5402 |
|
---|
5403 | /**
|
---|
5404 | * Replace ST0 with the first value and push the second onto the FPU stack,
|
---|
5405 | * unless a pending exception prevents it.
|
---|
5406 | *
|
---|
5407 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5408 | * @param pResult The FPU operation result to store and push.
|
---|
5409 | * @param uFpuOpcode The FPU opcode value.
|
---|
5410 | */
|
---|
5411 | void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5412 | {
|
---|
5413 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5414 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5415 |
|
---|
5416 | /* Update FSW and bail if there are pending exceptions afterwards. */
|
---|
5417 | uint16_t fFsw = pFpuCtx->FSW & ~X86_FSW_C_MASK;
|
---|
5418 | fFsw |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
5419 | if ( (fFsw & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
5420 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
5421 | {
|
---|
5422 | if ((fFsw & X86_FSW_ES) && !(pFpuCtx->FSW & X86_FSW_ES))
|
---|
5423 | Log11(("iemFpuPushResultTwo: %04x:%08RX64: FSW %#x -> %#x\n",
|
---|
5424 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW, fFsw));
|
---|
5425 | pFpuCtx->FSW = fFsw;
|
---|
5426 | return;
|
---|
5427 | }
|
---|
5428 |
|
---|
5429 | uint16_t iNewTop = (X86_FSW_TOP_GET(fFsw) + 7) & X86_FSW_TOP_SMASK;
|
---|
5430 | if (!(pFpuCtx->FTW & RT_BIT(iNewTop)))
|
---|
5431 | {
|
---|
5432 | /* All is fine, push the actual value. */
|
---|
5433 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5434 | pFpuCtx->aRegs[0].r80 = pResult->r80Result1;
|
---|
5435 | pFpuCtx->aRegs[7].r80 = pResult->r80Result2;
|
---|
5436 | }
|
---|
5437 | else if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5438 | {
|
---|
5439 | /* Masked stack overflow, push QNaN. */
|
---|
5440 | fFsw |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1;
|
---|
5441 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
5442 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5443 | }
|
---|
5444 | else
|
---|
5445 | {
|
---|
5446 | /* Raise stack overflow, don't push anything. */
|
---|
5447 | pFpuCtx->FSW |= pResult->FSW & ~X86_FSW_C_MASK;
|
---|
5448 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1 | X86_FSW_B | X86_FSW_ES;
|
---|
5449 | Log11(("iemFpuPushResultTwo: %04x:%08RX64: stack overflow (FSW=%#x)\n",
|
---|
5450 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
5451 | return;
|
---|
5452 | }
|
---|
5453 |
|
---|
5454 | fFsw &= ~X86_FSW_TOP_MASK;
|
---|
5455 | fFsw |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5456 | pFpuCtx->FSW = fFsw;
|
---|
5457 |
|
---|
5458 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5459 | }
|
---|
5460 |
|
---|
5461 |
|
---|
5462 | /**
|
---|
5463 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, and
|
---|
5464 | * FOP.
|
---|
5465 | *
|
---|
5466 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5467 | * @param pResult The result to store.
|
---|
5468 | * @param iStReg Which FPU register to store it in.
|
---|
5469 | * @param uFpuOpcode The FPU opcode value.
|
---|
5470 | */
|
---|
5471 | void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5472 | {
|
---|
5473 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5474 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5475 | iemFpuStoreResultOnly(pVCpu, pFpuCtx, pResult, iStReg);
|
---|
5476 | }
|
---|
5477 |
|
---|
5478 |
|
---|
5479 | /**
|
---|
5480 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, and
|
---|
5481 | * FOP, and then pops the stack.
|
---|
5482 | *
|
---|
5483 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5484 | * @param pResult The result to store.
|
---|
5485 | * @param iStReg Which FPU register to store it in.
|
---|
5486 | * @param uFpuOpcode The FPU opcode value.
|
---|
5487 | */
|
---|
5488 | void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5489 | {
|
---|
5490 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5491 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5492 | iemFpuStoreResultOnly(pVCpu, pFpuCtx, pResult, iStReg);
|
---|
5493 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5494 | }
|
---|
5495 |
|
---|
5496 |
|
---|
5497 | /**
|
---|
5498 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, FOP,
|
---|
5499 | * FPUDP, and FPUDS.
|
---|
5500 | *
|
---|
5501 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5502 | * @param pResult The result to store.
|
---|
5503 | * @param iStReg Which FPU register to store it in.
|
---|
5504 | * @param iEffSeg The effective memory operand selector register.
|
---|
5505 | * @param GCPtrEff The effective memory operand offset.
|
---|
5506 | * @param uFpuOpcode The FPU opcode value.
|
---|
5507 | */
|
---|
5508 | void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
|
---|
5509 | uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5510 | {
|
---|
5511 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5512 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5513 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5514 | iemFpuStoreResultOnly(pVCpu, pFpuCtx, pResult, iStReg);
|
---|
5515 | }
|
---|
5516 |
|
---|
5517 |
|
---|
5518 | /**
|
---|
5519 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, FOP,
|
---|
5520 | * FPUDP, and FPUDS, and then pops the stack.
|
---|
5521 | *
|
---|
5522 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5523 | * @param pResult The result to store.
|
---|
5524 | * @param iStReg Which FPU register to store it in.
|
---|
5525 | * @param iEffSeg The effective memory operand selector register.
|
---|
5526 | * @param GCPtrEff The effective memory operand offset.
|
---|
5527 | * @param uFpuOpcode The FPU opcode value.
|
---|
5528 | */
|
---|
5529 | void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult,
|
---|
5530 | uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5531 | {
|
---|
5532 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5533 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5534 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5535 | iemFpuStoreResultOnly(pVCpu, pFpuCtx, pResult, iStReg);
|
---|
5536 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5537 | }
|
---|
5538 |
|
---|
5539 |
|
---|
5540 | /**
|
---|
5541 | * Updates the FOP, FPUIP, and FPUCS. For FNOP.
|
---|
5542 | *
|
---|
5543 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5544 | * @param uFpuOpcode The FPU opcode value.
|
---|
5545 | */
|
---|
5546 | void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5547 | {
|
---|
5548 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5549 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5550 | }
|
---|
5551 |
|
---|
5552 |
|
---|
5553 | /**
|
---|
5554 | * Updates the FSW, FOP, FPUIP, and FPUCS.
|
---|
5555 | *
|
---|
5556 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5557 | * @param u16FSW The FSW from the current instruction.
|
---|
5558 | * @param uFpuOpcode The FPU opcode value.
|
---|
5559 | */
|
---|
5560 | void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5561 | {
|
---|
5562 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5563 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5564 | iemFpuUpdateFSWOnly(pVCpu, pFpuCtx, u16FSW);
|
---|
5565 | }
|
---|
5566 |
|
---|
5567 |
|
---|
5568 | /**
|
---|
5569 | * Updates the FSW, FOP, FPUIP, and FPUCS, then pops the stack.
|
---|
5570 | *
|
---|
5571 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5572 | * @param u16FSW The FSW from the current instruction.
|
---|
5573 | * @param uFpuOpcode The FPU opcode value.
|
---|
5574 | */
|
---|
5575 | void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5576 | {
|
---|
5577 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5578 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5579 | iemFpuUpdateFSWOnly(pVCpu, pFpuCtx, u16FSW);
|
---|
5580 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5581 | }
|
---|
5582 |
|
---|
5583 |
|
---|
5584 | /**
|
---|
5585 | * Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS.
|
---|
5586 | *
|
---|
5587 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5588 | * @param u16FSW The FSW from the current instruction.
|
---|
5589 | * @param iEffSeg The effective memory operand selector register.
|
---|
5590 | * @param GCPtrEff The effective memory operand offset.
|
---|
5591 | * @param uFpuOpcode The FPU opcode value.
|
---|
5592 | */
|
---|
5593 | void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5594 | {
|
---|
5595 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5596 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5597 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5598 | iemFpuUpdateFSWOnly(pVCpu, pFpuCtx, u16FSW);
|
---|
5599 | }
|
---|
5600 |
|
---|
5601 |
|
---|
5602 | /**
|
---|
5603 | * Updates the FSW, FOP, FPUIP, and FPUCS, then pops the stack twice.
|
---|
5604 | *
|
---|
5605 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5606 | * @param u16FSW The FSW from the current instruction.
|
---|
5607 | * @param uFpuOpcode The FPU opcode value.
|
---|
5608 | */
|
---|
5609 | void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5610 | {
|
---|
5611 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5612 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5613 | iemFpuUpdateFSWOnly(pVCpu, pFpuCtx, u16FSW);
|
---|
5614 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5615 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5616 | }
|
---|
5617 |
|
---|
5618 |
|
---|
5619 | /**
|
---|
5620 | * Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS, then pops the stack.
|
---|
5621 | *
|
---|
5622 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5623 | * @param u16FSW The FSW from the current instruction.
|
---|
5624 | * @param iEffSeg The effective memory operand selector register.
|
---|
5625 | * @param GCPtrEff The effective memory operand offset.
|
---|
5626 | * @param uFpuOpcode The FPU opcode value.
|
---|
5627 | */
|
---|
5628 | void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff,
|
---|
5629 | uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5630 | {
|
---|
5631 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5632 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5633 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5634 | iemFpuUpdateFSWOnly(pVCpu, pFpuCtx, u16FSW);
|
---|
5635 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5636 | }
|
---|
5637 |
|
---|
5638 |
|
---|
5639 | /**
|
---|
5640 | * Worker routine for raising an FPU stack underflow exception.
|
---|
5641 | *
|
---|
5642 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5643 | * @param pFpuCtx The FPU context.
|
---|
5644 | * @param iStReg The stack register being accessed.
|
---|
5645 | */
|
---|
5646 | static void iemFpuStackUnderflowOnly(PVMCPU pVCpu, PX86FXSTATE pFpuCtx, uint8_t iStReg)
|
---|
5647 | {
|
---|
5648 | Assert(iStReg < 8 || iStReg == UINT8_MAX);
|
---|
5649 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5650 | {
|
---|
5651 | /* Masked underflow. */
|
---|
5652 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5653 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
5654 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
5655 | if (iStReg != UINT8_MAX)
|
---|
5656 | {
|
---|
5657 | pFpuCtx->FTW |= RT_BIT(iReg);
|
---|
5658 | iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
|
---|
5659 | }
|
---|
5660 | }
|
---|
5661 | else
|
---|
5662 | {
|
---|
5663 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5664 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
5665 | Log11(("iemFpuStackUnderflowOnly: %04x:%08RX64: underflow (FSW=%#x)\n",
|
---|
5666 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
5667 | }
|
---|
5668 | RT_NOREF(pVCpu);
|
---|
5669 | }
|
---|
5670 |
|
---|
5671 |
|
---|
5672 | /**
|
---|
5673 | * Raises a FPU stack underflow exception.
|
---|
5674 | *
|
---|
5675 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5676 | * @param iStReg The destination register that should be loaded
|
---|
5677 | * with QNaN if \#IS is not masked. Specify
|
---|
5678 | * UINT8_MAX if none (like for fcom).
|
---|
5679 | * @param uFpuOpcode The FPU opcode value.
|
---|
5680 | */
|
---|
5681 | void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5682 | {
|
---|
5683 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5684 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5685 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
5686 | }
|
---|
5687 |
|
---|
5688 |
|
---|
5689 | void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5690 | {
|
---|
5691 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5692 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5693 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5694 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
5695 | }
|
---|
5696 |
|
---|
5697 |
|
---|
5698 | void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5699 | {
|
---|
5700 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5701 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5702 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
5703 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5704 | }
|
---|
5705 |
|
---|
5706 |
|
---|
5707 | void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff,
|
---|
5708 | uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5709 | {
|
---|
5710 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5711 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5712 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5713 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
5714 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5715 | }
|
---|
5716 |
|
---|
5717 |
|
---|
5718 | void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5719 | {
|
---|
5720 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5721 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5722 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, UINT8_MAX);
|
---|
5723 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5724 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5725 | }
|
---|
5726 |
|
---|
5727 |
|
---|
5728 | void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5729 | {
|
---|
5730 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5731 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5732 |
|
---|
5733 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5734 | {
|
---|
5735 | /* Masked overflow - Push QNaN. */
|
---|
5736 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
5737 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
5738 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
5739 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5740 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5741 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5742 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5743 | }
|
---|
5744 | else
|
---|
5745 | {
|
---|
5746 | /* Exception pending - don't change TOP or the register stack. */
|
---|
5747 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5748 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
5749 | Log11(("iemFpuStackPushUnderflow: %04x:%08RX64: underflow (FSW=%#x)\n",
|
---|
5750 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
5751 | }
|
---|
5752 | }
|
---|
5753 |
|
---|
5754 |
|
---|
5755 | void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5756 | {
|
---|
5757 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5758 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5759 |
|
---|
5760 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5761 | {
|
---|
5762 | /* Masked overflow - Push QNaN. */
|
---|
5763 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
5764 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
5765 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
5766 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5767 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5768 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
5769 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5770 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5771 | }
|
---|
5772 | else
|
---|
5773 | {
|
---|
5774 | /* Exception pending - don't change TOP or the register stack. */
|
---|
5775 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5776 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
5777 | Log11(("iemFpuStackPushUnderflowTwo: %04x:%08RX64: underflow (FSW=%#x)\n",
|
---|
5778 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
5779 | }
|
---|
5780 | }
|
---|
5781 |
|
---|
5782 |
|
---|
5783 | /**
|
---|
5784 | * Worker routine for raising an FPU stack overflow exception on a push.
|
---|
5785 | *
|
---|
5786 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5787 | * @param pFpuCtx The FPU context.
|
---|
5788 | */
|
---|
5789 | static void iemFpuStackPushOverflowOnly(PVMCPU pVCpu, PX86FXSTATE pFpuCtx) RT_NOEXCEPT
|
---|
5790 | {
|
---|
5791 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5792 | {
|
---|
5793 | /* Masked overflow. */
|
---|
5794 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
5795 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
5796 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
|
---|
5797 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5798 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5799 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5800 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5801 | }
|
---|
5802 | else
|
---|
5803 | {
|
---|
5804 | /* Exception pending - don't change TOP or the register stack. */
|
---|
5805 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5806 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
5807 | Log11(("iemFpuStackPushOverflowOnly: %04x:%08RX64: overflow (FSW=%#x)\n",
|
---|
5808 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pFpuCtx->FSW));
|
---|
5809 | }
|
---|
5810 | RT_NOREF(pVCpu);
|
---|
5811 | }
|
---|
5812 |
|
---|
5813 |
|
---|
5814 | /**
|
---|
5815 | * Raises a FPU stack overflow exception on a push.
|
---|
5816 | *
|
---|
5817 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5818 | * @param uFpuOpcode The FPU opcode value.
|
---|
5819 | */
|
---|
5820 | void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5821 | {
|
---|
5822 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5823 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5824 | iemFpuStackPushOverflowOnly(pVCpu, pFpuCtx);
|
---|
5825 | }
|
---|
5826 |
|
---|
5827 |
|
---|
5828 | /**
|
---|
5829 | * Raises a FPU stack overflow exception on a push with a memory operand.
|
---|
5830 | *
|
---|
5831 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5832 | * @param iEffSeg The effective memory operand selector register.
|
---|
5833 | * @param GCPtrEff The effective memory operand offset.
|
---|
5834 | * @param uFpuOpcode The FPU opcode value.
|
---|
5835 | */
|
---|
5836 | void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT
|
---|
5837 | {
|
---|
5838 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
5839 | iemFpuUpdateDP(pVCpu, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5840 | iemFpuUpdateOpcodeAndIpWorkerEx(pVCpu, pFpuCtx, uFpuOpcode);
|
---|
5841 | iemFpuStackPushOverflowOnly(pVCpu, pFpuCtx);
|
---|
5842 | }
|
---|
5843 |
|
---|
5844 | /** @} */
|
---|
5845 |
|
---|
5846 |
|
---|
5847 | /** @name Memory access.
|
---|
5848 | *
|
---|
5849 | * @{
|
---|
5850 | */
|
---|
5851 |
|
---|
5852 | #undef LOG_GROUP
|
---|
5853 | #define LOG_GROUP LOG_GROUP_IEM_MEM
|
---|
5854 |
|
---|
5855 | /**
|
---|
5856 | * Updates the IEMCPU::cbWritten counter if applicable.
|
---|
5857 | *
|
---|
5858 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5859 | * @param fAccess The access being accounted for.
|
---|
5860 | * @param cbMem The access size.
|
---|
5861 | */
|
---|
5862 | DECL_FORCE_INLINE(void) iemMemUpdateWrittenCounter(PVMCPUCC pVCpu, uint32_t fAccess, size_t cbMem)
|
---|
5863 | {
|
---|
5864 | if ( (fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE)) == (IEM_ACCESS_WHAT_STACK | IEM_ACCESS_TYPE_WRITE)
|
---|
5865 | || (fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE)) == (IEM_ACCESS_WHAT_DATA | IEM_ACCESS_TYPE_WRITE) )
|
---|
5866 | pVCpu->iem.s.cbWritten += (uint32_t)cbMem;
|
---|
5867 | }
|
---|
5868 |
|
---|
5869 |
|
---|
5870 | /**
|
---|
5871 | * Applies the segment limit, base and attributes.
|
---|
5872 | *
|
---|
5873 | * This may raise a \#GP or \#SS.
|
---|
5874 | *
|
---|
5875 | * @returns VBox strict status code.
|
---|
5876 | *
|
---|
5877 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5878 | * @param fAccess The kind of access which is being performed.
|
---|
5879 | * @param iSegReg The index of the segment register to apply.
|
---|
5880 | * This is UINT8_MAX if none (for IDT, GDT, LDT,
|
---|
5881 | * TSS, ++).
|
---|
5882 | * @param cbMem The access size.
|
---|
5883 | * @param pGCPtrMem Pointer to the guest memory address to apply
|
---|
5884 | * segmentation to. Input and output parameter.
|
---|
5885 | */
|
---|
5886 | VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT
|
---|
5887 | {
|
---|
5888 | if (iSegReg == UINT8_MAX)
|
---|
5889 | return VINF_SUCCESS;
|
---|
5890 |
|
---|
5891 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
5892 | PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
5893 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
5894 | {
|
---|
5895 | case IEMMODE_16BIT:
|
---|
5896 | case IEMMODE_32BIT:
|
---|
5897 | {
|
---|
5898 | RTGCPTR32 GCPtrFirst32 = (RTGCPTR32)*pGCPtrMem;
|
---|
5899 | RTGCPTR32 GCPtrLast32 = GCPtrFirst32 + (uint32_t)cbMem - 1;
|
---|
5900 |
|
---|
5901 | if ( pSel->Attr.n.u1Present
|
---|
5902 | && !pSel->Attr.n.u1Unusable)
|
---|
5903 | {
|
---|
5904 | Assert(pSel->Attr.n.u1DescType);
|
---|
5905 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
|
---|
5906 | {
|
---|
5907 | if ( (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
5908 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
5909 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, fAccess);
|
---|
5910 |
|
---|
5911 | if (!IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
5912 | {
|
---|
5913 | /** @todo CPL check. */
|
---|
5914 | }
|
---|
5915 |
|
---|
5916 | /*
|
---|
5917 | * There are two kinds of data selectors, normal and expand down.
|
---|
5918 | */
|
---|
5919 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
|
---|
5920 | {
|
---|
5921 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
5922 | || GCPtrLast32 > pSel->u32Limit) /* yes, in real mode too (since 80286). */
|
---|
5923 | return iemRaiseSelectorBounds(pVCpu, iSegReg, fAccess);
|
---|
5924 | }
|
---|
5925 | else
|
---|
5926 | {
|
---|
5927 | /*
|
---|
5928 | * The upper boundary is defined by the B bit, not the G bit!
|
---|
5929 | */
|
---|
5930 | if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
|
---|
5931 | || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
|
---|
5932 | return iemRaiseSelectorBounds(pVCpu, iSegReg, fAccess);
|
---|
5933 | }
|
---|
5934 | *pGCPtrMem = GCPtrFirst32 += (uint32_t)pSel->u64Base;
|
---|
5935 | }
|
---|
5936 | else
|
---|
5937 | {
|
---|
5938 | /*
|
---|
5939 | * Code selector and usually be used to read thru, writing is
|
---|
5940 | * only permitted in real and V8086 mode.
|
---|
5941 | */
|
---|
5942 | if ( ( (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
5943 | || ( (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
5944 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)) )
|
---|
5945 | && !IEM_IS_REAL_OR_V86_MODE(pVCpu) )
|
---|
5946 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, fAccess);
|
---|
5947 |
|
---|
5948 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
5949 | || GCPtrLast32 > pSel->u32Limit) /* yes, in real mode too (since 80286). */
|
---|
5950 | return iemRaiseSelectorBounds(pVCpu, iSegReg, fAccess);
|
---|
5951 |
|
---|
5952 | if (!IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
5953 | {
|
---|
5954 | /** @todo CPL check. */
|
---|
5955 | }
|
---|
5956 |
|
---|
5957 | *pGCPtrMem = GCPtrFirst32 += (uint32_t)pSel->u64Base;
|
---|
5958 | }
|
---|
5959 | }
|
---|
5960 | else
|
---|
5961 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5962 | return VINF_SUCCESS;
|
---|
5963 | }
|
---|
5964 |
|
---|
5965 | case IEMMODE_64BIT:
|
---|
5966 | {
|
---|
5967 | RTGCPTR GCPtrMem = *pGCPtrMem;
|
---|
5968 | if (iSegReg == X86_SREG_GS || iSegReg == X86_SREG_FS)
|
---|
5969 | *pGCPtrMem = GCPtrMem + pSel->u64Base;
|
---|
5970 |
|
---|
5971 | Assert(cbMem >= 1);
|
---|
5972 | if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
|
---|
5973 | return VINF_SUCCESS;
|
---|
5974 | /** @todo We should probably raise \#SS(0) here if segment is SS; see AMD spec.
|
---|
5975 | * 4.12.2 "Data Limit Checks in 64-bit Mode". */
|
---|
5976 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5977 | }
|
---|
5978 |
|
---|
5979 | default:
|
---|
5980 | AssertFailedReturn(VERR_IEM_IPE_7);
|
---|
5981 | }
|
---|
5982 | }
|
---|
5983 |
|
---|
5984 |
|
---|
5985 | /**
|
---|
5986 | * Translates a virtual address to a physical physical address and checks if we
|
---|
5987 | * can access the page as specified.
|
---|
5988 | *
|
---|
5989 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5990 | * @param GCPtrMem The virtual address.
|
---|
5991 | * @param cbAccess The access size, for raising \#PF correctly for
|
---|
5992 | * FXSAVE and such.
|
---|
5993 | * @param fAccess The intended access.
|
---|
5994 | * @param pGCPhysMem Where to return the physical address.
|
---|
5995 | */
|
---|
5996 | VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess,
|
---|
5997 | uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT
|
---|
5998 | {
|
---|
5999 | /** @todo Need a different PGM interface here. We're currently using
|
---|
6000 | * generic / REM interfaces. this won't cut it for R0. */
|
---|
6001 | /** @todo If/when PGM handles paged real-mode, we can remove the hack in
|
---|
6002 | * iemSvmWorldSwitch/iemVmxWorldSwitch to work around raising a page-fault
|
---|
6003 | * here. */
|
---|
6004 | Assert(!(fAccess & IEM_ACCESS_TYPE_EXEC));
|
---|
6005 | PGMPTWALKFAST WalkFast;
|
---|
6006 | AssertCompile(IEM_ACCESS_TYPE_READ == PGMQPAGE_F_READ);
|
---|
6007 | AssertCompile(IEM_ACCESS_TYPE_WRITE == PGMQPAGE_F_WRITE);
|
---|
6008 | AssertCompile(IEM_ACCESS_TYPE_EXEC == PGMQPAGE_F_EXECUTE);
|
---|
6009 | AssertCompile(X86_CR0_WP == PGMQPAGE_F_CR0_WP0);
|
---|
6010 | uint32_t fQPage = (fAccess & (PGMQPAGE_F_READ | IEM_ACCESS_TYPE_WRITE | PGMQPAGE_F_EXECUTE))
|
---|
6011 | | (((uint32_t)pVCpu->cpum.GstCtx.cr0 & X86_CR0_WP) ^ X86_CR0_WP);
|
---|
6012 | if (IEM_GET_CPL(pVCpu) == 3 && !(fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
6013 | fQPage |= PGMQPAGE_F_USER_MODE;
|
---|
6014 | int rc = PGMGstQueryPageFast(pVCpu, GCPtrMem, fQPage, &WalkFast);
|
---|
6015 | if (RT_SUCCESS(rc))
|
---|
6016 | {
|
---|
6017 | Assert((WalkFast.fInfo & PGM_WALKINFO_SUCCEEDED) && WalkFast.fFailed == PGM_WALKFAIL_SUCCESS);
|
---|
6018 |
|
---|
6019 | /* If the page is writable and does not have the no-exec bit set, all
|
---|
6020 | access is allowed. Otherwise we'll have to check more carefully... */
|
---|
6021 | Assert( (WalkFast.fEffective & (X86_PTE_RW | X86_PTE_US | X86_PTE_PAE_NX)) == (X86_PTE_RW | X86_PTE_US)
|
---|
6022 | || ( ( !(fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6023 | || (WalkFast.fEffective & X86_PTE_RW)
|
---|
6024 | || ( ( IEM_GET_CPL(pVCpu) != 3
|
---|
6025 | || (fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
6026 | && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_WP)) )
|
---|
6027 | && ( (WalkFast.fEffective & X86_PTE_US)
|
---|
6028 | || IEM_GET_CPL(pVCpu) != 3
|
---|
6029 | || (fAccess & IEM_ACCESS_WHAT_SYS) )
|
---|
6030 | && ( !(fAccess & IEM_ACCESS_TYPE_EXEC)
|
---|
6031 | || !(WalkFast.fEffective & X86_PTE_PAE_NX)
|
---|
6032 | || !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_NXE) )
|
---|
6033 | )
|
---|
6034 | );
|
---|
6035 |
|
---|
6036 | /* PGMGstQueryPageFast sets the A & D bits. */
|
---|
6037 | /** @todo testcase: check when A and D bits are actually set by the CPU. */
|
---|
6038 | Assert(!(~WalkFast.fEffective & (fAccess & IEM_ACCESS_TYPE_WRITE ? X86_PTE_D | X86_PTE_A : X86_PTE_A)));
|
---|
6039 |
|
---|
6040 | *pGCPhysMem = WalkFast.GCPhys;
|
---|
6041 | return VINF_SUCCESS;
|
---|
6042 | }
|
---|
6043 |
|
---|
6044 | LogEx(LOG_GROUP_IEM,("iemMemPageTranslateAndCheckAccess: GCPtrMem=%RGv - failed to fetch page -> #PF\n", GCPtrMem));
|
---|
6045 | /** @todo Check unassigned memory in unpaged mode. */
|
---|
6046 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
6047 | if (WalkFast.fFailed & PGM_WALKFAIL_EPT)
|
---|
6048 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &WalkFast, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
6049 | #endif
|
---|
6050 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
6051 | return iemRaisePageFault(pVCpu, GCPtrMem, cbAccess, fAccess, rc);
|
---|
6052 | }
|
---|
6053 |
|
---|
6054 | #if 0 /*unused*/
|
---|
6055 | /**
|
---|
6056 | * Looks up a memory mapping entry.
|
---|
6057 | *
|
---|
6058 | * @returns The mapping index (positive) or VERR_NOT_FOUND (negative).
|
---|
6059 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6060 | * @param pvMem The memory address.
|
---|
6061 | * @param fAccess The access to.
|
---|
6062 | */
|
---|
6063 | DECLINLINE(int) iemMapLookup(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess)
|
---|
6064 | {
|
---|
6065 | Assert(pVCpu->iem.s.cActiveMappings <= RT_ELEMENTS(pVCpu->iem.s.aMemMappings));
|
---|
6066 | fAccess &= IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK;
|
---|
6067 | if ( pVCpu->iem.s.aMemMappings[0].pv == pvMem
|
---|
6068 | && (pVCpu->iem.s.aMemMappings[0].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
6069 | return 0;
|
---|
6070 | if ( pVCpu->iem.s.aMemMappings[1].pv == pvMem
|
---|
6071 | && (pVCpu->iem.s.aMemMappings[1].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
6072 | return 1;
|
---|
6073 | if ( pVCpu->iem.s.aMemMappings[2].pv == pvMem
|
---|
6074 | && (pVCpu->iem.s.aMemMappings[2].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
6075 | return 2;
|
---|
6076 | return VERR_NOT_FOUND;
|
---|
6077 | }
|
---|
6078 | #endif
|
---|
6079 |
|
---|
6080 | /**
|
---|
6081 | * Finds a free memmap entry when using iNextMapping doesn't work.
|
---|
6082 | *
|
---|
6083 | * @returns Memory mapping index, 1024 on failure.
|
---|
6084 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6085 | */
|
---|
6086 | static unsigned iemMemMapFindFree(PVMCPUCC pVCpu)
|
---|
6087 | {
|
---|
6088 | /*
|
---|
6089 | * The easy case.
|
---|
6090 | */
|
---|
6091 | if (pVCpu->iem.s.cActiveMappings == 0)
|
---|
6092 | {
|
---|
6093 | pVCpu->iem.s.iNextMapping = 1;
|
---|
6094 | return 0;
|
---|
6095 | }
|
---|
6096 |
|
---|
6097 | /* There should be enough mappings for all instructions. */
|
---|
6098 | AssertReturn(pVCpu->iem.s.cActiveMappings < RT_ELEMENTS(pVCpu->iem.s.aMemMappings), 1024);
|
---|
6099 |
|
---|
6100 | for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->iem.s.aMemMappings); i++)
|
---|
6101 | if (pVCpu->iem.s.aMemMappings[i].fAccess == IEM_ACCESS_INVALID)
|
---|
6102 | return i;
|
---|
6103 |
|
---|
6104 | AssertFailedReturn(1024);
|
---|
6105 | }
|
---|
6106 |
|
---|
6107 |
|
---|
6108 | /**
|
---|
6109 | * Commits a bounce buffer that needs writing back and unmaps it.
|
---|
6110 | *
|
---|
6111 | * @returns Strict VBox status code.
|
---|
6112 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6113 | * @param iMemMap The index of the buffer to commit.
|
---|
6114 | * @param fPostponeFail Whether we can postpone writer failures to ring-3.
|
---|
6115 | * Always false in ring-3, obviously.
|
---|
6116 | */
|
---|
6117 | static VBOXSTRICTRC iemMemBounceBufferCommitAndUnmap(PVMCPUCC pVCpu, unsigned iMemMap, bool fPostponeFail)
|
---|
6118 | {
|
---|
6119 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED);
|
---|
6120 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE);
|
---|
6121 | #ifdef IN_RING3
|
---|
6122 | Assert(!fPostponeFail);
|
---|
6123 | RT_NOREF_PV(fPostponeFail);
|
---|
6124 | #endif
|
---|
6125 |
|
---|
6126 | /*
|
---|
6127 | * Do the writing.
|
---|
6128 | */
|
---|
6129 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6130 | if (!pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned)
|
---|
6131 | {
|
---|
6132 | uint16_t const cbFirst = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst;
|
---|
6133 | uint16_t const cbSecond = pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
6134 | uint8_t const *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
6135 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
6136 | {
|
---|
6137 | /*
|
---|
6138 | * Carefully and efficiently dealing with access handler return
|
---|
6139 | * codes make this a little bloated.
|
---|
6140 | */
|
---|
6141 | VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM,
|
---|
6142 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
6143 | pbBuf,
|
---|
6144 | cbFirst,
|
---|
6145 | PGMACCESSORIGIN_IEM);
|
---|
6146 | if (rcStrict == VINF_SUCCESS)
|
---|
6147 | {
|
---|
6148 | if (cbSecond)
|
---|
6149 | {
|
---|
6150 | rcStrict = PGMPhysWrite(pVM,
|
---|
6151 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
6152 | pbBuf + cbFirst,
|
---|
6153 | cbSecond,
|
---|
6154 | PGMACCESSORIGIN_IEM);
|
---|
6155 | if (rcStrict == VINF_SUCCESS)
|
---|
6156 | { /* nothing */ }
|
---|
6157 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6158 | {
|
---|
6159 | LogEx(LOG_GROUP_IEM,
|
---|
6160 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc\n",
|
---|
6161 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6162 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6163 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6164 | }
|
---|
6165 | #ifndef IN_RING3
|
---|
6166 | else if (fPostponeFail)
|
---|
6167 | {
|
---|
6168 | LogEx(LOG_GROUP_IEM,
|
---|
6169 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
6170 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6171 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6172 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
6173 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
6174 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6175 | }
|
---|
6176 | #endif
|
---|
6177 | else
|
---|
6178 | {
|
---|
6179 | LogEx(LOG_GROUP_IEM,
|
---|
6180 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
6181 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6182 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6183 | return rcStrict;
|
---|
6184 | }
|
---|
6185 | }
|
---|
6186 | }
|
---|
6187 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6188 | {
|
---|
6189 | if (!cbSecond)
|
---|
6190 | {
|
---|
6191 | LogEx(LOG_GROUP_IEM,
|
---|
6192 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc\n",
|
---|
6193 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6194 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6195 | }
|
---|
6196 | else
|
---|
6197 | {
|
---|
6198 | VBOXSTRICTRC rcStrict2 = PGMPhysWrite(pVM,
|
---|
6199 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
6200 | pbBuf + cbFirst,
|
---|
6201 | cbSecond,
|
---|
6202 | PGMACCESSORIGIN_IEM);
|
---|
6203 | if (rcStrict2 == VINF_SUCCESS)
|
---|
6204 | {
|
---|
6205 | LogEx(LOG_GROUP_IEM,
|
---|
6206 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x\n",
|
---|
6207 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
6208 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
6209 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6210 | }
|
---|
6211 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
|
---|
6212 | {
|
---|
6213 | LogEx(LOG_GROUP_IEM,
|
---|
6214 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x %Rrc\n",
|
---|
6215 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
6216 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
6217 | PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
|
---|
6218 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6219 | }
|
---|
6220 | #ifndef IN_RING3
|
---|
6221 | else if (fPostponeFail)
|
---|
6222 | {
|
---|
6223 | LogEx(LOG_GROUP_IEM,
|
---|
6224 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
6225 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6226 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6227 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
6228 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
6229 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6230 | }
|
---|
6231 | #endif
|
---|
6232 | else
|
---|
6233 | {
|
---|
6234 | LogEx(LOG_GROUP_IEM,
|
---|
6235 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
6236 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
6237 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
6238 | return rcStrict2;
|
---|
6239 | }
|
---|
6240 | }
|
---|
6241 | }
|
---|
6242 | #ifndef IN_RING3
|
---|
6243 | else if (fPostponeFail)
|
---|
6244 | {
|
---|
6245 | LogEx(LOG_GROUP_IEM,
|
---|
6246 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
6247 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6248 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6249 | if (!cbSecond)
|
---|
6250 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_1ST;
|
---|
6251 | else
|
---|
6252 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
6253 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
6254 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6255 | }
|
---|
6256 | #endif
|
---|
6257 | else
|
---|
6258 | {
|
---|
6259 | LogEx(LOG_GROUP_IEM,
|
---|
6260 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc [GCPhysSecond=%RGp/%#x] (!!)\n",
|
---|
6261 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
6262 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
6263 | return rcStrict;
|
---|
6264 | }
|
---|
6265 | }
|
---|
6266 | else
|
---|
6267 | {
|
---|
6268 | /*
|
---|
6269 | * No access handlers, much simpler.
|
---|
6270 | */
|
---|
6271 | int rc = PGMPhysSimpleWriteGCPhys(pVM, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, pbBuf, cbFirst);
|
---|
6272 | if (RT_SUCCESS(rc))
|
---|
6273 | {
|
---|
6274 | if (cbSecond)
|
---|
6275 | {
|
---|
6276 | rc = PGMPhysSimpleWriteGCPhys(pVM, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, pbBuf + cbFirst, cbSecond);
|
---|
6277 | if (RT_SUCCESS(rc))
|
---|
6278 | { /* likely */ }
|
---|
6279 | else
|
---|
6280 | {
|
---|
6281 | LogEx(LOG_GROUP_IEM,
|
---|
6282 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysSimpleWriteGCPhys GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
6283 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6284 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, rc));
|
---|
6285 | return rc;
|
---|
6286 | }
|
---|
6287 | }
|
---|
6288 | }
|
---|
6289 | else
|
---|
6290 | {
|
---|
6291 | LogEx(LOG_GROUP_IEM,
|
---|
6292 | ("iemMemBounceBufferCommitAndUnmap: PGMPhysSimpleWriteGCPhys GCPhysFirst=%RGp/%#x %Rrc [GCPhysSecond=%RGp/%#x] (!!)\n",
|
---|
6293 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, rc,
|
---|
6294 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
6295 | return rc;
|
---|
6296 | }
|
---|
6297 | }
|
---|
6298 | }
|
---|
6299 |
|
---|
6300 | #if defined(IEM_LOG_MEMORY_WRITES)
|
---|
6301 | Log5(("IEM Wrote %RGp: %.*Rhxs\n", pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
6302 | RT_MAX(RT_MIN(pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst, 64), 1), &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0]));
|
---|
6303 | if (pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond)
|
---|
6304 | Log5(("IEM Wrote %RGp: %.*Rhxs [2nd page]\n", pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
6305 | RT_MIN(pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond, 64),
|
---|
6306 | &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst]));
|
---|
6307 |
|
---|
6308 | size_t cbWrote = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst + pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
6309 | g_cbIemWrote = cbWrote;
|
---|
6310 | memcpy(g_abIemWrote, &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0], RT_MIN(cbWrote, sizeof(g_abIemWrote)));
|
---|
6311 | #endif
|
---|
6312 |
|
---|
6313 | /*
|
---|
6314 | * Free the mapping entry.
|
---|
6315 | */
|
---|
6316 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
6317 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
6318 | pVCpu->iem.s.cActiveMappings--;
|
---|
6319 | return VINF_SUCCESS;
|
---|
6320 | }
|
---|
6321 |
|
---|
6322 |
|
---|
6323 | /**
|
---|
6324 | * Helper for iemMemMap, iemMemMapJmp and iemMemBounceBufferMapCrossPage.
|
---|
6325 | */
|
---|
6326 | DECL_FORCE_INLINE(uint32_t)
|
---|
6327 | iemMemCheckDataBreakpoint(PVMCC pVM, PVMCPUCC pVCpu, RTGCPTR GCPtrMem, size_t cbMem, uint32_t fAccess)
|
---|
6328 | {
|
---|
6329 | bool const fSysAccess = (fAccess & IEM_ACCESS_WHAT_MASK) == IEM_ACCESS_WHAT_SYS;
|
---|
6330 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6331 | return DBGFBpCheckDataWrite(pVM, pVCpu, GCPtrMem, (uint32_t)cbMem, fSysAccess);
|
---|
6332 | return DBGFBpCheckDataRead(pVM, pVCpu, GCPtrMem, (uint32_t)cbMem, fSysAccess);
|
---|
6333 | }
|
---|
6334 |
|
---|
6335 |
|
---|
6336 | /**
|
---|
6337 | * iemMemMap worker that deals with a request crossing pages.
|
---|
6338 | */
|
---|
6339 | static VBOXSTRICTRC
|
---|
6340 | iemMemBounceBufferMapCrossPage(PVMCPUCC pVCpu, int iMemMap, void **ppvMem, uint8_t *pbUnmapInfo,
|
---|
6341 | size_t cbMem, RTGCPTR GCPtrFirst, uint32_t fAccess)
|
---|
6342 | {
|
---|
6343 | STAM_COUNTER_INC(&pVCpu->iem.s.StatMemBounceBufferCrossPage);
|
---|
6344 | Assert(cbMem <= GUEST_PAGE_SIZE);
|
---|
6345 |
|
---|
6346 | /*
|
---|
6347 | * Do the address translations.
|
---|
6348 | */
|
---|
6349 | uint32_t const cbFirstPage = GUEST_PAGE_SIZE - (uint32_t)(GCPtrFirst & GUEST_PAGE_OFFSET_MASK);
|
---|
6350 | RTGCPHYS GCPhysFirst;
|
---|
6351 | VBOXSTRICTRC rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrFirst, cbFirstPage, fAccess, &GCPhysFirst);
|
---|
6352 | if (rcStrict != VINF_SUCCESS)
|
---|
6353 | return rcStrict;
|
---|
6354 | Assert((GCPhysFirst & GUEST_PAGE_OFFSET_MASK) == (GCPtrFirst & GUEST_PAGE_OFFSET_MASK));
|
---|
6355 |
|
---|
6356 | uint32_t const cbSecondPage = (uint32_t)cbMem - cbFirstPage;
|
---|
6357 | RTGCPHYS GCPhysSecond;
|
---|
6358 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, (GCPtrFirst + (cbMem - 1)) & ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK,
|
---|
6359 | cbSecondPage, fAccess, &GCPhysSecond);
|
---|
6360 | if (rcStrict != VINF_SUCCESS)
|
---|
6361 | return rcStrict;
|
---|
6362 | Assert((GCPhysSecond & GUEST_PAGE_OFFSET_MASK) == 0);
|
---|
6363 | GCPhysSecond &= ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; /** @todo why? */
|
---|
6364 |
|
---|
6365 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6366 |
|
---|
6367 | /*
|
---|
6368 | * Check for data breakpoints.
|
---|
6369 | */
|
---|
6370 | if (RT_LIKELY(!(pVCpu->iem.s.fExec & IEM_F_PENDING_BRK_DATA)))
|
---|
6371 | { /* likely */ }
|
---|
6372 | else
|
---|
6373 | {
|
---|
6374 | uint32_t fDataBps = iemMemCheckDataBreakpoint(pVM, pVCpu, GCPtrFirst, cbFirstPage, fAccess);
|
---|
6375 | fDataBps |= iemMemCheckDataBreakpoint(pVM, pVCpu, (GCPtrFirst + (cbMem - 1)) & ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK,
|
---|
6376 | cbSecondPage, fAccess);
|
---|
6377 | pVCpu->cpum.GstCtx.eflags.uBoth |= fDataBps & (CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK);
|
---|
6378 | if (fDataBps > 1)
|
---|
6379 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapCrossPage: Data breakpoint: fDataBps=%#x for %RGv LB %zx; fAccess=%#x cs:rip=%04x:%08RX64\n",
|
---|
6380 | fDataBps, GCPtrFirst, cbMem, fAccess, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
6381 | }
|
---|
6382 |
|
---|
6383 | /*
|
---|
6384 | * Read in the current memory content if it's a read, execute or partial
|
---|
6385 | * write access.
|
---|
6386 | */
|
---|
6387 | uint8_t * const pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
6388 |
|
---|
6389 | if (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_PARTIAL_WRITE))
|
---|
6390 | {
|
---|
6391 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
6392 | {
|
---|
6393 | /*
|
---|
6394 | * Must carefully deal with access handler status codes here,
|
---|
6395 | * makes the code a bit bloated.
|
---|
6396 | */
|
---|
6397 | rcStrict = PGMPhysRead(pVM, GCPhysFirst, pbBuf, cbFirstPage, PGMACCESSORIGIN_IEM);
|
---|
6398 | if (rcStrict == VINF_SUCCESS)
|
---|
6399 | {
|
---|
6400 | rcStrict = PGMPhysRead(pVM, GCPhysSecond, pbBuf + cbFirstPage, cbSecondPage, PGMACCESSORIGIN_IEM);
|
---|
6401 | if (rcStrict == VINF_SUCCESS)
|
---|
6402 | { /*likely */ }
|
---|
6403 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6404 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6405 | else
|
---|
6406 | {
|
---|
6407 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysSecond=%RGp rcStrict2=%Rrc (!!)\n",
|
---|
6408 | GCPhysSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6409 | return rcStrict;
|
---|
6410 | }
|
---|
6411 | }
|
---|
6412 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6413 | {
|
---|
6414 | VBOXSTRICTRC rcStrict2 = PGMPhysRead(pVM, GCPhysSecond, pbBuf + cbFirstPage, cbSecondPage, PGMACCESSORIGIN_IEM);
|
---|
6415 | if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
|
---|
6416 | {
|
---|
6417 | PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
|
---|
6418 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6419 | }
|
---|
6420 | else
|
---|
6421 | {
|
---|
6422 | LogEx(LOG_GROUP_IEM,
|
---|
6423 | ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysSecond=%RGp rcStrict2=%Rrc (rcStrict=%Rrc) (!!)\n",
|
---|
6424 | GCPhysSecond, VBOXSTRICTRC_VAL(rcStrict2), VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
6425 | return rcStrict2;
|
---|
6426 | }
|
---|
6427 | }
|
---|
6428 | else
|
---|
6429 | {
|
---|
6430 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
6431 | GCPhysFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6432 | return rcStrict;
|
---|
6433 | }
|
---|
6434 | }
|
---|
6435 | else
|
---|
6436 | {
|
---|
6437 | /*
|
---|
6438 | * No informational status codes here, much more straight forward.
|
---|
6439 | */
|
---|
6440 | int rc = PGMPhysSimpleReadGCPhys(pVM, pbBuf, GCPhysFirst, cbFirstPage);
|
---|
6441 | if (RT_SUCCESS(rc))
|
---|
6442 | {
|
---|
6443 | Assert(rc == VINF_SUCCESS);
|
---|
6444 | rc = PGMPhysSimpleReadGCPhys(pVM, pbBuf + cbFirstPage, GCPhysSecond, cbSecondPage);
|
---|
6445 | if (RT_SUCCESS(rc))
|
---|
6446 | Assert(rc == VINF_SUCCESS);
|
---|
6447 | else
|
---|
6448 | {
|
---|
6449 | LogEx(LOG_GROUP_IEM,
|
---|
6450 | ("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysSecond=%RGp rc=%Rrc (!!)\n", GCPhysSecond, rc));
|
---|
6451 | return rc;
|
---|
6452 | }
|
---|
6453 | }
|
---|
6454 | else
|
---|
6455 | {
|
---|
6456 | LogEx(LOG_GROUP_IEM,
|
---|
6457 | ("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysFirst=%RGp rc=%Rrc (!!)\n", GCPhysFirst, rc));
|
---|
6458 | return rc;
|
---|
6459 | }
|
---|
6460 | }
|
---|
6461 | }
|
---|
6462 | #ifdef VBOX_STRICT
|
---|
6463 | else
|
---|
6464 | memset(pbBuf, 0xcc, cbMem);
|
---|
6465 | if (cbMem < sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab))
|
---|
6466 | memset(pbBuf + cbMem, 0xaa, sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab) - cbMem);
|
---|
6467 | #endif
|
---|
6468 | AssertCompileMemberAlignment(VMCPU, iem.s.aBounceBuffers, 64);
|
---|
6469 |
|
---|
6470 | /*
|
---|
6471 | * Commit the bounce buffer entry.
|
---|
6472 | */
|
---|
6473 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst = GCPhysFirst;
|
---|
6474 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond = GCPhysSecond;
|
---|
6475 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst = (uint16_t)cbFirstPage;
|
---|
6476 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond = (uint16_t)cbSecondPage;
|
---|
6477 | pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned = false;
|
---|
6478 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pbBuf;
|
---|
6479 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess | IEM_ACCESS_BOUNCE_BUFFERED;
|
---|
6480 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
6481 | pVCpu->iem.s.cActiveMappings++;
|
---|
6482 |
|
---|
6483 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
6484 | *ppvMem = pbBuf;
|
---|
6485 | *pbUnmapInfo = iMemMap | 0x08 | ((fAccess & IEM_ACCESS_TYPE_MASK) << 4);
|
---|
6486 | return VINF_SUCCESS;
|
---|
6487 | }
|
---|
6488 |
|
---|
6489 |
|
---|
6490 | /**
|
---|
6491 | * iemMemMap woker that deals with iemMemPageMap failures.
|
---|
6492 | */
|
---|
6493 | static VBOXSTRICTRC iemMemBounceBufferMapPhys(PVMCPUCC pVCpu, unsigned iMemMap, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem,
|
---|
6494 | RTGCPHYS GCPhysFirst, uint32_t fAccess, VBOXSTRICTRC rcMap)
|
---|
6495 | {
|
---|
6496 | STAM_COUNTER_INC(&pVCpu->iem.s.StatMemBounceBufferMapPhys);
|
---|
6497 |
|
---|
6498 | /*
|
---|
6499 | * Filter out conditions we can handle and the ones which shouldn't happen.
|
---|
6500 | */
|
---|
6501 | if ( rcMap != VERR_PGM_PHYS_TLB_CATCH_WRITE
|
---|
6502 | && rcMap != VERR_PGM_PHYS_TLB_CATCH_ALL
|
---|
6503 | && rcMap != VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
6504 | {
|
---|
6505 | AssertReturn(RT_FAILURE_NP(rcMap), VERR_IEM_IPE_8);
|
---|
6506 | return rcMap;
|
---|
6507 | }
|
---|
6508 | pVCpu->iem.s.cPotentialExits++;
|
---|
6509 |
|
---|
6510 | /*
|
---|
6511 | * Read in the current memory content if it's a read, execute or partial
|
---|
6512 | * write access.
|
---|
6513 | */
|
---|
6514 | uint8_t *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
6515 | if (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_PARTIAL_WRITE))
|
---|
6516 | {
|
---|
6517 | if (rcMap == VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
6518 | memset(pbBuf, 0xff, cbMem);
|
---|
6519 | else
|
---|
6520 | {
|
---|
6521 | int rc;
|
---|
6522 | if (!(pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS))
|
---|
6523 | {
|
---|
6524 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhysFirst, pbBuf, cbMem, PGMACCESSORIGIN_IEM);
|
---|
6525 | if (rcStrict == VINF_SUCCESS)
|
---|
6526 | { /* nothing */ }
|
---|
6527 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6528 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6529 | else
|
---|
6530 | {
|
---|
6531 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
6532 | GCPhysFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6533 | return rcStrict;
|
---|
6534 | }
|
---|
6535 | }
|
---|
6536 | else
|
---|
6537 | {
|
---|
6538 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pbBuf, GCPhysFirst, cbMem);
|
---|
6539 | if (RT_SUCCESS(rc))
|
---|
6540 | { /* likely */ }
|
---|
6541 | else
|
---|
6542 | {
|
---|
6543 | LogEx(LOG_GROUP_IEM, ("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
6544 | GCPhysFirst, rc));
|
---|
6545 | return rc;
|
---|
6546 | }
|
---|
6547 | }
|
---|
6548 | }
|
---|
6549 | }
|
---|
6550 | #ifdef VBOX_STRICT
|
---|
6551 | else
|
---|
6552 | memset(pbBuf, 0xcc, cbMem);
|
---|
6553 | #endif
|
---|
6554 | #ifdef VBOX_STRICT
|
---|
6555 | if (cbMem < sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab))
|
---|
6556 | memset(pbBuf + cbMem, 0xaa, sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab) - cbMem);
|
---|
6557 | #endif
|
---|
6558 |
|
---|
6559 | /*
|
---|
6560 | * Commit the bounce buffer entry.
|
---|
6561 | */
|
---|
6562 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst = GCPhysFirst;
|
---|
6563 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond = NIL_RTGCPHYS;
|
---|
6564 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst = (uint16_t)cbMem;
|
---|
6565 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond = 0;
|
---|
6566 | pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned = rcMap == VERR_PGM_PHYS_TLB_UNASSIGNED;
|
---|
6567 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pbBuf;
|
---|
6568 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess | IEM_ACCESS_BOUNCE_BUFFERED;
|
---|
6569 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
6570 | pVCpu->iem.s.cActiveMappings++;
|
---|
6571 |
|
---|
6572 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
6573 | *ppvMem = pbBuf;
|
---|
6574 | *pbUnmapInfo = iMemMap | 0x08 | ((fAccess & IEM_ACCESS_TYPE_MASK) << 4);
|
---|
6575 | return VINF_SUCCESS;
|
---|
6576 | }
|
---|
6577 |
|
---|
6578 |
|
---|
6579 |
|
---|
6580 | /**
|
---|
6581 | * Maps the specified guest memory for the given kind of access.
|
---|
6582 | *
|
---|
6583 | * This may be using bounce buffering of the memory if it's crossing a page
|
---|
6584 | * boundary or if there is an access handler installed for any of it. Because
|
---|
6585 | * of lock prefix guarantees, we're in for some extra clutter when this
|
---|
6586 | * happens.
|
---|
6587 | *
|
---|
6588 | * This may raise a \#GP, \#SS, \#PF or \#AC.
|
---|
6589 | *
|
---|
6590 | * @returns VBox strict status code.
|
---|
6591 | *
|
---|
6592 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6593 | * @param ppvMem Where to return the pointer to the mapped memory.
|
---|
6594 | * @param pbUnmapInfo Where to return unmap info to be passed to
|
---|
6595 | * iemMemCommitAndUnmap or iemMemRollbackAndUnmap when
|
---|
6596 | * done.
|
---|
6597 | * @param cbMem The number of bytes to map. This is usually 1, 2, 4, 6,
|
---|
6598 | * 8, 12, 16, 32 or 512. When used by string operations
|
---|
6599 | * it can be up to a page.
|
---|
6600 | * @param iSegReg The index of the segment register to use for this
|
---|
6601 | * access. The base and limits are checked. Use UINT8_MAX
|
---|
6602 | * to indicate that no segmentation is required (for IDT,
|
---|
6603 | * GDT and LDT accesses).
|
---|
6604 | * @param GCPtrMem The address of the guest memory.
|
---|
6605 | * @param fAccess How the memory is being accessed. The
|
---|
6606 | * IEM_ACCESS_TYPE_XXX part is used to figure out how to
|
---|
6607 | * map the memory, while the IEM_ACCESS_WHAT_XXX part is
|
---|
6608 | * used when raising exceptions. The IEM_ACCESS_ATOMIC and
|
---|
6609 | * IEM_ACCESS_PARTIAL_WRITE bits are also allowed to be
|
---|
6610 | * set.
|
---|
6611 | * @param uAlignCtl Alignment control:
|
---|
6612 | * - Bits 15:0 is the alignment mask.
|
---|
6613 | * - Bits 31:16 for flags like IEM_MEMMAP_F_ALIGN_GP,
|
---|
6614 | * IEM_MEMMAP_F_ALIGN_SSE, and
|
---|
6615 | * IEM_MEMMAP_F_ALIGN_GP_OR_AC.
|
---|
6616 | * Pass zero to skip alignment.
|
---|
6617 | */
|
---|
6618 | VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
|
---|
6619 | uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT
|
---|
6620 | {
|
---|
6621 | STAM_COUNTER_INC(&pVCpu->iem.s.StatMemMapNoJmp);
|
---|
6622 |
|
---|
6623 | /*
|
---|
6624 | * Check the input and figure out which mapping entry to use.
|
---|
6625 | */
|
---|
6626 | Assert(cbMem <= sizeof(pVCpu->iem.s.aBounceBuffers[0]));
|
---|
6627 | Assert( cbMem <= 64 || cbMem == 512 || cbMem == 256 || cbMem == 108 || cbMem == 104 || cbMem == 102 || cbMem == 94
|
---|
6628 | || (iSegReg == UINT8_MAX && uAlignCtl == 0 && fAccess == IEM_ACCESS_DATA_R /* for the CPUID logging interface */) );
|
---|
6629 | Assert(!(fAccess & ~(IEM_ACCESS_TYPE_MASK | IEM_ACCESS_WHAT_MASK | IEM_ACCESS_ATOMIC | IEM_ACCESS_PARTIAL_WRITE)));
|
---|
6630 | Assert(pVCpu->iem.s.cActiveMappings < RT_ELEMENTS(pVCpu->iem.s.aMemMappings));
|
---|
6631 |
|
---|
6632 | unsigned iMemMap = pVCpu->iem.s.iNextMapping;
|
---|
6633 | if ( iMemMap >= RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
6634 | || pVCpu->iem.s.aMemMappings[iMemMap].fAccess != IEM_ACCESS_INVALID)
|
---|
6635 | {
|
---|
6636 | iMemMap = iemMemMapFindFree(pVCpu);
|
---|
6637 | AssertLogRelMsgReturn(iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings),
|
---|
6638 | ("active=%d fAccess[0] = {%#x, %#x, %#x}\n", pVCpu->iem.s.cActiveMappings,
|
---|
6639 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess,
|
---|
6640 | pVCpu->iem.s.aMemMappings[2].fAccess),
|
---|
6641 | VERR_IEM_IPE_9);
|
---|
6642 | }
|
---|
6643 |
|
---|
6644 | /*
|
---|
6645 | * Map the memory, checking that we can actually access it. If something
|
---|
6646 | * slightly complicated happens, fall back on bounce buffering.
|
---|
6647 | */
|
---|
6648 | VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, fAccess, iSegReg, cbMem, &GCPtrMem);
|
---|
6649 | if (rcStrict == VINF_SUCCESS)
|
---|
6650 | { /* likely */ }
|
---|
6651 | else
|
---|
6652 | return rcStrict;
|
---|
6653 |
|
---|
6654 | if ((GCPtrMem & GUEST_PAGE_OFFSET_MASK) + cbMem <= GUEST_PAGE_SIZE) /* Crossing a page boundary? */
|
---|
6655 | { /* likely */ }
|
---|
6656 | else
|
---|
6657 | return iemMemBounceBufferMapCrossPage(pVCpu, iMemMap, ppvMem, pbUnmapInfo, cbMem, GCPtrMem, fAccess);
|
---|
6658 |
|
---|
6659 | /*
|
---|
6660 | * Alignment check.
|
---|
6661 | */
|
---|
6662 | if ( (GCPtrMem & (uAlignCtl & UINT16_MAX)) == 0 )
|
---|
6663 | { /* likelyish */ }
|
---|
6664 | else
|
---|
6665 | {
|
---|
6666 | /* Misaligned access. */
|
---|
6667 | if ((fAccess & IEM_ACCESS_WHAT_MASK) != IEM_ACCESS_WHAT_SYS)
|
---|
6668 | {
|
---|
6669 | if ( !(uAlignCtl & IEM_MEMMAP_F_ALIGN_GP)
|
---|
6670 | || ( (uAlignCtl & IEM_MEMMAP_F_ALIGN_SSE)
|
---|
6671 | && (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_MM)) )
|
---|
6672 | {
|
---|
6673 | AssertCompile(X86_CR0_AM == X86_EFL_AC);
|
---|
6674 |
|
---|
6675 | if (!iemMemAreAlignmentChecksEnabled(pVCpu))
|
---|
6676 | { /* likely */ }
|
---|
6677 | else
|
---|
6678 | return iemRaiseAlignmentCheckException(pVCpu);
|
---|
6679 | }
|
---|
6680 | else if ( (uAlignCtl & IEM_MEMMAP_F_ALIGN_GP_OR_AC)
|
---|
6681 | && (GCPtrMem & 3) /* The value 4 matches 10980xe's FXSAVE and helps make bs3-cpu-basic2 work. */
|
---|
6682 | /** @todo may only apply to 2, 4 or 8 byte misalignments depending on the CPU
|
---|
6683 | * implementation. See FXSAVE/FRSTOR/XSAVE/XRSTOR/++. Using 4 for now as
|
---|
6684 | * that's what FXSAVE does on a 10980xe. */
|
---|
6685 | && iemMemAreAlignmentChecksEnabled(pVCpu))
|
---|
6686 | return iemRaiseAlignmentCheckException(pVCpu);
|
---|
6687 | else
|
---|
6688 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6689 | }
|
---|
6690 |
|
---|
6691 | #if (defined(RT_ARCH_AMD64) && defined(RT_OS_LINUX)) || defined(RT_ARCH_ARM64)
|
---|
6692 | /* If the access is atomic there are host platform alignmnet restrictions
|
---|
6693 | we need to conform with. */
|
---|
6694 | if ( !(fAccess & IEM_ACCESS_ATOMIC)
|
---|
6695 | # if defined(RT_ARCH_AMD64)
|
---|
6696 | || (64U - (GCPtrMem & 63U) >= cbMem) /* split-lock detection. ASSUMES 64 byte cache line. */
|
---|
6697 | # elif defined(RT_ARCH_ARM64)
|
---|
6698 | || (16U - (GCPtrMem & 15U) >= cbMem) /* LSE2 allows atomics anywhere within a 16 byte sized & aligned block. */
|
---|
6699 | # else
|
---|
6700 | # error port me
|
---|
6701 | # endif
|
---|
6702 | )
|
---|
6703 | { /* okay */ }
|
---|
6704 | else
|
---|
6705 | {
|
---|
6706 | LogEx(LOG_GROUP_IEM, ("iemMemMap: GCPtrMem=%RGv LB %u - misaligned atomic fallback.\n", GCPtrMem, cbMem));
|
---|
6707 | pVCpu->iem.s.cMisalignedAtomics += 1;
|
---|
6708 | return VINF_EM_EMULATE_SPLIT_LOCK;
|
---|
6709 | }
|
---|
6710 | #endif
|
---|
6711 | }
|
---|
6712 |
|
---|
6713 | #ifdef IEM_WITH_DATA_TLB
|
---|
6714 | Assert(!(fAccess & IEM_ACCESS_TYPE_EXEC));
|
---|
6715 |
|
---|
6716 | /*
|
---|
6717 | * Get the TLB entry for this page and check PT flags.
|
---|
6718 | *
|
---|
6719 | * We reload the TLB entry if we need to set the dirty bit (accessed
|
---|
6720 | * should in theory always be set).
|
---|
6721 | */
|
---|
6722 | uint8_t *pbMem = NULL;
|
---|
6723 | uint64_t const uTagNoRev = IEMTLB_CALC_TAG_NO_REV(GCPtrMem);
|
---|
6724 | PIEMTLBENTRY pTlbe = IEMTLB_TAG_TO_EVEN_ENTRY(&pVCpu->iem.s.DataTlb, uTagNoRev);
|
---|
6725 | uint64_t const fTlbeAD = IEMTLBE_F_PT_NO_ACCESSED | (fAccess & IEM_ACCESS_TYPE_WRITE ? IEMTLBE_F_PT_NO_DIRTY : 0);
|
---|
6726 | if ( ( pTlbe->uTag == (uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevision)
|
---|
6727 | && !(pTlbe->fFlagsAndPhysRev & fTlbeAD) )
|
---|
6728 | || ( (pTlbe = pTlbe + 1)->uTag == (uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevisionGlobal)
|
---|
6729 | && !(pTlbe->fFlagsAndPhysRev & fTlbeAD) ) )
|
---|
6730 | {
|
---|
6731 | # ifdef IEM_WITH_TLB_STATISTICS
|
---|
6732 | pVCpu->iem.s.DataTlb.cTlbCoreHits++;
|
---|
6733 | #endif
|
---|
6734 |
|
---|
6735 | /* If the page is either supervisor only or non-writable, we need to do
|
---|
6736 | more careful access checks. */
|
---|
6737 | if (pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PT_NO_USER | IEMTLBE_F_PT_NO_WRITE))
|
---|
6738 | {
|
---|
6739 | /* Write to read only memory? */
|
---|
6740 | if ( (pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_WRITE)
|
---|
6741 | && (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6742 | && ( ( IEM_GET_CPL(pVCpu) == 3
|
---|
6743 | && !(fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
6744 | || (pVCpu->cpum.GstCtx.cr0 & X86_CR0_WP)))
|
---|
6745 | {
|
---|
6746 | LogEx(LOG_GROUP_IEM, ("iemMemMap: GCPtrMem=%RGv - read-only page -> #PF\n", GCPtrMem));
|
---|
6747 | return iemRaisePageFault(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess & ~IEM_ACCESS_TYPE_READ, VERR_ACCESS_DENIED);
|
---|
6748 | }
|
---|
6749 |
|
---|
6750 | /* Kernel memory accessed by userland? */
|
---|
6751 | if ( (pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_USER)
|
---|
6752 | && IEM_GET_CPL(pVCpu) == 3
|
---|
6753 | && !(fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
6754 | {
|
---|
6755 | LogEx(LOG_GROUP_IEM, ("iemMemMap: GCPtrMem=%RGv - user access to kernel page -> #PF\n", GCPtrMem));
|
---|
6756 | return iemRaisePageFault(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, VERR_ACCESS_DENIED);
|
---|
6757 | }
|
---|
6758 | }
|
---|
6759 |
|
---|
6760 | /* Look up the physical page info if necessary. */
|
---|
6761 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PHYS_REV) == pVCpu->iem.s.DataTlb.uTlbPhysRev)
|
---|
6762 | # ifdef IN_RING3
|
---|
6763 | pbMem = pTlbe->pbMappingR3;
|
---|
6764 | # else
|
---|
6765 | pbMem = NULL;
|
---|
6766 | # endif
|
---|
6767 | else
|
---|
6768 | {
|
---|
6769 | if (RT_LIKELY(pVCpu->iem.s.CodeTlb.uTlbPhysRev > IEMTLB_PHYS_REV_INCR))
|
---|
6770 | { /* likely */ }
|
---|
6771 | else
|
---|
6772 | IEMTlbInvalidateAllPhysicalSlow(pVCpu);
|
---|
6773 | pTlbe->pbMappingR3 = NULL;
|
---|
6774 | pTlbe->fFlagsAndPhysRev &= ~IEMTLBE_GCPHYS2PTR_MASK;
|
---|
6775 | int rc = PGMPhysIemGCPhys2PtrNoLock(pVCpu->CTX_SUFF(pVM), pVCpu, pTlbe->GCPhys, &pVCpu->iem.s.DataTlb.uTlbPhysRev,
|
---|
6776 | &pbMem, &pTlbe->fFlagsAndPhysRev);
|
---|
6777 | AssertRCReturn(rc, rc);
|
---|
6778 | # ifdef IN_RING3
|
---|
6779 | pTlbe->pbMappingR3 = pbMem;
|
---|
6780 | # endif
|
---|
6781 | }
|
---|
6782 | }
|
---|
6783 | else
|
---|
6784 | {
|
---|
6785 | pVCpu->iem.s.DataTlb.cTlbCoreMisses++;
|
---|
6786 |
|
---|
6787 | /* This page table walking will set A bits as required by the access while performing the walk.
|
---|
6788 | ASSUMES these are set when the address is translated rather than on commit... */
|
---|
6789 | /** @todo testcase: check when A bits are actually set by the CPU for code. */
|
---|
6790 | PGMPTWALKFAST WalkFast;
|
---|
6791 | AssertCompile(IEM_ACCESS_TYPE_READ == PGMQPAGE_F_READ);
|
---|
6792 | AssertCompile(IEM_ACCESS_TYPE_WRITE == PGMQPAGE_F_WRITE);
|
---|
6793 | AssertCompile(IEM_ACCESS_TYPE_EXEC == PGMQPAGE_F_EXECUTE);
|
---|
6794 | AssertCompile(X86_CR0_WP == PGMQPAGE_F_CR0_WP0);
|
---|
6795 | uint32_t fQPage = (fAccess & (PGMQPAGE_F_READ | IEM_ACCESS_TYPE_WRITE | PGMQPAGE_F_EXECUTE))
|
---|
6796 | | (((uint32_t)pVCpu->cpum.GstCtx.cr0 & X86_CR0_WP) ^ X86_CR0_WP);
|
---|
6797 | if (IEM_GET_CPL(pVCpu) == 3 && !(fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
6798 | fQPage |= PGMQPAGE_F_USER_MODE;
|
---|
6799 | int rc = PGMGstQueryPageFast(pVCpu, GCPtrMem, fQPage, &WalkFast);
|
---|
6800 | if (RT_SUCCESS(rc))
|
---|
6801 | Assert((WalkFast.fInfo & PGM_WALKINFO_SUCCEEDED) && WalkFast.fFailed == PGM_WALKFAIL_SUCCESS);
|
---|
6802 | else
|
---|
6803 | {
|
---|
6804 | LogEx(LOG_GROUP_IEM, ("iemMemMap: GCPtrMem=%RGv - failed to fetch page -> #PF\n", GCPtrMem));
|
---|
6805 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
6806 | if (WalkFast.fFailed & PGM_WALKFAIL_EPT)
|
---|
6807 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &WalkFast, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
6808 | # endif
|
---|
6809 | return iemRaisePageFault(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, rc);
|
---|
6810 | }
|
---|
6811 |
|
---|
6812 | uint32_t fDataBps;
|
---|
6813 | if ( RT_LIKELY(!(pVCpu->iem.s.fExec & IEM_F_PENDING_BRK_DATA))
|
---|
6814 | || RT_LIKELY(!(fDataBps = iemMemCheckDataBreakpoint(pVCpu->CTX_SUFF(pVM), pVCpu, GCPtrMem, cbMem, fAccess))))
|
---|
6815 | {
|
---|
6816 | if ( !(WalkFast.fEffective & PGM_PTATTRS_G_MASK)
|
---|
6817 | || IEM_GET_CPL(pVCpu) != 0) /* optimization: Only use the PTE.G=1 entries in ring-0. */
|
---|
6818 | {
|
---|
6819 | pTlbe--;
|
---|
6820 | pTlbe->uTag = uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevision;
|
---|
6821 | if (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE)
|
---|
6822 | iemTlbLoadedLargePage<false>(&pVCpu->iem.s.DataTlb, uTagNoRev, RT_BOOL(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE));
|
---|
6823 | }
|
---|
6824 | else
|
---|
6825 | {
|
---|
6826 | pVCpu->iem.s.DataTlb.cTlbCoreGlobalLoads++;
|
---|
6827 | pTlbe->uTag = uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevisionGlobal;
|
---|
6828 | if (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE)
|
---|
6829 | iemTlbLoadedLargePage<true>(&pVCpu->iem.s.DataTlb, uTagNoRev, RT_BOOL(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE));
|
---|
6830 | }
|
---|
6831 | }
|
---|
6832 | else
|
---|
6833 | {
|
---|
6834 | /* If we hit a data breakpoint, we use a dummy TLBE to force all accesses
|
---|
6835 | to the page with the data access breakpoint armed on it to pass thru here. */
|
---|
6836 | if (fDataBps > 1)
|
---|
6837 | LogEx(LOG_GROUP_IEM, ("iemMemMap: Data breakpoint: fDataBps=%#x for %RGv LB %zx; fAccess=%#x cs:rip=%04x:%08RX64\n",
|
---|
6838 | fDataBps, GCPtrMem, cbMem, fAccess, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
6839 | pVCpu->cpum.GstCtx.eflags.uBoth |= fDataBps & (CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK);
|
---|
6840 | pTlbe = &pVCpu->iem.s.DataBreakpointTlbe;
|
---|
6841 | pTlbe->uTag = uTagNoRev;
|
---|
6842 | }
|
---|
6843 | pTlbe->fFlagsAndPhysRev = (~WalkFast.fEffective & (X86_PTE_US | X86_PTE_RW | X86_PTE_D | X86_PTE_A) /* skipping NX */)
|
---|
6844 | | (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE);
|
---|
6845 | RTGCPHYS const GCPhysPg = WalkFast.GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
|
---|
6846 | pTlbe->GCPhys = GCPhysPg;
|
---|
6847 | pTlbe->pbMappingR3 = NULL;
|
---|
6848 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_ACCESSED));
|
---|
6849 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_DIRTY) || !(fAccess & IEM_ACCESS_TYPE_WRITE));
|
---|
6850 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_WRITE) || !(fAccess & IEM_ACCESS_TYPE_WRITE));
|
---|
6851 | Assert( !(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_USER)
|
---|
6852 | || IEM_GET_CPL(pVCpu) != 3
|
---|
6853 | || (fAccess & IEM_ACCESS_WHAT_SYS));
|
---|
6854 |
|
---|
6855 | if (pTlbe != &pVCpu->iem.s.DataBreakpointTlbe)
|
---|
6856 | {
|
---|
6857 | if (!((uintptr_t)pTlbe & (sizeof(*pTlbe) * 2 - 1)))
|
---|
6858 | IEMTLBTRACE_LOAD( pVCpu, GCPtrMem, pTlbe->GCPhys, (uint32_t)pTlbe->fFlagsAndPhysRev, true);
|
---|
6859 | else
|
---|
6860 | IEMTLBTRACE_LOAD_GLOBAL(pVCpu, GCPtrMem, pTlbe->GCPhys, (uint32_t)pTlbe->fFlagsAndPhysRev, true);
|
---|
6861 | }
|
---|
6862 |
|
---|
6863 | /* Resolve the physical address. */
|
---|
6864 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_GCPHYS2PTR_MASK));
|
---|
6865 | rc = PGMPhysIemGCPhys2PtrNoLock(pVCpu->CTX_SUFF(pVM), pVCpu, GCPhysPg, &pVCpu->iem.s.DataTlb.uTlbPhysRev,
|
---|
6866 | &pbMem, &pTlbe->fFlagsAndPhysRev);
|
---|
6867 | AssertRCReturn(rc, rc);
|
---|
6868 | # ifdef IN_RING3
|
---|
6869 | pTlbe->pbMappingR3 = pbMem;
|
---|
6870 | # endif
|
---|
6871 | }
|
---|
6872 |
|
---|
6873 | /*
|
---|
6874 | * Check the physical page level access and mapping.
|
---|
6875 | */
|
---|
6876 | if ( !(pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PG_NO_READ))
|
---|
6877 | || !(pTlbe->fFlagsAndPhysRev & ( (fAccess & IEM_ACCESS_TYPE_WRITE ? IEMTLBE_F_PG_NO_WRITE : 0)
|
---|
6878 | | (fAccess & IEM_ACCESS_TYPE_READ ? IEMTLBE_F_PG_NO_READ : 0))) )
|
---|
6879 | { /* probably likely */ }
|
---|
6880 | else
|
---|
6881 | return iemMemBounceBufferMapPhys(pVCpu, iMemMap, ppvMem, pbUnmapInfo, cbMem,
|
---|
6882 | pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), fAccess,
|
---|
6883 | pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PG_UNASSIGNED ? VERR_PGM_PHYS_TLB_UNASSIGNED
|
---|
6884 | : pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PG_NO_READ ? VERR_PGM_PHYS_TLB_CATCH_ALL
|
---|
6885 | : VERR_PGM_PHYS_TLB_CATCH_WRITE);
|
---|
6886 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_NO_MAPPINGR3)); /* ASSUMPTIONS about PGMPhysIemGCPhys2PtrNoLock behaviour. */
|
---|
6887 |
|
---|
6888 | if (pbMem)
|
---|
6889 | {
|
---|
6890 | Assert(!((uintptr_t)pbMem & GUEST_PAGE_OFFSET_MASK));
|
---|
6891 | pbMem = pbMem + (GCPtrMem & GUEST_PAGE_OFFSET_MASK);
|
---|
6892 | fAccess |= IEM_ACCESS_NOT_LOCKED;
|
---|
6893 | }
|
---|
6894 | else
|
---|
6895 | {
|
---|
6896 | Assert(!(fAccess & IEM_ACCESS_NOT_LOCKED));
|
---|
6897 | RTGCPHYS const GCPhysFirst = pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK);
|
---|
6898 | rcStrict = iemMemPageMap(pVCpu, GCPhysFirst, fAccess, (void **)&pbMem, &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6899 | if (rcStrict != VINF_SUCCESS)
|
---|
6900 | return iemMemBounceBufferMapPhys(pVCpu, iMemMap, ppvMem, pbUnmapInfo, cbMem, GCPhysFirst, fAccess, rcStrict);
|
---|
6901 | }
|
---|
6902 |
|
---|
6903 | void * const pvMem = pbMem;
|
---|
6904 |
|
---|
6905 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6906 | Log6(("IEM WR %RGv (%RGp) LB %#zx\n", GCPtrMem, pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), cbMem));
|
---|
6907 | if (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
6908 | Log2(("IEM RD %RGv (%RGp) LB %#zx\n", GCPtrMem, pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), cbMem));
|
---|
6909 |
|
---|
6910 | #else /* !IEM_WITH_DATA_TLB */
|
---|
6911 |
|
---|
6912 | RTGCPHYS GCPhysFirst;
|
---|
6913 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, &GCPhysFirst);
|
---|
6914 | if (rcStrict != VINF_SUCCESS)
|
---|
6915 | return rcStrict;
|
---|
6916 |
|
---|
6917 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6918 | Log6(("IEM WR %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
6919 | if (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
6920 | Log2(("IEM RD %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
6921 |
|
---|
6922 | void *pvMem;
|
---|
6923 | rcStrict = iemMemPageMap(pVCpu, GCPhysFirst, fAccess, &pvMem, &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6924 | if (rcStrict != VINF_SUCCESS)
|
---|
6925 | return iemMemBounceBufferMapPhys(pVCpu, iMemMap, ppvMem, pbUnmapInfo, cbMem, GCPhysFirst, fAccess, rcStrict);
|
---|
6926 |
|
---|
6927 | #endif /* !IEM_WITH_DATA_TLB */
|
---|
6928 |
|
---|
6929 | /*
|
---|
6930 | * Fill in the mapping table entry.
|
---|
6931 | */
|
---|
6932 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pvMem;
|
---|
6933 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess;
|
---|
6934 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
6935 | pVCpu->iem.s.cActiveMappings += 1;
|
---|
6936 |
|
---|
6937 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
6938 | *ppvMem = pvMem;
|
---|
6939 | *pbUnmapInfo = iMemMap | 0x08 | ((fAccess & IEM_ACCESS_TYPE_MASK) << 4);
|
---|
6940 | AssertCompile(IEM_ACCESS_TYPE_MASK <= 0xf);
|
---|
6941 | AssertCompile(RT_ELEMENTS(pVCpu->iem.s.aMemMappings) < 8);
|
---|
6942 |
|
---|
6943 | return VINF_SUCCESS;
|
---|
6944 | }
|
---|
6945 |
|
---|
6946 |
|
---|
6947 | /**
|
---|
6948 | * Commits the guest memory if bounce buffered and unmaps it.
|
---|
6949 | *
|
---|
6950 | * @returns Strict VBox status code.
|
---|
6951 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6952 | * @param bUnmapInfo Unmap info set by iemMemMap.
|
---|
6953 | */
|
---|
6954 | VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT
|
---|
6955 | {
|
---|
6956 | uintptr_t const iMemMap = bUnmapInfo & 0x7;
|
---|
6957 | AssertMsgReturn( (bUnmapInfo & 0x08)
|
---|
6958 | && iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
6959 | && (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_TYPE_MASK | 0xf)) == ((unsigned)bUnmapInfo >> 4),
|
---|
6960 | ("%#x fAccess=%#x\n", bUnmapInfo, pVCpu->iem.s.aMemMappings[iMemMap].fAccess),
|
---|
6961 | VERR_NOT_FOUND);
|
---|
6962 |
|
---|
6963 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
6964 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
6965 | {
|
---|
6966 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6967 | return iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, false /*fPostponeFail*/);
|
---|
6968 | }
|
---|
6969 | /* Otherwise unlock it. */
|
---|
6970 | else if (!(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_NOT_LOCKED))
|
---|
6971 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6972 |
|
---|
6973 | /* Free the entry. */
|
---|
6974 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
6975 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
6976 | pVCpu->iem.s.cActiveMappings--;
|
---|
6977 | return VINF_SUCCESS;
|
---|
6978 | }
|
---|
6979 |
|
---|
6980 |
|
---|
6981 | /**
|
---|
6982 | * Rolls back the guest memory (conceptually only) and unmaps it.
|
---|
6983 | *
|
---|
6984 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6985 | * @param bUnmapInfo Unmap info set by iemMemMap.
|
---|
6986 | */
|
---|
6987 | void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT
|
---|
6988 | {
|
---|
6989 | uintptr_t const iMemMap = bUnmapInfo & 0x7;
|
---|
6990 | AssertMsgReturnVoid( (bUnmapInfo & 0x08)
|
---|
6991 | && iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
6992 | && (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_TYPE_MASK | 0xf))
|
---|
6993 | == ((unsigned)bUnmapInfo >> 4),
|
---|
6994 | ("%#x fAccess=%#x\n", bUnmapInfo, pVCpu->iem.s.aMemMappings[iMemMap].fAccess));
|
---|
6995 |
|
---|
6996 | /* Unlock it if necessary. */
|
---|
6997 | if (!(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_NOT_LOCKED))
|
---|
6998 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
6999 |
|
---|
7000 | /* Free the entry. */
|
---|
7001 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
7002 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
7003 | pVCpu->iem.s.cActiveMappings--;
|
---|
7004 | }
|
---|
7005 |
|
---|
7006 | #ifdef IEM_WITH_SETJMP
|
---|
7007 |
|
---|
7008 | /**
|
---|
7009 | * Maps the specified guest memory for the given kind of access, longjmp on
|
---|
7010 | * error.
|
---|
7011 | *
|
---|
7012 | * This may be using bounce buffering of the memory if it's crossing a page
|
---|
7013 | * boundary or if there is an access handler installed for any of it. Because
|
---|
7014 | * of lock prefix guarantees, we're in for some extra clutter when this
|
---|
7015 | * happens.
|
---|
7016 | *
|
---|
7017 | * This may raise a \#GP, \#SS, \#PF or \#AC.
|
---|
7018 | *
|
---|
7019 | * @returns Pointer to the mapped memory.
|
---|
7020 | *
|
---|
7021 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7022 | * @param bUnmapInfo Where to return unmap info to be passed to
|
---|
7023 | * iemMemCommitAndUnmapJmp, iemMemCommitAndUnmapRwSafeJmp,
|
---|
7024 | * iemMemCommitAndUnmapWoSafeJmp,
|
---|
7025 | * iemMemCommitAndUnmapRoSafeJmp,
|
---|
7026 | * iemMemRollbackAndUnmapWoSafe or iemMemRollbackAndUnmap
|
---|
7027 | * when done.
|
---|
7028 | * @param cbMem The number of bytes to map. This is usually 1,
|
---|
7029 | * 2, 4, 6, 8, 12, 16, 32 or 512. When used by
|
---|
7030 | * string operations it can be up to a page.
|
---|
7031 | * @param iSegReg The index of the segment register to use for
|
---|
7032 | * this access. The base and limits are checked.
|
---|
7033 | * Use UINT8_MAX to indicate that no segmentation
|
---|
7034 | * is required (for IDT, GDT and LDT accesses).
|
---|
7035 | * @param GCPtrMem The address of the guest memory.
|
---|
7036 | * @param fAccess How the memory is being accessed. The
|
---|
7037 | * IEM_ACCESS_TYPE_XXX part is used to figure out how to
|
---|
7038 | * map the memory, while the IEM_ACCESS_WHAT_XXX part is
|
---|
7039 | * used when raising exceptions. The IEM_ACCESS_ATOMIC and
|
---|
7040 | * IEM_ACCESS_PARTIAL_WRITE bits are also allowed to be
|
---|
7041 | * set.
|
---|
7042 | * @param uAlignCtl Alignment control:
|
---|
7043 | * - Bits 15:0 is the alignment mask.
|
---|
7044 | * - Bits 31:16 for flags like IEM_MEMMAP_F_ALIGN_GP,
|
---|
7045 | * IEM_MEMMAP_F_ALIGN_SSE, and
|
---|
7046 | * IEM_MEMMAP_F_ALIGN_GP_OR_AC.
|
---|
7047 | * Pass zero to skip alignment.
|
---|
7048 | * @tparam a_fSafe Whether this is a call from "safe" fallback function in
|
---|
7049 | * IEMAllMemRWTmpl.cpp.h (@c true) or a generic one that
|
---|
7050 | * needs counting as such in the statistics.
|
---|
7051 | */
|
---|
7052 | template<bool a_fSafeCall = false>
|
---|
7053 | static void *iemMemMapJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
|
---|
7054 | uint32_t fAccess, uint32_t uAlignCtl) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7055 | {
|
---|
7056 | STAM_COUNTER_INC(&pVCpu->iem.s.StatMemMapJmp);
|
---|
7057 |
|
---|
7058 | /*
|
---|
7059 | * Check the input, check segment access and adjust address
|
---|
7060 | * with segment base.
|
---|
7061 | */
|
---|
7062 | Assert(cbMem <= 64 || cbMem == 512 || cbMem == 108 || cbMem == 104 || cbMem == 94); /* 512 is the max! */
|
---|
7063 | Assert(!(fAccess & ~(IEM_ACCESS_TYPE_MASK | IEM_ACCESS_WHAT_MASK | IEM_ACCESS_ATOMIC | IEM_ACCESS_PARTIAL_WRITE)));
|
---|
7064 | Assert(pVCpu->iem.s.cActiveMappings < RT_ELEMENTS(pVCpu->iem.s.aMemMappings));
|
---|
7065 |
|
---|
7066 | VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, fAccess, iSegReg, cbMem, &GCPtrMem);
|
---|
7067 | if (rcStrict == VINF_SUCCESS) { /*likely*/ }
|
---|
7068 | else IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
7069 |
|
---|
7070 | /*
|
---|
7071 | * Alignment check.
|
---|
7072 | */
|
---|
7073 | if ( (GCPtrMem & (uAlignCtl & UINT16_MAX)) == 0 )
|
---|
7074 | { /* likelyish */ }
|
---|
7075 | else
|
---|
7076 | {
|
---|
7077 | /* Misaligned access. */
|
---|
7078 | if ((fAccess & IEM_ACCESS_WHAT_MASK) != IEM_ACCESS_WHAT_SYS)
|
---|
7079 | {
|
---|
7080 | if ( !(uAlignCtl & IEM_MEMMAP_F_ALIGN_GP)
|
---|
7081 | || ( (uAlignCtl & IEM_MEMMAP_F_ALIGN_SSE)
|
---|
7082 | && (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_MM)) )
|
---|
7083 | {
|
---|
7084 | AssertCompile(X86_CR0_AM == X86_EFL_AC);
|
---|
7085 |
|
---|
7086 | if (iemMemAreAlignmentChecksEnabled(pVCpu))
|
---|
7087 | iemRaiseAlignmentCheckExceptionJmp(pVCpu);
|
---|
7088 | }
|
---|
7089 | else if ( (uAlignCtl & IEM_MEMMAP_F_ALIGN_GP_OR_AC)
|
---|
7090 | && (GCPtrMem & 3) /* The value 4 matches 10980xe's FXSAVE and helps make bs3-cpu-basic2 work. */
|
---|
7091 | /** @todo may only apply to 2, 4 or 8 byte misalignments depending on the CPU
|
---|
7092 | * implementation. See FXSAVE/FRSTOR/XSAVE/XRSTOR/++. Using 4 for now as
|
---|
7093 | * that's what FXSAVE does on a 10980xe. */
|
---|
7094 | && iemMemAreAlignmentChecksEnabled(pVCpu))
|
---|
7095 | iemRaiseAlignmentCheckExceptionJmp(pVCpu);
|
---|
7096 | else
|
---|
7097 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
7098 | }
|
---|
7099 |
|
---|
7100 | #if (defined(RT_ARCH_AMD64) && defined(RT_OS_LINUX)) || defined(RT_ARCH_ARM64)
|
---|
7101 | /* If the access is atomic there are host platform alignmnet restrictions
|
---|
7102 | we need to conform with. */
|
---|
7103 | if ( !(fAccess & IEM_ACCESS_ATOMIC)
|
---|
7104 | # if defined(RT_ARCH_AMD64)
|
---|
7105 | || (64U - (GCPtrMem & 63U) >= cbMem) /* split-lock detection. ASSUMES 64 byte cache line. */
|
---|
7106 | # elif defined(RT_ARCH_ARM64)
|
---|
7107 | || (16U - (GCPtrMem & 15U) >= cbMem) /* LSE2 allows atomics anywhere within a 16 byte sized & aligned block. */
|
---|
7108 | # else
|
---|
7109 | # error port me
|
---|
7110 | # endif
|
---|
7111 | )
|
---|
7112 | { /* okay */ }
|
---|
7113 | else
|
---|
7114 | {
|
---|
7115 | LogEx(LOG_GROUP_IEM, ("iemMemMap: GCPtrMem=%RGv LB %u - misaligned atomic fallback.\n", GCPtrMem, cbMem));
|
---|
7116 | pVCpu->iem.s.cMisalignedAtomics += 1;
|
---|
7117 | IEM_DO_LONGJMP(pVCpu, VINF_EM_EMULATE_SPLIT_LOCK);
|
---|
7118 | }
|
---|
7119 | #endif
|
---|
7120 | }
|
---|
7121 |
|
---|
7122 | /*
|
---|
7123 | * Figure out which mapping entry to use.
|
---|
7124 | */
|
---|
7125 | unsigned iMemMap = pVCpu->iem.s.iNextMapping;
|
---|
7126 | if ( iMemMap >= RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
7127 | || pVCpu->iem.s.aMemMappings[iMemMap].fAccess != IEM_ACCESS_INVALID)
|
---|
7128 | {
|
---|
7129 | iMemMap = iemMemMapFindFree(pVCpu);
|
---|
7130 | AssertLogRelMsgStmt(iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings),
|
---|
7131 | ("active=%d fAccess[0] = {%#x, %#x, %#x}\n", pVCpu->iem.s.cActiveMappings,
|
---|
7132 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess,
|
---|
7133 | pVCpu->iem.s.aMemMappings[2].fAccess),
|
---|
7134 | IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_9));
|
---|
7135 | }
|
---|
7136 |
|
---|
7137 | /*
|
---|
7138 | * Crossing a page boundary?
|
---|
7139 | */
|
---|
7140 | if ((GCPtrMem & GUEST_PAGE_OFFSET_MASK) + cbMem <= GUEST_PAGE_SIZE)
|
---|
7141 | { /* No (likely). */ }
|
---|
7142 | else
|
---|
7143 | {
|
---|
7144 | void *pvMem;
|
---|
7145 | rcStrict = iemMemBounceBufferMapCrossPage(pVCpu, iMemMap, &pvMem, pbUnmapInfo, cbMem, GCPtrMem, fAccess);
|
---|
7146 | if (rcStrict == VINF_SUCCESS)
|
---|
7147 | return pvMem;
|
---|
7148 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
7149 | }
|
---|
7150 |
|
---|
7151 | #ifdef IEM_WITH_DATA_TLB
|
---|
7152 | Assert(!(fAccess & IEM_ACCESS_TYPE_EXEC));
|
---|
7153 |
|
---|
7154 | /*
|
---|
7155 | * Get the TLB entry for this page checking that it has the A & D bits
|
---|
7156 | * set as per fAccess flags.
|
---|
7157 | */
|
---|
7158 | /** @todo make the caller pass these in with fAccess. */
|
---|
7159 | uint64_t const fNoUser = (fAccess & IEM_ACCESS_WHAT_MASK) != IEM_ACCESS_WHAT_SYS && IEM_GET_CPL(pVCpu) == 3
|
---|
7160 | ? IEMTLBE_F_PT_NO_USER : 0;
|
---|
7161 | uint64_t const fNoWriteNoDirty = fAccess & IEM_ACCESS_TYPE_WRITE
|
---|
7162 | ? IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PT_NO_DIRTY
|
---|
7163 | | ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_WP)
|
---|
7164 | || (IEM_GET_CPL(pVCpu) == 3 && (fAccess & IEM_ACCESS_WHAT_MASK) != IEM_ACCESS_WHAT_SYS)
|
---|
7165 | ? IEMTLBE_F_PT_NO_WRITE : 0)
|
---|
7166 | : 0;
|
---|
7167 | uint64_t const fNoRead = fAccess & IEM_ACCESS_TYPE_READ ? IEMTLBE_F_PG_NO_READ : 0;
|
---|
7168 | uint64_t const uTagNoRev = IEMTLB_CALC_TAG_NO_REV(GCPtrMem);
|
---|
7169 | PIEMTLBENTRY pTlbe = IEMTLB_TAG_TO_EVEN_ENTRY(&pVCpu->iem.s.DataTlb, uTagNoRev);
|
---|
7170 | uint64_t const fTlbeAD = IEMTLBE_F_PT_NO_ACCESSED | (fNoWriteNoDirty & IEMTLBE_F_PT_NO_DIRTY);
|
---|
7171 | if ( ( pTlbe->uTag == (uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevision)
|
---|
7172 | && !(pTlbe->fFlagsAndPhysRev & fTlbeAD) )
|
---|
7173 | || ( (pTlbe = pTlbe + 1)->uTag == (uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevisionGlobal)
|
---|
7174 | && !(pTlbe->fFlagsAndPhysRev & fTlbeAD) ) )
|
---|
7175 | {
|
---|
7176 | # ifdef IEM_WITH_TLB_STATISTICS
|
---|
7177 | if (a_fSafeCall)
|
---|
7178 | pVCpu->iem.s.DataTlb.cTlbSafeHits++;
|
---|
7179 | else
|
---|
7180 | pVCpu->iem.s.DataTlb.cTlbCoreHits++;
|
---|
7181 | # endif
|
---|
7182 | }
|
---|
7183 | else
|
---|
7184 | {
|
---|
7185 | if (a_fSafeCall)
|
---|
7186 | pVCpu->iem.s.DataTlb.cTlbSafeMisses++;
|
---|
7187 | else
|
---|
7188 | pVCpu->iem.s.DataTlb.cTlbCoreMisses++;
|
---|
7189 |
|
---|
7190 | /* This page table walking will set A and D bits as required by the
|
---|
7191 | access while performing the walk.
|
---|
7192 | ASSUMES these are set when the address is translated rather than on commit... */
|
---|
7193 | /** @todo testcase: check when A and D bits are actually set by the CPU. */
|
---|
7194 | PGMPTWALKFAST WalkFast;
|
---|
7195 | AssertCompile(IEM_ACCESS_TYPE_READ == PGMQPAGE_F_READ);
|
---|
7196 | AssertCompile(IEM_ACCESS_TYPE_WRITE == PGMQPAGE_F_WRITE);
|
---|
7197 | AssertCompile(IEM_ACCESS_TYPE_EXEC == PGMQPAGE_F_EXECUTE);
|
---|
7198 | AssertCompile(X86_CR0_WP == PGMQPAGE_F_CR0_WP0);
|
---|
7199 | uint32_t fQPage = (fAccess & (PGMQPAGE_F_READ | IEM_ACCESS_TYPE_WRITE | PGMQPAGE_F_EXECUTE))
|
---|
7200 | | (((uint32_t)pVCpu->cpum.GstCtx.cr0 & X86_CR0_WP) ^ X86_CR0_WP);
|
---|
7201 | if (IEM_GET_CPL(pVCpu) == 3 && !(fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
7202 | fQPage |= PGMQPAGE_F_USER_MODE;
|
---|
7203 | int rc = PGMGstQueryPageFast(pVCpu, GCPtrMem, fQPage, &WalkFast);
|
---|
7204 | if (RT_SUCCESS(rc))
|
---|
7205 | Assert((WalkFast.fInfo & PGM_WALKINFO_SUCCEEDED) && WalkFast.fFailed == PGM_WALKFAIL_SUCCESS);
|
---|
7206 | else
|
---|
7207 | {
|
---|
7208 | LogEx(LOG_GROUP_IEM, ("iemMemMap: GCPtrMem=%RGv - failed to fetch page -> #PF\n", GCPtrMem));
|
---|
7209 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
7210 | if (WalkFast.fFailed & PGM_WALKFAIL_EPT)
|
---|
7211 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR, 0 /* cbInstr */);
|
---|
7212 | # endif
|
---|
7213 | iemRaisePageFaultJmp(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, rc);
|
---|
7214 | }
|
---|
7215 |
|
---|
7216 | uint32_t fDataBps;
|
---|
7217 | if ( RT_LIKELY(!(pVCpu->iem.s.fExec & IEM_F_PENDING_BRK_DATA))
|
---|
7218 | || RT_LIKELY(!(fDataBps = iemMemCheckDataBreakpoint(pVCpu->CTX_SUFF(pVM), pVCpu, GCPtrMem, cbMem, fAccess))))
|
---|
7219 | {
|
---|
7220 | if ( !(WalkFast.fEffective & PGM_PTATTRS_G_MASK)
|
---|
7221 | || IEM_GET_CPL(pVCpu) != 0) /* optimization: Only use the PTE.G=1 entries in ring-0. */
|
---|
7222 | {
|
---|
7223 | pTlbe--;
|
---|
7224 | pTlbe->uTag = uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevision;
|
---|
7225 | if (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE)
|
---|
7226 | iemTlbLoadedLargePage<false>(&pVCpu->iem.s.DataTlb, uTagNoRev, RT_BOOL(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE));
|
---|
7227 | }
|
---|
7228 | else
|
---|
7229 | {
|
---|
7230 | if (a_fSafeCall)
|
---|
7231 | pVCpu->iem.s.DataTlb.cTlbSafeGlobalLoads++;
|
---|
7232 | else
|
---|
7233 | pVCpu->iem.s.DataTlb.cTlbCoreGlobalLoads++;
|
---|
7234 | pTlbe->uTag = uTagNoRev | pVCpu->iem.s.DataTlb.uTlbRevisionGlobal;
|
---|
7235 | if (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE)
|
---|
7236 | iemTlbLoadedLargePage<true>(&pVCpu->iem.s.DataTlb, uTagNoRev, RT_BOOL(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE));
|
---|
7237 | }
|
---|
7238 | }
|
---|
7239 | else
|
---|
7240 | {
|
---|
7241 | /* If we hit a data breakpoint, we use a dummy TLBE to force all accesses
|
---|
7242 | to the page with the data access breakpoint armed on it to pass thru here. */
|
---|
7243 | if (fDataBps > 1)
|
---|
7244 | LogEx(LOG_GROUP_IEM, ("iemMemMapJmp<%d>: Data breakpoint: fDataBps=%#x for %RGv LB %zx; fAccess=%#x cs:rip=%04x:%08RX64\n",
|
---|
7245 | a_fSafeCall, fDataBps, GCPtrMem, cbMem, fAccess, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
7246 | pVCpu->cpum.GstCtx.eflags.uBoth |= fDataBps & (CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK);
|
---|
7247 | pTlbe = &pVCpu->iem.s.DataBreakpointTlbe;
|
---|
7248 | pTlbe->uTag = uTagNoRev;
|
---|
7249 | }
|
---|
7250 | pTlbe->fFlagsAndPhysRev = (~WalkFast.fEffective & (X86_PTE_US | X86_PTE_RW | X86_PTE_D | X86_PTE_A) /* skipping NX */)
|
---|
7251 | | (WalkFast.fInfo & PGM_WALKINFO_BIG_PAGE);
|
---|
7252 | RTGCPHYS const GCPhysPg = WalkFast.GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
|
---|
7253 | pTlbe->GCPhys = GCPhysPg;
|
---|
7254 | pTlbe->pbMappingR3 = NULL;
|
---|
7255 | Assert(!(pTlbe->fFlagsAndPhysRev & ((fNoWriteNoDirty & IEMTLBE_F_PT_NO_DIRTY) | IEMTLBE_F_PT_NO_ACCESSED)));
|
---|
7256 | Assert(!(pTlbe->fFlagsAndPhysRev & fNoWriteNoDirty & IEMTLBE_F_PT_NO_WRITE));
|
---|
7257 | Assert(!(pTlbe->fFlagsAndPhysRev & fNoUser & IEMTLBE_F_PT_NO_USER));
|
---|
7258 |
|
---|
7259 | if (pTlbe != &pVCpu->iem.s.DataBreakpointTlbe)
|
---|
7260 | {
|
---|
7261 | if (!((uintptr_t)pTlbe & (sizeof(*pTlbe) * 2 - 1)))
|
---|
7262 | IEMTLBTRACE_LOAD( pVCpu, GCPtrMem, pTlbe->GCPhys, (uint32_t)pTlbe->fFlagsAndPhysRev, true);
|
---|
7263 | else
|
---|
7264 | IEMTLBTRACE_LOAD_GLOBAL(pVCpu, GCPtrMem, pTlbe->GCPhys, (uint32_t)pTlbe->fFlagsAndPhysRev, true);
|
---|
7265 | }
|
---|
7266 |
|
---|
7267 | /* Resolve the physical address. */
|
---|
7268 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_GCPHYS2PTR_MASK));
|
---|
7269 | uint8_t *pbMemFullLoad = NULL;
|
---|
7270 | rc = PGMPhysIemGCPhys2PtrNoLock(pVCpu->CTX_SUFF(pVM), pVCpu, GCPhysPg, &pVCpu->iem.s.DataTlb.uTlbPhysRev,
|
---|
7271 | &pbMemFullLoad, &pTlbe->fFlagsAndPhysRev);
|
---|
7272 | AssertRCStmt(rc, IEM_DO_LONGJMP(pVCpu, rc));
|
---|
7273 | # ifdef IN_RING3
|
---|
7274 | pTlbe->pbMappingR3 = pbMemFullLoad;
|
---|
7275 | # endif
|
---|
7276 | }
|
---|
7277 |
|
---|
7278 | /*
|
---|
7279 | * Check the flags and physical revision.
|
---|
7280 | * Note! This will revalidate the uTlbPhysRev after a full load. This is
|
---|
7281 | * just to keep the code structure simple (i.e. avoid gotos or similar).
|
---|
7282 | */
|
---|
7283 | uint8_t *pbMem;
|
---|
7284 | if ( (pTlbe->fFlagsAndPhysRev & (IEMTLBE_F_PHYS_REV | IEMTLBE_F_PT_NO_ACCESSED | fNoRead | fNoWriteNoDirty | fNoUser))
|
---|
7285 | == pVCpu->iem.s.DataTlb.uTlbPhysRev)
|
---|
7286 | # ifdef IN_RING3
|
---|
7287 | pbMem = pTlbe->pbMappingR3;
|
---|
7288 | # else
|
---|
7289 | pbMem = NULL;
|
---|
7290 | # endif
|
---|
7291 | else
|
---|
7292 | {
|
---|
7293 | Assert(!(pTlbe->fFlagsAndPhysRev & ((fNoWriteNoDirty & IEMTLBE_F_PT_NO_DIRTY) | IEMTLBE_F_PT_NO_ACCESSED)));
|
---|
7294 |
|
---|
7295 | /*
|
---|
7296 | * Okay, something isn't quite right or needs refreshing.
|
---|
7297 | */
|
---|
7298 | /* Write to read only memory? */
|
---|
7299 | if (pTlbe->fFlagsAndPhysRev & fNoWriteNoDirty & IEMTLBE_F_PT_NO_WRITE)
|
---|
7300 | {
|
---|
7301 | LogEx(LOG_GROUP_IEM, ("iemMemMapJmp: GCPtrMem=%RGv - read-only page -> #PF\n", GCPtrMem));
|
---|
7302 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
7303 | /** @todo TLB: EPT isn't integrated into the TLB stuff, so we don't know whether
|
---|
7304 | * to trigger an \#PG or a VM nested paging exit here yet! */
|
---|
7305 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
7306 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
7307 | # endif
|
---|
7308 | iemRaisePageFaultJmp(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess & ~IEM_ACCESS_TYPE_READ, VERR_ACCESS_DENIED);
|
---|
7309 | }
|
---|
7310 |
|
---|
7311 | /* Kernel memory accessed by userland? */
|
---|
7312 | if (pTlbe->fFlagsAndPhysRev & fNoUser & IEMTLBE_F_PT_NO_USER)
|
---|
7313 | {
|
---|
7314 | LogEx(LOG_GROUP_IEM, ("iemMemMapJmp: GCPtrMem=%RGv - user access to kernel page -> #PF\n", GCPtrMem));
|
---|
7315 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
7316 | /** @todo TLB: See above. */
|
---|
7317 | if (Walk.fFailed & PGM_WALKFAIL_EPT)
|
---|
7318 | IEM_VMX_VMEXIT_EPT_RET(pVCpu, &Walk, fAccess, IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE, 0 /* cbInstr */);
|
---|
7319 | # endif
|
---|
7320 | iemRaisePageFaultJmp(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, VERR_ACCESS_DENIED);
|
---|
7321 | }
|
---|
7322 |
|
---|
7323 | /*
|
---|
7324 | * Check if the physical page info needs updating.
|
---|
7325 | */
|
---|
7326 | if ((pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PHYS_REV) == pVCpu->iem.s.DataTlb.uTlbPhysRev)
|
---|
7327 | # ifdef IN_RING3
|
---|
7328 | pbMem = pTlbe->pbMappingR3;
|
---|
7329 | # else
|
---|
7330 | pbMem = NULL;
|
---|
7331 | # endif
|
---|
7332 | else
|
---|
7333 | {
|
---|
7334 | pTlbe->pbMappingR3 = NULL;
|
---|
7335 | pTlbe->fFlagsAndPhysRev &= ~IEMTLBE_GCPHYS2PTR_MASK;
|
---|
7336 | pbMem = NULL;
|
---|
7337 | int rc = PGMPhysIemGCPhys2PtrNoLock(pVCpu->CTX_SUFF(pVM), pVCpu, pTlbe->GCPhys, &pVCpu->iem.s.DataTlb.uTlbPhysRev,
|
---|
7338 | &pbMem, &pTlbe->fFlagsAndPhysRev);
|
---|
7339 | AssertRCStmt(rc, IEM_DO_LONGJMP(pVCpu, rc));
|
---|
7340 | # ifdef IN_RING3
|
---|
7341 | pTlbe->pbMappingR3 = pbMem;
|
---|
7342 | # endif
|
---|
7343 | }
|
---|
7344 |
|
---|
7345 | /*
|
---|
7346 | * Check the physical page level access and mapping.
|
---|
7347 | */
|
---|
7348 | if (!(pTlbe->fFlagsAndPhysRev & ((fNoWriteNoDirty | fNoRead) & (IEMTLBE_F_PG_NO_WRITE | IEMTLBE_F_PG_NO_READ))))
|
---|
7349 | { /* probably likely */ }
|
---|
7350 | else
|
---|
7351 | {
|
---|
7352 | rcStrict = iemMemBounceBufferMapPhys(pVCpu, iMemMap, (void **)&pbMem, pbUnmapInfo, cbMem,
|
---|
7353 | pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), fAccess,
|
---|
7354 | pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PG_UNASSIGNED ? VERR_PGM_PHYS_TLB_UNASSIGNED
|
---|
7355 | : pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PG_NO_READ ? VERR_PGM_PHYS_TLB_CATCH_ALL
|
---|
7356 | : VERR_PGM_PHYS_TLB_CATCH_WRITE);
|
---|
7357 | if (rcStrict == VINF_SUCCESS)
|
---|
7358 | return pbMem;
|
---|
7359 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
7360 | }
|
---|
7361 | }
|
---|
7362 | Assert(!(pTlbe->fFlagsAndPhysRev & IEMTLBE_F_NO_MAPPINGR3)); /* ASSUMPTIONS about PGMPhysIemGCPhys2PtrNoLock behaviour. */
|
---|
7363 |
|
---|
7364 | if (pbMem)
|
---|
7365 | {
|
---|
7366 | Assert(!((uintptr_t)pbMem & GUEST_PAGE_OFFSET_MASK));
|
---|
7367 | pbMem = pbMem + (GCPtrMem & GUEST_PAGE_OFFSET_MASK);
|
---|
7368 | fAccess |= IEM_ACCESS_NOT_LOCKED;
|
---|
7369 | }
|
---|
7370 | else
|
---|
7371 | {
|
---|
7372 | Assert(!(fAccess & IEM_ACCESS_NOT_LOCKED));
|
---|
7373 | RTGCPHYS const GCPhysFirst = pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK);
|
---|
7374 | rcStrict = iemMemPageMap(pVCpu, GCPhysFirst, fAccess, (void **)&pbMem, &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
7375 | if (rcStrict == VINF_SUCCESS)
|
---|
7376 | {
|
---|
7377 | *pbUnmapInfo = iMemMap | 0x08 | ((fAccess & IEM_ACCESS_TYPE_MASK) << 4);
|
---|
7378 | return pbMem;
|
---|
7379 | }
|
---|
7380 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
7381 | }
|
---|
7382 |
|
---|
7383 | void * const pvMem = pbMem;
|
---|
7384 |
|
---|
7385 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
7386 | Log6(("IEM WR %RGv (%RGp) LB %#zx\n", GCPtrMem, pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), cbMem));
|
---|
7387 | if (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
7388 | Log2(("IEM RD %RGv (%RGp) LB %#zx\n", GCPtrMem, pTlbe->GCPhys | (GCPtrMem & GUEST_PAGE_OFFSET_MASK), cbMem));
|
---|
7389 |
|
---|
7390 | #else /* !IEM_WITH_DATA_TLB */
|
---|
7391 |
|
---|
7392 |
|
---|
7393 | RTGCPHYS GCPhysFirst;
|
---|
7394 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, (uint32_t)cbMem, fAccess, &GCPhysFirst);
|
---|
7395 | if (rcStrict == VINF_SUCCESS) { /*likely*/ }
|
---|
7396 | else IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
7397 |
|
---|
7398 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
7399 | Log6(("IEM WR %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
7400 | if (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
7401 | Log2(("IEM RD %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
7402 |
|
---|
7403 | void *pvMem;
|
---|
7404 | rcStrict = iemMemPageMap(pVCpu, GCPhysFirst, fAccess, &pvMem, &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
7405 | if (rcStrict == VINF_SUCCESS)
|
---|
7406 | { /* likely */ }
|
---|
7407 | else
|
---|
7408 | {
|
---|
7409 | rcStrict = iemMemBounceBufferMapPhys(pVCpu, iMemMap, &pvMem, pbUnmapInfo, cbMem, GCPhysFirst, fAccess, rcStrict);
|
---|
7410 | if (rcStrict == VINF_SUCCESS)
|
---|
7411 | return pvMem;
|
---|
7412 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
7413 | }
|
---|
7414 |
|
---|
7415 | #endif /* !IEM_WITH_DATA_TLB */
|
---|
7416 |
|
---|
7417 | /*
|
---|
7418 | * Fill in the mapping table entry.
|
---|
7419 | */
|
---|
7420 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pvMem;
|
---|
7421 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess;
|
---|
7422 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
7423 | pVCpu->iem.s.cActiveMappings++;
|
---|
7424 |
|
---|
7425 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
7426 |
|
---|
7427 | *pbUnmapInfo = iMemMap | 0x08 | ((fAccess & IEM_ACCESS_TYPE_MASK) << 4);
|
---|
7428 | return pvMem;
|
---|
7429 | }
|
---|
7430 |
|
---|
7431 |
|
---|
7432 | /** @see iemMemMapJmp */
|
---|
7433 | static void *iemMemMapSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
|
---|
7434 | uint32_t fAccess, uint32_t uAlignCtl) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7435 | {
|
---|
7436 | return iemMemMapJmp<true /*a_fSafeCall*/>(pVCpu, pbUnmapInfo, cbMem, iSegReg, GCPtrMem, fAccess, uAlignCtl);
|
---|
7437 | }
|
---|
7438 |
|
---|
7439 |
|
---|
7440 | /**
|
---|
7441 | * Commits the guest memory if bounce buffered and unmaps it, longjmp on error.
|
---|
7442 | *
|
---|
7443 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7444 | * @param pvMem The mapping.
|
---|
7445 | * @param fAccess The kind of access.
|
---|
7446 | */
|
---|
7447 | void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7448 | {
|
---|
7449 | uintptr_t const iMemMap = bUnmapInfo & 0x7;
|
---|
7450 | AssertMsgReturnVoid( (bUnmapInfo & 0x08)
|
---|
7451 | && iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
7452 | && (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_TYPE_MASK | 0xf))
|
---|
7453 | == ((unsigned)bUnmapInfo >> 4),
|
---|
7454 | ("%#x fAccess=%#x\n", bUnmapInfo, pVCpu->iem.s.aMemMappings[iMemMap].fAccess));
|
---|
7455 |
|
---|
7456 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
7457 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
7458 | {
|
---|
7459 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
7460 | {
|
---|
7461 | VBOXSTRICTRC rcStrict = iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, false /*fPostponeFail*/);
|
---|
7462 | if (rcStrict == VINF_SUCCESS)
|
---|
7463 | return;
|
---|
7464 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
7465 | }
|
---|
7466 | }
|
---|
7467 | /* Otherwise unlock it. */
|
---|
7468 | else if (!(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_NOT_LOCKED))
|
---|
7469 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
7470 |
|
---|
7471 | /* Free the entry. */
|
---|
7472 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
7473 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
7474 | pVCpu->iem.s.cActiveMappings--;
|
---|
7475 | }
|
---|
7476 |
|
---|
7477 |
|
---|
7478 | /** Fallback for iemMemCommitAndUnmapRwJmp. */
|
---|
7479 | void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7480 | {
|
---|
7481 | Assert(((bUnmapInfo >> 4) & IEM_ACCESS_TYPE_MASK) == (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE));
|
---|
7482 | iemMemCommitAndUnmapJmp(pVCpu, bUnmapInfo);
|
---|
7483 | }
|
---|
7484 |
|
---|
7485 |
|
---|
7486 | /** Fallback for iemMemCommitAndUnmapAtJmp. */
|
---|
7487 | void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7488 | {
|
---|
7489 | Assert(((bUnmapInfo >> 4) & IEM_ACCESS_TYPE_MASK) == (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE));
|
---|
7490 | iemMemCommitAndUnmapJmp(pVCpu, bUnmapInfo);
|
---|
7491 | }
|
---|
7492 |
|
---|
7493 |
|
---|
7494 | /** Fallback for iemMemCommitAndUnmapWoJmp. */
|
---|
7495 | void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7496 | {
|
---|
7497 | Assert(((bUnmapInfo >> 4) & IEM_ACCESS_TYPE_MASK) == IEM_ACCESS_TYPE_WRITE);
|
---|
7498 | iemMemCommitAndUnmapJmp(pVCpu, bUnmapInfo);
|
---|
7499 | }
|
---|
7500 |
|
---|
7501 |
|
---|
7502 | /** Fallback for iemMemCommitAndUnmapRoJmp. */
|
---|
7503 | void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7504 | {
|
---|
7505 | Assert(((bUnmapInfo >> 4) & IEM_ACCESS_TYPE_MASK) == IEM_ACCESS_TYPE_READ);
|
---|
7506 | iemMemCommitAndUnmapJmp(pVCpu, bUnmapInfo);
|
---|
7507 | }
|
---|
7508 |
|
---|
7509 |
|
---|
7510 | /** Fallback for iemMemRollbackAndUnmapWo. */
|
---|
7511 | void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT
|
---|
7512 | {
|
---|
7513 | Assert(((bUnmapInfo >> 4) & IEM_ACCESS_TYPE_MASK) == IEM_ACCESS_TYPE_WRITE);
|
---|
7514 | iemMemRollbackAndUnmap(pVCpu, bUnmapInfo);
|
---|
7515 | }
|
---|
7516 |
|
---|
7517 | #endif /* IEM_WITH_SETJMP */
|
---|
7518 |
|
---|
7519 | #ifndef IN_RING3
|
---|
7520 | /**
|
---|
7521 | * Commits the guest memory if bounce buffered and unmaps it, if any bounce
|
---|
7522 | * buffer part shows trouble it will be postponed to ring-3 (sets FF and stuff).
|
---|
7523 | *
|
---|
7524 | * Allows the instruction to be completed and retired, while the IEM user will
|
---|
7525 | * return to ring-3 immediately afterwards and do the postponed writes there.
|
---|
7526 | *
|
---|
7527 | * @returns VBox status code (no strict statuses). Caller must check
|
---|
7528 | * VMCPU_FF_IEM before repeating string instructions and similar stuff.
|
---|
7529 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7530 | * @param pvMem The mapping.
|
---|
7531 | * @param fAccess The kind of access.
|
---|
7532 | */
|
---|
7533 | VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT
|
---|
7534 | {
|
---|
7535 | uintptr_t const iMemMap = bUnmapInfo & 0x7;
|
---|
7536 | AssertMsgReturn( (bUnmapInfo & 0x08)
|
---|
7537 | && iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
7538 | && (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_TYPE_MASK | 0xf))
|
---|
7539 | == ((unsigned)bUnmapInfo >> 4),
|
---|
7540 | ("%#x fAccess=%#x\n", bUnmapInfo, pVCpu->iem.s.aMemMappings[iMemMap].fAccess),
|
---|
7541 | VERR_NOT_FOUND);
|
---|
7542 |
|
---|
7543 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
7544 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
7545 | {
|
---|
7546 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
7547 | return iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, true /*fPostponeFail*/);
|
---|
7548 | }
|
---|
7549 | /* Otherwise unlock it. */
|
---|
7550 | else if (!(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_NOT_LOCKED))
|
---|
7551 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
7552 |
|
---|
7553 | /* Free the entry. */
|
---|
7554 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
7555 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
7556 | pVCpu->iem.s.cActiveMappings--;
|
---|
7557 | return VINF_SUCCESS;
|
---|
7558 | }
|
---|
7559 | #endif
|
---|
7560 |
|
---|
7561 |
|
---|
7562 | /**
|
---|
7563 | * Rollbacks mappings, releasing page locks and such.
|
---|
7564 | *
|
---|
7565 | * The caller shall only call this after checking cActiveMappings.
|
---|
7566 | *
|
---|
7567 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7568 | */
|
---|
7569 | void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
7570 | {
|
---|
7571 | Assert(pVCpu->iem.s.cActiveMappings > 0);
|
---|
7572 |
|
---|
7573 | uint32_t iMemMap = RT_ELEMENTS(pVCpu->iem.s.aMemMappings);
|
---|
7574 | while (iMemMap-- > 0)
|
---|
7575 | {
|
---|
7576 | uint32_t const fAccess = pVCpu->iem.s.aMemMappings[iMemMap].fAccess;
|
---|
7577 | if (fAccess != IEM_ACCESS_INVALID)
|
---|
7578 | {
|
---|
7579 | AssertMsg(!(fAccess & ~IEM_ACCESS_VALID_MASK) && fAccess != 0, ("%#x\n", fAccess));
|
---|
7580 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
7581 | if (!(fAccess & (IEM_ACCESS_BOUNCE_BUFFERED | IEM_ACCESS_NOT_LOCKED)))
|
---|
7582 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
7583 | AssertMsg(pVCpu->iem.s.cActiveMappings > 0,
|
---|
7584 | ("iMemMap=%u fAccess=%#x pv=%p GCPhysFirst=%RGp GCPhysSecond=%RGp\n",
|
---|
7585 | iMemMap, fAccess, pVCpu->iem.s.aMemMappings[iMemMap].pv,
|
---|
7586 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond));
|
---|
7587 | pVCpu->iem.s.cActiveMappings--;
|
---|
7588 | }
|
---|
7589 | }
|
---|
7590 | }
|
---|
7591 |
|
---|
7592 |
|
---|
7593 | /*
|
---|
7594 | * Instantiate R/W templates.
|
---|
7595 | */
|
---|
7596 | #define TMPL_MEM_WITH_STACK
|
---|
7597 |
|
---|
7598 | #define TMPL_MEM_TYPE uint8_t
|
---|
7599 | #define TMPL_MEM_FN_SUFF U8
|
---|
7600 | #define TMPL_MEM_FMT_TYPE "%#04x"
|
---|
7601 | #define TMPL_MEM_FMT_DESC "byte"
|
---|
7602 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7603 |
|
---|
7604 | #define TMPL_MEM_TYPE uint16_t
|
---|
7605 | #define TMPL_MEM_FN_SUFF U16
|
---|
7606 | #define TMPL_MEM_FMT_TYPE "%#06x"
|
---|
7607 | #define TMPL_MEM_FMT_DESC "word"
|
---|
7608 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7609 |
|
---|
7610 | #define TMPL_WITH_PUSH_SREG
|
---|
7611 | #define TMPL_MEM_TYPE uint32_t
|
---|
7612 | #define TMPL_MEM_FN_SUFF U32
|
---|
7613 | #define TMPL_MEM_FMT_TYPE "%#010x"
|
---|
7614 | #define TMPL_MEM_FMT_DESC "dword"
|
---|
7615 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7616 | #undef TMPL_WITH_PUSH_SREG
|
---|
7617 |
|
---|
7618 | #define TMPL_MEM_TYPE uint64_t
|
---|
7619 | #define TMPL_MEM_FN_SUFF U64
|
---|
7620 | #define TMPL_MEM_FMT_TYPE "%#018RX64"
|
---|
7621 | #define TMPL_MEM_FMT_DESC "qword"
|
---|
7622 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7623 |
|
---|
7624 | #undef TMPL_MEM_WITH_STACK
|
---|
7625 |
|
---|
7626 | #define TMPL_MEM_TYPE uint32_t
|
---|
7627 | #define TMPL_MEM_TYPE_ALIGN 0
|
---|
7628 | #define TMPL_MEM_FN_SUFF U32NoAc
|
---|
7629 | #define TMPL_MEM_FMT_TYPE "%#010x"
|
---|
7630 | #define TMPL_MEM_FMT_DESC "dword"
|
---|
7631 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7632 | #undef TMPL_WITH_PUSH_SREG
|
---|
7633 |
|
---|
7634 | #define TMPL_MEM_TYPE uint64_t
|
---|
7635 | #define TMPL_MEM_TYPE_ALIGN 0
|
---|
7636 | #define TMPL_MEM_FN_SUFF U64NoAc
|
---|
7637 | #define TMPL_MEM_FMT_TYPE "%#018RX64"
|
---|
7638 | #define TMPL_MEM_FMT_DESC "qword"
|
---|
7639 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7640 |
|
---|
7641 | #define TMPL_MEM_TYPE uint64_t
|
---|
7642 | #define TMPL_MEM_TYPE_ALIGN (sizeof(uint64_t) * 2 - 1)
|
---|
7643 | #define TMPL_MEM_FN_SUFF U64AlignedU128
|
---|
7644 | #define TMPL_MEM_FMT_TYPE "%#018RX64"
|
---|
7645 | #define TMPL_MEM_FMT_DESC "qword"
|
---|
7646 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7647 |
|
---|
7648 | /* See IEMAllMemRWTmplInline.cpp.h */
|
---|
7649 | #define TMPL_MEM_BY_REF
|
---|
7650 |
|
---|
7651 | #define TMPL_MEM_TYPE RTFLOAT80U
|
---|
7652 | #define TMPL_MEM_TYPE_ALIGN (sizeof(uint64_t) - 1)
|
---|
7653 | #define TMPL_MEM_FN_SUFF R80
|
---|
7654 | #define TMPL_MEM_FMT_TYPE "%.10Rhxs"
|
---|
7655 | #define TMPL_MEM_FMT_DESC "tword"
|
---|
7656 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7657 |
|
---|
7658 | #define TMPL_MEM_TYPE RTPBCD80U
|
---|
7659 | #define TMPL_MEM_TYPE_ALIGN (sizeof(uint64_t) - 1) /** @todo testcase: 80-bit BCD alignment */
|
---|
7660 | #define TMPL_MEM_FN_SUFF D80
|
---|
7661 | #define TMPL_MEM_FMT_TYPE "%.10Rhxs"
|
---|
7662 | #define TMPL_MEM_FMT_DESC "tword"
|
---|
7663 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7664 |
|
---|
7665 | #define TMPL_MEM_TYPE RTUINT128U
|
---|
7666 | #define TMPL_MEM_TYPE_ALIGN (sizeof(RTUINT128U) - 1)
|
---|
7667 | #define TMPL_MEM_FN_SUFF U128
|
---|
7668 | #define TMPL_MEM_FMT_TYPE "%.16Rhxs"
|
---|
7669 | #define TMPL_MEM_FMT_DESC "dqword"
|
---|
7670 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7671 |
|
---|
7672 | #define TMPL_MEM_TYPE RTUINT128U
|
---|
7673 | #define TMPL_MEM_TYPE_ALIGN (sizeof(RTUINT128U) - 1)
|
---|
7674 | #define TMPL_MEM_MAP_FLAGS_ADD (IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_SSE)
|
---|
7675 | #define TMPL_MEM_FN_SUFF U128AlignedSse
|
---|
7676 | #define TMPL_MEM_FMT_TYPE "%.16Rhxs"
|
---|
7677 | #define TMPL_MEM_FMT_DESC "dqword"
|
---|
7678 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7679 |
|
---|
7680 | #define TMPL_MEM_TYPE RTUINT128U
|
---|
7681 | #define TMPL_MEM_TYPE_ALIGN 0
|
---|
7682 | #define TMPL_MEM_FN_SUFF U128NoAc
|
---|
7683 | #define TMPL_MEM_FMT_TYPE "%.16Rhxs"
|
---|
7684 | #define TMPL_MEM_FMT_DESC "dqword"
|
---|
7685 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7686 |
|
---|
7687 | #define TMPL_MEM_TYPE RTUINT256U
|
---|
7688 | #define TMPL_MEM_TYPE_ALIGN 0
|
---|
7689 | #define TMPL_MEM_FN_SUFF U256NoAc
|
---|
7690 | #define TMPL_MEM_FMT_TYPE "%.32Rhxs"
|
---|
7691 | #define TMPL_MEM_FMT_DESC "qqword"
|
---|
7692 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7693 |
|
---|
7694 | #define TMPL_MEM_TYPE RTUINT256U
|
---|
7695 | #define TMPL_MEM_TYPE_ALIGN (sizeof(RTUINT256U) - 1)
|
---|
7696 | #define TMPL_MEM_MAP_FLAGS_ADD IEM_MEMMAP_F_ALIGN_GP
|
---|
7697 | #define TMPL_MEM_FN_SUFF U256AlignedAvx
|
---|
7698 | #define TMPL_MEM_FMT_TYPE "%.32Rhxs"
|
---|
7699 | #define TMPL_MEM_FMT_DESC "qqword"
|
---|
7700 | #include "IEMAllMemRWTmpl.cpp.h"
|
---|
7701 |
|
---|
7702 | /**
|
---|
7703 | * Fetches a data dword and zero extends it to a qword.
|
---|
7704 | *
|
---|
7705 | * @returns Strict VBox status code.
|
---|
7706 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7707 | * @param pu64Dst Where to return the qword.
|
---|
7708 | * @param iSegReg The index of the segment register to use for
|
---|
7709 | * this access. The base and limits are checked.
|
---|
7710 | * @param GCPtrMem The address of the guest memory.
|
---|
7711 | */
|
---|
7712 | VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7713 | {
|
---|
7714 | /* The lazy approach for now... */
|
---|
7715 | uint8_t bUnmapInfo;
|
---|
7716 | uint32_t const *pu32Src;
|
---|
7717 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu32Src, &bUnmapInfo, sizeof(*pu32Src), iSegReg, GCPtrMem,
|
---|
7718 | IEM_ACCESS_DATA_R, sizeof(*pu32Src) - 1);
|
---|
7719 | if (rc == VINF_SUCCESS)
|
---|
7720 | {
|
---|
7721 | *pu64Dst = *pu32Src;
|
---|
7722 | rc = iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
|
---|
7723 | Log(("IEM RD dword %d|%RGv: %#010RX64\n", iSegReg, GCPtrMem, *pu64Dst));
|
---|
7724 | }
|
---|
7725 | return rc;
|
---|
7726 | }
|
---|
7727 |
|
---|
7728 |
|
---|
7729 | #ifdef SOME_UNUSED_FUNCTION
|
---|
7730 | /**
|
---|
7731 | * Fetches a data dword and sign extends it to a qword.
|
---|
7732 | *
|
---|
7733 | * @returns Strict VBox status code.
|
---|
7734 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7735 | * @param pu64Dst Where to return the sign extended value.
|
---|
7736 | * @param iSegReg The index of the segment register to use for
|
---|
7737 | * this access. The base and limits are checked.
|
---|
7738 | * @param GCPtrMem The address of the guest memory.
|
---|
7739 | */
|
---|
7740 | VBOXSTRICTRC iemMemFetchDataS32SxU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7741 | {
|
---|
7742 | /* The lazy approach for now... */
|
---|
7743 | uint8_t bUnmapInfo;
|
---|
7744 | int32_t const *pi32Src;
|
---|
7745 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pi32Src, &bUnmapInfo, sizeof(*pi32Src), iSegReg, GCPtrMem,
|
---|
7746 | IEM_ACCESS_DATA_R, sizeof(*pi32Src) - 1);
|
---|
7747 | if (rc == VINF_SUCCESS)
|
---|
7748 | {
|
---|
7749 | *pu64Dst = *pi32Src;
|
---|
7750 | rc = iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
|
---|
7751 | Log(("IEM RD dword %d|%RGv: %#010x\n", iSegReg, GCPtrMem, (uint32_t)*pu64Dst));
|
---|
7752 | }
|
---|
7753 | #ifdef __GNUC__ /* warning: GCC may be a royal pain */
|
---|
7754 | else
|
---|
7755 | *pu64Dst = 0;
|
---|
7756 | #endif
|
---|
7757 | return rc;
|
---|
7758 | }
|
---|
7759 | #endif
|
---|
7760 |
|
---|
7761 |
|
---|
7762 | /**
|
---|
7763 | * Fetches a descriptor register (lgdt, lidt).
|
---|
7764 | *
|
---|
7765 | * @returns Strict VBox status code.
|
---|
7766 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7767 | * @param pcbLimit Where to return the limit.
|
---|
7768 | * @param pGCPtrBase Where to return the base.
|
---|
7769 | * @param iSegReg The index of the segment register to use for
|
---|
7770 | * this access. The base and limits are checked.
|
---|
7771 | * @param GCPtrMem The address of the guest memory.
|
---|
7772 | * @param enmOpSize The effective operand size.
|
---|
7773 | */
|
---|
7774 | VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
|
---|
7775 | RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT
|
---|
7776 | {
|
---|
7777 | /*
|
---|
7778 | * Just like SIDT and SGDT, the LIDT and LGDT instructions are a
|
---|
7779 | * little special:
|
---|
7780 | * - The two reads are done separately.
|
---|
7781 | * - Operand size override works in 16-bit and 32-bit code, but 64-bit.
|
---|
7782 | * - We suspect the 386 to actually commit the limit before the base in
|
---|
7783 | * some cases (search for 386 in bs3CpuBasic2_lidt_lgdt_One). We
|
---|
7784 | * don't try emulate this eccentric behavior, because it's not well
|
---|
7785 | * enough understood and rather hard to trigger.
|
---|
7786 | * - The 486 seems to do a dword limit read when the operand size is 32-bit.
|
---|
7787 | */
|
---|
7788 | VBOXSTRICTRC rcStrict;
|
---|
7789 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
7790 | {
|
---|
7791 | rcStrict = iemMemFetchDataU16(pVCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
7792 | if (rcStrict == VINF_SUCCESS)
|
---|
7793 | rcStrict = iemMemFetchDataU64(pVCpu, pGCPtrBase, iSegReg, GCPtrMem + 2);
|
---|
7794 | }
|
---|
7795 | else
|
---|
7796 | {
|
---|
7797 | uint32_t uTmp = 0; /* (Visual C++ maybe used uninitialized) */
|
---|
7798 | if (enmOpSize == IEMMODE_32BIT)
|
---|
7799 | {
|
---|
7800 | if (IEM_GET_TARGET_CPU(pVCpu) != IEMTARGETCPU_486)
|
---|
7801 | {
|
---|
7802 | rcStrict = iemMemFetchDataU16(pVCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
7803 | if (rcStrict == VINF_SUCCESS)
|
---|
7804 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
7805 | }
|
---|
7806 | else
|
---|
7807 | {
|
---|
7808 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem);
|
---|
7809 | if (rcStrict == VINF_SUCCESS)
|
---|
7810 | {
|
---|
7811 | *pcbLimit = (uint16_t)uTmp;
|
---|
7812 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
7813 | }
|
---|
7814 | }
|
---|
7815 | if (rcStrict == VINF_SUCCESS)
|
---|
7816 | *pGCPtrBase = uTmp;
|
---|
7817 | }
|
---|
7818 | else
|
---|
7819 | {
|
---|
7820 | rcStrict = iemMemFetchDataU16(pVCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
7821 | if (rcStrict == VINF_SUCCESS)
|
---|
7822 | {
|
---|
7823 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
7824 | if (rcStrict == VINF_SUCCESS)
|
---|
7825 | *pGCPtrBase = uTmp & UINT32_C(0x00ffffff);
|
---|
7826 | }
|
---|
7827 | }
|
---|
7828 | }
|
---|
7829 | return rcStrict;
|
---|
7830 | }
|
---|
7831 |
|
---|
7832 |
|
---|
7833 | /**
|
---|
7834 | * Stores a data dqword, SSE aligned.
|
---|
7835 | *
|
---|
7836 | * @returns Strict VBox status code.
|
---|
7837 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7838 | * @param iSegReg The index of the segment register to use for
|
---|
7839 | * this access. The base and limits are checked.
|
---|
7840 | * @param GCPtrMem The address of the guest memory.
|
---|
7841 | * @param u128Value The value to store.
|
---|
7842 | */
|
---|
7843 | VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT
|
---|
7844 | {
|
---|
7845 | /* The lazy approach for now... */
|
---|
7846 | uint8_t bUnmapInfo;
|
---|
7847 | PRTUINT128U pu128Dst;
|
---|
7848 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu128Dst, &bUnmapInfo, sizeof(*pu128Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W,
|
---|
7849 | (sizeof(*pu128Dst) - 1) | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_SSE);
|
---|
7850 | if (rc == VINF_SUCCESS)
|
---|
7851 | {
|
---|
7852 | pu128Dst->au64[0] = u128Value.au64[0];
|
---|
7853 | pu128Dst->au64[1] = u128Value.au64[1];
|
---|
7854 | rc = iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
|
---|
7855 | Log5(("IEM WR dqword %d|%RGv: %.16Rhxs\n", iSegReg, GCPtrMem, pu128Dst));
|
---|
7856 | }
|
---|
7857 | return rc;
|
---|
7858 | }
|
---|
7859 |
|
---|
7860 |
|
---|
7861 | #ifdef IEM_WITH_SETJMP
|
---|
7862 | /**
|
---|
7863 | * Stores a data dqword, SSE aligned.
|
---|
7864 | *
|
---|
7865 | * @returns Strict VBox status code.
|
---|
7866 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7867 | * @param iSegReg The index of the segment register to use for
|
---|
7868 | * this access. The base and limits are checked.
|
---|
7869 | * @param GCPtrMem The address of the guest memory.
|
---|
7870 | * @param u128Value The value to store.
|
---|
7871 | */
|
---|
7872 | void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem,
|
---|
7873 | RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7874 | {
|
---|
7875 | /* The lazy approach for now... */
|
---|
7876 | uint8_t bUnmapInfo;
|
---|
7877 | PRTUINT128U pu128Dst = (PRTUINT128U)iemMemMapJmp(pVCpu, &bUnmapInfo, sizeof(*pu128Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W,
|
---|
7878 | (sizeof(*pu128Dst) - 1) | IEM_MEMMAP_F_ALIGN_GP | IEM_MEMMAP_F_ALIGN_SSE);
|
---|
7879 | pu128Dst->au64[0] = u128Value.au64[0];
|
---|
7880 | pu128Dst->au64[1] = u128Value.au64[1];
|
---|
7881 | iemMemCommitAndUnmapJmp(pVCpu, bUnmapInfo);
|
---|
7882 | Log5(("IEM WR dqword %d|%RGv: %.16Rhxs\n", iSegReg, GCPtrMem, pu128Dst));
|
---|
7883 | }
|
---|
7884 | #endif
|
---|
7885 |
|
---|
7886 |
|
---|
7887 | /**
|
---|
7888 | * Stores a data dqword.
|
---|
7889 | *
|
---|
7890 | * @returns Strict VBox status code.
|
---|
7891 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7892 | * @param iSegReg The index of the segment register to use for
|
---|
7893 | * this access. The base and limits are checked.
|
---|
7894 | * @param GCPtrMem The address of the guest memory.
|
---|
7895 | * @param pu256Value Pointer to the value to store.
|
---|
7896 | */
|
---|
7897 | VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT
|
---|
7898 | {
|
---|
7899 | /* The lazy approach for now... */
|
---|
7900 | uint8_t bUnmapInfo;
|
---|
7901 | PRTUINT256U pu256Dst;
|
---|
7902 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu256Dst, &bUnmapInfo, sizeof(*pu256Dst), iSegReg, GCPtrMem,
|
---|
7903 | IEM_ACCESS_DATA_W, 0 /* NO_AC variant */);
|
---|
7904 | if (rc == VINF_SUCCESS)
|
---|
7905 | {
|
---|
7906 | pu256Dst->au64[0] = pu256Value->au64[0];
|
---|
7907 | pu256Dst->au64[1] = pu256Value->au64[1];
|
---|
7908 | pu256Dst->au64[2] = pu256Value->au64[2];
|
---|
7909 | pu256Dst->au64[3] = pu256Value->au64[3];
|
---|
7910 | rc = iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
|
---|
7911 | Log5(("IEM WR qqword %d|%RGv: %.32Rhxs\n", iSegReg, GCPtrMem, pu256Dst));
|
---|
7912 | }
|
---|
7913 | return rc;
|
---|
7914 | }
|
---|
7915 |
|
---|
7916 |
|
---|
7917 | #ifdef IEM_WITH_SETJMP
|
---|
7918 | /**
|
---|
7919 | * Stores a data dqword, longjmp on error.
|
---|
7920 | *
|
---|
7921 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7922 | * @param iSegReg The index of the segment register to use for
|
---|
7923 | * this access. The base and limits are checked.
|
---|
7924 | * @param GCPtrMem The address of the guest memory.
|
---|
7925 | * @param pu256Value Pointer to the value to store.
|
---|
7926 | */
|
---|
7927 | void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
7928 | {
|
---|
7929 | /* The lazy approach for now... */
|
---|
7930 | uint8_t bUnmapInfo;
|
---|
7931 | PRTUINT256U pu256Dst = (PRTUINT256U)iemMemMapJmp(pVCpu, &bUnmapInfo, sizeof(*pu256Dst), iSegReg, GCPtrMem,
|
---|
7932 | IEM_ACCESS_DATA_W, 0 /* NO_AC variant */);
|
---|
7933 | pu256Dst->au64[0] = pu256Value->au64[0];
|
---|
7934 | pu256Dst->au64[1] = pu256Value->au64[1];
|
---|
7935 | pu256Dst->au64[2] = pu256Value->au64[2];
|
---|
7936 | pu256Dst->au64[3] = pu256Value->au64[3];
|
---|
7937 | iemMemCommitAndUnmapJmp(pVCpu, bUnmapInfo);
|
---|
7938 | Log5(("IEM WR qqword %d|%RGv: %.32Rhxs\n", iSegReg, GCPtrMem, pu256Dst));
|
---|
7939 | }
|
---|
7940 | #endif
|
---|
7941 |
|
---|
7942 |
|
---|
7943 | /**
|
---|
7944 | * Stores a descriptor register (sgdt, sidt).
|
---|
7945 | *
|
---|
7946 | * @returns Strict VBox status code.
|
---|
7947 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7948 | * @param cbLimit The limit.
|
---|
7949 | * @param GCPtrBase The base address.
|
---|
7950 | * @param iSegReg The index of the segment register to use for
|
---|
7951 | * this access. The base and limits are checked.
|
---|
7952 | * @param GCPtrMem The address of the guest memory.
|
---|
7953 | */
|
---|
7954 | VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
7955 | {
|
---|
7956 | /*
|
---|
7957 | * The SIDT and SGDT instructions actually stores the data using two
|
---|
7958 | * independent writes (see bs3CpuBasic2_sidt_sgdt_One). The instructions
|
---|
7959 | * does not respond to opsize prefixes.
|
---|
7960 | */
|
---|
7961 | VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iSegReg, GCPtrMem, cbLimit);
|
---|
7962 | if (rcStrict == VINF_SUCCESS)
|
---|
7963 | {
|
---|
7964 | if (IEM_IS_16BIT_CODE(pVCpu))
|
---|
7965 | rcStrict = iemMemStoreDataU32(pVCpu, iSegReg, GCPtrMem + 2,
|
---|
7966 | IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_286
|
---|
7967 | ? (uint32_t)GCPtrBase | UINT32_C(0xff000000) : (uint32_t)GCPtrBase);
|
---|
7968 | else if (IEM_IS_32BIT_CODE(pVCpu))
|
---|
7969 | rcStrict = iemMemStoreDataU32(pVCpu, iSegReg, GCPtrMem + 2, (uint32_t)GCPtrBase);
|
---|
7970 | else
|
---|
7971 | rcStrict = iemMemStoreDataU64(pVCpu, iSegReg, GCPtrMem + 2, GCPtrBase);
|
---|
7972 | }
|
---|
7973 | return rcStrict;
|
---|
7974 | }
|
---|
7975 |
|
---|
7976 |
|
---|
7977 | /**
|
---|
7978 | * Begin a special stack push (used by interrupt, exceptions and such).
|
---|
7979 | *
|
---|
7980 | * This will raise \#SS or \#PF if appropriate.
|
---|
7981 | *
|
---|
7982 | * @returns Strict VBox status code.
|
---|
7983 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7984 | * @param cbMem The number of bytes to push onto the stack.
|
---|
7985 | * @param cbAlign The alignment mask (7, 3, 1).
|
---|
7986 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
7987 | * As with the other memory functions this could be
|
---|
7988 | * direct access or bounce buffered access, so
|
---|
7989 | * don't commit register until the commit call
|
---|
7990 | * succeeds.
|
---|
7991 | * @param pbUnmapInfo Where to store unmap info for
|
---|
7992 | * iemMemStackPushCommitSpecial.
|
---|
7993 | * @param puNewRsp Where to return the new RSP value. This must be
|
---|
7994 | * passed unchanged to
|
---|
7995 | * iemMemStackPushCommitSpecial().
|
---|
7996 | */
|
---|
7997 | VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
|
---|
7998 | void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT
|
---|
7999 | {
|
---|
8000 | Assert(cbMem < UINT8_MAX);
|
---|
8001 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pVCpu, (uint8_t)cbMem, puNewRsp);
|
---|
8002 | return iemMemMap(pVCpu, ppvMem, pbUnmapInfo, cbMem, X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W, cbAlign);
|
---|
8003 | }
|
---|
8004 |
|
---|
8005 |
|
---|
8006 | /**
|
---|
8007 | * Commits a special stack push (started by iemMemStackPushBeginSpecial).
|
---|
8008 | *
|
---|
8009 | * This will update the rSP.
|
---|
8010 | *
|
---|
8011 | * @returns Strict VBox status code.
|
---|
8012 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8013 | * @param bUnmapInfo Unmap info set by iemMemStackPushBeginSpecial.
|
---|
8014 | * @param uNewRsp The new RSP value returned by
|
---|
8015 | * iemMemStackPushBeginSpecial().
|
---|
8016 | */
|
---|
8017 | VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT
|
---|
8018 | {
|
---|
8019 | VBOXSTRICTRC rcStrict = iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
|
---|
8020 | if (rcStrict == VINF_SUCCESS)
|
---|
8021 | pVCpu->cpum.GstCtx.rsp = uNewRsp;
|
---|
8022 | return rcStrict;
|
---|
8023 | }
|
---|
8024 |
|
---|
8025 |
|
---|
8026 | /**
|
---|
8027 | * Begin a special stack pop (used by iret, retf and such).
|
---|
8028 | *
|
---|
8029 | * This will raise \#SS or \#PF if appropriate.
|
---|
8030 | *
|
---|
8031 | * @returns Strict VBox status code.
|
---|
8032 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8033 | * @param cbMem The number of bytes to pop from the stack.
|
---|
8034 | * @param cbAlign The alignment mask (7, 3, 1).
|
---|
8035 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
8036 | * @param pbUnmapInfo Where to store unmap info for
|
---|
8037 | * iemMemStackPopDoneSpecial.
|
---|
8038 | * @param puNewRsp Where to return the new RSP value. This must be
|
---|
8039 | * assigned to CPUMCTX::rsp manually some time
|
---|
8040 | * after iemMemStackPopDoneSpecial() has been
|
---|
8041 | * called.
|
---|
8042 | */
|
---|
8043 | VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
|
---|
8044 | void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT
|
---|
8045 | {
|
---|
8046 | Assert(cbMem < UINT8_MAX);
|
---|
8047 | RTGCPTR GCPtrTop = iemRegGetRspForPop(pVCpu, (uint8_t)cbMem, puNewRsp);
|
---|
8048 | return iemMemMap(pVCpu, (void **)ppvMem, pbUnmapInfo, cbMem, X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R, cbAlign);
|
---|
8049 | }
|
---|
8050 |
|
---|
8051 |
|
---|
8052 | /**
|
---|
8053 | * Continue a special stack pop (used by iret and retf), for the purpose of
|
---|
8054 | * retrieving a new stack pointer.
|
---|
8055 | *
|
---|
8056 | * This will raise \#SS or \#PF if appropriate.
|
---|
8057 | *
|
---|
8058 | * @returns Strict VBox status code.
|
---|
8059 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8060 | * @param off Offset from the top of the stack. This is zero
|
---|
8061 | * except in the retf case.
|
---|
8062 | * @param cbMem The number of bytes to pop from the stack.
|
---|
8063 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
8064 | * @param pbUnmapInfo Where to store unmap info for
|
---|
8065 | * iemMemStackPopDoneSpecial.
|
---|
8066 | * @param uCurNewRsp The current uncommitted RSP value. (No need to
|
---|
8067 | * return this because all use of this function is
|
---|
8068 | * to retrieve a new value and anything we return
|
---|
8069 | * here would be discarded.)
|
---|
8070 | */
|
---|
8071 | VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
|
---|
8072 | void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT
|
---|
8073 | {
|
---|
8074 | Assert(cbMem < UINT8_MAX);
|
---|
8075 |
|
---|
8076 | /* The essense of iemRegGetRspForPopEx and friends: */ /** @todo put this into a inlined function? */
|
---|
8077 | RTGCPTR GCPtrTop;
|
---|
8078 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
8079 | GCPtrTop = uCurNewRsp;
|
---|
8080 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
8081 | GCPtrTop = (uint32_t)uCurNewRsp;
|
---|
8082 | else
|
---|
8083 | GCPtrTop = (uint16_t)uCurNewRsp;
|
---|
8084 |
|
---|
8085 | return iemMemMap(pVCpu, (void **)ppvMem, pbUnmapInfo, cbMem, X86_SREG_SS, GCPtrTop + off, IEM_ACCESS_STACK_R,
|
---|
8086 | 0 /* checked in iemMemStackPopBeginSpecial */);
|
---|
8087 | }
|
---|
8088 |
|
---|
8089 |
|
---|
8090 | /**
|
---|
8091 | * Done with a special stack pop (started by iemMemStackPopBeginSpecial or
|
---|
8092 | * iemMemStackPopContinueSpecial).
|
---|
8093 | *
|
---|
8094 | * The caller will manually commit the rSP.
|
---|
8095 | *
|
---|
8096 | * @returns Strict VBox status code.
|
---|
8097 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8098 | * @param bUnmapInfo Unmap information returned by
|
---|
8099 | * iemMemStackPopBeginSpecial() or
|
---|
8100 | * iemMemStackPopContinueSpecial().
|
---|
8101 | */
|
---|
8102 | VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT
|
---|
8103 | {
|
---|
8104 | return iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
|
---|
8105 | }
|
---|
8106 |
|
---|
8107 |
|
---|
8108 | /**
|
---|
8109 | * Fetches a system table byte.
|
---|
8110 | *
|
---|
8111 | * @returns Strict VBox status code.
|
---|
8112 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8113 | * @param pbDst Where to return the byte.
|
---|
8114 | * @param iSegReg The index of the segment register to use for
|
---|
8115 | * this access. The base and limits are checked.
|
---|
8116 | * @param GCPtrMem The address of the guest memory.
|
---|
8117 | */
|
---|
8118 | VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pbDst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
8119 | {
|
---|
8120 | /* The lazy approach for now... */
|
---|
8121 | uint8_t bUnmapInfo;
|
---|
8122 | uint8_t const *pbSrc;
|
---|
8123 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pbSrc, &bUnmapInfo, sizeof(*pbSrc), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R, 0);
|
---|
8124 | if (rc == VINF_SUCCESS)
|
---|
8125 | {
|
---|
8126 | *pbDst = *pbSrc;
|
---|
8127 | rc = iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
|
---|
8128 | }
|
---|
8129 | return rc;
|
---|
8130 | }
|
---|
8131 |
|
---|
8132 |
|
---|
8133 | /**
|
---|
8134 | * Fetches a system table word.
|
---|
8135 | *
|
---|
8136 | * @returns Strict VBox status code.
|
---|
8137 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8138 | * @param pu16Dst Where to return the word.
|
---|
8139 | * @param iSegReg The index of the segment register to use for
|
---|
8140 | * this access. The base and limits are checked.
|
---|
8141 | * @param GCPtrMem The address of the guest memory.
|
---|
8142 | */
|
---|
8143 | VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
8144 | {
|
---|
8145 | /* The lazy approach for now... */
|
---|
8146 | uint8_t bUnmapInfo;
|
---|
8147 | uint16_t const *pu16Src;
|
---|
8148 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu16Src, &bUnmapInfo, sizeof(*pu16Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R, 0);
|
---|
8149 | if (rc == VINF_SUCCESS)
|
---|
8150 | {
|
---|
8151 | *pu16Dst = *pu16Src;
|
---|
8152 | rc = iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
|
---|
8153 | }
|
---|
8154 | return rc;
|
---|
8155 | }
|
---|
8156 |
|
---|
8157 |
|
---|
8158 | /**
|
---|
8159 | * Fetches a system table dword.
|
---|
8160 | *
|
---|
8161 | * @returns Strict VBox status code.
|
---|
8162 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8163 | * @param pu32Dst Where to return the dword.
|
---|
8164 | * @param iSegReg The index of the segment register to use for
|
---|
8165 | * this access. The base and limits are checked.
|
---|
8166 | * @param GCPtrMem The address of the guest memory.
|
---|
8167 | */
|
---|
8168 | VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
8169 | {
|
---|
8170 | /* The lazy approach for now... */
|
---|
8171 | uint8_t bUnmapInfo;
|
---|
8172 | uint32_t const *pu32Src;
|
---|
8173 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu32Src, &bUnmapInfo, sizeof(*pu32Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R, 0);
|
---|
8174 | if (rc == VINF_SUCCESS)
|
---|
8175 | {
|
---|
8176 | *pu32Dst = *pu32Src;
|
---|
8177 | rc = iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
|
---|
8178 | }
|
---|
8179 | return rc;
|
---|
8180 | }
|
---|
8181 |
|
---|
8182 |
|
---|
8183 | /**
|
---|
8184 | * Fetches a system table qword.
|
---|
8185 | *
|
---|
8186 | * @returns Strict VBox status code.
|
---|
8187 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8188 | * @param pu64Dst Where to return the qword.
|
---|
8189 | * @param iSegReg The index of the segment register to use for
|
---|
8190 | * this access. The base and limits are checked.
|
---|
8191 | * @param GCPtrMem The address of the guest memory.
|
---|
8192 | */
|
---|
8193 | VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT
|
---|
8194 | {
|
---|
8195 | /* The lazy approach for now... */
|
---|
8196 | uint8_t bUnmapInfo;
|
---|
8197 | uint64_t const *pu64Src;
|
---|
8198 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu64Src, &bUnmapInfo, sizeof(*pu64Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R, 0);
|
---|
8199 | if (rc == VINF_SUCCESS)
|
---|
8200 | {
|
---|
8201 | *pu64Dst = *pu64Src;
|
---|
8202 | rc = iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
|
---|
8203 | }
|
---|
8204 | return rc;
|
---|
8205 | }
|
---|
8206 |
|
---|
8207 |
|
---|
8208 | /**
|
---|
8209 | * Fetches a descriptor table entry with caller specified error code.
|
---|
8210 | *
|
---|
8211 | * @returns Strict VBox status code.
|
---|
8212 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8213 | * @param pDesc Where to return the descriptor table entry.
|
---|
8214 | * @param uSel The selector which table entry to fetch.
|
---|
8215 | * @param uXcpt The exception to raise on table lookup error.
|
---|
8216 | * @param uErrorCode The error code associated with the exception.
|
---|
8217 | */
|
---|
8218 | static VBOXSTRICTRC iemMemFetchSelDescWithErr(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel,
|
---|
8219 | uint8_t uXcpt, uint16_t uErrorCode) RT_NOEXCEPT
|
---|
8220 | {
|
---|
8221 | AssertPtr(pDesc);
|
---|
8222 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
|
---|
8223 |
|
---|
8224 | /** @todo did the 286 require all 8 bytes to be accessible? */
|
---|
8225 | /*
|
---|
8226 | * Get the selector table base and check bounds.
|
---|
8227 | */
|
---|
8228 | RTGCPTR GCPtrBase;
|
---|
8229 | if (uSel & X86_SEL_LDT)
|
---|
8230 | {
|
---|
8231 | if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
|
---|
8232 | || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
|
---|
8233 | {
|
---|
8234 | LogEx(LOG_GROUP_IEM, ("iemMemFetchSelDesc: LDT selector %#x is out of bounds (%3x) or ldtr is NP (%#x)\n",
|
---|
8235 | uSel, pVCpu->cpum.GstCtx.ldtr.u32Limit, pVCpu->cpum.GstCtx.ldtr.Sel));
|
---|
8236 | return iemRaiseXcptOrInt(pVCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
8237 | uErrorCode, 0);
|
---|
8238 | }
|
---|
8239 |
|
---|
8240 | Assert(pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present);
|
---|
8241 | GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
|
---|
8242 | }
|
---|
8243 | else
|
---|
8244 | {
|
---|
8245 | if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
|
---|
8246 | {
|
---|
8247 | LogEx(LOG_GROUP_IEM, ("iemMemFetchSelDesc: GDT selector %#x is out of bounds (%3x)\n", uSel, pVCpu->cpum.GstCtx.gdtr.cbGdt));
|
---|
8248 | return iemRaiseXcptOrInt(pVCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
8249 | uErrorCode, 0);
|
---|
8250 | }
|
---|
8251 | GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
|
---|
8252 | }
|
---|
8253 |
|
---|
8254 | /*
|
---|
8255 | * Read the legacy descriptor and maybe the long mode extensions if
|
---|
8256 | * required.
|
---|
8257 | */
|
---|
8258 | VBOXSTRICTRC rcStrict;
|
---|
8259 | if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_286)
|
---|
8260 | rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
|
---|
8261 | else
|
---|
8262 | {
|
---|
8263 | rcStrict = iemMemFetchSysU16(pVCpu, &pDesc->Legacy.au16[0], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 0);
|
---|
8264 | if (rcStrict == VINF_SUCCESS)
|
---|
8265 | rcStrict = iemMemFetchSysU16(pVCpu, &pDesc->Legacy.au16[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 2);
|
---|
8266 | if (rcStrict == VINF_SUCCESS)
|
---|
8267 | rcStrict = iemMemFetchSysU16(pVCpu, &pDesc->Legacy.au16[2], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 4);
|
---|
8268 | if (rcStrict == VINF_SUCCESS)
|
---|
8269 | pDesc->Legacy.au16[3] = 0;
|
---|
8270 | else
|
---|
8271 | return rcStrict;
|
---|
8272 | }
|
---|
8273 |
|
---|
8274 | if (rcStrict == VINF_SUCCESS)
|
---|
8275 | {
|
---|
8276 | if ( !IEM_IS_LONG_MODE(pVCpu)
|
---|
8277 | || pDesc->Legacy.Gen.u1DescType)
|
---|
8278 | pDesc->Long.au64[1] = 0;
|
---|
8279 | else if ( (uint32_t)(uSel | X86_SEL_RPL_LDT) + 8
|
---|
8280 | <= (uSel & X86_SEL_LDT ? pVCpu->cpum.GstCtx.ldtr.u32Limit : pVCpu->cpum.GstCtx.gdtr.cbGdt))
|
---|
8281 | rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel | X86_SEL_RPL_LDT) + 1);
|
---|
8282 | else
|
---|
8283 | {
|
---|
8284 | LogEx(LOG_GROUP_IEM,("iemMemFetchSelDesc: system selector %#x is out of bounds\n", uSel));
|
---|
8285 | /** @todo is this the right exception? */
|
---|
8286 | return iemRaiseXcptOrInt(pVCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErrorCode, 0);
|
---|
8287 | }
|
---|
8288 | }
|
---|
8289 | return rcStrict;
|
---|
8290 | }
|
---|
8291 |
|
---|
8292 |
|
---|
8293 | /**
|
---|
8294 | * Fetches a descriptor table entry.
|
---|
8295 | *
|
---|
8296 | * @returns Strict VBox status code.
|
---|
8297 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8298 | * @param pDesc Where to return the descriptor table entry.
|
---|
8299 | * @param uSel The selector which table entry to fetch.
|
---|
8300 | * @param uXcpt The exception to raise on table lookup error.
|
---|
8301 | */
|
---|
8302 | VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT
|
---|
8303 | {
|
---|
8304 | return iemMemFetchSelDescWithErr(pVCpu, pDesc, uSel, uXcpt, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
8305 | }
|
---|
8306 |
|
---|
8307 |
|
---|
8308 | /**
|
---|
8309 | * Marks the selector descriptor as accessed (only non-system descriptors).
|
---|
8310 | *
|
---|
8311 | * This function ASSUMES that iemMemFetchSelDesc has be called previously and
|
---|
8312 | * will therefore skip the limit checks.
|
---|
8313 | *
|
---|
8314 | * @returns Strict VBox status code.
|
---|
8315 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8316 | * @param uSel The selector.
|
---|
8317 | */
|
---|
8318 | VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT
|
---|
8319 | {
|
---|
8320 | /*
|
---|
8321 | * Get the selector table base and calculate the entry address.
|
---|
8322 | */
|
---|
8323 | RTGCPTR GCPtr = uSel & X86_SEL_LDT
|
---|
8324 | ? pVCpu->cpum.GstCtx.ldtr.u64Base
|
---|
8325 | : pVCpu->cpum.GstCtx.gdtr.pGdt;
|
---|
8326 | GCPtr += uSel & X86_SEL_MASK;
|
---|
8327 |
|
---|
8328 | /*
|
---|
8329 | * ASMAtomicBitSet will assert if the address is misaligned, so do some
|
---|
8330 | * ugly stuff to avoid this. This will make sure it's an atomic access
|
---|
8331 | * as well more or less remove any question about 8-bit or 32-bit accesss.
|
---|
8332 | */
|
---|
8333 | VBOXSTRICTRC rcStrict;
|
---|
8334 | uint8_t bUnmapInfo;
|
---|
8335 | uint32_t volatile *pu32;
|
---|
8336 | if ((GCPtr & 3) == 0)
|
---|
8337 | {
|
---|
8338 | /* The normal case, map the 32-bit bits around the accessed bit (40). */
|
---|
8339 | GCPtr += 2 + 2;
|
---|
8340 | rcStrict = iemMemMap(pVCpu, (void **)&pu32, &bUnmapInfo, 4, UINT8_MAX, GCPtr, IEM_ACCESS_SYS_RW, 0);
|
---|
8341 | if (rcStrict != VINF_SUCCESS)
|
---|
8342 | return rcStrict;
|
---|
8343 | ASMAtomicBitSet(pu32, 8); /* X86_SEL_TYPE_ACCESSED is 1, but it is preceeded by u8BaseHigh1. */
|
---|
8344 | }
|
---|
8345 | else
|
---|
8346 | {
|
---|
8347 | /* The misaligned GDT/LDT case, map the whole thing. */
|
---|
8348 | rcStrict = iemMemMap(pVCpu, (void **)&pu32, &bUnmapInfo, 8, UINT8_MAX, GCPtr, IEM_ACCESS_SYS_RW, 0);
|
---|
8349 | if (rcStrict != VINF_SUCCESS)
|
---|
8350 | return rcStrict;
|
---|
8351 | switch ((uintptr_t)pu32 & 3)
|
---|
8352 | {
|
---|
8353 | case 0: ASMAtomicBitSet(pu32, 40 + 0 - 0); break;
|
---|
8354 | case 1: ASMAtomicBitSet((uint8_t volatile *)pu32 + 3, 40 + 0 - 24); break;
|
---|
8355 | case 2: ASMAtomicBitSet((uint8_t volatile *)pu32 + 2, 40 + 0 - 16); break;
|
---|
8356 | case 3: ASMAtomicBitSet((uint8_t volatile *)pu32 + 1, 40 + 0 - 8); break;
|
---|
8357 | }
|
---|
8358 | }
|
---|
8359 |
|
---|
8360 | return iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
|
---|
8361 | }
|
---|
8362 |
|
---|
8363 |
|
---|
8364 | #undef LOG_GROUP
|
---|
8365 | #define LOG_GROUP LOG_GROUP_IEM
|
---|
8366 |
|
---|
8367 | /** @} */
|
---|
8368 |
|
---|
8369 | /** @name Opcode Helpers.
|
---|
8370 | * @{
|
---|
8371 | */
|
---|
8372 |
|
---|
8373 | /**
|
---|
8374 | * Calculates the effective address of a ModR/M memory operand.
|
---|
8375 | *
|
---|
8376 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
8377 | *
|
---|
8378 | * @return Strict VBox status code.
|
---|
8379 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8380 | * @param bRm The ModRM byte.
|
---|
8381 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
8382 | * following the effective address opcode bytes
|
---|
8383 | * (only for RIP relative addressing).
|
---|
8384 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
8385 | * @param pGCPtrEff Where to return the effective address.
|
---|
8386 | */
|
---|
8387 | VBOXSTRICTRC iemOpHlpCalcRmEffAddr(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset, PRTGCPTR pGCPtrEff) RT_NOEXCEPT
|
---|
8388 | {
|
---|
8389 | Log5(("iemOpHlpCalcRmEffAddr: bRm=%#x\n", bRm));
|
---|
8390 | # define SET_SS_DEF() \
|
---|
8391 | do \
|
---|
8392 | { \
|
---|
8393 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
8394 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
8395 | } while (0)
|
---|
8396 |
|
---|
8397 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
8398 | {
|
---|
8399 | /** @todo Check the effective address size crap! */
|
---|
8400 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
8401 | {
|
---|
8402 | uint16_t u16EffAddr;
|
---|
8403 |
|
---|
8404 | /* Handle the disp16 form with no registers first. */
|
---|
8405 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
8406 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
8407 | else
|
---|
8408 | {
|
---|
8409 | /* Get the displacment. */
|
---|
8410 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8411 | {
|
---|
8412 | case 0: u16EffAddr = 0; break;
|
---|
8413 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
8414 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
8415 | default: AssertFailedReturn(VERR_IEM_IPE_1); /* (caller checked for these) */
|
---|
8416 | }
|
---|
8417 |
|
---|
8418 | /* Add the base and index registers to the disp. */
|
---|
8419 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
8420 | {
|
---|
8421 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
8422 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
8423 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
8424 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
8425 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
8426 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
8427 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
8428 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
8429 | }
|
---|
8430 | }
|
---|
8431 |
|
---|
8432 | *pGCPtrEff = u16EffAddr;
|
---|
8433 | }
|
---|
8434 | else
|
---|
8435 | {
|
---|
8436 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
8437 | uint32_t u32EffAddr;
|
---|
8438 |
|
---|
8439 | /* Handle the disp32 form with no registers first. */
|
---|
8440 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
8441 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
8442 | else
|
---|
8443 | {
|
---|
8444 | /* Get the register (or SIB) value. */
|
---|
8445 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
8446 | {
|
---|
8447 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
8448 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
8449 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
8450 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
8451 | case 4: /* SIB */
|
---|
8452 | {
|
---|
8453 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
8454 |
|
---|
8455 | /* Get the index and scale it. */
|
---|
8456 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
8457 | {
|
---|
8458 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
8459 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
8460 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
8461 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
8462 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
8463 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
8464 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
8465 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
8466 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8467 | }
|
---|
8468 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
8469 |
|
---|
8470 | /* add base */
|
---|
8471 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
8472 | {
|
---|
8473 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
8474 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
8475 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
8476 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
8477 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
8478 | case 5:
|
---|
8479 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
8480 | {
|
---|
8481 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
8482 | SET_SS_DEF();
|
---|
8483 | }
|
---|
8484 | else
|
---|
8485 | {
|
---|
8486 | uint32_t u32Disp;
|
---|
8487 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8488 | u32EffAddr += u32Disp;
|
---|
8489 | }
|
---|
8490 | break;
|
---|
8491 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
8492 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
8493 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8494 | }
|
---|
8495 | break;
|
---|
8496 | }
|
---|
8497 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
8498 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
8499 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
8500 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8501 | }
|
---|
8502 |
|
---|
8503 | /* Get and add the displacement. */
|
---|
8504 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8505 | {
|
---|
8506 | case 0:
|
---|
8507 | break;
|
---|
8508 | case 1:
|
---|
8509 | {
|
---|
8510 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
8511 | u32EffAddr += i8Disp;
|
---|
8512 | break;
|
---|
8513 | }
|
---|
8514 | case 2:
|
---|
8515 | {
|
---|
8516 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8517 | u32EffAddr += u32Disp;
|
---|
8518 | break;
|
---|
8519 | }
|
---|
8520 | default:
|
---|
8521 | AssertFailedReturn(VERR_IEM_IPE_2); /* (caller checked for these) */
|
---|
8522 | }
|
---|
8523 |
|
---|
8524 | }
|
---|
8525 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
8526 | *pGCPtrEff = u32EffAddr;
|
---|
8527 | }
|
---|
8528 | }
|
---|
8529 | else
|
---|
8530 | {
|
---|
8531 | uint64_t u64EffAddr;
|
---|
8532 |
|
---|
8533 | /* Handle the rip+disp32 form with no registers first. */
|
---|
8534 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
8535 | {
|
---|
8536 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
8537 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
8538 | }
|
---|
8539 | else
|
---|
8540 | {
|
---|
8541 | /* Get the register (or SIB) value. */
|
---|
8542 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
8543 | {
|
---|
8544 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
8545 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
8546 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
8547 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
8548 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
8549 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
8550 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
8551 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
8552 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
8553 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
8554 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
8555 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
8556 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
8557 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
8558 | /* SIB */
|
---|
8559 | case 4:
|
---|
8560 | case 12:
|
---|
8561 | {
|
---|
8562 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
8563 |
|
---|
8564 | /* Get the index and scale it. */
|
---|
8565 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
8566 | {
|
---|
8567 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
8568 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
8569 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
8570 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
8571 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
8572 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
8573 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
8574 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
8575 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
8576 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
8577 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
8578 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
8579 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
8580 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
8581 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
8582 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
8583 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8584 | }
|
---|
8585 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
8586 |
|
---|
8587 | /* add base */
|
---|
8588 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
8589 | {
|
---|
8590 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
8591 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
8592 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
8593 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
8594 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
8595 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
8596 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
8597 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
8598 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
8599 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
8600 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
8601 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
8602 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
8603 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
8604 | /* complicated encodings */
|
---|
8605 | case 5:
|
---|
8606 | case 13:
|
---|
8607 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
8608 | {
|
---|
8609 | if (!pVCpu->iem.s.uRexB)
|
---|
8610 | {
|
---|
8611 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
8612 | SET_SS_DEF();
|
---|
8613 | }
|
---|
8614 | else
|
---|
8615 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
8616 | }
|
---|
8617 | else
|
---|
8618 | {
|
---|
8619 | uint32_t u32Disp;
|
---|
8620 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8621 | u64EffAddr += (int32_t)u32Disp;
|
---|
8622 | }
|
---|
8623 | break;
|
---|
8624 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8625 | }
|
---|
8626 | break;
|
---|
8627 | }
|
---|
8628 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8629 | }
|
---|
8630 |
|
---|
8631 | /* Get and add the displacement. */
|
---|
8632 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8633 | {
|
---|
8634 | case 0:
|
---|
8635 | break;
|
---|
8636 | case 1:
|
---|
8637 | {
|
---|
8638 | int8_t i8Disp;
|
---|
8639 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
8640 | u64EffAddr += i8Disp;
|
---|
8641 | break;
|
---|
8642 | }
|
---|
8643 | case 2:
|
---|
8644 | {
|
---|
8645 | uint32_t u32Disp;
|
---|
8646 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8647 | u64EffAddr += (int32_t)u32Disp;
|
---|
8648 | break;
|
---|
8649 | }
|
---|
8650 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* (caller checked for these) */
|
---|
8651 | }
|
---|
8652 |
|
---|
8653 | }
|
---|
8654 |
|
---|
8655 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
8656 | *pGCPtrEff = u64EffAddr;
|
---|
8657 | else
|
---|
8658 | {
|
---|
8659 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
8660 | *pGCPtrEff = u64EffAddr & UINT32_MAX;
|
---|
8661 | }
|
---|
8662 | }
|
---|
8663 |
|
---|
8664 | Log5(("iemOpHlpCalcRmEffAddr: EffAddr=%#010RGv\n", *pGCPtrEff));
|
---|
8665 | return VINF_SUCCESS;
|
---|
8666 | }
|
---|
8667 |
|
---|
8668 |
|
---|
8669 | #ifdef IEM_WITH_SETJMP
|
---|
8670 | /**
|
---|
8671 | * Calculates the effective address of a ModR/M memory operand.
|
---|
8672 | *
|
---|
8673 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
8674 | *
|
---|
8675 | * May longjmp on internal error.
|
---|
8676 | *
|
---|
8677 | * @return The effective address.
|
---|
8678 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8679 | * @param bRm The ModRM byte.
|
---|
8680 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
8681 | * following the effective address opcode bytes
|
---|
8682 | * (only for RIP relative addressing).
|
---|
8683 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
8684 | */
|
---|
8685 | RTGCPTR iemOpHlpCalcRmEffAddrJmp(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
8686 | {
|
---|
8687 | Log5(("iemOpHlpCalcRmEffAddrJmp: bRm=%#x\n", bRm));
|
---|
8688 | # define SET_SS_DEF() \
|
---|
8689 | do \
|
---|
8690 | { \
|
---|
8691 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
8692 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
8693 | } while (0)
|
---|
8694 |
|
---|
8695 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
8696 | {
|
---|
8697 | /** @todo Check the effective address size crap! */
|
---|
8698 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
8699 | {
|
---|
8700 | uint16_t u16EffAddr;
|
---|
8701 |
|
---|
8702 | /* Handle the disp16 form with no registers first. */
|
---|
8703 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
8704 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
8705 | else
|
---|
8706 | {
|
---|
8707 | /* Get the displacment. */
|
---|
8708 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8709 | {
|
---|
8710 | case 0: u16EffAddr = 0; break;
|
---|
8711 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
8712 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
8713 | default: AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_1)); /* (caller checked for these) */
|
---|
8714 | }
|
---|
8715 |
|
---|
8716 | /* Add the base and index registers to the disp. */
|
---|
8717 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
8718 | {
|
---|
8719 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
8720 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
8721 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
8722 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
8723 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
8724 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
8725 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
8726 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
8727 | }
|
---|
8728 | }
|
---|
8729 |
|
---|
8730 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#06RX16\n", u16EffAddr));
|
---|
8731 | return u16EffAddr;
|
---|
8732 | }
|
---|
8733 |
|
---|
8734 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
8735 | uint32_t u32EffAddr;
|
---|
8736 |
|
---|
8737 | /* Handle the disp32 form with no registers first. */
|
---|
8738 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
8739 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
8740 | else
|
---|
8741 | {
|
---|
8742 | /* Get the register (or SIB) value. */
|
---|
8743 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
8744 | {
|
---|
8745 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
8746 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
8747 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
8748 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
8749 | case 4: /* SIB */
|
---|
8750 | {
|
---|
8751 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
8752 |
|
---|
8753 | /* Get the index and scale it. */
|
---|
8754 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
8755 | {
|
---|
8756 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
8757 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
8758 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
8759 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
8760 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
8761 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
8762 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
8763 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
8764 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8765 | }
|
---|
8766 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
8767 |
|
---|
8768 | /* add base */
|
---|
8769 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
8770 | {
|
---|
8771 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
8772 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
8773 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
8774 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
8775 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
8776 | case 5:
|
---|
8777 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
8778 | {
|
---|
8779 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
8780 | SET_SS_DEF();
|
---|
8781 | }
|
---|
8782 | else
|
---|
8783 | {
|
---|
8784 | uint32_t u32Disp;
|
---|
8785 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8786 | u32EffAddr += u32Disp;
|
---|
8787 | }
|
---|
8788 | break;
|
---|
8789 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
8790 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
8791 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8792 | }
|
---|
8793 | break;
|
---|
8794 | }
|
---|
8795 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
8796 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
8797 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
8798 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8799 | }
|
---|
8800 |
|
---|
8801 | /* Get and add the displacement. */
|
---|
8802 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8803 | {
|
---|
8804 | case 0:
|
---|
8805 | break;
|
---|
8806 | case 1:
|
---|
8807 | {
|
---|
8808 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
8809 | u32EffAddr += i8Disp;
|
---|
8810 | break;
|
---|
8811 | }
|
---|
8812 | case 2:
|
---|
8813 | {
|
---|
8814 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8815 | u32EffAddr += u32Disp;
|
---|
8816 | break;
|
---|
8817 | }
|
---|
8818 | default:
|
---|
8819 | AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_2)); /* (caller checked for these) */
|
---|
8820 | }
|
---|
8821 | }
|
---|
8822 |
|
---|
8823 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
8824 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RX32\n", u32EffAddr));
|
---|
8825 | return u32EffAddr;
|
---|
8826 | }
|
---|
8827 |
|
---|
8828 | uint64_t u64EffAddr;
|
---|
8829 |
|
---|
8830 | /* Handle the rip+disp32 form with no registers first. */
|
---|
8831 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
8832 | {
|
---|
8833 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
8834 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
8835 | }
|
---|
8836 | else
|
---|
8837 | {
|
---|
8838 | /* Get the register (or SIB) value. */
|
---|
8839 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
8840 | {
|
---|
8841 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
8842 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
8843 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
8844 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
8845 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
8846 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
8847 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
8848 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
8849 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
8850 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
8851 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
8852 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
8853 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
8854 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
8855 | /* SIB */
|
---|
8856 | case 4:
|
---|
8857 | case 12:
|
---|
8858 | {
|
---|
8859 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
8860 |
|
---|
8861 | /* Get the index and scale it. */
|
---|
8862 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
8863 | {
|
---|
8864 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
8865 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
8866 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
8867 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
8868 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
8869 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
8870 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
8871 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
8872 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
8873 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
8874 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
8875 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
8876 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
8877 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
8878 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
8879 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
8880 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8881 | }
|
---|
8882 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
8883 |
|
---|
8884 | /* add base */
|
---|
8885 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
8886 | {
|
---|
8887 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
8888 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
8889 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
8890 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
8891 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
8892 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
8893 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
8894 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
8895 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
8896 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
8897 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
8898 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
8899 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
8900 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
8901 | /* complicated encodings */
|
---|
8902 | case 5:
|
---|
8903 | case 13:
|
---|
8904 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
8905 | {
|
---|
8906 | if (!pVCpu->iem.s.uRexB)
|
---|
8907 | {
|
---|
8908 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
8909 | SET_SS_DEF();
|
---|
8910 | }
|
---|
8911 | else
|
---|
8912 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
8913 | }
|
---|
8914 | else
|
---|
8915 | {
|
---|
8916 | uint32_t u32Disp;
|
---|
8917 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8918 | u64EffAddr += (int32_t)u32Disp;
|
---|
8919 | }
|
---|
8920 | break;
|
---|
8921 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8922 | }
|
---|
8923 | break;
|
---|
8924 | }
|
---|
8925 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
8926 | }
|
---|
8927 |
|
---|
8928 | /* Get and add the displacement. */
|
---|
8929 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
8930 | {
|
---|
8931 | case 0:
|
---|
8932 | break;
|
---|
8933 | case 1:
|
---|
8934 | {
|
---|
8935 | int8_t i8Disp;
|
---|
8936 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
8937 | u64EffAddr += i8Disp;
|
---|
8938 | break;
|
---|
8939 | }
|
---|
8940 | case 2:
|
---|
8941 | {
|
---|
8942 | uint32_t u32Disp;
|
---|
8943 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
8944 | u64EffAddr += (int32_t)u32Disp;
|
---|
8945 | break;
|
---|
8946 | }
|
---|
8947 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); /* (caller checked for these) */
|
---|
8948 | }
|
---|
8949 |
|
---|
8950 | }
|
---|
8951 |
|
---|
8952 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
8953 | {
|
---|
8954 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv\n", u64EffAddr));
|
---|
8955 | return u64EffAddr;
|
---|
8956 | }
|
---|
8957 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
8958 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv\n", u64EffAddr & UINT32_MAX));
|
---|
8959 | return u64EffAddr & UINT32_MAX;
|
---|
8960 | }
|
---|
8961 | #endif /* IEM_WITH_SETJMP */
|
---|
8962 |
|
---|
8963 |
|
---|
8964 | /**
|
---|
8965 | * Calculates the effective address of a ModR/M memory operand, extended version
|
---|
8966 | * for use in the recompilers.
|
---|
8967 | *
|
---|
8968 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
8969 | *
|
---|
8970 | * @return Strict VBox status code.
|
---|
8971 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8972 | * @param bRm The ModRM byte.
|
---|
8973 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
8974 | * following the effective address opcode bytes
|
---|
8975 | * (only for RIP relative addressing).
|
---|
8976 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
8977 | * @param pGCPtrEff Where to return the effective address.
|
---|
8978 | * @param puInfo Extra info: 32-bit displacement (bits 31:0) and
|
---|
8979 | * SIB byte (bits 39:32).
|
---|
8980 | */
|
---|
8981 | VBOXSTRICTRC iemOpHlpCalcRmEffAddrEx(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset, PRTGCPTR pGCPtrEff, uint64_t *puInfo) RT_NOEXCEPT
|
---|
8982 | {
|
---|
8983 | Log5(("iemOpHlpCalcRmEffAddr: bRm=%#x\n", bRm));
|
---|
8984 | # define SET_SS_DEF() \
|
---|
8985 | do \
|
---|
8986 | { \
|
---|
8987 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
8988 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
8989 | } while (0)
|
---|
8990 |
|
---|
8991 | uint64_t uInfo;
|
---|
8992 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
8993 | {
|
---|
8994 | /** @todo Check the effective address size crap! */
|
---|
8995 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
8996 | {
|
---|
8997 | uint16_t u16EffAddr;
|
---|
8998 |
|
---|
8999 | /* Handle the disp16 form with no registers first. */
|
---|
9000 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
9001 | {
|
---|
9002 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
9003 | uInfo = u16EffAddr;
|
---|
9004 | }
|
---|
9005 | else
|
---|
9006 | {
|
---|
9007 | /* Get the displacment. */
|
---|
9008 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
9009 | {
|
---|
9010 | case 0: u16EffAddr = 0; break;
|
---|
9011 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
9012 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
9013 | default: AssertFailedReturn(VERR_IEM_IPE_1); /* (caller checked for these) */
|
---|
9014 | }
|
---|
9015 | uInfo = u16EffAddr;
|
---|
9016 |
|
---|
9017 | /* Add the base and index registers to the disp. */
|
---|
9018 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
9019 | {
|
---|
9020 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
9021 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
9022 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
9023 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
9024 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
9025 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
9026 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
9027 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
9028 | }
|
---|
9029 | }
|
---|
9030 |
|
---|
9031 | *pGCPtrEff = u16EffAddr;
|
---|
9032 | }
|
---|
9033 | else
|
---|
9034 | {
|
---|
9035 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
9036 | uint32_t u32EffAddr;
|
---|
9037 |
|
---|
9038 | /* Handle the disp32 form with no registers first. */
|
---|
9039 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
9040 | {
|
---|
9041 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
9042 | uInfo = u32EffAddr;
|
---|
9043 | }
|
---|
9044 | else
|
---|
9045 | {
|
---|
9046 | /* Get the register (or SIB) value. */
|
---|
9047 | uInfo = 0;
|
---|
9048 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
9049 | {
|
---|
9050 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
9051 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
9052 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
9053 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
9054 | case 4: /* SIB */
|
---|
9055 | {
|
---|
9056 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
9057 | uInfo = (uint64_t)bSib << 32;
|
---|
9058 |
|
---|
9059 | /* Get the index and scale it. */
|
---|
9060 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
9061 | {
|
---|
9062 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
9063 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
9064 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
9065 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
9066 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
9067 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
9068 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
9069 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
9070 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
9071 | }
|
---|
9072 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
9073 |
|
---|
9074 | /* add base */
|
---|
9075 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
9076 | {
|
---|
9077 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
9078 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
9079 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
9080 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
9081 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
9082 | case 5:
|
---|
9083 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
9084 | {
|
---|
9085 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
9086 | SET_SS_DEF();
|
---|
9087 | }
|
---|
9088 | else
|
---|
9089 | {
|
---|
9090 | uint32_t u32Disp;
|
---|
9091 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
9092 | u32EffAddr += u32Disp;
|
---|
9093 | uInfo |= u32Disp;
|
---|
9094 | }
|
---|
9095 | break;
|
---|
9096 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
9097 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
9098 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
9099 | }
|
---|
9100 | break;
|
---|
9101 | }
|
---|
9102 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
9103 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
9104 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
9105 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
9106 | }
|
---|
9107 |
|
---|
9108 | /* Get and add the displacement. */
|
---|
9109 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
9110 | {
|
---|
9111 | case 0:
|
---|
9112 | break;
|
---|
9113 | case 1:
|
---|
9114 | {
|
---|
9115 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
9116 | u32EffAddr += i8Disp;
|
---|
9117 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
9118 | break;
|
---|
9119 | }
|
---|
9120 | case 2:
|
---|
9121 | {
|
---|
9122 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
9123 | u32EffAddr += u32Disp;
|
---|
9124 | uInfo |= (uint32_t)u32Disp;
|
---|
9125 | break;
|
---|
9126 | }
|
---|
9127 | default:
|
---|
9128 | AssertFailedReturn(VERR_IEM_IPE_2); /* (caller checked for these) */
|
---|
9129 | }
|
---|
9130 |
|
---|
9131 | }
|
---|
9132 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
9133 | *pGCPtrEff = u32EffAddr;
|
---|
9134 | }
|
---|
9135 | }
|
---|
9136 | else
|
---|
9137 | {
|
---|
9138 | uint64_t u64EffAddr;
|
---|
9139 |
|
---|
9140 | /* Handle the rip+disp32 form with no registers first. */
|
---|
9141 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
9142 | {
|
---|
9143 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
9144 | uInfo = (uint32_t)u64EffAddr;
|
---|
9145 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
9146 | }
|
---|
9147 | else
|
---|
9148 | {
|
---|
9149 | /* Get the register (or SIB) value. */
|
---|
9150 | uInfo = 0;
|
---|
9151 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
9152 | {
|
---|
9153 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
9154 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
9155 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
9156 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
9157 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
9158 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
9159 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
9160 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
9161 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
9162 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
9163 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
9164 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
9165 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
9166 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
9167 | /* SIB */
|
---|
9168 | case 4:
|
---|
9169 | case 12:
|
---|
9170 | {
|
---|
9171 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
9172 | uInfo = (uint64_t)bSib << 32;
|
---|
9173 |
|
---|
9174 | /* Get the index and scale it. */
|
---|
9175 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
9176 | {
|
---|
9177 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
9178 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
9179 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
9180 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
9181 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
9182 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
9183 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
9184 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
9185 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
9186 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
9187 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
9188 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
9189 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
9190 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
9191 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
9192 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
9193 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
9194 | }
|
---|
9195 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
9196 |
|
---|
9197 | /* add base */
|
---|
9198 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
9199 | {
|
---|
9200 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
9201 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
9202 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
9203 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
9204 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
9205 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
9206 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
9207 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
9208 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
9209 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
9210 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
9211 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
9212 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
9213 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
9214 | /* complicated encodings */
|
---|
9215 | case 5:
|
---|
9216 | case 13:
|
---|
9217 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
9218 | {
|
---|
9219 | if (!pVCpu->iem.s.uRexB)
|
---|
9220 | {
|
---|
9221 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
9222 | SET_SS_DEF();
|
---|
9223 | }
|
---|
9224 | else
|
---|
9225 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
9226 | }
|
---|
9227 | else
|
---|
9228 | {
|
---|
9229 | uint32_t u32Disp;
|
---|
9230 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
9231 | u64EffAddr += (int32_t)u32Disp;
|
---|
9232 | uInfo |= u32Disp;
|
---|
9233 | }
|
---|
9234 | break;
|
---|
9235 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
9236 | }
|
---|
9237 | break;
|
---|
9238 | }
|
---|
9239 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
9240 | }
|
---|
9241 |
|
---|
9242 | /* Get and add the displacement. */
|
---|
9243 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
9244 | {
|
---|
9245 | case 0:
|
---|
9246 | break;
|
---|
9247 | case 1:
|
---|
9248 | {
|
---|
9249 | int8_t i8Disp;
|
---|
9250 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
9251 | u64EffAddr += i8Disp;
|
---|
9252 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
9253 | break;
|
---|
9254 | }
|
---|
9255 | case 2:
|
---|
9256 | {
|
---|
9257 | uint32_t u32Disp;
|
---|
9258 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
9259 | u64EffAddr += (int32_t)u32Disp;
|
---|
9260 | uInfo |= u32Disp;
|
---|
9261 | break;
|
---|
9262 | }
|
---|
9263 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* (caller checked for these) */
|
---|
9264 | }
|
---|
9265 |
|
---|
9266 | }
|
---|
9267 |
|
---|
9268 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
9269 | *pGCPtrEff = u64EffAddr;
|
---|
9270 | else
|
---|
9271 | {
|
---|
9272 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
9273 | *pGCPtrEff = u64EffAddr & UINT32_MAX;
|
---|
9274 | }
|
---|
9275 | }
|
---|
9276 | *puInfo = uInfo;
|
---|
9277 |
|
---|
9278 | Log5(("iemOpHlpCalcRmEffAddrEx: EffAddr=%#010RGv uInfo=%RX64\n", *pGCPtrEff, uInfo));
|
---|
9279 | return VINF_SUCCESS;
|
---|
9280 | }
|
---|
9281 |
|
---|
9282 | /** @} */
|
---|
9283 |
|
---|
9284 |
|
---|
9285 | #ifdef LOG_ENABLED
|
---|
9286 | /**
|
---|
9287 | * Logs the current instruction.
|
---|
9288 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
9289 | * @param fSameCtx Set if we have the same context information as the VMM,
|
---|
9290 | * clear if we may have already executed an instruction in
|
---|
9291 | * our debug context. When clear, we assume IEMCPU holds
|
---|
9292 | * valid CPU mode info.
|
---|
9293 | *
|
---|
9294 | * The @a fSameCtx parameter is now misleading and obsolete.
|
---|
9295 | * @param pszFunction The IEM function doing the execution.
|
---|
9296 | */
|
---|
9297 | static void iemLogCurInstr(PVMCPUCC pVCpu, bool fSameCtx, const char *pszFunction) RT_NOEXCEPT
|
---|
9298 | {
|
---|
9299 | # ifdef IN_RING3
|
---|
9300 | if (LogIs2Enabled())
|
---|
9301 | {
|
---|
9302 | char szInstr[256];
|
---|
9303 | uint32_t cbInstr = 0;
|
---|
9304 | if (fSameCtx)
|
---|
9305 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, 0, 0,
|
---|
9306 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
9307 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
9308 | else
|
---|
9309 | {
|
---|
9310 | uint32_t fFlags = 0;
|
---|
9311 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
9312 | {
|
---|
9313 | case IEMMODE_64BIT: fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
|
---|
9314 | case IEMMODE_32BIT: fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
|
---|
9315 | case IEMMODE_16BIT:
|
---|
9316 | if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) || pVCpu->cpum.GstCtx.eflags.Bits.u1VM)
|
---|
9317 | fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
|
---|
9318 | else
|
---|
9319 | fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE;
|
---|
9320 | break;
|
---|
9321 | }
|
---|
9322 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fFlags,
|
---|
9323 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
9324 | }
|
---|
9325 |
|
---|
9326 | PCX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
9327 | Log2(("**** %s fExec=%x\n"
|
---|
9328 | " eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
|
---|
9329 | " eip=%08x esp=%08x ebp=%08x iopl=%d tr=%04x\n"
|
---|
9330 | " cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x efl=%08x\n"
|
---|
9331 | " fsw=%04x fcw=%04x ftw=%02x mxcsr=%04x/%04x\n"
|
---|
9332 | " %s\n"
|
---|
9333 | , pszFunction, pVCpu->iem.s.fExec,
|
---|
9334 | pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ebx, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.esi, pVCpu->cpum.GstCtx.edi,
|
---|
9335 | pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.esp, pVCpu->cpum.GstCtx.ebp, pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL, pVCpu->cpum.GstCtx.tr.Sel,
|
---|
9336 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.es.Sel,
|
---|
9337 | pVCpu->cpum.GstCtx.fs.Sel, pVCpu->cpum.GstCtx.gs.Sel, pVCpu->cpum.GstCtx.eflags.u,
|
---|
9338 | pFpuCtx->FSW, pFpuCtx->FCW, pFpuCtx->FTW, pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK,
|
---|
9339 | szInstr));
|
---|
9340 |
|
---|
9341 | /* This stuff sucks atm. as it fills the log with MSRs. */
|
---|
9342 | //if (LogIs3Enabled())
|
---|
9343 | // DBGFR3InfoEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, "cpumguest", "verbose", NULL);
|
---|
9344 | }
|
---|
9345 | else
|
---|
9346 | # endif
|
---|
9347 | LogFlow(("%s: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x\n", pszFunction, pVCpu->cpum.GstCtx.cs.Sel,
|
---|
9348 | pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u));
|
---|
9349 | RT_NOREF_PV(pVCpu); RT_NOREF_PV(fSameCtx);
|
---|
9350 | }
|
---|
9351 | #endif /* LOG_ENABLED */
|
---|
9352 |
|
---|
9353 |
|
---|
9354 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9355 | /**
|
---|
9356 | * Deals with VMCPU_FF_VMX_APIC_WRITE, VMCPU_FF_VMX_MTF, VMCPU_FF_VMX_NMI_WINDOW,
|
---|
9357 | * VMCPU_FF_VMX_PREEMPT_TIMER and VMCPU_FF_VMX_INT_WINDOW.
|
---|
9358 | *
|
---|
9359 | * @returns Modified rcStrict.
|
---|
9360 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9361 | * @param rcStrict The instruction execution status.
|
---|
9362 | */
|
---|
9363 | static VBOXSTRICTRC iemHandleNestedInstructionBoundaryFFs(PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict) RT_NOEXCEPT
|
---|
9364 | {
|
---|
9365 | Assert(CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)));
|
---|
9366 | if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF))
|
---|
9367 | {
|
---|
9368 | /* VMX preemption timer takes priority over NMI-window exits. */
|
---|
9369 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER))
|
---|
9370 | {
|
---|
9371 | rcStrict = iemVmxVmexitPreemptTimer(pVCpu);
|
---|
9372 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
|
---|
9373 | }
|
---|
9374 | /*
|
---|
9375 | * Check remaining intercepts.
|
---|
9376 | *
|
---|
9377 | * NMI-window and Interrupt-window VM-exits.
|
---|
9378 | * Interrupt shadow (block-by-STI and Mov SS) inhibits interrupts and may also block NMIs.
|
---|
9379 | * Event injection during VM-entry takes priority over NMI-window and interrupt-window VM-exits.
|
---|
9380 | *
|
---|
9381 | * See Intel spec. 26.7.6 "NMI-Window Exiting".
|
---|
9382 | * See Intel spec. 26.7.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
|
---|
9383 | */
|
---|
9384 | else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW | VMCPU_FF_VMX_INT_WINDOW)
|
---|
9385 | && !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)
|
---|
9386 | && !TRPMHasTrap(pVCpu))
|
---|
9387 | {
|
---|
9388 | Assert(CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx));
|
---|
9389 | if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW)
|
---|
9390 | && CPUMIsGuestVmxVirtNmiBlocking(&pVCpu->cpum.GstCtx))
|
---|
9391 | {
|
---|
9392 | rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_NMI_WINDOW, 0 /* u64ExitQual */);
|
---|
9393 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW));
|
---|
9394 | }
|
---|
9395 | else if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW)
|
---|
9396 | && CPUMIsGuestVmxVirtIntrEnabled(&pVCpu->cpum.GstCtx))
|
---|
9397 | {
|
---|
9398 | rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_INT_WINDOW, 0 /* u64ExitQual */);
|
---|
9399 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW));
|
---|
9400 | }
|
---|
9401 | }
|
---|
9402 | }
|
---|
9403 | /* TPR-below threshold/APIC write has the highest priority. */
|
---|
9404 | else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
|
---|
9405 | {
|
---|
9406 | rcStrict = iemVmxApicWriteEmulation(pVCpu);
|
---|
9407 | Assert(!CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx));
|
---|
9408 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
|
---|
9409 | }
|
---|
9410 | /* MTF takes priority over VMX-preemption timer. */
|
---|
9411 | else
|
---|
9412 | {
|
---|
9413 | rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_MTF, 0 /* u64ExitQual */);
|
---|
9414 | Assert(!CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx));
|
---|
9415 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
|
---|
9416 | }
|
---|
9417 | return rcStrict;
|
---|
9418 | }
|
---|
9419 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
9420 |
|
---|
9421 |
|
---|
9422 | /**
|
---|
9423 | * The actual code execution bits of IEMExecOne, IEMExecOneEx, and
|
---|
9424 | * IEMExecOneWithPrefetchedByPC.
|
---|
9425 | *
|
---|
9426 | * Similar code is found in IEMExecLots.
|
---|
9427 | *
|
---|
9428 | * @return Strict VBox status code.
|
---|
9429 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
9430 | * @param fExecuteInhibit If set, execute the instruction following CLI,
|
---|
9431 | * POP SS and MOV SS,GR.
|
---|
9432 | * @param pszFunction The calling function name.
|
---|
9433 | */
|
---|
9434 | DECLINLINE(VBOXSTRICTRC) iemExecOneInner(PVMCPUCC pVCpu, bool fExecuteInhibit, const char *pszFunction)
|
---|
9435 | {
|
---|
9436 | AssertMsg(pVCpu->iem.s.aMemMappings[0].fAccess == IEM_ACCESS_INVALID, ("0: %#x %RGp\n", pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemBbMappings[0].GCPhysFirst));
|
---|
9437 | AssertMsg(pVCpu->iem.s.aMemMappings[1].fAccess == IEM_ACCESS_INVALID, ("1: %#x %RGp\n", pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemBbMappings[1].GCPhysFirst));
|
---|
9438 | AssertMsg(pVCpu->iem.s.aMemMappings[2].fAccess == IEM_ACCESS_INVALID, ("2: %#x %RGp\n", pVCpu->iem.s.aMemMappings[2].fAccess, pVCpu->iem.s.aMemBbMappings[2].GCPhysFirst));
|
---|
9439 | RT_NOREF_PV(pszFunction);
|
---|
9440 |
|
---|
9441 | #ifdef IEM_WITH_SETJMP
|
---|
9442 | VBOXSTRICTRC rcStrict;
|
---|
9443 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
9444 | {
|
---|
9445 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9446 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9447 | }
|
---|
9448 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
9449 | {
|
---|
9450 | pVCpu->iem.s.cLongJumps++;
|
---|
9451 | }
|
---|
9452 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
9453 | #else
|
---|
9454 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9455 | VBOXSTRICTRC rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9456 | #endif
|
---|
9457 | if (rcStrict == VINF_SUCCESS)
|
---|
9458 | pVCpu->iem.s.cInstructions++;
|
---|
9459 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9460 | {
|
---|
9461 | Assert(rcStrict != VINF_SUCCESS);
|
---|
9462 | iemMemRollback(pVCpu);
|
---|
9463 | }
|
---|
9464 | AssertMsg(pVCpu->iem.s.aMemMappings[0].fAccess == IEM_ACCESS_INVALID, ("0: %#x %RGp\n", pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemBbMappings[0].GCPhysFirst));
|
---|
9465 | AssertMsg(pVCpu->iem.s.aMemMappings[1].fAccess == IEM_ACCESS_INVALID, ("1: %#x %RGp\n", pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemBbMappings[1].GCPhysFirst));
|
---|
9466 | AssertMsg(pVCpu->iem.s.aMemMappings[2].fAccess == IEM_ACCESS_INVALID, ("2: %#x %RGp\n", pVCpu->iem.s.aMemMappings[2].fAccess, pVCpu->iem.s.aMemBbMappings[2].GCPhysFirst));
|
---|
9467 |
|
---|
9468 | //#ifdef DEBUG
|
---|
9469 | // AssertMsg(IEM_GET_INSTR_LEN(pVCpu) == cbInstr || rcStrict != VINF_SUCCESS, ("%u %u\n", IEM_GET_INSTR_LEN(pVCpu), cbInstr));
|
---|
9470 | //#endif
|
---|
9471 |
|
---|
9472 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9473 | /*
|
---|
9474 | * Perform any VMX nested-guest instruction boundary actions.
|
---|
9475 | *
|
---|
9476 | * If any of these causes a VM-exit, we must skip executing the next
|
---|
9477 | * instruction (would run into stale page tables). A VM-exit makes sure
|
---|
9478 | * there is no interrupt-inhibition, so that should ensure we don't go
|
---|
9479 | * to try execute the next instruction. Clearing fExecuteInhibit is
|
---|
9480 | * problematic because of the setjmp/longjmp clobbering above.
|
---|
9481 | */
|
---|
9482 | if ( !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
9483 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW)
|
---|
9484 | || rcStrict != VINF_SUCCESS)
|
---|
9485 | { /* likely */ }
|
---|
9486 | else
|
---|
9487 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
9488 | #endif
|
---|
9489 |
|
---|
9490 | /* Execute the next instruction as well if a cli, pop ss or
|
---|
9491 | mov ss, Gr has just completed successfully. */
|
---|
9492 | if ( fExecuteInhibit
|
---|
9493 | && rcStrict == VINF_SUCCESS
|
---|
9494 | && CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))
|
---|
9495 | {
|
---|
9496 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, pVCpu->iem.s.fExec & (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK));
|
---|
9497 | if (rcStrict == VINF_SUCCESS)
|
---|
9498 | {
|
---|
9499 | #ifdef LOG_ENABLED
|
---|
9500 | iemLogCurInstr(pVCpu, false, pszFunction);
|
---|
9501 | #endif
|
---|
9502 | #ifdef IEM_WITH_SETJMP
|
---|
9503 | IEM_TRY_SETJMP_AGAIN(pVCpu, rcStrict)
|
---|
9504 | {
|
---|
9505 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9506 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9507 | }
|
---|
9508 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
9509 | {
|
---|
9510 | pVCpu->iem.s.cLongJumps++;
|
---|
9511 | }
|
---|
9512 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
9513 | #else
|
---|
9514 | IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9515 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9516 | #endif
|
---|
9517 | if (rcStrict == VINF_SUCCESS)
|
---|
9518 | {
|
---|
9519 | pVCpu->iem.s.cInstructions++;
|
---|
9520 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9521 | if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
9522 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW))
|
---|
9523 | { /* likely */ }
|
---|
9524 | else
|
---|
9525 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
9526 | #endif
|
---|
9527 | }
|
---|
9528 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9529 | {
|
---|
9530 | Assert(rcStrict != VINF_SUCCESS);
|
---|
9531 | iemMemRollback(pVCpu);
|
---|
9532 | }
|
---|
9533 | AssertMsg(pVCpu->iem.s.aMemMappings[0].fAccess == IEM_ACCESS_INVALID, ("0: %#x %RGp\n", pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemBbMappings[0].GCPhysFirst));
|
---|
9534 | AssertMsg(pVCpu->iem.s.aMemMappings[1].fAccess == IEM_ACCESS_INVALID, ("1: %#x %RGp\n", pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemBbMappings[1].GCPhysFirst));
|
---|
9535 | AssertMsg(pVCpu->iem.s.aMemMappings[2].fAccess == IEM_ACCESS_INVALID, ("2: %#x %RGp\n", pVCpu->iem.s.aMemMappings[2].fAccess, pVCpu->iem.s.aMemBbMappings[2].GCPhysFirst));
|
---|
9536 | }
|
---|
9537 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9538 | iemMemRollback(pVCpu);
|
---|
9539 | /** @todo drop this after we bake this change into RIP advancing. */
|
---|
9540 | CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx); /* hope this is correct for all exceptional cases... */
|
---|
9541 | }
|
---|
9542 |
|
---|
9543 | /*
|
---|
9544 | * Return value fiddling, statistics and sanity assertions.
|
---|
9545 | */
|
---|
9546 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9547 |
|
---|
9548 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
9549 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
9550 | return rcStrict;
|
---|
9551 | }
|
---|
9552 |
|
---|
9553 |
|
---|
9554 | /**
|
---|
9555 | * Execute one instruction.
|
---|
9556 | *
|
---|
9557 | * @return Strict VBox status code.
|
---|
9558 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
9559 | */
|
---|
9560 | VMMDECL(VBOXSTRICTRC) IEMExecOne(PVMCPUCC pVCpu)
|
---|
9561 | {
|
---|
9562 | AssertCompile(sizeof(pVCpu->iem.s) <= sizeof(pVCpu->iem.padding)); /* (tstVMStruct can't do it's job w/o instruction stats) */
|
---|
9563 | #ifdef LOG_ENABLED
|
---|
9564 | iemLogCurInstr(pVCpu, true, "IEMExecOne");
|
---|
9565 | #endif
|
---|
9566 |
|
---|
9567 | /*
|
---|
9568 | * Do the decoding and emulation.
|
---|
9569 | */
|
---|
9570 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
9571 | if (rcStrict == VINF_SUCCESS)
|
---|
9572 | rcStrict = iemExecOneInner(pVCpu, true, "IEMExecOne");
|
---|
9573 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9574 | iemMemRollback(pVCpu);
|
---|
9575 |
|
---|
9576 | if (rcStrict != VINF_SUCCESS)
|
---|
9577 | LogFlow(("IEMExecOne: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
9578 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
9579 | return rcStrict;
|
---|
9580 | }
|
---|
9581 |
|
---|
9582 |
|
---|
9583 | VMMDECL(VBOXSTRICTRC) IEMExecOneEx(PVMCPUCC pVCpu, uint32_t *pcbWritten)
|
---|
9584 | {
|
---|
9585 | uint32_t const cbOldWritten = pVCpu->iem.s.cbWritten;
|
---|
9586 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
9587 | if (rcStrict == VINF_SUCCESS)
|
---|
9588 | {
|
---|
9589 | rcStrict = iemExecOneInner(pVCpu, true, "IEMExecOneEx");
|
---|
9590 | if (pcbWritten)
|
---|
9591 | *pcbWritten = pVCpu->iem.s.cbWritten - cbOldWritten;
|
---|
9592 | }
|
---|
9593 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9594 | iemMemRollback(pVCpu);
|
---|
9595 |
|
---|
9596 | return rcStrict;
|
---|
9597 | }
|
---|
9598 |
|
---|
9599 |
|
---|
9600 | VMMDECL(VBOXSTRICTRC) IEMExecOneWithPrefetchedByPC(PVMCPUCC pVCpu, uint64_t OpcodeBytesPC,
|
---|
9601 | const void *pvOpcodeBytes, size_t cbOpcodeBytes)
|
---|
9602 | {
|
---|
9603 | VBOXSTRICTRC rcStrict;
|
---|
9604 | if ( cbOpcodeBytes
|
---|
9605 | && pVCpu->cpum.GstCtx.rip == OpcodeBytesPC)
|
---|
9606 | {
|
---|
9607 | iemInitDecoder(pVCpu, 0 /*fExecOpts*/);
|
---|
9608 | #ifdef IEM_WITH_CODE_TLB
|
---|
9609 | pVCpu->iem.s.uInstrBufPc = OpcodeBytesPC;
|
---|
9610 | pVCpu->iem.s.pbInstrBuf = (uint8_t const *)pvOpcodeBytes;
|
---|
9611 | pVCpu->iem.s.cbInstrBufTotal = (uint16_t)RT_MIN(X86_PAGE_SIZE, cbOpcodeBytes);
|
---|
9612 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
9613 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
9614 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
9615 | #else
|
---|
9616 | pVCpu->iem.s.cbOpcode = (uint8_t)RT_MIN(cbOpcodeBytes, sizeof(pVCpu->iem.s.abOpcode));
|
---|
9617 | memcpy(pVCpu->iem.s.abOpcode, pvOpcodeBytes, pVCpu->iem.s.cbOpcode);
|
---|
9618 | #endif
|
---|
9619 | rcStrict = VINF_SUCCESS;
|
---|
9620 | }
|
---|
9621 | else
|
---|
9622 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
9623 | if (rcStrict == VINF_SUCCESS)
|
---|
9624 | rcStrict = iemExecOneInner(pVCpu, true, "IEMExecOneWithPrefetchedByPC");
|
---|
9625 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9626 | iemMemRollback(pVCpu);
|
---|
9627 |
|
---|
9628 | return rcStrict;
|
---|
9629 | }
|
---|
9630 |
|
---|
9631 |
|
---|
9632 | VMMDECL(VBOXSTRICTRC) IEMExecOneBypassEx(PVMCPUCC pVCpu, uint32_t *pcbWritten)
|
---|
9633 | {
|
---|
9634 | uint32_t const cbOldWritten = pVCpu->iem.s.cbWritten;
|
---|
9635 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, IEM_F_BYPASS_HANDLERS);
|
---|
9636 | if (rcStrict == VINF_SUCCESS)
|
---|
9637 | {
|
---|
9638 | rcStrict = iemExecOneInner(pVCpu, false, "IEMExecOneBypassEx");
|
---|
9639 | if (pcbWritten)
|
---|
9640 | *pcbWritten = pVCpu->iem.s.cbWritten - cbOldWritten;
|
---|
9641 | }
|
---|
9642 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9643 | iemMemRollback(pVCpu);
|
---|
9644 |
|
---|
9645 | return rcStrict;
|
---|
9646 | }
|
---|
9647 |
|
---|
9648 |
|
---|
9649 | VMMDECL(VBOXSTRICTRC) IEMExecOneBypassWithPrefetchedByPC(PVMCPUCC pVCpu, uint64_t OpcodeBytesPC,
|
---|
9650 | const void *pvOpcodeBytes, size_t cbOpcodeBytes)
|
---|
9651 | {
|
---|
9652 | VBOXSTRICTRC rcStrict;
|
---|
9653 | if ( cbOpcodeBytes
|
---|
9654 | && pVCpu->cpum.GstCtx.rip == OpcodeBytesPC)
|
---|
9655 | {
|
---|
9656 | iemInitDecoder(pVCpu, IEM_F_BYPASS_HANDLERS);
|
---|
9657 | #ifdef IEM_WITH_CODE_TLB
|
---|
9658 | pVCpu->iem.s.uInstrBufPc = OpcodeBytesPC;
|
---|
9659 | pVCpu->iem.s.pbInstrBuf = (uint8_t const *)pvOpcodeBytes;
|
---|
9660 | pVCpu->iem.s.cbInstrBufTotal = (uint16_t)RT_MIN(X86_PAGE_SIZE, cbOpcodeBytes);
|
---|
9661 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
9662 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
9663 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
9664 | #else
|
---|
9665 | pVCpu->iem.s.cbOpcode = (uint8_t)RT_MIN(cbOpcodeBytes, sizeof(pVCpu->iem.s.abOpcode));
|
---|
9666 | memcpy(pVCpu->iem.s.abOpcode, pvOpcodeBytes, pVCpu->iem.s.cbOpcode);
|
---|
9667 | #endif
|
---|
9668 | rcStrict = VINF_SUCCESS;
|
---|
9669 | }
|
---|
9670 | else
|
---|
9671 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, IEM_F_BYPASS_HANDLERS);
|
---|
9672 | if (rcStrict == VINF_SUCCESS)
|
---|
9673 | rcStrict = iemExecOneInner(pVCpu, false, "IEMExecOneBypassWithPrefetchedByPC");
|
---|
9674 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9675 | iemMemRollback(pVCpu);
|
---|
9676 |
|
---|
9677 | return rcStrict;
|
---|
9678 | }
|
---|
9679 |
|
---|
9680 |
|
---|
9681 | /**
|
---|
9682 | * For handling split cacheline lock operations when the host has split-lock
|
---|
9683 | * detection enabled.
|
---|
9684 | *
|
---|
9685 | * This will cause the interpreter to disregard the lock prefix and implicit
|
---|
9686 | * locking (xchg).
|
---|
9687 | *
|
---|
9688 | * @returns Strict VBox status code.
|
---|
9689 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
9690 | */
|
---|
9691 | VMMDECL(VBOXSTRICTRC) IEMExecOneIgnoreLock(PVMCPUCC pVCpu)
|
---|
9692 | {
|
---|
9693 | /*
|
---|
9694 | * Do the decoding and emulation.
|
---|
9695 | */
|
---|
9696 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, IEM_F_X86_DISREGARD_LOCK);
|
---|
9697 | if (rcStrict == VINF_SUCCESS)
|
---|
9698 | rcStrict = iemExecOneInner(pVCpu, true, "IEMExecOneIgnoreLock");
|
---|
9699 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9700 | iemMemRollback(pVCpu);
|
---|
9701 |
|
---|
9702 | if (rcStrict != VINF_SUCCESS)
|
---|
9703 | LogFlow(("IEMExecOneIgnoreLock: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
9704 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
9705 | return rcStrict;
|
---|
9706 | }
|
---|
9707 |
|
---|
9708 |
|
---|
9709 | /**
|
---|
9710 | * Code common to IEMExecLots and IEMExecRecompilerThreaded that attempts to
|
---|
9711 | * inject a pending TRPM trap.
|
---|
9712 | */
|
---|
9713 | VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu)
|
---|
9714 | {
|
---|
9715 | Assert(TRPMHasTrap(pVCpu));
|
---|
9716 |
|
---|
9717 | if ( !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)
|
---|
9718 | && !CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx))
|
---|
9719 | {
|
---|
9720 | /** @todo Can we centralize this under CPUMCanInjectInterrupt()? */
|
---|
9721 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
9722 | bool fIntrEnabled = CPUMGetGuestGif(&pVCpu->cpum.GstCtx);
|
---|
9723 | if (fIntrEnabled)
|
---|
9724 | {
|
---|
9725 | if (!CPUMIsGuestInNestedHwvirtMode(IEM_GET_CTX(pVCpu)))
|
---|
9726 | fIntrEnabled = pVCpu->cpum.GstCtx.eflags.Bits.u1IF;
|
---|
9727 | else if (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
|
---|
9728 | fIntrEnabled = CPUMIsGuestVmxPhysIntrEnabled(IEM_GET_CTX(pVCpu));
|
---|
9729 | else
|
---|
9730 | {
|
---|
9731 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
|
---|
9732 | fIntrEnabled = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, IEM_GET_CTX(pVCpu));
|
---|
9733 | }
|
---|
9734 | }
|
---|
9735 | #else
|
---|
9736 | bool fIntrEnabled = pVCpu->cpum.GstCtx.eflags.Bits.u1IF;
|
---|
9737 | #endif
|
---|
9738 | if (fIntrEnabled)
|
---|
9739 | {
|
---|
9740 | uint8_t u8TrapNo;
|
---|
9741 | TRPMEVENT enmType;
|
---|
9742 | uint32_t uErrCode;
|
---|
9743 | RTGCPTR uCr2;
|
---|
9744 | int rc2 = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, NULL /*pu8InstLen*/, NULL /*fIcebp*/);
|
---|
9745 | AssertRC(rc2);
|
---|
9746 | Assert(enmType == TRPM_HARDWARE_INT);
|
---|
9747 | VBOXSTRICTRC rcStrict = IEMInjectTrap(pVCpu, u8TrapNo, enmType, (uint16_t)uErrCode, uCr2, 0 /*cbInstr*/);
|
---|
9748 |
|
---|
9749 | TRPMResetTrap(pVCpu);
|
---|
9750 |
|
---|
9751 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
9752 | /* Injecting an event may cause a VM-exit. */
|
---|
9753 | if ( rcStrict != VINF_SUCCESS
|
---|
9754 | && rcStrict != VINF_IEM_RAISED_XCPT)
|
---|
9755 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9756 | #else
|
---|
9757 | NOREF(rcStrict);
|
---|
9758 | #endif
|
---|
9759 | }
|
---|
9760 | }
|
---|
9761 |
|
---|
9762 | return VINF_SUCCESS;
|
---|
9763 | }
|
---|
9764 |
|
---|
9765 |
|
---|
9766 | VMMDECL(VBOXSTRICTRC) IEMExecLots(PVMCPUCC pVCpu, uint32_t cMaxInstructions, uint32_t cPollRate, uint32_t *pcInstructions)
|
---|
9767 | {
|
---|
9768 | uint32_t const cInstructionsAtStart = pVCpu->iem.s.cInstructions;
|
---|
9769 | AssertMsg(RT_IS_POWER_OF_TWO(cPollRate + 1), ("%#x\n", cPollRate));
|
---|
9770 | Assert(cMaxInstructions > 0);
|
---|
9771 |
|
---|
9772 | /*
|
---|
9773 | * See if there is an interrupt pending in TRPM, inject it if we can.
|
---|
9774 | */
|
---|
9775 | /** @todo What if we are injecting an exception and not an interrupt? Is that
|
---|
9776 | * possible here? For now we assert it is indeed only an interrupt. */
|
---|
9777 | if (!TRPMHasTrap(pVCpu))
|
---|
9778 | { /* likely */ }
|
---|
9779 | else
|
---|
9780 | {
|
---|
9781 | VBOXSTRICTRC rcStrict = iemExecInjectPendingTrap(pVCpu);
|
---|
9782 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9783 | { /*likely */ }
|
---|
9784 | else
|
---|
9785 | return rcStrict;
|
---|
9786 | }
|
---|
9787 |
|
---|
9788 | /*
|
---|
9789 | * Initial decoder init w/ prefetch, then setup setjmp.
|
---|
9790 | */
|
---|
9791 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
9792 | if (rcStrict == VINF_SUCCESS)
|
---|
9793 | {
|
---|
9794 | #ifdef IEM_WITH_SETJMP
|
---|
9795 | pVCpu->iem.s.cActiveMappings = 0; /** @todo wtf? */
|
---|
9796 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
9797 | #endif
|
---|
9798 | {
|
---|
9799 | /*
|
---|
9800 | * The run loop. We limit ourselves to 4096 instructions right now.
|
---|
9801 | */
|
---|
9802 | uint32_t cMaxInstructionsGccStupidity = cMaxInstructions;
|
---|
9803 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9804 | for (;;)
|
---|
9805 | {
|
---|
9806 | /*
|
---|
9807 | * Log the state.
|
---|
9808 | */
|
---|
9809 | #ifdef LOG_ENABLED
|
---|
9810 | iemLogCurInstr(pVCpu, true, "IEMExecLots");
|
---|
9811 | #endif
|
---|
9812 |
|
---|
9813 | /*
|
---|
9814 | * Do the decoding and emulation.
|
---|
9815 | */
|
---|
9816 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9817 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9818 | #ifdef VBOX_STRICT
|
---|
9819 | CPUMAssertGuestRFlagsCookie(pVM, pVCpu);
|
---|
9820 | #endif
|
---|
9821 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9822 | {
|
---|
9823 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
9824 | pVCpu->iem.s.cInstructions++;
|
---|
9825 |
|
---|
9826 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9827 | /* Perform any VMX nested-guest instruction boundary actions. */
|
---|
9828 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
9829 | if (!(fCpu & ( VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
9830 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW)))
|
---|
9831 | { /* likely */ }
|
---|
9832 | else
|
---|
9833 | {
|
---|
9834 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
9835 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9836 | fCpu = pVCpu->fLocalForcedActions;
|
---|
9837 | else
|
---|
9838 | {
|
---|
9839 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9840 | break;
|
---|
9841 | }
|
---|
9842 | }
|
---|
9843 | #endif
|
---|
9844 | if (RT_LIKELY(pVCpu->iem.s.rcPassUp == VINF_SUCCESS))
|
---|
9845 | {
|
---|
9846 | #ifndef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9847 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
9848 | #endif
|
---|
9849 | fCpu &= VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
9850 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
9851 | | VMCPU_FF_TLB_FLUSH
|
---|
9852 | | VMCPU_FF_UNHALT );
|
---|
9853 |
|
---|
9854 | if (RT_LIKELY( ( !fCpu
|
---|
9855 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
9856 | && !pVCpu->cpum.GstCtx.rflags.Bits.u1IF) )
|
---|
9857 | && !VM_FF_IS_ANY_SET(pVM, VM_FF_ALL_MASK) ))
|
---|
9858 | {
|
---|
9859 | if (--cMaxInstructionsGccStupidity > 0)
|
---|
9860 | {
|
---|
9861 | /* Poll timers every now an then according to the caller's specs. */
|
---|
9862 | if ( (cMaxInstructionsGccStupidity & cPollRate) != 0
|
---|
9863 | || !TMTimerPollBool(pVM, pVCpu))
|
---|
9864 | {
|
---|
9865 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
9866 | iemReInitDecoder(pVCpu);
|
---|
9867 | continue;
|
---|
9868 | }
|
---|
9869 | }
|
---|
9870 | }
|
---|
9871 | }
|
---|
9872 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
9873 | }
|
---|
9874 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9875 | iemMemRollback(pVCpu);
|
---|
9876 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9877 | break;
|
---|
9878 | }
|
---|
9879 | }
|
---|
9880 | #ifdef IEM_WITH_SETJMP
|
---|
9881 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
9882 | {
|
---|
9883 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9884 | iemMemRollback(pVCpu);
|
---|
9885 | # if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
9886 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9887 | # endif
|
---|
9888 | pVCpu->iem.s.cLongJumps++;
|
---|
9889 | }
|
---|
9890 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
9891 | #endif
|
---|
9892 |
|
---|
9893 | /*
|
---|
9894 | * Assert hidden register sanity (also done in iemInitDecoder and iemReInitDecoder).
|
---|
9895 | */
|
---|
9896 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
9897 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
9898 | }
|
---|
9899 | else
|
---|
9900 | {
|
---|
9901 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
9902 | iemMemRollback(pVCpu);
|
---|
9903 |
|
---|
9904 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
9905 | /*
|
---|
9906 | * When a nested-guest causes an exception intercept (e.g. #PF) when fetching
|
---|
9907 | * code as part of instruction execution, we need this to fix-up VINF_SVM_VMEXIT.
|
---|
9908 | */
|
---|
9909 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
9910 | #endif
|
---|
9911 | }
|
---|
9912 |
|
---|
9913 | /*
|
---|
9914 | * Maybe re-enter raw-mode and log.
|
---|
9915 | */
|
---|
9916 | if (rcStrict != VINF_SUCCESS)
|
---|
9917 | LogFlow(("IEMExecLots: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
9918 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
9919 | if (pcInstructions)
|
---|
9920 | *pcInstructions = pVCpu->iem.s.cInstructions - cInstructionsAtStart;
|
---|
9921 | return rcStrict;
|
---|
9922 | }
|
---|
9923 |
|
---|
9924 |
|
---|
9925 | /**
|
---|
9926 | * Interface used by EMExecuteExec, does exit statistics and limits.
|
---|
9927 | *
|
---|
9928 | * @returns Strict VBox status code.
|
---|
9929 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9930 | * @param fWillExit To be defined.
|
---|
9931 | * @param cMinInstructions Minimum number of instructions to execute before checking for FFs.
|
---|
9932 | * @param cMaxInstructions Maximum number of instructions to execute.
|
---|
9933 | * @param cMaxInstructionsWithoutExits
|
---|
9934 | * The max number of instructions without exits.
|
---|
9935 | * @param pStats Where to return statistics.
|
---|
9936 | */
|
---|
9937 | VMMDECL(VBOXSTRICTRC) IEMExecForExits(PVMCPUCC pVCpu, uint32_t fWillExit, uint32_t cMinInstructions, uint32_t cMaxInstructions,
|
---|
9938 | uint32_t cMaxInstructionsWithoutExits, PIEMEXECFOREXITSTATS pStats)
|
---|
9939 | {
|
---|
9940 | NOREF(fWillExit); /** @todo define flexible exit crits */
|
---|
9941 |
|
---|
9942 | /*
|
---|
9943 | * Initialize return stats.
|
---|
9944 | */
|
---|
9945 | pStats->cInstructions = 0;
|
---|
9946 | pStats->cExits = 0;
|
---|
9947 | pStats->cMaxExitDistance = 0;
|
---|
9948 | pStats->cReserved = 0;
|
---|
9949 |
|
---|
9950 | /*
|
---|
9951 | * Initial decoder init w/ prefetch, then setup setjmp.
|
---|
9952 | */
|
---|
9953 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, 0 /*fExecOpts*/);
|
---|
9954 | if (rcStrict == VINF_SUCCESS)
|
---|
9955 | {
|
---|
9956 | #ifdef IEM_WITH_SETJMP
|
---|
9957 | pVCpu->iem.s.cActiveMappings = 0; /** @todo wtf?!? */
|
---|
9958 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
9959 | #endif
|
---|
9960 | {
|
---|
9961 | #ifdef IN_RING0
|
---|
9962 | bool const fCheckPreemptionPending = !RTThreadPreemptIsPossible() || !RTThreadPreemptIsEnabled(NIL_RTTHREAD);
|
---|
9963 | #endif
|
---|
9964 | uint32_t cInstructionSinceLastExit = 0;
|
---|
9965 |
|
---|
9966 | /*
|
---|
9967 | * The run loop. We limit ourselves to 4096 instructions right now.
|
---|
9968 | */
|
---|
9969 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9970 | for (;;)
|
---|
9971 | {
|
---|
9972 | /*
|
---|
9973 | * Log the state.
|
---|
9974 | */
|
---|
9975 | #ifdef LOG_ENABLED
|
---|
9976 | iemLogCurInstr(pVCpu, true, "IEMExecForExits");
|
---|
9977 | #endif
|
---|
9978 |
|
---|
9979 | /*
|
---|
9980 | * Do the decoding and emulation.
|
---|
9981 | */
|
---|
9982 | uint32_t const cPotentialExits = pVCpu->iem.s.cPotentialExits;
|
---|
9983 |
|
---|
9984 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
9985 | rcStrict = FNIEMOP_CALL(g_apfnIemInterpretOnlyOneByteMap[b]);
|
---|
9986 |
|
---|
9987 | if ( cPotentialExits != pVCpu->iem.s.cPotentialExits
|
---|
9988 | && cInstructionSinceLastExit > 0 /* don't count the first */ )
|
---|
9989 | {
|
---|
9990 | pStats->cExits += 1;
|
---|
9991 | if (cInstructionSinceLastExit > pStats->cMaxExitDistance)
|
---|
9992 | pStats->cMaxExitDistance = cInstructionSinceLastExit;
|
---|
9993 | cInstructionSinceLastExit = 0;
|
---|
9994 | }
|
---|
9995 |
|
---|
9996 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9997 | {
|
---|
9998 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
9999 | pVCpu->iem.s.cInstructions++;
|
---|
10000 | pStats->cInstructions++;
|
---|
10001 | cInstructionSinceLastExit++;
|
---|
10002 |
|
---|
10003 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
10004 | /* Perform any VMX nested-guest instruction boundary actions. */
|
---|
10005 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
10006 | if (!(fCpu & ( VMCPU_FF_VMX_APIC_WRITE | VMCPU_FF_VMX_MTF | VMCPU_FF_VMX_PREEMPT_TIMER
|
---|
10007 | | VMCPU_FF_VMX_INT_WINDOW | VMCPU_FF_VMX_NMI_WINDOW)))
|
---|
10008 | { /* likely */ }
|
---|
10009 | else
|
---|
10010 | {
|
---|
10011 | rcStrict = iemHandleNestedInstructionBoundaryFFs(pVCpu, rcStrict);
|
---|
10012 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
10013 | fCpu = pVCpu->fLocalForcedActions;
|
---|
10014 | else
|
---|
10015 | {
|
---|
10016 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
10017 | break;
|
---|
10018 | }
|
---|
10019 | }
|
---|
10020 | #endif
|
---|
10021 | if (RT_LIKELY(pVCpu->iem.s.rcPassUp == VINF_SUCCESS))
|
---|
10022 | {
|
---|
10023 | #ifndef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
10024 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
10025 | #endif
|
---|
10026 | fCpu &= VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
10027 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
10028 | | VMCPU_FF_TLB_FLUSH
|
---|
10029 | | VMCPU_FF_UNHALT );
|
---|
10030 | if (RT_LIKELY( ( ( !fCpu
|
---|
10031 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
10032 | && !pVCpu->cpum.GstCtx.rflags.Bits.u1IF))
|
---|
10033 | && !VM_FF_IS_ANY_SET(pVM, VM_FF_ALL_MASK) )
|
---|
10034 | || pStats->cInstructions < cMinInstructions))
|
---|
10035 | {
|
---|
10036 | if (pStats->cInstructions < cMaxInstructions)
|
---|
10037 | {
|
---|
10038 | if (cInstructionSinceLastExit <= cMaxInstructionsWithoutExits)
|
---|
10039 | {
|
---|
10040 | #ifdef IN_RING0
|
---|
10041 | if ( !fCheckPreemptionPending
|
---|
10042 | || !RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
10043 | #endif
|
---|
10044 | {
|
---|
10045 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
10046 | iemReInitDecoder(pVCpu);
|
---|
10047 | continue;
|
---|
10048 | }
|
---|
10049 | #ifdef IN_RING0
|
---|
10050 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
10051 | break;
|
---|
10052 | #endif
|
---|
10053 | }
|
---|
10054 | }
|
---|
10055 | }
|
---|
10056 | Assert(!(fCpu & VMCPU_FF_IEM));
|
---|
10057 | }
|
---|
10058 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
10059 | }
|
---|
10060 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
10061 | iemMemRollback(pVCpu);
|
---|
10062 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
10063 | break;
|
---|
10064 | }
|
---|
10065 | }
|
---|
10066 | #ifdef IEM_WITH_SETJMP
|
---|
10067 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
10068 | {
|
---|
10069 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
10070 | iemMemRollback(pVCpu);
|
---|
10071 | pVCpu->iem.s.cLongJumps++;
|
---|
10072 | }
|
---|
10073 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
10074 | #endif
|
---|
10075 |
|
---|
10076 | /*
|
---|
10077 | * Assert hidden register sanity (also done in iemInitDecoder and iemReInitDecoder).
|
---|
10078 | */
|
---|
10079 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
10080 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
10081 | }
|
---|
10082 | else
|
---|
10083 | {
|
---|
10084 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
10085 | iemMemRollback(pVCpu);
|
---|
10086 |
|
---|
10087 | #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
10088 | /*
|
---|
10089 | * When a nested-guest causes an exception intercept (e.g. #PF) when fetching
|
---|
10090 | * code as part of instruction execution, we need this to fix-up VINF_SVM_VMEXIT.
|
---|
10091 | */
|
---|
10092 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
10093 | #endif
|
---|
10094 | }
|
---|
10095 |
|
---|
10096 | /*
|
---|
10097 | * Maybe re-enter raw-mode and log.
|
---|
10098 | */
|
---|
10099 | if (rcStrict != VINF_SUCCESS)
|
---|
10100 | LogFlow(("IEMExecForExits: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc; ins=%u exits=%u maxdist=%u\n",
|
---|
10101 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp,
|
---|
10102 | pVCpu->cpum.GstCtx.eflags.u, VBOXSTRICTRC_VAL(rcStrict), pStats->cInstructions, pStats->cExits, pStats->cMaxExitDistance));
|
---|
10103 | return rcStrict;
|
---|
10104 | }
|
---|
10105 |
|
---|
10106 |
|
---|
10107 | /**
|
---|
10108 | * Injects a trap, fault, abort, software interrupt or external interrupt.
|
---|
10109 | *
|
---|
10110 | * The parameter list matches TRPMQueryTrapAll pretty closely.
|
---|
10111 | *
|
---|
10112 | * @returns Strict VBox status code.
|
---|
10113 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
10114 | * @param u8TrapNo The trap number.
|
---|
10115 | * @param enmType What type is it (trap/fault/abort), software
|
---|
10116 | * interrupt or hardware interrupt.
|
---|
10117 | * @param uErrCode The error code if applicable.
|
---|
10118 | * @param uCr2 The CR2 value if applicable.
|
---|
10119 | * @param cbInstr The instruction length (only relevant for
|
---|
10120 | * software interrupts).
|
---|
10121 | */
|
---|
10122 | VMM_INT_DECL(VBOXSTRICTRC) IEMInjectTrap(PVMCPUCC pVCpu, uint8_t u8TrapNo, TRPMEVENT enmType, uint16_t uErrCode, RTGCPTR uCr2,
|
---|
10123 | uint8_t cbInstr)
|
---|
10124 | {
|
---|
10125 | iemInitDecoder(pVCpu, 0 /*fExecOpts*/); /** @todo wrong init function! */
|
---|
10126 | #ifdef DBGFTRACE_ENABLED
|
---|
10127 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "IEMInjectTrap: %x %d %x %llx",
|
---|
10128 | u8TrapNo, enmType, uErrCode, uCr2);
|
---|
10129 | #endif
|
---|
10130 |
|
---|
10131 | uint32_t fFlags;
|
---|
10132 | switch (enmType)
|
---|
10133 | {
|
---|
10134 | case TRPM_HARDWARE_INT:
|
---|
10135 | Log(("IEMInjectTrap: %#4x ext\n", u8TrapNo));
|
---|
10136 | fFlags = IEM_XCPT_FLAGS_T_EXT_INT;
|
---|
10137 | uErrCode = uCr2 = 0;
|
---|
10138 | break;
|
---|
10139 |
|
---|
10140 | case TRPM_SOFTWARE_INT:
|
---|
10141 | Log(("IEMInjectTrap: %#4x soft\n", u8TrapNo));
|
---|
10142 | fFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
10143 | uErrCode = uCr2 = 0;
|
---|
10144 | break;
|
---|
10145 |
|
---|
10146 | case TRPM_TRAP:
|
---|
10147 | case TRPM_NMI: /** @todo Distinguish NMI from exception 2. */
|
---|
10148 | Log(("IEMInjectTrap: %#4x trap err=%#x cr2=%#RGv\n", u8TrapNo, uErrCode, uCr2));
|
---|
10149 | fFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
10150 | if (u8TrapNo == X86_XCPT_PF)
|
---|
10151 | fFlags |= IEM_XCPT_FLAGS_CR2;
|
---|
10152 | switch (u8TrapNo)
|
---|
10153 | {
|
---|
10154 | case X86_XCPT_DF:
|
---|
10155 | case X86_XCPT_TS:
|
---|
10156 | case X86_XCPT_NP:
|
---|
10157 | case X86_XCPT_SS:
|
---|
10158 | case X86_XCPT_PF:
|
---|
10159 | case X86_XCPT_AC:
|
---|
10160 | case X86_XCPT_GP:
|
---|
10161 | fFlags |= IEM_XCPT_FLAGS_ERR;
|
---|
10162 | break;
|
---|
10163 | }
|
---|
10164 | break;
|
---|
10165 |
|
---|
10166 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
10167 | }
|
---|
10168 |
|
---|
10169 | VBOXSTRICTRC rcStrict = iemRaiseXcptOrInt(pVCpu, cbInstr, u8TrapNo, fFlags, uErrCode, uCr2);
|
---|
10170 |
|
---|
10171 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
10172 | iemMemRollback(pVCpu);
|
---|
10173 |
|
---|
10174 | return rcStrict;
|
---|
10175 | }
|
---|
10176 |
|
---|
10177 |
|
---|
10178 | /**
|
---|
10179 | * Injects the active TRPM event.
|
---|
10180 | *
|
---|
10181 | * @returns Strict VBox status code.
|
---|
10182 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10183 | */
|
---|
10184 | VMMDECL(VBOXSTRICTRC) IEMInjectTrpmEvent(PVMCPUCC pVCpu)
|
---|
10185 | {
|
---|
10186 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
10187 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Event injection\n"));
|
---|
10188 | #else
|
---|
10189 | uint8_t u8TrapNo;
|
---|
10190 | TRPMEVENT enmType;
|
---|
10191 | uint32_t uErrCode;
|
---|
10192 | RTGCUINTPTR uCr2;
|
---|
10193 | uint8_t cbInstr;
|
---|
10194 | int rc = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, &cbInstr, NULL /* fIcebp */);
|
---|
10195 | if (RT_FAILURE(rc))
|
---|
10196 | return rc;
|
---|
10197 |
|
---|
10198 | /** @todo r=ramshankar: Pass ICEBP info. to IEMInjectTrap() below and handle
|
---|
10199 | * ICEBP \#DB injection as a special case. */
|
---|
10200 | VBOXSTRICTRC rcStrict = IEMInjectTrap(pVCpu, u8TrapNo, enmType, uErrCode, uCr2, cbInstr);
|
---|
10201 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
10202 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
10203 | rcStrict = VINF_SUCCESS;
|
---|
10204 | #endif
|
---|
10205 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
10206 | if (rcStrict == VINF_VMX_VMEXIT)
|
---|
10207 | rcStrict = VINF_SUCCESS;
|
---|
10208 | #endif
|
---|
10209 | /** @todo Are there any other codes that imply the event was successfully
|
---|
10210 | * delivered to the guest? See @bugref{6607}. */
|
---|
10211 | if ( rcStrict == VINF_SUCCESS
|
---|
10212 | || rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
10213 | TRPMResetTrap(pVCpu);
|
---|
10214 |
|
---|
10215 | return rcStrict;
|
---|
10216 | #endif
|
---|
10217 | }
|
---|
10218 |
|
---|
10219 |
|
---|
10220 | VMM_INT_DECL(int) IEMBreakpointSet(PVM pVM, RTGCPTR GCPtrBp)
|
---|
10221 | {
|
---|
10222 | RT_NOREF_PV(pVM); RT_NOREF_PV(GCPtrBp);
|
---|
10223 | return VERR_NOT_IMPLEMENTED;
|
---|
10224 | }
|
---|
10225 |
|
---|
10226 |
|
---|
10227 | VMM_INT_DECL(int) IEMBreakpointClear(PVM pVM, RTGCPTR GCPtrBp)
|
---|
10228 | {
|
---|
10229 | RT_NOREF_PV(pVM); RT_NOREF_PV(GCPtrBp);
|
---|
10230 | return VERR_NOT_IMPLEMENTED;
|
---|
10231 | }
|
---|
10232 |
|
---|
10233 |
|
---|
10234 | /**
|
---|
10235 | * Interface for HM and EM for executing string I/O OUT (write) instructions.
|
---|
10236 | *
|
---|
10237 | * This API ASSUMES that the caller has already verified that the guest code is
|
---|
10238 | * allowed to access the I/O port. (The I/O port is in the DX register in the
|
---|
10239 | * guest state.)
|
---|
10240 | *
|
---|
10241 | * @returns Strict VBox status code.
|
---|
10242 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10243 | * @param cbValue The size of the I/O port access (1, 2, or 4).
|
---|
10244 | * @param enmAddrMode The addressing mode.
|
---|
10245 | * @param fRepPrefix Indicates whether a repeat prefix is used
|
---|
10246 | * (doesn't matter which for this instruction).
|
---|
10247 | * @param cbInstr The instruction length in bytes.
|
---|
10248 | * @param iEffSeg The effective segment address.
|
---|
10249 | * @param fIoChecked Whether the access to the I/O port has been
|
---|
10250 | * checked or not. It's typically checked in the
|
---|
10251 | * HM scenario.
|
---|
10252 | */
|
---|
10253 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecStringIoWrite(PVMCPUCC pVCpu, uint8_t cbValue, IEMMODE enmAddrMode,
|
---|
10254 | bool fRepPrefix, uint8_t cbInstr, uint8_t iEffSeg, bool fIoChecked)
|
---|
10255 | {
|
---|
10256 | AssertMsgReturn(iEffSeg < X86_SREG_COUNT, ("%#x\n", iEffSeg), VERR_IEM_INVALID_EFF_SEG);
|
---|
10257 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
10258 |
|
---|
10259 | /*
|
---|
10260 | * State init.
|
---|
10261 | */
|
---|
10262 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10263 |
|
---|
10264 | /*
|
---|
10265 | * Switch orgy for getting to the right handler.
|
---|
10266 | */
|
---|
10267 | VBOXSTRICTRC rcStrict;
|
---|
10268 | if (fRepPrefix)
|
---|
10269 | {
|
---|
10270 | switch (enmAddrMode)
|
---|
10271 | {
|
---|
10272 | case IEMMODE_16BIT:
|
---|
10273 | switch (cbValue)
|
---|
10274 | {
|
---|
10275 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10276 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10277 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10278 | default:
|
---|
10279 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10280 | }
|
---|
10281 | break;
|
---|
10282 |
|
---|
10283 | case IEMMODE_32BIT:
|
---|
10284 | switch (cbValue)
|
---|
10285 | {
|
---|
10286 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10287 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10288 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10289 | default:
|
---|
10290 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10291 | }
|
---|
10292 | break;
|
---|
10293 |
|
---|
10294 | case IEMMODE_64BIT:
|
---|
10295 | switch (cbValue)
|
---|
10296 | {
|
---|
10297 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10298 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10299 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10300 | default:
|
---|
10301 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10302 | }
|
---|
10303 | break;
|
---|
10304 |
|
---|
10305 | default:
|
---|
10306 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
10307 | }
|
---|
10308 | }
|
---|
10309 | else
|
---|
10310 | {
|
---|
10311 | switch (enmAddrMode)
|
---|
10312 | {
|
---|
10313 | case IEMMODE_16BIT:
|
---|
10314 | switch (cbValue)
|
---|
10315 | {
|
---|
10316 | case 1: rcStrict = iemCImpl_outs_op8_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10317 | case 2: rcStrict = iemCImpl_outs_op16_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10318 | case 4: rcStrict = iemCImpl_outs_op32_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10319 | default:
|
---|
10320 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10321 | }
|
---|
10322 | break;
|
---|
10323 |
|
---|
10324 | case IEMMODE_32BIT:
|
---|
10325 | switch (cbValue)
|
---|
10326 | {
|
---|
10327 | case 1: rcStrict = iemCImpl_outs_op8_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10328 | case 2: rcStrict = iemCImpl_outs_op16_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10329 | case 4: rcStrict = iemCImpl_outs_op32_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10330 | default:
|
---|
10331 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10332 | }
|
---|
10333 | break;
|
---|
10334 |
|
---|
10335 | case IEMMODE_64BIT:
|
---|
10336 | switch (cbValue)
|
---|
10337 | {
|
---|
10338 | case 1: rcStrict = iemCImpl_outs_op8_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10339 | case 2: rcStrict = iemCImpl_outs_op16_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10340 | case 4: rcStrict = iemCImpl_outs_op32_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
10341 | default:
|
---|
10342 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10343 | }
|
---|
10344 | break;
|
---|
10345 |
|
---|
10346 | default:
|
---|
10347 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
10348 | }
|
---|
10349 | }
|
---|
10350 |
|
---|
10351 | if (pVCpu->iem.s.cActiveMappings)
|
---|
10352 | iemMemRollback(pVCpu);
|
---|
10353 |
|
---|
10354 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10355 | }
|
---|
10356 |
|
---|
10357 |
|
---|
10358 | /**
|
---|
10359 | * Interface for HM and EM for executing string I/O IN (read) instructions.
|
---|
10360 | *
|
---|
10361 | * This API ASSUMES that the caller has already verified that the guest code is
|
---|
10362 | * allowed to access the I/O port. (The I/O port is in the DX register in the
|
---|
10363 | * guest state.)
|
---|
10364 | *
|
---|
10365 | * @returns Strict VBox status code.
|
---|
10366 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10367 | * @param cbValue The size of the I/O port access (1, 2, or 4).
|
---|
10368 | * @param enmAddrMode The addressing mode.
|
---|
10369 | * @param fRepPrefix Indicates whether a repeat prefix is used
|
---|
10370 | * (doesn't matter which for this instruction).
|
---|
10371 | * @param cbInstr The instruction length in bytes.
|
---|
10372 | * @param fIoChecked Whether the access to the I/O port has been
|
---|
10373 | * checked or not. It's typically checked in the
|
---|
10374 | * HM scenario.
|
---|
10375 | */
|
---|
10376 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecStringIoRead(PVMCPUCC pVCpu, uint8_t cbValue, IEMMODE enmAddrMode,
|
---|
10377 | bool fRepPrefix, uint8_t cbInstr, bool fIoChecked)
|
---|
10378 | {
|
---|
10379 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
10380 |
|
---|
10381 | /*
|
---|
10382 | * State init.
|
---|
10383 | */
|
---|
10384 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10385 |
|
---|
10386 | /*
|
---|
10387 | * Switch orgy for getting to the right handler.
|
---|
10388 | */
|
---|
10389 | VBOXSTRICTRC rcStrict;
|
---|
10390 | if (fRepPrefix)
|
---|
10391 | {
|
---|
10392 | switch (enmAddrMode)
|
---|
10393 | {
|
---|
10394 | case IEMMODE_16BIT:
|
---|
10395 | switch (cbValue)
|
---|
10396 | {
|
---|
10397 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10398 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10399 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10400 | default:
|
---|
10401 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10402 | }
|
---|
10403 | break;
|
---|
10404 |
|
---|
10405 | case IEMMODE_32BIT:
|
---|
10406 | switch (cbValue)
|
---|
10407 | {
|
---|
10408 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10409 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10410 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10411 | default:
|
---|
10412 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10413 | }
|
---|
10414 | break;
|
---|
10415 |
|
---|
10416 | case IEMMODE_64BIT:
|
---|
10417 | switch (cbValue)
|
---|
10418 | {
|
---|
10419 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10420 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10421 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10422 | default:
|
---|
10423 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10424 | }
|
---|
10425 | break;
|
---|
10426 |
|
---|
10427 | default:
|
---|
10428 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
10429 | }
|
---|
10430 | }
|
---|
10431 | else
|
---|
10432 | {
|
---|
10433 | switch (enmAddrMode)
|
---|
10434 | {
|
---|
10435 | case IEMMODE_16BIT:
|
---|
10436 | switch (cbValue)
|
---|
10437 | {
|
---|
10438 | case 1: rcStrict = iemCImpl_ins_op8_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10439 | case 2: rcStrict = iemCImpl_ins_op16_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10440 | case 4: rcStrict = iemCImpl_ins_op32_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
10441 | default:
|
---|
10442 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10443 | }
|
---|
10444 | break;
|
---|
10445 |
|
---|
10446 | case IEMMODE_32BIT:
|
---|
10447 | switch (cbValue)
|
---|
10448 | {
|
---|
10449 | case 1: rcStrict = iemCImpl_ins_op8_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10450 | case 2: rcStrict = iemCImpl_ins_op16_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10451 | case 4: rcStrict = iemCImpl_ins_op32_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
10452 | default:
|
---|
10453 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10454 | }
|
---|
10455 | break;
|
---|
10456 |
|
---|
10457 | case IEMMODE_64BIT:
|
---|
10458 | switch (cbValue)
|
---|
10459 | {
|
---|
10460 | case 1: rcStrict = iemCImpl_ins_op8_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10461 | case 2: rcStrict = iemCImpl_ins_op16_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10462 | case 4: rcStrict = iemCImpl_ins_op32_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
10463 | default:
|
---|
10464 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
10465 | }
|
---|
10466 | break;
|
---|
10467 |
|
---|
10468 | default:
|
---|
10469 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
10470 | }
|
---|
10471 | }
|
---|
10472 |
|
---|
10473 | if ( pVCpu->iem.s.cActiveMappings == 0
|
---|
10474 | || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM))
|
---|
10475 | { /* likely */ }
|
---|
10476 | else
|
---|
10477 | {
|
---|
10478 | AssertMsg(!IOM_SUCCESS(rcStrict), ("%#x\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
10479 | iemMemRollback(pVCpu);
|
---|
10480 | }
|
---|
10481 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10482 | }
|
---|
10483 |
|
---|
10484 |
|
---|
10485 | /**
|
---|
10486 | * Interface for rawmode to write execute an OUT instruction.
|
---|
10487 | *
|
---|
10488 | * @returns Strict VBox status code.
|
---|
10489 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10490 | * @param cbInstr The instruction length in bytes.
|
---|
10491 | * @param u16Port The port to read.
|
---|
10492 | * @param fImm Whether the port is specified using an immediate operand or
|
---|
10493 | * using the implicit DX register.
|
---|
10494 | * @param cbReg The register size.
|
---|
10495 | *
|
---|
10496 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10497 | */
|
---|
10498 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedOut(PVMCPUCC pVCpu, uint8_t cbInstr, uint16_t u16Port, bool fImm, uint8_t cbReg)
|
---|
10499 | {
|
---|
10500 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
10501 | Assert(cbReg <= 4 && cbReg != 3);
|
---|
10502 |
|
---|
10503 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10504 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_3(iemCImpl_out, u16Port, cbReg,
|
---|
10505 | ((uint8_t)fImm << 7) | 0xf /** @todo never worked with intercepts */);
|
---|
10506 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10507 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10508 | }
|
---|
10509 |
|
---|
10510 |
|
---|
10511 | /**
|
---|
10512 | * Interface for rawmode to write execute an IN instruction.
|
---|
10513 | *
|
---|
10514 | * @returns Strict VBox status code.
|
---|
10515 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10516 | * @param cbInstr The instruction length in bytes.
|
---|
10517 | * @param u16Port The port to read.
|
---|
10518 | * @param fImm Whether the port is specified using an immediate operand or
|
---|
10519 | * using the implicit DX.
|
---|
10520 | * @param cbReg The register size.
|
---|
10521 | */
|
---|
10522 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedIn(PVMCPUCC pVCpu, uint8_t cbInstr, uint16_t u16Port, bool fImm, uint8_t cbReg)
|
---|
10523 | {
|
---|
10524 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
10525 | Assert(cbReg <= 4 && cbReg != 3);
|
---|
10526 |
|
---|
10527 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10528 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_3(iemCImpl_in, u16Port, cbReg,
|
---|
10529 | ((uint8_t)fImm << 7) | 0xf /** @todo never worked with intercepts */);
|
---|
10530 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10531 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10532 | }
|
---|
10533 |
|
---|
10534 |
|
---|
10535 | /**
|
---|
10536 | * Interface for HM and EM to write to a CRx register.
|
---|
10537 | *
|
---|
10538 | * @returns Strict VBox status code.
|
---|
10539 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10540 | * @param cbInstr The instruction length in bytes.
|
---|
10541 | * @param iCrReg The control register number (destination).
|
---|
10542 | * @param iGReg The general purpose register number (source).
|
---|
10543 | *
|
---|
10544 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10545 | */
|
---|
10546 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovCRxWrite(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iCrReg, uint8_t iGReg)
|
---|
10547 | {
|
---|
10548 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10549 | Assert(iCrReg < 16);
|
---|
10550 | Assert(iGReg < 16);
|
---|
10551 |
|
---|
10552 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10553 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Cd_Rd, iCrReg, iGReg);
|
---|
10554 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10555 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10556 | }
|
---|
10557 |
|
---|
10558 |
|
---|
10559 | /**
|
---|
10560 | * Interface for HM and EM to read from a CRx register.
|
---|
10561 | *
|
---|
10562 | * @returns Strict VBox status code.
|
---|
10563 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10564 | * @param cbInstr The instruction length in bytes.
|
---|
10565 | * @param iGReg The general purpose register number (destination).
|
---|
10566 | * @param iCrReg The control register number (source).
|
---|
10567 | *
|
---|
10568 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10569 | */
|
---|
10570 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovCRxRead(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
|
---|
10571 | {
|
---|
10572 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10573 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
|
---|
10574 | | CPUMCTX_EXTRN_APIC_TPR);
|
---|
10575 | Assert(iCrReg < 16);
|
---|
10576 | Assert(iGReg < 16);
|
---|
10577 |
|
---|
10578 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10579 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Rd_Cd, iGReg, iCrReg);
|
---|
10580 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10581 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10582 | }
|
---|
10583 |
|
---|
10584 |
|
---|
10585 | /**
|
---|
10586 | * Interface for HM and EM to write to a DRx register.
|
---|
10587 | *
|
---|
10588 | * @returns Strict VBox status code.
|
---|
10589 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10590 | * @param cbInstr The instruction length in bytes.
|
---|
10591 | * @param iDrReg The debug register number (destination).
|
---|
10592 | * @param iGReg The general purpose register number (source).
|
---|
10593 | *
|
---|
10594 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10595 | */
|
---|
10596 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovDRxWrite(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iDrReg, uint8_t iGReg)
|
---|
10597 | {
|
---|
10598 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10599 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_DR7);
|
---|
10600 | Assert(iDrReg < 8);
|
---|
10601 | Assert(iGReg < 16);
|
---|
10602 |
|
---|
10603 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10604 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Dd_Rd, iDrReg, iGReg);
|
---|
10605 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10606 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10607 | }
|
---|
10608 |
|
---|
10609 |
|
---|
10610 | /**
|
---|
10611 | * Interface for HM and EM to read from a DRx register.
|
---|
10612 | *
|
---|
10613 | * @returns Strict VBox status code.
|
---|
10614 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10615 | * @param cbInstr The instruction length in bytes.
|
---|
10616 | * @param iGReg The general purpose register number (destination).
|
---|
10617 | * @param iDrReg The debug register number (source).
|
---|
10618 | *
|
---|
10619 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10620 | */
|
---|
10621 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovDRxRead(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iGReg, uint8_t iDrReg)
|
---|
10622 | {
|
---|
10623 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10624 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_DR7);
|
---|
10625 | Assert(iDrReg < 8);
|
---|
10626 | Assert(iGReg < 16);
|
---|
10627 |
|
---|
10628 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10629 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Rd_Dd, iGReg, iDrReg);
|
---|
10630 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10631 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10632 | }
|
---|
10633 |
|
---|
10634 |
|
---|
10635 | /**
|
---|
10636 | * Interface for HM and EM to clear the CR0[TS] bit.
|
---|
10637 | *
|
---|
10638 | * @returns Strict VBox status code.
|
---|
10639 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10640 | * @param cbInstr The instruction length in bytes.
|
---|
10641 | *
|
---|
10642 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10643 | */
|
---|
10644 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedClts(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10645 | {
|
---|
10646 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10647 |
|
---|
10648 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10649 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_clts);
|
---|
10650 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10651 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10652 | }
|
---|
10653 |
|
---|
10654 |
|
---|
10655 | /**
|
---|
10656 | * Interface for HM and EM to emulate the LMSW instruction (loads CR0).
|
---|
10657 | *
|
---|
10658 | * @returns Strict VBox status code.
|
---|
10659 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10660 | * @param cbInstr The instruction length in bytes.
|
---|
10661 | * @param uValue The value to load into CR0.
|
---|
10662 | * @param GCPtrEffDst The guest-linear address if the LMSW instruction has a
|
---|
10663 | * memory operand. Otherwise pass NIL_RTGCPTR.
|
---|
10664 | *
|
---|
10665 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10666 | */
|
---|
10667 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedLmsw(PVMCPUCC pVCpu, uint8_t cbInstr, uint16_t uValue, RTGCPTR GCPtrEffDst)
|
---|
10668 | {
|
---|
10669 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10670 |
|
---|
10671 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10672 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_lmsw, uValue, GCPtrEffDst);
|
---|
10673 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10674 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10675 | }
|
---|
10676 |
|
---|
10677 |
|
---|
10678 | /**
|
---|
10679 | * Interface for HM and EM to emulate the XSETBV instruction (loads XCRx).
|
---|
10680 | *
|
---|
10681 | * Takes input values in ecx and edx:eax of the CPU context of the calling EMT.
|
---|
10682 | *
|
---|
10683 | * @returns Strict VBox status code.
|
---|
10684 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
10685 | * @param cbInstr The instruction length in bytes.
|
---|
10686 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10687 | * @thread EMT(pVCpu)
|
---|
10688 | */
|
---|
10689 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedXsetbv(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10690 | {
|
---|
10691 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10692 |
|
---|
10693 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10694 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_xsetbv);
|
---|
10695 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10696 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10697 | }
|
---|
10698 |
|
---|
10699 |
|
---|
10700 | /**
|
---|
10701 | * Interface for HM and EM to emulate the WBINVD instruction.
|
---|
10702 | *
|
---|
10703 | * @returns Strict VBox status code.
|
---|
10704 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10705 | * @param cbInstr The instruction length in bytes.
|
---|
10706 | *
|
---|
10707 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10708 | */
|
---|
10709 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedWbinvd(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10710 | {
|
---|
10711 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10712 |
|
---|
10713 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10714 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_wbinvd);
|
---|
10715 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10716 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10717 | }
|
---|
10718 |
|
---|
10719 |
|
---|
10720 | /**
|
---|
10721 | * Interface for HM and EM to emulate the INVD instruction.
|
---|
10722 | *
|
---|
10723 | * @returns Strict VBox status code.
|
---|
10724 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10725 | * @param cbInstr The instruction length in bytes.
|
---|
10726 | *
|
---|
10727 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10728 | */
|
---|
10729 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvd(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10730 | {
|
---|
10731 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10732 |
|
---|
10733 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10734 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_invd);
|
---|
10735 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10736 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10737 | }
|
---|
10738 |
|
---|
10739 |
|
---|
10740 | /**
|
---|
10741 | * Interface for HM and EM to emulate the INVLPG instruction.
|
---|
10742 | *
|
---|
10743 | * @returns Strict VBox status code.
|
---|
10744 | * @retval VINF_PGM_SYNC_CR3
|
---|
10745 | *
|
---|
10746 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10747 | * @param cbInstr The instruction length in bytes.
|
---|
10748 | * @param GCPtrPage The effective address of the page to invalidate.
|
---|
10749 | *
|
---|
10750 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10751 | */
|
---|
10752 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvlpg(PVMCPUCC pVCpu, uint8_t cbInstr, RTGCPTR GCPtrPage)
|
---|
10753 | {
|
---|
10754 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10755 |
|
---|
10756 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10757 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_1(iemCImpl_invlpg, GCPtrPage);
|
---|
10758 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10759 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10760 | }
|
---|
10761 |
|
---|
10762 |
|
---|
10763 | /**
|
---|
10764 | * Interface for HM and EM to emulate the INVPCID instruction.
|
---|
10765 | *
|
---|
10766 | * @returns Strict VBox status code.
|
---|
10767 | * @retval VINF_PGM_SYNC_CR3
|
---|
10768 | *
|
---|
10769 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10770 | * @param cbInstr The instruction length in bytes.
|
---|
10771 | * @param iEffSeg The effective segment register.
|
---|
10772 | * @param GCPtrDesc The effective address of the INVPCID descriptor.
|
---|
10773 | * @param uType The invalidation type.
|
---|
10774 | *
|
---|
10775 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
10776 | */
|
---|
10777 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvpcid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrDesc,
|
---|
10778 | uint64_t uType)
|
---|
10779 | {
|
---|
10780 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 4);
|
---|
10781 |
|
---|
10782 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10783 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_3(iemCImpl_invpcid, iEffSeg, GCPtrDesc, uType);
|
---|
10784 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10785 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10786 | }
|
---|
10787 |
|
---|
10788 |
|
---|
10789 | /**
|
---|
10790 | * Interface for HM and EM to emulate the CPUID instruction.
|
---|
10791 | *
|
---|
10792 | * @returns Strict VBox status code.
|
---|
10793 | *
|
---|
10794 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10795 | * @param cbInstr The instruction length in bytes.
|
---|
10796 | *
|
---|
10797 | * @remarks Not all of the state needs to be synced in, the usual pluss RAX and RCX.
|
---|
10798 | */
|
---|
10799 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedCpuid(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10800 | {
|
---|
10801 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10802 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
|
---|
10803 |
|
---|
10804 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10805 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_cpuid);
|
---|
10806 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10807 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10808 | }
|
---|
10809 |
|
---|
10810 |
|
---|
10811 | /**
|
---|
10812 | * Interface for HM and EM to emulate the RDPMC instruction.
|
---|
10813 | *
|
---|
10814 | * @returns Strict VBox status code.
|
---|
10815 | *
|
---|
10816 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10817 | * @param cbInstr The instruction length in bytes.
|
---|
10818 | *
|
---|
10819 | * @remarks Not all of the state needs to be synced in.
|
---|
10820 | */
|
---|
10821 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedRdpmc(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10822 | {
|
---|
10823 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10824 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
|
---|
10825 |
|
---|
10826 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10827 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_rdpmc);
|
---|
10828 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10829 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10830 | }
|
---|
10831 |
|
---|
10832 |
|
---|
10833 | /**
|
---|
10834 | * Interface for HM and EM to emulate the RDTSC instruction.
|
---|
10835 | *
|
---|
10836 | * @returns Strict VBox status code.
|
---|
10837 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10838 | *
|
---|
10839 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10840 | * @param cbInstr The instruction length in bytes.
|
---|
10841 | *
|
---|
10842 | * @remarks Not all of the state needs to be synced in.
|
---|
10843 | */
|
---|
10844 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedRdtsc(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10845 | {
|
---|
10846 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10847 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
|
---|
10848 |
|
---|
10849 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10850 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_rdtsc);
|
---|
10851 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10852 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10853 | }
|
---|
10854 |
|
---|
10855 |
|
---|
10856 | /**
|
---|
10857 | * Interface for HM and EM to emulate the RDTSCP instruction.
|
---|
10858 | *
|
---|
10859 | * @returns Strict VBox status code.
|
---|
10860 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10861 | *
|
---|
10862 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10863 | * @param cbInstr The instruction length in bytes.
|
---|
10864 | *
|
---|
10865 | * @remarks Not all of the state needs to be synced in. Recommended
|
---|
10866 | * to include CPUMCTX_EXTRN_TSC_AUX, to avoid extra fetch call.
|
---|
10867 | */
|
---|
10868 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedRdtscp(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10869 | {
|
---|
10870 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10871 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
|
---|
10872 |
|
---|
10873 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10874 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_rdtscp);
|
---|
10875 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10876 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10877 | }
|
---|
10878 |
|
---|
10879 |
|
---|
10880 | /**
|
---|
10881 | * Interface for HM and EM to emulate the RDMSR instruction.
|
---|
10882 | *
|
---|
10883 | * @returns Strict VBox status code.
|
---|
10884 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10885 | *
|
---|
10886 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10887 | * @param cbInstr The instruction length in bytes.
|
---|
10888 | *
|
---|
10889 | * @remarks Not all of the state needs to be synced in. Requires RCX and
|
---|
10890 | * (currently) all MSRs.
|
---|
10891 | */
|
---|
10892 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedRdmsr(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10893 | {
|
---|
10894 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10895 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_ALL_MSRS);
|
---|
10896 |
|
---|
10897 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10898 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_rdmsr);
|
---|
10899 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10900 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10901 | }
|
---|
10902 |
|
---|
10903 |
|
---|
10904 | /**
|
---|
10905 | * Interface for HM and EM to emulate the WRMSR instruction.
|
---|
10906 | *
|
---|
10907 | * @returns Strict VBox status code.
|
---|
10908 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10909 | *
|
---|
10910 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10911 | * @param cbInstr The instruction length in bytes.
|
---|
10912 | *
|
---|
10913 | * @remarks Not all of the state needs to be synced in. Requires RCX, RAX, RDX,
|
---|
10914 | * and (currently) all MSRs.
|
---|
10915 | */
|
---|
10916 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedWrmsr(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10917 | {
|
---|
10918 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
10919 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK
|
---|
10920 | | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_ALL_MSRS);
|
---|
10921 |
|
---|
10922 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10923 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_wrmsr);
|
---|
10924 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10925 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10926 | }
|
---|
10927 |
|
---|
10928 |
|
---|
10929 | /**
|
---|
10930 | * Interface for HM and EM to emulate the MONITOR instruction.
|
---|
10931 | *
|
---|
10932 | * @returns Strict VBox status code.
|
---|
10933 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10934 | *
|
---|
10935 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10936 | * @param cbInstr The instruction length in bytes.
|
---|
10937 | *
|
---|
10938 | * @remarks Not all of the state needs to be synced in.
|
---|
10939 | * @remarks ASSUMES the default segment of DS and no segment override prefixes
|
---|
10940 | * are used.
|
---|
10941 | */
|
---|
10942 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMonitor(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10943 | {
|
---|
10944 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10945 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
|
---|
10946 |
|
---|
10947 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10948 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_1(iemCImpl_monitor, X86_SREG_DS);
|
---|
10949 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10950 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10951 | }
|
---|
10952 |
|
---|
10953 |
|
---|
10954 | /**
|
---|
10955 | * Interface for HM and EM to emulate the MWAIT instruction.
|
---|
10956 | *
|
---|
10957 | * @returns Strict VBox status code.
|
---|
10958 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10959 | *
|
---|
10960 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10961 | * @param cbInstr The instruction length in bytes.
|
---|
10962 | *
|
---|
10963 | * @remarks Not all of the state needs to be synced in.
|
---|
10964 | */
|
---|
10965 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMwait(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10966 | {
|
---|
10967 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
10968 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RAX);
|
---|
10969 |
|
---|
10970 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10971 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_mwait);
|
---|
10972 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10973 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10974 | }
|
---|
10975 |
|
---|
10976 |
|
---|
10977 | /**
|
---|
10978 | * Interface for HM and EM to emulate the HLT instruction.
|
---|
10979 | *
|
---|
10980 | * @returns Strict VBox status code.
|
---|
10981 | * @retval VINF_IEM_RAISED_XCPT (VINF_EM_RESCHEDULE) if exception is raised.
|
---|
10982 | *
|
---|
10983 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10984 | * @param cbInstr The instruction length in bytes.
|
---|
10985 | *
|
---|
10986 | * @remarks Not all of the state needs to be synced in.
|
---|
10987 | */
|
---|
10988 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedHlt(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
10989 | {
|
---|
10990 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
10991 |
|
---|
10992 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
10993 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_hlt);
|
---|
10994 | Assert(!pVCpu->iem.s.cActiveMappings);
|
---|
10995 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
10996 | }
|
---|
10997 |
|
---|
10998 |
|
---|
10999 | /**
|
---|
11000 | * Checks if IEM is in the process of delivering an event (interrupt or
|
---|
11001 | * exception).
|
---|
11002 | *
|
---|
11003 | * @returns true if we're in the process of raising an interrupt or exception,
|
---|
11004 | * false otherwise.
|
---|
11005 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11006 | * @param puVector Where to store the vector associated with the
|
---|
11007 | * currently delivered event, optional.
|
---|
11008 | * @param pfFlags Where to store th event delivery flags (see
|
---|
11009 | * IEM_XCPT_FLAGS_XXX), optional.
|
---|
11010 | * @param puErr Where to store the error code associated with the
|
---|
11011 | * event, optional.
|
---|
11012 | * @param puCr2 Where to store the CR2 associated with the event,
|
---|
11013 | * optional.
|
---|
11014 | * @remarks The caller should check the flags to determine if the error code and
|
---|
11015 | * CR2 are valid for the event.
|
---|
11016 | */
|
---|
11017 | VMM_INT_DECL(bool) IEMGetCurrentXcpt(PVMCPUCC pVCpu, uint8_t *puVector, uint32_t *pfFlags, uint32_t *puErr, uint64_t *puCr2)
|
---|
11018 | {
|
---|
11019 | bool const fRaisingXcpt = pVCpu->iem.s.cXcptRecursions > 0;
|
---|
11020 | if (fRaisingXcpt)
|
---|
11021 | {
|
---|
11022 | if (puVector)
|
---|
11023 | *puVector = pVCpu->iem.s.uCurXcpt;
|
---|
11024 | if (pfFlags)
|
---|
11025 | *pfFlags = pVCpu->iem.s.fCurXcpt;
|
---|
11026 | if (puErr)
|
---|
11027 | *puErr = pVCpu->iem.s.uCurXcptErr;
|
---|
11028 | if (puCr2)
|
---|
11029 | *puCr2 = pVCpu->iem.s.uCurXcptCr2;
|
---|
11030 | }
|
---|
11031 | return fRaisingXcpt;
|
---|
11032 | }
|
---|
11033 |
|
---|
11034 | #ifdef IN_RING3
|
---|
11035 |
|
---|
11036 | /**
|
---|
11037 | * Handles the unlikely and probably fatal merge cases.
|
---|
11038 | *
|
---|
11039 | * @returns Merged status code.
|
---|
11040 | * @param rcStrict Current EM status code.
|
---|
11041 | * @param rcStrictCommit The IOM I/O or MMIO write commit status to merge
|
---|
11042 | * with @a rcStrict.
|
---|
11043 | * @param iMemMap The memory mapping index. For error reporting only.
|
---|
11044 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
11045 | * thread, for error reporting only.
|
---|
11046 | */
|
---|
11047 | DECL_NO_INLINE(static, VBOXSTRICTRC) iemR3MergeStatusSlow(VBOXSTRICTRC rcStrict, VBOXSTRICTRC rcStrictCommit,
|
---|
11048 | unsigned iMemMap, PVMCPUCC pVCpu)
|
---|
11049 | {
|
---|
11050 | if (RT_FAILURE_NP(rcStrict))
|
---|
11051 | return rcStrict;
|
---|
11052 |
|
---|
11053 | if (RT_FAILURE_NP(rcStrictCommit))
|
---|
11054 | return rcStrictCommit;
|
---|
11055 |
|
---|
11056 | if (rcStrict == rcStrictCommit)
|
---|
11057 | return rcStrictCommit;
|
---|
11058 |
|
---|
11059 | AssertLogRelMsgFailed(("rcStrictCommit=%Rrc rcStrict=%Rrc iMemMap=%u fAccess=%#x FirstPg=%RGp LB %u SecondPg=%RGp LB %u\n",
|
---|
11060 | VBOXSTRICTRC_VAL(rcStrictCommit), VBOXSTRICTRC_VAL(rcStrict), iMemMap,
|
---|
11061 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess,
|
---|
11062 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst,
|
---|
11063 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond));
|
---|
11064 | return VERR_IOM_FF_STATUS_IPE;
|
---|
11065 | }
|
---|
11066 |
|
---|
11067 |
|
---|
11068 | /**
|
---|
11069 | * Helper for IOMR3ProcessForceFlag.
|
---|
11070 | *
|
---|
11071 | * @returns Merged status code.
|
---|
11072 | * @param rcStrict Current EM status code.
|
---|
11073 | * @param rcStrictCommit The IOM I/O or MMIO write commit status to merge
|
---|
11074 | * with @a rcStrict.
|
---|
11075 | * @param iMemMap The memory mapping index. For error reporting only.
|
---|
11076 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
11077 | * thread, for error reporting only.
|
---|
11078 | */
|
---|
11079 | DECLINLINE(VBOXSTRICTRC) iemR3MergeStatus(VBOXSTRICTRC rcStrict, VBOXSTRICTRC rcStrictCommit, unsigned iMemMap, PVMCPUCC pVCpu)
|
---|
11080 | {
|
---|
11081 | /* Simple. */
|
---|
11082 | if (RT_LIKELY(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RAW_TO_R3))
|
---|
11083 | return rcStrictCommit;
|
---|
11084 |
|
---|
11085 | if (RT_LIKELY(rcStrictCommit == VINF_SUCCESS))
|
---|
11086 | return rcStrict;
|
---|
11087 |
|
---|
11088 | /* EM scheduling status codes. */
|
---|
11089 | if (RT_LIKELY( rcStrict >= VINF_EM_FIRST
|
---|
11090 | && rcStrict <= VINF_EM_LAST))
|
---|
11091 | {
|
---|
11092 | if (RT_LIKELY( rcStrictCommit >= VINF_EM_FIRST
|
---|
11093 | && rcStrictCommit <= VINF_EM_LAST))
|
---|
11094 | return rcStrict < rcStrictCommit ? rcStrict : rcStrictCommit;
|
---|
11095 | }
|
---|
11096 |
|
---|
11097 | /* Unlikely */
|
---|
11098 | return iemR3MergeStatusSlow(rcStrict, rcStrictCommit, iMemMap, pVCpu);
|
---|
11099 | }
|
---|
11100 |
|
---|
11101 |
|
---|
11102 | /**
|
---|
11103 | * Called by force-flag handling code when VMCPU_FF_IEM is set.
|
---|
11104 | *
|
---|
11105 | * @returns Merge between @a rcStrict and what the commit operation returned.
|
---|
11106 | * @param pVM The cross context VM structure.
|
---|
11107 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
11108 | * @param rcStrict The status code returned by ring-0 or raw-mode.
|
---|
11109 | */
|
---|
11110 | VMMR3_INT_DECL(VBOXSTRICTRC) IEMR3ProcessForceFlag(PVM pVM, PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict)
|
---|
11111 | {
|
---|
11112 | /*
|
---|
11113 | * Reset the pending commit.
|
---|
11114 | */
|
---|
11115 | AssertMsg( (pVCpu->iem.s.aMemMappings[0].fAccess | pVCpu->iem.s.aMemMappings[1].fAccess | pVCpu->iem.s.aMemMappings[2].fAccess)
|
---|
11116 | & (IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND),
|
---|
11117 | ("%#x %#x %#x\n",
|
---|
11118 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemMappings[2].fAccess));
|
---|
11119 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_IEM);
|
---|
11120 |
|
---|
11121 | /*
|
---|
11122 | * Commit the pending bounce buffers (usually just one).
|
---|
11123 | */
|
---|
11124 | unsigned cBufs = 0;
|
---|
11125 | unsigned iMemMap = RT_ELEMENTS(pVCpu->iem.s.aMemMappings);
|
---|
11126 | while (iMemMap-- > 0)
|
---|
11127 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND))
|
---|
11128 | {
|
---|
11129 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE);
|
---|
11130 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED);
|
---|
11131 | Assert(!pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned);
|
---|
11132 |
|
---|
11133 | uint16_t const cbFirst = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst;
|
---|
11134 | uint16_t const cbSecond = pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
11135 | uint8_t const *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
11136 |
|
---|
11137 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_PENDING_R3_WRITE_1ST)
|
---|
11138 | {
|
---|
11139 | VBOXSTRICTRC rcStrictCommit1 = PGMPhysWrite(pVM,
|
---|
11140 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
11141 | pbBuf,
|
---|
11142 | cbFirst,
|
---|
11143 | PGMACCESSORIGIN_IEM);
|
---|
11144 | rcStrict = iemR3MergeStatus(rcStrict, rcStrictCommit1, iMemMap, pVCpu);
|
---|
11145 | Log(("IEMR3ProcessForceFlag: iMemMap=%u GCPhysFirst=%RGp LB %#x %Rrc => %Rrc\n",
|
---|
11146 | iMemMap, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
11147 | VBOXSTRICTRC_VAL(rcStrictCommit1), VBOXSTRICTRC_VAL(rcStrict)));
|
---|
11148 | }
|
---|
11149 |
|
---|
11150 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_PENDING_R3_WRITE_2ND)
|
---|
11151 | {
|
---|
11152 | VBOXSTRICTRC rcStrictCommit2 = PGMPhysWrite(pVM,
|
---|
11153 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
11154 | pbBuf + cbFirst,
|
---|
11155 | cbSecond,
|
---|
11156 | PGMACCESSORIGIN_IEM);
|
---|
11157 | rcStrict = iemR3MergeStatus(rcStrict, rcStrictCommit2, iMemMap, pVCpu);
|
---|
11158 | Log(("IEMR3ProcessForceFlag: iMemMap=%u GCPhysSecond=%RGp LB %#x %Rrc => %Rrc\n",
|
---|
11159 | iMemMap, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond,
|
---|
11160 | VBOXSTRICTRC_VAL(rcStrictCommit2), VBOXSTRICTRC_VAL(rcStrict)));
|
---|
11161 | }
|
---|
11162 | cBufs++;
|
---|
11163 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
11164 | }
|
---|
11165 |
|
---|
11166 | AssertMsg(cBufs > 0 && cBufs == pVCpu->iem.s.cActiveMappings,
|
---|
11167 | ("cBufs=%u cActiveMappings=%u - %#x %#x %#x\n", cBufs, pVCpu->iem.s.cActiveMappings,
|
---|
11168 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemMappings[2].fAccess));
|
---|
11169 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
11170 | return rcStrict;
|
---|
11171 | }
|
---|
11172 |
|
---|
11173 | #endif /* IN_RING3 */
|
---|
11174 |
|
---|