1 | /* $Id: IEMAll.cpp 61068 2016-05-20 01:24:53Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Interpreted Execution Manager - All Contexts.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2015 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /** @page pg_iem IEM - Interpreted Execution Manager
|
---|
20 | *
|
---|
21 | * The interpreted exeuction manager (IEM) is for executing short guest code
|
---|
22 | * sequences that are causing too many exits / virtualization traps. It will
|
---|
23 | * also be used to interpret single instructions, thus replacing the selective
|
---|
24 | * interpreters in EM and IOM.
|
---|
25 | *
|
---|
26 | * Design goals:
|
---|
27 | * - Relatively small footprint, although we favour speed and correctness
|
---|
28 | * over size.
|
---|
29 | * - Reasonably fast.
|
---|
30 | * - Correctly handle lock prefixed instructions.
|
---|
31 | * - Complete instruction set - eventually.
|
---|
32 | * - Refactorable into a recompiler, maybe.
|
---|
33 | * - Replace EMInterpret*.
|
---|
34 | *
|
---|
35 | * Using the existing disassembler has been considered, however this is thought
|
---|
36 | * to conflict with speed as the disassembler chews things a bit too much while
|
---|
37 | * leaving us with a somewhat complicated state to interpret afterwards.
|
---|
38 | *
|
---|
39 | *
|
---|
40 | * The current code is very much work in progress. You've been warned!
|
---|
41 | *
|
---|
42 | *
|
---|
43 | * @section sec_iem_fpu_instr FPU Instructions
|
---|
44 | *
|
---|
45 | * On x86 and AMD64 hosts, the FPU instructions are implemented by executing the
|
---|
46 | * same or equivalent instructions on the host FPU. To make life easy, we also
|
---|
47 | * let the FPU prioritize the unmasked exceptions for us. This however, only
|
---|
48 | * works reliably when CR0.NE is set, i.e. when using \#MF instead the IRQ 13
|
---|
49 | * for FPU exception delivery, because with CR0.NE=0 there is a window where we
|
---|
50 | * can trigger spurious FPU exceptions.
|
---|
51 | *
|
---|
52 | * The guest FPU state is not loaded into the host CPU and kept there till we
|
---|
53 | * leave IEM because the calling conventions have declared an all year open
|
---|
54 | * season on much of the FPU state. For instance an innocent looking call to
|
---|
55 | * memcpy might end up using a whole bunch of XMM or MM registers if the
|
---|
56 | * particular implementation finds it worthwhile.
|
---|
57 | *
|
---|
58 | *
|
---|
59 | * @section sec_iem_logging Logging
|
---|
60 | *
|
---|
61 | * The IEM code uses the \"IEM\" log group for the main logging. The different
|
---|
62 | * logging levels/flags are generally used for the following purposes:
|
---|
63 | * - Level 1 (Log) : Errors, exceptions, interrupts and such major events.
|
---|
64 | * - Flow (LogFlow): Basic enter/exit IEM state info.
|
---|
65 | * - Level 2 (Log2): ?
|
---|
66 | * - Level 3 (Log3): More detailed enter/exit IEM state info.
|
---|
67 | * - Level 4 (Log4): Decoding mnemonics w/ EIP.
|
---|
68 | * - Level 5 (Log5): Decoding details.
|
---|
69 | * - Level 6 (Log6): Enables/disables the lockstep comparison with REM.
|
---|
70 | * - Level 7 (Log7): iret++ execution logging.
|
---|
71 | * - Level 8 (Log8): Memory writes.
|
---|
72 | * - Level 9 (Log9): Memory reads.
|
---|
73 | *
|
---|
74 | */
|
---|
75 |
|
---|
76 | /** @def IEM_VERIFICATION_MODE_MINIMAL
|
---|
77 | * Use for pitting IEM against EM or something else in ring-0 or raw-mode
|
---|
78 | * context. */
|
---|
79 | #if defined(DOXYGEN_RUNNING)
|
---|
80 | # define IEM_VERIFICATION_MODE_MINIMAL
|
---|
81 | #endif
|
---|
82 | //#define IEM_LOG_MEMORY_WRITES
|
---|
83 | #define IEM_IMPLEMENTS_TASKSWITCH
|
---|
84 |
|
---|
85 |
|
---|
86 | /*********************************************************************************************************************************
|
---|
87 | * Header Files *
|
---|
88 | *********************************************************************************************************************************/
|
---|
89 | #define LOG_GROUP LOG_GROUP_IEM
|
---|
90 | #include <VBox/vmm/iem.h>
|
---|
91 | #include <VBox/vmm/cpum.h>
|
---|
92 | #include <VBox/vmm/pdm.h>
|
---|
93 | #include <VBox/vmm/pgm.h>
|
---|
94 | #include <internal/pgm.h>
|
---|
95 | #include <VBox/vmm/iom.h>
|
---|
96 | #include <VBox/vmm/em.h>
|
---|
97 | #include <VBox/vmm/hm.h>
|
---|
98 | #include <VBox/vmm/tm.h>
|
---|
99 | #include <VBox/vmm/dbgf.h>
|
---|
100 | #include <VBox/vmm/dbgftrace.h>
|
---|
101 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
102 | # include <VBox/vmm/patm.h>
|
---|
103 | # if defined(VBOX_WITH_CALL_RECORD) || defined(REM_MONITOR_CODE_PAGES)
|
---|
104 | # include <VBox/vmm/csam.h>
|
---|
105 | # endif
|
---|
106 | #endif
|
---|
107 | #include "IEMInternal.h"
|
---|
108 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
109 | # include <VBox/vmm/rem.h>
|
---|
110 | # include <VBox/vmm/mm.h>
|
---|
111 | #endif
|
---|
112 | #include <VBox/vmm/vm.h>
|
---|
113 | #include <VBox/log.h>
|
---|
114 | #include <VBox/err.h>
|
---|
115 | #include <VBox/param.h>
|
---|
116 | #include <VBox/dis.h>
|
---|
117 | #include <VBox/disopcode.h>
|
---|
118 | #include <iprt/assert.h>
|
---|
119 | #include <iprt/string.h>
|
---|
120 | #include <iprt/x86.h>
|
---|
121 |
|
---|
122 |
|
---|
123 |
|
---|
124 | /*********************************************************************************************************************************
|
---|
125 | * Structures and Typedefs *
|
---|
126 | *********************************************************************************************************************************/
|
---|
127 | /** @typedef PFNIEMOP
|
---|
128 | * Pointer to an opcode decoder function.
|
---|
129 | */
|
---|
130 |
|
---|
131 | /** @def FNIEMOP_DEF
|
---|
132 | * Define an opcode decoder function.
|
---|
133 | *
|
---|
134 | * We're using macors for this so that adding and removing parameters as well as
|
---|
135 | * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
|
---|
136 | *
|
---|
137 | * @param a_Name The function name.
|
---|
138 | */
|
---|
139 |
|
---|
140 |
|
---|
141 | #if defined(__GNUC__) && defined(RT_ARCH_X86)
|
---|
142 | typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PIEMCPU pIemCpu);
|
---|
143 | # define FNIEMOP_DEF(a_Name) \
|
---|
144 | IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PIEMCPU pIemCpu)
|
---|
145 | # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
146 | IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PIEMCPU pIemCpu, a_Type0 a_Name0)
|
---|
147 | # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
|
---|
148 | IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PIEMCPU pIemCpu, a_Type0 a_Name0, a_Type1 a_Name1)
|
---|
149 |
|
---|
150 | #elif defined(_MSC_VER) && defined(RT_ARCH_X86)
|
---|
151 | typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PIEMCPU pIemCpu);
|
---|
152 | # define FNIEMOP_DEF(a_Name) \
|
---|
153 | IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PIEMCPU pIemCpu) RT_NO_THROW_DEF
|
---|
154 | # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
155 | IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PIEMCPU pIemCpu, a_Type0 a_Name0) RT_NO_THROW_DEF
|
---|
156 | # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
|
---|
157 | IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PIEMCPU pIemCpu, a_Type0 a_Name0, a_Type1 a_Name1) RT_NO_THROW_DEF
|
---|
158 |
|
---|
159 | #elif defined(__GNUC__)
|
---|
160 | typedef VBOXSTRICTRC (* PFNIEMOP)(PIEMCPU pIemCpu);
|
---|
161 | # define FNIEMOP_DEF(a_Name) \
|
---|
162 | IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PIEMCPU pIemCpu)
|
---|
163 | # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
164 | IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PIEMCPU pIemCpu, a_Type0 a_Name0)
|
---|
165 | # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
|
---|
166 | IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PIEMCPU pIemCpu, a_Type0 a_Name0, a_Type1 a_Name1)
|
---|
167 |
|
---|
168 | #else
|
---|
169 | typedef VBOXSTRICTRC (* PFNIEMOP)(PIEMCPU pIemCpu);
|
---|
170 | # define FNIEMOP_DEF(a_Name) \
|
---|
171 | IEM_STATIC VBOXSTRICTRC a_Name(PIEMCPU pIemCpu) RT_NO_THROW_DEF
|
---|
172 | # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
173 | IEM_STATIC VBOXSTRICTRC a_Name(PIEMCPU pIemCpu, a_Type0 a_Name0) RT_NO_THROW_DEF
|
---|
174 | # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
|
---|
175 | IEM_STATIC VBOXSTRICTRC a_Name(PIEMCPU pIemCpu, a_Type0 a_Name0, a_Type1 a_Name1) RT_NO_THROW_DEF
|
---|
176 |
|
---|
177 | #endif
|
---|
178 |
|
---|
179 |
|
---|
180 | /**
|
---|
181 | * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
|
---|
182 | */
|
---|
183 | typedef union IEMSELDESC
|
---|
184 | {
|
---|
185 | /** The legacy view. */
|
---|
186 | X86DESC Legacy;
|
---|
187 | /** The long mode view. */
|
---|
188 | X86DESC64 Long;
|
---|
189 | } IEMSELDESC;
|
---|
190 | /** Pointer to a selector descriptor table entry. */
|
---|
191 | typedef IEMSELDESC *PIEMSELDESC;
|
---|
192 |
|
---|
193 |
|
---|
194 | /*********************************************************************************************************************************
|
---|
195 | * Defined Constants And Macros *
|
---|
196 | *********************************************************************************************************************************/
|
---|
197 | /** Temporary hack to disable the double execution. Will be removed in favor
|
---|
198 | * of a dedicated execution mode in EM. */
|
---|
199 | //#define IEM_VERIFICATION_MODE_NO_REM
|
---|
200 |
|
---|
201 | /** Used to shut up GCC warnings about variables that 'may be used uninitialized'
|
---|
202 | * due to GCC lacking knowledge about the value range of a switch. */
|
---|
203 | #define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
|
---|
204 |
|
---|
205 | /**
|
---|
206 | * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
|
---|
207 | * occation.
|
---|
208 | */
|
---|
209 | #ifdef LOG_ENABLED
|
---|
210 | # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
|
---|
211 | do { \
|
---|
212 | /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
|
---|
213 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
|
---|
214 | } while (0)
|
---|
215 | #else
|
---|
216 | # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
|
---|
217 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED
|
---|
218 | #endif
|
---|
219 |
|
---|
220 | /**
|
---|
221 | * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
|
---|
222 | * occation using the supplied logger statement.
|
---|
223 | *
|
---|
224 | * @param a_LoggerArgs What to log on failure.
|
---|
225 | */
|
---|
226 | #ifdef LOG_ENABLED
|
---|
227 | # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
|
---|
228 | do { \
|
---|
229 | LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
|
---|
230 | /*LogFunc(a_LoggerArgs);*/ \
|
---|
231 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
|
---|
232 | } while (0)
|
---|
233 | #else
|
---|
234 | # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
|
---|
235 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED
|
---|
236 | #endif
|
---|
237 |
|
---|
238 | /**
|
---|
239 | * Call an opcode decoder function.
|
---|
240 | *
|
---|
241 | * We're using macors for this so that adding and removing parameters can be
|
---|
242 | * done as we please. See FNIEMOP_DEF.
|
---|
243 | */
|
---|
244 | #define FNIEMOP_CALL(a_pfn) (a_pfn)(pIemCpu)
|
---|
245 |
|
---|
246 | /**
|
---|
247 | * Call a common opcode decoder function taking one extra argument.
|
---|
248 | *
|
---|
249 | * We're using macors for this so that adding and removing parameters can be
|
---|
250 | * done as we please. See FNIEMOP_DEF_1.
|
---|
251 | */
|
---|
252 | #define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pIemCpu, a0)
|
---|
253 |
|
---|
254 | /**
|
---|
255 | * Call a common opcode decoder function taking one extra argument.
|
---|
256 | *
|
---|
257 | * We're using macors for this so that adding and removing parameters can be
|
---|
258 | * done as we please. See FNIEMOP_DEF_1.
|
---|
259 | */
|
---|
260 | #define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pIemCpu, a0, a1)
|
---|
261 |
|
---|
262 | /**
|
---|
263 | * Check if we're currently executing in real or virtual 8086 mode.
|
---|
264 | *
|
---|
265 | * @returns @c true if it is, @c false if not.
|
---|
266 | * @param a_pIemCpu The IEM state of the current CPU.
|
---|
267 | */
|
---|
268 | #define IEM_IS_REAL_OR_V86_MODE(a_pIemCpu) (CPUMIsGuestInRealOrV86ModeEx((a_pIemCpu)->CTX_SUFF(pCtx)))
|
---|
269 |
|
---|
270 | /**
|
---|
271 | * Check if we're currently executing in virtual 8086 mode.
|
---|
272 | *
|
---|
273 | * @returns @c true if it is, @c false if not.
|
---|
274 | * @param a_pIemCpu The IEM state of the current CPU.
|
---|
275 | */
|
---|
276 | #define IEM_IS_V86_MODE(a_pIemCpu) (CPUMIsGuestInV86ModeEx((a_pIemCpu)->CTX_SUFF(pCtx)))
|
---|
277 |
|
---|
278 | /**
|
---|
279 | * Check if we're currently executing in long mode.
|
---|
280 | *
|
---|
281 | * @returns @c true if it is, @c false if not.
|
---|
282 | * @param a_pIemCpu The IEM state of the current CPU.
|
---|
283 | */
|
---|
284 | #define IEM_IS_LONG_MODE(a_pIemCpu) (CPUMIsGuestInLongModeEx((a_pIemCpu)->CTX_SUFF(pCtx)))
|
---|
285 |
|
---|
286 | /**
|
---|
287 | * Check if we're currently executing in real mode.
|
---|
288 | *
|
---|
289 | * @returns @c true if it is, @c false if not.
|
---|
290 | * @param a_pIemCpu The IEM state of the current CPU.
|
---|
291 | */
|
---|
292 | #define IEM_IS_REAL_MODE(a_pIemCpu) (CPUMIsGuestInRealModeEx((a_pIemCpu)->CTX_SUFF(pCtx)))
|
---|
293 |
|
---|
294 | /**
|
---|
295 | * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
|
---|
296 | * @returns PCCPUMFEATURES
|
---|
297 | * @param a_pIemCpu The IEM state of the current CPU.
|
---|
298 | */
|
---|
299 | #define IEM_GET_GUEST_CPU_FEATURES(a_pIemCpu) (&(IEMCPU_TO_VM(a_pIemCpu)->cpum.ro.GuestFeatures))
|
---|
300 |
|
---|
301 | /**
|
---|
302 | * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
|
---|
303 | * @returns PCCPUMFEATURES
|
---|
304 | * @param a_pIemCpu The IEM state of the current CPU.
|
---|
305 | */
|
---|
306 | #define IEM_GET_HOST_CPU_FEATURES(a_pIemCpu) (&(IEMCPU_TO_VM(a_pIemCpu)->cpum.ro.HostFeatures))
|
---|
307 |
|
---|
308 | /**
|
---|
309 | * Evaluates to true if we're presenting an Intel CPU to the guest.
|
---|
310 | */
|
---|
311 | #define IEM_IS_GUEST_CPU_INTEL(a_pIemCpu) ( (a_pIemCpu)->enmCpuVendor == CPUMCPUVENDOR_INTEL )
|
---|
312 |
|
---|
313 | /**
|
---|
314 | * Evaluates to true if we're presenting an AMD CPU to the guest.
|
---|
315 | */
|
---|
316 | #define IEM_IS_GUEST_CPU_AMD(a_pIemCpu) ( (a_pIemCpu)->enmCpuVendor == CPUMCPUVENDOR_AMD )
|
---|
317 |
|
---|
318 | /**
|
---|
319 | * Check if the address is canonical.
|
---|
320 | */
|
---|
321 | #define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
|
---|
322 |
|
---|
323 |
|
---|
324 | /*********************************************************************************************************************************
|
---|
325 | * Global Variables *
|
---|
326 | *********************************************************************************************************************************/
|
---|
327 | extern const PFNIEMOP g_apfnOneByteMap[256]; /* not static since we need to forward declare it. */
|
---|
328 |
|
---|
329 |
|
---|
330 | /** Function table for the ADD instruction. */
|
---|
331 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_add =
|
---|
332 | {
|
---|
333 | iemAImpl_add_u8, iemAImpl_add_u8_locked,
|
---|
334 | iemAImpl_add_u16, iemAImpl_add_u16_locked,
|
---|
335 | iemAImpl_add_u32, iemAImpl_add_u32_locked,
|
---|
336 | iemAImpl_add_u64, iemAImpl_add_u64_locked
|
---|
337 | };
|
---|
338 |
|
---|
339 | /** Function table for the ADC instruction. */
|
---|
340 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_adc =
|
---|
341 | {
|
---|
342 | iemAImpl_adc_u8, iemAImpl_adc_u8_locked,
|
---|
343 | iemAImpl_adc_u16, iemAImpl_adc_u16_locked,
|
---|
344 | iemAImpl_adc_u32, iemAImpl_adc_u32_locked,
|
---|
345 | iemAImpl_adc_u64, iemAImpl_adc_u64_locked
|
---|
346 | };
|
---|
347 |
|
---|
348 | /** Function table for the SUB instruction. */
|
---|
349 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_sub =
|
---|
350 | {
|
---|
351 | iemAImpl_sub_u8, iemAImpl_sub_u8_locked,
|
---|
352 | iemAImpl_sub_u16, iemAImpl_sub_u16_locked,
|
---|
353 | iemAImpl_sub_u32, iemAImpl_sub_u32_locked,
|
---|
354 | iemAImpl_sub_u64, iemAImpl_sub_u64_locked
|
---|
355 | };
|
---|
356 |
|
---|
357 | /** Function table for the SBB instruction. */
|
---|
358 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_sbb =
|
---|
359 | {
|
---|
360 | iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked,
|
---|
361 | iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked,
|
---|
362 | iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked,
|
---|
363 | iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked
|
---|
364 | };
|
---|
365 |
|
---|
366 | /** Function table for the OR instruction. */
|
---|
367 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_or =
|
---|
368 | {
|
---|
369 | iemAImpl_or_u8, iemAImpl_or_u8_locked,
|
---|
370 | iemAImpl_or_u16, iemAImpl_or_u16_locked,
|
---|
371 | iemAImpl_or_u32, iemAImpl_or_u32_locked,
|
---|
372 | iemAImpl_or_u64, iemAImpl_or_u64_locked
|
---|
373 | };
|
---|
374 |
|
---|
375 | /** Function table for the XOR instruction. */
|
---|
376 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_xor =
|
---|
377 | {
|
---|
378 | iemAImpl_xor_u8, iemAImpl_xor_u8_locked,
|
---|
379 | iemAImpl_xor_u16, iemAImpl_xor_u16_locked,
|
---|
380 | iemAImpl_xor_u32, iemAImpl_xor_u32_locked,
|
---|
381 | iemAImpl_xor_u64, iemAImpl_xor_u64_locked
|
---|
382 | };
|
---|
383 |
|
---|
384 | /** Function table for the AND instruction. */
|
---|
385 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_and =
|
---|
386 | {
|
---|
387 | iemAImpl_and_u8, iemAImpl_and_u8_locked,
|
---|
388 | iemAImpl_and_u16, iemAImpl_and_u16_locked,
|
---|
389 | iemAImpl_and_u32, iemAImpl_and_u32_locked,
|
---|
390 | iemAImpl_and_u64, iemAImpl_and_u64_locked
|
---|
391 | };
|
---|
392 |
|
---|
393 | /** Function table for the CMP instruction.
|
---|
394 | * @remarks Making operand order ASSUMPTIONS.
|
---|
395 | */
|
---|
396 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_cmp =
|
---|
397 | {
|
---|
398 | iemAImpl_cmp_u8, NULL,
|
---|
399 | iemAImpl_cmp_u16, NULL,
|
---|
400 | iemAImpl_cmp_u32, NULL,
|
---|
401 | iemAImpl_cmp_u64, NULL
|
---|
402 | };
|
---|
403 |
|
---|
404 | /** Function table for the TEST instruction.
|
---|
405 | * @remarks Making operand order ASSUMPTIONS.
|
---|
406 | */
|
---|
407 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_test =
|
---|
408 | {
|
---|
409 | iemAImpl_test_u8, NULL,
|
---|
410 | iemAImpl_test_u16, NULL,
|
---|
411 | iemAImpl_test_u32, NULL,
|
---|
412 | iemAImpl_test_u64, NULL
|
---|
413 | };
|
---|
414 |
|
---|
415 | /** Function table for the BT instruction. */
|
---|
416 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_bt =
|
---|
417 | {
|
---|
418 | NULL, NULL,
|
---|
419 | iemAImpl_bt_u16, NULL,
|
---|
420 | iemAImpl_bt_u32, NULL,
|
---|
421 | iemAImpl_bt_u64, NULL
|
---|
422 | };
|
---|
423 |
|
---|
424 | /** Function table for the BTC instruction. */
|
---|
425 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_btc =
|
---|
426 | {
|
---|
427 | NULL, NULL,
|
---|
428 | iemAImpl_btc_u16, iemAImpl_btc_u16_locked,
|
---|
429 | iemAImpl_btc_u32, iemAImpl_btc_u32_locked,
|
---|
430 | iemAImpl_btc_u64, iemAImpl_btc_u64_locked
|
---|
431 | };
|
---|
432 |
|
---|
433 | /** Function table for the BTR instruction. */
|
---|
434 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_btr =
|
---|
435 | {
|
---|
436 | NULL, NULL,
|
---|
437 | iemAImpl_btr_u16, iemAImpl_btr_u16_locked,
|
---|
438 | iemAImpl_btr_u32, iemAImpl_btr_u32_locked,
|
---|
439 | iemAImpl_btr_u64, iemAImpl_btr_u64_locked
|
---|
440 | };
|
---|
441 |
|
---|
442 | /** Function table for the BTS instruction. */
|
---|
443 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_bts =
|
---|
444 | {
|
---|
445 | NULL, NULL,
|
---|
446 | iemAImpl_bts_u16, iemAImpl_bts_u16_locked,
|
---|
447 | iemAImpl_bts_u32, iemAImpl_bts_u32_locked,
|
---|
448 | iemAImpl_bts_u64, iemAImpl_bts_u64_locked
|
---|
449 | };
|
---|
450 |
|
---|
451 | /** Function table for the BSF instruction. */
|
---|
452 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_bsf =
|
---|
453 | {
|
---|
454 | NULL, NULL,
|
---|
455 | iemAImpl_bsf_u16, NULL,
|
---|
456 | iemAImpl_bsf_u32, NULL,
|
---|
457 | iemAImpl_bsf_u64, NULL
|
---|
458 | };
|
---|
459 |
|
---|
460 | /** Function table for the BSR instruction. */
|
---|
461 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_bsr =
|
---|
462 | {
|
---|
463 | NULL, NULL,
|
---|
464 | iemAImpl_bsr_u16, NULL,
|
---|
465 | iemAImpl_bsr_u32, NULL,
|
---|
466 | iemAImpl_bsr_u64, NULL
|
---|
467 | };
|
---|
468 |
|
---|
469 | /** Function table for the IMUL instruction. */
|
---|
470 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_imul_two =
|
---|
471 | {
|
---|
472 | NULL, NULL,
|
---|
473 | iemAImpl_imul_two_u16, NULL,
|
---|
474 | iemAImpl_imul_two_u32, NULL,
|
---|
475 | iemAImpl_imul_two_u64, NULL
|
---|
476 | };
|
---|
477 |
|
---|
478 | /** Group 1 /r lookup table. */
|
---|
479 | IEM_STATIC const PCIEMOPBINSIZES g_apIemImplGrp1[8] =
|
---|
480 | {
|
---|
481 | &g_iemAImpl_add,
|
---|
482 | &g_iemAImpl_or,
|
---|
483 | &g_iemAImpl_adc,
|
---|
484 | &g_iemAImpl_sbb,
|
---|
485 | &g_iemAImpl_and,
|
---|
486 | &g_iemAImpl_sub,
|
---|
487 | &g_iemAImpl_xor,
|
---|
488 | &g_iemAImpl_cmp
|
---|
489 | };
|
---|
490 |
|
---|
491 | /** Function table for the INC instruction. */
|
---|
492 | IEM_STATIC const IEMOPUNARYSIZES g_iemAImpl_inc =
|
---|
493 | {
|
---|
494 | iemAImpl_inc_u8, iemAImpl_inc_u8_locked,
|
---|
495 | iemAImpl_inc_u16, iemAImpl_inc_u16_locked,
|
---|
496 | iemAImpl_inc_u32, iemAImpl_inc_u32_locked,
|
---|
497 | iemAImpl_inc_u64, iemAImpl_inc_u64_locked
|
---|
498 | };
|
---|
499 |
|
---|
500 | /** Function table for the DEC instruction. */
|
---|
501 | IEM_STATIC const IEMOPUNARYSIZES g_iemAImpl_dec =
|
---|
502 | {
|
---|
503 | iemAImpl_dec_u8, iemAImpl_dec_u8_locked,
|
---|
504 | iemAImpl_dec_u16, iemAImpl_dec_u16_locked,
|
---|
505 | iemAImpl_dec_u32, iemAImpl_dec_u32_locked,
|
---|
506 | iemAImpl_dec_u64, iemAImpl_dec_u64_locked
|
---|
507 | };
|
---|
508 |
|
---|
509 | /** Function table for the NEG instruction. */
|
---|
510 | IEM_STATIC const IEMOPUNARYSIZES g_iemAImpl_neg =
|
---|
511 | {
|
---|
512 | iemAImpl_neg_u8, iemAImpl_neg_u8_locked,
|
---|
513 | iemAImpl_neg_u16, iemAImpl_neg_u16_locked,
|
---|
514 | iemAImpl_neg_u32, iemAImpl_neg_u32_locked,
|
---|
515 | iemAImpl_neg_u64, iemAImpl_neg_u64_locked
|
---|
516 | };
|
---|
517 |
|
---|
518 | /** Function table for the NOT instruction. */
|
---|
519 | IEM_STATIC const IEMOPUNARYSIZES g_iemAImpl_not =
|
---|
520 | {
|
---|
521 | iemAImpl_not_u8, iemAImpl_not_u8_locked,
|
---|
522 | iemAImpl_not_u16, iemAImpl_not_u16_locked,
|
---|
523 | iemAImpl_not_u32, iemAImpl_not_u32_locked,
|
---|
524 | iemAImpl_not_u64, iemAImpl_not_u64_locked
|
---|
525 | };
|
---|
526 |
|
---|
527 |
|
---|
528 | /** Function table for the ROL instruction. */
|
---|
529 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_rol =
|
---|
530 | {
|
---|
531 | iemAImpl_rol_u8,
|
---|
532 | iemAImpl_rol_u16,
|
---|
533 | iemAImpl_rol_u32,
|
---|
534 | iemAImpl_rol_u64
|
---|
535 | };
|
---|
536 |
|
---|
537 | /** Function table for the ROR instruction. */
|
---|
538 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_ror =
|
---|
539 | {
|
---|
540 | iemAImpl_ror_u8,
|
---|
541 | iemAImpl_ror_u16,
|
---|
542 | iemAImpl_ror_u32,
|
---|
543 | iemAImpl_ror_u64
|
---|
544 | };
|
---|
545 |
|
---|
546 | /** Function table for the RCL instruction. */
|
---|
547 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_rcl =
|
---|
548 | {
|
---|
549 | iemAImpl_rcl_u8,
|
---|
550 | iemAImpl_rcl_u16,
|
---|
551 | iemAImpl_rcl_u32,
|
---|
552 | iemAImpl_rcl_u64
|
---|
553 | };
|
---|
554 |
|
---|
555 | /** Function table for the RCR instruction. */
|
---|
556 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_rcr =
|
---|
557 | {
|
---|
558 | iemAImpl_rcr_u8,
|
---|
559 | iemAImpl_rcr_u16,
|
---|
560 | iemAImpl_rcr_u32,
|
---|
561 | iemAImpl_rcr_u64
|
---|
562 | };
|
---|
563 |
|
---|
564 | /** Function table for the SHL instruction. */
|
---|
565 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_shl =
|
---|
566 | {
|
---|
567 | iemAImpl_shl_u8,
|
---|
568 | iemAImpl_shl_u16,
|
---|
569 | iemAImpl_shl_u32,
|
---|
570 | iemAImpl_shl_u64
|
---|
571 | };
|
---|
572 |
|
---|
573 | /** Function table for the SHR instruction. */
|
---|
574 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_shr =
|
---|
575 | {
|
---|
576 | iemAImpl_shr_u8,
|
---|
577 | iemAImpl_shr_u16,
|
---|
578 | iemAImpl_shr_u32,
|
---|
579 | iemAImpl_shr_u64
|
---|
580 | };
|
---|
581 |
|
---|
582 | /** Function table for the SAR instruction. */
|
---|
583 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_sar =
|
---|
584 | {
|
---|
585 | iemAImpl_sar_u8,
|
---|
586 | iemAImpl_sar_u16,
|
---|
587 | iemAImpl_sar_u32,
|
---|
588 | iemAImpl_sar_u64
|
---|
589 | };
|
---|
590 |
|
---|
591 |
|
---|
592 | /** Function table for the MUL instruction. */
|
---|
593 | IEM_STATIC const IEMOPMULDIVSIZES g_iemAImpl_mul =
|
---|
594 | {
|
---|
595 | iemAImpl_mul_u8,
|
---|
596 | iemAImpl_mul_u16,
|
---|
597 | iemAImpl_mul_u32,
|
---|
598 | iemAImpl_mul_u64
|
---|
599 | };
|
---|
600 |
|
---|
601 | /** Function table for the IMUL instruction working implicitly on rAX. */
|
---|
602 | IEM_STATIC const IEMOPMULDIVSIZES g_iemAImpl_imul =
|
---|
603 | {
|
---|
604 | iemAImpl_imul_u8,
|
---|
605 | iemAImpl_imul_u16,
|
---|
606 | iemAImpl_imul_u32,
|
---|
607 | iemAImpl_imul_u64
|
---|
608 | };
|
---|
609 |
|
---|
610 | /** Function table for the DIV instruction. */
|
---|
611 | IEM_STATIC const IEMOPMULDIVSIZES g_iemAImpl_div =
|
---|
612 | {
|
---|
613 | iemAImpl_div_u8,
|
---|
614 | iemAImpl_div_u16,
|
---|
615 | iemAImpl_div_u32,
|
---|
616 | iemAImpl_div_u64
|
---|
617 | };
|
---|
618 |
|
---|
619 | /** Function table for the MUL instruction. */
|
---|
620 | IEM_STATIC const IEMOPMULDIVSIZES g_iemAImpl_idiv =
|
---|
621 | {
|
---|
622 | iemAImpl_idiv_u8,
|
---|
623 | iemAImpl_idiv_u16,
|
---|
624 | iemAImpl_idiv_u32,
|
---|
625 | iemAImpl_idiv_u64
|
---|
626 | };
|
---|
627 |
|
---|
628 | /** Function table for the SHLD instruction */
|
---|
629 | IEM_STATIC const IEMOPSHIFTDBLSIZES g_iemAImpl_shld =
|
---|
630 | {
|
---|
631 | iemAImpl_shld_u16,
|
---|
632 | iemAImpl_shld_u32,
|
---|
633 | iemAImpl_shld_u64,
|
---|
634 | };
|
---|
635 |
|
---|
636 | /** Function table for the SHRD instruction */
|
---|
637 | IEM_STATIC const IEMOPSHIFTDBLSIZES g_iemAImpl_shrd =
|
---|
638 | {
|
---|
639 | iemAImpl_shrd_u16,
|
---|
640 | iemAImpl_shrd_u32,
|
---|
641 | iemAImpl_shrd_u64,
|
---|
642 | };
|
---|
643 |
|
---|
644 |
|
---|
645 | /** Function table for the PUNPCKLBW instruction */
|
---|
646 | IEM_STATIC const IEMOPMEDIAF1L1 g_iemAImpl_punpcklbw = { iemAImpl_punpcklbw_u64, iemAImpl_punpcklbw_u128 };
|
---|
647 | /** Function table for the PUNPCKLBD instruction */
|
---|
648 | IEM_STATIC const IEMOPMEDIAF1L1 g_iemAImpl_punpcklwd = { iemAImpl_punpcklwd_u64, iemAImpl_punpcklwd_u128 };
|
---|
649 | /** Function table for the PUNPCKLDQ instruction */
|
---|
650 | IEM_STATIC const IEMOPMEDIAF1L1 g_iemAImpl_punpckldq = { iemAImpl_punpckldq_u64, iemAImpl_punpckldq_u128 };
|
---|
651 | /** Function table for the PUNPCKLQDQ instruction */
|
---|
652 | IEM_STATIC const IEMOPMEDIAF1L1 g_iemAImpl_punpcklqdq = { NULL, iemAImpl_punpcklqdq_u128 };
|
---|
653 |
|
---|
654 | /** Function table for the PUNPCKHBW instruction */
|
---|
655 | IEM_STATIC const IEMOPMEDIAF1H1 g_iemAImpl_punpckhbw = { iemAImpl_punpckhbw_u64, iemAImpl_punpckhbw_u128 };
|
---|
656 | /** Function table for the PUNPCKHBD instruction */
|
---|
657 | IEM_STATIC const IEMOPMEDIAF1H1 g_iemAImpl_punpckhwd = { iemAImpl_punpckhwd_u64, iemAImpl_punpckhwd_u128 };
|
---|
658 | /** Function table for the PUNPCKHDQ instruction */
|
---|
659 | IEM_STATIC const IEMOPMEDIAF1H1 g_iemAImpl_punpckhdq = { iemAImpl_punpckhdq_u64, iemAImpl_punpckhdq_u128 };
|
---|
660 | /** Function table for the PUNPCKHQDQ instruction */
|
---|
661 | IEM_STATIC const IEMOPMEDIAF1H1 g_iemAImpl_punpckhqdq = { NULL, iemAImpl_punpckhqdq_u128 };
|
---|
662 |
|
---|
663 | /** Function table for the PXOR instruction */
|
---|
664 | IEM_STATIC const IEMOPMEDIAF2 g_iemAImpl_pxor = { iemAImpl_pxor_u64, iemAImpl_pxor_u128 };
|
---|
665 | /** Function table for the PCMPEQB instruction */
|
---|
666 | IEM_STATIC const IEMOPMEDIAF2 g_iemAImpl_pcmpeqb = { iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqb_u128 };
|
---|
667 | /** Function table for the PCMPEQW instruction */
|
---|
668 | IEM_STATIC const IEMOPMEDIAF2 g_iemAImpl_pcmpeqw = { iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqw_u128 };
|
---|
669 | /** Function table for the PCMPEQD instruction */
|
---|
670 | IEM_STATIC const IEMOPMEDIAF2 g_iemAImpl_pcmpeqd = { iemAImpl_pcmpeqd_u64, iemAImpl_pcmpeqd_u128 };
|
---|
671 |
|
---|
672 |
|
---|
673 | #if defined(IEM_VERIFICATION_MODE_MINIMAL) || defined(IEM_LOG_MEMORY_WRITES)
|
---|
674 | /** What IEM just wrote. */
|
---|
675 | uint8_t g_abIemWrote[256];
|
---|
676 | /** How much IEM just wrote. */
|
---|
677 | size_t g_cbIemWrote;
|
---|
678 | #endif
|
---|
679 |
|
---|
680 |
|
---|
681 | /*********************************************************************************************************************************
|
---|
682 | * Internal Functions *
|
---|
683 | *********************************************************************************************************************************/
|
---|
684 | IEM_STATIC VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PIEMCPU pIemCpu, uint16_t uErr);
|
---|
685 | IEM_STATIC VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PIEMCPU pIemCpu);
|
---|
686 | IEM_STATIC VBOXSTRICTRC iemRaiseTaskSwitchFault0(PIEMCPU pIemCpu);
|
---|
687 | IEM_STATIC VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PIEMCPU pIemCpu, uint16_t uSel);
|
---|
688 | /*IEM_STATIC VBOXSTRICTRC iemRaiseSelectorNotPresent(PIEMCPU pIemCpu, uint32_t iSegReg, uint32_t fAccess);*/
|
---|
689 | IEM_STATIC VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PIEMCPU pIemCpu, uint16_t uSel);
|
---|
690 | IEM_STATIC VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PIEMCPU pIemCpu, uint16_t uErr);
|
---|
691 | IEM_STATIC VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PIEMCPU pIemCpu, uint16_t uSel);
|
---|
692 | IEM_STATIC VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PIEMCPU pIemCpu, uint16_t uErr);
|
---|
693 | IEM_STATIC VBOXSTRICTRC iemRaiseGeneralProtectionFault(PIEMCPU pIemCpu, uint16_t uErr);
|
---|
694 | IEM_STATIC VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PIEMCPU pIemCpu);
|
---|
695 | IEM_STATIC VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PIEMCPU pIemCpu, RTSEL uSel);
|
---|
696 | IEM_STATIC VBOXSTRICTRC iemRaiseSelectorBounds(PIEMCPU pIemCpu, uint32_t iSegReg, uint32_t fAccess);
|
---|
697 | IEM_STATIC VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PIEMCPU pIemCpu, RTSEL Sel);
|
---|
698 | IEM_STATIC VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PIEMCPU pIemCpu, uint32_t iSegReg, uint32_t fAccess);
|
---|
699 | IEM_STATIC VBOXSTRICTRC iemRaisePageFault(PIEMCPU pIemCpu, RTGCPTR GCPtrWhere, uint32_t fAccess, int rc);
|
---|
700 | IEM_STATIC VBOXSTRICTRC iemRaiseAlignmentCheckException(PIEMCPU pIemCpu);
|
---|
701 | IEM_STATIC VBOXSTRICTRC iemMemMap(PIEMCPU pIemCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t fAccess);
|
---|
702 | IEM_STATIC VBOXSTRICTRC iemMemCommitAndUnmap(PIEMCPU pIemCpu, void *pvMem, uint32_t fAccess);
|
---|
703 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU32(PIEMCPU pIemCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
704 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU64(PIEMCPU pIemCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
705 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU8(PIEMCPU pIemCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
706 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU16(PIEMCPU pIemCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
707 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU32(PIEMCPU pIemCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
708 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU64(PIEMCPU pIemCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
709 | IEM_STATIC VBOXSTRICTRC iemMemFetchSelDescWithErr(PIEMCPU pIemCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt, uint16_t uErrorCode);
|
---|
710 | IEM_STATIC VBOXSTRICTRC iemMemFetchSelDesc(PIEMCPU pIemCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt);
|
---|
711 | IEM_STATIC VBOXSTRICTRC iemMemStackPushCommitSpecial(PIEMCPU pIemCpu, void *pvMem, uint64_t uNewRsp);
|
---|
712 | IEM_STATIC VBOXSTRICTRC iemMemStackPushBeginSpecial(PIEMCPU pIemCpu, size_t cbMem, void **ppvMem, uint64_t *puNewRsp);
|
---|
713 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU32(PIEMCPU pIemCpu, uint32_t u32Value);
|
---|
714 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU16(PIEMCPU pIemCpu, uint16_t u16Value);
|
---|
715 | IEM_STATIC VBOXSTRICTRC iemMemMarkSelDescAccessed(PIEMCPU pIemCpu, uint16_t uSel);
|
---|
716 | IEM_STATIC uint16_t iemSRegFetchU16(PIEMCPU pIemCpu, uint8_t iSegReg);
|
---|
717 |
|
---|
718 | #if defined(IEM_VERIFICATION_MODE_FULL) && !defined(IEM_VERIFICATION_MODE_MINIMAL)
|
---|
719 | IEM_STATIC PIEMVERIFYEVTREC iemVerifyAllocRecord(PIEMCPU pIemCpu);
|
---|
720 | #endif
|
---|
721 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortRead(PIEMCPU pIemCpu, RTIOPORT Port, uint32_t *pu32Value, size_t cbValue);
|
---|
722 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortWrite(PIEMCPU pIemCpu, RTIOPORT Port, uint32_t u32Value, size_t cbValue);
|
---|
723 |
|
---|
724 |
|
---|
725 |
|
---|
726 | /**
|
---|
727 | * Sets the pass up status.
|
---|
728 | *
|
---|
729 | * @returns VINF_SUCCESS.
|
---|
730 | * @param pIemCpu The per CPU IEM state of the calling thread.
|
---|
731 | * @param rcPassUp The pass up status. Must be informational.
|
---|
732 | * VINF_SUCCESS is not allowed.
|
---|
733 | */
|
---|
734 | IEM_STATIC int iemSetPassUpStatus(PIEMCPU pIemCpu, VBOXSTRICTRC rcPassUp)
|
---|
735 | {
|
---|
736 | AssertRC(VBOXSTRICTRC_VAL(rcPassUp)); Assert(rcPassUp != VINF_SUCCESS);
|
---|
737 |
|
---|
738 | int32_t const rcOldPassUp = pIemCpu->rcPassUp;
|
---|
739 | if (rcOldPassUp == VINF_SUCCESS)
|
---|
740 | pIemCpu->rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
741 | /* If both are EM scheduling codes, use EM priority rules. */
|
---|
742 | else if ( rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST
|
---|
743 | && rcPassUp >= VINF_EM_FIRST && rcPassUp <= VINF_EM_LAST)
|
---|
744 | {
|
---|
745 | if (rcPassUp < rcOldPassUp)
|
---|
746 | {
|
---|
747 | Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
748 | pIemCpu->rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
749 | }
|
---|
750 | else
|
---|
751 | Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
752 | }
|
---|
753 | /* Override EM scheduling with specific status code. */
|
---|
754 | else if (rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST)
|
---|
755 | {
|
---|
756 | Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
757 | pIemCpu->rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
758 | }
|
---|
759 | /* Don't override specific status code, first come first served. */
|
---|
760 | else
|
---|
761 | Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
762 | return VINF_SUCCESS;
|
---|
763 | }
|
---|
764 |
|
---|
765 |
|
---|
766 | /**
|
---|
767 | * Calculates the CPU mode.
|
---|
768 | *
|
---|
769 | * This is mainly for updating IEMCPU::enmCpuMode.
|
---|
770 | *
|
---|
771 | * @returns CPU mode.
|
---|
772 | * @param pCtx The register context for the CPU.
|
---|
773 | */
|
---|
774 | DECLINLINE(IEMMODE) iemCalcCpuMode(PCPUMCTX pCtx)
|
---|
775 | {
|
---|
776 | if (CPUMIsGuestIn64BitCodeEx(pCtx))
|
---|
777 | return IEMMODE_64BIT;
|
---|
778 | if (pCtx->cs.Attr.n.u1DefBig) /** @todo check if this is correct... */
|
---|
779 | return IEMMODE_32BIT;
|
---|
780 | return IEMMODE_16BIT;
|
---|
781 | }
|
---|
782 |
|
---|
783 |
|
---|
784 | /**
|
---|
785 | * Initializes the execution state.
|
---|
786 | *
|
---|
787 | * @param pIemCpu The per CPU IEM state.
|
---|
788 | * @param fBypassHandlers Whether to bypass access handlers.
|
---|
789 | *
|
---|
790 | * @remarks Callers of this must call iemUninitExec() to undo potentially fatal
|
---|
791 | * side-effects in strict builds.
|
---|
792 | */
|
---|
793 | DECLINLINE(void) iemInitExec(PIEMCPU pIemCpu, bool fBypassHandlers)
|
---|
794 | {
|
---|
795 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
796 | PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
|
---|
797 |
|
---|
798 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
799 |
|
---|
800 | #if defined(VBOX_STRICT) && (defined(IEM_VERIFICATION_MODE_FULL) || !defined(VBOX_WITH_RAW_MODE_NOT_R0))
|
---|
801 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs));
|
---|
802 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
|
---|
803 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->es));
|
---|
804 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ds));
|
---|
805 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->fs));
|
---|
806 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->gs));
|
---|
807 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ldtr));
|
---|
808 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->tr));
|
---|
809 | #endif
|
---|
810 |
|
---|
811 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
812 | CPUMGuestLazyLoadHiddenCsAndSs(pVCpu);
|
---|
813 | #endif
|
---|
814 | pIemCpu->uCpl = CPUMGetGuestCPL(pVCpu);
|
---|
815 | pIemCpu->enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
816 | #ifdef VBOX_STRICT
|
---|
817 | pIemCpu->enmDefAddrMode = (IEMMODE)0xc0fe;
|
---|
818 | pIemCpu->enmEffAddrMode = (IEMMODE)0xc0fe;
|
---|
819 | pIemCpu->enmDefOpSize = (IEMMODE)0xc0fe;
|
---|
820 | pIemCpu->enmEffOpSize = (IEMMODE)0xc0fe;
|
---|
821 | pIemCpu->fPrefixes = (IEMMODE)0xfeedbeef;
|
---|
822 | pIemCpu->uRexReg = 127;
|
---|
823 | pIemCpu->uRexB = 127;
|
---|
824 | pIemCpu->uRexIndex = 127;
|
---|
825 | pIemCpu->iEffSeg = 127;
|
---|
826 | pIemCpu->offOpcode = 127;
|
---|
827 | pIemCpu->cbOpcode = 127;
|
---|
828 | #endif
|
---|
829 |
|
---|
830 | pIemCpu->cActiveMappings = 0;
|
---|
831 | pIemCpu->iNextMapping = 0;
|
---|
832 | pIemCpu->rcPassUp = VINF_SUCCESS;
|
---|
833 | pIemCpu->fBypassHandlers = fBypassHandlers;
|
---|
834 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
835 | pIemCpu->fInPatchCode = pIemCpu->uCpl == 0
|
---|
836 | && pCtx->cs.u64Base == 0
|
---|
837 | && pCtx->cs.u32Limit == UINT32_MAX
|
---|
838 | && PATMIsPatchGCAddr(IEMCPU_TO_VM(pIemCpu), pCtx->eip);
|
---|
839 | if (!pIemCpu->fInPatchCode)
|
---|
840 | CPUMRawLeave(pVCpu, VINF_SUCCESS);
|
---|
841 | #endif
|
---|
842 |
|
---|
843 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
844 | pIemCpu->fNoRemSavedByExec = pIemCpu->fNoRem;
|
---|
845 | pIemCpu->fNoRem = true;
|
---|
846 | #endif
|
---|
847 | }
|
---|
848 |
|
---|
849 |
|
---|
850 | /**
|
---|
851 | * Counterpart to #iemInitExec that undoes evil strict-build stuff.
|
---|
852 | *
|
---|
853 | * @param pIemCpu The per CPU IEM state.
|
---|
854 | */
|
---|
855 | DECLINLINE(void) iemUninitExec(PIEMCPU pIemCpu)
|
---|
856 | {
|
---|
857 | /* Note! do not touch fInPatchCode here! (see iemUninitExecAndFiddleStatusAndMaybeReenter) */
|
---|
858 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
859 | pIemCpu->fNoRem = pIemCpu->fNoRemSavedByExec;
|
---|
860 | #endif
|
---|
861 | #ifdef VBOX_STRICT
|
---|
862 | pIemCpu->cbOpcode = 0;
|
---|
863 | #else
|
---|
864 | NOREF(pIemCpu);
|
---|
865 | #endif
|
---|
866 | }
|
---|
867 |
|
---|
868 |
|
---|
869 | /**
|
---|
870 | * Initializes the decoder state.
|
---|
871 | *
|
---|
872 | * @param pIemCpu The per CPU IEM state.
|
---|
873 | * @param fBypassHandlers Whether to bypass access handlers.
|
---|
874 | */
|
---|
875 | DECLINLINE(void) iemInitDecoder(PIEMCPU pIemCpu, bool fBypassHandlers)
|
---|
876 | {
|
---|
877 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
878 | PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
|
---|
879 |
|
---|
880 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
881 |
|
---|
882 | #if defined(VBOX_STRICT) && (defined(IEM_VERIFICATION_MODE_FULL) || !defined(VBOX_WITH_RAW_MODE_NOT_R0))
|
---|
883 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs));
|
---|
884 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
|
---|
885 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->es));
|
---|
886 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ds));
|
---|
887 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->fs));
|
---|
888 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->gs));
|
---|
889 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ldtr));
|
---|
890 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->tr));
|
---|
891 | #endif
|
---|
892 |
|
---|
893 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
894 | CPUMGuestLazyLoadHiddenCsAndSs(pVCpu);
|
---|
895 | #endif
|
---|
896 | pIemCpu->uCpl = CPUMGetGuestCPL(pVCpu);
|
---|
897 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
898 | if (pIemCpu->uInjectCpl != UINT8_MAX)
|
---|
899 | pIemCpu->uCpl = pIemCpu->uInjectCpl;
|
---|
900 | #endif
|
---|
901 | IEMMODE enmMode = iemCalcCpuMode(pCtx);
|
---|
902 | pIemCpu->enmCpuMode = enmMode;
|
---|
903 | pIemCpu->enmDefAddrMode = enmMode; /** @todo check if this is correct... */
|
---|
904 | pIemCpu->enmEffAddrMode = enmMode;
|
---|
905 | if (enmMode != IEMMODE_64BIT)
|
---|
906 | {
|
---|
907 | pIemCpu->enmDefOpSize = enmMode; /** @todo check if this is correct... */
|
---|
908 | pIemCpu->enmEffOpSize = enmMode;
|
---|
909 | }
|
---|
910 | else
|
---|
911 | {
|
---|
912 | pIemCpu->enmDefOpSize = IEMMODE_32BIT;
|
---|
913 | pIemCpu->enmEffOpSize = IEMMODE_32BIT;
|
---|
914 | }
|
---|
915 | pIemCpu->fPrefixes = 0;
|
---|
916 | pIemCpu->uRexReg = 0;
|
---|
917 | pIemCpu->uRexB = 0;
|
---|
918 | pIemCpu->uRexIndex = 0;
|
---|
919 | pIemCpu->iEffSeg = X86_SREG_DS;
|
---|
920 | pIemCpu->offOpcode = 0;
|
---|
921 | pIemCpu->cbOpcode = 0;
|
---|
922 | pIemCpu->cActiveMappings = 0;
|
---|
923 | pIemCpu->iNextMapping = 0;
|
---|
924 | pIemCpu->rcPassUp = VINF_SUCCESS;
|
---|
925 | pIemCpu->fBypassHandlers = fBypassHandlers;
|
---|
926 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
927 | pIemCpu->fInPatchCode = pIemCpu->uCpl == 0
|
---|
928 | && pCtx->cs.u64Base == 0
|
---|
929 | && pCtx->cs.u32Limit == UINT32_MAX
|
---|
930 | && PATMIsPatchGCAddr(IEMCPU_TO_VM(pIemCpu), pCtx->eip);
|
---|
931 | if (!pIemCpu->fInPatchCode)
|
---|
932 | CPUMRawLeave(pVCpu, VINF_SUCCESS);
|
---|
933 | #endif
|
---|
934 |
|
---|
935 | #ifdef DBGFTRACE_ENABLED
|
---|
936 | switch (enmMode)
|
---|
937 | {
|
---|
938 | case IEMMODE_64BIT:
|
---|
939 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", pIemCpu->uCpl, pCtx->rip);
|
---|
940 | break;
|
---|
941 | case IEMMODE_32BIT:
|
---|
942 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", pIemCpu->uCpl, pCtx->cs.Sel, pCtx->eip);
|
---|
943 | break;
|
---|
944 | case IEMMODE_16BIT:
|
---|
945 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", pIemCpu->uCpl, pCtx->cs.Sel, pCtx->eip);
|
---|
946 | break;
|
---|
947 | }
|
---|
948 | #endif
|
---|
949 | }
|
---|
950 |
|
---|
951 |
|
---|
952 | /**
|
---|
953 | * Prefetch opcodes the first time when starting executing.
|
---|
954 | *
|
---|
955 | * @returns Strict VBox status code.
|
---|
956 | * @param pIemCpu The IEM state.
|
---|
957 | * @param fBypassHandlers Whether to bypass access handlers.
|
---|
958 | */
|
---|
959 | IEM_STATIC VBOXSTRICTRC iemInitDecoderAndPrefetchOpcodes(PIEMCPU pIemCpu, bool fBypassHandlers)
|
---|
960 | {
|
---|
961 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
962 | uint8_t const cbOldOpcodes = pIemCpu->cbOpcode;
|
---|
963 | #endif
|
---|
964 | iemInitDecoder(pIemCpu, fBypassHandlers);
|
---|
965 |
|
---|
966 | /*
|
---|
967 | * What we're doing here is very similar to iemMemMap/iemMemBounceBufferMap.
|
---|
968 | *
|
---|
969 | * First translate CS:rIP to a physical address.
|
---|
970 | */
|
---|
971 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
972 | uint32_t cbToTryRead;
|
---|
973 | RTGCPTR GCPtrPC;
|
---|
974 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
975 | {
|
---|
976 | cbToTryRead = PAGE_SIZE;
|
---|
977 | GCPtrPC = pCtx->rip;
|
---|
978 | if (!IEM_IS_CANONICAL(GCPtrPC))
|
---|
979 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
980 | cbToTryRead = PAGE_SIZE - (GCPtrPC & PAGE_OFFSET_MASK);
|
---|
981 | }
|
---|
982 | else
|
---|
983 | {
|
---|
984 | uint32_t GCPtrPC32 = pCtx->eip;
|
---|
985 | AssertMsg(!(GCPtrPC32 & ~(uint32_t)UINT16_MAX) || pIemCpu->enmCpuMode == IEMMODE_32BIT, ("%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip));
|
---|
986 | if (GCPtrPC32 > pCtx->cs.u32Limit)
|
---|
987 | return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
988 | cbToTryRead = pCtx->cs.u32Limit - GCPtrPC32 + 1;
|
---|
989 | if (!cbToTryRead) /* overflowed */
|
---|
990 | {
|
---|
991 | Assert(GCPtrPC32 == 0); Assert(pCtx->cs.u32Limit == UINT32_MAX);
|
---|
992 | cbToTryRead = UINT32_MAX;
|
---|
993 | }
|
---|
994 | GCPtrPC = (uint32_t)pCtx->cs.u64Base + GCPtrPC32;
|
---|
995 | Assert(GCPtrPC <= UINT32_MAX);
|
---|
996 | }
|
---|
997 |
|
---|
998 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
999 | /* Allow interpretation of patch manager code blocks since they can for
|
---|
1000 | instance throw #PFs for perfectly good reasons. */
|
---|
1001 | if (pIemCpu->fInPatchCode)
|
---|
1002 | {
|
---|
1003 | size_t cbRead = 0;
|
---|
1004 | int rc = PATMReadPatchCode(IEMCPU_TO_VM(pIemCpu), GCPtrPC, pIemCpu->abOpcode, sizeof(pIemCpu->abOpcode), &cbRead);
|
---|
1005 | AssertRCReturn(rc, rc);
|
---|
1006 | pIemCpu->cbOpcode = (uint8_t)cbRead; Assert(pIemCpu->cbOpcode == cbRead); Assert(cbRead > 0);
|
---|
1007 | return VINF_SUCCESS;
|
---|
1008 | }
|
---|
1009 | #endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
|
---|
1010 |
|
---|
1011 | RTGCPHYS GCPhys;
|
---|
1012 | uint64_t fFlags;
|
---|
1013 | int rc = PGMGstGetPage(IEMCPU_TO_VMCPU(pIemCpu), GCPtrPC, &fFlags, &GCPhys);
|
---|
1014 | if (RT_FAILURE(rc))
|
---|
1015 | {
|
---|
1016 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - rc=%Rrc\n", GCPtrPC, rc));
|
---|
1017 | return iemRaisePageFault(pIemCpu, GCPtrPC, IEM_ACCESS_INSTRUCTION, rc);
|
---|
1018 | }
|
---|
1019 | if (!(fFlags & X86_PTE_US) && pIemCpu->uCpl == 3)
|
---|
1020 | {
|
---|
1021 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - supervisor page\n", GCPtrPC));
|
---|
1022 | return iemRaisePageFault(pIemCpu, GCPtrPC, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1023 | }
|
---|
1024 | if ((fFlags & X86_PTE_PAE_NX) && (pCtx->msrEFER & MSR_K6_EFER_NXE))
|
---|
1025 | {
|
---|
1026 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - NX\n", GCPtrPC));
|
---|
1027 | return iemRaisePageFault(pIemCpu, GCPtrPC, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1028 | }
|
---|
1029 | GCPhys |= GCPtrPC & PAGE_OFFSET_MASK;
|
---|
1030 | /** @todo Check reserved bits and such stuff. PGM is better at doing
|
---|
1031 | * that, so do it when implementing the guest virtual address
|
---|
1032 | * TLB... */
|
---|
1033 |
|
---|
1034 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
1035 | /*
|
---|
1036 | * Optimistic optimization: Use unconsumed opcode bytes from the previous
|
---|
1037 | * instruction.
|
---|
1038 | */
|
---|
1039 | /** @todo optimize this differently by not using PGMPhysRead. */
|
---|
1040 | RTGCPHYS const offPrevOpcodes = GCPhys - pIemCpu->GCPhysOpcodes;
|
---|
1041 | pIemCpu->GCPhysOpcodes = GCPhys;
|
---|
1042 | if ( offPrevOpcodes < cbOldOpcodes
|
---|
1043 | && PAGE_SIZE - (GCPhys & PAGE_OFFSET_MASK) > sizeof(pIemCpu->abOpcode))
|
---|
1044 | {
|
---|
1045 | uint8_t cbNew = cbOldOpcodes - (uint8_t)offPrevOpcodes;
|
---|
1046 | Assert(cbNew <= RT_ELEMENTS(pIemCpu->abOpcode));
|
---|
1047 | memmove(&pIemCpu->abOpcode[0], &pIemCpu->abOpcode[offPrevOpcodes], cbNew);
|
---|
1048 | pIemCpu->cbOpcode = cbNew;
|
---|
1049 | return VINF_SUCCESS;
|
---|
1050 | }
|
---|
1051 | #endif
|
---|
1052 |
|
---|
1053 | /*
|
---|
1054 | * Read the bytes at this address.
|
---|
1055 | */
|
---|
1056 | PVM pVM = IEMCPU_TO_VM(pIemCpu);
|
---|
1057 | #if defined(IN_RING3) && defined(VBOX_WITH_RAW_MODE_NOT_R0)
|
---|
1058 | size_t cbActual;
|
---|
1059 | if ( PATMIsEnabled(pVM)
|
---|
1060 | && RT_SUCCESS(PATMR3ReadOrgInstr(pVM, GCPtrPC, pIemCpu->abOpcode, sizeof(pIemCpu->abOpcode), &cbActual)))
|
---|
1061 | {
|
---|
1062 | Log4(("decode - Read %u unpatched bytes at %RGv\n", cbActual, GCPtrPC));
|
---|
1063 | Assert(cbActual > 0);
|
---|
1064 | pIemCpu->cbOpcode = (uint8_t)cbActual;
|
---|
1065 | }
|
---|
1066 | else
|
---|
1067 | #endif
|
---|
1068 | {
|
---|
1069 | uint32_t cbLeftOnPage = PAGE_SIZE - (GCPtrPC & PAGE_OFFSET_MASK);
|
---|
1070 | if (cbToTryRead > cbLeftOnPage)
|
---|
1071 | cbToTryRead = cbLeftOnPage;
|
---|
1072 | if (cbToTryRead > sizeof(pIemCpu->abOpcode))
|
---|
1073 | cbToTryRead = sizeof(pIemCpu->abOpcode);
|
---|
1074 |
|
---|
1075 | if (!pIemCpu->fBypassHandlers)
|
---|
1076 | {
|
---|
1077 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, GCPhys, pIemCpu->abOpcode, cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
1078 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1079 | { /* likely */ }
|
---|
1080 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1081 | {
|
---|
1082 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1083 | GCPtrPC, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1084 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
1085 | }
|
---|
1086 | else
|
---|
1087 | {
|
---|
1088 | Log((RT_SUCCESS(rcStrict)
|
---|
1089 | ? "iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1090 | : "iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1091 | GCPtrPC, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1092 | return rcStrict;
|
---|
1093 | }
|
---|
1094 | }
|
---|
1095 | else
|
---|
1096 | {
|
---|
1097 | rc = PGMPhysSimpleReadGCPhys(pVM, pIemCpu->abOpcode, GCPhys, cbToTryRead);
|
---|
1098 | if (RT_SUCCESS(rc))
|
---|
1099 | { /* likely */ }
|
---|
1100 | else
|
---|
1101 | {
|
---|
1102 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read error - rc=%Rrc (!!)\n",
|
---|
1103 | GCPtrPC, GCPhys, rc, cbToTryRead));
|
---|
1104 | return rc;
|
---|
1105 | }
|
---|
1106 | }
|
---|
1107 | pIemCpu->cbOpcode = cbToTryRead;
|
---|
1108 | }
|
---|
1109 |
|
---|
1110 | return VINF_SUCCESS;
|
---|
1111 | }
|
---|
1112 |
|
---|
1113 |
|
---|
1114 | /**
|
---|
1115 | * Try fetch at least @a cbMin bytes more opcodes, raise the appropriate
|
---|
1116 | * exception if it fails.
|
---|
1117 | *
|
---|
1118 | * @returns Strict VBox status code.
|
---|
1119 | * @param pIemCpu The IEM state.
|
---|
1120 | * @param cbMin The minimum number of bytes relative offOpcode
|
---|
1121 | * that must be read.
|
---|
1122 | */
|
---|
1123 | IEM_STATIC VBOXSTRICTRC iemOpcodeFetchMoreBytes(PIEMCPU pIemCpu, size_t cbMin)
|
---|
1124 | {
|
---|
1125 | /*
|
---|
1126 | * What we're doing here is very similar to iemMemMap/iemMemBounceBufferMap.
|
---|
1127 | *
|
---|
1128 | * First translate CS:rIP to a physical address.
|
---|
1129 | */
|
---|
1130 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1131 | uint8_t cbLeft = pIemCpu->cbOpcode - pIemCpu->offOpcode; Assert(cbLeft < cbMin);
|
---|
1132 | uint32_t cbToTryRead;
|
---|
1133 | RTGCPTR GCPtrNext;
|
---|
1134 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
1135 | {
|
---|
1136 | cbToTryRead = PAGE_SIZE;
|
---|
1137 | GCPtrNext = pCtx->rip + pIemCpu->cbOpcode;
|
---|
1138 | if (!IEM_IS_CANONICAL(GCPtrNext))
|
---|
1139 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1140 | }
|
---|
1141 | else
|
---|
1142 | {
|
---|
1143 | uint32_t GCPtrNext32 = pCtx->eip;
|
---|
1144 | Assert(!(GCPtrNext32 & ~(uint32_t)UINT16_MAX) || pIemCpu->enmCpuMode == IEMMODE_32BIT);
|
---|
1145 | GCPtrNext32 += pIemCpu->cbOpcode;
|
---|
1146 | if (GCPtrNext32 > pCtx->cs.u32Limit)
|
---|
1147 | return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1148 | cbToTryRead = pCtx->cs.u32Limit - GCPtrNext32 + 1;
|
---|
1149 | if (!cbToTryRead) /* overflowed */
|
---|
1150 | {
|
---|
1151 | Assert(GCPtrNext32 == 0); Assert(pCtx->cs.u32Limit == UINT32_MAX);
|
---|
1152 | cbToTryRead = UINT32_MAX;
|
---|
1153 | /** @todo check out wrapping around the code segment. */
|
---|
1154 | }
|
---|
1155 | if (cbToTryRead < cbMin - cbLeft)
|
---|
1156 | return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1157 | GCPtrNext = (uint32_t)pCtx->cs.u64Base + GCPtrNext32;
|
---|
1158 | }
|
---|
1159 |
|
---|
1160 | /* Only read up to the end of the page, and make sure we don't read more
|
---|
1161 | than the opcode buffer can hold. */
|
---|
1162 | uint32_t cbLeftOnPage = PAGE_SIZE - (GCPtrNext & PAGE_OFFSET_MASK);
|
---|
1163 | if (cbToTryRead > cbLeftOnPage)
|
---|
1164 | cbToTryRead = cbLeftOnPage;
|
---|
1165 | if (cbToTryRead > sizeof(pIemCpu->abOpcode) - pIemCpu->cbOpcode)
|
---|
1166 | cbToTryRead = sizeof(pIemCpu->abOpcode) - pIemCpu->cbOpcode;
|
---|
1167 | /** @todo r=bird: Convert assertion into undefined opcode exception? */
|
---|
1168 | Assert(cbToTryRead >= cbMin - cbLeft); /* ASSUMPTION based on iemInitDecoderAndPrefetchOpcodes. */
|
---|
1169 |
|
---|
1170 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
1171 | /* Allow interpretation of patch manager code blocks since they can for
|
---|
1172 | instance throw #PFs for perfectly good reasons. */
|
---|
1173 | if (pIemCpu->fInPatchCode)
|
---|
1174 | {
|
---|
1175 | size_t cbRead = 0;
|
---|
1176 | int rc = PATMReadPatchCode(IEMCPU_TO_VM(pIemCpu), GCPtrNext, pIemCpu->abOpcode, cbToTryRead, &cbRead);
|
---|
1177 | AssertRCReturn(rc, rc);
|
---|
1178 | pIemCpu->cbOpcode = (uint8_t)cbRead; Assert(pIemCpu->cbOpcode == cbRead); Assert(cbRead > 0);
|
---|
1179 | return VINF_SUCCESS;
|
---|
1180 | }
|
---|
1181 | #endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
|
---|
1182 |
|
---|
1183 | RTGCPHYS GCPhys;
|
---|
1184 | uint64_t fFlags;
|
---|
1185 | int rc = PGMGstGetPage(IEMCPU_TO_VMCPU(pIemCpu), GCPtrNext, &fFlags, &GCPhys);
|
---|
1186 | if (RT_FAILURE(rc))
|
---|
1187 | {
|
---|
1188 | Log(("iemOpcodeFetchMoreBytes: %RGv - rc=%Rrc\n", GCPtrNext, rc));
|
---|
1189 | return iemRaisePageFault(pIemCpu, GCPtrNext, IEM_ACCESS_INSTRUCTION, rc);
|
---|
1190 | }
|
---|
1191 | if (!(fFlags & X86_PTE_US) && pIemCpu->uCpl == 3)
|
---|
1192 | {
|
---|
1193 | Log(("iemOpcodeFetchMoreBytes: %RGv - supervisor page\n", GCPtrNext));
|
---|
1194 | return iemRaisePageFault(pIemCpu, GCPtrNext, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1195 | }
|
---|
1196 | if ((fFlags & X86_PTE_PAE_NX) && (pCtx->msrEFER & MSR_K6_EFER_NXE))
|
---|
1197 | {
|
---|
1198 | Log(("iemOpcodeFetchMoreBytes: %RGv - NX\n", GCPtrNext));
|
---|
1199 | return iemRaisePageFault(pIemCpu, GCPtrNext, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1200 | }
|
---|
1201 | GCPhys |= GCPtrNext & PAGE_OFFSET_MASK;
|
---|
1202 | Log5(("GCPtrNext=%RGv GCPhys=%RGp cbOpcodes=%#x\n", GCPtrNext, GCPhys, pIemCpu->cbOpcode));
|
---|
1203 | /** @todo Check reserved bits and such stuff. PGM is better at doing
|
---|
1204 | * that, so do it when implementing the guest virtual address
|
---|
1205 | * TLB... */
|
---|
1206 |
|
---|
1207 | /*
|
---|
1208 | * Read the bytes at this address.
|
---|
1209 | *
|
---|
1210 | * We read all unpatched bytes in iemInitDecoderAndPrefetchOpcodes already,
|
---|
1211 | * and since PATM should only patch the start of an instruction there
|
---|
1212 | * should be no need to check again here.
|
---|
1213 | */
|
---|
1214 | if (!pIemCpu->fBypassHandlers)
|
---|
1215 | {
|
---|
1216 | VBOXSTRICTRC rcStrict = PGMPhysRead(IEMCPU_TO_VM(pIemCpu), GCPhys, &pIemCpu->abOpcode[pIemCpu->cbOpcode],
|
---|
1217 | cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
1218 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1219 | { /* likely */ }
|
---|
1220 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1221 | {
|
---|
1222 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1223 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1224 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
1225 | }
|
---|
1226 | else
|
---|
1227 | {
|
---|
1228 | Log((RT_SUCCESS(rcStrict)
|
---|
1229 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1230 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1231 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1232 | return rcStrict;
|
---|
1233 | }
|
---|
1234 | }
|
---|
1235 | else
|
---|
1236 | {
|
---|
1237 | rc = PGMPhysSimpleReadGCPhys(IEMCPU_TO_VM(pIemCpu), &pIemCpu->abOpcode[pIemCpu->cbOpcode], GCPhys, cbToTryRead);
|
---|
1238 | if (RT_SUCCESS(rc))
|
---|
1239 | { /* likely */ }
|
---|
1240 | else
|
---|
1241 | {
|
---|
1242 | Log(("iemOpcodeFetchMoreBytes: %RGv - read error - rc=%Rrc (!!)\n", GCPtrNext, rc));
|
---|
1243 | return rc;
|
---|
1244 | }
|
---|
1245 | }
|
---|
1246 | pIemCpu->cbOpcode += cbToTryRead;
|
---|
1247 | Log5(("%.*Rhxs\n", pIemCpu->cbOpcode, pIemCpu->abOpcode));
|
---|
1248 |
|
---|
1249 | return VINF_SUCCESS;
|
---|
1250 | }
|
---|
1251 |
|
---|
1252 |
|
---|
1253 | /**
|
---|
1254 | * Deals with the problematic cases that iemOpcodeGetNextU8 doesn't like.
|
---|
1255 | *
|
---|
1256 | * @returns Strict VBox status code.
|
---|
1257 | * @param pIemCpu The IEM state.
|
---|
1258 | * @param pb Where to return the opcode byte.
|
---|
1259 | */
|
---|
1260 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU8Slow(PIEMCPU pIemCpu, uint8_t *pb)
|
---|
1261 | {
|
---|
1262 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pIemCpu, 1);
|
---|
1263 | if (rcStrict == VINF_SUCCESS)
|
---|
1264 | {
|
---|
1265 | uint8_t offOpcode = pIemCpu->offOpcode;
|
---|
1266 | *pb = pIemCpu->abOpcode[offOpcode];
|
---|
1267 | pIemCpu->offOpcode = offOpcode + 1;
|
---|
1268 | }
|
---|
1269 | else
|
---|
1270 | *pb = 0;
|
---|
1271 | return rcStrict;
|
---|
1272 | }
|
---|
1273 |
|
---|
1274 |
|
---|
1275 | /**
|
---|
1276 | * Fetches the next opcode byte.
|
---|
1277 | *
|
---|
1278 | * @returns Strict VBox status code.
|
---|
1279 | * @param pIemCpu The IEM state.
|
---|
1280 | * @param pu8 Where to return the opcode byte.
|
---|
1281 | */
|
---|
1282 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU8(PIEMCPU pIemCpu, uint8_t *pu8)
|
---|
1283 | {
|
---|
1284 | uint8_t const offOpcode = pIemCpu->offOpcode;
|
---|
1285 | if (RT_LIKELY(offOpcode < pIemCpu->cbOpcode))
|
---|
1286 | {
|
---|
1287 | *pu8 = pIemCpu->abOpcode[offOpcode];
|
---|
1288 | pIemCpu->offOpcode = offOpcode + 1;
|
---|
1289 | return VINF_SUCCESS;
|
---|
1290 | }
|
---|
1291 | return iemOpcodeGetNextU8Slow(pIemCpu, pu8);
|
---|
1292 | }
|
---|
1293 |
|
---|
1294 |
|
---|
1295 | /**
|
---|
1296 | * Fetches the next opcode byte, returns automatically on failure.
|
---|
1297 | *
|
---|
1298 | * @param a_pu8 Where to return the opcode byte.
|
---|
1299 | * @remark Implicitly references pIemCpu.
|
---|
1300 | */
|
---|
1301 | #define IEM_OPCODE_GET_NEXT_U8(a_pu8) \
|
---|
1302 | do \
|
---|
1303 | { \
|
---|
1304 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU8(pIemCpu, (a_pu8)); \
|
---|
1305 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1306 | return rcStrict2; \
|
---|
1307 | } while (0)
|
---|
1308 |
|
---|
1309 |
|
---|
1310 | /**
|
---|
1311 | * Fetches the next signed byte from the opcode stream.
|
---|
1312 | *
|
---|
1313 | * @returns Strict VBox status code.
|
---|
1314 | * @param pIemCpu The IEM state.
|
---|
1315 | * @param pi8 Where to return the signed byte.
|
---|
1316 | */
|
---|
1317 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8(PIEMCPU pIemCpu, int8_t *pi8)
|
---|
1318 | {
|
---|
1319 | return iemOpcodeGetNextU8(pIemCpu, (uint8_t *)pi8);
|
---|
1320 | }
|
---|
1321 |
|
---|
1322 |
|
---|
1323 | /**
|
---|
1324 | * Fetches the next signed byte from the opcode stream, returning automatically
|
---|
1325 | * on failure.
|
---|
1326 | *
|
---|
1327 | * @param a_pi8 Where to return the signed byte.
|
---|
1328 | * @remark Implicitly references pIemCpu.
|
---|
1329 | */
|
---|
1330 | #define IEM_OPCODE_GET_NEXT_S8(a_pi8) \
|
---|
1331 | do \
|
---|
1332 | { \
|
---|
1333 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8(pIemCpu, (a_pi8)); \
|
---|
1334 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1335 | return rcStrict2; \
|
---|
1336 | } while (0)
|
---|
1337 |
|
---|
1338 |
|
---|
1339 | /**
|
---|
1340 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU16 doesn't like.
|
---|
1341 | *
|
---|
1342 | * @returns Strict VBox status code.
|
---|
1343 | * @param pIemCpu The IEM state.
|
---|
1344 | * @param pu16 Where to return the opcode dword.
|
---|
1345 | */
|
---|
1346 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextS8SxU16Slow(PIEMCPU pIemCpu, uint16_t *pu16)
|
---|
1347 | {
|
---|
1348 | uint8_t u8;
|
---|
1349 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pIemCpu, &u8);
|
---|
1350 | if (rcStrict == VINF_SUCCESS)
|
---|
1351 | *pu16 = (int8_t)u8;
|
---|
1352 | return rcStrict;
|
---|
1353 | }
|
---|
1354 |
|
---|
1355 |
|
---|
1356 | /**
|
---|
1357 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
1358 | * unsigned 16-bit.
|
---|
1359 | *
|
---|
1360 | * @returns Strict VBox status code.
|
---|
1361 | * @param pIemCpu The IEM state.
|
---|
1362 | * @param pu16 Where to return the unsigned word.
|
---|
1363 | */
|
---|
1364 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU16(PIEMCPU pIemCpu, uint16_t *pu16)
|
---|
1365 | {
|
---|
1366 | uint8_t const offOpcode = pIemCpu->offOpcode;
|
---|
1367 | if (RT_UNLIKELY(offOpcode >= pIemCpu->cbOpcode))
|
---|
1368 | return iemOpcodeGetNextS8SxU16Slow(pIemCpu, pu16);
|
---|
1369 |
|
---|
1370 | *pu16 = (int8_t)pIemCpu->abOpcode[offOpcode];
|
---|
1371 | pIemCpu->offOpcode = offOpcode + 1;
|
---|
1372 | return VINF_SUCCESS;
|
---|
1373 | }
|
---|
1374 |
|
---|
1375 |
|
---|
1376 | /**
|
---|
1377 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
1378 | * a word, returning automatically on failure.
|
---|
1379 | *
|
---|
1380 | * @param a_pu16 Where to return the word.
|
---|
1381 | * @remark Implicitly references pIemCpu.
|
---|
1382 | */
|
---|
1383 | #define IEM_OPCODE_GET_NEXT_S8_SX_U16(a_pu16) \
|
---|
1384 | do \
|
---|
1385 | { \
|
---|
1386 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU16(pIemCpu, (a_pu16)); \
|
---|
1387 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1388 | return rcStrict2; \
|
---|
1389 | } while (0)
|
---|
1390 |
|
---|
1391 |
|
---|
1392 | /**
|
---|
1393 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU32 doesn't like.
|
---|
1394 | *
|
---|
1395 | * @returns Strict VBox status code.
|
---|
1396 | * @param pIemCpu The IEM state.
|
---|
1397 | * @param pu32 Where to return the opcode dword.
|
---|
1398 | */
|
---|
1399 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextS8SxU32Slow(PIEMCPU pIemCpu, uint32_t *pu32)
|
---|
1400 | {
|
---|
1401 | uint8_t u8;
|
---|
1402 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pIemCpu, &u8);
|
---|
1403 | if (rcStrict == VINF_SUCCESS)
|
---|
1404 | *pu32 = (int8_t)u8;
|
---|
1405 | return rcStrict;
|
---|
1406 | }
|
---|
1407 |
|
---|
1408 |
|
---|
1409 | /**
|
---|
1410 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
1411 | * unsigned 32-bit.
|
---|
1412 | *
|
---|
1413 | * @returns Strict VBox status code.
|
---|
1414 | * @param pIemCpu The IEM state.
|
---|
1415 | * @param pu32 Where to return the unsigned dword.
|
---|
1416 | */
|
---|
1417 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU32(PIEMCPU pIemCpu, uint32_t *pu32)
|
---|
1418 | {
|
---|
1419 | uint8_t const offOpcode = pIemCpu->offOpcode;
|
---|
1420 | if (RT_UNLIKELY(offOpcode >= pIemCpu->cbOpcode))
|
---|
1421 | return iemOpcodeGetNextS8SxU32Slow(pIemCpu, pu32);
|
---|
1422 |
|
---|
1423 | *pu32 = (int8_t)pIemCpu->abOpcode[offOpcode];
|
---|
1424 | pIemCpu->offOpcode = offOpcode + 1;
|
---|
1425 | return VINF_SUCCESS;
|
---|
1426 | }
|
---|
1427 |
|
---|
1428 |
|
---|
1429 | /**
|
---|
1430 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
1431 | * a word, returning automatically on failure.
|
---|
1432 | *
|
---|
1433 | * @param a_pu32 Where to return the word.
|
---|
1434 | * @remark Implicitly references pIemCpu.
|
---|
1435 | */
|
---|
1436 | #define IEM_OPCODE_GET_NEXT_S8_SX_U32(a_pu32) \
|
---|
1437 | do \
|
---|
1438 | { \
|
---|
1439 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU32(pIemCpu, (a_pu32)); \
|
---|
1440 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1441 | return rcStrict2; \
|
---|
1442 | } while (0)
|
---|
1443 |
|
---|
1444 |
|
---|
1445 | /**
|
---|
1446 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU64 doesn't like.
|
---|
1447 | *
|
---|
1448 | * @returns Strict VBox status code.
|
---|
1449 | * @param pIemCpu The IEM state.
|
---|
1450 | * @param pu64 Where to return the opcode qword.
|
---|
1451 | */
|
---|
1452 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextS8SxU64Slow(PIEMCPU pIemCpu, uint64_t *pu64)
|
---|
1453 | {
|
---|
1454 | uint8_t u8;
|
---|
1455 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pIemCpu, &u8);
|
---|
1456 | if (rcStrict == VINF_SUCCESS)
|
---|
1457 | *pu64 = (int8_t)u8;
|
---|
1458 | return rcStrict;
|
---|
1459 | }
|
---|
1460 |
|
---|
1461 |
|
---|
1462 | /**
|
---|
1463 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
1464 | * unsigned 64-bit.
|
---|
1465 | *
|
---|
1466 | * @returns Strict VBox status code.
|
---|
1467 | * @param pIemCpu The IEM state.
|
---|
1468 | * @param pu64 Where to return the unsigned qword.
|
---|
1469 | */
|
---|
1470 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU64(PIEMCPU pIemCpu, uint64_t *pu64)
|
---|
1471 | {
|
---|
1472 | uint8_t const offOpcode = pIemCpu->offOpcode;
|
---|
1473 | if (RT_UNLIKELY(offOpcode >= pIemCpu->cbOpcode))
|
---|
1474 | return iemOpcodeGetNextS8SxU64Slow(pIemCpu, pu64);
|
---|
1475 |
|
---|
1476 | *pu64 = (int8_t)pIemCpu->abOpcode[offOpcode];
|
---|
1477 | pIemCpu->offOpcode = offOpcode + 1;
|
---|
1478 | return VINF_SUCCESS;
|
---|
1479 | }
|
---|
1480 |
|
---|
1481 |
|
---|
1482 | /**
|
---|
1483 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
1484 | * a word, returning automatically on failure.
|
---|
1485 | *
|
---|
1486 | * @param a_pu64 Where to return the word.
|
---|
1487 | * @remark Implicitly references pIemCpu.
|
---|
1488 | */
|
---|
1489 | #define IEM_OPCODE_GET_NEXT_S8_SX_U64(a_pu64) \
|
---|
1490 | do \
|
---|
1491 | { \
|
---|
1492 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU64(pIemCpu, (a_pu64)); \
|
---|
1493 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1494 | return rcStrict2; \
|
---|
1495 | } while (0)
|
---|
1496 |
|
---|
1497 |
|
---|
1498 | /**
|
---|
1499 | * Deals with the problematic cases that iemOpcodeGetNextU16 doesn't like.
|
---|
1500 | *
|
---|
1501 | * @returns Strict VBox status code.
|
---|
1502 | * @param pIemCpu The IEM state.
|
---|
1503 | * @param pu16 Where to return the opcode word.
|
---|
1504 | */
|
---|
1505 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU16Slow(PIEMCPU pIemCpu, uint16_t *pu16)
|
---|
1506 | {
|
---|
1507 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pIemCpu, 2);
|
---|
1508 | if (rcStrict == VINF_SUCCESS)
|
---|
1509 | {
|
---|
1510 | uint8_t offOpcode = pIemCpu->offOpcode;
|
---|
1511 | *pu16 = RT_MAKE_U16(pIemCpu->abOpcode[offOpcode], pIemCpu->abOpcode[offOpcode + 1]);
|
---|
1512 | pIemCpu->offOpcode = offOpcode + 2;
|
---|
1513 | }
|
---|
1514 | else
|
---|
1515 | *pu16 = 0;
|
---|
1516 | return rcStrict;
|
---|
1517 | }
|
---|
1518 |
|
---|
1519 |
|
---|
1520 | /**
|
---|
1521 | * Fetches the next opcode word.
|
---|
1522 | *
|
---|
1523 | * @returns Strict VBox status code.
|
---|
1524 | * @param pIemCpu The IEM state.
|
---|
1525 | * @param pu16 Where to return the opcode word.
|
---|
1526 | */
|
---|
1527 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16(PIEMCPU pIemCpu, uint16_t *pu16)
|
---|
1528 | {
|
---|
1529 | uint8_t const offOpcode = pIemCpu->offOpcode;
|
---|
1530 | if (RT_UNLIKELY(offOpcode + 2 > pIemCpu->cbOpcode))
|
---|
1531 | return iemOpcodeGetNextU16Slow(pIemCpu, pu16);
|
---|
1532 |
|
---|
1533 | *pu16 = RT_MAKE_U16(pIemCpu->abOpcode[offOpcode], pIemCpu->abOpcode[offOpcode + 1]);
|
---|
1534 | pIemCpu->offOpcode = offOpcode + 2;
|
---|
1535 | return VINF_SUCCESS;
|
---|
1536 | }
|
---|
1537 |
|
---|
1538 |
|
---|
1539 | /**
|
---|
1540 | * Fetches the next opcode word, returns automatically on failure.
|
---|
1541 | *
|
---|
1542 | * @param a_pu16 Where to return the opcode word.
|
---|
1543 | * @remark Implicitly references pIemCpu.
|
---|
1544 | */
|
---|
1545 | #define IEM_OPCODE_GET_NEXT_U16(a_pu16) \
|
---|
1546 | do \
|
---|
1547 | { \
|
---|
1548 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16(pIemCpu, (a_pu16)); \
|
---|
1549 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1550 | return rcStrict2; \
|
---|
1551 | } while (0)
|
---|
1552 |
|
---|
1553 |
|
---|
1554 | /**
|
---|
1555 | * Deals with the problematic cases that iemOpcodeGetNextU16ZxU32 doesn't like.
|
---|
1556 | *
|
---|
1557 | * @returns Strict VBox status code.
|
---|
1558 | * @param pIemCpu The IEM state.
|
---|
1559 | * @param pu32 Where to return the opcode double word.
|
---|
1560 | */
|
---|
1561 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU16ZxU32Slow(PIEMCPU pIemCpu, uint32_t *pu32)
|
---|
1562 | {
|
---|
1563 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pIemCpu, 2);
|
---|
1564 | if (rcStrict == VINF_SUCCESS)
|
---|
1565 | {
|
---|
1566 | uint8_t offOpcode = pIemCpu->offOpcode;
|
---|
1567 | *pu32 = RT_MAKE_U16(pIemCpu->abOpcode[offOpcode], pIemCpu->abOpcode[offOpcode + 1]);
|
---|
1568 | pIemCpu->offOpcode = offOpcode + 2;
|
---|
1569 | }
|
---|
1570 | else
|
---|
1571 | *pu32 = 0;
|
---|
1572 | return rcStrict;
|
---|
1573 | }
|
---|
1574 |
|
---|
1575 |
|
---|
1576 | /**
|
---|
1577 | * Fetches the next opcode word, zero extending it to a double word.
|
---|
1578 | *
|
---|
1579 | * @returns Strict VBox status code.
|
---|
1580 | * @param pIemCpu The IEM state.
|
---|
1581 | * @param pu32 Where to return the opcode double word.
|
---|
1582 | */
|
---|
1583 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU32(PIEMCPU pIemCpu, uint32_t *pu32)
|
---|
1584 | {
|
---|
1585 | uint8_t const offOpcode = pIemCpu->offOpcode;
|
---|
1586 | if (RT_UNLIKELY(offOpcode + 2 > pIemCpu->cbOpcode))
|
---|
1587 | return iemOpcodeGetNextU16ZxU32Slow(pIemCpu, pu32);
|
---|
1588 |
|
---|
1589 | *pu32 = RT_MAKE_U16(pIemCpu->abOpcode[offOpcode], pIemCpu->abOpcode[offOpcode + 1]);
|
---|
1590 | pIemCpu->offOpcode = offOpcode + 2;
|
---|
1591 | return VINF_SUCCESS;
|
---|
1592 | }
|
---|
1593 |
|
---|
1594 |
|
---|
1595 | /**
|
---|
1596 | * Fetches the next opcode word and zero extends it to a double word, returns
|
---|
1597 | * automatically on failure.
|
---|
1598 | *
|
---|
1599 | * @param a_pu32 Where to return the opcode double word.
|
---|
1600 | * @remark Implicitly references pIemCpu.
|
---|
1601 | */
|
---|
1602 | #define IEM_OPCODE_GET_NEXT_U16_ZX_U32(a_pu32) \
|
---|
1603 | do \
|
---|
1604 | { \
|
---|
1605 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU32(pIemCpu, (a_pu32)); \
|
---|
1606 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1607 | return rcStrict2; \
|
---|
1608 | } while (0)
|
---|
1609 |
|
---|
1610 |
|
---|
1611 | /**
|
---|
1612 | * Deals with the problematic cases that iemOpcodeGetNextU16ZxU64 doesn't like.
|
---|
1613 | *
|
---|
1614 | * @returns Strict VBox status code.
|
---|
1615 | * @param pIemCpu The IEM state.
|
---|
1616 | * @param pu64 Where to return the opcode quad word.
|
---|
1617 | */
|
---|
1618 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU16ZxU64Slow(PIEMCPU pIemCpu, uint64_t *pu64)
|
---|
1619 | {
|
---|
1620 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pIemCpu, 2);
|
---|
1621 | if (rcStrict == VINF_SUCCESS)
|
---|
1622 | {
|
---|
1623 | uint8_t offOpcode = pIemCpu->offOpcode;
|
---|
1624 | *pu64 = RT_MAKE_U16(pIemCpu->abOpcode[offOpcode], pIemCpu->abOpcode[offOpcode + 1]);
|
---|
1625 | pIemCpu->offOpcode = offOpcode + 2;
|
---|
1626 | }
|
---|
1627 | else
|
---|
1628 | *pu64 = 0;
|
---|
1629 | return rcStrict;
|
---|
1630 | }
|
---|
1631 |
|
---|
1632 |
|
---|
1633 | /**
|
---|
1634 | * Fetches the next opcode word, zero extending it to a quad word.
|
---|
1635 | *
|
---|
1636 | * @returns Strict VBox status code.
|
---|
1637 | * @param pIemCpu The IEM state.
|
---|
1638 | * @param pu64 Where to return the opcode quad word.
|
---|
1639 | */
|
---|
1640 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU64(PIEMCPU pIemCpu, uint64_t *pu64)
|
---|
1641 | {
|
---|
1642 | uint8_t const offOpcode = pIemCpu->offOpcode;
|
---|
1643 | if (RT_UNLIKELY(offOpcode + 2 > pIemCpu->cbOpcode))
|
---|
1644 | return iemOpcodeGetNextU16ZxU64Slow(pIemCpu, pu64);
|
---|
1645 |
|
---|
1646 | *pu64 = RT_MAKE_U16(pIemCpu->abOpcode[offOpcode], pIemCpu->abOpcode[offOpcode + 1]);
|
---|
1647 | pIemCpu->offOpcode = offOpcode + 2;
|
---|
1648 | return VINF_SUCCESS;
|
---|
1649 | }
|
---|
1650 |
|
---|
1651 |
|
---|
1652 | /**
|
---|
1653 | * Fetches the next opcode word and zero extends it to a quad word, returns
|
---|
1654 | * automatically on failure.
|
---|
1655 | *
|
---|
1656 | * @param a_pu64 Where to return the opcode quad word.
|
---|
1657 | * @remark Implicitly references pIemCpu.
|
---|
1658 | */
|
---|
1659 | #define IEM_OPCODE_GET_NEXT_U16_ZX_U64(a_pu64) \
|
---|
1660 | do \
|
---|
1661 | { \
|
---|
1662 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU64(pIemCpu, (a_pu64)); \
|
---|
1663 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1664 | return rcStrict2; \
|
---|
1665 | } while (0)
|
---|
1666 |
|
---|
1667 |
|
---|
1668 | /**
|
---|
1669 | * Fetches the next signed word from the opcode stream.
|
---|
1670 | *
|
---|
1671 | * @returns Strict VBox status code.
|
---|
1672 | * @param pIemCpu The IEM state.
|
---|
1673 | * @param pi16 Where to return the signed word.
|
---|
1674 | */
|
---|
1675 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS16(PIEMCPU pIemCpu, int16_t *pi16)
|
---|
1676 | {
|
---|
1677 | return iemOpcodeGetNextU16(pIemCpu, (uint16_t *)pi16);
|
---|
1678 | }
|
---|
1679 |
|
---|
1680 |
|
---|
1681 | /**
|
---|
1682 | * Fetches the next signed word from the opcode stream, returning automatically
|
---|
1683 | * on failure.
|
---|
1684 | *
|
---|
1685 | * @param a_pi16 Where to return the signed word.
|
---|
1686 | * @remark Implicitly references pIemCpu.
|
---|
1687 | */
|
---|
1688 | #define IEM_OPCODE_GET_NEXT_S16(a_pi16) \
|
---|
1689 | do \
|
---|
1690 | { \
|
---|
1691 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS16(pIemCpu, (a_pi16)); \
|
---|
1692 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1693 | return rcStrict2; \
|
---|
1694 | } while (0)
|
---|
1695 |
|
---|
1696 |
|
---|
1697 | /**
|
---|
1698 | * Deals with the problematic cases that iemOpcodeGetNextU32 doesn't like.
|
---|
1699 | *
|
---|
1700 | * @returns Strict VBox status code.
|
---|
1701 | * @param pIemCpu The IEM state.
|
---|
1702 | * @param pu32 Where to return the opcode dword.
|
---|
1703 | */
|
---|
1704 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU32Slow(PIEMCPU pIemCpu, uint32_t *pu32)
|
---|
1705 | {
|
---|
1706 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pIemCpu, 4);
|
---|
1707 | if (rcStrict == VINF_SUCCESS)
|
---|
1708 | {
|
---|
1709 | uint8_t offOpcode = pIemCpu->offOpcode;
|
---|
1710 | *pu32 = RT_MAKE_U32_FROM_U8(pIemCpu->abOpcode[offOpcode],
|
---|
1711 | pIemCpu->abOpcode[offOpcode + 1],
|
---|
1712 | pIemCpu->abOpcode[offOpcode + 2],
|
---|
1713 | pIemCpu->abOpcode[offOpcode + 3]);
|
---|
1714 | pIemCpu->offOpcode = offOpcode + 4;
|
---|
1715 | }
|
---|
1716 | else
|
---|
1717 | *pu32 = 0;
|
---|
1718 | return rcStrict;
|
---|
1719 | }
|
---|
1720 |
|
---|
1721 |
|
---|
1722 | /**
|
---|
1723 | * Fetches the next opcode dword.
|
---|
1724 | *
|
---|
1725 | * @returns Strict VBox status code.
|
---|
1726 | * @param pIemCpu The IEM state.
|
---|
1727 | * @param pu32 Where to return the opcode double word.
|
---|
1728 | */
|
---|
1729 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32(PIEMCPU pIemCpu, uint32_t *pu32)
|
---|
1730 | {
|
---|
1731 | uint8_t const offOpcode = pIemCpu->offOpcode;
|
---|
1732 | if (RT_UNLIKELY(offOpcode + 4 > pIemCpu->cbOpcode))
|
---|
1733 | return iemOpcodeGetNextU32Slow(pIemCpu, pu32);
|
---|
1734 |
|
---|
1735 | *pu32 = RT_MAKE_U32_FROM_U8(pIemCpu->abOpcode[offOpcode],
|
---|
1736 | pIemCpu->abOpcode[offOpcode + 1],
|
---|
1737 | pIemCpu->abOpcode[offOpcode + 2],
|
---|
1738 | pIemCpu->abOpcode[offOpcode + 3]);
|
---|
1739 | pIemCpu->offOpcode = offOpcode + 4;
|
---|
1740 | return VINF_SUCCESS;
|
---|
1741 | }
|
---|
1742 |
|
---|
1743 |
|
---|
1744 | /**
|
---|
1745 | * Fetches the next opcode dword, returns automatically on failure.
|
---|
1746 | *
|
---|
1747 | * @param a_pu32 Where to return the opcode dword.
|
---|
1748 | * @remark Implicitly references pIemCpu.
|
---|
1749 | */
|
---|
1750 | #define IEM_OPCODE_GET_NEXT_U32(a_pu32) \
|
---|
1751 | do \
|
---|
1752 | { \
|
---|
1753 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32(pIemCpu, (a_pu32)); \
|
---|
1754 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1755 | return rcStrict2; \
|
---|
1756 | } while (0)
|
---|
1757 |
|
---|
1758 |
|
---|
1759 | /**
|
---|
1760 | * Deals with the problematic cases that iemOpcodeGetNextU32ZxU64 doesn't like.
|
---|
1761 | *
|
---|
1762 | * @returns Strict VBox status code.
|
---|
1763 | * @param pIemCpu The IEM state.
|
---|
1764 | * @param pu64 Where to return the opcode dword.
|
---|
1765 | */
|
---|
1766 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU32ZxU64Slow(PIEMCPU pIemCpu, uint64_t *pu64)
|
---|
1767 | {
|
---|
1768 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pIemCpu, 4);
|
---|
1769 | if (rcStrict == VINF_SUCCESS)
|
---|
1770 | {
|
---|
1771 | uint8_t offOpcode = pIemCpu->offOpcode;
|
---|
1772 | *pu64 = RT_MAKE_U32_FROM_U8(pIemCpu->abOpcode[offOpcode],
|
---|
1773 | pIemCpu->abOpcode[offOpcode + 1],
|
---|
1774 | pIemCpu->abOpcode[offOpcode + 2],
|
---|
1775 | pIemCpu->abOpcode[offOpcode + 3]);
|
---|
1776 | pIemCpu->offOpcode = offOpcode + 4;
|
---|
1777 | }
|
---|
1778 | else
|
---|
1779 | *pu64 = 0;
|
---|
1780 | return rcStrict;
|
---|
1781 | }
|
---|
1782 |
|
---|
1783 |
|
---|
1784 | /**
|
---|
1785 | * Fetches the next opcode dword, zero extending it to a quad word.
|
---|
1786 | *
|
---|
1787 | * @returns Strict VBox status code.
|
---|
1788 | * @param pIemCpu The IEM state.
|
---|
1789 | * @param pu64 Where to return the opcode quad word.
|
---|
1790 | */
|
---|
1791 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32ZxU64(PIEMCPU pIemCpu, uint64_t *pu64)
|
---|
1792 | {
|
---|
1793 | uint8_t const offOpcode = pIemCpu->offOpcode;
|
---|
1794 | if (RT_UNLIKELY(offOpcode + 4 > pIemCpu->cbOpcode))
|
---|
1795 | return iemOpcodeGetNextU32ZxU64Slow(pIemCpu, pu64);
|
---|
1796 |
|
---|
1797 | *pu64 = RT_MAKE_U32_FROM_U8(pIemCpu->abOpcode[offOpcode],
|
---|
1798 | pIemCpu->abOpcode[offOpcode + 1],
|
---|
1799 | pIemCpu->abOpcode[offOpcode + 2],
|
---|
1800 | pIemCpu->abOpcode[offOpcode + 3]);
|
---|
1801 | pIemCpu->offOpcode = offOpcode + 4;
|
---|
1802 | return VINF_SUCCESS;
|
---|
1803 | }
|
---|
1804 |
|
---|
1805 |
|
---|
1806 | /**
|
---|
1807 | * Fetches the next opcode dword and zero extends it to a quad word, returns
|
---|
1808 | * automatically on failure.
|
---|
1809 | *
|
---|
1810 | * @param a_pu64 Where to return the opcode quad word.
|
---|
1811 | * @remark Implicitly references pIemCpu.
|
---|
1812 | */
|
---|
1813 | #define IEM_OPCODE_GET_NEXT_U32_ZX_U64(a_pu64) \
|
---|
1814 | do \
|
---|
1815 | { \
|
---|
1816 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32ZxU64(pIemCpu, (a_pu64)); \
|
---|
1817 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1818 | return rcStrict2; \
|
---|
1819 | } while (0)
|
---|
1820 |
|
---|
1821 |
|
---|
1822 | /**
|
---|
1823 | * Fetches the next signed double word from the opcode stream.
|
---|
1824 | *
|
---|
1825 | * @returns Strict VBox status code.
|
---|
1826 | * @param pIemCpu The IEM state.
|
---|
1827 | * @param pi32 Where to return the signed double word.
|
---|
1828 | */
|
---|
1829 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32(PIEMCPU pIemCpu, int32_t *pi32)
|
---|
1830 | {
|
---|
1831 | return iemOpcodeGetNextU32(pIemCpu, (uint32_t *)pi32);
|
---|
1832 | }
|
---|
1833 |
|
---|
1834 | /**
|
---|
1835 | * Fetches the next signed double word from the opcode stream, returning
|
---|
1836 | * automatically on failure.
|
---|
1837 | *
|
---|
1838 | * @param a_pi32 Where to return the signed double word.
|
---|
1839 | * @remark Implicitly references pIemCpu.
|
---|
1840 | */
|
---|
1841 | #define IEM_OPCODE_GET_NEXT_S32(a_pi32) \
|
---|
1842 | do \
|
---|
1843 | { \
|
---|
1844 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32(pIemCpu, (a_pi32)); \
|
---|
1845 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1846 | return rcStrict2; \
|
---|
1847 | } while (0)
|
---|
1848 |
|
---|
1849 |
|
---|
1850 | /**
|
---|
1851 | * Deals with the problematic cases that iemOpcodeGetNextS32SxU64 doesn't like.
|
---|
1852 | *
|
---|
1853 | * @returns Strict VBox status code.
|
---|
1854 | * @param pIemCpu The IEM state.
|
---|
1855 | * @param pu64 Where to return the opcode qword.
|
---|
1856 | */
|
---|
1857 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextS32SxU64Slow(PIEMCPU pIemCpu, uint64_t *pu64)
|
---|
1858 | {
|
---|
1859 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pIemCpu, 4);
|
---|
1860 | if (rcStrict == VINF_SUCCESS)
|
---|
1861 | {
|
---|
1862 | uint8_t offOpcode = pIemCpu->offOpcode;
|
---|
1863 | *pu64 = (int32_t)RT_MAKE_U32_FROM_U8(pIemCpu->abOpcode[offOpcode],
|
---|
1864 | pIemCpu->abOpcode[offOpcode + 1],
|
---|
1865 | pIemCpu->abOpcode[offOpcode + 2],
|
---|
1866 | pIemCpu->abOpcode[offOpcode + 3]);
|
---|
1867 | pIemCpu->offOpcode = offOpcode + 4;
|
---|
1868 | }
|
---|
1869 | else
|
---|
1870 | *pu64 = 0;
|
---|
1871 | return rcStrict;
|
---|
1872 | }
|
---|
1873 |
|
---|
1874 |
|
---|
1875 | /**
|
---|
1876 | * Fetches the next opcode dword, sign extending it into a quad word.
|
---|
1877 | *
|
---|
1878 | * @returns Strict VBox status code.
|
---|
1879 | * @param pIemCpu The IEM state.
|
---|
1880 | * @param pu64 Where to return the opcode quad word.
|
---|
1881 | */
|
---|
1882 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32SxU64(PIEMCPU pIemCpu, uint64_t *pu64)
|
---|
1883 | {
|
---|
1884 | uint8_t const offOpcode = pIemCpu->offOpcode;
|
---|
1885 | if (RT_UNLIKELY(offOpcode + 4 > pIemCpu->cbOpcode))
|
---|
1886 | return iemOpcodeGetNextS32SxU64Slow(pIemCpu, pu64);
|
---|
1887 |
|
---|
1888 | int32_t i32 = RT_MAKE_U32_FROM_U8(pIemCpu->abOpcode[offOpcode],
|
---|
1889 | pIemCpu->abOpcode[offOpcode + 1],
|
---|
1890 | pIemCpu->abOpcode[offOpcode + 2],
|
---|
1891 | pIemCpu->abOpcode[offOpcode + 3]);
|
---|
1892 | *pu64 = i32;
|
---|
1893 | pIemCpu->offOpcode = offOpcode + 4;
|
---|
1894 | return VINF_SUCCESS;
|
---|
1895 | }
|
---|
1896 |
|
---|
1897 |
|
---|
1898 | /**
|
---|
1899 | * Fetches the next opcode double word and sign extends it to a quad word,
|
---|
1900 | * returns automatically on failure.
|
---|
1901 | *
|
---|
1902 | * @param a_pu64 Where to return the opcode quad word.
|
---|
1903 | * @remark Implicitly references pIemCpu.
|
---|
1904 | */
|
---|
1905 | #define IEM_OPCODE_GET_NEXT_S32_SX_U64(a_pu64) \
|
---|
1906 | do \
|
---|
1907 | { \
|
---|
1908 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32SxU64(pIemCpu, (a_pu64)); \
|
---|
1909 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1910 | return rcStrict2; \
|
---|
1911 | } while (0)
|
---|
1912 |
|
---|
1913 |
|
---|
1914 | /**
|
---|
1915 | * Deals with the problematic cases that iemOpcodeGetNextU64 doesn't like.
|
---|
1916 | *
|
---|
1917 | * @returns Strict VBox status code.
|
---|
1918 | * @param pIemCpu The IEM state.
|
---|
1919 | * @param pu64 Where to return the opcode qword.
|
---|
1920 | */
|
---|
1921 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU64Slow(PIEMCPU pIemCpu, uint64_t *pu64)
|
---|
1922 | {
|
---|
1923 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pIemCpu, 8);
|
---|
1924 | if (rcStrict == VINF_SUCCESS)
|
---|
1925 | {
|
---|
1926 | uint8_t offOpcode = pIemCpu->offOpcode;
|
---|
1927 | *pu64 = RT_MAKE_U64_FROM_U8(pIemCpu->abOpcode[offOpcode],
|
---|
1928 | pIemCpu->abOpcode[offOpcode + 1],
|
---|
1929 | pIemCpu->abOpcode[offOpcode + 2],
|
---|
1930 | pIemCpu->abOpcode[offOpcode + 3],
|
---|
1931 | pIemCpu->abOpcode[offOpcode + 4],
|
---|
1932 | pIemCpu->abOpcode[offOpcode + 5],
|
---|
1933 | pIemCpu->abOpcode[offOpcode + 6],
|
---|
1934 | pIemCpu->abOpcode[offOpcode + 7]);
|
---|
1935 | pIemCpu->offOpcode = offOpcode + 8;
|
---|
1936 | }
|
---|
1937 | else
|
---|
1938 | *pu64 = 0;
|
---|
1939 | return rcStrict;
|
---|
1940 | }
|
---|
1941 |
|
---|
1942 |
|
---|
1943 | /**
|
---|
1944 | * Fetches the next opcode qword.
|
---|
1945 | *
|
---|
1946 | * @returns Strict VBox status code.
|
---|
1947 | * @param pIemCpu The IEM state.
|
---|
1948 | * @param pu64 Where to return the opcode qword.
|
---|
1949 | */
|
---|
1950 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU64(PIEMCPU pIemCpu, uint64_t *pu64)
|
---|
1951 | {
|
---|
1952 | uint8_t const offOpcode = pIemCpu->offOpcode;
|
---|
1953 | if (RT_UNLIKELY(offOpcode + 8 > pIemCpu->cbOpcode))
|
---|
1954 | return iemOpcodeGetNextU64Slow(pIemCpu, pu64);
|
---|
1955 |
|
---|
1956 | *pu64 = RT_MAKE_U64_FROM_U8(pIemCpu->abOpcode[offOpcode],
|
---|
1957 | pIemCpu->abOpcode[offOpcode + 1],
|
---|
1958 | pIemCpu->abOpcode[offOpcode + 2],
|
---|
1959 | pIemCpu->abOpcode[offOpcode + 3],
|
---|
1960 | pIemCpu->abOpcode[offOpcode + 4],
|
---|
1961 | pIemCpu->abOpcode[offOpcode + 5],
|
---|
1962 | pIemCpu->abOpcode[offOpcode + 6],
|
---|
1963 | pIemCpu->abOpcode[offOpcode + 7]);
|
---|
1964 | pIemCpu->offOpcode = offOpcode + 8;
|
---|
1965 | return VINF_SUCCESS;
|
---|
1966 | }
|
---|
1967 |
|
---|
1968 |
|
---|
1969 | /**
|
---|
1970 | * Fetches the next opcode quad word, returns automatically on failure.
|
---|
1971 | *
|
---|
1972 | * @param a_pu64 Where to return the opcode quad word.
|
---|
1973 | * @remark Implicitly references pIemCpu.
|
---|
1974 | */
|
---|
1975 | #define IEM_OPCODE_GET_NEXT_U64(a_pu64) \
|
---|
1976 | do \
|
---|
1977 | { \
|
---|
1978 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU64(pIemCpu, (a_pu64)); \
|
---|
1979 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1980 | return rcStrict2; \
|
---|
1981 | } while (0)
|
---|
1982 |
|
---|
1983 |
|
---|
1984 | /** @name Misc Worker Functions.
|
---|
1985 | * @{
|
---|
1986 | */
|
---|
1987 |
|
---|
1988 |
|
---|
1989 | /**
|
---|
1990 | * Validates a new SS segment.
|
---|
1991 | *
|
---|
1992 | * @returns VBox strict status code.
|
---|
1993 | * @param pIemCpu The IEM per CPU instance data.
|
---|
1994 | * @param pCtx The CPU context.
|
---|
1995 | * @param NewSS The new SS selctor.
|
---|
1996 | * @param uCpl The CPL to load the stack for.
|
---|
1997 | * @param pDesc Where to return the descriptor.
|
---|
1998 | */
|
---|
1999 | IEM_STATIC VBOXSTRICTRC iemMiscValidateNewSS(PIEMCPU pIemCpu, PCCPUMCTX pCtx, RTSEL NewSS, uint8_t uCpl, PIEMSELDESC pDesc)
|
---|
2000 | {
|
---|
2001 | NOREF(pCtx);
|
---|
2002 |
|
---|
2003 | /* Null selectors are not allowed (we're not called for dispatching
|
---|
2004 | interrupts with SS=0 in long mode). */
|
---|
2005 | if (!(NewSS & X86_SEL_MASK_OFF_RPL))
|
---|
2006 | {
|
---|
2007 | Log(("iemMiscValidateNewSSandRsp: %#x - null selector -> #TS(0)\n", NewSS));
|
---|
2008 | return iemRaiseTaskSwitchFault0(pIemCpu);
|
---|
2009 | }
|
---|
2010 |
|
---|
2011 | /** @todo testcase: check that the TSS.ssX RPL is checked. Also check when. */
|
---|
2012 | if ((NewSS & X86_SEL_RPL) != uCpl)
|
---|
2013 | {
|
---|
2014 | Log(("iemMiscValidateNewSSandRsp: %#x - RPL and CPL (%d) differs -> #TS\n", NewSS, uCpl));
|
---|
2015 | return iemRaiseTaskSwitchFaultBySelector(pIemCpu, NewSS);
|
---|
2016 | }
|
---|
2017 |
|
---|
2018 | /*
|
---|
2019 | * Read the descriptor.
|
---|
2020 | */
|
---|
2021 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, pDesc, NewSS, X86_XCPT_TS);
|
---|
2022 | if (rcStrict != VINF_SUCCESS)
|
---|
2023 | return rcStrict;
|
---|
2024 |
|
---|
2025 | /*
|
---|
2026 | * Perform the descriptor validation documented for LSS, POP SS and MOV SS.
|
---|
2027 | */
|
---|
2028 | if (!pDesc->Legacy.Gen.u1DescType)
|
---|
2029 | {
|
---|
2030 | Log(("iemMiscValidateNewSSandRsp: %#x - system selector (%#x) -> #TS\n", NewSS, pDesc->Legacy.Gen.u4Type));
|
---|
2031 | return iemRaiseTaskSwitchFaultBySelector(pIemCpu, NewSS);
|
---|
2032 | }
|
---|
2033 |
|
---|
2034 | if ( (pDesc->Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
2035 | || !(pDesc->Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
2036 | {
|
---|
2037 | Log(("iemMiscValidateNewSSandRsp: %#x - code or read only (%#x) -> #TS\n", NewSS, pDesc->Legacy.Gen.u4Type));
|
---|
2038 | return iemRaiseTaskSwitchFaultBySelector(pIemCpu, NewSS);
|
---|
2039 | }
|
---|
2040 | if (pDesc->Legacy.Gen.u2Dpl != uCpl)
|
---|
2041 | {
|
---|
2042 | Log(("iemMiscValidateNewSSandRsp: %#x - DPL (%d) and CPL (%d) differs -> #TS\n", NewSS, pDesc->Legacy.Gen.u2Dpl, uCpl));
|
---|
2043 | return iemRaiseTaskSwitchFaultBySelector(pIemCpu, NewSS);
|
---|
2044 | }
|
---|
2045 |
|
---|
2046 | /* Is it there? */
|
---|
2047 | /** @todo testcase: Is this checked before the canonical / limit check below? */
|
---|
2048 | if (!pDesc->Legacy.Gen.u1Present)
|
---|
2049 | {
|
---|
2050 | Log(("iemMiscValidateNewSSandRsp: %#x - segment not present -> #NP\n", NewSS));
|
---|
2051 | return iemRaiseSelectorNotPresentBySelector(pIemCpu, NewSS);
|
---|
2052 | }
|
---|
2053 |
|
---|
2054 | return VINF_SUCCESS;
|
---|
2055 | }
|
---|
2056 |
|
---|
2057 |
|
---|
2058 | /**
|
---|
2059 | * Gets the correct EFLAGS regardless of whether PATM stores parts of them or
|
---|
2060 | * not.
|
---|
2061 | *
|
---|
2062 | * @param a_pIemCpu The IEM per CPU data.
|
---|
2063 | * @param a_pCtx The CPU context.
|
---|
2064 | */
|
---|
2065 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
2066 | # define IEMMISC_GET_EFL(a_pIemCpu, a_pCtx) \
|
---|
2067 | ( IEM_VERIFICATION_ENABLED(a_pIemCpu) \
|
---|
2068 | ? (a_pCtx)->eflags.u \
|
---|
2069 | : CPUMRawGetEFlags(IEMCPU_TO_VMCPU(a_pIemCpu)) )
|
---|
2070 | #else
|
---|
2071 | # define IEMMISC_GET_EFL(a_pIemCpu, a_pCtx) \
|
---|
2072 | ( (a_pCtx)->eflags.u )
|
---|
2073 | #endif
|
---|
2074 |
|
---|
2075 | /**
|
---|
2076 | * Updates the EFLAGS in the correct manner wrt. PATM.
|
---|
2077 | *
|
---|
2078 | * @param a_pIemCpu The IEM per CPU data.
|
---|
2079 | * @param a_pCtx The CPU context.
|
---|
2080 | * @param a_fEfl The new EFLAGS.
|
---|
2081 | */
|
---|
2082 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
2083 | # define IEMMISC_SET_EFL(a_pIemCpu, a_pCtx, a_fEfl) \
|
---|
2084 | do { \
|
---|
2085 | if (IEM_VERIFICATION_ENABLED(a_pIemCpu)) \
|
---|
2086 | (a_pCtx)->eflags.u = (a_fEfl); \
|
---|
2087 | else \
|
---|
2088 | CPUMRawSetEFlags(IEMCPU_TO_VMCPU(a_pIemCpu), a_fEfl); \
|
---|
2089 | } while (0)
|
---|
2090 | #else
|
---|
2091 | # define IEMMISC_SET_EFL(a_pIemCpu, a_pCtx, a_fEfl) \
|
---|
2092 | do { \
|
---|
2093 | (a_pCtx)->eflags.u = (a_fEfl); \
|
---|
2094 | } while (0)
|
---|
2095 | #endif
|
---|
2096 |
|
---|
2097 |
|
---|
2098 | /** @} */
|
---|
2099 |
|
---|
2100 | /** @name Raising Exceptions.
|
---|
2101 | *
|
---|
2102 | * @{
|
---|
2103 | */
|
---|
2104 |
|
---|
2105 | /** @name IEM_XCPT_FLAGS_XXX - flags for iemRaiseXcptOrInt.
|
---|
2106 | * @{ */
|
---|
2107 | /** CPU exception. */
|
---|
2108 | #define IEM_XCPT_FLAGS_T_CPU_XCPT RT_BIT_32(0)
|
---|
2109 | /** External interrupt (from PIC, APIC, whatever). */
|
---|
2110 | #define IEM_XCPT_FLAGS_T_EXT_INT RT_BIT_32(1)
|
---|
2111 | /** Software interrupt (int or into, not bound).
|
---|
2112 | * Returns to the following instruction */
|
---|
2113 | #define IEM_XCPT_FLAGS_T_SOFT_INT RT_BIT_32(2)
|
---|
2114 | /** Takes an error code. */
|
---|
2115 | #define IEM_XCPT_FLAGS_ERR RT_BIT_32(3)
|
---|
2116 | /** Takes a CR2. */
|
---|
2117 | #define IEM_XCPT_FLAGS_CR2 RT_BIT_32(4)
|
---|
2118 | /** Generated by the breakpoint instruction. */
|
---|
2119 | #define IEM_XCPT_FLAGS_BP_INSTR RT_BIT_32(5)
|
---|
2120 | /** Generated by a DRx instruction breakpoint and RF should be cleared. */
|
---|
2121 | #define IEM_XCPT_FLAGS_DRx_INSTR_BP RT_BIT_32(6)
|
---|
2122 | /** @} */
|
---|
2123 |
|
---|
2124 |
|
---|
2125 | /**
|
---|
2126 | * Loads the specified stack far pointer from the TSS.
|
---|
2127 | *
|
---|
2128 | * @returns VBox strict status code.
|
---|
2129 | * @param pIemCpu The IEM per CPU instance data.
|
---|
2130 | * @param pCtx The CPU context.
|
---|
2131 | * @param uCpl The CPL to load the stack for.
|
---|
2132 | * @param pSelSS Where to return the new stack segment.
|
---|
2133 | * @param puEsp Where to return the new stack pointer.
|
---|
2134 | */
|
---|
2135 | IEM_STATIC VBOXSTRICTRC iemRaiseLoadStackFromTss32Or16(PIEMCPU pIemCpu, PCCPUMCTX pCtx, uint8_t uCpl,
|
---|
2136 | PRTSEL pSelSS, uint32_t *puEsp)
|
---|
2137 | {
|
---|
2138 | VBOXSTRICTRC rcStrict;
|
---|
2139 | Assert(uCpl < 4);
|
---|
2140 |
|
---|
2141 | switch (pCtx->tr.Attr.n.u4Type)
|
---|
2142 | {
|
---|
2143 | /*
|
---|
2144 | * 16-bit TSS (X86TSS16).
|
---|
2145 | */
|
---|
2146 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL: AssertFailed();
|
---|
2147 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
2148 | {
|
---|
2149 | uint32_t off = uCpl * 4 + 2;
|
---|
2150 | if (off + 4 <= pCtx->tr.u32Limit)
|
---|
2151 | {
|
---|
2152 | /** @todo check actual access pattern here. */
|
---|
2153 | uint32_t u32Tmp = 0; /* gcc maybe... */
|
---|
2154 | rcStrict = iemMemFetchSysU32(pIemCpu, &u32Tmp, UINT8_MAX, pCtx->tr.u64Base + off);
|
---|
2155 | if (rcStrict == VINF_SUCCESS)
|
---|
2156 | {
|
---|
2157 | *puEsp = RT_LOWORD(u32Tmp);
|
---|
2158 | *pSelSS = RT_HIWORD(u32Tmp);
|
---|
2159 | return VINF_SUCCESS;
|
---|
2160 | }
|
---|
2161 | }
|
---|
2162 | else
|
---|
2163 | {
|
---|
2164 | Log(("LoadStackFromTss32Or16: out of bounds! uCpl=%d, u32Limit=%#x TSS16\n", uCpl, pCtx->tr.u32Limit));
|
---|
2165 | rcStrict = iemRaiseTaskSwitchFaultCurrentTSS(pIemCpu);
|
---|
2166 | }
|
---|
2167 | break;
|
---|
2168 | }
|
---|
2169 |
|
---|
2170 | /*
|
---|
2171 | * 32-bit TSS (X86TSS32).
|
---|
2172 | */
|
---|
2173 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL: AssertFailed();
|
---|
2174 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
2175 | {
|
---|
2176 | uint32_t off = uCpl * 8 + 4;
|
---|
2177 | if (off + 7 <= pCtx->tr.u32Limit)
|
---|
2178 | {
|
---|
2179 | /** @todo check actual access pattern here. */
|
---|
2180 | uint64_t u64Tmp;
|
---|
2181 | rcStrict = iemMemFetchSysU64(pIemCpu, &u64Tmp, UINT8_MAX, pCtx->tr.u64Base + off);
|
---|
2182 | if (rcStrict == VINF_SUCCESS)
|
---|
2183 | {
|
---|
2184 | *puEsp = u64Tmp & UINT32_MAX;
|
---|
2185 | *pSelSS = (RTSEL)(u64Tmp >> 32);
|
---|
2186 | return VINF_SUCCESS;
|
---|
2187 | }
|
---|
2188 | }
|
---|
2189 | else
|
---|
2190 | {
|
---|
2191 | Log(("LoadStackFromTss32Or16: out of bounds! uCpl=%d, u32Limit=%#x TSS16\n", uCpl, pCtx->tr.u32Limit));
|
---|
2192 | rcStrict = iemRaiseTaskSwitchFaultCurrentTSS(pIemCpu);
|
---|
2193 | }
|
---|
2194 | break;
|
---|
2195 | }
|
---|
2196 |
|
---|
2197 | default:
|
---|
2198 | AssertFailed();
|
---|
2199 | rcStrict = VERR_IEM_IPE_4;
|
---|
2200 | break;
|
---|
2201 | }
|
---|
2202 |
|
---|
2203 | *puEsp = 0; /* make gcc happy */
|
---|
2204 | *pSelSS = 0; /* make gcc happy */
|
---|
2205 | return rcStrict;
|
---|
2206 | }
|
---|
2207 |
|
---|
2208 |
|
---|
2209 | /**
|
---|
2210 | * Loads the specified stack pointer from the 64-bit TSS.
|
---|
2211 | *
|
---|
2212 | * @returns VBox strict status code.
|
---|
2213 | * @param pIemCpu The IEM per CPU instance data.
|
---|
2214 | * @param pCtx The CPU context.
|
---|
2215 | * @param uCpl The CPL to load the stack for.
|
---|
2216 | * @param uIst The interrupt stack table index, 0 if to use uCpl.
|
---|
2217 | * @param puRsp Where to return the new stack pointer.
|
---|
2218 | */
|
---|
2219 | IEM_STATIC VBOXSTRICTRC iemRaiseLoadStackFromTss64(PIEMCPU pIemCpu, PCCPUMCTX pCtx, uint8_t uCpl, uint8_t uIst, uint64_t *puRsp)
|
---|
2220 | {
|
---|
2221 | Assert(uCpl < 4);
|
---|
2222 | Assert(uIst < 8);
|
---|
2223 | *puRsp = 0; /* make gcc happy */
|
---|
2224 |
|
---|
2225 | AssertReturn(pCtx->tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY, VERR_IEM_IPE_5);
|
---|
2226 |
|
---|
2227 | uint32_t off;
|
---|
2228 | if (uIst)
|
---|
2229 | off = (uIst - 1) * sizeof(uint64_t) + RT_OFFSETOF(X86TSS64, ist1);
|
---|
2230 | else
|
---|
2231 | off = uCpl * sizeof(uint64_t) + RT_OFFSETOF(X86TSS64, rsp0);
|
---|
2232 | if (off + sizeof(uint64_t) > pCtx->tr.u32Limit)
|
---|
2233 | {
|
---|
2234 | Log(("iemRaiseLoadStackFromTss64: out of bounds! uCpl=%d uIst=%d, u32Limit=%#x\n", uCpl, uIst, pCtx->tr.u32Limit));
|
---|
2235 | return iemRaiseTaskSwitchFaultCurrentTSS(pIemCpu);
|
---|
2236 | }
|
---|
2237 |
|
---|
2238 | return iemMemFetchSysU64(pIemCpu, puRsp, UINT8_MAX, pCtx->tr.u64Base + off);
|
---|
2239 | }
|
---|
2240 |
|
---|
2241 |
|
---|
2242 | /**
|
---|
2243 | * Adjust the CPU state according to the exception being raised.
|
---|
2244 | *
|
---|
2245 | * @param pCtx The CPU context.
|
---|
2246 | * @param u8Vector The exception that has been raised.
|
---|
2247 | */
|
---|
2248 | DECLINLINE(void) iemRaiseXcptAdjustState(PCPUMCTX pCtx, uint8_t u8Vector)
|
---|
2249 | {
|
---|
2250 | switch (u8Vector)
|
---|
2251 | {
|
---|
2252 | case X86_XCPT_DB:
|
---|
2253 | pCtx->dr[7] &= ~X86_DR7_GD;
|
---|
2254 | break;
|
---|
2255 | /** @todo Read the AMD and Intel exception reference... */
|
---|
2256 | }
|
---|
2257 | }
|
---|
2258 |
|
---|
2259 |
|
---|
2260 | /**
|
---|
2261 | * Implements exceptions and interrupts for real mode.
|
---|
2262 | *
|
---|
2263 | * @returns VBox strict status code.
|
---|
2264 | * @param pIemCpu The IEM per CPU instance data.
|
---|
2265 | * @param pCtx The CPU context.
|
---|
2266 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
2267 | * address.
|
---|
2268 | * @param u8Vector The interrupt / exception vector number.
|
---|
2269 | * @param fFlags The flags.
|
---|
2270 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
2271 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
2272 | */
|
---|
2273 | IEM_STATIC VBOXSTRICTRC
|
---|
2274 | iemRaiseXcptOrIntInRealMode(PIEMCPU pIemCpu,
|
---|
2275 | PCPUMCTX pCtx,
|
---|
2276 | uint8_t cbInstr,
|
---|
2277 | uint8_t u8Vector,
|
---|
2278 | uint32_t fFlags,
|
---|
2279 | uint16_t uErr,
|
---|
2280 | uint64_t uCr2)
|
---|
2281 | {
|
---|
2282 | AssertReturn(pIemCpu->enmCpuMode == IEMMODE_16BIT, VERR_IEM_IPE_6);
|
---|
2283 | NOREF(uErr); NOREF(uCr2);
|
---|
2284 |
|
---|
2285 | /*
|
---|
2286 | * Read the IDT entry.
|
---|
2287 | */
|
---|
2288 | if (pCtx->idtr.cbIdt < UINT32_C(4) * u8Vector + 3)
|
---|
2289 | {
|
---|
2290 | Log(("RaiseXcptOrIntInRealMode: %#x is out of bounds (%#x)\n", u8Vector, pCtx->idtr.cbIdt));
|
---|
2291 | return iemRaiseGeneralProtectionFault(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
2292 | }
|
---|
2293 | RTFAR16 Idte;
|
---|
2294 | VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pIemCpu, (uint32_t *)&Idte, UINT8_MAX,
|
---|
2295 | pCtx->idtr.pIdt + UINT32_C(4) * u8Vector);
|
---|
2296 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
2297 | return rcStrict;
|
---|
2298 |
|
---|
2299 | /*
|
---|
2300 | * Push the stack frame.
|
---|
2301 | */
|
---|
2302 | uint16_t *pu16Frame;
|
---|
2303 | uint64_t uNewRsp;
|
---|
2304 | rcStrict = iemMemStackPushBeginSpecial(pIemCpu, 6, (void **)&pu16Frame, &uNewRsp);
|
---|
2305 | if (rcStrict != VINF_SUCCESS)
|
---|
2306 | return rcStrict;
|
---|
2307 |
|
---|
2308 | uint32_t fEfl = IEMMISC_GET_EFL(pIemCpu, pCtx);
|
---|
2309 | #if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
|
---|
2310 | AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
|
---|
2311 | if (pIemCpu->uTargetCpu <= IEMTARGETCPU_186)
|
---|
2312 | fEfl |= UINT16_C(0xf000);
|
---|
2313 | #endif
|
---|
2314 | pu16Frame[2] = (uint16_t)fEfl;
|
---|
2315 | pu16Frame[1] = (uint16_t)pCtx->cs.Sel;
|
---|
2316 | pu16Frame[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pCtx->ip + cbInstr : pCtx->ip;
|
---|
2317 | rcStrict = iemMemStackPushCommitSpecial(pIemCpu, pu16Frame, uNewRsp);
|
---|
2318 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
2319 | return rcStrict;
|
---|
2320 |
|
---|
2321 | /*
|
---|
2322 | * Load the vector address into cs:ip and make exception specific state
|
---|
2323 | * adjustments.
|
---|
2324 | */
|
---|
2325 | pCtx->cs.Sel = Idte.sel;
|
---|
2326 | pCtx->cs.ValidSel = Idte.sel;
|
---|
2327 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2328 | pCtx->cs.u64Base = (uint32_t)Idte.sel << 4;
|
---|
2329 | /** @todo do we load attribs and limit as well? Should we check against limit like far jump? */
|
---|
2330 | pCtx->rip = Idte.off;
|
---|
2331 | fEfl &= ~X86_EFL_IF;
|
---|
2332 | IEMMISC_SET_EFL(pIemCpu, pCtx, fEfl);
|
---|
2333 |
|
---|
2334 | /** @todo do we actually do this in real mode? */
|
---|
2335 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
2336 | iemRaiseXcptAdjustState(pCtx, u8Vector);
|
---|
2337 |
|
---|
2338 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
2339 | }
|
---|
2340 |
|
---|
2341 |
|
---|
2342 | /**
|
---|
2343 | * Loads a NULL data selector into when coming from V8086 mode.
|
---|
2344 | *
|
---|
2345 | * @param pIemCpu The IEM per CPU instance data.
|
---|
2346 | * @param pSReg Pointer to the segment register.
|
---|
2347 | */
|
---|
2348 | IEM_STATIC void iemHlpLoadNullDataSelectorOnV86Xcpt(PIEMCPU pIemCpu, PCPUMSELREG pSReg)
|
---|
2349 | {
|
---|
2350 | pSReg->Sel = 0;
|
---|
2351 | pSReg->ValidSel = 0;
|
---|
2352 | if (IEM_IS_GUEST_CPU_INTEL(pIemCpu) && !IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu))
|
---|
2353 | {
|
---|
2354 | /* VT-x (Intel 3960x) doesn't change the base and limit, clears and sets the following attributes */
|
---|
2355 | pSReg->Attr.u &= X86DESCATTR_DT | X86DESCATTR_TYPE | X86DESCATTR_DPL | X86DESCATTR_G | X86DESCATTR_D;
|
---|
2356 | pSReg->Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2357 | }
|
---|
2358 | else
|
---|
2359 | {
|
---|
2360 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2361 | /** @todo check this on AMD-V */
|
---|
2362 | pSReg->u64Base = 0;
|
---|
2363 | pSReg->u32Limit = 0;
|
---|
2364 | }
|
---|
2365 | }
|
---|
2366 |
|
---|
2367 |
|
---|
2368 | /**
|
---|
2369 | * Loads a segment selector during a task switch in V8086 mode.
|
---|
2370 | *
|
---|
2371 | * @param pIemCpu The IEM per CPU instance data.
|
---|
2372 | * @param pSReg Pointer to the segment register.
|
---|
2373 | * @param uSel The selector value to load.
|
---|
2374 | */
|
---|
2375 | IEM_STATIC void iemHlpLoadSelectorInV86Mode(PIEMCPU pIemCpu, PCPUMSELREG pSReg, uint16_t uSel)
|
---|
2376 | {
|
---|
2377 | /* See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
|
---|
2378 | pSReg->Sel = uSel;
|
---|
2379 | pSReg->ValidSel = uSel;
|
---|
2380 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2381 | pSReg->u64Base = uSel << 4;
|
---|
2382 | pSReg->u32Limit = 0xffff;
|
---|
2383 | pSReg->Attr.u = 0xf3;
|
---|
2384 | }
|
---|
2385 |
|
---|
2386 |
|
---|
2387 | /**
|
---|
2388 | * Loads a NULL data selector into a selector register, both the hidden and
|
---|
2389 | * visible parts, in protected mode.
|
---|
2390 | *
|
---|
2391 | * @param pIemCpu The IEM state of the calling EMT.
|
---|
2392 | * @param pSReg Pointer to the segment register.
|
---|
2393 | * @param uRpl The RPL.
|
---|
2394 | */
|
---|
2395 | IEM_STATIC void iemHlpLoadNullDataSelectorProt(PIEMCPU pIemCpu, PCPUMSELREG pSReg, RTSEL uRpl)
|
---|
2396 | {
|
---|
2397 | /** @todo Testcase: write a testcase checking what happends when loading a NULL
|
---|
2398 | * data selector in protected mode. */
|
---|
2399 | pSReg->Sel = uRpl;
|
---|
2400 | pSReg->ValidSel = uRpl;
|
---|
2401 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2402 | if (IEM_IS_GUEST_CPU_INTEL(pIemCpu) && !IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu))
|
---|
2403 | {
|
---|
2404 | /* VT-x (Intel 3960x) observed doing something like this. */
|
---|
2405 | pSReg->Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D | (pIemCpu->uCpl << X86DESCATTR_DPL_SHIFT);
|
---|
2406 | pSReg->u32Limit = UINT32_MAX;
|
---|
2407 | pSReg->u64Base = 0;
|
---|
2408 | }
|
---|
2409 | else
|
---|
2410 | {
|
---|
2411 | pSReg->Attr.u = X86DESCATTR_UNUSABLE;
|
---|
2412 | pSReg->u32Limit = 0;
|
---|
2413 | pSReg->u64Base = 0;
|
---|
2414 | }
|
---|
2415 | }
|
---|
2416 |
|
---|
2417 |
|
---|
2418 | /**
|
---|
2419 | * Loads a segment selector during a task switch in protected mode.
|
---|
2420 | *
|
---|
2421 | * In this task switch scenario, we would throw \#TS exceptions rather than
|
---|
2422 | * \#GPs.
|
---|
2423 | *
|
---|
2424 | * @returns VBox strict status code.
|
---|
2425 | * @param pIemCpu The IEM per CPU instance data.
|
---|
2426 | * @param pSReg Pointer to the segment register.
|
---|
2427 | * @param uSel The new selector value.
|
---|
2428 | *
|
---|
2429 | * @remarks This does _not_ handle CS or SS.
|
---|
2430 | * @remarks This expects pIemCpu->uCpl to be up to date.
|
---|
2431 | */
|
---|
2432 | IEM_STATIC VBOXSTRICTRC iemHlpTaskSwitchLoadDataSelectorInProtMode(PIEMCPU pIemCpu, PCPUMSELREG pSReg, uint16_t uSel)
|
---|
2433 | {
|
---|
2434 | Assert(pIemCpu->enmCpuMode != IEMMODE_64BIT);
|
---|
2435 |
|
---|
2436 | /* Null data selector. */
|
---|
2437 | if (!(uSel & X86_SEL_MASK_OFF_RPL))
|
---|
2438 | {
|
---|
2439 | iemHlpLoadNullDataSelectorProt(pIemCpu, pSReg, uSel);
|
---|
2440 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pSReg));
|
---|
2441 | CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
2442 | return VINF_SUCCESS;
|
---|
2443 | }
|
---|
2444 |
|
---|
2445 | /* Fetch the descriptor. */
|
---|
2446 | IEMSELDESC Desc;
|
---|
2447 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uSel, X86_XCPT_TS);
|
---|
2448 | if (rcStrict != VINF_SUCCESS)
|
---|
2449 | {
|
---|
2450 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: failed to fetch selector. uSel=%u rc=%Rrc\n", uSel,
|
---|
2451 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2452 | return rcStrict;
|
---|
2453 | }
|
---|
2454 |
|
---|
2455 | /* Must be a data segment or readable code segment. */
|
---|
2456 | if ( !Desc.Legacy.Gen.u1DescType
|
---|
2457 | || (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
2458 | {
|
---|
2459 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: invalid segment type. uSel=%u Desc.u4Type=%#x\n", uSel,
|
---|
2460 | Desc.Legacy.Gen.u4Type));
|
---|
2461 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
2462 | }
|
---|
2463 |
|
---|
2464 | /* Check privileges for data segments and non-conforming code segments. */
|
---|
2465 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
2466 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
2467 | {
|
---|
2468 | /* The RPL and the new CPL must be less than or equal to the DPL. */
|
---|
2469 | if ( (unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
|
---|
2470 | || (pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl))
|
---|
2471 | {
|
---|
2472 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: Invalid priv. uSel=%u uSel.RPL=%u DPL=%u CPL=%u\n",
|
---|
2473 | uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
|
---|
2474 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
2475 | }
|
---|
2476 | }
|
---|
2477 |
|
---|
2478 | /* Is it there? */
|
---|
2479 | if (!Desc.Legacy.Gen.u1Present)
|
---|
2480 | {
|
---|
2481 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: Segment not present. uSel=%u\n", uSel));
|
---|
2482 | return iemRaiseSelectorNotPresentWithErr(pIemCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
2483 | }
|
---|
2484 |
|
---|
2485 | /* The base and limit. */
|
---|
2486 | uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
2487 | uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
2488 |
|
---|
2489 | /*
|
---|
2490 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
2491 | * committing the result into the registers.
|
---|
2492 | */
|
---|
2493 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2494 | {
|
---|
2495 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uSel);
|
---|
2496 | if (rcStrict != VINF_SUCCESS)
|
---|
2497 | return rcStrict;
|
---|
2498 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2499 | }
|
---|
2500 |
|
---|
2501 | /* Commit */
|
---|
2502 | pSReg->Sel = uSel;
|
---|
2503 | pSReg->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
2504 | pSReg->u32Limit = cbLimit;
|
---|
2505 | pSReg->u64Base = u64Base; /** @todo testcase/investigate: seen claims that the upper half of the base remains unchanged... */
|
---|
2506 | pSReg->ValidSel = uSel;
|
---|
2507 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2508 | if (IEM_IS_GUEST_CPU_INTEL(pIemCpu) && !IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu))
|
---|
2509 | pSReg->Attr.u &= ~X86DESCATTR_UNUSABLE;
|
---|
2510 |
|
---|
2511 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pSReg));
|
---|
2512 | CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
2513 | return VINF_SUCCESS;
|
---|
2514 | }
|
---|
2515 |
|
---|
2516 |
|
---|
2517 | /**
|
---|
2518 | * Performs a task switch.
|
---|
2519 | *
|
---|
2520 | * If the task switch is the result of a JMP, CALL or IRET instruction, the
|
---|
2521 | * caller is responsible for performing the necessary checks (like DPL, TSS
|
---|
2522 | * present etc.) which are specific to JMP/CALL/IRET. See Intel Instruction
|
---|
2523 | * reference for JMP, CALL, IRET.
|
---|
2524 | *
|
---|
2525 | * If the task switch is the due to a software interrupt or hardware exception,
|
---|
2526 | * the caller is responsible for validating the TSS selector and descriptor. See
|
---|
2527 | * Intel Instruction reference for INT n.
|
---|
2528 | *
|
---|
2529 | * @returns VBox strict status code.
|
---|
2530 | * @param pIemCpu The IEM per CPU instance data.
|
---|
2531 | * @param pCtx The CPU context.
|
---|
2532 | * @param enmTaskSwitch What caused this task switch.
|
---|
2533 | * @param uNextEip The EIP effective after the task switch.
|
---|
2534 | * @param fFlags The flags.
|
---|
2535 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
2536 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
2537 | * @param SelTSS The TSS selector of the new task.
|
---|
2538 | * @param pNewDescTSS Pointer to the new TSS descriptor.
|
---|
2539 | */
|
---|
2540 | IEM_STATIC VBOXSTRICTRC
|
---|
2541 | iemTaskSwitch(PIEMCPU pIemCpu,
|
---|
2542 | PCPUMCTX pCtx,
|
---|
2543 | IEMTASKSWITCH enmTaskSwitch,
|
---|
2544 | uint32_t uNextEip,
|
---|
2545 | uint32_t fFlags,
|
---|
2546 | uint16_t uErr,
|
---|
2547 | uint64_t uCr2,
|
---|
2548 | RTSEL SelTSS,
|
---|
2549 | PIEMSELDESC pNewDescTSS)
|
---|
2550 | {
|
---|
2551 | Assert(!IEM_IS_REAL_MODE(pIemCpu));
|
---|
2552 | Assert(pIemCpu->enmCpuMode != IEMMODE_64BIT);
|
---|
2553 |
|
---|
2554 | uint32_t const uNewTSSType = pNewDescTSS->Legacy.Gate.u4Type;
|
---|
2555 | Assert( uNewTSSType == X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
2556 | || uNewTSSType == X86_SEL_TYPE_SYS_286_TSS_BUSY
|
---|
2557 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
2558 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
2559 |
|
---|
2560 | bool const fIsNewTSS386 = ( uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
2561 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
2562 |
|
---|
2563 | Log(("iemTaskSwitch: enmTaskSwitch=%u NewTSS=%#x fIsNewTSS386=%RTbool EIP=%#RGv uNextEip=%#RGv\n", enmTaskSwitch, SelTSS,
|
---|
2564 | fIsNewTSS386, pCtx->eip, uNextEip));
|
---|
2565 |
|
---|
2566 | /* Update CR2 in case it's a page-fault. */
|
---|
2567 | /** @todo This should probably be done much earlier in IEM/PGM. See
|
---|
2568 | * @bugref{5653#c49}. */
|
---|
2569 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
2570 | pCtx->cr2 = uCr2;
|
---|
2571 |
|
---|
2572 | /*
|
---|
2573 | * Check the new TSS limit. See Intel spec. 6.15 "Exception and Interrupt Reference"
|
---|
2574 | * subsection "Interrupt 10 - Invalid TSS Exception (#TS)".
|
---|
2575 | */
|
---|
2576 | uint32_t const uNewTSSLimit = pNewDescTSS->Legacy.Gen.u16LimitLow | (pNewDescTSS->Legacy.Gen.u4LimitHigh << 16);
|
---|
2577 | uint32_t const uNewTSSLimitMin = fIsNewTSS386 ? X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN : X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN;
|
---|
2578 | if (uNewTSSLimit < uNewTSSLimitMin)
|
---|
2579 | {
|
---|
2580 | Log(("iemTaskSwitch: Invalid new TSS limit. enmTaskSwitch=%u uNewTSSLimit=%#x uNewTSSLimitMin=%#x -> #TS\n",
|
---|
2581 | enmTaskSwitch, uNewTSSLimit, uNewTSSLimitMin));
|
---|
2582 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, SelTSS & X86_SEL_MASK_OFF_RPL);
|
---|
2583 | }
|
---|
2584 |
|
---|
2585 | /*
|
---|
2586 | * Check the current TSS limit. The last written byte to the current TSS during the
|
---|
2587 | * task switch will be 2 bytes at offset 0x5C (32-bit) and 1 byte at offset 0x28 (16-bit).
|
---|
2588 | * See Intel spec. 7.2.1 "Task-State Segment (TSS)" for static and dynamic fields.
|
---|
2589 | *
|
---|
2590 | * The AMD docs doesn't mention anything about limit checks with LTR which suggests you can
|
---|
2591 | * end up with smaller than "legal" TSS limits.
|
---|
2592 | */
|
---|
2593 | uint32_t const uCurTSSLimit = pCtx->tr.u32Limit;
|
---|
2594 | uint32_t const uCurTSSLimitMin = fIsNewTSS386 ? 0x5F : 0x29;
|
---|
2595 | if (uCurTSSLimit < uCurTSSLimitMin)
|
---|
2596 | {
|
---|
2597 | Log(("iemTaskSwitch: Invalid current TSS limit. enmTaskSwitch=%u uCurTSSLimit=%#x uCurTSSLimitMin=%#x -> #TS\n",
|
---|
2598 | enmTaskSwitch, uCurTSSLimit, uCurTSSLimitMin));
|
---|
2599 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, SelTSS & X86_SEL_MASK_OFF_RPL);
|
---|
2600 | }
|
---|
2601 |
|
---|
2602 | /*
|
---|
2603 | * Verify that the new TSS can be accessed and map it. Map only the required contents
|
---|
2604 | * and not the entire TSS.
|
---|
2605 | */
|
---|
2606 | void *pvNewTSS;
|
---|
2607 | uint32_t cbNewTSS = uNewTSSLimitMin + 1;
|
---|
2608 | RTGCPTR GCPtrNewTSS = X86DESC_BASE(&pNewDescTSS->Legacy);
|
---|
2609 | AssertCompile(sizeof(X86TSS32) == X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1);
|
---|
2610 | /** @todo Handle if the TSS crosses a page boundary. Intel specifies that it may
|
---|
2611 | * not perform correct translation if this happens. See Intel spec. 7.2.1
|
---|
2612 | * "Task-State Segment" */
|
---|
2613 | VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, &pvNewTSS, cbNewTSS, UINT8_MAX, GCPtrNewTSS, IEM_ACCESS_SYS_RW);
|
---|
2614 | if (rcStrict != VINF_SUCCESS)
|
---|
2615 | {
|
---|
2616 | Log(("iemTaskSwitch: Failed to read new TSS. enmTaskSwitch=%u cbNewTSS=%u uNewTSSLimit=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
2617 | cbNewTSS, uNewTSSLimit, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2618 | return rcStrict;
|
---|
2619 | }
|
---|
2620 |
|
---|
2621 | /*
|
---|
2622 | * Clear the busy bit in current task's TSS descriptor if it's a task switch due to JMP/IRET.
|
---|
2623 | */
|
---|
2624 | uint32_t u32EFlags = pCtx->eflags.u32;
|
---|
2625 | if ( enmTaskSwitch == IEMTASKSWITCH_JUMP
|
---|
2626 | || enmTaskSwitch == IEMTASKSWITCH_IRET)
|
---|
2627 | {
|
---|
2628 | PX86DESC pDescCurTSS;
|
---|
2629 | rcStrict = iemMemMap(pIemCpu, (void **)&pDescCurTSS, sizeof(*pDescCurTSS), UINT8_MAX,
|
---|
2630 | pCtx->gdtr.pGdt + (pCtx->tr.Sel & X86_SEL_MASK), IEM_ACCESS_SYS_RW);
|
---|
2631 | if (rcStrict != VINF_SUCCESS)
|
---|
2632 | {
|
---|
2633 | Log(("iemTaskSwitch: Failed to read new TSS descriptor in GDT. enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
2634 | enmTaskSwitch, pCtx->gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2635 | return rcStrict;
|
---|
2636 | }
|
---|
2637 |
|
---|
2638 | pDescCurTSS->Gate.u4Type &= ~X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
2639 | rcStrict = iemMemCommitAndUnmap(pIemCpu, pDescCurTSS, IEM_ACCESS_SYS_RW);
|
---|
2640 | if (rcStrict != VINF_SUCCESS)
|
---|
2641 | {
|
---|
2642 | Log(("iemTaskSwitch: Failed to commit new TSS descriptor in GDT. enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
2643 | enmTaskSwitch, pCtx->gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2644 | return rcStrict;
|
---|
2645 | }
|
---|
2646 |
|
---|
2647 | /* Clear EFLAGS.NT (Nested Task) in the eflags memory image, if it's a task switch due to an IRET. */
|
---|
2648 | if (enmTaskSwitch == IEMTASKSWITCH_IRET)
|
---|
2649 | {
|
---|
2650 | Assert( uNewTSSType == X86_SEL_TYPE_SYS_286_TSS_BUSY
|
---|
2651 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
2652 | u32EFlags &= ~X86_EFL_NT;
|
---|
2653 | }
|
---|
2654 | }
|
---|
2655 |
|
---|
2656 | /*
|
---|
2657 | * Save the CPU state into the current TSS.
|
---|
2658 | */
|
---|
2659 | RTGCPTR GCPtrCurTSS = pCtx->tr.u64Base;
|
---|
2660 | if (GCPtrNewTSS == GCPtrCurTSS)
|
---|
2661 | {
|
---|
2662 | Log(("iemTaskSwitch: Switching to the same TSS! enmTaskSwitch=%u GCPtr[Cur|New]TSS=%#RGv\n", enmTaskSwitch, GCPtrCurTSS));
|
---|
2663 | Log(("uCurCr3=%#x uCurEip=%#x uCurEflags=%#x uCurEax=%#x uCurEsp=%#x uCurEbp=%#x uCurCS=%#04x uCurSS=%#04x uCurLdt=%#x\n",
|
---|
2664 | pCtx->cr3, pCtx->eip, pCtx->eflags.u32, pCtx->eax, pCtx->esp, pCtx->ebp, pCtx->cs.Sel, pCtx->ss.Sel, pCtx->ldtr.Sel));
|
---|
2665 | }
|
---|
2666 | if (fIsNewTSS386)
|
---|
2667 | {
|
---|
2668 | /*
|
---|
2669 | * Verify that the current TSS (32-bit) can be accessed, only the minimum required size.
|
---|
2670 | * See Intel spec. 7.2.1 "Task-State Segment (TSS)" for static and dynamic fields.
|
---|
2671 | */
|
---|
2672 | void *pvCurTSS32;
|
---|
2673 | uint32_t offCurTSS = RT_OFFSETOF(X86TSS32, eip);
|
---|
2674 | uint32_t cbCurTSS = RT_OFFSETOF(X86TSS32, selLdt) - RT_OFFSETOF(X86TSS32, eip);
|
---|
2675 | AssertCompile(RTASSERT_OFFSET_OF(X86TSS32, selLdt) - RTASSERT_OFFSET_OF(X86TSS32, eip) == 64);
|
---|
2676 | rcStrict = iemMemMap(pIemCpu, &pvCurTSS32, cbCurTSS, UINT8_MAX, GCPtrCurTSS + offCurTSS, IEM_ACCESS_SYS_RW);
|
---|
2677 | if (rcStrict != VINF_SUCCESS)
|
---|
2678 | {
|
---|
2679 | Log(("iemTaskSwitch: Failed to read current 32-bit TSS. enmTaskSwitch=%u GCPtrCurTSS=%#RGv cb=%u rc=%Rrc\n",
|
---|
2680 | enmTaskSwitch, GCPtrCurTSS, cbCurTSS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2681 | return rcStrict;
|
---|
2682 | }
|
---|
2683 |
|
---|
2684 | /* !! WARNING !! Access -only- the members (dynamic fields) that are mapped, i.e interval [offCurTSS..cbCurTSS). */
|
---|
2685 | PX86TSS32 pCurTSS32 = (PX86TSS32)((uintptr_t)pvCurTSS32 - offCurTSS);
|
---|
2686 | pCurTSS32->eip = uNextEip;
|
---|
2687 | pCurTSS32->eflags = u32EFlags;
|
---|
2688 | pCurTSS32->eax = pCtx->eax;
|
---|
2689 | pCurTSS32->ecx = pCtx->ecx;
|
---|
2690 | pCurTSS32->edx = pCtx->edx;
|
---|
2691 | pCurTSS32->ebx = pCtx->ebx;
|
---|
2692 | pCurTSS32->esp = pCtx->esp;
|
---|
2693 | pCurTSS32->ebp = pCtx->ebp;
|
---|
2694 | pCurTSS32->esi = pCtx->esi;
|
---|
2695 | pCurTSS32->edi = pCtx->edi;
|
---|
2696 | pCurTSS32->es = pCtx->es.Sel;
|
---|
2697 | pCurTSS32->cs = pCtx->cs.Sel;
|
---|
2698 | pCurTSS32->ss = pCtx->ss.Sel;
|
---|
2699 | pCurTSS32->ds = pCtx->ds.Sel;
|
---|
2700 | pCurTSS32->fs = pCtx->fs.Sel;
|
---|
2701 | pCurTSS32->gs = pCtx->gs.Sel;
|
---|
2702 |
|
---|
2703 | rcStrict = iemMemCommitAndUnmap(pIemCpu, pvCurTSS32, IEM_ACCESS_SYS_RW);
|
---|
2704 | if (rcStrict != VINF_SUCCESS)
|
---|
2705 | {
|
---|
2706 | Log(("iemTaskSwitch: Failed to commit current 32-bit TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
2707 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2708 | return rcStrict;
|
---|
2709 | }
|
---|
2710 | }
|
---|
2711 | else
|
---|
2712 | {
|
---|
2713 | /*
|
---|
2714 | * Verify that the current TSS (16-bit) can be accessed. Again, only the minimum required size.
|
---|
2715 | */
|
---|
2716 | void *pvCurTSS16;
|
---|
2717 | uint32_t offCurTSS = RT_OFFSETOF(X86TSS16, ip);
|
---|
2718 | uint32_t cbCurTSS = RT_OFFSETOF(X86TSS16, selLdt) - RT_OFFSETOF(X86TSS16, ip);
|
---|
2719 | AssertCompile(RTASSERT_OFFSET_OF(X86TSS16, selLdt) - RTASSERT_OFFSET_OF(X86TSS16, ip) == 28);
|
---|
2720 | rcStrict = iemMemMap(pIemCpu, &pvCurTSS16, cbCurTSS, UINT8_MAX, GCPtrCurTSS + offCurTSS, IEM_ACCESS_SYS_RW);
|
---|
2721 | if (rcStrict != VINF_SUCCESS)
|
---|
2722 | {
|
---|
2723 | Log(("iemTaskSwitch: Failed to read current 16-bit TSS. enmTaskSwitch=%u GCPtrCurTSS=%#RGv cb=%u rc=%Rrc\n",
|
---|
2724 | enmTaskSwitch, GCPtrCurTSS, cbCurTSS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2725 | return rcStrict;
|
---|
2726 | }
|
---|
2727 |
|
---|
2728 | /* !! WARNING !! Access -only- the members (dynamic fields) that are mapped, i.e interval [offCurTSS..cbCurTSS). */
|
---|
2729 | PX86TSS16 pCurTSS16 = (PX86TSS16)((uintptr_t)pvCurTSS16 - offCurTSS);
|
---|
2730 | pCurTSS16->ip = uNextEip;
|
---|
2731 | pCurTSS16->flags = u32EFlags;
|
---|
2732 | pCurTSS16->ax = pCtx->ax;
|
---|
2733 | pCurTSS16->cx = pCtx->cx;
|
---|
2734 | pCurTSS16->dx = pCtx->dx;
|
---|
2735 | pCurTSS16->bx = pCtx->bx;
|
---|
2736 | pCurTSS16->sp = pCtx->sp;
|
---|
2737 | pCurTSS16->bp = pCtx->bp;
|
---|
2738 | pCurTSS16->si = pCtx->si;
|
---|
2739 | pCurTSS16->di = pCtx->di;
|
---|
2740 | pCurTSS16->es = pCtx->es.Sel;
|
---|
2741 | pCurTSS16->cs = pCtx->cs.Sel;
|
---|
2742 | pCurTSS16->ss = pCtx->ss.Sel;
|
---|
2743 | pCurTSS16->ds = pCtx->ds.Sel;
|
---|
2744 |
|
---|
2745 | rcStrict = iemMemCommitAndUnmap(pIemCpu, pvCurTSS16, IEM_ACCESS_SYS_RW);
|
---|
2746 | if (rcStrict != VINF_SUCCESS)
|
---|
2747 | {
|
---|
2748 | Log(("iemTaskSwitch: Failed to commit current 16-bit TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
2749 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2750 | return rcStrict;
|
---|
2751 | }
|
---|
2752 | }
|
---|
2753 |
|
---|
2754 | /*
|
---|
2755 | * Update the previous task link field for the new TSS, if the task switch is due to a CALL/INT_XCPT.
|
---|
2756 | */
|
---|
2757 | if ( enmTaskSwitch == IEMTASKSWITCH_CALL
|
---|
2758 | || enmTaskSwitch == IEMTASKSWITCH_INT_XCPT)
|
---|
2759 | {
|
---|
2760 | /* 16 or 32-bit TSS doesn't matter, we only access the first, common 16-bit field (selPrev) here. */
|
---|
2761 | PX86TSS32 pNewTSS = (PX86TSS32)pvNewTSS;
|
---|
2762 | pNewTSS->selPrev = pCtx->tr.Sel;
|
---|
2763 | }
|
---|
2764 |
|
---|
2765 | /*
|
---|
2766 | * Read the state from the new TSS into temporaries. Setting it immediately as the new CPU state is tricky,
|
---|
2767 | * it's done further below with error handling (e.g. CR3 changes will go through PGM).
|
---|
2768 | */
|
---|
2769 | uint32_t uNewCr3, uNewEip, uNewEflags, uNewEax, uNewEcx, uNewEdx, uNewEbx, uNewEsp, uNewEbp, uNewEsi, uNewEdi;
|
---|
2770 | uint16_t uNewES, uNewCS, uNewSS, uNewDS, uNewFS, uNewGS, uNewLdt;
|
---|
2771 | bool fNewDebugTrap;
|
---|
2772 | if (fIsNewTSS386)
|
---|
2773 | {
|
---|
2774 | PX86TSS32 pNewTSS32 = (PX86TSS32)pvNewTSS;
|
---|
2775 | uNewCr3 = (pCtx->cr0 & X86_CR0_PG) ? pNewTSS32->cr3 : 0;
|
---|
2776 | uNewEip = pNewTSS32->eip;
|
---|
2777 | uNewEflags = pNewTSS32->eflags;
|
---|
2778 | uNewEax = pNewTSS32->eax;
|
---|
2779 | uNewEcx = pNewTSS32->ecx;
|
---|
2780 | uNewEdx = pNewTSS32->edx;
|
---|
2781 | uNewEbx = pNewTSS32->ebx;
|
---|
2782 | uNewEsp = pNewTSS32->esp;
|
---|
2783 | uNewEbp = pNewTSS32->ebp;
|
---|
2784 | uNewEsi = pNewTSS32->esi;
|
---|
2785 | uNewEdi = pNewTSS32->edi;
|
---|
2786 | uNewES = pNewTSS32->es;
|
---|
2787 | uNewCS = pNewTSS32->cs;
|
---|
2788 | uNewSS = pNewTSS32->ss;
|
---|
2789 | uNewDS = pNewTSS32->ds;
|
---|
2790 | uNewFS = pNewTSS32->fs;
|
---|
2791 | uNewGS = pNewTSS32->gs;
|
---|
2792 | uNewLdt = pNewTSS32->selLdt;
|
---|
2793 | fNewDebugTrap = RT_BOOL(pNewTSS32->fDebugTrap);
|
---|
2794 | }
|
---|
2795 | else
|
---|
2796 | {
|
---|
2797 | PX86TSS16 pNewTSS16 = (PX86TSS16)pvNewTSS;
|
---|
2798 | uNewCr3 = 0;
|
---|
2799 | uNewEip = pNewTSS16->ip;
|
---|
2800 | uNewEflags = pNewTSS16->flags;
|
---|
2801 | uNewEax = UINT32_C(0xffff0000) | pNewTSS16->ax;
|
---|
2802 | uNewEcx = UINT32_C(0xffff0000) | pNewTSS16->cx;
|
---|
2803 | uNewEdx = UINT32_C(0xffff0000) | pNewTSS16->dx;
|
---|
2804 | uNewEbx = UINT32_C(0xffff0000) | pNewTSS16->bx;
|
---|
2805 | uNewEsp = UINT32_C(0xffff0000) | pNewTSS16->sp;
|
---|
2806 | uNewEbp = UINT32_C(0xffff0000) | pNewTSS16->bp;
|
---|
2807 | uNewEsi = UINT32_C(0xffff0000) | pNewTSS16->si;
|
---|
2808 | uNewEdi = UINT32_C(0xffff0000) | pNewTSS16->di;
|
---|
2809 | uNewES = pNewTSS16->es;
|
---|
2810 | uNewCS = pNewTSS16->cs;
|
---|
2811 | uNewSS = pNewTSS16->ss;
|
---|
2812 | uNewDS = pNewTSS16->ds;
|
---|
2813 | uNewFS = 0;
|
---|
2814 | uNewGS = 0;
|
---|
2815 | uNewLdt = pNewTSS16->selLdt;
|
---|
2816 | fNewDebugTrap = false;
|
---|
2817 | }
|
---|
2818 |
|
---|
2819 | if (GCPtrNewTSS == GCPtrCurTSS)
|
---|
2820 | Log(("uNewCr3=%#x uNewEip=%#x uNewEflags=%#x uNewEax=%#x uNewEsp=%#x uNewEbp=%#x uNewCS=%#04x uNewSS=%#04x uNewLdt=%#x\n",
|
---|
2821 | uNewCr3, uNewEip, uNewEflags, uNewEax, uNewEsp, uNewEbp, uNewCS, uNewSS, uNewLdt));
|
---|
2822 |
|
---|
2823 | /*
|
---|
2824 | * We're done accessing the new TSS.
|
---|
2825 | */
|
---|
2826 | rcStrict = iemMemCommitAndUnmap(pIemCpu, pvNewTSS, IEM_ACCESS_SYS_RW);
|
---|
2827 | if (rcStrict != VINF_SUCCESS)
|
---|
2828 | {
|
---|
2829 | Log(("iemTaskSwitch: Failed to commit new TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2830 | return rcStrict;
|
---|
2831 | }
|
---|
2832 |
|
---|
2833 | /*
|
---|
2834 | * Set the busy bit in the new TSS descriptor, if the task switch is a JMP/CALL/INT_XCPT.
|
---|
2835 | */
|
---|
2836 | if (enmTaskSwitch != IEMTASKSWITCH_IRET)
|
---|
2837 | {
|
---|
2838 | rcStrict = iemMemMap(pIemCpu, (void **)&pNewDescTSS, sizeof(*pNewDescTSS), UINT8_MAX,
|
---|
2839 | pCtx->gdtr.pGdt + (SelTSS & X86_SEL_MASK), IEM_ACCESS_SYS_RW);
|
---|
2840 | if (rcStrict != VINF_SUCCESS)
|
---|
2841 | {
|
---|
2842 | Log(("iemTaskSwitch: Failed to read new TSS descriptor in GDT (2). enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
2843 | enmTaskSwitch, pCtx->gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2844 | return rcStrict;
|
---|
2845 | }
|
---|
2846 |
|
---|
2847 | /* Check that the descriptor indicates the new TSS is available (not busy). */
|
---|
2848 | AssertMsg( pNewDescTSS->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
2849 | || pNewDescTSS->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL,
|
---|
2850 | ("Invalid TSS descriptor type=%#x", pNewDescTSS->Legacy.Gate.u4Type));
|
---|
2851 |
|
---|
2852 | pNewDescTSS->Legacy.Gate.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
2853 | rcStrict = iemMemCommitAndUnmap(pIemCpu, pNewDescTSS, IEM_ACCESS_SYS_RW);
|
---|
2854 | if (rcStrict != VINF_SUCCESS)
|
---|
2855 | {
|
---|
2856 | Log(("iemTaskSwitch: Failed to commit new TSS descriptor in GDT (2). enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
2857 | enmTaskSwitch, pCtx->gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2858 | return rcStrict;
|
---|
2859 | }
|
---|
2860 | }
|
---|
2861 |
|
---|
2862 | /*
|
---|
2863 | * From this point on, we're technically in the new task. We will defer exceptions
|
---|
2864 | * until the completion of the task switch but before executing any instructions in the new task.
|
---|
2865 | */
|
---|
2866 | pCtx->tr.Sel = SelTSS;
|
---|
2867 | pCtx->tr.ValidSel = SelTSS;
|
---|
2868 | pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2869 | pCtx->tr.Attr.u = X86DESC_GET_HID_ATTR(&pNewDescTSS->Legacy);
|
---|
2870 | pCtx->tr.u32Limit = X86DESC_LIMIT_G(&pNewDescTSS->Legacy);
|
---|
2871 | pCtx->tr.u64Base = X86DESC_BASE(&pNewDescTSS->Legacy);
|
---|
2872 | CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_TR);
|
---|
2873 |
|
---|
2874 | /* Set the busy bit in TR. */
|
---|
2875 | pCtx->tr.Attr.n.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
2876 | /* Set EFLAGS.NT (Nested Task) in the eflags loaded from the new TSS, if it's a task switch due to a CALL/INT_XCPT. */
|
---|
2877 | if ( enmTaskSwitch == IEMTASKSWITCH_CALL
|
---|
2878 | || enmTaskSwitch == IEMTASKSWITCH_INT_XCPT)
|
---|
2879 | {
|
---|
2880 | uNewEflags |= X86_EFL_NT;
|
---|
2881 | }
|
---|
2882 |
|
---|
2883 | pCtx->dr[7] &= ~X86_DR7_LE_ALL; /** @todo Should we clear DR7.LE bit too? */
|
---|
2884 | pCtx->cr0 |= X86_CR0_TS;
|
---|
2885 | CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_CR0);
|
---|
2886 |
|
---|
2887 | pCtx->eip = uNewEip;
|
---|
2888 | pCtx->eax = uNewEax;
|
---|
2889 | pCtx->ecx = uNewEcx;
|
---|
2890 | pCtx->edx = uNewEdx;
|
---|
2891 | pCtx->ebx = uNewEbx;
|
---|
2892 | pCtx->esp = uNewEsp;
|
---|
2893 | pCtx->ebp = uNewEbp;
|
---|
2894 | pCtx->esi = uNewEsi;
|
---|
2895 | pCtx->edi = uNewEdi;
|
---|
2896 |
|
---|
2897 | uNewEflags &= X86_EFL_LIVE_MASK;
|
---|
2898 | uNewEflags |= X86_EFL_RA1_MASK;
|
---|
2899 | IEMMISC_SET_EFL(pIemCpu, pCtx, uNewEflags);
|
---|
2900 |
|
---|
2901 | /*
|
---|
2902 | * Switch the selectors here and do the segment checks later. If we throw exceptions, the selectors
|
---|
2903 | * will be valid in the exception handler. We cannot update the hidden parts until we've switched CR3
|
---|
2904 | * due to the hidden part data originating from the guest LDT/GDT which is accessed through paging.
|
---|
2905 | */
|
---|
2906 | pCtx->es.Sel = uNewES;
|
---|
2907 | pCtx->es.fFlags = CPUMSELREG_FLAGS_STALE;
|
---|
2908 | pCtx->es.Attr.u &= ~X86DESCATTR_P;
|
---|
2909 |
|
---|
2910 | pCtx->cs.Sel = uNewCS;
|
---|
2911 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_STALE;
|
---|
2912 | pCtx->cs.Attr.u &= ~X86DESCATTR_P;
|
---|
2913 |
|
---|
2914 | pCtx->ss.Sel = uNewSS;
|
---|
2915 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_STALE;
|
---|
2916 | pCtx->ss.Attr.u &= ~X86DESCATTR_P;
|
---|
2917 |
|
---|
2918 | pCtx->ds.Sel = uNewDS;
|
---|
2919 | pCtx->ds.fFlags = CPUMSELREG_FLAGS_STALE;
|
---|
2920 | pCtx->ds.Attr.u &= ~X86DESCATTR_P;
|
---|
2921 |
|
---|
2922 | pCtx->fs.Sel = uNewFS;
|
---|
2923 | pCtx->fs.fFlags = CPUMSELREG_FLAGS_STALE;
|
---|
2924 | pCtx->fs.Attr.u &= ~X86DESCATTR_P;
|
---|
2925 |
|
---|
2926 | pCtx->gs.Sel = uNewGS;
|
---|
2927 | pCtx->gs.fFlags = CPUMSELREG_FLAGS_STALE;
|
---|
2928 | pCtx->gs.Attr.u &= ~X86DESCATTR_P;
|
---|
2929 | CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
2930 |
|
---|
2931 | pCtx->ldtr.Sel = uNewLdt;
|
---|
2932 | pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_STALE;
|
---|
2933 | pCtx->ldtr.Attr.u &= ~X86DESCATTR_P;
|
---|
2934 | CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_LDTR);
|
---|
2935 |
|
---|
2936 | if (IEM_IS_GUEST_CPU_INTEL(pIemCpu) && !IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu))
|
---|
2937 | {
|
---|
2938 | pCtx->es.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2939 | pCtx->cs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2940 | pCtx->ss.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2941 | pCtx->ds.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2942 | pCtx->fs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2943 | pCtx->gs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2944 | pCtx->ldtr.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
2945 | }
|
---|
2946 |
|
---|
2947 | /*
|
---|
2948 | * Switch CR3 for the new task.
|
---|
2949 | */
|
---|
2950 | if ( fIsNewTSS386
|
---|
2951 | && (pCtx->cr0 & X86_CR0_PG))
|
---|
2952 | {
|
---|
2953 | /** @todo Should we update and flush TLBs only if CR3 value actually changes? */
|
---|
2954 | if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
|
---|
2955 | {
|
---|
2956 | int rc = CPUMSetGuestCR3(IEMCPU_TO_VMCPU(pIemCpu), uNewCr3);
|
---|
2957 | AssertRCSuccessReturn(rc, rc);
|
---|
2958 | }
|
---|
2959 | else
|
---|
2960 | pCtx->cr3 = uNewCr3;
|
---|
2961 |
|
---|
2962 | /* Inform PGM. */
|
---|
2963 | if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
|
---|
2964 | {
|
---|
2965 | int rc = PGMFlushTLB(IEMCPU_TO_VMCPU(pIemCpu), pCtx->cr3, !(pCtx->cr4 & X86_CR4_PGE));
|
---|
2966 | AssertRCReturn(rc, rc);
|
---|
2967 | /* ignore informational status codes */
|
---|
2968 | }
|
---|
2969 | CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_CR3);
|
---|
2970 | }
|
---|
2971 |
|
---|
2972 | /*
|
---|
2973 | * Switch LDTR for the new task.
|
---|
2974 | */
|
---|
2975 | if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
|
---|
2976 | iemHlpLoadNullDataSelectorProt(pIemCpu, &pCtx->ldtr, uNewLdt);
|
---|
2977 | else
|
---|
2978 | {
|
---|
2979 | Assert(!pCtx->ldtr.Attr.n.u1Present); /* Ensures that LDT.TI check passes in iemMemFetchSelDesc() below. */
|
---|
2980 |
|
---|
2981 | IEMSELDESC DescNewLdt;
|
---|
2982 | rcStrict = iemMemFetchSelDesc(pIemCpu, &DescNewLdt, uNewLdt, X86_XCPT_TS);
|
---|
2983 | if (rcStrict != VINF_SUCCESS)
|
---|
2984 | {
|
---|
2985 | Log(("iemTaskSwitch: fetching LDT failed. enmTaskSwitch=%u uNewLdt=%u cbGdt=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
2986 | uNewLdt, pCtx->gdtr.cbGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2987 | return rcStrict;
|
---|
2988 | }
|
---|
2989 | if ( !DescNewLdt.Legacy.Gen.u1Present
|
---|
2990 | || DescNewLdt.Legacy.Gen.u1DescType
|
---|
2991 | || DescNewLdt.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
|
---|
2992 | {
|
---|
2993 | Log(("iemTaskSwitch: Invalid LDT. enmTaskSwitch=%u uNewLdt=%u DescNewLdt.Legacy.u=%#RX64 -> #TS\n", enmTaskSwitch,
|
---|
2994 | uNewLdt, DescNewLdt.Legacy.u));
|
---|
2995 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
2996 | }
|
---|
2997 |
|
---|
2998 | pCtx->ldtr.ValidSel = uNewLdt;
|
---|
2999 | pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3000 | pCtx->ldtr.u64Base = X86DESC_BASE(&DescNewLdt.Legacy);
|
---|
3001 | pCtx->ldtr.u32Limit = X86DESC_LIMIT_G(&DescNewLdt.Legacy);
|
---|
3002 | pCtx->ldtr.Attr.u = X86DESC_GET_HID_ATTR(&DescNewLdt.Legacy);
|
---|
3003 | if (IEM_IS_GUEST_CPU_INTEL(pIemCpu) && !IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu))
|
---|
3004 | pCtx->ldtr.Attr.u &= ~X86DESCATTR_UNUSABLE;
|
---|
3005 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), &pCtx->ldtr));
|
---|
3006 | }
|
---|
3007 |
|
---|
3008 | IEMSELDESC DescSS;
|
---|
3009 | if (IEM_IS_V86_MODE(pIemCpu))
|
---|
3010 | {
|
---|
3011 | pIemCpu->uCpl = 3;
|
---|
3012 | iemHlpLoadSelectorInV86Mode(pIemCpu, &pCtx->es, uNewES);
|
---|
3013 | iemHlpLoadSelectorInV86Mode(pIemCpu, &pCtx->cs, uNewCS);
|
---|
3014 | iemHlpLoadSelectorInV86Mode(pIemCpu, &pCtx->ss, uNewSS);
|
---|
3015 | iemHlpLoadSelectorInV86Mode(pIemCpu, &pCtx->ds, uNewDS);
|
---|
3016 | iemHlpLoadSelectorInV86Mode(pIemCpu, &pCtx->fs, uNewFS);
|
---|
3017 | iemHlpLoadSelectorInV86Mode(pIemCpu, &pCtx->gs, uNewGS);
|
---|
3018 | }
|
---|
3019 | else
|
---|
3020 | {
|
---|
3021 | uint8_t uNewCpl = (uNewCS & X86_SEL_RPL);
|
---|
3022 |
|
---|
3023 | /*
|
---|
3024 | * Load the stack segment for the new task.
|
---|
3025 | */
|
---|
3026 | if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
|
---|
3027 | {
|
---|
3028 | Log(("iemTaskSwitch: Null stack segment. enmTaskSwitch=%u uNewSS=%#x -> #TS\n", enmTaskSwitch, uNewSS));
|
---|
3029 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3030 | }
|
---|
3031 |
|
---|
3032 | /* Fetch the descriptor. */
|
---|
3033 | rcStrict = iemMemFetchSelDesc(pIemCpu, &DescSS, uNewSS, X86_XCPT_TS);
|
---|
3034 | if (rcStrict != VINF_SUCCESS)
|
---|
3035 | {
|
---|
3036 | Log(("iemTaskSwitch: failed to fetch SS. uNewSS=%#x rc=%Rrc\n", uNewSS,
|
---|
3037 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3038 | return rcStrict;
|
---|
3039 | }
|
---|
3040 |
|
---|
3041 | /* SS must be a data segment and writable. */
|
---|
3042 | if ( !DescSS.Legacy.Gen.u1DescType
|
---|
3043 | || (DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
3044 | || !(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE))
|
---|
3045 | {
|
---|
3046 | Log(("iemTaskSwitch: SS invalid descriptor type. uNewSS=%#x u1DescType=%u u4Type=%#x\n",
|
---|
3047 | uNewSS, DescSS.Legacy.Gen.u1DescType, DescSS.Legacy.Gen.u4Type));
|
---|
3048 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3049 | }
|
---|
3050 |
|
---|
3051 | /* The SS.RPL, SS.DPL, CS.RPL (CPL) must be equal. */
|
---|
3052 | if ( (uNewSS & X86_SEL_RPL) != uNewCpl
|
---|
3053 | || DescSS.Legacy.Gen.u2Dpl != uNewCpl)
|
---|
3054 | {
|
---|
3055 | Log(("iemTaskSwitch: Invalid priv. for SS. uNewSS=%#x SS.DPL=%u uNewCpl=%u -> #TS\n", uNewSS, DescSS.Legacy.Gen.u2Dpl,
|
---|
3056 | uNewCpl));
|
---|
3057 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3058 | }
|
---|
3059 |
|
---|
3060 | /* Is it there? */
|
---|
3061 | if (!DescSS.Legacy.Gen.u1Present)
|
---|
3062 | {
|
---|
3063 | Log(("iemTaskSwitch: SS not present. uNewSS=%#x -> #NP\n", uNewSS));
|
---|
3064 | return iemRaiseSelectorNotPresentWithErr(pIemCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3065 | }
|
---|
3066 |
|
---|
3067 | uint32_t cbLimit = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3068 | uint64_t u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
3069 |
|
---|
3070 | /* Set the accessed bit before committing the result into SS. */
|
---|
3071 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3072 | {
|
---|
3073 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewSS);
|
---|
3074 | if (rcStrict != VINF_SUCCESS)
|
---|
3075 | return rcStrict;
|
---|
3076 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3077 | }
|
---|
3078 |
|
---|
3079 | /* Commit SS. */
|
---|
3080 | pCtx->ss.Sel = uNewSS;
|
---|
3081 | pCtx->ss.ValidSel = uNewSS;
|
---|
3082 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
3083 | pCtx->ss.u32Limit = cbLimit;
|
---|
3084 | pCtx->ss.u64Base = u64Base;
|
---|
3085 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3086 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), &pCtx->ss));
|
---|
3087 |
|
---|
3088 | /* CPL has changed, update IEM before loading rest of segments. */
|
---|
3089 | pIemCpu->uCpl = uNewCpl;
|
---|
3090 |
|
---|
3091 | /*
|
---|
3092 | * Load the data segments for the new task.
|
---|
3093 | */
|
---|
3094 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pIemCpu, &pCtx->es, uNewES);
|
---|
3095 | if (rcStrict != VINF_SUCCESS)
|
---|
3096 | return rcStrict;
|
---|
3097 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pIemCpu, &pCtx->ds, uNewDS);
|
---|
3098 | if (rcStrict != VINF_SUCCESS)
|
---|
3099 | return rcStrict;
|
---|
3100 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pIemCpu, &pCtx->fs, uNewFS);
|
---|
3101 | if (rcStrict != VINF_SUCCESS)
|
---|
3102 | return rcStrict;
|
---|
3103 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pIemCpu, &pCtx->gs, uNewGS);
|
---|
3104 | if (rcStrict != VINF_SUCCESS)
|
---|
3105 | return rcStrict;
|
---|
3106 |
|
---|
3107 | /*
|
---|
3108 | * Load the code segment for the new task.
|
---|
3109 | */
|
---|
3110 | if (!(uNewCS & X86_SEL_MASK_OFF_RPL))
|
---|
3111 | {
|
---|
3112 | Log(("iemTaskSwitch #TS: Null code segment. enmTaskSwitch=%u uNewCS=%#x\n", enmTaskSwitch, uNewCS));
|
---|
3113 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3114 | }
|
---|
3115 |
|
---|
3116 | /* Fetch the descriptor. */
|
---|
3117 | IEMSELDESC DescCS;
|
---|
3118 | rcStrict = iemMemFetchSelDesc(pIemCpu, &DescCS, uNewCS, X86_XCPT_TS);
|
---|
3119 | if (rcStrict != VINF_SUCCESS)
|
---|
3120 | {
|
---|
3121 | Log(("iemTaskSwitch: failed to fetch CS. uNewCS=%u rc=%Rrc\n", uNewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3122 | return rcStrict;
|
---|
3123 | }
|
---|
3124 |
|
---|
3125 | /* CS must be a code segment. */
|
---|
3126 | if ( !DescCS.Legacy.Gen.u1DescType
|
---|
3127 | || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
3128 | {
|
---|
3129 | Log(("iemTaskSwitch: CS invalid descriptor type. uNewCS=%#x u1DescType=%u u4Type=%#x -> #TS\n", uNewCS,
|
---|
3130 | DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
|
---|
3131 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3132 | }
|
---|
3133 |
|
---|
3134 | /* For conforming CS, DPL must be less than or equal to the RPL. */
|
---|
3135 | if ( (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
3136 | && DescCS.Legacy.Gen.u2Dpl > (uNewCS & X86_SEL_RPL))
|
---|
3137 | {
|
---|
3138 | Log(("iemTaskSwitch: confirming CS DPL > RPL. uNewCS=%#x u4Type=%#x DPL=%u -> #TS\n", uNewCS, DescCS.Legacy.Gen.u4Type,
|
---|
3139 | DescCS.Legacy.Gen.u2Dpl));
|
---|
3140 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3141 | }
|
---|
3142 |
|
---|
3143 | /* For non-conforming CS, DPL must match RPL. */
|
---|
3144 | if ( !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
3145 | && DescCS.Legacy.Gen.u2Dpl != (uNewCS & X86_SEL_RPL))
|
---|
3146 | {
|
---|
3147 | Log(("iemTaskSwitch: non-confirming CS DPL RPL mismatch. uNewCS=%#x u4Type=%#x DPL=%u -> #TS\n", uNewCS,
|
---|
3148 | DescCS.Legacy.Gen.u4Type, DescCS.Legacy.Gen.u2Dpl));
|
---|
3149 | return iemRaiseTaskSwitchFaultWithErr(pIemCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3150 | }
|
---|
3151 |
|
---|
3152 | /* Is it there? */
|
---|
3153 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3154 | {
|
---|
3155 | Log(("iemTaskSwitch: CS not present. uNewCS=%#x -> #NP\n", uNewCS));
|
---|
3156 | return iemRaiseSelectorNotPresentWithErr(pIemCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3157 | }
|
---|
3158 |
|
---|
3159 | cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3160 | u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3161 |
|
---|
3162 | /* Set the accessed bit before committing the result into CS. */
|
---|
3163 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3164 | {
|
---|
3165 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCS);
|
---|
3166 | if (rcStrict != VINF_SUCCESS)
|
---|
3167 | return rcStrict;
|
---|
3168 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3169 | }
|
---|
3170 |
|
---|
3171 | /* Commit CS. */
|
---|
3172 | pCtx->cs.Sel = uNewCS;
|
---|
3173 | pCtx->cs.ValidSel = uNewCS;
|
---|
3174 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3175 | pCtx->cs.u32Limit = cbLimit;
|
---|
3176 | pCtx->cs.u64Base = u64Base;
|
---|
3177 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3178 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), &pCtx->cs));
|
---|
3179 | }
|
---|
3180 |
|
---|
3181 | /** @todo Debug trap. */
|
---|
3182 | if (fIsNewTSS386 && fNewDebugTrap)
|
---|
3183 | Log(("iemTaskSwitch: Debug Trap set in new TSS. Not implemented!\n"));
|
---|
3184 |
|
---|
3185 | /*
|
---|
3186 | * Construct the error code masks based on what caused this task switch.
|
---|
3187 | * See Intel Instruction reference for INT.
|
---|
3188 | */
|
---|
3189 | uint16_t uExt;
|
---|
3190 | if ( enmTaskSwitch == IEMTASKSWITCH_INT_XCPT
|
---|
3191 | && !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT))
|
---|
3192 | {
|
---|
3193 | uExt = 1;
|
---|
3194 | }
|
---|
3195 | else
|
---|
3196 | uExt = 0;
|
---|
3197 |
|
---|
3198 | /*
|
---|
3199 | * Push any error code on to the new stack.
|
---|
3200 | */
|
---|
3201 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3202 | {
|
---|
3203 | Assert(enmTaskSwitch == IEMTASKSWITCH_INT_XCPT);
|
---|
3204 | uint32_t cbLimitSS = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3205 | uint8_t const cbStackFrame = fIsNewTSS386 ? 4 : 2;
|
---|
3206 |
|
---|
3207 | /* Check that there is sufficient space on the stack. */
|
---|
3208 | /** @todo Factor out segment limit checking for normal/expand down segments
|
---|
3209 | * into a separate function. */
|
---|
3210 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_DOWN))
|
---|
3211 | {
|
---|
3212 | if ( pCtx->esp - 1 > cbLimitSS
|
---|
3213 | || pCtx->esp < cbStackFrame)
|
---|
3214 | {
|
---|
3215 | /** @todo Intel says \#SS(EXT) for INT/XCPT, I couldn't figure out AMD yet. */
|
---|
3216 | Log(("iemTaskSwitch: SS=%#x ESP=%#x cbStackFrame=%#x is out of bounds -> #SS\n", pCtx->ss.Sel, pCtx->esp,
|
---|
3217 | cbStackFrame));
|
---|
3218 | return iemRaiseStackSelectorNotPresentWithErr(pIemCpu, uExt);
|
---|
3219 | }
|
---|
3220 | }
|
---|
3221 | else
|
---|
3222 | {
|
---|
3223 | if ( pCtx->esp - 1 > (DescSS.Legacy.Gen.u4Type & X86_DESC_DB ? UINT32_MAX : UINT32_C(0xffff))
|
---|
3224 | || pCtx->esp - cbStackFrame < cbLimitSS + UINT32_C(1))
|
---|
3225 | {
|
---|
3226 | Log(("iemTaskSwitch: SS=%#x ESP=%#x cbStackFrame=%#x (expand down) is out of bounds -> #SS\n", pCtx->ss.Sel, pCtx->esp,
|
---|
3227 | cbStackFrame));
|
---|
3228 | return iemRaiseStackSelectorNotPresentWithErr(pIemCpu, uExt);
|
---|
3229 | }
|
---|
3230 | }
|
---|
3231 |
|
---|
3232 |
|
---|
3233 | if (fIsNewTSS386)
|
---|
3234 | rcStrict = iemMemStackPushU32(pIemCpu, uErr);
|
---|
3235 | else
|
---|
3236 | rcStrict = iemMemStackPushU16(pIemCpu, uErr);
|
---|
3237 | if (rcStrict != VINF_SUCCESS)
|
---|
3238 | {
|
---|
3239 | Log(("iemTaskSwitch: Can't push error code to new task's stack. %s-bit TSS. rc=%Rrc\n", fIsNewTSS386 ? "32" : "16",
|
---|
3240 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3241 | return rcStrict;
|
---|
3242 | }
|
---|
3243 | }
|
---|
3244 |
|
---|
3245 | /* Check the new EIP against the new CS limit. */
|
---|
3246 | if (pCtx->eip > pCtx->cs.u32Limit)
|
---|
3247 | {
|
---|
3248 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: New EIP exceeds CS limit. uNewEIP=%#RGv CS limit=%u -> #GP(0)\n",
|
---|
3249 | pCtx->eip, pCtx->cs.u32Limit));
|
---|
3250 | /** @todo Intel says \#GP(EXT) for INT/XCPT, I couldn't figure out AMD yet. */
|
---|
3251 | return iemRaiseGeneralProtectionFault(pIemCpu, uExt);
|
---|
3252 | }
|
---|
3253 |
|
---|
3254 | Log(("iemTaskSwitch: Success! New CS:EIP=%#04x:%#x SS=%#04x\n", pCtx->cs.Sel, pCtx->eip, pCtx->ss.Sel));
|
---|
3255 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
3256 | }
|
---|
3257 |
|
---|
3258 |
|
---|
3259 | /**
|
---|
3260 | * Implements exceptions and interrupts for protected mode.
|
---|
3261 | *
|
---|
3262 | * @returns VBox strict status code.
|
---|
3263 | * @param pIemCpu The IEM per CPU instance data.
|
---|
3264 | * @param pCtx The CPU context.
|
---|
3265 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
3266 | * address.
|
---|
3267 | * @param u8Vector The interrupt / exception vector number.
|
---|
3268 | * @param fFlags The flags.
|
---|
3269 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
3270 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
3271 | */
|
---|
3272 | IEM_STATIC VBOXSTRICTRC
|
---|
3273 | iemRaiseXcptOrIntInProtMode(PIEMCPU pIemCpu,
|
---|
3274 | PCPUMCTX pCtx,
|
---|
3275 | uint8_t cbInstr,
|
---|
3276 | uint8_t u8Vector,
|
---|
3277 | uint32_t fFlags,
|
---|
3278 | uint16_t uErr,
|
---|
3279 | uint64_t uCr2)
|
---|
3280 | {
|
---|
3281 | /*
|
---|
3282 | * Read the IDT entry.
|
---|
3283 | */
|
---|
3284 | if (pCtx->idtr.cbIdt < UINT32_C(8) * u8Vector + 7)
|
---|
3285 | {
|
---|
3286 | Log(("RaiseXcptOrIntInProtMode: %#x is out of bounds (%#x)\n", u8Vector, pCtx->idtr.cbIdt));
|
---|
3287 | return iemRaiseGeneralProtectionFault(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3288 | }
|
---|
3289 | X86DESC Idte;
|
---|
3290 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pIemCpu, &Idte.u, UINT8_MAX,
|
---|
3291 | pCtx->idtr.pIdt + UINT32_C(8) * u8Vector);
|
---|
3292 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
3293 | return rcStrict;
|
---|
3294 | Log(("iemRaiseXcptOrIntInProtMode: vec=%#x P=%u DPL=%u DT=%u:%u A=%u %04x:%04x%04x\n",
|
---|
3295 | u8Vector, Idte.Gate.u1Present, Idte.Gate.u2Dpl, Idte.Gate.u1DescType, Idte.Gate.u4Type,
|
---|
3296 | Idte.Gate.u4ParmCount, Idte.Gate.u16Sel, Idte.Gate.u16OffsetHigh, Idte.Gate.u16OffsetLow));
|
---|
3297 |
|
---|
3298 | /*
|
---|
3299 | * Check the descriptor type, DPL and such.
|
---|
3300 | * ASSUMES this is done in the same order as described for call-gate calls.
|
---|
3301 | */
|
---|
3302 | if (Idte.Gate.u1DescType)
|
---|
3303 | {
|
---|
3304 | Log(("RaiseXcptOrIntInProtMode %#x - not system selector (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3305 | return iemRaiseGeneralProtectionFault(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3306 | }
|
---|
3307 | bool fTaskGate = false;
|
---|
3308 | uint8_t f32BitGate = true;
|
---|
3309 | uint32_t fEflToClear = X86_EFL_TF | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM;
|
---|
3310 | switch (Idte.Gate.u4Type)
|
---|
3311 | {
|
---|
3312 | case X86_SEL_TYPE_SYS_UNDEFINED:
|
---|
3313 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
3314 | case X86_SEL_TYPE_SYS_LDT:
|
---|
3315 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
3316 | case X86_SEL_TYPE_SYS_286_CALL_GATE:
|
---|
3317 | case X86_SEL_TYPE_SYS_UNDEFINED2:
|
---|
3318 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
3319 | case X86_SEL_TYPE_SYS_UNDEFINED3:
|
---|
3320 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
3321 | case X86_SEL_TYPE_SYS_386_CALL_GATE:
|
---|
3322 | case X86_SEL_TYPE_SYS_UNDEFINED4:
|
---|
3323 | {
|
---|
3324 | /** @todo check what actually happens when the type is wrong...
|
---|
3325 | * esp. call gates. */
|
---|
3326 | Log(("RaiseXcptOrIntInProtMode %#x - invalid type (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3327 | return iemRaiseGeneralProtectionFault(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3328 | }
|
---|
3329 |
|
---|
3330 | case X86_SEL_TYPE_SYS_286_INT_GATE:
|
---|
3331 | f32BitGate = false;
|
---|
3332 | case X86_SEL_TYPE_SYS_386_INT_GATE:
|
---|
3333 | fEflToClear |= X86_EFL_IF;
|
---|
3334 | break;
|
---|
3335 |
|
---|
3336 | case X86_SEL_TYPE_SYS_TASK_GATE:
|
---|
3337 | fTaskGate = true;
|
---|
3338 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
3339 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Task gates\n"));
|
---|
3340 | #endif
|
---|
3341 | break;
|
---|
3342 |
|
---|
3343 | case X86_SEL_TYPE_SYS_286_TRAP_GATE:
|
---|
3344 | f32BitGate = false;
|
---|
3345 | case X86_SEL_TYPE_SYS_386_TRAP_GATE:
|
---|
3346 | break;
|
---|
3347 |
|
---|
3348 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
3349 | }
|
---|
3350 |
|
---|
3351 | /* Check DPL against CPL if applicable. */
|
---|
3352 | if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3353 | {
|
---|
3354 | if (pIemCpu->uCpl > Idte.Gate.u2Dpl)
|
---|
3355 | {
|
---|
3356 | Log(("RaiseXcptOrIntInProtMode %#x - CPL (%d) > DPL (%d) -> #GP\n", u8Vector, pIemCpu->uCpl, Idte.Gate.u2Dpl));
|
---|
3357 | return iemRaiseGeneralProtectionFault(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3358 | }
|
---|
3359 | }
|
---|
3360 |
|
---|
3361 | /* Is it there? */
|
---|
3362 | if (!Idte.Gate.u1Present)
|
---|
3363 | {
|
---|
3364 | Log(("RaiseXcptOrIntInProtMode %#x - not present -> #NP\n", u8Vector));
|
---|
3365 | return iemRaiseSelectorNotPresentWithErr(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3366 | }
|
---|
3367 |
|
---|
3368 | /* Is it a task-gate? */
|
---|
3369 | if (fTaskGate)
|
---|
3370 | {
|
---|
3371 | /*
|
---|
3372 | * Construct the error code masks based on what caused this task switch.
|
---|
3373 | * See Intel Instruction reference for INT.
|
---|
3374 | */
|
---|
3375 | uint16_t const uExt = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? 0 : 1;
|
---|
3376 | uint16_t const uSelMask = X86_SEL_MASK_OFF_RPL;
|
---|
3377 | RTSEL SelTSS = Idte.Gate.u16Sel;
|
---|
3378 |
|
---|
3379 | /*
|
---|
3380 | * Fetch the TSS descriptor in the GDT.
|
---|
3381 | */
|
---|
3382 | IEMSELDESC DescTSS;
|
---|
3383 | rcStrict = iemMemFetchSelDescWithErr(pIemCpu, &DescTSS, SelTSS, X86_XCPT_GP, (SelTSS & uSelMask) | uExt);
|
---|
3384 | if (rcStrict != VINF_SUCCESS)
|
---|
3385 | {
|
---|
3386 | Log(("RaiseXcptOrIntInProtMode %#x - failed to fetch TSS selector %#x, rc=%Rrc\n", u8Vector, SelTSS,
|
---|
3387 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3388 | return rcStrict;
|
---|
3389 | }
|
---|
3390 |
|
---|
3391 | /* The TSS descriptor must be a system segment and be available (not busy). */
|
---|
3392 | if ( DescTSS.Legacy.Gen.u1DescType
|
---|
3393 | || ( DescTSS.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
3394 | && DescTSS.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL))
|
---|
3395 | {
|
---|
3396 | Log(("RaiseXcptOrIntInProtMode %#x - TSS selector %#x of task gate not a system descriptor or not available %#RX64\n",
|
---|
3397 | u8Vector, SelTSS, DescTSS.Legacy.au64));
|
---|
3398 | return iemRaiseGeneralProtectionFault(pIemCpu, (SelTSS & uSelMask) | uExt);
|
---|
3399 | }
|
---|
3400 |
|
---|
3401 | /* The TSS must be present. */
|
---|
3402 | if (!DescTSS.Legacy.Gen.u1Present)
|
---|
3403 | {
|
---|
3404 | Log(("RaiseXcptOrIntInProtMode %#x - TSS selector %#x not present %#RX64\n", u8Vector, SelTSS, DescTSS.Legacy.au64));
|
---|
3405 | return iemRaiseSelectorNotPresentWithErr(pIemCpu, (SelTSS & uSelMask) | uExt);
|
---|
3406 | }
|
---|
3407 |
|
---|
3408 | /* Do the actual task switch. */
|
---|
3409 | return iemTaskSwitch(pIemCpu, pCtx, IEMTASKSWITCH_INT_XCPT, pCtx->eip, fFlags, uErr, uCr2, SelTSS, &DescTSS);
|
---|
3410 | }
|
---|
3411 |
|
---|
3412 | /* A null CS is bad. */
|
---|
3413 | RTSEL NewCS = Idte.Gate.u16Sel;
|
---|
3414 | if (!(NewCS & X86_SEL_MASK_OFF_RPL))
|
---|
3415 | {
|
---|
3416 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x -> #GP\n", u8Vector, NewCS));
|
---|
3417 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
3418 | }
|
---|
3419 |
|
---|
3420 | /* Fetch the descriptor for the new CS. */
|
---|
3421 | IEMSELDESC DescCS;
|
---|
3422 | rcStrict = iemMemFetchSelDesc(pIemCpu, &DescCS, NewCS, X86_XCPT_GP); /** @todo correct exception? */
|
---|
3423 | if (rcStrict != VINF_SUCCESS)
|
---|
3424 | {
|
---|
3425 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - rc=%Rrc\n", u8Vector, NewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3426 | return rcStrict;
|
---|
3427 | }
|
---|
3428 |
|
---|
3429 | /* Must be a code segment. */
|
---|
3430 | if (!DescCS.Legacy.Gen.u1DescType)
|
---|
3431 | {
|
---|
3432 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - system selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
3433 | return iemRaiseGeneralProtectionFault(pIemCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3434 | }
|
---|
3435 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
3436 | {
|
---|
3437 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - data selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
3438 | return iemRaiseGeneralProtectionFault(pIemCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3439 | }
|
---|
3440 |
|
---|
3441 | /* Don't allow lowering the privilege level. */
|
---|
3442 | /** @todo Does the lowering of privileges apply to software interrupts
|
---|
3443 | * only? This has bearings on the more-privileged or
|
---|
3444 | * same-privilege stack behavior further down. A testcase would
|
---|
3445 | * be nice. */
|
---|
3446 | if (DescCS.Legacy.Gen.u2Dpl > pIemCpu->uCpl)
|
---|
3447 | {
|
---|
3448 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - DPL (%d) > CPL (%d) -> #GP\n",
|
---|
3449 | u8Vector, NewCS, DescCS.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
|
---|
3450 | return iemRaiseGeneralProtectionFault(pIemCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3451 | }
|
---|
3452 |
|
---|
3453 | /* Make sure the selector is present. */
|
---|
3454 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3455 | {
|
---|
3456 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - segment not present -> #NP\n", u8Vector, NewCS));
|
---|
3457 | return iemRaiseSelectorNotPresentBySelector(pIemCpu, NewCS);
|
---|
3458 | }
|
---|
3459 |
|
---|
3460 | /* Check the new EIP against the new CS limit. */
|
---|
3461 | uint32_t const uNewEip = Idte.Gate.u4Type == X86_SEL_TYPE_SYS_286_INT_GATE
|
---|
3462 | || Idte.Gate.u4Type == X86_SEL_TYPE_SYS_286_TRAP_GATE
|
---|
3463 | ? Idte.Gate.u16OffsetLow
|
---|
3464 | : Idte.Gate.u16OffsetLow | ((uint32_t)Idte.Gate.u16OffsetHigh << 16);
|
---|
3465 | uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3466 | if (uNewEip > cbLimitCS)
|
---|
3467 | {
|
---|
3468 | Log(("RaiseXcptOrIntInProtMode %#x - EIP=%#x > cbLimitCS=%#x (CS=%#x) -> #GP(0)\n",
|
---|
3469 | u8Vector, uNewEip, cbLimitCS, NewCS));
|
---|
3470 | return iemRaiseGeneralProtectionFault(pIemCpu, 0);
|
---|
3471 | }
|
---|
3472 |
|
---|
3473 | /* Calc the flag image to push. */
|
---|
3474 | uint32_t fEfl = IEMMISC_GET_EFL(pIemCpu, pCtx);
|
---|
3475 | if (fFlags & (IEM_XCPT_FLAGS_DRx_INSTR_BP | IEM_XCPT_FLAGS_T_SOFT_INT))
|
---|
3476 | fEfl &= ~X86_EFL_RF;
|
---|
3477 | else if (!IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu))
|
---|
3478 | fEfl |= X86_EFL_RF; /* Vagueness is all I've found on this so far... */ /** @todo Automatically pushing EFLAGS.RF. */
|
---|
3479 |
|
---|
3480 | /* From V8086 mode only go to CPL 0. */
|
---|
3481 | uint8_t const uNewCpl = DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF
|
---|
3482 | ? pIemCpu->uCpl : DescCS.Legacy.Gen.u2Dpl;
|
---|
3483 | if ((fEfl & X86_EFL_VM) && uNewCpl != 0) /** @todo When exactly is this raised? */
|
---|
3484 | {
|
---|
3485 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - New CPL (%d) != 0 w/ VM=1 -> #GP\n", u8Vector, NewCS, uNewCpl));
|
---|
3486 | return iemRaiseGeneralProtectionFault(pIemCpu, 0);
|
---|
3487 | }
|
---|
3488 |
|
---|
3489 | /*
|
---|
3490 | * If the privilege level changes, we need to get a new stack from the TSS.
|
---|
3491 | * This in turns means validating the new SS and ESP...
|
---|
3492 | */
|
---|
3493 | if (uNewCpl != pIemCpu->uCpl)
|
---|
3494 | {
|
---|
3495 | RTSEL NewSS;
|
---|
3496 | uint32_t uNewEsp;
|
---|
3497 | rcStrict = iemRaiseLoadStackFromTss32Or16(pIemCpu, pCtx, uNewCpl, &NewSS, &uNewEsp);
|
---|
3498 | if (rcStrict != VINF_SUCCESS)
|
---|
3499 | return rcStrict;
|
---|
3500 |
|
---|
3501 | IEMSELDESC DescSS;
|
---|
3502 | rcStrict = iemMiscValidateNewSS(pIemCpu, pCtx, NewSS, uNewCpl, &DescSS);
|
---|
3503 | if (rcStrict != VINF_SUCCESS)
|
---|
3504 | return rcStrict;
|
---|
3505 |
|
---|
3506 | /* Check that there is sufficient space for the stack frame. */
|
---|
3507 | uint32_t cbLimitSS = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3508 | uint8_t const cbStackFrame = !(fEfl & X86_EFL_VM)
|
---|
3509 | ? (fFlags & IEM_XCPT_FLAGS_ERR ? 12 : 10) << f32BitGate
|
---|
3510 | : (fFlags & IEM_XCPT_FLAGS_ERR ? 20 : 18) << f32BitGate;
|
---|
3511 |
|
---|
3512 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_DOWN))
|
---|
3513 | {
|
---|
3514 | if ( uNewEsp - 1 > cbLimitSS
|
---|
3515 | || uNewEsp < cbStackFrame)
|
---|
3516 | {
|
---|
3517 | Log(("RaiseXcptOrIntInProtMode: %#x - SS=%#x ESP=%#x cbStackFrame=%#x is out of bounds -> #GP\n",
|
---|
3518 | u8Vector, NewSS, uNewEsp, cbStackFrame));
|
---|
3519 | return iemRaiseSelectorBoundsBySelector(pIemCpu, NewSS);
|
---|
3520 | }
|
---|
3521 | }
|
---|
3522 | else
|
---|
3523 | {
|
---|
3524 | if ( uNewEsp - 1 > (DescSS.Legacy.Gen.u4Type & X86_DESC_DB ? UINT32_MAX : UINT32_C(0xffff))
|
---|
3525 | || uNewEsp - cbStackFrame < cbLimitSS + UINT32_C(1))
|
---|
3526 | {
|
---|
3527 | Log(("RaiseXcptOrIntInProtMode: %#x - SS=%#x ESP=%#x cbStackFrame=%#x (expand down) is out of bounds -> #GP\n",
|
---|
3528 | u8Vector, NewSS, uNewEsp, cbStackFrame));
|
---|
3529 | return iemRaiseSelectorBoundsBySelector(pIemCpu, NewSS);
|
---|
3530 | }
|
---|
3531 | }
|
---|
3532 |
|
---|
3533 | /*
|
---|
3534 | * Start making changes.
|
---|
3535 | */
|
---|
3536 |
|
---|
3537 | /* Create the stack frame. */
|
---|
3538 | RTPTRUNION uStackFrame;
|
---|
3539 | rcStrict = iemMemMap(pIemCpu, &uStackFrame.pv, cbStackFrame, UINT8_MAX,
|
---|
3540 | uNewEsp - cbStackFrame + X86DESC_BASE(&DescSS.Legacy), IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS); /* _SYS is a hack ... */
|
---|
3541 | if (rcStrict != VINF_SUCCESS)
|
---|
3542 | return rcStrict;
|
---|
3543 | void * const pvStackFrame = uStackFrame.pv;
|
---|
3544 | if (f32BitGate)
|
---|
3545 | {
|
---|
3546 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3547 | *uStackFrame.pu32++ = uErr;
|
---|
3548 | uStackFrame.pu32[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pCtx->eip + cbInstr : pCtx->eip;
|
---|
3549 | uStackFrame.pu32[1] = (pCtx->cs.Sel & ~X86_SEL_RPL) | pIemCpu->uCpl;
|
---|
3550 | uStackFrame.pu32[2] = fEfl;
|
---|
3551 | uStackFrame.pu32[3] = pCtx->esp;
|
---|
3552 | uStackFrame.pu32[4] = pCtx->ss.Sel;
|
---|
3553 | if (fEfl & X86_EFL_VM)
|
---|
3554 | {
|
---|
3555 | uStackFrame.pu32[1] = pCtx->cs.Sel;
|
---|
3556 | uStackFrame.pu32[5] = pCtx->es.Sel;
|
---|
3557 | uStackFrame.pu32[6] = pCtx->ds.Sel;
|
---|
3558 | uStackFrame.pu32[7] = pCtx->fs.Sel;
|
---|
3559 | uStackFrame.pu32[8] = pCtx->gs.Sel;
|
---|
3560 | }
|
---|
3561 | }
|
---|
3562 | else
|
---|
3563 | {
|
---|
3564 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3565 | *uStackFrame.pu16++ = uErr;
|
---|
3566 | uStackFrame.pu16[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pCtx->ip + cbInstr : pCtx->ip;
|
---|
3567 | uStackFrame.pu16[1] = (pCtx->cs.Sel & ~X86_SEL_RPL) | pIemCpu->uCpl;
|
---|
3568 | uStackFrame.pu16[2] = fEfl;
|
---|
3569 | uStackFrame.pu16[3] = pCtx->sp;
|
---|
3570 | uStackFrame.pu16[4] = pCtx->ss.Sel;
|
---|
3571 | if (fEfl & X86_EFL_VM)
|
---|
3572 | {
|
---|
3573 | uStackFrame.pu16[1] = pCtx->cs.Sel;
|
---|
3574 | uStackFrame.pu16[5] = pCtx->es.Sel;
|
---|
3575 | uStackFrame.pu16[6] = pCtx->ds.Sel;
|
---|
3576 | uStackFrame.pu16[7] = pCtx->fs.Sel;
|
---|
3577 | uStackFrame.pu16[8] = pCtx->gs.Sel;
|
---|
3578 | }
|
---|
3579 | }
|
---|
3580 | rcStrict = iemMemCommitAndUnmap(pIemCpu, pvStackFrame, IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS);
|
---|
3581 | if (rcStrict != VINF_SUCCESS)
|
---|
3582 | return rcStrict;
|
---|
3583 |
|
---|
3584 | /* Mark the selectors 'accessed' (hope this is the correct time). */
|
---|
3585 | /** @todo testcase: excatly _when_ are the accessed bits set - before or
|
---|
3586 | * after pushing the stack frame? (Write protect the gdt + stack to
|
---|
3587 | * find out.) */
|
---|
3588 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3589 | {
|
---|
3590 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, NewCS);
|
---|
3591 | if (rcStrict != VINF_SUCCESS)
|
---|
3592 | return rcStrict;
|
---|
3593 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3594 | }
|
---|
3595 |
|
---|
3596 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3597 | {
|
---|
3598 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, NewSS);
|
---|
3599 | if (rcStrict != VINF_SUCCESS)
|
---|
3600 | return rcStrict;
|
---|
3601 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3602 | }
|
---|
3603 |
|
---|
3604 | /*
|
---|
3605 | * Start comitting the register changes (joins with the DPL=CPL branch).
|
---|
3606 | */
|
---|
3607 | pCtx->ss.Sel = NewSS;
|
---|
3608 | pCtx->ss.ValidSel = NewSS;
|
---|
3609 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3610 | pCtx->ss.u32Limit = cbLimitSS;
|
---|
3611 | pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
3612 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
3613 | /** @todo When coming from 32-bit code and operating with a 16-bit TSS and
|
---|
3614 | * 16-bit handler, the high word of ESP remains unchanged (i.e. only
|
---|
3615 | * SP is loaded).
|
---|
3616 | * Need to check the other combinations too:
|
---|
3617 | * - 16-bit TSS, 32-bit handler
|
---|
3618 | * - 32-bit TSS, 16-bit handler */
|
---|
3619 | if (!pCtx->ss.Attr.n.u1DefBig)
|
---|
3620 | pCtx->sp = (uint16_t)(uNewEsp - cbStackFrame);
|
---|
3621 | else
|
---|
3622 | pCtx->rsp = uNewEsp - cbStackFrame;
|
---|
3623 | pIemCpu->uCpl = uNewCpl;
|
---|
3624 |
|
---|
3625 | if (fEfl & X86_EFL_VM)
|
---|
3626 | {
|
---|
3627 | iemHlpLoadNullDataSelectorOnV86Xcpt(pIemCpu, &pCtx->gs);
|
---|
3628 | iemHlpLoadNullDataSelectorOnV86Xcpt(pIemCpu, &pCtx->fs);
|
---|
3629 | iemHlpLoadNullDataSelectorOnV86Xcpt(pIemCpu, &pCtx->es);
|
---|
3630 | iemHlpLoadNullDataSelectorOnV86Xcpt(pIemCpu, &pCtx->ds);
|
---|
3631 | }
|
---|
3632 | }
|
---|
3633 | /*
|
---|
3634 | * Same privilege, no stack change and smaller stack frame.
|
---|
3635 | */
|
---|
3636 | else
|
---|
3637 | {
|
---|
3638 | uint64_t uNewRsp;
|
---|
3639 | RTPTRUNION uStackFrame;
|
---|
3640 | uint8_t const cbStackFrame = (fFlags & IEM_XCPT_FLAGS_ERR ? 8 : 6) << f32BitGate;
|
---|
3641 | rcStrict = iemMemStackPushBeginSpecial(pIemCpu, cbStackFrame, &uStackFrame.pv, &uNewRsp);
|
---|
3642 | if (rcStrict != VINF_SUCCESS)
|
---|
3643 | return rcStrict;
|
---|
3644 | void * const pvStackFrame = uStackFrame.pv;
|
---|
3645 |
|
---|
3646 | if (f32BitGate)
|
---|
3647 | {
|
---|
3648 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3649 | *uStackFrame.pu32++ = uErr;
|
---|
3650 | uStackFrame.pu32[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pCtx->eip + cbInstr : pCtx->eip;
|
---|
3651 | uStackFrame.pu32[1] = (pCtx->cs.Sel & ~X86_SEL_RPL) | pIemCpu->uCpl;
|
---|
3652 | uStackFrame.pu32[2] = fEfl;
|
---|
3653 | }
|
---|
3654 | else
|
---|
3655 | {
|
---|
3656 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3657 | *uStackFrame.pu16++ = uErr;
|
---|
3658 | uStackFrame.pu16[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pCtx->eip + cbInstr : pCtx->eip;
|
---|
3659 | uStackFrame.pu16[1] = (pCtx->cs.Sel & ~X86_SEL_RPL) | pIemCpu->uCpl;
|
---|
3660 | uStackFrame.pu16[2] = fEfl;
|
---|
3661 | }
|
---|
3662 | rcStrict = iemMemCommitAndUnmap(pIemCpu, pvStackFrame, IEM_ACCESS_STACK_W); /* don't use the commit here */
|
---|
3663 | if (rcStrict != VINF_SUCCESS)
|
---|
3664 | return rcStrict;
|
---|
3665 |
|
---|
3666 | /* Mark the CS selector as 'accessed'. */
|
---|
3667 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3668 | {
|
---|
3669 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, NewCS);
|
---|
3670 | if (rcStrict != VINF_SUCCESS)
|
---|
3671 | return rcStrict;
|
---|
3672 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3673 | }
|
---|
3674 |
|
---|
3675 | /*
|
---|
3676 | * Start committing the register changes (joins with the other branch).
|
---|
3677 | */
|
---|
3678 | pCtx->rsp = uNewRsp;
|
---|
3679 | }
|
---|
3680 |
|
---|
3681 | /* ... register committing continues. */
|
---|
3682 | pCtx->cs.Sel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
3683 | pCtx->cs.ValidSel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
3684 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3685 | pCtx->cs.u32Limit = cbLimitCS;
|
---|
3686 | pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3687 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3688 |
|
---|
3689 | pCtx->rip = uNewEip; /* (The entire register is modified, see pe16_32 bs3kit tests.) */
|
---|
3690 | fEfl &= ~fEflToClear;
|
---|
3691 | IEMMISC_SET_EFL(pIemCpu, pCtx, fEfl);
|
---|
3692 |
|
---|
3693 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
3694 | pCtx->cr2 = uCr2;
|
---|
3695 |
|
---|
3696 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
3697 | iemRaiseXcptAdjustState(pCtx, u8Vector);
|
---|
3698 |
|
---|
3699 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
3700 | }
|
---|
3701 |
|
---|
3702 |
|
---|
3703 | /**
|
---|
3704 | * Implements exceptions and interrupts for long mode.
|
---|
3705 | *
|
---|
3706 | * @returns VBox strict status code.
|
---|
3707 | * @param pIemCpu The IEM per CPU instance data.
|
---|
3708 | * @param pCtx The CPU context.
|
---|
3709 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
3710 | * address.
|
---|
3711 | * @param u8Vector The interrupt / exception vector number.
|
---|
3712 | * @param fFlags The flags.
|
---|
3713 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
3714 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
3715 | */
|
---|
3716 | IEM_STATIC VBOXSTRICTRC
|
---|
3717 | iemRaiseXcptOrIntInLongMode(PIEMCPU pIemCpu,
|
---|
3718 | PCPUMCTX pCtx,
|
---|
3719 | uint8_t cbInstr,
|
---|
3720 | uint8_t u8Vector,
|
---|
3721 | uint32_t fFlags,
|
---|
3722 | uint16_t uErr,
|
---|
3723 | uint64_t uCr2)
|
---|
3724 | {
|
---|
3725 | /*
|
---|
3726 | * Read the IDT entry.
|
---|
3727 | */
|
---|
3728 | uint16_t offIdt = (uint16_t)u8Vector << 4;
|
---|
3729 | if (pCtx->idtr.cbIdt < offIdt + 7)
|
---|
3730 | {
|
---|
3731 | Log(("iemRaiseXcptOrIntInLongMode: %#x is out of bounds (%#x)\n", u8Vector, pCtx->idtr.cbIdt));
|
---|
3732 | return iemRaiseGeneralProtectionFault(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3733 | }
|
---|
3734 | X86DESC64 Idte;
|
---|
3735 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pIemCpu, &Idte.au64[0], UINT8_MAX, pCtx->idtr.pIdt + offIdt);
|
---|
3736 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
3737 | rcStrict = iemMemFetchSysU64(pIemCpu, &Idte.au64[1], UINT8_MAX, pCtx->idtr.pIdt + offIdt + 8);
|
---|
3738 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
3739 | return rcStrict;
|
---|
3740 | Log(("iemRaiseXcptOrIntInLongMode: vec=%#x P=%u DPL=%u DT=%u:%u IST=%u %04x:%08x%04x%04x\n",
|
---|
3741 | u8Vector, Idte.Gate.u1Present, Idte.Gate.u2Dpl, Idte.Gate.u1DescType, Idte.Gate.u4Type,
|
---|
3742 | Idte.Gate.u3IST, Idte.Gate.u16Sel, Idte.Gate.u32OffsetTop, Idte.Gate.u16OffsetHigh, Idte.Gate.u16OffsetLow));
|
---|
3743 |
|
---|
3744 | /*
|
---|
3745 | * Check the descriptor type, DPL and such.
|
---|
3746 | * ASSUMES this is done in the same order as described for call-gate calls.
|
---|
3747 | */
|
---|
3748 | if (Idte.Gate.u1DescType)
|
---|
3749 | {
|
---|
3750 | Log(("iemRaiseXcptOrIntInLongMode %#x - not system selector (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3751 | return iemRaiseGeneralProtectionFault(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3752 | }
|
---|
3753 | uint32_t fEflToClear = X86_EFL_TF | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM;
|
---|
3754 | switch (Idte.Gate.u4Type)
|
---|
3755 | {
|
---|
3756 | case AMD64_SEL_TYPE_SYS_INT_GATE:
|
---|
3757 | fEflToClear |= X86_EFL_IF;
|
---|
3758 | break;
|
---|
3759 | case AMD64_SEL_TYPE_SYS_TRAP_GATE:
|
---|
3760 | break;
|
---|
3761 |
|
---|
3762 | default:
|
---|
3763 | Log(("iemRaiseXcptOrIntInLongMode %#x - invalid type (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
3764 | return iemRaiseGeneralProtectionFault(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3765 | }
|
---|
3766 |
|
---|
3767 | /* Check DPL against CPL if applicable. */
|
---|
3768 | if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3769 | {
|
---|
3770 | if (pIemCpu->uCpl > Idte.Gate.u2Dpl)
|
---|
3771 | {
|
---|
3772 | Log(("iemRaiseXcptOrIntInLongMode %#x - CPL (%d) > DPL (%d) -> #GP\n", u8Vector, pIemCpu->uCpl, Idte.Gate.u2Dpl));
|
---|
3773 | return iemRaiseGeneralProtectionFault(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3774 | }
|
---|
3775 | }
|
---|
3776 |
|
---|
3777 | /* Is it there? */
|
---|
3778 | if (!Idte.Gate.u1Present)
|
---|
3779 | {
|
---|
3780 | Log(("iemRaiseXcptOrIntInLongMode %#x - not present -> #NP\n", u8Vector));
|
---|
3781 | return iemRaiseSelectorNotPresentWithErr(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3782 | }
|
---|
3783 |
|
---|
3784 | /* A null CS is bad. */
|
---|
3785 | RTSEL NewCS = Idte.Gate.u16Sel;
|
---|
3786 | if (!(NewCS & X86_SEL_MASK_OFF_RPL))
|
---|
3787 | {
|
---|
3788 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x -> #GP\n", u8Vector, NewCS));
|
---|
3789 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
3790 | }
|
---|
3791 |
|
---|
3792 | /* Fetch the descriptor for the new CS. */
|
---|
3793 | IEMSELDESC DescCS;
|
---|
3794 | rcStrict = iemMemFetchSelDesc(pIemCpu, &DescCS, NewCS, X86_XCPT_GP);
|
---|
3795 | if (rcStrict != VINF_SUCCESS)
|
---|
3796 | {
|
---|
3797 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - rc=%Rrc\n", u8Vector, NewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3798 | return rcStrict;
|
---|
3799 | }
|
---|
3800 |
|
---|
3801 | /* Must be a 64-bit code segment. */
|
---|
3802 | if (!DescCS.Long.Gen.u1DescType)
|
---|
3803 | {
|
---|
3804 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - system selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
3805 | return iemRaiseGeneralProtectionFault(pIemCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3806 | }
|
---|
3807 | if ( !DescCS.Long.Gen.u1Long
|
---|
3808 | || DescCS.Long.Gen.u1DefBig
|
---|
3809 | || !(DescCS.Long.Gen.u4Type & X86_SEL_TYPE_CODE) )
|
---|
3810 | {
|
---|
3811 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - not 64-bit code selector (%#x, L=%u, D=%u) -> #GP\n",
|
---|
3812 | u8Vector, NewCS, DescCS.Legacy.Gen.u4Type, DescCS.Long.Gen.u1Long, DescCS.Long.Gen.u1DefBig));
|
---|
3813 | return iemRaiseGeneralProtectionFault(pIemCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3814 | }
|
---|
3815 |
|
---|
3816 | /* Don't allow lowering the privilege level. For non-conforming CS
|
---|
3817 | selectors, the CS.DPL sets the privilege level the trap/interrupt
|
---|
3818 | handler runs at. For conforming CS selectors, the CPL remains
|
---|
3819 | unchanged, but the CS.DPL must be <= CPL. */
|
---|
3820 | /** @todo Testcase: Interrupt handler with CS.DPL=1, interrupt dispatched
|
---|
3821 | * when CPU in Ring-0. Result \#GP? */
|
---|
3822 | if (DescCS.Legacy.Gen.u2Dpl > pIemCpu->uCpl)
|
---|
3823 | {
|
---|
3824 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - DPL (%d) > CPL (%d) -> #GP\n",
|
---|
3825 | u8Vector, NewCS, DescCS.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
|
---|
3826 | return iemRaiseGeneralProtectionFault(pIemCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3827 | }
|
---|
3828 |
|
---|
3829 |
|
---|
3830 | /* Make sure the selector is present. */
|
---|
3831 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3832 | {
|
---|
3833 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - segment not present -> #NP\n", u8Vector, NewCS));
|
---|
3834 | return iemRaiseSelectorNotPresentBySelector(pIemCpu, NewCS);
|
---|
3835 | }
|
---|
3836 |
|
---|
3837 | /* Check that the new RIP is canonical. */
|
---|
3838 | uint64_t const uNewRip = Idte.Gate.u16OffsetLow
|
---|
3839 | | ((uint32_t)Idte.Gate.u16OffsetHigh << 16)
|
---|
3840 | | ((uint64_t)Idte.Gate.u32OffsetTop << 32);
|
---|
3841 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
3842 | {
|
---|
3843 | Log(("iemRaiseXcptOrIntInLongMode %#x - RIP=%#RX64 - Not canonical -> #GP(0)\n", u8Vector, uNewRip));
|
---|
3844 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
3845 | }
|
---|
3846 |
|
---|
3847 | /*
|
---|
3848 | * If the privilege level changes or if the IST isn't zero, we need to get
|
---|
3849 | * a new stack from the TSS.
|
---|
3850 | */
|
---|
3851 | uint64_t uNewRsp;
|
---|
3852 | uint8_t const uNewCpl = DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF
|
---|
3853 | ? pIemCpu->uCpl : DescCS.Legacy.Gen.u2Dpl;
|
---|
3854 | if ( uNewCpl != pIemCpu->uCpl
|
---|
3855 | || Idte.Gate.u3IST != 0)
|
---|
3856 | {
|
---|
3857 | rcStrict = iemRaiseLoadStackFromTss64(pIemCpu, pCtx, uNewCpl, Idte.Gate.u3IST, &uNewRsp);
|
---|
3858 | if (rcStrict != VINF_SUCCESS)
|
---|
3859 | return rcStrict;
|
---|
3860 | }
|
---|
3861 | else
|
---|
3862 | uNewRsp = pCtx->rsp;
|
---|
3863 | uNewRsp &= ~(uint64_t)0xf;
|
---|
3864 |
|
---|
3865 | /*
|
---|
3866 | * Calc the flag image to push.
|
---|
3867 | */
|
---|
3868 | uint32_t fEfl = IEMMISC_GET_EFL(pIemCpu, pCtx);
|
---|
3869 | if (fFlags & (IEM_XCPT_FLAGS_DRx_INSTR_BP | IEM_XCPT_FLAGS_T_SOFT_INT))
|
---|
3870 | fEfl &= ~X86_EFL_RF;
|
---|
3871 | else if (!IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu))
|
---|
3872 | fEfl |= X86_EFL_RF; /* Vagueness is all I've found on this so far... */ /** @todo Automatically pushing EFLAGS.RF. */
|
---|
3873 |
|
---|
3874 | /*
|
---|
3875 | * Start making changes.
|
---|
3876 | */
|
---|
3877 |
|
---|
3878 | /* Create the stack frame. */
|
---|
3879 | uint32_t cbStackFrame = sizeof(uint64_t) * (5 + !!(fFlags & IEM_XCPT_FLAGS_ERR));
|
---|
3880 | RTPTRUNION uStackFrame;
|
---|
3881 | rcStrict = iemMemMap(pIemCpu, &uStackFrame.pv, cbStackFrame, UINT8_MAX,
|
---|
3882 | uNewRsp - cbStackFrame, IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS); /* _SYS is a hack ... */
|
---|
3883 | if (rcStrict != VINF_SUCCESS)
|
---|
3884 | return rcStrict;
|
---|
3885 | void * const pvStackFrame = uStackFrame.pv;
|
---|
3886 |
|
---|
3887 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
3888 | *uStackFrame.pu64++ = uErr;
|
---|
3889 | uStackFrame.pu64[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pCtx->rip + cbInstr : pCtx->rip;
|
---|
3890 | uStackFrame.pu64[1] = (pCtx->cs.Sel & ~X86_SEL_RPL) | pIemCpu->uCpl; /* CPL paranoia */
|
---|
3891 | uStackFrame.pu64[2] = fEfl;
|
---|
3892 | uStackFrame.pu64[3] = pCtx->rsp;
|
---|
3893 | uStackFrame.pu64[4] = pCtx->ss.Sel;
|
---|
3894 | rcStrict = iemMemCommitAndUnmap(pIemCpu, pvStackFrame, IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS);
|
---|
3895 | if (rcStrict != VINF_SUCCESS)
|
---|
3896 | return rcStrict;
|
---|
3897 |
|
---|
3898 | /* Mark the CS selectors 'accessed' (hope this is the correct time). */
|
---|
3899 | /** @todo testcase: excatly _when_ are the accessed bits set - before or
|
---|
3900 | * after pushing the stack frame? (Write protect the gdt + stack to
|
---|
3901 | * find out.) */
|
---|
3902 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3903 | {
|
---|
3904 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, NewCS);
|
---|
3905 | if (rcStrict != VINF_SUCCESS)
|
---|
3906 | return rcStrict;
|
---|
3907 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3908 | }
|
---|
3909 |
|
---|
3910 | /*
|
---|
3911 | * Start comitting the register changes.
|
---|
3912 | */
|
---|
3913 | /** @todo research/testcase: Figure out what VT-x and AMD-V loads into the
|
---|
3914 | * hidden registers when interrupting 32-bit or 16-bit code! */
|
---|
3915 | if (uNewCpl != pIemCpu->uCpl)
|
---|
3916 | {
|
---|
3917 | pCtx->ss.Sel = 0 | uNewCpl;
|
---|
3918 | pCtx->ss.ValidSel = 0 | uNewCpl;
|
---|
3919 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3920 | pCtx->ss.u32Limit = UINT32_MAX;
|
---|
3921 | pCtx->ss.u64Base = 0;
|
---|
3922 | pCtx->ss.Attr.u = (uNewCpl << X86DESCATTR_DPL_SHIFT) | X86DESCATTR_UNUSABLE;
|
---|
3923 | }
|
---|
3924 | pCtx->rsp = uNewRsp - cbStackFrame;
|
---|
3925 | pCtx->cs.Sel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
3926 | pCtx->cs.ValidSel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
3927 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3928 | pCtx->cs.u32Limit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3929 | pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3930 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3931 | pCtx->rip = uNewRip;
|
---|
3932 | pIemCpu->uCpl = uNewCpl;
|
---|
3933 |
|
---|
3934 | fEfl &= ~fEflToClear;
|
---|
3935 | IEMMISC_SET_EFL(pIemCpu, pCtx, fEfl);
|
---|
3936 |
|
---|
3937 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
3938 | pCtx->cr2 = uCr2;
|
---|
3939 |
|
---|
3940 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
3941 | iemRaiseXcptAdjustState(pCtx, u8Vector);
|
---|
3942 |
|
---|
3943 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
3944 | }
|
---|
3945 |
|
---|
3946 |
|
---|
3947 | /**
|
---|
3948 | * Implements exceptions and interrupts.
|
---|
3949 | *
|
---|
3950 | * All exceptions and interrupts goes thru this function!
|
---|
3951 | *
|
---|
3952 | * @returns VBox strict status code.
|
---|
3953 | * @param pIemCpu The IEM per CPU instance data.
|
---|
3954 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
3955 | * address.
|
---|
3956 | * @param u8Vector The interrupt / exception vector number.
|
---|
3957 | * @param fFlags The flags.
|
---|
3958 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
3959 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
3960 | */
|
---|
3961 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC)
|
---|
3962 | iemRaiseXcptOrInt(PIEMCPU pIemCpu,
|
---|
3963 | uint8_t cbInstr,
|
---|
3964 | uint8_t u8Vector,
|
---|
3965 | uint32_t fFlags,
|
---|
3966 | uint16_t uErr,
|
---|
3967 | uint64_t uCr2)
|
---|
3968 | {
|
---|
3969 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
3970 | #ifdef IN_RING0
|
---|
3971 | int rc = HMR0EnsureCompleteBasicContext(IEMCPU_TO_VMCPU(pIemCpu), pCtx);
|
---|
3972 | AssertRCReturn(rc, rc);
|
---|
3973 | #endif
|
---|
3974 |
|
---|
3975 | /*
|
---|
3976 | * Perform the V8086 IOPL check and upgrade the fault without nesting.
|
---|
3977 | */
|
---|
3978 | if ( pCtx->eflags.Bits.u1VM
|
---|
3979 | && pCtx->eflags.Bits.u2IOPL != 3
|
---|
3980 | && (fFlags & (IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
|
---|
3981 | && (pCtx->cr0 & X86_CR0_PE) )
|
---|
3982 | {
|
---|
3983 | Log(("iemRaiseXcptOrInt: V8086 IOPL check failed for int %#x -> #GP(0)\n", u8Vector));
|
---|
3984 | fFlags = IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR;
|
---|
3985 | u8Vector = X86_XCPT_GP;
|
---|
3986 | uErr = 0;
|
---|
3987 | }
|
---|
3988 | #ifdef DBGFTRACE_ENABLED
|
---|
3989 | RTTraceBufAddMsgF(IEMCPU_TO_VM(pIemCpu)->CTX_SUFF(hTraceBuf), "Xcpt/%u: %02x %u %x %x %llx %04x:%04llx %04x:%04llx",
|
---|
3990 | pIemCpu->cXcptRecursions, u8Vector, cbInstr, fFlags, uErr, uCr2,
|
---|
3991 | pCtx->cs.Sel, pCtx->rip, pCtx->ss.Sel, pCtx->rsp);
|
---|
3992 | #endif
|
---|
3993 |
|
---|
3994 | /*
|
---|
3995 | * Do recursion accounting.
|
---|
3996 | */
|
---|
3997 | uint8_t const uPrevXcpt = pIemCpu->uCurXcpt;
|
---|
3998 | uint32_t const fPrevXcpt = pIemCpu->fCurXcpt;
|
---|
3999 | if (pIemCpu->cXcptRecursions == 0)
|
---|
4000 | Log(("iemRaiseXcptOrInt: %#x at %04x:%RGv cbInstr=%#x fFlags=%#x uErr=%#x uCr2=%llx\n",
|
---|
4001 | u8Vector, pCtx->cs.Sel, pCtx->rip, cbInstr, fFlags, uErr, uCr2));
|
---|
4002 | else
|
---|
4003 | {
|
---|
4004 | Log(("iemRaiseXcptOrInt: %#x at %04x:%RGv cbInstr=%#x fFlags=%#x uErr=%#x uCr2=%llx; prev=%#x depth=%d flags=%#x\n",
|
---|
4005 | u8Vector, pCtx->cs.Sel, pCtx->rip, cbInstr, fFlags, uErr, uCr2, pIemCpu->uCurXcpt, pIemCpu->cXcptRecursions + 1, fPrevXcpt));
|
---|
4006 |
|
---|
4007 | /** @todo double and tripple faults. */
|
---|
4008 | if (pIemCpu->cXcptRecursions >= 3)
|
---|
4009 | {
|
---|
4010 | #ifdef DEBUG_bird
|
---|
4011 | AssertFailed();
|
---|
4012 | #endif
|
---|
4013 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Too many fault nestings.\n"));
|
---|
4014 | }
|
---|
4015 |
|
---|
4016 | /** @todo set X86_TRAP_ERR_EXTERNAL when appropriate.
|
---|
4017 | if (fPrevXcpt & IEM_XCPT_FLAGS_T_EXT_INT)
|
---|
4018 | {
|
---|
4019 | ....
|
---|
4020 | } */
|
---|
4021 | }
|
---|
4022 | pIemCpu->cXcptRecursions++;
|
---|
4023 | pIemCpu->uCurXcpt = u8Vector;
|
---|
4024 | pIemCpu->fCurXcpt = fFlags;
|
---|
4025 |
|
---|
4026 | /*
|
---|
4027 | * Extensive logging.
|
---|
4028 | */
|
---|
4029 | #if defined(LOG_ENABLED) && defined(IN_RING3)
|
---|
4030 | if (LogIs3Enabled())
|
---|
4031 | {
|
---|
4032 | PVM pVM = IEMCPU_TO_VM(pIemCpu);
|
---|
4033 | PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
|
---|
4034 | char szRegs[4096];
|
---|
4035 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
4036 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
4037 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
4038 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
4039 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
4040 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
4041 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
4042 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
4043 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
4044 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
4045 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
4046 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
4047 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
4048 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
4049 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
4050 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
4051 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
4052 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
4053 | " efer=%016VR{efer}\n"
|
---|
4054 | " pat=%016VR{pat}\n"
|
---|
4055 | " sf_mask=%016VR{sf_mask}\n"
|
---|
4056 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
4057 | " lstar=%016VR{lstar}\n"
|
---|
4058 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
4059 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
4060 | );
|
---|
4061 |
|
---|
4062 | char szInstr[256];
|
---|
4063 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
4064 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
4065 | szInstr, sizeof(szInstr), NULL);
|
---|
4066 | Log3(("%s%s\n", szRegs, szInstr));
|
---|
4067 | }
|
---|
4068 | #endif /* LOG_ENABLED */
|
---|
4069 |
|
---|
4070 | /*
|
---|
4071 | * Call the mode specific worker function.
|
---|
4072 | */
|
---|
4073 | VBOXSTRICTRC rcStrict;
|
---|
4074 | if (!(pCtx->cr0 & X86_CR0_PE))
|
---|
4075 | rcStrict = iemRaiseXcptOrIntInRealMode( pIemCpu, pCtx, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4076 | else if (pCtx->msrEFER & MSR_K6_EFER_LMA)
|
---|
4077 | rcStrict = iemRaiseXcptOrIntInLongMode( pIemCpu, pCtx, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4078 | else
|
---|
4079 | rcStrict = iemRaiseXcptOrIntInProtMode( pIemCpu, pCtx, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4080 |
|
---|
4081 | /*
|
---|
4082 | * Unwind.
|
---|
4083 | */
|
---|
4084 | pIemCpu->cXcptRecursions--;
|
---|
4085 | pIemCpu->uCurXcpt = uPrevXcpt;
|
---|
4086 | pIemCpu->fCurXcpt = fPrevXcpt;
|
---|
4087 | Log(("iemRaiseXcptOrInt: returns %Rrc (vec=%#x); cs:rip=%04x:%RGv ss:rsp=%04x:%RGv cpl=%u\n",
|
---|
4088 | VBOXSTRICTRC_VAL(rcStrict), u8Vector, pCtx->cs.Sel, pCtx->rip, pCtx->ss.Sel, pCtx->esp, pIemCpu->uCpl));
|
---|
4089 | return rcStrict;
|
---|
4090 | }
|
---|
4091 |
|
---|
4092 |
|
---|
4093 | /** \#DE - 00. */
|
---|
4094 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseDivideError(PIEMCPU pIemCpu)
|
---|
4095 | {
|
---|
4096 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_DE, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4097 | }
|
---|
4098 |
|
---|
4099 |
|
---|
4100 | /** \#DB - 01.
|
---|
4101 | * @note This automatically clear DR7.GD. */
|
---|
4102 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseDebugException(PIEMCPU pIemCpu)
|
---|
4103 | {
|
---|
4104 | /** @todo set/clear RF. */
|
---|
4105 | pIemCpu->CTX_SUFF(pCtx)->dr[7] &= ~X86_DR7_GD;
|
---|
4106 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_DB, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4107 | }
|
---|
4108 |
|
---|
4109 |
|
---|
4110 | /** \#UD - 06. */
|
---|
4111 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseUndefinedOpcode(PIEMCPU pIemCpu)
|
---|
4112 | {
|
---|
4113 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4114 | }
|
---|
4115 |
|
---|
4116 |
|
---|
4117 | /** \#NM - 07. */
|
---|
4118 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseDeviceNotAvailable(PIEMCPU pIemCpu)
|
---|
4119 | {
|
---|
4120 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_NM, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4121 | }
|
---|
4122 |
|
---|
4123 |
|
---|
4124 | /** \#TS(err) - 0a. */
|
---|
4125 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseTaskSwitchFaultWithErr(PIEMCPU pIemCpu, uint16_t uErr)
|
---|
4126 | {
|
---|
4127 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4128 | }
|
---|
4129 |
|
---|
4130 |
|
---|
4131 | /** \#TS(tr) - 0a. */
|
---|
4132 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseTaskSwitchFaultCurrentTSS(PIEMCPU pIemCpu)
|
---|
4133 | {
|
---|
4134 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4135 | pIemCpu->CTX_SUFF(pCtx)->tr.Sel, 0);
|
---|
4136 | }
|
---|
4137 |
|
---|
4138 |
|
---|
4139 | /** \#TS(0) - 0a. */
|
---|
4140 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseTaskSwitchFault0(PIEMCPU pIemCpu)
|
---|
4141 | {
|
---|
4142 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4143 | 0, 0);
|
---|
4144 | }
|
---|
4145 |
|
---|
4146 |
|
---|
4147 | /** \#TS(err) - 0a. */
|
---|
4148 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseTaskSwitchFaultBySelector(PIEMCPU pIemCpu, uint16_t uSel)
|
---|
4149 | {
|
---|
4150 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4151 | uSel & X86_SEL_MASK_OFF_RPL, 0);
|
---|
4152 | }
|
---|
4153 |
|
---|
4154 |
|
---|
4155 | /** \#NP(err) - 0b. */
|
---|
4156 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorNotPresentWithErr(PIEMCPU pIemCpu, uint16_t uErr)
|
---|
4157 | {
|
---|
4158 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_NP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4159 | }
|
---|
4160 |
|
---|
4161 |
|
---|
4162 | /** \#NP(seg) - 0b. */
|
---|
4163 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorNotPresentBySegReg(PIEMCPU pIemCpu, uint32_t iSegReg)
|
---|
4164 | {
|
---|
4165 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_NP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4166 | iemSRegFetchU16(pIemCpu, iSegReg) & ~X86_SEL_RPL, 0);
|
---|
4167 | }
|
---|
4168 |
|
---|
4169 |
|
---|
4170 | /** \#NP(sel) - 0b. */
|
---|
4171 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorNotPresentBySelector(PIEMCPU pIemCpu, uint16_t uSel)
|
---|
4172 | {
|
---|
4173 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_NP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4174 | uSel & ~X86_SEL_RPL, 0);
|
---|
4175 | }
|
---|
4176 |
|
---|
4177 |
|
---|
4178 | /** \#SS(seg) - 0c. */
|
---|
4179 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseStackSelectorNotPresentBySelector(PIEMCPU pIemCpu, uint16_t uSel)
|
---|
4180 | {
|
---|
4181 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_SS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4182 | uSel & ~X86_SEL_RPL, 0);
|
---|
4183 | }
|
---|
4184 |
|
---|
4185 |
|
---|
4186 | /** \#SS(err) - 0c. */
|
---|
4187 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseStackSelectorNotPresentWithErr(PIEMCPU pIemCpu, uint16_t uErr)
|
---|
4188 | {
|
---|
4189 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_SS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4190 | }
|
---|
4191 |
|
---|
4192 |
|
---|
4193 | /** \#GP(n) - 0d. */
|
---|
4194 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseGeneralProtectionFault(PIEMCPU pIemCpu, uint16_t uErr)
|
---|
4195 | {
|
---|
4196 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4197 | }
|
---|
4198 |
|
---|
4199 |
|
---|
4200 | /** \#GP(0) - 0d. */
|
---|
4201 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseGeneralProtectionFault0(PIEMCPU pIemCpu)
|
---|
4202 | {
|
---|
4203 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4204 | }
|
---|
4205 |
|
---|
4206 |
|
---|
4207 | /** \#GP(sel) - 0d. */
|
---|
4208 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseGeneralProtectionFaultBySelector(PIEMCPU pIemCpu, RTSEL Sel)
|
---|
4209 | {
|
---|
4210 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4211 | Sel & ~X86_SEL_RPL, 0);
|
---|
4212 | }
|
---|
4213 |
|
---|
4214 |
|
---|
4215 | /** \#GP(0) - 0d. */
|
---|
4216 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseNotCanonical(PIEMCPU pIemCpu)
|
---|
4217 | {
|
---|
4218 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4219 | }
|
---|
4220 |
|
---|
4221 |
|
---|
4222 | /** \#GP(sel) - 0d. */
|
---|
4223 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorBounds(PIEMCPU pIemCpu, uint32_t iSegReg, uint32_t fAccess)
|
---|
4224 | {
|
---|
4225 | NOREF(iSegReg); NOREF(fAccess);
|
---|
4226 | return iemRaiseXcptOrInt(pIemCpu, 0, iSegReg == X86_SREG_SS ? X86_XCPT_SS : X86_XCPT_GP,
|
---|
4227 | IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4228 | }
|
---|
4229 |
|
---|
4230 |
|
---|
4231 | /** \#GP(sel) - 0d. */
|
---|
4232 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorBoundsBySelector(PIEMCPU pIemCpu, RTSEL Sel)
|
---|
4233 | {
|
---|
4234 | NOREF(Sel);
|
---|
4235 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4236 | }
|
---|
4237 |
|
---|
4238 |
|
---|
4239 | /** \#GP(sel) - 0d. */
|
---|
4240 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorInvalidAccess(PIEMCPU pIemCpu, uint32_t iSegReg, uint32_t fAccess)
|
---|
4241 | {
|
---|
4242 | NOREF(iSegReg); NOREF(fAccess);
|
---|
4243 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
4244 | }
|
---|
4245 |
|
---|
4246 |
|
---|
4247 | /** \#PF(n) - 0e. */
|
---|
4248 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaisePageFault(PIEMCPU pIemCpu, RTGCPTR GCPtrWhere, uint32_t fAccess, int rc)
|
---|
4249 | {
|
---|
4250 | uint16_t uErr;
|
---|
4251 | switch (rc)
|
---|
4252 | {
|
---|
4253 | case VERR_PAGE_NOT_PRESENT:
|
---|
4254 | case VERR_PAGE_TABLE_NOT_PRESENT:
|
---|
4255 | case VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT:
|
---|
4256 | case VERR_PAGE_MAP_LEVEL4_NOT_PRESENT:
|
---|
4257 | uErr = 0;
|
---|
4258 | break;
|
---|
4259 |
|
---|
4260 | default:
|
---|
4261 | AssertMsgFailed(("%Rrc\n", rc));
|
---|
4262 | case VERR_ACCESS_DENIED:
|
---|
4263 | uErr = X86_TRAP_PF_P;
|
---|
4264 | break;
|
---|
4265 |
|
---|
4266 | /** @todo reserved */
|
---|
4267 | }
|
---|
4268 |
|
---|
4269 | if (pIemCpu->uCpl == 3)
|
---|
4270 | uErr |= X86_TRAP_PF_US;
|
---|
4271 |
|
---|
4272 | if ( (fAccess & IEM_ACCESS_WHAT_MASK) == IEM_ACCESS_WHAT_CODE
|
---|
4273 | && ( (pIemCpu->CTX_SUFF(pCtx)->cr4 & X86_CR4_PAE)
|
---|
4274 | && (pIemCpu->CTX_SUFF(pCtx)->msrEFER & MSR_K6_EFER_NXE) ) )
|
---|
4275 | uErr |= X86_TRAP_PF_ID;
|
---|
4276 |
|
---|
4277 | #if 0 /* This is so much non-sense, really. Why was it done like that? */
|
---|
4278 | /* Note! RW access callers reporting a WRITE protection fault, will clear
|
---|
4279 | the READ flag before calling. So, read-modify-write accesses (RW)
|
---|
4280 | can safely be reported as READ faults. */
|
---|
4281 | if ((fAccess & (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_TYPE_READ)) == IEM_ACCESS_TYPE_WRITE)
|
---|
4282 | uErr |= X86_TRAP_PF_RW;
|
---|
4283 | #else
|
---|
4284 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
4285 | {
|
---|
4286 | if (!IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu) || !(fAccess & IEM_ACCESS_TYPE_READ))
|
---|
4287 | uErr |= X86_TRAP_PF_RW;
|
---|
4288 | }
|
---|
4289 | #endif
|
---|
4290 |
|
---|
4291 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_PF, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR | IEM_XCPT_FLAGS_CR2,
|
---|
4292 | uErr, GCPtrWhere);
|
---|
4293 | }
|
---|
4294 |
|
---|
4295 |
|
---|
4296 | /** \#MF(0) - 10. */
|
---|
4297 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseMathFault(PIEMCPU pIemCpu)
|
---|
4298 | {
|
---|
4299 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_MF, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4300 | }
|
---|
4301 |
|
---|
4302 |
|
---|
4303 | /** \#AC(0) - 11. */
|
---|
4304 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseAlignmentCheckException(PIEMCPU pIemCpu)
|
---|
4305 | {
|
---|
4306 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_AC, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4307 | }
|
---|
4308 |
|
---|
4309 |
|
---|
4310 | /**
|
---|
4311 | * Macro for calling iemCImplRaiseDivideError().
|
---|
4312 | *
|
---|
4313 | * This enables us to add/remove arguments and force different levels of
|
---|
4314 | * inlining as we wish.
|
---|
4315 | *
|
---|
4316 | * @return Strict VBox status code.
|
---|
4317 | */
|
---|
4318 | #define IEMOP_RAISE_DIVIDE_ERROR() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseDivideError)
|
---|
4319 | IEM_CIMPL_DEF_0(iemCImplRaiseDivideError)
|
---|
4320 | {
|
---|
4321 | NOREF(cbInstr);
|
---|
4322 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_DE, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4323 | }
|
---|
4324 |
|
---|
4325 |
|
---|
4326 | /**
|
---|
4327 | * Macro for calling iemCImplRaiseInvalidLockPrefix().
|
---|
4328 | *
|
---|
4329 | * This enables us to add/remove arguments and force different levels of
|
---|
4330 | * inlining as we wish.
|
---|
4331 | *
|
---|
4332 | * @return Strict VBox status code.
|
---|
4333 | */
|
---|
4334 | #define IEMOP_RAISE_INVALID_LOCK_PREFIX() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseInvalidLockPrefix)
|
---|
4335 | IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix)
|
---|
4336 | {
|
---|
4337 | NOREF(cbInstr);
|
---|
4338 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4339 | }
|
---|
4340 |
|
---|
4341 |
|
---|
4342 | /**
|
---|
4343 | * Macro for calling iemCImplRaiseInvalidOpcode().
|
---|
4344 | *
|
---|
4345 | * This enables us to add/remove arguments and force different levels of
|
---|
4346 | * inlining as we wish.
|
---|
4347 | *
|
---|
4348 | * @return Strict VBox status code.
|
---|
4349 | */
|
---|
4350 | #define IEMOP_RAISE_INVALID_OPCODE() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseInvalidOpcode)
|
---|
4351 | IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode)
|
---|
4352 | {
|
---|
4353 | NOREF(cbInstr);
|
---|
4354 | return iemRaiseXcptOrInt(pIemCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4355 | }
|
---|
4356 |
|
---|
4357 |
|
---|
4358 | /** @} */
|
---|
4359 |
|
---|
4360 |
|
---|
4361 | /*
|
---|
4362 | *
|
---|
4363 | * Helpers routines.
|
---|
4364 | * Helpers routines.
|
---|
4365 | * Helpers routines.
|
---|
4366 | *
|
---|
4367 | */
|
---|
4368 |
|
---|
4369 | /**
|
---|
4370 | * Recalculates the effective operand size.
|
---|
4371 | *
|
---|
4372 | * @param pIemCpu The IEM state.
|
---|
4373 | */
|
---|
4374 | IEM_STATIC void iemRecalEffOpSize(PIEMCPU pIemCpu)
|
---|
4375 | {
|
---|
4376 | switch (pIemCpu->enmCpuMode)
|
---|
4377 | {
|
---|
4378 | case IEMMODE_16BIT:
|
---|
4379 | pIemCpu->enmEffOpSize = pIemCpu->fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_32BIT : IEMMODE_16BIT;
|
---|
4380 | break;
|
---|
4381 | case IEMMODE_32BIT:
|
---|
4382 | pIemCpu->enmEffOpSize = pIemCpu->fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_16BIT : IEMMODE_32BIT;
|
---|
4383 | break;
|
---|
4384 | case IEMMODE_64BIT:
|
---|
4385 | switch (pIemCpu->fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP))
|
---|
4386 | {
|
---|
4387 | case 0:
|
---|
4388 | pIemCpu->enmEffOpSize = pIemCpu->enmDefOpSize;
|
---|
4389 | break;
|
---|
4390 | case IEM_OP_PRF_SIZE_OP:
|
---|
4391 | pIemCpu->enmEffOpSize = IEMMODE_16BIT;
|
---|
4392 | break;
|
---|
4393 | case IEM_OP_PRF_SIZE_REX_W:
|
---|
4394 | case IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP:
|
---|
4395 | pIemCpu->enmEffOpSize = IEMMODE_64BIT;
|
---|
4396 | break;
|
---|
4397 | }
|
---|
4398 | break;
|
---|
4399 | default:
|
---|
4400 | AssertFailed();
|
---|
4401 | }
|
---|
4402 | }
|
---|
4403 |
|
---|
4404 |
|
---|
4405 | /**
|
---|
4406 | * Sets the default operand size to 64-bit and recalculates the effective
|
---|
4407 | * operand size.
|
---|
4408 | *
|
---|
4409 | * @param pIemCpu The IEM state.
|
---|
4410 | */
|
---|
4411 | IEM_STATIC void iemRecalEffOpSize64Default(PIEMCPU pIemCpu)
|
---|
4412 | {
|
---|
4413 | Assert(pIemCpu->enmCpuMode == IEMMODE_64BIT);
|
---|
4414 | pIemCpu->enmDefOpSize = IEMMODE_64BIT;
|
---|
4415 | if ((pIemCpu->fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP)) != IEM_OP_PRF_SIZE_OP)
|
---|
4416 | pIemCpu->enmEffOpSize = IEMMODE_64BIT;
|
---|
4417 | else
|
---|
4418 | pIemCpu->enmEffOpSize = IEMMODE_16BIT;
|
---|
4419 | }
|
---|
4420 |
|
---|
4421 |
|
---|
4422 | /*
|
---|
4423 | *
|
---|
4424 | * Common opcode decoders.
|
---|
4425 | * Common opcode decoders.
|
---|
4426 | * Common opcode decoders.
|
---|
4427 | *
|
---|
4428 | */
|
---|
4429 | //#include <iprt/mem.h>
|
---|
4430 |
|
---|
4431 | /**
|
---|
4432 | * Used to add extra details about a stub case.
|
---|
4433 | * @param pIemCpu The IEM per CPU state.
|
---|
4434 | */
|
---|
4435 | IEM_STATIC void iemOpStubMsg2(PIEMCPU pIemCpu)
|
---|
4436 | {
|
---|
4437 | #if defined(LOG_ENABLED) && defined(IN_RING3)
|
---|
4438 | PVM pVM = IEMCPU_TO_VM(pIemCpu);
|
---|
4439 | PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
|
---|
4440 | char szRegs[4096];
|
---|
4441 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
4442 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
4443 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
4444 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
4445 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
4446 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
4447 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
4448 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
4449 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
4450 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
4451 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
4452 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
4453 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
4454 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
4455 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
4456 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
4457 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
4458 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
4459 | " efer=%016VR{efer}\n"
|
---|
4460 | " pat=%016VR{pat}\n"
|
---|
4461 | " sf_mask=%016VR{sf_mask}\n"
|
---|
4462 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
4463 | " lstar=%016VR{lstar}\n"
|
---|
4464 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
4465 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
4466 | );
|
---|
4467 |
|
---|
4468 | char szInstr[256];
|
---|
4469 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
4470 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
4471 | szInstr, sizeof(szInstr), NULL);
|
---|
4472 |
|
---|
4473 | RTAssertMsg2Weak("%s%s\n", szRegs, szInstr);
|
---|
4474 | #else
|
---|
4475 | RTAssertMsg2Weak("cs:rip=%04x:%RX64\n", pIemCpu->CTX_SUFF(pCtx)->cs, pIemCpu->CTX_SUFF(pCtx)->rip);
|
---|
4476 | #endif
|
---|
4477 | }
|
---|
4478 |
|
---|
4479 | /**
|
---|
4480 | * Complains about a stub.
|
---|
4481 | *
|
---|
4482 | * Providing two versions of this macro, one for daily use and one for use when
|
---|
4483 | * working on IEM.
|
---|
4484 | */
|
---|
4485 | #if 0
|
---|
4486 | # define IEMOP_BITCH_ABOUT_STUB() \
|
---|
4487 | do { \
|
---|
4488 | RTAssertMsg1(NULL, __LINE__, __FILE__, __FUNCTION__); \
|
---|
4489 | iemOpStubMsg2(pIemCpu); \
|
---|
4490 | RTAssertPanic(); \
|
---|
4491 | } while (0)
|
---|
4492 | #else
|
---|
4493 | # define IEMOP_BITCH_ABOUT_STUB() Log(("Stub: %s (line %d)\n", __FUNCTION__, __LINE__));
|
---|
4494 | #endif
|
---|
4495 |
|
---|
4496 | /** Stubs an opcode. */
|
---|
4497 | #define FNIEMOP_STUB(a_Name) \
|
---|
4498 | FNIEMOP_DEF(a_Name) \
|
---|
4499 | { \
|
---|
4500 | IEMOP_BITCH_ABOUT_STUB(); \
|
---|
4501 | return VERR_IEM_INSTR_NOT_IMPLEMENTED; \
|
---|
4502 | } \
|
---|
4503 | typedef int ignore_semicolon
|
---|
4504 |
|
---|
4505 | /** Stubs an opcode. */
|
---|
4506 | #define FNIEMOP_STUB_1(a_Name, a_Type0, a_Name0) \
|
---|
4507 | FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
4508 | { \
|
---|
4509 | IEMOP_BITCH_ABOUT_STUB(); \
|
---|
4510 | NOREF(a_Name0); \
|
---|
4511 | return VERR_IEM_INSTR_NOT_IMPLEMENTED; \
|
---|
4512 | } \
|
---|
4513 | typedef int ignore_semicolon
|
---|
4514 |
|
---|
4515 | /** Stubs an opcode which currently should raise \#UD. */
|
---|
4516 | #define FNIEMOP_UD_STUB(a_Name) \
|
---|
4517 | FNIEMOP_DEF(a_Name) \
|
---|
4518 | { \
|
---|
4519 | Log(("Unsupported instruction %Rfn\n", __FUNCTION__)); \
|
---|
4520 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
4521 | } \
|
---|
4522 | typedef int ignore_semicolon
|
---|
4523 |
|
---|
4524 | /** Stubs an opcode which currently should raise \#UD. */
|
---|
4525 | #define FNIEMOP_UD_STUB_1(a_Name, a_Type0, a_Name0) \
|
---|
4526 | FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
4527 | { \
|
---|
4528 | NOREF(a_Name0); \
|
---|
4529 | Log(("Unsupported instruction %Rfn\n", __FUNCTION__)); \
|
---|
4530 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
4531 | } \
|
---|
4532 | typedef int ignore_semicolon
|
---|
4533 |
|
---|
4534 |
|
---|
4535 |
|
---|
4536 | /** @name Register Access.
|
---|
4537 | * @{
|
---|
4538 | */
|
---|
4539 |
|
---|
4540 | /**
|
---|
4541 | * Gets a reference (pointer) to the specified hidden segment register.
|
---|
4542 | *
|
---|
4543 | * @returns Hidden register reference.
|
---|
4544 | * @param pIemCpu The per CPU data.
|
---|
4545 | * @param iSegReg The segment register.
|
---|
4546 | */
|
---|
4547 | IEM_STATIC PCPUMSELREG iemSRegGetHid(PIEMCPU pIemCpu, uint8_t iSegReg)
|
---|
4548 | {
|
---|
4549 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
4550 | PCPUMSELREG pSReg;
|
---|
4551 | switch (iSegReg)
|
---|
4552 | {
|
---|
4553 | case X86_SREG_ES: pSReg = &pCtx->es; break;
|
---|
4554 | case X86_SREG_CS: pSReg = &pCtx->cs; break;
|
---|
4555 | case X86_SREG_SS: pSReg = &pCtx->ss; break;
|
---|
4556 | case X86_SREG_DS: pSReg = &pCtx->ds; break;
|
---|
4557 | case X86_SREG_FS: pSReg = &pCtx->fs; break;
|
---|
4558 | case X86_SREG_GS: pSReg = &pCtx->gs; break;
|
---|
4559 | default:
|
---|
4560 | AssertFailedReturn(NULL);
|
---|
4561 | }
|
---|
4562 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
4563 | if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pSReg))
|
---|
4564 | CPUMGuestLazyLoadHiddenSelectorReg(IEMCPU_TO_VMCPU(pIemCpu), pSReg);
|
---|
4565 | #else
|
---|
4566 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pSReg));
|
---|
4567 | #endif
|
---|
4568 | return pSReg;
|
---|
4569 | }
|
---|
4570 |
|
---|
4571 |
|
---|
4572 | /**
|
---|
4573 | * Ensures that the given hidden segment register is up to date.
|
---|
4574 | *
|
---|
4575 | * @returns Hidden register reference.
|
---|
4576 | * @param pIemCpu The per CPU data.
|
---|
4577 | * @param pSReg The segment register.
|
---|
4578 | */
|
---|
4579 | IEM_STATIC PCPUMSELREG iemSRegUpdateHid(PIEMCPU pIemCpu, PCPUMSELREG pSReg)
|
---|
4580 | {
|
---|
4581 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
4582 | if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pSReg))
|
---|
4583 | CPUMGuestLazyLoadHiddenSelectorReg(IEMCPU_TO_VMCPU(pIemCpu), pSReg);
|
---|
4584 | #else
|
---|
4585 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pSReg));
|
---|
4586 | NOREF(pIemCpu);
|
---|
4587 | #endif
|
---|
4588 | return pSReg;
|
---|
4589 | }
|
---|
4590 |
|
---|
4591 |
|
---|
4592 | /**
|
---|
4593 | * Gets a reference (pointer) to the specified segment register (the selector
|
---|
4594 | * value).
|
---|
4595 | *
|
---|
4596 | * @returns Pointer to the selector variable.
|
---|
4597 | * @param pIemCpu The per CPU data.
|
---|
4598 | * @param iSegReg The segment register.
|
---|
4599 | */
|
---|
4600 | IEM_STATIC uint16_t *iemSRegRef(PIEMCPU pIemCpu, uint8_t iSegReg)
|
---|
4601 | {
|
---|
4602 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
4603 | switch (iSegReg)
|
---|
4604 | {
|
---|
4605 | case X86_SREG_ES: return &pCtx->es.Sel;
|
---|
4606 | case X86_SREG_CS: return &pCtx->cs.Sel;
|
---|
4607 | case X86_SREG_SS: return &pCtx->ss.Sel;
|
---|
4608 | case X86_SREG_DS: return &pCtx->ds.Sel;
|
---|
4609 | case X86_SREG_FS: return &pCtx->fs.Sel;
|
---|
4610 | case X86_SREG_GS: return &pCtx->gs.Sel;
|
---|
4611 | }
|
---|
4612 | AssertFailedReturn(NULL);
|
---|
4613 | }
|
---|
4614 |
|
---|
4615 |
|
---|
4616 | /**
|
---|
4617 | * Fetches the selector value of a segment register.
|
---|
4618 | *
|
---|
4619 | * @returns The selector value.
|
---|
4620 | * @param pIemCpu The per CPU data.
|
---|
4621 | * @param iSegReg The segment register.
|
---|
4622 | */
|
---|
4623 | IEM_STATIC uint16_t iemSRegFetchU16(PIEMCPU pIemCpu, uint8_t iSegReg)
|
---|
4624 | {
|
---|
4625 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
4626 | switch (iSegReg)
|
---|
4627 | {
|
---|
4628 | case X86_SREG_ES: return pCtx->es.Sel;
|
---|
4629 | case X86_SREG_CS: return pCtx->cs.Sel;
|
---|
4630 | case X86_SREG_SS: return pCtx->ss.Sel;
|
---|
4631 | case X86_SREG_DS: return pCtx->ds.Sel;
|
---|
4632 | case X86_SREG_FS: return pCtx->fs.Sel;
|
---|
4633 | case X86_SREG_GS: return pCtx->gs.Sel;
|
---|
4634 | }
|
---|
4635 | AssertFailedReturn(0xffff);
|
---|
4636 | }
|
---|
4637 |
|
---|
4638 |
|
---|
4639 | /**
|
---|
4640 | * Gets a reference (pointer) to the specified general register.
|
---|
4641 | *
|
---|
4642 | * @returns Register reference.
|
---|
4643 | * @param pIemCpu The per CPU data.
|
---|
4644 | * @param iReg The general register.
|
---|
4645 | */
|
---|
4646 | IEM_STATIC void *iemGRegRef(PIEMCPU pIemCpu, uint8_t iReg)
|
---|
4647 | {
|
---|
4648 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
4649 | switch (iReg)
|
---|
4650 | {
|
---|
4651 | case X86_GREG_xAX: return &pCtx->rax;
|
---|
4652 | case X86_GREG_xCX: return &pCtx->rcx;
|
---|
4653 | case X86_GREG_xDX: return &pCtx->rdx;
|
---|
4654 | case X86_GREG_xBX: return &pCtx->rbx;
|
---|
4655 | case X86_GREG_xSP: return &pCtx->rsp;
|
---|
4656 | case X86_GREG_xBP: return &pCtx->rbp;
|
---|
4657 | case X86_GREG_xSI: return &pCtx->rsi;
|
---|
4658 | case X86_GREG_xDI: return &pCtx->rdi;
|
---|
4659 | case X86_GREG_x8: return &pCtx->r8;
|
---|
4660 | case X86_GREG_x9: return &pCtx->r9;
|
---|
4661 | case X86_GREG_x10: return &pCtx->r10;
|
---|
4662 | case X86_GREG_x11: return &pCtx->r11;
|
---|
4663 | case X86_GREG_x12: return &pCtx->r12;
|
---|
4664 | case X86_GREG_x13: return &pCtx->r13;
|
---|
4665 | case X86_GREG_x14: return &pCtx->r14;
|
---|
4666 | case X86_GREG_x15: return &pCtx->r15;
|
---|
4667 | }
|
---|
4668 | AssertFailedReturn(NULL);
|
---|
4669 | }
|
---|
4670 |
|
---|
4671 |
|
---|
4672 | /**
|
---|
4673 | * Gets a reference (pointer) to the specified 8-bit general register.
|
---|
4674 | *
|
---|
4675 | * Because of AH, CH, DH and BH we cannot use iemGRegRef directly here.
|
---|
4676 | *
|
---|
4677 | * @returns Register reference.
|
---|
4678 | * @param pIemCpu The per CPU data.
|
---|
4679 | * @param iReg The register.
|
---|
4680 | */
|
---|
4681 | IEM_STATIC uint8_t *iemGRegRefU8(PIEMCPU pIemCpu, uint8_t iReg)
|
---|
4682 | {
|
---|
4683 | if (pIemCpu->fPrefixes & IEM_OP_PRF_REX)
|
---|
4684 | return (uint8_t *)iemGRegRef(pIemCpu, iReg);
|
---|
4685 |
|
---|
4686 | uint8_t *pu8Reg = (uint8_t *)iemGRegRef(pIemCpu, iReg & 3);
|
---|
4687 | if (iReg >= 4)
|
---|
4688 | pu8Reg++;
|
---|
4689 | return pu8Reg;
|
---|
4690 | }
|
---|
4691 |
|
---|
4692 |
|
---|
4693 | /**
|
---|
4694 | * Fetches the value of a 8-bit general register.
|
---|
4695 | *
|
---|
4696 | * @returns The register value.
|
---|
4697 | * @param pIemCpu The per CPU data.
|
---|
4698 | * @param iReg The register.
|
---|
4699 | */
|
---|
4700 | IEM_STATIC uint8_t iemGRegFetchU8(PIEMCPU pIemCpu, uint8_t iReg)
|
---|
4701 | {
|
---|
4702 | uint8_t const *pbSrc = iemGRegRefU8(pIemCpu, iReg);
|
---|
4703 | return *pbSrc;
|
---|
4704 | }
|
---|
4705 |
|
---|
4706 |
|
---|
4707 | /**
|
---|
4708 | * Fetches the value of a 16-bit general register.
|
---|
4709 | *
|
---|
4710 | * @returns The register value.
|
---|
4711 | * @param pIemCpu The per CPU data.
|
---|
4712 | * @param iReg The register.
|
---|
4713 | */
|
---|
4714 | IEM_STATIC uint16_t iemGRegFetchU16(PIEMCPU pIemCpu, uint8_t iReg)
|
---|
4715 | {
|
---|
4716 | return *(uint16_t *)iemGRegRef(pIemCpu, iReg);
|
---|
4717 | }
|
---|
4718 |
|
---|
4719 |
|
---|
4720 | /**
|
---|
4721 | * Fetches the value of a 32-bit general register.
|
---|
4722 | *
|
---|
4723 | * @returns The register value.
|
---|
4724 | * @param pIemCpu The per CPU data.
|
---|
4725 | * @param iReg The register.
|
---|
4726 | */
|
---|
4727 | IEM_STATIC uint32_t iemGRegFetchU32(PIEMCPU pIemCpu, uint8_t iReg)
|
---|
4728 | {
|
---|
4729 | return *(uint32_t *)iemGRegRef(pIemCpu, iReg);
|
---|
4730 | }
|
---|
4731 |
|
---|
4732 |
|
---|
4733 | /**
|
---|
4734 | * Fetches the value of a 64-bit general register.
|
---|
4735 | *
|
---|
4736 | * @returns The register value.
|
---|
4737 | * @param pIemCpu The per CPU data.
|
---|
4738 | * @param iReg The register.
|
---|
4739 | */
|
---|
4740 | IEM_STATIC uint64_t iemGRegFetchU64(PIEMCPU pIemCpu, uint8_t iReg)
|
---|
4741 | {
|
---|
4742 | return *(uint64_t *)iemGRegRef(pIemCpu, iReg);
|
---|
4743 | }
|
---|
4744 |
|
---|
4745 |
|
---|
4746 | /**
|
---|
4747 | * Adds a 8-bit signed jump offset to RIP/EIP/IP.
|
---|
4748 | *
|
---|
4749 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
4750 | * segment limit.
|
---|
4751 | *
|
---|
4752 | * @param pIemCpu The per CPU data.
|
---|
4753 | * @param offNextInstr The offset of the next instruction.
|
---|
4754 | */
|
---|
4755 | IEM_STATIC VBOXSTRICTRC iemRegRipRelativeJumpS8(PIEMCPU pIemCpu, int8_t offNextInstr)
|
---|
4756 | {
|
---|
4757 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
4758 | switch (pIemCpu->enmEffOpSize)
|
---|
4759 | {
|
---|
4760 | case IEMMODE_16BIT:
|
---|
4761 | {
|
---|
4762 | uint16_t uNewIp = pCtx->ip + offNextInstr + pIemCpu->offOpcode;
|
---|
4763 | if ( uNewIp > pCtx->cs.u32Limit
|
---|
4764 | && pIemCpu->enmCpuMode != IEMMODE_64BIT) /* no need to check for non-canonical. */
|
---|
4765 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
4766 | pCtx->rip = uNewIp;
|
---|
4767 | break;
|
---|
4768 | }
|
---|
4769 |
|
---|
4770 | case IEMMODE_32BIT:
|
---|
4771 | {
|
---|
4772 | Assert(pCtx->rip <= UINT32_MAX);
|
---|
4773 | Assert(pIemCpu->enmCpuMode != IEMMODE_64BIT);
|
---|
4774 |
|
---|
4775 | uint32_t uNewEip = pCtx->eip + offNextInstr + pIemCpu->offOpcode;
|
---|
4776 | if (uNewEip > pCtx->cs.u32Limit)
|
---|
4777 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
4778 | pCtx->rip = uNewEip;
|
---|
4779 | break;
|
---|
4780 | }
|
---|
4781 |
|
---|
4782 | case IEMMODE_64BIT:
|
---|
4783 | {
|
---|
4784 | Assert(pIemCpu->enmCpuMode == IEMMODE_64BIT);
|
---|
4785 |
|
---|
4786 | uint64_t uNewRip = pCtx->rip + offNextInstr + pIemCpu->offOpcode;
|
---|
4787 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
4788 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
4789 | pCtx->rip = uNewRip;
|
---|
4790 | break;
|
---|
4791 | }
|
---|
4792 |
|
---|
4793 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
4794 | }
|
---|
4795 |
|
---|
4796 | pCtx->eflags.Bits.u1RF = 0;
|
---|
4797 | return VINF_SUCCESS;
|
---|
4798 | }
|
---|
4799 |
|
---|
4800 |
|
---|
4801 | /**
|
---|
4802 | * Adds a 16-bit signed jump offset to RIP/EIP/IP.
|
---|
4803 | *
|
---|
4804 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
4805 | * segment limit.
|
---|
4806 | *
|
---|
4807 | * @returns Strict VBox status code.
|
---|
4808 | * @param pIemCpu The per CPU data.
|
---|
4809 | * @param offNextInstr The offset of the next instruction.
|
---|
4810 | */
|
---|
4811 | IEM_STATIC VBOXSTRICTRC iemRegRipRelativeJumpS16(PIEMCPU pIemCpu, int16_t offNextInstr)
|
---|
4812 | {
|
---|
4813 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
4814 | Assert(pIemCpu->enmEffOpSize == IEMMODE_16BIT);
|
---|
4815 |
|
---|
4816 | uint16_t uNewIp = pCtx->ip + offNextInstr + pIemCpu->offOpcode;
|
---|
4817 | if ( uNewIp > pCtx->cs.u32Limit
|
---|
4818 | && pIemCpu->enmCpuMode != IEMMODE_64BIT) /* no need to check for non-canonical. */
|
---|
4819 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
4820 | /** @todo Test 16-bit jump in 64-bit mode. possible? */
|
---|
4821 | pCtx->rip = uNewIp;
|
---|
4822 | pCtx->eflags.Bits.u1RF = 0;
|
---|
4823 |
|
---|
4824 | return VINF_SUCCESS;
|
---|
4825 | }
|
---|
4826 |
|
---|
4827 |
|
---|
4828 | /**
|
---|
4829 | * Adds a 32-bit signed jump offset to RIP/EIP/IP.
|
---|
4830 | *
|
---|
4831 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
4832 | * segment limit.
|
---|
4833 | *
|
---|
4834 | * @returns Strict VBox status code.
|
---|
4835 | * @param pIemCpu The per CPU data.
|
---|
4836 | * @param offNextInstr The offset of the next instruction.
|
---|
4837 | */
|
---|
4838 | IEM_STATIC VBOXSTRICTRC iemRegRipRelativeJumpS32(PIEMCPU pIemCpu, int32_t offNextInstr)
|
---|
4839 | {
|
---|
4840 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
4841 | Assert(pIemCpu->enmEffOpSize != IEMMODE_16BIT);
|
---|
4842 |
|
---|
4843 | if (pIemCpu->enmEffOpSize == IEMMODE_32BIT)
|
---|
4844 | {
|
---|
4845 | Assert(pCtx->rip <= UINT32_MAX); Assert(pIemCpu->enmCpuMode != IEMMODE_64BIT);
|
---|
4846 |
|
---|
4847 | uint32_t uNewEip = pCtx->eip + offNextInstr + pIemCpu->offOpcode;
|
---|
4848 | if (uNewEip > pCtx->cs.u32Limit)
|
---|
4849 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
4850 | pCtx->rip = uNewEip;
|
---|
4851 | }
|
---|
4852 | else
|
---|
4853 | {
|
---|
4854 | Assert(pIemCpu->enmCpuMode == IEMMODE_64BIT);
|
---|
4855 |
|
---|
4856 | uint64_t uNewRip = pCtx->rip + offNextInstr + pIemCpu->offOpcode;
|
---|
4857 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
4858 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
4859 | pCtx->rip = uNewRip;
|
---|
4860 | }
|
---|
4861 | pCtx->eflags.Bits.u1RF = 0;
|
---|
4862 | return VINF_SUCCESS;
|
---|
4863 | }
|
---|
4864 |
|
---|
4865 |
|
---|
4866 | /**
|
---|
4867 | * Performs a near jump to the specified address.
|
---|
4868 | *
|
---|
4869 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
4870 | * segment limit.
|
---|
4871 | *
|
---|
4872 | * @param pIemCpu The per CPU data.
|
---|
4873 | * @param uNewRip The new RIP value.
|
---|
4874 | */
|
---|
4875 | IEM_STATIC VBOXSTRICTRC iemRegRipJump(PIEMCPU pIemCpu, uint64_t uNewRip)
|
---|
4876 | {
|
---|
4877 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
4878 | switch (pIemCpu->enmEffOpSize)
|
---|
4879 | {
|
---|
4880 | case IEMMODE_16BIT:
|
---|
4881 | {
|
---|
4882 | Assert(uNewRip <= UINT16_MAX);
|
---|
4883 | if ( uNewRip > pCtx->cs.u32Limit
|
---|
4884 | && pIemCpu->enmCpuMode != IEMMODE_64BIT) /* no need to check for non-canonical. */
|
---|
4885 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
4886 | /** @todo Test 16-bit jump in 64-bit mode. */
|
---|
4887 | pCtx->rip = uNewRip;
|
---|
4888 | break;
|
---|
4889 | }
|
---|
4890 |
|
---|
4891 | case IEMMODE_32BIT:
|
---|
4892 | {
|
---|
4893 | Assert(uNewRip <= UINT32_MAX);
|
---|
4894 | Assert(pCtx->rip <= UINT32_MAX);
|
---|
4895 | Assert(pIemCpu->enmCpuMode != IEMMODE_64BIT);
|
---|
4896 |
|
---|
4897 | if (uNewRip > pCtx->cs.u32Limit)
|
---|
4898 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
4899 | pCtx->rip = uNewRip;
|
---|
4900 | break;
|
---|
4901 | }
|
---|
4902 |
|
---|
4903 | case IEMMODE_64BIT:
|
---|
4904 | {
|
---|
4905 | Assert(pIemCpu->enmCpuMode == IEMMODE_64BIT);
|
---|
4906 |
|
---|
4907 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
4908 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
4909 | pCtx->rip = uNewRip;
|
---|
4910 | break;
|
---|
4911 | }
|
---|
4912 |
|
---|
4913 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
4914 | }
|
---|
4915 |
|
---|
4916 | pCtx->eflags.Bits.u1RF = 0;
|
---|
4917 | return VINF_SUCCESS;
|
---|
4918 | }
|
---|
4919 |
|
---|
4920 |
|
---|
4921 | /**
|
---|
4922 | * Get the address of the top of the stack.
|
---|
4923 | *
|
---|
4924 | * @param pIemCpu The per CPU data.
|
---|
4925 | * @param pCtx The CPU context which SP/ESP/RSP should be
|
---|
4926 | * read.
|
---|
4927 | */
|
---|
4928 | DECLINLINE(RTGCPTR) iemRegGetEffRsp(PCIEMCPU pIemCpu, PCCPUMCTX pCtx)
|
---|
4929 | {
|
---|
4930 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
4931 | return pCtx->rsp;
|
---|
4932 | if (pCtx->ss.Attr.n.u1DefBig)
|
---|
4933 | return pCtx->esp;
|
---|
4934 | return pCtx->sp;
|
---|
4935 | }
|
---|
4936 |
|
---|
4937 |
|
---|
4938 | /**
|
---|
4939 | * Updates the RIP/EIP/IP to point to the next instruction.
|
---|
4940 | *
|
---|
4941 | * This function leaves the EFLAGS.RF flag alone.
|
---|
4942 | *
|
---|
4943 | * @param pIemCpu The per CPU data.
|
---|
4944 | * @param cbInstr The number of bytes to add.
|
---|
4945 | */
|
---|
4946 | IEM_STATIC void iemRegAddToRipKeepRF(PIEMCPU pIemCpu, uint8_t cbInstr)
|
---|
4947 | {
|
---|
4948 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
4949 | switch (pIemCpu->enmCpuMode)
|
---|
4950 | {
|
---|
4951 | case IEMMODE_16BIT:
|
---|
4952 | Assert(pCtx->rip <= UINT16_MAX);
|
---|
4953 | pCtx->eip += cbInstr;
|
---|
4954 | pCtx->eip &= UINT32_C(0xffff);
|
---|
4955 | break;
|
---|
4956 |
|
---|
4957 | case IEMMODE_32BIT:
|
---|
4958 | pCtx->eip += cbInstr;
|
---|
4959 | Assert(pCtx->rip <= UINT32_MAX);
|
---|
4960 | break;
|
---|
4961 |
|
---|
4962 | case IEMMODE_64BIT:
|
---|
4963 | pCtx->rip += cbInstr;
|
---|
4964 | break;
|
---|
4965 | default: AssertFailed();
|
---|
4966 | }
|
---|
4967 | }
|
---|
4968 |
|
---|
4969 |
|
---|
4970 | #if 0
|
---|
4971 | /**
|
---|
4972 | * Updates the RIP/EIP/IP to point to the next instruction.
|
---|
4973 | *
|
---|
4974 | * @param pIemCpu The per CPU data.
|
---|
4975 | */
|
---|
4976 | IEM_STATIC void iemRegUpdateRipKeepRF(PIEMCPU pIemCpu)
|
---|
4977 | {
|
---|
4978 | return iemRegAddToRipKeepRF(pIemCpu, pIemCpu->offOpcode);
|
---|
4979 | }
|
---|
4980 | #endif
|
---|
4981 |
|
---|
4982 |
|
---|
4983 |
|
---|
4984 | /**
|
---|
4985 | * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF.
|
---|
4986 | *
|
---|
4987 | * @param pIemCpu The per CPU data.
|
---|
4988 | * @param cbInstr The number of bytes to add.
|
---|
4989 | */
|
---|
4990 | IEM_STATIC void iemRegAddToRipAndClearRF(PIEMCPU pIemCpu, uint8_t cbInstr)
|
---|
4991 | {
|
---|
4992 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
4993 |
|
---|
4994 | pCtx->eflags.Bits.u1RF = 0;
|
---|
4995 |
|
---|
4996 | /* NB: Must be kept in sync with HM (xxxAdvanceGuestRip). */
|
---|
4997 | switch (pIemCpu->enmCpuMode)
|
---|
4998 | {
|
---|
4999 | /** @todo investigate if EIP or RIP is really incremented. */
|
---|
5000 | case IEMMODE_16BIT:
|
---|
5001 | case IEMMODE_32BIT:
|
---|
5002 | pCtx->eip += cbInstr;
|
---|
5003 | Assert(pCtx->rip <= UINT32_MAX);
|
---|
5004 | break;
|
---|
5005 |
|
---|
5006 | case IEMMODE_64BIT:
|
---|
5007 | pCtx->rip += cbInstr;
|
---|
5008 | break;
|
---|
5009 | default: AssertFailed();
|
---|
5010 | }
|
---|
5011 | }
|
---|
5012 |
|
---|
5013 |
|
---|
5014 | /**
|
---|
5015 | * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF.
|
---|
5016 | *
|
---|
5017 | * @param pIemCpu The per CPU data.
|
---|
5018 | */
|
---|
5019 | IEM_STATIC void iemRegUpdateRipAndClearRF(PIEMCPU pIemCpu)
|
---|
5020 | {
|
---|
5021 | return iemRegAddToRipAndClearRF(pIemCpu, pIemCpu->offOpcode);
|
---|
5022 | }
|
---|
5023 |
|
---|
5024 |
|
---|
5025 | /**
|
---|
5026 | * Adds to the stack pointer.
|
---|
5027 | *
|
---|
5028 | * @param pIemCpu The per CPU data.
|
---|
5029 | * @param pCtx The CPU context which SP/ESP/RSP should be
|
---|
5030 | * updated.
|
---|
5031 | * @param cbToAdd The number of bytes to add (8-bit!).
|
---|
5032 | */
|
---|
5033 | DECLINLINE(void) iemRegAddToRsp(PCIEMCPU pIemCpu, PCPUMCTX pCtx, uint8_t cbToAdd)
|
---|
5034 | {
|
---|
5035 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
5036 | pCtx->rsp += cbToAdd;
|
---|
5037 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5038 | pCtx->esp += cbToAdd;
|
---|
5039 | else
|
---|
5040 | pCtx->sp += cbToAdd;
|
---|
5041 | }
|
---|
5042 |
|
---|
5043 |
|
---|
5044 | /**
|
---|
5045 | * Subtracts from the stack pointer.
|
---|
5046 | *
|
---|
5047 | * @param pIemCpu The per CPU data.
|
---|
5048 | * @param pCtx The CPU context which SP/ESP/RSP should be
|
---|
5049 | * updated.
|
---|
5050 | * @param cbToSub The number of bytes to subtract (8-bit!).
|
---|
5051 | */
|
---|
5052 | DECLINLINE(void) iemRegSubFromRsp(PCIEMCPU pIemCpu, PCPUMCTX pCtx, uint8_t cbToSub)
|
---|
5053 | {
|
---|
5054 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
5055 | pCtx->rsp -= cbToSub;
|
---|
5056 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5057 | pCtx->esp -= cbToSub;
|
---|
5058 | else
|
---|
5059 | pCtx->sp -= cbToSub;
|
---|
5060 | }
|
---|
5061 |
|
---|
5062 |
|
---|
5063 | /**
|
---|
5064 | * Adds to the temporary stack pointer.
|
---|
5065 | *
|
---|
5066 | * @param pIemCpu The per CPU data.
|
---|
5067 | * @param pTmpRsp The temporary SP/ESP/RSP to update.
|
---|
5068 | * @param cbToAdd The number of bytes to add (16-bit).
|
---|
5069 | * @param pCtx Where to get the current stack mode.
|
---|
5070 | */
|
---|
5071 | DECLINLINE(void) iemRegAddToRspEx(PCIEMCPU pIemCpu, PCCPUMCTX pCtx, PRTUINT64U pTmpRsp, uint16_t cbToAdd)
|
---|
5072 | {
|
---|
5073 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
5074 | pTmpRsp->u += cbToAdd;
|
---|
5075 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5076 | pTmpRsp->DWords.dw0 += cbToAdd;
|
---|
5077 | else
|
---|
5078 | pTmpRsp->Words.w0 += cbToAdd;
|
---|
5079 | }
|
---|
5080 |
|
---|
5081 |
|
---|
5082 | /**
|
---|
5083 | * Subtracts from the temporary stack pointer.
|
---|
5084 | *
|
---|
5085 | * @param pIemCpu The per CPU data.
|
---|
5086 | * @param pTmpRsp The temporary SP/ESP/RSP to update.
|
---|
5087 | * @param cbToSub The number of bytes to subtract.
|
---|
5088 | * @param pCtx Where to get the current stack mode.
|
---|
5089 | * @remarks The @a cbToSub argument *MUST* be 16-bit, iemCImpl_enter is
|
---|
5090 | * expecting that.
|
---|
5091 | */
|
---|
5092 | DECLINLINE(void) iemRegSubFromRspEx(PCIEMCPU pIemCpu, PCCPUMCTX pCtx, PRTUINT64U pTmpRsp, uint16_t cbToSub)
|
---|
5093 | {
|
---|
5094 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
5095 | pTmpRsp->u -= cbToSub;
|
---|
5096 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5097 | pTmpRsp->DWords.dw0 -= cbToSub;
|
---|
5098 | else
|
---|
5099 | pTmpRsp->Words.w0 -= cbToSub;
|
---|
5100 | }
|
---|
5101 |
|
---|
5102 |
|
---|
5103 | /**
|
---|
5104 | * Calculates the effective stack address for a push of the specified size as
|
---|
5105 | * well as the new RSP value (upper bits may be masked).
|
---|
5106 | *
|
---|
5107 | * @returns Effective stack addressf for the push.
|
---|
5108 | * @param pIemCpu The IEM per CPU data.
|
---|
5109 | * @param pCtx Where to get the current stack mode.
|
---|
5110 | * @param cbItem The size of the stack item to pop.
|
---|
5111 | * @param puNewRsp Where to return the new RSP value.
|
---|
5112 | */
|
---|
5113 | DECLINLINE(RTGCPTR) iemRegGetRspForPush(PCIEMCPU pIemCpu, PCCPUMCTX pCtx, uint8_t cbItem, uint64_t *puNewRsp)
|
---|
5114 | {
|
---|
5115 | RTUINT64U uTmpRsp;
|
---|
5116 | RTGCPTR GCPtrTop;
|
---|
5117 | uTmpRsp.u = pCtx->rsp;
|
---|
5118 |
|
---|
5119 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
5120 | GCPtrTop = uTmpRsp.u -= cbItem;
|
---|
5121 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5122 | GCPtrTop = uTmpRsp.DWords.dw0 -= cbItem;
|
---|
5123 | else
|
---|
5124 | GCPtrTop = uTmpRsp.Words.w0 -= cbItem;
|
---|
5125 | *puNewRsp = uTmpRsp.u;
|
---|
5126 | return GCPtrTop;
|
---|
5127 | }
|
---|
5128 |
|
---|
5129 |
|
---|
5130 | /**
|
---|
5131 | * Gets the current stack pointer and calculates the value after a pop of the
|
---|
5132 | * specified size.
|
---|
5133 | *
|
---|
5134 | * @returns Current stack pointer.
|
---|
5135 | * @param pIemCpu The per CPU data.
|
---|
5136 | * @param pCtx Where to get the current stack mode.
|
---|
5137 | * @param cbItem The size of the stack item to pop.
|
---|
5138 | * @param puNewRsp Where to return the new RSP value.
|
---|
5139 | */
|
---|
5140 | DECLINLINE(RTGCPTR) iemRegGetRspForPop(PCIEMCPU pIemCpu, PCCPUMCTX pCtx, uint8_t cbItem, uint64_t *puNewRsp)
|
---|
5141 | {
|
---|
5142 | RTUINT64U uTmpRsp;
|
---|
5143 | RTGCPTR GCPtrTop;
|
---|
5144 | uTmpRsp.u = pCtx->rsp;
|
---|
5145 |
|
---|
5146 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
5147 | {
|
---|
5148 | GCPtrTop = uTmpRsp.u;
|
---|
5149 | uTmpRsp.u += cbItem;
|
---|
5150 | }
|
---|
5151 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5152 | {
|
---|
5153 | GCPtrTop = uTmpRsp.DWords.dw0;
|
---|
5154 | uTmpRsp.DWords.dw0 += cbItem;
|
---|
5155 | }
|
---|
5156 | else
|
---|
5157 | {
|
---|
5158 | GCPtrTop = uTmpRsp.Words.w0;
|
---|
5159 | uTmpRsp.Words.w0 += cbItem;
|
---|
5160 | }
|
---|
5161 | *puNewRsp = uTmpRsp.u;
|
---|
5162 | return GCPtrTop;
|
---|
5163 | }
|
---|
5164 |
|
---|
5165 |
|
---|
5166 | /**
|
---|
5167 | * Calculates the effective stack address for a push of the specified size as
|
---|
5168 | * well as the new temporary RSP value (upper bits may be masked).
|
---|
5169 | *
|
---|
5170 | * @returns Effective stack addressf for the push.
|
---|
5171 | * @param pIemCpu The per CPU data.
|
---|
5172 | * @param pCtx Where to get the current stack mode.
|
---|
5173 | * @param pTmpRsp The temporary stack pointer. This is updated.
|
---|
5174 | * @param cbItem The size of the stack item to pop.
|
---|
5175 | */
|
---|
5176 | DECLINLINE(RTGCPTR) iemRegGetRspForPushEx(PCIEMCPU pIemCpu, PCCPUMCTX pCtx, PRTUINT64U pTmpRsp, uint8_t cbItem)
|
---|
5177 | {
|
---|
5178 | RTGCPTR GCPtrTop;
|
---|
5179 |
|
---|
5180 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
5181 | GCPtrTop = pTmpRsp->u -= cbItem;
|
---|
5182 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5183 | GCPtrTop = pTmpRsp->DWords.dw0 -= cbItem;
|
---|
5184 | else
|
---|
5185 | GCPtrTop = pTmpRsp->Words.w0 -= cbItem;
|
---|
5186 | return GCPtrTop;
|
---|
5187 | }
|
---|
5188 |
|
---|
5189 |
|
---|
5190 | /**
|
---|
5191 | * Gets the effective stack address for a pop of the specified size and
|
---|
5192 | * calculates and updates the temporary RSP.
|
---|
5193 | *
|
---|
5194 | * @returns Current stack pointer.
|
---|
5195 | * @param pIemCpu The per CPU data.
|
---|
5196 | * @param pCtx Where to get the current stack mode.
|
---|
5197 | * @param pTmpRsp The temporary stack pointer. This is updated.
|
---|
5198 | * @param cbItem The size of the stack item to pop.
|
---|
5199 | */
|
---|
5200 | DECLINLINE(RTGCPTR) iemRegGetRspForPopEx(PCIEMCPU pIemCpu, PCCPUMCTX pCtx, PRTUINT64U pTmpRsp, uint8_t cbItem)
|
---|
5201 | {
|
---|
5202 | RTGCPTR GCPtrTop;
|
---|
5203 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
5204 | {
|
---|
5205 | GCPtrTop = pTmpRsp->u;
|
---|
5206 | pTmpRsp->u += cbItem;
|
---|
5207 | }
|
---|
5208 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5209 | {
|
---|
5210 | GCPtrTop = pTmpRsp->DWords.dw0;
|
---|
5211 | pTmpRsp->DWords.dw0 += cbItem;
|
---|
5212 | }
|
---|
5213 | else
|
---|
5214 | {
|
---|
5215 | GCPtrTop = pTmpRsp->Words.w0;
|
---|
5216 | pTmpRsp->Words.w0 += cbItem;
|
---|
5217 | }
|
---|
5218 | return GCPtrTop;
|
---|
5219 | }
|
---|
5220 |
|
---|
5221 | /** @} */
|
---|
5222 |
|
---|
5223 |
|
---|
5224 | /** @name FPU access and helpers.
|
---|
5225 | *
|
---|
5226 | * @{
|
---|
5227 | */
|
---|
5228 |
|
---|
5229 |
|
---|
5230 | /**
|
---|
5231 | * Hook for preparing to use the host FPU.
|
---|
5232 | *
|
---|
5233 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
5234 | *
|
---|
5235 | * @param pIemCpu The IEM per CPU data.
|
---|
5236 | */
|
---|
5237 | DECLINLINE(void) iemFpuPrepareUsage(PIEMCPU pIemCpu)
|
---|
5238 | {
|
---|
5239 | #ifdef IN_RING3
|
---|
5240 | CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_FPU_REM);
|
---|
5241 | #else
|
---|
5242 | CPUMRZFpuStatePrepareHostCpuForUse(IEMCPU_TO_VMCPU(pIemCpu));
|
---|
5243 | #endif
|
---|
5244 | }
|
---|
5245 |
|
---|
5246 |
|
---|
5247 | /**
|
---|
5248 | * Hook for preparing to use the host FPU for SSE
|
---|
5249 | *
|
---|
5250 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
5251 | *
|
---|
5252 | * @param pIemCpu The IEM per CPU data.
|
---|
5253 | */
|
---|
5254 | DECLINLINE(void) iemFpuPrepareUsageSse(PIEMCPU pIemCpu)
|
---|
5255 | {
|
---|
5256 | iemFpuPrepareUsage(pIemCpu);
|
---|
5257 | }
|
---|
5258 |
|
---|
5259 |
|
---|
5260 | /**
|
---|
5261 | * Hook for actualizing the guest FPU state before the interpreter reads it.
|
---|
5262 | *
|
---|
5263 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
5264 | *
|
---|
5265 | * @param pIemCpu The IEM per CPU data.
|
---|
5266 | */
|
---|
5267 | DECLINLINE(void) iemFpuActualizeStateForRead(PIEMCPU pIemCpu)
|
---|
5268 | {
|
---|
5269 | #ifdef IN_RING3
|
---|
5270 | NOREF(pIemCpu);
|
---|
5271 | #else
|
---|
5272 | CPUMRZFpuStateActualizeForRead(IEMCPU_TO_VMCPU(pIemCpu));
|
---|
5273 | #endif
|
---|
5274 | }
|
---|
5275 |
|
---|
5276 |
|
---|
5277 | /**
|
---|
5278 | * Hook for actualizing the guest FPU state before the interpreter changes it.
|
---|
5279 | *
|
---|
5280 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
5281 | *
|
---|
5282 | * @param pIemCpu The IEM per CPU data.
|
---|
5283 | */
|
---|
5284 | DECLINLINE(void) iemFpuActualizeStateForChange(PIEMCPU pIemCpu)
|
---|
5285 | {
|
---|
5286 | #ifdef IN_RING3
|
---|
5287 | CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_FPU_REM);
|
---|
5288 | #else
|
---|
5289 | CPUMRZFpuStateActualizeForChange(IEMCPU_TO_VMCPU(pIemCpu));
|
---|
5290 | #endif
|
---|
5291 | }
|
---|
5292 |
|
---|
5293 |
|
---|
5294 | /**
|
---|
5295 | * Hook for actualizing the guest XMM0..15 register state for read only.
|
---|
5296 | *
|
---|
5297 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
5298 | *
|
---|
5299 | * @param pIemCpu The IEM per CPU data.
|
---|
5300 | */
|
---|
5301 | DECLINLINE(void) iemFpuActualizeSseStateForRead(PIEMCPU pIemCpu)
|
---|
5302 | {
|
---|
5303 | #if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
|
---|
5304 | NOREF(pIemCpu);
|
---|
5305 | #else
|
---|
5306 | CPUMRZFpuStateActualizeSseForRead(IEMCPU_TO_VMCPU(pIemCpu));
|
---|
5307 | #endif
|
---|
5308 | }
|
---|
5309 |
|
---|
5310 |
|
---|
5311 | /**
|
---|
5312 | * Hook for actualizing the guest XMM0..15 register state for read+write.
|
---|
5313 | *
|
---|
5314 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
5315 | *
|
---|
5316 | * @param pIemCpu The IEM per CPU data.
|
---|
5317 | */
|
---|
5318 | DECLINLINE(void) iemFpuActualizeSseStateForChange(PIEMCPU pIemCpu)
|
---|
5319 | {
|
---|
5320 | #if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
|
---|
5321 | CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_FPU_REM);
|
---|
5322 | #else
|
---|
5323 | CPUMRZFpuStateActualizeForChange(IEMCPU_TO_VMCPU(pIemCpu));
|
---|
5324 | #endif
|
---|
5325 | }
|
---|
5326 |
|
---|
5327 |
|
---|
5328 | /**
|
---|
5329 | * Stores a QNaN value into a FPU register.
|
---|
5330 | *
|
---|
5331 | * @param pReg Pointer to the register.
|
---|
5332 | */
|
---|
5333 | DECLINLINE(void) iemFpuStoreQNan(PRTFLOAT80U pReg)
|
---|
5334 | {
|
---|
5335 | pReg->au32[0] = UINT32_C(0x00000000);
|
---|
5336 | pReg->au32[1] = UINT32_C(0xc0000000);
|
---|
5337 | pReg->au16[4] = UINT16_C(0xffff);
|
---|
5338 | }
|
---|
5339 |
|
---|
5340 |
|
---|
5341 | /**
|
---|
5342 | * Updates the FOP, FPU.CS and FPUIP registers.
|
---|
5343 | *
|
---|
5344 | * @param pIemCpu The IEM per CPU data.
|
---|
5345 | * @param pCtx The CPU context.
|
---|
5346 | * @param pFpuCtx The FPU context.
|
---|
5347 | */
|
---|
5348 | DECLINLINE(void) iemFpuUpdateOpcodeAndIpWorker(PIEMCPU pIemCpu, PCPUMCTX pCtx, PX86FXSTATE pFpuCtx)
|
---|
5349 | {
|
---|
5350 | pFpuCtx->FOP = pIemCpu->abOpcode[pIemCpu->offFpuOpcode]
|
---|
5351 | | ((uint16_t)(pIemCpu->abOpcode[pIemCpu->offFpuOpcode - 1] & 0x7) << 8);
|
---|
5352 | /** @todo x87.CS and FPUIP needs to be kept seperately. */
|
---|
5353 | if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
5354 | {
|
---|
5355 | /** @todo Testcase: making assumptions about how FPUIP and FPUDP are handled
|
---|
5356 | * happens in real mode here based on the fnsave and fnstenv images. */
|
---|
5357 | pFpuCtx->CS = 0;
|
---|
5358 | pFpuCtx->FPUIP = pCtx->eip | ((uint32_t)pCtx->cs.Sel << 4);
|
---|
5359 | }
|
---|
5360 | else
|
---|
5361 | {
|
---|
5362 | pFpuCtx->CS = pCtx->cs.Sel;
|
---|
5363 | pFpuCtx->FPUIP = pCtx->rip;
|
---|
5364 | }
|
---|
5365 | }
|
---|
5366 |
|
---|
5367 |
|
---|
5368 | /**
|
---|
5369 | * Updates the x87.DS and FPUDP registers.
|
---|
5370 | *
|
---|
5371 | * @param pIemCpu The IEM per CPU data.
|
---|
5372 | * @param pCtx The CPU context.
|
---|
5373 | * @param pFpuCtx The FPU context.
|
---|
5374 | * @param iEffSeg The effective segment register.
|
---|
5375 | * @param GCPtrEff The effective address relative to @a iEffSeg.
|
---|
5376 | */
|
---|
5377 | DECLINLINE(void) iemFpuUpdateDP(PIEMCPU pIemCpu, PCPUMCTX pCtx, PX86FXSTATE pFpuCtx, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
5378 | {
|
---|
5379 | RTSEL sel;
|
---|
5380 | switch (iEffSeg)
|
---|
5381 | {
|
---|
5382 | case X86_SREG_DS: sel = pCtx->ds.Sel; break;
|
---|
5383 | case X86_SREG_SS: sel = pCtx->ss.Sel; break;
|
---|
5384 | case X86_SREG_CS: sel = pCtx->cs.Sel; break;
|
---|
5385 | case X86_SREG_ES: sel = pCtx->es.Sel; break;
|
---|
5386 | case X86_SREG_FS: sel = pCtx->fs.Sel; break;
|
---|
5387 | case X86_SREG_GS: sel = pCtx->gs.Sel; break;
|
---|
5388 | default:
|
---|
5389 | AssertMsgFailed(("%d\n", iEffSeg));
|
---|
5390 | sel = pCtx->ds.Sel;
|
---|
5391 | }
|
---|
5392 | /** @todo pFpuCtx->DS and FPUDP needs to be kept seperately. */
|
---|
5393 | if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
5394 | {
|
---|
5395 | pFpuCtx->DS = 0;
|
---|
5396 | pFpuCtx->FPUDP = (uint32_t)GCPtrEff | ((uint32_t)sel << 4);
|
---|
5397 | }
|
---|
5398 | else
|
---|
5399 | {
|
---|
5400 | pFpuCtx->DS = sel;
|
---|
5401 | pFpuCtx->FPUDP = GCPtrEff;
|
---|
5402 | }
|
---|
5403 | }
|
---|
5404 |
|
---|
5405 |
|
---|
5406 | /**
|
---|
5407 | * Rotates the stack registers in the push direction.
|
---|
5408 | *
|
---|
5409 | * @param pFpuCtx The FPU context.
|
---|
5410 | * @remarks This is a complete waste of time, but fxsave stores the registers in
|
---|
5411 | * stack order.
|
---|
5412 | */
|
---|
5413 | DECLINLINE(void) iemFpuRotateStackPush(PX86FXSTATE pFpuCtx)
|
---|
5414 | {
|
---|
5415 | RTFLOAT80U r80Tmp = pFpuCtx->aRegs[7].r80;
|
---|
5416 | pFpuCtx->aRegs[7].r80 = pFpuCtx->aRegs[6].r80;
|
---|
5417 | pFpuCtx->aRegs[6].r80 = pFpuCtx->aRegs[5].r80;
|
---|
5418 | pFpuCtx->aRegs[5].r80 = pFpuCtx->aRegs[4].r80;
|
---|
5419 | pFpuCtx->aRegs[4].r80 = pFpuCtx->aRegs[3].r80;
|
---|
5420 | pFpuCtx->aRegs[3].r80 = pFpuCtx->aRegs[2].r80;
|
---|
5421 | pFpuCtx->aRegs[2].r80 = pFpuCtx->aRegs[1].r80;
|
---|
5422 | pFpuCtx->aRegs[1].r80 = pFpuCtx->aRegs[0].r80;
|
---|
5423 | pFpuCtx->aRegs[0].r80 = r80Tmp;
|
---|
5424 | }
|
---|
5425 |
|
---|
5426 |
|
---|
5427 | /**
|
---|
5428 | * Rotates the stack registers in the pop direction.
|
---|
5429 | *
|
---|
5430 | * @param pFpuCtx The FPU context.
|
---|
5431 | * @remarks This is a complete waste of time, but fxsave stores the registers in
|
---|
5432 | * stack order.
|
---|
5433 | */
|
---|
5434 | DECLINLINE(void) iemFpuRotateStackPop(PX86FXSTATE pFpuCtx)
|
---|
5435 | {
|
---|
5436 | RTFLOAT80U r80Tmp = pFpuCtx->aRegs[0].r80;
|
---|
5437 | pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[1].r80;
|
---|
5438 | pFpuCtx->aRegs[1].r80 = pFpuCtx->aRegs[2].r80;
|
---|
5439 | pFpuCtx->aRegs[2].r80 = pFpuCtx->aRegs[3].r80;
|
---|
5440 | pFpuCtx->aRegs[3].r80 = pFpuCtx->aRegs[4].r80;
|
---|
5441 | pFpuCtx->aRegs[4].r80 = pFpuCtx->aRegs[5].r80;
|
---|
5442 | pFpuCtx->aRegs[5].r80 = pFpuCtx->aRegs[6].r80;
|
---|
5443 | pFpuCtx->aRegs[6].r80 = pFpuCtx->aRegs[7].r80;
|
---|
5444 | pFpuCtx->aRegs[7].r80 = r80Tmp;
|
---|
5445 | }
|
---|
5446 |
|
---|
5447 |
|
---|
5448 | /**
|
---|
5449 | * Updates FSW and pushes a FPU result onto the FPU stack if no pending
|
---|
5450 | * exception prevents it.
|
---|
5451 | *
|
---|
5452 | * @param pIemCpu The IEM per CPU data.
|
---|
5453 | * @param pResult The FPU operation result to push.
|
---|
5454 | * @param pFpuCtx The FPU context.
|
---|
5455 | */
|
---|
5456 | IEM_STATIC void iemFpuMaybePushResult(PIEMCPU pIemCpu, PIEMFPURESULT pResult, PX86FXSTATE pFpuCtx)
|
---|
5457 | {
|
---|
5458 | /* Update FSW and bail if there are pending exceptions afterwards. */
|
---|
5459 | uint16_t fFsw = pFpuCtx->FSW & ~X86_FSW_C_MASK;
|
---|
5460 | fFsw |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
5461 | if ( (fFsw & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
5462 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
5463 | {
|
---|
5464 | pFpuCtx->FSW = fFsw;
|
---|
5465 | return;
|
---|
5466 | }
|
---|
5467 |
|
---|
5468 | uint16_t iNewTop = (X86_FSW_TOP_GET(fFsw) + 7) & X86_FSW_TOP_SMASK;
|
---|
5469 | if (!(pFpuCtx->FTW & RT_BIT(iNewTop)))
|
---|
5470 | {
|
---|
5471 | /* All is fine, push the actual value. */
|
---|
5472 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5473 | pFpuCtx->aRegs[7].r80 = pResult->r80Result;
|
---|
5474 | }
|
---|
5475 | else if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5476 | {
|
---|
5477 | /* Masked stack overflow, push QNaN. */
|
---|
5478 | fFsw |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1;
|
---|
5479 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5480 | }
|
---|
5481 | else
|
---|
5482 | {
|
---|
5483 | /* Raise stack overflow, don't push anything. */
|
---|
5484 | pFpuCtx->FSW |= pResult->FSW & ~X86_FSW_C_MASK;
|
---|
5485 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1 | X86_FSW_B | X86_FSW_ES;
|
---|
5486 | return;
|
---|
5487 | }
|
---|
5488 |
|
---|
5489 | fFsw &= ~X86_FSW_TOP_MASK;
|
---|
5490 | fFsw |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5491 | pFpuCtx->FSW = fFsw;
|
---|
5492 |
|
---|
5493 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5494 | }
|
---|
5495 |
|
---|
5496 |
|
---|
5497 | /**
|
---|
5498 | * Stores a result in a FPU register and updates the FSW and FTW.
|
---|
5499 | *
|
---|
5500 | * @param pFpuCtx The FPU context.
|
---|
5501 | * @param pResult The result to store.
|
---|
5502 | * @param iStReg Which FPU register to store it in.
|
---|
5503 | */
|
---|
5504 | IEM_STATIC void iemFpuStoreResultOnly(PX86FXSTATE pFpuCtx, PIEMFPURESULT pResult, uint8_t iStReg)
|
---|
5505 | {
|
---|
5506 | Assert(iStReg < 8);
|
---|
5507 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
5508 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5509 | pFpuCtx->FSW |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
5510 | pFpuCtx->FTW |= RT_BIT(iReg);
|
---|
5511 | pFpuCtx->aRegs[iStReg].r80 = pResult->r80Result;
|
---|
5512 | }
|
---|
5513 |
|
---|
5514 |
|
---|
5515 | /**
|
---|
5516 | * Only updates the FPU status word (FSW) with the result of the current
|
---|
5517 | * instruction.
|
---|
5518 | *
|
---|
5519 | * @param pFpuCtx The FPU context.
|
---|
5520 | * @param u16FSW The FSW output of the current instruction.
|
---|
5521 | */
|
---|
5522 | IEM_STATIC void iemFpuUpdateFSWOnly(PX86FXSTATE pFpuCtx, uint16_t u16FSW)
|
---|
5523 | {
|
---|
5524 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5525 | pFpuCtx->FSW |= u16FSW & ~X86_FSW_TOP_MASK;
|
---|
5526 | }
|
---|
5527 |
|
---|
5528 |
|
---|
5529 | /**
|
---|
5530 | * Pops one item off the FPU stack if no pending exception prevents it.
|
---|
5531 | *
|
---|
5532 | * @param pFpuCtx The FPU context.
|
---|
5533 | */
|
---|
5534 | IEM_STATIC void iemFpuMaybePopOne(PX86FXSTATE pFpuCtx)
|
---|
5535 | {
|
---|
5536 | /* Check pending exceptions. */
|
---|
5537 | uint16_t uFSW = pFpuCtx->FSW;
|
---|
5538 | if ( (pFpuCtx->FSW & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
5539 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
5540 | return;
|
---|
5541 |
|
---|
5542 | /* TOP--. */
|
---|
5543 | uint16_t iOldTop = uFSW & X86_FSW_TOP_MASK;
|
---|
5544 | uFSW &= ~X86_FSW_TOP_MASK;
|
---|
5545 | uFSW |= (iOldTop + (UINT16_C(9) << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
5546 | pFpuCtx->FSW = uFSW;
|
---|
5547 |
|
---|
5548 | /* Mark the previous ST0 as empty. */
|
---|
5549 | iOldTop >>= X86_FSW_TOP_SHIFT;
|
---|
5550 | pFpuCtx->FTW &= ~RT_BIT(iOldTop);
|
---|
5551 |
|
---|
5552 | /* Rotate the registers. */
|
---|
5553 | iemFpuRotateStackPop(pFpuCtx);
|
---|
5554 | }
|
---|
5555 |
|
---|
5556 |
|
---|
5557 | /**
|
---|
5558 | * Pushes a FPU result onto the FPU stack if no pending exception prevents it.
|
---|
5559 | *
|
---|
5560 | * @param pIemCpu The IEM per CPU data.
|
---|
5561 | * @param pResult The FPU operation result to push.
|
---|
5562 | */
|
---|
5563 | IEM_STATIC void iemFpuPushResult(PIEMCPU pIemCpu, PIEMFPURESULT pResult)
|
---|
5564 | {
|
---|
5565 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5566 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5567 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5568 | iemFpuMaybePushResult(pIemCpu, pResult, pFpuCtx);
|
---|
5569 | }
|
---|
5570 |
|
---|
5571 |
|
---|
5572 | /**
|
---|
5573 | * Pushes a FPU result onto the FPU stack if no pending exception prevents it,
|
---|
5574 | * and sets FPUDP and FPUDS.
|
---|
5575 | *
|
---|
5576 | * @param pIemCpu The IEM per CPU data.
|
---|
5577 | * @param pResult The FPU operation result to push.
|
---|
5578 | * @param iEffSeg The effective segment register.
|
---|
5579 | * @param GCPtrEff The effective address relative to @a iEffSeg.
|
---|
5580 | */
|
---|
5581 | IEM_STATIC void iemFpuPushResultWithMemOp(PIEMCPU pIemCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
5582 | {
|
---|
5583 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5584 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5585 | iemFpuUpdateDP(pIemCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5586 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5587 | iemFpuMaybePushResult(pIemCpu, pResult, pFpuCtx);
|
---|
5588 | }
|
---|
5589 |
|
---|
5590 |
|
---|
5591 | /**
|
---|
5592 | * Replace ST0 with the first value and push the second onto the FPU stack,
|
---|
5593 | * unless a pending exception prevents it.
|
---|
5594 | *
|
---|
5595 | * @param pIemCpu The IEM per CPU data.
|
---|
5596 | * @param pResult The FPU operation result to store and push.
|
---|
5597 | */
|
---|
5598 | IEM_STATIC void iemFpuPushResultTwo(PIEMCPU pIemCpu, PIEMFPURESULTTWO pResult)
|
---|
5599 | {
|
---|
5600 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5601 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5602 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5603 |
|
---|
5604 | /* Update FSW and bail if there are pending exceptions afterwards. */
|
---|
5605 | uint16_t fFsw = pFpuCtx->FSW & ~X86_FSW_C_MASK;
|
---|
5606 | fFsw |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
5607 | if ( (fFsw & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
5608 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
5609 | {
|
---|
5610 | pFpuCtx->FSW = fFsw;
|
---|
5611 | return;
|
---|
5612 | }
|
---|
5613 |
|
---|
5614 | uint16_t iNewTop = (X86_FSW_TOP_GET(fFsw) + 7) & X86_FSW_TOP_SMASK;
|
---|
5615 | if (!(pFpuCtx->FTW & RT_BIT(iNewTop)))
|
---|
5616 | {
|
---|
5617 | /* All is fine, push the actual value. */
|
---|
5618 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5619 | pFpuCtx->aRegs[0].r80 = pResult->r80Result1;
|
---|
5620 | pFpuCtx->aRegs[7].r80 = pResult->r80Result2;
|
---|
5621 | }
|
---|
5622 | else if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5623 | {
|
---|
5624 | /* Masked stack overflow, push QNaN. */
|
---|
5625 | fFsw |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1;
|
---|
5626 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
5627 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5628 | }
|
---|
5629 | else
|
---|
5630 | {
|
---|
5631 | /* Raise stack overflow, don't push anything. */
|
---|
5632 | pFpuCtx->FSW |= pResult->FSW & ~X86_FSW_C_MASK;
|
---|
5633 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1 | X86_FSW_B | X86_FSW_ES;
|
---|
5634 | return;
|
---|
5635 | }
|
---|
5636 |
|
---|
5637 | fFsw &= ~X86_FSW_TOP_MASK;
|
---|
5638 | fFsw |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5639 | pFpuCtx->FSW = fFsw;
|
---|
5640 |
|
---|
5641 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5642 | }
|
---|
5643 |
|
---|
5644 |
|
---|
5645 | /**
|
---|
5646 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, and
|
---|
5647 | * FOP.
|
---|
5648 | *
|
---|
5649 | * @param pIemCpu The IEM per CPU data.
|
---|
5650 | * @param pResult The result to store.
|
---|
5651 | * @param iStReg Which FPU register to store it in.
|
---|
5652 | */
|
---|
5653 | IEM_STATIC void iemFpuStoreResult(PIEMCPU pIemCpu, PIEMFPURESULT pResult, uint8_t iStReg)
|
---|
5654 | {
|
---|
5655 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5656 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5657 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5658 | iemFpuStoreResultOnly(pFpuCtx, pResult, iStReg);
|
---|
5659 | }
|
---|
5660 |
|
---|
5661 |
|
---|
5662 | /**
|
---|
5663 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, and
|
---|
5664 | * FOP, and then pops the stack.
|
---|
5665 | *
|
---|
5666 | * @param pIemCpu The IEM per CPU data.
|
---|
5667 | * @param pResult The result to store.
|
---|
5668 | * @param iStReg Which FPU register to store it in.
|
---|
5669 | */
|
---|
5670 | IEM_STATIC void iemFpuStoreResultThenPop(PIEMCPU pIemCpu, PIEMFPURESULT pResult, uint8_t iStReg)
|
---|
5671 | {
|
---|
5672 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5673 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5674 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5675 | iemFpuStoreResultOnly(pFpuCtx, pResult, iStReg);
|
---|
5676 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5677 | }
|
---|
5678 |
|
---|
5679 |
|
---|
5680 | /**
|
---|
5681 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, FOP,
|
---|
5682 | * FPUDP, and FPUDS.
|
---|
5683 | *
|
---|
5684 | * @param pIemCpu The IEM per CPU data.
|
---|
5685 | * @param pResult The result to store.
|
---|
5686 | * @param iStReg Which FPU register to store it in.
|
---|
5687 | * @param iEffSeg The effective memory operand selector register.
|
---|
5688 | * @param GCPtrEff The effective memory operand offset.
|
---|
5689 | */
|
---|
5690 | IEM_STATIC void iemFpuStoreResultWithMemOp(PIEMCPU pIemCpu, PIEMFPURESULT pResult, uint8_t iStReg,
|
---|
5691 | uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
5692 | {
|
---|
5693 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5694 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5695 | iemFpuUpdateDP(pIemCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5696 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5697 | iemFpuStoreResultOnly(pFpuCtx, pResult, iStReg);
|
---|
5698 | }
|
---|
5699 |
|
---|
5700 |
|
---|
5701 | /**
|
---|
5702 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, FOP,
|
---|
5703 | * FPUDP, and FPUDS, and then pops the stack.
|
---|
5704 | *
|
---|
5705 | * @param pIemCpu The IEM per CPU data.
|
---|
5706 | * @param pResult The result to store.
|
---|
5707 | * @param iStReg Which FPU register to store it in.
|
---|
5708 | * @param iEffSeg The effective memory operand selector register.
|
---|
5709 | * @param GCPtrEff The effective memory operand offset.
|
---|
5710 | */
|
---|
5711 | IEM_STATIC void iemFpuStoreResultWithMemOpThenPop(PIEMCPU pIemCpu, PIEMFPURESULT pResult,
|
---|
5712 | uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
5713 | {
|
---|
5714 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5715 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5716 | iemFpuUpdateDP(pIemCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5717 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5718 | iemFpuStoreResultOnly(pFpuCtx, pResult, iStReg);
|
---|
5719 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5720 | }
|
---|
5721 |
|
---|
5722 |
|
---|
5723 | /**
|
---|
5724 | * Updates the FOP, FPUIP, and FPUCS. For FNOP.
|
---|
5725 | *
|
---|
5726 | * @param pIemCpu The IEM per CPU data.
|
---|
5727 | */
|
---|
5728 | IEM_STATIC void iemFpuUpdateOpcodeAndIp(PIEMCPU pIemCpu)
|
---|
5729 | {
|
---|
5730 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5731 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5732 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5733 | }
|
---|
5734 |
|
---|
5735 |
|
---|
5736 | /**
|
---|
5737 | * Marks the specified stack register as free (for FFREE).
|
---|
5738 | *
|
---|
5739 | * @param pIemCpu The IEM per CPU data.
|
---|
5740 | * @param iStReg The register to free.
|
---|
5741 | */
|
---|
5742 | IEM_STATIC void iemFpuStackFree(PIEMCPU pIemCpu, uint8_t iStReg)
|
---|
5743 | {
|
---|
5744 | Assert(iStReg < 8);
|
---|
5745 | PX86FXSTATE pFpuCtx = &pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87;
|
---|
5746 | uint8_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
5747 | pFpuCtx->FTW &= ~RT_BIT(iReg);
|
---|
5748 | }
|
---|
5749 |
|
---|
5750 |
|
---|
5751 | /**
|
---|
5752 | * Increments FSW.TOP, i.e. pops an item off the stack without freeing it.
|
---|
5753 | *
|
---|
5754 | * @param pIemCpu The IEM per CPU data.
|
---|
5755 | */
|
---|
5756 | IEM_STATIC void iemFpuStackIncTop(PIEMCPU pIemCpu)
|
---|
5757 | {
|
---|
5758 | PX86FXSTATE pFpuCtx = &pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87;
|
---|
5759 | uint16_t uFsw = pFpuCtx->FSW;
|
---|
5760 | uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
|
---|
5761 | uTop = (uTop + (1 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
5762 | uFsw &= ~X86_FSW_TOP_MASK;
|
---|
5763 | uFsw |= uTop;
|
---|
5764 | pFpuCtx->FSW = uFsw;
|
---|
5765 | }
|
---|
5766 |
|
---|
5767 |
|
---|
5768 | /**
|
---|
5769 | * Decrements FSW.TOP, i.e. push an item off the stack without storing anything.
|
---|
5770 | *
|
---|
5771 | * @param pIemCpu The IEM per CPU data.
|
---|
5772 | */
|
---|
5773 | IEM_STATIC void iemFpuStackDecTop(PIEMCPU pIemCpu)
|
---|
5774 | {
|
---|
5775 | PX86FXSTATE pFpuCtx = &pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87;
|
---|
5776 | uint16_t uFsw = pFpuCtx->FSW;
|
---|
5777 | uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
|
---|
5778 | uTop = (uTop + (7 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
5779 | uFsw &= ~X86_FSW_TOP_MASK;
|
---|
5780 | uFsw |= uTop;
|
---|
5781 | pFpuCtx->FSW = uFsw;
|
---|
5782 | }
|
---|
5783 |
|
---|
5784 |
|
---|
5785 | /**
|
---|
5786 | * Updates the FSW, FOP, FPUIP, and FPUCS.
|
---|
5787 | *
|
---|
5788 | * @param pIemCpu The IEM per CPU data.
|
---|
5789 | * @param u16FSW The FSW from the current instruction.
|
---|
5790 | */
|
---|
5791 | IEM_STATIC void iemFpuUpdateFSW(PIEMCPU pIemCpu, uint16_t u16FSW)
|
---|
5792 | {
|
---|
5793 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5794 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5795 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5796 | iemFpuUpdateFSWOnly(pFpuCtx, u16FSW);
|
---|
5797 | }
|
---|
5798 |
|
---|
5799 |
|
---|
5800 | /**
|
---|
5801 | * Updates the FSW, FOP, FPUIP, and FPUCS, then pops the stack.
|
---|
5802 | *
|
---|
5803 | * @param pIemCpu The IEM per CPU data.
|
---|
5804 | * @param u16FSW The FSW from the current instruction.
|
---|
5805 | */
|
---|
5806 | IEM_STATIC void iemFpuUpdateFSWThenPop(PIEMCPU pIemCpu, uint16_t u16FSW)
|
---|
5807 | {
|
---|
5808 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5809 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5810 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5811 | iemFpuUpdateFSWOnly(pFpuCtx, u16FSW);
|
---|
5812 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5813 | }
|
---|
5814 |
|
---|
5815 |
|
---|
5816 | /**
|
---|
5817 | * Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS.
|
---|
5818 | *
|
---|
5819 | * @param pIemCpu The IEM per CPU data.
|
---|
5820 | * @param u16FSW The FSW from the current instruction.
|
---|
5821 | * @param iEffSeg The effective memory operand selector register.
|
---|
5822 | * @param GCPtrEff The effective memory operand offset.
|
---|
5823 | */
|
---|
5824 | IEM_STATIC void iemFpuUpdateFSWWithMemOp(PIEMCPU pIemCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
5825 | {
|
---|
5826 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5827 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5828 | iemFpuUpdateDP(pIemCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5829 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5830 | iemFpuUpdateFSWOnly(pFpuCtx, u16FSW);
|
---|
5831 | }
|
---|
5832 |
|
---|
5833 |
|
---|
5834 | /**
|
---|
5835 | * Updates the FSW, FOP, FPUIP, and FPUCS, then pops the stack twice.
|
---|
5836 | *
|
---|
5837 | * @param pIemCpu The IEM per CPU data.
|
---|
5838 | * @param u16FSW The FSW from the current instruction.
|
---|
5839 | */
|
---|
5840 | IEM_STATIC void iemFpuUpdateFSWThenPopPop(PIEMCPU pIemCpu, uint16_t u16FSW)
|
---|
5841 | {
|
---|
5842 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5843 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5844 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5845 | iemFpuUpdateFSWOnly(pFpuCtx, u16FSW);
|
---|
5846 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5847 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5848 | }
|
---|
5849 |
|
---|
5850 |
|
---|
5851 | /**
|
---|
5852 | * Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS, then pops the stack.
|
---|
5853 | *
|
---|
5854 | * @param pIemCpu The IEM per CPU data.
|
---|
5855 | * @param u16FSW The FSW from the current instruction.
|
---|
5856 | * @param iEffSeg The effective memory operand selector register.
|
---|
5857 | * @param GCPtrEff The effective memory operand offset.
|
---|
5858 | */
|
---|
5859 | IEM_STATIC void iemFpuUpdateFSWWithMemOpThenPop(PIEMCPU pIemCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
5860 | {
|
---|
5861 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5862 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5863 | iemFpuUpdateDP(pIemCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5864 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5865 | iemFpuUpdateFSWOnly(pFpuCtx, u16FSW);
|
---|
5866 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5867 | }
|
---|
5868 |
|
---|
5869 |
|
---|
5870 | /**
|
---|
5871 | * Worker routine for raising an FPU stack underflow exception.
|
---|
5872 | *
|
---|
5873 | * @param pIemCpu The IEM per CPU data.
|
---|
5874 | * @param pFpuCtx The FPU context.
|
---|
5875 | * @param iStReg The stack register being accessed.
|
---|
5876 | */
|
---|
5877 | IEM_STATIC void iemFpuStackUnderflowOnly(PIEMCPU pIemCpu, PX86FXSTATE pFpuCtx, uint8_t iStReg)
|
---|
5878 | {
|
---|
5879 | Assert(iStReg < 8 || iStReg == UINT8_MAX);
|
---|
5880 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5881 | {
|
---|
5882 | /* Masked underflow. */
|
---|
5883 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5884 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
5885 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
5886 | if (iStReg != UINT8_MAX)
|
---|
5887 | {
|
---|
5888 | pFpuCtx->FTW |= RT_BIT(iReg);
|
---|
5889 | iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
|
---|
5890 | }
|
---|
5891 | }
|
---|
5892 | else
|
---|
5893 | {
|
---|
5894 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5895 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
5896 | }
|
---|
5897 | }
|
---|
5898 |
|
---|
5899 |
|
---|
5900 | /**
|
---|
5901 | * Raises a FPU stack underflow exception.
|
---|
5902 | *
|
---|
5903 | * @param pIemCpu The IEM per CPU data.
|
---|
5904 | * @param iStReg The destination register that should be loaded
|
---|
5905 | * with QNaN if \#IS is not masked. Specify
|
---|
5906 | * UINT8_MAX if none (like for fcom).
|
---|
5907 | */
|
---|
5908 | DECL_NO_INLINE(IEM_STATIC, void) iemFpuStackUnderflow(PIEMCPU pIemCpu, uint8_t iStReg)
|
---|
5909 | {
|
---|
5910 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5911 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5912 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5913 | iemFpuStackUnderflowOnly(pIemCpu, pFpuCtx, iStReg);
|
---|
5914 | }
|
---|
5915 |
|
---|
5916 |
|
---|
5917 | DECL_NO_INLINE(IEM_STATIC, void)
|
---|
5918 | iemFpuStackUnderflowWithMemOp(PIEMCPU pIemCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
5919 | {
|
---|
5920 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5921 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5922 | iemFpuUpdateDP(pIemCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5923 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5924 | iemFpuStackUnderflowOnly(pIemCpu, pFpuCtx, iStReg);
|
---|
5925 | }
|
---|
5926 |
|
---|
5927 |
|
---|
5928 | DECL_NO_INLINE(IEM_STATIC, void) iemFpuStackUnderflowThenPop(PIEMCPU pIemCpu, uint8_t iStReg)
|
---|
5929 | {
|
---|
5930 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5931 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5932 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5933 | iemFpuStackUnderflowOnly(pIemCpu, pFpuCtx, iStReg);
|
---|
5934 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5935 | }
|
---|
5936 |
|
---|
5937 |
|
---|
5938 | DECL_NO_INLINE(IEM_STATIC, void)
|
---|
5939 | iemFpuStackUnderflowWithMemOpThenPop(PIEMCPU pIemCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
5940 | {
|
---|
5941 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5942 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5943 | iemFpuUpdateDP(pIemCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
5944 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5945 | iemFpuStackUnderflowOnly(pIemCpu, pFpuCtx, iStReg);
|
---|
5946 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5947 | }
|
---|
5948 |
|
---|
5949 |
|
---|
5950 | DECL_NO_INLINE(IEM_STATIC, void) iemFpuStackUnderflowThenPopPop(PIEMCPU pIemCpu)
|
---|
5951 | {
|
---|
5952 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5953 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5954 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5955 | iemFpuStackUnderflowOnly(pIemCpu, pFpuCtx, UINT8_MAX);
|
---|
5956 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5957 | iemFpuMaybePopOne(pFpuCtx);
|
---|
5958 | }
|
---|
5959 |
|
---|
5960 |
|
---|
5961 | DECL_NO_INLINE(IEM_STATIC, void)
|
---|
5962 | iemFpuStackPushUnderflow(PIEMCPU pIemCpu)
|
---|
5963 | {
|
---|
5964 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5965 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5966 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5967 |
|
---|
5968 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5969 | {
|
---|
5970 | /* Masked overflow - Push QNaN. */
|
---|
5971 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
5972 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
5973 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
5974 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
5975 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
5976 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
5977 | iemFpuRotateStackPush(pFpuCtx);
|
---|
5978 | }
|
---|
5979 | else
|
---|
5980 | {
|
---|
5981 | /* Exception pending - don't change TOP or the register stack. */
|
---|
5982 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
5983 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
5984 | }
|
---|
5985 | }
|
---|
5986 |
|
---|
5987 |
|
---|
5988 | DECL_NO_INLINE(IEM_STATIC, void)
|
---|
5989 | iemFpuStackPushUnderflowTwo(PIEMCPU pIemCpu)
|
---|
5990 | {
|
---|
5991 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
5992 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
5993 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
5994 |
|
---|
5995 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
5996 | {
|
---|
5997 | /* Masked overflow - Push QNaN. */
|
---|
5998 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
5999 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
6000 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
6001 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
6002 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
6003 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
6004 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
6005 | iemFpuRotateStackPush(pFpuCtx);
|
---|
6006 | }
|
---|
6007 | else
|
---|
6008 | {
|
---|
6009 | /* Exception pending - don't change TOP or the register stack. */
|
---|
6010 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
6011 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
6012 | }
|
---|
6013 | }
|
---|
6014 |
|
---|
6015 |
|
---|
6016 | /**
|
---|
6017 | * Worker routine for raising an FPU stack overflow exception on a push.
|
---|
6018 | *
|
---|
6019 | * @param pFpuCtx The FPU context.
|
---|
6020 | */
|
---|
6021 | IEM_STATIC void iemFpuStackPushOverflowOnly(PX86FXSTATE pFpuCtx)
|
---|
6022 | {
|
---|
6023 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
6024 | {
|
---|
6025 | /* Masked overflow. */
|
---|
6026 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
6027 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
6028 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
|
---|
6029 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
6030 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
6031 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
6032 | iemFpuRotateStackPush(pFpuCtx);
|
---|
6033 | }
|
---|
6034 | else
|
---|
6035 | {
|
---|
6036 | /* Exception pending - don't change TOP or the register stack. */
|
---|
6037 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
6038 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
6039 | }
|
---|
6040 | }
|
---|
6041 |
|
---|
6042 |
|
---|
6043 | /**
|
---|
6044 | * Raises a FPU stack overflow exception on a push.
|
---|
6045 | *
|
---|
6046 | * @param pIemCpu The IEM per CPU data.
|
---|
6047 | */
|
---|
6048 | DECL_NO_INLINE(IEM_STATIC, void) iemFpuStackPushOverflow(PIEMCPU pIemCpu)
|
---|
6049 | {
|
---|
6050 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
6051 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6052 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
6053 | iemFpuStackPushOverflowOnly(pFpuCtx);
|
---|
6054 | }
|
---|
6055 |
|
---|
6056 |
|
---|
6057 | /**
|
---|
6058 | * Raises a FPU stack overflow exception on a push with a memory operand.
|
---|
6059 | *
|
---|
6060 | * @param pIemCpu The IEM per CPU data.
|
---|
6061 | * @param iEffSeg The effective memory operand selector register.
|
---|
6062 | * @param GCPtrEff The effective memory operand offset.
|
---|
6063 | */
|
---|
6064 | DECL_NO_INLINE(IEM_STATIC, void)
|
---|
6065 | iemFpuStackPushOverflowWithMemOp(PIEMCPU pIemCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
6066 | {
|
---|
6067 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
6068 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6069 | iemFpuUpdateDP(pIemCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
6070 | iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
|
---|
6071 | iemFpuStackPushOverflowOnly(pFpuCtx);
|
---|
6072 | }
|
---|
6073 |
|
---|
6074 |
|
---|
6075 | IEM_STATIC int iemFpuStRegNotEmpty(PIEMCPU pIemCpu, uint8_t iStReg)
|
---|
6076 | {
|
---|
6077 | PX86FXSTATE pFpuCtx = &pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87;
|
---|
6078 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
6079 | if (pFpuCtx->FTW & RT_BIT(iReg))
|
---|
6080 | return VINF_SUCCESS;
|
---|
6081 | return VERR_NOT_FOUND;
|
---|
6082 | }
|
---|
6083 |
|
---|
6084 |
|
---|
6085 | IEM_STATIC int iemFpuStRegNotEmptyRef(PIEMCPU pIemCpu, uint8_t iStReg, PCRTFLOAT80U *ppRef)
|
---|
6086 | {
|
---|
6087 | PX86FXSTATE pFpuCtx = &pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87;
|
---|
6088 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
6089 | if (pFpuCtx->FTW & RT_BIT(iReg))
|
---|
6090 | {
|
---|
6091 | *ppRef = &pFpuCtx->aRegs[iStReg].r80;
|
---|
6092 | return VINF_SUCCESS;
|
---|
6093 | }
|
---|
6094 | return VERR_NOT_FOUND;
|
---|
6095 | }
|
---|
6096 |
|
---|
6097 |
|
---|
6098 | IEM_STATIC int iemFpu2StRegsNotEmptyRef(PIEMCPU pIemCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0,
|
---|
6099 | uint8_t iStReg1, PCRTFLOAT80U *ppRef1)
|
---|
6100 | {
|
---|
6101 | PX86FXSTATE pFpuCtx = &pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87;
|
---|
6102 | uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
6103 | uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
|
---|
6104 | uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
|
---|
6105 | if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
|
---|
6106 | {
|
---|
6107 | *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
|
---|
6108 | *ppRef1 = &pFpuCtx->aRegs[iStReg1].r80;
|
---|
6109 | return VINF_SUCCESS;
|
---|
6110 | }
|
---|
6111 | return VERR_NOT_FOUND;
|
---|
6112 | }
|
---|
6113 |
|
---|
6114 |
|
---|
6115 | IEM_STATIC int iemFpu2StRegsNotEmptyRefFirst(PIEMCPU pIemCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0, uint8_t iStReg1)
|
---|
6116 | {
|
---|
6117 | PX86FXSTATE pFpuCtx = &pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87;
|
---|
6118 | uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
6119 | uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
|
---|
6120 | uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
|
---|
6121 | if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
|
---|
6122 | {
|
---|
6123 | *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
|
---|
6124 | return VINF_SUCCESS;
|
---|
6125 | }
|
---|
6126 | return VERR_NOT_FOUND;
|
---|
6127 | }
|
---|
6128 |
|
---|
6129 |
|
---|
6130 | /**
|
---|
6131 | * Updates the FPU exception status after FCW is changed.
|
---|
6132 | *
|
---|
6133 | * @param pFpuCtx The FPU context.
|
---|
6134 | */
|
---|
6135 | IEM_STATIC void iemFpuRecalcExceptionStatus(PX86FXSTATE pFpuCtx)
|
---|
6136 | {
|
---|
6137 | uint16_t u16Fsw = pFpuCtx->FSW;
|
---|
6138 | if ((u16Fsw & X86_FSW_XCPT_MASK) & ~(pFpuCtx->FCW & X86_FCW_XCPT_MASK))
|
---|
6139 | u16Fsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6140 | else
|
---|
6141 | u16Fsw &= ~(X86_FSW_ES | X86_FSW_B);
|
---|
6142 | pFpuCtx->FSW = u16Fsw;
|
---|
6143 | }
|
---|
6144 |
|
---|
6145 |
|
---|
6146 | /**
|
---|
6147 | * Calculates the full FTW (FPU tag word) for use in FNSTENV and FNSAVE.
|
---|
6148 | *
|
---|
6149 | * @returns The full FTW.
|
---|
6150 | * @param pFpuCtx The FPU context.
|
---|
6151 | */
|
---|
6152 | IEM_STATIC uint16_t iemFpuCalcFullFtw(PCX86FXSTATE pFpuCtx)
|
---|
6153 | {
|
---|
6154 | uint8_t const u8Ftw = (uint8_t)pFpuCtx->FTW;
|
---|
6155 | uint16_t u16Ftw = 0;
|
---|
6156 | unsigned const iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
6157 | for (unsigned iSt = 0; iSt < 8; iSt++)
|
---|
6158 | {
|
---|
6159 | unsigned const iReg = (iSt + iTop) & 7;
|
---|
6160 | if (!(u8Ftw & RT_BIT(iReg)))
|
---|
6161 | u16Ftw |= 3 << (iReg * 2); /* empty */
|
---|
6162 | else
|
---|
6163 | {
|
---|
6164 | uint16_t uTag;
|
---|
6165 | PCRTFLOAT80U const pr80Reg = &pFpuCtx->aRegs[iSt].r80;
|
---|
6166 | if (pr80Reg->s.uExponent == 0x7fff)
|
---|
6167 | uTag = 2; /* Exponent is all 1's => Special. */
|
---|
6168 | else if (pr80Reg->s.uExponent == 0x0000)
|
---|
6169 | {
|
---|
6170 | if (pr80Reg->s.u64Mantissa == 0x0000)
|
---|
6171 | uTag = 1; /* All bits are zero => Zero. */
|
---|
6172 | else
|
---|
6173 | uTag = 2; /* Must be special. */
|
---|
6174 | }
|
---|
6175 | else if (pr80Reg->s.u64Mantissa & RT_BIT_64(63)) /* The J bit. */
|
---|
6176 | uTag = 0; /* Valid. */
|
---|
6177 | else
|
---|
6178 | uTag = 2; /* Must be special. */
|
---|
6179 |
|
---|
6180 | u16Ftw |= uTag << (iReg * 2); /* empty */
|
---|
6181 | }
|
---|
6182 | }
|
---|
6183 |
|
---|
6184 | return u16Ftw;
|
---|
6185 | }
|
---|
6186 |
|
---|
6187 |
|
---|
6188 | /**
|
---|
6189 | * Converts a full FTW to a compressed one (for use in FLDENV and FRSTOR).
|
---|
6190 | *
|
---|
6191 | * @returns The compressed FTW.
|
---|
6192 | * @param u16FullFtw The full FTW to convert.
|
---|
6193 | */
|
---|
6194 | IEM_STATIC uint16_t iemFpuCompressFtw(uint16_t u16FullFtw)
|
---|
6195 | {
|
---|
6196 | uint8_t u8Ftw = 0;
|
---|
6197 | for (unsigned i = 0; i < 8; i++)
|
---|
6198 | {
|
---|
6199 | if ((u16FullFtw & 3) != 3 /*empty*/)
|
---|
6200 | u8Ftw |= RT_BIT(i);
|
---|
6201 | u16FullFtw >>= 2;
|
---|
6202 | }
|
---|
6203 |
|
---|
6204 | return u8Ftw;
|
---|
6205 | }
|
---|
6206 |
|
---|
6207 | /** @} */
|
---|
6208 |
|
---|
6209 |
|
---|
6210 | /** @name Memory access.
|
---|
6211 | *
|
---|
6212 | * @{
|
---|
6213 | */
|
---|
6214 |
|
---|
6215 |
|
---|
6216 | /**
|
---|
6217 | * Updates the IEMCPU::cbWritten counter if applicable.
|
---|
6218 | *
|
---|
6219 | * @param pIemCpu The IEM per CPU data.
|
---|
6220 | * @param fAccess The access being accounted for.
|
---|
6221 | * @param cbMem The access size.
|
---|
6222 | */
|
---|
6223 | DECL_FORCE_INLINE(void) iemMemUpdateWrittenCounter(PIEMCPU pIemCpu, uint32_t fAccess, size_t cbMem)
|
---|
6224 | {
|
---|
6225 | if ( (fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE)) == (IEM_ACCESS_WHAT_STACK | IEM_ACCESS_TYPE_WRITE)
|
---|
6226 | || (fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE)) == (IEM_ACCESS_WHAT_DATA | IEM_ACCESS_TYPE_WRITE) )
|
---|
6227 | pIemCpu->cbWritten += (uint32_t)cbMem;
|
---|
6228 | }
|
---|
6229 |
|
---|
6230 |
|
---|
6231 | /**
|
---|
6232 | * Checks if the given segment can be written to, raise the appropriate
|
---|
6233 | * exception if not.
|
---|
6234 | *
|
---|
6235 | * @returns VBox strict status code.
|
---|
6236 | *
|
---|
6237 | * @param pIemCpu The IEM per CPU data.
|
---|
6238 | * @param pHid Pointer to the hidden register.
|
---|
6239 | * @param iSegReg The register number.
|
---|
6240 | * @param pu64BaseAddr Where to return the base address to use for the
|
---|
6241 | * segment. (In 64-bit code it may differ from the
|
---|
6242 | * base in the hidden segment.)
|
---|
6243 | */
|
---|
6244 | IEM_STATIC VBOXSTRICTRC
|
---|
6245 | iemMemSegCheckWriteAccessEx(PIEMCPU pIemCpu, PCCPUMSELREGHID pHid, uint8_t iSegReg, uint64_t *pu64BaseAddr)
|
---|
6246 | {
|
---|
6247 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
6248 | *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
|
---|
6249 | else
|
---|
6250 | {
|
---|
6251 | if (!pHid->Attr.n.u1Present)
|
---|
6252 | return iemRaiseSelectorNotPresentBySegReg(pIemCpu, iSegReg);
|
---|
6253 |
|
---|
6254 | if ( ( (pHid->Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
6255 | || !(pHid->Attr.n.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
6256 | && pIemCpu->enmCpuMode != IEMMODE_64BIT )
|
---|
6257 | return iemRaiseSelectorInvalidAccess(pIemCpu, iSegReg, IEM_ACCESS_DATA_W);
|
---|
6258 | *pu64BaseAddr = pHid->u64Base;
|
---|
6259 | }
|
---|
6260 | return VINF_SUCCESS;
|
---|
6261 | }
|
---|
6262 |
|
---|
6263 |
|
---|
6264 | /**
|
---|
6265 | * Checks if the given segment can be read from, raise the appropriate
|
---|
6266 | * exception if not.
|
---|
6267 | *
|
---|
6268 | * @returns VBox strict status code.
|
---|
6269 | *
|
---|
6270 | * @param pIemCpu The IEM per CPU data.
|
---|
6271 | * @param pHid Pointer to the hidden register.
|
---|
6272 | * @param iSegReg The register number.
|
---|
6273 | * @param pu64BaseAddr Where to return the base address to use for the
|
---|
6274 | * segment. (In 64-bit code it may differ from the
|
---|
6275 | * base in the hidden segment.)
|
---|
6276 | */
|
---|
6277 | IEM_STATIC VBOXSTRICTRC
|
---|
6278 | iemMemSegCheckReadAccessEx(PIEMCPU pIemCpu, PCCPUMSELREGHID pHid, uint8_t iSegReg, uint64_t *pu64BaseAddr)
|
---|
6279 | {
|
---|
6280 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
6281 | *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
|
---|
6282 | else
|
---|
6283 | {
|
---|
6284 | if (!pHid->Attr.n.u1Present)
|
---|
6285 | return iemRaiseSelectorNotPresentBySegReg(pIemCpu, iSegReg);
|
---|
6286 |
|
---|
6287 | if ((pHid->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
6288 | return iemRaiseSelectorInvalidAccess(pIemCpu, iSegReg, IEM_ACCESS_DATA_R);
|
---|
6289 | *pu64BaseAddr = pHid->u64Base;
|
---|
6290 | }
|
---|
6291 | return VINF_SUCCESS;
|
---|
6292 | }
|
---|
6293 |
|
---|
6294 |
|
---|
6295 | /**
|
---|
6296 | * Applies the segment limit, base and attributes.
|
---|
6297 | *
|
---|
6298 | * This may raise a \#GP or \#SS.
|
---|
6299 | *
|
---|
6300 | * @returns VBox strict status code.
|
---|
6301 | *
|
---|
6302 | * @param pIemCpu The IEM per CPU data.
|
---|
6303 | * @param fAccess The kind of access which is being performed.
|
---|
6304 | * @param iSegReg The index of the segment register to apply.
|
---|
6305 | * This is UINT8_MAX if none (for IDT, GDT, LDT,
|
---|
6306 | * TSS, ++).
|
---|
6307 | * @param cbMem The access size.
|
---|
6308 | * @param pGCPtrMem Pointer to the guest memory address to apply
|
---|
6309 | * segmentation to. Input and output parameter.
|
---|
6310 | */
|
---|
6311 | IEM_STATIC VBOXSTRICTRC
|
---|
6312 | iemMemApplySegment(PIEMCPU pIemCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem)
|
---|
6313 | {
|
---|
6314 | if (iSegReg == UINT8_MAX)
|
---|
6315 | return VINF_SUCCESS;
|
---|
6316 |
|
---|
6317 | PCPUMSELREGHID pSel = iemSRegGetHid(pIemCpu, iSegReg);
|
---|
6318 | switch (pIemCpu->enmCpuMode)
|
---|
6319 | {
|
---|
6320 | case IEMMODE_16BIT:
|
---|
6321 | case IEMMODE_32BIT:
|
---|
6322 | {
|
---|
6323 | RTGCPTR32 GCPtrFirst32 = (RTGCPTR32)*pGCPtrMem;
|
---|
6324 | RTGCPTR32 GCPtrLast32 = GCPtrFirst32 + (uint32_t)cbMem - 1;
|
---|
6325 |
|
---|
6326 | if ( pSel->Attr.n.u1Present
|
---|
6327 | && !pSel->Attr.n.u1Unusable)
|
---|
6328 | {
|
---|
6329 | Assert(pSel->Attr.n.u1DescType);
|
---|
6330 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
|
---|
6331 | {
|
---|
6332 | if ( (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6333 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
6334 | return iemRaiseSelectorInvalidAccess(pIemCpu, iSegReg, fAccess);
|
---|
6335 |
|
---|
6336 | if (!IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
6337 | {
|
---|
6338 | /** @todo CPL check. */
|
---|
6339 | }
|
---|
6340 |
|
---|
6341 | /*
|
---|
6342 | * There are two kinds of data selectors, normal and expand down.
|
---|
6343 | */
|
---|
6344 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
|
---|
6345 | {
|
---|
6346 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
6347 | || GCPtrLast32 > pSel->u32Limit) /* yes, in real mode too (since 80286). */
|
---|
6348 | return iemRaiseSelectorBounds(pIemCpu, iSegReg, fAccess);
|
---|
6349 | }
|
---|
6350 | else
|
---|
6351 | {
|
---|
6352 | /*
|
---|
6353 | * The upper boundary is defined by the B bit, not the G bit!
|
---|
6354 | */
|
---|
6355 | if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
|
---|
6356 | || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
|
---|
6357 | return iemRaiseSelectorBounds(pIemCpu, iSegReg, fAccess);
|
---|
6358 | }
|
---|
6359 | *pGCPtrMem = GCPtrFirst32 += (uint32_t)pSel->u64Base;
|
---|
6360 | }
|
---|
6361 | else
|
---|
6362 | {
|
---|
6363 |
|
---|
6364 | /*
|
---|
6365 | * Code selector and usually be used to read thru, writing is
|
---|
6366 | * only permitted in real and V8086 mode.
|
---|
6367 | */
|
---|
6368 | if ( ( (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6369 | || ( (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
6370 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)) )
|
---|
6371 | && !IEM_IS_REAL_OR_V86_MODE(pIemCpu) )
|
---|
6372 | return iemRaiseSelectorInvalidAccess(pIemCpu, iSegReg, fAccess);
|
---|
6373 |
|
---|
6374 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
6375 | || GCPtrLast32 > pSel->u32Limit) /* yes, in real mode too (since 80286). */
|
---|
6376 | return iemRaiseSelectorBounds(pIemCpu, iSegReg, fAccess);
|
---|
6377 |
|
---|
6378 | if (!IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
6379 | {
|
---|
6380 | /** @todo CPL check. */
|
---|
6381 | }
|
---|
6382 |
|
---|
6383 | *pGCPtrMem = GCPtrFirst32 += (uint32_t)pSel->u64Base;
|
---|
6384 | }
|
---|
6385 | }
|
---|
6386 | else
|
---|
6387 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
6388 | return VINF_SUCCESS;
|
---|
6389 | }
|
---|
6390 |
|
---|
6391 | case IEMMODE_64BIT:
|
---|
6392 | {
|
---|
6393 | RTGCPTR GCPtrMem = *pGCPtrMem;
|
---|
6394 | if (iSegReg == X86_SREG_GS || iSegReg == X86_SREG_FS)
|
---|
6395 | *pGCPtrMem = GCPtrMem + pSel->u64Base;
|
---|
6396 |
|
---|
6397 | Assert(cbMem >= 1);
|
---|
6398 | if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
|
---|
6399 | return VINF_SUCCESS;
|
---|
6400 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
6401 | }
|
---|
6402 |
|
---|
6403 | default:
|
---|
6404 | AssertFailedReturn(VERR_IEM_IPE_7);
|
---|
6405 | }
|
---|
6406 | }
|
---|
6407 |
|
---|
6408 |
|
---|
6409 | /**
|
---|
6410 | * Translates a virtual address to a physical physical address and checks if we
|
---|
6411 | * can access the page as specified.
|
---|
6412 | *
|
---|
6413 | * @param pIemCpu The IEM per CPU data.
|
---|
6414 | * @param GCPtrMem The virtual address.
|
---|
6415 | * @param fAccess The intended access.
|
---|
6416 | * @param pGCPhysMem Where to return the physical address.
|
---|
6417 | */
|
---|
6418 | IEM_STATIC VBOXSTRICTRC
|
---|
6419 | iemMemPageTranslateAndCheckAccess(PIEMCPU pIemCpu, RTGCPTR GCPtrMem, uint32_t fAccess, PRTGCPHYS pGCPhysMem)
|
---|
6420 | {
|
---|
6421 | /** @todo Need a different PGM interface here. We're currently using
|
---|
6422 | * generic / REM interfaces. this won't cut it for R0 & RC. */
|
---|
6423 | RTGCPHYS GCPhys;
|
---|
6424 | uint64_t fFlags;
|
---|
6425 | int rc = PGMGstGetPage(IEMCPU_TO_VMCPU(pIemCpu), GCPtrMem, &fFlags, &GCPhys);
|
---|
6426 | if (RT_FAILURE(rc))
|
---|
6427 | {
|
---|
6428 | /** @todo Check unassigned memory in unpaged mode. */
|
---|
6429 | /** @todo Reserved bits in page tables. Requires new PGM interface. */
|
---|
6430 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
6431 | return iemRaisePageFault(pIemCpu, GCPtrMem, fAccess, rc);
|
---|
6432 | }
|
---|
6433 |
|
---|
6434 | /* If the page is writable and does not have the no-exec bit set, all
|
---|
6435 | access is allowed. Otherwise we'll have to check more carefully... */
|
---|
6436 | if ((fFlags & (X86_PTE_RW | X86_PTE_US | X86_PTE_PAE_NX)) != (X86_PTE_RW | X86_PTE_US))
|
---|
6437 | {
|
---|
6438 | /* Write to read only memory? */
|
---|
6439 | if ( (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6440 | && !(fFlags & X86_PTE_RW)
|
---|
6441 | && ( pIemCpu->uCpl != 0
|
---|
6442 | || (pIemCpu->CTX_SUFF(pCtx)->cr0 & X86_CR0_WP)))
|
---|
6443 | {
|
---|
6444 | Log(("iemMemPageTranslateAndCheckAccess: GCPtrMem=%RGv - read-only page -> #PF\n", GCPtrMem));
|
---|
6445 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
6446 | return iemRaisePageFault(pIemCpu, GCPtrMem, fAccess & ~IEM_ACCESS_TYPE_READ, VERR_ACCESS_DENIED);
|
---|
6447 | }
|
---|
6448 |
|
---|
6449 | /* Kernel memory accessed by userland? */
|
---|
6450 | if ( !(fFlags & X86_PTE_US)
|
---|
6451 | && pIemCpu->uCpl == 3
|
---|
6452 | && !(fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
6453 | {
|
---|
6454 | Log(("iemMemPageTranslateAndCheckAccess: GCPtrMem=%RGv - user access to kernel page -> #PF\n", GCPtrMem));
|
---|
6455 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
6456 | return iemRaisePageFault(pIemCpu, GCPtrMem, fAccess, VERR_ACCESS_DENIED);
|
---|
6457 | }
|
---|
6458 |
|
---|
6459 | /* Executing non-executable memory? */
|
---|
6460 | if ( (fAccess & IEM_ACCESS_TYPE_EXEC)
|
---|
6461 | && (fFlags & X86_PTE_PAE_NX)
|
---|
6462 | && (pIemCpu->CTX_SUFF(pCtx)->msrEFER & MSR_K6_EFER_NXE) )
|
---|
6463 | {
|
---|
6464 | Log(("iemMemPageTranslateAndCheckAccess: GCPtrMem=%RGv - NX -> #PF\n", GCPtrMem));
|
---|
6465 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
6466 | return iemRaisePageFault(pIemCpu, GCPtrMem, fAccess & ~(IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE),
|
---|
6467 | VERR_ACCESS_DENIED);
|
---|
6468 | }
|
---|
6469 | }
|
---|
6470 |
|
---|
6471 | /*
|
---|
6472 | * Set the dirty / access flags.
|
---|
6473 | * ASSUMES this is set when the address is translated rather than on committ...
|
---|
6474 | */
|
---|
6475 | /** @todo testcase: check when A and D bits are actually set by the CPU. */
|
---|
6476 | uint32_t fAccessedDirty = fAccess & IEM_ACCESS_TYPE_WRITE ? X86_PTE_D | X86_PTE_A : X86_PTE_A;
|
---|
6477 | if ((fFlags & fAccessedDirty) != fAccessedDirty)
|
---|
6478 | {
|
---|
6479 | int rc2 = PGMGstModifyPage(IEMCPU_TO_VMCPU(pIemCpu), GCPtrMem, 1, fAccessedDirty, ~(uint64_t)fAccessedDirty);
|
---|
6480 | AssertRC(rc2);
|
---|
6481 | }
|
---|
6482 |
|
---|
6483 | GCPhys |= GCPtrMem & PAGE_OFFSET_MASK;
|
---|
6484 | *pGCPhysMem = GCPhys;
|
---|
6485 | return VINF_SUCCESS;
|
---|
6486 | }
|
---|
6487 |
|
---|
6488 |
|
---|
6489 |
|
---|
6490 | /**
|
---|
6491 | * Maps a physical page.
|
---|
6492 | *
|
---|
6493 | * @returns VBox status code (see PGMR3PhysTlbGCPhys2Ptr).
|
---|
6494 | * @param pIemCpu The IEM per CPU data.
|
---|
6495 | * @param GCPhysMem The physical address.
|
---|
6496 | * @param fAccess The intended access.
|
---|
6497 | * @param ppvMem Where to return the mapping address.
|
---|
6498 | * @param pLock The PGM lock.
|
---|
6499 | */
|
---|
6500 | IEM_STATIC int iemMemPageMap(PIEMCPU pIemCpu, RTGCPHYS GCPhysMem, uint32_t fAccess, void **ppvMem, PPGMPAGEMAPLOCK pLock)
|
---|
6501 | {
|
---|
6502 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
6503 | /* Force the alternative path so we can ignore writes. */
|
---|
6504 | if ((fAccess & IEM_ACCESS_TYPE_WRITE) && !pIemCpu->fNoRem)
|
---|
6505 | {
|
---|
6506 | if (IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
|
---|
6507 | {
|
---|
6508 | int rc2 = PGMPhysIemQueryAccess(IEMCPU_TO_VM(pIemCpu), GCPhysMem,
|
---|
6509 | RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE), pIemCpu->fBypassHandlers);
|
---|
6510 | if (RT_FAILURE(rc2))
|
---|
6511 | pIemCpu->fProblematicMemory = true;
|
---|
6512 | }
|
---|
6513 | return VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
6514 | }
|
---|
6515 | #endif
|
---|
6516 | #ifdef IEM_LOG_MEMORY_WRITES
|
---|
6517 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
6518 | return VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
6519 | #endif
|
---|
6520 | #ifdef IEM_VERIFICATION_MODE_MINIMAL
|
---|
6521 | return VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
6522 | #endif
|
---|
6523 |
|
---|
6524 | /** @todo This API may require some improving later. A private deal with PGM
|
---|
6525 | * regarding locking and unlocking needs to be struct. A couple of TLBs
|
---|
6526 | * living in PGM, but with publicly accessible inlined access methods
|
---|
6527 | * could perhaps be an even better solution. */
|
---|
6528 | int rc = PGMPhysIemGCPhys2Ptr(IEMCPU_TO_VM(pIemCpu), IEMCPU_TO_VMCPU(pIemCpu),
|
---|
6529 | GCPhysMem,
|
---|
6530 | RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE),
|
---|
6531 | pIemCpu->fBypassHandlers,
|
---|
6532 | ppvMem,
|
---|
6533 | pLock);
|
---|
6534 | /*Log(("PGMPhysIemGCPhys2Ptr %Rrc pLock=%.*Rhxs\n", rc, sizeof(*pLock), pLock));*/
|
---|
6535 | AssertMsg(rc == VINF_SUCCESS || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
|
---|
6536 |
|
---|
6537 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
6538 | if (RT_FAILURE(rc) && IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
|
---|
6539 | pIemCpu->fProblematicMemory = true;
|
---|
6540 | #endif
|
---|
6541 | return rc;
|
---|
6542 | }
|
---|
6543 |
|
---|
6544 |
|
---|
6545 | /**
|
---|
6546 | * Unmap a page previously mapped by iemMemPageMap.
|
---|
6547 | *
|
---|
6548 | * @param pIemCpu The IEM per CPU data.
|
---|
6549 | * @param GCPhysMem The physical address.
|
---|
6550 | * @param fAccess The intended access.
|
---|
6551 | * @param pvMem What iemMemPageMap returned.
|
---|
6552 | * @param pLock The PGM lock.
|
---|
6553 | */
|
---|
6554 | DECLINLINE(void) iemMemPageUnmap(PIEMCPU pIemCpu, RTGCPHYS GCPhysMem, uint32_t fAccess, const void *pvMem, PPGMPAGEMAPLOCK pLock)
|
---|
6555 | {
|
---|
6556 | NOREF(pIemCpu);
|
---|
6557 | NOREF(GCPhysMem);
|
---|
6558 | NOREF(fAccess);
|
---|
6559 | NOREF(pvMem);
|
---|
6560 | PGMPhysReleasePageMappingLock(IEMCPU_TO_VM(pIemCpu), pLock);
|
---|
6561 | }
|
---|
6562 |
|
---|
6563 |
|
---|
6564 | /**
|
---|
6565 | * Looks up a memory mapping entry.
|
---|
6566 | *
|
---|
6567 | * @returns The mapping index (positive) or VERR_NOT_FOUND (negative).
|
---|
6568 | * @param pIemCpu The IEM per CPU data.
|
---|
6569 | * @param pvMem The memory address.
|
---|
6570 | * @param fAccess The access to.
|
---|
6571 | */
|
---|
6572 | DECLINLINE(int) iemMapLookup(PIEMCPU pIemCpu, void *pvMem, uint32_t fAccess)
|
---|
6573 | {
|
---|
6574 | Assert(pIemCpu->cActiveMappings < RT_ELEMENTS(pIemCpu->aMemMappings));
|
---|
6575 | fAccess &= IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK;
|
---|
6576 | if ( pIemCpu->aMemMappings[0].pv == pvMem
|
---|
6577 | && (pIemCpu->aMemMappings[0].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
6578 | return 0;
|
---|
6579 | if ( pIemCpu->aMemMappings[1].pv == pvMem
|
---|
6580 | && (pIemCpu->aMemMappings[1].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
6581 | return 1;
|
---|
6582 | if ( pIemCpu->aMemMappings[2].pv == pvMem
|
---|
6583 | && (pIemCpu->aMemMappings[2].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
6584 | return 2;
|
---|
6585 | return VERR_NOT_FOUND;
|
---|
6586 | }
|
---|
6587 |
|
---|
6588 |
|
---|
6589 | /**
|
---|
6590 | * Finds a free memmap entry when using iNextMapping doesn't work.
|
---|
6591 | *
|
---|
6592 | * @returns Memory mapping index, 1024 on failure.
|
---|
6593 | * @param pIemCpu The IEM per CPU data.
|
---|
6594 | */
|
---|
6595 | IEM_STATIC unsigned iemMemMapFindFree(PIEMCPU pIemCpu)
|
---|
6596 | {
|
---|
6597 | /*
|
---|
6598 | * The easy case.
|
---|
6599 | */
|
---|
6600 | if (pIemCpu->cActiveMappings == 0)
|
---|
6601 | {
|
---|
6602 | pIemCpu->iNextMapping = 1;
|
---|
6603 | return 0;
|
---|
6604 | }
|
---|
6605 |
|
---|
6606 | /* There should be enough mappings for all instructions. */
|
---|
6607 | AssertReturn(pIemCpu->cActiveMappings < RT_ELEMENTS(pIemCpu->aMemMappings), 1024);
|
---|
6608 |
|
---|
6609 | for (unsigned i = 0; i < RT_ELEMENTS(pIemCpu->aMemMappings); i++)
|
---|
6610 | if (pIemCpu->aMemMappings[i].fAccess == IEM_ACCESS_INVALID)
|
---|
6611 | return i;
|
---|
6612 |
|
---|
6613 | AssertFailedReturn(1024);
|
---|
6614 | }
|
---|
6615 |
|
---|
6616 |
|
---|
6617 | /**
|
---|
6618 | * Commits a bounce buffer that needs writing back and unmaps it.
|
---|
6619 | *
|
---|
6620 | * @returns Strict VBox status code.
|
---|
6621 | * @param pIemCpu The IEM per CPU data.
|
---|
6622 | * @param iMemMap The index of the buffer to commit.
|
---|
6623 | * @param fPostponeFail Whether we can postpone writer failures to ring-3.
|
---|
6624 | * Always false in ring-3, obviously.
|
---|
6625 | */
|
---|
6626 | IEM_STATIC VBOXSTRICTRC iemMemBounceBufferCommitAndUnmap(PIEMCPU pIemCpu, unsigned iMemMap, bool fPostponeFail)
|
---|
6627 | {
|
---|
6628 | Assert(pIemCpu->aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED);
|
---|
6629 | Assert(pIemCpu->aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE);
|
---|
6630 | #ifdef IN_RING3
|
---|
6631 | Assert(!fPostponeFail);
|
---|
6632 | #endif
|
---|
6633 |
|
---|
6634 | /*
|
---|
6635 | * Do the writing.
|
---|
6636 | */
|
---|
6637 | #ifndef IEM_VERIFICATION_MODE_MINIMAL
|
---|
6638 | PVM pVM = IEMCPU_TO_VM(pIemCpu);
|
---|
6639 | if ( !pIemCpu->aMemBbMappings[iMemMap].fUnassigned
|
---|
6640 | && !IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
6641 | {
|
---|
6642 | uint16_t const cbFirst = pIemCpu->aMemBbMappings[iMemMap].cbFirst;
|
---|
6643 | uint16_t const cbSecond = pIemCpu->aMemBbMappings[iMemMap].cbSecond;
|
---|
6644 | uint8_t const *pbBuf = &pIemCpu->aBounceBuffers[iMemMap].ab[0];
|
---|
6645 | if (!pIemCpu->fBypassHandlers)
|
---|
6646 | {
|
---|
6647 | /*
|
---|
6648 | * Carefully and efficiently dealing with access handler return
|
---|
6649 | * codes make this a little bloated.
|
---|
6650 | */
|
---|
6651 | VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM,
|
---|
6652 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
6653 | pbBuf,
|
---|
6654 | cbFirst,
|
---|
6655 | PGMACCESSORIGIN_IEM);
|
---|
6656 | if (rcStrict == VINF_SUCCESS)
|
---|
6657 | {
|
---|
6658 | if (cbSecond)
|
---|
6659 | {
|
---|
6660 | rcStrict = PGMPhysWrite(pVM,
|
---|
6661 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
6662 | pbBuf + cbFirst,
|
---|
6663 | cbSecond,
|
---|
6664 | PGMACCESSORIGIN_IEM);
|
---|
6665 | if (rcStrict == VINF_SUCCESS)
|
---|
6666 | { /* nothing */ }
|
---|
6667 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6668 | {
|
---|
6669 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc\n",
|
---|
6670 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6671 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6672 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
6673 | }
|
---|
6674 | # ifndef IN_RING3
|
---|
6675 | else if (fPostponeFail)
|
---|
6676 | {
|
---|
6677 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
6678 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6679 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6680 | pIemCpu->aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
6681 | VMCPU_FF_SET(IEMCPU_TO_VMCPU(pIemCpu), VMCPU_FF_IEM);
|
---|
6682 | return iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
6683 | }
|
---|
6684 | # endif
|
---|
6685 | else
|
---|
6686 | {
|
---|
6687 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
6688 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6689 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6690 | return rcStrict;
|
---|
6691 | }
|
---|
6692 | }
|
---|
6693 | }
|
---|
6694 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6695 | {
|
---|
6696 | if (!cbSecond)
|
---|
6697 | {
|
---|
6698 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc\n",
|
---|
6699 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6700 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
6701 | }
|
---|
6702 | else
|
---|
6703 | {
|
---|
6704 | VBOXSTRICTRC rcStrict2 = PGMPhysWrite(pVM,
|
---|
6705 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
6706 | pbBuf + cbFirst,
|
---|
6707 | cbSecond,
|
---|
6708 | PGMACCESSORIGIN_IEM);
|
---|
6709 | if (rcStrict2 == VINF_SUCCESS)
|
---|
6710 | {
|
---|
6711 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x\n",
|
---|
6712 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
6713 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
6714 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
6715 | }
|
---|
6716 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
|
---|
6717 | {
|
---|
6718 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x %Rrc\n",
|
---|
6719 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
6720 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
6721 | PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
|
---|
6722 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
6723 | }
|
---|
6724 | # ifndef IN_RING3
|
---|
6725 | else if (fPostponeFail)
|
---|
6726 | {
|
---|
6727 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
6728 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6729 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6730 | pIemCpu->aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
6731 | VMCPU_FF_SET(IEMCPU_TO_VMCPU(pIemCpu), VMCPU_FF_IEM);
|
---|
6732 | return iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
6733 | }
|
---|
6734 | # endif
|
---|
6735 | else
|
---|
6736 | {
|
---|
6737 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
6738 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
6739 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
6740 | return rcStrict2;
|
---|
6741 | }
|
---|
6742 | }
|
---|
6743 | }
|
---|
6744 | # ifndef IN_RING3
|
---|
6745 | else if (fPostponeFail)
|
---|
6746 | {
|
---|
6747 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
6748 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6749 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6750 | if (!cbSecond)
|
---|
6751 | pIemCpu->aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_1ST;
|
---|
6752 | else
|
---|
6753 | pIemCpu->aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
6754 | VMCPU_FF_SET(IEMCPU_TO_VMCPU(pIemCpu), VMCPU_FF_IEM);
|
---|
6755 | return iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
6756 | }
|
---|
6757 | # endif
|
---|
6758 | else
|
---|
6759 | {
|
---|
6760 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc [GCPhysSecond=%RGp/%#x] (!!)\n",
|
---|
6761 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
6762 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
6763 | return rcStrict;
|
---|
6764 | }
|
---|
6765 | }
|
---|
6766 | else
|
---|
6767 | {
|
---|
6768 | /*
|
---|
6769 | * No access handlers, much simpler.
|
---|
6770 | */
|
---|
6771 | int rc = PGMPhysSimpleWriteGCPhys(pVM, pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, pbBuf, cbFirst);
|
---|
6772 | if (RT_SUCCESS(rc))
|
---|
6773 | {
|
---|
6774 | if (cbSecond)
|
---|
6775 | {
|
---|
6776 | rc = PGMPhysSimpleWriteGCPhys(pVM, pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, pbBuf + cbFirst, cbSecond);
|
---|
6777 | if (RT_SUCCESS(rc))
|
---|
6778 | { /* likely */ }
|
---|
6779 | else
|
---|
6780 | {
|
---|
6781 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysSimpleWriteGCPhys GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
6782 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
6783 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, rc));
|
---|
6784 | return rc;
|
---|
6785 | }
|
---|
6786 | }
|
---|
6787 | }
|
---|
6788 | else
|
---|
6789 | {
|
---|
6790 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysSimpleWriteGCPhys GCPhysFirst=%RGp/%#x %Rrc [GCPhysSecond=%RGp/%#x] (!!)\n",
|
---|
6791 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, rc,
|
---|
6792 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
6793 | return rc;
|
---|
6794 | }
|
---|
6795 | }
|
---|
6796 | }
|
---|
6797 | #endif
|
---|
6798 |
|
---|
6799 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
6800 | /*
|
---|
6801 | * Record the write(s).
|
---|
6802 | */
|
---|
6803 | if (!pIemCpu->fNoRem)
|
---|
6804 | {
|
---|
6805 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
6806 | if (pEvtRec)
|
---|
6807 | {
|
---|
6808 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_WRITE;
|
---|
6809 | pEvtRec->u.RamWrite.GCPhys = pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst;
|
---|
6810 | pEvtRec->u.RamWrite.cb = pIemCpu->aMemBbMappings[iMemMap].cbFirst;
|
---|
6811 | memcpy(pEvtRec->u.RamWrite.ab, &pIemCpu->aBounceBuffers[iMemMap].ab[0], pIemCpu->aMemBbMappings[iMemMap].cbFirst);
|
---|
6812 | AssertCompile(sizeof(pEvtRec->u.RamWrite.ab) == sizeof(pIemCpu->aBounceBuffers[0].ab));
|
---|
6813 | pEvtRec->pNext = *pIemCpu->ppIemEvtRecNext;
|
---|
6814 | *pIemCpu->ppIemEvtRecNext = pEvtRec;
|
---|
6815 | }
|
---|
6816 | if (pIemCpu->aMemBbMappings[iMemMap].cbSecond)
|
---|
6817 | {
|
---|
6818 | pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
6819 | if (pEvtRec)
|
---|
6820 | {
|
---|
6821 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_WRITE;
|
---|
6822 | pEvtRec->u.RamWrite.GCPhys = pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond;
|
---|
6823 | pEvtRec->u.RamWrite.cb = pIemCpu->aMemBbMappings[iMemMap].cbSecond;
|
---|
6824 | memcpy(pEvtRec->u.RamWrite.ab,
|
---|
6825 | &pIemCpu->aBounceBuffers[iMemMap].ab[pIemCpu->aMemBbMappings[iMemMap].cbFirst],
|
---|
6826 | pIemCpu->aMemBbMappings[iMemMap].cbSecond);
|
---|
6827 | pEvtRec->pNext = *pIemCpu->ppIemEvtRecNext;
|
---|
6828 | *pIemCpu->ppIemEvtRecNext = pEvtRec;
|
---|
6829 | }
|
---|
6830 | }
|
---|
6831 | }
|
---|
6832 | #endif
|
---|
6833 | #if defined(IEM_VERIFICATION_MODE_MINIMAL) || defined(IEM_LOG_MEMORY_WRITES)
|
---|
6834 | Log(("IEM Wrote %RGp: %.*Rhxs\n", pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
6835 | RT_MAX(RT_MIN(pIemCpu->aMemBbMappings[iMemMap].cbFirst, 64), 1), &pIemCpu->aBounceBuffers[iMemMap].ab[0]));
|
---|
6836 | if (pIemCpu->aMemBbMappings[iMemMap].cbSecond)
|
---|
6837 | Log(("IEM Wrote %RGp: %.*Rhxs [2nd page]\n", pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
6838 | RT_MIN(pIemCpu->aMemBbMappings[iMemMap].cbSecond, 64),
|
---|
6839 | &pIemCpu->aBounceBuffers[iMemMap].ab[pIemCpu->aMemBbMappings[iMemMap].cbFirst]));
|
---|
6840 |
|
---|
6841 | size_t cbWrote = pIemCpu->aMemBbMappings[iMemMap].cbFirst + pIemCpu->aMemBbMappings[iMemMap].cbSecond;
|
---|
6842 | g_cbIemWrote = cbWrote;
|
---|
6843 | memcpy(g_abIemWrote, &pIemCpu->aBounceBuffers[iMemMap].ab[0], RT_MIN(cbWrote, sizeof(g_abIemWrote)));
|
---|
6844 | #endif
|
---|
6845 |
|
---|
6846 | /*
|
---|
6847 | * Free the mapping entry.
|
---|
6848 | */
|
---|
6849 | pIemCpu->aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
6850 | Assert(pIemCpu->cActiveMappings != 0);
|
---|
6851 | pIemCpu->cActiveMappings--;
|
---|
6852 | return VINF_SUCCESS;
|
---|
6853 | }
|
---|
6854 |
|
---|
6855 |
|
---|
6856 | /**
|
---|
6857 | * iemMemMap worker that deals with a request crossing pages.
|
---|
6858 | */
|
---|
6859 | IEM_STATIC VBOXSTRICTRC
|
---|
6860 | iemMemBounceBufferMapCrossPage(PIEMCPU pIemCpu, int iMemMap, void **ppvMem, size_t cbMem, RTGCPTR GCPtrFirst, uint32_t fAccess)
|
---|
6861 | {
|
---|
6862 | /*
|
---|
6863 | * Do the address translations.
|
---|
6864 | */
|
---|
6865 | RTGCPHYS GCPhysFirst;
|
---|
6866 | VBOXSTRICTRC rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, GCPtrFirst, fAccess, &GCPhysFirst);
|
---|
6867 | if (rcStrict != VINF_SUCCESS)
|
---|
6868 | return rcStrict;
|
---|
6869 |
|
---|
6870 | RTGCPHYS GCPhysSecond;
|
---|
6871 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, (GCPtrFirst + (cbMem - 1)) & ~(RTGCPTR)PAGE_OFFSET_MASK,
|
---|
6872 | fAccess, &GCPhysSecond);
|
---|
6873 | if (rcStrict != VINF_SUCCESS)
|
---|
6874 | return rcStrict;
|
---|
6875 | GCPhysSecond &= ~(RTGCPHYS)PAGE_OFFSET_MASK;
|
---|
6876 |
|
---|
6877 | PVM pVM = IEMCPU_TO_VM(pIemCpu);
|
---|
6878 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
6879 | /*
|
---|
6880 | * Detect problematic memory when verifying so we can select
|
---|
6881 | * the right execution engine. (TLB: Redo this.)
|
---|
6882 | */
|
---|
6883 | if (IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
|
---|
6884 | {
|
---|
6885 | int rc2 = PGMPhysIemQueryAccess(pVM, GCPhysFirst, RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE), pIemCpu->fBypassHandlers);
|
---|
6886 | if (RT_SUCCESS(rc2))
|
---|
6887 | rc2 = PGMPhysIemQueryAccess(pVM, GCPhysSecond, RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE), pIemCpu->fBypassHandlers);
|
---|
6888 | if (RT_FAILURE(rc2))
|
---|
6889 | pIemCpu->fProblematicMemory = true;
|
---|
6890 | }
|
---|
6891 | #endif
|
---|
6892 |
|
---|
6893 |
|
---|
6894 | /*
|
---|
6895 | * Read in the current memory content if it's a read, execute or partial
|
---|
6896 | * write access.
|
---|
6897 | */
|
---|
6898 | uint8_t *pbBuf = &pIemCpu->aBounceBuffers[iMemMap].ab[0];
|
---|
6899 | uint32_t const cbFirstPage = PAGE_SIZE - (GCPhysFirst & PAGE_OFFSET_MASK);
|
---|
6900 | uint32_t const cbSecondPage = (uint32_t)(cbMem - cbFirstPage);
|
---|
6901 |
|
---|
6902 | if (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_PARTIAL_WRITE))
|
---|
6903 | {
|
---|
6904 | if (!pIemCpu->fBypassHandlers)
|
---|
6905 | {
|
---|
6906 | /*
|
---|
6907 | * Must carefully deal with access handler status codes here,
|
---|
6908 | * makes the code a bit bloated.
|
---|
6909 | */
|
---|
6910 | rcStrict = PGMPhysRead(pVM, GCPhysFirst, pbBuf, cbFirstPage, PGMACCESSORIGIN_IEM);
|
---|
6911 | if (rcStrict == VINF_SUCCESS)
|
---|
6912 | {
|
---|
6913 | rcStrict = PGMPhysRead(pVM, GCPhysSecond, pbBuf + cbFirstPage, cbSecondPage, PGMACCESSORIGIN_IEM);
|
---|
6914 | if (rcStrict == VINF_SUCCESS)
|
---|
6915 | { /*likely */ }
|
---|
6916 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6917 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
6918 | else
|
---|
6919 | {
|
---|
6920 | Log(("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysSecond=%RGp rcStrict2=%Rrc (!!)\n",
|
---|
6921 | GCPhysSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6922 | return rcStrict;
|
---|
6923 | }
|
---|
6924 | }
|
---|
6925 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
6926 | {
|
---|
6927 | VBOXSTRICTRC rcStrict2 = PGMPhysRead(pVM, GCPhysSecond, pbBuf + cbFirstPage, cbSecondPage, PGMACCESSORIGIN_IEM);
|
---|
6928 | if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
|
---|
6929 | {
|
---|
6930 | PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
|
---|
6931 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
6932 | }
|
---|
6933 | else
|
---|
6934 | {
|
---|
6935 | Log(("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysSecond=%RGp rcStrict2=%Rrc (rcStrict=%Rrc) (!!)\n",
|
---|
6936 | GCPhysSecond, VBOXSTRICTRC_VAL(rcStrict2), VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
6937 | return rcStrict2;
|
---|
6938 | }
|
---|
6939 | }
|
---|
6940 | else
|
---|
6941 | {
|
---|
6942 | Log(("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
6943 | GCPhysFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
6944 | return rcStrict;
|
---|
6945 | }
|
---|
6946 | }
|
---|
6947 | else
|
---|
6948 | {
|
---|
6949 | /*
|
---|
6950 | * No informational status codes here, much more straight forward.
|
---|
6951 | */
|
---|
6952 | int rc = PGMPhysSimpleReadGCPhys(pVM, pbBuf, GCPhysFirst, cbFirstPage);
|
---|
6953 | if (RT_SUCCESS(rc))
|
---|
6954 | {
|
---|
6955 | Assert(rc == VINF_SUCCESS);
|
---|
6956 | rc = PGMPhysSimpleReadGCPhys(pVM, pbBuf + cbFirstPage, GCPhysSecond, cbSecondPage);
|
---|
6957 | if (RT_SUCCESS(rc))
|
---|
6958 | Assert(rc == VINF_SUCCESS);
|
---|
6959 | else
|
---|
6960 | {
|
---|
6961 | Log(("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysSecond=%RGp rc=%Rrc (!!)\n", GCPhysSecond, rc));
|
---|
6962 | return rc;
|
---|
6963 | }
|
---|
6964 | }
|
---|
6965 | else
|
---|
6966 | {
|
---|
6967 | Log(("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysFirst=%RGp rc=%Rrc (!!)\n", GCPhysFirst, rc));
|
---|
6968 | return rc;
|
---|
6969 | }
|
---|
6970 | }
|
---|
6971 |
|
---|
6972 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
6973 | if ( !pIemCpu->fNoRem
|
---|
6974 | && (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC)) )
|
---|
6975 | {
|
---|
6976 | /*
|
---|
6977 | * Record the reads.
|
---|
6978 | */
|
---|
6979 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
6980 | if (pEvtRec)
|
---|
6981 | {
|
---|
6982 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_READ;
|
---|
6983 | pEvtRec->u.RamRead.GCPhys = GCPhysFirst;
|
---|
6984 | pEvtRec->u.RamRead.cb = cbFirstPage;
|
---|
6985 | pEvtRec->pNext = *pIemCpu->ppIemEvtRecNext;
|
---|
6986 | *pIemCpu->ppIemEvtRecNext = pEvtRec;
|
---|
6987 | }
|
---|
6988 | pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
6989 | if (pEvtRec)
|
---|
6990 | {
|
---|
6991 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_READ;
|
---|
6992 | pEvtRec->u.RamRead.GCPhys = GCPhysSecond;
|
---|
6993 | pEvtRec->u.RamRead.cb = cbSecondPage;
|
---|
6994 | pEvtRec->pNext = *pIemCpu->ppIemEvtRecNext;
|
---|
6995 | *pIemCpu->ppIemEvtRecNext = pEvtRec;
|
---|
6996 | }
|
---|
6997 | }
|
---|
6998 | #endif
|
---|
6999 | }
|
---|
7000 | #ifdef VBOX_STRICT
|
---|
7001 | else
|
---|
7002 | memset(pbBuf, 0xcc, cbMem);
|
---|
7003 | if (cbMem < sizeof(pIemCpu->aBounceBuffers[iMemMap].ab))
|
---|
7004 | memset(pbBuf + cbMem, 0xaa, sizeof(pIemCpu->aBounceBuffers[iMemMap].ab) - cbMem);
|
---|
7005 | #endif
|
---|
7006 |
|
---|
7007 | /*
|
---|
7008 | * Commit the bounce buffer entry.
|
---|
7009 | */
|
---|
7010 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst = GCPhysFirst;
|
---|
7011 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond = GCPhysSecond;
|
---|
7012 | pIemCpu->aMemBbMappings[iMemMap].cbFirst = (uint16_t)cbFirstPage;
|
---|
7013 | pIemCpu->aMemBbMappings[iMemMap].cbSecond = (uint16_t)cbSecondPage;
|
---|
7014 | pIemCpu->aMemBbMappings[iMemMap].fUnassigned = false;
|
---|
7015 | pIemCpu->aMemMappings[iMemMap].pv = pbBuf;
|
---|
7016 | pIemCpu->aMemMappings[iMemMap].fAccess = fAccess | IEM_ACCESS_BOUNCE_BUFFERED;
|
---|
7017 | pIemCpu->iNextMapping = iMemMap + 1;
|
---|
7018 | pIemCpu->cActiveMappings++;
|
---|
7019 |
|
---|
7020 | iemMemUpdateWrittenCounter(pIemCpu, fAccess, cbMem);
|
---|
7021 | *ppvMem = pbBuf;
|
---|
7022 | return VINF_SUCCESS;
|
---|
7023 | }
|
---|
7024 |
|
---|
7025 |
|
---|
7026 | /**
|
---|
7027 | * iemMemMap woker that deals with iemMemPageMap failures.
|
---|
7028 | */
|
---|
7029 | IEM_STATIC VBOXSTRICTRC iemMemBounceBufferMapPhys(PIEMCPU pIemCpu, unsigned iMemMap, void **ppvMem, size_t cbMem,
|
---|
7030 | RTGCPHYS GCPhysFirst, uint32_t fAccess, VBOXSTRICTRC rcMap)
|
---|
7031 | {
|
---|
7032 | /*
|
---|
7033 | * Filter out conditions we can handle and the ones which shouldn't happen.
|
---|
7034 | */
|
---|
7035 | if ( rcMap != VERR_PGM_PHYS_TLB_CATCH_WRITE
|
---|
7036 | && rcMap != VERR_PGM_PHYS_TLB_CATCH_ALL
|
---|
7037 | && rcMap != VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
7038 | {
|
---|
7039 | AssertReturn(RT_FAILURE_NP(rcMap), VERR_IEM_IPE_8);
|
---|
7040 | return rcMap;
|
---|
7041 | }
|
---|
7042 | pIemCpu->cPotentialExits++;
|
---|
7043 |
|
---|
7044 | /*
|
---|
7045 | * Read in the current memory content if it's a read, execute or partial
|
---|
7046 | * write access.
|
---|
7047 | */
|
---|
7048 | uint8_t *pbBuf = &pIemCpu->aBounceBuffers[iMemMap].ab[0];
|
---|
7049 | if (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_PARTIAL_WRITE))
|
---|
7050 | {
|
---|
7051 | if (rcMap == VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
7052 | memset(pbBuf, 0xff, cbMem);
|
---|
7053 | else
|
---|
7054 | {
|
---|
7055 | int rc;
|
---|
7056 | if (!pIemCpu->fBypassHandlers)
|
---|
7057 | {
|
---|
7058 | VBOXSTRICTRC rcStrict = PGMPhysRead(IEMCPU_TO_VM(pIemCpu), GCPhysFirst, pbBuf, cbMem, PGMACCESSORIGIN_IEM);
|
---|
7059 | if (rcStrict == VINF_SUCCESS)
|
---|
7060 | { /* nothing */ }
|
---|
7061 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
7062 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
7063 | else
|
---|
7064 | {
|
---|
7065 | Log(("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
7066 | GCPhysFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
7067 | return rcStrict;
|
---|
7068 | }
|
---|
7069 | }
|
---|
7070 | else
|
---|
7071 | {
|
---|
7072 | rc = PGMPhysSimpleReadGCPhys(IEMCPU_TO_VM(pIemCpu), pbBuf, GCPhysFirst, cbMem);
|
---|
7073 | if (RT_SUCCESS(rc))
|
---|
7074 | { /* likely */ }
|
---|
7075 | else
|
---|
7076 | {
|
---|
7077 | Log(("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
7078 | GCPhysFirst, rc));
|
---|
7079 | return rc;
|
---|
7080 | }
|
---|
7081 | }
|
---|
7082 | }
|
---|
7083 |
|
---|
7084 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
7085 | if ( !pIemCpu->fNoRem
|
---|
7086 | && (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC)) )
|
---|
7087 | {
|
---|
7088 | /*
|
---|
7089 | * Record the read.
|
---|
7090 | */
|
---|
7091 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
7092 | if (pEvtRec)
|
---|
7093 | {
|
---|
7094 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_READ;
|
---|
7095 | pEvtRec->u.RamRead.GCPhys = GCPhysFirst;
|
---|
7096 | pEvtRec->u.RamRead.cb = (uint32_t)cbMem;
|
---|
7097 | pEvtRec->pNext = *pIemCpu->ppIemEvtRecNext;
|
---|
7098 | *pIemCpu->ppIemEvtRecNext = pEvtRec;
|
---|
7099 | }
|
---|
7100 | }
|
---|
7101 | #endif
|
---|
7102 | }
|
---|
7103 | #ifdef VBOX_STRICT
|
---|
7104 | else
|
---|
7105 | memset(pbBuf, 0xcc, cbMem);
|
---|
7106 | #endif
|
---|
7107 | #ifdef VBOX_STRICT
|
---|
7108 | if (cbMem < sizeof(pIemCpu->aBounceBuffers[iMemMap].ab))
|
---|
7109 | memset(pbBuf + cbMem, 0xaa, sizeof(pIemCpu->aBounceBuffers[iMemMap].ab) - cbMem);
|
---|
7110 | #endif
|
---|
7111 |
|
---|
7112 | /*
|
---|
7113 | * Commit the bounce buffer entry.
|
---|
7114 | */
|
---|
7115 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst = GCPhysFirst;
|
---|
7116 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond = NIL_RTGCPHYS;
|
---|
7117 | pIemCpu->aMemBbMappings[iMemMap].cbFirst = (uint16_t)cbMem;
|
---|
7118 | pIemCpu->aMemBbMappings[iMemMap].cbSecond = 0;
|
---|
7119 | pIemCpu->aMemBbMappings[iMemMap].fUnassigned = rcMap == VERR_PGM_PHYS_TLB_UNASSIGNED;
|
---|
7120 | pIemCpu->aMemMappings[iMemMap].pv = pbBuf;
|
---|
7121 | pIemCpu->aMemMappings[iMemMap].fAccess = fAccess | IEM_ACCESS_BOUNCE_BUFFERED;
|
---|
7122 | pIemCpu->iNextMapping = iMemMap + 1;
|
---|
7123 | pIemCpu->cActiveMappings++;
|
---|
7124 |
|
---|
7125 | iemMemUpdateWrittenCounter(pIemCpu, fAccess, cbMem);
|
---|
7126 | *ppvMem = pbBuf;
|
---|
7127 | return VINF_SUCCESS;
|
---|
7128 | }
|
---|
7129 |
|
---|
7130 |
|
---|
7131 |
|
---|
7132 | /**
|
---|
7133 | * Maps the specified guest memory for the given kind of access.
|
---|
7134 | *
|
---|
7135 | * This may be using bounce buffering of the memory if it's crossing a page
|
---|
7136 | * boundary or if there is an access handler installed for any of it. Because
|
---|
7137 | * of lock prefix guarantees, we're in for some extra clutter when this
|
---|
7138 | * happens.
|
---|
7139 | *
|
---|
7140 | * This may raise a \#GP, \#SS, \#PF or \#AC.
|
---|
7141 | *
|
---|
7142 | * @returns VBox strict status code.
|
---|
7143 | *
|
---|
7144 | * @param pIemCpu The IEM per CPU data.
|
---|
7145 | * @param ppvMem Where to return the pointer to the mapped
|
---|
7146 | * memory.
|
---|
7147 | * @param cbMem The number of bytes to map. This is usually 1,
|
---|
7148 | * 2, 4, 6, 8, 12, 16, 32 or 512. When used by
|
---|
7149 | * string operations it can be up to a page.
|
---|
7150 | * @param iSegReg The index of the segment register to use for
|
---|
7151 | * this access. The base and limits are checked.
|
---|
7152 | * Use UINT8_MAX to indicate that no segmentation
|
---|
7153 | * is required (for IDT, GDT and LDT accesses).
|
---|
7154 | * @param GCPtrMem The address of the guest memory.
|
---|
7155 | * @param fAccess How the memory is being accessed. The
|
---|
7156 | * IEM_ACCESS_TYPE_XXX bit is used to figure out
|
---|
7157 | * how to map the memory, while the
|
---|
7158 | * IEM_ACCESS_WHAT_XXX bit is used when raising
|
---|
7159 | * exceptions.
|
---|
7160 | */
|
---|
7161 | IEM_STATIC VBOXSTRICTRC
|
---|
7162 | iemMemMap(PIEMCPU pIemCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t fAccess)
|
---|
7163 | {
|
---|
7164 | /*
|
---|
7165 | * Check the input and figure out which mapping entry to use.
|
---|
7166 | */
|
---|
7167 | Assert(cbMem <= 64 || cbMem == 512 || cbMem == 108 || cbMem == 104 || cbMem == 94); /* 512 is the max! */
|
---|
7168 | Assert(~(fAccess & ~(IEM_ACCESS_TYPE_MASK | IEM_ACCESS_WHAT_MASK)));
|
---|
7169 | Assert(pIemCpu->cActiveMappings < RT_ELEMENTS(pIemCpu->aMemMappings));
|
---|
7170 |
|
---|
7171 | unsigned iMemMap = pIemCpu->iNextMapping;
|
---|
7172 | if ( iMemMap >= RT_ELEMENTS(pIemCpu->aMemMappings)
|
---|
7173 | || pIemCpu->aMemMappings[iMemMap].fAccess != IEM_ACCESS_INVALID)
|
---|
7174 | {
|
---|
7175 | iMemMap = iemMemMapFindFree(pIemCpu);
|
---|
7176 | AssertLogRelMsgReturn(iMemMap < RT_ELEMENTS(pIemCpu->aMemMappings),
|
---|
7177 | ("active=%d fAccess[0] = {%#x, %#x, %#x}\n", pIemCpu->cActiveMappings,
|
---|
7178 | pIemCpu->aMemMappings[0].fAccess, pIemCpu->aMemMappings[1].fAccess,
|
---|
7179 | pIemCpu->aMemMappings[2].fAccess),
|
---|
7180 | VERR_IEM_IPE_9);
|
---|
7181 | }
|
---|
7182 |
|
---|
7183 | /*
|
---|
7184 | * Map the memory, checking that we can actually access it. If something
|
---|
7185 | * slightly complicated happens, fall back on bounce buffering.
|
---|
7186 | */
|
---|
7187 | VBOXSTRICTRC rcStrict = iemMemApplySegment(pIemCpu, fAccess, iSegReg, cbMem, &GCPtrMem);
|
---|
7188 | if (rcStrict != VINF_SUCCESS)
|
---|
7189 | return rcStrict;
|
---|
7190 |
|
---|
7191 | if ((GCPtrMem & PAGE_OFFSET_MASK) + cbMem > PAGE_SIZE) /* Crossing a page boundary? */
|
---|
7192 | return iemMemBounceBufferMapCrossPage(pIemCpu, iMemMap, ppvMem, cbMem, GCPtrMem, fAccess);
|
---|
7193 |
|
---|
7194 | RTGCPHYS GCPhysFirst;
|
---|
7195 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, GCPtrMem, fAccess, &GCPhysFirst);
|
---|
7196 | if (rcStrict != VINF_SUCCESS)
|
---|
7197 | return rcStrict;
|
---|
7198 |
|
---|
7199 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
7200 | Log8(("IEM WR %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
7201 | if (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
7202 | Log9(("IEM RD %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
7203 |
|
---|
7204 | void *pvMem;
|
---|
7205 | rcStrict = iemMemPageMap(pIemCpu, GCPhysFirst, fAccess, &pvMem, &pIemCpu->aMemMappingLocks[iMemMap].Lock);
|
---|
7206 | if (rcStrict != VINF_SUCCESS)
|
---|
7207 | return iemMemBounceBufferMapPhys(pIemCpu, iMemMap, ppvMem, cbMem, GCPhysFirst, fAccess, rcStrict);
|
---|
7208 |
|
---|
7209 | /*
|
---|
7210 | * Fill in the mapping table entry.
|
---|
7211 | */
|
---|
7212 | pIemCpu->aMemMappings[iMemMap].pv = pvMem;
|
---|
7213 | pIemCpu->aMemMappings[iMemMap].fAccess = fAccess;
|
---|
7214 | pIemCpu->iNextMapping = iMemMap + 1;
|
---|
7215 | pIemCpu->cActiveMappings++;
|
---|
7216 |
|
---|
7217 | iemMemUpdateWrittenCounter(pIemCpu, fAccess, cbMem);
|
---|
7218 | *ppvMem = pvMem;
|
---|
7219 | return VINF_SUCCESS;
|
---|
7220 | }
|
---|
7221 |
|
---|
7222 |
|
---|
7223 | /**
|
---|
7224 | * Commits the guest memory if bounce buffered and unmaps it.
|
---|
7225 | *
|
---|
7226 | * @returns Strict VBox status code.
|
---|
7227 | * @param pIemCpu The IEM per CPU data.
|
---|
7228 | * @param pvMem The mapping.
|
---|
7229 | * @param fAccess The kind of access.
|
---|
7230 | */
|
---|
7231 | IEM_STATIC VBOXSTRICTRC iemMemCommitAndUnmap(PIEMCPU pIemCpu, void *pvMem, uint32_t fAccess)
|
---|
7232 | {
|
---|
7233 | int iMemMap = iemMapLookup(pIemCpu, pvMem, fAccess);
|
---|
7234 | AssertReturn(iMemMap >= 0, iMemMap);
|
---|
7235 |
|
---|
7236 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
7237 | if (pIemCpu->aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
7238 | {
|
---|
7239 | if (pIemCpu->aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
7240 | return iemMemBounceBufferCommitAndUnmap(pIemCpu, iMemMap, false /*fPostponeFail*/);
|
---|
7241 | }
|
---|
7242 | /* Otherwise unlock it. */
|
---|
7243 | else
|
---|
7244 | PGMPhysReleasePageMappingLock(IEMCPU_TO_VM(pIemCpu), &pIemCpu->aMemMappingLocks[iMemMap].Lock);
|
---|
7245 |
|
---|
7246 | /* Free the entry. */
|
---|
7247 | pIemCpu->aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
7248 | Assert(pIemCpu->cActiveMappings != 0);
|
---|
7249 | pIemCpu->cActiveMappings--;
|
---|
7250 | return VINF_SUCCESS;
|
---|
7251 | }
|
---|
7252 |
|
---|
7253 |
|
---|
7254 | #ifndef IN_RING3
|
---|
7255 | /**
|
---|
7256 | * Commits the guest memory if bounce buffered and unmaps it, if any bounce
|
---|
7257 | * buffer part shows trouble it will be postponed to ring-3 (sets FF and stuff).
|
---|
7258 | *
|
---|
7259 | * Allows the instruction to be completed and retired, while the IEM user will
|
---|
7260 | * return to ring-3 immediately afterwards and do the postponed writes there.
|
---|
7261 | *
|
---|
7262 | * @returns VBox status code (no strict statuses). Caller must check
|
---|
7263 | * VMCPU_FF_IEM before repeating string instructions and similar stuff.
|
---|
7264 | * @param pIemCpu The IEM per CPU data.
|
---|
7265 | * @param pvMem The mapping.
|
---|
7266 | * @param fAccess The kind of access.
|
---|
7267 | */
|
---|
7268 | IEM_STATIC VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PIEMCPU pIemCpu, void *pvMem, uint32_t fAccess)
|
---|
7269 | {
|
---|
7270 | int iMemMap = iemMapLookup(pIemCpu, pvMem, fAccess);
|
---|
7271 | AssertReturn(iMemMap >= 0, iMemMap);
|
---|
7272 |
|
---|
7273 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
7274 | if (pIemCpu->aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
7275 | {
|
---|
7276 | if (pIemCpu->aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
7277 | return iemMemBounceBufferCommitAndUnmap(pIemCpu, iMemMap, true /*fPostponeFail*/);
|
---|
7278 | }
|
---|
7279 | /* Otherwise unlock it. */
|
---|
7280 | else
|
---|
7281 | PGMPhysReleasePageMappingLock(IEMCPU_TO_VM(pIemCpu), &pIemCpu->aMemMappingLocks[iMemMap].Lock);
|
---|
7282 |
|
---|
7283 | /* Free the entry. */
|
---|
7284 | pIemCpu->aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
7285 | Assert(pIemCpu->cActiveMappings != 0);
|
---|
7286 | pIemCpu->cActiveMappings--;
|
---|
7287 | return VINF_SUCCESS;
|
---|
7288 | }
|
---|
7289 | #endif
|
---|
7290 |
|
---|
7291 |
|
---|
7292 | /**
|
---|
7293 | * Rollbacks mappings, releasing page locks and such.
|
---|
7294 | *
|
---|
7295 | * The caller shall only call this after checking cActiveMappings.
|
---|
7296 | *
|
---|
7297 | * @returns Strict VBox status code to pass up.
|
---|
7298 | * @param pIemCpu The IEM per CPU data.
|
---|
7299 | */
|
---|
7300 | IEM_STATIC void iemMemRollback(PIEMCPU pIemCpu)
|
---|
7301 | {
|
---|
7302 | Assert(pIemCpu->cActiveMappings > 0);
|
---|
7303 |
|
---|
7304 | uint32_t iMemMap = RT_ELEMENTS(pIemCpu->aMemMappings);
|
---|
7305 | while (iMemMap-- > 0)
|
---|
7306 | {
|
---|
7307 | uint32_t fAccess = pIemCpu->aMemMappings[iMemMap].fAccess;
|
---|
7308 | if (fAccess != IEM_ACCESS_INVALID)
|
---|
7309 | {
|
---|
7310 | AssertMsg(!(fAccess & ~IEM_ACCESS_VALID_MASK) && fAccess != 0, ("%#x\n", fAccess));
|
---|
7311 | pIemCpu->aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
7312 | if (!(fAccess & IEM_ACCESS_BOUNCE_BUFFERED))
|
---|
7313 | PGMPhysReleasePageMappingLock(IEMCPU_TO_VM(pIemCpu), &pIemCpu->aMemMappingLocks[iMemMap].Lock);
|
---|
7314 | Assert(pIemCpu->cActiveMappings > 0);
|
---|
7315 | pIemCpu->cActiveMappings--;
|
---|
7316 | }
|
---|
7317 | }
|
---|
7318 | }
|
---|
7319 |
|
---|
7320 |
|
---|
7321 | /**
|
---|
7322 | * Fetches a data byte.
|
---|
7323 | *
|
---|
7324 | * @returns Strict VBox status code.
|
---|
7325 | * @param pIemCpu The IEM per CPU data.
|
---|
7326 | * @param pu8Dst Where to return the byte.
|
---|
7327 | * @param iSegReg The index of the segment register to use for
|
---|
7328 | * this access. The base and limits are checked.
|
---|
7329 | * @param GCPtrMem The address of the guest memory.
|
---|
7330 | */
|
---|
7331 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU8(PIEMCPU pIemCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
7332 | {
|
---|
7333 | /* The lazy approach for now... */
|
---|
7334 | uint8_t const *pu8Src;
|
---|
7335 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu8Src, sizeof(*pu8Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
7336 | if (rc == VINF_SUCCESS)
|
---|
7337 | {
|
---|
7338 | *pu8Dst = *pu8Src;
|
---|
7339 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu8Src, IEM_ACCESS_DATA_R);
|
---|
7340 | }
|
---|
7341 | return rc;
|
---|
7342 | }
|
---|
7343 |
|
---|
7344 |
|
---|
7345 | /**
|
---|
7346 | * Fetches a data word.
|
---|
7347 | *
|
---|
7348 | * @returns Strict VBox status code.
|
---|
7349 | * @param pIemCpu The IEM per CPU data.
|
---|
7350 | * @param pu16Dst Where to return the word.
|
---|
7351 | * @param iSegReg The index of the segment register to use for
|
---|
7352 | * this access. The base and limits are checked.
|
---|
7353 | * @param GCPtrMem The address of the guest memory.
|
---|
7354 | */
|
---|
7355 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU16(PIEMCPU pIemCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
7356 | {
|
---|
7357 | /* The lazy approach for now... */
|
---|
7358 | uint16_t const *pu16Src;
|
---|
7359 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu16Src, sizeof(*pu16Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
7360 | if (rc == VINF_SUCCESS)
|
---|
7361 | {
|
---|
7362 | *pu16Dst = *pu16Src;
|
---|
7363 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu16Src, IEM_ACCESS_DATA_R);
|
---|
7364 | }
|
---|
7365 | return rc;
|
---|
7366 | }
|
---|
7367 |
|
---|
7368 |
|
---|
7369 | /**
|
---|
7370 | * Fetches a data dword.
|
---|
7371 | *
|
---|
7372 | * @returns Strict VBox status code.
|
---|
7373 | * @param pIemCpu The IEM per CPU data.
|
---|
7374 | * @param pu32Dst Where to return the dword.
|
---|
7375 | * @param iSegReg The index of the segment register to use for
|
---|
7376 | * this access. The base and limits are checked.
|
---|
7377 | * @param GCPtrMem The address of the guest memory.
|
---|
7378 | */
|
---|
7379 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU32(PIEMCPU pIemCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
7380 | {
|
---|
7381 | /* The lazy approach for now... */
|
---|
7382 | uint32_t const *pu32Src;
|
---|
7383 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu32Src, sizeof(*pu32Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
7384 | if (rc == VINF_SUCCESS)
|
---|
7385 | {
|
---|
7386 | *pu32Dst = *pu32Src;
|
---|
7387 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu32Src, IEM_ACCESS_DATA_R);
|
---|
7388 | }
|
---|
7389 | return rc;
|
---|
7390 | }
|
---|
7391 |
|
---|
7392 |
|
---|
7393 | #ifdef SOME_UNUSED_FUNCTION
|
---|
7394 | /**
|
---|
7395 | * Fetches a data dword and sign extends it to a qword.
|
---|
7396 | *
|
---|
7397 | * @returns Strict VBox status code.
|
---|
7398 | * @param pIemCpu The IEM per CPU data.
|
---|
7399 | * @param pu64Dst Where to return the sign extended value.
|
---|
7400 | * @param iSegReg The index of the segment register to use for
|
---|
7401 | * this access. The base and limits are checked.
|
---|
7402 | * @param GCPtrMem The address of the guest memory.
|
---|
7403 | */
|
---|
7404 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataS32SxU64(PIEMCPU pIemCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
7405 | {
|
---|
7406 | /* The lazy approach for now... */
|
---|
7407 | int32_t const *pi32Src;
|
---|
7408 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pi32Src, sizeof(*pi32Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
7409 | if (rc == VINF_SUCCESS)
|
---|
7410 | {
|
---|
7411 | *pu64Dst = *pi32Src;
|
---|
7412 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pi32Src, IEM_ACCESS_DATA_R);
|
---|
7413 | }
|
---|
7414 | #ifdef __GNUC__ /* warning: GCC may be a royal pain */
|
---|
7415 | else
|
---|
7416 | *pu64Dst = 0;
|
---|
7417 | #endif
|
---|
7418 | return rc;
|
---|
7419 | }
|
---|
7420 | #endif
|
---|
7421 |
|
---|
7422 |
|
---|
7423 | /**
|
---|
7424 | * Fetches a data qword.
|
---|
7425 | *
|
---|
7426 | * @returns Strict VBox status code.
|
---|
7427 | * @param pIemCpu The IEM per CPU data.
|
---|
7428 | * @param pu64Dst Where to return the qword.
|
---|
7429 | * @param iSegReg The index of the segment register to use for
|
---|
7430 | * this access. The base and limits are checked.
|
---|
7431 | * @param GCPtrMem The address of the guest memory.
|
---|
7432 | */
|
---|
7433 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU64(PIEMCPU pIemCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
7434 | {
|
---|
7435 | /* The lazy approach for now... */
|
---|
7436 | uint64_t const *pu64Src;
|
---|
7437 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu64Src, sizeof(*pu64Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
7438 | if (rc == VINF_SUCCESS)
|
---|
7439 | {
|
---|
7440 | *pu64Dst = *pu64Src;
|
---|
7441 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu64Src, IEM_ACCESS_DATA_R);
|
---|
7442 | }
|
---|
7443 | return rc;
|
---|
7444 | }
|
---|
7445 |
|
---|
7446 |
|
---|
7447 | /**
|
---|
7448 | * Fetches a data qword, aligned at a 16 byte boundrary (for SSE).
|
---|
7449 | *
|
---|
7450 | * @returns Strict VBox status code.
|
---|
7451 | * @param pIemCpu The IEM per CPU data.
|
---|
7452 | * @param pu64Dst Where to return the qword.
|
---|
7453 | * @param iSegReg The index of the segment register to use for
|
---|
7454 | * this access. The base and limits are checked.
|
---|
7455 | * @param GCPtrMem The address of the guest memory.
|
---|
7456 | */
|
---|
7457 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PIEMCPU pIemCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
7458 | {
|
---|
7459 | /* The lazy approach for now... */
|
---|
7460 | /** @todo testcase: Ordering of \#SS(0) vs \#GP() vs \#PF on SSE stuff. */
|
---|
7461 | if (RT_UNLIKELY(GCPtrMem & 15))
|
---|
7462 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
7463 |
|
---|
7464 | uint64_t const *pu64Src;
|
---|
7465 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu64Src, sizeof(*pu64Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
7466 | if (rc == VINF_SUCCESS)
|
---|
7467 | {
|
---|
7468 | *pu64Dst = *pu64Src;
|
---|
7469 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu64Src, IEM_ACCESS_DATA_R);
|
---|
7470 | }
|
---|
7471 | return rc;
|
---|
7472 | }
|
---|
7473 |
|
---|
7474 |
|
---|
7475 | /**
|
---|
7476 | * Fetches a data tword.
|
---|
7477 | *
|
---|
7478 | * @returns Strict VBox status code.
|
---|
7479 | * @param pIemCpu The IEM per CPU data.
|
---|
7480 | * @param pr80Dst Where to return the tword.
|
---|
7481 | * @param iSegReg The index of the segment register to use for
|
---|
7482 | * this access. The base and limits are checked.
|
---|
7483 | * @param GCPtrMem The address of the guest memory.
|
---|
7484 | */
|
---|
7485 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataR80(PIEMCPU pIemCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
7486 | {
|
---|
7487 | /* The lazy approach for now... */
|
---|
7488 | PCRTFLOAT80U pr80Src;
|
---|
7489 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pr80Src, sizeof(*pr80Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
7490 | if (rc == VINF_SUCCESS)
|
---|
7491 | {
|
---|
7492 | *pr80Dst = *pr80Src;
|
---|
7493 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pr80Src, IEM_ACCESS_DATA_R);
|
---|
7494 | }
|
---|
7495 | return rc;
|
---|
7496 | }
|
---|
7497 |
|
---|
7498 |
|
---|
7499 | /**
|
---|
7500 | * Fetches a data dqword (double qword), generally SSE related.
|
---|
7501 | *
|
---|
7502 | * @returns Strict VBox status code.
|
---|
7503 | * @param pIemCpu The IEM per CPU data.
|
---|
7504 | * @param pu128Dst Where to return the qword.
|
---|
7505 | * @param iSegReg The index of the segment register to use for
|
---|
7506 | * this access. The base and limits are checked.
|
---|
7507 | * @param GCPtrMem The address of the guest memory.
|
---|
7508 | */
|
---|
7509 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU128(PIEMCPU pIemCpu, uint128_t *pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
7510 | {
|
---|
7511 | /* The lazy approach for now... */
|
---|
7512 | uint128_t const *pu128Src;
|
---|
7513 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu128Src, sizeof(*pu128Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
7514 | if (rc == VINF_SUCCESS)
|
---|
7515 | {
|
---|
7516 | *pu128Dst = *pu128Src;
|
---|
7517 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu128Src, IEM_ACCESS_DATA_R);
|
---|
7518 | }
|
---|
7519 | return rc;
|
---|
7520 | }
|
---|
7521 |
|
---|
7522 |
|
---|
7523 | /**
|
---|
7524 | * Fetches a data dqword (double qword) at an aligned address, generally SSE
|
---|
7525 | * related.
|
---|
7526 | *
|
---|
7527 | * Raises \#GP(0) if not aligned.
|
---|
7528 | *
|
---|
7529 | * @returns Strict VBox status code.
|
---|
7530 | * @param pIemCpu The IEM per CPU data.
|
---|
7531 | * @param pu128Dst Where to return the qword.
|
---|
7532 | * @param iSegReg The index of the segment register to use for
|
---|
7533 | * this access. The base and limits are checked.
|
---|
7534 | * @param GCPtrMem The address of the guest memory.
|
---|
7535 | */
|
---|
7536 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PIEMCPU pIemCpu, uint128_t *pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
7537 | {
|
---|
7538 | /* The lazy approach for now... */
|
---|
7539 | /** @todo testcase: Ordering of \#SS(0) vs \#GP() vs \#PF on SSE stuff. */
|
---|
7540 | if ( (GCPtrMem & 15)
|
---|
7541 | && !(pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.MXCSR & X86_MXSCR_MM)) /** @todo should probably check this *after* applying seg.u64Base... Check real HW. */
|
---|
7542 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
7543 |
|
---|
7544 | uint128_t const *pu128Src;
|
---|
7545 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu128Src, sizeof(*pu128Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
7546 | if (rc == VINF_SUCCESS)
|
---|
7547 | {
|
---|
7548 | *pu128Dst = *pu128Src;
|
---|
7549 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu128Src, IEM_ACCESS_DATA_R);
|
---|
7550 | }
|
---|
7551 | return rc;
|
---|
7552 | }
|
---|
7553 |
|
---|
7554 |
|
---|
7555 |
|
---|
7556 |
|
---|
7557 | /**
|
---|
7558 | * Fetches a descriptor register (lgdt, lidt).
|
---|
7559 | *
|
---|
7560 | * @returns Strict VBox status code.
|
---|
7561 | * @param pIemCpu The IEM per CPU data.
|
---|
7562 | * @param pcbLimit Where to return the limit.
|
---|
7563 | * @param pGCPtrBase Where to return the base.
|
---|
7564 | * @param iSegReg The index of the segment register to use for
|
---|
7565 | * this access. The base and limits are checked.
|
---|
7566 | * @param GCPtrMem The address of the guest memory.
|
---|
7567 | * @param enmOpSize The effective operand size.
|
---|
7568 | */
|
---|
7569 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataXdtr(PIEMCPU pIemCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
|
---|
7570 | RTGCPTR GCPtrMem, IEMMODE enmOpSize)
|
---|
7571 | {
|
---|
7572 | /*
|
---|
7573 | * Just like SIDT and SGDT, the LIDT and LGDT instructions are a
|
---|
7574 | * little special:
|
---|
7575 | * - The two reads are done separately.
|
---|
7576 | * - Operand size override works in 16-bit and 32-bit code, but 64-bit.
|
---|
7577 | * - We suspect the 386 to actually commit the limit before the base in
|
---|
7578 | * some cases (search for 386 in bs3CpuBasic2_lidt_lgdt_One). We
|
---|
7579 | * don't try emulate this eccentric behavior, because it's not well
|
---|
7580 | * enough understood and rather hard to trigger.
|
---|
7581 | * - The 486 seems to do a dword limit read when the operand size is 32-bit.
|
---|
7582 | */
|
---|
7583 | VBOXSTRICTRC rcStrict;
|
---|
7584 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
7585 | {
|
---|
7586 | rcStrict = iemMemFetchDataU16(pIemCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
7587 | if (rcStrict == VINF_SUCCESS)
|
---|
7588 | rcStrict = iemMemFetchDataU64(pIemCpu, pGCPtrBase, iSegReg, GCPtrMem + 2);
|
---|
7589 | }
|
---|
7590 | else
|
---|
7591 | {
|
---|
7592 | uint32_t uTmp;
|
---|
7593 | if (enmOpSize == IEMMODE_32BIT)
|
---|
7594 | {
|
---|
7595 | if (IEM_GET_TARGET_CPU(pIemCpu) != IEMTARGETCPU_486)
|
---|
7596 | {
|
---|
7597 | rcStrict = iemMemFetchDataU16(pIemCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
7598 | if (rcStrict == VINF_SUCCESS)
|
---|
7599 | rcStrict = iemMemFetchDataU32(pIemCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
7600 | }
|
---|
7601 | else
|
---|
7602 | {
|
---|
7603 | rcStrict = iemMemFetchDataU32(pIemCpu, &uTmp, iSegReg, GCPtrMem);
|
---|
7604 | if (rcStrict == VINF_SUCCESS)
|
---|
7605 | {
|
---|
7606 | *pcbLimit = (uint16_t)uTmp;
|
---|
7607 | rcStrict = iemMemFetchDataU32(pIemCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
7608 | }
|
---|
7609 | }
|
---|
7610 | if (rcStrict == VINF_SUCCESS)
|
---|
7611 | *pGCPtrBase = uTmp;
|
---|
7612 | }
|
---|
7613 | else
|
---|
7614 | {
|
---|
7615 | rcStrict = iemMemFetchDataU16(pIemCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
7616 | if (rcStrict == VINF_SUCCESS)
|
---|
7617 | {
|
---|
7618 | rcStrict = iemMemFetchDataU32(pIemCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
7619 | if (rcStrict == VINF_SUCCESS)
|
---|
7620 | *pGCPtrBase = uTmp & UINT32_C(0x00ffffff);
|
---|
7621 | }
|
---|
7622 | }
|
---|
7623 | }
|
---|
7624 | return rcStrict;
|
---|
7625 | }
|
---|
7626 |
|
---|
7627 |
|
---|
7628 |
|
---|
7629 | /**
|
---|
7630 | * Stores a data byte.
|
---|
7631 | *
|
---|
7632 | * @returns Strict VBox status code.
|
---|
7633 | * @param pIemCpu The IEM per CPU data.
|
---|
7634 | * @param iSegReg The index of the segment register to use for
|
---|
7635 | * this access. The base and limits are checked.
|
---|
7636 | * @param GCPtrMem The address of the guest memory.
|
---|
7637 | * @param u8Value The value to store.
|
---|
7638 | */
|
---|
7639 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU8(PIEMCPU pIemCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value)
|
---|
7640 | {
|
---|
7641 | /* The lazy approach for now... */
|
---|
7642 | uint8_t *pu8Dst;
|
---|
7643 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu8Dst, sizeof(*pu8Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
7644 | if (rc == VINF_SUCCESS)
|
---|
7645 | {
|
---|
7646 | *pu8Dst = u8Value;
|
---|
7647 | rc = iemMemCommitAndUnmap(pIemCpu, pu8Dst, IEM_ACCESS_DATA_W);
|
---|
7648 | }
|
---|
7649 | return rc;
|
---|
7650 | }
|
---|
7651 |
|
---|
7652 |
|
---|
7653 | /**
|
---|
7654 | * Stores a data word.
|
---|
7655 | *
|
---|
7656 | * @returns Strict VBox status code.
|
---|
7657 | * @param pIemCpu The IEM per CPU data.
|
---|
7658 | * @param iSegReg The index of the segment register to use for
|
---|
7659 | * this access. The base and limits are checked.
|
---|
7660 | * @param GCPtrMem The address of the guest memory.
|
---|
7661 | * @param u16Value The value to store.
|
---|
7662 | */
|
---|
7663 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU16(PIEMCPU pIemCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value)
|
---|
7664 | {
|
---|
7665 | /* The lazy approach for now... */
|
---|
7666 | uint16_t *pu16Dst;
|
---|
7667 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu16Dst, sizeof(*pu16Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
7668 | if (rc == VINF_SUCCESS)
|
---|
7669 | {
|
---|
7670 | *pu16Dst = u16Value;
|
---|
7671 | rc = iemMemCommitAndUnmap(pIemCpu, pu16Dst, IEM_ACCESS_DATA_W);
|
---|
7672 | }
|
---|
7673 | return rc;
|
---|
7674 | }
|
---|
7675 |
|
---|
7676 |
|
---|
7677 | /**
|
---|
7678 | * Stores a data dword.
|
---|
7679 | *
|
---|
7680 | * @returns Strict VBox status code.
|
---|
7681 | * @param pIemCpu The IEM per CPU data.
|
---|
7682 | * @param iSegReg The index of the segment register to use for
|
---|
7683 | * this access. The base and limits are checked.
|
---|
7684 | * @param GCPtrMem The address of the guest memory.
|
---|
7685 | * @param u32Value The value to store.
|
---|
7686 | */
|
---|
7687 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU32(PIEMCPU pIemCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value)
|
---|
7688 | {
|
---|
7689 | /* The lazy approach for now... */
|
---|
7690 | uint32_t *pu32Dst;
|
---|
7691 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu32Dst, sizeof(*pu32Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
7692 | if (rc == VINF_SUCCESS)
|
---|
7693 | {
|
---|
7694 | *pu32Dst = u32Value;
|
---|
7695 | rc = iemMemCommitAndUnmap(pIemCpu, pu32Dst, IEM_ACCESS_DATA_W);
|
---|
7696 | }
|
---|
7697 | return rc;
|
---|
7698 | }
|
---|
7699 |
|
---|
7700 |
|
---|
7701 | /**
|
---|
7702 | * Stores a data qword.
|
---|
7703 | *
|
---|
7704 | * @returns Strict VBox status code.
|
---|
7705 | * @param pIemCpu The IEM per CPU data.
|
---|
7706 | * @param iSegReg The index of the segment register to use for
|
---|
7707 | * this access. The base and limits are checked.
|
---|
7708 | * @param GCPtrMem The address of the guest memory.
|
---|
7709 | * @param u64Value The value to store.
|
---|
7710 | */
|
---|
7711 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU64(PIEMCPU pIemCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value)
|
---|
7712 | {
|
---|
7713 | /* The lazy approach for now... */
|
---|
7714 | uint64_t *pu64Dst;
|
---|
7715 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu64Dst, sizeof(*pu64Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
7716 | if (rc == VINF_SUCCESS)
|
---|
7717 | {
|
---|
7718 | *pu64Dst = u64Value;
|
---|
7719 | rc = iemMemCommitAndUnmap(pIemCpu, pu64Dst, IEM_ACCESS_DATA_W);
|
---|
7720 | }
|
---|
7721 | return rc;
|
---|
7722 | }
|
---|
7723 |
|
---|
7724 |
|
---|
7725 | /**
|
---|
7726 | * Stores a data dqword.
|
---|
7727 | *
|
---|
7728 | * @returns Strict VBox status code.
|
---|
7729 | * @param pIemCpu The IEM per CPU data.
|
---|
7730 | * @param iSegReg The index of the segment register to use for
|
---|
7731 | * this access. The base and limits are checked.
|
---|
7732 | * @param GCPtrMem The address of the guest memory.
|
---|
7733 | * @param u128Value The value to store.
|
---|
7734 | */
|
---|
7735 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU128(PIEMCPU pIemCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint128_t u128Value)
|
---|
7736 | {
|
---|
7737 | /* The lazy approach for now... */
|
---|
7738 | uint128_t *pu128Dst;
|
---|
7739 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu128Dst, sizeof(*pu128Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
7740 | if (rc == VINF_SUCCESS)
|
---|
7741 | {
|
---|
7742 | *pu128Dst = u128Value;
|
---|
7743 | rc = iemMemCommitAndUnmap(pIemCpu, pu128Dst, IEM_ACCESS_DATA_W);
|
---|
7744 | }
|
---|
7745 | return rc;
|
---|
7746 | }
|
---|
7747 |
|
---|
7748 |
|
---|
7749 | /**
|
---|
7750 | * Stores a data dqword, SSE aligned.
|
---|
7751 | *
|
---|
7752 | * @returns Strict VBox status code.
|
---|
7753 | * @param pIemCpu The IEM per CPU data.
|
---|
7754 | * @param iSegReg The index of the segment register to use for
|
---|
7755 | * this access. The base and limits are checked.
|
---|
7756 | * @param GCPtrMem The address of the guest memory.
|
---|
7757 | * @param u128Value The value to store.
|
---|
7758 | */
|
---|
7759 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PIEMCPU pIemCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint128_t u128Value)
|
---|
7760 | {
|
---|
7761 | /* The lazy approach for now... */
|
---|
7762 | if ( (GCPtrMem & 15)
|
---|
7763 | && !(pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.MXCSR & X86_MXSCR_MM)) /** @todo should probably check this *after* applying seg.u64Base... Check real HW. */
|
---|
7764 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
7765 |
|
---|
7766 | uint128_t *pu128Dst;
|
---|
7767 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu128Dst, sizeof(*pu128Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
7768 | if (rc == VINF_SUCCESS)
|
---|
7769 | {
|
---|
7770 | *pu128Dst = u128Value;
|
---|
7771 | rc = iemMemCommitAndUnmap(pIemCpu, pu128Dst, IEM_ACCESS_DATA_W);
|
---|
7772 | }
|
---|
7773 | return rc;
|
---|
7774 | }
|
---|
7775 |
|
---|
7776 |
|
---|
7777 | /**
|
---|
7778 | * Stores a descriptor register (sgdt, sidt).
|
---|
7779 | *
|
---|
7780 | * @returns Strict VBox status code.
|
---|
7781 | * @param pIemCpu The IEM per CPU data.
|
---|
7782 | * @param cbLimit The limit.
|
---|
7783 | * @param GCPtrBase The base address.
|
---|
7784 | * @param iSegReg The index of the segment register to use for
|
---|
7785 | * this access. The base and limits are checked.
|
---|
7786 | * @param GCPtrMem The address of the guest memory.
|
---|
7787 | */
|
---|
7788 | IEM_STATIC VBOXSTRICTRC
|
---|
7789 | iemMemStoreDataXdtr(PIEMCPU pIemCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
7790 | {
|
---|
7791 | /*
|
---|
7792 | * The SIDT and SGDT instructions actually stores the data using two
|
---|
7793 | * independent writes. The instructions does not respond to opsize prefixes.
|
---|
7794 | */
|
---|
7795 | VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pIemCpu, iSegReg, GCPtrMem, cbLimit);
|
---|
7796 | if (rcStrict == VINF_SUCCESS)
|
---|
7797 | {
|
---|
7798 | if (pIemCpu->enmCpuMode == IEMMODE_16BIT)
|
---|
7799 | rcStrict = iemMemStoreDataU32(pIemCpu, iSegReg, GCPtrMem + 2,
|
---|
7800 | IEM_GET_TARGET_CPU(pIemCpu) <= IEMTARGETCPU_286
|
---|
7801 | ? (uint32_t)GCPtrBase | UINT32_C(0xff000000) : (uint32_t)GCPtrBase);
|
---|
7802 | else if (pIemCpu->enmCpuMode == IEMMODE_32BIT)
|
---|
7803 | rcStrict = iemMemStoreDataU32(pIemCpu, iSegReg, GCPtrMem + 2, (uint32_t)GCPtrBase);
|
---|
7804 | else
|
---|
7805 | rcStrict = iemMemStoreDataU64(pIemCpu, iSegReg, GCPtrMem + 2, GCPtrBase);
|
---|
7806 | }
|
---|
7807 | return rcStrict;
|
---|
7808 | }
|
---|
7809 |
|
---|
7810 |
|
---|
7811 | /**
|
---|
7812 | * Pushes a word onto the stack.
|
---|
7813 | *
|
---|
7814 | * @returns Strict VBox status code.
|
---|
7815 | * @param pIemCpu The IEM per CPU data.
|
---|
7816 | * @param u16Value The value to push.
|
---|
7817 | */
|
---|
7818 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU16(PIEMCPU pIemCpu, uint16_t u16Value)
|
---|
7819 | {
|
---|
7820 | /* Increment the stack pointer. */
|
---|
7821 | uint64_t uNewRsp;
|
---|
7822 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
7823 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pIemCpu, pCtx, 2, &uNewRsp);
|
---|
7824 |
|
---|
7825 | /* Write the word the lazy way. */
|
---|
7826 | uint16_t *pu16Dst;
|
---|
7827 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu16Dst, sizeof(*pu16Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
7828 | if (rc == VINF_SUCCESS)
|
---|
7829 | {
|
---|
7830 | *pu16Dst = u16Value;
|
---|
7831 | rc = iemMemCommitAndUnmap(pIemCpu, pu16Dst, IEM_ACCESS_STACK_W);
|
---|
7832 | }
|
---|
7833 |
|
---|
7834 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
7835 | if (rc == VINF_SUCCESS)
|
---|
7836 | pCtx->rsp = uNewRsp;
|
---|
7837 |
|
---|
7838 | return rc;
|
---|
7839 | }
|
---|
7840 |
|
---|
7841 |
|
---|
7842 | /**
|
---|
7843 | * Pushes a dword onto the stack.
|
---|
7844 | *
|
---|
7845 | * @returns Strict VBox status code.
|
---|
7846 | * @param pIemCpu The IEM per CPU data.
|
---|
7847 | * @param u32Value The value to push.
|
---|
7848 | */
|
---|
7849 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU32(PIEMCPU pIemCpu, uint32_t u32Value)
|
---|
7850 | {
|
---|
7851 | /* Increment the stack pointer. */
|
---|
7852 | uint64_t uNewRsp;
|
---|
7853 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
7854 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pIemCpu, pCtx, 4, &uNewRsp);
|
---|
7855 |
|
---|
7856 | /* Write the dword the lazy way. */
|
---|
7857 | uint32_t *pu32Dst;
|
---|
7858 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu32Dst, sizeof(*pu32Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
7859 | if (rc == VINF_SUCCESS)
|
---|
7860 | {
|
---|
7861 | *pu32Dst = u32Value;
|
---|
7862 | rc = iemMemCommitAndUnmap(pIemCpu, pu32Dst, IEM_ACCESS_STACK_W);
|
---|
7863 | }
|
---|
7864 |
|
---|
7865 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
7866 | if (rc == VINF_SUCCESS)
|
---|
7867 | pCtx->rsp = uNewRsp;
|
---|
7868 |
|
---|
7869 | return rc;
|
---|
7870 | }
|
---|
7871 |
|
---|
7872 |
|
---|
7873 | /**
|
---|
7874 | * Pushes a dword segment register value onto the stack.
|
---|
7875 | *
|
---|
7876 | * @returns Strict VBox status code.
|
---|
7877 | * @param pIemCpu The IEM per CPU data.
|
---|
7878 | * @param u32Value The value to push.
|
---|
7879 | */
|
---|
7880 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU32SReg(PIEMCPU pIemCpu, uint32_t u32Value)
|
---|
7881 | {
|
---|
7882 | /* Increment the stack pointer. */
|
---|
7883 | uint64_t uNewRsp;
|
---|
7884 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
7885 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pIemCpu, pCtx, 4, &uNewRsp);
|
---|
7886 |
|
---|
7887 | VBOXSTRICTRC rc;
|
---|
7888 | if (IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu))
|
---|
7889 | {
|
---|
7890 | /* The recompiler writes a full dword. */
|
---|
7891 | uint32_t *pu32Dst;
|
---|
7892 | rc = iemMemMap(pIemCpu, (void **)&pu32Dst, sizeof(*pu32Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
7893 | if (rc == VINF_SUCCESS)
|
---|
7894 | {
|
---|
7895 | *pu32Dst = u32Value;
|
---|
7896 | rc = iemMemCommitAndUnmap(pIemCpu, pu32Dst, IEM_ACCESS_STACK_W);
|
---|
7897 | }
|
---|
7898 | }
|
---|
7899 | else
|
---|
7900 | {
|
---|
7901 | /* The intel docs talks about zero extending the selector register
|
---|
7902 | value. My actual intel CPU here might be zero extending the value
|
---|
7903 | but it still only writes the lower word... */
|
---|
7904 | /** @todo Test this on new HW and on AMD and in 64-bit mode. Also test what
|
---|
7905 | * happens when crossing an electric page boundrary, is the high word checked
|
---|
7906 | * for write accessibility or not? Probably it is. What about segment limits?
|
---|
7907 | * It appears this behavior is also shared with trap error codes.
|
---|
7908 | *
|
---|
7909 | * Docs indicate the behavior changed maybe in Pentium or Pentium Pro. Check
|
---|
7910 | * ancient hardware when it actually did change. */
|
---|
7911 | uint16_t *pu16Dst;
|
---|
7912 | rc = iemMemMap(pIemCpu, (void **)&pu16Dst, sizeof(uint32_t), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_RW);
|
---|
7913 | if (rc == VINF_SUCCESS)
|
---|
7914 | {
|
---|
7915 | *pu16Dst = (uint16_t)u32Value;
|
---|
7916 | rc = iemMemCommitAndUnmap(pIemCpu, pu16Dst, IEM_ACCESS_STACK_RW);
|
---|
7917 | }
|
---|
7918 | }
|
---|
7919 |
|
---|
7920 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
7921 | if (rc == VINF_SUCCESS)
|
---|
7922 | pCtx->rsp = uNewRsp;
|
---|
7923 |
|
---|
7924 | return rc;
|
---|
7925 | }
|
---|
7926 |
|
---|
7927 |
|
---|
7928 | /**
|
---|
7929 | * Pushes a qword onto the stack.
|
---|
7930 | *
|
---|
7931 | * @returns Strict VBox status code.
|
---|
7932 | * @param pIemCpu The IEM per CPU data.
|
---|
7933 | * @param u64Value The value to push.
|
---|
7934 | */
|
---|
7935 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU64(PIEMCPU pIemCpu, uint64_t u64Value)
|
---|
7936 | {
|
---|
7937 | /* Increment the stack pointer. */
|
---|
7938 | uint64_t uNewRsp;
|
---|
7939 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
7940 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pIemCpu, pCtx, 8, &uNewRsp);
|
---|
7941 |
|
---|
7942 | /* Write the word the lazy way. */
|
---|
7943 | uint64_t *pu64Dst;
|
---|
7944 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu64Dst, sizeof(*pu64Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
7945 | if (rc == VINF_SUCCESS)
|
---|
7946 | {
|
---|
7947 | *pu64Dst = u64Value;
|
---|
7948 | rc = iemMemCommitAndUnmap(pIemCpu, pu64Dst, IEM_ACCESS_STACK_W);
|
---|
7949 | }
|
---|
7950 |
|
---|
7951 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
7952 | if (rc == VINF_SUCCESS)
|
---|
7953 | pCtx->rsp = uNewRsp;
|
---|
7954 |
|
---|
7955 | return rc;
|
---|
7956 | }
|
---|
7957 |
|
---|
7958 |
|
---|
7959 | /**
|
---|
7960 | * Pops a word from the stack.
|
---|
7961 | *
|
---|
7962 | * @returns Strict VBox status code.
|
---|
7963 | * @param pIemCpu The IEM per CPU data.
|
---|
7964 | * @param pu16Value Where to store the popped value.
|
---|
7965 | */
|
---|
7966 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU16(PIEMCPU pIemCpu, uint16_t *pu16Value)
|
---|
7967 | {
|
---|
7968 | /* Increment the stack pointer. */
|
---|
7969 | uint64_t uNewRsp;
|
---|
7970 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
7971 | RTGCPTR GCPtrTop = iemRegGetRspForPop(pIemCpu, pCtx, 2, &uNewRsp);
|
---|
7972 |
|
---|
7973 | /* Write the word the lazy way. */
|
---|
7974 | uint16_t const *pu16Src;
|
---|
7975 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu16Src, sizeof(*pu16Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
7976 | if (rc == VINF_SUCCESS)
|
---|
7977 | {
|
---|
7978 | *pu16Value = *pu16Src;
|
---|
7979 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu16Src, IEM_ACCESS_STACK_R);
|
---|
7980 |
|
---|
7981 | /* Commit the new RSP value. */
|
---|
7982 | if (rc == VINF_SUCCESS)
|
---|
7983 | pCtx->rsp = uNewRsp;
|
---|
7984 | }
|
---|
7985 |
|
---|
7986 | return rc;
|
---|
7987 | }
|
---|
7988 |
|
---|
7989 |
|
---|
7990 | /**
|
---|
7991 | * Pops a dword from the stack.
|
---|
7992 | *
|
---|
7993 | * @returns Strict VBox status code.
|
---|
7994 | * @param pIemCpu The IEM per CPU data.
|
---|
7995 | * @param pu32Value Where to store the popped value.
|
---|
7996 | */
|
---|
7997 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU32(PIEMCPU pIemCpu, uint32_t *pu32Value)
|
---|
7998 | {
|
---|
7999 | /* Increment the stack pointer. */
|
---|
8000 | uint64_t uNewRsp;
|
---|
8001 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8002 | RTGCPTR GCPtrTop = iemRegGetRspForPop(pIemCpu, pCtx, 4, &uNewRsp);
|
---|
8003 |
|
---|
8004 | /* Write the word the lazy way. */
|
---|
8005 | uint32_t const *pu32Src;
|
---|
8006 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu32Src, sizeof(*pu32Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
8007 | if (rc == VINF_SUCCESS)
|
---|
8008 | {
|
---|
8009 | *pu32Value = *pu32Src;
|
---|
8010 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu32Src, IEM_ACCESS_STACK_R);
|
---|
8011 |
|
---|
8012 | /* Commit the new RSP value. */
|
---|
8013 | if (rc == VINF_SUCCESS)
|
---|
8014 | pCtx->rsp = uNewRsp;
|
---|
8015 | }
|
---|
8016 |
|
---|
8017 | return rc;
|
---|
8018 | }
|
---|
8019 |
|
---|
8020 |
|
---|
8021 | /**
|
---|
8022 | * Pops a qword from the stack.
|
---|
8023 | *
|
---|
8024 | * @returns Strict VBox status code.
|
---|
8025 | * @param pIemCpu The IEM per CPU data.
|
---|
8026 | * @param pu64Value Where to store the popped value.
|
---|
8027 | */
|
---|
8028 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU64(PIEMCPU pIemCpu, uint64_t *pu64Value)
|
---|
8029 | {
|
---|
8030 | /* Increment the stack pointer. */
|
---|
8031 | uint64_t uNewRsp;
|
---|
8032 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8033 | RTGCPTR GCPtrTop = iemRegGetRspForPop(pIemCpu, pCtx, 8, &uNewRsp);
|
---|
8034 |
|
---|
8035 | /* Write the word the lazy way. */
|
---|
8036 | uint64_t const *pu64Src;
|
---|
8037 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu64Src, sizeof(*pu64Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
8038 | if (rc == VINF_SUCCESS)
|
---|
8039 | {
|
---|
8040 | *pu64Value = *pu64Src;
|
---|
8041 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu64Src, IEM_ACCESS_STACK_R);
|
---|
8042 |
|
---|
8043 | /* Commit the new RSP value. */
|
---|
8044 | if (rc == VINF_SUCCESS)
|
---|
8045 | pCtx->rsp = uNewRsp;
|
---|
8046 | }
|
---|
8047 |
|
---|
8048 | return rc;
|
---|
8049 | }
|
---|
8050 |
|
---|
8051 |
|
---|
8052 | /**
|
---|
8053 | * Pushes a word onto the stack, using a temporary stack pointer.
|
---|
8054 | *
|
---|
8055 | * @returns Strict VBox status code.
|
---|
8056 | * @param pIemCpu The IEM per CPU data.
|
---|
8057 | * @param u16Value The value to push.
|
---|
8058 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
8059 | */
|
---|
8060 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU16Ex(PIEMCPU pIemCpu, uint16_t u16Value, PRTUINT64U pTmpRsp)
|
---|
8061 | {
|
---|
8062 | /* Increment the stack pointer. */
|
---|
8063 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8064 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
8065 | RTGCPTR GCPtrTop = iemRegGetRspForPushEx(pIemCpu, pCtx, &NewRsp, 2);
|
---|
8066 |
|
---|
8067 | /* Write the word the lazy way. */
|
---|
8068 | uint16_t *pu16Dst;
|
---|
8069 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu16Dst, sizeof(*pu16Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
8070 | if (rc == VINF_SUCCESS)
|
---|
8071 | {
|
---|
8072 | *pu16Dst = u16Value;
|
---|
8073 | rc = iemMemCommitAndUnmap(pIemCpu, pu16Dst, IEM_ACCESS_STACK_W);
|
---|
8074 | }
|
---|
8075 |
|
---|
8076 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
8077 | if (rc == VINF_SUCCESS)
|
---|
8078 | *pTmpRsp = NewRsp;
|
---|
8079 |
|
---|
8080 | return rc;
|
---|
8081 | }
|
---|
8082 |
|
---|
8083 |
|
---|
8084 | /**
|
---|
8085 | * Pushes a dword onto the stack, using a temporary stack pointer.
|
---|
8086 | *
|
---|
8087 | * @returns Strict VBox status code.
|
---|
8088 | * @param pIemCpu The IEM per CPU data.
|
---|
8089 | * @param u32Value The value to push.
|
---|
8090 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
8091 | */
|
---|
8092 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU32Ex(PIEMCPU pIemCpu, uint32_t u32Value, PRTUINT64U pTmpRsp)
|
---|
8093 | {
|
---|
8094 | /* Increment the stack pointer. */
|
---|
8095 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8096 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
8097 | RTGCPTR GCPtrTop = iemRegGetRspForPushEx(pIemCpu, pCtx, &NewRsp, 4);
|
---|
8098 |
|
---|
8099 | /* Write the word the lazy way. */
|
---|
8100 | uint32_t *pu32Dst;
|
---|
8101 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu32Dst, sizeof(*pu32Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
8102 | if (rc == VINF_SUCCESS)
|
---|
8103 | {
|
---|
8104 | *pu32Dst = u32Value;
|
---|
8105 | rc = iemMemCommitAndUnmap(pIemCpu, pu32Dst, IEM_ACCESS_STACK_W);
|
---|
8106 | }
|
---|
8107 |
|
---|
8108 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
8109 | if (rc == VINF_SUCCESS)
|
---|
8110 | *pTmpRsp = NewRsp;
|
---|
8111 |
|
---|
8112 | return rc;
|
---|
8113 | }
|
---|
8114 |
|
---|
8115 |
|
---|
8116 | /**
|
---|
8117 | * Pushes a dword onto the stack, using a temporary stack pointer.
|
---|
8118 | *
|
---|
8119 | * @returns Strict VBox status code.
|
---|
8120 | * @param pIemCpu The IEM per CPU data.
|
---|
8121 | * @param u64Value The value to push.
|
---|
8122 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
8123 | */
|
---|
8124 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU64Ex(PIEMCPU pIemCpu, uint64_t u64Value, PRTUINT64U pTmpRsp)
|
---|
8125 | {
|
---|
8126 | /* Increment the stack pointer. */
|
---|
8127 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8128 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
8129 | RTGCPTR GCPtrTop = iemRegGetRspForPushEx(pIemCpu, pCtx, &NewRsp, 8);
|
---|
8130 |
|
---|
8131 | /* Write the word the lazy way. */
|
---|
8132 | uint64_t *pu64Dst;
|
---|
8133 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu64Dst, sizeof(*pu64Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
8134 | if (rc == VINF_SUCCESS)
|
---|
8135 | {
|
---|
8136 | *pu64Dst = u64Value;
|
---|
8137 | rc = iemMemCommitAndUnmap(pIemCpu, pu64Dst, IEM_ACCESS_STACK_W);
|
---|
8138 | }
|
---|
8139 |
|
---|
8140 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
8141 | if (rc == VINF_SUCCESS)
|
---|
8142 | *pTmpRsp = NewRsp;
|
---|
8143 |
|
---|
8144 | return rc;
|
---|
8145 | }
|
---|
8146 |
|
---|
8147 |
|
---|
8148 | /**
|
---|
8149 | * Pops a word from the stack, using a temporary stack pointer.
|
---|
8150 | *
|
---|
8151 | * @returns Strict VBox status code.
|
---|
8152 | * @param pIemCpu The IEM per CPU data.
|
---|
8153 | * @param pu16Value Where to store the popped value.
|
---|
8154 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
8155 | */
|
---|
8156 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU16Ex(PIEMCPU pIemCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp)
|
---|
8157 | {
|
---|
8158 | /* Increment the stack pointer. */
|
---|
8159 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8160 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
8161 | RTGCPTR GCPtrTop = iemRegGetRspForPopEx(pIemCpu, pCtx, &NewRsp, 2);
|
---|
8162 |
|
---|
8163 | /* Write the word the lazy way. */
|
---|
8164 | uint16_t const *pu16Src;
|
---|
8165 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu16Src, sizeof(*pu16Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
8166 | if (rc == VINF_SUCCESS)
|
---|
8167 | {
|
---|
8168 | *pu16Value = *pu16Src;
|
---|
8169 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu16Src, IEM_ACCESS_STACK_R);
|
---|
8170 |
|
---|
8171 | /* Commit the new RSP value. */
|
---|
8172 | if (rc == VINF_SUCCESS)
|
---|
8173 | *pTmpRsp = NewRsp;
|
---|
8174 | }
|
---|
8175 |
|
---|
8176 | return rc;
|
---|
8177 | }
|
---|
8178 |
|
---|
8179 |
|
---|
8180 | /**
|
---|
8181 | * Pops a dword from the stack, using a temporary stack pointer.
|
---|
8182 | *
|
---|
8183 | * @returns Strict VBox status code.
|
---|
8184 | * @param pIemCpu The IEM per CPU data.
|
---|
8185 | * @param pu32Value Where to store the popped value.
|
---|
8186 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
8187 | */
|
---|
8188 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU32Ex(PIEMCPU pIemCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp)
|
---|
8189 | {
|
---|
8190 | /* Increment the stack pointer. */
|
---|
8191 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8192 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
8193 | RTGCPTR GCPtrTop = iemRegGetRspForPopEx(pIemCpu, pCtx, &NewRsp, 4);
|
---|
8194 |
|
---|
8195 | /* Write the word the lazy way. */
|
---|
8196 | uint32_t const *pu32Src;
|
---|
8197 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu32Src, sizeof(*pu32Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
8198 | if (rc == VINF_SUCCESS)
|
---|
8199 | {
|
---|
8200 | *pu32Value = *pu32Src;
|
---|
8201 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu32Src, IEM_ACCESS_STACK_R);
|
---|
8202 |
|
---|
8203 | /* Commit the new RSP value. */
|
---|
8204 | if (rc == VINF_SUCCESS)
|
---|
8205 | *pTmpRsp = NewRsp;
|
---|
8206 | }
|
---|
8207 |
|
---|
8208 | return rc;
|
---|
8209 | }
|
---|
8210 |
|
---|
8211 |
|
---|
8212 | /**
|
---|
8213 | * Pops a qword from the stack, using a temporary stack pointer.
|
---|
8214 | *
|
---|
8215 | * @returns Strict VBox status code.
|
---|
8216 | * @param pIemCpu The IEM per CPU data.
|
---|
8217 | * @param pu64Value Where to store the popped value.
|
---|
8218 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
8219 | */
|
---|
8220 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU64Ex(PIEMCPU pIemCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp)
|
---|
8221 | {
|
---|
8222 | /* Increment the stack pointer. */
|
---|
8223 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8224 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
8225 | RTGCPTR GCPtrTop = iemRegGetRspForPopEx(pIemCpu, pCtx, &NewRsp, 8);
|
---|
8226 |
|
---|
8227 | /* Write the word the lazy way. */
|
---|
8228 | uint64_t const *pu64Src;
|
---|
8229 | VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, (void **)&pu64Src, sizeof(*pu64Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
8230 | if (rcStrict == VINF_SUCCESS)
|
---|
8231 | {
|
---|
8232 | *pu64Value = *pu64Src;
|
---|
8233 | rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pu64Src, IEM_ACCESS_STACK_R);
|
---|
8234 |
|
---|
8235 | /* Commit the new RSP value. */
|
---|
8236 | if (rcStrict == VINF_SUCCESS)
|
---|
8237 | *pTmpRsp = NewRsp;
|
---|
8238 | }
|
---|
8239 |
|
---|
8240 | return rcStrict;
|
---|
8241 | }
|
---|
8242 |
|
---|
8243 |
|
---|
8244 | /**
|
---|
8245 | * Begin a special stack push (used by interrupt, exceptions and such).
|
---|
8246 | *
|
---|
8247 | * This will raise \#SS or \#PF if appropriate.
|
---|
8248 | *
|
---|
8249 | * @returns Strict VBox status code.
|
---|
8250 | * @param pIemCpu The IEM per CPU data.
|
---|
8251 | * @param cbMem The number of bytes to push onto the stack.
|
---|
8252 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
8253 | * As with the other memory functions this could be
|
---|
8254 | * direct access or bounce buffered access, so
|
---|
8255 | * don't commit register until the commit call
|
---|
8256 | * succeeds.
|
---|
8257 | * @param puNewRsp Where to return the new RSP value. This must be
|
---|
8258 | * passed unchanged to
|
---|
8259 | * iemMemStackPushCommitSpecial().
|
---|
8260 | */
|
---|
8261 | IEM_STATIC VBOXSTRICTRC iemMemStackPushBeginSpecial(PIEMCPU pIemCpu, size_t cbMem, void **ppvMem, uint64_t *puNewRsp)
|
---|
8262 | {
|
---|
8263 | Assert(cbMem < UINT8_MAX);
|
---|
8264 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8265 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pIemCpu, pCtx, (uint8_t)cbMem, puNewRsp);
|
---|
8266 | return iemMemMap(pIemCpu, ppvMem, cbMem, X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
8267 | }
|
---|
8268 |
|
---|
8269 |
|
---|
8270 | /**
|
---|
8271 | * Commits a special stack push (started by iemMemStackPushBeginSpecial).
|
---|
8272 | *
|
---|
8273 | * This will update the rSP.
|
---|
8274 | *
|
---|
8275 | * @returns Strict VBox status code.
|
---|
8276 | * @param pIemCpu The IEM per CPU data.
|
---|
8277 | * @param pvMem The pointer returned by
|
---|
8278 | * iemMemStackPushBeginSpecial().
|
---|
8279 | * @param uNewRsp The new RSP value returned by
|
---|
8280 | * iemMemStackPushBeginSpecial().
|
---|
8281 | */
|
---|
8282 | IEM_STATIC VBOXSTRICTRC iemMemStackPushCommitSpecial(PIEMCPU pIemCpu, void *pvMem, uint64_t uNewRsp)
|
---|
8283 | {
|
---|
8284 | VBOXSTRICTRC rcStrict = iemMemCommitAndUnmap(pIemCpu, pvMem, IEM_ACCESS_STACK_W);
|
---|
8285 | if (rcStrict == VINF_SUCCESS)
|
---|
8286 | pIemCpu->CTX_SUFF(pCtx)->rsp = uNewRsp;
|
---|
8287 | return rcStrict;
|
---|
8288 | }
|
---|
8289 |
|
---|
8290 |
|
---|
8291 | /**
|
---|
8292 | * Begin a special stack pop (used by iret, retf and such).
|
---|
8293 | *
|
---|
8294 | * This will raise \#SS or \#PF if appropriate.
|
---|
8295 | *
|
---|
8296 | * @returns Strict VBox status code.
|
---|
8297 | * @param pIemCpu The IEM per CPU data.
|
---|
8298 | * @param cbMem The number of bytes to push onto the stack.
|
---|
8299 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
8300 | * @param puNewRsp Where to return the new RSP value. This must be
|
---|
8301 | * passed unchanged to
|
---|
8302 | * iemMemStackPopCommitSpecial() or applied
|
---|
8303 | * manually if iemMemStackPopDoneSpecial() is used.
|
---|
8304 | */
|
---|
8305 | IEM_STATIC VBOXSTRICTRC iemMemStackPopBeginSpecial(PIEMCPU pIemCpu, size_t cbMem, void const **ppvMem, uint64_t *puNewRsp)
|
---|
8306 | {
|
---|
8307 | Assert(cbMem < UINT8_MAX);
|
---|
8308 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8309 | RTGCPTR GCPtrTop = iemRegGetRspForPop(pIemCpu, pCtx, (uint8_t)cbMem, puNewRsp);
|
---|
8310 | return iemMemMap(pIemCpu, (void **)ppvMem, cbMem, X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
8311 | }
|
---|
8312 |
|
---|
8313 |
|
---|
8314 | /**
|
---|
8315 | * Continue a special stack pop (used by iret and retf).
|
---|
8316 | *
|
---|
8317 | * This will raise \#SS or \#PF if appropriate.
|
---|
8318 | *
|
---|
8319 | * @returns Strict VBox status code.
|
---|
8320 | * @param pIemCpu The IEM per CPU data.
|
---|
8321 | * @param cbMem The number of bytes to push onto the stack.
|
---|
8322 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
8323 | * @param puNewRsp Where to return the new RSP value. This must be
|
---|
8324 | * passed unchanged to
|
---|
8325 | * iemMemStackPopCommitSpecial() or applied
|
---|
8326 | * manually if iemMemStackPopDoneSpecial() is used.
|
---|
8327 | */
|
---|
8328 | IEM_STATIC VBOXSTRICTRC iemMemStackPopContinueSpecial(PIEMCPU pIemCpu, size_t cbMem, void const **ppvMem, uint64_t *puNewRsp)
|
---|
8329 | {
|
---|
8330 | Assert(cbMem < UINT8_MAX);
|
---|
8331 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8332 | RTUINT64U NewRsp;
|
---|
8333 | NewRsp.u = *puNewRsp;
|
---|
8334 | RTGCPTR GCPtrTop = iemRegGetRspForPopEx(pIemCpu, pCtx, &NewRsp, 8);
|
---|
8335 | *puNewRsp = NewRsp.u;
|
---|
8336 | return iemMemMap(pIemCpu, (void **)ppvMem, cbMem, X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
8337 | }
|
---|
8338 |
|
---|
8339 |
|
---|
8340 | /**
|
---|
8341 | * Commits a special stack pop (started by iemMemStackPopBeginSpecial).
|
---|
8342 | *
|
---|
8343 | * This will update the rSP.
|
---|
8344 | *
|
---|
8345 | * @returns Strict VBox status code.
|
---|
8346 | * @param pIemCpu The IEM per CPU data.
|
---|
8347 | * @param pvMem The pointer returned by
|
---|
8348 | * iemMemStackPopBeginSpecial().
|
---|
8349 | * @param uNewRsp The new RSP value returned by
|
---|
8350 | * iemMemStackPopBeginSpecial().
|
---|
8351 | */
|
---|
8352 | IEM_STATIC VBOXSTRICTRC iemMemStackPopCommitSpecial(PIEMCPU pIemCpu, void const *pvMem, uint64_t uNewRsp)
|
---|
8353 | {
|
---|
8354 | VBOXSTRICTRC rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pvMem, IEM_ACCESS_STACK_R);
|
---|
8355 | if (rcStrict == VINF_SUCCESS)
|
---|
8356 | pIemCpu->CTX_SUFF(pCtx)->rsp = uNewRsp;
|
---|
8357 | return rcStrict;
|
---|
8358 | }
|
---|
8359 |
|
---|
8360 |
|
---|
8361 | /**
|
---|
8362 | * Done with a special stack pop (started by iemMemStackPopBeginSpecial or
|
---|
8363 | * iemMemStackPopContinueSpecial).
|
---|
8364 | *
|
---|
8365 | * The caller will manually commit the rSP.
|
---|
8366 | *
|
---|
8367 | * @returns Strict VBox status code.
|
---|
8368 | * @param pIemCpu The IEM per CPU data.
|
---|
8369 | * @param pvMem The pointer returned by
|
---|
8370 | * iemMemStackPopBeginSpecial() or
|
---|
8371 | * iemMemStackPopContinueSpecial().
|
---|
8372 | */
|
---|
8373 | IEM_STATIC VBOXSTRICTRC iemMemStackPopDoneSpecial(PIEMCPU pIemCpu, void const *pvMem)
|
---|
8374 | {
|
---|
8375 | return iemMemCommitAndUnmap(pIemCpu, (void *)pvMem, IEM_ACCESS_STACK_R);
|
---|
8376 | }
|
---|
8377 |
|
---|
8378 |
|
---|
8379 | /**
|
---|
8380 | * Fetches a system table byte.
|
---|
8381 | *
|
---|
8382 | * @returns Strict VBox status code.
|
---|
8383 | * @param pIemCpu The IEM per CPU data.
|
---|
8384 | * @param pbDst Where to return the byte.
|
---|
8385 | * @param iSegReg The index of the segment register to use for
|
---|
8386 | * this access. The base and limits are checked.
|
---|
8387 | * @param GCPtrMem The address of the guest memory.
|
---|
8388 | */
|
---|
8389 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU8(PIEMCPU pIemCpu, uint8_t *pbDst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8390 | {
|
---|
8391 | /* The lazy approach for now... */
|
---|
8392 | uint8_t const *pbSrc;
|
---|
8393 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pbSrc, sizeof(*pbSrc), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R);
|
---|
8394 | if (rc == VINF_SUCCESS)
|
---|
8395 | {
|
---|
8396 | *pbDst = *pbSrc;
|
---|
8397 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pbSrc, IEM_ACCESS_SYS_R);
|
---|
8398 | }
|
---|
8399 | return rc;
|
---|
8400 | }
|
---|
8401 |
|
---|
8402 |
|
---|
8403 | /**
|
---|
8404 | * Fetches a system table word.
|
---|
8405 | *
|
---|
8406 | * @returns Strict VBox status code.
|
---|
8407 | * @param pIemCpu The IEM per CPU data.
|
---|
8408 | * @param pu16Dst Where to return the word.
|
---|
8409 | * @param iSegReg The index of the segment register to use for
|
---|
8410 | * this access. The base and limits are checked.
|
---|
8411 | * @param GCPtrMem The address of the guest memory.
|
---|
8412 | */
|
---|
8413 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU16(PIEMCPU pIemCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8414 | {
|
---|
8415 | /* The lazy approach for now... */
|
---|
8416 | uint16_t const *pu16Src;
|
---|
8417 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu16Src, sizeof(*pu16Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R);
|
---|
8418 | if (rc == VINF_SUCCESS)
|
---|
8419 | {
|
---|
8420 | *pu16Dst = *pu16Src;
|
---|
8421 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu16Src, IEM_ACCESS_SYS_R);
|
---|
8422 | }
|
---|
8423 | return rc;
|
---|
8424 | }
|
---|
8425 |
|
---|
8426 |
|
---|
8427 | /**
|
---|
8428 | * Fetches a system table dword.
|
---|
8429 | *
|
---|
8430 | * @returns Strict VBox status code.
|
---|
8431 | * @param pIemCpu The IEM per CPU data.
|
---|
8432 | * @param pu32Dst Where to return the dword.
|
---|
8433 | * @param iSegReg The index of the segment register to use for
|
---|
8434 | * this access. The base and limits are checked.
|
---|
8435 | * @param GCPtrMem The address of the guest memory.
|
---|
8436 | */
|
---|
8437 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU32(PIEMCPU pIemCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8438 | {
|
---|
8439 | /* The lazy approach for now... */
|
---|
8440 | uint32_t const *pu32Src;
|
---|
8441 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu32Src, sizeof(*pu32Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R);
|
---|
8442 | if (rc == VINF_SUCCESS)
|
---|
8443 | {
|
---|
8444 | *pu32Dst = *pu32Src;
|
---|
8445 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu32Src, IEM_ACCESS_SYS_R);
|
---|
8446 | }
|
---|
8447 | return rc;
|
---|
8448 | }
|
---|
8449 |
|
---|
8450 |
|
---|
8451 | /**
|
---|
8452 | * Fetches a system table qword.
|
---|
8453 | *
|
---|
8454 | * @returns Strict VBox status code.
|
---|
8455 | * @param pIemCpu The IEM per CPU data.
|
---|
8456 | * @param pu64Dst Where to return the qword.
|
---|
8457 | * @param iSegReg The index of the segment register to use for
|
---|
8458 | * this access. The base and limits are checked.
|
---|
8459 | * @param GCPtrMem The address of the guest memory.
|
---|
8460 | */
|
---|
8461 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU64(PIEMCPU pIemCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8462 | {
|
---|
8463 | /* The lazy approach for now... */
|
---|
8464 | uint64_t const *pu64Src;
|
---|
8465 | VBOXSTRICTRC rc = iemMemMap(pIemCpu, (void **)&pu64Src, sizeof(*pu64Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R);
|
---|
8466 | if (rc == VINF_SUCCESS)
|
---|
8467 | {
|
---|
8468 | *pu64Dst = *pu64Src;
|
---|
8469 | rc = iemMemCommitAndUnmap(pIemCpu, (void *)pu64Src, IEM_ACCESS_SYS_R);
|
---|
8470 | }
|
---|
8471 | return rc;
|
---|
8472 | }
|
---|
8473 |
|
---|
8474 |
|
---|
8475 | /**
|
---|
8476 | * Fetches a descriptor table entry with caller specified error code.
|
---|
8477 | *
|
---|
8478 | * @returns Strict VBox status code.
|
---|
8479 | * @param pIemCpu The IEM per CPU.
|
---|
8480 | * @param pDesc Where to return the descriptor table entry.
|
---|
8481 | * @param uSel The selector which table entry to fetch.
|
---|
8482 | * @param uXcpt The exception to raise on table lookup error.
|
---|
8483 | * @param uErrorCode The error code associated with the exception.
|
---|
8484 | */
|
---|
8485 | IEM_STATIC VBOXSTRICTRC
|
---|
8486 | iemMemFetchSelDescWithErr(PIEMCPU pIemCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt, uint16_t uErrorCode)
|
---|
8487 | {
|
---|
8488 | AssertPtr(pDesc);
|
---|
8489 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8490 |
|
---|
8491 | /** @todo did the 286 require all 8 bytes to be accessible? */
|
---|
8492 | /*
|
---|
8493 | * Get the selector table base and check bounds.
|
---|
8494 | */
|
---|
8495 | RTGCPTR GCPtrBase;
|
---|
8496 | if (uSel & X86_SEL_LDT)
|
---|
8497 | {
|
---|
8498 | if ( !pCtx->ldtr.Attr.n.u1Present
|
---|
8499 | || (uSel | X86_SEL_RPL_LDT) > pCtx->ldtr.u32Limit )
|
---|
8500 | {
|
---|
8501 | Log(("iemMemFetchSelDesc: LDT selector %#x is out of bounds (%3x) or ldtr is NP (%#x)\n",
|
---|
8502 | uSel, pCtx->ldtr.u32Limit, pCtx->ldtr.Sel));
|
---|
8503 | return iemRaiseXcptOrInt(pIemCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
8504 | uErrorCode, 0);
|
---|
8505 | }
|
---|
8506 |
|
---|
8507 | Assert(pCtx->ldtr.Attr.n.u1Present);
|
---|
8508 | GCPtrBase = pCtx->ldtr.u64Base;
|
---|
8509 | }
|
---|
8510 | else
|
---|
8511 | {
|
---|
8512 | if ((uSel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
|
---|
8513 | {
|
---|
8514 | Log(("iemMemFetchSelDesc: GDT selector %#x is out of bounds (%3x)\n", uSel, pCtx->gdtr.cbGdt));
|
---|
8515 | return iemRaiseXcptOrInt(pIemCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
8516 | uErrorCode, 0);
|
---|
8517 | }
|
---|
8518 | GCPtrBase = pCtx->gdtr.pGdt;
|
---|
8519 | }
|
---|
8520 |
|
---|
8521 | /*
|
---|
8522 | * Read the legacy descriptor and maybe the long mode extensions if
|
---|
8523 | * required.
|
---|
8524 | */
|
---|
8525 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pIemCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
|
---|
8526 | if (rcStrict == VINF_SUCCESS)
|
---|
8527 | {
|
---|
8528 | if ( !IEM_IS_LONG_MODE(pIemCpu)
|
---|
8529 | || pDesc->Legacy.Gen.u1DescType)
|
---|
8530 | pDesc->Long.au64[1] = 0;
|
---|
8531 | else if ((uint32_t)(uSel | X86_SEL_RPL_LDT) + 8 <= (uSel & X86_SEL_LDT ? pCtx->ldtr.u32Limit : pCtx->gdtr.cbGdt))
|
---|
8532 | rcStrict = iemMemFetchSysU64(pIemCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel | X86_SEL_RPL_LDT) + 1);
|
---|
8533 | else
|
---|
8534 | {
|
---|
8535 | Log(("iemMemFetchSelDesc: system selector %#x is out of bounds\n", uSel));
|
---|
8536 | /** @todo is this the right exception? */
|
---|
8537 | return iemRaiseXcptOrInt(pIemCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErrorCode, 0);
|
---|
8538 | }
|
---|
8539 | }
|
---|
8540 | return rcStrict;
|
---|
8541 | }
|
---|
8542 |
|
---|
8543 |
|
---|
8544 | /**
|
---|
8545 | * Fetches a descriptor table entry.
|
---|
8546 | *
|
---|
8547 | * @returns Strict VBox status code.
|
---|
8548 | * @param pIemCpu The IEM per CPU.
|
---|
8549 | * @param pDesc Where to return the descriptor table entry.
|
---|
8550 | * @param uSel The selector which table entry to fetch.
|
---|
8551 | * @param uXcpt The exception to raise on table lookup error.
|
---|
8552 | */
|
---|
8553 | IEM_STATIC VBOXSTRICTRC iemMemFetchSelDesc(PIEMCPU pIemCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt)
|
---|
8554 | {
|
---|
8555 | return iemMemFetchSelDescWithErr(pIemCpu, pDesc, uSel, uXcpt, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
8556 | }
|
---|
8557 |
|
---|
8558 |
|
---|
8559 | /**
|
---|
8560 | * Fakes a long mode stack selector for SS = 0.
|
---|
8561 | *
|
---|
8562 | * @param pDescSs Where to return the fake stack descriptor.
|
---|
8563 | * @param uDpl The DPL we want.
|
---|
8564 | */
|
---|
8565 | IEM_STATIC void iemMemFakeStackSelDesc(PIEMSELDESC pDescSs, uint32_t uDpl)
|
---|
8566 | {
|
---|
8567 | pDescSs->Long.au64[0] = 0;
|
---|
8568 | pDescSs->Long.au64[1] = 0;
|
---|
8569 | pDescSs->Long.Gen.u4Type = X86_SEL_TYPE_RW_ACC;
|
---|
8570 | pDescSs->Long.Gen.u1DescType = 1; /* 1 = code / data, 0 = system. */
|
---|
8571 | pDescSs->Long.Gen.u2Dpl = uDpl;
|
---|
8572 | pDescSs->Long.Gen.u1Present = 1;
|
---|
8573 | pDescSs->Long.Gen.u1Long = 1;
|
---|
8574 | }
|
---|
8575 |
|
---|
8576 |
|
---|
8577 | /**
|
---|
8578 | * Marks the selector descriptor as accessed (only non-system descriptors).
|
---|
8579 | *
|
---|
8580 | * This function ASSUMES that iemMemFetchSelDesc has be called previously and
|
---|
8581 | * will therefore skip the limit checks.
|
---|
8582 | *
|
---|
8583 | * @returns Strict VBox status code.
|
---|
8584 | * @param pIemCpu The IEM per CPU.
|
---|
8585 | * @param uSel The selector.
|
---|
8586 | */
|
---|
8587 | IEM_STATIC VBOXSTRICTRC iemMemMarkSelDescAccessed(PIEMCPU pIemCpu, uint16_t uSel)
|
---|
8588 | {
|
---|
8589 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
8590 |
|
---|
8591 | /*
|
---|
8592 | * Get the selector table base and calculate the entry address.
|
---|
8593 | */
|
---|
8594 | RTGCPTR GCPtr = uSel & X86_SEL_LDT
|
---|
8595 | ? pCtx->ldtr.u64Base
|
---|
8596 | : pCtx->gdtr.pGdt;
|
---|
8597 | GCPtr += uSel & X86_SEL_MASK;
|
---|
8598 |
|
---|
8599 | /*
|
---|
8600 | * ASMAtomicBitSet will assert if the address is misaligned, so do some
|
---|
8601 | * ugly stuff to avoid this. This will make sure it's an atomic access
|
---|
8602 | * as well more or less remove any question about 8-bit or 32-bit accesss.
|
---|
8603 | */
|
---|
8604 | VBOXSTRICTRC rcStrict;
|
---|
8605 | uint32_t volatile *pu32;
|
---|
8606 | if ((GCPtr & 3) == 0)
|
---|
8607 | {
|
---|
8608 | /* The normal case, map the 32-bit bits around the accessed bit (40). */
|
---|
8609 | GCPtr += 2 + 2;
|
---|
8610 | rcStrict = iemMemMap(pIemCpu, (void **)&pu32, 4, UINT8_MAX, GCPtr, IEM_ACCESS_SYS_RW);
|
---|
8611 | if (rcStrict != VINF_SUCCESS)
|
---|
8612 | return rcStrict;
|
---|
8613 | ASMAtomicBitSet(pu32, 8); /* X86_SEL_TYPE_ACCESSED is 1, but it is preceeded by u8BaseHigh1. */
|
---|
8614 | }
|
---|
8615 | else
|
---|
8616 | {
|
---|
8617 | /* The misaligned GDT/LDT case, map the whole thing. */
|
---|
8618 | rcStrict = iemMemMap(pIemCpu, (void **)&pu32, 8, UINT8_MAX, GCPtr, IEM_ACCESS_SYS_RW);
|
---|
8619 | if (rcStrict != VINF_SUCCESS)
|
---|
8620 | return rcStrict;
|
---|
8621 | switch ((uintptr_t)pu32 & 3)
|
---|
8622 | {
|
---|
8623 | case 0: ASMAtomicBitSet(pu32, 40 + 0 - 0); break;
|
---|
8624 | case 1: ASMAtomicBitSet((uint8_t volatile *)pu32 + 3, 40 + 0 - 24); break;
|
---|
8625 | case 2: ASMAtomicBitSet((uint8_t volatile *)pu32 + 2, 40 + 0 - 16); break;
|
---|
8626 | case 3: ASMAtomicBitSet((uint8_t volatile *)pu32 + 1, 40 + 0 - 8); break;
|
---|
8627 | }
|
---|
8628 | }
|
---|
8629 |
|
---|
8630 | return iemMemCommitAndUnmap(pIemCpu, (void *)pu32, IEM_ACCESS_SYS_RW);
|
---|
8631 | }
|
---|
8632 |
|
---|
8633 | /** @} */
|
---|
8634 |
|
---|
8635 |
|
---|
8636 | /*
|
---|
8637 | * Include the C/C++ implementation of instruction.
|
---|
8638 | */
|
---|
8639 | #include "IEMAllCImpl.cpp.h"
|
---|
8640 |
|
---|
8641 |
|
---|
8642 |
|
---|
8643 | /** @name "Microcode" macros.
|
---|
8644 | *
|
---|
8645 | * The idea is that we should be able to use the same code to interpret
|
---|
8646 | * instructions as well as recompiler instructions. Thus this obfuscation.
|
---|
8647 | *
|
---|
8648 | * @{
|
---|
8649 | */
|
---|
8650 | #define IEM_MC_BEGIN(a_cArgs, a_cLocals) {
|
---|
8651 | #define IEM_MC_END() }
|
---|
8652 | #define IEM_MC_PAUSE() do {} while (0)
|
---|
8653 | #define IEM_MC_CONTINUE() do {} while (0)
|
---|
8654 |
|
---|
8655 | /** Internal macro. */
|
---|
8656 | #define IEM_MC_RETURN_ON_FAILURE(a_Expr) \
|
---|
8657 | do \
|
---|
8658 | { \
|
---|
8659 | VBOXSTRICTRC rcStrict2 = a_Expr; \
|
---|
8660 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
8661 | return rcStrict2; \
|
---|
8662 | } while (0)
|
---|
8663 |
|
---|
8664 | #define IEM_MC_ADVANCE_RIP() iemRegUpdateRipAndClearRF(pIemCpu)
|
---|
8665 | #define IEM_MC_REL_JMP_S8(a_i8) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS8(pIemCpu, a_i8))
|
---|
8666 | #define IEM_MC_REL_JMP_S16(a_i16) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS16(pIemCpu, a_i16))
|
---|
8667 | #define IEM_MC_REL_JMP_S32(a_i32) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS32(pIemCpu, a_i32))
|
---|
8668 | #define IEM_MC_SET_RIP_U16(a_u16NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pIemCpu), (a_u16NewIP)))
|
---|
8669 | #define IEM_MC_SET_RIP_U32(a_u32NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pIemCpu), (a_u32NewIP)))
|
---|
8670 | #define IEM_MC_SET_RIP_U64(a_u64NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pIemCpu), (a_u64NewIP)))
|
---|
8671 |
|
---|
8672 | #define IEM_MC_RAISE_DIVIDE_ERROR() return iemRaiseDivideError(pIemCpu)
|
---|
8673 | #define IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() \
|
---|
8674 | do { \
|
---|
8675 | if ((pIemCpu)->CTX_SUFF(pCtx)->cr0 & (X86_CR0_EM | X86_CR0_TS)) \
|
---|
8676 | return iemRaiseDeviceNotAvailable(pIemCpu); \
|
---|
8677 | } while (0)
|
---|
8678 | #define IEM_MC_MAYBE_RAISE_FPU_XCPT() \
|
---|
8679 | do { \
|
---|
8680 | if ((pIemCpu)->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.FSW & X86_FSW_ES) \
|
---|
8681 | return iemRaiseMathFault(pIemCpu); \
|
---|
8682 | } while (0)
|
---|
8683 | #define IEM_MC_MAYBE_RAISE_SSE2_RELATED_XCPT() \
|
---|
8684 | do { \
|
---|
8685 | if ( (pIemCpu->CTX_SUFF(pCtx)->cr0 & X86_CR0_EM) \
|
---|
8686 | || !(pIemCpu->CTX_SUFF(pCtx)->cr4 & X86_CR4_OSFXSR) \
|
---|
8687 | || !IEM_GET_GUEST_CPU_FEATURES(pIemCpu)->fSse2) \
|
---|
8688 | return iemRaiseUndefinedOpcode(pIemCpu); \
|
---|
8689 | if (pIemCpu->CTX_SUFF(pCtx)->cr0 & X86_CR0_TS) \
|
---|
8690 | return iemRaiseDeviceNotAvailable(pIemCpu); \
|
---|
8691 | } while (0)
|
---|
8692 | #define IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() \
|
---|
8693 | do { \
|
---|
8694 | if ( (pIemCpu->CTX_SUFF(pCtx)->cr0 & X86_CR0_EM) \
|
---|
8695 | || !(pIemCpu->CTX_SUFF(pCtx)->cr4 & X86_CR4_OSFXSR) \
|
---|
8696 | || !IEM_GET_GUEST_CPU_FEATURES(pIemCpu)->fSse) \
|
---|
8697 | return iemRaiseUndefinedOpcode(pIemCpu); \
|
---|
8698 | if (pIemCpu->CTX_SUFF(pCtx)->cr0 & X86_CR0_TS) \
|
---|
8699 | return iemRaiseDeviceNotAvailable(pIemCpu); \
|
---|
8700 | } while (0)
|
---|
8701 | #define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT() \
|
---|
8702 | do { \
|
---|
8703 | if ( ((pIemCpu)->CTX_SUFF(pCtx)->cr0 & X86_CR0_EM) \
|
---|
8704 | || !IEM_GET_GUEST_CPU_FEATURES(pIemCpu)->fMmx) \
|
---|
8705 | return iemRaiseUndefinedOpcode(pIemCpu); \
|
---|
8706 | if (pIemCpu->CTX_SUFF(pCtx)->cr0 & X86_CR0_TS) \
|
---|
8707 | return iemRaiseDeviceNotAvailable(pIemCpu); \
|
---|
8708 | } while (0)
|
---|
8709 | #define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT_CHECK_SSE_OR_MMXEXT() \
|
---|
8710 | do { \
|
---|
8711 | if ( ((pIemCpu)->CTX_SUFF(pCtx)->cr0 & X86_CR0_EM) \
|
---|
8712 | || ( !IEM_GET_GUEST_CPU_FEATURES(pIemCpu)->fSse \
|
---|
8713 | && !IEM_GET_GUEST_CPU_FEATURES(pIemCpu)->fAmdMmxExts) ) \
|
---|
8714 | return iemRaiseUndefinedOpcode(pIemCpu); \
|
---|
8715 | if (pIemCpu->CTX_SUFF(pCtx)->cr0 & X86_CR0_TS) \
|
---|
8716 | return iemRaiseDeviceNotAvailable(pIemCpu); \
|
---|
8717 | } while (0)
|
---|
8718 | #define IEM_MC_RAISE_GP0_IF_CPL_NOT_ZERO() \
|
---|
8719 | do { \
|
---|
8720 | if (pIemCpu->uCpl != 0) \
|
---|
8721 | return iemRaiseGeneralProtectionFault0(pIemCpu); \
|
---|
8722 | } while (0)
|
---|
8723 |
|
---|
8724 |
|
---|
8725 | #define IEM_MC_LOCAL(a_Type, a_Name) a_Type a_Name
|
---|
8726 | #define IEM_MC_LOCAL_CONST(a_Type, a_Name, a_Value) a_Type const a_Name = (a_Value)
|
---|
8727 | #define IEM_MC_REF_LOCAL(a_pRefArg, a_Local) (a_pRefArg) = &(a_Local)
|
---|
8728 | #define IEM_MC_ARG(a_Type, a_Name, a_iArg) a_Type a_Name
|
---|
8729 | #define IEM_MC_ARG_CONST(a_Type, a_Name, a_Value, a_iArg) a_Type const a_Name = (a_Value)
|
---|
8730 | #define IEM_MC_ARG_LOCAL_REF(a_Type, a_Name, a_Local, a_iArg) a_Type const a_Name = &(a_Local)
|
---|
8731 | #define IEM_MC_ARG_LOCAL_EFLAGS(a_pName, a_Name, a_iArg) \
|
---|
8732 | uint32_t a_Name; \
|
---|
8733 | uint32_t *a_pName = &a_Name
|
---|
8734 | #define IEM_MC_COMMIT_EFLAGS(a_EFlags) \
|
---|
8735 | do { (pIemCpu)->CTX_SUFF(pCtx)->eflags.u = (a_EFlags); Assert((pIemCpu)->CTX_SUFF(pCtx)->eflags.u & X86_EFL_1); } while (0)
|
---|
8736 |
|
---|
8737 | #define IEM_MC_ASSIGN(a_VarOrArg, a_CVariableOrConst) (a_VarOrArg) = (a_CVariableOrConst)
|
---|
8738 | #define IEM_MC_ASSIGN_TO_SMALLER IEM_MC_ASSIGN
|
---|
8739 |
|
---|
8740 | #define IEM_MC_FETCH_GREG_U8(a_u8Dst, a_iGReg) (a_u8Dst) = iemGRegFetchU8(pIemCpu, (a_iGReg))
|
---|
8741 | #define IEM_MC_FETCH_GREG_U8_ZX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU8(pIemCpu, (a_iGReg))
|
---|
8742 | #define IEM_MC_FETCH_GREG_U8_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU8(pIemCpu, (a_iGReg))
|
---|
8743 | #define IEM_MC_FETCH_GREG_U8_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU8(pIemCpu, (a_iGReg))
|
---|
8744 | #define IEM_MC_FETCH_GREG_U8_SX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = (int8_t)iemGRegFetchU8(pIemCpu, (a_iGReg))
|
---|
8745 | #define IEM_MC_FETCH_GREG_U8_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int8_t)iemGRegFetchU8(pIemCpu, (a_iGReg))
|
---|
8746 | #define IEM_MC_FETCH_GREG_U8_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int8_t)iemGRegFetchU8(pIemCpu, (a_iGReg))
|
---|
8747 | #define IEM_MC_FETCH_GREG_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU16(pIemCpu, (a_iGReg))
|
---|
8748 | #define IEM_MC_FETCH_GREG_U16_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU16(pIemCpu, (a_iGReg))
|
---|
8749 | #define IEM_MC_FETCH_GREG_U16_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU16(pIemCpu, (a_iGReg))
|
---|
8750 | #define IEM_MC_FETCH_GREG_U16_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int16_t)iemGRegFetchU16(pIemCpu, (a_iGReg))
|
---|
8751 | #define IEM_MC_FETCH_GREG_U16_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int16_t)iemGRegFetchU16(pIemCpu, (a_iGReg))
|
---|
8752 | #define IEM_MC_FETCH_GREG_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU32(pIemCpu, (a_iGReg))
|
---|
8753 | #define IEM_MC_FETCH_GREG_U32_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU32(pIemCpu, (a_iGReg))
|
---|
8754 | #define IEM_MC_FETCH_GREG_U32_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int32_t)iemGRegFetchU32(pIemCpu, (a_iGReg))
|
---|
8755 | #define IEM_MC_FETCH_GREG_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU64(pIemCpu, (a_iGReg))
|
---|
8756 | #define IEM_MC_FETCH_GREG_U64_ZX_U64 IEM_MC_FETCH_GREG_U64
|
---|
8757 | #define IEM_MC_FETCH_SREG_U16(a_u16Dst, a_iSReg) (a_u16Dst) = iemSRegFetchU16(pIemCpu, (a_iSReg))
|
---|
8758 | #define IEM_MC_FETCH_SREG_ZX_U32(a_u32Dst, a_iSReg) (a_u32Dst) = iemSRegFetchU16(pIemCpu, (a_iSReg))
|
---|
8759 | #define IEM_MC_FETCH_SREG_ZX_U64(a_u64Dst, a_iSReg) (a_u64Dst) = iemSRegFetchU16(pIemCpu, (a_iSReg))
|
---|
8760 | #define IEM_MC_FETCH_CR0_U16(a_u16Dst) (a_u16Dst) = (uint16_t)(pIemCpu)->CTX_SUFF(pCtx)->cr0
|
---|
8761 | #define IEM_MC_FETCH_CR0_U32(a_u32Dst) (a_u32Dst) = (uint32_t)(pIemCpu)->CTX_SUFF(pCtx)->cr0
|
---|
8762 | #define IEM_MC_FETCH_CR0_U64(a_u64Dst) (a_u64Dst) = (pIemCpu)->CTX_SUFF(pCtx)->cr0
|
---|
8763 | #define IEM_MC_FETCH_LDTR_U16(a_u16Dst) (a_u16Dst) = (pIemCpu)->CTX_SUFF(pCtx)->ldtr.Sel
|
---|
8764 | #define IEM_MC_FETCH_LDTR_U32(a_u32Dst) (a_u32Dst) = (pIemCpu)->CTX_SUFF(pCtx)->ldtr.Sel
|
---|
8765 | #define IEM_MC_FETCH_LDTR_U64(a_u64Dst) (a_u64Dst) = (pIemCpu)->CTX_SUFF(pCtx)->ldtr.Sel
|
---|
8766 | #define IEM_MC_FETCH_TR_U16(a_u16Dst) (a_u16Dst) = (pIemCpu)->CTX_SUFF(pCtx)->tr.Sel
|
---|
8767 | #define IEM_MC_FETCH_TR_U32(a_u32Dst) (a_u32Dst) = (pIemCpu)->CTX_SUFF(pCtx)->tr.Sel
|
---|
8768 | #define IEM_MC_FETCH_TR_U64(a_u64Dst) (a_u64Dst) = (pIemCpu)->CTX_SUFF(pCtx)->tr.Sel
|
---|
8769 | /** @note Not for IOPL or IF testing or modification. */
|
---|
8770 | #define IEM_MC_FETCH_EFLAGS(a_EFlags) (a_EFlags) = (pIemCpu)->CTX_SUFF(pCtx)->eflags.u
|
---|
8771 | #define IEM_MC_FETCH_EFLAGS_U8(a_EFlags) (a_EFlags) = (uint8_t)(pIemCpu)->CTX_SUFF(pCtx)->eflags.u
|
---|
8772 | #define IEM_MC_FETCH_FSW(a_u16Fsw) (a_u16Fsw) = pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.FSW
|
---|
8773 | #define IEM_MC_FETCH_FCW(a_u16Fcw) (a_u16Fcw) = pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.FCW
|
---|
8774 |
|
---|
8775 | #define IEM_MC_STORE_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8(pIemCpu, (a_iGReg)) = (a_u8Value)
|
---|
8776 | #define IEM_MC_STORE_GREG_U16(a_iGReg, a_u16Value) *(uint16_t *)iemGRegRef(pIemCpu, (a_iGReg)) = (a_u16Value)
|
---|
8777 | #define IEM_MC_STORE_GREG_U32(a_iGReg, a_u32Value) *(uint64_t *)iemGRegRef(pIemCpu, (a_iGReg)) = (uint32_t)(a_u32Value) /* clear high bits. */
|
---|
8778 | #define IEM_MC_STORE_GREG_U64(a_iGReg, a_u64Value) *(uint64_t *)iemGRegRef(pIemCpu, (a_iGReg)) = (a_u64Value)
|
---|
8779 | #define IEM_MC_STORE_GREG_U8_CONST IEM_MC_STORE_GREG_U8
|
---|
8780 | #define IEM_MC_STORE_GREG_U16_CONST IEM_MC_STORE_GREG_U16
|
---|
8781 | #define IEM_MC_STORE_GREG_U32_CONST IEM_MC_STORE_GREG_U32
|
---|
8782 | #define IEM_MC_STORE_GREG_U64_CONST IEM_MC_STORE_GREG_U64
|
---|
8783 | #define IEM_MC_CLEAR_HIGH_GREG_U64(a_iGReg) *(uint64_t *)iemGRegRef(pIemCpu, (a_iGReg)) &= UINT32_MAX
|
---|
8784 | #define IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(a_pu32Dst) do { (a_pu32Dst)[1] = 0; } while (0)
|
---|
8785 | #define IEM_MC_STORE_FPUREG_R80_SRC_REF(a_iSt, a_pr80Src) \
|
---|
8786 | do { pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aRegs[a_iSt].r80 = *(a_pr80Src); } while (0)
|
---|
8787 |
|
---|
8788 | #define IEM_MC_REF_GREG_U8(a_pu8Dst, a_iGReg) (a_pu8Dst) = iemGRegRefU8(pIemCpu, (a_iGReg))
|
---|
8789 | #define IEM_MC_REF_GREG_U16(a_pu16Dst, a_iGReg) (a_pu16Dst) = (uint16_t *)iemGRegRef(pIemCpu, (a_iGReg))
|
---|
8790 | /** @todo User of IEM_MC_REF_GREG_U32 needs to clear the high bits on commit.
|
---|
8791 | * Use IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF! */
|
---|
8792 | #define IEM_MC_REF_GREG_U32(a_pu32Dst, a_iGReg) (a_pu32Dst) = (uint32_t *)iemGRegRef(pIemCpu, (a_iGReg))
|
---|
8793 | #define IEM_MC_REF_GREG_U64(a_pu64Dst, a_iGReg) (a_pu64Dst) = (uint64_t *)iemGRegRef(pIemCpu, (a_iGReg))
|
---|
8794 | /** @note Not for IOPL or IF testing or modification. */
|
---|
8795 | #define IEM_MC_REF_EFLAGS(a_pEFlags) (a_pEFlags) = &(pIemCpu)->CTX_SUFF(pCtx)->eflags.u
|
---|
8796 |
|
---|
8797 | #define IEM_MC_ADD_GREG_U8(a_iGReg, a_u8Value) *(uint8_t *)iemGRegRef(pIemCpu, (a_iGReg)) += (a_u8Value)
|
---|
8798 | #define IEM_MC_ADD_GREG_U16(a_iGReg, a_u16Value) *(uint16_t *)iemGRegRef(pIemCpu, (a_iGReg)) += (a_u16Value)
|
---|
8799 | #define IEM_MC_ADD_GREG_U32(a_iGReg, a_u32Value) \
|
---|
8800 | do { \
|
---|
8801 | uint32_t *pu32Reg = (uint32_t *)iemGRegRef(pIemCpu, (a_iGReg)); \
|
---|
8802 | *pu32Reg += (a_u32Value); \
|
---|
8803 | pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
|
---|
8804 | } while (0)
|
---|
8805 | #define IEM_MC_ADD_GREG_U64(a_iGReg, a_u64Value) *(uint64_t *)iemGRegRef(pIemCpu, (a_iGReg)) += (a_u64Value)
|
---|
8806 |
|
---|
8807 | #define IEM_MC_SUB_GREG_U8(a_iGReg, a_u8Value) *(uint8_t *)iemGRegRef(pIemCpu, (a_iGReg)) -= (a_u8Value)
|
---|
8808 | #define IEM_MC_SUB_GREG_U16(a_iGReg, a_u16Value) *(uint16_t *)iemGRegRef(pIemCpu, (a_iGReg)) -= (a_u16Value)
|
---|
8809 | #define IEM_MC_SUB_GREG_U32(a_iGReg, a_u32Value) \
|
---|
8810 | do { \
|
---|
8811 | uint32_t *pu32Reg = (uint32_t *)iemGRegRef(pIemCpu, (a_iGReg)); \
|
---|
8812 | *pu32Reg -= (a_u32Value); \
|
---|
8813 | pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
|
---|
8814 | } while (0)
|
---|
8815 | #define IEM_MC_SUB_GREG_U64(a_iGReg, a_u64Value) *(uint64_t *)iemGRegRef(pIemCpu, (a_iGReg)) -= (a_u64Value)
|
---|
8816 | #define IEM_MC_SUB_LOCAL_U16(a_u16Value, a_u16Const) do { (a_u16Value) -= a_u16Const; } while (0)
|
---|
8817 |
|
---|
8818 | #define IEM_MC_ADD_GREG_U8_TO_LOCAL(a_u8Value, a_iGReg) do { (a_u8Value) += iemGRegFetchU8( pIemCpu, (a_iGReg)); } while (0)
|
---|
8819 | #define IEM_MC_ADD_GREG_U16_TO_LOCAL(a_u16Value, a_iGReg) do { (a_u16Value) += iemGRegFetchU16(pIemCpu, (a_iGReg)); } while (0)
|
---|
8820 | #define IEM_MC_ADD_GREG_U32_TO_LOCAL(a_u32Value, a_iGReg) do { (a_u32Value) += iemGRegFetchU32(pIemCpu, (a_iGReg)); } while (0)
|
---|
8821 | #define IEM_MC_ADD_GREG_U64_TO_LOCAL(a_u64Value, a_iGReg) do { (a_u64Value) += iemGRegFetchU64(pIemCpu, (a_iGReg)); } while (0)
|
---|
8822 | #define IEM_MC_ADD_LOCAL_S16_TO_EFF_ADDR(a_EffAddr, a_i16) do { (a_EffAddr) += (a_i16); } while (0)
|
---|
8823 | #define IEM_MC_ADD_LOCAL_S32_TO_EFF_ADDR(a_EffAddr, a_i32) do { (a_EffAddr) += (a_i32); } while (0)
|
---|
8824 | #define IEM_MC_ADD_LOCAL_S64_TO_EFF_ADDR(a_EffAddr, a_i64) do { (a_EffAddr) += (a_i64); } while (0)
|
---|
8825 |
|
---|
8826 | #define IEM_MC_AND_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) &= (a_u8Mask); } while (0)
|
---|
8827 | #define IEM_MC_AND_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) &= (a_u16Mask); } while (0)
|
---|
8828 | #define IEM_MC_AND_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
|
---|
8829 | #define IEM_MC_AND_LOCAL_U64(a_u64Local, a_u64Mask) do { (a_u64Local) &= (a_u64Mask); } while (0)
|
---|
8830 |
|
---|
8831 | #define IEM_MC_AND_ARG_U16(a_u16Arg, a_u16Mask) do { (a_u16Arg) &= (a_u16Mask); } while (0)
|
---|
8832 | #define IEM_MC_AND_ARG_U32(a_u32Arg, a_u32Mask) do { (a_u32Arg) &= (a_u32Mask); } while (0)
|
---|
8833 | #define IEM_MC_AND_ARG_U64(a_u64Arg, a_u64Mask) do { (a_u64Arg) &= (a_u64Mask); } while (0)
|
---|
8834 |
|
---|
8835 | #define IEM_MC_OR_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) |= (a_u8Mask); } while (0)
|
---|
8836 | #define IEM_MC_OR_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) |= (a_u16Mask); } while (0)
|
---|
8837 | #define IEM_MC_OR_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
|
---|
8838 |
|
---|
8839 | #define IEM_MC_SAR_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) >>= (a_cShift); } while (0)
|
---|
8840 | #define IEM_MC_SAR_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) >>= (a_cShift); } while (0)
|
---|
8841 | #define IEM_MC_SAR_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) >>= (a_cShift); } while (0)
|
---|
8842 |
|
---|
8843 | #define IEM_MC_SHL_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) <<= (a_cShift); } while (0)
|
---|
8844 | #define IEM_MC_SHL_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) <<= (a_cShift); } while (0)
|
---|
8845 | #define IEM_MC_SHL_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) <<= (a_cShift); } while (0)
|
---|
8846 |
|
---|
8847 | #define IEM_MC_AND_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
|
---|
8848 |
|
---|
8849 | #define IEM_MC_OR_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
|
---|
8850 |
|
---|
8851 | #define IEM_MC_AND_GREG_U8(a_iGReg, a_u8Value) *(uint8_t *)iemGRegRef(pIemCpu, (a_iGReg)) &= (a_u8Value)
|
---|
8852 | #define IEM_MC_AND_GREG_U16(a_iGReg, a_u16Value) *(uint16_t *)iemGRegRef(pIemCpu, (a_iGReg)) &= (a_u16Value)
|
---|
8853 | #define IEM_MC_AND_GREG_U32(a_iGReg, a_u32Value) \
|
---|
8854 | do { \
|
---|
8855 | uint32_t *pu32Reg = (uint32_t *)iemGRegRef(pIemCpu, (a_iGReg)); \
|
---|
8856 | *pu32Reg &= (a_u32Value); \
|
---|
8857 | pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
|
---|
8858 | } while (0)
|
---|
8859 | #define IEM_MC_AND_GREG_U64(a_iGReg, a_u64Value) *(uint64_t *)iemGRegRef(pIemCpu, (a_iGReg)) &= (a_u64Value)
|
---|
8860 |
|
---|
8861 | #define IEM_MC_OR_GREG_U8(a_iGReg, a_u8Value) *(uint8_t *)iemGRegRef(pIemCpu, (a_iGReg)) |= (a_u8Value)
|
---|
8862 | #define IEM_MC_OR_GREG_U16(a_iGReg, a_u16Value) *(uint16_t *)iemGRegRef(pIemCpu, (a_iGReg)) |= (a_u16Value)
|
---|
8863 | #define IEM_MC_OR_GREG_U32(a_iGReg, a_u32Value) \
|
---|
8864 | do { \
|
---|
8865 | uint32_t *pu32Reg = (uint32_t *)iemGRegRef(pIemCpu, (a_iGReg)); \
|
---|
8866 | *pu32Reg |= (a_u32Value); \
|
---|
8867 | pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
|
---|
8868 | } while (0)
|
---|
8869 | #define IEM_MC_OR_GREG_U64(a_iGReg, a_u64Value) *(uint64_t *)iemGRegRef(pIemCpu, (a_iGReg)) |= (a_u64Value)
|
---|
8870 |
|
---|
8871 |
|
---|
8872 | /** @note Not for IOPL or IF modification. */
|
---|
8873 | #define IEM_MC_SET_EFL_BIT(a_fBit) do { (pIemCpu)->CTX_SUFF(pCtx)->eflags.u |= (a_fBit); } while (0)
|
---|
8874 | /** @note Not for IOPL or IF modification. */
|
---|
8875 | #define IEM_MC_CLEAR_EFL_BIT(a_fBit) do { (pIemCpu)->CTX_SUFF(pCtx)->eflags.u &= ~(a_fBit); } while (0)
|
---|
8876 | /** @note Not for IOPL or IF modification. */
|
---|
8877 | #define IEM_MC_FLIP_EFL_BIT(a_fBit) do { (pIemCpu)->CTX_SUFF(pCtx)->eflags.u ^= (a_fBit); } while (0)
|
---|
8878 |
|
---|
8879 | #define IEM_MC_CLEAR_FSW_EX() do { (pIemCpu)->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.FSW &= X86_FSW_C_MASK | X86_FSW_TOP_MASK; } while (0)
|
---|
8880 |
|
---|
8881 |
|
---|
8882 | #define IEM_MC_FETCH_MREG_U64(a_u64Value, a_iMReg) \
|
---|
8883 | do { (a_u64Value) = pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx; } while (0)
|
---|
8884 | #define IEM_MC_FETCH_MREG_U32(a_u32Value, a_iMReg) \
|
---|
8885 | do { (a_u32Value) = pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].au32[0]; } while (0)
|
---|
8886 | #define IEM_MC_STORE_MREG_U64(a_iMReg, a_u64Value) \
|
---|
8887 | do { pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx = (a_u64Value); } while (0)
|
---|
8888 | #define IEM_MC_STORE_MREG_U32_ZX_U64(a_iMReg, a_u32Value) \
|
---|
8889 | do { pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx = (uint32_t)(a_u32Value); } while (0)
|
---|
8890 | #define IEM_MC_REF_MREG_U64(a_pu64Dst, a_iMReg) \
|
---|
8891 | (a_pu64Dst) = (&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx)
|
---|
8892 | #define IEM_MC_REF_MREG_U64_CONST(a_pu64Dst, a_iMReg) \
|
---|
8893 | (a_pu64Dst) = ((uint64_t const *)&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx)
|
---|
8894 | #define IEM_MC_REF_MREG_U32_CONST(a_pu32Dst, a_iMReg) \
|
---|
8895 | (a_pu32Dst) = ((uint32_t const *)&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx)
|
---|
8896 |
|
---|
8897 | #define IEM_MC_FETCH_XREG_U128(a_u128Value, a_iXReg) \
|
---|
8898 | do { (a_u128Value) = pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].xmm; } while (0)
|
---|
8899 | #define IEM_MC_FETCH_XREG_U64(a_u64Value, a_iXReg) \
|
---|
8900 | do { (a_u64Value) = pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[0]; } while (0)
|
---|
8901 | #define IEM_MC_FETCH_XREG_U32(a_u32Value, a_iXReg) \
|
---|
8902 | do { (a_u32Value) = pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au32[0]; } while (0)
|
---|
8903 | #define IEM_MC_STORE_XREG_U128(a_iXReg, a_u128Value) \
|
---|
8904 | do { pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].xmm = (a_u128Value); } while (0)
|
---|
8905 | #define IEM_MC_STORE_XREG_U64_ZX_U128(a_iXReg, a_u64Value) \
|
---|
8906 | do { pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); \
|
---|
8907 | pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[1] = 0; \
|
---|
8908 | } while (0)
|
---|
8909 | #define IEM_MC_STORE_XREG_U32_ZX_U128(a_iXReg, a_u32Value) \
|
---|
8910 | do { pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[0] = (uint32_t)(a_u32Value); \
|
---|
8911 | pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[1] = 0; \
|
---|
8912 | } while (0)
|
---|
8913 | #define IEM_MC_REF_XREG_U128(a_pu128Dst, a_iXReg) \
|
---|
8914 | (a_pu128Dst) = (&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].xmm)
|
---|
8915 | #define IEM_MC_REF_XREG_U128_CONST(a_pu128Dst, a_iXReg) \
|
---|
8916 | (a_pu128Dst) = ((uint128_t const *)&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].xmm)
|
---|
8917 | #define IEM_MC_REF_XREG_U64_CONST(a_pu64Dst, a_iXReg) \
|
---|
8918 | (a_pu64Dst) = ((uint64_t const *)&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[0])
|
---|
8919 | #define IEM_MC_COPY_XREG_U128(a_iXRegDst, a_iXRegSrc) \
|
---|
8920 | do { pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXRegDst)].xmm \
|
---|
8921 | = pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.aXMM[(a_iXRegSrc)].xmm; } while (0)
|
---|
8922 |
|
---|
8923 | #define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
|
---|
8924 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pIemCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8925 | #define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
|
---|
8926 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pIemCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem16)))
|
---|
8927 | #define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
|
---|
8928 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pIemCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem32)))
|
---|
8929 |
|
---|
8930 | #define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
8931 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pIemCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8932 | #define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
|
---|
8933 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pIemCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
|
---|
8934 | #define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
|
---|
8935 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pIemCpu, (uint16_t *)&(a_i16Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8936 |
|
---|
8937 | #define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
8938 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pIemCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8939 | #define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
|
---|
8940 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pIemCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
|
---|
8941 | #define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
|
---|
8942 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pIemCpu, (uint32_t *)&(a_i32Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8943 |
|
---|
8944 | #define IEM_MC_FETCH_MEM_S32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
8945 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataS32SxU64(pIemCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8946 |
|
---|
8947 | #define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
8948 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pIemCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8949 | #define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
|
---|
8950 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pIemCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
|
---|
8951 | #define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
|
---|
8952 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64AlignedU128(pIemCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8953 | #define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
|
---|
8954 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pIemCpu, (uint64_t *)&(a_i64Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8955 |
|
---|
8956 | #define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
|
---|
8957 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pIemCpu, &(a_r32Dst).u32, (a_iSeg), (a_GCPtrMem)))
|
---|
8958 | #define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
|
---|
8959 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pIemCpu, &(a_r64Dst).au64[0], (a_iSeg), (a_GCPtrMem)))
|
---|
8960 | #define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
|
---|
8961 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataR80(pIemCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8962 |
|
---|
8963 | #define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
|
---|
8964 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pIemCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8965 | #define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
|
---|
8966 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pIemCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
8967 |
|
---|
8968 |
|
---|
8969 |
|
---|
8970 | #define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
8971 | do { \
|
---|
8972 | uint8_t u8Tmp; \
|
---|
8973 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pIemCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
8974 | (a_u16Dst) = u8Tmp; \
|
---|
8975 | } while (0)
|
---|
8976 | #define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
8977 | do { \
|
---|
8978 | uint8_t u8Tmp; \
|
---|
8979 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pIemCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
8980 | (a_u32Dst) = u8Tmp; \
|
---|
8981 | } while (0)
|
---|
8982 | #define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
8983 | do { \
|
---|
8984 | uint8_t u8Tmp; \
|
---|
8985 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pIemCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
8986 | (a_u64Dst) = u8Tmp; \
|
---|
8987 | } while (0)
|
---|
8988 | #define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
8989 | do { \
|
---|
8990 | uint16_t u16Tmp; \
|
---|
8991 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pIemCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
8992 | (a_u32Dst) = u16Tmp; \
|
---|
8993 | } while (0)
|
---|
8994 | #define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
8995 | do { \
|
---|
8996 | uint16_t u16Tmp; \
|
---|
8997 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pIemCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
8998 | (a_u64Dst) = u16Tmp; \
|
---|
8999 | } while (0)
|
---|
9000 | #define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
9001 | do { \
|
---|
9002 | uint32_t u32Tmp; \
|
---|
9003 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pIemCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
9004 | (a_u64Dst) = u32Tmp; \
|
---|
9005 | } while (0)
|
---|
9006 |
|
---|
9007 | #define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
9008 | do { \
|
---|
9009 | uint8_t u8Tmp; \
|
---|
9010 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pIemCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
9011 | (a_u16Dst) = (int8_t)u8Tmp; \
|
---|
9012 | } while (0)
|
---|
9013 | #define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
9014 | do { \
|
---|
9015 | uint8_t u8Tmp; \
|
---|
9016 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pIemCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
9017 | (a_u32Dst) = (int8_t)u8Tmp; \
|
---|
9018 | } while (0)
|
---|
9019 | #define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
9020 | do { \
|
---|
9021 | uint8_t u8Tmp; \
|
---|
9022 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pIemCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
9023 | (a_u64Dst) = (int8_t)u8Tmp; \
|
---|
9024 | } while (0)
|
---|
9025 | #define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
9026 | do { \
|
---|
9027 | uint16_t u16Tmp; \
|
---|
9028 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pIemCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
9029 | (a_u32Dst) = (int16_t)u16Tmp; \
|
---|
9030 | } while (0)
|
---|
9031 | #define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
9032 | do { \
|
---|
9033 | uint16_t u16Tmp; \
|
---|
9034 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pIemCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
9035 | (a_u64Dst) = (int16_t)u16Tmp; \
|
---|
9036 | } while (0)
|
---|
9037 | #define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
9038 | do { \
|
---|
9039 | uint32_t u32Tmp; \
|
---|
9040 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pIemCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
9041 | (a_u64Dst) = (int32_t)u32Tmp; \
|
---|
9042 | } while (0)
|
---|
9043 |
|
---|
9044 | #define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
|
---|
9045 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pIemCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value)))
|
---|
9046 | #define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
|
---|
9047 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pIemCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value)))
|
---|
9048 | #define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
|
---|
9049 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pIemCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value)))
|
---|
9050 | #define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
|
---|
9051 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pIemCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value)))
|
---|
9052 |
|
---|
9053 | #define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
|
---|
9054 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pIemCpu, (a_iSeg), (a_GCPtrMem), (a_u8C)))
|
---|
9055 | #define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
|
---|
9056 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pIemCpu, (a_iSeg), (a_GCPtrMem), (a_u16C)))
|
---|
9057 | #define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
|
---|
9058 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pIemCpu, (a_iSeg), (a_GCPtrMem), (a_u32C)))
|
---|
9059 | #define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
|
---|
9060 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pIemCpu, (a_iSeg), (a_GCPtrMem), (a_u64C)))
|
---|
9061 |
|
---|
9062 | #define IEM_MC_STORE_MEM_I8_CONST_BY_REF( a_pi8Dst, a_i8C) *(a_pi8Dst) = (a_i8C)
|
---|
9063 | #define IEM_MC_STORE_MEM_I16_CONST_BY_REF(a_pi16Dst, a_i16C) *(a_pi16Dst) = (a_i16C)
|
---|
9064 | #define IEM_MC_STORE_MEM_I32_CONST_BY_REF(a_pi32Dst, a_i32C) *(a_pi32Dst) = (a_i32C)
|
---|
9065 | #define IEM_MC_STORE_MEM_I64_CONST_BY_REF(a_pi64Dst, a_i64C) *(a_pi64Dst) = (a_i64C)
|
---|
9066 | #define IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(a_pr32Dst) (a_pr32Dst)->u32 = UINT32_C(0xffc00000)
|
---|
9067 | #define IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(a_pr64Dst) (a_pr64Dst)->au64[0] = UINT64_C(0xfff8000000000000)
|
---|
9068 | #define IEM_MC_STORE_MEM_NEG_QNAN_R80_BY_REF(a_pr80Dst) \
|
---|
9069 | do { \
|
---|
9070 | (a_pr80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
|
---|
9071 | (a_pr80Dst)->au16[4] = UINT16_C(0xffff); \
|
---|
9072 | } while (0)
|
---|
9073 |
|
---|
9074 | #define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
|
---|
9075 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128(pIemCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
|
---|
9076 | #define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
|
---|
9077 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128AlignedSse(pIemCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
|
---|
9078 |
|
---|
9079 |
|
---|
9080 | #define IEM_MC_PUSH_U16(a_u16Value) \
|
---|
9081 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pIemCpu, (a_u16Value)))
|
---|
9082 | #define IEM_MC_PUSH_U32(a_u32Value) \
|
---|
9083 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pIemCpu, (a_u32Value)))
|
---|
9084 | #define IEM_MC_PUSH_U32_SREG(a_u32Value) \
|
---|
9085 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pIemCpu, (a_u32Value)))
|
---|
9086 | #define IEM_MC_PUSH_U64(a_u64Value) \
|
---|
9087 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pIemCpu, (a_u64Value)))
|
---|
9088 |
|
---|
9089 | #define IEM_MC_POP_U16(a_pu16Value) \
|
---|
9090 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU16(pIemCpu, (a_pu16Value)))
|
---|
9091 | #define IEM_MC_POP_U32(a_pu32Value) \
|
---|
9092 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU32(pIemCpu, (a_pu32Value)))
|
---|
9093 | #define IEM_MC_POP_U64(a_pu64Value) \
|
---|
9094 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU64(pIemCpu, (a_pu64Value)))
|
---|
9095 |
|
---|
9096 | /** Maps guest memory for direct or bounce buffered access.
|
---|
9097 | * The purpose is to pass it to an operand implementation, thus the a_iArg.
|
---|
9098 | * @remarks May return.
|
---|
9099 | */
|
---|
9100 | #define IEM_MC_MEM_MAP(a_pMem, a_fAccess, a_iSeg, a_GCPtrMem, a_iArg) \
|
---|
9101 | IEM_MC_RETURN_ON_FAILURE(iemMemMap(pIemCpu, (void **)&(a_pMem), sizeof(*(a_pMem)), (a_iSeg), (a_GCPtrMem), (a_fAccess)))
|
---|
9102 |
|
---|
9103 | /** Maps guest memory for direct or bounce buffered access.
|
---|
9104 | * The purpose is to pass it to an operand implementation, thus the a_iArg.
|
---|
9105 | * @remarks May return.
|
---|
9106 | */
|
---|
9107 | #define IEM_MC_MEM_MAP_EX(a_pvMem, a_fAccess, a_cbMem, a_iSeg, a_GCPtrMem, a_iArg) \
|
---|
9108 | IEM_MC_RETURN_ON_FAILURE(iemMemMap(pIemCpu, (void **)&(a_pvMem), (a_cbMem), (a_iSeg), (a_GCPtrMem), (a_fAccess)))
|
---|
9109 |
|
---|
9110 | /** Commits the memory and unmaps the guest memory.
|
---|
9111 | * @remarks May return.
|
---|
9112 | */
|
---|
9113 | #define IEM_MC_MEM_COMMIT_AND_UNMAP(a_pvMem, a_fAccess) \
|
---|
9114 | IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pIemCpu, (a_pvMem), (a_fAccess)))
|
---|
9115 |
|
---|
9116 | /** Commits the memory and unmaps the guest memory unless the FPU status word
|
---|
9117 | * indicates (@a a_u16FSW) and FPU control word indicates a pending exception
|
---|
9118 | * that would cause FLD not to store.
|
---|
9119 | *
|
---|
9120 | * The current understanding is that \#O, \#U, \#IA and \#IS will prevent a
|
---|
9121 | * store, while \#P will not.
|
---|
9122 | *
|
---|
9123 | * @remarks May in theory return - for now.
|
---|
9124 | */
|
---|
9125 | #define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(a_pvMem, a_fAccess, a_u16FSW) \
|
---|
9126 | do { \
|
---|
9127 | if ( !(a_u16FSW & X86_FSW_ES) \
|
---|
9128 | || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
|
---|
9129 | & ~(pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.FCW & X86_FCW_MASK_ALL) ) ) \
|
---|
9130 | IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pIemCpu, (a_pvMem), (a_fAccess))); \
|
---|
9131 | } while (0)
|
---|
9132 |
|
---|
9133 | /** Calculate efficient address from R/M. */
|
---|
9134 | #define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, bRm, cbImm) \
|
---|
9135 | IEM_MC_RETURN_ON_FAILURE(iemOpHlpCalcRmEffAddr(pIemCpu, (bRm), (cbImm), &(a_GCPtrEff)))
|
---|
9136 |
|
---|
9137 | #define IEM_MC_CALL_VOID_AIMPL_0(a_pfn) (a_pfn)()
|
---|
9138 | #define IEM_MC_CALL_VOID_AIMPL_1(a_pfn, a0) (a_pfn)((a0))
|
---|
9139 | #define IEM_MC_CALL_VOID_AIMPL_2(a_pfn, a0, a1) (a_pfn)((a0), (a1))
|
---|
9140 | #define IEM_MC_CALL_VOID_AIMPL_3(a_pfn, a0, a1, a2) (a_pfn)((a0), (a1), (a2))
|
---|
9141 | #define IEM_MC_CALL_VOID_AIMPL_4(a_pfn, a0, a1, a2, a3) (a_pfn)((a0), (a1), (a2), (a3))
|
---|
9142 | #define IEM_MC_CALL_AIMPL_3(a_rc, a_pfn, a0, a1, a2) (a_rc) = (a_pfn)((a0), (a1), (a2))
|
---|
9143 | #define IEM_MC_CALL_AIMPL_4(a_rc, a_pfn, a0, a1, a2, a3) (a_rc) = (a_pfn)((a0), (a1), (a2), (a3))
|
---|
9144 |
|
---|
9145 | /**
|
---|
9146 | * Defers the rest of the instruction emulation to a C implementation routine
|
---|
9147 | * and returns, only taking the standard parameters.
|
---|
9148 | *
|
---|
9149 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
9150 | * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
|
---|
9151 | */
|
---|
9152 | #define IEM_MC_CALL_CIMPL_0(a_pfnCImpl) return (a_pfnCImpl)(pIemCpu, pIemCpu->offOpcode)
|
---|
9153 |
|
---|
9154 | /**
|
---|
9155 | * Defers the rest of instruction emulation to a C implementation routine and
|
---|
9156 | * returns, taking one argument in addition to the standard ones.
|
---|
9157 | *
|
---|
9158 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
9159 | * @param a0 The argument.
|
---|
9160 | */
|
---|
9161 | #define IEM_MC_CALL_CIMPL_1(a_pfnCImpl, a0) return (a_pfnCImpl)(pIemCpu, pIemCpu->offOpcode, a0)
|
---|
9162 |
|
---|
9163 | /**
|
---|
9164 | * Defers the rest of the instruction emulation to a C implementation routine
|
---|
9165 | * and returns, taking two arguments in addition to the standard ones.
|
---|
9166 | *
|
---|
9167 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
9168 | * @param a0 The first extra argument.
|
---|
9169 | * @param a1 The second extra argument.
|
---|
9170 | */
|
---|
9171 | #define IEM_MC_CALL_CIMPL_2(a_pfnCImpl, a0, a1) return (a_pfnCImpl)(pIemCpu, pIemCpu->offOpcode, a0, a1)
|
---|
9172 |
|
---|
9173 | /**
|
---|
9174 | * Defers the rest of the instruction emulation to a C implementation routine
|
---|
9175 | * and returns, taking three arguments in addition to the standard ones.
|
---|
9176 | *
|
---|
9177 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
9178 | * @param a0 The first extra argument.
|
---|
9179 | * @param a1 The second extra argument.
|
---|
9180 | * @param a2 The third extra argument.
|
---|
9181 | */
|
---|
9182 | #define IEM_MC_CALL_CIMPL_3(a_pfnCImpl, a0, a1, a2) return (a_pfnCImpl)(pIemCpu, pIemCpu->offOpcode, a0, a1, a2)
|
---|
9183 |
|
---|
9184 | /**
|
---|
9185 | * Defers the rest of the instruction emulation to a C implementation routine
|
---|
9186 | * and returns, taking four arguments in addition to the standard ones.
|
---|
9187 | *
|
---|
9188 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
9189 | * @param a0 The first extra argument.
|
---|
9190 | * @param a1 The second extra argument.
|
---|
9191 | * @param a2 The third extra argument.
|
---|
9192 | * @param a3 The fourth extra argument.
|
---|
9193 | */
|
---|
9194 | #define IEM_MC_CALL_CIMPL_4(a_pfnCImpl, a0, a1, a2, a3) return (a_pfnCImpl)(pIemCpu, pIemCpu->offOpcode, a0, a1, a2, a3)
|
---|
9195 |
|
---|
9196 | /**
|
---|
9197 | * Defers the rest of the instruction emulation to a C implementation routine
|
---|
9198 | * and returns, taking two arguments in addition to the standard ones.
|
---|
9199 | *
|
---|
9200 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
9201 | * @param a0 The first extra argument.
|
---|
9202 | * @param a1 The second extra argument.
|
---|
9203 | * @param a2 The third extra argument.
|
---|
9204 | * @param a3 The fourth extra argument.
|
---|
9205 | * @param a4 The fifth extra argument.
|
---|
9206 | */
|
---|
9207 | #define IEM_MC_CALL_CIMPL_5(a_pfnCImpl, a0, a1, a2, a3, a4) return (a_pfnCImpl)(pIemCpu, pIemCpu->offOpcode, a0, a1, a2, a3, a4)
|
---|
9208 |
|
---|
9209 | /**
|
---|
9210 | * Defers the entire instruction emulation to a C implementation routine and
|
---|
9211 | * returns, only taking the standard parameters.
|
---|
9212 | *
|
---|
9213 | * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
|
---|
9214 | *
|
---|
9215 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
9216 | * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
|
---|
9217 | */
|
---|
9218 | #define IEM_MC_DEFER_TO_CIMPL_0(a_pfnCImpl) (a_pfnCImpl)(pIemCpu, pIemCpu->offOpcode)
|
---|
9219 |
|
---|
9220 | /**
|
---|
9221 | * Defers the entire instruction emulation to a C implementation routine and
|
---|
9222 | * returns, taking one argument in addition to the standard ones.
|
---|
9223 | *
|
---|
9224 | * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
|
---|
9225 | *
|
---|
9226 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
9227 | * @param a0 The argument.
|
---|
9228 | */
|
---|
9229 | #define IEM_MC_DEFER_TO_CIMPL_1(a_pfnCImpl, a0) (a_pfnCImpl)(pIemCpu, pIemCpu->offOpcode, a0)
|
---|
9230 |
|
---|
9231 | /**
|
---|
9232 | * Defers the entire instruction emulation to a C implementation routine and
|
---|
9233 | * returns, taking two arguments in addition to the standard ones.
|
---|
9234 | *
|
---|
9235 | * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
|
---|
9236 | *
|
---|
9237 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
9238 | * @param a0 The first extra argument.
|
---|
9239 | * @param a1 The second extra argument.
|
---|
9240 | */
|
---|
9241 | #define IEM_MC_DEFER_TO_CIMPL_2(a_pfnCImpl, a0, a1) (a_pfnCImpl)(pIemCpu, pIemCpu->offOpcode, a0, a1)
|
---|
9242 |
|
---|
9243 | /**
|
---|
9244 | * Defers the entire instruction emulation to a C implementation routine and
|
---|
9245 | * returns, taking three arguments in addition to the standard ones.
|
---|
9246 | *
|
---|
9247 | * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
|
---|
9248 | *
|
---|
9249 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
9250 | * @param a0 The first extra argument.
|
---|
9251 | * @param a1 The second extra argument.
|
---|
9252 | * @param a2 The third extra argument.
|
---|
9253 | */
|
---|
9254 | #define IEM_MC_DEFER_TO_CIMPL_3(a_pfnCImpl, a0, a1, a2) (a_pfnCImpl)(pIemCpu, pIemCpu->offOpcode, a0, a1, a2)
|
---|
9255 |
|
---|
9256 | /**
|
---|
9257 | * Calls a FPU assembly implementation taking one visible argument.
|
---|
9258 | *
|
---|
9259 | * @param a_pfnAImpl Pointer to the assembly FPU routine.
|
---|
9260 | * @param a0 The first extra argument.
|
---|
9261 | */
|
---|
9262 | #define IEM_MC_CALL_FPU_AIMPL_1(a_pfnAImpl, a0) \
|
---|
9263 | do { \
|
---|
9264 | a_pfnAImpl(&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87, (a0)); \
|
---|
9265 | } while (0)
|
---|
9266 |
|
---|
9267 | /**
|
---|
9268 | * Calls a FPU assembly implementation taking two visible arguments.
|
---|
9269 | *
|
---|
9270 | * @param a_pfnAImpl Pointer to the assembly FPU routine.
|
---|
9271 | * @param a0 The first extra argument.
|
---|
9272 | * @param a1 The second extra argument.
|
---|
9273 | */
|
---|
9274 | #define IEM_MC_CALL_FPU_AIMPL_2(a_pfnAImpl, a0, a1) \
|
---|
9275 | do { \
|
---|
9276 | a_pfnAImpl(&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87, (a0), (a1)); \
|
---|
9277 | } while (0)
|
---|
9278 |
|
---|
9279 | /**
|
---|
9280 | * Calls a FPU assembly implementation taking three visible arguments.
|
---|
9281 | *
|
---|
9282 | * @param a_pfnAImpl Pointer to the assembly FPU routine.
|
---|
9283 | * @param a0 The first extra argument.
|
---|
9284 | * @param a1 The second extra argument.
|
---|
9285 | * @param a2 The third extra argument.
|
---|
9286 | */
|
---|
9287 | #define IEM_MC_CALL_FPU_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
|
---|
9288 | do { \
|
---|
9289 | a_pfnAImpl(&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87, (a0), (a1), (a2)); \
|
---|
9290 | } while (0)
|
---|
9291 |
|
---|
9292 | #define IEM_MC_SET_FPU_RESULT(a_FpuData, a_FSW, a_pr80Value) \
|
---|
9293 | do { \
|
---|
9294 | (a_FpuData).FSW = (a_FSW); \
|
---|
9295 | (a_FpuData).r80Result = *(a_pr80Value); \
|
---|
9296 | } while (0)
|
---|
9297 |
|
---|
9298 | /** Pushes FPU result onto the stack. */
|
---|
9299 | #define IEM_MC_PUSH_FPU_RESULT(a_FpuData) \
|
---|
9300 | iemFpuPushResult(pIemCpu, &a_FpuData)
|
---|
9301 | /** Pushes FPU result onto the stack and sets the FPUDP. */
|
---|
9302 | #define IEM_MC_PUSH_FPU_RESULT_MEM_OP(a_FpuData, a_iEffSeg, a_GCPtrEff) \
|
---|
9303 | iemFpuPushResultWithMemOp(pIemCpu, &a_FpuData, a_iEffSeg, a_GCPtrEff)
|
---|
9304 |
|
---|
9305 | /** Replaces ST0 with value one and pushes value 2 onto the FPU stack. */
|
---|
9306 | #define IEM_MC_PUSH_FPU_RESULT_TWO(a_FpuDataTwo) \
|
---|
9307 | iemFpuPushResultTwo(pIemCpu, &a_FpuDataTwo)
|
---|
9308 |
|
---|
9309 | /** Stores FPU result in a stack register. */
|
---|
9310 | #define IEM_MC_STORE_FPU_RESULT(a_FpuData, a_iStReg) \
|
---|
9311 | iemFpuStoreResult(pIemCpu, &a_FpuData, a_iStReg)
|
---|
9312 | /** Stores FPU result in a stack register and pops the stack. */
|
---|
9313 | #define IEM_MC_STORE_FPU_RESULT_THEN_POP(a_FpuData, a_iStReg) \
|
---|
9314 | iemFpuStoreResultThenPop(pIemCpu, &a_FpuData, a_iStReg)
|
---|
9315 | /** Stores FPU result in a stack register and sets the FPUDP. */
|
---|
9316 | #define IEM_MC_STORE_FPU_RESULT_MEM_OP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff) \
|
---|
9317 | iemFpuStoreResultWithMemOp(pIemCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff)
|
---|
9318 | /** Stores FPU result in a stack register, sets the FPUDP, and pops the
|
---|
9319 | * stack. */
|
---|
9320 | #define IEM_MC_STORE_FPU_RESULT_WITH_MEM_OP_THEN_POP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff) \
|
---|
9321 | iemFpuStoreResultWithMemOpThenPop(pIemCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff)
|
---|
9322 |
|
---|
9323 | /** Only update the FOP, FPUIP, and FPUCS. (For FNOP.) */
|
---|
9324 | #define IEM_MC_UPDATE_FPU_OPCODE_IP() \
|
---|
9325 | iemFpuUpdateOpcodeAndIp(pIemCpu)
|
---|
9326 | /** Free a stack register (for FFREE and FFREEP). */
|
---|
9327 | #define IEM_MC_FPU_STACK_FREE(a_iStReg) \
|
---|
9328 | iemFpuStackFree(pIemCpu, a_iStReg)
|
---|
9329 | /** Increment the FPU stack pointer. */
|
---|
9330 | #define IEM_MC_FPU_STACK_INC_TOP() \
|
---|
9331 | iemFpuStackIncTop(pIemCpu)
|
---|
9332 | /** Decrement the FPU stack pointer. */
|
---|
9333 | #define IEM_MC_FPU_STACK_DEC_TOP() \
|
---|
9334 | iemFpuStackDecTop(pIemCpu)
|
---|
9335 |
|
---|
9336 | /** Updates the FSW, FOP, FPUIP, and FPUCS. */
|
---|
9337 | #define IEM_MC_UPDATE_FSW(a_u16FSW) \
|
---|
9338 | iemFpuUpdateFSW(pIemCpu, a_u16FSW)
|
---|
9339 | /** Updates the FSW with a constant value as well as FOP, FPUIP, and FPUCS. */
|
---|
9340 | #define IEM_MC_UPDATE_FSW_CONST(a_u16FSW) \
|
---|
9341 | iemFpuUpdateFSW(pIemCpu, a_u16FSW)
|
---|
9342 | /** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS. */
|
---|
9343 | #define IEM_MC_UPDATE_FSW_WITH_MEM_OP(a_u16FSW, a_iEffSeg, a_GCPtrEff) \
|
---|
9344 | iemFpuUpdateFSWWithMemOp(pIemCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff)
|
---|
9345 | /** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack. */
|
---|
9346 | #define IEM_MC_UPDATE_FSW_THEN_POP(a_u16FSW) \
|
---|
9347 | iemFpuUpdateFSWThenPop(pIemCpu, a_u16FSW)
|
---|
9348 | /** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP and FPUDS, and then pops the
|
---|
9349 | * stack. */
|
---|
9350 | #define IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(a_u16FSW, a_iEffSeg, a_GCPtrEff) \
|
---|
9351 | iemFpuUpdateFSWWithMemOpThenPop(pIemCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff)
|
---|
9352 | /** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack twice. */
|
---|
9353 | #define IEM_MC_UPDATE_FSW_THEN_POP_POP(a_u16FSW) \
|
---|
9354 | iemFpuUpdateFSWThenPop(pIemCpu, a_u16FSW)
|
---|
9355 |
|
---|
9356 | /** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. */
|
---|
9357 | #define IEM_MC_FPU_STACK_UNDERFLOW(a_iStDst) \
|
---|
9358 | iemFpuStackUnderflow(pIemCpu, a_iStDst)
|
---|
9359 | /** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
|
---|
9360 | * stack. */
|
---|
9361 | #define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(a_iStDst) \
|
---|
9362 | iemFpuStackUnderflowThenPop(pIemCpu, a_iStDst)
|
---|
9363 | /** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
|
---|
9364 | * FPUDS. */
|
---|
9365 | #define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(a_iStDst, a_iEffSeg, a_GCPtrEff) \
|
---|
9366 | iemFpuStackUnderflowWithMemOp(pIemCpu, a_iStDst, a_iEffSeg, a_GCPtrEff)
|
---|
9367 | /** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
|
---|
9368 | * FPUDS. Pops stack. */
|
---|
9369 | #define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(a_iStDst, a_iEffSeg, a_GCPtrEff) \
|
---|
9370 | iemFpuStackUnderflowWithMemOpThenPop(pIemCpu, a_iStDst, a_iEffSeg, a_GCPtrEff)
|
---|
9371 | /** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
|
---|
9372 | * stack twice. */
|
---|
9373 | #define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP_POP() \
|
---|
9374 | iemFpuStackUnderflowThenPopPop(pIemCpu)
|
---|
9375 | /** Raises a FPU stack underflow exception for an instruction pushing a result
|
---|
9376 | * value onto the stack. Sets FPUIP, FPUCS and FOP. */
|
---|
9377 | #define IEM_MC_FPU_STACK_PUSH_UNDERFLOW() \
|
---|
9378 | iemFpuStackPushUnderflow(pIemCpu)
|
---|
9379 | /** Raises a FPU stack underflow exception for an instruction pushing a result
|
---|
9380 | * value onto the stack and replacing ST0. Sets FPUIP, FPUCS and FOP. */
|
---|
9381 | #define IEM_MC_FPU_STACK_PUSH_UNDERFLOW_TWO() \
|
---|
9382 | iemFpuStackPushUnderflowTwo(pIemCpu)
|
---|
9383 |
|
---|
9384 | /** Raises a FPU stack overflow exception as part of a push attempt. Sets
|
---|
9385 | * FPUIP, FPUCS and FOP. */
|
---|
9386 | #define IEM_MC_FPU_STACK_PUSH_OVERFLOW() \
|
---|
9387 | iemFpuStackPushOverflow(pIemCpu)
|
---|
9388 | /** Raises a FPU stack overflow exception as part of a push attempt. Sets
|
---|
9389 | * FPUIP, FPUCS, FOP, FPUDP and FPUDS. */
|
---|
9390 | #define IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(a_iEffSeg, a_GCPtrEff) \
|
---|
9391 | iemFpuStackPushOverflowWithMemOp(pIemCpu, a_iEffSeg, a_GCPtrEff)
|
---|
9392 | /** Prepares for using the FPU state.
|
---|
9393 | * Ensures that we can use the host FPU in the current context (RC+R0.
|
---|
9394 | * Ensures the guest FPU state in the CPUMCTX is up to date. */
|
---|
9395 | #define IEM_MC_PREPARE_FPU_USAGE() iemFpuPrepareUsage(pIemCpu)
|
---|
9396 | /** Actualizes the guest FPU state so it can be accessed read-only fashion. */
|
---|
9397 | #define IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ() iemFpuActualizeStateForRead(pIemCpu)
|
---|
9398 | /** Actualizes the guest FPU state so it can be accessed and modified. */
|
---|
9399 | #define IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE() iemFpuActualizeStateForChange(pIemCpu)
|
---|
9400 |
|
---|
9401 | /** Prepares for using the SSE state.
|
---|
9402 | * Ensures that we can use the host SSE/FPU in the current context (RC+R0.
|
---|
9403 | * Ensures the guest SSE state in the CPUMCTX is up to date. */
|
---|
9404 | #define IEM_MC_PREPARE_SSE_USAGE() iemFpuPrepareUsageSse(pIemCpu)
|
---|
9405 | /** Actualizes the guest XMM0..15 register state for read-only access. */
|
---|
9406 | #define IEM_MC_ACTUALIZE_SSE_STATE_FOR_READ() iemFpuActualizeSseStateForRead(pIemCpu)
|
---|
9407 | /** Actualizes the guest XMM0..15 register state for read-write access. */
|
---|
9408 | #define IEM_MC_ACTUALIZE_SSE_STATE_FOR_CHANGE() iemFpuActualizeSseStateForChange(pIemCpu)
|
---|
9409 |
|
---|
9410 | /**
|
---|
9411 | * Calls a MMX assembly implementation taking two visible arguments.
|
---|
9412 | *
|
---|
9413 | * @param a_pfnAImpl Pointer to the assembly MMX routine.
|
---|
9414 | * @param a0 The first extra argument.
|
---|
9415 | * @param a1 The second extra argument.
|
---|
9416 | */
|
---|
9417 | #define IEM_MC_CALL_MMX_AIMPL_2(a_pfnAImpl, a0, a1) \
|
---|
9418 | do { \
|
---|
9419 | IEM_MC_PREPARE_FPU_USAGE(); \
|
---|
9420 | a_pfnAImpl(&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87, (a0), (a1)); \
|
---|
9421 | } while (0)
|
---|
9422 |
|
---|
9423 | /**
|
---|
9424 | * Calls a MMX assembly implementation taking three visible arguments.
|
---|
9425 | *
|
---|
9426 | * @param a_pfnAImpl Pointer to the assembly MMX routine.
|
---|
9427 | * @param a0 The first extra argument.
|
---|
9428 | * @param a1 The second extra argument.
|
---|
9429 | * @param a2 The third extra argument.
|
---|
9430 | */
|
---|
9431 | #define IEM_MC_CALL_MMX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
|
---|
9432 | do { \
|
---|
9433 | IEM_MC_PREPARE_FPU_USAGE(); \
|
---|
9434 | a_pfnAImpl(&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87, (a0), (a1), (a2)); \
|
---|
9435 | } while (0)
|
---|
9436 |
|
---|
9437 |
|
---|
9438 | /**
|
---|
9439 | * Calls a SSE assembly implementation taking two visible arguments.
|
---|
9440 | *
|
---|
9441 | * @param a_pfnAImpl Pointer to the assembly MMX routine.
|
---|
9442 | * @param a0 The first extra argument.
|
---|
9443 | * @param a1 The second extra argument.
|
---|
9444 | */
|
---|
9445 | #define IEM_MC_CALL_SSE_AIMPL_2(a_pfnAImpl, a0, a1) \
|
---|
9446 | do { \
|
---|
9447 | IEM_MC_PREPARE_SSE_USAGE(); \
|
---|
9448 | a_pfnAImpl(&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87, (a0), (a1)); \
|
---|
9449 | } while (0)
|
---|
9450 |
|
---|
9451 | /**
|
---|
9452 | * Calls a SSE assembly implementation taking three visible arguments.
|
---|
9453 | *
|
---|
9454 | * @param a_pfnAImpl Pointer to the assembly MMX routine.
|
---|
9455 | * @param a0 The first extra argument.
|
---|
9456 | * @param a1 The second extra argument.
|
---|
9457 | * @param a2 The third extra argument.
|
---|
9458 | */
|
---|
9459 | #define IEM_MC_CALL_SSE_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
|
---|
9460 | do { \
|
---|
9461 | IEM_MC_PREPARE_SSE_USAGE(); \
|
---|
9462 | a_pfnAImpl(&pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87, (a0), (a1), (a2)); \
|
---|
9463 | } while (0)
|
---|
9464 |
|
---|
9465 | /** @note Not for IOPL or IF testing. */
|
---|
9466 | #define IEM_MC_IF_EFL_BIT_SET(a_fBit) if (pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit)) {
|
---|
9467 | /** @note Not for IOPL or IF testing. */
|
---|
9468 | #define IEM_MC_IF_EFL_BIT_NOT_SET(a_fBit) if (!(pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit))) {
|
---|
9469 | /** @note Not for IOPL or IF testing. */
|
---|
9470 | #define IEM_MC_IF_EFL_ANY_BITS_SET(a_fBits) if (pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBits)) {
|
---|
9471 | /** @note Not for IOPL or IF testing. */
|
---|
9472 | #define IEM_MC_IF_EFL_NO_BITS_SET(a_fBits) if (!(pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBits))) {
|
---|
9473 | /** @note Not for IOPL or IF testing. */
|
---|
9474 | #define IEM_MC_IF_EFL_BITS_NE(a_fBit1, a_fBit2) \
|
---|
9475 | if ( !!(pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit1)) \
|
---|
9476 | != !!(pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit2)) ) {
|
---|
9477 | /** @note Not for IOPL or IF testing. */
|
---|
9478 | #define IEM_MC_IF_EFL_BITS_EQ(a_fBit1, a_fBit2) \
|
---|
9479 | if ( !!(pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit1)) \
|
---|
9480 | == !!(pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit2)) ) {
|
---|
9481 | /** @note Not for IOPL or IF testing. */
|
---|
9482 | #define IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(a_fBit, a_fBit1, a_fBit2) \
|
---|
9483 | if ( (pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit)) \
|
---|
9484 | || !!(pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit1)) \
|
---|
9485 | != !!(pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit2)) ) {
|
---|
9486 | /** @note Not for IOPL or IF testing. */
|
---|
9487 | #define IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ(a_fBit, a_fBit1, a_fBit2) \
|
---|
9488 | if ( !(pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit)) \
|
---|
9489 | && !!(pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit1)) \
|
---|
9490 | == !!(pIemCpu->CTX_SUFF(pCtx)->eflags.u & (a_fBit2)) ) {
|
---|
9491 | #define IEM_MC_IF_CX_IS_NZ() if (pIemCpu->CTX_SUFF(pCtx)->cx != 0) {
|
---|
9492 | #define IEM_MC_IF_ECX_IS_NZ() if (pIemCpu->CTX_SUFF(pCtx)->ecx != 0) {
|
---|
9493 | #define IEM_MC_IF_RCX_IS_NZ() if (pIemCpu->CTX_SUFF(pCtx)->rcx != 0) {
|
---|
9494 | /** @note Not for IOPL or IF testing. */
|
---|
9495 | #define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
|
---|
9496 | if ( pIemCpu->CTX_SUFF(pCtx)->cx != 0 \
|
---|
9497 | && (pIemCpu->CTX_SUFF(pCtx)->eflags.u & a_fBit)) {
|
---|
9498 | /** @note Not for IOPL or IF testing. */
|
---|
9499 | #define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
|
---|
9500 | if ( pIemCpu->CTX_SUFF(pCtx)->ecx != 0 \
|
---|
9501 | && (pIemCpu->CTX_SUFF(pCtx)->eflags.u & a_fBit)) {
|
---|
9502 | /** @note Not for IOPL or IF testing. */
|
---|
9503 | #define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
|
---|
9504 | if ( pIemCpu->CTX_SUFF(pCtx)->rcx != 0 \
|
---|
9505 | && (pIemCpu->CTX_SUFF(pCtx)->eflags.u & a_fBit)) {
|
---|
9506 | /** @note Not for IOPL or IF testing. */
|
---|
9507 | #define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
9508 | if ( pIemCpu->CTX_SUFF(pCtx)->cx != 0 \
|
---|
9509 | && !(pIemCpu->CTX_SUFF(pCtx)->eflags.u & a_fBit)) {
|
---|
9510 | /** @note Not for IOPL or IF testing. */
|
---|
9511 | #define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
9512 | if ( pIemCpu->CTX_SUFF(pCtx)->ecx != 0 \
|
---|
9513 | && !(pIemCpu->CTX_SUFF(pCtx)->eflags.u & a_fBit)) {
|
---|
9514 | /** @note Not for IOPL or IF testing. */
|
---|
9515 | #define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
9516 | if ( pIemCpu->CTX_SUFF(pCtx)->rcx != 0 \
|
---|
9517 | && !(pIemCpu->CTX_SUFF(pCtx)->eflags.u & a_fBit)) {
|
---|
9518 | #define IEM_MC_IF_LOCAL_IS_Z(a_Local) if ((a_Local) == 0) {
|
---|
9519 | #define IEM_MC_IF_GREG_BIT_SET(a_iGReg, a_iBitNo) if (*(uint64_t *)iemGRegRef(pIemCpu, (a_iGReg)) & RT_BIT_64(a_iBitNo)) {
|
---|
9520 |
|
---|
9521 | #define IEM_MC_IF_FPUREG_NOT_EMPTY(a_iSt) \
|
---|
9522 | if (iemFpuStRegNotEmpty(pIemCpu, (a_iSt)) == VINF_SUCCESS) {
|
---|
9523 | #define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
|
---|
9524 | if (iemFpuStRegNotEmpty(pIemCpu, (a_iSt)) != VINF_SUCCESS) {
|
---|
9525 | #define IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(a_pr80Dst, a_iSt) \
|
---|
9526 | if (iemFpuStRegNotEmptyRef(pIemCpu, (a_iSt), &(a_pr80Dst)) == VINF_SUCCESS) {
|
---|
9527 | #define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(a_pr80Dst0, a_iSt0, a_pr80Dst1, a_iSt1) \
|
---|
9528 | if (iemFpu2StRegsNotEmptyRef(pIemCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1), &(a_pr80Dst1)) == VINF_SUCCESS) {
|
---|
9529 | #define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(a_pr80Dst0, a_iSt0, a_iSt1) \
|
---|
9530 | if (iemFpu2StRegsNotEmptyRefFirst(pIemCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1)) == VINF_SUCCESS) {
|
---|
9531 | #define IEM_MC_IF_FCW_IM() \
|
---|
9532 | if (pIemCpu->CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.FCW & X86_FCW_IM) {
|
---|
9533 |
|
---|
9534 | #define IEM_MC_ELSE() } else {
|
---|
9535 | #define IEM_MC_ENDIF() } do {} while (0)
|
---|
9536 |
|
---|
9537 | /** @} */
|
---|
9538 |
|
---|
9539 |
|
---|
9540 | /** @name Opcode Debug Helpers.
|
---|
9541 | * @{
|
---|
9542 | */
|
---|
9543 | #ifdef DEBUG
|
---|
9544 | # define IEMOP_MNEMONIC(a_szMnemonic) \
|
---|
9545 | Log4(("decode - %04x:%RGv %s%s [#%u]\n", pIemCpu->CTX_SUFF(pCtx)->cs.Sel, pIemCpu->CTX_SUFF(pCtx)->rip, \
|
---|
9546 | pIemCpu->fPrefixes & IEM_OP_PRF_LOCK ? "lock " : "", a_szMnemonic, pIemCpu->cInstructions))
|
---|
9547 | # define IEMOP_MNEMONIC2(a_szMnemonic, a_szOps) \
|
---|
9548 | Log4(("decode - %04x:%RGv %s%s %s [#%u]\n", pIemCpu->CTX_SUFF(pCtx)->cs.Sel, pIemCpu->CTX_SUFF(pCtx)->rip, \
|
---|
9549 | pIemCpu->fPrefixes & IEM_OP_PRF_LOCK ? "lock " : "", a_szMnemonic, a_szOps, pIemCpu->cInstructions))
|
---|
9550 | #else
|
---|
9551 | # define IEMOP_MNEMONIC(a_szMnemonic) do { } while (0)
|
---|
9552 | # define IEMOP_MNEMONIC2(a_szMnemonic, a_szOps) do { } while (0)
|
---|
9553 | #endif
|
---|
9554 |
|
---|
9555 | /** @} */
|
---|
9556 |
|
---|
9557 |
|
---|
9558 | /** @name Opcode Helpers.
|
---|
9559 | * @{
|
---|
9560 | */
|
---|
9561 |
|
---|
9562 | #ifdef IN_RING3
|
---|
9563 | # define IEMOP_HLP_MIN_CPU(a_uMinCpu, a_fOnlyIf) \
|
---|
9564 | do { \
|
---|
9565 | if (IEM_GET_TARGET_CPU(pIemCpu) >= (a_uMinCpu) || !(a_fOnlyIf)) { } \
|
---|
9566 | else \
|
---|
9567 | { \
|
---|
9568 | DBGFSTOP(IEMCPU_TO_VM(pIemCpu)); \
|
---|
9569 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
9570 | } \
|
---|
9571 | } while (0)
|
---|
9572 | #else
|
---|
9573 | # define IEMOP_HLP_MIN_CPU(a_uMinCpu, a_fOnlyIf) \
|
---|
9574 | do { \
|
---|
9575 | if (IEM_GET_TARGET_CPU(pIemCpu) >= (a_uMinCpu) || !(a_fOnlyIf)) { } \
|
---|
9576 | else return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
9577 | } while (0)
|
---|
9578 | #endif
|
---|
9579 |
|
---|
9580 | /** The instruction requires a 186 or later. */
|
---|
9581 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_186
|
---|
9582 | # define IEMOP_HLP_MIN_186() do { } while (0)
|
---|
9583 | #else
|
---|
9584 | # define IEMOP_HLP_MIN_186() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_186, true)
|
---|
9585 | #endif
|
---|
9586 |
|
---|
9587 | /** The instruction requires a 286 or later. */
|
---|
9588 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_286
|
---|
9589 | # define IEMOP_HLP_MIN_286() do { } while (0)
|
---|
9590 | #else
|
---|
9591 | # define IEMOP_HLP_MIN_286() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_286, true)
|
---|
9592 | #endif
|
---|
9593 |
|
---|
9594 | /** The instruction requires a 386 or later. */
|
---|
9595 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_386
|
---|
9596 | # define IEMOP_HLP_MIN_386() do { } while (0)
|
---|
9597 | #else
|
---|
9598 | # define IEMOP_HLP_MIN_386() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_386, true)
|
---|
9599 | #endif
|
---|
9600 |
|
---|
9601 | /** The instruction requires a 386 or later if the given expression is true. */
|
---|
9602 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_386
|
---|
9603 | # define IEMOP_HLP_MIN_386_EX(a_fOnlyIf) do { } while (0)
|
---|
9604 | #else
|
---|
9605 | # define IEMOP_HLP_MIN_386_EX(a_fOnlyIf) IEMOP_HLP_MIN_CPU(IEMTARGETCPU_386, a_fOnlyIf)
|
---|
9606 | #endif
|
---|
9607 |
|
---|
9608 | /** The instruction requires a 486 or later. */
|
---|
9609 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_486
|
---|
9610 | # define IEMOP_HLP_MIN_486() do { } while (0)
|
---|
9611 | #else
|
---|
9612 | # define IEMOP_HLP_MIN_486() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_486, true)
|
---|
9613 | #endif
|
---|
9614 |
|
---|
9615 | /** The instruction requires a Pentium (586) or later. */
|
---|
9616 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_586
|
---|
9617 | # define IEMOP_HLP_MIN_586() do { } while (0)
|
---|
9618 | #else
|
---|
9619 | # define IEMOP_HLP_MIN_586() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_586, true)
|
---|
9620 | #endif
|
---|
9621 |
|
---|
9622 | /** The instruction requires a PentiumPro (686) or later. */
|
---|
9623 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_686
|
---|
9624 | # define IEMOP_HLP_MIN_686() do { } while (0)
|
---|
9625 | #else
|
---|
9626 | # define IEMOP_HLP_MIN_686() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_686, true)
|
---|
9627 | #endif
|
---|
9628 |
|
---|
9629 |
|
---|
9630 | /** The instruction raises an \#UD in real and V8086 mode. */
|
---|
9631 | #define IEMOP_HLP_NO_REAL_OR_V86_MODE() \
|
---|
9632 | do \
|
---|
9633 | { \
|
---|
9634 | if (IEM_IS_REAL_OR_V86_MODE(pIemCpu)) \
|
---|
9635 | return IEMOP_RAISE_INVALID_LOCK_PREFIX(); \
|
---|
9636 | } while (0)
|
---|
9637 |
|
---|
9638 | /** The instruction allows no lock prefixing (in this encoding), throw \#UD if
|
---|
9639 | * lock prefixed.
|
---|
9640 | * @deprecated IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX */
|
---|
9641 | #define IEMOP_HLP_NO_LOCK_PREFIX() \
|
---|
9642 | do \
|
---|
9643 | { \
|
---|
9644 | if (pIemCpu->fPrefixes & IEM_OP_PRF_LOCK) \
|
---|
9645 | return IEMOP_RAISE_INVALID_LOCK_PREFIX(); \
|
---|
9646 | } while (0)
|
---|
9647 |
|
---|
9648 | /** The instruction is not available in 64-bit mode, throw \#UD if we're in
|
---|
9649 | * 64-bit mode. */
|
---|
9650 | #define IEMOP_HLP_NO_64BIT() \
|
---|
9651 | do \
|
---|
9652 | { \
|
---|
9653 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT) \
|
---|
9654 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
9655 | } while (0)
|
---|
9656 |
|
---|
9657 | /** The instruction is only available in 64-bit mode, throw \#UD if we're not in
|
---|
9658 | * 64-bit mode. */
|
---|
9659 | #define IEMOP_HLP_ONLY_64BIT() \
|
---|
9660 | do \
|
---|
9661 | { \
|
---|
9662 | if (pIemCpu->enmCpuMode != IEMMODE_64BIT) \
|
---|
9663 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
9664 | } while (0)
|
---|
9665 |
|
---|
9666 | /** The instruction defaults to 64-bit operand size if 64-bit mode. */
|
---|
9667 | #define IEMOP_HLP_DEFAULT_64BIT_OP_SIZE() \
|
---|
9668 | do \
|
---|
9669 | { \
|
---|
9670 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT) \
|
---|
9671 | iemRecalEffOpSize64Default(pIemCpu); \
|
---|
9672 | } while (0)
|
---|
9673 |
|
---|
9674 | /** The instruction has 64-bit operand size if 64-bit mode. */
|
---|
9675 | #define IEMOP_HLP_64BIT_OP_SIZE() \
|
---|
9676 | do \
|
---|
9677 | { \
|
---|
9678 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT) \
|
---|
9679 | pIemCpu->enmEffOpSize = pIemCpu->enmDefOpSize = IEMMODE_64BIT; \
|
---|
9680 | } while (0)
|
---|
9681 |
|
---|
9682 | /** Only a REX prefix immediately preceeding the first opcode byte takes
|
---|
9683 | * effect. This macro helps ensuring this as well as logging bad guest code. */
|
---|
9684 | #define IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE(a_szPrf) \
|
---|
9685 | do \
|
---|
9686 | { \
|
---|
9687 | if (RT_UNLIKELY(pIemCpu->fPrefixes & IEM_OP_PRF_REX)) \
|
---|
9688 | { \
|
---|
9689 | Log5((a_szPrf ": Overriding REX prefix at %RX16! fPrefixes=%#x\n", \
|
---|
9690 | pIemCpu->CTX_SUFF(pCtx)->rip, pIemCpu->fPrefixes)); \
|
---|
9691 | pIemCpu->fPrefixes &= ~IEM_OP_PRF_REX_MASK; \
|
---|
9692 | pIemCpu->uRexB = 0; \
|
---|
9693 | pIemCpu->uRexIndex = 0; \
|
---|
9694 | pIemCpu->uRexReg = 0; \
|
---|
9695 | iemRecalEffOpSize(pIemCpu); \
|
---|
9696 | } \
|
---|
9697 | } while (0)
|
---|
9698 |
|
---|
9699 | /**
|
---|
9700 | * Done decoding.
|
---|
9701 | */
|
---|
9702 | #define IEMOP_HLP_DONE_DECODING() \
|
---|
9703 | do \
|
---|
9704 | { \
|
---|
9705 | /*nothing for now, maybe later... */ \
|
---|
9706 | } while (0)
|
---|
9707 |
|
---|
9708 | /**
|
---|
9709 | * Done decoding, raise \#UD exception if lock prefix present.
|
---|
9710 | */
|
---|
9711 | #define IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX() \
|
---|
9712 | do \
|
---|
9713 | { \
|
---|
9714 | if (RT_LIKELY(!(pIemCpu->fPrefixes & IEM_OP_PRF_LOCK))) \
|
---|
9715 | { /* likely */ } \
|
---|
9716 | else \
|
---|
9717 | return IEMOP_RAISE_INVALID_LOCK_PREFIX(); \
|
---|
9718 | } while (0)
|
---|
9719 | #define IEMOP_HLP_DECODED_NL_1(a_uDisOpNo, a_fIemOpFlags, a_uDisParam0, a_fDisOpType) \
|
---|
9720 | do \
|
---|
9721 | { \
|
---|
9722 | if (RT_LIKELY(!(pIemCpu->fPrefixes & IEM_OP_PRF_LOCK))) \
|
---|
9723 | { /* likely */ } \
|
---|
9724 | else \
|
---|
9725 | { \
|
---|
9726 | NOREF(a_uDisOpNo); NOREF(a_fIemOpFlags); NOREF(a_uDisParam0); NOREF(a_fDisOpType); \
|
---|
9727 | return IEMOP_RAISE_INVALID_LOCK_PREFIX(); \
|
---|
9728 | } \
|
---|
9729 | } while (0)
|
---|
9730 | #define IEMOP_HLP_DECODED_NL_2(a_uDisOpNo, a_fIemOpFlags, a_uDisParam0, a_uDisParam1, a_fDisOpType) \
|
---|
9731 | do \
|
---|
9732 | { \
|
---|
9733 | if (RT_LIKELY(!(pIemCpu->fPrefixes & IEM_OP_PRF_LOCK))) \
|
---|
9734 | { /* likely */ } \
|
---|
9735 | else \
|
---|
9736 | { \
|
---|
9737 | NOREF(a_uDisOpNo); NOREF(a_fIemOpFlags); NOREF(a_uDisParam0); NOREF(a_uDisParam1); NOREF(a_fDisOpType); \
|
---|
9738 | return IEMOP_RAISE_INVALID_LOCK_PREFIX(); \
|
---|
9739 | } \
|
---|
9740 | } while (0)
|
---|
9741 | /**
|
---|
9742 | * Done decoding, raise \#UD exception if any lock, repz or repnz prefixes
|
---|
9743 | * are present.
|
---|
9744 | */
|
---|
9745 | #define IEMOP_HLP_DONE_DECODING_NO_LOCK_REPZ_OR_REPNZ_PREFIXES() \
|
---|
9746 | do \
|
---|
9747 | { \
|
---|
9748 | if (RT_LIKELY(!(pIemCpu->fPrefixes & (IEM_OP_PRF_LOCK | IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ)))) \
|
---|
9749 | { /* likely */ } \
|
---|
9750 | else \
|
---|
9751 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
9752 | } while (0)
|
---|
9753 |
|
---|
9754 |
|
---|
9755 | /**
|
---|
9756 | * Calculates the effective address of a ModR/M memory operand.
|
---|
9757 | *
|
---|
9758 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
9759 | *
|
---|
9760 | * @return Strict VBox status code.
|
---|
9761 | * @param pIemCpu The IEM per CPU data.
|
---|
9762 | * @param bRm The ModRM byte.
|
---|
9763 | * @param cbImm The size of any immediate following the
|
---|
9764 | * effective address opcode bytes. Important for
|
---|
9765 | * RIP relative addressing.
|
---|
9766 | * @param pGCPtrEff Where to return the effective address.
|
---|
9767 | */
|
---|
9768 | IEM_STATIC VBOXSTRICTRC iemOpHlpCalcRmEffAddr(PIEMCPU pIemCpu, uint8_t bRm, uint8_t cbImm, PRTGCPTR pGCPtrEff)
|
---|
9769 | {
|
---|
9770 | Log5(("iemOpHlpCalcRmEffAddr: bRm=%#x\n", bRm));
|
---|
9771 | PCCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
9772 | #define SET_SS_DEF() \
|
---|
9773 | do \
|
---|
9774 | { \
|
---|
9775 | if (!(pIemCpu->fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
9776 | pIemCpu->iEffSeg = X86_SREG_SS; \
|
---|
9777 | } while (0)
|
---|
9778 |
|
---|
9779 | if (pIemCpu->enmCpuMode != IEMMODE_64BIT)
|
---|
9780 | {
|
---|
9781 | /** @todo Check the effective address size crap! */
|
---|
9782 | if (pIemCpu->enmEffAddrMode == IEMMODE_16BIT)
|
---|
9783 | {
|
---|
9784 | uint16_t u16EffAddr;
|
---|
9785 |
|
---|
9786 | /* Handle the disp16 form with no registers first. */
|
---|
9787 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
9788 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
9789 | else
|
---|
9790 | {
|
---|
9791 | /* Get the displacment. */
|
---|
9792 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
9793 | {
|
---|
9794 | case 0: u16EffAddr = 0; break;
|
---|
9795 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
9796 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
9797 | default: AssertFailedReturn(VERR_IEM_IPE_1); /* (caller checked for these) */
|
---|
9798 | }
|
---|
9799 |
|
---|
9800 | /* Add the base and index registers to the disp. */
|
---|
9801 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
9802 | {
|
---|
9803 | case 0: u16EffAddr += pCtx->bx + pCtx->si; break;
|
---|
9804 | case 1: u16EffAddr += pCtx->bx + pCtx->di; break;
|
---|
9805 | case 2: u16EffAddr += pCtx->bp + pCtx->si; SET_SS_DEF(); break;
|
---|
9806 | case 3: u16EffAddr += pCtx->bp + pCtx->di; SET_SS_DEF(); break;
|
---|
9807 | case 4: u16EffAddr += pCtx->si; break;
|
---|
9808 | case 5: u16EffAddr += pCtx->di; break;
|
---|
9809 | case 6: u16EffAddr += pCtx->bp; SET_SS_DEF(); break;
|
---|
9810 | case 7: u16EffAddr += pCtx->bx; break;
|
---|
9811 | }
|
---|
9812 | }
|
---|
9813 |
|
---|
9814 | *pGCPtrEff = u16EffAddr;
|
---|
9815 | }
|
---|
9816 | else
|
---|
9817 | {
|
---|
9818 | Assert(pIemCpu->enmEffAddrMode == IEMMODE_32BIT);
|
---|
9819 | uint32_t u32EffAddr;
|
---|
9820 |
|
---|
9821 | /* Handle the disp32 form with no registers first. */
|
---|
9822 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
9823 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
9824 | else
|
---|
9825 | {
|
---|
9826 | /* Get the register (or SIB) value. */
|
---|
9827 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
9828 | {
|
---|
9829 | case 0: u32EffAddr = pCtx->eax; break;
|
---|
9830 | case 1: u32EffAddr = pCtx->ecx; break;
|
---|
9831 | case 2: u32EffAddr = pCtx->edx; break;
|
---|
9832 | case 3: u32EffAddr = pCtx->ebx; break;
|
---|
9833 | case 4: /* SIB */
|
---|
9834 | {
|
---|
9835 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
9836 |
|
---|
9837 | /* Get the index and scale it. */
|
---|
9838 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
9839 | {
|
---|
9840 | case 0: u32EffAddr = pCtx->eax; break;
|
---|
9841 | case 1: u32EffAddr = pCtx->ecx; break;
|
---|
9842 | case 2: u32EffAddr = pCtx->edx; break;
|
---|
9843 | case 3: u32EffAddr = pCtx->ebx; break;
|
---|
9844 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
9845 | case 5: u32EffAddr = pCtx->ebp; break;
|
---|
9846 | case 6: u32EffAddr = pCtx->esi; break;
|
---|
9847 | case 7: u32EffAddr = pCtx->edi; break;
|
---|
9848 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
9849 | }
|
---|
9850 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
9851 |
|
---|
9852 | /* add base */
|
---|
9853 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
9854 | {
|
---|
9855 | case 0: u32EffAddr += pCtx->eax; break;
|
---|
9856 | case 1: u32EffAddr += pCtx->ecx; break;
|
---|
9857 | case 2: u32EffAddr += pCtx->edx; break;
|
---|
9858 | case 3: u32EffAddr += pCtx->ebx; break;
|
---|
9859 | case 4: u32EffAddr += pCtx->esp; SET_SS_DEF(); break;
|
---|
9860 | case 5:
|
---|
9861 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
9862 | {
|
---|
9863 | u32EffAddr += pCtx->ebp;
|
---|
9864 | SET_SS_DEF();
|
---|
9865 | }
|
---|
9866 | else
|
---|
9867 | {
|
---|
9868 | uint32_t u32Disp;
|
---|
9869 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
9870 | u32EffAddr += u32Disp;
|
---|
9871 | }
|
---|
9872 | break;
|
---|
9873 | case 6: u32EffAddr += pCtx->esi; break;
|
---|
9874 | case 7: u32EffAddr += pCtx->edi; break;
|
---|
9875 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
9876 | }
|
---|
9877 | break;
|
---|
9878 | }
|
---|
9879 | case 5: u32EffAddr = pCtx->ebp; SET_SS_DEF(); break;
|
---|
9880 | case 6: u32EffAddr = pCtx->esi; break;
|
---|
9881 | case 7: u32EffAddr = pCtx->edi; break;
|
---|
9882 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
9883 | }
|
---|
9884 |
|
---|
9885 | /* Get and add the displacement. */
|
---|
9886 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
9887 | {
|
---|
9888 | case 0:
|
---|
9889 | break;
|
---|
9890 | case 1:
|
---|
9891 | {
|
---|
9892 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
9893 | u32EffAddr += i8Disp;
|
---|
9894 | break;
|
---|
9895 | }
|
---|
9896 | case 2:
|
---|
9897 | {
|
---|
9898 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
9899 | u32EffAddr += u32Disp;
|
---|
9900 | break;
|
---|
9901 | }
|
---|
9902 | default:
|
---|
9903 | AssertFailedReturn(VERR_IEM_IPE_2); /* (caller checked for these) */
|
---|
9904 | }
|
---|
9905 |
|
---|
9906 | }
|
---|
9907 | if (pIemCpu->enmEffAddrMode == IEMMODE_32BIT)
|
---|
9908 | *pGCPtrEff = u32EffAddr;
|
---|
9909 | else
|
---|
9910 | {
|
---|
9911 | Assert(pIemCpu->enmEffAddrMode == IEMMODE_16BIT);
|
---|
9912 | *pGCPtrEff = u32EffAddr & UINT16_MAX;
|
---|
9913 | }
|
---|
9914 | }
|
---|
9915 | }
|
---|
9916 | else
|
---|
9917 | {
|
---|
9918 | uint64_t u64EffAddr;
|
---|
9919 |
|
---|
9920 | /* Handle the rip+disp32 form with no registers first. */
|
---|
9921 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
9922 | {
|
---|
9923 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
9924 | u64EffAddr += pCtx->rip + pIemCpu->offOpcode + cbImm;
|
---|
9925 | }
|
---|
9926 | else
|
---|
9927 | {
|
---|
9928 | /* Get the register (or SIB) value. */
|
---|
9929 | switch ((bRm & X86_MODRM_RM_MASK) | pIemCpu->uRexB)
|
---|
9930 | {
|
---|
9931 | case 0: u64EffAddr = pCtx->rax; break;
|
---|
9932 | case 1: u64EffAddr = pCtx->rcx; break;
|
---|
9933 | case 2: u64EffAddr = pCtx->rdx; break;
|
---|
9934 | case 3: u64EffAddr = pCtx->rbx; break;
|
---|
9935 | case 5: u64EffAddr = pCtx->rbp; SET_SS_DEF(); break;
|
---|
9936 | case 6: u64EffAddr = pCtx->rsi; break;
|
---|
9937 | case 7: u64EffAddr = pCtx->rdi; break;
|
---|
9938 | case 8: u64EffAddr = pCtx->r8; break;
|
---|
9939 | case 9: u64EffAddr = pCtx->r9; break;
|
---|
9940 | case 10: u64EffAddr = pCtx->r10; break;
|
---|
9941 | case 11: u64EffAddr = pCtx->r11; break;
|
---|
9942 | case 13: u64EffAddr = pCtx->r13; break;
|
---|
9943 | case 14: u64EffAddr = pCtx->r14; break;
|
---|
9944 | case 15: u64EffAddr = pCtx->r15; break;
|
---|
9945 | /* SIB */
|
---|
9946 | case 4:
|
---|
9947 | case 12:
|
---|
9948 | {
|
---|
9949 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
9950 |
|
---|
9951 | /* Get the index and scale it. */
|
---|
9952 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pIemCpu->uRexIndex)
|
---|
9953 | {
|
---|
9954 | case 0: u64EffAddr = pCtx->rax; break;
|
---|
9955 | case 1: u64EffAddr = pCtx->rcx; break;
|
---|
9956 | case 2: u64EffAddr = pCtx->rdx; break;
|
---|
9957 | case 3: u64EffAddr = pCtx->rbx; break;
|
---|
9958 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
9959 | case 5: u64EffAddr = pCtx->rbp; break;
|
---|
9960 | case 6: u64EffAddr = pCtx->rsi; break;
|
---|
9961 | case 7: u64EffAddr = pCtx->rdi; break;
|
---|
9962 | case 8: u64EffAddr = pCtx->r8; break;
|
---|
9963 | case 9: u64EffAddr = pCtx->r9; break;
|
---|
9964 | case 10: u64EffAddr = pCtx->r10; break;
|
---|
9965 | case 11: u64EffAddr = pCtx->r11; break;
|
---|
9966 | case 12: u64EffAddr = pCtx->r12; break;
|
---|
9967 | case 13: u64EffAddr = pCtx->r13; break;
|
---|
9968 | case 14: u64EffAddr = pCtx->r14; break;
|
---|
9969 | case 15: u64EffAddr = pCtx->r15; break;
|
---|
9970 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
9971 | }
|
---|
9972 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
9973 |
|
---|
9974 | /* add base */
|
---|
9975 | switch ((bSib & X86_SIB_BASE_MASK) | pIemCpu->uRexB)
|
---|
9976 | {
|
---|
9977 | case 0: u64EffAddr += pCtx->rax; break;
|
---|
9978 | case 1: u64EffAddr += pCtx->rcx; break;
|
---|
9979 | case 2: u64EffAddr += pCtx->rdx; break;
|
---|
9980 | case 3: u64EffAddr += pCtx->rbx; break;
|
---|
9981 | case 4: u64EffAddr += pCtx->rsp; SET_SS_DEF(); break;
|
---|
9982 | case 6: u64EffAddr += pCtx->rsi; break;
|
---|
9983 | case 7: u64EffAddr += pCtx->rdi; break;
|
---|
9984 | case 8: u64EffAddr += pCtx->r8; break;
|
---|
9985 | case 9: u64EffAddr += pCtx->r9; break;
|
---|
9986 | case 10: u64EffAddr += pCtx->r10; break;
|
---|
9987 | case 11: u64EffAddr += pCtx->r11; break;
|
---|
9988 | case 12: u64EffAddr += pCtx->r12; break;
|
---|
9989 | case 14: u64EffAddr += pCtx->r14; break;
|
---|
9990 | case 15: u64EffAddr += pCtx->r15; break;
|
---|
9991 | /* complicated encodings */
|
---|
9992 | case 5:
|
---|
9993 | case 13:
|
---|
9994 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
9995 | {
|
---|
9996 | if (!pIemCpu->uRexB)
|
---|
9997 | {
|
---|
9998 | u64EffAddr += pCtx->rbp;
|
---|
9999 | SET_SS_DEF();
|
---|
10000 | }
|
---|
10001 | else
|
---|
10002 | u64EffAddr += pCtx->r13;
|
---|
10003 | }
|
---|
10004 | else
|
---|
10005 | {
|
---|
10006 | uint32_t u32Disp;
|
---|
10007 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
10008 | u64EffAddr += (int32_t)u32Disp;
|
---|
10009 | }
|
---|
10010 | break;
|
---|
10011 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
10012 | }
|
---|
10013 | break;
|
---|
10014 | }
|
---|
10015 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
10016 | }
|
---|
10017 |
|
---|
10018 | /* Get and add the displacement. */
|
---|
10019 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
10020 | {
|
---|
10021 | case 0:
|
---|
10022 | break;
|
---|
10023 | case 1:
|
---|
10024 | {
|
---|
10025 | int8_t i8Disp;
|
---|
10026 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
10027 | u64EffAddr += i8Disp;
|
---|
10028 | break;
|
---|
10029 | }
|
---|
10030 | case 2:
|
---|
10031 | {
|
---|
10032 | uint32_t u32Disp;
|
---|
10033 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
10034 | u64EffAddr += (int32_t)u32Disp;
|
---|
10035 | break;
|
---|
10036 | }
|
---|
10037 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* (caller checked for these) */
|
---|
10038 | }
|
---|
10039 |
|
---|
10040 | }
|
---|
10041 |
|
---|
10042 | if (pIemCpu->enmEffAddrMode == IEMMODE_64BIT)
|
---|
10043 | *pGCPtrEff = u64EffAddr;
|
---|
10044 | else
|
---|
10045 | {
|
---|
10046 | Assert(pIemCpu->enmEffAddrMode == IEMMODE_32BIT);
|
---|
10047 | *pGCPtrEff = u64EffAddr & UINT32_MAX;
|
---|
10048 | }
|
---|
10049 | }
|
---|
10050 |
|
---|
10051 | Log5(("iemOpHlpCalcRmEffAddr: EffAddr=%#010RGv\n", *pGCPtrEff));
|
---|
10052 | return VINF_SUCCESS;
|
---|
10053 | }
|
---|
10054 |
|
---|
10055 | /** @} */
|
---|
10056 |
|
---|
10057 |
|
---|
10058 |
|
---|
10059 | /*
|
---|
10060 | * Include the instructions
|
---|
10061 | */
|
---|
10062 | #include "IEMAllInstructions.cpp.h"
|
---|
10063 |
|
---|
10064 |
|
---|
10065 |
|
---|
10066 |
|
---|
10067 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
10068 |
|
---|
10069 | /**
|
---|
10070 | * Sets up execution verification mode.
|
---|
10071 | */
|
---|
10072 | IEM_STATIC void iemExecVerificationModeSetup(PIEMCPU pIemCpu)
|
---|
10073 | {
|
---|
10074 | PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
|
---|
10075 | PCPUMCTX pOrgCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
10076 |
|
---|
10077 | /*
|
---|
10078 | * Always note down the address of the current instruction.
|
---|
10079 | */
|
---|
10080 | pIemCpu->uOldCs = pOrgCtx->cs.Sel;
|
---|
10081 | pIemCpu->uOldRip = pOrgCtx->rip;
|
---|
10082 |
|
---|
10083 | /*
|
---|
10084 | * Enable verification and/or logging.
|
---|
10085 | */
|
---|
10086 | bool fNewNoRem = !LogIs6Enabled(); /* logging triggers the no-rem/rem verification stuff */;
|
---|
10087 | if ( fNewNoRem
|
---|
10088 | && ( 0
|
---|
10089 | #if 0 /* auto enable on first paged protected mode interrupt */
|
---|
10090 | || ( pOrgCtx->eflags.Bits.u1IF
|
---|
10091 | && (pOrgCtx->cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG)
|
---|
10092 | && TRPMHasTrap(pVCpu)
|
---|
10093 | && EMGetInhibitInterruptsPC(pVCpu) != pOrgCtx->rip) )
|
---|
10094 | #endif
|
---|
10095 | #if 0
|
---|
10096 | || ( pOrgCtx->cs == 0x10
|
---|
10097 | && ( pOrgCtx->rip == 0x90119e3e
|
---|
10098 | || pOrgCtx->rip == 0x901d9810)
|
---|
10099 | #endif
|
---|
10100 | #if 0 /* Auto enable DSL - FPU stuff. */
|
---|
10101 | || ( pOrgCtx->cs == 0x10
|
---|
10102 | && (// pOrgCtx->rip == 0xc02ec07f
|
---|
10103 | //|| pOrgCtx->rip == 0xc02ec082
|
---|
10104 | //|| pOrgCtx->rip == 0xc02ec0c9
|
---|
10105 | 0
|
---|
10106 | || pOrgCtx->rip == 0x0c010e7c4 /* fxsave */ ) )
|
---|
10107 | #endif
|
---|
10108 | #if 0 /* Auto enable DSL - fstp st0 stuff. */
|
---|
10109 | || (pOrgCtx->cs.Sel == 0x23 pOrgCtx->rip == 0x804aff7)
|
---|
10110 | #endif
|
---|
10111 | #if 0
|
---|
10112 | || pOrgCtx->rip == 0x9022bb3a
|
---|
10113 | #endif
|
---|
10114 | #if 0
|
---|
10115 | || (pOrgCtx->cs.Sel == 0x58 && pOrgCtx->rip == 0x3be) /* NT4SP1 sidt/sgdt in early loader code */
|
---|
10116 | #endif
|
---|
10117 | #if 0
|
---|
10118 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013ec28) /* NT4SP1 first str (early boot) */
|
---|
10119 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x80119e3f) /* NT4SP1 second str (early boot) */
|
---|
10120 | #endif
|
---|
10121 | #if 0 /* NT4SP1 - later on the blue screen, things goes wrong... */
|
---|
10122 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8010a5df)
|
---|
10123 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013a7c4)
|
---|
10124 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013a7d2)
|
---|
10125 | #endif
|
---|
10126 | #if 0 /* NT4SP1 - xadd early boot. */
|
---|
10127 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8019cf0f)
|
---|
10128 | #endif
|
---|
10129 | #if 0 /* NT4SP1 - wrmsr (intel MSR). */
|
---|
10130 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8011a6d4)
|
---|
10131 | #endif
|
---|
10132 | #if 0 /* NT4SP1 - cmpxchg (AMD). */
|
---|
10133 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x801684c1)
|
---|
10134 | #endif
|
---|
10135 | #if 0 /* NT4SP1 - fnstsw + 2 (AMD). */
|
---|
10136 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x801c6b88+2)
|
---|
10137 | #endif
|
---|
10138 | #if 0 /* NT4SP1 - iret to v8086 -- too generic a place? (N/A with GAs installed) */
|
---|
10139 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013bd5d)
|
---|
10140 |
|
---|
10141 | #endif
|
---|
10142 | #if 0 /* NT4SP1 - iret to v8086 (executing edlin) */
|
---|
10143 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013b609)
|
---|
10144 |
|
---|
10145 | #endif
|
---|
10146 | #if 0 /* NT4SP1 - frstor [ecx] */
|
---|
10147 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013d11f)
|
---|
10148 | #endif
|
---|
10149 | #if 0 /* xxxxxx - All long mode code. */
|
---|
10150 | || (pOrgCtx->msrEFER & MSR_K6_EFER_LMA)
|
---|
10151 | #endif
|
---|
10152 | #if 0 /* rep movsq linux 3.7 64-bit boot. */
|
---|
10153 | || (pOrgCtx->rip == 0x0000000000100241)
|
---|
10154 | #endif
|
---|
10155 | #if 0 /* linux 3.7 64-bit boot - '000000000215e240'. */
|
---|
10156 | || (pOrgCtx->rip == 0x000000000215e240)
|
---|
10157 | #endif
|
---|
10158 | #if 0 /* DOS's size-overridden iret to v8086. */
|
---|
10159 | || (pOrgCtx->rip == 0x427 && pOrgCtx->cs.Sel == 0xb8)
|
---|
10160 | #endif
|
---|
10161 | )
|
---|
10162 | )
|
---|
10163 | {
|
---|
10164 | RTLogGroupSettings(NULL, "iem.eo.l6.l2");
|
---|
10165 | RTLogFlags(NULL, "enabled");
|
---|
10166 | fNewNoRem = false;
|
---|
10167 | }
|
---|
10168 | if (fNewNoRem != pIemCpu->fNoRem)
|
---|
10169 | {
|
---|
10170 | pIemCpu->fNoRem = fNewNoRem;
|
---|
10171 | if (!fNewNoRem)
|
---|
10172 | {
|
---|
10173 | LogAlways(("Enabling verification mode!\n"));
|
---|
10174 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
|
---|
10175 | }
|
---|
10176 | else
|
---|
10177 | LogAlways(("Disabling verification mode!\n"));
|
---|
10178 | }
|
---|
10179 |
|
---|
10180 | /*
|
---|
10181 | * Switch state.
|
---|
10182 | */
|
---|
10183 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
10184 | {
|
---|
10185 | static CPUMCTX s_DebugCtx; /* Ugly! */
|
---|
10186 |
|
---|
10187 | s_DebugCtx = *pOrgCtx;
|
---|
10188 | pIemCpu->CTX_SUFF(pCtx) = &s_DebugCtx;
|
---|
10189 | }
|
---|
10190 |
|
---|
10191 | /*
|
---|
10192 | * See if there is an interrupt pending in TRPM and inject it if we can.
|
---|
10193 | */
|
---|
10194 | pIemCpu->uInjectCpl = UINT8_MAX;
|
---|
10195 | if ( pOrgCtx->eflags.Bits.u1IF
|
---|
10196 | && TRPMHasTrap(pVCpu)
|
---|
10197 | && EMGetInhibitInterruptsPC(pVCpu) != pOrgCtx->rip)
|
---|
10198 | {
|
---|
10199 | uint8_t u8TrapNo;
|
---|
10200 | TRPMEVENT enmType;
|
---|
10201 | RTGCUINT uErrCode;
|
---|
10202 | RTGCPTR uCr2;
|
---|
10203 | int rc2 = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, NULL /* pu8InstLen */); AssertRC(rc2);
|
---|
10204 | IEMInjectTrap(pVCpu, u8TrapNo, enmType, (uint16_t)uErrCode, uCr2, 0 /* cbInstr */);
|
---|
10205 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
10206 | TRPMResetTrap(pVCpu);
|
---|
10207 | pIemCpu->uInjectCpl = pIemCpu->uCpl;
|
---|
10208 | }
|
---|
10209 |
|
---|
10210 | /*
|
---|
10211 | * Reset the counters.
|
---|
10212 | */
|
---|
10213 | pIemCpu->cIOReads = 0;
|
---|
10214 | pIemCpu->cIOWrites = 0;
|
---|
10215 | pIemCpu->fIgnoreRaxRdx = false;
|
---|
10216 | pIemCpu->fOverlappingMovs = false;
|
---|
10217 | pIemCpu->fProblematicMemory = false;
|
---|
10218 | pIemCpu->fUndefinedEFlags = 0;
|
---|
10219 |
|
---|
10220 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
10221 | {
|
---|
10222 | /*
|
---|
10223 | * Free all verification records.
|
---|
10224 | */
|
---|
10225 | PIEMVERIFYEVTREC pEvtRec = pIemCpu->pIemEvtRecHead;
|
---|
10226 | pIemCpu->pIemEvtRecHead = NULL;
|
---|
10227 | pIemCpu->ppIemEvtRecNext = &pIemCpu->pIemEvtRecHead;
|
---|
10228 | do
|
---|
10229 | {
|
---|
10230 | while (pEvtRec)
|
---|
10231 | {
|
---|
10232 | PIEMVERIFYEVTREC pNext = pEvtRec->pNext;
|
---|
10233 | pEvtRec->pNext = pIemCpu->pFreeEvtRec;
|
---|
10234 | pIemCpu->pFreeEvtRec = pEvtRec;
|
---|
10235 | pEvtRec = pNext;
|
---|
10236 | }
|
---|
10237 | pEvtRec = pIemCpu->pOtherEvtRecHead;
|
---|
10238 | pIemCpu->pOtherEvtRecHead = NULL;
|
---|
10239 | pIemCpu->ppOtherEvtRecNext = &pIemCpu->pOtherEvtRecHead;
|
---|
10240 | } while (pEvtRec);
|
---|
10241 | }
|
---|
10242 | }
|
---|
10243 |
|
---|
10244 |
|
---|
10245 | /**
|
---|
10246 | * Allocate an event record.
|
---|
10247 | * @returns Pointer to a record.
|
---|
10248 | */
|
---|
10249 | IEM_STATIC PIEMVERIFYEVTREC iemVerifyAllocRecord(PIEMCPU pIemCpu)
|
---|
10250 | {
|
---|
10251 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
10252 | return NULL;
|
---|
10253 |
|
---|
10254 | PIEMVERIFYEVTREC pEvtRec = pIemCpu->pFreeEvtRec;
|
---|
10255 | if (pEvtRec)
|
---|
10256 | pIemCpu->pFreeEvtRec = pEvtRec->pNext;
|
---|
10257 | else
|
---|
10258 | {
|
---|
10259 | if (!pIemCpu->ppIemEvtRecNext)
|
---|
10260 | return NULL; /* Too early (fake PCIBIOS), ignore notification. */
|
---|
10261 |
|
---|
10262 | pEvtRec = (PIEMVERIFYEVTREC)MMR3HeapAlloc(IEMCPU_TO_VM(pIemCpu), MM_TAG_EM /* lazy bird*/, sizeof(*pEvtRec));
|
---|
10263 | if (!pEvtRec)
|
---|
10264 | return NULL;
|
---|
10265 | }
|
---|
10266 | pEvtRec->enmEvent = IEMVERIFYEVENT_INVALID;
|
---|
10267 | pEvtRec->pNext = NULL;
|
---|
10268 | return pEvtRec;
|
---|
10269 | }
|
---|
10270 |
|
---|
10271 |
|
---|
10272 | /**
|
---|
10273 | * IOMMMIORead notification.
|
---|
10274 | */
|
---|
10275 | VMM_INT_DECL(void) IEMNotifyMMIORead(PVM pVM, RTGCPHYS GCPhys, size_t cbValue)
|
---|
10276 | {
|
---|
10277 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
10278 | if (!pVCpu)
|
---|
10279 | return;
|
---|
10280 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
10281 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
10282 | if (!pEvtRec)
|
---|
10283 | return;
|
---|
10284 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_READ;
|
---|
10285 | pEvtRec->u.RamRead.GCPhys = GCPhys;
|
---|
10286 | pEvtRec->u.RamRead.cb = (uint32_t)cbValue;
|
---|
10287 | pEvtRec->pNext = *pIemCpu->ppOtherEvtRecNext;
|
---|
10288 | *pIemCpu->ppOtherEvtRecNext = pEvtRec;
|
---|
10289 | }
|
---|
10290 |
|
---|
10291 |
|
---|
10292 | /**
|
---|
10293 | * IOMMMIOWrite notification.
|
---|
10294 | */
|
---|
10295 | VMM_INT_DECL(void) IEMNotifyMMIOWrite(PVM pVM, RTGCPHYS GCPhys, uint32_t u32Value, size_t cbValue)
|
---|
10296 | {
|
---|
10297 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
10298 | if (!pVCpu)
|
---|
10299 | return;
|
---|
10300 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
10301 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
10302 | if (!pEvtRec)
|
---|
10303 | return;
|
---|
10304 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_WRITE;
|
---|
10305 | pEvtRec->u.RamWrite.GCPhys = GCPhys;
|
---|
10306 | pEvtRec->u.RamWrite.cb = (uint32_t)cbValue;
|
---|
10307 | pEvtRec->u.RamWrite.ab[0] = RT_BYTE1(u32Value);
|
---|
10308 | pEvtRec->u.RamWrite.ab[1] = RT_BYTE2(u32Value);
|
---|
10309 | pEvtRec->u.RamWrite.ab[2] = RT_BYTE3(u32Value);
|
---|
10310 | pEvtRec->u.RamWrite.ab[3] = RT_BYTE4(u32Value);
|
---|
10311 | pEvtRec->pNext = *pIemCpu->ppOtherEvtRecNext;
|
---|
10312 | *pIemCpu->ppOtherEvtRecNext = pEvtRec;
|
---|
10313 | }
|
---|
10314 |
|
---|
10315 |
|
---|
10316 | /**
|
---|
10317 | * IOMIOPortRead notification.
|
---|
10318 | */
|
---|
10319 | VMM_INT_DECL(void) IEMNotifyIOPortRead(PVM pVM, RTIOPORT Port, size_t cbValue)
|
---|
10320 | {
|
---|
10321 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
10322 | if (!pVCpu)
|
---|
10323 | return;
|
---|
10324 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
10325 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
10326 | if (!pEvtRec)
|
---|
10327 | return;
|
---|
10328 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_READ;
|
---|
10329 | pEvtRec->u.IOPortRead.Port = Port;
|
---|
10330 | pEvtRec->u.IOPortRead.cbValue = (uint8_t)cbValue;
|
---|
10331 | pEvtRec->pNext = *pIemCpu->ppOtherEvtRecNext;
|
---|
10332 | *pIemCpu->ppOtherEvtRecNext = pEvtRec;
|
---|
10333 | }
|
---|
10334 |
|
---|
10335 | /**
|
---|
10336 | * IOMIOPortWrite notification.
|
---|
10337 | */
|
---|
10338 | VMM_INT_DECL(void) IEMNotifyIOPortWrite(PVM pVM, RTIOPORT Port, uint32_t u32Value, size_t cbValue)
|
---|
10339 | {
|
---|
10340 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
10341 | if (!pVCpu)
|
---|
10342 | return;
|
---|
10343 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
10344 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
10345 | if (!pEvtRec)
|
---|
10346 | return;
|
---|
10347 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_WRITE;
|
---|
10348 | pEvtRec->u.IOPortWrite.Port = Port;
|
---|
10349 | pEvtRec->u.IOPortWrite.cbValue = (uint8_t)cbValue;
|
---|
10350 | pEvtRec->u.IOPortWrite.u32Value = u32Value;
|
---|
10351 | pEvtRec->pNext = *pIemCpu->ppOtherEvtRecNext;
|
---|
10352 | *pIemCpu->ppOtherEvtRecNext = pEvtRec;
|
---|
10353 | }
|
---|
10354 |
|
---|
10355 |
|
---|
10356 | VMM_INT_DECL(void) IEMNotifyIOPortReadString(PVM pVM, RTIOPORT Port, void *pvDst, RTGCUINTREG cTransfers, size_t cbValue)
|
---|
10357 | {
|
---|
10358 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
10359 | if (!pVCpu)
|
---|
10360 | return;
|
---|
10361 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
10362 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
10363 | if (!pEvtRec)
|
---|
10364 | return;
|
---|
10365 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_STR_READ;
|
---|
10366 | pEvtRec->u.IOPortStrRead.Port = Port;
|
---|
10367 | pEvtRec->u.IOPortStrRead.cbValue = (uint8_t)cbValue;
|
---|
10368 | pEvtRec->u.IOPortStrRead.cTransfers = cTransfers;
|
---|
10369 | pEvtRec->pNext = *pIemCpu->ppOtherEvtRecNext;
|
---|
10370 | *pIemCpu->ppOtherEvtRecNext = pEvtRec;
|
---|
10371 | }
|
---|
10372 |
|
---|
10373 |
|
---|
10374 | VMM_INT_DECL(void) IEMNotifyIOPortWriteString(PVM pVM, RTIOPORT Port, void const *pvSrc, RTGCUINTREG cTransfers, size_t cbValue)
|
---|
10375 | {
|
---|
10376 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
10377 | if (!pVCpu)
|
---|
10378 | return;
|
---|
10379 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
10380 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
10381 | if (!pEvtRec)
|
---|
10382 | return;
|
---|
10383 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_STR_WRITE;
|
---|
10384 | pEvtRec->u.IOPortStrWrite.Port = Port;
|
---|
10385 | pEvtRec->u.IOPortStrWrite.cbValue = (uint8_t)cbValue;
|
---|
10386 | pEvtRec->u.IOPortStrWrite.cTransfers = cTransfers;
|
---|
10387 | pEvtRec->pNext = *pIemCpu->ppOtherEvtRecNext;
|
---|
10388 | *pIemCpu->ppOtherEvtRecNext = pEvtRec;
|
---|
10389 | }
|
---|
10390 |
|
---|
10391 |
|
---|
10392 | /**
|
---|
10393 | * Fakes and records an I/O port read.
|
---|
10394 | *
|
---|
10395 | * @returns VINF_SUCCESS.
|
---|
10396 | * @param pIemCpu The IEM per CPU data.
|
---|
10397 | * @param Port The I/O port.
|
---|
10398 | * @param pu32Value Where to store the fake value.
|
---|
10399 | * @param cbValue The size of the access.
|
---|
10400 | */
|
---|
10401 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortRead(PIEMCPU pIemCpu, RTIOPORT Port, uint32_t *pu32Value, size_t cbValue)
|
---|
10402 | {
|
---|
10403 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
10404 | if (pEvtRec)
|
---|
10405 | {
|
---|
10406 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_READ;
|
---|
10407 | pEvtRec->u.IOPortRead.Port = Port;
|
---|
10408 | pEvtRec->u.IOPortRead.cbValue = (uint8_t)cbValue;
|
---|
10409 | pEvtRec->pNext = *pIemCpu->ppIemEvtRecNext;
|
---|
10410 | *pIemCpu->ppIemEvtRecNext = pEvtRec;
|
---|
10411 | }
|
---|
10412 | pIemCpu->cIOReads++;
|
---|
10413 | *pu32Value = 0xcccccccc;
|
---|
10414 | return VINF_SUCCESS;
|
---|
10415 | }
|
---|
10416 |
|
---|
10417 |
|
---|
10418 | /**
|
---|
10419 | * Fakes and records an I/O port write.
|
---|
10420 | *
|
---|
10421 | * @returns VINF_SUCCESS.
|
---|
10422 | * @param pIemCpu The IEM per CPU data.
|
---|
10423 | * @param Port The I/O port.
|
---|
10424 | * @param u32Value The value being written.
|
---|
10425 | * @param cbValue The size of the access.
|
---|
10426 | */
|
---|
10427 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortWrite(PIEMCPU pIemCpu, RTIOPORT Port, uint32_t u32Value, size_t cbValue)
|
---|
10428 | {
|
---|
10429 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pIemCpu);
|
---|
10430 | if (pEvtRec)
|
---|
10431 | {
|
---|
10432 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_WRITE;
|
---|
10433 | pEvtRec->u.IOPortWrite.Port = Port;
|
---|
10434 | pEvtRec->u.IOPortWrite.cbValue = (uint8_t)cbValue;
|
---|
10435 | pEvtRec->u.IOPortWrite.u32Value = u32Value;
|
---|
10436 | pEvtRec->pNext = *pIemCpu->ppIemEvtRecNext;
|
---|
10437 | *pIemCpu->ppIemEvtRecNext = pEvtRec;
|
---|
10438 | }
|
---|
10439 | pIemCpu->cIOWrites++;
|
---|
10440 | return VINF_SUCCESS;
|
---|
10441 | }
|
---|
10442 |
|
---|
10443 |
|
---|
10444 | /**
|
---|
10445 | * Used to add extra details about a stub case.
|
---|
10446 | * @param pIemCpu The IEM per CPU state.
|
---|
10447 | */
|
---|
10448 | IEM_STATIC void iemVerifyAssertMsg2(PIEMCPU pIemCpu)
|
---|
10449 | {
|
---|
10450 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
10451 | PVM pVM = IEMCPU_TO_VM(pIemCpu);
|
---|
10452 | PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
|
---|
10453 | char szRegs[4096];
|
---|
10454 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
10455 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
10456 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
10457 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
10458 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
10459 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
10460 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
10461 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
10462 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
10463 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
10464 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
10465 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
10466 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
10467 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
10468 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
10469 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
10470 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
10471 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
10472 | " efer=%016VR{efer}\n"
|
---|
10473 | " pat=%016VR{pat}\n"
|
---|
10474 | " sf_mask=%016VR{sf_mask}\n"
|
---|
10475 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
10476 | " lstar=%016VR{lstar}\n"
|
---|
10477 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
10478 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
10479 | );
|
---|
10480 |
|
---|
10481 | char szInstr1[256];
|
---|
10482 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pIemCpu->uOldCs, pIemCpu->uOldRip,
|
---|
10483 | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
10484 | szInstr1, sizeof(szInstr1), NULL);
|
---|
10485 | char szInstr2[256];
|
---|
10486 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
10487 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
10488 | szInstr2, sizeof(szInstr2), NULL);
|
---|
10489 |
|
---|
10490 | RTAssertMsg2Weak("%s%s\n%s\n", szRegs, szInstr1, szInstr2);
|
---|
10491 | }
|
---|
10492 |
|
---|
10493 |
|
---|
10494 | /**
|
---|
10495 | * Used by iemVerifyAssertRecord and iemVerifyAssertRecords to add a record
|
---|
10496 | * dump to the assertion info.
|
---|
10497 | *
|
---|
10498 | * @param pEvtRec The record to dump.
|
---|
10499 | */
|
---|
10500 | IEM_STATIC void iemVerifyAssertAddRecordDump(PIEMVERIFYEVTREC pEvtRec)
|
---|
10501 | {
|
---|
10502 | switch (pEvtRec->enmEvent)
|
---|
10503 | {
|
---|
10504 | case IEMVERIFYEVENT_IOPORT_READ:
|
---|
10505 | RTAssertMsg2Add("I/O PORT READ from %#6x, %d bytes\n",
|
---|
10506 | pEvtRec->u.IOPortWrite.Port,
|
---|
10507 | pEvtRec->u.IOPortWrite.cbValue);
|
---|
10508 | break;
|
---|
10509 | case IEMVERIFYEVENT_IOPORT_WRITE:
|
---|
10510 | RTAssertMsg2Add("I/O PORT WRITE to %#6x, %d bytes, value %#x\n",
|
---|
10511 | pEvtRec->u.IOPortWrite.Port,
|
---|
10512 | pEvtRec->u.IOPortWrite.cbValue,
|
---|
10513 | pEvtRec->u.IOPortWrite.u32Value);
|
---|
10514 | break;
|
---|
10515 | case IEMVERIFYEVENT_IOPORT_STR_READ:
|
---|
10516 | RTAssertMsg2Add("I/O PORT STRING READ from %#6x, %d bytes, %#x times\n",
|
---|
10517 | pEvtRec->u.IOPortStrWrite.Port,
|
---|
10518 | pEvtRec->u.IOPortStrWrite.cbValue,
|
---|
10519 | pEvtRec->u.IOPortStrWrite.cTransfers);
|
---|
10520 | break;
|
---|
10521 | case IEMVERIFYEVENT_IOPORT_STR_WRITE:
|
---|
10522 | RTAssertMsg2Add("I/O PORT STRING WRITE to %#6x, %d bytes, %#x times\n",
|
---|
10523 | pEvtRec->u.IOPortStrWrite.Port,
|
---|
10524 | pEvtRec->u.IOPortStrWrite.cbValue,
|
---|
10525 | pEvtRec->u.IOPortStrWrite.cTransfers);
|
---|
10526 | break;
|
---|
10527 | case IEMVERIFYEVENT_RAM_READ:
|
---|
10528 | RTAssertMsg2Add("RAM READ at %RGp, %#4zx bytes\n",
|
---|
10529 | pEvtRec->u.RamRead.GCPhys,
|
---|
10530 | pEvtRec->u.RamRead.cb);
|
---|
10531 | break;
|
---|
10532 | case IEMVERIFYEVENT_RAM_WRITE:
|
---|
10533 | RTAssertMsg2Add("RAM WRITE at %RGp, %#4zx bytes: %.*Rhxs\n",
|
---|
10534 | pEvtRec->u.RamWrite.GCPhys,
|
---|
10535 | pEvtRec->u.RamWrite.cb,
|
---|
10536 | (int)pEvtRec->u.RamWrite.cb,
|
---|
10537 | pEvtRec->u.RamWrite.ab);
|
---|
10538 | break;
|
---|
10539 | default:
|
---|
10540 | AssertMsgFailed(("Invalid event type %d\n", pEvtRec->enmEvent));
|
---|
10541 | break;
|
---|
10542 | }
|
---|
10543 | }
|
---|
10544 |
|
---|
10545 |
|
---|
10546 | /**
|
---|
10547 | * Raises an assertion on the specified record, showing the given message with
|
---|
10548 | * a record dump attached.
|
---|
10549 | *
|
---|
10550 | * @param pIemCpu The IEM per CPU data.
|
---|
10551 | * @param pEvtRec1 The first record.
|
---|
10552 | * @param pEvtRec2 The second record.
|
---|
10553 | * @param pszMsg The message explaining why we're asserting.
|
---|
10554 | */
|
---|
10555 | IEM_STATIC void iemVerifyAssertRecords(PIEMCPU pIemCpu, PIEMVERIFYEVTREC pEvtRec1, PIEMVERIFYEVTREC pEvtRec2, const char *pszMsg)
|
---|
10556 | {
|
---|
10557 | RTAssertMsg1(pszMsg, __LINE__, __FILE__, __PRETTY_FUNCTION__);
|
---|
10558 | iemVerifyAssertAddRecordDump(pEvtRec1);
|
---|
10559 | iemVerifyAssertAddRecordDump(pEvtRec2);
|
---|
10560 | iemVerifyAssertMsg2(pIemCpu);
|
---|
10561 | RTAssertPanic();
|
---|
10562 | }
|
---|
10563 |
|
---|
10564 |
|
---|
10565 | /**
|
---|
10566 | * Raises an assertion on the specified record, showing the given message with
|
---|
10567 | * a record dump attached.
|
---|
10568 | *
|
---|
10569 | * @param pIemCpu The IEM per CPU data.
|
---|
10570 | * @param pEvtRec1 The first record.
|
---|
10571 | * @param pszMsg The message explaining why we're asserting.
|
---|
10572 | */
|
---|
10573 | IEM_STATIC void iemVerifyAssertRecord(PIEMCPU pIemCpu, PIEMVERIFYEVTREC pEvtRec, const char *pszMsg)
|
---|
10574 | {
|
---|
10575 | RTAssertMsg1(pszMsg, __LINE__, __FILE__, __PRETTY_FUNCTION__);
|
---|
10576 | iemVerifyAssertAddRecordDump(pEvtRec);
|
---|
10577 | iemVerifyAssertMsg2(pIemCpu);
|
---|
10578 | RTAssertPanic();
|
---|
10579 | }
|
---|
10580 |
|
---|
10581 |
|
---|
10582 | /**
|
---|
10583 | * Verifies a write record.
|
---|
10584 | *
|
---|
10585 | * @param pIemCpu The IEM per CPU data.
|
---|
10586 | * @param pEvtRec The write record.
|
---|
10587 | * @param fRem Set if REM was doing the other executing. If clear
|
---|
10588 | * it was HM.
|
---|
10589 | */
|
---|
10590 | IEM_STATIC void iemVerifyWriteRecord(PIEMCPU pIemCpu, PIEMVERIFYEVTREC pEvtRec, bool fRem)
|
---|
10591 | {
|
---|
10592 | uint8_t abBuf[sizeof(pEvtRec->u.RamWrite.ab)]; RT_ZERO(abBuf);
|
---|
10593 | Assert(sizeof(abBuf) >= pEvtRec->u.RamWrite.cb);
|
---|
10594 | int rc = PGMPhysSimpleReadGCPhys(IEMCPU_TO_VM(pIemCpu), abBuf, pEvtRec->u.RamWrite.GCPhys, pEvtRec->u.RamWrite.cb);
|
---|
10595 | if ( RT_FAILURE(rc)
|
---|
10596 | || memcmp(abBuf, pEvtRec->u.RamWrite.ab, pEvtRec->u.RamWrite.cb) )
|
---|
10597 | {
|
---|
10598 | /* fend off ins */
|
---|
10599 | if ( !pIemCpu->cIOReads
|
---|
10600 | || pEvtRec->u.RamWrite.ab[0] != 0xcc
|
---|
10601 | || ( pEvtRec->u.RamWrite.cb != 1
|
---|
10602 | && pEvtRec->u.RamWrite.cb != 2
|
---|
10603 | && pEvtRec->u.RamWrite.cb != 4) )
|
---|
10604 | {
|
---|
10605 | /* fend off ROMs and MMIO */
|
---|
10606 | if ( pEvtRec->u.RamWrite.GCPhys - UINT32_C(0x000a0000) > UINT32_C(0x60000)
|
---|
10607 | && pEvtRec->u.RamWrite.GCPhys - UINT32_C(0xfffc0000) > UINT32_C(0x40000) )
|
---|
10608 | {
|
---|
10609 | /* fend off fxsave */
|
---|
10610 | if (pEvtRec->u.RamWrite.cb != 512)
|
---|
10611 | {
|
---|
10612 | const char *pszWho = fRem ? "rem" : HMR3IsVmxEnabled(IEMCPU_TO_VM(pIemCpu)->pUVM) ? "vmx" : "svm";
|
---|
10613 | RTAssertMsg1(NULL, __LINE__, __FILE__, __PRETTY_FUNCTION__);
|
---|
10614 | RTAssertMsg2Weak("Memory at %RGv differs\n", pEvtRec->u.RamWrite.GCPhys);
|
---|
10615 | RTAssertMsg2Add("%s: %.*Rhxs\n"
|
---|
10616 | "iem: %.*Rhxs\n",
|
---|
10617 | pszWho, pEvtRec->u.RamWrite.cb, abBuf,
|
---|
10618 | pEvtRec->u.RamWrite.cb, pEvtRec->u.RamWrite.ab);
|
---|
10619 | iemVerifyAssertAddRecordDump(pEvtRec);
|
---|
10620 | iemVerifyAssertMsg2(pIemCpu);
|
---|
10621 | RTAssertPanic();
|
---|
10622 | }
|
---|
10623 | }
|
---|
10624 | }
|
---|
10625 | }
|
---|
10626 |
|
---|
10627 | }
|
---|
10628 |
|
---|
10629 | /**
|
---|
10630 | * Performs the post-execution verfication checks.
|
---|
10631 | */
|
---|
10632 | IEM_STATIC VBOXSTRICTRC iemExecVerificationModeCheck(PIEMCPU pIemCpu, VBOXSTRICTRC rcStrictIem)
|
---|
10633 | {
|
---|
10634 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
10635 | return rcStrictIem;
|
---|
10636 |
|
---|
10637 | /*
|
---|
10638 | * Switch back the state.
|
---|
10639 | */
|
---|
10640 | PCPUMCTX pOrgCtx = CPUMQueryGuestCtxPtr(IEMCPU_TO_VMCPU(pIemCpu));
|
---|
10641 | PCPUMCTX pDebugCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
10642 | Assert(pOrgCtx != pDebugCtx);
|
---|
10643 | pIemCpu->CTX_SUFF(pCtx) = pOrgCtx;
|
---|
10644 |
|
---|
10645 | /*
|
---|
10646 | * Execute the instruction in REM.
|
---|
10647 | */
|
---|
10648 | bool fRem = false;
|
---|
10649 | PVM pVM = IEMCPU_TO_VM(pIemCpu);
|
---|
10650 | PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
|
---|
10651 | VBOXSTRICTRC rc = VERR_EM_CANNOT_EXEC_GUEST;
|
---|
10652 | #ifdef IEM_VERIFICATION_MODE_FULL_HM
|
---|
10653 | if ( HMIsEnabled(pVM)
|
---|
10654 | && pIemCpu->cIOReads == 0
|
---|
10655 | && pIemCpu->cIOWrites == 0
|
---|
10656 | && !pIemCpu->fProblematicMemory)
|
---|
10657 | {
|
---|
10658 | uint64_t uStartRip = pOrgCtx->rip;
|
---|
10659 | unsigned iLoops = 0;
|
---|
10660 | do
|
---|
10661 | {
|
---|
10662 | rc = EMR3HmSingleInstruction(pVM, pVCpu, EM_ONE_INS_FLAGS_RIP_CHANGE);
|
---|
10663 | iLoops++;
|
---|
10664 | } while ( rc == VINF_SUCCESS
|
---|
10665 | || ( rc == VINF_EM_DBG_STEPPED
|
---|
10666 | && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
10667 | && EMGetInhibitInterruptsPC(pVCpu) == pOrgCtx->rip)
|
---|
10668 | || ( pOrgCtx->rip != pDebugCtx->rip
|
---|
10669 | && pIemCpu->uInjectCpl != UINT8_MAX
|
---|
10670 | && iLoops < 8) );
|
---|
10671 | if (rc == VINF_EM_RESCHEDULE && pOrgCtx->rip != uStartRip)
|
---|
10672 | rc = VINF_SUCCESS;
|
---|
10673 | }
|
---|
10674 | #endif
|
---|
10675 | if ( rc == VERR_EM_CANNOT_EXEC_GUEST
|
---|
10676 | || rc == VINF_IOM_R3_IOPORT_READ
|
---|
10677 | || rc == VINF_IOM_R3_IOPORT_WRITE
|
---|
10678 | || rc == VINF_IOM_R3_MMIO_READ
|
---|
10679 | || rc == VINF_IOM_R3_MMIO_READ_WRITE
|
---|
10680 | || rc == VINF_IOM_R3_MMIO_WRITE
|
---|
10681 | || rc == VINF_CPUM_R3_MSR_READ
|
---|
10682 | || rc == VINF_CPUM_R3_MSR_WRITE
|
---|
10683 | || rc == VINF_EM_RESCHEDULE
|
---|
10684 | )
|
---|
10685 | {
|
---|
10686 | EMRemLock(pVM);
|
---|
10687 | rc = REMR3EmulateInstruction(pVM, pVCpu);
|
---|
10688 | AssertRC(rc);
|
---|
10689 | EMRemUnlock(pVM);
|
---|
10690 | fRem = true;
|
---|
10691 | }
|
---|
10692 |
|
---|
10693 | # if 1 /* Skip unimplemented instructions for now. */
|
---|
10694 | if (rcStrictIem == VERR_IEM_INSTR_NOT_IMPLEMENTED)
|
---|
10695 | {
|
---|
10696 | pIemCpu->CTX_SUFF(pCtx) = pOrgCtx;
|
---|
10697 | if (rc == VINF_EM_DBG_STEPPED)
|
---|
10698 | return VINF_SUCCESS;
|
---|
10699 | return rc;
|
---|
10700 | }
|
---|
10701 | # endif
|
---|
10702 |
|
---|
10703 | /*
|
---|
10704 | * Compare the register states.
|
---|
10705 | */
|
---|
10706 | unsigned cDiffs = 0;
|
---|
10707 | if (memcmp(pOrgCtx, pDebugCtx, sizeof(*pDebugCtx)))
|
---|
10708 | {
|
---|
10709 | //Log(("REM and IEM ends up with different registers!\n"));
|
---|
10710 | const char *pszWho = fRem ? "rem" : HMR3IsVmxEnabled(pVM->pUVM) ? "vmx" : "svm";
|
---|
10711 |
|
---|
10712 | # define CHECK_FIELD(a_Field) \
|
---|
10713 | do \
|
---|
10714 | { \
|
---|
10715 | if (pOrgCtx->a_Field != pDebugCtx->a_Field) \
|
---|
10716 | { \
|
---|
10717 | switch (sizeof(pOrgCtx->a_Field)) \
|
---|
10718 | { \
|
---|
10719 | case 1: RTAssertMsg2Weak(" %8s differs - iem=%02x - %s=%02x\n", #a_Field, pDebugCtx->a_Field, pszWho, pOrgCtx->a_Field); break; \
|
---|
10720 | case 2: RTAssertMsg2Weak(" %8s differs - iem=%04x - %s=%04x\n", #a_Field, pDebugCtx->a_Field, pszWho, pOrgCtx->a_Field); break; \
|
---|
10721 | case 4: RTAssertMsg2Weak(" %8s differs - iem=%08x - %s=%08x\n", #a_Field, pDebugCtx->a_Field, pszWho, pOrgCtx->a_Field); break; \
|
---|
10722 | case 8: RTAssertMsg2Weak(" %8s differs - iem=%016llx - %s=%016llx\n", #a_Field, pDebugCtx->a_Field, pszWho, pOrgCtx->a_Field); break; \
|
---|
10723 | default: RTAssertMsg2Weak(" %8s differs\n", #a_Field); break; \
|
---|
10724 | } \
|
---|
10725 | cDiffs++; \
|
---|
10726 | } \
|
---|
10727 | } while (0)
|
---|
10728 | # define CHECK_XSTATE_FIELD(a_Field) \
|
---|
10729 | do \
|
---|
10730 | { \
|
---|
10731 | if (pOrgXState->a_Field != pDebugXState->a_Field) \
|
---|
10732 | { \
|
---|
10733 | switch (sizeof(pOrgXState->a_Field)) \
|
---|
10734 | { \
|
---|
10735 | case 1: RTAssertMsg2Weak(" %8s differs - iem=%02x - %s=%02x\n", #a_Field, pDebugXState->a_Field, pszWho, pOrgXState->a_Field); break; \
|
---|
10736 | case 2: RTAssertMsg2Weak(" %8s differs - iem=%04x - %s=%04x\n", #a_Field, pDebugXState->a_Field, pszWho, pOrgXState->a_Field); break; \
|
---|
10737 | case 4: RTAssertMsg2Weak(" %8s differs - iem=%08x - %s=%08x\n", #a_Field, pDebugXState->a_Field, pszWho, pOrgXState->a_Field); break; \
|
---|
10738 | case 8: RTAssertMsg2Weak(" %8s differs - iem=%016llx - %s=%016llx\n", #a_Field, pDebugXState->a_Field, pszWho, pOrgXState->a_Field); break; \
|
---|
10739 | default: RTAssertMsg2Weak(" %8s differs\n", #a_Field); break; \
|
---|
10740 | } \
|
---|
10741 | cDiffs++; \
|
---|
10742 | } \
|
---|
10743 | } while (0)
|
---|
10744 |
|
---|
10745 | # define CHECK_BIT_FIELD(a_Field) \
|
---|
10746 | do \
|
---|
10747 | { \
|
---|
10748 | if (pOrgCtx->a_Field != pDebugCtx->a_Field) \
|
---|
10749 | { \
|
---|
10750 | RTAssertMsg2Weak(" %8s differs - iem=%02x - %s=%02x\n", #a_Field, pDebugCtx->a_Field, pszWho, pOrgCtx->a_Field); \
|
---|
10751 | cDiffs++; \
|
---|
10752 | } \
|
---|
10753 | } while (0)
|
---|
10754 |
|
---|
10755 | # define CHECK_SEL(a_Sel) \
|
---|
10756 | do \
|
---|
10757 | { \
|
---|
10758 | CHECK_FIELD(a_Sel.Sel); \
|
---|
10759 | CHECK_FIELD(a_Sel.Attr.u); \
|
---|
10760 | CHECK_FIELD(a_Sel.u64Base); \
|
---|
10761 | CHECK_FIELD(a_Sel.u32Limit); \
|
---|
10762 | CHECK_FIELD(a_Sel.fFlags); \
|
---|
10763 | } while (0)
|
---|
10764 |
|
---|
10765 | PX86XSAVEAREA pOrgXState = pOrgCtx->CTX_SUFF(pXState);
|
---|
10766 | PX86XSAVEAREA pDebugXState = pDebugCtx->CTX_SUFF(pXState);
|
---|
10767 |
|
---|
10768 | #if 1 /* The recompiler doesn't update these the intel way. */
|
---|
10769 | if (fRem)
|
---|
10770 | {
|
---|
10771 | pOrgXState->x87.FOP = pDebugXState->x87.FOP;
|
---|
10772 | pOrgXState->x87.FPUIP = pDebugXState->x87.FPUIP;
|
---|
10773 | pOrgXState->x87.CS = pDebugXState->x87.CS;
|
---|
10774 | pOrgXState->x87.Rsrvd1 = pDebugXState->x87.Rsrvd1;
|
---|
10775 | pOrgXState->x87.FPUDP = pDebugXState->x87.FPUDP;
|
---|
10776 | pOrgXState->x87.DS = pDebugXState->x87.DS;
|
---|
10777 | pOrgXState->x87.Rsrvd2 = pDebugXState->x87.Rsrvd2;
|
---|
10778 | //pOrgXState->x87.MXCSR_MASK = pDebugXState->x87.MXCSR_MASK;
|
---|
10779 | if ((pOrgXState->x87.FSW & X86_FSW_TOP_MASK) == (pDebugXState->x87.FSW & X86_FSW_TOP_MASK))
|
---|
10780 | pOrgXState->x87.FSW = pDebugXState->x87.FSW;
|
---|
10781 | }
|
---|
10782 | #endif
|
---|
10783 | if (memcmp(&pOrgXState->x87, &pDebugXState->x87, sizeof(pDebugXState->x87)))
|
---|
10784 | {
|
---|
10785 | RTAssertMsg2Weak(" the FPU state differs\n");
|
---|
10786 | cDiffs++;
|
---|
10787 | CHECK_XSTATE_FIELD(x87.FCW);
|
---|
10788 | CHECK_XSTATE_FIELD(x87.FSW);
|
---|
10789 | CHECK_XSTATE_FIELD(x87.FTW);
|
---|
10790 | CHECK_XSTATE_FIELD(x87.FOP);
|
---|
10791 | CHECK_XSTATE_FIELD(x87.FPUIP);
|
---|
10792 | CHECK_XSTATE_FIELD(x87.CS);
|
---|
10793 | CHECK_XSTATE_FIELD(x87.Rsrvd1);
|
---|
10794 | CHECK_XSTATE_FIELD(x87.FPUDP);
|
---|
10795 | CHECK_XSTATE_FIELD(x87.DS);
|
---|
10796 | CHECK_XSTATE_FIELD(x87.Rsrvd2);
|
---|
10797 | CHECK_XSTATE_FIELD(x87.MXCSR);
|
---|
10798 | CHECK_XSTATE_FIELD(x87.MXCSR_MASK);
|
---|
10799 | CHECK_XSTATE_FIELD(x87.aRegs[0].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[0].au64[1]);
|
---|
10800 | CHECK_XSTATE_FIELD(x87.aRegs[1].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[1].au64[1]);
|
---|
10801 | CHECK_XSTATE_FIELD(x87.aRegs[2].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[2].au64[1]);
|
---|
10802 | CHECK_XSTATE_FIELD(x87.aRegs[3].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[3].au64[1]);
|
---|
10803 | CHECK_XSTATE_FIELD(x87.aRegs[4].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[4].au64[1]);
|
---|
10804 | CHECK_XSTATE_FIELD(x87.aRegs[5].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[5].au64[1]);
|
---|
10805 | CHECK_XSTATE_FIELD(x87.aRegs[6].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[6].au64[1]);
|
---|
10806 | CHECK_XSTATE_FIELD(x87.aRegs[7].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[7].au64[1]);
|
---|
10807 | CHECK_XSTATE_FIELD(x87.aXMM[ 0].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 0].au64[1]);
|
---|
10808 | CHECK_XSTATE_FIELD(x87.aXMM[ 1].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 1].au64[1]);
|
---|
10809 | CHECK_XSTATE_FIELD(x87.aXMM[ 2].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 2].au64[1]);
|
---|
10810 | CHECK_XSTATE_FIELD(x87.aXMM[ 3].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 3].au64[1]);
|
---|
10811 | CHECK_XSTATE_FIELD(x87.aXMM[ 4].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 4].au64[1]);
|
---|
10812 | CHECK_XSTATE_FIELD(x87.aXMM[ 5].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 5].au64[1]);
|
---|
10813 | CHECK_XSTATE_FIELD(x87.aXMM[ 6].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 6].au64[1]);
|
---|
10814 | CHECK_XSTATE_FIELD(x87.aXMM[ 7].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 7].au64[1]);
|
---|
10815 | CHECK_XSTATE_FIELD(x87.aXMM[ 8].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 8].au64[1]);
|
---|
10816 | CHECK_XSTATE_FIELD(x87.aXMM[ 9].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 9].au64[1]);
|
---|
10817 | CHECK_XSTATE_FIELD(x87.aXMM[10].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[10].au64[1]);
|
---|
10818 | CHECK_XSTATE_FIELD(x87.aXMM[11].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[11].au64[1]);
|
---|
10819 | CHECK_XSTATE_FIELD(x87.aXMM[12].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[12].au64[1]);
|
---|
10820 | CHECK_XSTATE_FIELD(x87.aXMM[13].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[13].au64[1]);
|
---|
10821 | CHECK_XSTATE_FIELD(x87.aXMM[14].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[14].au64[1]);
|
---|
10822 | CHECK_XSTATE_FIELD(x87.aXMM[15].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[15].au64[1]);
|
---|
10823 | for (unsigned i = 0; i < RT_ELEMENTS(pOrgXState->x87.au32RsrvdRest); i++)
|
---|
10824 | CHECK_XSTATE_FIELD(x87.au32RsrvdRest[i]);
|
---|
10825 | }
|
---|
10826 | CHECK_FIELD(rip);
|
---|
10827 | uint32_t fFlagsMask = UINT32_MAX & ~pIemCpu->fUndefinedEFlags;
|
---|
10828 | if ((pOrgCtx->rflags.u & fFlagsMask) != (pDebugCtx->rflags.u & fFlagsMask))
|
---|
10829 | {
|
---|
10830 | RTAssertMsg2Weak(" rflags differs - iem=%08llx %s=%08llx\n", pDebugCtx->rflags.u, pszWho, pOrgCtx->rflags.u);
|
---|
10831 | CHECK_BIT_FIELD(rflags.Bits.u1CF);
|
---|
10832 | CHECK_BIT_FIELD(rflags.Bits.u1Reserved0);
|
---|
10833 | CHECK_BIT_FIELD(rflags.Bits.u1PF);
|
---|
10834 | CHECK_BIT_FIELD(rflags.Bits.u1Reserved1);
|
---|
10835 | CHECK_BIT_FIELD(rflags.Bits.u1AF);
|
---|
10836 | CHECK_BIT_FIELD(rflags.Bits.u1Reserved2);
|
---|
10837 | CHECK_BIT_FIELD(rflags.Bits.u1ZF);
|
---|
10838 | CHECK_BIT_FIELD(rflags.Bits.u1SF);
|
---|
10839 | CHECK_BIT_FIELD(rflags.Bits.u1TF);
|
---|
10840 | CHECK_BIT_FIELD(rflags.Bits.u1IF);
|
---|
10841 | CHECK_BIT_FIELD(rflags.Bits.u1DF);
|
---|
10842 | CHECK_BIT_FIELD(rflags.Bits.u1OF);
|
---|
10843 | CHECK_BIT_FIELD(rflags.Bits.u2IOPL);
|
---|
10844 | CHECK_BIT_FIELD(rflags.Bits.u1NT);
|
---|
10845 | CHECK_BIT_FIELD(rflags.Bits.u1Reserved3);
|
---|
10846 | if (0 && !fRem) /** @todo debug the occational clear RF flags when running against VT-x. */
|
---|
10847 | CHECK_BIT_FIELD(rflags.Bits.u1RF);
|
---|
10848 | CHECK_BIT_FIELD(rflags.Bits.u1VM);
|
---|
10849 | CHECK_BIT_FIELD(rflags.Bits.u1AC);
|
---|
10850 | CHECK_BIT_FIELD(rflags.Bits.u1VIF);
|
---|
10851 | CHECK_BIT_FIELD(rflags.Bits.u1VIP);
|
---|
10852 | CHECK_BIT_FIELD(rflags.Bits.u1ID);
|
---|
10853 | }
|
---|
10854 |
|
---|
10855 | if (pIemCpu->cIOReads != 1 && !pIemCpu->fIgnoreRaxRdx)
|
---|
10856 | CHECK_FIELD(rax);
|
---|
10857 | CHECK_FIELD(rcx);
|
---|
10858 | if (!pIemCpu->fIgnoreRaxRdx)
|
---|
10859 | CHECK_FIELD(rdx);
|
---|
10860 | CHECK_FIELD(rbx);
|
---|
10861 | CHECK_FIELD(rsp);
|
---|
10862 | CHECK_FIELD(rbp);
|
---|
10863 | CHECK_FIELD(rsi);
|
---|
10864 | CHECK_FIELD(rdi);
|
---|
10865 | CHECK_FIELD(r8);
|
---|
10866 | CHECK_FIELD(r9);
|
---|
10867 | CHECK_FIELD(r10);
|
---|
10868 | CHECK_FIELD(r11);
|
---|
10869 | CHECK_FIELD(r12);
|
---|
10870 | CHECK_FIELD(r13);
|
---|
10871 | CHECK_SEL(cs);
|
---|
10872 | CHECK_SEL(ss);
|
---|
10873 | CHECK_SEL(ds);
|
---|
10874 | CHECK_SEL(es);
|
---|
10875 | CHECK_SEL(fs);
|
---|
10876 | CHECK_SEL(gs);
|
---|
10877 | CHECK_FIELD(cr0);
|
---|
10878 |
|
---|
10879 | /* Klugde #1: REM fetches code and across the page boundrary and faults on the next page, while we execute
|
---|
10880 | the faulting instruction first: 001b:77f61ff3 66 8b 42 02 mov ax, word [edx+002h] (NT4SP1) */
|
---|
10881 | /* Kludge #2: CR2 differs slightly on cross page boundrary faults, we report the last address of the access
|
---|
10882 | while REM reports the address of the first byte on the page. Pending investigation as to which is correct. */
|
---|
10883 | if (pOrgCtx->cr2 != pDebugCtx->cr2)
|
---|
10884 | {
|
---|
10885 | if (pIemCpu->uOldCs == 0x1b && pIemCpu->uOldRip == 0x77f61ff3 && fRem)
|
---|
10886 | { /* ignore */ }
|
---|
10887 | else if ( (pOrgCtx->cr2 & ~(uint64_t)3) == (pDebugCtx->cr2 & ~(uint64_t)3)
|
---|
10888 | && (pOrgCtx->cr2 & PAGE_OFFSET_MASK) == 0
|
---|
10889 | && fRem)
|
---|
10890 | { /* ignore */ }
|
---|
10891 | else
|
---|
10892 | CHECK_FIELD(cr2);
|
---|
10893 | }
|
---|
10894 | CHECK_FIELD(cr3);
|
---|
10895 | CHECK_FIELD(cr4);
|
---|
10896 | CHECK_FIELD(dr[0]);
|
---|
10897 | CHECK_FIELD(dr[1]);
|
---|
10898 | CHECK_FIELD(dr[2]);
|
---|
10899 | CHECK_FIELD(dr[3]);
|
---|
10900 | CHECK_FIELD(dr[6]);
|
---|
10901 | if (!fRem || (pOrgCtx->dr[7] & ~X86_DR7_RA1_MASK) != (pDebugCtx->dr[7] & ~X86_DR7_RA1_MASK)) /* REM 'mov drX,greg' bug.*/
|
---|
10902 | CHECK_FIELD(dr[7]);
|
---|
10903 | CHECK_FIELD(gdtr.cbGdt);
|
---|
10904 | CHECK_FIELD(gdtr.pGdt);
|
---|
10905 | CHECK_FIELD(idtr.cbIdt);
|
---|
10906 | CHECK_FIELD(idtr.pIdt);
|
---|
10907 | CHECK_SEL(ldtr);
|
---|
10908 | CHECK_SEL(tr);
|
---|
10909 | CHECK_FIELD(SysEnter.cs);
|
---|
10910 | CHECK_FIELD(SysEnter.eip);
|
---|
10911 | CHECK_FIELD(SysEnter.esp);
|
---|
10912 | CHECK_FIELD(msrEFER);
|
---|
10913 | CHECK_FIELD(msrSTAR);
|
---|
10914 | CHECK_FIELD(msrPAT);
|
---|
10915 | CHECK_FIELD(msrLSTAR);
|
---|
10916 | CHECK_FIELD(msrCSTAR);
|
---|
10917 | CHECK_FIELD(msrSFMASK);
|
---|
10918 | CHECK_FIELD(msrKERNELGSBASE);
|
---|
10919 |
|
---|
10920 | if (cDiffs != 0)
|
---|
10921 | {
|
---|
10922 | DBGFR3Info(pVM->pUVM, "cpumguest", "verbose", NULL);
|
---|
10923 | RTAssertMsg1(NULL, __LINE__, __FILE__, __FUNCTION__);
|
---|
10924 | RTAssertPanic();
|
---|
10925 | static bool volatile s_fEnterDebugger = true;
|
---|
10926 | if (s_fEnterDebugger)
|
---|
10927 | DBGFSTOP(pVM);
|
---|
10928 |
|
---|
10929 | # if 1 /* Ignore unimplemented instructions for now. */
|
---|
10930 | if (rcStrictIem == VERR_IEM_INSTR_NOT_IMPLEMENTED)
|
---|
10931 | rcStrictIem = VINF_SUCCESS;
|
---|
10932 | # endif
|
---|
10933 | }
|
---|
10934 | # undef CHECK_FIELD
|
---|
10935 | # undef CHECK_BIT_FIELD
|
---|
10936 | }
|
---|
10937 |
|
---|
10938 | /*
|
---|
10939 | * If the register state compared fine, check the verification event
|
---|
10940 | * records.
|
---|
10941 | */
|
---|
10942 | if (cDiffs == 0 && !pIemCpu->fOverlappingMovs)
|
---|
10943 | {
|
---|
10944 | /*
|
---|
10945 | * Compare verficiation event records.
|
---|
10946 | * - I/O port accesses should be a 1:1 match.
|
---|
10947 | */
|
---|
10948 | PIEMVERIFYEVTREC pIemRec = pIemCpu->pIemEvtRecHead;
|
---|
10949 | PIEMVERIFYEVTREC pOtherRec = pIemCpu->pOtherEvtRecHead;
|
---|
10950 | while (pIemRec && pOtherRec)
|
---|
10951 | {
|
---|
10952 | /* Since we might miss RAM writes and reads, ignore reads and check
|
---|
10953 | that any written memory is the same extra ones. */
|
---|
10954 | while ( IEMVERIFYEVENT_IS_RAM(pIemRec->enmEvent)
|
---|
10955 | && !IEMVERIFYEVENT_IS_RAM(pOtherRec->enmEvent)
|
---|
10956 | && pIemRec->pNext)
|
---|
10957 | {
|
---|
10958 | if (pIemRec->enmEvent == IEMVERIFYEVENT_RAM_WRITE)
|
---|
10959 | iemVerifyWriteRecord(pIemCpu, pIemRec, fRem);
|
---|
10960 | pIemRec = pIemRec->pNext;
|
---|
10961 | }
|
---|
10962 |
|
---|
10963 | /* Do the compare. */
|
---|
10964 | if (pIemRec->enmEvent != pOtherRec->enmEvent)
|
---|
10965 | {
|
---|
10966 | iemVerifyAssertRecords(pIemCpu, pIemRec, pOtherRec, "Type mismatches");
|
---|
10967 | break;
|
---|
10968 | }
|
---|
10969 | bool fEquals;
|
---|
10970 | switch (pIemRec->enmEvent)
|
---|
10971 | {
|
---|
10972 | case IEMVERIFYEVENT_IOPORT_READ:
|
---|
10973 | fEquals = pIemRec->u.IOPortRead.Port == pOtherRec->u.IOPortRead.Port
|
---|
10974 | && pIemRec->u.IOPortRead.cbValue == pOtherRec->u.IOPortRead.cbValue;
|
---|
10975 | break;
|
---|
10976 | case IEMVERIFYEVENT_IOPORT_WRITE:
|
---|
10977 | fEquals = pIemRec->u.IOPortWrite.Port == pOtherRec->u.IOPortWrite.Port
|
---|
10978 | && pIemRec->u.IOPortWrite.cbValue == pOtherRec->u.IOPortWrite.cbValue
|
---|
10979 | && pIemRec->u.IOPortWrite.u32Value == pOtherRec->u.IOPortWrite.u32Value;
|
---|
10980 | break;
|
---|
10981 | case IEMVERIFYEVENT_IOPORT_STR_READ:
|
---|
10982 | fEquals = pIemRec->u.IOPortStrRead.Port == pOtherRec->u.IOPortStrRead.Port
|
---|
10983 | && pIemRec->u.IOPortStrRead.cbValue == pOtherRec->u.IOPortStrRead.cbValue
|
---|
10984 | && pIemRec->u.IOPortStrRead.cTransfers == pOtherRec->u.IOPortStrRead.cTransfers;
|
---|
10985 | break;
|
---|
10986 | case IEMVERIFYEVENT_IOPORT_STR_WRITE:
|
---|
10987 | fEquals = pIemRec->u.IOPortStrWrite.Port == pOtherRec->u.IOPortStrWrite.Port
|
---|
10988 | && pIemRec->u.IOPortStrWrite.cbValue == pOtherRec->u.IOPortStrWrite.cbValue
|
---|
10989 | && pIemRec->u.IOPortStrWrite.cTransfers == pOtherRec->u.IOPortStrWrite.cTransfers;
|
---|
10990 | break;
|
---|
10991 | case IEMVERIFYEVENT_RAM_READ:
|
---|
10992 | fEquals = pIemRec->u.RamRead.GCPhys == pOtherRec->u.RamRead.GCPhys
|
---|
10993 | && pIemRec->u.RamRead.cb == pOtherRec->u.RamRead.cb;
|
---|
10994 | break;
|
---|
10995 | case IEMVERIFYEVENT_RAM_WRITE:
|
---|
10996 | fEquals = pIemRec->u.RamWrite.GCPhys == pOtherRec->u.RamWrite.GCPhys
|
---|
10997 | && pIemRec->u.RamWrite.cb == pOtherRec->u.RamWrite.cb
|
---|
10998 | && !memcmp(pIemRec->u.RamWrite.ab, pOtherRec->u.RamWrite.ab, pIemRec->u.RamWrite.cb);
|
---|
10999 | break;
|
---|
11000 | default:
|
---|
11001 | fEquals = false;
|
---|
11002 | break;
|
---|
11003 | }
|
---|
11004 | if (!fEquals)
|
---|
11005 | {
|
---|
11006 | iemVerifyAssertRecords(pIemCpu, pIemRec, pOtherRec, "Mismatch");
|
---|
11007 | break;
|
---|
11008 | }
|
---|
11009 |
|
---|
11010 | /* advance */
|
---|
11011 | pIemRec = pIemRec->pNext;
|
---|
11012 | pOtherRec = pOtherRec->pNext;
|
---|
11013 | }
|
---|
11014 |
|
---|
11015 | /* Ignore extra writes and reads. */
|
---|
11016 | while (pIemRec && IEMVERIFYEVENT_IS_RAM(pIemRec->enmEvent))
|
---|
11017 | {
|
---|
11018 | if (pIemRec->enmEvent == IEMVERIFYEVENT_RAM_WRITE)
|
---|
11019 | iemVerifyWriteRecord(pIemCpu, pIemRec, fRem);
|
---|
11020 | pIemRec = pIemRec->pNext;
|
---|
11021 | }
|
---|
11022 | if (pIemRec != NULL)
|
---|
11023 | iemVerifyAssertRecord(pIemCpu, pIemRec, "Extra IEM record!");
|
---|
11024 | else if (pOtherRec != NULL)
|
---|
11025 | iemVerifyAssertRecord(pIemCpu, pOtherRec, "Extra Other record!");
|
---|
11026 | }
|
---|
11027 | pIemCpu->CTX_SUFF(pCtx) = pOrgCtx;
|
---|
11028 |
|
---|
11029 | return rcStrictIem;
|
---|
11030 | }
|
---|
11031 |
|
---|
11032 | #else /* !IEM_VERIFICATION_MODE_FULL || !IN_RING3 */
|
---|
11033 |
|
---|
11034 | /* stubs */
|
---|
11035 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortRead(PIEMCPU pIemCpu, RTIOPORT Port, uint32_t *pu32Value, size_t cbValue)
|
---|
11036 | {
|
---|
11037 | NOREF(pIemCpu); NOREF(Port); NOREF(pu32Value); NOREF(cbValue);
|
---|
11038 | return VERR_INTERNAL_ERROR;
|
---|
11039 | }
|
---|
11040 |
|
---|
11041 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortWrite(PIEMCPU pIemCpu, RTIOPORT Port, uint32_t u32Value, size_t cbValue)
|
---|
11042 | {
|
---|
11043 | NOREF(pIemCpu); NOREF(Port); NOREF(u32Value); NOREF(cbValue);
|
---|
11044 | return VERR_INTERNAL_ERROR;
|
---|
11045 | }
|
---|
11046 |
|
---|
11047 | #endif /* !IEM_VERIFICATION_MODE_FULL || !IN_RING3 */
|
---|
11048 |
|
---|
11049 |
|
---|
11050 | #ifdef LOG_ENABLED
|
---|
11051 | /**
|
---|
11052 | * Logs the current instruction.
|
---|
11053 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
11054 | * @param pCtx The current CPU context.
|
---|
11055 | * @param fSameCtx Set if we have the same context information as the VMM,
|
---|
11056 | * clear if we may have already executed an instruction in
|
---|
11057 | * our debug context. When clear, we assume IEMCPU holds
|
---|
11058 | * valid CPU mode info.
|
---|
11059 | */
|
---|
11060 | IEM_STATIC void iemLogCurInstr(PVMCPU pVCpu, PCPUMCTX pCtx, bool fSameCtx)
|
---|
11061 | {
|
---|
11062 | # ifdef IN_RING3
|
---|
11063 | if (LogIs2Enabled())
|
---|
11064 | {
|
---|
11065 | char szInstr[256];
|
---|
11066 | uint32_t cbInstr = 0;
|
---|
11067 | if (fSameCtx)
|
---|
11068 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, 0, 0,
|
---|
11069 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
11070 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
11071 | else
|
---|
11072 | {
|
---|
11073 | uint32_t fFlags = 0;
|
---|
11074 | switch (pVCpu->iem.s.enmCpuMode)
|
---|
11075 | {
|
---|
11076 | case IEMMODE_64BIT: fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
|
---|
11077 | case IEMMODE_32BIT: fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
|
---|
11078 | case IEMMODE_16BIT:
|
---|
11079 | if (!(pCtx->cr0 & X86_CR0_PE) || pCtx->eflags.Bits.u1VM)
|
---|
11080 | fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
|
---|
11081 | else
|
---|
11082 | fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE;
|
---|
11083 | break;
|
---|
11084 | }
|
---|
11085 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, pCtx->cs.Sel, pCtx->rip, fFlags,
|
---|
11086 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
11087 | }
|
---|
11088 |
|
---|
11089 | PCX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
11090 | Log2(("****\n"
|
---|
11091 | " eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
|
---|
11092 | " eip=%08x esp=%08x ebp=%08x iopl=%d tr=%04x\n"
|
---|
11093 | " cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x efl=%08x\n"
|
---|
11094 | " fsw=%04x fcw=%04x ftw=%02x mxcsr=%04x/%04x\n"
|
---|
11095 | " %s\n"
|
---|
11096 | ,
|
---|
11097 | pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
|
---|
11098 | pCtx->eip, pCtx->esp, pCtx->ebp, pCtx->eflags.Bits.u2IOPL, pCtx->tr.Sel,
|
---|
11099 | pCtx->cs.Sel, pCtx->ss.Sel, pCtx->ds.Sel, pCtx->es.Sel,
|
---|
11100 | pCtx->fs.Sel, pCtx->gs.Sel, pCtx->eflags.u,
|
---|
11101 | pFpuCtx->FSW, pFpuCtx->FCW, pFpuCtx->FTW, pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK,
|
---|
11102 | szInstr));
|
---|
11103 |
|
---|
11104 | if (LogIs3Enabled())
|
---|
11105 | DBGFR3Info(pVCpu->pVMR3->pUVM, "cpumguest", "verbose", NULL);
|
---|
11106 | }
|
---|
11107 | else
|
---|
11108 | # endif
|
---|
11109 | LogFlow(("IEMExecOne: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x\n",
|
---|
11110 | pCtx->cs.Sel, pCtx->rip, pCtx->ss.Sel, pCtx->rsp, pCtx->eflags.u));
|
---|
11111 | }
|
---|
11112 | #endif
|
---|
11113 |
|
---|
11114 |
|
---|
11115 | /**
|
---|
11116 | * Makes status code addjustments (pass up from I/O and access handler)
|
---|
11117 | * as well as maintaining statistics.
|
---|
11118 | *
|
---|
11119 | * @returns Strict VBox status code to pass up.
|
---|
11120 | * @param pIemCpu The IEM per CPU data.
|
---|
11121 | * @param rcStrict The status from executing an instruction.
|
---|
11122 | */
|
---|
11123 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemExecStatusCodeFiddling(PIEMCPU pIemCpu, VBOXSTRICTRC rcStrict)
|
---|
11124 | {
|
---|
11125 | if (rcStrict != VINF_SUCCESS)
|
---|
11126 | {
|
---|
11127 | if (RT_SUCCESS(rcStrict))
|
---|
11128 | {
|
---|
11129 | AssertMsg( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
|
---|
11130 | || rcStrict == VINF_IOM_R3_IOPORT_READ
|
---|
11131 | || rcStrict == VINF_IOM_R3_IOPORT_WRITE
|
---|
11132 | || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
|
---|
11133 | || rcStrict == VINF_IOM_R3_MMIO_READ
|
---|
11134 | || rcStrict == VINF_IOM_R3_MMIO_READ_WRITE
|
---|
11135 | || rcStrict == VINF_IOM_R3_MMIO_WRITE
|
---|
11136 | || rcStrict == VINF_IOM_R3_MMIO_COMMIT_WRITE
|
---|
11137 | || rcStrict == VINF_CPUM_R3_MSR_READ
|
---|
11138 | || rcStrict == VINF_CPUM_R3_MSR_WRITE
|
---|
11139 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR
|
---|
11140 | || rcStrict == VINF_EM_RAW_TO_R3
|
---|
11141 | || rcStrict == VINF_EM_RAW_EMULATE_IO_BLOCK
|
---|
11142 | /* raw-mode / virt handlers only: */
|
---|
11143 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT
|
---|
11144 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT
|
---|
11145 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT
|
---|
11146 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT
|
---|
11147 | || rcStrict == VINF_SELM_SYNC_GDT
|
---|
11148 | || rcStrict == VINF_CSAM_PENDING_ACTION
|
---|
11149 | || rcStrict == VINF_PATM_CHECK_PATCH_PAGE
|
---|
11150 | , ("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
11151 | /** @todo adjust for VINF_EM_RAW_EMULATE_INSTR */
|
---|
11152 | int32_t const rcPassUp = pIemCpu->rcPassUp;
|
---|
11153 | if (rcPassUp == VINF_SUCCESS)
|
---|
11154 | pIemCpu->cRetInfStatuses++;
|
---|
11155 | else if ( rcPassUp < VINF_EM_FIRST
|
---|
11156 | || rcPassUp > VINF_EM_LAST
|
---|
11157 | || rcPassUp < VBOXSTRICTRC_VAL(rcStrict))
|
---|
11158 | {
|
---|
11159 | Log(("IEM: rcPassUp=%Rrc! rcStrict=%Rrc\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
11160 | pIemCpu->cRetPassUpStatus++;
|
---|
11161 | rcStrict = rcPassUp;
|
---|
11162 | }
|
---|
11163 | else
|
---|
11164 | {
|
---|
11165 | Log(("IEM: rcPassUp=%Rrc rcStrict=%Rrc!\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
11166 | pIemCpu->cRetInfStatuses++;
|
---|
11167 | }
|
---|
11168 | }
|
---|
11169 | else if (rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED)
|
---|
11170 | pIemCpu->cRetAspectNotImplemented++;
|
---|
11171 | else if (rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED)
|
---|
11172 | pIemCpu->cRetInstrNotImplemented++;
|
---|
11173 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
11174 | else if (rcStrict == VERR_IEM_RESTART_INSTRUCTION)
|
---|
11175 | rcStrict = VINF_SUCCESS;
|
---|
11176 | #endif
|
---|
11177 | else
|
---|
11178 | pIemCpu->cRetErrStatuses++;
|
---|
11179 | }
|
---|
11180 | else if (pIemCpu->rcPassUp != VINF_SUCCESS)
|
---|
11181 | {
|
---|
11182 | pIemCpu->cRetPassUpStatus++;
|
---|
11183 | rcStrict = pIemCpu->rcPassUp;
|
---|
11184 | }
|
---|
11185 |
|
---|
11186 | return rcStrict;
|
---|
11187 | }
|
---|
11188 |
|
---|
11189 |
|
---|
11190 | /**
|
---|
11191 | * The actual code execution bits of IEMExecOne, IEMExecOneEx, and
|
---|
11192 | * IEMExecOneWithPrefetchedByPC.
|
---|
11193 | *
|
---|
11194 | * @return Strict VBox status code.
|
---|
11195 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
11196 | * @param pIemCpu The IEM per CPU data.
|
---|
11197 | * @param fExecuteInhibit If set, execute the instruction following CLI,
|
---|
11198 | * POP SS and MOV SS,GR.
|
---|
11199 | */
|
---|
11200 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemExecOneInner(PVMCPU pVCpu, PIEMCPU pIemCpu, bool fExecuteInhibit)
|
---|
11201 | {
|
---|
11202 | uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
|
---|
11203 | VBOXSTRICTRC rcStrict = FNIEMOP_CALL(g_apfnOneByteMap[b]);
|
---|
11204 | if (rcStrict == VINF_SUCCESS)
|
---|
11205 | pIemCpu->cInstructions++;
|
---|
11206 | if (pIemCpu->cActiveMappings > 0)
|
---|
11207 | iemMemRollback(pIemCpu);
|
---|
11208 | //#ifdef DEBUG
|
---|
11209 | // AssertMsg(pIemCpu->offOpcode == cbInstr || rcStrict != VINF_SUCCESS, ("%u %u\n", pIemCpu->offOpcode, cbInstr));
|
---|
11210 | //#endif
|
---|
11211 |
|
---|
11212 | /* Execute the next instruction as well if a cli, pop ss or
|
---|
11213 | mov ss, Gr has just completed successfully. */
|
---|
11214 | if ( fExecuteInhibit
|
---|
11215 | && rcStrict == VINF_SUCCESS
|
---|
11216 | && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
11217 | && EMGetInhibitInterruptsPC(pVCpu) == pIemCpu->CTX_SUFF(pCtx)->rip )
|
---|
11218 | {
|
---|
11219 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pIemCpu, pIemCpu->fBypassHandlers);
|
---|
11220 | if (rcStrict == VINF_SUCCESS)
|
---|
11221 | {
|
---|
11222 | # ifdef LOG_ENABLED
|
---|
11223 | iemLogCurInstr(IEMCPU_TO_VMCPU(pIemCpu), pIemCpu->CTX_SUFF(pCtx), false);
|
---|
11224 | # endif
|
---|
11225 | IEM_OPCODE_GET_NEXT_U8(&b);
|
---|
11226 | rcStrict = FNIEMOP_CALL(g_apfnOneByteMap[b]);
|
---|
11227 | if (rcStrict == VINF_SUCCESS)
|
---|
11228 | pIemCpu->cInstructions++;
|
---|
11229 | if (pIemCpu->cActiveMappings > 0)
|
---|
11230 | iemMemRollback(pIemCpu);
|
---|
11231 | }
|
---|
11232 | EMSetInhibitInterruptsPC(pVCpu, UINT64_C(0x7777555533331111));
|
---|
11233 | }
|
---|
11234 |
|
---|
11235 | /*
|
---|
11236 | * Return value fiddling, statistics and sanity assertions.
|
---|
11237 | */
|
---|
11238 | rcStrict = iemExecStatusCodeFiddling(pIemCpu, rcStrict);
|
---|
11239 |
|
---|
11240 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pIemCpu->CTX_SUFF(pCtx)->cs));
|
---|
11241 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pIemCpu->CTX_SUFF(pCtx)->ss));
|
---|
11242 | #if defined(IEM_VERIFICATION_MODE_FULL)
|
---|
11243 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pIemCpu->CTX_SUFF(pCtx)->es));
|
---|
11244 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pIemCpu->CTX_SUFF(pCtx)->ds));
|
---|
11245 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pIemCpu->CTX_SUFF(pCtx)->fs));
|
---|
11246 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pIemCpu->CTX_SUFF(pCtx)->gs));
|
---|
11247 | #endif
|
---|
11248 | return rcStrict;
|
---|
11249 | }
|
---|
11250 |
|
---|
11251 |
|
---|
11252 | #ifdef IN_RC
|
---|
11253 | /**
|
---|
11254 | * Re-enters raw-mode or ensure we return to ring-3.
|
---|
11255 | *
|
---|
11256 | * @returns rcStrict, maybe modified.
|
---|
11257 | * @param pIemCpu The IEM CPU structure.
|
---|
11258 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
11259 | * @param pCtx The current CPU context.
|
---|
11260 | * @param rcStrict The status code returne by the interpreter.
|
---|
11261 | */
|
---|
11262 | DECLINLINE(VBOXSTRICTRC) iemRCRawMaybeReenter(PIEMCPU pIemCpu, PVMCPU pVCpu, PCPUMCTX pCtx, VBOXSTRICTRC rcStrict)
|
---|
11263 | {
|
---|
11264 | if ( !pIemCpu->fInPatchCode
|
---|
11265 | && ( rcStrict == VINF_SUCCESS
|
---|
11266 | || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED /* pgmPoolAccessPfHandlerFlush */
|
---|
11267 | || rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED /* ditto */ ) )
|
---|
11268 | {
|
---|
11269 | if (pCtx->eflags.Bits.u1IF || rcStrict != VINF_SUCCESS)
|
---|
11270 | CPUMRawEnter(pVCpu);
|
---|
11271 | else
|
---|
11272 | {
|
---|
11273 | Log(("iemRCRawMaybeReenter: VINF_EM_RESCHEDULE\n"));
|
---|
11274 | rcStrict = VINF_EM_RESCHEDULE;
|
---|
11275 | }
|
---|
11276 | }
|
---|
11277 | return rcStrict;
|
---|
11278 | }
|
---|
11279 | #endif
|
---|
11280 |
|
---|
11281 |
|
---|
11282 | /**
|
---|
11283 | * Execute one instruction.
|
---|
11284 | *
|
---|
11285 | * @return Strict VBox status code.
|
---|
11286 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
11287 | */
|
---|
11288 | VMMDECL(VBOXSTRICTRC) IEMExecOne(PVMCPU pVCpu)
|
---|
11289 | {
|
---|
11290 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11291 |
|
---|
11292 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
11293 | if (++pIemCpu->cVerifyDepth == 1)
|
---|
11294 | iemExecVerificationModeSetup(pIemCpu);
|
---|
11295 | #endif
|
---|
11296 | #ifdef LOG_ENABLED
|
---|
11297 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
11298 | iemLogCurInstr(pVCpu, pCtx, true);
|
---|
11299 | #endif
|
---|
11300 |
|
---|
11301 | /*
|
---|
11302 | * Do the decoding and emulation.
|
---|
11303 | */
|
---|
11304 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pIemCpu, false);
|
---|
11305 | if (rcStrict == VINF_SUCCESS)
|
---|
11306 | rcStrict = iemExecOneInner(pVCpu, pIemCpu, true);
|
---|
11307 |
|
---|
11308 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
11309 | /*
|
---|
11310 | * Assert some sanity.
|
---|
11311 | */
|
---|
11312 | if (pIemCpu->cVerifyDepth == 1)
|
---|
11313 | rcStrict = iemExecVerificationModeCheck(pIemCpu, rcStrict);
|
---|
11314 | pIemCpu->cVerifyDepth--;
|
---|
11315 | #endif
|
---|
11316 | #ifdef IN_RC
|
---|
11317 | rcStrict = iemRCRawMaybeReenter(pIemCpu, pVCpu, pIemCpu->CTX_SUFF(pCtx), rcStrict);
|
---|
11318 | #endif
|
---|
11319 | if (rcStrict != VINF_SUCCESS)
|
---|
11320 | LogFlow(("IEMExecOne: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
11321 | pCtx->cs.Sel, pCtx->rip, pCtx->ss.Sel, pCtx->rsp, pCtx->eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
11322 | return rcStrict;
|
---|
11323 | }
|
---|
11324 |
|
---|
11325 |
|
---|
11326 | VMMDECL(VBOXSTRICTRC) IEMExecOneEx(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, uint32_t *pcbWritten)
|
---|
11327 | {
|
---|
11328 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11329 | PCPUMCTX pCtx = pVCpu->iem.s.CTX_SUFF(pCtx);
|
---|
11330 | AssertReturn(CPUMCTX2CORE(pCtx) == pCtxCore, VERR_IEM_IPE_3);
|
---|
11331 |
|
---|
11332 | uint32_t const cbOldWritten = pIemCpu->cbWritten;
|
---|
11333 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pIemCpu, false);
|
---|
11334 | if (rcStrict == VINF_SUCCESS)
|
---|
11335 | {
|
---|
11336 | rcStrict = iemExecOneInner(pVCpu, pIemCpu, true);
|
---|
11337 | if (pcbWritten)
|
---|
11338 | *pcbWritten = pIemCpu->cbWritten - cbOldWritten;
|
---|
11339 | }
|
---|
11340 |
|
---|
11341 | #ifdef IN_RC
|
---|
11342 | rcStrict = iemRCRawMaybeReenter(pIemCpu, pVCpu, pCtx, rcStrict);
|
---|
11343 | #endif
|
---|
11344 | return rcStrict;
|
---|
11345 | }
|
---|
11346 |
|
---|
11347 |
|
---|
11348 | VMMDECL(VBOXSTRICTRC) IEMExecOneWithPrefetchedByPC(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, uint64_t OpcodeBytesPC,
|
---|
11349 | const void *pvOpcodeBytes, size_t cbOpcodeBytes)
|
---|
11350 | {
|
---|
11351 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11352 | PCPUMCTX pCtx = pVCpu->iem.s.CTX_SUFF(pCtx);
|
---|
11353 | AssertReturn(CPUMCTX2CORE(pCtx) == pCtxCore, VERR_IEM_IPE_3);
|
---|
11354 |
|
---|
11355 | VBOXSTRICTRC rcStrict;
|
---|
11356 | if ( cbOpcodeBytes
|
---|
11357 | && pCtx->rip == OpcodeBytesPC)
|
---|
11358 | {
|
---|
11359 | iemInitDecoder(pIemCpu, false);
|
---|
11360 | pIemCpu->cbOpcode = (uint8_t)RT_MIN(cbOpcodeBytes, sizeof(pIemCpu->abOpcode));
|
---|
11361 | memcpy(pIemCpu->abOpcode, pvOpcodeBytes, pIemCpu->cbOpcode);
|
---|
11362 | rcStrict = VINF_SUCCESS;
|
---|
11363 | }
|
---|
11364 | else
|
---|
11365 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pIemCpu, false);
|
---|
11366 | if (rcStrict == VINF_SUCCESS)
|
---|
11367 | {
|
---|
11368 | rcStrict = iemExecOneInner(pVCpu, pIemCpu, true);
|
---|
11369 | }
|
---|
11370 |
|
---|
11371 | #ifdef IN_RC
|
---|
11372 | rcStrict = iemRCRawMaybeReenter(pIemCpu, pVCpu, pCtx, rcStrict);
|
---|
11373 | #endif
|
---|
11374 | return rcStrict;
|
---|
11375 | }
|
---|
11376 |
|
---|
11377 |
|
---|
11378 | VMMDECL(VBOXSTRICTRC) IEMExecOneBypassEx(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, uint32_t *pcbWritten)
|
---|
11379 | {
|
---|
11380 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11381 | PCPUMCTX pCtx = pVCpu->iem.s.CTX_SUFF(pCtx);
|
---|
11382 | AssertReturn(CPUMCTX2CORE(pCtx) == pCtxCore, VERR_IEM_IPE_3);
|
---|
11383 |
|
---|
11384 | uint32_t const cbOldWritten = pIemCpu->cbWritten;
|
---|
11385 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pIemCpu, true);
|
---|
11386 | if (rcStrict == VINF_SUCCESS)
|
---|
11387 | {
|
---|
11388 | rcStrict = iemExecOneInner(pVCpu, pIemCpu, false);
|
---|
11389 | if (pcbWritten)
|
---|
11390 | *pcbWritten = pIemCpu->cbWritten - cbOldWritten;
|
---|
11391 | }
|
---|
11392 |
|
---|
11393 | #ifdef IN_RC
|
---|
11394 | rcStrict = iemRCRawMaybeReenter(pIemCpu, pVCpu, pCtx, rcStrict);
|
---|
11395 | #endif
|
---|
11396 | return rcStrict;
|
---|
11397 | }
|
---|
11398 |
|
---|
11399 |
|
---|
11400 | VMMDECL(VBOXSTRICTRC) IEMExecOneBypassWithPrefetchedByPC(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, uint64_t OpcodeBytesPC,
|
---|
11401 | const void *pvOpcodeBytes, size_t cbOpcodeBytes)
|
---|
11402 | {
|
---|
11403 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11404 | PCPUMCTX pCtx = pVCpu->iem.s.CTX_SUFF(pCtx);
|
---|
11405 | AssertReturn(CPUMCTX2CORE(pCtx) == pCtxCore, VERR_IEM_IPE_3);
|
---|
11406 |
|
---|
11407 | VBOXSTRICTRC rcStrict;
|
---|
11408 | if ( cbOpcodeBytes
|
---|
11409 | && pCtx->rip == OpcodeBytesPC)
|
---|
11410 | {
|
---|
11411 | iemInitDecoder(pIemCpu, true);
|
---|
11412 | pIemCpu->cbOpcode = (uint8_t)RT_MIN(cbOpcodeBytes, sizeof(pIemCpu->abOpcode));
|
---|
11413 | memcpy(pIemCpu->abOpcode, pvOpcodeBytes, pIemCpu->cbOpcode);
|
---|
11414 | rcStrict = VINF_SUCCESS;
|
---|
11415 | }
|
---|
11416 | else
|
---|
11417 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pIemCpu, true);
|
---|
11418 | if (rcStrict == VINF_SUCCESS)
|
---|
11419 | rcStrict = iemExecOneInner(pVCpu, pIemCpu, false);
|
---|
11420 |
|
---|
11421 | #ifdef IN_RC
|
---|
11422 | rcStrict = iemRCRawMaybeReenter(pIemCpu, pVCpu, pCtx, rcStrict);
|
---|
11423 | #endif
|
---|
11424 | return rcStrict;
|
---|
11425 | }
|
---|
11426 |
|
---|
11427 |
|
---|
11428 | VMMDECL(VBOXSTRICTRC) IEMExecLots(PVMCPU pVCpu)
|
---|
11429 | {
|
---|
11430 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11431 |
|
---|
11432 | /*
|
---|
11433 | * See if there is an interrupt pending in TRPM and inject it if we can.
|
---|
11434 | */
|
---|
11435 | #if !defined(IEM_VERIFICATION_MODE_FULL) || !defined(IN_RING3)
|
---|
11436 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
11437 | # ifdef IEM_VERIFICATION_MODE_FULL
|
---|
11438 | pIemCpu->uInjectCpl = UINT8_MAX;
|
---|
11439 | # endif
|
---|
11440 | if ( pCtx->eflags.Bits.u1IF
|
---|
11441 | && TRPMHasTrap(pVCpu)
|
---|
11442 | && EMGetInhibitInterruptsPC(pVCpu) != pCtx->rip)
|
---|
11443 | {
|
---|
11444 | uint8_t u8TrapNo;
|
---|
11445 | TRPMEVENT enmType;
|
---|
11446 | RTGCUINT uErrCode;
|
---|
11447 | RTGCPTR uCr2;
|
---|
11448 | int rc2 = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, NULL /* pu8InstLen */); AssertRC(rc2);
|
---|
11449 | IEMInjectTrap(pVCpu, u8TrapNo, enmType, (uint16_t)uErrCode, uCr2, 0 /* cbInstr */);
|
---|
11450 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
11451 | TRPMResetTrap(pVCpu);
|
---|
11452 | }
|
---|
11453 | #else
|
---|
11454 | iemExecVerificationModeSetup(pIemCpu);
|
---|
11455 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
11456 | #endif
|
---|
11457 |
|
---|
11458 | /*
|
---|
11459 | * Log the state.
|
---|
11460 | */
|
---|
11461 | #ifdef LOG_ENABLED
|
---|
11462 | iemLogCurInstr(pVCpu, pCtx, true);
|
---|
11463 | #endif
|
---|
11464 |
|
---|
11465 | /*
|
---|
11466 | * Do the decoding and emulation.
|
---|
11467 | */
|
---|
11468 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pIemCpu, false);
|
---|
11469 | if (rcStrict == VINF_SUCCESS)
|
---|
11470 | rcStrict = iemExecOneInner(pVCpu, pIemCpu, true);
|
---|
11471 |
|
---|
11472 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
11473 | /*
|
---|
11474 | * Assert some sanity.
|
---|
11475 | */
|
---|
11476 | rcStrict = iemExecVerificationModeCheck(pIemCpu, rcStrict);
|
---|
11477 | #endif
|
---|
11478 |
|
---|
11479 | /*
|
---|
11480 | * Maybe re-enter raw-mode and log.
|
---|
11481 | */
|
---|
11482 | #ifdef IN_RC
|
---|
11483 | rcStrict = iemRCRawMaybeReenter(pIemCpu, pVCpu, pIemCpu->CTX_SUFF(pCtx), rcStrict);
|
---|
11484 | #endif
|
---|
11485 | if (rcStrict != VINF_SUCCESS)
|
---|
11486 | LogFlow(("IEMExecLots: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
11487 | pCtx->cs.Sel, pCtx->rip, pCtx->ss.Sel, pCtx->rsp, pCtx->eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
11488 | return rcStrict;
|
---|
11489 | }
|
---|
11490 |
|
---|
11491 |
|
---|
11492 |
|
---|
11493 | /**
|
---|
11494 | * Injects a trap, fault, abort, software interrupt or external interrupt.
|
---|
11495 | *
|
---|
11496 | * The parameter list matches TRPMQueryTrapAll pretty closely.
|
---|
11497 | *
|
---|
11498 | * @returns Strict VBox status code.
|
---|
11499 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
11500 | * @param u8TrapNo The trap number.
|
---|
11501 | * @param enmType What type is it (trap/fault/abort), software
|
---|
11502 | * interrupt or hardware interrupt.
|
---|
11503 | * @param uErrCode The error code if applicable.
|
---|
11504 | * @param uCr2 The CR2 value if applicable.
|
---|
11505 | * @param cbInstr The instruction length (only relevant for
|
---|
11506 | * software interrupts).
|
---|
11507 | */
|
---|
11508 | VMM_INT_DECL(VBOXSTRICTRC) IEMInjectTrap(PVMCPU pVCpu, uint8_t u8TrapNo, TRPMEVENT enmType, uint16_t uErrCode, RTGCPTR uCr2,
|
---|
11509 | uint8_t cbInstr)
|
---|
11510 | {
|
---|
11511 | iemInitDecoder(&pVCpu->iem.s, false);
|
---|
11512 | #ifdef DBGFTRACE_ENABLED
|
---|
11513 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "IEMInjectTrap: %x %d %x %llx",
|
---|
11514 | u8TrapNo, enmType, uErrCode, uCr2);
|
---|
11515 | #endif
|
---|
11516 |
|
---|
11517 | uint32_t fFlags;
|
---|
11518 | switch (enmType)
|
---|
11519 | {
|
---|
11520 | case TRPM_HARDWARE_INT:
|
---|
11521 | Log(("IEMInjectTrap: %#4x ext\n", u8TrapNo));
|
---|
11522 | fFlags = IEM_XCPT_FLAGS_T_EXT_INT;
|
---|
11523 | uErrCode = uCr2 = 0;
|
---|
11524 | break;
|
---|
11525 |
|
---|
11526 | case TRPM_SOFTWARE_INT:
|
---|
11527 | Log(("IEMInjectTrap: %#4x soft\n", u8TrapNo));
|
---|
11528 | fFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
11529 | uErrCode = uCr2 = 0;
|
---|
11530 | break;
|
---|
11531 |
|
---|
11532 | case TRPM_TRAP:
|
---|
11533 | Log(("IEMInjectTrap: %#4x trap err=%#x cr2=%#RGv\n", u8TrapNo, uErrCode, uCr2));
|
---|
11534 | fFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
11535 | if (u8TrapNo == X86_XCPT_PF)
|
---|
11536 | fFlags |= IEM_XCPT_FLAGS_CR2;
|
---|
11537 | switch (u8TrapNo)
|
---|
11538 | {
|
---|
11539 | case X86_XCPT_DF:
|
---|
11540 | case X86_XCPT_TS:
|
---|
11541 | case X86_XCPT_NP:
|
---|
11542 | case X86_XCPT_SS:
|
---|
11543 | case X86_XCPT_PF:
|
---|
11544 | case X86_XCPT_AC:
|
---|
11545 | fFlags |= IEM_XCPT_FLAGS_ERR;
|
---|
11546 | break;
|
---|
11547 |
|
---|
11548 | case X86_XCPT_NMI:
|
---|
11549 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
11550 | break;
|
---|
11551 | }
|
---|
11552 | break;
|
---|
11553 |
|
---|
11554 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11555 | }
|
---|
11556 |
|
---|
11557 | return iemRaiseXcptOrInt(&pVCpu->iem.s, cbInstr, u8TrapNo, fFlags, uErrCode, uCr2);
|
---|
11558 | }
|
---|
11559 |
|
---|
11560 |
|
---|
11561 | /**
|
---|
11562 | * Injects the active TRPM event.
|
---|
11563 | *
|
---|
11564 | * @returns Strict VBox status code.
|
---|
11565 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11566 | */
|
---|
11567 | VMMDECL(VBOXSTRICTRC) IEMInjectTrpmEvent(PVMCPU pVCpu)
|
---|
11568 | {
|
---|
11569 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
11570 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Event injection\n"));
|
---|
11571 | #else
|
---|
11572 | uint8_t u8TrapNo;
|
---|
11573 | TRPMEVENT enmType;
|
---|
11574 | RTGCUINT uErrCode;
|
---|
11575 | RTGCUINTPTR uCr2;
|
---|
11576 | uint8_t cbInstr;
|
---|
11577 | int rc = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, &cbInstr);
|
---|
11578 | if (RT_FAILURE(rc))
|
---|
11579 | return rc;
|
---|
11580 |
|
---|
11581 | VBOXSTRICTRC rcStrict = IEMInjectTrap(pVCpu, u8TrapNo, enmType, uErrCode, uCr2, cbInstr);
|
---|
11582 |
|
---|
11583 | /** @todo Are there any other codes that imply the event was successfully
|
---|
11584 | * delivered to the guest? See @bugref{6607}. */
|
---|
11585 | if ( rcStrict == VINF_SUCCESS
|
---|
11586 | || rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
11587 | {
|
---|
11588 | TRPMResetTrap(pVCpu);
|
---|
11589 | }
|
---|
11590 | return rcStrict;
|
---|
11591 | #endif
|
---|
11592 | }
|
---|
11593 |
|
---|
11594 |
|
---|
11595 | VMM_INT_DECL(int) IEMBreakpointSet(PVM pVM, RTGCPTR GCPtrBp)
|
---|
11596 | {
|
---|
11597 | return VERR_NOT_IMPLEMENTED;
|
---|
11598 | }
|
---|
11599 |
|
---|
11600 |
|
---|
11601 | VMM_INT_DECL(int) IEMBreakpointClear(PVM pVM, RTGCPTR GCPtrBp)
|
---|
11602 | {
|
---|
11603 | return VERR_NOT_IMPLEMENTED;
|
---|
11604 | }
|
---|
11605 |
|
---|
11606 |
|
---|
11607 | #if 0 /* The IRET-to-v8086 mode in PATM is very optimistic, so I don't dare do this yet. */
|
---|
11608 | /**
|
---|
11609 | * Executes a IRET instruction with default operand size.
|
---|
11610 | *
|
---|
11611 | * This is for PATM.
|
---|
11612 | *
|
---|
11613 | * @returns VBox status code.
|
---|
11614 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
11615 | * @param pCtxCore The register frame.
|
---|
11616 | */
|
---|
11617 | VMM_INT_DECL(int) IEMExecInstr_iret(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
|
---|
11618 | {
|
---|
11619 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11620 | PCPUMCTX pCtx = pVCpu->iem.s.CTX_SUFF(pCtx);
|
---|
11621 |
|
---|
11622 | iemCtxCoreToCtx(pCtx, pCtxCore);
|
---|
11623 | iemInitDecoder(pIemCpu);
|
---|
11624 | VBOXSTRICTRC rcStrict = iemCImpl_iret(pIemCpu, 1, pIemCpu->enmDefOpSize);
|
---|
11625 | if (rcStrict == VINF_SUCCESS)
|
---|
11626 | iemCtxToCtxCore(pCtxCore, pCtx);
|
---|
11627 | else
|
---|
11628 | LogFlow(("IEMExecInstr_iret: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
11629 | pCtx->cs, pCtx->rip, pCtx->ss, pCtx->rsp, pCtx->eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
11630 | return rcStrict;
|
---|
11631 | }
|
---|
11632 | #endif
|
---|
11633 |
|
---|
11634 |
|
---|
11635 | /**
|
---|
11636 | * Macro used by the IEMExec* method to check the given instruction length.
|
---|
11637 | *
|
---|
11638 | * Will return on failure!
|
---|
11639 | *
|
---|
11640 | * @param a_cbInstr The given instruction length.
|
---|
11641 | * @param a_cbMin The minimum length.
|
---|
11642 | */
|
---|
11643 | #define IEMEXEC_ASSERT_INSTR_LEN_RETURN(a_cbInstr, a_cbMin) \
|
---|
11644 | AssertMsgReturn((unsigned)(a_cbInstr) - (unsigned)(a_cbMin) <= (unsigned)15 - (unsigned)(a_cbMin), \
|
---|
11645 | ("cbInstr=%u cbMin=%u\n", (a_cbInstr), (a_cbMin)), VERR_IEM_INVALID_INSTR_LENGTH)
|
---|
11646 |
|
---|
11647 |
|
---|
11648 | /**
|
---|
11649 | * Calls iemUninitExec, iemExecStatusCodeFiddling and iemRCRawMaybeReenter.
|
---|
11650 | *
|
---|
11651 | * Only calling iemRCRawMaybeReenter in raw-mode, obviously.
|
---|
11652 | *
|
---|
11653 | * @returns Fiddled strict vbox status code, ready to return to non-IEM caller.
|
---|
11654 | * @param pIemCpu The IEM per-CPU structure.
|
---|
11655 | * @param rcStrict The status code to fiddle.
|
---|
11656 | */
|
---|
11657 | DECLINLINE(VBOXSTRICTRC) iemUninitExecAndFiddleStatusAndMaybeReenter(PIEMCPU pIemCpu, VBOXSTRICTRC rcStrict)
|
---|
11658 | {
|
---|
11659 | iemUninitExec(pIemCpu);
|
---|
11660 | #ifdef IN_RC
|
---|
11661 | return iemRCRawMaybeReenter(pIemCpu, IEMCPU_TO_VMCPU(pIemCpu), pIemCpu->CTX_SUFF(pCtx),
|
---|
11662 | iemExecStatusCodeFiddling(pIemCpu, rcStrict));
|
---|
11663 | #else
|
---|
11664 | return iemExecStatusCodeFiddling(pIemCpu, rcStrict);
|
---|
11665 | #endif
|
---|
11666 | }
|
---|
11667 |
|
---|
11668 |
|
---|
11669 | /**
|
---|
11670 | * Interface for HM and EM for executing string I/O OUT (write) instructions.
|
---|
11671 | *
|
---|
11672 | * This API ASSUMES that the caller has already verified that the guest code is
|
---|
11673 | * allowed to access the I/O port. (The I/O port is in the DX register in the
|
---|
11674 | * guest state.)
|
---|
11675 | *
|
---|
11676 | * @returns Strict VBox status code.
|
---|
11677 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11678 | * @param cbValue The size of the I/O port access (1, 2, or 4).
|
---|
11679 | * @param enmAddrMode The addressing mode.
|
---|
11680 | * @param fRepPrefix Indicates whether a repeat prefix is used
|
---|
11681 | * (doesn't matter which for this instruction).
|
---|
11682 | * @param cbInstr The instruction length in bytes.
|
---|
11683 | * @param iEffSeg The effective segment address.
|
---|
11684 | * @param fIoChecked Whether the access to the I/O port has been
|
---|
11685 | * checked or not. It's typically checked in the
|
---|
11686 | * HM scenario.
|
---|
11687 | */
|
---|
11688 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecStringIoWrite(PVMCPU pVCpu, uint8_t cbValue, IEMMODE enmAddrMode,
|
---|
11689 | bool fRepPrefix, uint8_t cbInstr, uint8_t iEffSeg, bool fIoChecked)
|
---|
11690 | {
|
---|
11691 | AssertMsgReturn(iEffSeg < X86_SREG_COUNT, ("%#x\n", iEffSeg), VERR_IEM_INVALID_EFF_SEG);
|
---|
11692 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
11693 |
|
---|
11694 | /*
|
---|
11695 | * State init.
|
---|
11696 | */
|
---|
11697 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11698 | iemInitExec(pIemCpu, false /*fBypassHandlers*/);
|
---|
11699 |
|
---|
11700 | /*
|
---|
11701 | * Switch orgy for getting to the right handler.
|
---|
11702 | */
|
---|
11703 | VBOXSTRICTRC rcStrict;
|
---|
11704 | if (fRepPrefix)
|
---|
11705 | {
|
---|
11706 | switch (enmAddrMode)
|
---|
11707 | {
|
---|
11708 | case IEMMODE_16BIT:
|
---|
11709 | switch (cbValue)
|
---|
11710 | {
|
---|
11711 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr16(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11712 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr16(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11713 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr16(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11714 | default:
|
---|
11715 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11716 | }
|
---|
11717 | break;
|
---|
11718 |
|
---|
11719 | case IEMMODE_32BIT:
|
---|
11720 | switch (cbValue)
|
---|
11721 | {
|
---|
11722 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr32(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11723 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr32(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11724 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr32(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11725 | default:
|
---|
11726 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11727 | }
|
---|
11728 | break;
|
---|
11729 |
|
---|
11730 | case IEMMODE_64BIT:
|
---|
11731 | switch (cbValue)
|
---|
11732 | {
|
---|
11733 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr64(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11734 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr64(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11735 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr64(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11736 | default:
|
---|
11737 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11738 | }
|
---|
11739 | break;
|
---|
11740 |
|
---|
11741 | default:
|
---|
11742 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
11743 | }
|
---|
11744 | }
|
---|
11745 | else
|
---|
11746 | {
|
---|
11747 | switch (enmAddrMode)
|
---|
11748 | {
|
---|
11749 | case IEMMODE_16BIT:
|
---|
11750 | switch (cbValue)
|
---|
11751 | {
|
---|
11752 | case 1: rcStrict = iemCImpl_outs_op8_addr16(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11753 | case 2: rcStrict = iemCImpl_outs_op16_addr16(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11754 | case 4: rcStrict = iemCImpl_outs_op32_addr16(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11755 | default:
|
---|
11756 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11757 | }
|
---|
11758 | break;
|
---|
11759 |
|
---|
11760 | case IEMMODE_32BIT:
|
---|
11761 | switch (cbValue)
|
---|
11762 | {
|
---|
11763 | case 1: rcStrict = iemCImpl_outs_op8_addr32(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11764 | case 2: rcStrict = iemCImpl_outs_op16_addr32(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11765 | case 4: rcStrict = iemCImpl_outs_op32_addr32(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11766 | default:
|
---|
11767 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11768 | }
|
---|
11769 | break;
|
---|
11770 |
|
---|
11771 | case IEMMODE_64BIT:
|
---|
11772 | switch (cbValue)
|
---|
11773 | {
|
---|
11774 | case 1: rcStrict = iemCImpl_outs_op8_addr64(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11775 | case 2: rcStrict = iemCImpl_outs_op16_addr64(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11776 | case 4: rcStrict = iemCImpl_outs_op32_addr64(pIemCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
11777 | default:
|
---|
11778 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11779 | }
|
---|
11780 | break;
|
---|
11781 |
|
---|
11782 | default:
|
---|
11783 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
11784 | }
|
---|
11785 | }
|
---|
11786 |
|
---|
11787 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pIemCpu, rcStrict);
|
---|
11788 | }
|
---|
11789 |
|
---|
11790 |
|
---|
11791 | /**
|
---|
11792 | * Interface for HM and EM for executing string I/O IN (read) instructions.
|
---|
11793 | *
|
---|
11794 | * This API ASSUMES that the caller has already verified that the guest code is
|
---|
11795 | * allowed to access the I/O port. (The I/O port is in the DX register in the
|
---|
11796 | * guest state.)
|
---|
11797 | *
|
---|
11798 | * @returns Strict VBox status code.
|
---|
11799 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11800 | * @param cbValue The size of the I/O port access (1, 2, or 4).
|
---|
11801 | * @param enmAddrMode The addressing mode.
|
---|
11802 | * @param fRepPrefix Indicates whether a repeat prefix is used
|
---|
11803 | * (doesn't matter which for this instruction).
|
---|
11804 | * @param cbInstr The instruction length in bytes.
|
---|
11805 | * @param fIoChecked Whether the access to the I/O port has been
|
---|
11806 | * checked or not. It's typically checked in the
|
---|
11807 | * HM scenario.
|
---|
11808 | */
|
---|
11809 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecStringIoRead(PVMCPU pVCpu, uint8_t cbValue, IEMMODE enmAddrMode,
|
---|
11810 | bool fRepPrefix, uint8_t cbInstr, bool fIoChecked)
|
---|
11811 | {
|
---|
11812 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
11813 |
|
---|
11814 | /*
|
---|
11815 | * State init.
|
---|
11816 | */
|
---|
11817 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11818 | iemInitExec(pIemCpu, false /*fBypassHandlers*/);
|
---|
11819 |
|
---|
11820 | /*
|
---|
11821 | * Switch orgy for getting to the right handler.
|
---|
11822 | */
|
---|
11823 | VBOXSTRICTRC rcStrict;
|
---|
11824 | if (fRepPrefix)
|
---|
11825 | {
|
---|
11826 | switch (enmAddrMode)
|
---|
11827 | {
|
---|
11828 | case IEMMODE_16BIT:
|
---|
11829 | switch (cbValue)
|
---|
11830 | {
|
---|
11831 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr16(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11832 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr16(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11833 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr16(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11834 | default:
|
---|
11835 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11836 | }
|
---|
11837 | break;
|
---|
11838 |
|
---|
11839 | case IEMMODE_32BIT:
|
---|
11840 | switch (cbValue)
|
---|
11841 | {
|
---|
11842 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr32(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11843 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr32(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11844 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr32(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11845 | default:
|
---|
11846 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11847 | }
|
---|
11848 | break;
|
---|
11849 |
|
---|
11850 | case IEMMODE_64BIT:
|
---|
11851 | switch (cbValue)
|
---|
11852 | {
|
---|
11853 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr64(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11854 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr64(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11855 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr64(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11856 | default:
|
---|
11857 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11858 | }
|
---|
11859 | break;
|
---|
11860 |
|
---|
11861 | default:
|
---|
11862 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
11863 | }
|
---|
11864 | }
|
---|
11865 | else
|
---|
11866 | {
|
---|
11867 | switch (enmAddrMode)
|
---|
11868 | {
|
---|
11869 | case IEMMODE_16BIT:
|
---|
11870 | switch (cbValue)
|
---|
11871 | {
|
---|
11872 | case 1: rcStrict = iemCImpl_ins_op8_addr16(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11873 | case 2: rcStrict = iemCImpl_ins_op16_addr16(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11874 | case 4: rcStrict = iemCImpl_ins_op32_addr16(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11875 | default:
|
---|
11876 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11877 | }
|
---|
11878 | break;
|
---|
11879 |
|
---|
11880 | case IEMMODE_32BIT:
|
---|
11881 | switch (cbValue)
|
---|
11882 | {
|
---|
11883 | case 1: rcStrict = iemCImpl_ins_op8_addr32(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11884 | case 2: rcStrict = iemCImpl_ins_op16_addr32(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11885 | case 4: rcStrict = iemCImpl_ins_op32_addr32(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11886 | default:
|
---|
11887 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11888 | }
|
---|
11889 | break;
|
---|
11890 |
|
---|
11891 | case IEMMODE_64BIT:
|
---|
11892 | switch (cbValue)
|
---|
11893 | {
|
---|
11894 | case 1: rcStrict = iemCImpl_ins_op8_addr64(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11895 | case 2: rcStrict = iemCImpl_ins_op16_addr64(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11896 | case 4: rcStrict = iemCImpl_ins_op32_addr64(pIemCpu, cbInstr, fIoChecked); break;
|
---|
11897 | default:
|
---|
11898 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
11899 | }
|
---|
11900 | break;
|
---|
11901 |
|
---|
11902 | default:
|
---|
11903 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
11904 | }
|
---|
11905 | }
|
---|
11906 |
|
---|
11907 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pIemCpu, rcStrict);
|
---|
11908 | }
|
---|
11909 |
|
---|
11910 |
|
---|
11911 | /**
|
---|
11912 | * Interface for rawmode to write execute an OUT instruction.
|
---|
11913 | *
|
---|
11914 | * @returns Strict VBox status code.
|
---|
11915 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11916 | * @param cbInstr The instruction length in bytes.
|
---|
11917 | * @param u16Port The port to read.
|
---|
11918 | * @param cbReg The register size.
|
---|
11919 | *
|
---|
11920 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
11921 | */
|
---|
11922 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedOut(PVMCPU pVCpu, uint8_t cbInstr, uint16_t u16Port, uint8_t cbReg)
|
---|
11923 | {
|
---|
11924 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
11925 | Assert(cbReg <= 4 && cbReg != 3);
|
---|
11926 |
|
---|
11927 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11928 | iemInitExec(pIemCpu, false /*fBypassHandlers*/);
|
---|
11929 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_out, u16Port, cbReg);
|
---|
11930 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pIemCpu, rcStrict);
|
---|
11931 | }
|
---|
11932 |
|
---|
11933 |
|
---|
11934 | /**
|
---|
11935 | * Interface for rawmode to write execute an IN instruction.
|
---|
11936 | *
|
---|
11937 | * @returns Strict VBox status code.
|
---|
11938 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11939 | * @param cbInstr The instruction length in bytes.
|
---|
11940 | * @param u16Port The port to read.
|
---|
11941 | * @param cbReg The register size.
|
---|
11942 | */
|
---|
11943 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedIn(PVMCPU pVCpu, uint8_t cbInstr, uint16_t u16Port, uint8_t cbReg)
|
---|
11944 | {
|
---|
11945 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
11946 | Assert(cbReg <= 4 && cbReg != 3);
|
---|
11947 |
|
---|
11948 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11949 | iemInitExec(pIemCpu, false /*fBypassHandlers*/);
|
---|
11950 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_in, u16Port, cbReg);
|
---|
11951 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pIemCpu, rcStrict);
|
---|
11952 | }
|
---|
11953 |
|
---|
11954 |
|
---|
11955 | /**
|
---|
11956 | * Interface for HM and EM to write to a CRx register.
|
---|
11957 | *
|
---|
11958 | * @returns Strict VBox status code.
|
---|
11959 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11960 | * @param cbInstr The instruction length in bytes.
|
---|
11961 | * @param iCrReg The control register number (destination).
|
---|
11962 | * @param iGReg The general purpose register number (source).
|
---|
11963 | *
|
---|
11964 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
11965 | */
|
---|
11966 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovCRxWrite(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iCrReg, uint8_t iGReg)
|
---|
11967 | {
|
---|
11968 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
11969 | Assert(iCrReg < 16);
|
---|
11970 | Assert(iGReg < 16);
|
---|
11971 |
|
---|
11972 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11973 | iemInitExec(pIemCpu, false /*fBypassHandlers*/);
|
---|
11974 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Cd_Rd, iCrReg, iGReg);
|
---|
11975 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pIemCpu, rcStrict);
|
---|
11976 | }
|
---|
11977 |
|
---|
11978 |
|
---|
11979 | /**
|
---|
11980 | * Interface for HM and EM to read from a CRx register.
|
---|
11981 | *
|
---|
11982 | * @returns Strict VBox status code.
|
---|
11983 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11984 | * @param cbInstr The instruction length in bytes.
|
---|
11985 | * @param iGReg The general purpose register number (destination).
|
---|
11986 | * @param iCrReg The control register number (source).
|
---|
11987 | *
|
---|
11988 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
11989 | */
|
---|
11990 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovCRxRead(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
|
---|
11991 | {
|
---|
11992 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
11993 | Assert(iCrReg < 16);
|
---|
11994 | Assert(iGReg < 16);
|
---|
11995 |
|
---|
11996 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
11997 | iemInitExec(pIemCpu, false /*fBypassHandlers*/);
|
---|
11998 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Rd_Cd, iGReg, iCrReg);
|
---|
11999 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pIemCpu, rcStrict);
|
---|
12000 | }
|
---|
12001 |
|
---|
12002 |
|
---|
12003 | /**
|
---|
12004 | * Interface for HM and EM to clear the CR0[TS] bit.
|
---|
12005 | *
|
---|
12006 | * @returns Strict VBox status code.
|
---|
12007 | * @param pVCpu The cross context virtual CPU structure.
|
---|
12008 | * @param cbInstr The instruction length in bytes.
|
---|
12009 | *
|
---|
12010 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
12011 | */
|
---|
12012 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedClts(PVMCPU pVCpu, uint8_t cbInstr)
|
---|
12013 | {
|
---|
12014 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
12015 |
|
---|
12016 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
12017 | iemInitExec(pIemCpu, false /*fBypassHandlers*/);
|
---|
12018 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_clts);
|
---|
12019 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pIemCpu, rcStrict);
|
---|
12020 | }
|
---|
12021 |
|
---|
12022 |
|
---|
12023 | /**
|
---|
12024 | * Interface for HM and EM to emulate the LMSW instruction (loads CR0).
|
---|
12025 | *
|
---|
12026 | * @returns Strict VBox status code.
|
---|
12027 | * @param pVCpu The cross context virtual CPU structure.
|
---|
12028 | * @param cbInstr The instruction length in bytes.
|
---|
12029 | * @param uValue The value to load into CR0.
|
---|
12030 | *
|
---|
12031 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
12032 | */
|
---|
12033 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedLmsw(PVMCPU pVCpu, uint8_t cbInstr, uint16_t uValue)
|
---|
12034 | {
|
---|
12035 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
12036 |
|
---|
12037 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
12038 | iemInitExec(pIemCpu, false /*fBypassHandlers*/);
|
---|
12039 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_1(iemCImpl_lmsw, uValue);
|
---|
12040 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pIemCpu, rcStrict);
|
---|
12041 | }
|
---|
12042 |
|
---|
12043 |
|
---|
12044 | /**
|
---|
12045 | * Interface for HM and EM to emulate the XSETBV instruction (loads XCRx).
|
---|
12046 | *
|
---|
12047 | * Takes input values in ecx and edx:eax of the CPU context of the calling EMT.
|
---|
12048 | *
|
---|
12049 | * @returns Strict VBox status code.
|
---|
12050 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
12051 | * @param cbInstr The instruction length in bytes.
|
---|
12052 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
12053 | * @thread EMT(pVCpu)
|
---|
12054 | */
|
---|
12055 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedXsetbv(PVMCPU pVCpu, uint8_t cbInstr)
|
---|
12056 | {
|
---|
12057 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
12058 |
|
---|
12059 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
12060 | iemInitExec(pIemCpu, false /*fBypassHandlers*/);
|
---|
12061 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_xsetbv);
|
---|
12062 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pIemCpu, rcStrict);
|
---|
12063 | }
|
---|
12064 |
|
---|
12065 | #ifdef IN_RING3
|
---|
12066 |
|
---|
12067 | /**
|
---|
12068 | * Handles the unlikely and probably fatal merge cases.
|
---|
12069 | *
|
---|
12070 | * @returns Merged status code.
|
---|
12071 | * @param rcStrict Current EM status code.
|
---|
12072 | * @param rcStrictCommit The IOM I/O or MMIO write commit status to merge
|
---|
12073 | * with @a rcStrict.
|
---|
12074 | * @param iMemMap The memory mapping index. For error reporting only.
|
---|
12075 | * @param pIemCpu The IEMCPU structure of the calling EMT, for error
|
---|
12076 | * reporting only.
|
---|
12077 | */
|
---|
12078 | DECL_NO_INLINE(static, VBOXSTRICTRC) iemR3MergeStatusSlow(VBOXSTRICTRC rcStrict, VBOXSTRICTRC rcStrictCommit,
|
---|
12079 | unsigned iMemMap, PIEMCPU pIemCpu)
|
---|
12080 | {
|
---|
12081 | if (RT_FAILURE_NP(rcStrict))
|
---|
12082 | return rcStrict;
|
---|
12083 |
|
---|
12084 | if (RT_FAILURE_NP(rcStrictCommit))
|
---|
12085 | return rcStrictCommit;
|
---|
12086 |
|
---|
12087 | if (rcStrict == rcStrictCommit)
|
---|
12088 | return rcStrictCommit;
|
---|
12089 |
|
---|
12090 | AssertLogRelMsgFailed(("rcStrictCommit=%Rrc rcStrict=%Rrc iMemMap=%u fAccess=%#x FirstPg=%RGp LB %u SecondPg=%RGp LB %u\n",
|
---|
12091 | VBOXSTRICTRC_VAL(rcStrictCommit), VBOXSTRICTRC_VAL(rcStrict), iMemMap,
|
---|
12092 | pIemCpu->aMemMappings[iMemMap].fAccess,
|
---|
12093 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, pIemCpu->aMemBbMappings[iMemMap].cbFirst,
|
---|
12094 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, pIemCpu->aMemBbMappings[iMemMap].cbSecond));
|
---|
12095 | return VERR_IOM_FF_STATUS_IPE;
|
---|
12096 | }
|
---|
12097 |
|
---|
12098 |
|
---|
12099 | /**
|
---|
12100 | * Helper for IOMR3ProcessForceFlag.
|
---|
12101 | *
|
---|
12102 | * @returns Merged status code.
|
---|
12103 | * @param rcStrict Current EM status code.
|
---|
12104 | * @param rcStrictCommit The IOM I/O or MMIO write commit status to merge
|
---|
12105 | * with @a rcStrict.
|
---|
12106 | * @param iMemMap The memory mapping index. For error reporting only.
|
---|
12107 | * @param pIemCpu The IEMCPU structure of the calling EMT, for error
|
---|
12108 | * reporting only.
|
---|
12109 | */
|
---|
12110 | DECLINLINE(VBOXSTRICTRC) iemR3MergeStatus(VBOXSTRICTRC rcStrict, VBOXSTRICTRC rcStrictCommit, unsigned iMemMap, PIEMCPU pIemCpu)
|
---|
12111 | {
|
---|
12112 | /* Simple. */
|
---|
12113 | if (RT_LIKELY(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RAW_TO_R3))
|
---|
12114 | return rcStrictCommit;
|
---|
12115 |
|
---|
12116 | if (RT_LIKELY(rcStrictCommit == VINF_SUCCESS))
|
---|
12117 | return rcStrict;
|
---|
12118 |
|
---|
12119 | /* EM scheduling status codes. */
|
---|
12120 | if (RT_LIKELY( rcStrict >= VINF_EM_FIRST
|
---|
12121 | && rcStrict <= VINF_EM_LAST))
|
---|
12122 | {
|
---|
12123 | if (RT_LIKELY( rcStrictCommit >= VINF_EM_FIRST
|
---|
12124 | && rcStrictCommit <= VINF_EM_LAST))
|
---|
12125 | return rcStrict < rcStrictCommit ? rcStrict : rcStrictCommit;
|
---|
12126 | }
|
---|
12127 |
|
---|
12128 | /* Unlikely */
|
---|
12129 | return iemR3MergeStatusSlow(rcStrict, rcStrictCommit, iMemMap, pIemCpu);
|
---|
12130 | }
|
---|
12131 |
|
---|
12132 |
|
---|
12133 | /**
|
---|
12134 | * Called by force-flag handling code when VMCPU_FF_IEM is set.
|
---|
12135 | *
|
---|
12136 | * @returns Merge between @a rcStrict and what the commit operation returned.
|
---|
12137 | * @param pVM The cross context VM structure.
|
---|
12138 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
12139 | * @param rcStrict The status code returned by ring-0 or raw-mode.
|
---|
12140 | */
|
---|
12141 | VMMR3_INT_DECL(VBOXSTRICTRC) IEMR3ProcessForceFlag(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
|
---|
12142 | {
|
---|
12143 | PIEMCPU pIemCpu = &pVCpu->iem.s;
|
---|
12144 |
|
---|
12145 | /*
|
---|
12146 | * Reset the pending commit.
|
---|
12147 | */
|
---|
12148 | AssertMsg( (pIemCpu->aMemMappings[0].fAccess | pIemCpu->aMemMappings[1].fAccess | pIemCpu->aMemMappings[2].fAccess)
|
---|
12149 | & (IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND),
|
---|
12150 | ("%#x %#x %#x\n",
|
---|
12151 | pIemCpu->aMemMappings[0].fAccess, pIemCpu->aMemMappings[1].fAccess, pIemCpu->aMemMappings[2].fAccess));
|
---|
12152 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_IEM);
|
---|
12153 |
|
---|
12154 | /*
|
---|
12155 | * Commit the pending bounce buffers (usually just one).
|
---|
12156 | */
|
---|
12157 | unsigned cBufs = 0;
|
---|
12158 | unsigned iMemMap = RT_ELEMENTS(pIemCpu->aMemMappings);
|
---|
12159 | while (iMemMap-- > 0)
|
---|
12160 | if (pIemCpu->aMemMappings[iMemMap].fAccess & (IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND))
|
---|
12161 | {
|
---|
12162 | Assert(pIemCpu->aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE);
|
---|
12163 | Assert(pIemCpu->aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED);
|
---|
12164 | Assert(!pIemCpu->aMemBbMappings[iMemMap].fUnassigned);
|
---|
12165 |
|
---|
12166 | uint16_t const cbFirst = pIemCpu->aMemBbMappings[iMemMap].cbFirst;
|
---|
12167 | uint16_t const cbSecond = pIemCpu->aMemBbMappings[iMemMap].cbSecond;
|
---|
12168 | uint8_t const *pbBuf = &pIemCpu->aBounceBuffers[iMemMap].ab[0];
|
---|
12169 |
|
---|
12170 | if (pIemCpu->aMemMappings[iMemMap].fAccess & IEM_ACCESS_PENDING_R3_WRITE_1ST)
|
---|
12171 | {
|
---|
12172 | VBOXSTRICTRC rcStrictCommit1 = PGMPhysWrite(pVM,
|
---|
12173 | pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
12174 | pbBuf,
|
---|
12175 | cbFirst,
|
---|
12176 | PGMACCESSORIGIN_IEM);
|
---|
12177 | rcStrict = iemR3MergeStatus(rcStrict, rcStrictCommit1, iMemMap, pIemCpu);
|
---|
12178 | Log(("IEMR3ProcessForceFlag: iMemMap=%u GCPhysFirst=%RGp LB %#x %Rrc => %Rrc\n",
|
---|
12179 | iMemMap, pIemCpu->aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
12180 | VBOXSTRICTRC_VAL(rcStrictCommit1), VBOXSTRICTRC_VAL(rcStrict)));
|
---|
12181 | }
|
---|
12182 |
|
---|
12183 | if (pIemCpu->aMemMappings[iMemMap].fAccess & IEM_ACCESS_PENDING_R3_WRITE_2ND)
|
---|
12184 | {
|
---|
12185 | VBOXSTRICTRC rcStrictCommit2 = PGMPhysWrite(pVM,
|
---|
12186 | pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
12187 | pbBuf + cbFirst,
|
---|
12188 | cbSecond,
|
---|
12189 | PGMACCESSORIGIN_IEM);
|
---|
12190 | rcStrict = iemR3MergeStatus(rcStrict, rcStrictCommit2, iMemMap, pIemCpu);
|
---|
12191 | Log(("IEMR3ProcessForceFlag: iMemMap=%u GCPhysSecond=%RGp LB %#x %Rrc => %Rrc\n",
|
---|
12192 | iMemMap, pIemCpu->aMemBbMappings[iMemMap].GCPhysSecond, cbSecond,
|
---|
12193 | VBOXSTRICTRC_VAL(rcStrictCommit2), VBOXSTRICTRC_VAL(rcStrict)));
|
---|
12194 | }
|
---|
12195 | cBufs++;
|
---|
12196 | pIemCpu->aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
12197 | }
|
---|
12198 |
|
---|
12199 | AssertMsg(cBufs > 0 && cBufs == pIemCpu->cActiveMappings,
|
---|
12200 | ("cBufs=%u cActiveMappings=%u - %#x %#x %#x\n", cBufs, pIemCpu->cActiveMappings,
|
---|
12201 | pIemCpu->aMemMappings[0].fAccess, pIemCpu->aMemMappings[1].fAccess, pIemCpu->aMemMappings[2].fAccess));
|
---|
12202 | pIemCpu->cActiveMappings = 0;
|
---|
12203 | return rcStrict;
|
---|
12204 | }
|
---|
12205 |
|
---|
12206 | #endif /* IN_RING3 */
|
---|
12207 |
|
---|