1 | /* $Id: IEMAll.cpp 62171 2016-07-11 18:30:07Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Interpreted Execution Manager - All Contexts.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2015 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /** @page pg_iem IEM - Interpreted Execution Manager
|
---|
20 | *
|
---|
21 | * The interpreted exeuction manager (IEM) is for executing short guest code
|
---|
22 | * sequences that are causing too many exits / virtualization traps. It will
|
---|
23 | * also be used to interpret single instructions, thus replacing the selective
|
---|
24 | * interpreters in EM and IOM.
|
---|
25 | *
|
---|
26 | * Design goals:
|
---|
27 | * - Relatively small footprint, although we favour speed and correctness
|
---|
28 | * over size.
|
---|
29 | * - Reasonably fast.
|
---|
30 | * - Correctly handle lock prefixed instructions.
|
---|
31 | * - Complete instruction set - eventually.
|
---|
32 | * - Refactorable into a recompiler, maybe.
|
---|
33 | * - Replace EMInterpret*.
|
---|
34 | *
|
---|
35 | * Using the existing disassembler has been considered, however this is thought
|
---|
36 | * to conflict with speed as the disassembler chews things a bit too much while
|
---|
37 | * leaving us with a somewhat complicated state to interpret afterwards.
|
---|
38 | *
|
---|
39 | *
|
---|
40 | * The current code is very much work in progress. You've been warned!
|
---|
41 | *
|
---|
42 | *
|
---|
43 | * @section sec_iem_fpu_instr FPU Instructions
|
---|
44 | *
|
---|
45 | * On x86 and AMD64 hosts, the FPU instructions are implemented by executing the
|
---|
46 | * same or equivalent instructions on the host FPU. To make life easy, we also
|
---|
47 | * let the FPU prioritize the unmasked exceptions for us. This however, only
|
---|
48 | * works reliably when CR0.NE is set, i.e. when using \#MF instead the IRQ 13
|
---|
49 | * for FPU exception delivery, because with CR0.NE=0 there is a window where we
|
---|
50 | * can trigger spurious FPU exceptions.
|
---|
51 | *
|
---|
52 | * The guest FPU state is not loaded into the host CPU and kept there till we
|
---|
53 | * leave IEM because the calling conventions have declared an all year open
|
---|
54 | * season on much of the FPU state. For instance an innocent looking call to
|
---|
55 | * memcpy might end up using a whole bunch of XMM or MM registers if the
|
---|
56 | * particular implementation finds it worthwhile.
|
---|
57 | *
|
---|
58 | *
|
---|
59 | * @section sec_iem_logging Logging
|
---|
60 | *
|
---|
61 | * The IEM code uses the \"IEM\" log group for the main logging. The different
|
---|
62 | * logging levels/flags are generally used for the following purposes:
|
---|
63 | * - Level 1 (Log) : Errors, exceptions, interrupts and such major events.
|
---|
64 | * - Flow (LogFlow): Basic enter/exit IEM state info.
|
---|
65 | * - Level 2 (Log2): ?
|
---|
66 | * - Level 3 (Log3): More detailed enter/exit IEM state info.
|
---|
67 | * - Level 4 (Log4): Decoding mnemonics w/ EIP.
|
---|
68 | * - Level 5 (Log5): Decoding details.
|
---|
69 | * - Level 6 (Log6): Enables/disables the lockstep comparison with REM.
|
---|
70 | * - Level 7 (Log7): iret++ execution logging.
|
---|
71 | * - Level 8 (Log8): Memory writes.
|
---|
72 | * - Level 9 (Log9): Memory reads.
|
---|
73 | *
|
---|
74 | */
|
---|
75 |
|
---|
76 | /** @def IEM_VERIFICATION_MODE_MINIMAL
|
---|
77 | * Use for pitting IEM against EM or something else in ring-0 or raw-mode
|
---|
78 | * context. */
|
---|
79 | #if defined(DOXYGEN_RUNNING)
|
---|
80 | # define IEM_VERIFICATION_MODE_MINIMAL
|
---|
81 | #endif
|
---|
82 | //#define IEM_LOG_MEMORY_WRITES
|
---|
83 | #define IEM_IMPLEMENTS_TASKSWITCH
|
---|
84 | //#define IEM_WITH_CODE_TLB - work in progress
|
---|
85 |
|
---|
86 |
|
---|
87 | /*********************************************************************************************************************************
|
---|
88 | * Header Files *
|
---|
89 | *********************************************************************************************************************************/
|
---|
90 | #define LOG_GROUP LOG_GROUP_IEM
|
---|
91 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
92 | #include <VBox/vmm/iem.h>
|
---|
93 | #include <VBox/vmm/cpum.h>
|
---|
94 | #include <VBox/vmm/pdm.h>
|
---|
95 | #include <VBox/vmm/pgm.h>
|
---|
96 | #include <internal/pgm.h>
|
---|
97 | #include <VBox/vmm/iom.h>
|
---|
98 | #include <VBox/vmm/em.h>
|
---|
99 | #include <VBox/vmm/hm.h>
|
---|
100 | #include <VBox/vmm/tm.h>
|
---|
101 | #include <VBox/vmm/dbgf.h>
|
---|
102 | #include <VBox/vmm/dbgftrace.h>
|
---|
103 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
104 | # include <VBox/vmm/patm.h>
|
---|
105 | # if defined(VBOX_WITH_CALL_RECORD) || defined(REM_MONITOR_CODE_PAGES)
|
---|
106 | # include <VBox/vmm/csam.h>
|
---|
107 | # endif
|
---|
108 | #endif
|
---|
109 | #include "IEMInternal.h"
|
---|
110 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
111 | # include <VBox/vmm/rem.h>
|
---|
112 | # include <VBox/vmm/mm.h>
|
---|
113 | #endif
|
---|
114 | #include <VBox/vmm/vm.h>
|
---|
115 | #include <VBox/log.h>
|
---|
116 | #include <VBox/err.h>
|
---|
117 | #include <VBox/param.h>
|
---|
118 | #include <VBox/dis.h>
|
---|
119 | #include <VBox/disopcode.h>
|
---|
120 | #include <iprt/assert.h>
|
---|
121 | #include <iprt/string.h>
|
---|
122 | #include <iprt/x86.h>
|
---|
123 |
|
---|
124 |
|
---|
125 | /*********************************************************************************************************************************
|
---|
126 | * Structures and Typedefs *
|
---|
127 | *********************************************************************************************************************************/
|
---|
128 | /** @typedef PFNIEMOP
|
---|
129 | * Pointer to an opcode decoder function.
|
---|
130 | */
|
---|
131 |
|
---|
132 | /** @def FNIEMOP_DEF
|
---|
133 | * Define an opcode decoder function.
|
---|
134 | *
|
---|
135 | * We're using macors for this so that adding and removing parameters as well as
|
---|
136 | * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
|
---|
137 | *
|
---|
138 | * @param a_Name The function name.
|
---|
139 | */
|
---|
140 |
|
---|
141 | /** @typedef PFNIEMOPRM
|
---|
142 | * Pointer to an opcode decoder function with RM byte.
|
---|
143 | */
|
---|
144 |
|
---|
145 | /** @def FNIEMOPRM_DEF
|
---|
146 | * Define an opcode decoder function with RM byte.
|
---|
147 | *
|
---|
148 | * We're using macors for this so that adding and removing parameters as well as
|
---|
149 | * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
|
---|
150 | *
|
---|
151 | * @param a_Name The function name.
|
---|
152 | */
|
---|
153 |
|
---|
154 | #if defined(__GNUC__) && defined(RT_ARCH_X86)
|
---|
155 | typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPU pVCpu);
|
---|
156 | typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPU pVCpu, uint8_t bRm);
|
---|
157 | # define FNIEMOP_DEF(a_Name) \
|
---|
158 | IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPU pVCpu)
|
---|
159 | # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
160 | IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPU pVCpu, a_Type0 a_Name0)
|
---|
161 | # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
|
---|
162 | IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPU pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
|
---|
163 |
|
---|
164 | #elif defined(_MSC_VER) && defined(RT_ARCH_X86)
|
---|
165 | typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPU pVCpu);
|
---|
166 | typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPU pVCpu, uint8_t bRm);
|
---|
167 | # define FNIEMOP_DEF(a_Name) \
|
---|
168 | IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPU pVCpu) RT_NO_THROW_DEF
|
---|
169 | # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
170 | IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPU pVCpu, a_Type0 a_Name0) RT_NO_THROW_DEF
|
---|
171 | # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
|
---|
172 | IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPU pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) RT_NO_THROW_DEF
|
---|
173 |
|
---|
174 | #elif defined(__GNUC__)
|
---|
175 | typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPU pVCpu);
|
---|
176 | typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPU pVCpu, uint8_t bRm);
|
---|
177 | # define FNIEMOP_DEF(a_Name) \
|
---|
178 | IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu)
|
---|
179 | # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
180 | IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, a_Type0 a_Name0)
|
---|
181 | # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
|
---|
182 | IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
|
---|
183 |
|
---|
184 | #else
|
---|
185 | typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPU pVCpu);
|
---|
186 | typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPU pVCpu, uint8_t bRm);
|
---|
187 | # define FNIEMOP_DEF(a_Name) \
|
---|
188 | IEM_STATIC VBOXSTRICTRC a_Name(PVMCPU pVCpu) RT_NO_THROW_DEF
|
---|
189 | # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
190 | IEM_STATIC VBOXSTRICTRC a_Name(PVMCPU pVCpu, a_Type0 a_Name0) RT_NO_THROW_DEF
|
---|
191 | # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
|
---|
192 | IEM_STATIC VBOXSTRICTRC a_Name(PVMCPU pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) RT_NO_THROW_DEF
|
---|
193 |
|
---|
194 | #endif
|
---|
195 | #define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
|
---|
196 |
|
---|
197 |
|
---|
198 | /**
|
---|
199 | * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
|
---|
200 | */
|
---|
201 | typedef union IEMSELDESC
|
---|
202 | {
|
---|
203 | /** The legacy view. */
|
---|
204 | X86DESC Legacy;
|
---|
205 | /** The long mode view. */
|
---|
206 | X86DESC64 Long;
|
---|
207 | } IEMSELDESC;
|
---|
208 | /** Pointer to a selector descriptor table entry. */
|
---|
209 | typedef IEMSELDESC *PIEMSELDESC;
|
---|
210 |
|
---|
211 |
|
---|
212 | /*********************************************************************************************************************************
|
---|
213 | * Defined Constants And Macros *
|
---|
214 | *********************************************************************************************************************************/
|
---|
215 | /** @def IEM_WITH_SETJMP
|
---|
216 | * Enables alternative status code handling using setjmps.
|
---|
217 | *
|
---|
218 | * This adds a bit of expense via the setjmp() call since it saves all the
|
---|
219 | * non-volatile registers. However, it eliminates return code checks and allows
|
---|
220 | * for more optimal return value passing (return regs instead of stack buffer).
|
---|
221 | */
|
---|
222 | #if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
|
---|
223 | # define IEM_WITH_SETJMP
|
---|
224 | #endif
|
---|
225 |
|
---|
226 | /** Temporary hack to disable the double execution. Will be removed in favor
|
---|
227 | * of a dedicated execution mode in EM. */
|
---|
228 | //#define IEM_VERIFICATION_MODE_NO_REM
|
---|
229 |
|
---|
230 | /** Used to shut up GCC warnings about variables that 'may be used uninitialized'
|
---|
231 | * due to GCC lacking knowledge about the value range of a switch. */
|
---|
232 | #define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
|
---|
233 |
|
---|
234 | /**
|
---|
235 | * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
|
---|
236 | * occation.
|
---|
237 | */
|
---|
238 | #ifdef LOG_ENABLED
|
---|
239 | # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
|
---|
240 | do { \
|
---|
241 | /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
|
---|
242 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
|
---|
243 | } while (0)
|
---|
244 | #else
|
---|
245 | # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
|
---|
246 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED
|
---|
247 | #endif
|
---|
248 |
|
---|
249 | /**
|
---|
250 | * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
|
---|
251 | * occation using the supplied logger statement.
|
---|
252 | *
|
---|
253 | * @param a_LoggerArgs What to log on failure.
|
---|
254 | */
|
---|
255 | #ifdef LOG_ENABLED
|
---|
256 | # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
|
---|
257 | do { \
|
---|
258 | LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
|
---|
259 | /*LogFunc(a_LoggerArgs);*/ \
|
---|
260 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
|
---|
261 | } while (0)
|
---|
262 | #else
|
---|
263 | # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
|
---|
264 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED
|
---|
265 | #endif
|
---|
266 |
|
---|
267 | /**
|
---|
268 | * Call an opcode decoder function.
|
---|
269 | *
|
---|
270 | * We're using macors for this so that adding and removing parameters can be
|
---|
271 | * done as we please. See FNIEMOP_DEF.
|
---|
272 | */
|
---|
273 | #define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
|
---|
274 |
|
---|
275 | /**
|
---|
276 | * Call a common opcode decoder function taking one extra argument.
|
---|
277 | *
|
---|
278 | * We're using macors for this so that adding and removing parameters can be
|
---|
279 | * done as we please. See FNIEMOP_DEF_1.
|
---|
280 | */
|
---|
281 | #define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
|
---|
282 |
|
---|
283 | /**
|
---|
284 | * Call a common opcode decoder function taking one extra argument.
|
---|
285 | *
|
---|
286 | * We're using macors for this so that adding and removing parameters can be
|
---|
287 | * done as we please. See FNIEMOP_DEF_1.
|
---|
288 | */
|
---|
289 | #define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
|
---|
290 |
|
---|
291 | /**
|
---|
292 | * Check if we're currently executing in real or virtual 8086 mode.
|
---|
293 | *
|
---|
294 | * @returns @c true if it is, @c false if not.
|
---|
295 | * @param a_pVCpu The IEM state of the current CPU.
|
---|
296 | */
|
---|
297 | #define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (CPUMIsGuestInRealOrV86ModeEx(IEM_GET_CTX(a_pVCpu)))
|
---|
298 |
|
---|
299 | /**
|
---|
300 | * Check if we're currently executing in virtual 8086 mode.
|
---|
301 | *
|
---|
302 | * @returns @c true if it is, @c false if not.
|
---|
303 | * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
304 | */
|
---|
305 | #define IEM_IS_V86_MODE(a_pVCpu) (CPUMIsGuestInV86ModeEx(IEM_GET_CTX(a_pVCpu)))
|
---|
306 |
|
---|
307 | /**
|
---|
308 | * Check if we're currently executing in long mode.
|
---|
309 | *
|
---|
310 | * @returns @c true if it is, @c false if not.
|
---|
311 | * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
312 | */
|
---|
313 | #define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
|
---|
314 |
|
---|
315 | /**
|
---|
316 | * Check if we're currently executing in real mode.
|
---|
317 | *
|
---|
318 | * @returns @c true if it is, @c false if not.
|
---|
319 | * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
320 | */
|
---|
321 | #define IEM_IS_REAL_MODE(a_pVCpu) (CPUMIsGuestInRealModeEx(IEM_GET_CTX(a_pVCpu)))
|
---|
322 |
|
---|
323 | /**
|
---|
324 | * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
|
---|
325 | * @returns PCCPUMFEATURES
|
---|
326 | * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
327 | */
|
---|
328 | #define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
|
---|
329 |
|
---|
330 | /**
|
---|
331 | * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
|
---|
332 | * @returns PCCPUMFEATURES
|
---|
333 | * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
334 | */
|
---|
335 | #define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.HostFeatures))
|
---|
336 |
|
---|
337 | /**
|
---|
338 | * Evaluates to true if we're presenting an Intel CPU to the guest.
|
---|
339 | */
|
---|
340 | #define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
|
---|
341 |
|
---|
342 | /**
|
---|
343 | * Evaluates to true if we're presenting an AMD CPU to the guest.
|
---|
344 | */
|
---|
345 | #define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD )
|
---|
346 |
|
---|
347 | /**
|
---|
348 | * Check if the address is canonical.
|
---|
349 | */
|
---|
350 | #define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
|
---|
351 |
|
---|
352 | /** @def IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
353 | * Use unaligned accesses instead of elaborate byte assembly. */
|
---|
354 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
|
---|
355 | # define IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
356 | #endif
|
---|
357 |
|
---|
358 |
|
---|
359 | /*********************************************************************************************************************************
|
---|
360 | * Global Variables *
|
---|
361 | *********************************************************************************************************************************/
|
---|
362 | extern const PFNIEMOP g_apfnOneByteMap[256]; /* not static since we need to forward declare it. */
|
---|
363 |
|
---|
364 |
|
---|
365 | /** Function table for the ADD instruction. */
|
---|
366 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_add =
|
---|
367 | {
|
---|
368 | iemAImpl_add_u8, iemAImpl_add_u8_locked,
|
---|
369 | iemAImpl_add_u16, iemAImpl_add_u16_locked,
|
---|
370 | iemAImpl_add_u32, iemAImpl_add_u32_locked,
|
---|
371 | iemAImpl_add_u64, iemAImpl_add_u64_locked
|
---|
372 | };
|
---|
373 |
|
---|
374 | /** Function table for the ADC instruction. */
|
---|
375 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_adc =
|
---|
376 | {
|
---|
377 | iemAImpl_adc_u8, iemAImpl_adc_u8_locked,
|
---|
378 | iemAImpl_adc_u16, iemAImpl_adc_u16_locked,
|
---|
379 | iemAImpl_adc_u32, iemAImpl_adc_u32_locked,
|
---|
380 | iemAImpl_adc_u64, iemAImpl_adc_u64_locked
|
---|
381 | };
|
---|
382 |
|
---|
383 | /** Function table for the SUB instruction. */
|
---|
384 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_sub =
|
---|
385 | {
|
---|
386 | iemAImpl_sub_u8, iemAImpl_sub_u8_locked,
|
---|
387 | iemAImpl_sub_u16, iemAImpl_sub_u16_locked,
|
---|
388 | iemAImpl_sub_u32, iemAImpl_sub_u32_locked,
|
---|
389 | iemAImpl_sub_u64, iemAImpl_sub_u64_locked
|
---|
390 | };
|
---|
391 |
|
---|
392 | /** Function table for the SBB instruction. */
|
---|
393 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_sbb =
|
---|
394 | {
|
---|
395 | iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked,
|
---|
396 | iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked,
|
---|
397 | iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked,
|
---|
398 | iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked
|
---|
399 | };
|
---|
400 |
|
---|
401 | /** Function table for the OR instruction. */
|
---|
402 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_or =
|
---|
403 | {
|
---|
404 | iemAImpl_or_u8, iemAImpl_or_u8_locked,
|
---|
405 | iemAImpl_or_u16, iemAImpl_or_u16_locked,
|
---|
406 | iemAImpl_or_u32, iemAImpl_or_u32_locked,
|
---|
407 | iemAImpl_or_u64, iemAImpl_or_u64_locked
|
---|
408 | };
|
---|
409 |
|
---|
410 | /** Function table for the XOR instruction. */
|
---|
411 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_xor =
|
---|
412 | {
|
---|
413 | iemAImpl_xor_u8, iemAImpl_xor_u8_locked,
|
---|
414 | iemAImpl_xor_u16, iemAImpl_xor_u16_locked,
|
---|
415 | iemAImpl_xor_u32, iemAImpl_xor_u32_locked,
|
---|
416 | iemAImpl_xor_u64, iemAImpl_xor_u64_locked
|
---|
417 | };
|
---|
418 |
|
---|
419 | /** Function table for the AND instruction. */
|
---|
420 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_and =
|
---|
421 | {
|
---|
422 | iemAImpl_and_u8, iemAImpl_and_u8_locked,
|
---|
423 | iemAImpl_and_u16, iemAImpl_and_u16_locked,
|
---|
424 | iemAImpl_and_u32, iemAImpl_and_u32_locked,
|
---|
425 | iemAImpl_and_u64, iemAImpl_and_u64_locked
|
---|
426 | };
|
---|
427 |
|
---|
428 | /** Function table for the CMP instruction.
|
---|
429 | * @remarks Making operand order ASSUMPTIONS.
|
---|
430 | */
|
---|
431 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_cmp =
|
---|
432 | {
|
---|
433 | iemAImpl_cmp_u8, NULL,
|
---|
434 | iemAImpl_cmp_u16, NULL,
|
---|
435 | iemAImpl_cmp_u32, NULL,
|
---|
436 | iemAImpl_cmp_u64, NULL
|
---|
437 | };
|
---|
438 |
|
---|
439 | /** Function table for the TEST instruction.
|
---|
440 | * @remarks Making operand order ASSUMPTIONS.
|
---|
441 | */
|
---|
442 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_test =
|
---|
443 | {
|
---|
444 | iemAImpl_test_u8, NULL,
|
---|
445 | iemAImpl_test_u16, NULL,
|
---|
446 | iemAImpl_test_u32, NULL,
|
---|
447 | iemAImpl_test_u64, NULL
|
---|
448 | };
|
---|
449 |
|
---|
450 | /** Function table for the BT instruction. */
|
---|
451 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_bt =
|
---|
452 | {
|
---|
453 | NULL, NULL,
|
---|
454 | iemAImpl_bt_u16, NULL,
|
---|
455 | iemAImpl_bt_u32, NULL,
|
---|
456 | iemAImpl_bt_u64, NULL
|
---|
457 | };
|
---|
458 |
|
---|
459 | /** Function table for the BTC instruction. */
|
---|
460 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_btc =
|
---|
461 | {
|
---|
462 | NULL, NULL,
|
---|
463 | iemAImpl_btc_u16, iemAImpl_btc_u16_locked,
|
---|
464 | iemAImpl_btc_u32, iemAImpl_btc_u32_locked,
|
---|
465 | iemAImpl_btc_u64, iemAImpl_btc_u64_locked
|
---|
466 | };
|
---|
467 |
|
---|
468 | /** Function table for the BTR instruction. */
|
---|
469 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_btr =
|
---|
470 | {
|
---|
471 | NULL, NULL,
|
---|
472 | iemAImpl_btr_u16, iemAImpl_btr_u16_locked,
|
---|
473 | iemAImpl_btr_u32, iemAImpl_btr_u32_locked,
|
---|
474 | iemAImpl_btr_u64, iemAImpl_btr_u64_locked
|
---|
475 | };
|
---|
476 |
|
---|
477 | /** Function table for the BTS instruction. */
|
---|
478 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_bts =
|
---|
479 | {
|
---|
480 | NULL, NULL,
|
---|
481 | iemAImpl_bts_u16, iemAImpl_bts_u16_locked,
|
---|
482 | iemAImpl_bts_u32, iemAImpl_bts_u32_locked,
|
---|
483 | iemAImpl_bts_u64, iemAImpl_bts_u64_locked
|
---|
484 | };
|
---|
485 |
|
---|
486 | /** Function table for the BSF instruction. */
|
---|
487 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_bsf =
|
---|
488 | {
|
---|
489 | NULL, NULL,
|
---|
490 | iemAImpl_bsf_u16, NULL,
|
---|
491 | iemAImpl_bsf_u32, NULL,
|
---|
492 | iemAImpl_bsf_u64, NULL
|
---|
493 | };
|
---|
494 |
|
---|
495 | /** Function table for the BSR instruction. */
|
---|
496 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_bsr =
|
---|
497 | {
|
---|
498 | NULL, NULL,
|
---|
499 | iemAImpl_bsr_u16, NULL,
|
---|
500 | iemAImpl_bsr_u32, NULL,
|
---|
501 | iemAImpl_bsr_u64, NULL
|
---|
502 | };
|
---|
503 |
|
---|
504 | /** Function table for the IMUL instruction. */
|
---|
505 | IEM_STATIC const IEMOPBINSIZES g_iemAImpl_imul_two =
|
---|
506 | {
|
---|
507 | NULL, NULL,
|
---|
508 | iemAImpl_imul_two_u16, NULL,
|
---|
509 | iemAImpl_imul_two_u32, NULL,
|
---|
510 | iemAImpl_imul_two_u64, NULL
|
---|
511 | };
|
---|
512 |
|
---|
513 | /** Group 1 /r lookup table. */
|
---|
514 | IEM_STATIC const PCIEMOPBINSIZES g_apIemImplGrp1[8] =
|
---|
515 | {
|
---|
516 | &g_iemAImpl_add,
|
---|
517 | &g_iemAImpl_or,
|
---|
518 | &g_iemAImpl_adc,
|
---|
519 | &g_iemAImpl_sbb,
|
---|
520 | &g_iemAImpl_and,
|
---|
521 | &g_iemAImpl_sub,
|
---|
522 | &g_iemAImpl_xor,
|
---|
523 | &g_iemAImpl_cmp
|
---|
524 | };
|
---|
525 |
|
---|
526 | /** Function table for the INC instruction. */
|
---|
527 | IEM_STATIC const IEMOPUNARYSIZES g_iemAImpl_inc =
|
---|
528 | {
|
---|
529 | iemAImpl_inc_u8, iemAImpl_inc_u8_locked,
|
---|
530 | iemAImpl_inc_u16, iemAImpl_inc_u16_locked,
|
---|
531 | iemAImpl_inc_u32, iemAImpl_inc_u32_locked,
|
---|
532 | iemAImpl_inc_u64, iemAImpl_inc_u64_locked
|
---|
533 | };
|
---|
534 |
|
---|
535 | /** Function table for the DEC instruction. */
|
---|
536 | IEM_STATIC const IEMOPUNARYSIZES g_iemAImpl_dec =
|
---|
537 | {
|
---|
538 | iemAImpl_dec_u8, iemAImpl_dec_u8_locked,
|
---|
539 | iemAImpl_dec_u16, iemAImpl_dec_u16_locked,
|
---|
540 | iemAImpl_dec_u32, iemAImpl_dec_u32_locked,
|
---|
541 | iemAImpl_dec_u64, iemAImpl_dec_u64_locked
|
---|
542 | };
|
---|
543 |
|
---|
544 | /** Function table for the NEG instruction. */
|
---|
545 | IEM_STATIC const IEMOPUNARYSIZES g_iemAImpl_neg =
|
---|
546 | {
|
---|
547 | iemAImpl_neg_u8, iemAImpl_neg_u8_locked,
|
---|
548 | iemAImpl_neg_u16, iemAImpl_neg_u16_locked,
|
---|
549 | iemAImpl_neg_u32, iemAImpl_neg_u32_locked,
|
---|
550 | iemAImpl_neg_u64, iemAImpl_neg_u64_locked
|
---|
551 | };
|
---|
552 |
|
---|
553 | /** Function table for the NOT instruction. */
|
---|
554 | IEM_STATIC const IEMOPUNARYSIZES g_iemAImpl_not =
|
---|
555 | {
|
---|
556 | iemAImpl_not_u8, iemAImpl_not_u8_locked,
|
---|
557 | iemAImpl_not_u16, iemAImpl_not_u16_locked,
|
---|
558 | iemAImpl_not_u32, iemAImpl_not_u32_locked,
|
---|
559 | iemAImpl_not_u64, iemAImpl_not_u64_locked
|
---|
560 | };
|
---|
561 |
|
---|
562 |
|
---|
563 | /** Function table for the ROL instruction. */
|
---|
564 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_rol =
|
---|
565 | {
|
---|
566 | iemAImpl_rol_u8,
|
---|
567 | iemAImpl_rol_u16,
|
---|
568 | iemAImpl_rol_u32,
|
---|
569 | iemAImpl_rol_u64
|
---|
570 | };
|
---|
571 |
|
---|
572 | /** Function table for the ROR instruction. */
|
---|
573 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_ror =
|
---|
574 | {
|
---|
575 | iemAImpl_ror_u8,
|
---|
576 | iemAImpl_ror_u16,
|
---|
577 | iemAImpl_ror_u32,
|
---|
578 | iemAImpl_ror_u64
|
---|
579 | };
|
---|
580 |
|
---|
581 | /** Function table for the RCL instruction. */
|
---|
582 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_rcl =
|
---|
583 | {
|
---|
584 | iemAImpl_rcl_u8,
|
---|
585 | iemAImpl_rcl_u16,
|
---|
586 | iemAImpl_rcl_u32,
|
---|
587 | iemAImpl_rcl_u64
|
---|
588 | };
|
---|
589 |
|
---|
590 | /** Function table for the RCR instruction. */
|
---|
591 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_rcr =
|
---|
592 | {
|
---|
593 | iemAImpl_rcr_u8,
|
---|
594 | iemAImpl_rcr_u16,
|
---|
595 | iemAImpl_rcr_u32,
|
---|
596 | iemAImpl_rcr_u64
|
---|
597 | };
|
---|
598 |
|
---|
599 | /** Function table for the SHL instruction. */
|
---|
600 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_shl =
|
---|
601 | {
|
---|
602 | iemAImpl_shl_u8,
|
---|
603 | iemAImpl_shl_u16,
|
---|
604 | iemAImpl_shl_u32,
|
---|
605 | iemAImpl_shl_u64
|
---|
606 | };
|
---|
607 |
|
---|
608 | /** Function table for the SHR instruction. */
|
---|
609 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_shr =
|
---|
610 | {
|
---|
611 | iemAImpl_shr_u8,
|
---|
612 | iemAImpl_shr_u16,
|
---|
613 | iemAImpl_shr_u32,
|
---|
614 | iemAImpl_shr_u64
|
---|
615 | };
|
---|
616 |
|
---|
617 | /** Function table for the SAR instruction. */
|
---|
618 | IEM_STATIC const IEMOPSHIFTSIZES g_iemAImpl_sar =
|
---|
619 | {
|
---|
620 | iemAImpl_sar_u8,
|
---|
621 | iemAImpl_sar_u16,
|
---|
622 | iemAImpl_sar_u32,
|
---|
623 | iemAImpl_sar_u64
|
---|
624 | };
|
---|
625 |
|
---|
626 |
|
---|
627 | /** Function table for the MUL instruction. */
|
---|
628 | IEM_STATIC const IEMOPMULDIVSIZES g_iemAImpl_mul =
|
---|
629 | {
|
---|
630 | iemAImpl_mul_u8,
|
---|
631 | iemAImpl_mul_u16,
|
---|
632 | iemAImpl_mul_u32,
|
---|
633 | iemAImpl_mul_u64
|
---|
634 | };
|
---|
635 |
|
---|
636 | /** Function table for the IMUL instruction working implicitly on rAX. */
|
---|
637 | IEM_STATIC const IEMOPMULDIVSIZES g_iemAImpl_imul =
|
---|
638 | {
|
---|
639 | iemAImpl_imul_u8,
|
---|
640 | iemAImpl_imul_u16,
|
---|
641 | iemAImpl_imul_u32,
|
---|
642 | iemAImpl_imul_u64
|
---|
643 | };
|
---|
644 |
|
---|
645 | /** Function table for the DIV instruction. */
|
---|
646 | IEM_STATIC const IEMOPMULDIVSIZES g_iemAImpl_div =
|
---|
647 | {
|
---|
648 | iemAImpl_div_u8,
|
---|
649 | iemAImpl_div_u16,
|
---|
650 | iemAImpl_div_u32,
|
---|
651 | iemAImpl_div_u64
|
---|
652 | };
|
---|
653 |
|
---|
654 | /** Function table for the MUL instruction. */
|
---|
655 | IEM_STATIC const IEMOPMULDIVSIZES g_iemAImpl_idiv =
|
---|
656 | {
|
---|
657 | iemAImpl_idiv_u8,
|
---|
658 | iemAImpl_idiv_u16,
|
---|
659 | iemAImpl_idiv_u32,
|
---|
660 | iemAImpl_idiv_u64
|
---|
661 | };
|
---|
662 |
|
---|
663 | /** Function table for the SHLD instruction */
|
---|
664 | IEM_STATIC const IEMOPSHIFTDBLSIZES g_iemAImpl_shld =
|
---|
665 | {
|
---|
666 | iemAImpl_shld_u16,
|
---|
667 | iemAImpl_shld_u32,
|
---|
668 | iemAImpl_shld_u64,
|
---|
669 | };
|
---|
670 |
|
---|
671 | /** Function table for the SHRD instruction */
|
---|
672 | IEM_STATIC const IEMOPSHIFTDBLSIZES g_iemAImpl_shrd =
|
---|
673 | {
|
---|
674 | iemAImpl_shrd_u16,
|
---|
675 | iemAImpl_shrd_u32,
|
---|
676 | iemAImpl_shrd_u64,
|
---|
677 | };
|
---|
678 |
|
---|
679 |
|
---|
680 | /** Function table for the PUNPCKLBW instruction */
|
---|
681 | IEM_STATIC const IEMOPMEDIAF1L1 g_iemAImpl_punpcklbw = { iemAImpl_punpcklbw_u64, iemAImpl_punpcklbw_u128 };
|
---|
682 | /** Function table for the PUNPCKLBD instruction */
|
---|
683 | IEM_STATIC const IEMOPMEDIAF1L1 g_iemAImpl_punpcklwd = { iemAImpl_punpcklwd_u64, iemAImpl_punpcklwd_u128 };
|
---|
684 | /** Function table for the PUNPCKLDQ instruction */
|
---|
685 | IEM_STATIC const IEMOPMEDIAF1L1 g_iemAImpl_punpckldq = { iemAImpl_punpckldq_u64, iemAImpl_punpckldq_u128 };
|
---|
686 | /** Function table for the PUNPCKLQDQ instruction */
|
---|
687 | IEM_STATIC const IEMOPMEDIAF1L1 g_iemAImpl_punpcklqdq = { NULL, iemAImpl_punpcklqdq_u128 };
|
---|
688 |
|
---|
689 | /** Function table for the PUNPCKHBW instruction */
|
---|
690 | IEM_STATIC const IEMOPMEDIAF1H1 g_iemAImpl_punpckhbw = { iemAImpl_punpckhbw_u64, iemAImpl_punpckhbw_u128 };
|
---|
691 | /** Function table for the PUNPCKHBD instruction */
|
---|
692 | IEM_STATIC const IEMOPMEDIAF1H1 g_iemAImpl_punpckhwd = { iemAImpl_punpckhwd_u64, iemAImpl_punpckhwd_u128 };
|
---|
693 | /** Function table for the PUNPCKHDQ instruction */
|
---|
694 | IEM_STATIC const IEMOPMEDIAF1H1 g_iemAImpl_punpckhdq = { iemAImpl_punpckhdq_u64, iemAImpl_punpckhdq_u128 };
|
---|
695 | /** Function table for the PUNPCKHQDQ instruction */
|
---|
696 | IEM_STATIC const IEMOPMEDIAF1H1 g_iemAImpl_punpckhqdq = { NULL, iemAImpl_punpckhqdq_u128 };
|
---|
697 |
|
---|
698 | /** Function table for the PXOR instruction */
|
---|
699 | IEM_STATIC const IEMOPMEDIAF2 g_iemAImpl_pxor = { iemAImpl_pxor_u64, iemAImpl_pxor_u128 };
|
---|
700 | /** Function table for the PCMPEQB instruction */
|
---|
701 | IEM_STATIC const IEMOPMEDIAF2 g_iemAImpl_pcmpeqb = { iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqb_u128 };
|
---|
702 | /** Function table for the PCMPEQW instruction */
|
---|
703 | IEM_STATIC const IEMOPMEDIAF2 g_iemAImpl_pcmpeqw = { iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqw_u128 };
|
---|
704 | /** Function table for the PCMPEQD instruction */
|
---|
705 | IEM_STATIC const IEMOPMEDIAF2 g_iemAImpl_pcmpeqd = { iemAImpl_pcmpeqd_u64, iemAImpl_pcmpeqd_u128 };
|
---|
706 |
|
---|
707 |
|
---|
708 | #if defined(IEM_VERIFICATION_MODE_MINIMAL) || defined(IEM_LOG_MEMORY_WRITES)
|
---|
709 | /** What IEM just wrote. */
|
---|
710 | uint8_t g_abIemWrote[256];
|
---|
711 | /** How much IEM just wrote. */
|
---|
712 | size_t g_cbIemWrote;
|
---|
713 | #endif
|
---|
714 |
|
---|
715 |
|
---|
716 | /*********************************************************************************************************************************
|
---|
717 | * Internal Functions *
|
---|
718 | *********************************************************************************************************************************/
|
---|
719 | IEM_STATIC VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPU pVCpu, uint16_t uErr);
|
---|
720 | IEM_STATIC VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPU pVCpu);
|
---|
721 | IEM_STATIC VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPU pVCpu);
|
---|
722 | IEM_STATIC VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPU pVCpu, uint16_t uSel);
|
---|
723 | /*IEM_STATIC VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPU pVCpu, uint32_t iSegReg, uint32_t fAccess);*/
|
---|
724 | IEM_STATIC VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPU pVCpu, uint16_t uSel);
|
---|
725 | IEM_STATIC VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPU pVCpu, uint16_t uErr);
|
---|
726 | IEM_STATIC VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPU pVCpu, uint16_t uSel);
|
---|
727 | IEM_STATIC VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPU pVCpu, uint16_t uErr);
|
---|
728 | IEM_STATIC VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPU pVCpu, uint16_t uErr);
|
---|
729 | IEM_STATIC VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPU pVCpu);
|
---|
730 | IEM_STATIC VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPU pVCpu, RTSEL uSel);
|
---|
731 | IEM_STATIC VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPU pVCpu, uint32_t iSegReg, uint32_t fAccess);
|
---|
732 | IEM_STATIC VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPU pVCpu, RTSEL Sel);
|
---|
733 | IEM_STATIC VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPU pVCpu, uint32_t iSegReg, uint32_t fAccess);
|
---|
734 | IEM_STATIC VBOXSTRICTRC iemRaisePageFault(PVMCPU pVCpu, RTGCPTR GCPtrWhere, uint32_t fAccess, int rc);
|
---|
735 | IEM_STATIC VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPU pVCpu);
|
---|
736 | #ifdef IEM_WITH_SETJMP
|
---|
737 | DECL_NO_INLINE(IEM_STATIC, DECL_NO_RETURN(void)) iemRaiseGeneralProtectionFault0Jmp(PVMCPU pVCpu);
|
---|
738 | DECL_NO_INLINE(IEM_STATIC, DECL_NO_RETURN(void)) iemRaiseSelectorBoundsJmp(PVMCPU pVCpu, uint32_t iSegReg, uint32_t fAccess);
|
---|
739 | DECL_NO_INLINE(IEM_STATIC, DECL_NO_RETURN(void)) iemRaiseSelectorBoundsBySelectorJmp(PVMCPU pVCpu, RTSEL Sel);
|
---|
740 | DECL_NO_INLINE(IEM_STATIC, DECL_NO_RETURN(void)) iemRaiseSelectorInvalidAccessJmp(PVMCPU pVCpu, uint32_t iSegReg, uint32_t fAccess);
|
---|
741 | #endif
|
---|
742 |
|
---|
743 | IEM_STATIC VBOXSTRICTRC iemMemMap(PVMCPU pVCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t fAccess);
|
---|
744 | IEM_STATIC VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPU pVCpu, void *pvMem, uint32_t fAccess);
|
---|
745 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU32(PVMCPU pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
746 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU64(PVMCPU pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
747 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU8(PVMCPU pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
748 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU16(PVMCPU pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
749 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU32(PVMCPU pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
750 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU64(PVMCPU pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem);
|
---|
751 | IEM_STATIC VBOXSTRICTRC iemMemFetchSelDescWithErr(PVMCPU pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt, uint16_t uErrorCode);
|
---|
752 | IEM_STATIC VBOXSTRICTRC iemMemFetchSelDesc(PVMCPU pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt);
|
---|
753 | IEM_STATIC VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPU pVCpu, void *pvMem, uint64_t uNewRsp);
|
---|
754 | IEM_STATIC VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPU pVCpu, size_t cbMem, void **ppvMem, uint64_t *puNewRsp);
|
---|
755 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU32(PVMCPU pVCpu, uint32_t u32Value);
|
---|
756 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU16(PVMCPU pVCpu, uint16_t u16Value);
|
---|
757 | IEM_STATIC VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPU pVCpu, uint16_t uSel);
|
---|
758 | IEM_STATIC uint16_t iemSRegFetchU16(PVMCPU pVCpu, uint8_t iSegReg);
|
---|
759 |
|
---|
760 | #if defined(IEM_VERIFICATION_MODE_FULL) && !defined(IEM_VERIFICATION_MODE_MINIMAL)
|
---|
761 | IEM_STATIC PIEMVERIFYEVTREC iemVerifyAllocRecord(PVMCPU pVCpu);
|
---|
762 | #endif
|
---|
763 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortRead(PVMCPU pVCpu, RTIOPORT Port, uint32_t *pu32Value, size_t cbValue);
|
---|
764 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortWrite(PVMCPU pVCpu, RTIOPORT Port, uint32_t u32Value, size_t cbValue);
|
---|
765 |
|
---|
766 |
|
---|
767 |
|
---|
768 | /**
|
---|
769 | * Sets the pass up status.
|
---|
770 | *
|
---|
771 | * @returns VINF_SUCCESS.
|
---|
772 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
773 | * calling thread.
|
---|
774 | * @param rcPassUp The pass up status. Must be informational.
|
---|
775 | * VINF_SUCCESS is not allowed.
|
---|
776 | */
|
---|
777 | IEM_STATIC int iemSetPassUpStatus(PVMCPU pVCpu, VBOXSTRICTRC rcPassUp)
|
---|
778 | {
|
---|
779 | AssertRC(VBOXSTRICTRC_VAL(rcPassUp)); Assert(rcPassUp != VINF_SUCCESS);
|
---|
780 |
|
---|
781 | int32_t const rcOldPassUp = pVCpu->iem.s.rcPassUp;
|
---|
782 | if (rcOldPassUp == VINF_SUCCESS)
|
---|
783 | pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
784 | /* If both are EM scheduling codes, use EM priority rules. */
|
---|
785 | else if ( rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST
|
---|
786 | && rcPassUp >= VINF_EM_FIRST && rcPassUp <= VINF_EM_LAST)
|
---|
787 | {
|
---|
788 | if (rcPassUp < rcOldPassUp)
|
---|
789 | {
|
---|
790 | Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
791 | pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
792 | }
|
---|
793 | else
|
---|
794 | Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
795 | }
|
---|
796 | /* Override EM scheduling with specific status code. */
|
---|
797 | else if (rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST)
|
---|
798 | {
|
---|
799 | Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
800 | pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
801 | }
|
---|
802 | /* Don't override specific status code, first come first served. */
|
---|
803 | else
|
---|
804 | Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
805 | return VINF_SUCCESS;
|
---|
806 | }
|
---|
807 |
|
---|
808 |
|
---|
809 | /**
|
---|
810 | * Calculates the CPU mode.
|
---|
811 | *
|
---|
812 | * This is mainly for updating IEMCPU::enmCpuMode.
|
---|
813 | *
|
---|
814 | * @returns CPU mode.
|
---|
815 | * @param pCtx The register context for the CPU.
|
---|
816 | */
|
---|
817 | DECLINLINE(IEMMODE) iemCalcCpuMode(PCPUMCTX pCtx)
|
---|
818 | {
|
---|
819 | if (CPUMIsGuestIn64BitCodeEx(pCtx))
|
---|
820 | return IEMMODE_64BIT;
|
---|
821 | if (pCtx->cs.Attr.n.u1DefBig) /** @todo check if this is correct... */
|
---|
822 | return IEMMODE_32BIT;
|
---|
823 | return IEMMODE_16BIT;
|
---|
824 | }
|
---|
825 |
|
---|
826 |
|
---|
827 | /**
|
---|
828 | * Initializes the execution state.
|
---|
829 | *
|
---|
830 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
831 | * calling thread.
|
---|
832 | * @param fBypassHandlers Whether to bypass access handlers.
|
---|
833 | *
|
---|
834 | * @remarks Callers of this must call iemUninitExec() to undo potentially fatal
|
---|
835 | * side-effects in strict builds.
|
---|
836 | */
|
---|
837 | DECLINLINE(void) iemInitExec(PVMCPU pVCpu, bool fBypassHandlers)
|
---|
838 | {
|
---|
839 | PCPUMCTX const pCtx = IEM_GET_CTX(pVCpu);
|
---|
840 |
|
---|
841 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
842 |
|
---|
843 | #if defined(VBOX_STRICT) && (defined(IEM_VERIFICATION_MODE_FULL) || !defined(VBOX_WITH_RAW_MODE_NOT_R0))
|
---|
844 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs));
|
---|
845 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
|
---|
846 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->es));
|
---|
847 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ds));
|
---|
848 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->fs));
|
---|
849 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->gs));
|
---|
850 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ldtr));
|
---|
851 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->tr));
|
---|
852 | #endif
|
---|
853 |
|
---|
854 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
855 | CPUMGuestLazyLoadHiddenCsAndSs(pVCpu);
|
---|
856 | #endif
|
---|
857 | pVCpu->iem.s.uCpl = CPUMGetGuestCPL(pVCpu);
|
---|
858 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
859 | #ifdef VBOX_STRICT
|
---|
860 | pVCpu->iem.s.enmDefAddrMode = (IEMMODE)0xc0fe;
|
---|
861 | pVCpu->iem.s.enmEffAddrMode = (IEMMODE)0xc0fe;
|
---|
862 | pVCpu->iem.s.enmDefOpSize = (IEMMODE)0xc0fe;
|
---|
863 | pVCpu->iem.s.enmEffOpSize = (IEMMODE)0xc0fe;
|
---|
864 | pVCpu->iem.s.fPrefixes = (IEMMODE)0xfeedbeef;
|
---|
865 | pVCpu->iem.s.uRexReg = 127;
|
---|
866 | pVCpu->iem.s.uRexB = 127;
|
---|
867 | pVCpu->iem.s.uRexIndex = 127;
|
---|
868 | pVCpu->iem.s.iEffSeg = 127;
|
---|
869 | pVCpu->iem.s.uFpuOpcode = UINT16_MAX;
|
---|
870 | # ifdef IEM_WITH_CODE_TLB
|
---|
871 | pVCpu->iem.s.offInstrNextByte = UINT16_MAX;
|
---|
872 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
873 | pVCpu->iem.s.cbInstrBuf = UINT16_MAX;
|
---|
874 | pVCpu->iem.s.cbInstrBufTotal = UINT16_MAX;
|
---|
875 | pVCpu->iem.s.offCurInstrStart = UINT16_MAX;
|
---|
876 | pVCpu->iem.s.uInstrBufPc = UINT64_C(0xc0ffc0ffcff0c0ff);
|
---|
877 | # else
|
---|
878 | pVCpu->iem.s.offOpcode = 127;
|
---|
879 | pVCpu->iem.s.cbOpcode = 127;
|
---|
880 | # endif
|
---|
881 | #endif
|
---|
882 |
|
---|
883 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
884 | pVCpu->iem.s.iNextMapping = 0;
|
---|
885 | pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
|
---|
886 | pVCpu->iem.s.fBypassHandlers = fBypassHandlers;
|
---|
887 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
888 | pVCpu->iem.s.fInPatchCode = pVCpu->iem.s.uCpl == 0
|
---|
889 | && pCtx->cs.u64Base == 0
|
---|
890 | && pCtx->cs.u32Limit == UINT32_MAX
|
---|
891 | && PATMIsPatchGCAddr(pVCpu->CTX_SUFF(pVM), pCtx->eip);
|
---|
892 | if (!pVCpu->iem.s.fInPatchCode)
|
---|
893 | CPUMRawLeave(pVCpu, VINF_SUCCESS);
|
---|
894 | #endif
|
---|
895 |
|
---|
896 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
897 | pVCpu->iem.s.fNoRemSavedByExec = pVCpu->iem.s.fNoRem;
|
---|
898 | pVCpu->iem.s.fNoRem = true;
|
---|
899 | #endif
|
---|
900 | }
|
---|
901 |
|
---|
902 |
|
---|
903 | /**
|
---|
904 | * Counterpart to #iemInitExec that undoes evil strict-build stuff.
|
---|
905 | *
|
---|
906 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
907 | * calling thread.
|
---|
908 | */
|
---|
909 | DECLINLINE(void) iemUninitExec(PVMCPU pVCpu)
|
---|
910 | {
|
---|
911 | /* Note! do not touch fInPatchCode here! (see iemUninitExecAndFiddleStatusAndMaybeReenter) */
|
---|
912 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
913 | pVCpu->iem.s.fNoRem = pVCpu->iem.s.fNoRemSavedByExec;
|
---|
914 | #endif
|
---|
915 | #ifdef VBOX_STRICT
|
---|
916 | # ifdef IEM_WITH_CODE_TLB
|
---|
917 | # else
|
---|
918 | pVCpu->iem.s.cbOpcode = 0;
|
---|
919 | # endif
|
---|
920 | #else
|
---|
921 | NOREF(pVCpu);
|
---|
922 | #endif
|
---|
923 | }
|
---|
924 |
|
---|
925 |
|
---|
926 | /**
|
---|
927 | * Initializes the decoder state.
|
---|
928 | *
|
---|
929 | * iemReInitDecoder is mostly a copy of this function.
|
---|
930 | *
|
---|
931 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
932 | * calling thread.
|
---|
933 | * @param fBypassHandlers Whether to bypass access handlers.
|
---|
934 | */
|
---|
935 | DECLINLINE(void) iemInitDecoder(PVMCPU pVCpu, bool fBypassHandlers)
|
---|
936 | {
|
---|
937 | PCPUMCTX const pCtx = IEM_GET_CTX(pVCpu);
|
---|
938 |
|
---|
939 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
940 |
|
---|
941 | #if defined(VBOX_STRICT) && (defined(IEM_VERIFICATION_MODE_FULL) || !defined(VBOX_WITH_RAW_MODE_NOT_R0))
|
---|
942 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs));
|
---|
943 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
|
---|
944 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->es));
|
---|
945 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ds));
|
---|
946 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->fs));
|
---|
947 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->gs));
|
---|
948 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ldtr));
|
---|
949 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->tr));
|
---|
950 | #endif
|
---|
951 |
|
---|
952 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
953 | CPUMGuestLazyLoadHiddenCsAndSs(pVCpu);
|
---|
954 | #endif
|
---|
955 | pVCpu->iem.s.uCpl = CPUMGetGuestCPL(pVCpu);
|
---|
956 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
957 | if (pVCpu->iem.s.uInjectCpl != UINT8_MAX)
|
---|
958 | pVCpu->iem.s.uCpl = pVCpu->iem.s.uInjectCpl;
|
---|
959 | #endif
|
---|
960 | IEMMODE enmMode = iemCalcCpuMode(pCtx);
|
---|
961 | pVCpu->iem.s.enmCpuMode = enmMode;
|
---|
962 | pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */
|
---|
963 | pVCpu->iem.s.enmEffAddrMode = enmMode;
|
---|
964 | if (enmMode != IEMMODE_64BIT)
|
---|
965 | {
|
---|
966 | pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */
|
---|
967 | pVCpu->iem.s.enmEffOpSize = enmMode;
|
---|
968 | }
|
---|
969 | else
|
---|
970 | {
|
---|
971 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
972 | pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT;
|
---|
973 | }
|
---|
974 | pVCpu->iem.s.fPrefixes = 0;
|
---|
975 | pVCpu->iem.s.uRexReg = 0;
|
---|
976 | pVCpu->iem.s.uRexB = 0;
|
---|
977 | pVCpu->iem.s.uRexIndex = 0;
|
---|
978 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
979 | #ifdef IEM_WITH_CODE_TLB
|
---|
980 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
981 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
982 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
983 | # ifdef VBOX_STRICT
|
---|
984 | pVCpu->iem.s.cbInstrBuf = UINT16_MAX;
|
---|
985 | pVCpu->iem.s.cbInstrBufTotal = UINT16_MAX;
|
---|
986 | pVCpu->iem.s.uInstrBufPc = UINT64_C(0xc0ffc0ffcff0c0ff);
|
---|
987 | # endif
|
---|
988 | #else
|
---|
989 | pVCpu->iem.s.offOpcode = 0;
|
---|
990 | pVCpu->iem.s.cbOpcode = 0;
|
---|
991 | #endif
|
---|
992 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
993 | pVCpu->iem.s.iNextMapping = 0;
|
---|
994 | pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
|
---|
995 | pVCpu->iem.s.fBypassHandlers = fBypassHandlers;
|
---|
996 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
997 | pVCpu->iem.s.fInPatchCode = pVCpu->iem.s.uCpl == 0
|
---|
998 | && pCtx->cs.u64Base == 0
|
---|
999 | && pCtx->cs.u32Limit == UINT32_MAX
|
---|
1000 | && PATMIsPatchGCAddr(pVCpu->CTX_SUFF(pVM), pCtx->eip);
|
---|
1001 | if (!pVCpu->iem.s.fInPatchCode)
|
---|
1002 | CPUMRawLeave(pVCpu, VINF_SUCCESS);
|
---|
1003 | #endif
|
---|
1004 |
|
---|
1005 | #ifdef DBGFTRACE_ENABLED
|
---|
1006 | switch (enmMode)
|
---|
1007 | {
|
---|
1008 | case IEMMODE_64BIT:
|
---|
1009 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", pVCpu->iem.s.uCpl, pCtx->rip);
|
---|
1010 | break;
|
---|
1011 | case IEMMODE_32BIT:
|
---|
1012 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", pVCpu->iem.s.uCpl, pCtx->cs.Sel, pCtx->eip);
|
---|
1013 | break;
|
---|
1014 | case IEMMODE_16BIT:
|
---|
1015 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", pVCpu->iem.s.uCpl, pCtx->cs.Sel, pCtx->eip);
|
---|
1016 | break;
|
---|
1017 | }
|
---|
1018 | #endif
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 |
|
---|
1022 | /**
|
---|
1023 | * Reinitializes the decoder state 2nd+ loop of IEMExecLots.
|
---|
1024 | *
|
---|
1025 | * This is mostly a copy of iemInitDecoder.
|
---|
1026 | *
|
---|
1027 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1028 | */
|
---|
1029 | DECLINLINE(void) iemReInitDecoder(PVMCPU pVCpu)
|
---|
1030 | {
|
---|
1031 | PCPUMCTX const pCtx = IEM_GET_CTX(pVCpu);
|
---|
1032 |
|
---|
1033 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
1034 |
|
---|
1035 | #if defined(VBOX_STRICT) && (defined(IEM_VERIFICATION_MODE_FULL) || !defined(VBOX_WITH_RAW_MODE_NOT_R0))
|
---|
1036 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs));
|
---|
1037 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
|
---|
1038 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->es));
|
---|
1039 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ds));
|
---|
1040 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->fs));
|
---|
1041 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->gs));
|
---|
1042 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ldtr));
|
---|
1043 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->tr));
|
---|
1044 | #endif
|
---|
1045 |
|
---|
1046 | pVCpu->iem.s.uCpl = CPUMGetGuestCPL(pVCpu); /** @todo this should be updated during execution! */
|
---|
1047 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
1048 | if (pVCpu->iem.s.uInjectCpl != UINT8_MAX)
|
---|
1049 | pVCpu->iem.s.uCpl = pVCpu->iem.s.uInjectCpl;
|
---|
1050 | #endif
|
---|
1051 | IEMMODE enmMode = iemCalcCpuMode(pCtx);
|
---|
1052 | pVCpu->iem.s.enmCpuMode = enmMode; /** @todo this should be updated during execution! */
|
---|
1053 | pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */
|
---|
1054 | pVCpu->iem.s.enmEffAddrMode = enmMode;
|
---|
1055 | if (enmMode != IEMMODE_64BIT)
|
---|
1056 | {
|
---|
1057 | pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */
|
---|
1058 | pVCpu->iem.s.enmEffOpSize = enmMode;
|
---|
1059 | }
|
---|
1060 | else
|
---|
1061 | {
|
---|
1062 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
1063 | pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT;
|
---|
1064 | }
|
---|
1065 | pVCpu->iem.s.fPrefixes = 0;
|
---|
1066 | pVCpu->iem.s.uRexReg = 0;
|
---|
1067 | pVCpu->iem.s.uRexB = 0;
|
---|
1068 | pVCpu->iem.s.uRexIndex = 0;
|
---|
1069 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
1070 | #ifdef IEM_WITH_CODE_TLB
|
---|
1071 | if (pVCpu->iem.s.pbInstrBuf)
|
---|
1072 | {
|
---|
1073 | uint64_t off = (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rip : pCtx->eip + (uint32_t)pCtx->cs.u64Base)
|
---|
1074 | - pVCpu->iem.s.uInstrBufPc;
|
---|
1075 | if (off < pVCpu->iem.s.cbInstrBufTotal)
|
---|
1076 | {
|
---|
1077 | pVCpu->iem.s.offInstrNextByte = (uint32_t)off;
|
---|
1078 | pVCpu->iem.s.offCurInstrStart = (uint16_t)off;
|
---|
1079 | if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal)
|
---|
1080 | pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15;
|
---|
1081 | else
|
---|
1082 | pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal;
|
---|
1083 | }
|
---|
1084 | else
|
---|
1085 | {
|
---|
1086 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1087 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
1088 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
1089 | }
|
---|
1090 | }
|
---|
1091 | else
|
---|
1092 | {
|
---|
1093 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
1094 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
1095 | }
|
---|
1096 | #else
|
---|
1097 | pVCpu->iem.s.cbOpcode = 0;
|
---|
1098 | pVCpu->iem.s.offOpcode = 0;
|
---|
1099 | #endif
|
---|
1100 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
1101 | pVCpu->iem.s.iNextMapping = 0;
|
---|
1102 | Assert(pVCpu->iem.s.rcPassUp == VINF_SUCCESS);
|
---|
1103 | Assert(pVCpu->iem.s.fBypassHandlers == false);
|
---|
1104 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
1105 | if (!pVCpu->iem.s.fInPatchCode)
|
---|
1106 | { /* likely */ }
|
---|
1107 | else
|
---|
1108 | {
|
---|
1109 | pVCpu->iem.s.fInPatchCode = pVCpu->iem.s.uCpl == 0
|
---|
1110 | && pCtx->cs.u64Base == 0
|
---|
1111 | && pCtx->cs.u32Limit == UINT32_MAX
|
---|
1112 | && PATMIsPatchGCAddr(pVCpu->CTX_SUFF(pVM), pCtx->eip);
|
---|
1113 | if (!pVCpu->iem.s.fInPatchCode)
|
---|
1114 | CPUMRawLeave(pVCpu, VINF_SUCCESS);
|
---|
1115 | }
|
---|
1116 | #endif
|
---|
1117 |
|
---|
1118 | #ifdef DBGFTRACE_ENABLED
|
---|
1119 | switch (enmMode)
|
---|
1120 | {
|
---|
1121 | case IEMMODE_64BIT:
|
---|
1122 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", pVCpu->iem.s.uCpl, pCtx->rip);
|
---|
1123 | break;
|
---|
1124 | case IEMMODE_32BIT:
|
---|
1125 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", pVCpu->iem.s.uCpl, pCtx->cs.Sel, pCtx->eip);
|
---|
1126 | break;
|
---|
1127 | case IEMMODE_16BIT:
|
---|
1128 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", pVCpu->iem.s.uCpl, pCtx->cs.Sel, pCtx->eip);
|
---|
1129 | break;
|
---|
1130 | }
|
---|
1131 | #endif
|
---|
1132 | }
|
---|
1133 |
|
---|
1134 |
|
---|
1135 |
|
---|
1136 | /**
|
---|
1137 | * Prefetch opcodes the first time when starting executing.
|
---|
1138 | *
|
---|
1139 | * @returns Strict VBox status code.
|
---|
1140 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1141 | * calling thread.
|
---|
1142 | * @param fBypassHandlers Whether to bypass access handlers.
|
---|
1143 | */
|
---|
1144 | IEM_STATIC VBOXSTRICTRC iemInitDecoderAndPrefetchOpcodes(PVMCPU pVCpu, bool fBypassHandlers)
|
---|
1145 | {
|
---|
1146 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
1147 | uint8_t const cbOldOpcodes = pVCpu->iem.s.cbOpcode;
|
---|
1148 | #endif
|
---|
1149 | iemInitDecoder(pVCpu, fBypassHandlers);
|
---|
1150 |
|
---|
1151 | #ifdef IEM_WITH_CODE_TLB
|
---|
1152 | /** @todo Do ITLB lookup here. */
|
---|
1153 |
|
---|
1154 | #else /* !IEM_WITH_CODE_TLB */
|
---|
1155 |
|
---|
1156 | /*
|
---|
1157 | * What we're doing here is very similar to iemMemMap/iemMemBounceBufferMap.
|
---|
1158 | *
|
---|
1159 | * First translate CS:rIP to a physical address.
|
---|
1160 | */
|
---|
1161 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1162 | uint32_t cbToTryRead;
|
---|
1163 | RTGCPTR GCPtrPC;
|
---|
1164 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1165 | {
|
---|
1166 | cbToTryRead = PAGE_SIZE;
|
---|
1167 | GCPtrPC = pCtx->rip;
|
---|
1168 | if (!IEM_IS_CANONICAL(GCPtrPC))
|
---|
1169 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1170 | cbToTryRead = PAGE_SIZE - (GCPtrPC & PAGE_OFFSET_MASK);
|
---|
1171 | }
|
---|
1172 | else
|
---|
1173 | {
|
---|
1174 | uint32_t GCPtrPC32 = pCtx->eip;
|
---|
1175 | AssertMsg(!(GCPtrPC32 & ~(uint32_t)UINT16_MAX) || pVCpu->iem.s.enmCpuMode == IEMMODE_32BIT, ("%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip));
|
---|
1176 | if (GCPtrPC32 > pCtx->cs.u32Limit)
|
---|
1177 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1178 | cbToTryRead = pCtx->cs.u32Limit - GCPtrPC32 + 1;
|
---|
1179 | if (!cbToTryRead) /* overflowed */
|
---|
1180 | {
|
---|
1181 | Assert(GCPtrPC32 == 0); Assert(pCtx->cs.u32Limit == UINT32_MAX);
|
---|
1182 | cbToTryRead = UINT32_MAX;
|
---|
1183 | }
|
---|
1184 | GCPtrPC = (uint32_t)pCtx->cs.u64Base + GCPtrPC32;
|
---|
1185 | Assert(GCPtrPC <= UINT32_MAX);
|
---|
1186 | }
|
---|
1187 |
|
---|
1188 | # ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
1189 | /* Allow interpretation of patch manager code blocks since they can for
|
---|
1190 | instance throw #PFs for perfectly good reasons. */
|
---|
1191 | if (pVCpu->iem.s.fInPatchCode)
|
---|
1192 | {
|
---|
1193 | size_t cbRead = 0;
|
---|
1194 | int rc = PATMReadPatchCode(pVCpu->CTX_SUFF(pVM), GCPtrPC, pVCpu->iem.s.abOpcode, sizeof(pVCpu->iem.s.abOpcode), &cbRead);
|
---|
1195 | AssertRCReturn(rc, rc);
|
---|
1196 | pVCpu->iem.s.cbOpcode = (uint8_t)cbRead; Assert(pVCpu->iem.s.cbOpcode == cbRead); Assert(cbRead > 0);
|
---|
1197 | return VINF_SUCCESS;
|
---|
1198 | }
|
---|
1199 | # endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
|
---|
1200 |
|
---|
1201 | RTGCPHYS GCPhys;
|
---|
1202 | uint64_t fFlags;
|
---|
1203 | int rc = PGMGstGetPage(pVCpu, GCPtrPC, &fFlags, &GCPhys);
|
---|
1204 | if (RT_FAILURE(rc))
|
---|
1205 | {
|
---|
1206 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - rc=%Rrc\n", GCPtrPC, rc));
|
---|
1207 | return iemRaisePageFault(pVCpu, GCPtrPC, IEM_ACCESS_INSTRUCTION, rc);
|
---|
1208 | }
|
---|
1209 | if (!(fFlags & X86_PTE_US) && pVCpu->iem.s.uCpl == 3)
|
---|
1210 | {
|
---|
1211 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - supervisor page\n", GCPtrPC));
|
---|
1212 | return iemRaisePageFault(pVCpu, GCPtrPC, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1213 | }
|
---|
1214 | if ((fFlags & X86_PTE_PAE_NX) && (pCtx->msrEFER & MSR_K6_EFER_NXE))
|
---|
1215 | {
|
---|
1216 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv - NX\n", GCPtrPC));
|
---|
1217 | return iemRaisePageFault(pVCpu, GCPtrPC, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1218 | }
|
---|
1219 | GCPhys |= GCPtrPC & PAGE_OFFSET_MASK;
|
---|
1220 | /** @todo Check reserved bits and such stuff. PGM is better at doing
|
---|
1221 | * that, so do it when implementing the guest virtual address
|
---|
1222 | * TLB... */
|
---|
1223 |
|
---|
1224 | # ifdef IEM_VERIFICATION_MODE_FULL
|
---|
1225 | /*
|
---|
1226 | * Optimistic optimization: Use unconsumed opcode bytes from the previous
|
---|
1227 | * instruction.
|
---|
1228 | */
|
---|
1229 | /** @todo optimize this differently by not using PGMPhysRead. */
|
---|
1230 | RTGCPHYS const offPrevOpcodes = GCPhys - pVCpu->iem.s.GCPhysOpcodes;
|
---|
1231 | pVCpu->iem.s.GCPhysOpcodes = GCPhys;
|
---|
1232 | if ( offPrevOpcodes < cbOldOpcodes
|
---|
1233 | && PAGE_SIZE - (GCPhys & PAGE_OFFSET_MASK) > sizeof(pVCpu->iem.s.abOpcode))
|
---|
1234 | {
|
---|
1235 | uint8_t cbNew = cbOldOpcodes - (uint8_t)offPrevOpcodes;
|
---|
1236 | Assert(cbNew <= RT_ELEMENTS(pVCpu->iem.s.abOpcode));
|
---|
1237 | memmove(&pVCpu->iem.s.abOpcode[0], &pVCpu->iem.s.abOpcode[offPrevOpcodes], cbNew);
|
---|
1238 | pVCpu->iem.s.cbOpcode = cbNew;
|
---|
1239 | return VINF_SUCCESS;
|
---|
1240 | }
|
---|
1241 | # endif
|
---|
1242 |
|
---|
1243 | /*
|
---|
1244 | * Read the bytes at this address.
|
---|
1245 | */
|
---|
1246 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1247 | # if defined(IN_RING3) && defined(VBOX_WITH_RAW_MODE_NOT_R0)
|
---|
1248 | size_t cbActual;
|
---|
1249 | if ( PATMIsEnabled(pVM)
|
---|
1250 | && RT_SUCCESS(PATMR3ReadOrgInstr(pVM, GCPtrPC, pVCpu->iem.s.abOpcode, sizeof(pVCpu->iem.s.abOpcode), &cbActual)))
|
---|
1251 | {
|
---|
1252 | Log4(("decode - Read %u unpatched bytes at %RGv\n", cbActual, GCPtrPC));
|
---|
1253 | Assert(cbActual > 0);
|
---|
1254 | pVCpu->iem.s.cbOpcode = (uint8_t)cbActual;
|
---|
1255 | }
|
---|
1256 | else
|
---|
1257 | # endif
|
---|
1258 | {
|
---|
1259 | uint32_t cbLeftOnPage = PAGE_SIZE - (GCPtrPC & PAGE_OFFSET_MASK);
|
---|
1260 | if (cbToTryRead > cbLeftOnPage)
|
---|
1261 | cbToTryRead = cbLeftOnPage;
|
---|
1262 | if (cbToTryRead > sizeof(pVCpu->iem.s.abOpcode))
|
---|
1263 | cbToTryRead = sizeof(pVCpu->iem.s.abOpcode);
|
---|
1264 |
|
---|
1265 | if (!pVCpu->iem.s.fBypassHandlers)
|
---|
1266 | {
|
---|
1267 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, GCPhys, pVCpu->iem.s.abOpcode, cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
1268 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1269 | { /* likely */ }
|
---|
1270 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1271 | {
|
---|
1272 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1273 | GCPtrPC, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1274 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1275 | }
|
---|
1276 | else
|
---|
1277 | {
|
---|
1278 | Log((RT_SUCCESS(rcStrict)
|
---|
1279 | ? "iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1280 | : "iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1281 | GCPtrPC, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1282 | return rcStrict;
|
---|
1283 | }
|
---|
1284 | }
|
---|
1285 | else
|
---|
1286 | {
|
---|
1287 | rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->iem.s.abOpcode, GCPhys, cbToTryRead);
|
---|
1288 | if (RT_SUCCESS(rc))
|
---|
1289 | { /* likely */ }
|
---|
1290 | else
|
---|
1291 | {
|
---|
1292 | Log(("iemInitDecoderAndPrefetchOpcodes: %RGv/%RGp LB %#x - read error - rc=%Rrc (!!)\n",
|
---|
1293 | GCPtrPC, GCPhys, rc, cbToTryRead));
|
---|
1294 | return rc;
|
---|
1295 | }
|
---|
1296 | }
|
---|
1297 | pVCpu->iem.s.cbOpcode = cbToTryRead;
|
---|
1298 | }
|
---|
1299 | #endif /* !IEM_WITH_CODE_TLB */
|
---|
1300 | return VINF_SUCCESS;
|
---|
1301 | }
|
---|
1302 |
|
---|
1303 |
|
---|
1304 | #ifdef IEM_WITH_CODE_TLB
|
---|
1305 |
|
---|
1306 | /**
|
---|
1307 | * Tries to fetches @a cbDst opcode bytes, raise the appropriate exception on
|
---|
1308 | * failure and jumps.
|
---|
1309 | *
|
---|
1310 | * We end up here for a number of reasons:
|
---|
1311 | * - pbInstrBuf isn't yet initialized.
|
---|
1312 | * - Advancing beyond the buffer boundrary (e.g. cross page).
|
---|
1313 | * - Advancing beyond the CS segment limit.
|
---|
1314 | * - Fetching from non-mappable page (e.g. MMIO).
|
---|
1315 | *
|
---|
1316 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1317 | * calling thread.
|
---|
1318 | * @param pvDst Where to return the bytes.
|
---|
1319 | * @param cbDst Number of bytes to read.
|
---|
1320 | *
|
---|
1321 | * @todo Make cbDst = 0 a way of initializing pbInstrBuf?
|
---|
1322 | */
|
---|
1323 | IEM_STATIC void iemOpcodeFetchBytesJmp(PVMCPU pVCpu, size_t cbDst, void *pvDst)
|
---|
1324 | {
|
---|
1325 | Assert(cbDst <= 8);
|
---|
1326 | uint32_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
1327 |
|
---|
1328 | /*
|
---|
1329 | * We might have a partial buffer match, deal with that first to make the
|
---|
1330 | * rest simpler. This is the first part of the cross page/buffer case.
|
---|
1331 | */
|
---|
1332 | if (pVCpu->iem.s.pbInstrBuf != NULL)
|
---|
1333 | {
|
---|
1334 | if (offBuf < pVCpu->iem.s.cbInstrBuf)
|
---|
1335 | {
|
---|
1336 | Assert(offBuf + cbDst > pVCpu->iem.s.cbInstrBuf);
|
---|
1337 | uint32_t const cbCopy = pVCpu->iem.s.cbInstrBuf - pVCpu->iem.s.offInstrNextByte;
|
---|
1338 | memcpy(pvDst, &pVCpu->iem.s.pbInstrBuf[offBuf], cbCopy);
|
---|
1339 |
|
---|
1340 | cbDst -= cbCopy;
|
---|
1341 | pvDst = (uint8_t *)pvDst + cbCopy;
|
---|
1342 | offBuf += cbCopy;
|
---|
1343 | pVCpu->iem.s.offInstrNextByte += offBuf;
|
---|
1344 | }
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 | /*
|
---|
1348 | * Check segment limit, figuring how much we're allowed to access at this point.
|
---|
1349 | */
|
---|
1350 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1351 | RTGCPTR GCPtrFirst;
|
---|
1352 | uint32_t cbMaxRead;
|
---|
1353 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1354 | {
|
---|
1355 | GCPtrFirst = pCtx->rip + (offBuf - pVCpu->iem.s.offCurInstrStart);
|
---|
1356 | if (RT_LIKELY(IEM_IS_CANONICAL(GCPtrFirst)))
|
---|
1357 | { /* likely */ }
|
---|
1358 | else
|
---|
1359 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
1360 | cbMaxRead = X86_PAGE_SIZE - ((uint32_t)GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
1361 | }
|
---|
1362 | else
|
---|
1363 | {
|
---|
1364 | GCPtrFirst = pCtx->eip + (offBuf - pVCpu->iem.s.offCurInstrStart);
|
---|
1365 | Assert(!(GCPtrFirst & ~(uint32_t)UINT16_MAX) || pVCpu->iem.s.enmCpuMode == IEMMODE_32BIT);
|
---|
1366 | if (RT_LIKELY((uint32_t)GCPtrFirst <= pCtx->cs.u32Limit))
|
---|
1367 | { /* likely */ }
|
---|
1368 | else
|
---|
1369 | iemRaiseSelectorBoundsJmp(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1370 | cbMaxRead = pCtx->cs.u32Limit - (uint32_t)GCPtrFirst + 1;
|
---|
1371 | if (cbMaxRead != 0)
|
---|
1372 | { /* likely */ }
|
---|
1373 | else
|
---|
1374 | {
|
---|
1375 | /* Overflowed because address is 0 and limit is max. */
|
---|
1376 | Assert(GCPtrFirst == 0); Assert(pCtx->cs.u32Limit == UINT32_MAX);
|
---|
1377 | cbMaxRead = X86_PAGE_SIZE;
|
---|
1378 | }
|
---|
1379 | GCPtrFirst = (uint32_t)GCPtrFirst + (uint32_t)pCtx->cs.u64Base;
|
---|
1380 | uint32_t cbMaxRead2 = X86_PAGE_SIZE - ((uint32_t)GCPtrFirst & X86_PAGE_OFFSET_MASK);
|
---|
1381 | if (cbMaxRead2 < cbMaxRead)
|
---|
1382 | cbMaxRead = cbMaxRead2;
|
---|
1383 | /** @todo testcase: unreal modes, both huge 16-bit and 32-bit. */
|
---|
1384 | }
|
---|
1385 |
|
---|
1386 | /*
|
---|
1387 | * Try use the code TLB to translate the address.
|
---|
1388 | */
|
---|
1389 | uint64_t uTag = (GCPtrFirst >> X86_PAGE_SHIFT) | pVCpu->iem.s.CodeTlb.uTlbRevision;
|
---|
1390 | AssertCompile(RT_ELEMENTS(pVCpu->iem.s.CodeTlb.aEntries) == 256);
|
---|
1391 | PIEMTLBENTRY pTlbe = &pVCpu->iem.s.CodeTlb.aEntries[(uint8_t)uTag];
|
---|
1392 | if (pTlbe->uTag == uTag)
|
---|
1393 | {
|
---|
1394 |
|
---|
1395 | }
|
---|
1396 |
|
---|
1397 |
|
---|
1398 |
|
---|
1399 | /*
|
---|
1400 | * What we're doing here is very similar to iemMemMap/iemMemBounceBufferMap.
|
---|
1401 | *
|
---|
1402 | * First translate CS:rIP to a physical address.
|
---|
1403 | */
|
---|
1404 | # if 0 /** @todo later */
|
---|
1405 | uint8_t cbLeft = pVCpu->iem.s.cbOpcode - pVCpu->iem.s.offOpcode; Assert(cbLeft < cbMin);
|
---|
1406 | uint32_t cbToTryRead;
|
---|
1407 | RTGCPTR GCPtrNext;
|
---|
1408 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1409 | {
|
---|
1410 | cbToTryRead = PAGE_SIZE;
|
---|
1411 | GCPtrNext = pCtx->rip + pVCpu->iem.s.cbOpcode;
|
---|
1412 | if (!IEM_IS_CANONICAL(GCPtrNext))
|
---|
1413 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1414 | }
|
---|
1415 | else
|
---|
1416 | {
|
---|
1417 | uint32_t GCPtrNext32 = pCtx->eip;
|
---|
1418 | Assert(!(GCPtrNext32 & ~(uint32_t)UINT16_MAX) || pVCpu->iem.s.enmCpuMode == IEMMODE_32BIT);
|
---|
1419 | GCPtrNext32 += pVCpu->iem.s.cbOpcode;
|
---|
1420 | if (GCPtrNext32 > pCtx->cs.u32Limit)
|
---|
1421 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1422 | cbToTryRead = pCtx->cs.u32Limit - GCPtrNext32 + 1;
|
---|
1423 | if (!cbToTryRead) /* overflowed */
|
---|
1424 | {
|
---|
1425 | Assert(GCPtrNext32 == 0); Assert(pCtx->cs.u32Limit == UINT32_MAX);
|
---|
1426 | cbToTryRead = UINT32_MAX;
|
---|
1427 | /** @todo check out wrapping around the code segment. */
|
---|
1428 | }
|
---|
1429 | if (cbToTryRead < cbMin - cbLeft)
|
---|
1430 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1431 | GCPtrNext = (uint32_t)pCtx->cs.u64Base + GCPtrNext32;
|
---|
1432 | }
|
---|
1433 |
|
---|
1434 | /* Only read up to the end of the page, and make sure we don't read more
|
---|
1435 | than the opcode buffer can hold. */
|
---|
1436 | uint32_t cbLeftOnPage = PAGE_SIZE - (GCPtrNext & PAGE_OFFSET_MASK);
|
---|
1437 | if (cbToTryRead > cbLeftOnPage)
|
---|
1438 | cbToTryRead = cbLeftOnPage;
|
---|
1439 | if (cbToTryRead > sizeof(pVCpu->iem.s.abOpcode) - pVCpu->iem.s.cbOpcode)
|
---|
1440 | cbToTryRead = sizeof(pVCpu->iem.s.abOpcode) - pVCpu->iem.s.cbOpcode;
|
---|
1441 | /** @todo r=bird: Convert assertion into undefined opcode exception? */
|
---|
1442 | Assert(cbToTryRead >= cbMin - cbLeft); /* ASSUMPTION based on iemInitDecoderAndPrefetchOpcodes. */
|
---|
1443 |
|
---|
1444 | # ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
1445 | /* Allow interpretation of patch manager code blocks since they can for
|
---|
1446 | instance throw #PFs for perfectly good reasons. */
|
---|
1447 | if (pVCpu->iem.s.fInPatchCode)
|
---|
1448 | {
|
---|
1449 | size_t cbRead = 0;
|
---|
1450 | int rc = PATMReadPatchCode(pVCpu->CTX_SUFF(pVM), GCPtrNext, pVCpu->iem.s.abOpcode, cbToTryRead, &cbRead);
|
---|
1451 | AssertRCReturn(rc, rc);
|
---|
1452 | pVCpu->iem.s.cbOpcode = (uint8_t)cbRead; Assert(pVCpu->iem.s.cbOpcode == cbRead); Assert(cbRead > 0);
|
---|
1453 | return VINF_SUCCESS;
|
---|
1454 | }
|
---|
1455 | # endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
|
---|
1456 |
|
---|
1457 | RTGCPHYS GCPhys;
|
---|
1458 | uint64_t fFlags;
|
---|
1459 | int rc = PGMGstGetPage(pVCpu, GCPtrNext, &fFlags, &GCPhys);
|
---|
1460 | if (RT_FAILURE(rc))
|
---|
1461 | {
|
---|
1462 | Log(("iemOpcodeFetchMoreBytes: %RGv - rc=%Rrc\n", GCPtrNext, rc));
|
---|
1463 | return iemRaisePageFault(pVCpu, GCPtrNext, IEM_ACCESS_INSTRUCTION, rc);
|
---|
1464 | }
|
---|
1465 | if (!(fFlags & X86_PTE_US) && pVCpu->iem.s.uCpl == 3)
|
---|
1466 | {
|
---|
1467 | Log(("iemOpcodeFetchMoreBytes: %RGv - supervisor page\n", GCPtrNext));
|
---|
1468 | return iemRaisePageFault(pVCpu, GCPtrNext, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1469 | }
|
---|
1470 | if ((fFlags & X86_PTE_PAE_NX) && (pCtx->msrEFER & MSR_K6_EFER_NXE))
|
---|
1471 | {
|
---|
1472 | Log(("iemOpcodeFetchMoreBytes: %RGv - NX\n", GCPtrNext));
|
---|
1473 | return iemRaisePageFault(pVCpu, GCPtrNext, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1474 | }
|
---|
1475 | GCPhys |= GCPtrNext & PAGE_OFFSET_MASK;
|
---|
1476 | Log5(("GCPtrNext=%RGv GCPhys=%RGp cbOpcodes=%#x\n", GCPtrNext, GCPhys, pVCpu->iem.s.cbOpcode));
|
---|
1477 | /** @todo Check reserved bits and such stuff. PGM is better at doing
|
---|
1478 | * that, so do it when implementing the guest virtual address
|
---|
1479 | * TLB... */
|
---|
1480 |
|
---|
1481 | /*
|
---|
1482 | * Read the bytes at this address.
|
---|
1483 | *
|
---|
1484 | * We read all unpatched bytes in iemInitDecoderAndPrefetchOpcodes already,
|
---|
1485 | * and since PATM should only patch the start of an instruction there
|
---|
1486 | * should be no need to check again here.
|
---|
1487 | */
|
---|
1488 | if (!pVCpu->iem.s.fBypassHandlers)
|
---|
1489 | {
|
---|
1490 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhys, &pVCpu->iem.s.abOpcode[pVCpu->iem.s.cbOpcode],
|
---|
1491 | cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
1492 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1493 | { /* likely */ }
|
---|
1494 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1495 | {
|
---|
1496 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1497 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1498 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1499 | }
|
---|
1500 | else
|
---|
1501 | {
|
---|
1502 | Log((RT_SUCCESS(rcStrict)
|
---|
1503 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1504 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1505 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1506 | return rcStrict;
|
---|
1507 | }
|
---|
1508 | }
|
---|
1509 | else
|
---|
1510 | {
|
---|
1511 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.abOpcode[pVCpu->iem.s.cbOpcode], GCPhys, cbToTryRead);
|
---|
1512 | if (RT_SUCCESS(rc))
|
---|
1513 | { /* likely */ }
|
---|
1514 | else
|
---|
1515 | {
|
---|
1516 | Log(("iemOpcodeFetchMoreBytes: %RGv - read error - rc=%Rrc (!!)\n", GCPtrNext, rc));
|
---|
1517 | return rc;
|
---|
1518 | }
|
---|
1519 | }
|
---|
1520 | pVCpu->iem.s.cbOpcode += cbToTryRead;
|
---|
1521 | Log5(("%.*Rhxs\n", pVCpu->iem.s.cbOpcode, pVCpu->iem.s.abOpcode));
|
---|
1522 | # endif
|
---|
1523 | }
|
---|
1524 |
|
---|
1525 | #else
|
---|
1526 |
|
---|
1527 | /**
|
---|
1528 | * Try fetch at least @a cbMin bytes more opcodes, raise the appropriate
|
---|
1529 | * exception if it fails.
|
---|
1530 | *
|
---|
1531 | * @returns Strict VBox status code.
|
---|
1532 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1533 | * calling thread.
|
---|
1534 | * @param cbMin The minimum number of bytes relative offOpcode
|
---|
1535 | * that must be read.
|
---|
1536 | */
|
---|
1537 | IEM_STATIC VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPU pVCpu, size_t cbMin)
|
---|
1538 | {
|
---|
1539 | /*
|
---|
1540 | * What we're doing here is very similar to iemMemMap/iemMemBounceBufferMap.
|
---|
1541 | *
|
---|
1542 | * First translate CS:rIP to a physical address.
|
---|
1543 | */
|
---|
1544 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1545 | uint8_t cbLeft = pVCpu->iem.s.cbOpcode - pVCpu->iem.s.offOpcode; Assert(cbLeft < cbMin);
|
---|
1546 | uint32_t cbToTryRead;
|
---|
1547 | RTGCPTR GCPtrNext;
|
---|
1548 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1549 | {
|
---|
1550 | cbToTryRead = PAGE_SIZE;
|
---|
1551 | GCPtrNext = pCtx->rip + pVCpu->iem.s.cbOpcode;
|
---|
1552 | if (!IEM_IS_CANONICAL(GCPtrNext))
|
---|
1553 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1554 | }
|
---|
1555 | else
|
---|
1556 | {
|
---|
1557 | uint32_t GCPtrNext32 = pCtx->eip;
|
---|
1558 | Assert(!(GCPtrNext32 & ~(uint32_t)UINT16_MAX) || pVCpu->iem.s.enmCpuMode == IEMMODE_32BIT);
|
---|
1559 | GCPtrNext32 += pVCpu->iem.s.cbOpcode;
|
---|
1560 | if (GCPtrNext32 > pCtx->cs.u32Limit)
|
---|
1561 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1562 | cbToTryRead = pCtx->cs.u32Limit - GCPtrNext32 + 1;
|
---|
1563 | if (!cbToTryRead) /* overflowed */
|
---|
1564 | {
|
---|
1565 | Assert(GCPtrNext32 == 0); Assert(pCtx->cs.u32Limit == UINT32_MAX);
|
---|
1566 | cbToTryRead = UINT32_MAX;
|
---|
1567 | /** @todo check out wrapping around the code segment. */
|
---|
1568 | }
|
---|
1569 | if (cbToTryRead < cbMin - cbLeft)
|
---|
1570 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1571 | GCPtrNext = (uint32_t)pCtx->cs.u64Base + GCPtrNext32;
|
---|
1572 | }
|
---|
1573 |
|
---|
1574 | /* Only read up to the end of the page, and make sure we don't read more
|
---|
1575 | than the opcode buffer can hold. */
|
---|
1576 | uint32_t cbLeftOnPage = PAGE_SIZE - (GCPtrNext & PAGE_OFFSET_MASK);
|
---|
1577 | if (cbToTryRead > cbLeftOnPage)
|
---|
1578 | cbToTryRead = cbLeftOnPage;
|
---|
1579 | if (cbToTryRead > sizeof(pVCpu->iem.s.abOpcode) - pVCpu->iem.s.cbOpcode)
|
---|
1580 | cbToTryRead = sizeof(pVCpu->iem.s.abOpcode) - pVCpu->iem.s.cbOpcode;
|
---|
1581 | /** @todo r=bird: Convert assertion into undefined opcode exception? */
|
---|
1582 | Assert(cbToTryRead >= cbMin - cbLeft); /* ASSUMPTION based on iemInitDecoderAndPrefetchOpcodes. */
|
---|
1583 |
|
---|
1584 | # ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
1585 | /* Allow interpretation of patch manager code blocks since they can for
|
---|
1586 | instance throw #PFs for perfectly good reasons. */
|
---|
1587 | if (pVCpu->iem.s.fInPatchCode)
|
---|
1588 | {
|
---|
1589 | size_t cbRead = 0;
|
---|
1590 | int rc = PATMReadPatchCode(pVCpu->CTX_SUFF(pVM), GCPtrNext, pVCpu->iem.s.abOpcode, cbToTryRead, &cbRead);
|
---|
1591 | AssertRCReturn(rc, rc);
|
---|
1592 | pVCpu->iem.s.cbOpcode = (uint8_t)cbRead; Assert(pVCpu->iem.s.cbOpcode == cbRead); Assert(cbRead > 0);
|
---|
1593 | return VINF_SUCCESS;
|
---|
1594 | }
|
---|
1595 | # endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
|
---|
1596 |
|
---|
1597 | RTGCPHYS GCPhys;
|
---|
1598 | uint64_t fFlags;
|
---|
1599 | int rc = PGMGstGetPage(pVCpu, GCPtrNext, &fFlags, &GCPhys);
|
---|
1600 | if (RT_FAILURE(rc))
|
---|
1601 | {
|
---|
1602 | Log(("iemOpcodeFetchMoreBytes: %RGv - rc=%Rrc\n", GCPtrNext, rc));
|
---|
1603 | return iemRaisePageFault(pVCpu, GCPtrNext, IEM_ACCESS_INSTRUCTION, rc);
|
---|
1604 | }
|
---|
1605 | if (!(fFlags & X86_PTE_US) && pVCpu->iem.s.uCpl == 3)
|
---|
1606 | {
|
---|
1607 | Log(("iemOpcodeFetchMoreBytes: %RGv - supervisor page\n", GCPtrNext));
|
---|
1608 | return iemRaisePageFault(pVCpu, GCPtrNext, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1609 | }
|
---|
1610 | if ((fFlags & X86_PTE_PAE_NX) && (pCtx->msrEFER & MSR_K6_EFER_NXE))
|
---|
1611 | {
|
---|
1612 | Log(("iemOpcodeFetchMoreBytes: %RGv - NX\n", GCPtrNext));
|
---|
1613 | return iemRaisePageFault(pVCpu, GCPtrNext, IEM_ACCESS_INSTRUCTION, VERR_ACCESS_DENIED);
|
---|
1614 | }
|
---|
1615 | GCPhys |= GCPtrNext & PAGE_OFFSET_MASK;
|
---|
1616 | Log5(("GCPtrNext=%RGv GCPhys=%RGp cbOpcodes=%#x\n", GCPtrNext, GCPhys, pVCpu->iem.s.cbOpcode));
|
---|
1617 | /** @todo Check reserved bits and such stuff. PGM is better at doing
|
---|
1618 | * that, so do it when implementing the guest virtual address
|
---|
1619 | * TLB... */
|
---|
1620 |
|
---|
1621 | /*
|
---|
1622 | * Read the bytes at this address.
|
---|
1623 | *
|
---|
1624 | * We read all unpatched bytes in iemInitDecoderAndPrefetchOpcodes already,
|
---|
1625 | * and since PATM should only patch the start of an instruction there
|
---|
1626 | * should be no need to check again here.
|
---|
1627 | */
|
---|
1628 | if (!pVCpu->iem.s.fBypassHandlers)
|
---|
1629 | {
|
---|
1630 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhys, &pVCpu->iem.s.abOpcode[pVCpu->iem.s.cbOpcode],
|
---|
1631 | cbToTryRead, PGMACCESSORIGIN_IEM);
|
---|
1632 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1633 | { /* likely */ }
|
---|
1634 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
1635 | {
|
---|
1636 | Log(("iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n",
|
---|
1637 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1638 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1639 | }
|
---|
1640 | else
|
---|
1641 | {
|
---|
1642 | Log((RT_SUCCESS(rcStrict)
|
---|
1643 | ? "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read status - rcStrict=%Rrc\n"
|
---|
1644 | : "iemOpcodeFetchMoreBytes: %RGv/%RGp LB %#x - read error - rcStrict=%Rrc (!!)\n",
|
---|
1645 | GCPtrNext, GCPhys, VBOXSTRICTRC_VAL(rcStrict), cbToTryRead));
|
---|
1646 | return rcStrict;
|
---|
1647 | }
|
---|
1648 | }
|
---|
1649 | else
|
---|
1650 | {
|
---|
1651 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.abOpcode[pVCpu->iem.s.cbOpcode], GCPhys, cbToTryRead);
|
---|
1652 | if (RT_SUCCESS(rc))
|
---|
1653 | { /* likely */ }
|
---|
1654 | else
|
---|
1655 | {
|
---|
1656 | Log(("iemOpcodeFetchMoreBytes: %RGv - read error - rc=%Rrc (!!)\n", GCPtrNext, rc));
|
---|
1657 | return rc;
|
---|
1658 | }
|
---|
1659 | }
|
---|
1660 | pVCpu->iem.s.cbOpcode += cbToTryRead;
|
---|
1661 | Log5(("%.*Rhxs\n", pVCpu->iem.s.cbOpcode, pVCpu->iem.s.abOpcode));
|
---|
1662 |
|
---|
1663 | return VINF_SUCCESS;
|
---|
1664 | }
|
---|
1665 |
|
---|
1666 | #endif /* !IEM_WITH_CODE_TLB */
|
---|
1667 | #ifndef IEM_WITH_SETJMP
|
---|
1668 |
|
---|
1669 | /**
|
---|
1670 | * Deals with the problematic cases that iemOpcodeGetNextU8 doesn't like.
|
---|
1671 | *
|
---|
1672 | * @returns Strict VBox status code.
|
---|
1673 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1674 | * calling thread.
|
---|
1675 | * @param pb Where to return the opcode byte.
|
---|
1676 | */
|
---|
1677 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU8Slow(PVMCPU pVCpu, uint8_t *pb)
|
---|
1678 | {
|
---|
1679 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 1);
|
---|
1680 | if (rcStrict == VINF_SUCCESS)
|
---|
1681 | {
|
---|
1682 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1683 | *pb = pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1684 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
1685 | }
|
---|
1686 | else
|
---|
1687 | *pb = 0;
|
---|
1688 | return rcStrict;
|
---|
1689 | }
|
---|
1690 |
|
---|
1691 |
|
---|
1692 | /**
|
---|
1693 | * Fetches the next opcode byte.
|
---|
1694 | *
|
---|
1695 | * @returns Strict VBox status code.
|
---|
1696 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1697 | * calling thread.
|
---|
1698 | * @param pu8 Where to return the opcode byte.
|
---|
1699 | */
|
---|
1700 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU8(PVMCPU pVCpu, uint8_t *pu8)
|
---|
1701 | {
|
---|
1702 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1703 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
1704 | {
|
---|
1705 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
1706 | *pu8 = pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1707 | return VINF_SUCCESS;
|
---|
1708 | }
|
---|
1709 | return iemOpcodeGetNextU8Slow(pVCpu, pu8);
|
---|
1710 | }
|
---|
1711 |
|
---|
1712 | #else /* IEM_WITH_SETJMP */
|
---|
1713 |
|
---|
1714 | /**
|
---|
1715 | * Deals with the problematic cases that iemOpcodeGetNextU8Jmp doesn't like, longjmp on error.
|
---|
1716 | *
|
---|
1717 | * @returns The opcode byte.
|
---|
1718 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1719 | */
|
---|
1720 | DECL_NO_INLINE(IEM_STATIC, uint8_t) iemOpcodeGetNextU8SlowJmp(PVMCPU pVCpu)
|
---|
1721 | {
|
---|
1722 | # ifdef IEM_WITH_CODE_TLB
|
---|
1723 | uint8_t u8;
|
---|
1724 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u8), &u8);
|
---|
1725 | return u8;
|
---|
1726 | # else
|
---|
1727 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 1);
|
---|
1728 | if (rcStrict == VINF_SUCCESS)
|
---|
1729 | return pVCpu->iem.s.abOpcode[pVCpu->iem.s.offOpcode++];
|
---|
1730 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
1731 | # endif
|
---|
1732 | }
|
---|
1733 |
|
---|
1734 |
|
---|
1735 | /**
|
---|
1736 | * Fetches the next opcode byte, longjmp on error.
|
---|
1737 | *
|
---|
1738 | * @returns The opcode byte.
|
---|
1739 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1740 | */
|
---|
1741 | DECLINLINE(uint8_t) iemOpcodeGetNextU8Jmp(PVMCPU pVCpu)
|
---|
1742 | {
|
---|
1743 | # ifdef IEM_WITH_CODE_TLB
|
---|
1744 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
1745 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
1746 | if (RT_LIKELY( pbBuf != NULL
|
---|
1747 | && offBuf < pVCpu->iem.s.cbInstrBuf))
|
---|
1748 | {
|
---|
1749 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 1;
|
---|
1750 | return pbBuf[offBuf];
|
---|
1751 | }
|
---|
1752 | # else
|
---|
1753 | uintptr_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1754 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
1755 | {
|
---|
1756 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
1757 | return pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1758 | }
|
---|
1759 | # endif
|
---|
1760 | return iemOpcodeGetNextU8SlowJmp(pVCpu);
|
---|
1761 | }
|
---|
1762 |
|
---|
1763 | #endif /* IEM_WITH_SETJMP */
|
---|
1764 |
|
---|
1765 | /**
|
---|
1766 | * Fetches the next opcode byte, returns automatically on failure.
|
---|
1767 | *
|
---|
1768 | * @param a_pu8 Where to return the opcode byte.
|
---|
1769 | * @remark Implicitly references pVCpu.
|
---|
1770 | */
|
---|
1771 | #ifndef IEM_WITH_SETJMP
|
---|
1772 | # define IEM_OPCODE_GET_NEXT_U8(a_pu8) \
|
---|
1773 | do \
|
---|
1774 | { \
|
---|
1775 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU8(pVCpu, (a_pu8)); \
|
---|
1776 | if (rcStrict2 == VINF_SUCCESS) \
|
---|
1777 | { /* likely */ } \
|
---|
1778 | else \
|
---|
1779 | return rcStrict2; \
|
---|
1780 | } while (0)
|
---|
1781 | #else
|
---|
1782 | # define IEM_OPCODE_GET_NEXT_U8(a_pu8) (*(a_pu8) = iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
1783 | #endif /* IEM_WITH_SETJMP */
|
---|
1784 |
|
---|
1785 |
|
---|
1786 | #ifndef IEM_WITH_SETJMP
|
---|
1787 | /**
|
---|
1788 | * Fetches the next signed byte from the opcode stream.
|
---|
1789 | *
|
---|
1790 | * @returns Strict VBox status code.
|
---|
1791 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1792 | * @param pi8 Where to return the signed byte.
|
---|
1793 | */
|
---|
1794 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8(PVMCPU pVCpu, int8_t *pi8)
|
---|
1795 | {
|
---|
1796 | return iemOpcodeGetNextU8(pVCpu, (uint8_t *)pi8);
|
---|
1797 | }
|
---|
1798 | #endif /* !IEM_WITH_SETJMP */
|
---|
1799 |
|
---|
1800 |
|
---|
1801 | /**
|
---|
1802 | * Fetches the next signed byte from the opcode stream, returning automatically
|
---|
1803 | * on failure.
|
---|
1804 | *
|
---|
1805 | * @param a_pi8 Where to return the signed byte.
|
---|
1806 | * @remark Implicitly references pVCpu.
|
---|
1807 | */
|
---|
1808 | #ifndef IEM_WITH_SETJMP
|
---|
1809 | # define IEM_OPCODE_GET_NEXT_S8(a_pi8) \
|
---|
1810 | do \
|
---|
1811 | { \
|
---|
1812 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8(pVCpu, (a_pi8)); \
|
---|
1813 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1814 | return rcStrict2; \
|
---|
1815 | } while (0)
|
---|
1816 | #else /* IEM_WITH_SETJMP */
|
---|
1817 | # define IEM_OPCODE_GET_NEXT_S8(a_pi8) (*(a_pi8) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
1818 |
|
---|
1819 | #endif /* IEM_WITH_SETJMP */
|
---|
1820 |
|
---|
1821 | #ifndef IEM_WITH_SETJMP
|
---|
1822 |
|
---|
1823 | /**
|
---|
1824 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU16 doesn't like.
|
---|
1825 | *
|
---|
1826 | * @returns Strict VBox status code.
|
---|
1827 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1828 | * @param pu16 Where to return the opcode dword.
|
---|
1829 | */
|
---|
1830 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextS8SxU16Slow(PVMCPU pVCpu, uint16_t *pu16)
|
---|
1831 | {
|
---|
1832 | uint8_t u8;
|
---|
1833 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1834 | if (rcStrict == VINF_SUCCESS)
|
---|
1835 | *pu16 = (int8_t)u8;
|
---|
1836 | return rcStrict;
|
---|
1837 | }
|
---|
1838 |
|
---|
1839 |
|
---|
1840 | /**
|
---|
1841 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
1842 | * unsigned 16-bit.
|
---|
1843 | *
|
---|
1844 | * @returns Strict VBox status code.
|
---|
1845 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1846 | * @param pu16 Where to return the unsigned word.
|
---|
1847 | */
|
---|
1848 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU16(PVMCPU pVCpu, uint16_t *pu16)
|
---|
1849 | {
|
---|
1850 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1851 | if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
|
---|
1852 | return iemOpcodeGetNextS8SxU16Slow(pVCpu, pu16);
|
---|
1853 |
|
---|
1854 | *pu16 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1855 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
1856 | return VINF_SUCCESS;
|
---|
1857 | }
|
---|
1858 |
|
---|
1859 | #endif /* !IEM_WITH_SETJMP */
|
---|
1860 |
|
---|
1861 | /**
|
---|
1862 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
1863 | * a word, returning automatically on failure.
|
---|
1864 | *
|
---|
1865 | * @param a_pu16 Where to return the word.
|
---|
1866 | * @remark Implicitly references pVCpu.
|
---|
1867 | */
|
---|
1868 | #ifndef IEM_WITH_SETJMP
|
---|
1869 | # define IEM_OPCODE_GET_NEXT_S8_SX_U16(a_pu16) \
|
---|
1870 | do \
|
---|
1871 | { \
|
---|
1872 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU16(pVCpu, (a_pu16)); \
|
---|
1873 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1874 | return rcStrict2; \
|
---|
1875 | } while (0)
|
---|
1876 | #else
|
---|
1877 | # define IEM_OPCODE_GET_NEXT_S8_SX_U16(a_pu16) (*(a_pu16) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
1878 | #endif
|
---|
1879 |
|
---|
1880 | #ifndef IEM_WITH_SETJMP
|
---|
1881 |
|
---|
1882 | /**
|
---|
1883 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU32 doesn't like.
|
---|
1884 | *
|
---|
1885 | * @returns Strict VBox status code.
|
---|
1886 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1887 | * @param pu32 Where to return the opcode dword.
|
---|
1888 | */
|
---|
1889 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextS8SxU32Slow(PVMCPU pVCpu, uint32_t *pu32)
|
---|
1890 | {
|
---|
1891 | uint8_t u8;
|
---|
1892 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1893 | if (rcStrict == VINF_SUCCESS)
|
---|
1894 | *pu32 = (int8_t)u8;
|
---|
1895 | return rcStrict;
|
---|
1896 | }
|
---|
1897 |
|
---|
1898 |
|
---|
1899 | /**
|
---|
1900 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
1901 | * unsigned 32-bit.
|
---|
1902 | *
|
---|
1903 | * @returns Strict VBox status code.
|
---|
1904 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1905 | * @param pu32 Where to return the unsigned dword.
|
---|
1906 | */
|
---|
1907 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU32(PVMCPU pVCpu, uint32_t *pu32)
|
---|
1908 | {
|
---|
1909 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1910 | if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
|
---|
1911 | return iemOpcodeGetNextS8SxU32Slow(pVCpu, pu32);
|
---|
1912 |
|
---|
1913 | *pu32 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1914 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
1915 | return VINF_SUCCESS;
|
---|
1916 | }
|
---|
1917 |
|
---|
1918 | #endif /* !IEM_WITH_SETJMP */
|
---|
1919 |
|
---|
1920 | /**
|
---|
1921 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
1922 | * a word, returning automatically on failure.
|
---|
1923 | *
|
---|
1924 | * @param a_pu32 Where to return the word.
|
---|
1925 | * @remark Implicitly references pVCpu.
|
---|
1926 | */
|
---|
1927 | #ifndef IEM_WITH_SETJMP
|
---|
1928 | #define IEM_OPCODE_GET_NEXT_S8_SX_U32(a_pu32) \
|
---|
1929 | do \
|
---|
1930 | { \
|
---|
1931 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU32(pVCpu, (a_pu32)); \
|
---|
1932 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1933 | return rcStrict2; \
|
---|
1934 | } while (0)
|
---|
1935 | #else
|
---|
1936 | # define IEM_OPCODE_GET_NEXT_S8_SX_U32(a_pu32) (*(a_pu32) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
1937 | #endif
|
---|
1938 |
|
---|
1939 | #ifndef IEM_WITH_SETJMP
|
---|
1940 |
|
---|
1941 | /**
|
---|
1942 | * Deals with the problematic cases that iemOpcodeGetNextS8SxU64 doesn't like.
|
---|
1943 | *
|
---|
1944 | * @returns Strict VBox status code.
|
---|
1945 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1946 | * @param pu64 Where to return the opcode qword.
|
---|
1947 | */
|
---|
1948 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextS8SxU64Slow(PVMCPU pVCpu, uint64_t *pu64)
|
---|
1949 | {
|
---|
1950 | uint8_t u8;
|
---|
1951 | VBOXSTRICTRC rcStrict = iemOpcodeGetNextU8Slow(pVCpu, &u8);
|
---|
1952 | if (rcStrict == VINF_SUCCESS)
|
---|
1953 | *pu64 = (int8_t)u8;
|
---|
1954 | return rcStrict;
|
---|
1955 | }
|
---|
1956 |
|
---|
1957 |
|
---|
1958 | /**
|
---|
1959 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
1960 | * unsigned 64-bit.
|
---|
1961 | *
|
---|
1962 | * @returns Strict VBox status code.
|
---|
1963 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1964 | * @param pu64 Where to return the unsigned qword.
|
---|
1965 | */
|
---|
1966 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU64(PVMCPU pVCpu, uint64_t *pu64)
|
---|
1967 | {
|
---|
1968 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1969 | if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
|
---|
1970 | return iemOpcodeGetNextS8SxU64Slow(pVCpu, pu64);
|
---|
1971 |
|
---|
1972 | *pu64 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1973 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
1974 | return VINF_SUCCESS;
|
---|
1975 | }
|
---|
1976 |
|
---|
1977 | #endif /* !IEM_WITH_SETJMP */
|
---|
1978 |
|
---|
1979 |
|
---|
1980 | /**
|
---|
1981 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
1982 | * a word, returning automatically on failure.
|
---|
1983 | *
|
---|
1984 | * @param a_pu64 Where to return the word.
|
---|
1985 | * @remark Implicitly references pVCpu.
|
---|
1986 | */
|
---|
1987 | #ifndef IEM_WITH_SETJMP
|
---|
1988 | # define IEM_OPCODE_GET_NEXT_S8_SX_U64(a_pu64) \
|
---|
1989 | do \
|
---|
1990 | { \
|
---|
1991 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU64(pVCpu, (a_pu64)); \
|
---|
1992 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1993 | return rcStrict2; \
|
---|
1994 | } while (0)
|
---|
1995 | #else
|
---|
1996 | # define IEM_OPCODE_GET_NEXT_S8_SX_U64(a_pu64) (*(a_pu64) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
1997 | #endif
|
---|
1998 |
|
---|
1999 |
|
---|
2000 | #ifndef IEM_WITH_SETJMP
|
---|
2001 |
|
---|
2002 | /**
|
---|
2003 | * Deals with the problematic cases that iemOpcodeGetNextU16 doesn't like.
|
---|
2004 | *
|
---|
2005 | * @returns Strict VBox status code.
|
---|
2006 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2007 | * @param pu16 Where to return the opcode word.
|
---|
2008 | */
|
---|
2009 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU16Slow(PVMCPU pVCpu, uint16_t *pu16)
|
---|
2010 | {
|
---|
2011 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
2012 | if (rcStrict == VINF_SUCCESS)
|
---|
2013 | {
|
---|
2014 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2015 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2016 | *pu16 = *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2017 | # else
|
---|
2018 | *pu16 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
2019 | # endif
|
---|
2020 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
2021 | }
|
---|
2022 | else
|
---|
2023 | *pu16 = 0;
|
---|
2024 | return rcStrict;
|
---|
2025 | }
|
---|
2026 |
|
---|
2027 |
|
---|
2028 | /**
|
---|
2029 | * Fetches the next opcode word.
|
---|
2030 | *
|
---|
2031 | * @returns Strict VBox status code.
|
---|
2032 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2033 | * @param pu16 Where to return the opcode word.
|
---|
2034 | */
|
---|
2035 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16(PVMCPU pVCpu, uint16_t *pu16)
|
---|
2036 | {
|
---|
2037 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2038 | if (RT_LIKELY((uint8_t)offOpcode + 2 <= pVCpu->iem.s.cbOpcode))
|
---|
2039 | {
|
---|
2040 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 2;
|
---|
2041 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2042 | *pu16 = *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2043 | # else
|
---|
2044 | *pu16 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
2045 | # endif
|
---|
2046 | return VINF_SUCCESS;
|
---|
2047 | }
|
---|
2048 | return iemOpcodeGetNextU16Slow(pVCpu, pu16);
|
---|
2049 | }
|
---|
2050 |
|
---|
2051 | #else /* IEM_WITH_SETJMP */
|
---|
2052 |
|
---|
2053 | /**
|
---|
2054 | * Deals with the problematic cases that iemOpcodeGetNextU16Jmp doesn't like, longjmp on error
|
---|
2055 | *
|
---|
2056 | * @returns The opcode word.
|
---|
2057 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2058 | */
|
---|
2059 | DECL_NO_INLINE(IEM_STATIC, uint16_t) iemOpcodeGetNextU16SlowJmp(PVMCPU pVCpu)
|
---|
2060 | {
|
---|
2061 | # ifdef IEM_WITH_CODE_TLB
|
---|
2062 | uint16_t u16;
|
---|
2063 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u16), &u16);
|
---|
2064 | return u16;
|
---|
2065 | # else
|
---|
2066 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
2067 | if (rcStrict == VINF_SUCCESS)
|
---|
2068 | {
|
---|
2069 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2070 | pVCpu->iem.s.offOpcode += 2;
|
---|
2071 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2072 | return *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2073 | # else
|
---|
2074 | return RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
2075 | # endif
|
---|
2076 | }
|
---|
2077 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
2078 | # endif
|
---|
2079 | }
|
---|
2080 |
|
---|
2081 |
|
---|
2082 | /**
|
---|
2083 | * Fetches the next opcode word, longjmp on error.
|
---|
2084 | *
|
---|
2085 | * @returns The opcode word.
|
---|
2086 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2087 | */
|
---|
2088 | DECLINLINE(uint16_t) iemOpcodeGetNextU16Jmp(PVMCPU pVCpu)
|
---|
2089 | {
|
---|
2090 | # ifdef IEM_WITH_CODE_TLB
|
---|
2091 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
2092 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
2093 | if (RT_LIKELY( pbBuf != NULL
|
---|
2094 | && offBuf + 2 <= pVCpu->iem.s.cbInstrBuf))
|
---|
2095 | {
|
---|
2096 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 2;
|
---|
2097 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2098 | return *(uint16_t const *)&pbBuf[offBuf];
|
---|
2099 | # else
|
---|
2100 | return RT_MAKE_U16(pbBuf[offBuf], pbBuf[offBuf + 1]);
|
---|
2101 | # endif
|
---|
2102 | }
|
---|
2103 | # else
|
---|
2104 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2105 | if (RT_LIKELY((uint8_t)offOpcode + 2 <= pVCpu->iem.s.cbOpcode))
|
---|
2106 | {
|
---|
2107 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 2;
|
---|
2108 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2109 | return *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2110 | # else
|
---|
2111 | return RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
2112 | # endif
|
---|
2113 | }
|
---|
2114 | # endif
|
---|
2115 | return iemOpcodeGetNextU16SlowJmp(pVCpu);
|
---|
2116 | }
|
---|
2117 |
|
---|
2118 | #endif /* IEM_WITH_SETJMP */
|
---|
2119 |
|
---|
2120 |
|
---|
2121 | /**
|
---|
2122 | * Fetches the next opcode word, returns automatically on failure.
|
---|
2123 | *
|
---|
2124 | * @param a_pu16 Where to return the opcode word.
|
---|
2125 | * @remark Implicitly references pVCpu.
|
---|
2126 | */
|
---|
2127 | #ifndef IEM_WITH_SETJMP
|
---|
2128 | # define IEM_OPCODE_GET_NEXT_U16(a_pu16) \
|
---|
2129 | do \
|
---|
2130 | { \
|
---|
2131 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16(pVCpu, (a_pu16)); \
|
---|
2132 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
2133 | return rcStrict2; \
|
---|
2134 | } while (0)
|
---|
2135 | #else
|
---|
2136 | # define IEM_OPCODE_GET_NEXT_U16(a_pu16) (*(a_pu16) = iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
2137 | #endif
|
---|
2138 |
|
---|
2139 | #ifndef IEM_WITH_SETJMP
|
---|
2140 |
|
---|
2141 | /**
|
---|
2142 | * Deals with the problematic cases that iemOpcodeGetNextU16ZxU32 doesn't like.
|
---|
2143 | *
|
---|
2144 | * @returns Strict VBox status code.
|
---|
2145 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2146 | * @param pu32 Where to return the opcode double word.
|
---|
2147 | */
|
---|
2148 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU16ZxU32Slow(PVMCPU pVCpu, uint32_t *pu32)
|
---|
2149 | {
|
---|
2150 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
2151 | if (rcStrict == VINF_SUCCESS)
|
---|
2152 | {
|
---|
2153 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2154 | *pu32 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
2155 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
2156 | }
|
---|
2157 | else
|
---|
2158 | *pu32 = 0;
|
---|
2159 | return rcStrict;
|
---|
2160 | }
|
---|
2161 |
|
---|
2162 |
|
---|
2163 | /**
|
---|
2164 | * Fetches the next opcode word, zero extending it to a double word.
|
---|
2165 | *
|
---|
2166 | * @returns Strict VBox status code.
|
---|
2167 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2168 | * @param pu32 Where to return the opcode double word.
|
---|
2169 | */
|
---|
2170 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU32(PVMCPU pVCpu, uint32_t *pu32)
|
---|
2171 | {
|
---|
2172 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2173 | if (RT_UNLIKELY(offOpcode + 2 > pVCpu->iem.s.cbOpcode))
|
---|
2174 | return iemOpcodeGetNextU16ZxU32Slow(pVCpu, pu32);
|
---|
2175 |
|
---|
2176 | *pu32 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
2177 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
2178 | return VINF_SUCCESS;
|
---|
2179 | }
|
---|
2180 |
|
---|
2181 | #endif /* !IEM_WITH_SETJMP */
|
---|
2182 |
|
---|
2183 |
|
---|
2184 | /**
|
---|
2185 | * Fetches the next opcode word and zero extends it to a double word, returns
|
---|
2186 | * automatically on failure.
|
---|
2187 | *
|
---|
2188 | * @param a_pu32 Where to return the opcode double word.
|
---|
2189 | * @remark Implicitly references pVCpu.
|
---|
2190 | */
|
---|
2191 | #ifndef IEM_WITH_SETJMP
|
---|
2192 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U32(a_pu32) \
|
---|
2193 | do \
|
---|
2194 | { \
|
---|
2195 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU32(pVCpu, (a_pu32)); \
|
---|
2196 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
2197 | return rcStrict2; \
|
---|
2198 | } while (0)
|
---|
2199 | #else
|
---|
2200 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U32(a_pu32) (*(a_pu32) = iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
2201 | #endif
|
---|
2202 |
|
---|
2203 | #ifndef IEM_WITH_SETJMP
|
---|
2204 |
|
---|
2205 | /**
|
---|
2206 | * Deals with the problematic cases that iemOpcodeGetNextU16ZxU64 doesn't like.
|
---|
2207 | *
|
---|
2208 | * @returns Strict VBox status code.
|
---|
2209 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2210 | * @param pu64 Where to return the opcode quad word.
|
---|
2211 | */
|
---|
2212 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU16ZxU64Slow(PVMCPU pVCpu, uint64_t *pu64)
|
---|
2213 | {
|
---|
2214 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 2);
|
---|
2215 | if (rcStrict == VINF_SUCCESS)
|
---|
2216 | {
|
---|
2217 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2218 | *pu64 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
2219 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
2220 | }
|
---|
2221 | else
|
---|
2222 | *pu64 = 0;
|
---|
2223 | return rcStrict;
|
---|
2224 | }
|
---|
2225 |
|
---|
2226 |
|
---|
2227 | /**
|
---|
2228 | * Fetches the next opcode word, zero extending it to a quad word.
|
---|
2229 | *
|
---|
2230 | * @returns Strict VBox status code.
|
---|
2231 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2232 | * @param pu64 Where to return the opcode quad word.
|
---|
2233 | */
|
---|
2234 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU64(PVMCPU pVCpu, uint64_t *pu64)
|
---|
2235 | {
|
---|
2236 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2237 | if (RT_UNLIKELY(offOpcode + 2 > pVCpu->iem.s.cbOpcode))
|
---|
2238 | return iemOpcodeGetNextU16ZxU64Slow(pVCpu, pu64);
|
---|
2239 |
|
---|
2240 | *pu64 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
2241 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
2242 | return VINF_SUCCESS;
|
---|
2243 | }
|
---|
2244 |
|
---|
2245 | #endif /* !IEM_WITH_SETJMP */
|
---|
2246 |
|
---|
2247 | /**
|
---|
2248 | * Fetches the next opcode word and zero extends it to a quad word, returns
|
---|
2249 | * automatically on failure.
|
---|
2250 | *
|
---|
2251 | * @param a_pu64 Where to return the opcode quad word.
|
---|
2252 | * @remark Implicitly references pVCpu.
|
---|
2253 | */
|
---|
2254 | #ifndef IEM_WITH_SETJMP
|
---|
2255 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U64(a_pu64) \
|
---|
2256 | do \
|
---|
2257 | { \
|
---|
2258 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU64(pVCpu, (a_pu64)); \
|
---|
2259 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
2260 | return rcStrict2; \
|
---|
2261 | } while (0)
|
---|
2262 | #else
|
---|
2263 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U64(a_pu64) (*(a_pu64) = iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
2264 | #endif
|
---|
2265 |
|
---|
2266 |
|
---|
2267 | #ifndef IEM_WITH_SETJMP
|
---|
2268 | /**
|
---|
2269 | * Fetches the next signed word from the opcode stream.
|
---|
2270 | *
|
---|
2271 | * @returns Strict VBox status code.
|
---|
2272 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2273 | * @param pi16 Where to return the signed word.
|
---|
2274 | */
|
---|
2275 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS16(PVMCPU pVCpu, int16_t *pi16)
|
---|
2276 | {
|
---|
2277 | return iemOpcodeGetNextU16(pVCpu, (uint16_t *)pi16);
|
---|
2278 | }
|
---|
2279 | #endif /* !IEM_WITH_SETJMP */
|
---|
2280 |
|
---|
2281 |
|
---|
2282 | /**
|
---|
2283 | * Fetches the next signed word from the opcode stream, returning automatically
|
---|
2284 | * on failure.
|
---|
2285 | *
|
---|
2286 | * @param a_pi16 Where to return the signed word.
|
---|
2287 | * @remark Implicitly references pVCpu.
|
---|
2288 | */
|
---|
2289 | #ifndef IEM_WITH_SETJMP
|
---|
2290 | # define IEM_OPCODE_GET_NEXT_S16(a_pi16) \
|
---|
2291 | do \
|
---|
2292 | { \
|
---|
2293 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS16(pVCpu, (a_pi16)); \
|
---|
2294 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
2295 | return rcStrict2; \
|
---|
2296 | } while (0)
|
---|
2297 | #else
|
---|
2298 | # define IEM_OPCODE_GET_NEXT_S16(a_pi16) (*(a_pi16) = (int16_t)iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
2299 | #endif
|
---|
2300 |
|
---|
2301 | #ifndef IEM_WITH_SETJMP
|
---|
2302 |
|
---|
2303 | /**
|
---|
2304 | * Deals with the problematic cases that iemOpcodeGetNextU32 doesn't like.
|
---|
2305 | *
|
---|
2306 | * @returns Strict VBox status code.
|
---|
2307 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2308 | * @param pu32 Where to return the opcode dword.
|
---|
2309 | */
|
---|
2310 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU32Slow(PVMCPU pVCpu, uint32_t *pu32)
|
---|
2311 | {
|
---|
2312 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
2313 | if (rcStrict == VINF_SUCCESS)
|
---|
2314 | {
|
---|
2315 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2316 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2317 | *pu32 = *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2318 | # else
|
---|
2319 | *pu32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2320 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2321 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2322 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
2323 | # endif
|
---|
2324 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
2325 | }
|
---|
2326 | else
|
---|
2327 | *pu32 = 0;
|
---|
2328 | return rcStrict;
|
---|
2329 | }
|
---|
2330 |
|
---|
2331 |
|
---|
2332 | /**
|
---|
2333 | * Fetches the next opcode dword.
|
---|
2334 | *
|
---|
2335 | * @returns Strict VBox status code.
|
---|
2336 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2337 | * @param pu32 Where to return the opcode double word.
|
---|
2338 | */
|
---|
2339 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32(PVMCPU pVCpu, uint32_t *pu32)
|
---|
2340 | {
|
---|
2341 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2342 | if (RT_LIKELY((uint8_t)offOpcode + 4 <= pVCpu->iem.s.cbOpcode))
|
---|
2343 | {
|
---|
2344 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 4;
|
---|
2345 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2346 | *pu32 = *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2347 | # else
|
---|
2348 | *pu32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2349 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2350 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2351 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
2352 | # endif
|
---|
2353 | return VINF_SUCCESS;
|
---|
2354 | }
|
---|
2355 | return iemOpcodeGetNextU32Slow(pVCpu, pu32);
|
---|
2356 | }
|
---|
2357 |
|
---|
2358 | #else /* !IEM_WITH_SETJMP */
|
---|
2359 |
|
---|
2360 | /**
|
---|
2361 | * Deals with the problematic cases that iemOpcodeGetNextU32Jmp doesn't like, longjmp on error.
|
---|
2362 | *
|
---|
2363 | * @returns The opcode dword.
|
---|
2364 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2365 | */
|
---|
2366 | DECL_NO_INLINE(IEM_STATIC, uint32_t) iemOpcodeGetNextU32SlowJmp(PVMCPU pVCpu)
|
---|
2367 | {
|
---|
2368 | # ifdef IEM_WITH_CODE_TLB
|
---|
2369 | uint32_t u32;
|
---|
2370 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u32), &u32);
|
---|
2371 | return u32;
|
---|
2372 | # else
|
---|
2373 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
2374 | if (rcStrict == VINF_SUCCESS)
|
---|
2375 | {
|
---|
2376 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2377 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
2378 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2379 | return *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2380 | # else
|
---|
2381 | return RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2382 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2383 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2384 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
2385 | # endif
|
---|
2386 | }
|
---|
2387 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
2388 | # endif
|
---|
2389 | }
|
---|
2390 |
|
---|
2391 |
|
---|
2392 | /**
|
---|
2393 | * Fetches the next opcode dword, longjmp on error.
|
---|
2394 | *
|
---|
2395 | * @returns The opcode dword.
|
---|
2396 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2397 | */
|
---|
2398 | DECLINLINE(uint32_t) iemOpcodeGetNextU32Jmp(PVMCPU pVCpu)
|
---|
2399 | {
|
---|
2400 | # ifdef IEM_WITH_CODE_TLB
|
---|
2401 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
2402 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
2403 | if (RT_LIKELY( pbBuf != NULL
|
---|
2404 | && offBuf + 4 <= pVCpu->iem.s.cbInstrBuf))
|
---|
2405 | {
|
---|
2406 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 4;
|
---|
2407 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2408 | return *(uint32_t const *)&pbBuf[offBuf];
|
---|
2409 | # else
|
---|
2410 | return RT_MAKE_U32_FROM_U8(pbBuf[offBuf],
|
---|
2411 | pbBuf[offBuf + 1],
|
---|
2412 | pbBuf[offBuf + 2],
|
---|
2413 | pbBuf[offBuf + 3]);
|
---|
2414 | # endif
|
---|
2415 | }
|
---|
2416 | # else
|
---|
2417 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2418 | if (RT_LIKELY((uint8_t)offOpcode + 4 <= pVCpu->iem.s.cbOpcode))
|
---|
2419 | {
|
---|
2420 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 4;
|
---|
2421 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2422 | return *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2423 | # else
|
---|
2424 | return RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2425 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2426 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2427 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
2428 | # endif
|
---|
2429 | }
|
---|
2430 | # endif
|
---|
2431 | return iemOpcodeGetNextU32SlowJmp(pVCpu);
|
---|
2432 | }
|
---|
2433 |
|
---|
2434 | #endif /* !IEM_WITH_SETJMP */
|
---|
2435 |
|
---|
2436 |
|
---|
2437 | /**
|
---|
2438 | * Fetches the next opcode dword, returns automatically on failure.
|
---|
2439 | *
|
---|
2440 | * @param a_pu32 Where to return the opcode dword.
|
---|
2441 | * @remark Implicitly references pVCpu.
|
---|
2442 | */
|
---|
2443 | #ifndef IEM_WITH_SETJMP
|
---|
2444 | # define IEM_OPCODE_GET_NEXT_U32(a_pu32) \
|
---|
2445 | do \
|
---|
2446 | { \
|
---|
2447 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32(pVCpu, (a_pu32)); \
|
---|
2448 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
2449 | return rcStrict2; \
|
---|
2450 | } while (0)
|
---|
2451 | #else
|
---|
2452 | # define IEM_OPCODE_GET_NEXT_U32(a_pu32) (*(a_pu32) = iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
2453 | #endif
|
---|
2454 |
|
---|
2455 | #ifndef IEM_WITH_SETJMP
|
---|
2456 |
|
---|
2457 | /**
|
---|
2458 | * Deals with the problematic cases that iemOpcodeGetNextU32ZxU64 doesn't like.
|
---|
2459 | *
|
---|
2460 | * @returns Strict VBox status code.
|
---|
2461 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2462 | * @param pu64 Where to return the opcode dword.
|
---|
2463 | */
|
---|
2464 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU32ZxU64Slow(PVMCPU pVCpu, uint64_t *pu64)
|
---|
2465 | {
|
---|
2466 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
2467 | if (rcStrict == VINF_SUCCESS)
|
---|
2468 | {
|
---|
2469 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2470 | *pu64 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2471 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2472 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2473 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
2474 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
2475 | }
|
---|
2476 | else
|
---|
2477 | *pu64 = 0;
|
---|
2478 | return rcStrict;
|
---|
2479 | }
|
---|
2480 |
|
---|
2481 |
|
---|
2482 | /**
|
---|
2483 | * Fetches the next opcode dword, zero extending it to a quad word.
|
---|
2484 | *
|
---|
2485 | * @returns Strict VBox status code.
|
---|
2486 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2487 | * @param pu64 Where to return the opcode quad word.
|
---|
2488 | */
|
---|
2489 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32ZxU64(PVMCPU pVCpu, uint64_t *pu64)
|
---|
2490 | {
|
---|
2491 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2492 | if (RT_UNLIKELY(offOpcode + 4 > pVCpu->iem.s.cbOpcode))
|
---|
2493 | return iemOpcodeGetNextU32ZxU64Slow(pVCpu, pu64);
|
---|
2494 |
|
---|
2495 | *pu64 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2496 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2497 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2498 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
2499 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
2500 | return VINF_SUCCESS;
|
---|
2501 | }
|
---|
2502 |
|
---|
2503 | #endif /* !IEM_WITH_SETJMP */
|
---|
2504 |
|
---|
2505 |
|
---|
2506 | /**
|
---|
2507 | * Fetches the next opcode dword and zero extends it to a quad word, returns
|
---|
2508 | * automatically on failure.
|
---|
2509 | *
|
---|
2510 | * @param a_pu64 Where to return the opcode quad word.
|
---|
2511 | * @remark Implicitly references pVCpu.
|
---|
2512 | */
|
---|
2513 | #ifndef IEM_WITH_SETJMP
|
---|
2514 | # define IEM_OPCODE_GET_NEXT_U32_ZX_U64(a_pu64) \
|
---|
2515 | do \
|
---|
2516 | { \
|
---|
2517 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32ZxU64(pVCpu, (a_pu64)); \
|
---|
2518 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
2519 | return rcStrict2; \
|
---|
2520 | } while (0)
|
---|
2521 | #else
|
---|
2522 | # define IEM_OPCODE_GET_NEXT_U32_ZX_U64(a_pu64) (*(a_pu64) = iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
2523 | #endif
|
---|
2524 |
|
---|
2525 |
|
---|
2526 | #ifndef IEM_WITH_SETJMP
|
---|
2527 | /**
|
---|
2528 | * Fetches the next signed double word from the opcode stream.
|
---|
2529 | *
|
---|
2530 | * @returns Strict VBox status code.
|
---|
2531 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2532 | * @param pi32 Where to return the signed double word.
|
---|
2533 | */
|
---|
2534 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32(PVMCPU pVCpu, int32_t *pi32)
|
---|
2535 | {
|
---|
2536 | return iemOpcodeGetNextU32(pVCpu, (uint32_t *)pi32);
|
---|
2537 | }
|
---|
2538 | #endif
|
---|
2539 |
|
---|
2540 | /**
|
---|
2541 | * Fetches the next signed double word from the opcode stream, returning
|
---|
2542 | * automatically on failure.
|
---|
2543 | *
|
---|
2544 | * @param a_pi32 Where to return the signed double word.
|
---|
2545 | * @remark Implicitly references pVCpu.
|
---|
2546 | */
|
---|
2547 | #ifndef IEM_WITH_SETJMP
|
---|
2548 | # define IEM_OPCODE_GET_NEXT_S32(a_pi32) \
|
---|
2549 | do \
|
---|
2550 | { \
|
---|
2551 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32(pVCpu, (a_pi32)); \
|
---|
2552 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
2553 | return rcStrict2; \
|
---|
2554 | } while (0)
|
---|
2555 | #else
|
---|
2556 | # define IEM_OPCODE_GET_NEXT_S32(a_pi32) (*(a_pi32) = (int32_t)iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
2557 | #endif
|
---|
2558 |
|
---|
2559 | #ifndef IEM_WITH_SETJMP
|
---|
2560 |
|
---|
2561 | /**
|
---|
2562 | * Deals with the problematic cases that iemOpcodeGetNextS32SxU64 doesn't like.
|
---|
2563 | *
|
---|
2564 | * @returns Strict VBox status code.
|
---|
2565 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2566 | * @param pu64 Where to return the opcode qword.
|
---|
2567 | */
|
---|
2568 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextS32SxU64Slow(PVMCPU pVCpu, uint64_t *pu64)
|
---|
2569 | {
|
---|
2570 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 4);
|
---|
2571 | if (rcStrict == VINF_SUCCESS)
|
---|
2572 | {
|
---|
2573 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2574 | *pu64 = (int32_t)RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2575 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2576 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2577 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
2578 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
2579 | }
|
---|
2580 | else
|
---|
2581 | *pu64 = 0;
|
---|
2582 | return rcStrict;
|
---|
2583 | }
|
---|
2584 |
|
---|
2585 |
|
---|
2586 | /**
|
---|
2587 | * Fetches the next opcode dword, sign extending it into a quad word.
|
---|
2588 | *
|
---|
2589 | * @returns Strict VBox status code.
|
---|
2590 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2591 | * @param pu64 Where to return the opcode quad word.
|
---|
2592 | */
|
---|
2593 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32SxU64(PVMCPU pVCpu, uint64_t *pu64)
|
---|
2594 | {
|
---|
2595 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2596 | if (RT_UNLIKELY(offOpcode + 4 > pVCpu->iem.s.cbOpcode))
|
---|
2597 | return iemOpcodeGetNextS32SxU64Slow(pVCpu, pu64);
|
---|
2598 |
|
---|
2599 | int32_t i32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2600 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2601 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2602 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
2603 | *pu64 = i32;
|
---|
2604 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
2605 | return VINF_SUCCESS;
|
---|
2606 | }
|
---|
2607 |
|
---|
2608 | #endif /* !IEM_WITH_SETJMP */
|
---|
2609 |
|
---|
2610 |
|
---|
2611 | /**
|
---|
2612 | * Fetches the next opcode double word and sign extends it to a quad word,
|
---|
2613 | * returns automatically on failure.
|
---|
2614 | *
|
---|
2615 | * @param a_pu64 Where to return the opcode quad word.
|
---|
2616 | * @remark Implicitly references pVCpu.
|
---|
2617 | */
|
---|
2618 | #ifndef IEM_WITH_SETJMP
|
---|
2619 | # define IEM_OPCODE_GET_NEXT_S32_SX_U64(a_pu64) \
|
---|
2620 | do \
|
---|
2621 | { \
|
---|
2622 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32SxU64(pVCpu, (a_pu64)); \
|
---|
2623 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
2624 | return rcStrict2; \
|
---|
2625 | } while (0)
|
---|
2626 | #else
|
---|
2627 | # define IEM_OPCODE_GET_NEXT_S32_SX_U64(a_pu64) (*(a_pu64) = (int32_t)iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
2628 | #endif
|
---|
2629 |
|
---|
2630 | #ifndef IEM_WITH_SETJMP
|
---|
2631 |
|
---|
2632 | /**
|
---|
2633 | * Deals with the problematic cases that iemOpcodeGetNextU64 doesn't like.
|
---|
2634 | *
|
---|
2635 | * @returns Strict VBox status code.
|
---|
2636 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2637 | * @param pu64 Where to return the opcode qword.
|
---|
2638 | */
|
---|
2639 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemOpcodeGetNextU64Slow(PVMCPU pVCpu, uint64_t *pu64)
|
---|
2640 | {
|
---|
2641 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 8);
|
---|
2642 | if (rcStrict == VINF_SUCCESS)
|
---|
2643 | {
|
---|
2644 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2645 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2646 | *pu64 = *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2647 | # else
|
---|
2648 | *pu64 = RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2649 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2650 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2651 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
2652 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
2653 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
2654 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
2655 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
2656 | # endif
|
---|
2657 | pVCpu->iem.s.offOpcode = offOpcode + 8;
|
---|
2658 | }
|
---|
2659 | else
|
---|
2660 | *pu64 = 0;
|
---|
2661 | return rcStrict;
|
---|
2662 | }
|
---|
2663 |
|
---|
2664 |
|
---|
2665 | /**
|
---|
2666 | * Fetches the next opcode qword.
|
---|
2667 | *
|
---|
2668 | * @returns Strict VBox status code.
|
---|
2669 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2670 | * @param pu64 Where to return the opcode qword.
|
---|
2671 | */
|
---|
2672 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU64(PVMCPU pVCpu, uint64_t *pu64)
|
---|
2673 | {
|
---|
2674 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2675 | if (RT_LIKELY((uint8_t)offOpcode + 8 <= pVCpu->iem.s.cbOpcode))
|
---|
2676 | {
|
---|
2677 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2678 | *pu64 = *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2679 | # else
|
---|
2680 | *pu64 = RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2681 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2682 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2683 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
2684 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
2685 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
2686 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
2687 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
2688 | # endif
|
---|
2689 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 8;
|
---|
2690 | return VINF_SUCCESS;
|
---|
2691 | }
|
---|
2692 | return iemOpcodeGetNextU64Slow(pVCpu, pu64);
|
---|
2693 | }
|
---|
2694 |
|
---|
2695 | #else /* IEM_WITH_SETJMP */
|
---|
2696 |
|
---|
2697 | /**
|
---|
2698 | * Deals with the problematic cases that iemOpcodeGetNextU64Jmp doesn't like, longjmp on error.
|
---|
2699 | *
|
---|
2700 | * @returns The opcode qword.
|
---|
2701 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2702 | */
|
---|
2703 | DECL_NO_INLINE(IEM_STATIC, uint64_t) iemOpcodeGetNextU64SlowJmp(PVMCPU pVCpu)
|
---|
2704 | {
|
---|
2705 | # ifdef IEM_WITH_CODE_TLB
|
---|
2706 | uint64_t u64;
|
---|
2707 | iemOpcodeFetchBytesJmp(pVCpu, sizeof(u64), &u64);
|
---|
2708 | return u64;
|
---|
2709 | # else
|
---|
2710 | VBOXSTRICTRC rcStrict = iemOpcodeFetchMoreBytes(pVCpu, 8);
|
---|
2711 | if (rcStrict == VINF_SUCCESS)
|
---|
2712 | {
|
---|
2713 | uint8_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2714 | pVCpu->iem.s.offOpcode = offOpcode + 8;
|
---|
2715 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2716 | return *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2717 | # else
|
---|
2718 | return RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2719 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2720 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2721 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
2722 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
2723 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
2724 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
2725 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
2726 | # endif
|
---|
2727 | }
|
---|
2728 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
2729 | # endif
|
---|
2730 | }
|
---|
2731 |
|
---|
2732 |
|
---|
2733 | /**
|
---|
2734 | * Fetches the next opcode qword, longjmp on error.
|
---|
2735 | *
|
---|
2736 | * @returns The opcode qword.
|
---|
2737 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2738 | */
|
---|
2739 | DECLINLINE(uint64_t) iemOpcodeGetNextU64Jmp(PVMCPU pVCpu)
|
---|
2740 | {
|
---|
2741 | # ifdef IEM_WITH_CODE_TLB
|
---|
2742 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
2743 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
2744 | if (RT_LIKELY( pbBuf != NULL
|
---|
2745 | && offBuf + 8 <= pVCpu->iem.s.cbInstrBuf))
|
---|
2746 | {
|
---|
2747 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 8;
|
---|
2748 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2749 | return *(uint64_t const *)&pbBuf[offBuf];
|
---|
2750 | # else
|
---|
2751 | return RT_MAKE_U64_FROM_U8(pbBuf[offBuf],
|
---|
2752 | pbBuf[offBuf + 1],
|
---|
2753 | pbBuf[offBuf + 2],
|
---|
2754 | pbBuf[offBuf + 3],
|
---|
2755 | pbBuf[offBuf + 4],
|
---|
2756 | pbBuf[offBuf + 5],
|
---|
2757 | pbBuf[offBuf + 6],
|
---|
2758 | pbBuf[offBuf + 7]);
|
---|
2759 | # endif
|
---|
2760 | }
|
---|
2761 | # else
|
---|
2762 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
2763 | if (RT_LIKELY((uint8_t)offOpcode + 8 <= pVCpu->iem.s.cbOpcode))
|
---|
2764 | {
|
---|
2765 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 8;
|
---|
2766 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
2767 | return *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
2768 | # else
|
---|
2769 | return RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
2770 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
2771 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
2772 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
2773 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
2774 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
2775 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
2776 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
2777 | # endif
|
---|
2778 | }
|
---|
2779 | # endif
|
---|
2780 | return iemOpcodeGetNextU64SlowJmp(pVCpu);
|
---|
2781 | }
|
---|
2782 |
|
---|
2783 | #endif /* IEM_WITH_SETJMP */
|
---|
2784 |
|
---|
2785 | /**
|
---|
2786 | * Fetches the next opcode quad word, returns automatically on failure.
|
---|
2787 | *
|
---|
2788 | * @param a_pu64 Where to return the opcode quad word.
|
---|
2789 | * @remark Implicitly references pVCpu.
|
---|
2790 | */
|
---|
2791 | #ifndef IEM_WITH_SETJMP
|
---|
2792 | # define IEM_OPCODE_GET_NEXT_U64(a_pu64) \
|
---|
2793 | do \
|
---|
2794 | { \
|
---|
2795 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU64(pVCpu, (a_pu64)); \
|
---|
2796 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
2797 | return rcStrict2; \
|
---|
2798 | } while (0)
|
---|
2799 | #else
|
---|
2800 | # define IEM_OPCODE_GET_NEXT_U64(a_pu64) ( *(a_pu64) = iemOpcodeGetNextU64Jmp(pVCpu) )
|
---|
2801 | #endif
|
---|
2802 |
|
---|
2803 |
|
---|
2804 | /** @name Misc Worker Functions.
|
---|
2805 | * @{
|
---|
2806 | */
|
---|
2807 |
|
---|
2808 |
|
---|
2809 | /**
|
---|
2810 | * Validates a new SS segment.
|
---|
2811 | *
|
---|
2812 | * @returns VBox strict status code.
|
---|
2813 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
2814 | * calling thread.
|
---|
2815 | * @param pCtx The CPU context.
|
---|
2816 | * @param NewSS The new SS selctor.
|
---|
2817 | * @param uCpl The CPL to load the stack for.
|
---|
2818 | * @param pDesc Where to return the descriptor.
|
---|
2819 | */
|
---|
2820 | IEM_STATIC VBOXSTRICTRC iemMiscValidateNewSS(PVMCPU pVCpu, PCCPUMCTX pCtx, RTSEL NewSS, uint8_t uCpl, PIEMSELDESC pDesc)
|
---|
2821 | {
|
---|
2822 | NOREF(pCtx);
|
---|
2823 |
|
---|
2824 | /* Null selectors are not allowed (we're not called for dispatching
|
---|
2825 | interrupts with SS=0 in long mode). */
|
---|
2826 | if (!(NewSS & X86_SEL_MASK_OFF_RPL))
|
---|
2827 | {
|
---|
2828 | Log(("iemMiscValidateNewSSandRsp: %#x - null selector -> #TS(0)\n", NewSS));
|
---|
2829 | return iemRaiseTaskSwitchFault0(pVCpu);
|
---|
2830 | }
|
---|
2831 |
|
---|
2832 | /** @todo testcase: check that the TSS.ssX RPL is checked. Also check when. */
|
---|
2833 | if ((NewSS & X86_SEL_RPL) != uCpl)
|
---|
2834 | {
|
---|
2835 | Log(("iemMiscValidateNewSSandRsp: %#x - RPL and CPL (%d) differs -> #TS\n", NewSS, uCpl));
|
---|
2836 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
2837 | }
|
---|
2838 |
|
---|
2839 | /*
|
---|
2840 | * Read the descriptor.
|
---|
2841 | */
|
---|
2842 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, pDesc, NewSS, X86_XCPT_TS);
|
---|
2843 | if (rcStrict != VINF_SUCCESS)
|
---|
2844 | return rcStrict;
|
---|
2845 |
|
---|
2846 | /*
|
---|
2847 | * Perform the descriptor validation documented for LSS, POP SS and MOV SS.
|
---|
2848 | */
|
---|
2849 | if (!pDesc->Legacy.Gen.u1DescType)
|
---|
2850 | {
|
---|
2851 | Log(("iemMiscValidateNewSSandRsp: %#x - system selector (%#x) -> #TS\n", NewSS, pDesc->Legacy.Gen.u4Type));
|
---|
2852 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
2853 | }
|
---|
2854 |
|
---|
2855 | if ( (pDesc->Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
2856 | || !(pDesc->Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
2857 | {
|
---|
2858 | Log(("iemMiscValidateNewSSandRsp: %#x - code or read only (%#x) -> #TS\n", NewSS, pDesc->Legacy.Gen.u4Type));
|
---|
2859 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
2860 | }
|
---|
2861 | if (pDesc->Legacy.Gen.u2Dpl != uCpl)
|
---|
2862 | {
|
---|
2863 | Log(("iemMiscValidateNewSSandRsp: %#x - DPL (%d) and CPL (%d) differs -> #TS\n", NewSS, pDesc->Legacy.Gen.u2Dpl, uCpl));
|
---|
2864 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, NewSS);
|
---|
2865 | }
|
---|
2866 |
|
---|
2867 | /* Is it there? */
|
---|
2868 | /** @todo testcase: Is this checked before the canonical / limit check below? */
|
---|
2869 | if (!pDesc->Legacy.Gen.u1Present)
|
---|
2870 | {
|
---|
2871 | Log(("iemMiscValidateNewSSandRsp: %#x - segment not present -> #NP\n", NewSS));
|
---|
2872 | return iemRaiseSelectorNotPresentBySelector(pVCpu, NewSS);
|
---|
2873 | }
|
---|
2874 |
|
---|
2875 | return VINF_SUCCESS;
|
---|
2876 | }
|
---|
2877 |
|
---|
2878 |
|
---|
2879 | /**
|
---|
2880 | * Gets the correct EFLAGS regardless of whether PATM stores parts of them or
|
---|
2881 | * not.
|
---|
2882 | *
|
---|
2883 | * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2884 | * @param a_pCtx The CPU context.
|
---|
2885 | */
|
---|
2886 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
2887 | # define IEMMISC_GET_EFL(a_pVCpu, a_pCtx) \
|
---|
2888 | ( IEM_VERIFICATION_ENABLED(a_pVCpu) \
|
---|
2889 | ? (a_pCtx)->eflags.u \
|
---|
2890 | : CPUMRawGetEFlags(a_pVCpu) )
|
---|
2891 | #else
|
---|
2892 | # define IEMMISC_GET_EFL(a_pVCpu, a_pCtx) \
|
---|
2893 | ( (a_pCtx)->eflags.u )
|
---|
2894 | #endif
|
---|
2895 |
|
---|
2896 | /**
|
---|
2897 | * Updates the EFLAGS in the correct manner wrt. PATM.
|
---|
2898 | *
|
---|
2899 | * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2900 | * @param a_pCtx The CPU context.
|
---|
2901 | * @param a_fEfl The new EFLAGS.
|
---|
2902 | */
|
---|
2903 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
2904 | # define IEMMISC_SET_EFL(a_pVCpu, a_pCtx, a_fEfl) \
|
---|
2905 | do { \
|
---|
2906 | if (IEM_VERIFICATION_ENABLED(a_pVCpu)) \
|
---|
2907 | (a_pCtx)->eflags.u = (a_fEfl); \
|
---|
2908 | else \
|
---|
2909 | CPUMRawSetEFlags((a_pVCpu), a_fEfl); \
|
---|
2910 | } while (0)
|
---|
2911 | #else
|
---|
2912 | # define IEMMISC_SET_EFL(a_pVCpu, a_pCtx, a_fEfl) \
|
---|
2913 | do { \
|
---|
2914 | (a_pCtx)->eflags.u = (a_fEfl); \
|
---|
2915 | } while (0)
|
---|
2916 | #endif
|
---|
2917 |
|
---|
2918 |
|
---|
2919 | /** @} */
|
---|
2920 |
|
---|
2921 | /** @name Raising Exceptions.
|
---|
2922 | *
|
---|
2923 | * @{
|
---|
2924 | */
|
---|
2925 |
|
---|
2926 | /** @name IEM_XCPT_FLAGS_XXX - flags for iemRaiseXcptOrInt.
|
---|
2927 | * @{ */
|
---|
2928 | /** CPU exception. */
|
---|
2929 | #define IEM_XCPT_FLAGS_T_CPU_XCPT RT_BIT_32(0)
|
---|
2930 | /** External interrupt (from PIC, APIC, whatever). */
|
---|
2931 | #define IEM_XCPT_FLAGS_T_EXT_INT RT_BIT_32(1)
|
---|
2932 | /** Software interrupt (int or into, not bound).
|
---|
2933 | * Returns to the following instruction */
|
---|
2934 | #define IEM_XCPT_FLAGS_T_SOFT_INT RT_BIT_32(2)
|
---|
2935 | /** Takes an error code. */
|
---|
2936 | #define IEM_XCPT_FLAGS_ERR RT_BIT_32(3)
|
---|
2937 | /** Takes a CR2. */
|
---|
2938 | #define IEM_XCPT_FLAGS_CR2 RT_BIT_32(4)
|
---|
2939 | /** Generated by the breakpoint instruction. */
|
---|
2940 | #define IEM_XCPT_FLAGS_BP_INSTR RT_BIT_32(5)
|
---|
2941 | /** Generated by a DRx instruction breakpoint and RF should be cleared. */
|
---|
2942 | #define IEM_XCPT_FLAGS_DRx_INSTR_BP RT_BIT_32(6)
|
---|
2943 | /** @} */
|
---|
2944 |
|
---|
2945 |
|
---|
2946 | /**
|
---|
2947 | * Loads the specified stack far pointer from the TSS.
|
---|
2948 | *
|
---|
2949 | * @returns VBox strict status code.
|
---|
2950 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2951 | * @param pCtx The CPU context.
|
---|
2952 | * @param uCpl The CPL to load the stack for.
|
---|
2953 | * @param pSelSS Where to return the new stack segment.
|
---|
2954 | * @param puEsp Where to return the new stack pointer.
|
---|
2955 | */
|
---|
2956 | IEM_STATIC VBOXSTRICTRC iemRaiseLoadStackFromTss32Or16(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uCpl,
|
---|
2957 | PRTSEL pSelSS, uint32_t *puEsp)
|
---|
2958 | {
|
---|
2959 | VBOXSTRICTRC rcStrict;
|
---|
2960 | Assert(uCpl < 4);
|
---|
2961 |
|
---|
2962 | switch (pCtx->tr.Attr.n.u4Type)
|
---|
2963 | {
|
---|
2964 | /*
|
---|
2965 | * 16-bit TSS (X86TSS16).
|
---|
2966 | */
|
---|
2967 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL: AssertFailed();
|
---|
2968 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
2969 | {
|
---|
2970 | uint32_t off = uCpl * 4 + 2;
|
---|
2971 | if (off + 4 <= pCtx->tr.u32Limit)
|
---|
2972 | {
|
---|
2973 | /** @todo check actual access pattern here. */
|
---|
2974 | uint32_t u32Tmp = 0; /* gcc maybe... */
|
---|
2975 | rcStrict = iemMemFetchSysU32(pVCpu, &u32Tmp, UINT8_MAX, pCtx->tr.u64Base + off);
|
---|
2976 | if (rcStrict == VINF_SUCCESS)
|
---|
2977 | {
|
---|
2978 | *puEsp = RT_LOWORD(u32Tmp);
|
---|
2979 | *pSelSS = RT_HIWORD(u32Tmp);
|
---|
2980 | return VINF_SUCCESS;
|
---|
2981 | }
|
---|
2982 | }
|
---|
2983 | else
|
---|
2984 | {
|
---|
2985 | Log(("LoadStackFromTss32Or16: out of bounds! uCpl=%d, u32Limit=%#x TSS16\n", uCpl, pCtx->tr.u32Limit));
|
---|
2986 | rcStrict = iemRaiseTaskSwitchFaultCurrentTSS(pVCpu);
|
---|
2987 | }
|
---|
2988 | break;
|
---|
2989 | }
|
---|
2990 |
|
---|
2991 | /*
|
---|
2992 | * 32-bit TSS (X86TSS32).
|
---|
2993 | */
|
---|
2994 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL: AssertFailed();
|
---|
2995 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
2996 | {
|
---|
2997 | uint32_t off = uCpl * 8 + 4;
|
---|
2998 | if (off + 7 <= pCtx->tr.u32Limit)
|
---|
2999 | {
|
---|
3000 | /** @todo check actual access pattern here. */
|
---|
3001 | uint64_t u64Tmp;
|
---|
3002 | rcStrict = iemMemFetchSysU64(pVCpu, &u64Tmp, UINT8_MAX, pCtx->tr.u64Base + off);
|
---|
3003 | if (rcStrict == VINF_SUCCESS)
|
---|
3004 | {
|
---|
3005 | *puEsp = u64Tmp & UINT32_MAX;
|
---|
3006 | *pSelSS = (RTSEL)(u64Tmp >> 32);
|
---|
3007 | return VINF_SUCCESS;
|
---|
3008 | }
|
---|
3009 | }
|
---|
3010 | else
|
---|
3011 | {
|
---|
3012 | Log(("LoadStackFromTss32Or16: out of bounds! uCpl=%d, u32Limit=%#x TSS16\n", uCpl, pCtx->tr.u32Limit));
|
---|
3013 | rcStrict = iemRaiseTaskSwitchFaultCurrentTSS(pVCpu);
|
---|
3014 | }
|
---|
3015 | break;
|
---|
3016 | }
|
---|
3017 |
|
---|
3018 | default:
|
---|
3019 | AssertFailed();
|
---|
3020 | rcStrict = VERR_IEM_IPE_4;
|
---|
3021 | break;
|
---|
3022 | }
|
---|
3023 |
|
---|
3024 | *puEsp = 0; /* make gcc happy */
|
---|
3025 | *pSelSS = 0; /* make gcc happy */
|
---|
3026 | return rcStrict;
|
---|
3027 | }
|
---|
3028 |
|
---|
3029 |
|
---|
3030 | /**
|
---|
3031 | * Loads the specified stack pointer from the 64-bit TSS.
|
---|
3032 | *
|
---|
3033 | * @returns VBox strict status code.
|
---|
3034 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3035 | * @param pCtx The CPU context.
|
---|
3036 | * @param uCpl The CPL to load the stack for.
|
---|
3037 | * @param uIst The interrupt stack table index, 0 if to use uCpl.
|
---|
3038 | * @param puRsp Where to return the new stack pointer.
|
---|
3039 | */
|
---|
3040 | IEM_STATIC VBOXSTRICTRC iemRaiseLoadStackFromTss64(PVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t uCpl, uint8_t uIst, uint64_t *puRsp)
|
---|
3041 | {
|
---|
3042 | Assert(uCpl < 4);
|
---|
3043 | Assert(uIst < 8);
|
---|
3044 | *puRsp = 0; /* make gcc happy */
|
---|
3045 |
|
---|
3046 | AssertReturn(pCtx->tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY, VERR_IEM_IPE_5);
|
---|
3047 |
|
---|
3048 | uint32_t off;
|
---|
3049 | if (uIst)
|
---|
3050 | off = (uIst - 1) * sizeof(uint64_t) + RT_OFFSETOF(X86TSS64, ist1);
|
---|
3051 | else
|
---|
3052 | off = uCpl * sizeof(uint64_t) + RT_OFFSETOF(X86TSS64, rsp0);
|
---|
3053 | if (off + sizeof(uint64_t) > pCtx->tr.u32Limit)
|
---|
3054 | {
|
---|
3055 | Log(("iemRaiseLoadStackFromTss64: out of bounds! uCpl=%d uIst=%d, u32Limit=%#x\n", uCpl, uIst, pCtx->tr.u32Limit));
|
---|
3056 | return iemRaiseTaskSwitchFaultCurrentTSS(pVCpu);
|
---|
3057 | }
|
---|
3058 |
|
---|
3059 | return iemMemFetchSysU64(pVCpu, puRsp, UINT8_MAX, pCtx->tr.u64Base + off);
|
---|
3060 | }
|
---|
3061 |
|
---|
3062 |
|
---|
3063 | /**
|
---|
3064 | * Adjust the CPU state according to the exception being raised.
|
---|
3065 | *
|
---|
3066 | * @param pCtx The CPU context.
|
---|
3067 | * @param u8Vector The exception that has been raised.
|
---|
3068 | */
|
---|
3069 | DECLINLINE(void) iemRaiseXcptAdjustState(PCPUMCTX pCtx, uint8_t u8Vector)
|
---|
3070 | {
|
---|
3071 | switch (u8Vector)
|
---|
3072 | {
|
---|
3073 | case X86_XCPT_DB:
|
---|
3074 | pCtx->dr[7] &= ~X86_DR7_GD;
|
---|
3075 | break;
|
---|
3076 | /** @todo Read the AMD and Intel exception reference... */
|
---|
3077 | }
|
---|
3078 | }
|
---|
3079 |
|
---|
3080 |
|
---|
3081 | /**
|
---|
3082 | * Implements exceptions and interrupts for real mode.
|
---|
3083 | *
|
---|
3084 | * @returns VBox strict status code.
|
---|
3085 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3086 | * @param pCtx The CPU context.
|
---|
3087 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
3088 | * address.
|
---|
3089 | * @param u8Vector The interrupt / exception vector number.
|
---|
3090 | * @param fFlags The flags.
|
---|
3091 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
3092 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
3093 | */
|
---|
3094 | IEM_STATIC VBOXSTRICTRC
|
---|
3095 | iemRaiseXcptOrIntInRealMode(PVMCPU pVCpu,
|
---|
3096 | PCPUMCTX pCtx,
|
---|
3097 | uint8_t cbInstr,
|
---|
3098 | uint8_t u8Vector,
|
---|
3099 | uint32_t fFlags,
|
---|
3100 | uint16_t uErr,
|
---|
3101 | uint64_t uCr2)
|
---|
3102 | {
|
---|
3103 | AssertReturn(pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT, VERR_IEM_IPE_6);
|
---|
3104 | NOREF(uErr); NOREF(uCr2);
|
---|
3105 |
|
---|
3106 | /*
|
---|
3107 | * Read the IDT entry.
|
---|
3108 | */
|
---|
3109 | if (pCtx->idtr.cbIdt < UINT32_C(4) * u8Vector + 3)
|
---|
3110 | {
|
---|
3111 | Log(("RaiseXcptOrIntInRealMode: %#x is out of bounds (%#x)\n", u8Vector, pCtx->idtr.cbIdt));
|
---|
3112 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
3113 | }
|
---|
3114 | RTFAR16 Idte;
|
---|
3115 | VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, (uint32_t *)&Idte, UINT8_MAX, pCtx->idtr.pIdt + UINT32_C(4) * u8Vector);
|
---|
3116 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
3117 | return rcStrict;
|
---|
3118 |
|
---|
3119 | /*
|
---|
3120 | * Push the stack frame.
|
---|
3121 | */
|
---|
3122 | uint16_t *pu16Frame;
|
---|
3123 | uint64_t uNewRsp;
|
---|
3124 | rcStrict = iemMemStackPushBeginSpecial(pVCpu, 6, (void **)&pu16Frame, &uNewRsp);
|
---|
3125 | if (rcStrict != VINF_SUCCESS)
|
---|
3126 | return rcStrict;
|
---|
3127 |
|
---|
3128 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
3129 | #if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
|
---|
3130 | AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
|
---|
3131 | if (pVCpu->iem.s.uTargetCpu <= IEMTARGETCPU_186)
|
---|
3132 | fEfl |= UINT16_C(0xf000);
|
---|
3133 | #endif
|
---|
3134 | pu16Frame[2] = (uint16_t)fEfl;
|
---|
3135 | pu16Frame[1] = (uint16_t)pCtx->cs.Sel;
|
---|
3136 | pu16Frame[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pCtx->ip + cbInstr : pCtx->ip;
|
---|
3137 | rcStrict = iemMemStackPushCommitSpecial(pVCpu, pu16Frame, uNewRsp);
|
---|
3138 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
3139 | return rcStrict;
|
---|
3140 |
|
---|
3141 | /*
|
---|
3142 | * Load the vector address into cs:ip and make exception specific state
|
---|
3143 | * adjustments.
|
---|
3144 | */
|
---|
3145 | pCtx->cs.Sel = Idte.sel;
|
---|
3146 | pCtx->cs.ValidSel = Idte.sel;
|
---|
3147 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3148 | pCtx->cs.u64Base = (uint32_t)Idte.sel << 4;
|
---|
3149 | /** @todo do we load attribs and limit as well? Should we check against limit like far jump? */
|
---|
3150 | pCtx->rip = Idte.off;
|
---|
3151 | fEfl &= ~X86_EFL_IF;
|
---|
3152 | IEMMISC_SET_EFL(pVCpu, pCtx, fEfl);
|
---|
3153 |
|
---|
3154 | /** @todo do we actually do this in real mode? */
|
---|
3155 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
3156 | iemRaiseXcptAdjustState(pCtx, u8Vector);
|
---|
3157 |
|
---|
3158 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
3159 | }
|
---|
3160 |
|
---|
3161 |
|
---|
3162 | /**
|
---|
3163 | * Loads a NULL data selector into when coming from V8086 mode.
|
---|
3164 | *
|
---|
3165 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3166 | * @param pSReg Pointer to the segment register.
|
---|
3167 | */
|
---|
3168 | IEM_STATIC void iemHlpLoadNullDataSelectorOnV86Xcpt(PVMCPU pVCpu, PCPUMSELREG pSReg)
|
---|
3169 | {
|
---|
3170 | pSReg->Sel = 0;
|
---|
3171 | pSReg->ValidSel = 0;
|
---|
3172 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
3173 | {
|
---|
3174 | /* VT-x (Intel 3960x) doesn't change the base and limit, clears and sets the following attributes */
|
---|
3175 | pSReg->Attr.u &= X86DESCATTR_DT | X86DESCATTR_TYPE | X86DESCATTR_DPL | X86DESCATTR_G | X86DESCATTR_D;
|
---|
3176 | pSReg->Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3177 | }
|
---|
3178 | else
|
---|
3179 | {
|
---|
3180 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3181 | /** @todo check this on AMD-V */
|
---|
3182 | pSReg->u64Base = 0;
|
---|
3183 | pSReg->u32Limit = 0;
|
---|
3184 | }
|
---|
3185 | }
|
---|
3186 |
|
---|
3187 |
|
---|
3188 | /**
|
---|
3189 | * Loads a segment selector during a task switch in V8086 mode.
|
---|
3190 | *
|
---|
3191 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3192 | * @param pSReg Pointer to the segment register.
|
---|
3193 | * @param uSel The selector value to load.
|
---|
3194 | */
|
---|
3195 | IEM_STATIC void iemHlpLoadSelectorInV86Mode(PVMCPU pVCpu, PCPUMSELREG pSReg, uint16_t uSel)
|
---|
3196 | {
|
---|
3197 | /* See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
|
---|
3198 | pSReg->Sel = uSel;
|
---|
3199 | pSReg->ValidSel = uSel;
|
---|
3200 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3201 | pSReg->u64Base = uSel << 4;
|
---|
3202 | pSReg->u32Limit = 0xffff;
|
---|
3203 | pSReg->Attr.u = 0xf3;
|
---|
3204 | }
|
---|
3205 |
|
---|
3206 |
|
---|
3207 | /**
|
---|
3208 | * Loads a NULL data selector into a selector register, both the hidden and
|
---|
3209 | * visible parts, in protected mode.
|
---|
3210 | *
|
---|
3211 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3212 | * @param pSReg Pointer to the segment register.
|
---|
3213 | * @param uRpl The RPL.
|
---|
3214 | */
|
---|
3215 | IEM_STATIC void iemHlpLoadNullDataSelectorProt(PVMCPU pVCpu, PCPUMSELREG pSReg, RTSEL uRpl)
|
---|
3216 | {
|
---|
3217 | /** @todo Testcase: write a testcase checking what happends when loading a NULL
|
---|
3218 | * data selector in protected mode. */
|
---|
3219 | pSReg->Sel = uRpl;
|
---|
3220 | pSReg->ValidSel = uRpl;
|
---|
3221 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3222 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
3223 | {
|
---|
3224 | /* VT-x (Intel 3960x) observed doing something like this. */
|
---|
3225 | pSReg->Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D | (pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT);
|
---|
3226 | pSReg->u32Limit = UINT32_MAX;
|
---|
3227 | pSReg->u64Base = 0;
|
---|
3228 | }
|
---|
3229 | else
|
---|
3230 | {
|
---|
3231 | pSReg->Attr.u = X86DESCATTR_UNUSABLE;
|
---|
3232 | pSReg->u32Limit = 0;
|
---|
3233 | pSReg->u64Base = 0;
|
---|
3234 | }
|
---|
3235 | }
|
---|
3236 |
|
---|
3237 |
|
---|
3238 | /**
|
---|
3239 | * Loads a segment selector during a task switch in protected mode.
|
---|
3240 | *
|
---|
3241 | * In this task switch scenario, we would throw \#TS exceptions rather than
|
---|
3242 | * \#GPs.
|
---|
3243 | *
|
---|
3244 | * @returns VBox strict status code.
|
---|
3245 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3246 | * @param pSReg Pointer to the segment register.
|
---|
3247 | * @param uSel The new selector value.
|
---|
3248 | *
|
---|
3249 | * @remarks This does _not_ handle CS or SS.
|
---|
3250 | * @remarks This expects pVCpu->iem.s.uCpl to be up to date.
|
---|
3251 | */
|
---|
3252 | IEM_STATIC VBOXSTRICTRC iemHlpTaskSwitchLoadDataSelectorInProtMode(PVMCPU pVCpu, PCPUMSELREG pSReg, uint16_t uSel)
|
---|
3253 | {
|
---|
3254 | Assert(pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT);
|
---|
3255 |
|
---|
3256 | /* Null data selector. */
|
---|
3257 | if (!(uSel & X86_SEL_MASK_OFF_RPL))
|
---|
3258 | {
|
---|
3259 | iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, uSel);
|
---|
3260 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
3261 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
3262 | return VINF_SUCCESS;
|
---|
3263 | }
|
---|
3264 |
|
---|
3265 | /* Fetch the descriptor. */
|
---|
3266 | IEMSELDESC Desc;
|
---|
3267 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_TS);
|
---|
3268 | if (rcStrict != VINF_SUCCESS)
|
---|
3269 | {
|
---|
3270 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: failed to fetch selector. uSel=%u rc=%Rrc\n", uSel,
|
---|
3271 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3272 | return rcStrict;
|
---|
3273 | }
|
---|
3274 |
|
---|
3275 | /* Must be a data segment or readable code segment. */
|
---|
3276 | if ( !Desc.Legacy.Gen.u1DescType
|
---|
3277 | || (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
3278 | {
|
---|
3279 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: invalid segment type. uSel=%u Desc.u4Type=%#x\n", uSel,
|
---|
3280 | Desc.Legacy.Gen.u4Type));
|
---|
3281 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
3282 | }
|
---|
3283 |
|
---|
3284 | /* Check privileges for data segments and non-conforming code segments. */
|
---|
3285 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
3286 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
3287 | {
|
---|
3288 | /* The RPL and the new CPL must be less than or equal to the DPL. */
|
---|
3289 | if ( (unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
|
---|
3290 | || (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl))
|
---|
3291 | {
|
---|
3292 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: Invalid priv. uSel=%u uSel.RPL=%u DPL=%u CPL=%u\n",
|
---|
3293 | uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
3294 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
3295 | }
|
---|
3296 | }
|
---|
3297 |
|
---|
3298 | /* Is it there? */
|
---|
3299 | if (!Desc.Legacy.Gen.u1Present)
|
---|
3300 | {
|
---|
3301 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: Segment not present. uSel=%u\n", uSel));
|
---|
3302 | return iemRaiseSelectorNotPresentWithErr(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
3303 | }
|
---|
3304 |
|
---|
3305 | /* The base and limit. */
|
---|
3306 | uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
3307 | uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
3308 |
|
---|
3309 | /*
|
---|
3310 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
3311 | * committing the result into the registers.
|
---|
3312 | */
|
---|
3313 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3314 | {
|
---|
3315 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
|
---|
3316 | if (rcStrict != VINF_SUCCESS)
|
---|
3317 | return rcStrict;
|
---|
3318 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3319 | }
|
---|
3320 |
|
---|
3321 | /* Commit */
|
---|
3322 | pSReg->Sel = uSel;
|
---|
3323 | pSReg->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
3324 | pSReg->u32Limit = cbLimit;
|
---|
3325 | pSReg->u64Base = u64Base; /** @todo testcase/investigate: seen claims that the upper half of the base remains unchanged... */
|
---|
3326 | pSReg->ValidSel = uSel;
|
---|
3327 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3328 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
3329 | pSReg->Attr.u &= ~X86DESCATTR_UNUSABLE;
|
---|
3330 |
|
---|
3331 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
3332 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
3333 | return VINF_SUCCESS;
|
---|
3334 | }
|
---|
3335 |
|
---|
3336 |
|
---|
3337 | /**
|
---|
3338 | * Performs a task switch.
|
---|
3339 | *
|
---|
3340 | * If the task switch is the result of a JMP, CALL or IRET instruction, the
|
---|
3341 | * caller is responsible for performing the necessary checks (like DPL, TSS
|
---|
3342 | * present etc.) which are specific to JMP/CALL/IRET. See Intel Instruction
|
---|
3343 | * reference for JMP, CALL, IRET.
|
---|
3344 | *
|
---|
3345 | * If the task switch is the due to a software interrupt or hardware exception,
|
---|
3346 | * the caller is responsible for validating the TSS selector and descriptor. See
|
---|
3347 | * Intel Instruction reference for INT n.
|
---|
3348 | *
|
---|
3349 | * @returns VBox strict status code.
|
---|
3350 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
3351 | * @param pCtx The CPU context.
|
---|
3352 | * @param enmTaskSwitch What caused this task switch.
|
---|
3353 | * @param uNextEip The EIP effective after the task switch.
|
---|
3354 | * @param fFlags The flags.
|
---|
3355 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
3356 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
3357 | * @param SelTSS The TSS selector of the new task.
|
---|
3358 | * @param pNewDescTSS Pointer to the new TSS descriptor.
|
---|
3359 | */
|
---|
3360 | IEM_STATIC VBOXSTRICTRC
|
---|
3361 | iemTaskSwitch(PVMCPU pVCpu,
|
---|
3362 | PCPUMCTX pCtx,
|
---|
3363 | IEMTASKSWITCH enmTaskSwitch,
|
---|
3364 | uint32_t uNextEip,
|
---|
3365 | uint32_t fFlags,
|
---|
3366 | uint16_t uErr,
|
---|
3367 | uint64_t uCr2,
|
---|
3368 | RTSEL SelTSS,
|
---|
3369 | PIEMSELDESC pNewDescTSS)
|
---|
3370 | {
|
---|
3371 | Assert(!IEM_IS_REAL_MODE(pVCpu));
|
---|
3372 | Assert(pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT);
|
---|
3373 |
|
---|
3374 | uint32_t const uNewTSSType = pNewDescTSS->Legacy.Gate.u4Type;
|
---|
3375 | Assert( uNewTSSType == X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
3376 | || uNewTSSType == X86_SEL_TYPE_SYS_286_TSS_BUSY
|
---|
3377 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
3378 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
3379 |
|
---|
3380 | bool const fIsNewTSS386 = ( uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
3381 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
3382 |
|
---|
3383 | Log(("iemTaskSwitch: enmTaskSwitch=%u NewTSS=%#x fIsNewTSS386=%RTbool EIP=%#RX32 uNextEip=%#RX32\n", enmTaskSwitch, SelTSS,
|
---|
3384 | fIsNewTSS386, pCtx->eip, uNextEip));
|
---|
3385 |
|
---|
3386 | /* Update CR2 in case it's a page-fault. */
|
---|
3387 | /** @todo This should probably be done much earlier in IEM/PGM. See
|
---|
3388 | * @bugref{5653#c49}. */
|
---|
3389 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
3390 | pCtx->cr2 = uCr2;
|
---|
3391 |
|
---|
3392 | /*
|
---|
3393 | * Check the new TSS limit. See Intel spec. 6.15 "Exception and Interrupt Reference"
|
---|
3394 | * subsection "Interrupt 10 - Invalid TSS Exception (#TS)".
|
---|
3395 | */
|
---|
3396 | uint32_t const uNewTSSLimit = pNewDescTSS->Legacy.Gen.u16LimitLow | (pNewDescTSS->Legacy.Gen.u4LimitHigh << 16);
|
---|
3397 | uint32_t const uNewTSSLimitMin = fIsNewTSS386 ? X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN : X86_SEL_TYPE_SYS_286_TSS_LIMIT_MIN;
|
---|
3398 | if (uNewTSSLimit < uNewTSSLimitMin)
|
---|
3399 | {
|
---|
3400 | Log(("iemTaskSwitch: Invalid new TSS limit. enmTaskSwitch=%u uNewTSSLimit=%#x uNewTSSLimitMin=%#x -> #TS\n",
|
---|
3401 | enmTaskSwitch, uNewTSSLimit, uNewTSSLimitMin));
|
---|
3402 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, SelTSS & X86_SEL_MASK_OFF_RPL);
|
---|
3403 | }
|
---|
3404 |
|
---|
3405 | /*
|
---|
3406 | * Check the current TSS limit. The last written byte to the current TSS during the
|
---|
3407 | * task switch will be 2 bytes at offset 0x5C (32-bit) and 1 byte at offset 0x28 (16-bit).
|
---|
3408 | * See Intel spec. 7.2.1 "Task-State Segment (TSS)" for static and dynamic fields.
|
---|
3409 | *
|
---|
3410 | * The AMD docs doesn't mention anything about limit checks with LTR which suggests you can
|
---|
3411 | * end up with smaller than "legal" TSS limits.
|
---|
3412 | */
|
---|
3413 | uint32_t const uCurTSSLimit = pCtx->tr.u32Limit;
|
---|
3414 | uint32_t const uCurTSSLimitMin = fIsNewTSS386 ? 0x5F : 0x29;
|
---|
3415 | if (uCurTSSLimit < uCurTSSLimitMin)
|
---|
3416 | {
|
---|
3417 | Log(("iemTaskSwitch: Invalid current TSS limit. enmTaskSwitch=%u uCurTSSLimit=%#x uCurTSSLimitMin=%#x -> #TS\n",
|
---|
3418 | enmTaskSwitch, uCurTSSLimit, uCurTSSLimitMin));
|
---|
3419 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, SelTSS & X86_SEL_MASK_OFF_RPL);
|
---|
3420 | }
|
---|
3421 |
|
---|
3422 | /*
|
---|
3423 | * Verify that the new TSS can be accessed and map it. Map only the required contents
|
---|
3424 | * and not the entire TSS.
|
---|
3425 | */
|
---|
3426 | void *pvNewTSS;
|
---|
3427 | uint32_t cbNewTSS = uNewTSSLimitMin + 1;
|
---|
3428 | RTGCPTR GCPtrNewTSS = X86DESC_BASE(&pNewDescTSS->Legacy);
|
---|
3429 | AssertCompile(sizeof(X86TSS32) == X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN + 1);
|
---|
3430 | /** @todo Handle if the TSS crosses a page boundary. Intel specifies that it may
|
---|
3431 | * not perform correct translation if this happens. See Intel spec. 7.2.1
|
---|
3432 | * "Task-State Segment" */
|
---|
3433 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvNewTSS, cbNewTSS, UINT8_MAX, GCPtrNewTSS, IEM_ACCESS_SYS_RW);
|
---|
3434 | if (rcStrict != VINF_SUCCESS)
|
---|
3435 | {
|
---|
3436 | Log(("iemTaskSwitch: Failed to read new TSS. enmTaskSwitch=%u cbNewTSS=%u uNewTSSLimit=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
3437 | cbNewTSS, uNewTSSLimit, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3438 | return rcStrict;
|
---|
3439 | }
|
---|
3440 |
|
---|
3441 | /*
|
---|
3442 | * Clear the busy bit in current task's TSS descriptor if it's a task switch due to JMP/IRET.
|
---|
3443 | */
|
---|
3444 | uint32_t u32EFlags = pCtx->eflags.u32;
|
---|
3445 | if ( enmTaskSwitch == IEMTASKSWITCH_JUMP
|
---|
3446 | || enmTaskSwitch == IEMTASKSWITCH_IRET)
|
---|
3447 | {
|
---|
3448 | PX86DESC pDescCurTSS;
|
---|
3449 | rcStrict = iemMemMap(pVCpu, (void **)&pDescCurTSS, sizeof(*pDescCurTSS), UINT8_MAX,
|
---|
3450 | pCtx->gdtr.pGdt + (pCtx->tr.Sel & X86_SEL_MASK), IEM_ACCESS_SYS_RW);
|
---|
3451 | if (rcStrict != VINF_SUCCESS)
|
---|
3452 | {
|
---|
3453 | Log(("iemTaskSwitch: Failed to read new TSS descriptor in GDT. enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
3454 | enmTaskSwitch, pCtx->gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3455 | return rcStrict;
|
---|
3456 | }
|
---|
3457 |
|
---|
3458 | pDescCurTSS->Gate.u4Type &= ~X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
3459 | rcStrict = iemMemCommitAndUnmap(pVCpu, pDescCurTSS, IEM_ACCESS_SYS_RW);
|
---|
3460 | if (rcStrict != VINF_SUCCESS)
|
---|
3461 | {
|
---|
3462 | Log(("iemTaskSwitch: Failed to commit new TSS descriptor in GDT. enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
3463 | enmTaskSwitch, pCtx->gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3464 | return rcStrict;
|
---|
3465 | }
|
---|
3466 |
|
---|
3467 | /* Clear EFLAGS.NT (Nested Task) in the eflags memory image, if it's a task switch due to an IRET. */
|
---|
3468 | if (enmTaskSwitch == IEMTASKSWITCH_IRET)
|
---|
3469 | {
|
---|
3470 | Assert( uNewTSSType == X86_SEL_TYPE_SYS_286_TSS_BUSY
|
---|
3471 | || uNewTSSType == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
3472 | u32EFlags &= ~X86_EFL_NT;
|
---|
3473 | }
|
---|
3474 | }
|
---|
3475 |
|
---|
3476 | /*
|
---|
3477 | * Save the CPU state into the current TSS.
|
---|
3478 | */
|
---|
3479 | RTGCPTR GCPtrCurTSS = pCtx->tr.u64Base;
|
---|
3480 | if (GCPtrNewTSS == GCPtrCurTSS)
|
---|
3481 | {
|
---|
3482 | Log(("iemTaskSwitch: Switching to the same TSS! enmTaskSwitch=%u GCPtr[Cur|New]TSS=%#RGv\n", enmTaskSwitch, GCPtrCurTSS));
|
---|
3483 | Log(("uCurCr3=%#x uCurEip=%#x uCurEflags=%#x uCurEax=%#x uCurEsp=%#x uCurEbp=%#x uCurCS=%#04x uCurSS=%#04x uCurLdt=%#x\n",
|
---|
3484 | pCtx->cr3, pCtx->eip, pCtx->eflags.u32, pCtx->eax, pCtx->esp, pCtx->ebp, pCtx->cs.Sel, pCtx->ss.Sel, pCtx->ldtr.Sel));
|
---|
3485 | }
|
---|
3486 | if (fIsNewTSS386)
|
---|
3487 | {
|
---|
3488 | /*
|
---|
3489 | * Verify that the current TSS (32-bit) can be accessed, only the minimum required size.
|
---|
3490 | * See Intel spec. 7.2.1 "Task-State Segment (TSS)" for static and dynamic fields.
|
---|
3491 | */
|
---|
3492 | void *pvCurTSS32;
|
---|
3493 | uint32_t offCurTSS = RT_OFFSETOF(X86TSS32, eip);
|
---|
3494 | uint32_t cbCurTSS = RT_OFFSETOF(X86TSS32, selLdt) - RT_OFFSETOF(X86TSS32, eip);
|
---|
3495 | AssertCompile(RTASSERT_OFFSET_OF(X86TSS32, selLdt) - RTASSERT_OFFSET_OF(X86TSS32, eip) == 64);
|
---|
3496 | rcStrict = iemMemMap(pVCpu, &pvCurTSS32, cbCurTSS, UINT8_MAX, GCPtrCurTSS + offCurTSS, IEM_ACCESS_SYS_RW);
|
---|
3497 | if (rcStrict != VINF_SUCCESS)
|
---|
3498 | {
|
---|
3499 | Log(("iemTaskSwitch: Failed to read current 32-bit TSS. enmTaskSwitch=%u GCPtrCurTSS=%#RGv cb=%u rc=%Rrc\n",
|
---|
3500 | enmTaskSwitch, GCPtrCurTSS, cbCurTSS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3501 | return rcStrict;
|
---|
3502 | }
|
---|
3503 |
|
---|
3504 | /* !! WARNING !! Access -only- the members (dynamic fields) that are mapped, i.e interval [offCurTSS..cbCurTSS). */
|
---|
3505 | PX86TSS32 pCurTSS32 = (PX86TSS32)((uintptr_t)pvCurTSS32 - offCurTSS);
|
---|
3506 | pCurTSS32->eip = uNextEip;
|
---|
3507 | pCurTSS32->eflags = u32EFlags;
|
---|
3508 | pCurTSS32->eax = pCtx->eax;
|
---|
3509 | pCurTSS32->ecx = pCtx->ecx;
|
---|
3510 | pCurTSS32->edx = pCtx->edx;
|
---|
3511 | pCurTSS32->ebx = pCtx->ebx;
|
---|
3512 | pCurTSS32->esp = pCtx->esp;
|
---|
3513 | pCurTSS32->ebp = pCtx->ebp;
|
---|
3514 | pCurTSS32->esi = pCtx->esi;
|
---|
3515 | pCurTSS32->edi = pCtx->edi;
|
---|
3516 | pCurTSS32->es = pCtx->es.Sel;
|
---|
3517 | pCurTSS32->cs = pCtx->cs.Sel;
|
---|
3518 | pCurTSS32->ss = pCtx->ss.Sel;
|
---|
3519 | pCurTSS32->ds = pCtx->ds.Sel;
|
---|
3520 | pCurTSS32->fs = pCtx->fs.Sel;
|
---|
3521 | pCurTSS32->gs = pCtx->gs.Sel;
|
---|
3522 |
|
---|
3523 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvCurTSS32, IEM_ACCESS_SYS_RW);
|
---|
3524 | if (rcStrict != VINF_SUCCESS)
|
---|
3525 | {
|
---|
3526 | Log(("iemTaskSwitch: Failed to commit current 32-bit TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
3527 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3528 | return rcStrict;
|
---|
3529 | }
|
---|
3530 | }
|
---|
3531 | else
|
---|
3532 | {
|
---|
3533 | /*
|
---|
3534 | * Verify that the current TSS (16-bit) can be accessed. Again, only the minimum required size.
|
---|
3535 | */
|
---|
3536 | void *pvCurTSS16;
|
---|
3537 | uint32_t offCurTSS = RT_OFFSETOF(X86TSS16, ip);
|
---|
3538 | uint32_t cbCurTSS = RT_OFFSETOF(X86TSS16, selLdt) - RT_OFFSETOF(X86TSS16, ip);
|
---|
3539 | AssertCompile(RTASSERT_OFFSET_OF(X86TSS16, selLdt) - RTASSERT_OFFSET_OF(X86TSS16, ip) == 28);
|
---|
3540 | rcStrict = iemMemMap(pVCpu, &pvCurTSS16, cbCurTSS, UINT8_MAX, GCPtrCurTSS + offCurTSS, IEM_ACCESS_SYS_RW);
|
---|
3541 | if (rcStrict != VINF_SUCCESS)
|
---|
3542 | {
|
---|
3543 | Log(("iemTaskSwitch: Failed to read current 16-bit TSS. enmTaskSwitch=%u GCPtrCurTSS=%#RGv cb=%u rc=%Rrc\n",
|
---|
3544 | enmTaskSwitch, GCPtrCurTSS, cbCurTSS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3545 | return rcStrict;
|
---|
3546 | }
|
---|
3547 |
|
---|
3548 | /* !! WARNING !! Access -only- the members (dynamic fields) that are mapped, i.e interval [offCurTSS..cbCurTSS). */
|
---|
3549 | PX86TSS16 pCurTSS16 = (PX86TSS16)((uintptr_t)pvCurTSS16 - offCurTSS);
|
---|
3550 | pCurTSS16->ip = uNextEip;
|
---|
3551 | pCurTSS16->flags = u32EFlags;
|
---|
3552 | pCurTSS16->ax = pCtx->ax;
|
---|
3553 | pCurTSS16->cx = pCtx->cx;
|
---|
3554 | pCurTSS16->dx = pCtx->dx;
|
---|
3555 | pCurTSS16->bx = pCtx->bx;
|
---|
3556 | pCurTSS16->sp = pCtx->sp;
|
---|
3557 | pCurTSS16->bp = pCtx->bp;
|
---|
3558 | pCurTSS16->si = pCtx->si;
|
---|
3559 | pCurTSS16->di = pCtx->di;
|
---|
3560 | pCurTSS16->es = pCtx->es.Sel;
|
---|
3561 | pCurTSS16->cs = pCtx->cs.Sel;
|
---|
3562 | pCurTSS16->ss = pCtx->ss.Sel;
|
---|
3563 | pCurTSS16->ds = pCtx->ds.Sel;
|
---|
3564 |
|
---|
3565 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvCurTSS16, IEM_ACCESS_SYS_RW);
|
---|
3566 | if (rcStrict != VINF_SUCCESS)
|
---|
3567 | {
|
---|
3568 | Log(("iemTaskSwitch: Failed to commit current 16-bit TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
3569 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3570 | return rcStrict;
|
---|
3571 | }
|
---|
3572 | }
|
---|
3573 |
|
---|
3574 | /*
|
---|
3575 | * Update the previous task link field for the new TSS, if the task switch is due to a CALL/INT_XCPT.
|
---|
3576 | */
|
---|
3577 | if ( enmTaskSwitch == IEMTASKSWITCH_CALL
|
---|
3578 | || enmTaskSwitch == IEMTASKSWITCH_INT_XCPT)
|
---|
3579 | {
|
---|
3580 | /* 16 or 32-bit TSS doesn't matter, we only access the first, common 16-bit field (selPrev) here. */
|
---|
3581 | PX86TSS32 pNewTSS = (PX86TSS32)pvNewTSS;
|
---|
3582 | pNewTSS->selPrev = pCtx->tr.Sel;
|
---|
3583 | }
|
---|
3584 |
|
---|
3585 | /*
|
---|
3586 | * Read the state from the new TSS into temporaries. Setting it immediately as the new CPU state is tricky,
|
---|
3587 | * it's done further below with error handling (e.g. CR3 changes will go through PGM).
|
---|
3588 | */
|
---|
3589 | uint32_t uNewCr3, uNewEip, uNewEflags, uNewEax, uNewEcx, uNewEdx, uNewEbx, uNewEsp, uNewEbp, uNewEsi, uNewEdi;
|
---|
3590 | uint16_t uNewES, uNewCS, uNewSS, uNewDS, uNewFS, uNewGS, uNewLdt;
|
---|
3591 | bool fNewDebugTrap;
|
---|
3592 | if (fIsNewTSS386)
|
---|
3593 | {
|
---|
3594 | PX86TSS32 pNewTSS32 = (PX86TSS32)pvNewTSS;
|
---|
3595 | uNewCr3 = (pCtx->cr0 & X86_CR0_PG) ? pNewTSS32->cr3 : 0;
|
---|
3596 | uNewEip = pNewTSS32->eip;
|
---|
3597 | uNewEflags = pNewTSS32->eflags;
|
---|
3598 | uNewEax = pNewTSS32->eax;
|
---|
3599 | uNewEcx = pNewTSS32->ecx;
|
---|
3600 | uNewEdx = pNewTSS32->edx;
|
---|
3601 | uNewEbx = pNewTSS32->ebx;
|
---|
3602 | uNewEsp = pNewTSS32->esp;
|
---|
3603 | uNewEbp = pNewTSS32->ebp;
|
---|
3604 | uNewEsi = pNewTSS32->esi;
|
---|
3605 | uNewEdi = pNewTSS32->edi;
|
---|
3606 | uNewES = pNewTSS32->es;
|
---|
3607 | uNewCS = pNewTSS32->cs;
|
---|
3608 | uNewSS = pNewTSS32->ss;
|
---|
3609 | uNewDS = pNewTSS32->ds;
|
---|
3610 | uNewFS = pNewTSS32->fs;
|
---|
3611 | uNewGS = pNewTSS32->gs;
|
---|
3612 | uNewLdt = pNewTSS32->selLdt;
|
---|
3613 | fNewDebugTrap = RT_BOOL(pNewTSS32->fDebugTrap);
|
---|
3614 | }
|
---|
3615 | else
|
---|
3616 | {
|
---|
3617 | PX86TSS16 pNewTSS16 = (PX86TSS16)pvNewTSS;
|
---|
3618 | uNewCr3 = 0;
|
---|
3619 | uNewEip = pNewTSS16->ip;
|
---|
3620 | uNewEflags = pNewTSS16->flags;
|
---|
3621 | uNewEax = UINT32_C(0xffff0000) | pNewTSS16->ax;
|
---|
3622 | uNewEcx = UINT32_C(0xffff0000) | pNewTSS16->cx;
|
---|
3623 | uNewEdx = UINT32_C(0xffff0000) | pNewTSS16->dx;
|
---|
3624 | uNewEbx = UINT32_C(0xffff0000) | pNewTSS16->bx;
|
---|
3625 | uNewEsp = UINT32_C(0xffff0000) | pNewTSS16->sp;
|
---|
3626 | uNewEbp = UINT32_C(0xffff0000) | pNewTSS16->bp;
|
---|
3627 | uNewEsi = UINT32_C(0xffff0000) | pNewTSS16->si;
|
---|
3628 | uNewEdi = UINT32_C(0xffff0000) | pNewTSS16->di;
|
---|
3629 | uNewES = pNewTSS16->es;
|
---|
3630 | uNewCS = pNewTSS16->cs;
|
---|
3631 | uNewSS = pNewTSS16->ss;
|
---|
3632 | uNewDS = pNewTSS16->ds;
|
---|
3633 | uNewFS = 0;
|
---|
3634 | uNewGS = 0;
|
---|
3635 | uNewLdt = pNewTSS16->selLdt;
|
---|
3636 | fNewDebugTrap = false;
|
---|
3637 | }
|
---|
3638 |
|
---|
3639 | if (GCPtrNewTSS == GCPtrCurTSS)
|
---|
3640 | Log(("uNewCr3=%#x uNewEip=%#x uNewEflags=%#x uNewEax=%#x uNewEsp=%#x uNewEbp=%#x uNewCS=%#04x uNewSS=%#04x uNewLdt=%#x\n",
|
---|
3641 | uNewCr3, uNewEip, uNewEflags, uNewEax, uNewEsp, uNewEbp, uNewCS, uNewSS, uNewLdt));
|
---|
3642 |
|
---|
3643 | /*
|
---|
3644 | * We're done accessing the new TSS.
|
---|
3645 | */
|
---|
3646 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewTSS, IEM_ACCESS_SYS_RW);
|
---|
3647 | if (rcStrict != VINF_SUCCESS)
|
---|
3648 | {
|
---|
3649 | Log(("iemTaskSwitch: Failed to commit new TSS. enmTaskSwitch=%u rc=%Rrc\n", enmTaskSwitch, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3650 | return rcStrict;
|
---|
3651 | }
|
---|
3652 |
|
---|
3653 | /*
|
---|
3654 | * Set the busy bit in the new TSS descriptor, if the task switch is a JMP/CALL/INT_XCPT.
|
---|
3655 | */
|
---|
3656 | if (enmTaskSwitch != IEMTASKSWITCH_IRET)
|
---|
3657 | {
|
---|
3658 | rcStrict = iemMemMap(pVCpu, (void **)&pNewDescTSS, sizeof(*pNewDescTSS), UINT8_MAX,
|
---|
3659 | pCtx->gdtr.pGdt + (SelTSS & X86_SEL_MASK), IEM_ACCESS_SYS_RW);
|
---|
3660 | if (rcStrict != VINF_SUCCESS)
|
---|
3661 | {
|
---|
3662 | Log(("iemTaskSwitch: Failed to read new TSS descriptor in GDT (2). enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
3663 | enmTaskSwitch, pCtx->gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3664 | return rcStrict;
|
---|
3665 | }
|
---|
3666 |
|
---|
3667 | /* Check that the descriptor indicates the new TSS is available (not busy). */
|
---|
3668 | AssertMsg( pNewDescTSS->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
3669 | || pNewDescTSS->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL,
|
---|
3670 | ("Invalid TSS descriptor type=%#x", pNewDescTSS->Legacy.Gate.u4Type));
|
---|
3671 |
|
---|
3672 | pNewDescTSS->Legacy.Gate.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
3673 | rcStrict = iemMemCommitAndUnmap(pVCpu, pNewDescTSS, IEM_ACCESS_SYS_RW);
|
---|
3674 | if (rcStrict != VINF_SUCCESS)
|
---|
3675 | {
|
---|
3676 | Log(("iemTaskSwitch: Failed to commit new TSS descriptor in GDT (2). enmTaskSwitch=%u pGdt=%#RX64 rc=%Rrc\n",
|
---|
3677 | enmTaskSwitch, pCtx->gdtr.pGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3678 | return rcStrict;
|
---|
3679 | }
|
---|
3680 | }
|
---|
3681 |
|
---|
3682 | /*
|
---|
3683 | * From this point on, we're technically in the new task. We will defer exceptions
|
---|
3684 | * until the completion of the task switch but before executing any instructions in the new task.
|
---|
3685 | */
|
---|
3686 | pCtx->tr.Sel = SelTSS;
|
---|
3687 | pCtx->tr.ValidSel = SelTSS;
|
---|
3688 | pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3689 | pCtx->tr.Attr.u = X86DESC_GET_HID_ATTR(&pNewDescTSS->Legacy);
|
---|
3690 | pCtx->tr.u32Limit = X86DESC_LIMIT_G(&pNewDescTSS->Legacy);
|
---|
3691 | pCtx->tr.u64Base = X86DESC_BASE(&pNewDescTSS->Legacy);
|
---|
3692 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_TR);
|
---|
3693 |
|
---|
3694 | /* Set the busy bit in TR. */
|
---|
3695 | pCtx->tr.Attr.n.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
3696 | /* Set EFLAGS.NT (Nested Task) in the eflags loaded from the new TSS, if it's a task switch due to a CALL/INT_XCPT. */
|
---|
3697 | if ( enmTaskSwitch == IEMTASKSWITCH_CALL
|
---|
3698 | || enmTaskSwitch == IEMTASKSWITCH_INT_XCPT)
|
---|
3699 | {
|
---|
3700 | uNewEflags |= X86_EFL_NT;
|
---|
3701 | }
|
---|
3702 |
|
---|
3703 | pCtx->dr[7] &= ~X86_DR7_LE_ALL; /** @todo Should we clear DR7.LE bit too? */
|
---|
3704 | pCtx->cr0 |= X86_CR0_TS;
|
---|
3705 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_CR0);
|
---|
3706 |
|
---|
3707 | pCtx->eip = uNewEip;
|
---|
3708 | pCtx->eax = uNewEax;
|
---|
3709 | pCtx->ecx = uNewEcx;
|
---|
3710 | pCtx->edx = uNewEdx;
|
---|
3711 | pCtx->ebx = uNewEbx;
|
---|
3712 | pCtx->esp = uNewEsp;
|
---|
3713 | pCtx->ebp = uNewEbp;
|
---|
3714 | pCtx->esi = uNewEsi;
|
---|
3715 | pCtx->edi = uNewEdi;
|
---|
3716 |
|
---|
3717 | uNewEflags &= X86_EFL_LIVE_MASK;
|
---|
3718 | uNewEflags |= X86_EFL_RA1_MASK;
|
---|
3719 | IEMMISC_SET_EFL(pVCpu, pCtx, uNewEflags);
|
---|
3720 |
|
---|
3721 | /*
|
---|
3722 | * Switch the selectors here and do the segment checks later. If we throw exceptions, the selectors
|
---|
3723 | * will be valid in the exception handler. We cannot update the hidden parts until we've switched CR3
|
---|
3724 | * due to the hidden part data originating from the guest LDT/GDT which is accessed through paging.
|
---|
3725 | */
|
---|
3726 | pCtx->es.Sel = uNewES;
|
---|
3727 | pCtx->es.Attr.u &= ~X86DESCATTR_P;
|
---|
3728 |
|
---|
3729 | pCtx->cs.Sel = uNewCS;
|
---|
3730 | pCtx->cs.Attr.u &= ~X86DESCATTR_P;
|
---|
3731 |
|
---|
3732 | pCtx->ss.Sel = uNewSS;
|
---|
3733 | pCtx->ss.Attr.u &= ~X86DESCATTR_P;
|
---|
3734 |
|
---|
3735 | pCtx->ds.Sel = uNewDS;
|
---|
3736 | pCtx->ds.Attr.u &= ~X86DESCATTR_P;
|
---|
3737 |
|
---|
3738 | pCtx->fs.Sel = uNewFS;
|
---|
3739 | pCtx->fs.Attr.u &= ~X86DESCATTR_P;
|
---|
3740 |
|
---|
3741 | pCtx->gs.Sel = uNewGS;
|
---|
3742 | pCtx->gs.Attr.u &= ~X86DESCATTR_P;
|
---|
3743 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
3744 |
|
---|
3745 | pCtx->ldtr.Sel = uNewLdt;
|
---|
3746 | pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_STALE;
|
---|
3747 | pCtx->ldtr.Attr.u &= ~X86DESCATTR_P;
|
---|
3748 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_LDTR);
|
---|
3749 |
|
---|
3750 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
3751 | {
|
---|
3752 | pCtx->es.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3753 | pCtx->cs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3754 | pCtx->ss.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3755 | pCtx->ds.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3756 | pCtx->fs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3757 | pCtx->gs.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3758 | pCtx->ldtr.Attr.u |= X86DESCATTR_UNUSABLE;
|
---|
3759 | }
|
---|
3760 |
|
---|
3761 | /*
|
---|
3762 | * Switch CR3 for the new task.
|
---|
3763 | */
|
---|
3764 | if ( fIsNewTSS386
|
---|
3765 | && (pCtx->cr0 & X86_CR0_PG))
|
---|
3766 | {
|
---|
3767 | /** @todo Should we update and flush TLBs only if CR3 value actually changes? */
|
---|
3768 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
3769 | {
|
---|
3770 | int rc = CPUMSetGuestCR3(pVCpu, uNewCr3);
|
---|
3771 | AssertRCSuccessReturn(rc, rc);
|
---|
3772 | }
|
---|
3773 | else
|
---|
3774 | pCtx->cr3 = uNewCr3;
|
---|
3775 |
|
---|
3776 | /* Inform PGM. */
|
---|
3777 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
3778 | {
|
---|
3779 | int rc = PGMFlushTLB(pVCpu, pCtx->cr3, !(pCtx->cr4 & X86_CR4_PGE));
|
---|
3780 | AssertRCReturn(rc, rc);
|
---|
3781 | /* ignore informational status codes */
|
---|
3782 | }
|
---|
3783 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_CR3);
|
---|
3784 | }
|
---|
3785 |
|
---|
3786 | /*
|
---|
3787 | * Switch LDTR for the new task.
|
---|
3788 | */
|
---|
3789 | if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
|
---|
3790 | iemHlpLoadNullDataSelectorProt(pVCpu, &pCtx->ldtr, uNewLdt);
|
---|
3791 | else
|
---|
3792 | {
|
---|
3793 | Assert(!pCtx->ldtr.Attr.n.u1Present); /* Ensures that LDT.TI check passes in iemMemFetchSelDesc() below. */
|
---|
3794 |
|
---|
3795 | IEMSELDESC DescNewLdt;
|
---|
3796 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescNewLdt, uNewLdt, X86_XCPT_TS);
|
---|
3797 | if (rcStrict != VINF_SUCCESS)
|
---|
3798 | {
|
---|
3799 | Log(("iemTaskSwitch: fetching LDT failed. enmTaskSwitch=%u uNewLdt=%u cbGdt=%u rc=%Rrc\n", enmTaskSwitch,
|
---|
3800 | uNewLdt, pCtx->gdtr.cbGdt, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3801 | return rcStrict;
|
---|
3802 | }
|
---|
3803 | if ( !DescNewLdt.Legacy.Gen.u1Present
|
---|
3804 | || DescNewLdt.Legacy.Gen.u1DescType
|
---|
3805 | || DescNewLdt.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
|
---|
3806 | {
|
---|
3807 | Log(("iemTaskSwitch: Invalid LDT. enmTaskSwitch=%u uNewLdt=%u DescNewLdt.Legacy.u=%#RX64 -> #TS\n", enmTaskSwitch,
|
---|
3808 | uNewLdt, DescNewLdt.Legacy.u));
|
---|
3809 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
3810 | }
|
---|
3811 |
|
---|
3812 | pCtx->ldtr.ValidSel = uNewLdt;
|
---|
3813 | pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3814 | pCtx->ldtr.u64Base = X86DESC_BASE(&DescNewLdt.Legacy);
|
---|
3815 | pCtx->ldtr.u32Limit = X86DESC_LIMIT_G(&DescNewLdt.Legacy);
|
---|
3816 | pCtx->ldtr.Attr.u = X86DESC_GET_HID_ATTR(&DescNewLdt.Legacy);
|
---|
3817 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
3818 | pCtx->ldtr.Attr.u &= ~X86DESCATTR_UNUSABLE;
|
---|
3819 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ldtr));
|
---|
3820 | }
|
---|
3821 |
|
---|
3822 | IEMSELDESC DescSS;
|
---|
3823 | if (IEM_IS_V86_MODE(pVCpu))
|
---|
3824 | {
|
---|
3825 | pVCpu->iem.s.uCpl = 3;
|
---|
3826 | iemHlpLoadSelectorInV86Mode(pVCpu, &pCtx->es, uNewES);
|
---|
3827 | iemHlpLoadSelectorInV86Mode(pVCpu, &pCtx->cs, uNewCS);
|
---|
3828 | iemHlpLoadSelectorInV86Mode(pVCpu, &pCtx->ss, uNewSS);
|
---|
3829 | iemHlpLoadSelectorInV86Mode(pVCpu, &pCtx->ds, uNewDS);
|
---|
3830 | iemHlpLoadSelectorInV86Mode(pVCpu, &pCtx->fs, uNewFS);
|
---|
3831 | iemHlpLoadSelectorInV86Mode(pVCpu, &pCtx->gs, uNewGS);
|
---|
3832 | }
|
---|
3833 | else
|
---|
3834 | {
|
---|
3835 | uint8_t uNewCpl = (uNewCS & X86_SEL_RPL);
|
---|
3836 |
|
---|
3837 | /*
|
---|
3838 | * Load the stack segment for the new task.
|
---|
3839 | */
|
---|
3840 | if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
|
---|
3841 | {
|
---|
3842 | Log(("iemTaskSwitch: Null stack segment. enmTaskSwitch=%u uNewSS=%#x -> #TS\n", enmTaskSwitch, uNewSS));
|
---|
3843 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3844 | }
|
---|
3845 |
|
---|
3846 | /* Fetch the descriptor. */
|
---|
3847 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_TS);
|
---|
3848 | if (rcStrict != VINF_SUCCESS)
|
---|
3849 | {
|
---|
3850 | Log(("iemTaskSwitch: failed to fetch SS. uNewSS=%#x rc=%Rrc\n", uNewSS,
|
---|
3851 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3852 | return rcStrict;
|
---|
3853 | }
|
---|
3854 |
|
---|
3855 | /* SS must be a data segment and writable. */
|
---|
3856 | if ( !DescSS.Legacy.Gen.u1DescType
|
---|
3857 | || (DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
3858 | || !(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE))
|
---|
3859 | {
|
---|
3860 | Log(("iemTaskSwitch: SS invalid descriptor type. uNewSS=%#x u1DescType=%u u4Type=%#x\n",
|
---|
3861 | uNewSS, DescSS.Legacy.Gen.u1DescType, DescSS.Legacy.Gen.u4Type));
|
---|
3862 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3863 | }
|
---|
3864 |
|
---|
3865 | /* The SS.RPL, SS.DPL, CS.RPL (CPL) must be equal. */
|
---|
3866 | if ( (uNewSS & X86_SEL_RPL) != uNewCpl
|
---|
3867 | || DescSS.Legacy.Gen.u2Dpl != uNewCpl)
|
---|
3868 | {
|
---|
3869 | Log(("iemTaskSwitch: Invalid priv. for SS. uNewSS=%#x SS.DPL=%u uNewCpl=%u -> #TS\n", uNewSS, DescSS.Legacy.Gen.u2Dpl,
|
---|
3870 | uNewCpl));
|
---|
3871 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3872 | }
|
---|
3873 |
|
---|
3874 | /* Is it there? */
|
---|
3875 | if (!DescSS.Legacy.Gen.u1Present)
|
---|
3876 | {
|
---|
3877 | Log(("iemTaskSwitch: SS not present. uNewSS=%#x -> #NP\n", uNewSS));
|
---|
3878 | return iemRaiseSelectorNotPresentWithErr(pVCpu, uNewSS & X86_SEL_MASK_OFF_RPL);
|
---|
3879 | }
|
---|
3880 |
|
---|
3881 | uint32_t cbLimit = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3882 | uint64_t u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
3883 |
|
---|
3884 | /* Set the accessed bit before committing the result into SS. */
|
---|
3885 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3886 | {
|
---|
3887 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
|
---|
3888 | if (rcStrict != VINF_SUCCESS)
|
---|
3889 | return rcStrict;
|
---|
3890 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3891 | }
|
---|
3892 |
|
---|
3893 | /* Commit SS. */
|
---|
3894 | pCtx->ss.Sel = uNewSS;
|
---|
3895 | pCtx->ss.ValidSel = uNewSS;
|
---|
3896 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
3897 | pCtx->ss.u32Limit = cbLimit;
|
---|
3898 | pCtx->ss.u64Base = u64Base;
|
---|
3899 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3900 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
|
---|
3901 |
|
---|
3902 | /* CPL has changed, update IEM before loading rest of segments. */
|
---|
3903 | pVCpu->iem.s.uCpl = uNewCpl;
|
---|
3904 |
|
---|
3905 | /*
|
---|
3906 | * Load the data segments for the new task.
|
---|
3907 | */
|
---|
3908 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pCtx->es, uNewES);
|
---|
3909 | if (rcStrict != VINF_SUCCESS)
|
---|
3910 | return rcStrict;
|
---|
3911 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pCtx->ds, uNewDS);
|
---|
3912 | if (rcStrict != VINF_SUCCESS)
|
---|
3913 | return rcStrict;
|
---|
3914 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pCtx->fs, uNewFS);
|
---|
3915 | if (rcStrict != VINF_SUCCESS)
|
---|
3916 | return rcStrict;
|
---|
3917 | rcStrict = iemHlpTaskSwitchLoadDataSelectorInProtMode(pVCpu, &pCtx->gs, uNewGS);
|
---|
3918 | if (rcStrict != VINF_SUCCESS)
|
---|
3919 | return rcStrict;
|
---|
3920 |
|
---|
3921 | /*
|
---|
3922 | * Load the code segment for the new task.
|
---|
3923 | */
|
---|
3924 | if (!(uNewCS & X86_SEL_MASK_OFF_RPL))
|
---|
3925 | {
|
---|
3926 | Log(("iemTaskSwitch #TS: Null code segment. enmTaskSwitch=%u uNewCS=%#x\n", enmTaskSwitch, uNewCS));
|
---|
3927 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3928 | }
|
---|
3929 |
|
---|
3930 | /* Fetch the descriptor. */
|
---|
3931 | IEMSELDESC DescCS;
|
---|
3932 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_TS);
|
---|
3933 | if (rcStrict != VINF_SUCCESS)
|
---|
3934 | {
|
---|
3935 | Log(("iemTaskSwitch: failed to fetch CS. uNewCS=%u rc=%Rrc\n", uNewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3936 | return rcStrict;
|
---|
3937 | }
|
---|
3938 |
|
---|
3939 | /* CS must be a code segment. */
|
---|
3940 | if ( !DescCS.Legacy.Gen.u1DescType
|
---|
3941 | || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
3942 | {
|
---|
3943 | Log(("iemTaskSwitch: CS invalid descriptor type. uNewCS=%#x u1DescType=%u u4Type=%#x -> #TS\n", uNewCS,
|
---|
3944 | DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
|
---|
3945 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3946 | }
|
---|
3947 |
|
---|
3948 | /* For conforming CS, DPL must be less than or equal to the RPL. */
|
---|
3949 | if ( (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
3950 | && DescCS.Legacy.Gen.u2Dpl > (uNewCS & X86_SEL_RPL))
|
---|
3951 | {
|
---|
3952 | Log(("iemTaskSwitch: confirming CS DPL > RPL. uNewCS=%#x u4Type=%#x DPL=%u -> #TS\n", uNewCS, DescCS.Legacy.Gen.u4Type,
|
---|
3953 | DescCS.Legacy.Gen.u2Dpl));
|
---|
3954 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3955 | }
|
---|
3956 |
|
---|
3957 | /* For non-conforming CS, DPL must match RPL. */
|
---|
3958 | if ( !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
3959 | && DescCS.Legacy.Gen.u2Dpl != (uNewCS & X86_SEL_RPL))
|
---|
3960 | {
|
---|
3961 | Log(("iemTaskSwitch: non-confirming CS DPL RPL mismatch. uNewCS=%#x u4Type=%#x DPL=%u -> #TS\n", uNewCS,
|
---|
3962 | DescCS.Legacy.Gen.u4Type, DescCS.Legacy.Gen.u2Dpl));
|
---|
3963 | return iemRaiseTaskSwitchFaultWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3964 | }
|
---|
3965 |
|
---|
3966 | /* Is it there? */
|
---|
3967 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3968 | {
|
---|
3969 | Log(("iemTaskSwitch: CS not present. uNewCS=%#x -> #NP\n", uNewCS));
|
---|
3970 | return iemRaiseSelectorNotPresentWithErr(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
3971 | }
|
---|
3972 |
|
---|
3973 | cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3974 | u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3975 |
|
---|
3976 | /* Set the accessed bit before committing the result into CS. */
|
---|
3977 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3978 | {
|
---|
3979 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
|
---|
3980 | if (rcStrict != VINF_SUCCESS)
|
---|
3981 | return rcStrict;
|
---|
3982 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3983 | }
|
---|
3984 |
|
---|
3985 | /* Commit CS. */
|
---|
3986 | pCtx->cs.Sel = uNewCS;
|
---|
3987 | pCtx->cs.ValidSel = uNewCS;
|
---|
3988 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3989 | pCtx->cs.u32Limit = cbLimit;
|
---|
3990 | pCtx->cs.u64Base = u64Base;
|
---|
3991 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3992 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs));
|
---|
3993 | }
|
---|
3994 |
|
---|
3995 | /** @todo Debug trap. */
|
---|
3996 | if (fIsNewTSS386 && fNewDebugTrap)
|
---|
3997 | Log(("iemTaskSwitch: Debug Trap set in new TSS. Not implemented!\n"));
|
---|
3998 |
|
---|
3999 | /*
|
---|
4000 | * Construct the error code masks based on what caused this task switch.
|
---|
4001 | * See Intel Instruction reference for INT.
|
---|
4002 | */
|
---|
4003 | uint16_t uExt;
|
---|
4004 | if ( enmTaskSwitch == IEMTASKSWITCH_INT_XCPT
|
---|
4005 | && !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT))
|
---|
4006 | {
|
---|
4007 | uExt = 1;
|
---|
4008 | }
|
---|
4009 | else
|
---|
4010 | uExt = 0;
|
---|
4011 |
|
---|
4012 | /*
|
---|
4013 | * Push any error code on to the new stack.
|
---|
4014 | */
|
---|
4015 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
4016 | {
|
---|
4017 | Assert(enmTaskSwitch == IEMTASKSWITCH_INT_XCPT);
|
---|
4018 | uint32_t cbLimitSS = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
4019 | uint8_t const cbStackFrame = fIsNewTSS386 ? 4 : 2;
|
---|
4020 |
|
---|
4021 | /* Check that there is sufficient space on the stack. */
|
---|
4022 | /** @todo Factor out segment limit checking for normal/expand down segments
|
---|
4023 | * into a separate function. */
|
---|
4024 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_DOWN))
|
---|
4025 | {
|
---|
4026 | if ( pCtx->esp - 1 > cbLimitSS
|
---|
4027 | || pCtx->esp < cbStackFrame)
|
---|
4028 | {
|
---|
4029 | /** @todo Intel says \#SS(EXT) for INT/XCPT, I couldn't figure out AMD yet. */
|
---|
4030 | Log(("iemTaskSwitch: SS=%#x ESP=%#x cbStackFrame=%#x is out of bounds -> #SS\n", pCtx->ss.Sel, pCtx->esp,
|
---|
4031 | cbStackFrame));
|
---|
4032 | return iemRaiseStackSelectorNotPresentWithErr(pVCpu, uExt);
|
---|
4033 | }
|
---|
4034 | }
|
---|
4035 | else
|
---|
4036 | {
|
---|
4037 | if ( pCtx->esp - 1 > (DescSS.Legacy.Gen.u4Type & X86_DESC_DB ? UINT32_MAX : UINT32_C(0xffff))
|
---|
4038 | || pCtx->esp - cbStackFrame < cbLimitSS + UINT32_C(1))
|
---|
4039 | {
|
---|
4040 | Log(("iemTaskSwitch: SS=%#x ESP=%#x cbStackFrame=%#x (expand down) is out of bounds -> #SS\n", pCtx->ss.Sel, pCtx->esp,
|
---|
4041 | cbStackFrame));
|
---|
4042 | return iemRaiseStackSelectorNotPresentWithErr(pVCpu, uExt);
|
---|
4043 | }
|
---|
4044 | }
|
---|
4045 |
|
---|
4046 |
|
---|
4047 | if (fIsNewTSS386)
|
---|
4048 | rcStrict = iemMemStackPushU32(pVCpu, uErr);
|
---|
4049 | else
|
---|
4050 | rcStrict = iemMemStackPushU16(pVCpu, uErr);
|
---|
4051 | if (rcStrict != VINF_SUCCESS)
|
---|
4052 | {
|
---|
4053 | Log(("iemTaskSwitch: Can't push error code to new task's stack. %s-bit TSS. rc=%Rrc\n", fIsNewTSS386 ? "32" : "16",
|
---|
4054 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4055 | return rcStrict;
|
---|
4056 | }
|
---|
4057 | }
|
---|
4058 |
|
---|
4059 | /* Check the new EIP against the new CS limit. */
|
---|
4060 | if (pCtx->eip > pCtx->cs.u32Limit)
|
---|
4061 | {
|
---|
4062 | Log(("iemHlpTaskSwitchLoadDataSelectorInProtMode: New EIP exceeds CS limit. uNewEIP=%#RX32 CS limit=%u -> #GP(0)\n",
|
---|
4063 | pCtx->eip, pCtx->cs.u32Limit));
|
---|
4064 | /** @todo Intel says \#GP(EXT) for INT/XCPT, I couldn't figure out AMD yet. */
|
---|
4065 | return iemRaiseGeneralProtectionFault(pVCpu, uExt);
|
---|
4066 | }
|
---|
4067 |
|
---|
4068 | Log(("iemTaskSwitch: Success! New CS:EIP=%#04x:%#x SS=%#04x\n", pCtx->cs.Sel, pCtx->eip, pCtx->ss.Sel));
|
---|
4069 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
4070 | }
|
---|
4071 |
|
---|
4072 |
|
---|
4073 | /**
|
---|
4074 | * Implements exceptions and interrupts for protected mode.
|
---|
4075 | *
|
---|
4076 | * @returns VBox strict status code.
|
---|
4077 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4078 | * @param pCtx The CPU context.
|
---|
4079 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
4080 | * address.
|
---|
4081 | * @param u8Vector The interrupt / exception vector number.
|
---|
4082 | * @param fFlags The flags.
|
---|
4083 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
4084 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
4085 | */
|
---|
4086 | IEM_STATIC VBOXSTRICTRC
|
---|
4087 | iemRaiseXcptOrIntInProtMode(PVMCPU pVCpu,
|
---|
4088 | PCPUMCTX pCtx,
|
---|
4089 | uint8_t cbInstr,
|
---|
4090 | uint8_t u8Vector,
|
---|
4091 | uint32_t fFlags,
|
---|
4092 | uint16_t uErr,
|
---|
4093 | uint64_t uCr2)
|
---|
4094 | {
|
---|
4095 | /*
|
---|
4096 | * Read the IDT entry.
|
---|
4097 | */
|
---|
4098 | if (pCtx->idtr.cbIdt < UINT32_C(8) * u8Vector + 7)
|
---|
4099 | {
|
---|
4100 | Log(("RaiseXcptOrIntInProtMode: %#x is out of bounds (%#x)\n", u8Vector, pCtx->idtr.cbIdt));
|
---|
4101 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
4102 | }
|
---|
4103 | X86DESC Idte;
|
---|
4104 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &Idte.u, UINT8_MAX,
|
---|
4105 | pCtx->idtr.pIdt + UINT32_C(8) * u8Vector);
|
---|
4106 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
4107 | return rcStrict;
|
---|
4108 | Log(("iemRaiseXcptOrIntInProtMode: vec=%#x P=%u DPL=%u DT=%u:%u A=%u %04x:%04x%04x\n",
|
---|
4109 | u8Vector, Idte.Gate.u1Present, Idte.Gate.u2Dpl, Idte.Gate.u1DescType, Idte.Gate.u4Type,
|
---|
4110 | Idte.Gate.u4ParmCount, Idte.Gate.u16Sel, Idte.Gate.u16OffsetHigh, Idte.Gate.u16OffsetLow));
|
---|
4111 |
|
---|
4112 | /*
|
---|
4113 | * Check the descriptor type, DPL and such.
|
---|
4114 | * ASSUMES this is done in the same order as described for call-gate calls.
|
---|
4115 | */
|
---|
4116 | if (Idte.Gate.u1DescType)
|
---|
4117 | {
|
---|
4118 | Log(("RaiseXcptOrIntInProtMode %#x - not system selector (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
4119 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
4120 | }
|
---|
4121 | bool fTaskGate = false;
|
---|
4122 | uint8_t f32BitGate = true;
|
---|
4123 | uint32_t fEflToClear = X86_EFL_TF | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM;
|
---|
4124 | switch (Idte.Gate.u4Type)
|
---|
4125 | {
|
---|
4126 | case X86_SEL_TYPE_SYS_UNDEFINED:
|
---|
4127 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
4128 | case X86_SEL_TYPE_SYS_LDT:
|
---|
4129 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
4130 | case X86_SEL_TYPE_SYS_286_CALL_GATE:
|
---|
4131 | case X86_SEL_TYPE_SYS_UNDEFINED2:
|
---|
4132 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
4133 | case X86_SEL_TYPE_SYS_UNDEFINED3:
|
---|
4134 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
4135 | case X86_SEL_TYPE_SYS_386_CALL_GATE:
|
---|
4136 | case X86_SEL_TYPE_SYS_UNDEFINED4:
|
---|
4137 | {
|
---|
4138 | /** @todo check what actually happens when the type is wrong...
|
---|
4139 | * esp. call gates. */
|
---|
4140 | Log(("RaiseXcptOrIntInProtMode %#x - invalid type (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
4141 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
4142 | }
|
---|
4143 |
|
---|
4144 | case X86_SEL_TYPE_SYS_286_INT_GATE:
|
---|
4145 | f32BitGate = false;
|
---|
4146 | case X86_SEL_TYPE_SYS_386_INT_GATE:
|
---|
4147 | fEflToClear |= X86_EFL_IF;
|
---|
4148 | break;
|
---|
4149 |
|
---|
4150 | case X86_SEL_TYPE_SYS_TASK_GATE:
|
---|
4151 | fTaskGate = true;
|
---|
4152 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
4153 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Task gates\n"));
|
---|
4154 | #endif
|
---|
4155 | break;
|
---|
4156 |
|
---|
4157 | case X86_SEL_TYPE_SYS_286_TRAP_GATE:
|
---|
4158 | f32BitGate = false;
|
---|
4159 | case X86_SEL_TYPE_SYS_386_TRAP_GATE:
|
---|
4160 | break;
|
---|
4161 |
|
---|
4162 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
4163 | }
|
---|
4164 |
|
---|
4165 | /* Check DPL against CPL if applicable. */
|
---|
4166 | if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
4167 | {
|
---|
4168 | if (pVCpu->iem.s.uCpl > Idte.Gate.u2Dpl)
|
---|
4169 | {
|
---|
4170 | Log(("RaiseXcptOrIntInProtMode %#x - CPL (%d) > DPL (%d) -> #GP\n", u8Vector, pVCpu->iem.s.uCpl, Idte.Gate.u2Dpl));
|
---|
4171 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
4172 | }
|
---|
4173 | }
|
---|
4174 |
|
---|
4175 | /* Is it there? */
|
---|
4176 | if (!Idte.Gate.u1Present)
|
---|
4177 | {
|
---|
4178 | Log(("RaiseXcptOrIntInProtMode %#x - not present -> #NP\n", u8Vector));
|
---|
4179 | return iemRaiseSelectorNotPresentWithErr(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
4180 | }
|
---|
4181 |
|
---|
4182 | /* Is it a task-gate? */
|
---|
4183 | if (fTaskGate)
|
---|
4184 | {
|
---|
4185 | /*
|
---|
4186 | * Construct the error code masks based on what caused this task switch.
|
---|
4187 | * See Intel Instruction reference for INT.
|
---|
4188 | */
|
---|
4189 | uint16_t const uExt = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? 0 : 1;
|
---|
4190 | uint16_t const uSelMask = X86_SEL_MASK_OFF_RPL;
|
---|
4191 | RTSEL SelTSS = Idte.Gate.u16Sel;
|
---|
4192 |
|
---|
4193 | /*
|
---|
4194 | * Fetch the TSS descriptor in the GDT.
|
---|
4195 | */
|
---|
4196 | IEMSELDESC DescTSS;
|
---|
4197 | rcStrict = iemMemFetchSelDescWithErr(pVCpu, &DescTSS, SelTSS, X86_XCPT_GP, (SelTSS & uSelMask) | uExt);
|
---|
4198 | if (rcStrict != VINF_SUCCESS)
|
---|
4199 | {
|
---|
4200 | Log(("RaiseXcptOrIntInProtMode %#x - failed to fetch TSS selector %#x, rc=%Rrc\n", u8Vector, SelTSS,
|
---|
4201 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4202 | return rcStrict;
|
---|
4203 | }
|
---|
4204 |
|
---|
4205 | /* The TSS descriptor must be a system segment and be available (not busy). */
|
---|
4206 | if ( DescTSS.Legacy.Gen.u1DescType
|
---|
4207 | || ( DescTSS.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
4208 | && DescTSS.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL))
|
---|
4209 | {
|
---|
4210 | Log(("RaiseXcptOrIntInProtMode %#x - TSS selector %#x of task gate not a system descriptor or not available %#RX64\n",
|
---|
4211 | u8Vector, SelTSS, DescTSS.Legacy.au64));
|
---|
4212 | return iemRaiseGeneralProtectionFault(pVCpu, (SelTSS & uSelMask) | uExt);
|
---|
4213 | }
|
---|
4214 |
|
---|
4215 | /* The TSS must be present. */
|
---|
4216 | if (!DescTSS.Legacy.Gen.u1Present)
|
---|
4217 | {
|
---|
4218 | Log(("RaiseXcptOrIntInProtMode %#x - TSS selector %#x not present %#RX64\n", u8Vector, SelTSS, DescTSS.Legacy.au64));
|
---|
4219 | return iemRaiseSelectorNotPresentWithErr(pVCpu, (SelTSS & uSelMask) | uExt);
|
---|
4220 | }
|
---|
4221 |
|
---|
4222 | /* Do the actual task switch. */
|
---|
4223 | return iemTaskSwitch(pVCpu, pCtx, IEMTASKSWITCH_INT_XCPT, pCtx->eip, fFlags, uErr, uCr2, SelTSS, &DescTSS);
|
---|
4224 | }
|
---|
4225 |
|
---|
4226 | /* A null CS is bad. */
|
---|
4227 | RTSEL NewCS = Idte.Gate.u16Sel;
|
---|
4228 | if (!(NewCS & X86_SEL_MASK_OFF_RPL))
|
---|
4229 | {
|
---|
4230 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x -> #GP\n", u8Vector, NewCS));
|
---|
4231 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4232 | }
|
---|
4233 |
|
---|
4234 | /* Fetch the descriptor for the new CS. */
|
---|
4235 | IEMSELDESC DescCS;
|
---|
4236 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, NewCS, X86_XCPT_GP); /** @todo correct exception? */
|
---|
4237 | if (rcStrict != VINF_SUCCESS)
|
---|
4238 | {
|
---|
4239 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - rc=%Rrc\n", u8Vector, NewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4240 | return rcStrict;
|
---|
4241 | }
|
---|
4242 |
|
---|
4243 | /* Must be a code segment. */
|
---|
4244 | if (!DescCS.Legacy.Gen.u1DescType)
|
---|
4245 | {
|
---|
4246 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - system selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
4247 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
4248 | }
|
---|
4249 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
4250 | {
|
---|
4251 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - data selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
4252 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
4253 | }
|
---|
4254 |
|
---|
4255 | /* Don't allow lowering the privilege level. */
|
---|
4256 | /** @todo Does the lowering of privileges apply to software interrupts
|
---|
4257 | * only? This has bearings on the more-privileged or
|
---|
4258 | * same-privilege stack behavior further down. A testcase would
|
---|
4259 | * be nice. */
|
---|
4260 | if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
|
---|
4261 | {
|
---|
4262 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - DPL (%d) > CPL (%d) -> #GP\n",
|
---|
4263 | u8Vector, NewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
4264 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
4265 | }
|
---|
4266 |
|
---|
4267 | /* Make sure the selector is present. */
|
---|
4268 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
4269 | {
|
---|
4270 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - segment not present -> #NP\n", u8Vector, NewCS));
|
---|
4271 | return iemRaiseSelectorNotPresentBySelector(pVCpu, NewCS);
|
---|
4272 | }
|
---|
4273 |
|
---|
4274 | /* Check the new EIP against the new CS limit. */
|
---|
4275 | uint32_t const uNewEip = Idte.Gate.u4Type == X86_SEL_TYPE_SYS_286_INT_GATE
|
---|
4276 | || Idte.Gate.u4Type == X86_SEL_TYPE_SYS_286_TRAP_GATE
|
---|
4277 | ? Idte.Gate.u16OffsetLow
|
---|
4278 | : Idte.Gate.u16OffsetLow | ((uint32_t)Idte.Gate.u16OffsetHigh << 16);
|
---|
4279 | uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
4280 | if (uNewEip > cbLimitCS)
|
---|
4281 | {
|
---|
4282 | Log(("RaiseXcptOrIntInProtMode %#x - EIP=%#x > cbLimitCS=%#x (CS=%#x) -> #GP(0)\n",
|
---|
4283 | u8Vector, uNewEip, cbLimitCS, NewCS));
|
---|
4284 | return iemRaiseGeneralProtectionFault(pVCpu, 0);
|
---|
4285 | }
|
---|
4286 |
|
---|
4287 | /* Calc the flag image to push. */
|
---|
4288 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
4289 | if (fFlags & (IEM_XCPT_FLAGS_DRx_INSTR_BP | IEM_XCPT_FLAGS_T_SOFT_INT))
|
---|
4290 | fEfl &= ~X86_EFL_RF;
|
---|
4291 | else if (!IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
4292 | fEfl |= X86_EFL_RF; /* Vagueness is all I've found on this so far... */ /** @todo Automatically pushing EFLAGS.RF. */
|
---|
4293 |
|
---|
4294 | /* From V8086 mode only go to CPL 0. */
|
---|
4295 | uint8_t const uNewCpl = DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF
|
---|
4296 | ? pVCpu->iem.s.uCpl : DescCS.Legacy.Gen.u2Dpl;
|
---|
4297 | if ((fEfl & X86_EFL_VM) && uNewCpl != 0) /** @todo When exactly is this raised? */
|
---|
4298 | {
|
---|
4299 | Log(("RaiseXcptOrIntInProtMode %#x - CS=%#x - New CPL (%d) != 0 w/ VM=1 -> #GP\n", u8Vector, NewCS, uNewCpl));
|
---|
4300 | return iemRaiseGeneralProtectionFault(pVCpu, 0);
|
---|
4301 | }
|
---|
4302 |
|
---|
4303 | /*
|
---|
4304 | * If the privilege level changes, we need to get a new stack from the TSS.
|
---|
4305 | * This in turns means validating the new SS and ESP...
|
---|
4306 | */
|
---|
4307 | if (uNewCpl != pVCpu->iem.s.uCpl)
|
---|
4308 | {
|
---|
4309 | RTSEL NewSS;
|
---|
4310 | uint32_t uNewEsp;
|
---|
4311 | rcStrict = iemRaiseLoadStackFromTss32Or16(pVCpu, pCtx, uNewCpl, &NewSS, &uNewEsp);
|
---|
4312 | if (rcStrict != VINF_SUCCESS)
|
---|
4313 | return rcStrict;
|
---|
4314 |
|
---|
4315 | IEMSELDESC DescSS;
|
---|
4316 | rcStrict = iemMiscValidateNewSS(pVCpu, pCtx, NewSS, uNewCpl, &DescSS);
|
---|
4317 | if (rcStrict != VINF_SUCCESS)
|
---|
4318 | return rcStrict;
|
---|
4319 |
|
---|
4320 | /* Check that there is sufficient space for the stack frame. */
|
---|
4321 | uint32_t cbLimitSS = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
4322 | uint8_t const cbStackFrame = !(fEfl & X86_EFL_VM)
|
---|
4323 | ? (fFlags & IEM_XCPT_FLAGS_ERR ? 12 : 10) << f32BitGate
|
---|
4324 | : (fFlags & IEM_XCPT_FLAGS_ERR ? 20 : 18) << f32BitGate;
|
---|
4325 |
|
---|
4326 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_DOWN))
|
---|
4327 | {
|
---|
4328 | if ( uNewEsp - 1 > cbLimitSS
|
---|
4329 | || uNewEsp < cbStackFrame)
|
---|
4330 | {
|
---|
4331 | Log(("RaiseXcptOrIntInProtMode: %#x - SS=%#x ESP=%#x cbStackFrame=%#x is out of bounds -> #GP\n",
|
---|
4332 | u8Vector, NewSS, uNewEsp, cbStackFrame));
|
---|
4333 | return iemRaiseSelectorBoundsBySelector(pVCpu, NewSS);
|
---|
4334 | }
|
---|
4335 | }
|
---|
4336 | else
|
---|
4337 | {
|
---|
4338 | if ( uNewEsp - 1 > (DescSS.Legacy.Gen.u4Type & X86_DESC_DB ? UINT32_MAX : UINT32_C(0xffff))
|
---|
4339 | || uNewEsp - cbStackFrame < cbLimitSS + UINT32_C(1))
|
---|
4340 | {
|
---|
4341 | Log(("RaiseXcptOrIntInProtMode: %#x - SS=%#x ESP=%#x cbStackFrame=%#x (expand down) is out of bounds -> #GP\n",
|
---|
4342 | u8Vector, NewSS, uNewEsp, cbStackFrame));
|
---|
4343 | return iemRaiseSelectorBoundsBySelector(pVCpu, NewSS);
|
---|
4344 | }
|
---|
4345 | }
|
---|
4346 |
|
---|
4347 | /*
|
---|
4348 | * Start making changes.
|
---|
4349 | */
|
---|
4350 |
|
---|
4351 | /* Set the new CPL so that stack accesses use it. */
|
---|
4352 | uint8_t const uOldCpl = pVCpu->iem.s.uCpl;
|
---|
4353 | pVCpu->iem.s.uCpl = uNewCpl;
|
---|
4354 |
|
---|
4355 | /* Create the stack frame. */
|
---|
4356 | RTPTRUNION uStackFrame;
|
---|
4357 | rcStrict = iemMemMap(pVCpu, &uStackFrame.pv, cbStackFrame, UINT8_MAX,
|
---|
4358 | uNewEsp - cbStackFrame + X86DESC_BASE(&DescSS.Legacy), IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS); /* _SYS is a hack ... */
|
---|
4359 | if (rcStrict != VINF_SUCCESS)
|
---|
4360 | return rcStrict;
|
---|
4361 | void * const pvStackFrame = uStackFrame.pv;
|
---|
4362 | if (f32BitGate)
|
---|
4363 | {
|
---|
4364 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
4365 | *uStackFrame.pu32++ = uErr;
|
---|
4366 | uStackFrame.pu32[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pCtx->eip + cbInstr : pCtx->eip;
|
---|
4367 | uStackFrame.pu32[1] = (pCtx->cs.Sel & ~X86_SEL_RPL) | uOldCpl;
|
---|
4368 | uStackFrame.pu32[2] = fEfl;
|
---|
4369 | uStackFrame.pu32[3] = pCtx->esp;
|
---|
4370 | uStackFrame.pu32[4] = pCtx->ss.Sel;
|
---|
4371 | if (fEfl & X86_EFL_VM)
|
---|
4372 | {
|
---|
4373 | uStackFrame.pu32[1] = pCtx->cs.Sel;
|
---|
4374 | uStackFrame.pu32[5] = pCtx->es.Sel;
|
---|
4375 | uStackFrame.pu32[6] = pCtx->ds.Sel;
|
---|
4376 | uStackFrame.pu32[7] = pCtx->fs.Sel;
|
---|
4377 | uStackFrame.pu32[8] = pCtx->gs.Sel;
|
---|
4378 | }
|
---|
4379 | }
|
---|
4380 | else
|
---|
4381 | {
|
---|
4382 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
4383 | *uStackFrame.pu16++ = uErr;
|
---|
4384 | uStackFrame.pu16[0] = (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT) ? pCtx->ip + cbInstr : pCtx->ip;
|
---|
4385 | uStackFrame.pu16[1] = (pCtx->cs.Sel & ~X86_SEL_RPL) | uOldCpl;
|
---|
4386 | uStackFrame.pu16[2] = fEfl;
|
---|
4387 | uStackFrame.pu16[3] = pCtx->sp;
|
---|
4388 | uStackFrame.pu16[4] = pCtx->ss.Sel;
|
---|
4389 | if (fEfl & X86_EFL_VM)
|
---|
4390 | {
|
---|
4391 | uStackFrame.pu16[1] = pCtx->cs.Sel;
|
---|
4392 | uStackFrame.pu16[5] = pCtx->es.Sel;
|
---|
4393 | uStackFrame.pu16[6] = pCtx->ds.Sel;
|
---|
4394 | uStackFrame.pu16[7] = pCtx->fs.Sel;
|
---|
4395 | uStackFrame.pu16[8] = pCtx->gs.Sel;
|
---|
4396 | }
|
---|
4397 | }
|
---|
4398 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvStackFrame, IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS);
|
---|
4399 | if (rcStrict != VINF_SUCCESS)
|
---|
4400 | return rcStrict;
|
---|
4401 |
|
---|
4402 | /* Mark the selectors 'accessed' (hope this is the correct time). */
|
---|
4403 | /** @todo testcase: excatly _when_ are the accessed bits set - before or
|
---|
4404 | * after pushing the stack frame? (Write protect the gdt + stack to
|
---|
4405 | * find out.) */
|
---|
4406 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
4407 | {
|
---|
4408 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewCS);
|
---|
4409 | if (rcStrict != VINF_SUCCESS)
|
---|
4410 | return rcStrict;
|
---|
4411 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
4412 | }
|
---|
4413 |
|
---|
4414 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
4415 | {
|
---|
4416 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewSS);
|
---|
4417 | if (rcStrict != VINF_SUCCESS)
|
---|
4418 | return rcStrict;
|
---|
4419 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
4420 | }
|
---|
4421 |
|
---|
4422 | /*
|
---|
4423 | * Start comitting the register changes (joins with the DPL=CPL branch).
|
---|
4424 | */
|
---|
4425 | pCtx->ss.Sel = NewSS;
|
---|
4426 | pCtx->ss.ValidSel = NewSS;
|
---|
4427 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4428 | pCtx->ss.u32Limit = cbLimitSS;
|
---|
4429 | pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
4430 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
4431 | /** @todo When coming from 32-bit code and operating with a 16-bit TSS and
|
---|
4432 | * 16-bit handler, the high word of ESP remains unchanged (i.e. only
|
---|
4433 | * SP is loaded).
|
---|
4434 | * Need to check the other combinations too:
|
---|
4435 | * - 16-bit TSS, 32-bit handler
|
---|
4436 | * - 32-bit TSS, 16-bit handler */
|
---|
4437 | if (!pCtx->ss.Attr.n.u1DefBig)
|
---|
4438 | pCtx->sp = (uint16_t)(uNewEsp - cbStackFrame);
|
---|
4439 | else
|
---|
4440 | pCtx->rsp = uNewEsp - cbStackFrame;
|
---|
4441 |
|
---|
4442 | if (fEfl & X86_EFL_VM)
|
---|
4443 | {
|
---|
4444 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pCtx->gs);
|
---|
4445 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pCtx->fs);
|
---|
4446 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pCtx->es);
|
---|
4447 | iemHlpLoadNullDataSelectorOnV86Xcpt(pVCpu, &pCtx->ds);
|
---|
4448 | }
|
---|
4449 | }
|
---|
4450 | /*
|
---|
4451 | * Same privilege, no stack change and smaller stack frame.
|
---|
4452 | */
|
---|
4453 | else
|
---|
4454 | {
|
---|
4455 | uint64_t uNewRsp;
|
---|
4456 | RTPTRUNION uStackFrame;
|
---|
4457 | uint8_t const cbStackFrame = (fFlags & IEM_XCPT_FLAGS_ERR ? 8 : 6) << f32BitGate;
|
---|
4458 | rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbStackFrame, &uStackFrame.pv, &uNewRsp);
|
---|
4459 | if (rcStrict != VINF_SUCCESS)
|
---|
4460 | return rcStrict;
|
---|
4461 | void * const pvStackFrame = uStackFrame.pv;
|
---|
4462 |
|
---|
4463 | if (f32BitGate)
|
---|
4464 | {
|
---|
4465 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
4466 | *uStackFrame.pu32++ = uErr;
|
---|
4467 | uStackFrame.pu32[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pCtx->eip + cbInstr : pCtx->eip;
|
---|
4468 | uStackFrame.pu32[1] = (pCtx->cs.Sel & ~X86_SEL_RPL) | pVCpu->iem.s.uCpl;
|
---|
4469 | uStackFrame.pu32[2] = fEfl;
|
---|
4470 | }
|
---|
4471 | else
|
---|
4472 | {
|
---|
4473 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
4474 | *uStackFrame.pu16++ = uErr;
|
---|
4475 | uStackFrame.pu16[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pCtx->eip + cbInstr : pCtx->eip;
|
---|
4476 | uStackFrame.pu16[1] = (pCtx->cs.Sel & ~X86_SEL_RPL) | pVCpu->iem.s.uCpl;
|
---|
4477 | uStackFrame.pu16[2] = fEfl;
|
---|
4478 | }
|
---|
4479 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvStackFrame, IEM_ACCESS_STACK_W); /* don't use the commit here */
|
---|
4480 | if (rcStrict != VINF_SUCCESS)
|
---|
4481 | return rcStrict;
|
---|
4482 |
|
---|
4483 | /* Mark the CS selector as 'accessed'. */
|
---|
4484 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
4485 | {
|
---|
4486 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewCS);
|
---|
4487 | if (rcStrict != VINF_SUCCESS)
|
---|
4488 | return rcStrict;
|
---|
4489 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
4490 | }
|
---|
4491 |
|
---|
4492 | /*
|
---|
4493 | * Start committing the register changes (joins with the other branch).
|
---|
4494 | */
|
---|
4495 | pCtx->rsp = uNewRsp;
|
---|
4496 | }
|
---|
4497 |
|
---|
4498 | /* ... register committing continues. */
|
---|
4499 | pCtx->cs.Sel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
4500 | pCtx->cs.ValidSel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
4501 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4502 | pCtx->cs.u32Limit = cbLimitCS;
|
---|
4503 | pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
4504 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
4505 |
|
---|
4506 | pCtx->rip = uNewEip; /* (The entire register is modified, see pe16_32 bs3kit tests.) */
|
---|
4507 | fEfl &= ~fEflToClear;
|
---|
4508 | IEMMISC_SET_EFL(pVCpu, pCtx, fEfl);
|
---|
4509 |
|
---|
4510 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
4511 | pCtx->cr2 = uCr2;
|
---|
4512 |
|
---|
4513 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
4514 | iemRaiseXcptAdjustState(pCtx, u8Vector);
|
---|
4515 |
|
---|
4516 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
4517 | }
|
---|
4518 |
|
---|
4519 |
|
---|
4520 | /**
|
---|
4521 | * Implements exceptions and interrupts for long mode.
|
---|
4522 | *
|
---|
4523 | * @returns VBox strict status code.
|
---|
4524 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4525 | * @param pCtx The CPU context.
|
---|
4526 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
4527 | * address.
|
---|
4528 | * @param u8Vector The interrupt / exception vector number.
|
---|
4529 | * @param fFlags The flags.
|
---|
4530 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
4531 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
4532 | */
|
---|
4533 | IEM_STATIC VBOXSTRICTRC
|
---|
4534 | iemRaiseXcptOrIntInLongMode(PVMCPU pVCpu,
|
---|
4535 | PCPUMCTX pCtx,
|
---|
4536 | uint8_t cbInstr,
|
---|
4537 | uint8_t u8Vector,
|
---|
4538 | uint32_t fFlags,
|
---|
4539 | uint16_t uErr,
|
---|
4540 | uint64_t uCr2)
|
---|
4541 | {
|
---|
4542 | /*
|
---|
4543 | * Read the IDT entry.
|
---|
4544 | */
|
---|
4545 | uint16_t offIdt = (uint16_t)u8Vector << 4;
|
---|
4546 | if (pCtx->idtr.cbIdt < offIdt + 7)
|
---|
4547 | {
|
---|
4548 | Log(("iemRaiseXcptOrIntInLongMode: %#x is out of bounds (%#x)\n", u8Vector, pCtx->idtr.cbIdt));
|
---|
4549 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
4550 | }
|
---|
4551 | X86DESC64 Idte;
|
---|
4552 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &Idte.au64[0], UINT8_MAX, pCtx->idtr.pIdt + offIdt);
|
---|
4553 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
4554 | rcStrict = iemMemFetchSysU64(pVCpu, &Idte.au64[1], UINT8_MAX, pCtx->idtr.pIdt + offIdt + 8);
|
---|
4555 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
4556 | return rcStrict;
|
---|
4557 | Log(("iemRaiseXcptOrIntInLongMode: vec=%#x P=%u DPL=%u DT=%u:%u IST=%u %04x:%08x%04x%04x\n",
|
---|
4558 | u8Vector, Idte.Gate.u1Present, Idte.Gate.u2Dpl, Idte.Gate.u1DescType, Idte.Gate.u4Type,
|
---|
4559 | Idte.Gate.u3IST, Idte.Gate.u16Sel, Idte.Gate.u32OffsetTop, Idte.Gate.u16OffsetHigh, Idte.Gate.u16OffsetLow));
|
---|
4560 |
|
---|
4561 | /*
|
---|
4562 | * Check the descriptor type, DPL and such.
|
---|
4563 | * ASSUMES this is done in the same order as described for call-gate calls.
|
---|
4564 | */
|
---|
4565 | if (Idte.Gate.u1DescType)
|
---|
4566 | {
|
---|
4567 | Log(("iemRaiseXcptOrIntInLongMode %#x - not system selector (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
4568 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
4569 | }
|
---|
4570 | uint32_t fEflToClear = X86_EFL_TF | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM;
|
---|
4571 | switch (Idte.Gate.u4Type)
|
---|
4572 | {
|
---|
4573 | case AMD64_SEL_TYPE_SYS_INT_GATE:
|
---|
4574 | fEflToClear |= X86_EFL_IF;
|
---|
4575 | break;
|
---|
4576 | case AMD64_SEL_TYPE_SYS_TRAP_GATE:
|
---|
4577 | break;
|
---|
4578 |
|
---|
4579 | default:
|
---|
4580 | Log(("iemRaiseXcptOrIntInLongMode %#x - invalid type (%#x) -> #GP\n", u8Vector, Idte.Gate.u4Type));
|
---|
4581 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
4582 | }
|
---|
4583 |
|
---|
4584 | /* Check DPL against CPL if applicable. */
|
---|
4585 | if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
4586 | {
|
---|
4587 | if (pVCpu->iem.s.uCpl > Idte.Gate.u2Dpl)
|
---|
4588 | {
|
---|
4589 | Log(("iemRaiseXcptOrIntInLongMode %#x - CPL (%d) > DPL (%d) -> #GP\n", u8Vector, pVCpu->iem.s.uCpl, Idte.Gate.u2Dpl));
|
---|
4590 | return iemRaiseGeneralProtectionFault(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
4591 | }
|
---|
4592 | }
|
---|
4593 |
|
---|
4594 | /* Is it there? */
|
---|
4595 | if (!Idte.Gate.u1Present)
|
---|
4596 | {
|
---|
4597 | Log(("iemRaiseXcptOrIntInLongMode %#x - not present -> #NP\n", u8Vector));
|
---|
4598 | return iemRaiseSelectorNotPresentWithErr(pVCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Vector << X86_TRAP_ERR_SEL_SHIFT));
|
---|
4599 | }
|
---|
4600 |
|
---|
4601 | /* A null CS is bad. */
|
---|
4602 | RTSEL NewCS = Idte.Gate.u16Sel;
|
---|
4603 | if (!(NewCS & X86_SEL_MASK_OFF_RPL))
|
---|
4604 | {
|
---|
4605 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x -> #GP\n", u8Vector, NewCS));
|
---|
4606 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4607 | }
|
---|
4608 |
|
---|
4609 | /* Fetch the descriptor for the new CS. */
|
---|
4610 | IEMSELDESC DescCS;
|
---|
4611 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, NewCS, X86_XCPT_GP);
|
---|
4612 | if (rcStrict != VINF_SUCCESS)
|
---|
4613 | {
|
---|
4614 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - rc=%Rrc\n", u8Vector, NewCS, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4615 | return rcStrict;
|
---|
4616 | }
|
---|
4617 |
|
---|
4618 | /* Must be a 64-bit code segment. */
|
---|
4619 | if (!DescCS.Long.Gen.u1DescType)
|
---|
4620 | {
|
---|
4621 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - system selector (%#x) -> #GP\n", u8Vector, NewCS, DescCS.Legacy.Gen.u4Type));
|
---|
4622 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
4623 | }
|
---|
4624 | if ( !DescCS.Long.Gen.u1Long
|
---|
4625 | || DescCS.Long.Gen.u1DefBig
|
---|
4626 | || !(DescCS.Long.Gen.u4Type & X86_SEL_TYPE_CODE) )
|
---|
4627 | {
|
---|
4628 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - not 64-bit code selector (%#x, L=%u, D=%u) -> #GP\n",
|
---|
4629 | u8Vector, NewCS, DescCS.Legacy.Gen.u4Type, DescCS.Long.Gen.u1Long, DescCS.Long.Gen.u1DefBig));
|
---|
4630 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
4631 | }
|
---|
4632 |
|
---|
4633 | /* Don't allow lowering the privilege level. For non-conforming CS
|
---|
4634 | selectors, the CS.DPL sets the privilege level the trap/interrupt
|
---|
4635 | handler runs at. For conforming CS selectors, the CPL remains
|
---|
4636 | unchanged, but the CS.DPL must be <= CPL. */
|
---|
4637 | /** @todo Testcase: Interrupt handler with CS.DPL=1, interrupt dispatched
|
---|
4638 | * when CPU in Ring-0. Result \#GP? */
|
---|
4639 | if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
|
---|
4640 | {
|
---|
4641 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - DPL (%d) > CPL (%d) -> #GP\n",
|
---|
4642 | u8Vector, NewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
4643 | return iemRaiseGeneralProtectionFault(pVCpu, NewCS & X86_SEL_MASK_OFF_RPL);
|
---|
4644 | }
|
---|
4645 |
|
---|
4646 |
|
---|
4647 | /* Make sure the selector is present. */
|
---|
4648 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
4649 | {
|
---|
4650 | Log(("iemRaiseXcptOrIntInLongMode %#x - CS=%#x - segment not present -> #NP\n", u8Vector, NewCS));
|
---|
4651 | return iemRaiseSelectorNotPresentBySelector(pVCpu, NewCS);
|
---|
4652 | }
|
---|
4653 |
|
---|
4654 | /* Check that the new RIP is canonical. */
|
---|
4655 | uint64_t const uNewRip = Idte.Gate.u16OffsetLow
|
---|
4656 | | ((uint32_t)Idte.Gate.u16OffsetHigh << 16)
|
---|
4657 | | ((uint64_t)Idte.Gate.u32OffsetTop << 32);
|
---|
4658 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
4659 | {
|
---|
4660 | Log(("iemRaiseXcptOrIntInLongMode %#x - RIP=%#RX64 - Not canonical -> #GP(0)\n", u8Vector, uNewRip));
|
---|
4661 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4662 | }
|
---|
4663 |
|
---|
4664 | /*
|
---|
4665 | * If the privilege level changes or if the IST isn't zero, we need to get
|
---|
4666 | * a new stack from the TSS.
|
---|
4667 | */
|
---|
4668 | uint64_t uNewRsp;
|
---|
4669 | uint8_t const uNewCpl = DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF
|
---|
4670 | ? pVCpu->iem.s.uCpl : DescCS.Legacy.Gen.u2Dpl;
|
---|
4671 | if ( uNewCpl != pVCpu->iem.s.uCpl
|
---|
4672 | || Idte.Gate.u3IST != 0)
|
---|
4673 | {
|
---|
4674 | rcStrict = iemRaiseLoadStackFromTss64(pVCpu, pCtx, uNewCpl, Idte.Gate.u3IST, &uNewRsp);
|
---|
4675 | if (rcStrict != VINF_SUCCESS)
|
---|
4676 | return rcStrict;
|
---|
4677 | }
|
---|
4678 | else
|
---|
4679 | uNewRsp = pCtx->rsp;
|
---|
4680 | uNewRsp &= ~(uint64_t)0xf;
|
---|
4681 |
|
---|
4682 | /*
|
---|
4683 | * Calc the flag image to push.
|
---|
4684 | */
|
---|
4685 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
4686 | if (fFlags & (IEM_XCPT_FLAGS_DRx_INSTR_BP | IEM_XCPT_FLAGS_T_SOFT_INT))
|
---|
4687 | fEfl &= ~X86_EFL_RF;
|
---|
4688 | else if (!IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
4689 | fEfl |= X86_EFL_RF; /* Vagueness is all I've found on this so far... */ /** @todo Automatically pushing EFLAGS.RF. */
|
---|
4690 |
|
---|
4691 | /*
|
---|
4692 | * Start making changes.
|
---|
4693 | */
|
---|
4694 | /* Set the new CPL so that stack accesses use it. */
|
---|
4695 | uint8_t const uOldCpl = pVCpu->iem.s.uCpl;
|
---|
4696 | pVCpu->iem.s.uCpl = uNewCpl;
|
---|
4697 |
|
---|
4698 | /* Create the stack frame. */
|
---|
4699 | uint32_t cbStackFrame = sizeof(uint64_t) * (5 + !!(fFlags & IEM_XCPT_FLAGS_ERR));
|
---|
4700 | RTPTRUNION uStackFrame;
|
---|
4701 | rcStrict = iemMemMap(pVCpu, &uStackFrame.pv, cbStackFrame, UINT8_MAX,
|
---|
4702 | uNewRsp - cbStackFrame, IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS); /* _SYS is a hack ... */
|
---|
4703 | if (rcStrict != VINF_SUCCESS)
|
---|
4704 | return rcStrict;
|
---|
4705 | void * const pvStackFrame = uStackFrame.pv;
|
---|
4706 |
|
---|
4707 | if (fFlags & IEM_XCPT_FLAGS_ERR)
|
---|
4708 | *uStackFrame.pu64++ = uErr;
|
---|
4709 | uStackFrame.pu64[0] = fFlags & IEM_XCPT_FLAGS_T_SOFT_INT ? pCtx->rip + cbInstr : pCtx->rip;
|
---|
4710 | uStackFrame.pu64[1] = (pCtx->cs.Sel & ~X86_SEL_RPL) | uOldCpl; /* CPL paranoia */
|
---|
4711 | uStackFrame.pu64[2] = fEfl;
|
---|
4712 | uStackFrame.pu64[3] = pCtx->rsp;
|
---|
4713 | uStackFrame.pu64[4] = pCtx->ss.Sel;
|
---|
4714 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvStackFrame, IEM_ACCESS_STACK_W | IEM_ACCESS_WHAT_SYS);
|
---|
4715 | if (rcStrict != VINF_SUCCESS)
|
---|
4716 | return rcStrict;
|
---|
4717 |
|
---|
4718 | /* Mark the CS selectors 'accessed' (hope this is the correct time). */
|
---|
4719 | /** @todo testcase: excatly _when_ are the accessed bits set - before or
|
---|
4720 | * after pushing the stack frame? (Write protect the gdt + stack to
|
---|
4721 | * find out.) */
|
---|
4722 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
4723 | {
|
---|
4724 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, NewCS);
|
---|
4725 | if (rcStrict != VINF_SUCCESS)
|
---|
4726 | return rcStrict;
|
---|
4727 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
4728 | }
|
---|
4729 |
|
---|
4730 | /*
|
---|
4731 | * Start comitting the register changes.
|
---|
4732 | */
|
---|
4733 | /** @todo research/testcase: Figure out what VT-x and AMD-V loads into the
|
---|
4734 | * hidden registers when interrupting 32-bit or 16-bit code! */
|
---|
4735 | if (uNewCpl != uOldCpl)
|
---|
4736 | {
|
---|
4737 | pCtx->ss.Sel = 0 | uNewCpl;
|
---|
4738 | pCtx->ss.ValidSel = 0 | uNewCpl;
|
---|
4739 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4740 | pCtx->ss.u32Limit = UINT32_MAX;
|
---|
4741 | pCtx->ss.u64Base = 0;
|
---|
4742 | pCtx->ss.Attr.u = (uNewCpl << X86DESCATTR_DPL_SHIFT) | X86DESCATTR_UNUSABLE;
|
---|
4743 | }
|
---|
4744 | pCtx->rsp = uNewRsp - cbStackFrame;
|
---|
4745 | pCtx->cs.Sel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
4746 | pCtx->cs.ValidSel = (NewCS & ~X86_SEL_RPL) | uNewCpl;
|
---|
4747 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4748 | pCtx->cs.u32Limit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
4749 | pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
4750 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
4751 | pCtx->rip = uNewRip;
|
---|
4752 |
|
---|
4753 | fEfl &= ~fEflToClear;
|
---|
4754 | IEMMISC_SET_EFL(pVCpu, pCtx, fEfl);
|
---|
4755 |
|
---|
4756 | if (fFlags & IEM_XCPT_FLAGS_CR2)
|
---|
4757 | pCtx->cr2 = uCr2;
|
---|
4758 |
|
---|
4759 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
4760 | iemRaiseXcptAdjustState(pCtx, u8Vector);
|
---|
4761 |
|
---|
4762 | return fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT ? VINF_IEM_RAISED_XCPT : VINF_SUCCESS;
|
---|
4763 | }
|
---|
4764 |
|
---|
4765 |
|
---|
4766 | /**
|
---|
4767 | * Implements exceptions and interrupts.
|
---|
4768 | *
|
---|
4769 | * All exceptions and interrupts goes thru this function!
|
---|
4770 | *
|
---|
4771 | * @returns VBox strict status code.
|
---|
4772 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4773 | * @param cbInstr The number of bytes to offset rIP by in the return
|
---|
4774 | * address.
|
---|
4775 | * @param u8Vector The interrupt / exception vector number.
|
---|
4776 | * @param fFlags The flags.
|
---|
4777 | * @param uErr The error value if IEM_XCPT_FLAGS_ERR is set.
|
---|
4778 | * @param uCr2 The CR2 value if IEM_XCPT_FLAGS_CR2 is set.
|
---|
4779 | */
|
---|
4780 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC)
|
---|
4781 | iemRaiseXcptOrInt(PVMCPU pVCpu,
|
---|
4782 | uint8_t cbInstr,
|
---|
4783 | uint8_t u8Vector,
|
---|
4784 | uint32_t fFlags,
|
---|
4785 | uint16_t uErr,
|
---|
4786 | uint64_t uCr2)
|
---|
4787 | {
|
---|
4788 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4789 | #ifdef IN_RING0
|
---|
4790 | int rc = HMR0EnsureCompleteBasicContext(pVCpu, pCtx);
|
---|
4791 | AssertRCReturn(rc, rc);
|
---|
4792 | #endif
|
---|
4793 |
|
---|
4794 | #ifndef IEM_WITH_CODE_TLB /** @todo we're doing it afterwards too, that should suffice... */
|
---|
4795 | /*
|
---|
4796 | * Flush prefetch buffer
|
---|
4797 | */
|
---|
4798 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
4799 | #endif
|
---|
4800 |
|
---|
4801 | /*
|
---|
4802 | * Perform the V8086 IOPL check and upgrade the fault without nesting.
|
---|
4803 | */
|
---|
4804 | if ( pCtx->eflags.Bits.u1VM
|
---|
4805 | && pCtx->eflags.Bits.u2IOPL != 3
|
---|
4806 | && (fFlags & (IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
|
---|
4807 | && (pCtx->cr0 & X86_CR0_PE) )
|
---|
4808 | {
|
---|
4809 | Log(("iemRaiseXcptOrInt: V8086 IOPL check failed for int %#x -> #GP(0)\n", u8Vector));
|
---|
4810 | fFlags = IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR;
|
---|
4811 | u8Vector = X86_XCPT_GP;
|
---|
4812 | uErr = 0;
|
---|
4813 | }
|
---|
4814 | #ifdef DBGFTRACE_ENABLED
|
---|
4815 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "Xcpt/%u: %02x %u %x %x %llx %04x:%04llx %04x:%04llx",
|
---|
4816 | pVCpu->iem.s.cXcptRecursions, u8Vector, cbInstr, fFlags, uErr, uCr2,
|
---|
4817 | pCtx->cs.Sel, pCtx->rip, pCtx->ss.Sel, pCtx->rsp);
|
---|
4818 | #endif
|
---|
4819 |
|
---|
4820 | /*
|
---|
4821 | * Do recursion accounting.
|
---|
4822 | */
|
---|
4823 | uint8_t const uPrevXcpt = pVCpu->iem.s.uCurXcpt;
|
---|
4824 | uint32_t const fPrevXcpt = pVCpu->iem.s.fCurXcpt;
|
---|
4825 | if (pVCpu->iem.s.cXcptRecursions == 0)
|
---|
4826 | Log(("iemRaiseXcptOrInt: %#x at %04x:%RGv cbInstr=%#x fFlags=%#x uErr=%#x uCr2=%llx\n",
|
---|
4827 | u8Vector, pCtx->cs.Sel, pCtx->rip, cbInstr, fFlags, uErr, uCr2));
|
---|
4828 | else
|
---|
4829 | {
|
---|
4830 | Log(("iemRaiseXcptOrInt: %#x at %04x:%RGv cbInstr=%#x fFlags=%#x uErr=%#x uCr2=%llx; prev=%#x depth=%d flags=%#x\n",
|
---|
4831 | u8Vector, pCtx->cs.Sel, pCtx->rip, cbInstr, fFlags, uErr, uCr2, pVCpu->iem.s.uCurXcpt, pVCpu->iem.s.cXcptRecursions + 1, fPrevXcpt));
|
---|
4832 |
|
---|
4833 | /** @todo double and tripple faults. */
|
---|
4834 | if (pVCpu->iem.s.cXcptRecursions >= 3)
|
---|
4835 | {
|
---|
4836 | #ifdef DEBUG_bird
|
---|
4837 | AssertFailed();
|
---|
4838 | #endif
|
---|
4839 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Too many fault nestings.\n"));
|
---|
4840 | }
|
---|
4841 |
|
---|
4842 | /** @todo set X86_TRAP_ERR_EXTERNAL when appropriate.
|
---|
4843 | if (fPrevXcpt & IEM_XCPT_FLAGS_T_EXT_INT)
|
---|
4844 | {
|
---|
4845 | ....
|
---|
4846 | } */
|
---|
4847 | }
|
---|
4848 | pVCpu->iem.s.cXcptRecursions++;
|
---|
4849 | pVCpu->iem.s.uCurXcpt = u8Vector;
|
---|
4850 | pVCpu->iem.s.fCurXcpt = fFlags;
|
---|
4851 |
|
---|
4852 | /*
|
---|
4853 | * Extensive logging.
|
---|
4854 | */
|
---|
4855 | #if defined(LOG_ENABLED) && defined(IN_RING3)
|
---|
4856 | if (LogIs3Enabled())
|
---|
4857 | {
|
---|
4858 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4859 | char szRegs[4096];
|
---|
4860 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
4861 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
4862 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
4863 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
4864 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
4865 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
4866 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
4867 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
4868 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
4869 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
4870 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
4871 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
4872 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
4873 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
4874 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
4875 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
4876 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
4877 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
4878 | " efer=%016VR{efer}\n"
|
---|
4879 | " pat=%016VR{pat}\n"
|
---|
4880 | " sf_mask=%016VR{sf_mask}\n"
|
---|
4881 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
4882 | " lstar=%016VR{lstar}\n"
|
---|
4883 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
4884 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
4885 | );
|
---|
4886 |
|
---|
4887 | char szInstr[256];
|
---|
4888 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
4889 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
4890 | szInstr, sizeof(szInstr), NULL);
|
---|
4891 | Log3(("%s%s\n", szRegs, szInstr));
|
---|
4892 | }
|
---|
4893 | #endif /* LOG_ENABLED */
|
---|
4894 |
|
---|
4895 | /*
|
---|
4896 | * Call the mode specific worker function.
|
---|
4897 | */
|
---|
4898 | VBOXSTRICTRC rcStrict;
|
---|
4899 | if (!(pCtx->cr0 & X86_CR0_PE))
|
---|
4900 | rcStrict = iemRaiseXcptOrIntInRealMode(pVCpu, pCtx, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4901 | else if (pCtx->msrEFER & MSR_K6_EFER_LMA)
|
---|
4902 | rcStrict = iemRaiseXcptOrIntInLongMode(pVCpu, pCtx, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4903 | else
|
---|
4904 | rcStrict = iemRaiseXcptOrIntInProtMode(pVCpu, pCtx, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4905 |
|
---|
4906 | /* Flush the prefetch buffer. */
|
---|
4907 | #ifdef IEM_WITH_CODE_TLB
|
---|
4908 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
4909 | #else
|
---|
4910 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
4911 | #endif
|
---|
4912 |
|
---|
4913 | /*
|
---|
4914 | * Unwind.
|
---|
4915 | */
|
---|
4916 | pVCpu->iem.s.cXcptRecursions--;
|
---|
4917 | pVCpu->iem.s.uCurXcpt = uPrevXcpt;
|
---|
4918 | pVCpu->iem.s.fCurXcpt = fPrevXcpt;
|
---|
4919 | Log(("iemRaiseXcptOrInt: returns %Rrc (vec=%#x); cs:rip=%04x:%RGv ss:rsp=%04x:%RGv cpl=%u\n",
|
---|
4920 | VBOXSTRICTRC_VAL(rcStrict), u8Vector, pCtx->cs.Sel, pCtx->rip, pCtx->ss.Sel, pCtx->esp, pVCpu->iem.s.uCpl));
|
---|
4921 | return rcStrict;
|
---|
4922 | }
|
---|
4923 |
|
---|
4924 | #ifdef IEM_WITH_SETJMP
|
---|
4925 | /**
|
---|
4926 | * See iemRaiseXcptOrInt. Will not return.
|
---|
4927 | */
|
---|
4928 | IEM_STATIC DECL_NO_RETURN(void)
|
---|
4929 | iemRaiseXcptOrIntJmp(PVMCPU pVCpu,
|
---|
4930 | uint8_t cbInstr,
|
---|
4931 | uint8_t u8Vector,
|
---|
4932 | uint32_t fFlags,
|
---|
4933 | uint16_t uErr,
|
---|
4934 | uint64_t uCr2)
|
---|
4935 | {
|
---|
4936 | VBOXSTRICTRC rcStrict = iemRaiseXcptOrInt(pVCpu, cbInstr, u8Vector, fFlags, uErr, uCr2);
|
---|
4937 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
4938 | }
|
---|
4939 | #endif
|
---|
4940 |
|
---|
4941 |
|
---|
4942 | /** \#DE - 00. */
|
---|
4943 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseDivideError(PVMCPU pVCpu)
|
---|
4944 | {
|
---|
4945 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_DE, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4946 | }
|
---|
4947 |
|
---|
4948 |
|
---|
4949 | /** \#DB - 01.
|
---|
4950 | * @note This automatically clear DR7.GD. */
|
---|
4951 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseDebugException(PVMCPU pVCpu)
|
---|
4952 | {
|
---|
4953 | /** @todo set/clear RF. */
|
---|
4954 | IEM_GET_CTX(pVCpu)->dr[7] &= ~X86_DR7_GD;
|
---|
4955 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_DB, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4956 | }
|
---|
4957 |
|
---|
4958 |
|
---|
4959 | /** \#UD - 06. */
|
---|
4960 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseUndefinedOpcode(PVMCPU pVCpu)
|
---|
4961 | {
|
---|
4962 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4963 | }
|
---|
4964 |
|
---|
4965 |
|
---|
4966 | /** \#NM - 07. */
|
---|
4967 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseDeviceNotAvailable(PVMCPU pVCpu)
|
---|
4968 | {
|
---|
4969 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_NM, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
4970 | }
|
---|
4971 |
|
---|
4972 |
|
---|
4973 | /** \#TS(err) - 0a. */
|
---|
4974 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseTaskSwitchFaultWithErr(PVMCPU pVCpu, uint16_t uErr)
|
---|
4975 | {
|
---|
4976 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
4977 | }
|
---|
4978 |
|
---|
4979 |
|
---|
4980 | /** \#TS(tr) - 0a. */
|
---|
4981 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseTaskSwitchFaultCurrentTSS(PVMCPU pVCpu)
|
---|
4982 | {
|
---|
4983 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4984 | IEM_GET_CTX(pVCpu)->tr.Sel, 0);
|
---|
4985 | }
|
---|
4986 |
|
---|
4987 |
|
---|
4988 | /** \#TS(0) - 0a. */
|
---|
4989 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseTaskSwitchFault0(PVMCPU pVCpu)
|
---|
4990 | {
|
---|
4991 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
4992 | 0, 0);
|
---|
4993 | }
|
---|
4994 |
|
---|
4995 |
|
---|
4996 | /** \#TS(err) - 0a. */
|
---|
4997 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseTaskSwitchFaultBySelector(PVMCPU pVCpu, uint16_t uSel)
|
---|
4998 | {
|
---|
4999 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_TS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
5000 | uSel & X86_SEL_MASK_OFF_RPL, 0);
|
---|
5001 | }
|
---|
5002 |
|
---|
5003 |
|
---|
5004 | /** \#NP(err) - 0b. */
|
---|
5005 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorNotPresentWithErr(PVMCPU pVCpu, uint16_t uErr)
|
---|
5006 | {
|
---|
5007 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_NP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
5008 | }
|
---|
5009 |
|
---|
5010 |
|
---|
5011 | /** \#NP(seg) - 0b. */
|
---|
5012 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorNotPresentBySegReg(PVMCPU pVCpu, uint32_t iSegReg)
|
---|
5013 | {
|
---|
5014 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_NP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
5015 | iemSRegFetchU16(pVCpu, iSegReg) & ~X86_SEL_RPL, 0);
|
---|
5016 | }
|
---|
5017 |
|
---|
5018 |
|
---|
5019 | /** \#NP(sel) - 0b. */
|
---|
5020 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorNotPresentBySelector(PVMCPU pVCpu, uint16_t uSel)
|
---|
5021 | {
|
---|
5022 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_NP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
5023 | uSel & ~X86_SEL_RPL, 0);
|
---|
5024 | }
|
---|
5025 |
|
---|
5026 |
|
---|
5027 | /** \#SS(seg) - 0c. */
|
---|
5028 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseStackSelectorNotPresentBySelector(PVMCPU pVCpu, uint16_t uSel)
|
---|
5029 | {
|
---|
5030 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_SS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
5031 | uSel & ~X86_SEL_RPL, 0);
|
---|
5032 | }
|
---|
5033 |
|
---|
5034 |
|
---|
5035 | /** \#SS(err) - 0c. */
|
---|
5036 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseStackSelectorNotPresentWithErr(PVMCPU pVCpu, uint16_t uErr)
|
---|
5037 | {
|
---|
5038 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_SS, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
5039 | }
|
---|
5040 |
|
---|
5041 |
|
---|
5042 | /** \#GP(n) - 0d. */
|
---|
5043 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseGeneralProtectionFault(PVMCPU pVCpu, uint16_t uErr)
|
---|
5044 | {
|
---|
5045 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErr, 0);
|
---|
5046 | }
|
---|
5047 |
|
---|
5048 |
|
---|
5049 | /** \#GP(0) - 0d. */
|
---|
5050 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseGeneralProtectionFault0(PVMCPU pVCpu)
|
---|
5051 | {
|
---|
5052 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
5053 | }
|
---|
5054 |
|
---|
5055 | #ifdef IEM_WITH_SETJMP
|
---|
5056 | /** \#GP(0) - 0d. */
|
---|
5057 | DECL_NO_INLINE(IEM_STATIC, DECL_NO_RETURN(void)) iemRaiseGeneralProtectionFault0Jmp(PVMCPU pVCpu)
|
---|
5058 | {
|
---|
5059 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
5060 | }
|
---|
5061 | #endif
|
---|
5062 |
|
---|
5063 |
|
---|
5064 | /** \#GP(sel) - 0d. */
|
---|
5065 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseGeneralProtectionFaultBySelector(PVMCPU pVCpu, RTSEL Sel)
|
---|
5066 | {
|
---|
5067 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
5068 | Sel & ~X86_SEL_RPL, 0);
|
---|
5069 | }
|
---|
5070 |
|
---|
5071 |
|
---|
5072 | /** \#GP(0) - 0d. */
|
---|
5073 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseNotCanonical(PVMCPU pVCpu)
|
---|
5074 | {
|
---|
5075 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
5076 | }
|
---|
5077 |
|
---|
5078 |
|
---|
5079 | /** \#GP(sel) - 0d. */
|
---|
5080 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorBounds(PVMCPU pVCpu, uint32_t iSegReg, uint32_t fAccess)
|
---|
5081 | {
|
---|
5082 | NOREF(iSegReg); NOREF(fAccess);
|
---|
5083 | return iemRaiseXcptOrInt(pVCpu, 0, iSegReg == X86_SREG_SS ? X86_XCPT_SS : X86_XCPT_GP,
|
---|
5084 | IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
5085 | }
|
---|
5086 |
|
---|
5087 | #ifdef IEM_WITH_SETJMP
|
---|
5088 | /** \#GP(sel) - 0d, longjmp. */
|
---|
5089 | DECL_NO_INLINE(IEM_STATIC, DECL_NO_RETURN(void)) iemRaiseSelectorBoundsJmp(PVMCPU pVCpu, uint32_t iSegReg, uint32_t fAccess)
|
---|
5090 | {
|
---|
5091 | NOREF(iSegReg); NOREF(fAccess);
|
---|
5092 | iemRaiseXcptOrIntJmp(pVCpu, 0, iSegReg == X86_SREG_SS ? X86_XCPT_SS : X86_XCPT_GP,
|
---|
5093 | IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
5094 | }
|
---|
5095 | #endif
|
---|
5096 |
|
---|
5097 | /** \#GP(sel) - 0d. */
|
---|
5098 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorBoundsBySelector(PVMCPU pVCpu, RTSEL Sel)
|
---|
5099 | {
|
---|
5100 | NOREF(Sel);
|
---|
5101 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
5102 | }
|
---|
5103 |
|
---|
5104 | #ifdef IEM_WITH_SETJMP
|
---|
5105 | /** \#GP(sel) - 0d, longjmp. */
|
---|
5106 | DECL_NO_INLINE(IEM_STATIC, DECL_NO_RETURN(void)) iemRaiseSelectorBoundsBySelectorJmp(PVMCPU pVCpu, RTSEL Sel)
|
---|
5107 | {
|
---|
5108 | NOREF(Sel);
|
---|
5109 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
5110 | }
|
---|
5111 | #endif
|
---|
5112 |
|
---|
5113 |
|
---|
5114 | /** \#GP(sel) - 0d. */
|
---|
5115 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseSelectorInvalidAccess(PVMCPU pVCpu, uint32_t iSegReg, uint32_t fAccess)
|
---|
5116 | {
|
---|
5117 | NOREF(iSegReg); NOREF(fAccess);
|
---|
5118 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
5119 | }
|
---|
5120 |
|
---|
5121 | #ifdef IEM_WITH_SETJMP
|
---|
5122 | /** \#GP(sel) - 0d, longjmp. */
|
---|
5123 | DECL_NO_INLINE(IEM_STATIC, DECL_NO_RETURN(void)) iemRaiseSelectorInvalidAccessJmp(PVMCPU pVCpu, uint32_t iSegReg,
|
---|
5124 | uint32_t fAccess)
|
---|
5125 | {
|
---|
5126 | NOREF(iSegReg); NOREF(fAccess);
|
---|
5127 | iemRaiseXcptOrIntJmp(pVCpu, 0, X86_XCPT_GP, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, 0, 0);
|
---|
5128 | }
|
---|
5129 | #endif
|
---|
5130 |
|
---|
5131 |
|
---|
5132 | /** \#PF(n) - 0e. */
|
---|
5133 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaisePageFault(PVMCPU pVCpu, RTGCPTR GCPtrWhere, uint32_t fAccess, int rc)
|
---|
5134 | {
|
---|
5135 | uint16_t uErr;
|
---|
5136 | switch (rc)
|
---|
5137 | {
|
---|
5138 | case VERR_PAGE_NOT_PRESENT:
|
---|
5139 | case VERR_PAGE_TABLE_NOT_PRESENT:
|
---|
5140 | case VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT:
|
---|
5141 | case VERR_PAGE_MAP_LEVEL4_NOT_PRESENT:
|
---|
5142 | uErr = 0;
|
---|
5143 | break;
|
---|
5144 |
|
---|
5145 | default:
|
---|
5146 | AssertMsgFailed(("%Rrc\n", rc));
|
---|
5147 | case VERR_ACCESS_DENIED:
|
---|
5148 | uErr = X86_TRAP_PF_P;
|
---|
5149 | break;
|
---|
5150 |
|
---|
5151 | /** @todo reserved */
|
---|
5152 | }
|
---|
5153 |
|
---|
5154 | if (pVCpu->iem.s.uCpl == 3)
|
---|
5155 | uErr |= X86_TRAP_PF_US;
|
---|
5156 |
|
---|
5157 | if ( (fAccess & IEM_ACCESS_WHAT_MASK) == IEM_ACCESS_WHAT_CODE
|
---|
5158 | && ( (IEM_GET_CTX(pVCpu)->cr4 & X86_CR4_PAE)
|
---|
5159 | && (IEM_GET_CTX(pVCpu)->msrEFER & MSR_K6_EFER_NXE) ) )
|
---|
5160 | uErr |= X86_TRAP_PF_ID;
|
---|
5161 |
|
---|
5162 | #if 0 /* This is so much non-sense, really. Why was it done like that? */
|
---|
5163 | /* Note! RW access callers reporting a WRITE protection fault, will clear
|
---|
5164 | the READ flag before calling. So, read-modify-write accesses (RW)
|
---|
5165 | can safely be reported as READ faults. */
|
---|
5166 | if ((fAccess & (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_TYPE_READ)) == IEM_ACCESS_TYPE_WRITE)
|
---|
5167 | uErr |= X86_TRAP_PF_RW;
|
---|
5168 | #else
|
---|
5169 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
5170 | {
|
---|
5171 | if (!IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu) || !(fAccess & IEM_ACCESS_TYPE_READ))
|
---|
5172 | uErr |= X86_TRAP_PF_RW;
|
---|
5173 | }
|
---|
5174 | #endif
|
---|
5175 |
|
---|
5176 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_PF, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR | IEM_XCPT_FLAGS_CR2,
|
---|
5177 | uErr, GCPtrWhere);
|
---|
5178 | }
|
---|
5179 |
|
---|
5180 |
|
---|
5181 | /** \#MF(0) - 10. */
|
---|
5182 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseMathFault(PVMCPU pVCpu)
|
---|
5183 | {
|
---|
5184 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_MF, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
5185 | }
|
---|
5186 |
|
---|
5187 |
|
---|
5188 | /** \#AC(0) - 11. */
|
---|
5189 | DECL_NO_INLINE(IEM_STATIC, VBOXSTRICTRC) iemRaiseAlignmentCheckException(PVMCPU pVCpu)
|
---|
5190 | {
|
---|
5191 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_AC, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
5192 | }
|
---|
5193 |
|
---|
5194 |
|
---|
5195 | /**
|
---|
5196 | * Macro for calling iemCImplRaiseDivideError().
|
---|
5197 | *
|
---|
5198 | * This enables us to add/remove arguments and force different levels of
|
---|
5199 | * inlining as we wish.
|
---|
5200 | *
|
---|
5201 | * @return Strict VBox status code.
|
---|
5202 | */
|
---|
5203 | #define IEMOP_RAISE_DIVIDE_ERROR() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseDivideError)
|
---|
5204 | IEM_CIMPL_DEF_0(iemCImplRaiseDivideError)
|
---|
5205 | {
|
---|
5206 | NOREF(cbInstr);
|
---|
5207 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_DE, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
5208 | }
|
---|
5209 |
|
---|
5210 |
|
---|
5211 | /**
|
---|
5212 | * Macro for calling iemCImplRaiseInvalidLockPrefix().
|
---|
5213 | *
|
---|
5214 | * This enables us to add/remove arguments and force different levels of
|
---|
5215 | * inlining as we wish.
|
---|
5216 | *
|
---|
5217 | * @return Strict VBox status code.
|
---|
5218 | */
|
---|
5219 | #define IEMOP_RAISE_INVALID_LOCK_PREFIX() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseInvalidLockPrefix)
|
---|
5220 | IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix)
|
---|
5221 | {
|
---|
5222 | NOREF(cbInstr);
|
---|
5223 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
5224 | }
|
---|
5225 |
|
---|
5226 |
|
---|
5227 | /**
|
---|
5228 | * Macro for calling iemCImplRaiseInvalidOpcode().
|
---|
5229 | *
|
---|
5230 | * This enables us to add/remove arguments and force different levels of
|
---|
5231 | * inlining as we wish.
|
---|
5232 | *
|
---|
5233 | * @return Strict VBox status code.
|
---|
5234 | */
|
---|
5235 | #define IEMOP_RAISE_INVALID_OPCODE() IEM_MC_DEFER_TO_CIMPL_0(iemCImplRaiseInvalidOpcode)
|
---|
5236 | IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode)
|
---|
5237 | {
|
---|
5238 | NOREF(cbInstr);
|
---|
5239 | return iemRaiseXcptOrInt(pVCpu, 0, X86_XCPT_UD, IEM_XCPT_FLAGS_T_CPU_XCPT, 0, 0);
|
---|
5240 | }
|
---|
5241 |
|
---|
5242 |
|
---|
5243 | /** @} */
|
---|
5244 |
|
---|
5245 |
|
---|
5246 | /*
|
---|
5247 | *
|
---|
5248 | * Helpers routines.
|
---|
5249 | * Helpers routines.
|
---|
5250 | * Helpers routines.
|
---|
5251 | *
|
---|
5252 | */
|
---|
5253 |
|
---|
5254 | /**
|
---|
5255 | * Recalculates the effective operand size.
|
---|
5256 | *
|
---|
5257 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5258 | */
|
---|
5259 | IEM_STATIC void iemRecalEffOpSize(PVMCPU pVCpu)
|
---|
5260 | {
|
---|
5261 | switch (pVCpu->iem.s.enmCpuMode)
|
---|
5262 | {
|
---|
5263 | case IEMMODE_16BIT:
|
---|
5264 | pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_32BIT : IEMMODE_16BIT;
|
---|
5265 | break;
|
---|
5266 | case IEMMODE_32BIT:
|
---|
5267 | pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_16BIT : IEMMODE_32BIT;
|
---|
5268 | break;
|
---|
5269 | case IEMMODE_64BIT:
|
---|
5270 | switch (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP))
|
---|
5271 | {
|
---|
5272 | case 0:
|
---|
5273 | pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.enmDefOpSize;
|
---|
5274 | break;
|
---|
5275 | case IEM_OP_PRF_SIZE_OP:
|
---|
5276 | pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
|
---|
5277 | break;
|
---|
5278 | case IEM_OP_PRF_SIZE_REX_W:
|
---|
5279 | case IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP:
|
---|
5280 | pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
|
---|
5281 | break;
|
---|
5282 | }
|
---|
5283 | break;
|
---|
5284 | default:
|
---|
5285 | AssertFailed();
|
---|
5286 | }
|
---|
5287 | }
|
---|
5288 |
|
---|
5289 |
|
---|
5290 | /**
|
---|
5291 | * Sets the default operand size to 64-bit and recalculates the effective
|
---|
5292 | * operand size.
|
---|
5293 | *
|
---|
5294 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5295 | */
|
---|
5296 | IEM_STATIC void iemRecalEffOpSize64Default(PVMCPU pVCpu)
|
---|
5297 | {
|
---|
5298 | Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
|
---|
5299 | pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT;
|
---|
5300 | if ((pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP)) != IEM_OP_PRF_SIZE_OP)
|
---|
5301 | pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
|
---|
5302 | else
|
---|
5303 | pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
|
---|
5304 | }
|
---|
5305 |
|
---|
5306 |
|
---|
5307 | /*
|
---|
5308 | *
|
---|
5309 | * Common opcode decoders.
|
---|
5310 | * Common opcode decoders.
|
---|
5311 | * Common opcode decoders.
|
---|
5312 | *
|
---|
5313 | */
|
---|
5314 | //#include <iprt/mem.h>
|
---|
5315 |
|
---|
5316 | /**
|
---|
5317 | * Used to add extra details about a stub case.
|
---|
5318 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5319 | */
|
---|
5320 | IEM_STATIC void iemOpStubMsg2(PVMCPU pVCpu)
|
---|
5321 | {
|
---|
5322 | #if defined(LOG_ENABLED) && defined(IN_RING3)
|
---|
5323 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5324 | char szRegs[4096];
|
---|
5325 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
5326 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
5327 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
5328 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
5329 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
5330 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
5331 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
5332 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
5333 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
5334 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
5335 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
5336 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
5337 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
5338 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
5339 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
5340 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
5341 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
5342 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
5343 | " efer=%016VR{efer}\n"
|
---|
5344 | " pat=%016VR{pat}\n"
|
---|
5345 | " sf_mask=%016VR{sf_mask}\n"
|
---|
5346 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
5347 | " lstar=%016VR{lstar}\n"
|
---|
5348 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
5349 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
5350 | );
|
---|
5351 |
|
---|
5352 | char szInstr[256];
|
---|
5353 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
5354 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
5355 | szInstr, sizeof(szInstr), NULL);
|
---|
5356 |
|
---|
5357 | RTAssertMsg2Weak("%s%s\n", szRegs, szInstr);
|
---|
5358 | #else
|
---|
5359 | RTAssertMsg2Weak("cs:rip=%04x:%RX64\n", IEM_GET_CTX(pVCpu)->cs, IEM_GET_CTX(pVCpu)->rip);
|
---|
5360 | #endif
|
---|
5361 | }
|
---|
5362 |
|
---|
5363 | /**
|
---|
5364 | * Complains about a stub.
|
---|
5365 | *
|
---|
5366 | * Providing two versions of this macro, one for daily use and one for use when
|
---|
5367 | * working on IEM.
|
---|
5368 | */
|
---|
5369 | #if 0
|
---|
5370 | # define IEMOP_BITCH_ABOUT_STUB() \
|
---|
5371 | do { \
|
---|
5372 | RTAssertMsg1(NULL, __LINE__, __FILE__, __FUNCTION__); \
|
---|
5373 | iemOpStubMsg2(pVCpu); \
|
---|
5374 | RTAssertPanic(); \
|
---|
5375 | } while (0)
|
---|
5376 | #else
|
---|
5377 | # define IEMOP_BITCH_ABOUT_STUB() Log(("Stub: %s (line %d)\n", __FUNCTION__, __LINE__));
|
---|
5378 | #endif
|
---|
5379 |
|
---|
5380 | /** Stubs an opcode. */
|
---|
5381 | #define FNIEMOP_STUB(a_Name) \
|
---|
5382 | FNIEMOP_DEF(a_Name) \
|
---|
5383 | { \
|
---|
5384 | IEMOP_BITCH_ABOUT_STUB(); \
|
---|
5385 | return VERR_IEM_INSTR_NOT_IMPLEMENTED; \
|
---|
5386 | } \
|
---|
5387 | typedef int ignore_semicolon
|
---|
5388 |
|
---|
5389 | /** Stubs an opcode. */
|
---|
5390 | #define FNIEMOP_STUB_1(a_Name, a_Type0, a_Name0) \
|
---|
5391 | FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
5392 | { \
|
---|
5393 | IEMOP_BITCH_ABOUT_STUB(); \
|
---|
5394 | NOREF(a_Name0); \
|
---|
5395 | return VERR_IEM_INSTR_NOT_IMPLEMENTED; \
|
---|
5396 | } \
|
---|
5397 | typedef int ignore_semicolon
|
---|
5398 |
|
---|
5399 | /** Stubs an opcode which currently should raise \#UD. */
|
---|
5400 | #define FNIEMOP_UD_STUB(a_Name) \
|
---|
5401 | FNIEMOP_DEF(a_Name) \
|
---|
5402 | { \
|
---|
5403 | Log(("Unsupported instruction %Rfn\n", __FUNCTION__)); \
|
---|
5404 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
5405 | } \
|
---|
5406 | typedef int ignore_semicolon
|
---|
5407 |
|
---|
5408 | /** Stubs an opcode which currently should raise \#UD. */
|
---|
5409 | #define FNIEMOP_UD_STUB_1(a_Name, a_Type0, a_Name0) \
|
---|
5410 | FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
|
---|
5411 | { \
|
---|
5412 | NOREF(a_Name0); \
|
---|
5413 | Log(("Unsupported instruction %Rfn\n", __FUNCTION__)); \
|
---|
5414 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
5415 | } \
|
---|
5416 | typedef int ignore_semicolon
|
---|
5417 |
|
---|
5418 |
|
---|
5419 |
|
---|
5420 | /** @name Register Access.
|
---|
5421 | * @{
|
---|
5422 | */
|
---|
5423 |
|
---|
5424 | /**
|
---|
5425 | * Gets a reference (pointer) to the specified hidden segment register.
|
---|
5426 | *
|
---|
5427 | * @returns Hidden register reference.
|
---|
5428 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5429 | * @param iSegReg The segment register.
|
---|
5430 | */
|
---|
5431 | IEM_STATIC PCPUMSELREG iemSRegGetHid(PVMCPU pVCpu, uint8_t iSegReg)
|
---|
5432 | {
|
---|
5433 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
5434 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5435 | PCPUMSELREG pSReg = &pCtx->aSRegs[iSegReg];
|
---|
5436 |
|
---|
5437 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
5438 | if (RT_LIKELY(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg)))
|
---|
5439 | { /* likely */ }
|
---|
5440 | else
|
---|
5441 | CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg);
|
---|
5442 | #else
|
---|
5443 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
5444 | #endif
|
---|
5445 | return pSReg;
|
---|
5446 | }
|
---|
5447 |
|
---|
5448 |
|
---|
5449 | /**
|
---|
5450 | * Ensures that the given hidden segment register is up to date.
|
---|
5451 | *
|
---|
5452 | * @returns Hidden register reference.
|
---|
5453 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5454 | * @param pSReg The segment register.
|
---|
5455 | */
|
---|
5456 | IEM_STATIC PCPUMSELREG iemSRegUpdateHid(PVMCPU pVCpu, PCPUMSELREG pSReg)
|
---|
5457 | {
|
---|
5458 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
5459 | if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
|
---|
5460 | CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg);
|
---|
5461 | #else
|
---|
5462 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
5463 | NOREF(pVCpu);
|
---|
5464 | #endif
|
---|
5465 | return pSReg;
|
---|
5466 | }
|
---|
5467 |
|
---|
5468 |
|
---|
5469 | /**
|
---|
5470 | * Gets a reference (pointer) to the specified segment register (the selector
|
---|
5471 | * value).
|
---|
5472 | *
|
---|
5473 | * @returns Pointer to the selector variable.
|
---|
5474 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5475 | * @param iSegReg The segment register.
|
---|
5476 | */
|
---|
5477 | DECLINLINE(uint16_t *) iemSRegRef(PVMCPU pVCpu, uint8_t iSegReg)
|
---|
5478 | {
|
---|
5479 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
5480 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5481 | return &pCtx->aSRegs[iSegReg].Sel;
|
---|
5482 | }
|
---|
5483 |
|
---|
5484 |
|
---|
5485 | /**
|
---|
5486 | * Fetches the selector value of a segment register.
|
---|
5487 | *
|
---|
5488 | * @returns The selector value.
|
---|
5489 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5490 | * @param iSegReg The segment register.
|
---|
5491 | */
|
---|
5492 | DECLINLINE(uint16_t) iemSRegFetchU16(PVMCPU pVCpu, uint8_t iSegReg)
|
---|
5493 | {
|
---|
5494 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
5495 | return IEM_GET_CTX(pVCpu)->aSRegs[iSegReg].Sel;
|
---|
5496 | }
|
---|
5497 |
|
---|
5498 |
|
---|
5499 | /**
|
---|
5500 | * Gets a reference (pointer) to the specified general purpose register.
|
---|
5501 | *
|
---|
5502 | * @returns Register reference.
|
---|
5503 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5504 | * @param iReg The general purpose register.
|
---|
5505 | */
|
---|
5506 | DECLINLINE(void *) iemGRegRef(PVMCPU pVCpu, uint8_t iReg)
|
---|
5507 | {
|
---|
5508 | Assert(iReg < 16);
|
---|
5509 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5510 | return &pCtx->aGRegs[iReg];
|
---|
5511 | }
|
---|
5512 |
|
---|
5513 |
|
---|
5514 | /**
|
---|
5515 | * Gets a reference (pointer) to the specified 8-bit general purpose register.
|
---|
5516 | *
|
---|
5517 | * Because of AH, CH, DH and BH we cannot use iemGRegRef directly here.
|
---|
5518 | *
|
---|
5519 | * @returns Register reference.
|
---|
5520 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5521 | * @param iReg The register.
|
---|
5522 | */
|
---|
5523 | DECLINLINE(uint8_t *) iemGRegRefU8(PVMCPU pVCpu, uint8_t iReg)
|
---|
5524 | {
|
---|
5525 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5526 | if (iReg < 4 || (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX))
|
---|
5527 | {
|
---|
5528 | Assert(iReg < 16);
|
---|
5529 | return &pCtx->aGRegs[iReg].u8;
|
---|
5530 | }
|
---|
5531 | /* high 8-bit register. */
|
---|
5532 | Assert(iReg < 8);
|
---|
5533 | return &pCtx->aGRegs[iReg & 3].bHi;
|
---|
5534 | }
|
---|
5535 |
|
---|
5536 |
|
---|
5537 | /**
|
---|
5538 | * Gets a reference (pointer) to the specified 16-bit general purpose register.
|
---|
5539 | *
|
---|
5540 | * @returns Register reference.
|
---|
5541 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5542 | * @param iReg The register.
|
---|
5543 | */
|
---|
5544 | DECLINLINE(uint16_t *) iemGRegRefU16(PVMCPU pVCpu, uint8_t iReg)
|
---|
5545 | {
|
---|
5546 | Assert(iReg < 16);
|
---|
5547 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5548 | return &pCtx->aGRegs[iReg].u16;
|
---|
5549 | }
|
---|
5550 |
|
---|
5551 |
|
---|
5552 | /**
|
---|
5553 | * Gets a reference (pointer) to the specified 32-bit general purpose register.
|
---|
5554 | *
|
---|
5555 | * @returns Register reference.
|
---|
5556 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5557 | * @param iReg The register.
|
---|
5558 | */
|
---|
5559 | DECLINLINE(uint32_t *) iemGRegRefU32(PVMCPU pVCpu, uint8_t iReg)
|
---|
5560 | {
|
---|
5561 | Assert(iReg < 16);
|
---|
5562 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5563 | return &pCtx->aGRegs[iReg].u32;
|
---|
5564 | }
|
---|
5565 |
|
---|
5566 |
|
---|
5567 | /**
|
---|
5568 | * Gets a reference (pointer) to the specified 64-bit general purpose register.
|
---|
5569 | *
|
---|
5570 | * @returns Register reference.
|
---|
5571 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5572 | * @param iReg The register.
|
---|
5573 | */
|
---|
5574 | DECLINLINE(uint64_t *) iemGRegRefU64(PVMCPU pVCpu, uint8_t iReg)
|
---|
5575 | {
|
---|
5576 | Assert(iReg < 64);
|
---|
5577 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5578 | return &pCtx->aGRegs[iReg].u64;
|
---|
5579 | }
|
---|
5580 |
|
---|
5581 |
|
---|
5582 | /**
|
---|
5583 | * Fetches the value of a 8-bit general purpose register.
|
---|
5584 | *
|
---|
5585 | * @returns The register value.
|
---|
5586 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5587 | * @param iReg The register.
|
---|
5588 | */
|
---|
5589 | DECLINLINE(uint8_t) iemGRegFetchU8(PVMCPU pVCpu, uint8_t iReg)
|
---|
5590 | {
|
---|
5591 | return *iemGRegRefU8(pVCpu, iReg);
|
---|
5592 | }
|
---|
5593 |
|
---|
5594 |
|
---|
5595 | /**
|
---|
5596 | * Fetches the value of a 16-bit general purpose register.
|
---|
5597 | *
|
---|
5598 | * @returns The register value.
|
---|
5599 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5600 | * @param iReg The register.
|
---|
5601 | */
|
---|
5602 | DECLINLINE(uint16_t) iemGRegFetchU16(PVMCPU pVCpu, uint8_t iReg)
|
---|
5603 | {
|
---|
5604 | Assert(iReg < 16);
|
---|
5605 | return IEM_GET_CTX(pVCpu)->aGRegs[iReg].u16;
|
---|
5606 | }
|
---|
5607 |
|
---|
5608 |
|
---|
5609 | /**
|
---|
5610 | * Fetches the value of a 32-bit general purpose register.
|
---|
5611 | *
|
---|
5612 | * @returns The register value.
|
---|
5613 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5614 | * @param iReg The register.
|
---|
5615 | */
|
---|
5616 | DECLINLINE(uint32_t) iemGRegFetchU32(PVMCPU pVCpu, uint8_t iReg)
|
---|
5617 | {
|
---|
5618 | Assert(iReg < 16);
|
---|
5619 | return IEM_GET_CTX(pVCpu)->aGRegs[iReg].u32;
|
---|
5620 | }
|
---|
5621 |
|
---|
5622 |
|
---|
5623 | /**
|
---|
5624 | * Fetches the value of a 64-bit general purpose register.
|
---|
5625 | *
|
---|
5626 | * @returns The register value.
|
---|
5627 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5628 | * @param iReg The register.
|
---|
5629 | */
|
---|
5630 | DECLINLINE(uint64_t) iemGRegFetchU64(PVMCPU pVCpu, uint8_t iReg)
|
---|
5631 | {
|
---|
5632 | Assert(iReg < 16);
|
---|
5633 | return IEM_GET_CTX(pVCpu)->aGRegs[iReg].u64;
|
---|
5634 | }
|
---|
5635 |
|
---|
5636 |
|
---|
5637 | /**
|
---|
5638 | * Adds a 8-bit signed jump offset to RIP/EIP/IP.
|
---|
5639 | *
|
---|
5640 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
5641 | * segment limit.
|
---|
5642 | *
|
---|
5643 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5644 | * @param offNextInstr The offset of the next instruction.
|
---|
5645 | */
|
---|
5646 | IEM_STATIC VBOXSTRICTRC iemRegRipRelativeJumpS8(PVMCPU pVCpu, int8_t offNextInstr)
|
---|
5647 | {
|
---|
5648 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5649 | switch (pVCpu->iem.s.enmEffOpSize)
|
---|
5650 | {
|
---|
5651 | case IEMMODE_16BIT:
|
---|
5652 | {
|
---|
5653 | uint16_t uNewIp = pCtx->ip + offNextInstr + IEM_GET_INSTR_LEN(pVCpu);
|
---|
5654 | if ( uNewIp > pCtx->cs.u32Limit
|
---|
5655 | && pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT) /* no need to check for non-canonical. */
|
---|
5656 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5657 | pCtx->rip = uNewIp;
|
---|
5658 | break;
|
---|
5659 | }
|
---|
5660 |
|
---|
5661 | case IEMMODE_32BIT:
|
---|
5662 | {
|
---|
5663 | Assert(pCtx->rip <= UINT32_MAX);
|
---|
5664 | Assert(pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT);
|
---|
5665 |
|
---|
5666 | uint32_t uNewEip = pCtx->eip + offNextInstr + IEM_GET_INSTR_LEN(pVCpu);
|
---|
5667 | if (uNewEip > pCtx->cs.u32Limit)
|
---|
5668 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5669 | pCtx->rip = uNewEip;
|
---|
5670 | break;
|
---|
5671 | }
|
---|
5672 |
|
---|
5673 | case IEMMODE_64BIT:
|
---|
5674 | {
|
---|
5675 | Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
|
---|
5676 |
|
---|
5677 | uint64_t uNewRip = pCtx->rip + offNextInstr + IEM_GET_INSTR_LEN(pVCpu);
|
---|
5678 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
5679 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5680 | pCtx->rip = uNewRip;
|
---|
5681 | break;
|
---|
5682 | }
|
---|
5683 |
|
---|
5684 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
5685 | }
|
---|
5686 |
|
---|
5687 | pCtx->eflags.Bits.u1RF = 0;
|
---|
5688 |
|
---|
5689 | #ifndef IEM_WITH_CODE_TLB
|
---|
5690 | /* Flush the prefetch buffer. */
|
---|
5691 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
5692 | #endif
|
---|
5693 |
|
---|
5694 | return VINF_SUCCESS;
|
---|
5695 | }
|
---|
5696 |
|
---|
5697 |
|
---|
5698 | /**
|
---|
5699 | * Adds a 16-bit signed jump offset to RIP/EIP/IP.
|
---|
5700 | *
|
---|
5701 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
5702 | * segment limit.
|
---|
5703 | *
|
---|
5704 | * @returns Strict VBox status code.
|
---|
5705 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5706 | * @param offNextInstr The offset of the next instruction.
|
---|
5707 | */
|
---|
5708 | IEM_STATIC VBOXSTRICTRC iemRegRipRelativeJumpS16(PVMCPU pVCpu, int16_t offNextInstr)
|
---|
5709 | {
|
---|
5710 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5711 | Assert(pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT);
|
---|
5712 |
|
---|
5713 | uint16_t uNewIp = pCtx->ip + offNextInstr + IEM_GET_INSTR_LEN(pVCpu);
|
---|
5714 | if ( uNewIp > pCtx->cs.u32Limit
|
---|
5715 | && pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT) /* no need to check for non-canonical. */
|
---|
5716 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5717 | /** @todo Test 16-bit jump in 64-bit mode. possible? */
|
---|
5718 | pCtx->rip = uNewIp;
|
---|
5719 | pCtx->eflags.Bits.u1RF = 0;
|
---|
5720 |
|
---|
5721 | #ifndef IEM_WITH_CODE_TLB
|
---|
5722 | /* Flush the prefetch buffer. */
|
---|
5723 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
5724 | #endif
|
---|
5725 |
|
---|
5726 | return VINF_SUCCESS;
|
---|
5727 | }
|
---|
5728 |
|
---|
5729 |
|
---|
5730 | /**
|
---|
5731 | * Adds a 32-bit signed jump offset to RIP/EIP/IP.
|
---|
5732 | *
|
---|
5733 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
5734 | * segment limit.
|
---|
5735 | *
|
---|
5736 | * @returns Strict VBox status code.
|
---|
5737 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5738 | * @param offNextInstr The offset of the next instruction.
|
---|
5739 | */
|
---|
5740 | IEM_STATIC VBOXSTRICTRC iemRegRipRelativeJumpS32(PVMCPU pVCpu, int32_t offNextInstr)
|
---|
5741 | {
|
---|
5742 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5743 | Assert(pVCpu->iem.s.enmEffOpSize != IEMMODE_16BIT);
|
---|
5744 |
|
---|
5745 | if (pVCpu->iem.s.enmEffOpSize == IEMMODE_32BIT)
|
---|
5746 | {
|
---|
5747 | Assert(pCtx->rip <= UINT32_MAX); Assert(pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT);
|
---|
5748 |
|
---|
5749 | uint32_t uNewEip = pCtx->eip + offNextInstr + IEM_GET_INSTR_LEN(pVCpu);
|
---|
5750 | if (uNewEip > pCtx->cs.u32Limit)
|
---|
5751 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5752 | pCtx->rip = uNewEip;
|
---|
5753 | }
|
---|
5754 | else
|
---|
5755 | {
|
---|
5756 | Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
|
---|
5757 |
|
---|
5758 | uint64_t uNewRip = pCtx->rip + offNextInstr + IEM_GET_INSTR_LEN(pVCpu);
|
---|
5759 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
5760 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5761 | pCtx->rip = uNewRip;
|
---|
5762 | }
|
---|
5763 | pCtx->eflags.Bits.u1RF = 0;
|
---|
5764 |
|
---|
5765 | #ifndef IEM_WITH_CODE_TLB
|
---|
5766 | /* Flush the prefetch buffer. */
|
---|
5767 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
5768 | #endif
|
---|
5769 |
|
---|
5770 | return VINF_SUCCESS;
|
---|
5771 | }
|
---|
5772 |
|
---|
5773 |
|
---|
5774 | /**
|
---|
5775 | * Performs a near jump to the specified address.
|
---|
5776 | *
|
---|
5777 | * May raise a \#GP(0) if the new RIP is non-canonical or outside the code
|
---|
5778 | * segment limit.
|
---|
5779 | *
|
---|
5780 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5781 | * @param uNewRip The new RIP value.
|
---|
5782 | */
|
---|
5783 | IEM_STATIC VBOXSTRICTRC iemRegRipJump(PVMCPU pVCpu, uint64_t uNewRip)
|
---|
5784 | {
|
---|
5785 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5786 | switch (pVCpu->iem.s.enmEffOpSize)
|
---|
5787 | {
|
---|
5788 | case IEMMODE_16BIT:
|
---|
5789 | {
|
---|
5790 | Assert(uNewRip <= UINT16_MAX);
|
---|
5791 | if ( uNewRip > pCtx->cs.u32Limit
|
---|
5792 | && pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT) /* no need to check for non-canonical. */
|
---|
5793 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5794 | /** @todo Test 16-bit jump in 64-bit mode. */
|
---|
5795 | pCtx->rip = uNewRip;
|
---|
5796 | break;
|
---|
5797 | }
|
---|
5798 |
|
---|
5799 | case IEMMODE_32BIT:
|
---|
5800 | {
|
---|
5801 | Assert(uNewRip <= UINT32_MAX);
|
---|
5802 | Assert(pCtx->rip <= UINT32_MAX);
|
---|
5803 | Assert(pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT);
|
---|
5804 |
|
---|
5805 | if (uNewRip > pCtx->cs.u32Limit)
|
---|
5806 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5807 | pCtx->rip = uNewRip;
|
---|
5808 | break;
|
---|
5809 | }
|
---|
5810 |
|
---|
5811 | case IEMMODE_64BIT:
|
---|
5812 | {
|
---|
5813 | Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
|
---|
5814 |
|
---|
5815 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
5816 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5817 | pCtx->rip = uNewRip;
|
---|
5818 | break;
|
---|
5819 | }
|
---|
5820 |
|
---|
5821 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
5822 | }
|
---|
5823 |
|
---|
5824 | pCtx->eflags.Bits.u1RF = 0;
|
---|
5825 |
|
---|
5826 | #ifndef IEM_WITH_CODE_TLB
|
---|
5827 | /* Flush the prefetch buffer. */
|
---|
5828 | pVCpu->iem.s.cbOpcode = IEM_GET_INSTR_LEN(pVCpu);
|
---|
5829 | #endif
|
---|
5830 |
|
---|
5831 | return VINF_SUCCESS;
|
---|
5832 | }
|
---|
5833 |
|
---|
5834 |
|
---|
5835 | /**
|
---|
5836 | * Get the address of the top of the stack.
|
---|
5837 | *
|
---|
5838 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5839 | * @param pCtx The CPU context which SP/ESP/RSP should be
|
---|
5840 | * read.
|
---|
5841 | */
|
---|
5842 | DECLINLINE(RTGCPTR) iemRegGetEffRsp(PCVMCPU pVCpu, PCCPUMCTX pCtx)
|
---|
5843 | {
|
---|
5844 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5845 | return pCtx->rsp;
|
---|
5846 | if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5847 | return pCtx->esp;
|
---|
5848 | return pCtx->sp;
|
---|
5849 | }
|
---|
5850 |
|
---|
5851 |
|
---|
5852 | /**
|
---|
5853 | * Updates the RIP/EIP/IP to point to the next instruction.
|
---|
5854 | *
|
---|
5855 | * This function leaves the EFLAGS.RF flag alone.
|
---|
5856 | *
|
---|
5857 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5858 | * @param cbInstr The number of bytes to add.
|
---|
5859 | */
|
---|
5860 | IEM_STATIC void iemRegAddToRipKeepRF(PVMCPU pVCpu, uint8_t cbInstr)
|
---|
5861 | {
|
---|
5862 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5863 | switch (pVCpu->iem.s.enmCpuMode)
|
---|
5864 | {
|
---|
5865 | case IEMMODE_16BIT:
|
---|
5866 | Assert(pCtx->rip <= UINT16_MAX);
|
---|
5867 | pCtx->eip += cbInstr;
|
---|
5868 | pCtx->eip &= UINT32_C(0xffff);
|
---|
5869 | break;
|
---|
5870 |
|
---|
5871 | case IEMMODE_32BIT:
|
---|
5872 | pCtx->eip += cbInstr;
|
---|
5873 | Assert(pCtx->rip <= UINT32_MAX);
|
---|
5874 | break;
|
---|
5875 |
|
---|
5876 | case IEMMODE_64BIT:
|
---|
5877 | pCtx->rip += cbInstr;
|
---|
5878 | break;
|
---|
5879 | default: AssertFailed();
|
---|
5880 | }
|
---|
5881 | }
|
---|
5882 |
|
---|
5883 |
|
---|
5884 | #if 0
|
---|
5885 | /**
|
---|
5886 | * Updates the RIP/EIP/IP to point to the next instruction.
|
---|
5887 | *
|
---|
5888 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5889 | */
|
---|
5890 | IEM_STATIC void iemRegUpdateRipKeepRF(PVMCPU pVCpu)
|
---|
5891 | {
|
---|
5892 | return iemRegAddToRipKeepRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu));
|
---|
5893 | }
|
---|
5894 | #endif
|
---|
5895 |
|
---|
5896 |
|
---|
5897 |
|
---|
5898 | /**
|
---|
5899 | * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF.
|
---|
5900 | *
|
---|
5901 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5902 | * @param cbInstr The number of bytes to add.
|
---|
5903 | */
|
---|
5904 | IEM_STATIC void iemRegAddToRipAndClearRF(PVMCPU pVCpu, uint8_t cbInstr)
|
---|
5905 | {
|
---|
5906 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5907 |
|
---|
5908 | pCtx->eflags.Bits.u1RF = 0;
|
---|
5909 |
|
---|
5910 | AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
|
---|
5911 | #if ARCH_BITS >= 64
|
---|
5912 | static uint64_t const s_aRipMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_MAX };
|
---|
5913 | Assert(pCtx->rip <= s_aRipMasks[(unsigned)pVCpu->iem.s.enmCpuMode]);
|
---|
5914 | pCtx->rip = (pCtx->rip + cbInstr) & s_aRipMasks[(unsigned)pVCpu->iem.s.enmCpuMode];
|
---|
5915 | #else
|
---|
5916 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5917 | pCtx->rip += cbInstr;
|
---|
5918 | else
|
---|
5919 | {
|
---|
5920 | static uint32_t const s_aEipMasks[] = { UINT32_C(0xffff), UINT32_MAX };
|
---|
5921 | pCtx->eip = (pCtx->eip + cbInstr) & s_aEipMasks[(unsigned)pVCpu->iem.s.enmCpuMode];
|
---|
5922 | }
|
---|
5923 | #endif
|
---|
5924 | }
|
---|
5925 |
|
---|
5926 |
|
---|
5927 | /**
|
---|
5928 | * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF.
|
---|
5929 | *
|
---|
5930 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5931 | */
|
---|
5932 | IEM_STATIC void iemRegUpdateRipAndClearRF(PVMCPU pVCpu)
|
---|
5933 | {
|
---|
5934 | return iemRegAddToRipAndClearRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu));
|
---|
5935 | }
|
---|
5936 |
|
---|
5937 |
|
---|
5938 | /**
|
---|
5939 | * Adds to the stack pointer.
|
---|
5940 | *
|
---|
5941 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5942 | * @param pCtx The CPU context which SP/ESP/RSP should be
|
---|
5943 | * updated.
|
---|
5944 | * @param cbToAdd The number of bytes to add (8-bit!).
|
---|
5945 | */
|
---|
5946 | DECLINLINE(void) iemRegAddToRsp(PCVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbToAdd)
|
---|
5947 | {
|
---|
5948 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5949 | pCtx->rsp += cbToAdd;
|
---|
5950 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5951 | pCtx->esp += cbToAdd;
|
---|
5952 | else
|
---|
5953 | pCtx->sp += cbToAdd;
|
---|
5954 | }
|
---|
5955 |
|
---|
5956 |
|
---|
5957 | /**
|
---|
5958 | * Subtracts from the stack pointer.
|
---|
5959 | *
|
---|
5960 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5961 | * @param pCtx The CPU context which SP/ESP/RSP should be
|
---|
5962 | * updated.
|
---|
5963 | * @param cbToSub The number of bytes to subtract (8-bit!).
|
---|
5964 | */
|
---|
5965 | DECLINLINE(void) iemRegSubFromRsp(PCVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbToSub)
|
---|
5966 | {
|
---|
5967 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5968 | pCtx->rsp -= cbToSub;
|
---|
5969 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5970 | pCtx->esp -= cbToSub;
|
---|
5971 | else
|
---|
5972 | pCtx->sp -= cbToSub;
|
---|
5973 | }
|
---|
5974 |
|
---|
5975 |
|
---|
5976 | /**
|
---|
5977 | * Adds to the temporary stack pointer.
|
---|
5978 | *
|
---|
5979 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5980 | * @param pTmpRsp The temporary SP/ESP/RSP to update.
|
---|
5981 | * @param cbToAdd The number of bytes to add (16-bit).
|
---|
5982 | * @param pCtx Where to get the current stack mode.
|
---|
5983 | */
|
---|
5984 | DECLINLINE(void) iemRegAddToRspEx(PCVMCPU pVCpu, PCCPUMCTX pCtx, PRTUINT64U pTmpRsp, uint16_t cbToAdd)
|
---|
5985 | {
|
---|
5986 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5987 | pTmpRsp->u += cbToAdd;
|
---|
5988 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
5989 | pTmpRsp->DWords.dw0 += cbToAdd;
|
---|
5990 | else
|
---|
5991 | pTmpRsp->Words.w0 += cbToAdd;
|
---|
5992 | }
|
---|
5993 |
|
---|
5994 |
|
---|
5995 | /**
|
---|
5996 | * Subtracts from the temporary stack pointer.
|
---|
5997 | *
|
---|
5998 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
5999 | * @param pTmpRsp The temporary SP/ESP/RSP to update.
|
---|
6000 | * @param cbToSub The number of bytes to subtract.
|
---|
6001 | * @param pCtx Where to get the current stack mode.
|
---|
6002 | * @remarks The @a cbToSub argument *MUST* be 16-bit, iemCImpl_enter is
|
---|
6003 | * expecting that.
|
---|
6004 | */
|
---|
6005 | DECLINLINE(void) iemRegSubFromRspEx(PCVMCPU pVCpu, PCCPUMCTX pCtx, PRTUINT64U pTmpRsp, uint16_t cbToSub)
|
---|
6006 | {
|
---|
6007 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
6008 | pTmpRsp->u -= cbToSub;
|
---|
6009 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
6010 | pTmpRsp->DWords.dw0 -= cbToSub;
|
---|
6011 | else
|
---|
6012 | pTmpRsp->Words.w0 -= cbToSub;
|
---|
6013 | }
|
---|
6014 |
|
---|
6015 |
|
---|
6016 | /**
|
---|
6017 | * Calculates the effective stack address for a push of the specified size as
|
---|
6018 | * well as the new RSP value (upper bits may be masked).
|
---|
6019 | *
|
---|
6020 | * @returns Effective stack addressf for the push.
|
---|
6021 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6022 | * @param pCtx Where to get the current stack mode.
|
---|
6023 | * @param cbItem The size of the stack item to pop.
|
---|
6024 | * @param puNewRsp Where to return the new RSP value.
|
---|
6025 | */
|
---|
6026 | DECLINLINE(RTGCPTR) iemRegGetRspForPush(PCVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t cbItem, uint64_t *puNewRsp)
|
---|
6027 | {
|
---|
6028 | RTUINT64U uTmpRsp;
|
---|
6029 | RTGCPTR GCPtrTop;
|
---|
6030 | uTmpRsp.u = pCtx->rsp;
|
---|
6031 |
|
---|
6032 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
6033 | GCPtrTop = uTmpRsp.u -= cbItem;
|
---|
6034 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
6035 | GCPtrTop = uTmpRsp.DWords.dw0 -= cbItem;
|
---|
6036 | else
|
---|
6037 | GCPtrTop = uTmpRsp.Words.w0 -= cbItem;
|
---|
6038 | *puNewRsp = uTmpRsp.u;
|
---|
6039 | return GCPtrTop;
|
---|
6040 | }
|
---|
6041 |
|
---|
6042 |
|
---|
6043 | /**
|
---|
6044 | * Gets the current stack pointer and calculates the value after a pop of the
|
---|
6045 | * specified size.
|
---|
6046 | *
|
---|
6047 | * @returns Current stack pointer.
|
---|
6048 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6049 | * @param pCtx Where to get the current stack mode.
|
---|
6050 | * @param cbItem The size of the stack item to pop.
|
---|
6051 | * @param puNewRsp Where to return the new RSP value.
|
---|
6052 | */
|
---|
6053 | DECLINLINE(RTGCPTR) iemRegGetRspForPop(PCVMCPU pVCpu, PCCPUMCTX pCtx, uint8_t cbItem, uint64_t *puNewRsp)
|
---|
6054 | {
|
---|
6055 | RTUINT64U uTmpRsp;
|
---|
6056 | RTGCPTR GCPtrTop;
|
---|
6057 | uTmpRsp.u = pCtx->rsp;
|
---|
6058 |
|
---|
6059 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
6060 | {
|
---|
6061 | GCPtrTop = uTmpRsp.u;
|
---|
6062 | uTmpRsp.u += cbItem;
|
---|
6063 | }
|
---|
6064 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
6065 | {
|
---|
6066 | GCPtrTop = uTmpRsp.DWords.dw0;
|
---|
6067 | uTmpRsp.DWords.dw0 += cbItem;
|
---|
6068 | }
|
---|
6069 | else
|
---|
6070 | {
|
---|
6071 | GCPtrTop = uTmpRsp.Words.w0;
|
---|
6072 | uTmpRsp.Words.w0 += cbItem;
|
---|
6073 | }
|
---|
6074 | *puNewRsp = uTmpRsp.u;
|
---|
6075 | return GCPtrTop;
|
---|
6076 | }
|
---|
6077 |
|
---|
6078 |
|
---|
6079 | /**
|
---|
6080 | * Calculates the effective stack address for a push of the specified size as
|
---|
6081 | * well as the new temporary RSP value (upper bits may be masked).
|
---|
6082 | *
|
---|
6083 | * @returns Effective stack addressf for the push.
|
---|
6084 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6085 | * @param pCtx Where to get the current stack mode.
|
---|
6086 | * @param pTmpRsp The temporary stack pointer. This is updated.
|
---|
6087 | * @param cbItem The size of the stack item to pop.
|
---|
6088 | */
|
---|
6089 | DECLINLINE(RTGCPTR) iemRegGetRspForPushEx(PCVMCPU pVCpu, PCCPUMCTX pCtx, PRTUINT64U pTmpRsp, uint8_t cbItem)
|
---|
6090 | {
|
---|
6091 | RTGCPTR GCPtrTop;
|
---|
6092 |
|
---|
6093 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
6094 | GCPtrTop = pTmpRsp->u -= cbItem;
|
---|
6095 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
6096 | GCPtrTop = pTmpRsp->DWords.dw0 -= cbItem;
|
---|
6097 | else
|
---|
6098 | GCPtrTop = pTmpRsp->Words.w0 -= cbItem;
|
---|
6099 | return GCPtrTop;
|
---|
6100 | }
|
---|
6101 |
|
---|
6102 |
|
---|
6103 | /**
|
---|
6104 | * Gets the effective stack address for a pop of the specified size and
|
---|
6105 | * calculates and updates the temporary RSP.
|
---|
6106 | *
|
---|
6107 | * @returns Current stack pointer.
|
---|
6108 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6109 | * @param pCtx Where to get the current stack mode.
|
---|
6110 | * @param pTmpRsp The temporary stack pointer. This is updated.
|
---|
6111 | * @param cbItem The size of the stack item to pop.
|
---|
6112 | */
|
---|
6113 | DECLINLINE(RTGCPTR) iemRegGetRspForPopEx(PCVMCPU pVCpu, PCCPUMCTX pCtx, PRTUINT64U pTmpRsp, uint8_t cbItem)
|
---|
6114 | {
|
---|
6115 | RTGCPTR GCPtrTop;
|
---|
6116 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
6117 | {
|
---|
6118 | GCPtrTop = pTmpRsp->u;
|
---|
6119 | pTmpRsp->u += cbItem;
|
---|
6120 | }
|
---|
6121 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
6122 | {
|
---|
6123 | GCPtrTop = pTmpRsp->DWords.dw0;
|
---|
6124 | pTmpRsp->DWords.dw0 += cbItem;
|
---|
6125 | }
|
---|
6126 | else
|
---|
6127 | {
|
---|
6128 | GCPtrTop = pTmpRsp->Words.w0;
|
---|
6129 | pTmpRsp->Words.w0 += cbItem;
|
---|
6130 | }
|
---|
6131 | return GCPtrTop;
|
---|
6132 | }
|
---|
6133 |
|
---|
6134 | /** @} */
|
---|
6135 |
|
---|
6136 |
|
---|
6137 | /** @name FPU access and helpers.
|
---|
6138 | *
|
---|
6139 | * @{
|
---|
6140 | */
|
---|
6141 |
|
---|
6142 |
|
---|
6143 | /**
|
---|
6144 | * Hook for preparing to use the host FPU.
|
---|
6145 | *
|
---|
6146 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
6147 | *
|
---|
6148 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6149 | */
|
---|
6150 | DECLINLINE(void) iemFpuPrepareUsage(PVMCPU pVCpu)
|
---|
6151 | {
|
---|
6152 | #ifdef IN_RING3
|
---|
6153 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
6154 | #else
|
---|
6155 | CPUMRZFpuStatePrepareHostCpuForUse(pVCpu);
|
---|
6156 | #endif
|
---|
6157 | }
|
---|
6158 |
|
---|
6159 |
|
---|
6160 | /**
|
---|
6161 | * Hook for preparing to use the host FPU for SSE
|
---|
6162 | *
|
---|
6163 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
6164 | *
|
---|
6165 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6166 | */
|
---|
6167 | DECLINLINE(void) iemFpuPrepareUsageSse(PVMCPU pVCpu)
|
---|
6168 | {
|
---|
6169 | iemFpuPrepareUsage(pVCpu);
|
---|
6170 | }
|
---|
6171 |
|
---|
6172 |
|
---|
6173 | /**
|
---|
6174 | * Hook for actualizing the guest FPU state before the interpreter reads it.
|
---|
6175 | *
|
---|
6176 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
6177 | *
|
---|
6178 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6179 | */
|
---|
6180 | DECLINLINE(void) iemFpuActualizeStateForRead(PVMCPU pVCpu)
|
---|
6181 | {
|
---|
6182 | #ifdef IN_RING3
|
---|
6183 | NOREF(pVCpu);
|
---|
6184 | #else
|
---|
6185 | CPUMRZFpuStateActualizeForRead(pVCpu);
|
---|
6186 | #endif
|
---|
6187 | }
|
---|
6188 |
|
---|
6189 |
|
---|
6190 | /**
|
---|
6191 | * Hook for actualizing the guest FPU state before the interpreter changes it.
|
---|
6192 | *
|
---|
6193 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
6194 | *
|
---|
6195 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6196 | */
|
---|
6197 | DECLINLINE(void) iemFpuActualizeStateForChange(PVMCPU pVCpu)
|
---|
6198 | {
|
---|
6199 | #ifdef IN_RING3
|
---|
6200 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
6201 | #else
|
---|
6202 | CPUMRZFpuStateActualizeForChange(pVCpu);
|
---|
6203 | #endif
|
---|
6204 | }
|
---|
6205 |
|
---|
6206 |
|
---|
6207 | /**
|
---|
6208 | * Hook for actualizing the guest XMM0..15 register state for read only.
|
---|
6209 | *
|
---|
6210 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
6211 | *
|
---|
6212 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6213 | */
|
---|
6214 | DECLINLINE(void) iemFpuActualizeSseStateForRead(PVMCPU pVCpu)
|
---|
6215 | {
|
---|
6216 | #if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
|
---|
6217 | NOREF(pVCpu);
|
---|
6218 | #else
|
---|
6219 | CPUMRZFpuStateActualizeSseForRead(pVCpu);
|
---|
6220 | #endif
|
---|
6221 | }
|
---|
6222 |
|
---|
6223 |
|
---|
6224 | /**
|
---|
6225 | * Hook for actualizing the guest XMM0..15 register state for read+write.
|
---|
6226 | *
|
---|
6227 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
6228 | *
|
---|
6229 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6230 | */
|
---|
6231 | DECLINLINE(void) iemFpuActualizeSseStateForChange(PVMCPU pVCpu)
|
---|
6232 | {
|
---|
6233 | #if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
|
---|
6234 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
6235 | #else
|
---|
6236 | CPUMRZFpuStateActualizeForChange(pVCpu);
|
---|
6237 | #endif
|
---|
6238 | }
|
---|
6239 |
|
---|
6240 |
|
---|
6241 | /**
|
---|
6242 | * Stores a QNaN value into a FPU register.
|
---|
6243 | *
|
---|
6244 | * @param pReg Pointer to the register.
|
---|
6245 | */
|
---|
6246 | DECLINLINE(void) iemFpuStoreQNan(PRTFLOAT80U pReg)
|
---|
6247 | {
|
---|
6248 | pReg->au32[0] = UINT32_C(0x00000000);
|
---|
6249 | pReg->au32[1] = UINT32_C(0xc0000000);
|
---|
6250 | pReg->au16[4] = UINT16_C(0xffff);
|
---|
6251 | }
|
---|
6252 |
|
---|
6253 |
|
---|
6254 | /**
|
---|
6255 | * Updates the FOP, FPU.CS and FPUIP registers.
|
---|
6256 | *
|
---|
6257 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6258 | * @param pCtx The CPU context.
|
---|
6259 | * @param pFpuCtx The FPU context.
|
---|
6260 | */
|
---|
6261 | DECLINLINE(void) iemFpuUpdateOpcodeAndIpWorker(PVMCPU pVCpu, PCPUMCTX pCtx, PX86FXSTATE pFpuCtx)
|
---|
6262 | {
|
---|
6263 | Assert(pVCpu->iem.s.uFpuOpcode != UINT16_MAX);
|
---|
6264 | pFpuCtx->FOP = pVCpu->iem.s.uFpuOpcode;
|
---|
6265 | /** @todo x87.CS and FPUIP needs to be kept seperately. */
|
---|
6266 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
6267 | {
|
---|
6268 | /** @todo Testcase: making assumptions about how FPUIP and FPUDP are handled
|
---|
6269 | * happens in real mode here based on the fnsave and fnstenv images. */
|
---|
6270 | pFpuCtx->CS = 0;
|
---|
6271 | pFpuCtx->FPUIP = pCtx->eip | ((uint32_t)pCtx->cs.Sel << 4);
|
---|
6272 | }
|
---|
6273 | else
|
---|
6274 | {
|
---|
6275 | pFpuCtx->CS = pCtx->cs.Sel;
|
---|
6276 | pFpuCtx->FPUIP = pCtx->rip;
|
---|
6277 | }
|
---|
6278 | }
|
---|
6279 |
|
---|
6280 |
|
---|
6281 | /**
|
---|
6282 | * Updates the x87.DS and FPUDP registers.
|
---|
6283 | *
|
---|
6284 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6285 | * @param pCtx The CPU context.
|
---|
6286 | * @param pFpuCtx The FPU context.
|
---|
6287 | * @param iEffSeg The effective segment register.
|
---|
6288 | * @param GCPtrEff The effective address relative to @a iEffSeg.
|
---|
6289 | */
|
---|
6290 | DECLINLINE(void) iemFpuUpdateDP(PVMCPU pVCpu, PCPUMCTX pCtx, PX86FXSTATE pFpuCtx, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
6291 | {
|
---|
6292 | RTSEL sel;
|
---|
6293 | switch (iEffSeg)
|
---|
6294 | {
|
---|
6295 | case X86_SREG_DS: sel = pCtx->ds.Sel; break;
|
---|
6296 | case X86_SREG_SS: sel = pCtx->ss.Sel; break;
|
---|
6297 | case X86_SREG_CS: sel = pCtx->cs.Sel; break;
|
---|
6298 | case X86_SREG_ES: sel = pCtx->es.Sel; break;
|
---|
6299 | case X86_SREG_FS: sel = pCtx->fs.Sel; break;
|
---|
6300 | case X86_SREG_GS: sel = pCtx->gs.Sel; break;
|
---|
6301 | default:
|
---|
6302 | AssertMsgFailed(("%d\n", iEffSeg));
|
---|
6303 | sel = pCtx->ds.Sel;
|
---|
6304 | }
|
---|
6305 | /** @todo pFpuCtx->DS and FPUDP needs to be kept seperately. */
|
---|
6306 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
6307 | {
|
---|
6308 | pFpuCtx->DS = 0;
|
---|
6309 | pFpuCtx->FPUDP = (uint32_t)GCPtrEff + ((uint32_t)sel << 4);
|
---|
6310 | }
|
---|
6311 | else
|
---|
6312 | {
|
---|
6313 | pFpuCtx->DS = sel;
|
---|
6314 | pFpuCtx->FPUDP = GCPtrEff;
|
---|
6315 | }
|
---|
6316 | }
|
---|
6317 |
|
---|
6318 |
|
---|
6319 | /**
|
---|
6320 | * Rotates the stack registers in the push direction.
|
---|
6321 | *
|
---|
6322 | * @param pFpuCtx The FPU context.
|
---|
6323 | * @remarks This is a complete waste of time, but fxsave stores the registers in
|
---|
6324 | * stack order.
|
---|
6325 | */
|
---|
6326 | DECLINLINE(void) iemFpuRotateStackPush(PX86FXSTATE pFpuCtx)
|
---|
6327 | {
|
---|
6328 | RTFLOAT80U r80Tmp = pFpuCtx->aRegs[7].r80;
|
---|
6329 | pFpuCtx->aRegs[7].r80 = pFpuCtx->aRegs[6].r80;
|
---|
6330 | pFpuCtx->aRegs[6].r80 = pFpuCtx->aRegs[5].r80;
|
---|
6331 | pFpuCtx->aRegs[5].r80 = pFpuCtx->aRegs[4].r80;
|
---|
6332 | pFpuCtx->aRegs[4].r80 = pFpuCtx->aRegs[3].r80;
|
---|
6333 | pFpuCtx->aRegs[3].r80 = pFpuCtx->aRegs[2].r80;
|
---|
6334 | pFpuCtx->aRegs[2].r80 = pFpuCtx->aRegs[1].r80;
|
---|
6335 | pFpuCtx->aRegs[1].r80 = pFpuCtx->aRegs[0].r80;
|
---|
6336 | pFpuCtx->aRegs[0].r80 = r80Tmp;
|
---|
6337 | }
|
---|
6338 |
|
---|
6339 |
|
---|
6340 | /**
|
---|
6341 | * Rotates the stack registers in the pop direction.
|
---|
6342 | *
|
---|
6343 | * @param pFpuCtx The FPU context.
|
---|
6344 | * @remarks This is a complete waste of time, but fxsave stores the registers in
|
---|
6345 | * stack order.
|
---|
6346 | */
|
---|
6347 | DECLINLINE(void) iemFpuRotateStackPop(PX86FXSTATE pFpuCtx)
|
---|
6348 | {
|
---|
6349 | RTFLOAT80U r80Tmp = pFpuCtx->aRegs[0].r80;
|
---|
6350 | pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[1].r80;
|
---|
6351 | pFpuCtx->aRegs[1].r80 = pFpuCtx->aRegs[2].r80;
|
---|
6352 | pFpuCtx->aRegs[2].r80 = pFpuCtx->aRegs[3].r80;
|
---|
6353 | pFpuCtx->aRegs[3].r80 = pFpuCtx->aRegs[4].r80;
|
---|
6354 | pFpuCtx->aRegs[4].r80 = pFpuCtx->aRegs[5].r80;
|
---|
6355 | pFpuCtx->aRegs[5].r80 = pFpuCtx->aRegs[6].r80;
|
---|
6356 | pFpuCtx->aRegs[6].r80 = pFpuCtx->aRegs[7].r80;
|
---|
6357 | pFpuCtx->aRegs[7].r80 = r80Tmp;
|
---|
6358 | }
|
---|
6359 |
|
---|
6360 |
|
---|
6361 | /**
|
---|
6362 | * Updates FSW and pushes a FPU result onto the FPU stack if no pending
|
---|
6363 | * exception prevents it.
|
---|
6364 | *
|
---|
6365 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6366 | * @param pResult The FPU operation result to push.
|
---|
6367 | * @param pFpuCtx The FPU context.
|
---|
6368 | */
|
---|
6369 | IEM_STATIC void iemFpuMaybePushResult(PVMCPU pVCpu, PIEMFPURESULT pResult, PX86FXSTATE pFpuCtx)
|
---|
6370 | {
|
---|
6371 | /* Update FSW and bail if there are pending exceptions afterwards. */
|
---|
6372 | uint16_t fFsw = pFpuCtx->FSW & ~X86_FSW_C_MASK;
|
---|
6373 | fFsw |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
6374 | if ( (fFsw & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
6375 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
6376 | {
|
---|
6377 | pFpuCtx->FSW = fFsw;
|
---|
6378 | return;
|
---|
6379 | }
|
---|
6380 |
|
---|
6381 | uint16_t iNewTop = (X86_FSW_TOP_GET(fFsw) + 7) & X86_FSW_TOP_SMASK;
|
---|
6382 | if (!(pFpuCtx->FTW & RT_BIT(iNewTop)))
|
---|
6383 | {
|
---|
6384 | /* All is fine, push the actual value. */
|
---|
6385 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
6386 | pFpuCtx->aRegs[7].r80 = pResult->r80Result;
|
---|
6387 | }
|
---|
6388 | else if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
6389 | {
|
---|
6390 | /* Masked stack overflow, push QNaN. */
|
---|
6391 | fFsw |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1;
|
---|
6392 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
6393 | }
|
---|
6394 | else
|
---|
6395 | {
|
---|
6396 | /* Raise stack overflow, don't push anything. */
|
---|
6397 | pFpuCtx->FSW |= pResult->FSW & ~X86_FSW_C_MASK;
|
---|
6398 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1 | X86_FSW_B | X86_FSW_ES;
|
---|
6399 | return;
|
---|
6400 | }
|
---|
6401 |
|
---|
6402 | fFsw &= ~X86_FSW_TOP_MASK;
|
---|
6403 | fFsw |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
6404 | pFpuCtx->FSW = fFsw;
|
---|
6405 |
|
---|
6406 | iemFpuRotateStackPush(pFpuCtx);
|
---|
6407 | }
|
---|
6408 |
|
---|
6409 |
|
---|
6410 | /**
|
---|
6411 | * Stores a result in a FPU register and updates the FSW and FTW.
|
---|
6412 | *
|
---|
6413 | * @param pFpuCtx The FPU context.
|
---|
6414 | * @param pResult The result to store.
|
---|
6415 | * @param iStReg Which FPU register to store it in.
|
---|
6416 | */
|
---|
6417 | IEM_STATIC void iemFpuStoreResultOnly(PX86FXSTATE pFpuCtx, PIEMFPURESULT pResult, uint8_t iStReg)
|
---|
6418 | {
|
---|
6419 | Assert(iStReg < 8);
|
---|
6420 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
6421 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
6422 | pFpuCtx->FSW |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
6423 | pFpuCtx->FTW |= RT_BIT(iReg);
|
---|
6424 | pFpuCtx->aRegs[iStReg].r80 = pResult->r80Result;
|
---|
6425 | }
|
---|
6426 |
|
---|
6427 |
|
---|
6428 | /**
|
---|
6429 | * Only updates the FPU status word (FSW) with the result of the current
|
---|
6430 | * instruction.
|
---|
6431 | *
|
---|
6432 | * @param pFpuCtx The FPU context.
|
---|
6433 | * @param u16FSW The FSW output of the current instruction.
|
---|
6434 | */
|
---|
6435 | IEM_STATIC void iemFpuUpdateFSWOnly(PX86FXSTATE pFpuCtx, uint16_t u16FSW)
|
---|
6436 | {
|
---|
6437 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
6438 | pFpuCtx->FSW |= u16FSW & ~X86_FSW_TOP_MASK;
|
---|
6439 | }
|
---|
6440 |
|
---|
6441 |
|
---|
6442 | /**
|
---|
6443 | * Pops one item off the FPU stack if no pending exception prevents it.
|
---|
6444 | *
|
---|
6445 | * @param pFpuCtx The FPU context.
|
---|
6446 | */
|
---|
6447 | IEM_STATIC void iemFpuMaybePopOne(PX86FXSTATE pFpuCtx)
|
---|
6448 | {
|
---|
6449 | /* Check pending exceptions. */
|
---|
6450 | uint16_t uFSW = pFpuCtx->FSW;
|
---|
6451 | if ( (pFpuCtx->FSW & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
6452 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
6453 | return;
|
---|
6454 |
|
---|
6455 | /* TOP--. */
|
---|
6456 | uint16_t iOldTop = uFSW & X86_FSW_TOP_MASK;
|
---|
6457 | uFSW &= ~X86_FSW_TOP_MASK;
|
---|
6458 | uFSW |= (iOldTop + (UINT16_C(9) << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
6459 | pFpuCtx->FSW = uFSW;
|
---|
6460 |
|
---|
6461 | /* Mark the previous ST0 as empty. */
|
---|
6462 | iOldTop >>= X86_FSW_TOP_SHIFT;
|
---|
6463 | pFpuCtx->FTW &= ~RT_BIT(iOldTop);
|
---|
6464 |
|
---|
6465 | /* Rotate the registers. */
|
---|
6466 | iemFpuRotateStackPop(pFpuCtx);
|
---|
6467 | }
|
---|
6468 |
|
---|
6469 |
|
---|
6470 | /**
|
---|
6471 | * Pushes a FPU result onto the FPU stack if no pending exception prevents it.
|
---|
6472 | *
|
---|
6473 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6474 | * @param pResult The FPU operation result to push.
|
---|
6475 | */
|
---|
6476 | IEM_STATIC void iemFpuPushResult(PVMCPU pVCpu, PIEMFPURESULT pResult)
|
---|
6477 | {
|
---|
6478 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6479 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6480 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6481 | iemFpuMaybePushResult(pVCpu, pResult, pFpuCtx);
|
---|
6482 | }
|
---|
6483 |
|
---|
6484 |
|
---|
6485 | /**
|
---|
6486 | * Pushes a FPU result onto the FPU stack if no pending exception prevents it,
|
---|
6487 | * and sets FPUDP and FPUDS.
|
---|
6488 | *
|
---|
6489 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6490 | * @param pResult The FPU operation result to push.
|
---|
6491 | * @param iEffSeg The effective segment register.
|
---|
6492 | * @param GCPtrEff The effective address relative to @a iEffSeg.
|
---|
6493 | */
|
---|
6494 | IEM_STATIC void iemFpuPushResultWithMemOp(PVMCPU pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
6495 | {
|
---|
6496 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6497 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6498 | iemFpuUpdateDP(pVCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
6499 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6500 | iemFpuMaybePushResult(pVCpu, pResult, pFpuCtx);
|
---|
6501 | }
|
---|
6502 |
|
---|
6503 |
|
---|
6504 | /**
|
---|
6505 | * Replace ST0 with the first value and push the second onto the FPU stack,
|
---|
6506 | * unless a pending exception prevents it.
|
---|
6507 | *
|
---|
6508 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6509 | * @param pResult The FPU operation result to store and push.
|
---|
6510 | */
|
---|
6511 | IEM_STATIC void iemFpuPushResultTwo(PVMCPU pVCpu, PIEMFPURESULTTWO pResult)
|
---|
6512 | {
|
---|
6513 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6514 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6515 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6516 |
|
---|
6517 | /* Update FSW and bail if there are pending exceptions afterwards. */
|
---|
6518 | uint16_t fFsw = pFpuCtx->FSW & ~X86_FSW_C_MASK;
|
---|
6519 | fFsw |= pResult->FSW & ~X86_FSW_TOP_MASK;
|
---|
6520 | if ( (fFsw & (X86_FSW_IE | X86_FSW_ZE | X86_FSW_DE))
|
---|
6521 | & ~(pFpuCtx->FCW & (X86_FCW_IM | X86_FCW_ZM | X86_FCW_DM)))
|
---|
6522 | {
|
---|
6523 | pFpuCtx->FSW = fFsw;
|
---|
6524 | return;
|
---|
6525 | }
|
---|
6526 |
|
---|
6527 | uint16_t iNewTop = (X86_FSW_TOP_GET(fFsw) + 7) & X86_FSW_TOP_SMASK;
|
---|
6528 | if (!(pFpuCtx->FTW & RT_BIT(iNewTop)))
|
---|
6529 | {
|
---|
6530 | /* All is fine, push the actual value. */
|
---|
6531 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
6532 | pFpuCtx->aRegs[0].r80 = pResult->r80Result1;
|
---|
6533 | pFpuCtx->aRegs[7].r80 = pResult->r80Result2;
|
---|
6534 | }
|
---|
6535 | else if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
6536 | {
|
---|
6537 | /* Masked stack overflow, push QNaN. */
|
---|
6538 | fFsw |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1;
|
---|
6539 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
6540 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
6541 | }
|
---|
6542 | else
|
---|
6543 | {
|
---|
6544 | /* Raise stack overflow, don't push anything. */
|
---|
6545 | pFpuCtx->FSW |= pResult->FSW & ~X86_FSW_C_MASK;
|
---|
6546 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_C1 | X86_FSW_B | X86_FSW_ES;
|
---|
6547 | return;
|
---|
6548 | }
|
---|
6549 |
|
---|
6550 | fFsw &= ~X86_FSW_TOP_MASK;
|
---|
6551 | fFsw |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
6552 | pFpuCtx->FSW = fFsw;
|
---|
6553 |
|
---|
6554 | iemFpuRotateStackPush(pFpuCtx);
|
---|
6555 | }
|
---|
6556 |
|
---|
6557 |
|
---|
6558 | /**
|
---|
6559 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, and
|
---|
6560 | * FOP.
|
---|
6561 | *
|
---|
6562 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6563 | * @param pResult The result to store.
|
---|
6564 | * @param iStReg Which FPU register to store it in.
|
---|
6565 | */
|
---|
6566 | IEM_STATIC void iemFpuStoreResult(PVMCPU pVCpu, PIEMFPURESULT pResult, uint8_t iStReg)
|
---|
6567 | {
|
---|
6568 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6569 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6570 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6571 | iemFpuStoreResultOnly(pFpuCtx, pResult, iStReg);
|
---|
6572 | }
|
---|
6573 |
|
---|
6574 |
|
---|
6575 | /**
|
---|
6576 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, and
|
---|
6577 | * FOP, and then pops the stack.
|
---|
6578 | *
|
---|
6579 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6580 | * @param pResult The result to store.
|
---|
6581 | * @param iStReg Which FPU register to store it in.
|
---|
6582 | */
|
---|
6583 | IEM_STATIC void iemFpuStoreResultThenPop(PVMCPU pVCpu, PIEMFPURESULT pResult, uint8_t iStReg)
|
---|
6584 | {
|
---|
6585 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6586 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6587 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6588 | iemFpuStoreResultOnly(pFpuCtx, pResult, iStReg);
|
---|
6589 | iemFpuMaybePopOne(pFpuCtx);
|
---|
6590 | }
|
---|
6591 |
|
---|
6592 |
|
---|
6593 | /**
|
---|
6594 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, FOP,
|
---|
6595 | * FPUDP, and FPUDS.
|
---|
6596 | *
|
---|
6597 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6598 | * @param pResult The result to store.
|
---|
6599 | * @param iStReg Which FPU register to store it in.
|
---|
6600 | * @param iEffSeg The effective memory operand selector register.
|
---|
6601 | * @param GCPtrEff The effective memory operand offset.
|
---|
6602 | */
|
---|
6603 | IEM_STATIC void iemFpuStoreResultWithMemOp(PVMCPU pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
|
---|
6604 | uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
6605 | {
|
---|
6606 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6607 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6608 | iemFpuUpdateDP(pVCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
6609 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6610 | iemFpuStoreResultOnly(pFpuCtx, pResult, iStReg);
|
---|
6611 | }
|
---|
6612 |
|
---|
6613 |
|
---|
6614 | /**
|
---|
6615 | * Stores a result in a FPU register, updates the FSW, FTW, FPUIP, FPUCS, FOP,
|
---|
6616 | * FPUDP, and FPUDS, and then pops the stack.
|
---|
6617 | *
|
---|
6618 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6619 | * @param pResult The result to store.
|
---|
6620 | * @param iStReg Which FPU register to store it in.
|
---|
6621 | * @param iEffSeg The effective memory operand selector register.
|
---|
6622 | * @param GCPtrEff The effective memory operand offset.
|
---|
6623 | */
|
---|
6624 | IEM_STATIC void iemFpuStoreResultWithMemOpThenPop(PVMCPU pVCpu, PIEMFPURESULT pResult,
|
---|
6625 | uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
6626 | {
|
---|
6627 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6628 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6629 | iemFpuUpdateDP(pVCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
6630 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6631 | iemFpuStoreResultOnly(pFpuCtx, pResult, iStReg);
|
---|
6632 | iemFpuMaybePopOne(pFpuCtx);
|
---|
6633 | }
|
---|
6634 |
|
---|
6635 |
|
---|
6636 | /**
|
---|
6637 | * Updates the FOP, FPUIP, and FPUCS. For FNOP.
|
---|
6638 | *
|
---|
6639 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6640 | */
|
---|
6641 | IEM_STATIC void iemFpuUpdateOpcodeAndIp(PVMCPU pVCpu)
|
---|
6642 | {
|
---|
6643 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6644 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6645 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6646 | }
|
---|
6647 |
|
---|
6648 |
|
---|
6649 | /**
|
---|
6650 | * Marks the specified stack register as free (for FFREE).
|
---|
6651 | *
|
---|
6652 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6653 | * @param iStReg The register to free.
|
---|
6654 | */
|
---|
6655 | IEM_STATIC void iemFpuStackFree(PVMCPU pVCpu, uint8_t iStReg)
|
---|
6656 | {
|
---|
6657 | Assert(iStReg < 8);
|
---|
6658 | PX86FXSTATE pFpuCtx = &IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87;
|
---|
6659 | uint8_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
6660 | pFpuCtx->FTW &= ~RT_BIT(iReg);
|
---|
6661 | }
|
---|
6662 |
|
---|
6663 |
|
---|
6664 | /**
|
---|
6665 | * Increments FSW.TOP, i.e. pops an item off the stack without freeing it.
|
---|
6666 | *
|
---|
6667 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6668 | */
|
---|
6669 | IEM_STATIC void iemFpuStackIncTop(PVMCPU pVCpu)
|
---|
6670 | {
|
---|
6671 | PX86FXSTATE pFpuCtx = &IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87;
|
---|
6672 | uint16_t uFsw = pFpuCtx->FSW;
|
---|
6673 | uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
|
---|
6674 | uTop = (uTop + (1 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
6675 | uFsw &= ~X86_FSW_TOP_MASK;
|
---|
6676 | uFsw |= uTop;
|
---|
6677 | pFpuCtx->FSW = uFsw;
|
---|
6678 | }
|
---|
6679 |
|
---|
6680 |
|
---|
6681 | /**
|
---|
6682 | * Decrements FSW.TOP, i.e. push an item off the stack without storing anything.
|
---|
6683 | *
|
---|
6684 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6685 | */
|
---|
6686 | IEM_STATIC void iemFpuStackDecTop(PVMCPU pVCpu)
|
---|
6687 | {
|
---|
6688 | PX86FXSTATE pFpuCtx = &IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87;
|
---|
6689 | uint16_t uFsw = pFpuCtx->FSW;
|
---|
6690 | uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
|
---|
6691 | uTop = (uTop + (7 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
6692 | uFsw &= ~X86_FSW_TOP_MASK;
|
---|
6693 | uFsw |= uTop;
|
---|
6694 | pFpuCtx->FSW = uFsw;
|
---|
6695 | }
|
---|
6696 |
|
---|
6697 |
|
---|
6698 | /**
|
---|
6699 | * Updates the FSW, FOP, FPUIP, and FPUCS.
|
---|
6700 | *
|
---|
6701 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6702 | * @param u16FSW The FSW from the current instruction.
|
---|
6703 | */
|
---|
6704 | IEM_STATIC void iemFpuUpdateFSW(PVMCPU pVCpu, uint16_t u16FSW)
|
---|
6705 | {
|
---|
6706 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6707 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6708 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6709 | iemFpuUpdateFSWOnly(pFpuCtx, u16FSW);
|
---|
6710 | }
|
---|
6711 |
|
---|
6712 |
|
---|
6713 | /**
|
---|
6714 | * Updates the FSW, FOP, FPUIP, and FPUCS, then pops the stack.
|
---|
6715 | *
|
---|
6716 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6717 | * @param u16FSW The FSW from the current instruction.
|
---|
6718 | */
|
---|
6719 | IEM_STATIC void iemFpuUpdateFSWThenPop(PVMCPU pVCpu, uint16_t u16FSW)
|
---|
6720 | {
|
---|
6721 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6722 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6723 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6724 | iemFpuUpdateFSWOnly(pFpuCtx, u16FSW);
|
---|
6725 | iemFpuMaybePopOne(pFpuCtx);
|
---|
6726 | }
|
---|
6727 |
|
---|
6728 |
|
---|
6729 | /**
|
---|
6730 | * Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS.
|
---|
6731 | *
|
---|
6732 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6733 | * @param u16FSW The FSW from the current instruction.
|
---|
6734 | * @param iEffSeg The effective memory operand selector register.
|
---|
6735 | * @param GCPtrEff The effective memory operand offset.
|
---|
6736 | */
|
---|
6737 | IEM_STATIC void iemFpuUpdateFSWWithMemOp(PVMCPU pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
6738 | {
|
---|
6739 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6740 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6741 | iemFpuUpdateDP(pVCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
6742 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6743 | iemFpuUpdateFSWOnly(pFpuCtx, u16FSW);
|
---|
6744 | }
|
---|
6745 |
|
---|
6746 |
|
---|
6747 | /**
|
---|
6748 | * Updates the FSW, FOP, FPUIP, and FPUCS, then pops the stack twice.
|
---|
6749 | *
|
---|
6750 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6751 | * @param u16FSW The FSW from the current instruction.
|
---|
6752 | */
|
---|
6753 | IEM_STATIC void iemFpuUpdateFSWThenPopPop(PVMCPU pVCpu, uint16_t u16FSW)
|
---|
6754 | {
|
---|
6755 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6756 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6757 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6758 | iemFpuUpdateFSWOnly(pFpuCtx, u16FSW);
|
---|
6759 | iemFpuMaybePopOne(pFpuCtx);
|
---|
6760 | iemFpuMaybePopOne(pFpuCtx);
|
---|
6761 | }
|
---|
6762 |
|
---|
6763 |
|
---|
6764 | /**
|
---|
6765 | * Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS, then pops the stack.
|
---|
6766 | *
|
---|
6767 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6768 | * @param u16FSW The FSW from the current instruction.
|
---|
6769 | * @param iEffSeg The effective memory operand selector register.
|
---|
6770 | * @param GCPtrEff The effective memory operand offset.
|
---|
6771 | */
|
---|
6772 | IEM_STATIC void iemFpuUpdateFSWWithMemOpThenPop(PVMCPU pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
6773 | {
|
---|
6774 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6775 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6776 | iemFpuUpdateDP(pVCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
6777 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6778 | iemFpuUpdateFSWOnly(pFpuCtx, u16FSW);
|
---|
6779 | iemFpuMaybePopOne(pFpuCtx);
|
---|
6780 | }
|
---|
6781 |
|
---|
6782 |
|
---|
6783 | /**
|
---|
6784 | * Worker routine for raising an FPU stack underflow exception.
|
---|
6785 | *
|
---|
6786 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6787 | * @param pFpuCtx The FPU context.
|
---|
6788 | * @param iStReg The stack register being accessed.
|
---|
6789 | */
|
---|
6790 | IEM_STATIC void iemFpuStackUnderflowOnly(PVMCPU pVCpu, PX86FXSTATE pFpuCtx, uint8_t iStReg)
|
---|
6791 | {
|
---|
6792 | Assert(iStReg < 8 || iStReg == UINT8_MAX);
|
---|
6793 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
6794 | {
|
---|
6795 | /* Masked underflow. */
|
---|
6796 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
6797 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
6798 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
6799 | if (iStReg != UINT8_MAX)
|
---|
6800 | {
|
---|
6801 | pFpuCtx->FTW |= RT_BIT(iReg);
|
---|
6802 | iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
|
---|
6803 | }
|
---|
6804 | }
|
---|
6805 | else
|
---|
6806 | {
|
---|
6807 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
6808 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
6809 | }
|
---|
6810 | }
|
---|
6811 |
|
---|
6812 |
|
---|
6813 | /**
|
---|
6814 | * Raises a FPU stack underflow exception.
|
---|
6815 | *
|
---|
6816 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6817 | * @param iStReg The destination register that should be loaded
|
---|
6818 | * with QNaN if \#IS is not masked. Specify
|
---|
6819 | * UINT8_MAX if none (like for fcom).
|
---|
6820 | */
|
---|
6821 | DECL_NO_INLINE(IEM_STATIC, void) iemFpuStackUnderflow(PVMCPU pVCpu, uint8_t iStReg)
|
---|
6822 | {
|
---|
6823 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6824 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6825 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6826 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
6827 | }
|
---|
6828 |
|
---|
6829 |
|
---|
6830 | DECL_NO_INLINE(IEM_STATIC, void)
|
---|
6831 | iemFpuStackUnderflowWithMemOp(PVMCPU pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
6832 | {
|
---|
6833 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6834 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6835 | iemFpuUpdateDP(pVCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
6836 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6837 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
6838 | }
|
---|
6839 |
|
---|
6840 |
|
---|
6841 | DECL_NO_INLINE(IEM_STATIC, void) iemFpuStackUnderflowThenPop(PVMCPU pVCpu, uint8_t iStReg)
|
---|
6842 | {
|
---|
6843 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6844 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6845 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6846 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
6847 | iemFpuMaybePopOne(pFpuCtx);
|
---|
6848 | }
|
---|
6849 |
|
---|
6850 |
|
---|
6851 | DECL_NO_INLINE(IEM_STATIC, void)
|
---|
6852 | iemFpuStackUnderflowWithMemOpThenPop(PVMCPU pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
6853 | {
|
---|
6854 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6855 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6856 | iemFpuUpdateDP(pVCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
6857 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6858 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, iStReg);
|
---|
6859 | iemFpuMaybePopOne(pFpuCtx);
|
---|
6860 | }
|
---|
6861 |
|
---|
6862 |
|
---|
6863 | DECL_NO_INLINE(IEM_STATIC, void) iemFpuStackUnderflowThenPopPop(PVMCPU pVCpu)
|
---|
6864 | {
|
---|
6865 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6866 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6867 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6868 | iemFpuStackUnderflowOnly(pVCpu, pFpuCtx, UINT8_MAX);
|
---|
6869 | iemFpuMaybePopOne(pFpuCtx);
|
---|
6870 | iemFpuMaybePopOne(pFpuCtx);
|
---|
6871 | }
|
---|
6872 |
|
---|
6873 |
|
---|
6874 | DECL_NO_INLINE(IEM_STATIC, void)
|
---|
6875 | iemFpuStackPushUnderflow(PVMCPU pVCpu)
|
---|
6876 | {
|
---|
6877 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6878 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6879 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6880 |
|
---|
6881 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
6882 | {
|
---|
6883 | /* Masked overflow - Push QNaN. */
|
---|
6884 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
6885 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
6886 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
6887 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
6888 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
6889 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
6890 | iemFpuRotateStackPush(pFpuCtx);
|
---|
6891 | }
|
---|
6892 | else
|
---|
6893 | {
|
---|
6894 | /* Exception pending - don't change TOP or the register stack. */
|
---|
6895 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
6896 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
6897 | }
|
---|
6898 | }
|
---|
6899 |
|
---|
6900 |
|
---|
6901 | DECL_NO_INLINE(IEM_STATIC, void)
|
---|
6902 | iemFpuStackPushUnderflowTwo(PVMCPU pVCpu)
|
---|
6903 | {
|
---|
6904 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6905 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6906 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6907 |
|
---|
6908 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
6909 | {
|
---|
6910 | /* Masked overflow - Push QNaN. */
|
---|
6911 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
6912 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
6913 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
6914 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
6915 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
6916 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
6917 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
6918 | iemFpuRotateStackPush(pFpuCtx);
|
---|
6919 | }
|
---|
6920 | else
|
---|
6921 | {
|
---|
6922 | /* Exception pending - don't change TOP or the register stack. */
|
---|
6923 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
6924 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
6925 | }
|
---|
6926 | }
|
---|
6927 |
|
---|
6928 |
|
---|
6929 | /**
|
---|
6930 | * Worker routine for raising an FPU stack overflow exception on a push.
|
---|
6931 | *
|
---|
6932 | * @param pFpuCtx The FPU context.
|
---|
6933 | */
|
---|
6934 | IEM_STATIC void iemFpuStackPushOverflowOnly(PX86FXSTATE pFpuCtx)
|
---|
6935 | {
|
---|
6936 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
6937 | {
|
---|
6938 | /* Masked overflow. */
|
---|
6939 | uint16_t iNewTop = (X86_FSW_TOP_GET(pFpuCtx->FSW) + 7) & X86_FSW_TOP_SMASK;
|
---|
6940 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_C_MASK);
|
---|
6941 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
|
---|
6942 | pFpuCtx->FSW |= iNewTop << X86_FSW_TOP_SHIFT;
|
---|
6943 | pFpuCtx->FTW |= RT_BIT(iNewTop);
|
---|
6944 | iemFpuStoreQNan(&pFpuCtx->aRegs[7].r80);
|
---|
6945 | iemFpuRotateStackPush(pFpuCtx);
|
---|
6946 | }
|
---|
6947 | else
|
---|
6948 | {
|
---|
6949 | /* Exception pending - don't change TOP or the register stack. */
|
---|
6950 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
6951 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
6952 | }
|
---|
6953 | }
|
---|
6954 |
|
---|
6955 |
|
---|
6956 | /**
|
---|
6957 | * Raises a FPU stack overflow exception on a push.
|
---|
6958 | *
|
---|
6959 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6960 | */
|
---|
6961 | DECL_NO_INLINE(IEM_STATIC, void) iemFpuStackPushOverflow(PVMCPU pVCpu)
|
---|
6962 | {
|
---|
6963 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6964 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6965 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6966 | iemFpuStackPushOverflowOnly(pFpuCtx);
|
---|
6967 | }
|
---|
6968 |
|
---|
6969 |
|
---|
6970 | /**
|
---|
6971 | * Raises a FPU stack overflow exception on a push with a memory operand.
|
---|
6972 | *
|
---|
6973 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
6974 | * @param iEffSeg The effective memory operand selector register.
|
---|
6975 | * @param GCPtrEff The effective memory operand offset.
|
---|
6976 | */
|
---|
6977 | DECL_NO_INLINE(IEM_STATIC, void)
|
---|
6978 | iemFpuStackPushOverflowWithMemOp(PVMCPU pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff)
|
---|
6979 | {
|
---|
6980 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6981 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
6982 | iemFpuUpdateDP(pVCpu, pCtx, pFpuCtx, iEffSeg, GCPtrEff);
|
---|
6983 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
6984 | iemFpuStackPushOverflowOnly(pFpuCtx);
|
---|
6985 | }
|
---|
6986 |
|
---|
6987 |
|
---|
6988 | IEM_STATIC int iemFpuStRegNotEmpty(PVMCPU pVCpu, uint8_t iStReg)
|
---|
6989 | {
|
---|
6990 | PX86FXSTATE pFpuCtx = &IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87;
|
---|
6991 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
6992 | if (pFpuCtx->FTW & RT_BIT(iReg))
|
---|
6993 | return VINF_SUCCESS;
|
---|
6994 | return VERR_NOT_FOUND;
|
---|
6995 | }
|
---|
6996 |
|
---|
6997 |
|
---|
6998 | IEM_STATIC int iemFpuStRegNotEmptyRef(PVMCPU pVCpu, uint8_t iStReg, PCRTFLOAT80U *ppRef)
|
---|
6999 | {
|
---|
7000 | PX86FXSTATE pFpuCtx = &IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87;
|
---|
7001 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
7002 | if (pFpuCtx->FTW & RT_BIT(iReg))
|
---|
7003 | {
|
---|
7004 | *ppRef = &pFpuCtx->aRegs[iStReg].r80;
|
---|
7005 | return VINF_SUCCESS;
|
---|
7006 | }
|
---|
7007 | return VERR_NOT_FOUND;
|
---|
7008 | }
|
---|
7009 |
|
---|
7010 |
|
---|
7011 | IEM_STATIC int iemFpu2StRegsNotEmptyRef(PVMCPU pVCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0,
|
---|
7012 | uint8_t iStReg1, PCRTFLOAT80U *ppRef1)
|
---|
7013 | {
|
---|
7014 | PX86FXSTATE pFpuCtx = &IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87;
|
---|
7015 | uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
7016 | uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
|
---|
7017 | uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
|
---|
7018 | if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
|
---|
7019 | {
|
---|
7020 | *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
|
---|
7021 | *ppRef1 = &pFpuCtx->aRegs[iStReg1].r80;
|
---|
7022 | return VINF_SUCCESS;
|
---|
7023 | }
|
---|
7024 | return VERR_NOT_FOUND;
|
---|
7025 | }
|
---|
7026 |
|
---|
7027 |
|
---|
7028 | IEM_STATIC int iemFpu2StRegsNotEmptyRefFirst(PVMCPU pVCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0, uint8_t iStReg1)
|
---|
7029 | {
|
---|
7030 | PX86FXSTATE pFpuCtx = &IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87;
|
---|
7031 | uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
7032 | uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
|
---|
7033 | uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
|
---|
7034 | if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
|
---|
7035 | {
|
---|
7036 | *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
|
---|
7037 | return VINF_SUCCESS;
|
---|
7038 | }
|
---|
7039 | return VERR_NOT_FOUND;
|
---|
7040 | }
|
---|
7041 |
|
---|
7042 |
|
---|
7043 | /**
|
---|
7044 | * Updates the FPU exception status after FCW is changed.
|
---|
7045 | *
|
---|
7046 | * @param pFpuCtx The FPU context.
|
---|
7047 | */
|
---|
7048 | IEM_STATIC void iemFpuRecalcExceptionStatus(PX86FXSTATE pFpuCtx)
|
---|
7049 | {
|
---|
7050 | uint16_t u16Fsw = pFpuCtx->FSW;
|
---|
7051 | if ((u16Fsw & X86_FSW_XCPT_MASK) & ~(pFpuCtx->FCW & X86_FCW_XCPT_MASK))
|
---|
7052 | u16Fsw |= X86_FSW_ES | X86_FSW_B;
|
---|
7053 | else
|
---|
7054 | u16Fsw &= ~(X86_FSW_ES | X86_FSW_B);
|
---|
7055 | pFpuCtx->FSW = u16Fsw;
|
---|
7056 | }
|
---|
7057 |
|
---|
7058 |
|
---|
7059 | /**
|
---|
7060 | * Calculates the full FTW (FPU tag word) for use in FNSTENV and FNSAVE.
|
---|
7061 | *
|
---|
7062 | * @returns The full FTW.
|
---|
7063 | * @param pFpuCtx The FPU context.
|
---|
7064 | */
|
---|
7065 | IEM_STATIC uint16_t iemFpuCalcFullFtw(PCX86FXSTATE pFpuCtx)
|
---|
7066 | {
|
---|
7067 | uint8_t const u8Ftw = (uint8_t)pFpuCtx->FTW;
|
---|
7068 | uint16_t u16Ftw = 0;
|
---|
7069 | unsigned const iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
7070 | for (unsigned iSt = 0; iSt < 8; iSt++)
|
---|
7071 | {
|
---|
7072 | unsigned const iReg = (iSt + iTop) & 7;
|
---|
7073 | if (!(u8Ftw & RT_BIT(iReg)))
|
---|
7074 | u16Ftw |= 3 << (iReg * 2); /* empty */
|
---|
7075 | else
|
---|
7076 | {
|
---|
7077 | uint16_t uTag;
|
---|
7078 | PCRTFLOAT80U const pr80Reg = &pFpuCtx->aRegs[iSt].r80;
|
---|
7079 | if (pr80Reg->s.uExponent == 0x7fff)
|
---|
7080 | uTag = 2; /* Exponent is all 1's => Special. */
|
---|
7081 | else if (pr80Reg->s.uExponent == 0x0000)
|
---|
7082 | {
|
---|
7083 | if (pr80Reg->s.u64Mantissa == 0x0000)
|
---|
7084 | uTag = 1; /* All bits are zero => Zero. */
|
---|
7085 | else
|
---|
7086 | uTag = 2; /* Must be special. */
|
---|
7087 | }
|
---|
7088 | else if (pr80Reg->s.u64Mantissa & RT_BIT_64(63)) /* The J bit. */
|
---|
7089 | uTag = 0; /* Valid. */
|
---|
7090 | else
|
---|
7091 | uTag = 2; /* Must be special. */
|
---|
7092 |
|
---|
7093 | u16Ftw |= uTag << (iReg * 2); /* empty */
|
---|
7094 | }
|
---|
7095 | }
|
---|
7096 |
|
---|
7097 | return u16Ftw;
|
---|
7098 | }
|
---|
7099 |
|
---|
7100 |
|
---|
7101 | /**
|
---|
7102 | * Converts a full FTW to a compressed one (for use in FLDENV and FRSTOR).
|
---|
7103 | *
|
---|
7104 | * @returns The compressed FTW.
|
---|
7105 | * @param u16FullFtw The full FTW to convert.
|
---|
7106 | */
|
---|
7107 | IEM_STATIC uint16_t iemFpuCompressFtw(uint16_t u16FullFtw)
|
---|
7108 | {
|
---|
7109 | uint8_t u8Ftw = 0;
|
---|
7110 | for (unsigned i = 0; i < 8; i++)
|
---|
7111 | {
|
---|
7112 | if ((u16FullFtw & 3) != 3 /*empty*/)
|
---|
7113 | u8Ftw |= RT_BIT(i);
|
---|
7114 | u16FullFtw >>= 2;
|
---|
7115 | }
|
---|
7116 |
|
---|
7117 | return u8Ftw;
|
---|
7118 | }
|
---|
7119 |
|
---|
7120 | /** @} */
|
---|
7121 |
|
---|
7122 |
|
---|
7123 | /** @name Memory access.
|
---|
7124 | *
|
---|
7125 | * @{
|
---|
7126 | */
|
---|
7127 |
|
---|
7128 |
|
---|
7129 | /**
|
---|
7130 | * Updates the IEMCPU::cbWritten counter if applicable.
|
---|
7131 | *
|
---|
7132 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7133 | * @param fAccess The access being accounted for.
|
---|
7134 | * @param cbMem The access size.
|
---|
7135 | */
|
---|
7136 | DECL_FORCE_INLINE(void) iemMemUpdateWrittenCounter(PVMCPU pVCpu, uint32_t fAccess, size_t cbMem)
|
---|
7137 | {
|
---|
7138 | if ( (fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE)) == (IEM_ACCESS_WHAT_STACK | IEM_ACCESS_TYPE_WRITE)
|
---|
7139 | || (fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE)) == (IEM_ACCESS_WHAT_DATA | IEM_ACCESS_TYPE_WRITE) )
|
---|
7140 | pVCpu->iem.s.cbWritten += (uint32_t)cbMem;
|
---|
7141 | }
|
---|
7142 |
|
---|
7143 |
|
---|
7144 | /**
|
---|
7145 | * Checks if the given segment can be written to, raise the appropriate
|
---|
7146 | * exception if not.
|
---|
7147 | *
|
---|
7148 | * @returns VBox strict status code.
|
---|
7149 | *
|
---|
7150 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7151 | * @param pHid Pointer to the hidden register.
|
---|
7152 | * @param iSegReg The register number.
|
---|
7153 | * @param pu64BaseAddr Where to return the base address to use for the
|
---|
7154 | * segment. (In 64-bit code it may differ from the
|
---|
7155 | * base in the hidden segment.)
|
---|
7156 | */
|
---|
7157 | IEM_STATIC VBOXSTRICTRC
|
---|
7158 | iemMemSegCheckWriteAccessEx(PVMCPU pVCpu, PCCPUMSELREGHID pHid, uint8_t iSegReg, uint64_t *pu64BaseAddr)
|
---|
7159 | {
|
---|
7160 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
7161 | *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
|
---|
7162 | else
|
---|
7163 | {
|
---|
7164 | if (!pHid->Attr.n.u1Present)
|
---|
7165 | return iemRaiseSelectorNotPresentBySegReg(pVCpu, iSegReg);
|
---|
7166 |
|
---|
7167 | if ( ( (pHid->Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
7168 | || !(pHid->Attr.n.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
7169 | && pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT )
|
---|
7170 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
|
---|
7171 | *pu64BaseAddr = pHid->u64Base;
|
---|
7172 | }
|
---|
7173 | return VINF_SUCCESS;
|
---|
7174 | }
|
---|
7175 |
|
---|
7176 |
|
---|
7177 | /**
|
---|
7178 | * Checks if the given segment can be read from, raise the appropriate
|
---|
7179 | * exception if not.
|
---|
7180 | *
|
---|
7181 | * @returns VBox strict status code.
|
---|
7182 | *
|
---|
7183 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7184 | * @param pHid Pointer to the hidden register.
|
---|
7185 | * @param iSegReg The register number.
|
---|
7186 | * @param pu64BaseAddr Where to return the base address to use for the
|
---|
7187 | * segment. (In 64-bit code it may differ from the
|
---|
7188 | * base in the hidden segment.)
|
---|
7189 | */
|
---|
7190 | IEM_STATIC VBOXSTRICTRC
|
---|
7191 | iemMemSegCheckReadAccessEx(PVMCPU pVCpu, PCCPUMSELREGHID pHid, uint8_t iSegReg, uint64_t *pu64BaseAddr)
|
---|
7192 | {
|
---|
7193 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
7194 | *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
|
---|
7195 | else
|
---|
7196 | {
|
---|
7197 | if (!pHid->Attr.n.u1Present)
|
---|
7198 | return iemRaiseSelectorNotPresentBySegReg(pVCpu, iSegReg);
|
---|
7199 |
|
---|
7200 | if ((pHid->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
7201 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
|
---|
7202 | *pu64BaseAddr = pHid->u64Base;
|
---|
7203 | }
|
---|
7204 | return VINF_SUCCESS;
|
---|
7205 | }
|
---|
7206 |
|
---|
7207 |
|
---|
7208 | /**
|
---|
7209 | * Applies the segment limit, base and attributes.
|
---|
7210 | *
|
---|
7211 | * This may raise a \#GP or \#SS.
|
---|
7212 | *
|
---|
7213 | * @returns VBox strict status code.
|
---|
7214 | *
|
---|
7215 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7216 | * @param fAccess The kind of access which is being performed.
|
---|
7217 | * @param iSegReg The index of the segment register to apply.
|
---|
7218 | * This is UINT8_MAX if none (for IDT, GDT, LDT,
|
---|
7219 | * TSS, ++).
|
---|
7220 | * @param cbMem The access size.
|
---|
7221 | * @param pGCPtrMem Pointer to the guest memory address to apply
|
---|
7222 | * segmentation to. Input and output parameter.
|
---|
7223 | */
|
---|
7224 | IEM_STATIC VBOXSTRICTRC
|
---|
7225 | iemMemApplySegment(PVMCPU pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem)
|
---|
7226 | {
|
---|
7227 | if (iSegReg == UINT8_MAX)
|
---|
7228 | return VINF_SUCCESS;
|
---|
7229 |
|
---|
7230 | PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
7231 | switch (pVCpu->iem.s.enmCpuMode)
|
---|
7232 | {
|
---|
7233 | case IEMMODE_16BIT:
|
---|
7234 | case IEMMODE_32BIT:
|
---|
7235 | {
|
---|
7236 | RTGCPTR32 GCPtrFirst32 = (RTGCPTR32)*pGCPtrMem;
|
---|
7237 | RTGCPTR32 GCPtrLast32 = GCPtrFirst32 + (uint32_t)cbMem - 1;
|
---|
7238 |
|
---|
7239 | if ( pSel->Attr.n.u1Present
|
---|
7240 | && !pSel->Attr.n.u1Unusable)
|
---|
7241 | {
|
---|
7242 | Assert(pSel->Attr.n.u1DescType);
|
---|
7243 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
|
---|
7244 | {
|
---|
7245 | if ( (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
7246 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
7247 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, fAccess);
|
---|
7248 |
|
---|
7249 | if (!IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
7250 | {
|
---|
7251 | /** @todo CPL check. */
|
---|
7252 | }
|
---|
7253 |
|
---|
7254 | /*
|
---|
7255 | * There are two kinds of data selectors, normal and expand down.
|
---|
7256 | */
|
---|
7257 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
|
---|
7258 | {
|
---|
7259 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
7260 | || GCPtrLast32 > pSel->u32Limit) /* yes, in real mode too (since 80286). */
|
---|
7261 | return iemRaiseSelectorBounds(pVCpu, iSegReg, fAccess);
|
---|
7262 | }
|
---|
7263 | else
|
---|
7264 | {
|
---|
7265 | /*
|
---|
7266 | * The upper boundary is defined by the B bit, not the G bit!
|
---|
7267 | */
|
---|
7268 | if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
|
---|
7269 | || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
|
---|
7270 | return iemRaiseSelectorBounds(pVCpu, iSegReg, fAccess);
|
---|
7271 | }
|
---|
7272 | *pGCPtrMem = GCPtrFirst32 += (uint32_t)pSel->u64Base;
|
---|
7273 | }
|
---|
7274 | else
|
---|
7275 | {
|
---|
7276 |
|
---|
7277 | /*
|
---|
7278 | * Code selector and usually be used to read thru, writing is
|
---|
7279 | * only permitted in real and V8086 mode.
|
---|
7280 | */
|
---|
7281 | if ( ( (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
7282 | || ( (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
7283 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)) )
|
---|
7284 | && !IEM_IS_REAL_OR_V86_MODE(pVCpu) )
|
---|
7285 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, fAccess);
|
---|
7286 |
|
---|
7287 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
7288 | || GCPtrLast32 > pSel->u32Limit) /* yes, in real mode too (since 80286). */
|
---|
7289 | return iemRaiseSelectorBounds(pVCpu, iSegReg, fAccess);
|
---|
7290 |
|
---|
7291 | if (!IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
7292 | {
|
---|
7293 | /** @todo CPL check. */
|
---|
7294 | }
|
---|
7295 |
|
---|
7296 | *pGCPtrMem = GCPtrFirst32 += (uint32_t)pSel->u64Base;
|
---|
7297 | }
|
---|
7298 | }
|
---|
7299 | else
|
---|
7300 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7301 | return VINF_SUCCESS;
|
---|
7302 | }
|
---|
7303 |
|
---|
7304 | case IEMMODE_64BIT:
|
---|
7305 | {
|
---|
7306 | RTGCPTR GCPtrMem = *pGCPtrMem;
|
---|
7307 | if (iSegReg == X86_SREG_GS || iSegReg == X86_SREG_FS)
|
---|
7308 | *pGCPtrMem = GCPtrMem + pSel->u64Base;
|
---|
7309 |
|
---|
7310 | Assert(cbMem >= 1);
|
---|
7311 | if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
|
---|
7312 | return VINF_SUCCESS;
|
---|
7313 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7314 | }
|
---|
7315 |
|
---|
7316 | default:
|
---|
7317 | AssertFailedReturn(VERR_IEM_IPE_7);
|
---|
7318 | }
|
---|
7319 | }
|
---|
7320 |
|
---|
7321 |
|
---|
7322 | /**
|
---|
7323 | * Translates a virtual address to a physical physical address and checks if we
|
---|
7324 | * can access the page as specified.
|
---|
7325 | *
|
---|
7326 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7327 | * @param GCPtrMem The virtual address.
|
---|
7328 | * @param fAccess The intended access.
|
---|
7329 | * @param pGCPhysMem Where to return the physical address.
|
---|
7330 | */
|
---|
7331 | IEM_STATIC VBOXSTRICTRC
|
---|
7332 | iemMemPageTranslateAndCheckAccess(PVMCPU pVCpu, RTGCPTR GCPtrMem, uint32_t fAccess, PRTGCPHYS pGCPhysMem)
|
---|
7333 | {
|
---|
7334 | /** @todo Need a different PGM interface here. We're currently using
|
---|
7335 | * generic / REM interfaces. this won't cut it for R0 & RC. */
|
---|
7336 | RTGCPHYS GCPhys;
|
---|
7337 | uint64_t fFlags;
|
---|
7338 | int rc = PGMGstGetPage(pVCpu, GCPtrMem, &fFlags, &GCPhys);
|
---|
7339 | if (RT_FAILURE(rc))
|
---|
7340 | {
|
---|
7341 | /** @todo Check unassigned memory in unpaged mode. */
|
---|
7342 | /** @todo Reserved bits in page tables. Requires new PGM interface. */
|
---|
7343 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
7344 | return iemRaisePageFault(pVCpu, GCPtrMem, fAccess, rc);
|
---|
7345 | }
|
---|
7346 |
|
---|
7347 | /* If the page is writable and does not have the no-exec bit set, all
|
---|
7348 | access is allowed. Otherwise we'll have to check more carefully... */
|
---|
7349 | if ((fFlags & (X86_PTE_RW | X86_PTE_US | X86_PTE_PAE_NX)) != (X86_PTE_RW | X86_PTE_US))
|
---|
7350 | {
|
---|
7351 | /* Write to read only memory? */
|
---|
7352 | if ( (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
7353 | && !(fFlags & X86_PTE_RW)
|
---|
7354 | && ( pVCpu->iem.s.uCpl != 0
|
---|
7355 | || (IEM_GET_CTX(pVCpu)->cr0 & X86_CR0_WP)))
|
---|
7356 | {
|
---|
7357 | Log(("iemMemPageTranslateAndCheckAccess: GCPtrMem=%RGv - read-only page -> #PF\n", GCPtrMem));
|
---|
7358 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
7359 | return iemRaisePageFault(pVCpu, GCPtrMem, fAccess & ~IEM_ACCESS_TYPE_READ, VERR_ACCESS_DENIED);
|
---|
7360 | }
|
---|
7361 |
|
---|
7362 | /* Kernel memory accessed by userland? */
|
---|
7363 | if ( !(fFlags & X86_PTE_US)
|
---|
7364 | && pVCpu->iem.s.uCpl == 3
|
---|
7365 | && !(fAccess & IEM_ACCESS_WHAT_SYS))
|
---|
7366 | {
|
---|
7367 | Log(("iemMemPageTranslateAndCheckAccess: GCPtrMem=%RGv - user access to kernel page -> #PF\n", GCPtrMem));
|
---|
7368 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
7369 | return iemRaisePageFault(pVCpu, GCPtrMem, fAccess, VERR_ACCESS_DENIED);
|
---|
7370 | }
|
---|
7371 |
|
---|
7372 | /* Executing non-executable memory? */
|
---|
7373 | if ( (fAccess & IEM_ACCESS_TYPE_EXEC)
|
---|
7374 | && (fFlags & X86_PTE_PAE_NX)
|
---|
7375 | && (IEM_GET_CTX(pVCpu)->msrEFER & MSR_K6_EFER_NXE) )
|
---|
7376 | {
|
---|
7377 | Log(("iemMemPageTranslateAndCheckAccess: GCPtrMem=%RGv - NX -> #PF\n", GCPtrMem));
|
---|
7378 | *pGCPhysMem = NIL_RTGCPHYS;
|
---|
7379 | return iemRaisePageFault(pVCpu, GCPtrMem, fAccess & ~(IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE),
|
---|
7380 | VERR_ACCESS_DENIED);
|
---|
7381 | }
|
---|
7382 | }
|
---|
7383 |
|
---|
7384 | /*
|
---|
7385 | * Set the dirty / access flags.
|
---|
7386 | * ASSUMES this is set when the address is translated rather than on committ...
|
---|
7387 | */
|
---|
7388 | /** @todo testcase: check when A and D bits are actually set by the CPU. */
|
---|
7389 | uint32_t fAccessedDirty = fAccess & IEM_ACCESS_TYPE_WRITE ? X86_PTE_D | X86_PTE_A : X86_PTE_A;
|
---|
7390 | if ((fFlags & fAccessedDirty) != fAccessedDirty)
|
---|
7391 | {
|
---|
7392 | int rc2 = PGMGstModifyPage(pVCpu, GCPtrMem, 1, fAccessedDirty, ~(uint64_t)fAccessedDirty);
|
---|
7393 | AssertRC(rc2);
|
---|
7394 | }
|
---|
7395 |
|
---|
7396 | GCPhys |= GCPtrMem & PAGE_OFFSET_MASK;
|
---|
7397 | *pGCPhysMem = GCPhys;
|
---|
7398 | return VINF_SUCCESS;
|
---|
7399 | }
|
---|
7400 |
|
---|
7401 |
|
---|
7402 |
|
---|
7403 | /**
|
---|
7404 | * Maps a physical page.
|
---|
7405 | *
|
---|
7406 | * @returns VBox status code (see PGMR3PhysTlbGCPhys2Ptr).
|
---|
7407 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7408 | * @param GCPhysMem The physical address.
|
---|
7409 | * @param fAccess The intended access.
|
---|
7410 | * @param ppvMem Where to return the mapping address.
|
---|
7411 | * @param pLock The PGM lock.
|
---|
7412 | */
|
---|
7413 | IEM_STATIC int iemMemPageMap(PVMCPU pVCpu, RTGCPHYS GCPhysMem, uint32_t fAccess, void **ppvMem, PPGMPAGEMAPLOCK pLock)
|
---|
7414 | {
|
---|
7415 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
7416 | /* Force the alternative path so we can ignore writes. */
|
---|
7417 | if ((fAccess & IEM_ACCESS_TYPE_WRITE) && !pVCpu->iem.s.fNoRem)
|
---|
7418 | {
|
---|
7419 | if (IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
7420 | {
|
---|
7421 | int rc2 = PGMPhysIemQueryAccess(pVCpu->CTX_SUFF(pVM), GCPhysMem,
|
---|
7422 | RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE), pVCpu->iem.s.fBypassHandlers);
|
---|
7423 | if (RT_FAILURE(rc2))
|
---|
7424 | pVCpu->iem.s.fProblematicMemory = true;
|
---|
7425 | }
|
---|
7426 | return VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
7427 | }
|
---|
7428 | #endif
|
---|
7429 | #ifdef IEM_LOG_MEMORY_WRITES
|
---|
7430 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
7431 | return VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
7432 | #endif
|
---|
7433 | #ifdef IEM_VERIFICATION_MODE_MINIMAL
|
---|
7434 | return VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
7435 | #endif
|
---|
7436 |
|
---|
7437 | /** @todo This API may require some improving later. A private deal with PGM
|
---|
7438 | * regarding locking and unlocking needs to be struct. A couple of TLBs
|
---|
7439 | * living in PGM, but with publicly accessible inlined access methods
|
---|
7440 | * could perhaps be an even better solution. */
|
---|
7441 | int rc = PGMPhysIemGCPhys2Ptr(pVCpu->CTX_SUFF(pVM), pVCpu,
|
---|
7442 | GCPhysMem,
|
---|
7443 | RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE),
|
---|
7444 | pVCpu->iem.s.fBypassHandlers,
|
---|
7445 | ppvMem,
|
---|
7446 | pLock);
|
---|
7447 | /*Log(("PGMPhysIemGCPhys2Ptr %Rrc pLock=%.*Rhxs\n", rc, sizeof(*pLock), pLock));*/
|
---|
7448 | AssertMsg(rc == VINF_SUCCESS || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
|
---|
7449 |
|
---|
7450 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
7451 | if (RT_FAILURE(rc) && IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
7452 | pVCpu->iem.s.fProblematicMemory = true;
|
---|
7453 | #endif
|
---|
7454 | return rc;
|
---|
7455 | }
|
---|
7456 |
|
---|
7457 |
|
---|
7458 | /**
|
---|
7459 | * Unmap a page previously mapped by iemMemPageMap.
|
---|
7460 | *
|
---|
7461 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7462 | * @param GCPhysMem The physical address.
|
---|
7463 | * @param fAccess The intended access.
|
---|
7464 | * @param pvMem What iemMemPageMap returned.
|
---|
7465 | * @param pLock The PGM lock.
|
---|
7466 | */
|
---|
7467 | DECLINLINE(void) iemMemPageUnmap(PVMCPU pVCpu, RTGCPHYS GCPhysMem, uint32_t fAccess, const void *pvMem, PPGMPAGEMAPLOCK pLock)
|
---|
7468 | {
|
---|
7469 | NOREF(pVCpu);
|
---|
7470 | NOREF(GCPhysMem);
|
---|
7471 | NOREF(fAccess);
|
---|
7472 | NOREF(pvMem);
|
---|
7473 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), pLock);
|
---|
7474 | }
|
---|
7475 |
|
---|
7476 |
|
---|
7477 | /**
|
---|
7478 | * Looks up a memory mapping entry.
|
---|
7479 | *
|
---|
7480 | * @returns The mapping index (positive) or VERR_NOT_FOUND (negative).
|
---|
7481 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7482 | * @param pvMem The memory address.
|
---|
7483 | * @param fAccess The access to.
|
---|
7484 | */
|
---|
7485 | DECLINLINE(int) iemMapLookup(PVMCPU pVCpu, void *pvMem, uint32_t fAccess)
|
---|
7486 | {
|
---|
7487 | Assert(pVCpu->iem.s.cActiveMappings < RT_ELEMENTS(pVCpu->iem.s.aMemMappings));
|
---|
7488 | fAccess &= IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK;
|
---|
7489 | if ( pVCpu->iem.s.aMemMappings[0].pv == pvMem
|
---|
7490 | && (pVCpu->iem.s.aMemMappings[0].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
7491 | return 0;
|
---|
7492 | if ( pVCpu->iem.s.aMemMappings[1].pv == pvMem
|
---|
7493 | && (pVCpu->iem.s.aMemMappings[1].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
7494 | return 1;
|
---|
7495 | if ( pVCpu->iem.s.aMemMappings[2].pv == pvMem
|
---|
7496 | && (pVCpu->iem.s.aMemMappings[2].fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == fAccess)
|
---|
7497 | return 2;
|
---|
7498 | return VERR_NOT_FOUND;
|
---|
7499 | }
|
---|
7500 |
|
---|
7501 |
|
---|
7502 | /**
|
---|
7503 | * Finds a free memmap entry when using iNextMapping doesn't work.
|
---|
7504 | *
|
---|
7505 | * @returns Memory mapping index, 1024 on failure.
|
---|
7506 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7507 | */
|
---|
7508 | IEM_STATIC unsigned iemMemMapFindFree(PVMCPU pVCpu)
|
---|
7509 | {
|
---|
7510 | /*
|
---|
7511 | * The easy case.
|
---|
7512 | */
|
---|
7513 | if (pVCpu->iem.s.cActiveMappings == 0)
|
---|
7514 | {
|
---|
7515 | pVCpu->iem.s.iNextMapping = 1;
|
---|
7516 | return 0;
|
---|
7517 | }
|
---|
7518 |
|
---|
7519 | /* There should be enough mappings for all instructions. */
|
---|
7520 | AssertReturn(pVCpu->iem.s.cActiveMappings < RT_ELEMENTS(pVCpu->iem.s.aMemMappings), 1024);
|
---|
7521 |
|
---|
7522 | for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->iem.s.aMemMappings); i++)
|
---|
7523 | if (pVCpu->iem.s.aMemMappings[i].fAccess == IEM_ACCESS_INVALID)
|
---|
7524 | return i;
|
---|
7525 |
|
---|
7526 | AssertFailedReturn(1024);
|
---|
7527 | }
|
---|
7528 |
|
---|
7529 |
|
---|
7530 | /**
|
---|
7531 | * Commits a bounce buffer that needs writing back and unmaps it.
|
---|
7532 | *
|
---|
7533 | * @returns Strict VBox status code.
|
---|
7534 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
7535 | * @param iMemMap The index of the buffer to commit.
|
---|
7536 | * @param fPostponeFail Whether we can postpone writer failures to ring-3.
|
---|
7537 | * Always false in ring-3, obviously.
|
---|
7538 | */
|
---|
7539 | IEM_STATIC VBOXSTRICTRC iemMemBounceBufferCommitAndUnmap(PVMCPU pVCpu, unsigned iMemMap, bool fPostponeFail)
|
---|
7540 | {
|
---|
7541 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED);
|
---|
7542 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE);
|
---|
7543 | #ifdef IN_RING3
|
---|
7544 | Assert(!fPostponeFail);
|
---|
7545 | #endif
|
---|
7546 |
|
---|
7547 | /*
|
---|
7548 | * Do the writing.
|
---|
7549 | */
|
---|
7550 | #ifndef IEM_VERIFICATION_MODE_MINIMAL
|
---|
7551 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7552 | if ( !pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned
|
---|
7553 | && !IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
7554 | {
|
---|
7555 | uint16_t const cbFirst = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst;
|
---|
7556 | uint16_t const cbSecond = pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
7557 | uint8_t const *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
7558 | if (!pVCpu->iem.s.fBypassHandlers)
|
---|
7559 | {
|
---|
7560 | /*
|
---|
7561 | * Carefully and efficiently dealing with access handler return
|
---|
7562 | * codes make this a little bloated.
|
---|
7563 | */
|
---|
7564 | VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM,
|
---|
7565 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
7566 | pbBuf,
|
---|
7567 | cbFirst,
|
---|
7568 | PGMACCESSORIGIN_IEM);
|
---|
7569 | if (rcStrict == VINF_SUCCESS)
|
---|
7570 | {
|
---|
7571 | if (cbSecond)
|
---|
7572 | {
|
---|
7573 | rcStrict = PGMPhysWrite(pVM,
|
---|
7574 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
7575 | pbBuf + cbFirst,
|
---|
7576 | cbSecond,
|
---|
7577 | PGMACCESSORIGIN_IEM);
|
---|
7578 | if (rcStrict == VINF_SUCCESS)
|
---|
7579 | { /* nothing */ }
|
---|
7580 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
7581 | {
|
---|
7582 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc\n",
|
---|
7583 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
7584 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
7585 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
7586 | }
|
---|
7587 | # ifndef IN_RING3
|
---|
7588 | else if (fPostponeFail)
|
---|
7589 | {
|
---|
7590 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
7591 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
7592 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
7593 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
7594 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
7595 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
7596 | }
|
---|
7597 | # endif
|
---|
7598 | else
|
---|
7599 | {
|
---|
7600 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
7601 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
7602 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
7603 | return rcStrict;
|
---|
7604 | }
|
---|
7605 | }
|
---|
7606 | }
|
---|
7607 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
7608 | {
|
---|
7609 | if (!cbSecond)
|
---|
7610 | {
|
---|
7611 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc\n",
|
---|
7612 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
7613 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
7614 | }
|
---|
7615 | else
|
---|
7616 | {
|
---|
7617 | VBOXSTRICTRC rcStrict2 = PGMPhysWrite(pVM,
|
---|
7618 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
7619 | pbBuf + cbFirst,
|
---|
7620 | cbSecond,
|
---|
7621 | PGMACCESSORIGIN_IEM);
|
---|
7622 | if (rcStrict2 == VINF_SUCCESS)
|
---|
7623 | {
|
---|
7624 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x\n",
|
---|
7625 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
7626 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
7627 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
7628 | }
|
---|
7629 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
|
---|
7630 | {
|
---|
7631 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x %Rrc\n",
|
---|
7632 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
7633 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
7634 | PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
|
---|
7635 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
7636 | }
|
---|
7637 | # ifndef IN_RING3
|
---|
7638 | else if (fPostponeFail)
|
---|
7639 | {
|
---|
7640 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
7641 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
7642 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
7643 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
7644 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
7645 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
7646 | }
|
---|
7647 | # endif
|
---|
7648 | else
|
---|
7649 | {
|
---|
7650 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
7651 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
7652 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
7653 | return rcStrict2;
|
---|
7654 | }
|
---|
7655 | }
|
---|
7656 | }
|
---|
7657 | # ifndef IN_RING3
|
---|
7658 | else if (fPostponeFail)
|
---|
7659 | {
|
---|
7660 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (postponed)\n",
|
---|
7661 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
7662 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
7663 | if (!cbSecond)
|
---|
7664 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_1ST;
|
---|
7665 | else
|
---|
7666 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess |= IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND;
|
---|
7667 | VMCPU_FF_SET(pVCpu, VMCPU_FF_IEM);
|
---|
7668 | return iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
7669 | }
|
---|
7670 | # endif
|
---|
7671 | else
|
---|
7672 | {
|
---|
7673 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysWrite GCPhysFirst=%RGp/%#x %Rrc [GCPhysSecond=%RGp/%#x] (!!)\n",
|
---|
7674 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, VBOXSTRICTRC_VAL(rcStrict),
|
---|
7675 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
7676 | return rcStrict;
|
---|
7677 | }
|
---|
7678 | }
|
---|
7679 | else
|
---|
7680 | {
|
---|
7681 | /*
|
---|
7682 | * No access handlers, much simpler.
|
---|
7683 | */
|
---|
7684 | int rc = PGMPhysSimpleWriteGCPhys(pVM, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, pbBuf, cbFirst);
|
---|
7685 | if (RT_SUCCESS(rc))
|
---|
7686 | {
|
---|
7687 | if (cbSecond)
|
---|
7688 | {
|
---|
7689 | rc = PGMPhysSimpleWriteGCPhys(pVM, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, pbBuf + cbFirst, cbSecond);
|
---|
7690 | if (RT_SUCCESS(rc))
|
---|
7691 | { /* likely */ }
|
---|
7692 | else
|
---|
7693 | {
|
---|
7694 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysSimpleWriteGCPhys GCPhysFirst=%RGp/%#x GCPhysSecond=%RGp/%#x %Rrc (!!)\n",
|
---|
7695 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
7696 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond, rc));
|
---|
7697 | return rc;
|
---|
7698 | }
|
---|
7699 | }
|
---|
7700 | }
|
---|
7701 | else
|
---|
7702 | {
|
---|
7703 | Log(("iemMemBounceBufferCommitAndUnmap: PGMPhysSimpleWriteGCPhys GCPhysFirst=%RGp/%#x %Rrc [GCPhysSecond=%RGp/%#x] (!!)\n",
|
---|
7704 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst, rc,
|
---|
7705 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond));
|
---|
7706 | return rc;
|
---|
7707 | }
|
---|
7708 | }
|
---|
7709 | }
|
---|
7710 | #endif
|
---|
7711 |
|
---|
7712 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
7713 | /*
|
---|
7714 | * Record the write(s).
|
---|
7715 | */
|
---|
7716 | if (!pVCpu->iem.s.fNoRem)
|
---|
7717 | {
|
---|
7718 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
7719 | if (pEvtRec)
|
---|
7720 | {
|
---|
7721 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_WRITE;
|
---|
7722 | pEvtRec->u.RamWrite.GCPhys = pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst;
|
---|
7723 | pEvtRec->u.RamWrite.cb = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst;
|
---|
7724 | memcpy(pEvtRec->u.RamWrite.ab, &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0], pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst);
|
---|
7725 | AssertCompile(sizeof(pEvtRec->u.RamWrite.ab) == sizeof(pVCpu->iem.s.aBounceBuffers[0].ab));
|
---|
7726 | pEvtRec->pNext = *pVCpu->iem.s.ppIemEvtRecNext;
|
---|
7727 | *pVCpu->iem.s.ppIemEvtRecNext = pEvtRec;
|
---|
7728 | }
|
---|
7729 | if (pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond)
|
---|
7730 | {
|
---|
7731 | pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
7732 | if (pEvtRec)
|
---|
7733 | {
|
---|
7734 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_WRITE;
|
---|
7735 | pEvtRec->u.RamWrite.GCPhys = pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond;
|
---|
7736 | pEvtRec->u.RamWrite.cb = pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
7737 | memcpy(pEvtRec->u.RamWrite.ab,
|
---|
7738 | &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst],
|
---|
7739 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond);
|
---|
7740 | pEvtRec->pNext = *pVCpu->iem.s.ppIemEvtRecNext;
|
---|
7741 | *pVCpu->iem.s.ppIemEvtRecNext = pEvtRec;
|
---|
7742 | }
|
---|
7743 | }
|
---|
7744 | }
|
---|
7745 | #endif
|
---|
7746 | #if defined(IEM_VERIFICATION_MODE_MINIMAL) || defined(IEM_LOG_MEMORY_WRITES)
|
---|
7747 | Log(("IEM Wrote %RGp: %.*Rhxs\n", pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
7748 | RT_MAX(RT_MIN(pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst, 64), 1), &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0]));
|
---|
7749 | if (pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond)
|
---|
7750 | Log(("IEM Wrote %RGp: %.*Rhxs [2nd page]\n", pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
7751 | RT_MIN(pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond, 64),
|
---|
7752 | &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst]));
|
---|
7753 |
|
---|
7754 | size_t cbWrote = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst + pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
7755 | g_cbIemWrote = cbWrote;
|
---|
7756 | memcpy(g_abIemWrote, &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0], RT_MIN(cbWrote, sizeof(g_abIemWrote)));
|
---|
7757 | #endif
|
---|
7758 |
|
---|
7759 | /*
|
---|
7760 | * Free the mapping entry.
|
---|
7761 | */
|
---|
7762 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
7763 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
7764 | pVCpu->iem.s.cActiveMappings--;
|
---|
7765 | return VINF_SUCCESS;
|
---|
7766 | }
|
---|
7767 |
|
---|
7768 |
|
---|
7769 | /**
|
---|
7770 | * iemMemMap worker that deals with a request crossing pages.
|
---|
7771 | */
|
---|
7772 | IEM_STATIC VBOXSTRICTRC
|
---|
7773 | iemMemBounceBufferMapCrossPage(PVMCPU pVCpu, int iMemMap, void **ppvMem, size_t cbMem, RTGCPTR GCPtrFirst, uint32_t fAccess)
|
---|
7774 | {
|
---|
7775 | /*
|
---|
7776 | * Do the address translations.
|
---|
7777 | */
|
---|
7778 | RTGCPHYS GCPhysFirst;
|
---|
7779 | VBOXSTRICTRC rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrFirst, fAccess, &GCPhysFirst);
|
---|
7780 | if (rcStrict != VINF_SUCCESS)
|
---|
7781 | return rcStrict;
|
---|
7782 |
|
---|
7783 | RTGCPHYS GCPhysSecond;
|
---|
7784 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, (GCPtrFirst + (cbMem - 1)) & ~(RTGCPTR)PAGE_OFFSET_MASK,
|
---|
7785 | fAccess, &GCPhysSecond);
|
---|
7786 | if (rcStrict != VINF_SUCCESS)
|
---|
7787 | return rcStrict;
|
---|
7788 | GCPhysSecond &= ~(RTGCPHYS)PAGE_OFFSET_MASK;
|
---|
7789 |
|
---|
7790 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7791 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
7792 | /*
|
---|
7793 | * Detect problematic memory when verifying so we can select
|
---|
7794 | * the right execution engine. (TLB: Redo this.)
|
---|
7795 | */
|
---|
7796 | if (IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
7797 | {
|
---|
7798 | int rc2 = PGMPhysIemQueryAccess(pVM, GCPhysFirst, RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE), pVCpu->iem.s.fBypassHandlers);
|
---|
7799 | if (RT_SUCCESS(rc2))
|
---|
7800 | rc2 = PGMPhysIemQueryAccess(pVM, GCPhysSecond, RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE), pVCpu->iem.s.fBypassHandlers);
|
---|
7801 | if (RT_FAILURE(rc2))
|
---|
7802 | pVCpu->iem.s.fProblematicMemory = true;
|
---|
7803 | }
|
---|
7804 | #endif
|
---|
7805 |
|
---|
7806 |
|
---|
7807 | /*
|
---|
7808 | * Read in the current memory content if it's a read, execute or partial
|
---|
7809 | * write access.
|
---|
7810 | */
|
---|
7811 | uint8_t *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
7812 | uint32_t const cbFirstPage = PAGE_SIZE - (GCPhysFirst & PAGE_OFFSET_MASK);
|
---|
7813 | uint32_t const cbSecondPage = (uint32_t)(cbMem - cbFirstPage);
|
---|
7814 |
|
---|
7815 | if (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_PARTIAL_WRITE))
|
---|
7816 | {
|
---|
7817 | if (!pVCpu->iem.s.fBypassHandlers)
|
---|
7818 | {
|
---|
7819 | /*
|
---|
7820 | * Must carefully deal with access handler status codes here,
|
---|
7821 | * makes the code a bit bloated.
|
---|
7822 | */
|
---|
7823 | rcStrict = PGMPhysRead(pVM, GCPhysFirst, pbBuf, cbFirstPage, PGMACCESSORIGIN_IEM);
|
---|
7824 | if (rcStrict == VINF_SUCCESS)
|
---|
7825 | {
|
---|
7826 | rcStrict = PGMPhysRead(pVM, GCPhysSecond, pbBuf + cbFirstPage, cbSecondPage, PGMACCESSORIGIN_IEM);
|
---|
7827 | if (rcStrict == VINF_SUCCESS)
|
---|
7828 | { /*likely */ }
|
---|
7829 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
7830 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
7831 | else
|
---|
7832 | {
|
---|
7833 | Log(("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysSecond=%RGp rcStrict2=%Rrc (!!)\n",
|
---|
7834 | GCPhysSecond, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
7835 | return rcStrict;
|
---|
7836 | }
|
---|
7837 | }
|
---|
7838 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
7839 | {
|
---|
7840 | VBOXSTRICTRC rcStrict2 = PGMPhysRead(pVM, GCPhysSecond, pbBuf + cbFirstPage, cbSecondPage, PGMACCESSORIGIN_IEM);
|
---|
7841 | if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
|
---|
7842 | {
|
---|
7843 | PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
|
---|
7844 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
7845 | }
|
---|
7846 | else
|
---|
7847 | {
|
---|
7848 | Log(("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysSecond=%RGp rcStrict2=%Rrc (rcStrict=%Rrc) (!!)\n",
|
---|
7849 | GCPhysSecond, VBOXSTRICTRC_VAL(rcStrict2), VBOXSTRICTRC_VAL(rcStrict2) ));
|
---|
7850 | return rcStrict2;
|
---|
7851 | }
|
---|
7852 | }
|
---|
7853 | else
|
---|
7854 | {
|
---|
7855 | Log(("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
7856 | GCPhysFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
7857 | return rcStrict;
|
---|
7858 | }
|
---|
7859 | }
|
---|
7860 | else
|
---|
7861 | {
|
---|
7862 | /*
|
---|
7863 | * No informational status codes here, much more straight forward.
|
---|
7864 | */
|
---|
7865 | int rc = PGMPhysSimpleReadGCPhys(pVM, pbBuf, GCPhysFirst, cbFirstPage);
|
---|
7866 | if (RT_SUCCESS(rc))
|
---|
7867 | {
|
---|
7868 | Assert(rc == VINF_SUCCESS);
|
---|
7869 | rc = PGMPhysSimpleReadGCPhys(pVM, pbBuf + cbFirstPage, GCPhysSecond, cbSecondPage);
|
---|
7870 | if (RT_SUCCESS(rc))
|
---|
7871 | Assert(rc == VINF_SUCCESS);
|
---|
7872 | else
|
---|
7873 | {
|
---|
7874 | Log(("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysSecond=%RGp rc=%Rrc (!!)\n", GCPhysSecond, rc));
|
---|
7875 | return rc;
|
---|
7876 | }
|
---|
7877 | }
|
---|
7878 | else
|
---|
7879 | {
|
---|
7880 | Log(("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysFirst=%RGp rc=%Rrc (!!)\n", GCPhysFirst, rc));
|
---|
7881 | return rc;
|
---|
7882 | }
|
---|
7883 | }
|
---|
7884 |
|
---|
7885 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
7886 | if ( !pVCpu->iem.s.fNoRem
|
---|
7887 | && (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC)) )
|
---|
7888 | {
|
---|
7889 | /*
|
---|
7890 | * Record the reads.
|
---|
7891 | */
|
---|
7892 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
7893 | if (pEvtRec)
|
---|
7894 | {
|
---|
7895 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_READ;
|
---|
7896 | pEvtRec->u.RamRead.GCPhys = GCPhysFirst;
|
---|
7897 | pEvtRec->u.RamRead.cb = cbFirstPage;
|
---|
7898 | pEvtRec->pNext = *pVCpu->iem.s.ppIemEvtRecNext;
|
---|
7899 | *pVCpu->iem.s.ppIemEvtRecNext = pEvtRec;
|
---|
7900 | }
|
---|
7901 | pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
7902 | if (pEvtRec)
|
---|
7903 | {
|
---|
7904 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_READ;
|
---|
7905 | pEvtRec->u.RamRead.GCPhys = GCPhysSecond;
|
---|
7906 | pEvtRec->u.RamRead.cb = cbSecondPage;
|
---|
7907 | pEvtRec->pNext = *pVCpu->iem.s.ppIemEvtRecNext;
|
---|
7908 | *pVCpu->iem.s.ppIemEvtRecNext = pEvtRec;
|
---|
7909 | }
|
---|
7910 | }
|
---|
7911 | #endif
|
---|
7912 | }
|
---|
7913 | #ifdef VBOX_STRICT
|
---|
7914 | else
|
---|
7915 | memset(pbBuf, 0xcc, cbMem);
|
---|
7916 | if (cbMem < sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab))
|
---|
7917 | memset(pbBuf + cbMem, 0xaa, sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab) - cbMem);
|
---|
7918 | #endif
|
---|
7919 |
|
---|
7920 | /*
|
---|
7921 | * Commit the bounce buffer entry.
|
---|
7922 | */
|
---|
7923 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst = GCPhysFirst;
|
---|
7924 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond = GCPhysSecond;
|
---|
7925 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst = (uint16_t)cbFirstPage;
|
---|
7926 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond = (uint16_t)cbSecondPage;
|
---|
7927 | pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned = false;
|
---|
7928 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pbBuf;
|
---|
7929 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess | IEM_ACCESS_BOUNCE_BUFFERED;
|
---|
7930 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
7931 | pVCpu->iem.s.cActiveMappings++;
|
---|
7932 |
|
---|
7933 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
7934 | *ppvMem = pbBuf;
|
---|
7935 | return VINF_SUCCESS;
|
---|
7936 | }
|
---|
7937 |
|
---|
7938 |
|
---|
7939 | /**
|
---|
7940 | * iemMemMap woker that deals with iemMemPageMap failures.
|
---|
7941 | */
|
---|
7942 | IEM_STATIC VBOXSTRICTRC iemMemBounceBufferMapPhys(PVMCPU pVCpu, unsigned iMemMap, void **ppvMem, size_t cbMem,
|
---|
7943 | RTGCPHYS GCPhysFirst, uint32_t fAccess, VBOXSTRICTRC rcMap)
|
---|
7944 | {
|
---|
7945 | /*
|
---|
7946 | * Filter out conditions we can handle and the ones which shouldn't happen.
|
---|
7947 | */
|
---|
7948 | if ( rcMap != VERR_PGM_PHYS_TLB_CATCH_WRITE
|
---|
7949 | && rcMap != VERR_PGM_PHYS_TLB_CATCH_ALL
|
---|
7950 | && rcMap != VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
7951 | {
|
---|
7952 | AssertReturn(RT_FAILURE_NP(rcMap), VERR_IEM_IPE_8);
|
---|
7953 | return rcMap;
|
---|
7954 | }
|
---|
7955 | pVCpu->iem.s.cPotentialExits++;
|
---|
7956 |
|
---|
7957 | /*
|
---|
7958 | * Read in the current memory content if it's a read, execute or partial
|
---|
7959 | * write access.
|
---|
7960 | */
|
---|
7961 | uint8_t *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
7962 | if (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_PARTIAL_WRITE))
|
---|
7963 | {
|
---|
7964 | if (rcMap == VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
7965 | memset(pbBuf, 0xff, cbMem);
|
---|
7966 | else
|
---|
7967 | {
|
---|
7968 | int rc;
|
---|
7969 | if (!pVCpu->iem.s.fBypassHandlers)
|
---|
7970 | {
|
---|
7971 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVCpu->CTX_SUFF(pVM), GCPhysFirst, pbBuf, cbMem, PGMACCESSORIGIN_IEM);
|
---|
7972 | if (rcStrict == VINF_SUCCESS)
|
---|
7973 | { /* nothing */ }
|
---|
7974 | else if (PGM_PHYS_RW_IS_SUCCESS(rcStrict))
|
---|
7975 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
7976 | else
|
---|
7977 | {
|
---|
7978 | Log(("iemMemBounceBufferMapPhys: PGMPhysRead GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
7979 | GCPhysFirst, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
7980 | return rcStrict;
|
---|
7981 | }
|
---|
7982 | }
|
---|
7983 | else
|
---|
7984 | {
|
---|
7985 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pbBuf, GCPhysFirst, cbMem);
|
---|
7986 | if (RT_SUCCESS(rc))
|
---|
7987 | { /* likely */ }
|
---|
7988 | else
|
---|
7989 | {
|
---|
7990 | Log(("iemMemBounceBufferMapPhys: PGMPhysSimpleReadGCPhys GCPhysFirst=%RGp rcStrict=%Rrc (!!)\n",
|
---|
7991 | GCPhysFirst, rc));
|
---|
7992 | return rc;
|
---|
7993 | }
|
---|
7994 | }
|
---|
7995 | }
|
---|
7996 |
|
---|
7997 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
7998 | if ( !pVCpu->iem.s.fNoRem
|
---|
7999 | && (fAccess & (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_EXEC)) )
|
---|
8000 | {
|
---|
8001 | /*
|
---|
8002 | * Record the read.
|
---|
8003 | */
|
---|
8004 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
8005 | if (pEvtRec)
|
---|
8006 | {
|
---|
8007 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_READ;
|
---|
8008 | pEvtRec->u.RamRead.GCPhys = GCPhysFirst;
|
---|
8009 | pEvtRec->u.RamRead.cb = (uint32_t)cbMem;
|
---|
8010 | pEvtRec->pNext = *pVCpu->iem.s.ppIemEvtRecNext;
|
---|
8011 | *pVCpu->iem.s.ppIemEvtRecNext = pEvtRec;
|
---|
8012 | }
|
---|
8013 | }
|
---|
8014 | #endif
|
---|
8015 | }
|
---|
8016 | #ifdef VBOX_STRICT
|
---|
8017 | else
|
---|
8018 | memset(pbBuf, 0xcc, cbMem);
|
---|
8019 | #endif
|
---|
8020 | #ifdef VBOX_STRICT
|
---|
8021 | if (cbMem < sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab))
|
---|
8022 | memset(pbBuf + cbMem, 0xaa, sizeof(pVCpu->iem.s.aBounceBuffers[iMemMap].ab) - cbMem);
|
---|
8023 | #endif
|
---|
8024 |
|
---|
8025 | /*
|
---|
8026 | * Commit the bounce buffer entry.
|
---|
8027 | */
|
---|
8028 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst = GCPhysFirst;
|
---|
8029 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond = NIL_RTGCPHYS;
|
---|
8030 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst = (uint16_t)cbMem;
|
---|
8031 | pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond = 0;
|
---|
8032 | pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned = rcMap == VERR_PGM_PHYS_TLB_UNASSIGNED;
|
---|
8033 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pbBuf;
|
---|
8034 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess | IEM_ACCESS_BOUNCE_BUFFERED;
|
---|
8035 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
8036 | pVCpu->iem.s.cActiveMappings++;
|
---|
8037 |
|
---|
8038 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
8039 | *ppvMem = pbBuf;
|
---|
8040 | return VINF_SUCCESS;
|
---|
8041 | }
|
---|
8042 |
|
---|
8043 |
|
---|
8044 |
|
---|
8045 | /**
|
---|
8046 | * Maps the specified guest memory for the given kind of access.
|
---|
8047 | *
|
---|
8048 | * This may be using bounce buffering of the memory if it's crossing a page
|
---|
8049 | * boundary or if there is an access handler installed for any of it. Because
|
---|
8050 | * of lock prefix guarantees, we're in for some extra clutter when this
|
---|
8051 | * happens.
|
---|
8052 | *
|
---|
8053 | * This may raise a \#GP, \#SS, \#PF or \#AC.
|
---|
8054 | *
|
---|
8055 | * @returns VBox strict status code.
|
---|
8056 | *
|
---|
8057 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8058 | * @param ppvMem Where to return the pointer to the mapped
|
---|
8059 | * memory.
|
---|
8060 | * @param cbMem The number of bytes to map. This is usually 1,
|
---|
8061 | * 2, 4, 6, 8, 12, 16, 32 or 512. When used by
|
---|
8062 | * string operations it can be up to a page.
|
---|
8063 | * @param iSegReg The index of the segment register to use for
|
---|
8064 | * this access. The base and limits are checked.
|
---|
8065 | * Use UINT8_MAX to indicate that no segmentation
|
---|
8066 | * is required (for IDT, GDT and LDT accesses).
|
---|
8067 | * @param GCPtrMem The address of the guest memory.
|
---|
8068 | * @param fAccess How the memory is being accessed. The
|
---|
8069 | * IEM_ACCESS_TYPE_XXX bit is used to figure out
|
---|
8070 | * how to map the memory, while the
|
---|
8071 | * IEM_ACCESS_WHAT_XXX bit is used when raising
|
---|
8072 | * exceptions.
|
---|
8073 | */
|
---|
8074 | IEM_STATIC VBOXSTRICTRC
|
---|
8075 | iemMemMap(PVMCPU pVCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t fAccess)
|
---|
8076 | {
|
---|
8077 | /*
|
---|
8078 | * Check the input and figure out which mapping entry to use.
|
---|
8079 | */
|
---|
8080 | Assert(cbMem <= 64 || cbMem == 512 || cbMem == 108 || cbMem == 104 || cbMem == 94); /* 512 is the max! */
|
---|
8081 | Assert(~(fAccess & ~(IEM_ACCESS_TYPE_MASK | IEM_ACCESS_WHAT_MASK)));
|
---|
8082 | Assert(pVCpu->iem.s.cActiveMappings < RT_ELEMENTS(pVCpu->iem.s.aMemMappings));
|
---|
8083 |
|
---|
8084 | unsigned iMemMap = pVCpu->iem.s.iNextMapping;
|
---|
8085 | if ( iMemMap >= RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
8086 | || pVCpu->iem.s.aMemMappings[iMemMap].fAccess != IEM_ACCESS_INVALID)
|
---|
8087 | {
|
---|
8088 | iMemMap = iemMemMapFindFree(pVCpu);
|
---|
8089 | AssertLogRelMsgReturn(iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings),
|
---|
8090 | ("active=%d fAccess[0] = {%#x, %#x, %#x}\n", pVCpu->iem.s.cActiveMappings,
|
---|
8091 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess,
|
---|
8092 | pVCpu->iem.s.aMemMappings[2].fAccess),
|
---|
8093 | VERR_IEM_IPE_9);
|
---|
8094 | }
|
---|
8095 |
|
---|
8096 | /*
|
---|
8097 | * Map the memory, checking that we can actually access it. If something
|
---|
8098 | * slightly complicated happens, fall back on bounce buffering.
|
---|
8099 | */
|
---|
8100 | VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, fAccess, iSegReg, cbMem, &GCPtrMem);
|
---|
8101 | if (rcStrict != VINF_SUCCESS)
|
---|
8102 | return rcStrict;
|
---|
8103 |
|
---|
8104 | if ((GCPtrMem & PAGE_OFFSET_MASK) + cbMem > PAGE_SIZE) /* Crossing a page boundary? */
|
---|
8105 | return iemMemBounceBufferMapCrossPage(pVCpu, iMemMap, ppvMem, cbMem, GCPtrMem, fAccess);
|
---|
8106 |
|
---|
8107 | RTGCPHYS GCPhysFirst;
|
---|
8108 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, fAccess, &GCPhysFirst);
|
---|
8109 | if (rcStrict != VINF_SUCCESS)
|
---|
8110 | return rcStrict;
|
---|
8111 |
|
---|
8112 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
8113 | Log8(("IEM WR %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
8114 | if (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
8115 | Log9(("IEM RD %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
8116 |
|
---|
8117 | void *pvMem;
|
---|
8118 | rcStrict = iemMemPageMap(pVCpu, GCPhysFirst, fAccess, &pvMem, &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
8119 | if (rcStrict != VINF_SUCCESS)
|
---|
8120 | return iemMemBounceBufferMapPhys(pVCpu, iMemMap, ppvMem, cbMem, GCPhysFirst, fAccess, rcStrict);
|
---|
8121 |
|
---|
8122 | /*
|
---|
8123 | * Fill in the mapping table entry.
|
---|
8124 | */
|
---|
8125 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pvMem;
|
---|
8126 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess;
|
---|
8127 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
8128 | pVCpu->iem.s.cActiveMappings++;
|
---|
8129 |
|
---|
8130 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
8131 | *ppvMem = pvMem;
|
---|
8132 | return VINF_SUCCESS;
|
---|
8133 | }
|
---|
8134 |
|
---|
8135 |
|
---|
8136 | /**
|
---|
8137 | * Commits the guest memory if bounce buffered and unmaps it.
|
---|
8138 | *
|
---|
8139 | * @returns Strict VBox status code.
|
---|
8140 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8141 | * @param pvMem The mapping.
|
---|
8142 | * @param fAccess The kind of access.
|
---|
8143 | */
|
---|
8144 | IEM_STATIC VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPU pVCpu, void *pvMem, uint32_t fAccess)
|
---|
8145 | {
|
---|
8146 | int iMemMap = iemMapLookup(pVCpu, pvMem, fAccess);
|
---|
8147 | AssertReturn(iMemMap >= 0, iMemMap);
|
---|
8148 |
|
---|
8149 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
8150 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
8151 | {
|
---|
8152 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
8153 | return iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, false /*fPostponeFail*/);
|
---|
8154 | }
|
---|
8155 | /* Otherwise unlock it. */
|
---|
8156 | else
|
---|
8157 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
8158 |
|
---|
8159 | /* Free the entry. */
|
---|
8160 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
8161 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
8162 | pVCpu->iem.s.cActiveMappings--;
|
---|
8163 | return VINF_SUCCESS;
|
---|
8164 | }
|
---|
8165 |
|
---|
8166 | #ifdef IEM_WITH_SETJMP
|
---|
8167 |
|
---|
8168 | /**
|
---|
8169 | * Maps the specified guest memory for the given kind of access, longjmp on
|
---|
8170 | * error.
|
---|
8171 | *
|
---|
8172 | * This may be using bounce buffering of the memory if it's crossing a page
|
---|
8173 | * boundary or if there is an access handler installed for any of it. Because
|
---|
8174 | * of lock prefix guarantees, we're in for some extra clutter when this
|
---|
8175 | * happens.
|
---|
8176 | *
|
---|
8177 | * This may raise a \#GP, \#SS, \#PF or \#AC.
|
---|
8178 | *
|
---|
8179 | * @returns Pointer to the mapped memory.
|
---|
8180 | *
|
---|
8181 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8182 | * @param cbMem The number of bytes to map. This is usually 1,
|
---|
8183 | * 2, 4, 6, 8, 12, 16, 32 or 512. When used by
|
---|
8184 | * string operations it can be up to a page.
|
---|
8185 | * @param iSegReg The index of the segment register to use for
|
---|
8186 | * this access. The base and limits are checked.
|
---|
8187 | * Use UINT8_MAX to indicate that no segmentation
|
---|
8188 | * is required (for IDT, GDT and LDT accesses).
|
---|
8189 | * @param GCPtrMem The address of the guest memory.
|
---|
8190 | * @param fAccess How the memory is being accessed. The
|
---|
8191 | * IEM_ACCESS_TYPE_XXX bit is used to figure out
|
---|
8192 | * how to map the memory, while the
|
---|
8193 | * IEM_ACCESS_WHAT_XXX bit is used when raising
|
---|
8194 | * exceptions.
|
---|
8195 | */
|
---|
8196 | IEM_STATIC void *iemMemMapJmp(PVMCPU pVCpu, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t fAccess)
|
---|
8197 | {
|
---|
8198 | /*
|
---|
8199 | * Check the input and figure out which mapping entry to use.
|
---|
8200 | */
|
---|
8201 | Assert(cbMem <= 64 || cbMem == 512 || cbMem == 108 || cbMem == 104 || cbMem == 94); /* 512 is the max! */
|
---|
8202 | Assert(~(fAccess & ~(IEM_ACCESS_TYPE_MASK | IEM_ACCESS_WHAT_MASK)));
|
---|
8203 | Assert(pVCpu->iem.s.cActiveMappings < RT_ELEMENTS(pVCpu->iem.s.aMemMappings));
|
---|
8204 |
|
---|
8205 | unsigned iMemMap = pVCpu->iem.s.iNextMapping;
|
---|
8206 | if ( iMemMap >= RT_ELEMENTS(pVCpu->iem.s.aMemMappings)
|
---|
8207 | || pVCpu->iem.s.aMemMappings[iMemMap].fAccess != IEM_ACCESS_INVALID)
|
---|
8208 | {
|
---|
8209 | iMemMap = iemMemMapFindFree(pVCpu);
|
---|
8210 | AssertLogRelMsgStmt(iMemMap < RT_ELEMENTS(pVCpu->iem.s.aMemMappings),
|
---|
8211 | ("active=%d fAccess[0] = {%#x, %#x, %#x}\n", pVCpu->iem.s.cActiveMappings,
|
---|
8212 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess,
|
---|
8213 | pVCpu->iem.s.aMemMappings[2].fAccess),
|
---|
8214 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VERR_IEM_IPE_9));
|
---|
8215 | }
|
---|
8216 |
|
---|
8217 | /*
|
---|
8218 | * Map the memory, checking that we can actually access it. If something
|
---|
8219 | * slightly complicated happens, fall back on bounce buffering.
|
---|
8220 | */
|
---|
8221 | VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, fAccess, iSegReg, cbMem, &GCPtrMem);
|
---|
8222 | if (rcStrict == VINF_SUCCESS) { /*likely*/ }
|
---|
8223 | else longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
8224 |
|
---|
8225 | /* Crossing a page boundary? */
|
---|
8226 | if ((GCPtrMem & PAGE_OFFSET_MASK) + cbMem <= PAGE_SIZE)
|
---|
8227 | { /* No (likely). */ }
|
---|
8228 | else
|
---|
8229 | {
|
---|
8230 | void *pvMem;
|
---|
8231 | rcStrict = iemMemBounceBufferMapCrossPage(pVCpu, iMemMap, &pvMem, cbMem, GCPtrMem, fAccess);
|
---|
8232 | if (rcStrict == VINF_SUCCESS)
|
---|
8233 | return pvMem;
|
---|
8234 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
8235 | }
|
---|
8236 |
|
---|
8237 | RTGCPHYS GCPhysFirst;
|
---|
8238 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, fAccess, &GCPhysFirst);
|
---|
8239 | if (rcStrict == VINF_SUCCESS) { /*likely*/ }
|
---|
8240 | else longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
8241 |
|
---|
8242 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
8243 | Log8(("IEM WR %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
8244 | if (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
8245 | Log9(("IEM RD %RGv (%RGp) LB %#zx\n", GCPtrMem, GCPhysFirst, cbMem));
|
---|
8246 |
|
---|
8247 | void *pvMem;
|
---|
8248 | rcStrict = iemMemPageMap(pVCpu, GCPhysFirst, fAccess, &pvMem, &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
8249 | if (rcStrict == VINF_SUCCESS)
|
---|
8250 | { /* likely */ }
|
---|
8251 | else
|
---|
8252 | {
|
---|
8253 | rcStrict = iemMemBounceBufferMapPhys(pVCpu, iMemMap, &pvMem, cbMem, GCPhysFirst, fAccess, rcStrict);
|
---|
8254 | if (rcStrict == VINF_SUCCESS)
|
---|
8255 | return pvMem;
|
---|
8256 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
8257 | }
|
---|
8258 |
|
---|
8259 | /*
|
---|
8260 | * Fill in the mapping table entry.
|
---|
8261 | */
|
---|
8262 | pVCpu->iem.s.aMemMappings[iMemMap].pv = pvMem;
|
---|
8263 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = fAccess;
|
---|
8264 | pVCpu->iem.s.iNextMapping = iMemMap + 1;
|
---|
8265 | pVCpu->iem.s.cActiveMappings++;
|
---|
8266 |
|
---|
8267 | iemMemUpdateWrittenCounter(pVCpu, fAccess, cbMem);
|
---|
8268 | return pvMem;
|
---|
8269 | }
|
---|
8270 |
|
---|
8271 |
|
---|
8272 | /**
|
---|
8273 | * Commits the guest memory if bounce buffered and unmaps it, longjmp on error.
|
---|
8274 | *
|
---|
8275 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8276 | * @param pvMem The mapping.
|
---|
8277 | * @param fAccess The kind of access.
|
---|
8278 | */
|
---|
8279 | IEM_STATIC void iemMemCommitAndUnmapJmp(PVMCPU pVCpu, void *pvMem, uint32_t fAccess)
|
---|
8280 | {
|
---|
8281 | int iMemMap = iemMapLookup(pVCpu, pvMem, fAccess);
|
---|
8282 | AssertStmt(iMemMap >= 0, longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), iMemMap));
|
---|
8283 |
|
---|
8284 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
8285 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
8286 | {
|
---|
8287 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
8288 | {
|
---|
8289 | VBOXSTRICTRC rcStrict = iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, false /*fPostponeFail*/);
|
---|
8290 | if (rcStrict == VINF_SUCCESS)
|
---|
8291 | return;
|
---|
8292 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
8293 | }
|
---|
8294 | }
|
---|
8295 | /* Otherwise unlock it. */
|
---|
8296 | else
|
---|
8297 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
8298 |
|
---|
8299 | /* Free the entry. */
|
---|
8300 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
8301 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
8302 | pVCpu->iem.s.cActiveMappings--;
|
---|
8303 | }
|
---|
8304 |
|
---|
8305 | #endif
|
---|
8306 |
|
---|
8307 | #ifndef IN_RING3
|
---|
8308 | /**
|
---|
8309 | * Commits the guest memory if bounce buffered and unmaps it, if any bounce
|
---|
8310 | * buffer part shows trouble it will be postponed to ring-3 (sets FF and stuff).
|
---|
8311 | *
|
---|
8312 | * Allows the instruction to be completed and retired, while the IEM user will
|
---|
8313 | * return to ring-3 immediately afterwards and do the postponed writes there.
|
---|
8314 | *
|
---|
8315 | * @returns VBox status code (no strict statuses). Caller must check
|
---|
8316 | * VMCPU_FF_IEM before repeating string instructions and similar stuff.
|
---|
8317 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8318 | * @param pvMem The mapping.
|
---|
8319 | * @param fAccess The kind of access.
|
---|
8320 | */
|
---|
8321 | IEM_STATIC VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPU pVCpu, void *pvMem, uint32_t fAccess)
|
---|
8322 | {
|
---|
8323 | int iMemMap = iemMapLookup(pVCpu, pvMem, fAccess);
|
---|
8324 | AssertReturn(iMemMap >= 0, iMemMap);
|
---|
8325 |
|
---|
8326 | /* If it's bounce buffered, we may need to write back the buffer. */
|
---|
8327 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED)
|
---|
8328 | {
|
---|
8329 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
8330 | return iemMemBounceBufferCommitAndUnmap(pVCpu, iMemMap, true /*fPostponeFail*/);
|
---|
8331 | }
|
---|
8332 | /* Otherwise unlock it. */
|
---|
8333 | else
|
---|
8334 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
8335 |
|
---|
8336 | /* Free the entry. */
|
---|
8337 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
8338 | Assert(pVCpu->iem.s.cActiveMappings != 0);
|
---|
8339 | pVCpu->iem.s.cActiveMappings--;
|
---|
8340 | return VINF_SUCCESS;
|
---|
8341 | }
|
---|
8342 | #endif
|
---|
8343 |
|
---|
8344 |
|
---|
8345 | /**
|
---|
8346 | * Rollbacks mappings, releasing page locks and such.
|
---|
8347 | *
|
---|
8348 | * The caller shall only call this after checking cActiveMappings.
|
---|
8349 | *
|
---|
8350 | * @returns Strict VBox status code to pass up.
|
---|
8351 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8352 | */
|
---|
8353 | IEM_STATIC void iemMemRollback(PVMCPU pVCpu)
|
---|
8354 | {
|
---|
8355 | Assert(pVCpu->iem.s.cActiveMappings > 0);
|
---|
8356 |
|
---|
8357 | uint32_t iMemMap = RT_ELEMENTS(pVCpu->iem.s.aMemMappings);
|
---|
8358 | while (iMemMap-- > 0)
|
---|
8359 | {
|
---|
8360 | uint32_t fAccess = pVCpu->iem.s.aMemMappings[iMemMap].fAccess;
|
---|
8361 | if (fAccess != IEM_ACCESS_INVALID)
|
---|
8362 | {
|
---|
8363 | AssertMsg(!(fAccess & ~IEM_ACCESS_VALID_MASK) && fAccess != 0, ("%#x\n", fAccess));
|
---|
8364 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
8365 | if (!(fAccess & IEM_ACCESS_BOUNCE_BUFFERED))
|
---|
8366 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->iem.s.aMemMappingLocks[iMemMap].Lock);
|
---|
8367 | Assert(pVCpu->iem.s.cActiveMappings > 0);
|
---|
8368 | pVCpu->iem.s.cActiveMappings--;
|
---|
8369 | }
|
---|
8370 | }
|
---|
8371 | }
|
---|
8372 |
|
---|
8373 |
|
---|
8374 | /**
|
---|
8375 | * Fetches a data byte.
|
---|
8376 | *
|
---|
8377 | * @returns Strict VBox status code.
|
---|
8378 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8379 | * @param pu8Dst Where to return the byte.
|
---|
8380 | * @param iSegReg The index of the segment register to use for
|
---|
8381 | * this access. The base and limits are checked.
|
---|
8382 | * @param GCPtrMem The address of the guest memory.
|
---|
8383 | */
|
---|
8384 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU8(PVMCPU pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8385 | {
|
---|
8386 | /* The lazy approach for now... */
|
---|
8387 | uint8_t const *pu8Src;
|
---|
8388 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu8Src, sizeof(*pu8Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8389 | if (rc == VINF_SUCCESS)
|
---|
8390 | {
|
---|
8391 | *pu8Dst = *pu8Src;
|
---|
8392 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu8Src, IEM_ACCESS_DATA_R);
|
---|
8393 | }
|
---|
8394 | return rc;
|
---|
8395 | }
|
---|
8396 |
|
---|
8397 |
|
---|
8398 | #ifdef IEM_WITH_SETJMP
|
---|
8399 | /**
|
---|
8400 | * Fetches a data byte, longjmp on error.
|
---|
8401 | *
|
---|
8402 | * @returns The byte.
|
---|
8403 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8404 | * @param iSegReg The index of the segment register to use for
|
---|
8405 | * this access. The base and limits are checked.
|
---|
8406 | * @param GCPtrMem The address of the guest memory.
|
---|
8407 | */
|
---|
8408 | DECL_NO_INLINE(IEM_STATIC, uint8_t) iemMemFetchDataU8Jmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8409 | {
|
---|
8410 | /* The lazy approach for now... */
|
---|
8411 | uint8_t const *pu8Src = (uint8_t const *)iemMemMapJmp(pVCpu, sizeof(*pu8Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8412 | uint8_t const bRet = *pu8Src;
|
---|
8413 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu8Src, IEM_ACCESS_DATA_R);
|
---|
8414 | return bRet;
|
---|
8415 | }
|
---|
8416 | #endif /* IEM_WITH_SETJMP */
|
---|
8417 |
|
---|
8418 |
|
---|
8419 | /**
|
---|
8420 | * Fetches a data word.
|
---|
8421 | *
|
---|
8422 | * @returns Strict VBox status code.
|
---|
8423 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8424 | * @param pu16Dst Where to return the word.
|
---|
8425 | * @param iSegReg The index of the segment register to use for
|
---|
8426 | * this access. The base and limits are checked.
|
---|
8427 | * @param GCPtrMem The address of the guest memory.
|
---|
8428 | */
|
---|
8429 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU16(PVMCPU pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8430 | {
|
---|
8431 | /* The lazy approach for now... */
|
---|
8432 | uint16_t const *pu16Src;
|
---|
8433 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu16Src, sizeof(*pu16Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8434 | if (rc == VINF_SUCCESS)
|
---|
8435 | {
|
---|
8436 | *pu16Dst = *pu16Src;
|
---|
8437 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu16Src, IEM_ACCESS_DATA_R);
|
---|
8438 | }
|
---|
8439 | return rc;
|
---|
8440 | }
|
---|
8441 |
|
---|
8442 |
|
---|
8443 | #ifdef IEM_WITH_SETJMP
|
---|
8444 | /**
|
---|
8445 | * Fetches a data word, longjmp on error.
|
---|
8446 | *
|
---|
8447 | * @returns The word
|
---|
8448 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8449 | * @param iSegReg The index of the segment register to use for
|
---|
8450 | * this access. The base and limits are checked.
|
---|
8451 | * @param GCPtrMem The address of the guest memory.
|
---|
8452 | */
|
---|
8453 | DECL_NO_INLINE(IEM_STATIC, uint16_t) iemMemFetchDataU16Jmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8454 | {
|
---|
8455 | /* The lazy approach for now... */
|
---|
8456 | uint16_t const *pu16Src = (uint16_t const *)iemMemMapJmp(pVCpu, sizeof(*pu16Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8457 | uint16_t const u16Ret = *pu16Src;
|
---|
8458 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu16Src, IEM_ACCESS_DATA_R);
|
---|
8459 | return u16Ret;
|
---|
8460 | }
|
---|
8461 | #endif
|
---|
8462 |
|
---|
8463 |
|
---|
8464 | /**
|
---|
8465 | * Fetches a data dword.
|
---|
8466 | *
|
---|
8467 | * @returns Strict VBox status code.
|
---|
8468 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8469 | * @param pu32Dst Where to return the dword.
|
---|
8470 | * @param iSegReg The index of the segment register to use for
|
---|
8471 | * this access. The base and limits are checked.
|
---|
8472 | * @param GCPtrMem The address of the guest memory.
|
---|
8473 | */
|
---|
8474 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU32(PVMCPU pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8475 | {
|
---|
8476 | /* The lazy approach for now... */
|
---|
8477 | uint32_t const *pu32Src;
|
---|
8478 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu32Src, sizeof(*pu32Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8479 | if (rc == VINF_SUCCESS)
|
---|
8480 | {
|
---|
8481 | *pu32Dst = *pu32Src;
|
---|
8482 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu32Src, IEM_ACCESS_DATA_R);
|
---|
8483 | }
|
---|
8484 | return rc;
|
---|
8485 | }
|
---|
8486 |
|
---|
8487 |
|
---|
8488 | #ifdef IEM_WITH_SETJMP
|
---|
8489 |
|
---|
8490 | IEM_STATIC RTGCPTR iemMemApplySegmentToReadJmp(PVMCPU pVCpu, uint8_t iSegReg, size_t cbMem, RTGCPTR GCPtrMem)
|
---|
8491 | {
|
---|
8492 | Assert(cbMem >= 1);
|
---|
8493 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
8494 |
|
---|
8495 | /*
|
---|
8496 | * 64-bit mode is simpler.
|
---|
8497 | */
|
---|
8498 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
8499 | {
|
---|
8500 | if (iSegReg >= X86_SREG_FS)
|
---|
8501 | {
|
---|
8502 | PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
8503 | GCPtrMem += pSel->u64Base;
|
---|
8504 | }
|
---|
8505 |
|
---|
8506 | if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
|
---|
8507 | return GCPtrMem;
|
---|
8508 | }
|
---|
8509 | /*
|
---|
8510 | * 16-bit and 32-bit segmentation.
|
---|
8511 | */
|
---|
8512 | else
|
---|
8513 | {
|
---|
8514 | PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
8515 | if ( (pSel->Attr.u & (X86DESCATTR_P | X86DESCATTR_UNUSABLE | X86_SEL_TYPE_CODE | X86_SEL_TYPE_DOWN))
|
---|
8516 | == X86DESCATTR_P /* data, expand up */
|
---|
8517 | || (pSel->Attr.u & (X86DESCATTR_P | X86DESCATTR_UNUSABLE | X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ))
|
---|
8518 | == (X86DESCATTR_P | X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ) /* code, read-only */ )
|
---|
8519 | {
|
---|
8520 | /* expand up */
|
---|
8521 | uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
|
---|
8522 | if (RT_LIKELY( GCPtrLast32 > pSel->u32Limit
|
---|
8523 | && GCPtrLast32 > (uint32_t)GCPtrMem))
|
---|
8524 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
8525 | }
|
---|
8526 | else if ( (pSel->Attr.u & (X86DESCATTR_P | X86DESCATTR_UNUSABLE | X86_SEL_TYPE_CODE | X86_SEL_TYPE_DOWN))
|
---|
8527 | == (X86DESCATTR_P | X86_SEL_TYPE_DOWN) /* data, expand down */ )
|
---|
8528 | {
|
---|
8529 | /* expand down */
|
---|
8530 | uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
|
---|
8531 | if (RT_LIKELY( (uint32_t)GCPtrMem > pSel->u32Limit
|
---|
8532 | && GCPtrLast32 <= (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff))
|
---|
8533 | && GCPtrLast32 > (uint32_t)GCPtrMem))
|
---|
8534 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
8535 | }
|
---|
8536 | else
|
---|
8537 | iemRaiseSelectorInvalidAccessJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
|
---|
8538 | iemRaiseSelectorBoundsJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
|
---|
8539 | }
|
---|
8540 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
8541 | }
|
---|
8542 |
|
---|
8543 |
|
---|
8544 | IEM_STATIC RTGCPTR iemMemApplySegmentToWriteJmp(PVMCPU pVCpu, uint8_t iSegReg, size_t cbMem, RTGCPTR GCPtrMem)
|
---|
8545 | {
|
---|
8546 | Assert(cbMem >= 1);
|
---|
8547 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
8548 |
|
---|
8549 | /*
|
---|
8550 | * 64-bit mode is simpler.
|
---|
8551 | */
|
---|
8552 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
8553 | {
|
---|
8554 | if (iSegReg >= X86_SREG_FS)
|
---|
8555 | {
|
---|
8556 | PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
8557 | GCPtrMem += pSel->u64Base;
|
---|
8558 | }
|
---|
8559 |
|
---|
8560 | if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
|
---|
8561 | return GCPtrMem;
|
---|
8562 | }
|
---|
8563 | /*
|
---|
8564 | * 16-bit and 32-bit segmentation.
|
---|
8565 | */
|
---|
8566 | else
|
---|
8567 | {
|
---|
8568 | PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
8569 | uint32_t const fRelevantAttrs = pSel->Attr.u & ( X86DESCATTR_P | X86DESCATTR_UNUSABLE
|
---|
8570 | | X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE | X86_SEL_TYPE_DOWN);
|
---|
8571 | if (fRelevantAttrs == (X86DESCATTR_P | X86_SEL_TYPE_WRITE)) /* data, expand up */
|
---|
8572 | {
|
---|
8573 | /* expand up */
|
---|
8574 | uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
|
---|
8575 | if (RT_LIKELY( GCPtrLast32 > pSel->u32Limit
|
---|
8576 | && GCPtrLast32 > (uint32_t)GCPtrMem))
|
---|
8577 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
8578 | }
|
---|
8579 | else if (fRelevantAttrs == (X86DESCATTR_P | X86_SEL_TYPE_WRITE | X86_SEL_TYPE_DOWN)) /* data, expand up */
|
---|
8580 | {
|
---|
8581 | /* expand down */
|
---|
8582 | uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
|
---|
8583 | if (RT_LIKELY( (uint32_t)GCPtrMem > pSel->u32Limit
|
---|
8584 | && GCPtrLast32 <= (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff))
|
---|
8585 | && GCPtrLast32 > (uint32_t)GCPtrMem))
|
---|
8586 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
8587 | }
|
---|
8588 | else
|
---|
8589 | iemRaiseSelectorInvalidAccessJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
|
---|
8590 | iemRaiseSelectorBoundsJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
|
---|
8591 | }
|
---|
8592 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
8593 | }
|
---|
8594 |
|
---|
8595 |
|
---|
8596 | /**
|
---|
8597 | * Fetches a data dword, longjmp on error, fallback/safe version.
|
---|
8598 | *
|
---|
8599 | * @returns The dword
|
---|
8600 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8601 | * @param iSegReg The index of the segment register to use for
|
---|
8602 | * this access. The base and limits are checked.
|
---|
8603 | * @param GCPtrMem The address of the guest memory.
|
---|
8604 | */
|
---|
8605 | IEM_STATIC uint32_t iemMemFetchDataU32SafeJmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8606 | {
|
---|
8607 | uint32_t const *pu32Src = (uint32_t const *)iemMemMapJmp(pVCpu, sizeof(*pu32Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8608 | uint32_t const u32Ret = *pu32Src;
|
---|
8609 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu32Src, IEM_ACCESS_DATA_R);
|
---|
8610 | return u32Ret;
|
---|
8611 | }
|
---|
8612 |
|
---|
8613 |
|
---|
8614 | /**
|
---|
8615 | * Fetches a data dword, longjmp on error.
|
---|
8616 | *
|
---|
8617 | * @returns The dword
|
---|
8618 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8619 | * @param iSegReg The index of the segment register to use for
|
---|
8620 | * this access. The base and limits are checked.
|
---|
8621 | * @param GCPtrMem The address of the guest memory.
|
---|
8622 | */
|
---|
8623 | DECL_NO_INLINE(IEM_STATIC, uint32_t) iemMemFetchDataU32Jmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8624 | {
|
---|
8625 | # ifdef IEM_WITH_DATA_TLB
|
---|
8626 | RTGCPTR GCPtrEff = iemMemApplySegmentToReadJmp(pVCpu, iSegReg, sizeof(uint32_t), GCPtrMem);
|
---|
8627 | if (RT_LIKELY((GCPtrEff & X86_PAGE_OFFSET_MASK) <= X86_PAGE_SIZE - sizeof(uint32_t)))
|
---|
8628 | {
|
---|
8629 | /// @todo more later.
|
---|
8630 | }
|
---|
8631 |
|
---|
8632 | return iemMemFetchDataU32SafeJmp(pVCpu, iSegReg, GCPtrMem);
|
---|
8633 | # else
|
---|
8634 | /* The lazy approach. */
|
---|
8635 | uint32_t const *pu32Src = (uint32_t const *)iemMemMapJmp(pVCpu, sizeof(*pu32Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8636 | uint32_t const u32Ret = *pu32Src;
|
---|
8637 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu32Src, IEM_ACCESS_DATA_R);
|
---|
8638 | return u32Ret;
|
---|
8639 | # endif
|
---|
8640 | }
|
---|
8641 | #endif
|
---|
8642 |
|
---|
8643 |
|
---|
8644 | #ifdef SOME_UNUSED_FUNCTION
|
---|
8645 | /**
|
---|
8646 | * Fetches a data dword and sign extends it to a qword.
|
---|
8647 | *
|
---|
8648 | * @returns Strict VBox status code.
|
---|
8649 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8650 | * @param pu64Dst Where to return the sign extended value.
|
---|
8651 | * @param iSegReg The index of the segment register to use for
|
---|
8652 | * this access. The base and limits are checked.
|
---|
8653 | * @param GCPtrMem The address of the guest memory.
|
---|
8654 | */
|
---|
8655 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataS32SxU64(PVMCPU pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8656 | {
|
---|
8657 | /* The lazy approach for now... */
|
---|
8658 | int32_t const *pi32Src;
|
---|
8659 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pi32Src, sizeof(*pi32Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8660 | if (rc == VINF_SUCCESS)
|
---|
8661 | {
|
---|
8662 | *pu64Dst = *pi32Src;
|
---|
8663 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pi32Src, IEM_ACCESS_DATA_R);
|
---|
8664 | }
|
---|
8665 | #ifdef __GNUC__ /* warning: GCC may be a royal pain */
|
---|
8666 | else
|
---|
8667 | *pu64Dst = 0;
|
---|
8668 | #endif
|
---|
8669 | return rc;
|
---|
8670 | }
|
---|
8671 | #endif
|
---|
8672 |
|
---|
8673 |
|
---|
8674 | /**
|
---|
8675 | * Fetches a data qword.
|
---|
8676 | *
|
---|
8677 | * @returns Strict VBox status code.
|
---|
8678 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8679 | * @param pu64Dst Where to return the qword.
|
---|
8680 | * @param iSegReg The index of the segment register to use for
|
---|
8681 | * this access. The base and limits are checked.
|
---|
8682 | * @param GCPtrMem The address of the guest memory.
|
---|
8683 | */
|
---|
8684 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU64(PVMCPU pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8685 | {
|
---|
8686 | /* The lazy approach for now... */
|
---|
8687 | uint64_t const *pu64Src;
|
---|
8688 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu64Src, sizeof(*pu64Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8689 | if (rc == VINF_SUCCESS)
|
---|
8690 | {
|
---|
8691 | *pu64Dst = *pu64Src;
|
---|
8692 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu64Src, IEM_ACCESS_DATA_R);
|
---|
8693 | }
|
---|
8694 | return rc;
|
---|
8695 | }
|
---|
8696 |
|
---|
8697 |
|
---|
8698 | #ifdef IEM_WITH_SETJMP
|
---|
8699 | /**
|
---|
8700 | * Fetches a data qword, longjmp on error.
|
---|
8701 | *
|
---|
8702 | * @returns The qword.
|
---|
8703 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8704 | * @param iSegReg The index of the segment register to use for
|
---|
8705 | * this access. The base and limits are checked.
|
---|
8706 | * @param GCPtrMem The address of the guest memory.
|
---|
8707 | */
|
---|
8708 | DECL_NO_INLINE(IEM_STATIC, uint64_t) iemMemFetchDataU64Jmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8709 | {
|
---|
8710 | /* The lazy approach for now... */
|
---|
8711 | uint64_t const *pu64Src = (uint64_t const *)iemMemMapJmp(pVCpu, sizeof(*pu64Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8712 | uint64_t const u64Ret = *pu64Src;
|
---|
8713 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu64Src, IEM_ACCESS_DATA_R);
|
---|
8714 | return u64Ret;
|
---|
8715 | }
|
---|
8716 | #endif
|
---|
8717 |
|
---|
8718 |
|
---|
8719 | /**
|
---|
8720 | * Fetches a data qword, aligned at a 16 byte boundrary (for SSE).
|
---|
8721 | *
|
---|
8722 | * @returns Strict VBox status code.
|
---|
8723 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8724 | * @param pu64Dst Where to return the qword.
|
---|
8725 | * @param iSegReg The index of the segment register to use for
|
---|
8726 | * this access. The base and limits are checked.
|
---|
8727 | * @param GCPtrMem The address of the guest memory.
|
---|
8728 | */
|
---|
8729 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPU pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8730 | {
|
---|
8731 | /* The lazy approach for now... */
|
---|
8732 | /** @todo testcase: Ordering of \#SS(0) vs \#GP() vs \#PF on SSE stuff. */
|
---|
8733 | if (RT_UNLIKELY(GCPtrMem & 15))
|
---|
8734 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8735 |
|
---|
8736 | uint64_t const *pu64Src;
|
---|
8737 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu64Src, sizeof(*pu64Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8738 | if (rc == VINF_SUCCESS)
|
---|
8739 | {
|
---|
8740 | *pu64Dst = *pu64Src;
|
---|
8741 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu64Src, IEM_ACCESS_DATA_R);
|
---|
8742 | }
|
---|
8743 | return rc;
|
---|
8744 | }
|
---|
8745 |
|
---|
8746 |
|
---|
8747 | #ifdef IEM_WITH_SETJMP
|
---|
8748 | /**
|
---|
8749 | * Fetches a data qword, longjmp on error.
|
---|
8750 | *
|
---|
8751 | * @returns The qword.
|
---|
8752 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8753 | * @param iSegReg The index of the segment register to use for
|
---|
8754 | * this access. The base and limits are checked.
|
---|
8755 | * @param GCPtrMem The address of the guest memory.
|
---|
8756 | */
|
---|
8757 | DECL_NO_INLINE(IEM_STATIC, uint64_t) iemMemFetchDataU64AlignedU128Jmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8758 | {
|
---|
8759 | /* The lazy approach for now... */
|
---|
8760 | /** @todo testcase: Ordering of \#SS(0) vs \#GP() vs \#PF on SSE stuff. */
|
---|
8761 | if (RT_LIKELY(!(GCPtrMem & 15)))
|
---|
8762 | {
|
---|
8763 | uint64_t const *pu64Src = (uint64_t const *)iemMemMapJmp(pVCpu, sizeof(*pu64Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8764 | uint64_t const u64Ret = *pu64Src;
|
---|
8765 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu64Src, IEM_ACCESS_DATA_R);
|
---|
8766 | return u64Ret;
|
---|
8767 | }
|
---|
8768 |
|
---|
8769 | VBOXSTRICTRC rc = iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8770 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rc));
|
---|
8771 | }
|
---|
8772 | #endif
|
---|
8773 |
|
---|
8774 |
|
---|
8775 | /**
|
---|
8776 | * Fetches a data tword.
|
---|
8777 | *
|
---|
8778 | * @returns Strict VBox status code.
|
---|
8779 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8780 | * @param pr80Dst Where to return the tword.
|
---|
8781 | * @param iSegReg The index of the segment register to use for
|
---|
8782 | * this access. The base and limits are checked.
|
---|
8783 | * @param GCPtrMem The address of the guest memory.
|
---|
8784 | */
|
---|
8785 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataR80(PVMCPU pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8786 | {
|
---|
8787 | /* The lazy approach for now... */
|
---|
8788 | PCRTFLOAT80U pr80Src;
|
---|
8789 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pr80Src, sizeof(*pr80Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8790 | if (rc == VINF_SUCCESS)
|
---|
8791 | {
|
---|
8792 | *pr80Dst = *pr80Src;
|
---|
8793 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pr80Src, IEM_ACCESS_DATA_R);
|
---|
8794 | }
|
---|
8795 | return rc;
|
---|
8796 | }
|
---|
8797 |
|
---|
8798 |
|
---|
8799 | #ifdef IEM_WITH_SETJMP
|
---|
8800 | /**
|
---|
8801 | * Fetches a data tword, longjmp on error.
|
---|
8802 | *
|
---|
8803 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8804 | * @param pr80Dst Where to return the tword.
|
---|
8805 | * @param iSegReg The index of the segment register to use for
|
---|
8806 | * this access. The base and limits are checked.
|
---|
8807 | * @param GCPtrMem The address of the guest memory.
|
---|
8808 | */
|
---|
8809 | DECL_NO_INLINE(IEM_STATIC, void) iemMemFetchDataR80Jmp(PVMCPU pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8810 | {
|
---|
8811 | /* The lazy approach for now... */
|
---|
8812 | PCRTFLOAT80U pr80Src = (PCRTFLOAT80U)iemMemMapJmp(pVCpu, sizeof(*pr80Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8813 | *pr80Dst = *pr80Src;
|
---|
8814 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pr80Src, IEM_ACCESS_DATA_R);
|
---|
8815 | }
|
---|
8816 | #endif
|
---|
8817 |
|
---|
8818 |
|
---|
8819 | /**
|
---|
8820 | * Fetches a data dqword (double qword), generally SSE related.
|
---|
8821 | *
|
---|
8822 | * @returns Strict VBox status code.
|
---|
8823 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8824 | * @param pu128Dst Where to return the qword.
|
---|
8825 | * @param iSegReg The index of the segment register to use for
|
---|
8826 | * this access. The base and limits are checked.
|
---|
8827 | * @param GCPtrMem The address of the guest memory.
|
---|
8828 | */
|
---|
8829 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU128(PVMCPU pVCpu, uint128_t *pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8830 | {
|
---|
8831 | /* The lazy approach for now... */
|
---|
8832 | uint128_t const *pu128Src;
|
---|
8833 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu128Src, sizeof(*pu128Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8834 | if (rc == VINF_SUCCESS)
|
---|
8835 | {
|
---|
8836 | *pu128Dst = *pu128Src;
|
---|
8837 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu128Src, IEM_ACCESS_DATA_R);
|
---|
8838 | }
|
---|
8839 | return rc;
|
---|
8840 | }
|
---|
8841 |
|
---|
8842 |
|
---|
8843 | #ifdef IEM_WITH_SETJMP
|
---|
8844 | /**
|
---|
8845 | * Fetches a data dqword (double qword), generally SSE related.
|
---|
8846 | *
|
---|
8847 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8848 | * @param pu128Dst Where to return the qword.
|
---|
8849 | * @param iSegReg The index of the segment register to use for
|
---|
8850 | * this access. The base and limits are checked.
|
---|
8851 | * @param GCPtrMem The address of the guest memory.
|
---|
8852 | */
|
---|
8853 | IEM_STATIC void iemMemFetchDataU128Jmp(PVMCPU pVCpu, uint128_t *pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8854 | {
|
---|
8855 | /* The lazy approach for now... */
|
---|
8856 | uint128_t const *pu128Src = (uint128_t const *)iemMemMapJmp(pVCpu, sizeof(*pu128Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8857 | *pu128Dst = *pu128Src;
|
---|
8858 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu128Src, IEM_ACCESS_DATA_R);
|
---|
8859 | }
|
---|
8860 | #endif
|
---|
8861 |
|
---|
8862 |
|
---|
8863 | /**
|
---|
8864 | * Fetches a data dqword (double qword) at an aligned address, generally SSE
|
---|
8865 | * related.
|
---|
8866 | *
|
---|
8867 | * Raises \#GP(0) if not aligned.
|
---|
8868 | *
|
---|
8869 | * @returns Strict VBox status code.
|
---|
8870 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8871 | * @param pu128Dst Where to return the qword.
|
---|
8872 | * @param iSegReg The index of the segment register to use for
|
---|
8873 | * this access. The base and limits are checked.
|
---|
8874 | * @param GCPtrMem The address of the guest memory.
|
---|
8875 | */
|
---|
8876 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPU pVCpu, uint128_t *pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8877 | {
|
---|
8878 | /* The lazy approach for now... */
|
---|
8879 | /** @todo testcase: Ordering of \#SS(0) vs \#GP() vs \#PF on SSE stuff. */
|
---|
8880 | if ( (GCPtrMem & 15)
|
---|
8881 | && !(IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.MXCSR & X86_MXSCR_MM)) /** @todo should probably check this *after* applying seg.u64Base... Check real HW. */
|
---|
8882 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8883 |
|
---|
8884 | uint128_t const *pu128Src;
|
---|
8885 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu128Src, sizeof(*pu128Src), iSegReg, GCPtrMem, IEM_ACCESS_DATA_R);
|
---|
8886 | if (rc == VINF_SUCCESS)
|
---|
8887 | {
|
---|
8888 | *pu128Dst = *pu128Src;
|
---|
8889 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu128Src, IEM_ACCESS_DATA_R);
|
---|
8890 | }
|
---|
8891 | return rc;
|
---|
8892 | }
|
---|
8893 |
|
---|
8894 |
|
---|
8895 | #ifdef IEM_WITH_SETJMP
|
---|
8896 | /**
|
---|
8897 | * Fetches a data dqword (double qword) at an aligned address, generally SSE
|
---|
8898 | * related, longjmp on error.
|
---|
8899 | *
|
---|
8900 | * Raises \#GP(0) if not aligned.
|
---|
8901 | *
|
---|
8902 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8903 | * @param pu128Dst Where to return the qword.
|
---|
8904 | * @param iSegReg The index of the segment register to use for
|
---|
8905 | * this access. The base and limits are checked.
|
---|
8906 | * @param GCPtrMem The address of the guest memory.
|
---|
8907 | */
|
---|
8908 | DECL_NO_INLINE(IEM_STATIC, void) iemMemFetchDataU128AlignedSseJmp(PVMCPU pVCpu, uint128_t *pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
8909 | {
|
---|
8910 | /* The lazy approach for now... */
|
---|
8911 | /** @todo testcase: Ordering of \#SS(0) vs \#GP() vs \#PF on SSE stuff. */
|
---|
8912 | if ( (GCPtrMem & 15) == 0
|
---|
8913 | || (IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.MXCSR & X86_MXSCR_MM)) /** @todo should probably check this *after* applying seg.u64Base... Check real HW. */
|
---|
8914 | {
|
---|
8915 | uint128_t const *pu128Src = (uint128_t const *)iemMemMapJmp(pVCpu, sizeof(*pu128Src), iSegReg, GCPtrMem,
|
---|
8916 | IEM_ACCESS_DATA_R);
|
---|
8917 | *pu128Dst = *pu128Src;
|
---|
8918 | iemMemCommitAndUnmapJmp(pVCpu, (void *)pu128Src, IEM_ACCESS_DATA_R);
|
---|
8919 | return;
|
---|
8920 | }
|
---|
8921 |
|
---|
8922 | VBOXSTRICTRC rcStrict = iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8923 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
8924 | }
|
---|
8925 | #endif
|
---|
8926 |
|
---|
8927 |
|
---|
8928 |
|
---|
8929 | /**
|
---|
8930 | * Fetches a descriptor register (lgdt, lidt).
|
---|
8931 | *
|
---|
8932 | * @returns Strict VBox status code.
|
---|
8933 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
8934 | * @param pcbLimit Where to return the limit.
|
---|
8935 | * @param pGCPtrBase Where to return the base.
|
---|
8936 | * @param iSegReg The index of the segment register to use for
|
---|
8937 | * this access. The base and limits are checked.
|
---|
8938 | * @param GCPtrMem The address of the guest memory.
|
---|
8939 | * @param enmOpSize The effective operand size.
|
---|
8940 | */
|
---|
8941 | IEM_STATIC VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPU pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
|
---|
8942 | RTGCPTR GCPtrMem, IEMMODE enmOpSize)
|
---|
8943 | {
|
---|
8944 | /*
|
---|
8945 | * Just like SIDT and SGDT, the LIDT and LGDT instructions are a
|
---|
8946 | * little special:
|
---|
8947 | * - The two reads are done separately.
|
---|
8948 | * - Operand size override works in 16-bit and 32-bit code, but 64-bit.
|
---|
8949 | * - We suspect the 386 to actually commit the limit before the base in
|
---|
8950 | * some cases (search for 386 in bs3CpuBasic2_lidt_lgdt_One). We
|
---|
8951 | * don't try emulate this eccentric behavior, because it's not well
|
---|
8952 | * enough understood and rather hard to trigger.
|
---|
8953 | * - The 486 seems to do a dword limit read when the operand size is 32-bit.
|
---|
8954 | */
|
---|
8955 | VBOXSTRICTRC rcStrict;
|
---|
8956 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
8957 | {
|
---|
8958 | rcStrict = iemMemFetchDataU16(pVCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
8959 | if (rcStrict == VINF_SUCCESS)
|
---|
8960 | rcStrict = iemMemFetchDataU64(pVCpu, pGCPtrBase, iSegReg, GCPtrMem + 2);
|
---|
8961 | }
|
---|
8962 | else
|
---|
8963 | {
|
---|
8964 | uint32_t uTmp;
|
---|
8965 | if (enmOpSize == IEMMODE_32BIT)
|
---|
8966 | {
|
---|
8967 | if (IEM_GET_TARGET_CPU(pVCpu) != IEMTARGETCPU_486)
|
---|
8968 | {
|
---|
8969 | rcStrict = iemMemFetchDataU16(pVCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
8970 | if (rcStrict == VINF_SUCCESS)
|
---|
8971 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
8972 | }
|
---|
8973 | else
|
---|
8974 | {
|
---|
8975 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem);
|
---|
8976 | if (rcStrict == VINF_SUCCESS)
|
---|
8977 | {
|
---|
8978 | *pcbLimit = (uint16_t)uTmp;
|
---|
8979 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
8980 | }
|
---|
8981 | }
|
---|
8982 | if (rcStrict == VINF_SUCCESS)
|
---|
8983 | *pGCPtrBase = uTmp;
|
---|
8984 | }
|
---|
8985 | else
|
---|
8986 | {
|
---|
8987 | rcStrict = iemMemFetchDataU16(pVCpu, pcbLimit, iSegReg, GCPtrMem);
|
---|
8988 | if (rcStrict == VINF_SUCCESS)
|
---|
8989 | {
|
---|
8990 | rcStrict = iemMemFetchDataU32(pVCpu, &uTmp, iSegReg, GCPtrMem + 2);
|
---|
8991 | if (rcStrict == VINF_SUCCESS)
|
---|
8992 | *pGCPtrBase = uTmp & UINT32_C(0x00ffffff);
|
---|
8993 | }
|
---|
8994 | }
|
---|
8995 | }
|
---|
8996 | return rcStrict;
|
---|
8997 | }
|
---|
8998 |
|
---|
8999 |
|
---|
9000 |
|
---|
9001 | /**
|
---|
9002 | * Stores a data byte.
|
---|
9003 | *
|
---|
9004 | * @returns Strict VBox status code.
|
---|
9005 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9006 | * @param iSegReg The index of the segment register to use for
|
---|
9007 | * this access. The base and limits are checked.
|
---|
9008 | * @param GCPtrMem The address of the guest memory.
|
---|
9009 | * @param u8Value The value to store.
|
---|
9010 | */
|
---|
9011 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU8(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value)
|
---|
9012 | {
|
---|
9013 | /* The lazy approach for now... */
|
---|
9014 | uint8_t *pu8Dst;
|
---|
9015 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu8Dst, sizeof(*pu8Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9016 | if (rc == VINF_SUCCESS)
|
---|
9017 | {
|
---|
9018 | *pu8Dst = u8Value;
|
---|
9019 | rc = iemMemCommitAndUnmap(pVCpu, pu8Dst, IEM_ACCESS_DATA_W);
|
---|
9020 | }
|
---|
9021 | return rc;
|
---|
9022 | }
|
---|
9023 |
|
---|
9024 |
|
---|
9025 | #ifdef IEM_WITH_SETJMP
|
---|
9026 | /**
|
---|
9027 | * Stores a data byte, longjmp on error.
|
---|
9028 | *
|
---|
9029 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9030 | * @param iSegReg The index of the segment register to use for
|
---|
9031 | * this access. The base and limits are checked.
|
---|
9032 | * @param GCPtrMem The address of the guest memory.
|
---|
9033 | * @param u8Value The value to store.
|
---|
9034 | */
|
---|
9035 | IEM_STATIC void iemMemStoreDataU8Jmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value)
|
---|
9036 | {
|
---|
9037 | /* The lazy approach for now... */
|
---|
9038 | uint8_t *pu8Dst = (uint8_t *)iemMemMapJmp(pVCpu, sizeof(*pu8Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9039 | *pu8Dst = u8Value;
|
---|
9040 | iemMemCommitAndUnmapJmp(pVCpu, pu8Dst, IEM_ACCESS_DATA_W);
|
---|
9041 | }
|
---|
9042 | #endif
|
---|
9043 |
|
---|
9044 |
|
---|
9045 | /**
|
---|
9046 | * Stores a data word.
|
---|
9047 | *
|
---|
9048 | * @returns Strict VBox status code.
|
---|
9049 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9050 | * @param iSegReg The index of the segment register to use for
|
---|
9051 | * this access. The base and limits are checked.
|
---|
9052 | * @param GCPtrMem The address of the guest memory.
|
---|
9053 | * @param u16Value The value to store.
|
---|
9054 | */
|
---|
9055 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU16(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value)
|
---|
9056 | {
|
---|
9057 | /* The lazy approach for now... */
|
---|
9058 | uint16_t *pu16Dst;
|
---|
9059 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu16Dst, sizeof(*pu16Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9060 | if (rc == VINF_SUCCESS)
|
---|
9061 | {
|
---|
9062 | *pu16Dst = u16Value;
|
---|
9063 | rc = iemMemCommitAndUnmap(pVCpu, pu16Dst, IEM_ACCESS_DATA_W);
|
---|
9064 | }
|
---|
9065 | return rc;
|
---|
9066 | }
|
---|
9067 |
|
---|
9068 |
|
---|
9069 | #ifdef IEM_WITH_SETJMP
|
---|
9070 | /**
|
---|
9071 | * Stores a data word, longjmp on error.
|
---|
9072 | *
|
---|
9073 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9074 | * @param iSegReg The index of the segment register to use for
|
---|
9075 | * this access. The base and limits are checked.
|
---|
9076 | * @param GCPtrMem The address of the guest memory.
|
---|
9077 | * @param u16Value The value to store.
|
---|
9078 | */
|
---|
9079 | IEM_STATIC void iemMemStoreDataU16Jmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value)
|
---|
9080 | {
|
---|
9081 | /* The lazy approach for now... */
|
---|
9082 | uint16_t *pu16Dst = (uint16_t *)iemMemMapJmp(pVCpu, sizeof(*pu16Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9083 | *pu16Dst = u16Value;
|
---|
9084 | iemMemCommitAndUnmapJmp(pVCpu, pu16Dst, IEM_ACCESS_DATA_W);
|
---|
9085 | }
|
---|
9086 | #endif
|
---|
9087 |
|
---|
9088 |
|
---|
9089 | /**
|
---|
9090 | * Stores a data dword.
|
---|
9091 | *
|
---|
9092 | * @returns Strict VBox status code.
|
---|
9093 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9094 | * @param iSegReg The index of the segment register to use for
|
---|
9095 | * this access. The base and limits are checked.
|
---|
9096 | * @param GCPtrMem The address of the guest memory.
|
---|
9097 | * @param u32Value The value to store.
|
---|
9098 | */
|
---|
9099 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU32(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value)
|
---|
9100 | {
|
---|
9101 | /* The lazy approach for now... */
|
---|
9102 | uint32_t *pu32Dst;
|
---|
9103 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu32Dst, sizeof(*pu32Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9104 | if (rc == VINF_SUCCESS)
|
---|
9105 | {
|
---|
9106 | *pu32Dst = u32Value;
|
---|
9107 | rc = iemMemCommitAndUnmap(pVCpu, pu32Dst, IEM_ACCESS_DATA_W);
|
---|
9108 | }
|
---|
9109 | return rc;
|
---|
9110 | }
|
---|
9111 |
|
---|
9112 |
|
---|
9113 | #ifdef IEM_WITH_SETJMP
|
---|
9114 | /**
|
---|
9115 | * Stores a data dword.
|
---|
9116 | *
|
---|
9117 | * @returns Strict VBox status code.
|
---|
9118 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9119 | * @param iSegReg The index of the segment register to use for
|
---|
9120 | * this access. The base and limits are checked.
|
---|
9121 | * @param GCPtrMem The address of the guest memory.
|
---|
9122 | * @param u32Value The value to store.
|
---|
9123 | */
|
---|
9124 | IEM_STATIC void iemMemStoreDataU32Jmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value)
|
---|
9125 | {
|
---|
9126 | /* The lazy approach for now... */
|
---|
9127 | uint32_t *pu32Dst = (uint32_t *)iemMemMapJmp(pVCpu, sizeof(*pu32Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9128 | *pu32Dst = u32Value;
|
---|
9129 | iemMemCommitAndUnmapJmp(pVCpu, pu32Dst, IEM_ACCESS_DATA_W);
|
---|
9130 | }
|
---|
9131 | #endif
|
---|
9132 |
|
---|
9133 |
|
---|
9134 | /**
|
---|
9135 | * Stores a data qword.
|
---|
9136 | *
|
---|
9137 | * @returns Strict VBox status code.
|
---|
9138 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9139 | * @param iSegReg The index of the segment register to use for
|
---|
9140 | * this access. The base and limits are checked.
|
---|
9141 | * @param GCPtrMem The address of the guest memory.
|
---|
9142 | * @param u64Value The value to store.
|
---|
9143 | */
|
---|
9144 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU64(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value)
|
---|
9145 | {
|
---|
9146 | /* The lazy approach for now... */
|
---|
9147 | uint64_t *pu64Dst;
|
---|
9148 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu64Dst, sizeof(*pu64Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9149 | if (rc == VINF_SUCCESS)
|
---|
9150 | {
|
---|
9151 | *pu64Dst = u64Value;
|
---|
9152 | rc = iemMemCommitAndUnmap(pVCpu, pu64Dst, IEM_ACCESS_DATA_W);
|
---|
9153 | }
|
---|
9154 | return rc;
|
---|
9155 | }
|
---|
9156 |
|
---|
9157 |
|
---|
9158 | #ifdef IEM_WITH_SETJMP
|
---|
9159 | /**
|
---|
9160 | * Stores a data qword, longjmp on error.
|
---|
9161 | *
|
---|
9162 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9163 | * @param iSegReg The index of the segment register to use for
|
---|
9164 | * this access. The base and limits are checked.
|
---|
9165 | * @param GCPtrMem The address of the guest memory.
|
---|
9166 | * @param u64Value The value to store.
|
---|
9167 | */
|
---|
9168 | IEM_STATIC void iemMemStoreDataU64Jmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value)
|
---|
9169 | {
|
---|
9170 | /* The lazy approach for now... */
|
---|
9171 | uint64_t *pu64Dst = (uint64_t *)iemMemMapJmp(pVCpu, sizeof(*pu64Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9172 | *pu64Dst = u64Value;
|
---|
9173 | iemMemCommitAndUnmapJmp(pVCpu, pu64Dst, IEM_ACCESS_DATA_W);
|
---|
9174 | }
|
---|
9175 | #endif
|
---|
9176 |
|
---|
9177 |
|
---|
9178 | /**
|
---|
9179 | * Stores a data dqword.
|
---|
9180 | *
|
---|
9181 | * @returns Strict VBox status code.
|
---|
9182 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9183 | * @param iSegReg The index of the segment register to use for
|
---|
9184 | * this access. The base and limits are checked.
|
---|
9185 | * @param GCPtrMem The address of the guest memory.
|
---|
9186 | * @param u128Value The value to store.
|
---|
9187 | */
|
---|
9188 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU128(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint128_t u128Value)
|
---|
9189 | {
|
---|
9190 | /* The lazy approach for now... */
|
---|
9191 | uint128_t *pu128Dst;
|
---|
9192 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu128Dst, sizeof(*pu128Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9193 | if (rc == VINF_SUCCESS)
|
---|
9194 | {
|
---|
9195 | *pu128Dst = u128Value;
|
---|
9196 | rc = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_W);
|
---|
9197 | }
|
---|
9198 | return rc;
|
---|
9199 | }
|
---|
9200 |
|
---|
9201 |
|
---|
9202 | #ifdef IEM_WITH_SETJMP
|
---|
9203 | /**
|
---|
9204 | * Stores a data dqword, longjmp on error.
|
---|
9205 | *
|
---|
9206 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9207 | * @param iSegReg The index of the segment register to use for
|
---|
9208 | * this access. The base and limits are checked.
|
---|
9209 | * @param GCPtrMem The address of the guest memory.
|
---|
9210 | * @param u128Value The value to store.
|
---|
9211 | */
|
---|
9212 | IEM_STATIC void iemMemStoreDataU128Jmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint128_t u128Value)
|
---|
9213 | {
|
---|
9214 | /* The lazy approach for now... */
|
---|
9215 | uint128_t *pu128Dst = (uint128_t *)iemMemMapJmp(pVCpu, sizeof(*pu128Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9216 | *pu128Dst = u128Value;
|
---|
9217 | iemMemCommitAndUnmapJmp(pVCpu, pu128Dst, IEM_ACCESS_DATA_W);
|
---|
9218 | }
|
---|
9219 | #endif
|
---|
9220 |
|
---|
9221 |
|
---|
9222 | /**
|
---|
9223 | * Stores a data dqword, SSE aligned.
|
---|
9224 | *
|
---|
9225 | * @returns Strict VBox status code.
|
---|
9226 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9227 | * @param iSegReg The index of the segment register to use for
|
---|
9228 | * this access. The base and limits are checked.
|
---|
9229 | * @param GCPtrMem The address of the guest memory.
|
---|
9230 | * @param u128Value The value to store.
|
---|
9231 | */
|
---|
9232 | IEM_STATIC VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint128_t u128Value)
|
---|
9233 | {
|
---|
9234 | /* The lazy approach for now... */
|
---|
9235 | if ( (GCPtrMem & 15)
|
---|
9236 | && !(IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.MXCSR & X86_MXSCR_MM)) /** @todo should probably check this *after* applying seg.u64Base... Check real HW. */
|
---|
9237 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
9238 |
|
---|
9239 | uint128_t *pu128Dst;
|
---|
9240 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu128Dst, sizeof(*pu128Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9241 | if (rc == VINF_SUCCESS)
|
---|
9242 | {
|
---|
9243 | *pu128Dst = u128Value;
|
---|
9244 | rc = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_W);
|
---|
9245 | }
|
---|
9246 | return rc;
|
---|
9247 | }
|
---|
9248 |
|
---|
9249 |
|
---|
9250 | #ifdef IEM_WITH_SETJMP
|
---|
9251 | /**
|
---|
9252 | * Stores a data dqword, SSE aligned.
|
---|
9253 | *
|
---|
9254 | * @returns Strict VBox status code.
|
---|
9255 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9256 | * @param iSegReg The index of the segment register to use for
|
---|
9257 | * this access. The base and limits are checked.
|
---|
9258 | * @param GCPtrMem The address of the guest memory.
|
---|
9259 | * @param u128Value The value to store.
|
---|
9260 | */
|
---|
9261 | DECL_NO_INLINE(IEM_STATIC, void)
|
---|
9262 | iemMemStoreDataU128AlignedSseJmp(PVMCPU pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint128_t u128Value)
|
---|
9263 | {
|
---|
9264 | /* The lazy approach for now... */
|
---|
9265 | if ( (GCPtrMem & 15) == 0
|
---|
9266 | || (IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.MXCSR & X86_MXSCR_MM)) /** @todo should probably check this *after* applying seg.u64Base... Check real HW. */
|
---|
9267 | {
|
---|
9268 | uint128_t *pu128Dst = (uint128_t *)iemMemMapJmp(pVCpu, sizeof(*pu128Dst), iSegReg, GCPtrMem, IEM_ACCESS_DATA_W);
|
---|
9269 | *pu128Dst = u128Value;
|
---|
9270 | iemMemCommitAndUnmapJmp(pVCpu, pu128Dst, IEM_ACCESS_DATA_W);
|
---|
9271 | return;
|
---|
9272 | }
|
---|
9273 |
|
---|
9274 | VBOXSTRICTRC rcStrict = iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
9275 | longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VBOXSTRICTRC_VAL(rcStrict));
|
---|
9276 | }
|
---|
9277 | #endif
|
---|
9278 |
|
---|
9279 |
|
---|
9280 | /**
|
---|
9281 | * Stores a descriptor register (sgdt, sidt).
|
---|
9282 | *
|
---|
9283 | * @returns Strict VBox status code.
|
---|
9284 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9285 | * @param cbLimit The limit.
|
---|
9286 | * @param GCPtrBase The base address.
|
---|
9287 | * @param iSegReg The index of the segment register to use for
|
---|
9288 | * this access. The base and limits are checked.
|
---|
9289 | * @param GCPtrMem The address of the guest memory.
|
---|
9290 | */
|
---|
9291 | IEM_STATIC VBOXSTRICTRC
|
---|
9292 | iemMemStoreDataXdtr(PVMCPU pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
9293 | {
|
---|
9294 | /*
|
---|
9295 | * The SIDT and SGDT instructions actually stores the data using two
|
---|
9296 | * independent writes. The instructions does not respond to opsize prefixes.
|
---|
9297 | */
|
---|
9298 | VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iSegReg, GCPtrMem, cbLimit);
|
---|
9299 | if (rcStrict == VINF_SUCCESS)
|
---|
9300 | {
|
---|
9301 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT)
|
---|
9302 | rcStrict = iemMemStoreDataU32(pVCpu, iSegReg, GCPtrMem + 2,
|
---|
9303 | IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_286
|
---|
9304 | ? (uint32_t)GCPtrBase | UINT32_C(0xff000000) : (uint32_t)GCPtrBase);
|
---|
9305 | else if (pVCpu->iem.s.enmCpuMode == IEMMODE_32BIT)
|
---|
9306 | rcStrict = iemMemStoreDataU32(pVCpu, iSegReg, GCPtrMem + 2, (uint32_t)GCPtrBase);
|
---|
9307 | else
|
---|
9308 | rcStrict = iemMemStoreDataU64(pVCpu, iSegReg, GCPtrMem + 2, GCPtrBase);
|
---|
9309 | }
|
---|
9310 | return rcStrict;
|
---|
9311 | }
|
---|
9312 |
|
---|
9313 |
|
---|
9314 | /**
|
---|
9315 | * Pushes a word onto the stack.
|
---|
9316 | *
|
---|
9317 | * @returns Strict VBox status code.
|
---|
9318 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9319 | * @param u16Value The value to push.
|
---|
9320 | */
|
---|
9321 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU16(PVMCPU pVCpu, uint16_t u16Value)
|
---|
9322 | {
|
---|
9323 | /* Increment the stack pointer. */
|
---|
9324 | uint64_t uNewRsp;
|
---|
9325 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9326 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pVCpu, pCtx, 2, &uNewRsp);
|
---|
9327 |
|
---|
9328 | /* Write the word the lazy way. */
|
---|
9329 | uint16_t *pu16Dst;
|
---|
9330 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu16Dst, sizeof(*pu16Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
9331 | if (rc == VINF_SUCCESS)
|
---|
9332 | {
|
---|
9333 | *pu16Dst = u16Value;
|
---|
9334 | rc = iemMemCommitAndUnmap(pVCpu, pu16Dst, IEM_ACCESS_STACK_W);
|
---|
9335 | }
|
---|
9336 |
|
---|
9337 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
9338 | if (rc == VINF_SUCCESS)
|
---|
9339 | pCtx->rsp = uNewRsp;
|
---|
9340 |
|
---|
9341 | return rc;
|
---|
9342 | }
|
---|
9343 |
|
---|
9344 |
|
---|
9345 | /**
|
---|
9346 | * Pushes a dword onto the stack.
|
---|
9347 | *
|
---|
9348 | * @returns Strict VBox status code.
|
---|
9349 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9350 | * @param u32Value The value to push.
|
---|
9351 | */
|
---|
9352 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU32(PVMCPU pVCpu, uint32_t u32Value)
|
---|
9353 | {
|
---|
9354 | /* Increment the stack pointer. */
|
---|
9355 | uint64_t uNewRsp;
|
---|
9356 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9357 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pVCpu, pCtx, 4, &uNewRsp);
|
---|
9358 |
|
---|
9359 | /* Write the dword the lazy way. */
|
---|
9360 | uint32_t *pu32Dst;
|
---|
9361 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu32Dst, sizeof(*pu32Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
9362 | if (rc == VINF_SUCCESS)
|
---|
9363 | {
|
---|
9364 | *pu32Dst = u32Value;
|
---|
9365 | rc = iemMemCommitAndUnmap(pVCpu, pu32Dst, IEM_ACCESS_STACK_W);
|
---|
9366 | }
|
---|
9367 |
|
---|
9368 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
9369 | if (rc == VINF_SUCCESS)
|
---|
9370 | pCtx->rsp = uNewRsp;
|
---|
9371 |
|
---|
9372 | return rc;
|
---|
9373 | }
|
---|
9374 |
|
---|
9375 |
|
---|
9376 | /**
|
---|
9377 | * Pushes a dword segment register value onto the stack.
|
---|
9378 | *
|
---|
9379 | * @returns Strict VBox status code.
|
---|
9380 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9381 | * @param u32Value The value to push.
|
---|
9382 | */
|
---|
9383 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPU pVCpu, uint32_t u32Value)
|
---|
9384 | {
|
---|
9385 | /* Increment the stack pointer. */
|
---|
9386 | uint64_t uNewRsp;
|
---|
9387 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9388 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pVCpu, pCtx, 4, &uNewRsp);
|
---|
9389 |
|
---|
9390 | VBOXSTRICTRC rc;
|
---|
9391 | if (IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
9392 | {
|
---|
9393 | /* The recompiler writes a full dword. */
|
---|
9394 | uint32_t *pu32Dst;
|
---|
9395 | rc = iemMemMap(pVCpu, (void **)&pu32Dst, sizeof(*pu32Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
9396 | if (rc == VINF_SUCCESS)
|
---|
9397 | {
|
---|
9398 | *pu32Dst = u32Value;
|
---|
9399 | rc = iemMemCommitAndUnmap(pVCpu, pu32Dst, IEM_ACCESS_STACK_W);
|
---|
9400 | }
|
---|
9401 | }
|
---|
9402 | else
|
---|
9403 | {
|
---|
9404 | /* The intel docs talks about zero extending the selector register
|
---|
9405 | value. My actual intel CPU here might be zero extending the value
|
---|
9406 | but it still only writes the lower word... */
|
---|
9407 | /** @todo Test this on new HW and on AMD and in 64-bit mode. Also test what
|
---|
9408 | * happens when crossing an electric page boundrary, is the high word checked
|
---|
9409 | * for write accessibility or not? Probably it is. What about segment limits?
|
---|
9410 | * It appears this behavior is also shared with trap error codes.
|
---|
9411 | *
|
---|
9412 | * Docs indicate the behavior changed maybe in Pentium or Pentium Pro. Check
|
---|
9413 | * ancient hardware when it actually did change. */
|
---|
9414 | uint16_t *pu16Dst;
|
---|
9415 | rc = iemMemMap(pVCpu, (void **)&pu16Dst, sizeof(uint32_t), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_RW);
|
---|
9416 | if (rc == VINF_SUCCESS)
|
---|
9417 | {
|
---|
9418 | *pu16Dst = (uint16_t)u32Value;
|
---|
9419 | rc = iemMemCommitAndUnmap(pVCpu, pu16Dst, IEM_ACCESS_STACK_RW);
|
---|
9420 | }
|
---|
9421 | }
|
---|
9422 |
|
---|
9423 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
9424 | if (rc == VINF_SUCCESS)
|
---|
9425 | pCtx->rsp = uNewRsp;
|
---|
9426 |
|
---|
9427 | return rc;
|
---|
9428 | }
|
---|
9429 |
|
---|
9430 |
|
---|
9431 | /**
|
---|
9432 | * Pushes a qword onto the stack.
|
---|
9433 | *
|
---|
9434 | * @returns Strict VBox status code.
|
---|
9435 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9436 | * @param u64Value The value to push.
|
---|
9437 | */
|
---|
9438 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU64(PVMCPU pVCpu, uint64_t u64Value)
|
---|
9439 | {
|
---|
9440 | /* Increment the stack pointer. */
|
---|
9441 | uint64_t uNewRsp;
|
---|
9442 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9443 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pVCpu, pCtx, 8, &uNewRsp);
|
---|
9444 |
|
---|
9445 | /* Write the word the lazy way. */
|
---|
9446 | uint64_t *pu64Dst;
|
---|
9447 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu64Dst, sizeof(*pu64Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
9448 | if (rc == VINF_SUCCESS)
|
---|
9449 | {
|
---|
9450 | *pu64Dst = u64Value;
|
---|
9451 | rc = iemMemCommitAndUnmap(pVCpu, pu64Dst, IEM_ACCESS_STACK_W);
|
---|
9452 | }
|
---|
9453 |
|
---|
9454 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
9455 | if (rc == VINF_SUCCESS)
|
---|
9456 | pCtx->rsp = uNewRsp;
|
---|
9457 |
|
---|
9458 | return rc;
|
---|
9459 | }
|
---|
9460 |
|
---|
9461 |
|
---|
9462 | /**
|
---|
9463 | * Pops a word from the stack.
|
---|
9464 | *
|
---|
9465 | * @returns Strict VBox status code.
|
---|
9466 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9467 | * @param pu16Value Where to store the popped value.
|
---|
9468 | */
|
---|
9469 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU16(PVMCPU pVCpu, uint16_t *pu16Value)
|
---|
9470 | {
|
---|
9471 | /* Increment the stack pointer. */
|
---|
9472 | uint64_t uNewRsp;
|
---|
9473 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9474 | RTGCPTR GCPtrTop = iemRegGetRspForPop(pVCpu, pCtx, 2, &uNewRsp);
|
---|
9475 |
|
---|
9476 | /* Write the word the lazy way. */
|
---|
9477 | uint16_t const *pu16Src;
|
---|
9478 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu16Src, sizeof(*pu16Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
9479 | if (rc == VINF_SUCCESS)
|
---|
9480 | {
|
---|
9481 | *pu16Value = *pu16Src;
|
---|
9482 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu16Src, IEM_ACCESS_STACK_R);
|
---|
9483 |
|
---|
9484 | /* Commit the new RSP value. */
|
---|
9485 | if (rc == VINF_SUCCESS)
|
---|
9486 | pCtx->rsp = uNewRsp;
|
---|
9487 | }
|
---|
9488 |
|
---|
9489 | return rc;
|
---|
9490 | }
|
---|
9491 |
|
---|
9492 |
|
---|
9493 | /**
|
---|
9494 | * Pops a dword from the stack.
|
---|
9495 | *
|
---|
9496 | * @returns Strict VBox status code.
|
---|
9497 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9498 | * @param pu32Value Where to store the popped value.
|
---|
9499 | */
|
---|
9500 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU32(PVMCPU pVCpu, uint32_t *pu32Value)
|
---|
9501 | {
|
---|
9502 | /* Increment the stack pointer. */
|
---|
9503 | uint64_t uNewRsp;
|
---|
9504 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9505 | RTGCPTR GCPtrTop = iemRegGetRspForPop(pVCpu, pCtx, 4, &uNewRsp);
|
---|
9506 |
|
---|
9507 | /* Write the word the lazy way. */
|
---|
9508 | uint32_t const *pu32Src;
|
---|
9509 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu32Src, sizeof(*pu32Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
9510 | if (rc == VINF_SUCCESS)
|
---|
9511 | {
|
---|
9512 | *pu32Value = *pu32Src;
|
---|
9513 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu32Src, IEM_ACCESS_STACK_R);
|
---|
9514 |
|
---|
9515 | /* Commit the new RSP value. */
|
---|
9516 | if (rc == VINF_SUCCESS)
|
---|
9517 | pCtx->rsp = uNewRsp;
|
---|
9518 | }
|
---|
9519 |
|
---|
9520 | return rc;
|
---|
9521 | }
|
---|
9522 |
|
---|
9523 |
|
---|
9524 | /**
|
---|
9525 | * Pops a qword from the stack.
|
---|
9526 | *
|
---|
9527 | * @returns Strict VBox status code.
|
---|
9528 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9529 | * @param pu64Value Where to store the popped value.
|
---|
9530 | */
|
---|
9531 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU64(PVMCPU pVCpu, uint64_t *pu64Value)
|
---|
9532 | {
|
---|
9533 | /* Increment the stack pointer. */
|
---|
9534 | uint64_t uNewRsp;
|
---|
9535 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9536 | RTGCPTR GCPtrTop = iemRegGetRspForPop(pVCpu, pCtx, 8, &uNewRsp);
|
---|
9537 |
|
---|
9538 | /* Write the word the lazy way. */
|
---|
9539 | uint64_t const *pu64Src;
|
---|
9540 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu64Src, sizeof(*pu64Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
9541 | if (rc == VINF_SUCCESS)
|
---|
9542 | {
|
---|
9543 | *pu64Value = *pu64Src;
|
---|
9544 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu64Src, IEM_ACCESS_STACK_R);
|
---|
9545 |
|
---|
9546 | /* Commit the new RSP value. */
|
---|
9547 | if (rc == VINF_SUCCESS)
|
---|
9548 | pCtx->rsp = uNewRsp;
|
---|
9549 | }
|
---|
9550 |
|
---|
9551 | return rc;
|
---|
9552 | }
|
---|
9553 |
|
---|
9554 |
|
---|
9555 | /**
|
---|
9556 | * Pushes a word onto the stack, using a temporary stack pointer.
|
---|
9557 | *
|
---|
9558 | * @returns Strict VBox status code.
|
---|
9559 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9560 | * @param u16Value The value to push.
|
---|
9561 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
9562 | */
|
---|
9563 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPU pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp)
|
---|
9564 | {
|
---|
9565 | /* Increment the stack pointer. */
|
---|
9566 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9567 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
9568 | RTGCPTR GCPtrTop = iemRegGetRspForPushEx(pVCpu, pCtx, &NewRsp, 2);
|
---|
9569 |
|
---|
9570 | /* Write the word the lazy way. */
|
---|
9571 | uint16_t *pu16Dst;
|
---|
9572 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu16Dst, sizeof(*pu16Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
9573 | if (rc == VINF_SUCCESS)
|
---|
9574 | {
|
---|
9575 | *pu16Dst = u16Value;
|
---|
9576 | rc = iemMemCommitAndUnmap(pVCpu, pu16Dst, IEM_ACCESS_STACK_W);
|
---|
9577 | }
|
---|
9578 |
|
---|
9579 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
9580 | if (rc == VINF_SUCCESS)
|
---|
9581 | *pTmpRsp = NewRsp;
|
---|
9582 |
|
---|
9583 | return rc;
|
---|
9584 | }
|
---|
9585 |
|
---|
9586 |
|
---|
9587 | /**
|
---|
9588 | * Pushes a dword onto the stack, using a temporary stack pointer.
|
---|
9589 | *
|
---|
9590 | * @returns Strict VBox status code.
|
---|
9591 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9592 | * @param u32Value The value to push.
|
---|
9593 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
9594 | */
|
---|
9595 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPU pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp)
|
---|
9596 | {
|
---|
9597 | /* Increment the stack pointer. */
|
---|
9598 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9599 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
9600 | RTGCPTR GCPtrTop = iemRegGetRspForPushEx(pVCpu, pCtx, &NewRsp, 4);
|
---|
9601 |
|
---|
9602 | /* Write the word the lazy way. */
|
---|
9603 | uint32_t *pu32Dst;
|
---|
9604 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu32Dst, sizeof(*pu32Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
9605 | if (rc == VINF_SUCCESS)
|
---|
9606 | {
|
---|
9607 | *pu32Dst = u32Value;
|
---|
9608 | rc = iemMemCommitAndUnmap(pVCpu, pu32Dst, IEM_ACCESS_STACK_W);
|
---|
9609 | }
|
---|
9610 |
|
---|
9611 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
9612 | if (rc == VINF_SUCCESS)
|
---|
9613 | *pTmpRsp = NewRsp;
|
---|
9614 |
|
---|
9615 | return rc;
|
---|
9616 | }
|
---|
9617 |
|
---|
9618 |
|
---|
9619 | /**
|
---|
9620 | * Pushes a dword onto the stack, using a temporary stack pointer.
|
---|
9621 | *
|
---|
9622 | * @returns Strict VBox status code.
|
---|
9623 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9624 | * @param u64Value The value to push.
|
---|
9625 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
9626 | */
|
---|
9627 | IEM_STATIC VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPU pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp)
|
---|
9628 | {
|
---|
9629 | /* Increment the stack pointer. */
|
---|
9630 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9631 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
9632 | RTGCPTR GCPtrTop = iemRegGetRspForPushEx(pVCpu, pCtx, &NewRsp, 8);
|
---|
9633 |
|
---|
9634 | /* Write the word the lazy way. */
|
---|
9635 | uint64_t *pu64Dst;
|
---|
9636 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu64Dst, sizeof(*pu64Dst), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
9637 | if (rc == VINF_SUCCESS)
|
---|
9638 | {
|
---|
9639 | *pu64Dst = u64Value;
|
---|
9640 | rc = iemMemCommitAndUnmap(pVCpu, pu64Dst, IEM_ACCESS_STACK_W);
|
---|
9641 | }
|
---|
9642 |
|
---|
9643 | /* Commit the new RSP value unless we an access handler made trouble. */
|
---|
9644 | if (rc == VINF_SUCCESS)
|
---|
9645 | *pTmpRsp = NewRsp;
|
---|
9646 |
|
---|
9647 | return rc;
|
---|
9648 | }
|
---|
9649 |
|
---|
9650 |
|
---|
9651 | /**
|
---|
9652 | * Pops a word from the stack, using a temporary stack pointer.
|
---|
9653 | *
|
---|
9654 | * @returns Strict VBox status code.
|
---|
9655 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9656 | * @param pu16Value Where to store the popped value.
|
---|
9657 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
9658 | */
|
---|
9659 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPU pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp)
|
---|
9660 | {
|
---|
9661 | /* Increment the stack pointer. */
|
---|
9662 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9663 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
9664 | RTGCPTR GCPtrTop = iemRegGetRspForPopEx(pVCpu, pCtx, &NewRsp, 2);
|
---|
9665 |
|
---|
9666 | /* Write the word the lazy way. */
|
---|
9667 | uint16_t const *pu16Src;
|
---|
9668 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu16Src, sizeof(*pu16Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
9669 | if (rc == VINF_SUCCESS)
|
---|
9670 | {
|
---|
9671 | *pu16Value = *pu16Src;
|
---|
9672 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu16Src, IEM_ACCESS_STACK_R);
|
---|
9673 |
|
---|
9674 | /* Commit the new RSP value. */
|
---|
9675 | if (rc == VINF_SUCCESS)
|
---|
9676 | *pTmpRsp = NewRsp;
|
---|
9677 | }
|
---|
9678 |
|
---|
9679 | return rc;
|
---|
9680 | }
|
---|
9681 |
|
---|
9682 |
|
---|
9683 | /**
|
---|
9684 | * Pops a dword from the stack, using a temporary stack pointer.
|
---|
9685 | *
|
---|
9686 | * @returns Strict VBox status code.
|
---|
9687 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9688 | * @param pu32Value Where to store the popped value.
|
---|
9689 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
9690 | */
|
---|
9691 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPU pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp)
|
---|
9692 | {
|
---|
9693 | /* Increment the stack pointer. */
|
---|
9694 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9695 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
9696 | RTGCPTR GCPtrTop = iemRegGetRspForPopEx(pVCpu, pCtx, &NewRsp, 4);
|
---|
9697 |
|
---|
9698 | /* Write the word the lazy way. */
|
---|
9699 | uint32_t const *pu32Src;
|
---|
9700 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu32Src, sizeof(*pu32Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
9701 | if (rc == VINF_SUCCESS)
|
---|
9702 | {
|
---|
9703 | *pu32Value = *pu32Src;
|
---|
9704 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu32Src, IEM_ACCESS_STACK_R);
|
---|
9705 |
|
---|
9706 | /* Commit the new RSP value. */
|
---|
9707 | if (rc == VINF_SUCCESS)
|
---|
9708 | *pTmpRsp = NewRsp;
|
---|
9709 | }
|
---|
9710 |
|
---|
9711 | return rc;
|
---|
9712 | }
|
---|
9713 |
|
---|
9714 |
|
---|
9715 | /**
|
---|
9716 | * Pops a qword from the stack, using a temporary stack pointer.
|
---|
9717 | *
|
---|
9718 | * @returns Strict VBox status code.
|
---|
9719 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9720 | * @param pu64Value Where to store the popped value.
|
---|
9721 | * @param pTmpRsp Pointer to the temporary stack pointer.
|
---|
9722 | */
|
---|
9723 | IEM_STATIC VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPU pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp)
|
---|
9724 | {
|
---|
9725 | /* Increment the stack pointer. */
|
---|
9726 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9727 | RTUINT64U NewRsp = *pTmpRsp;
|
---|
9728 | RTGCPTR GCPtrTop = iemRegGetRspForPopEx(pVCpu, pCtx, &NewRsp, 8);
|
---|
9729 |
|
---|
9730 | /* Write the word the lazy way. */
|
---|
9731 | uint64_t const *pu64Src;
|
---|
9732 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pu64Src, sizeof(*pu64Src), X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
9733 | if (rcStrict == VINF_SUCCESS)
|
---|
9734 | {
|
---|
9735 | *pu64Value = *pu64Src;
|
---|
9736 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pu64Src, IEM_ACCESS_STACK_R);
|
---|
9737 |
|
---|
9738 | /* Commit the new RSP value. */
|
---|
9739 | if (rcStrict == VINF_SUCCESS)
|
---|
9740 | *pTmpRsp = NewRsp;
|
---|
9741 | }
|
---|
9742 |
|
---|
9743 | return rcStrict;
|
---|
9744 | }
|
---|
9745 |
|
---|
9746 |
|
---|
9747 | /**
|
---|
9748 | * Begin a special stack push (used by interrupt, exceptions and such).
|
---|
9749 | *
|
---|
9750 | * This will raise \#SS or \#PF if appropriate.
|
---|
9751 | *
|
---|
9752 | * @returns Strict VBox status code.
|
---|
9753 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9754 | * @param cbMem The number of bytes to push onto the stack.
|
---|
9755 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
9756 | * As with the other memory functions this could be
|
---|
9757 | * direct access or bounce buffered access, so
|
---|
9758 | * don't commit register until the commit call
|
---|
9759 | * succeeds.
|
---|
9760 | * @param puNewRsp Where to return the new RSP value. This must be
|
---|
9761 | * passed unchanged to
|
---|
9762 | * iemMemStackPushCommitSpecial().
|
---|
9763 | */
|
---|
9764 | IEM_STATIC VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPU pVCpu, size_t cbMem, void **ppvMem, uint64_t *puNewRsp)
|
---|
9765 | {
|
---|
9766 | Assert(cbMem < UINT8_MAX);
|
---|
9767 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9768 | RTGCPTR GCPtrTop = iemRegGetRspForPush(pVCpu, pCtx, (uint8_t)cbMem, puNewRsp);
|
---|
9769 | return iemMemMap(pVCpu, ppvMem, cbMem, X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_W);
|
---|
9770 | }
|
---|
9771 |
|
---|
9772 |
|
---|
9773 | /**
|
---|
9774 | * Commits a special stack push (started by iemMemStackPushBeginSpecial).
|
---|
9775 | *
|
---|
9776 | * This will update the rSP.
|
---|
9777 | *
|
---|
9778 | * @returns Strict VBox status code.
|
---|
9779 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9780 | * @param pvMem The pointer returned by
|
---|
9781 | * iemMemStackPushBeginSpecial().
|
---|
9782 | * @param uNewRsp The new RSP value returned by
|
---|
9783 | * iemMemStackPushBeginSpecial().
|
---|
9784 | */
|
---|
9785 | IEM_STATIC VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPU pVCpu, void *pvMem, uint64_t uNewRsp)
|
---|
9786 | {
|
---|
9787 | VBOXSTRICTRC rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem, IEM_ACCESS_STACK_W);
|
---|
9788 | if (rcStrict == VINF_SUCCESS)
|
---|
9789 | IEM_GET_CTX(pVCpu)->rsp = uNewRsp;
|
---|
9790 | return rcStrict;
|
---|
9791 | }
|
---|
9792 |
|
---|
9793 |
|
---|
9794 | /**
|
---|
9795 | * Begin a special stack pop (used by iret, retf and such).
|
---|
9796 | *
|
---|
9797 | * This will raise \#SS or \#PF if appropriate.
|
---|
9798 | *
|
---|
9799 | * @returns Strict VBox status code.
|
---|
9800 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9801 | * @param cbMem The number of bytes to push onto the stack.
|
---|
9802 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
9803 | * @param puNewRsp Where to return the new RSP value. This must be
|
---|
9804 | * passed unchanged to
|
---|
9805 | * iemMemStackPopCommitSpecial() or applied
|
---|
9806 | * manually if iemMemStackPopDoneSpecial() is used.
|
---|
9807 | */
|
---|
9808 | IEM_STATIC VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPU pVCpu, size_t cbMem, void const **ppvMem, uint64_t *puNewRsp)
|
---|
9809 | {
|
---|
9810 | Assert(cbMem < UINT8_MAX);
|
---|
9811 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9812 | RTGCPTR GCPtrTop = iemRegGetRspForPop(pVCpu, pCtx, (uint8_t)cbMem, puNewRsp);
|
---|
9813 | return iemMemMap(pVCpu, (void **)ppvMem, cbMem, X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
9814 | }
|
---|
9815 |
|
---|
9816 |
|
---|
9817 | /**
|
---|
9818 | * Continue a special stack pop (used by iret and retf).
|
---|
9819 | *
|
---|
9820 | * This will raise \#SS or \#PF if appropriate.
|
---|
9821 | *
|
---|
9822 | * @returns Strict VBox status code.
|
---|
9823 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9824 | * @param cbMem The number of bytes to push onto the stack.
|
---|
9825 | * @param ppvMem Where to return the pointer to the stack memory.
|
---|
9826 | * @param puNewRsp Where to return the new RSP value. This must be
|
---|
9827 | * passed unchanged to
|
---|
9828 | * iemMemStackPopCommitSpecial() or applied
|
---|
9829 | * manually if iemMemStackPopDoneSpecial() is used.
|
---|
9830 | */
|
---|
9831 | IEM_STATIC VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPU pVCpu, size_t cbMem, void const **ppvMem, uint64_t *puNewRsp)
|
---|
9832 | {
|
---|
9833 | Assert(cbMem < UINT8_MAX);
|
---|
9834 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9835 | RTUINT64U NewRsp;
|
---|
9836 | NewRsp.u = *puNewRsp;
|
---|
9837 | RTGCPTR GCPtrTop = iemRegGetRspForPopEx(pVCpu, pCtx, &NewRsp, 8);
|
---|
9838 | *puNewRsp = NewRsp.u;
|
---|
9839 | return iemMemMap(pVCpu, (void **)ppvMem, cbMem, X86_SREG_SS, GCPtrTop, IEM_ACCESS_STACK_R);
|
---|
9840 | }
|
---|
9841 |
|
---|
9842 |
|
---|
9843 | /**
|
---|
9844 | * Commits a special stack pop (started by iemMemStackPopBeginSpecial).
|
---|
9845 | *
|
---|
9846 | * This will update the rSP.
|
---|
9847 | *
|
---|
9848 | * @returns Strict VBox status code.
|
---|
9849 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9850 | * @param pvMem The pointer returned by
|
---|
9851 | * iemMemStackPopBeginSpecial().
|
---|
9852 | * @param uNewRsp The new RSP value returned by
|
---|
9853 | * iemMemStackPopBeginSpecial().
|
---|
9854 | */
|
---|
9855 | IEM_STATIC VBOXSTRICTRC iemMemStackPopCommitSpecial(PVMCPU pVCpu, void const *pvMem, uint64_t uNewRsp)
|
---|
9856 | {
|
---|
9857 | VBOXSTRICTRC rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pvMem, IEM_ACCESS_STACK_R);
|
---|
9858 | if (rcStrict == VINF_SUCCESS)
|
---|
9859 | IEM_GET_CTX(pVCpu)->rsp = uNewRsp;
|
---|
9860 | return rcStrict;
|
---|
9861 | }
|
---|
9862 |
|
---|
9863 |
|
---|
9864 | /**
|
---|
9865 | * Done with a special stack pop (started by iemMemStackPopBeginSpecial or
|
---|
9866 | * iemMemStackPopContinueSpecial).
|
---|
9867 | *
|
---|
9868 | * The caller will manually commit the rSP.
|
---|
9869 | *
|
---|
9870 | * @returns Strict VBox status code.
|
---|
9871 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9872 | * @param pvMem The pointer returned by
|
---|
9873 | * iemMemStackPopBeginSpecial() or
|
---|
9874 | * iemMemStackPopContinueSpecial().
|
---|
9875 | */
|
---|
9876 | IEM_STATIC VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPU pVCpu, void const *pvMem)
|
---|
9877 | {
|
---|
9878 | return iemMemCommitAndUnmap(pVCpu, (void *)pvMem, IEM_ACCESS_STACK_R);
|
---|
9879 | }
|
---|
9880 |
|
---|
9881 |
|
---|
9882 | /**
|
---|
9883 | * Fetches a system table byte.
|
---|
9884 | *
|
---|
9885 | * @returns Strict VBox status code.
|
---|
9886 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9887 | * @param pbDst Where to return the byte.
|
---|
9888 | * @param iSegReg The index of the segment register to use for
|
---|
9889 | * this access. The base and limits are checked.
|
---|
9890 | * @param GCPtrMem The address of the guest memory.
|
---|
9891 | */
|
---|
9892 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU8(PVMCPU pVCpu, uint8_t *pbDst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
9893 | {
|
---|
9894 | /* The lazy approach for now... */
|
---|
9895 | uint8_t const *pbSrc;
|
---|
9896 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pbSrc, sizeof(*pbSrc), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R);
|
---|
9897 | if (rc == VINF_SUCCESS)
|
---|
9898 | {
|
---|
9899 | *pbDst = *pbSrc;
|
---|
9900 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pbSrc, IEM_ACCESS_SYS_R);
|
---|
9901 | }
|
---|
9902 | return rc;
|
---|
9903 | }
|
---|
9904 |
|
---|
9905 |
|
---|
9906 | /**
|
---|
9907 | * Fetches a system table word.
|
---|
9908 | *
|
---|
9909 | * @returns Strict VBox status code.
|
---|
9910 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9911 | * @param pu16Dst Where to return the word.
|
---|
9912 | * @param iSegReg The index of the segment register to use for
|
---|
9913 | * this access. The base and limits are checked.
|
---|
9914 | * @param GCPtrMem The address of the guest memory.
|
---|
9915 | */
|
---|
9916 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU16(PVMCPU pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
9917 | {
|
---|
9918 | /* The lazy approach for now... */
|
---|
9919 | uint16_t const *pu16Src;
|
---|
9920 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu16Src, sizeof(*pu16Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R);
|
---|
9921 | if (rc == VINF_SUCCESS)
|
---|
9922 | {
|
---|
9923 | *pu16Dst = *pu16Src;
|
---|
9924 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu16Src, IEM_ACCESS_SYS_R);
|
---|
9925 | }
|
---|
9926 | return rc;
|
---|
9927 | }
|
---|
9928 |
|
---|
9929 |
|
---|
9930 | /**
|
---|
9931 | * Fetches a system table dword.
|
---|
9932 | *
|
---|
9933 | * @returns Strict VBox status code.
|
---|
9934 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9935 | * @param pu32Dst Where to return the dword.
|
---|
9936 | * @param iSegReg The index of the segment register to use for
|
---|
9937 | * this access. The base and limits are checked.
|
---|
9938 | * @param GCPtrMem The address of the guest memory.
|
---|
9939 | */
|
---|
9940 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU32(PVMCPU pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
9941 | {
|
---|
9942 | /* The lazy approach for now... */
|
---|
9943 | uint32_t const *pu32Src;
|
---|
9944 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu32Src, sizeof(*pu32Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R);
|
---|
9945 | if (rc == VINF_SUCCESS)
|
---|
9946 | {
|
---|
9947 | *pu32Dst = *pu32Src;
|
---|
9948 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu32Src, IEM_ACCESS_SYS_R);
|
---|
9949 | }
|
---|
9950 | return rc;
|
---|
9951 | }
|
---|
9952 |
|
---|
9953 |
|
---|
9954 | /**
|
---|
9955 | * Fetches a system table qword.
|
---|
9956 | *
|
---|
9957 | * @returns Strict VBox status code.
|
---|
9958 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9959 | * @param pu64Dst Where to return the qword.
|
---|
9960 | * @param iSegReg The index of the segment register to use for
|
---|
9961 | * this access. The base and limits are checked.
|
---|
9962 | * @param GCPtrMem The address of the guest memory.
|
---|
9963 | */
|
---|
9964 | IEM_STATIC VBOXSTRICTRC iemMemFetchSysU64(PVMCPU pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem)
|
---|
9965 | {
|
---|
9966 | /* The lazy approach for now... */
|
---|
9967 | uint64_t const *pu64Src;
|
---|
9968 | VBOXSTRICTRC rc = iemMemMap(pVCpu, (void **)&pu64Src, sizeof(*pu64Src), iSegReg, GCPtrMem, IEM_ACCESS_SYS_R);
|
---|
9969 | if (rc == VINF_SUCCESS)
|
---|
9970 | {
|
---|
9971 | *pu64Dst = *pu64Src;
|
---|
9972 | rc = iemMemCommitAndUnmap(pVCpu, (void *)pu64Src, IEM_ACCESS_SYS_R);
|
---|
9973 | }
|
---|
9974 | return rc;
|
---|
9975 | }
|
---|
9976 |
|
---|
9977 |
|
---|
9978 | /**
|
---|
9979 | * Fetches a descriptor table entry with caller specified error code.
|
---|
9980 | *
|
---|
9981 | * @returns Strict VBox status code.
|
---|
9982 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
9983 | * @param pDesc Where to return the descriptor table entry.
|
---|
9984 | * @param uSel The selector which table entry to fetch.
|
---|
9985 | * @param uXcpt The exception to raise on table lookup error.
|
---|
9986 | * @param uErrorCode The error code associated with the exception.
|
---|
9987 | */
|
---|
9988 | IEM_STATIC VBOXSTRICTRC
|
---|
9989 | iemMemFetchSelDescWithErr(PVMCPU pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt, uint16_t uErrorCode)
|
---|
9990 | {
|
---|
9991 | AssertPtr(pDesc);
|
---|
9992 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
9993 |
|
---|
9994 | /** @todo did the 286 require all 8 bytes to be accessible? */
|
---|
9995 | /*
|
---|
9996 | * Get the selector table base and check bounds.
|
---|
9997 | */
|
---|
9998 | RTGCPTR GCPtrBase;
|
---|
9999 | if (uSel & X86_SEL_LDT)
|
---|
10000 | {
|
---|
10001 | if ( !pCtx->ldtr.Attr.n.u1Present
|
---|
10002 | || (uSel | X86_SEL_RPL_LDT) > pCtx->ldtr.u32Limit )
|
---|
10003 | {
|
---|
10004 | Log(("iemMemFetchSelDesc: LDT selector %#x is out of bounds (%3x) or ldtr is NP (%#x)\n",
|
---|
10005 | uSel, pCtx->ldtr.u32Limit, pCtx->ldtr.Sel));
|
---|
10006 | return iemRaiseXcptOrInt(pVCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
10007 | uErrorCode, 0);
|
---|
10008 | }
|
---|
10009 |
|
---|
10010 | Assert(pCtx->ldtr.Attr.n.u1Present);
|
---|
10011 | GCPtrBase = pCtx->ldtr.u64Base;
|
---|
10012 | }
|
---|
10013 | else
|
---|
10014 | {
|
---|
10015 | if ((uSel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
|
---|
10016 | {
|
---|
10017 | Log(("iemMemFetchSelDesc: GDT selector %#x is out of bounds (%3x)\n", uSel, pCtx->gdtr.cbGdt));
|
---|
10018 | return iemRaiseXcptOrInt(pVCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR,
|
---|
10019 | uErrorCode, 0);
|
---|
10020 | }
|
---|
10021 | GCPtrBase = pCtx->gdtr.pGdt;
|
---|
10022 | }
|
---|
10023 |
|
---|
10024 | /*
|
---|
10025 | * Read the legacy descriptor and maybe the long mode extensions if
|
---|
10026 | * required.
|
---|
10027 | */
|
---|
10028 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
|
---|
10029 | if (rcStrict == VINF_SUCCESS)
|
---|
10030 | {
|
---|
10031 | if ( !IEM_IS_LONG_MODE(pVCpu)
|
---|
10032 | || pDesc->Legacy.Gen.u1DescType)
|
---|
10033 | pDesc->Long.au64[1] = 0;
|
---|
10034 | else if ((uint32_t)(uSel | X86_SEL_RPL_LDT) + 8 <= (uSel & X86_SEL_LDT ? pCtx->ldtr.u32Limit : pCtx->gdtr.cbGdt))
|
---|
10035 | rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel | X86_SEL_RPL_LDT) + 1);
|
---|
10036 | else
|
---|
10037 | {
|
---|
10038 | Log(("iemMemFetchSelDesc: system selector %#x is out of bounds\n", uSel));
|
---|
10039 | /** @todo is this the right exception? */
|
---|
10040 | return iemRaiseXcptOrInt(pVCpu, 0, uXcpt, IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_ERR, uErrorCode, 0);
|
---|
10041 | }
|
---|
10042 | }
|
---|
10043 | return rcStrict;
|
---|
10044 | }
|
---|
10045 |
|
---|
10046 |
|
---|
10047 | /**
|
---|
10048 | * Fetches a descriptor table entry.
|
---|
10049 | *
|
---|
10050 | * @returns Strict VBox status code.
|
---|
10051 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
10052 | * @param pDesc Where to return the descriptor table entry.
|
---|
10053 | * @param uSel The selector which table entry to fetch.
|
---|
10054 | * @param uXcpt The exception to raise on table lookup error.
|
---|
10055 | */
|
---|
10056 | IEM_STATIC VBOXSTRICTRC iemMemFetchSelDesc(PVMCPU pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt)
|
---|
10057 | {
|
---|
10058 | return iemMemFetchSelDescWithErr(pVCpu, pDesc, uSel, uXcpt, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
10059 | }
|
---|
10060 |
|
---|
10061 |
|
---|
10062 | /**
|
---|
10063 | * Fakes a long mode stack selector for SS = 0.
|
---|
10064 | *
|
---|
10065 | * @param pDescSs Where to return the fake stack descriptor.
|
---|
10066 | * @param uDpl The DPL we want.
|
---|
10067 | */
|
---|
10068 | IEM_STATIC void iemMemFakeStackSelDesc(PIEMSELDESC pDescSs, uint32_t uDpl)
|
---|
10069 | {
|
---|
10070 | pDescSs->Long.au64[0] = 0;
|
---|
10071 | pDescSs->Long.au64[1] = 0;
|
---|
10072 | pDescSs->Long.Gen.u4Type = X86_SEL_TYPE_RW_ACC;
|
---|
10073 | pDescSs->Long.Gen.u1DescType = 1; /* 1 = code / data, 0 = system. */
|
---|
10074 | pDescSs->Long.Gen.u2Dpl = uDpl;
|
---|
10075 | pDescSs->Long.Gen.u1Present = 1;
|
---|
10076 | pDescSs->Long.Gen.u1Long = 1;
|
---|
10077 | }
|
---|
10078 |
|
---|
10079 |
|
---|
10080 | /**
|
---|
10081 | * Marks the selector descriptor as accessed (only non-system descriptors).
|
---|
10082 | *
|
---|
10083 | * This function ASSUMES that iemMemFetchSelDesc has be called previously and
|
---|
10084 | * will therefore skip the limit checks.
|
---|
10085 | *
|
---|
10086 | * @returns Strict VBox status code.
|
---|
10087 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
10088 | * @param uSel The selector.
|
---|
10089 | */
|
---|
10090 | IEM_STATIC VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPU pVCpu, uint16_t uSel)
|
---|
10091 | {
|
---|
10092 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
10093 |
|
---|
10094 | /*
|
---|
10095 | * Get the selector table base and calculate the entry address.
|
---|
10096 | */
|
---|
10097 | RTGCPTR GCPtr = uSel & X86_SEL_LDT
|
---|
10098 | ? pCtx->ldtr.u64Base
|
---|
10099 | : pCtx->gdtr.pGdt;
|
---|
10100 | GCPtr += uSel & X86_SEL_MASK;
|
---|
10101 |
|
---|
10102 | /*
|
---|
10103 | * ASMAtomicBitSet will assert if the address is misaligned, so do some
|
---|
10104 | * ugly stuff to avoid this. This will make sure it's an atomic access
|
---|
10105 | * as well more or less remove any question about 8-bit or 32-bit accesss.
|
---|
10106 | */
|
---|
10107 | VBOXSTRICTRC rcStrict;
|
---|
10108 | uint32_t volatile *pu32;
|
---|
10109 | if ((GCPtr & 3) == 0)
|
---|
10110 | {
|
---|
10111 | /* The normal case, map the 32-bit bits around the accessed bit (40). */
|
---|
10112 | GCPtr += 2 + 2;
|
---|
10113 | rcStrict = iemMemMap(pVCpu, (void **)&pu32, 4, UINT8_MAX, GCPtr, IEM_ACCESS_SYS_RW);
|
---|
10114 | if (rcStrict != VINF_SUCCESS)
|
---|
10115 | return rcStrict;
|
---|
10116 | ASMAtomicBitSet(pu32, 8); /* X86_SEL_TYPE_ACCESSED is 1, but it is preceeded by u8BaseHigh1. */
|
---|
10117 | }
|
---|
10118 | else
|
---|
10119 | {
|
---|
10120 | /* The misaligned GDT/LDT case, map the whole thing. */
|
---|
10121 | rcStrict = iemMemMap(pVCpu, (void **)&pu32, 8, UINT8_MAX, GCPtr, IEM_ACCESS_SYS_RW);
|
---|
10122 | if (rcStrict != VINF_SUCCESS)
|
---|
10123 | return rcStrict;
|
---|
10124 | switch ((uintptr_t)pu32 & 3)
|
---|
10125 | {
|
---|
10126 | case 0: ASMAtomicBitSet(pu32, 40 + 0 - 0); break;
|
---|
10127 | case 1: ASMAtomicBitSet((uint8_t volatile *)pu32 + 3, 40 + 0 - 24); break;
|
---|
10128 | case 2: ASMAtomicBitSet((uint8_t volatile *)pu32 + 2, 40 + 0 - 16); break;
|
---|
10129 | case 3: ASMAtomicBitSet((uint8_t volatile *)pu32 + 1, 40 + 0 - 8); break;
|
---|
10130 | }
|
---|
10131 | }
|
---|
10132 |
|
---|
10133 | return iemMemCommitAndUnmap(pVCpu, (void *)pu32, IEM_ACCESS_SYS_RW);
|
---|
10134 | }
|
---|
10135 |
|
---|
10136 | /** @} */
|
---|
10137 |
|
---|
10138 |
|
---|
10139 | /*
|
---|
10140 | * Include the C/C++ implementation of instruction.
|
---|
10141 | */
|
---|
10142 | #include "IEMAllCImpl.cpp.h"
|
---|
10143 |
|
---|
10144 |
|
---|
10145 |
|
---|
10146 | /** @name "Microcode" macros.
|
---|
10147 | *
|
---|
10148 | * The idea is that we should be able to use the same code to interpret
|
---|
10149 | * instructions as well as recompiler instructions. Thus this obfuscation.
|
---|
10150 | *
|
---|
10151 | * @{
|
---|
10152 | */
|
---|
10153 | #define IEM_MC_BEGIN(a_cArgs, a_cLocals) {
|
---|
10154 | #define IEM_MC_END() }
|
---|
10155 | #define IEM_MC_PAUSE() do {} while (0)
|
---|
10156 | #define IEM_MC_CONTINUE() do {} while (0)
|
---|
10157 |
|
---|
10158 | /** Internal macro. */
|
---|
10159 | #define IEM_MC_RETURN_ON_FAILURE(a_Expr) \
|
---|
10160 | do \
|
---|
10161 | { \
|
---|
10162 | VBOXSTRICTRC rcStrict2 = a_Expr; \
|
---|
10163 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
10164 | return rcStrict2; \
|
---|
10165 | } while (0)
|
---|
10166 |
|
---|
10167 |
|
---|
10168 | #define IEM_MC_ADVANCE_RIP() iemRegUpdateRipAndClearRF(pVCpu)
|
---|
10169 | #define IEM_MC_REL_JMP_S8(a_i8) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS8(pVCpu, a_i8))
|
---|
10170 | #define IEM_MC_REL_JMP_S16(a_i16) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS16(pVCpu, a_i16))
|
---|
10171 | #define IEM_MC_REL_JMP_S32(a_i32) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS32(pVCpu, a_i32))
|
---|
10172 | #define IEM_MC_SET_RIP_U16(a_u16NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pVCpu), (a_u16NewIP)))
|
---|
10173 | #define IEM_MC_SET_RIP_U32(a_u32NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pVCpu), (a_u32NewIP)))
|
---|
10174 | #define IEM_MC_SET_RIP_U64(a_u64NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pVCpu), (a_u64NewIP)))
|
---|
10175 | #define IEM_MC_RAISE_DIVIDE_ERROR() return iemRaiseDivideError(pVCpu)
|
---|
10176 | #define IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() \
|
---|
10177 | do { \
|
---|
10178 | if ((pVCpu)->iem.s.CTX_SUFF(pCtx)->cr0 & (X86_CR0_EM | X86_CR0_TS)) \
|
---|
10179 | return iemRaiseDeviceNotAvailable(pVCpu); \
|
---|
10180 | } while (0)
|
---|
10181 | #define IEM_MC_MAYBE_RAISE_FPU_XCPT() \
|
---|
10182 | do { \
|
---|
10183 | if ((pVCpu)->iem.s.CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.FSW & X86_FSW_ES) \
|
---|
10184 | return iemRaiseMathFault(pVCpu); \
|
---|
10185 | } while (0)
|
---|
10186 | #define IEM_MC_MAYBE_RAISE_SSE2_RELATED_XCPT() \
|
---|
10187 | do { \
|
---|
10188 | if ( (IEM_GET_CTX(pVCpu)->cr0 & X86_CR0_EM) \
|
---|
10189 | || !(IEM_GET_CTX(pVCpu)->cr4 & X86_CR4_OSFXSR) \
|
---|
10190 | || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse2) \
|
---|
10191 | return iemRaiseUndefinedOpcode(pVCpu); \
|
---|
10192 | if (IEM_GET_CTX(pVCpu)->cr0 & X86_CR0_TS) \
|
---|
10193 | return iemRaiseDeviceNotAvailable(pVCpu); \
|
---|
10194 | } while (0)
|
---|
10195 | #define IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() \
|
---|
10196 | do { \
|
---|
10197 | if ( (IEM_GET_CTX(pVCpu)->cr0 & X86_CR0_EM) \
|
---|
10198 | || !(IEM_GET_CTX(pVCpu)->cr4 & X86_CR4_OSFXSR) \
|
---|
10199 | || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse) \
|
---|
10200 | return iemRaiseUndefinedOpcode(pVCpu); \
|
---|
10201 | if (IEM_GET_CTX(pVCpu)->cr0 & X86_CR0_TS) \
|
---|
10202 | return iemRaiseDeviceNotAvailable(pVCpu); \
|
---|
10203 | } while (0)
|
---|
10204 | #define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT() \
|
---|
10205 | do { \
|
---|
10206 | if ( ((pVCpu)->iem.s.CTX_SUFF(pCtx)->cr0 & X86_CR0_EM) \
|
---|
10207 | || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMmx) \
|
---|
10208 | return iemRaiseUndefinedOpcode(pVCpu); \
|
---|
10209 | if (IEM_GET_CTX(pVCpu)->cr0 & X86_CR0_TS) \
|
---|
10210 | return iemRaiseDeviceNotAvailable(pVCpu); \
|
---|
10211 | } while (0)
|
---|
10212 | #define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT_CHECK_SSE_OR_MMXEXT() \
|
---|
10213 | do { \
|
---|
10214 | if ( ((pVCpu)->iem.s.CTX_SUFF(pCtx)->cr0 & X86_CR0_EM) \
|
---|
10215 | || ( !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse \
|
---|
10216 | && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAmdMmxExts) ) \
|
---|
10217 | return iemRaiseUndefinedOpcode(pVCpu); \
|
---|
10218 | if (IEM_GET_CTX(pVCpu)->cr0 & X86_CR0_TS) \
|
---|
10219 | return iemRaiseDeviceNotAvailable(pVCpu); \
|
---|
10220 | } while (0)
|
---|
10221 | #define IEM_MC_RAISE_GP0_IF_CPL_NOT_ZERO() \
|
---|
10222 | do { \
|
---|
10223 | if (pVCpu->iem.s.uCpl != 0) \
|
---|
10224 | return iemRaiseGeneralProtectionFault0(pVCpu); \
|
---|
10225 | } while (0)
|
---|
10226 |
|
---|
10227 |
|
---|
10228 | #define IEM_MC_LOCAL(a_Type, a_Name) a_Type a_Name
|
---|
10229 | #define IEM_MC_LOCAL_CONST(a_Type, a_Name, a_Value) a_Type const a_Name = (a_Value)
|
---|
10230 | #define IEM_MC_REF_LOCAL(a_pRefArg, a_Local) (a_pRefArg) = &(a_Local)
|
---|
10231 | #define IEM_MC_ARG(a_Type, a_Name, a_iArg) a_Type a_Name
|
---|
10232 | #define IEM_MC_ARG_CONST(a_Type, a_Name, a_Value, a_iArg) a_Type const a_Name = (a_Value)
|
---|
10233 | #define IEM_MC_ARG_LOCAL_REF(a_Type, a_Name, a_Local, a_iArg) a_Type const a_Name = &(a_Local)
|
---|
10234 | #define IEM_MC_ARG_LOCAL_EFLAGS(a_pName, a_Name, a_iArg) \
|
---|
10235 | uint32_t a_Name; \
|
---|
10236 | uint32_t *a_pName = &a_Name
|
---|
10237 | #define IEM_MC_COMMIT_EFLAGS(a_EFlags) \
|
---|
10238 | do { (pVCpu)->iem.s.CTX_SUFF(pCtx)->eflags.u = (a_EFlags); Assert((pVCpu)->iem.s.CTX_SUFF(pCtx)->eflags.u & X86_EFL_1); } while (0)
|
---|
10239 |
|
---|
10240 | #define IEM_MC_ASSIGN(a_VarOrArg, a_CVariableOrConst) (a_VarOrArg) = (a_CVariableOrConst)
|
---|
10241 | #define IEM_MC_ASSIGN_TO_SMALLER IEM_MC_ASSIGN
|
---|
10242 |
|
---|
10243 | #define IEM_MC_FETCH_GREG_U8(a_u8Dst, a_iGReg) (a_u8Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
|
---|
10244 | #define IEM_MC_FETCH_GREG_U8_ZX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
|
---|
10245 | #define IEM_MC_FETCH_GREG_U8_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
|
---|
10246 | #define IEM_MC_FETCH_GREG_U8_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
|
---|
10247 | #define IEM_MC_FETCH_GREG_U8_SX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
|
---|
10248 | #define IEM_MC_FETCH_GREG_U8_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
|
---|
10249 | #define IEM_MC_FETCH_GREG_U8_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
|
---|
10250 | #define IEM_MC_FETCH_GREG_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
|
---|
10251 | #define IEM_MC_FETCH_GREG_U16_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
|
---|
10252 | #define IEM_MC_FETCH_GREG_U16_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
|
---|
10253 | #define IEM_MC_FETCH_GREG_U16_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
|
---|
10254 | #define IEM_MC_FETCH_GREG_U16_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
|
---|
10255 | #define IEM_MC_FETCH_GREG_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
|
---|
10256 | #define IEM_MC_FETCH_GREG_U32_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
|
---|
10257 | #define IEM_MC_FETCH_GREG_U32_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int32_t)iemGRegFetchU32(pVCpu, (a_iGReg))
|
---|
10258 | #define IEM_MC_FETCH_GREG_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU64(pVCpu, (a_iGReg))
|
---|
10259 | #define IEM_MC_FETCH_GREG_U64_ZX_U64 IEM_MC_FETCH_GREG_U64
|
---|
10260 | #define IEM_MC_FETCH_SREG_U16(a_u16Dst, a_iSReg) (a_u16Dst) = iemSRegFetchU16(pVCpu, (a_iSReg))
|
---|
10261 | #define IEM_MC_FETCH_SREG_ZX_U32(a_u32Dst, a_iSReg) (a_u32Dst) = iemSRegFetchU16(pVCpu, (a_iSReg))
|
---|
10262 | #define IEM_MC_FETCH_SREG_ZX_U64(a_u64Dst, a_iSReg) (a_u64Dst) = iemSRegFetchU16(pVCpu, (a_iSReg))
|
---|
10263 | #define IEM_MC_FETCH_CR0_U16(a_u16Dst) (a_u16Dst) = (uint16_t)(pVCpu)->iem.s.CTX_SUFF(pCtx)->cr0
|
---|
10264 | #define IEM_MC_FETCH_CR0_U32(a_u32Dst) (a_u32Dst) = (uint32_t)(pVCpu)->iem.s.CTX_SUFF(pCtx)->cr0
|
---|
10265 | #define IEM_MC_FETCH_CR0_U64(a_u64Dst) (a_u64Dst) = (pVCpu)->iem.s.CTX_SUFF(pCtx)->cr0
|
---|
10266 | #define IEM_MC_FETCH_LDTR_U16(a_u16Dst) (a_u16Dst) = (pVCpu)->iem.s.CTX_SUFF(pCtx)->ldtr.Sel
|
---|
10267 | #define IEM_MC_FETCH_LDTR_U32(a_u32Dst) (a_u32Dst) = (pVCpu)->iem.s.CTX_SUFF(pCtx)->ldtr.Sel
|
---|
10268 | #define IEM_MC_FETCH_LDTR_U64(a_u64Dst) (a_u64Dst) = (pVCpu)->iem.s.CTX_SUFF(pCtx)->ldtr.Sel
|
---|
10269 | #define IEM_MC_FETCH_TR_U16(a_u16Dst) (a_u16Dst) = (pVCpu)->iem.s.CTX_SUFF(pCtx)->tr.Sel
|
---|
10270 | #define IEM_MC_FETCH_TR_U32(a_u32Dst) (a_u32Dst) = (pVCpu)->iem.s.CTX_SUFF(pCtx)->tr.Sel
|
---|
10271 | #define IEM_MC_FETCH_TR_U64(a_u64Dst) (a_u64Dst) = (pVCpu)->iem.s.CTX_SUFF(pCtx)->tr.Sel
|
---|
10272 | /** @note Not for IOPL or IF testing or modification. */
|
---|
10273 | #define IEM_MC_FETCH_EFLAGS(a_EFlags) (a_EFlags) = (pVCpu)->iem.s.CTX_SUFF(pCtx)->eflags.u
|
---|
10274 | #define IEM_MC_FETCH_EFLAGS_U8(a_EFlags) (a_EFlags) = (uint8_t)(pVCpu)->iem.s.CTX_SUFF(pCtx)->eflags.u
|
---|
10275 | #define IEM_MC_FETCH_FSW(a_u16Fsw) (a_u16Fsw) = IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.FSW
|
---|
10276 | #define IEM_MC_FETCH_FCW(a_u16Fcw) (a_u16Fcw) = IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.FCW
|
---|
10277 |
|
---|
10278 | #define IEM_MC_STORE_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) = (a_u8Value)
|
---|
10279 | #define IEM_MC_STORE_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) = (a_u16Value)
|
---|
10280 | #define IEM_MC_STORE_GREG_U32(a_iGReg, a_u32Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (uint32_t)(a_u32Value) /* clear high bits. */
|
---|
10281 | #define IEM_MC_STORE_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (a_u64Value)
|
---|
10282 | #define IEM_MC_STORE_GREG_U8_CONST IEM_MC_STORE_GREG_U8
|
---|
10283 | #define IEM_MC_STORE_GREG_U16_CONST IEM_MC_STORE_GREG_U16
|
---|
10284 | #define IEM_MC_STORE_GREG_U32_CONST IEM_MC_STORE_GREG_U32
|
---|
10285 | #define IEM_MC_STORE_GREG_U64_CONST IEM_MC_STORE_GREG_U64
|
---|
10286 | #define IEM_MC_CLEAR_HIGH_GREG_U64(a_iGReg) *iemGRegRefU64(pVCpu, (a_iGReg)) &= UINT32_MAX
|
---|
10287 | #define IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(a_pu32Dst) do { (a_pu32Dst)[1] = 0; } while (0)
|
---|
10288 | #define IEM_MC_STORE_FPUREG_R80_SRC_REF(a_iSt, a_pr80Src) \
|
---|
10289 | do { IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aRegs[a_iSt].r80 = *(a_pr80Src); } while (0)
|
---|
10290 |
|
---|
10291 | #define IEM_MC_REF_GREG_U8(a_pu8Dst, a_iGReg) (a_pu8Dst) = iemGRegRefU8( pVCpu, (a_iGReg))
|
---|
10292 | #define IEM_MC_REF_GREG_U16(a_pu16Dst, a_iGReg) (a_pu16Dst) = iemGRegRefU16(pVCpu, (a_iGReg))
|
---|
10293 | /** @todo User of IEM_MC_REF_GREG_U32 needs to clear the high bits on commit.
|
---|
10294 | * Use IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF! */
|
---|
10295 | #define IEM_MC_REF_GREG_U32(a_pu32Dst, a_iGReg) (a_pu32Dst) = iemGRegRefU32(pVCpu, (a_iGReg))
|
---|
10296 | #define IEM_MC_REF_GREG_U64(a_pu64Dst, a_iGReg) (a_pu64Dst) = iemGRegRefU64(pVCpu, (a_iGReg))
|
---|
10297 | /** @note Not for IOPL or IF testing or modification. */
|
---|
10298 | #define IEM_MC_REF_EFLAGS(a_pEFlags) (a_pEFlags) = &(pVCpu)->iem.s.CTX_SUFF(pCtx)->eflags.u
|
---|
10299 |
|
---|
10300 | #define IEM_MC_ADD_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) += (a_u8Value)
|
---|
10301 | #define IEM_MC_ADD_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) += (a_u16Value)
|
---|
10302 | #define IEM_MC_ADD_GREG_U32(a_iGReg, a_u32Value) \
|
---|
10303 | do { \
|
---|
10304 | uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
|
---|
10305 | *pu32Reg += (a_u32Value); \
|
---|
10306 | pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
|
---|
10307 | } while (0)
|
---|
10308 | #define IEM_MC_ADD_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) += (a_u64Value)
|
---|
10309 |
|
---|
10310 | #define IEM_MC_SUB_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) -= (a_u8Value)
|
---|
10311 | #define IEM_MC_SUB_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) -= (a_u16Value)
|
---|
10312 | #define IEM_MC_SUB_GREG_U32(a_iGReg, a_u32Value) \
|
---|
10313 | do { \
|
---|
10314 | uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
|
---|
10315 | *pu32Reg -= (a_u32Value); \
|
---|
10316 | pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
|
---|
10317 | } while (0)
|
---|
10318 | #define IEM_MC_SUB_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) -= (a_u64Value)
|
---|
10319 | #define IEM_MC_SUB_LOCAL_U16(a_u16Value, a_u16Const) do { (a_u16Value) -= a_u16Const; } while (0)
|
---|
10320 |
|
---|
10321 | #define IEM_MC_ADD_GREG_U8_TO_LOCAL(a_u8Value, a_iGReg) do { (a_u8Value) += iemGRegFetchU8( pVCpu, (a_iGReg)); } while (0)
|
---|
10322 | #define IEM_MC_ADD_GREG_U16_TO_LOCAL(a_u16Value, a_iGReg) do { (a_u16Value) += iemGRegFetchU16(pVCpu, (a_iGReg)); } while (0)
|
---|
10323 | #define IEM_MC_ADD_GREG_U32_TO_LOCAL(a_u32Value, a_iGReg) do { (a_u32Value) += iemGRegFetchU32(pVCpu, (a_iGReg)); } while (0)
|
---|
10324 | #define IEM_MC_ADD_GREG_U64_TO_LOCAL(a_u64Value, a_iGReg) do { (a_u64Value) += iemGRegFetchU64(pVCpu, (a_iGReg)); } while (0)
|
---|
10325 | #define IEM_MC_ADD_LOCAL_S16_TO_EFF_ADDR(a_EffAddr, a_i16) do { (a_EffAddr) += (a_i16); } while (0)
|
---|
10326 | #define IEM_MC_ADD_LOCAL_S32_TO_EFF_ADDR(a_EffAddr, a_i32) do { (a_EffAddr) += (a_i32); } while (0)
|
---|
10327 | #define IEM_MC_ADD_LOCAL_S64_TO_EFF_ADDR(a_EffAddr, a_i64) do { (a_EffAddr) += (a_i64); } while (0)
|
---|
10328 |
|
---|
10329 | #define IEM_MC_AND_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) &= (a_u8Mask); } while (0)
|
---|
10330 | #define IEM_MC_AND_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) &= (a_u16Mask); } while (0)
|
---|
10331 | #define IEM_MC_AND_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
|
---|
10332 | #define IEM_MC_AND_LOCAL_U64(a_u64Local, a_u64Mask) do { (a_u64Local) &= (a_u64Mask); } while (0)
|
---|
10333 |
|
---|
10334 | #define IEM_MC_AND_ARG_U16(a_u16Arg, a_u16Mask) do { (a_u16Arg) &= (a_u16Mask); } while (0)
|
---|
10335 | #define IEM_MC_AND_ARG_U32(a_u32Arg, a_u32Mask) do { (a_u32Arg) &= (a_u32Mask); } while (0)
|
---|
10336 | #define IEM_MC_AND_ARG_U64(a_u64Arg, a_u64Mask) do { (a_u64Arg) &= (a_u64Mask); } while (0)
|
---|
10337 |
|
---|
10338 | #define IEM_MC_OR_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) |= (a_u8Mask); } while (0)
|
---|
10339 | #define IEM_MC_OR_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) |= (a_u16Mask); } while (0)
|
---|
10340 | #define IEM_MC_OR_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
|
---|
10341 |
|
---|
10342 | #define IEM_MC_SAR_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) >>= (a_cShift); } while (0)
|
---|
10343 | #define IEM_MC_SAR_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) >>= (a_cShift); } while (0)
|
---|
10344 | #define IEM_MC_SAR_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) >>= (a_cShift); } while (0)
|
---|
10345 |
|
---|
10346 | #define IEM_MC_SHL_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) <<= (a_cShift); } while (0)
|
---|
10347 | #define IEM_MC_SHL_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) <<= (a_cShift); } while (0)
|
---|
10348 | #define IEM_MC_SHL_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) <<= (a_cShift); } while (0)
|
---|
10349 |
|
---|
10350 | #define IEM_MC_AND_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
|
---|
10351 |
|
---|
10352 | #define IEM_MC_OR_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
|
---|
10353 |
|
---|
10354 | #define IEM_MC_AND_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) &= (a_u8Value)
|
---|
10355 | #define IEM_MC_AND_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) &= (a_u16Value)
|
---|
10356 | #define IEM_MC_AND_GREG_U32(a_iGReg, a_u32Value) \
|
---|
10357 | do { \
|
---|
10358 | uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
|
---|
10359 | *pu32Reg &= (a_u32Value); \
|
---|
10360 | pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
|
---|
10361 | } while (0)
|
---|
10362 | #define IEM_MC_AND_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) &= (a_u64Value)
|
---|
10363 |
|
---|
10364 | #define IEM_MC_OR_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) |= (a_u8Value)
|
---|
10365 | #define IEM_MC_OR_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) |= (a_u16Value)
|
---|
10366 | #define IEM_MC_OR_GREG_U32(a_iGReg, a_u32Value) \
|
---|
10367 | do { \
|
---|
10368 | uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
|
---|
10369 | *pu32Reg |= (a_u32Value); \
|
---|
10370 | pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
|
---|
10371 | } while (0)
|
---|
10372 | #define IEM_MC_OR_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) |= (a_u64Value)
|
---|
10373 |
|
---|
10374 |
|
---|
10375 | /** @note Not for IOPL or IF modification. */
|
---|
10376 | #define IEM_MC_SET_EFL_BIT(a_fBit) do { (pVCpu)->iem.s.CTX_SUFF(pCtx)->eflags.u |= (a_fBit); } while (0)
|
---|
10377 | /** @note Not for IOPL or IF modification. */
|
---|
10378 | #define IEM_MC_CLEAR_EFL_BIT(a_fBit) do { (pVCpu)->iem.s.CTX_SUFF(pCtx)->eflags.u &= ~(a_fBit); } while (0)
|
---|
10379 | /** @note Not for IOPL or IF modification. */
|
---|
10380 | #define IEM_MC_FLIP_EFL_BIT(a_fBit) do { (pVCpu)->iem.s.CTX_SUFF(pCtx)->eflags.u ^= (a_fBit); } while (0)
|
---|
10381 |
|
---|
10382 | #define IEM_MC_CLEAR_FSW_EX() do { (pVCpu)->iem.s.CTX_SUFF(pCtx)->CTX_SUFF(pXState)->x87.FSW &= X86_FSW_C_MASK | X86_FSW_TOP_MASK; } while (0)
|
---|
10383 |
|
---|
10384 |
|
---|
10385 | #define IEM_MC_FETCH_MREG_U64(a_u64Value, a_iMReg) \
|
---|
10386 | do { (a_u64Value) = IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx; } while (0)
|
---|
10387 | #define IEM_MC_FETCH_MREG_U32(a_u32Value, a_iMReg) \
|
---|
10388 | do { (a_u32Value) = IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].au32[0]; } while (0)
|
---|
10389 | #define IEM_MC_STORE_MREG_U64(a_iMReg, a_u64Value) \
|
---|
10390 | do { IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx = (a_u64Value); } while (0)
|
---|
10391 | #define IEM_MC_STORE_MREG_U32_ZX_U64(a_iMReg, a_u32Value) \
|
---|
10392 | do { IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx = (uint32_t)(a_u32Value); } while (0)
|
---|
10393 | #define IEM_MC_REF_MREG_U64(a_pu64Dst, a_iMReg) \
|
---|
10394 | (a_pu64Dst) = (&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx)
|
---|
10395 | #define IEM_MC_REF_MREG_U64_CONST(a_pu64Dst, a_iMReg) \
|
---|
10396 | (a_pu64Dst) = ((uint64_t const *)&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx)
|
---|
10397 | #define IEM_MC_REF_MREG_U32_CONST(a_pu32Dst, a_iMReg) \
|
---|
10398 | (a_pu32Dst) = ((uint32_t const *)&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aRegs[(a_iMReg)].mmx)
|
---|
10399 |
|
---|
10400 | #define IEM_MC_FETCH_XREG_U128(a_u128Value, a_iXReg) \
|
---|
10401 | do { (a_u128Value) = IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].xmm; } while (0)
|
---|
10402 | #define IEM_MC_FETCH_XREG_U64(a_u64Value, a_iXReg) \
|
---|
10403 | do { (a_u64Value) = IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[0]; } while (0)
|
---|
10404 | #define IEM_MC_FETCH_XREG_U32(a_u32Value, a_iXReg) \
|
---|
10405 | do { (a_u32Value) = IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au32[0]; } while (0)
|
---|
10406 | #define IEM_MC_STORE_XREG_U128(a_iXReg, a_u128Value) \
|
---|
10407 | do { IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].xmm = (a_u128Value); } while (0)
|
---|
10408 | #define IEM_MC_STORE_XREG_U64(a_iXReg, a_u64Value) \
|
---|
10409 | do { IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); } while (0)
|
---|
10410 | #define IEM_MC_STORE_XREG_U64_ZX_U128(a_iXReg, a_u64Value) \
|
---|
10411 | do { IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); \
|
---|
10412 | IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[1] = 0; \
|
---|
10413 | } while (0)
|
---|
10414 | #define IEM_MC_STORE_XREG_U32_ZX_U128(a_iXReg, a_u32Value) \
|
---|
10415 | do { IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[0] = (uint32_t)(a_u32Value); \
|
---|
10416 | IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[1] = 0; \
|
---|
10417 | } while (0)
|
---|
10418 | #define IEM_MC_REF_XREG_U128(a_pu128Dst, a_iXReg) \
|
---|
10419 | (a_pu128Dst) = (&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].xmm)
|
---|
10420 | #define IEM_MC_REF_XREG_U128_CONST(a_pu128Dst, a_iXReg) \
|
---|
10421 | (a_pu128Dst) = ((uint128_t const *)&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].xmm)
|
---|
10422 | #define IEM_MC_REF_XREG_U64_CONST(a_pu64Dst, a_iXReg) \
|
---|
10423 | (a_pu64Dst) = ((uint64_t const *)&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXReg)].au64[0])
|
---|
10424 | #define IEM_MC_COPY_XREG_U128(a_iXRegDst, a_iXRegSrc) \
|
---|
10425 | do { IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXRegDst)].xmm \
|
---|
10426 | = IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.aXMM[(a_iXRegSrc)].xmm; } while (0)
|
---|
10427 |
|
---|
10428 | #ifndef IEM_WITH_SETJMP
|
---|
10429 | # define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
|
---|
10430 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10431 | # define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
|
---|
10432 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem16)))
|
---|
10433 | # define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
|
---|
10434 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem32)))
|
---|
10435 | #else
|
---|
10436 | # define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
|
---|
10437 | ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10438 | # define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
|
---|
10439 | ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem16)))
|
---|
10440 | # define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
|
---|
10441 | ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem32)))
|
---|
10442 | #endif
|
---|
10443 |
|
---|
10444 | #ifndef IEM_WITH_SETJMP
|
---|
10445 | # define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
10446 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10447 | # define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
|
---|
10448 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
|
---|
10449 | # define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
|
---|
10450 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, (uint16_t *)&(a_i16Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10451 | #else
|
---|
10452 | # define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
10453 | ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10454 | # define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
|
---|
10455 | ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
|
---|
10456 | # define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
|
---|
10457 | ((a_i16Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10458 | #endif
|
---|
10459 |
|
---|
10460 | #ifndef IEM_WITH_SETJMP
|
---|
10461 | # define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10462 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10463 | # define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
|
---|
10464 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
|
---|
10465 | # define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10466 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, (uint32_t *)&(a_i32Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10467 | #else
|
---|
10468 | # define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10469 | ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10470 | # define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
|
---|
10471 | ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
|
---|
10472 | # define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10473 | ((a_i32Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10474 | #endif
|
---|
10475 |
|
---|
10476 | #ifdef SOME_UNUSED_FUNCTION
|
---|
10477 | # define IEM_MC_FETCH_MEM_S32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10478 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataS32SxU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10479 | #endif
|
---|
10480 |
|
---|
10481 | #ifndef IEM_WITH_SETJMP
|
---|
10482 | # define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10483 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10484 | # define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
|
---|
10485 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
|
---|
10486 | # define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10487 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64AlignedU128(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10488 | # define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10489 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, (uint64_t *)&(a_i64Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10490 | #else
|
---|
10491 | # define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10492 | ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10493 | # define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
|
---|
10494 | ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
|
---|
10495 | # define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10496 | ((a_u64Dst) = iemMemFetchDataU64AlignedU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10497 | # define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10498 | ((a_i64Dst) = (int64_t)iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10499 | #endif
|
---|
10500 |
|
---|
10501 | #ifndef IEM_WITH_SETJMP
|
---|
10502 | # define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10503 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_r32Dst).u32, (a_iSeg), (a_GCPtrMem)))
|
---|
10504 | # define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10505 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_r64Dst).au64[0], (a_iSeg), (a_GCPtrMem)))
|
---|
10506 | # define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
|
---|
10507 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataR80(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10508 | #else
|
---|
10509 | # define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10510 | ((a_r32Dst).u32 = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10511 | # define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10512 | ((a_r64Dst).au64[0] = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10513 | # define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
|
---|
10514 | iemMemFetchDataR80Jmp(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem))
|
---|
10515 | #endif
|
---|
10516 |
|
---|
10517 | #ifndef IEM_WITH_SETJMP
|
---|
10518 | # define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
|
---|
10519 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10520 | # define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
|
---|
10521 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
|
---|
10522 | #else
|
---|
10523 | # define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
|
---|
10524 | iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
|
---|
10525 | # define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
|
---|
10526 | iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
|
---|
10527 | #endif
|
---|
10528 |
|
---|
10529 |
|
---|
10530 |
|
---|
10531 | #ifndef IEM_WITH_SETJMP
|
---|
10532 | # define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
10533 | do { \
|
---|
10534 | uint8_t u8Tmp; \
|
---|
10535 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10536 | (a_u16Dst) = u8Tmp; \
|
---|
10537 | } while (0)
|
---|
10538 | # define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10539 | do { \
|
---|
10540 | uint8_t u8Tmp; \
|
---|
10541 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10542 | (a_u32Dst) = u8Tmp; \
|
---|
10543 | } while (0)
|
---|
10544 | # define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10545 | do { \
|
---|
10546 | uint8_t u8Tmp; \
|
---|
10547 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10548 | (a_u64Dst) = u8Tmp; \
|
---|
10549 | } while (0)
|
---|
10550 | # define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10551 | do { \
|
---|
10552 | uint16_t u16Tmp; \
|
---|
10553 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10554 | (a_u32Dst) = u16Tmp; \
|
---|
10555 | } while (0)
|
---|
10556 | # define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10557 | do { \
|
---|
10558 | uint16_t u16Tmp; \
|
---|
10559 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10560 | (a_u64Dst) = u16Tmp; \
|
---|
10561 | } while (0)
|
---|
10562 | # define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10563 | do { \
|
---|
10564 | uint32_t u32Tmp; \
|
---|
10565 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10566 | (a_u64Dst) = u32Tmp; \
|
---|
10567 | } while (0)
|
---|
10568 | #else /* IEM_WITH_SETJMP */
|
---|
10569 | # define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
10570 | ((a_u16Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10571 | # define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10572 | ((a_u32Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10573 | # define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10574 | ((a_u64Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10575 | # define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10576 | ((a_u32Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10577 | # define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10578 | ((a_u64Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10579 | # define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10580 | ((a_u64Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10581 | #endif /* IEM_WITH_SETJMP */
|
---|
10582 |
|
---|
10583 | #ifndef IEM_WITH_SETJMP
|
---|
10584 | # define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
10585 | do { \
|
---|
10586 | uint8_t u8Tmp; \
|
---|
10587 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10588 | (a_u16Dst) = (int8_t)u8Tmp; \
|
---|
10589 | } while (0)
|
---|
10590 | # define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10591 | do { \
|
---|
10592 | uint8_t u8Tmp; \
|
---|
10593 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10594 | (a_u32Dst) = (int8_t)u8Tmp; \
|
---|
10595 | } while (0)
|
---|
10596 | # define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10597 | do { \
|
---|
10598 | uint8_t u8Tmp; \
|
---|
10599 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10600 | (a_u64Dst) = (int8_t)u8Tmp; \
|
---|
10601 | } while (0)
|
---|
10602 | # define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10603 | do { \
|
---|
10604 | uint16_t u16Tmp; \
|
---|
10605 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10606 | (a_u32Dst) = (int16_t)u16Tmp; \
|
---|
10607 | } while (0)
|
---|
10608 | # define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10609 | do { \
|
---|
10610 | uint16_t u16Tmp; \
|
---|
10611 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10612 | (a_u64Dst) = (int16_t)u16Tmp; \
|
---|
10613 | } while (0)
|
---|
10614 | # define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10615 | do { \
|
---|
10616 | uint32_t u32Tmp; \
|
---|
10617 | IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
|
---|
10618 | (a_u64Dst) = (int32_t)u32Tmp; \
|
---|
10619 | } while (0)
|
---|
10620 | #else /* IEM_WITH_SETJMP */
|
---|
10621 | # define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
10622 | ((a_u16Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10623 | # define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10624 | ((a_u32Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10625 | # define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10626 | ((a_u64Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10627 | # define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10628 | ((a_u32Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10629 | # define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10630 | ((a_u64Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10631 | # define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10632 | ((a_u64Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
|
---|
10633 | #endif /* IEM_WITH_SETJMP */
|
---|
10634 |
|
---|
10635 | #ifndef IEM_WITH_SETJMP
|
---|
10636 | # define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
|
---|
10637 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value)))
|
---|
10638 | # define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
|
---|
10639 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value)))
|
---|
10640 | # define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
|
---|
10641 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value)))
|
---|
10642 | # define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
|
---|
10643 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value)))
|
---|
10644 | #else
|
---|
10645 | # define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
|
---|
10646 | iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value))
|
---|
10647 | # define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
|
---|
10648 | iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value))
|
---|
10649 | # define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
|
---|
10650 | iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value))
|
---|
10651 | # define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
|
---|
10652 | iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value))
|
---|
10653 | #endif
|
---|
10654 |
|
---|
10655 | #ifndef IEM_WITH_SETJMP
|
---|
10656 | # define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
|
---|
10657 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C)))
|
---|
10658 | # define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
|
---|
10659 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C)))
|
---|
10660 | # define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
|
---|
10661 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C)))
|
---|
10662 | # define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
|
---|
10663 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C)))
|
---|
10664 | #else
|
---|
10665 | # define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
|
---|
10666 | iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C))
|
---|
10667 | # define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
|
---|
10668 | iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C))
|
---|
10669 | # define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
|
---|
10670 | iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C))
|
---|
10671 | # define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
|
---|
10672 | iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C))
|
---|
10673 | #endif
|
---|
10674 |
|
---|
10675 | #define IEM_MC_STORE_MEM_I8_CONST_BY_REF( a_pi8Dst, a_i8C) *(a_pi8Dst) = (a_i8C)
|
---|
10676 | #define IEM_MC_STORE_MEM_I16_CONST_BY_REF(a_pi16Dst, a_i16C) *(a_pi16Dst) = (a_i16C)
|
---|
10677 | #define IEM_MC_STORE_MEM_I32_CONST_BY_REF(a_pi32Dst, a_i32C) *(a_pi32Dst) = (a_i32C)
|
---|
10678 | #define IEM_MC_STORE_MEM_I64_CONST_BY_REF(a_pi64Dst, a_i64C) *(a_pi64Dst) = (a_i64C)
|
---|
10679 | #define IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(a_pr32Dst) (a_pr32Dst)->u32 = UINT32_C(0xffc00000)
|
---|
10680 | #define IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(a_pr64Dst) (a_pr64Dst)->au64[0] = UINT64_C(0xfff8000000000000)
|
---|
10681 | #define IEM_MC_STORE_MEM_NEG_QNAN_R80_BY_REF(a_pr80Dst) \
|
---|
10682 | do { \
|
---|
10683 | (a_pr80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
|
---|
10684 | (a_pr80Dst)->au16[4] = UINT16_C(0xffff); \
|
---|
10685 | } while (0)
|
---|
10686 |
|
---|
10687 | #ifndef IEM_WITH_SETJMP
|
---|
10688 | # define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
|
---|
10689 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
|
---|
10690 | # define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
|
---|
10691 | IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128AlignedSse(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
|
---|
10692 | #else
|
---|
10693 | # define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
|
---|
10694 | iemMemStoreDataU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
|
---|
10695 | # define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
|
---|
10696 | iemMemStoreDataU128AlignedSseJmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
|
---|
10697 | #endif
|
---|
10698 |
|
---|
10699 |
|
---|
10700 | #define IEM_MC_PUSH_U16(a_u16Value) \
|
---|
10701 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
|
---|
10702 | #define IEM_MC_PUSH_U32(a_u32Value) \
|
---|
10703 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pVCpu, (a_u32Value)))
|
---|
10704 | #define IEM_MC_PUSH_U32_SREG(a_u32Value) \
|
---|
10705 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pVCpu, (a_u32Value)))
|
---|
10706 | #define IEM_MC_PUSH_U64(a_u64Value) \
|
---|
10707 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pVCpu, (a_u64Value)))
|
---|
10708 |
|
---|
10709 | #define IEM_MC_POP_U16(a_pu16Value) \
|
---|
10710 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU16(pVCpu, (a_pu16Value)))
|
---|
10711 | #define IEM_MC_POP_U32(a_pu32Value) \
|
---|
10712 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU32(pVCpu, (a_pu32Value)))
|
---|
10713 | #define IEM_MC_POP_U64(a_pu64Value) \
|
---|
10714 | IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU64(pVCpu, (a_pu64Value)))
|
---|
10715 |
|
---|
10716 | /** Maps guest memory for direct or bounce buffered access.
|
---|
10717 | * The purpose is to pass it to an operand implementation, thus the a_iArg.
|
---|
10718 | * @remarks May return.
|
---|
10719 | */
|
---|
10720 | #define IEM_MC_MEM_MAP(a_pMem, a_fAccess, a_iSeg, a_GCPtrMem, a_iArg) \
|
---|
10721 | IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pMem), sizeof(*(a_pMem)), (a_iSeg), (a_GCPtrMem), (a_fAccess)))
|
---|
10722 |
|
---|
10723 | /** Maps guest memory for direct or bounce buffered access.
|
---|
10724 | * The purpose is to pass it to an operand implementation, thus the a_iArg.
|
---|
10725 | * @remarks May return.
|
---|
10726 | */
|
---|
10727 | #define IEM_MC_MEM_MAP_EX(a_pvMem, a_fAccess, a_cbMem, a_iSeg, a_GCPtrMem, a_iArg) \
|
---|
10728 | IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pvMem), (a_cbMem), (a_iSeg), (a_GCPtrMem), (a_fAccess)))
|
---|
10729 |
|
---|
10730 | /** Commits the memory and unmaps the guest memory.
|
---|
10731 | * @remarks May return.
|
---|
10732 | */
|
---|
10733 | #define IEM_MC_MEM_COMMIT_AND_UNMAP(a_pvMem, a_fAccess) \
|
---|
10734 | IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, (a_pvMem), (a_fAccess)))
|
---|
10735 |
|
---|
10736 | /** Commits the memory and unmaps the guest memory unless the FPU status word
|
---|
10737 | * indicates (@a a_u16FSW) and FPU control word indicates a pending exception
|
---|
10738 | * that would cause FLD not to store.
|
---|
10739 | *
|
---|
10740 | * The current understanding is that \#O, \#U, \#IA and \#IS will prevent a
|
---|
10741 | * store, while \#P will not.
|
---|
10742 | *
|
---|
10743 | * @remarks May in theory return - for now.
|
---|
10744 | */
|
---|
10745 | #define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(a_pvMem, a_fAccess, a_u16FSW) \
|
---|
10746 | do { \
|
---|
10747 | if ( !(a_u16FSW & X86_FSW_ES) \
|
---|
10748 | || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
|
---|
10749 | & ~(IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.FCW & X86_FCW_MASK_ALL) ) ) \
|
---|
10750 | IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, (a_pvMem), (a_fAccess))); \
|
---|
10751 | } while (0)
|
---|
10752 |
|
---|
10753 | /** Calculate efficient address from R/M. */
|
---|
10754 | #ifndef IEM_WITH_SETJMP
|
---|
10755 | # define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, bRm, cbImm) \
|
---|
10756 | IEM_MC_RETURN_ON_FAILURE(iemOpHlpCalcRmEffAddr(pVCpu, (bRm), (cbImm), &(a_GCPtrEff)))
|
---|
10757 | #else
|
---|
10758 | # define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, bRm, cbImm) \
|
---|
10759 | ((a_GCPtrEff) = iemOpHlpCalcRmEffAddrJmp(pVCpu, (bRm), (cbImm)))
|
---|
10760 | #endif
|
---|
10761 |
|
---|
10762 | #define IEM_MC_CALL_VOID_AIMPL_0(a_pfn) (a_pfn)()
|
---|
10763 | #define IEM_MC_CALL_VOID_AIMPL_1(a_pfn, a0) (a_pfn)((a0))
|
---|
10764 | #define IEM_MC_CALL_VOID_AIMPL_2(a_pfn, a0, a1) (a_pfn)((a0), (a1))
|
---|
10765 | #define IEM_MC_CALL_VOID_AIMPL_3(a_pfn, a0, a1, a2) (a_pfn)((a0), (a1), (a2))
|
---|
10766 | #define IEM_MC_CALL_VOID_AIMPL_4(a_pfn, a0, a1, a2, a3) (a_pfn)((a0), (a1), (a2), (a3))
|
---|
10767 | #define IEM_MC_CALL_AIMPL_3(a_rc, a_pfn, a0, a1, a2) (a_rc) = (a_pfn)((a0), (a1), (a2))
|
---|
10768 | #define IEM_MC_CALL_AIMPL_4(a_rc, a_pfn, a0, a1, a2, a3) (a_rc) = (a_pfn)((a0), (a1), (a2), (a3))
|
---|
10769 |
|
---|
10770 | /**
|
---|
10771 | * Defers the rest of the instruction emulation to a C implementation routine
|
---|
10772 | * and returns, only taking the standard parameters.
|
---|
10773 | *
|
---|
10774 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
10775 | * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
|
---|
10776 | */
|
---|
10777 | #define IEM_MC_CALL_CIMPL_0(a_pfnCImpl) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
|
---|
10778 |
|
---|
10779 | /**
|
---|
10780 | * Defers the rest of instruction emulation to a C implementation routine and
|
---|
10781 | * returns, taking one argument in addition to the standard ones.
|
---|
10782 | *
|
---|
10783 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
10784 | * @param a0 The argument.
|
---|
10785 | */
|
---|
10786 | #define IEM_MC_CALL_CIMPL_1(a_pfnCImpl, a0) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0)
|
---|
10787 |
|
---|
10788 | /**
|
---|
10789 | * Defers the rest of the instruction emulation to a C implementation routine
|
---|
10790 | * and returns, taking two arguments in addition to the standard ones.
|
---|
10791 | *
|
---|
10792 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
10793 | * @param a0 The first extra argument.
|
---|
10794 | * @param a1 The second extra argument.
|
---|
10795 | */
|
---|
10796 | #define IEM_MC_CALL_CIMPL_2(a_pfnCImpl, a0, a1) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1)
|
---|
10797 |
|
---|
10798 | /**
|
---|
10799 | * Defers the rest of the instruction emulation to a C implementation routine
|
---|
10800 | * and returns, taking three arguments in addition to the standard ones.
|
---|
10801 | *
|
---|
10802 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
10803 | * @param a0 The first extra argument.
|
---|
10804 | * @param a1 The second extra argument.
|
---|
10805 | * @param a2 The third extra argument.
|
---|
10806 | */
|
---|
10807 | #define IEM_MC_CALL_CIMPL_3(a_pfnCImpl, a0, a1, a2) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2)
|
---|
10808 |
|
---|
10809 | /**
|
---|
10810 | * Defers the rest of the instruction emulation to a C implementation routine
|
---|
10811 | * and returns, taking four arguments in addition to the standard ones.
|
---|
10812 | *
|
---|
10813 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
10814 | * @param a0 The first extra argument.
|
---|
10815 | * @param a1 The second extra argument.
|
---|
10816 | * @param a2 The third extra argument.
|
---|
10817 | * @param a3 The fourth extra argument.
|
---|
10818 | */
|
---|
10819 | #define IEM_MC_CALL_CIMPL_4(a_pfnCImpl, a0, a1, a2, a3) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3)
|
---|
10820 |
|
---|
10821 | /**
|
---|
10822 | * Defers the rest of the instruction emulation to a C implementation routine
|
---|
10823 | * and returns, taking two arguments in addition to the standard ones.
|
---|
10824 | *
|
---|
10825 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
10826 | * @param a0 The first extra argument.
|
---|
10827 | * @param a1 The second extra argument.
|
---|
10828 | * @param a2 The third extra argument.
|
---|
10829 | * @param a3 The fourth extra argument.
|
---|
10830 | * @param a4 The fifth extra argument.
|
---|
10831 | */
|
---|
10832 | #define IEM_MC_CALL_CIMPL_5(a_pfnCImpl, a0, a1, a2, a3, a4) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3, a4)
|
---|
10833 |
|
---|
10834 | /**
|
---|
10835 | * Defers the entire instruction emulation to a C implementation routine and
|
---|
10836 | * returns, only taking the standard parameters.
|
---|
10837 | *
|
---|
10838 | * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
|
---|
10839 | *
|
---|
10840 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
10841 | * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
|
---|
10842 | */
|
---|
10843 | #define IEM_MC_DEFER_TO_CIMPL_0(a_pfnCImpl) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
|
---|
10844 |
|
---|
10845 | /**
|
---|
10846 | * Defers the entire instruction emulation to a C implementation routine and
|
---|
10847 | * returns, taking one argument in addition to the standard ones.
|
---|
10848 | *
|
---|
10849 | * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
|
---|
10850 | *
|
---|
10851 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
10852 | * @param a0 The argument.
|
---|
10853 | */
|
---|
10854 | #define IEM_MC_DEFER_TO_CIMPL_1(a_pfnCImpl, a0) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0)
|
---|
10855 |
|
---|
10856 | /**
|
---|
10857 | * Defers the entire instruction emulation to a C implementation routine and
|
---|
10858 | * returns, taking two arguments in addition to the standard ones.
|
---|
10859 | *
|
---|
10860 | * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
|
---|
10861 | *
|
---|
10862 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
10863 | * @param a0 The first extra argument.
|
---|
10864 | * @param a1 The second extra argument.
|
---|
10865 | */
|
---|
10866 | #define IEM_MC_DEFER_TO_CIMPL_2(a_pfnCImpl, a0, a1) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1)
|
---|
10867 |
|
---|
10868 | /**
|
---|
10869 | * Defers the entire instruction emulation to a C implementation routine and
|
---|
10870 | * returns, taking three arguments in addition to the standard ones.
|
---|
10871 | *
|
---|
10872 | * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
|
---|
10873 | *
|
---|
10874 | * @param a_pfnCImpl The pointer to the C routine.
|
---|
10875 | * @param a0 The first extra argument.
|
---|
10876 | * @param a1 The second extra argument.
|
---|
10877 | * @param a2 The third extra argument.
|
---|
10878 | */
|
---|
10879 | #define IEM_MC_DEFER_TO_CIMPL_3(a_pfnCImpl, a0, a1, a2) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2)
|
---|
10880 |
|
---|
10881 | /**
|
---|
10882 | * Calls a FPU assembly implementation taking one visible argument.
|
---|
10883 | *
|
---|
10884 | * @param a_pfnAImpl Pointer to the assembly FPU routine.
|
---|
10885 | * @param a0 The first extra argument.
|
---|
10886 | */
|
---|
10887 | #define IEM_MC_CALL_FPU_AIMPL_1(a_pfnAImpl, a0) \
|
---|
10888 | do { \
|
---|
10889 | a_pfnAImpl(&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87, (a0)); \
|
---|
10890 | } while (0)
|
---|
10891 |
|
---|
10892 | /**
|
---|
10893 | * Calls a FPU assembly implementation taking two visible arguments.
|
---|
10894 | *
|
---|
10895 | * @param a_pfnAImpl Pointer to the assembly FPU routine.
|
---|
10896 | * @param a0 The first extra argument.
|
---|
10897 | * @param a1 The second extra argument.
|
---|
10898 | */
|
---|
10899 | #define IEM_MC_CALL_FPU_AIMPL_2(a_pfnAImpl, a0, a1) \
|
---|
10900 | do { \
|
---|
10901 | a_pfnAImpl(&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87, (a0), (a1)); \
|
---|
10902 | } while (0)
|
---|
10903 |
|
---|
10904 | /**
|
---|
10905 | * Calls a FPU assembly implementation taking three visible arguments.
|
---|
10906 | *
|
---|
10907 | * @param a_pfnAImpl Pointer to the assembly FPU routine.
|
---|
10908 | * @param a0 The first extra argument.
|
---|
10909 | * @param a1 The second extra argument.
|
---|
10910 | * @param a2 The third extra argument.
|
---|
10911 | */
|
---|
10912 | #define IEM_MC_CALL_FPU_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
|
---|
10913 | do { \
|
---|
10914 | a_pfnAImpl(&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87, (a0), (a1), (a2)); \
|
---|
10915 | } while (0)
|
---|
10916 |
|
---|
10917 | #define IEM_MC_SET_FPU_RESULT(a_FpuData, a_FSW, a_pr80Value) \
|
---|
10918 | do { \
|
---|
10919 | (a_FpuData).FSW = (a_FSW); \
|
---|
10920 | (a_FpuData).r80Result = *(a_pr80Value); \
|
---|
10921 | } while (0)
|
---|
10922 |
|
---|
10923 | /** Pushes FPU result onto the stack. */
|
---|
10924 | #define IEM_MC_PUSH_FPU_RESULT(a_FpuData) \
|
---|
10925 | iemFpuPushResult(pVCpu, &a_FpuData)
|
---|
10926 | /** Pushes FPU result onto the stack and sets the FPUDP. */
|
---|
10927 | #define IEM_MC_PUSH_FPU_RESULT_MEM_OP(a_FpuData, a_iEffSeg, a_GCPtrEff) \
|
---|
10928 | iemFpuPushResultWithMemOp(pVCpu, &a_FpuData, a_iEffSeg, a_GCPtrEff)
|
---|
10929 |
|
---|
10930 | /** Replaces ST0 with value one and pushes value 2 onto the FPU stack. */
|
---|
10931 | #define IEM_MC_PUSH_FPU_RESULT_TWO(a_FpuDataTwo) \
|
---|
10932 | iemFpuPushResultTwo(pVCpu, &a_FpuDataTwo)
|
---|
10933 |
|
---|
10934 | /** Stores FPU result in a stack register. */
|
---|
10935 | #define IEM_MC_STORE_FPU_RESULT(a_FpuData, a_iStReg) \
|
---|
10936 | iemFpuStoreResult(pVCpu, &a_FpuData, a_iStReg)
|
---|
10937 | /** Stores FPU result in a stack register and pops the stack. */
|
---|
10938 | #define IEM_MC_STORE_FPU_RESULT_THEN_POP(a_FpuData, a_iStReg) \
|
---|
10939 | iemFpuStoreResultThenPop(pVCpu, &a_FpuData, a_iStReg)
|
---|
10940 | /** Stores FPU result in a stack register and sets the FPUDP. */
|
---|
10941 | #define IEM_MC_STORE_FPU_RESULT_MEM_OP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff) \
|
---|
10942 | iemFpuStoreResultWithMemOp(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff)
|
---|
10943 | /** Stores FPU result in a stack register, sets the FPUDP, and pops the
|
---|
10944 | * stack. */
|
---|
10945 | #define IEM_MC_STORE_FPU_RESULT_WITH_MEM_OP_THEN_POP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff) \
|
---|
10946 | iemFpuStoreResultWithMemOpThenPop(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff)
|
---|
10947 |
|
---|
10948 | /** Only update the FOP, FPUIP, and FPUCS. (For FNOP.) */
|
---|
10949 | #define IEM_MC_UPDATE_FPU_OPCODE_IP() \
|
---|
10950 | iemFpuUpdateOpcodeAndIp(pVCpu)
|
---|
10951 | /** Free a stack register (for FFREE and FFREEP). */
|
---|
10952 | #define IEM_MC_FPU_STACK_FREE(a_iStReg) \
|
---|
10953 | iemFpuStackFree(pVCpu, a_iStReg)
|
---|
10954 | /** Increment the FPU stack pointer. */
|
---|
10955 | #define IEM_MC_FPU_STACK_INC_TOP() \
|
---|
10956 | iemFpuStackIncTop(pVCpu)
|
---|
10957 | /** Decrement the FPU stack pointer. */
|
---|
10958 | #define IEM_MC_FPU_STACK_DEC_TOP() \
|
---|
10959 | iemFpuStackDecTop(pVCpu)
|
---|
10960 |
|
---|
10961 | /** Updates the FSW, FOP, FPUIP, and FPUCS. */
|
---|
10962 | #define IEM_MC_UPDATE_FSW(a_u16FSW) \
|
---|
10963 | iemFpuUpdateFSW(pVCpu, a_u16FSW)
|
---|
10964 | /** Updates the FSW with a constant value as well as FOP, FPUIP, and FPUCS. */
|
---|
10965 | #define IEM_MC_UPDATE_FSW_CONST(a_u16FSW) \
|
---|
10966 | iemFpuUpdateFSW(pVCpu, a_u16FSW)
|
---|
10967 | /** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS. */
|
---|
10968 | #define IEM_MC_UPDATE_FSW_WITH_MEM_OP(a_u16FSW, a_iEffSeg, a_GCPtrEff) \
|
---|
10969 | iemFpuUpdateFSWWithMemOp(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff)
|
---|
10970 | /** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack. */
|
---|
10971 | #define IEM_MC_UPDATE_FSW_THEN_POP(a_u16FSW) \
|
---|
10972 | iemFpuUpdateFSWThenPop(pVCpu, a_u16FSW)
|
---|
10973 | /** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP and FPUDS, and then pops the
|
---|
10974 | * stack. */
|
---|
10975 | #define IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(a_u16FSW, a_iEffSeg, a_GCPtrEff) \
|
---|
10976 | iemFpuUpdateFSWWithMemOpThenPop(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff)
|
---|
10977 | /** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack twice. */
|
---|
10978 | #define IEM_MC_UPDATE_FSW_THEN_POP_POP(a_u16FSW) \
|
---|
10979 | iemFpuUpdateFSWThenPop(pVCpu, a_u16FSW)
|
---|
10980 |
|
---|
10981 | /** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. */
|
---|
10982 | #define IEM_MC_FPU_STACK_UNDERFLOW(a_iStDst) \
|
---|
10983 | iemFpuStackUnderflow(pVCpu, a_iStDst)
|
---|
10984 | /** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
|
---|
10985 | * stack. */
|
---|
10986 | #define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(a_iStDst) \
|
---|
10987 | iemFpuStackUnderflowThenPop(pVCpu, a_iStDst)
|
---|
10988 | /** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
|
---|
10989 | * FPUDS. */
|
---|
10990 | #define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(a_iStDst, a_iEffSeg, a_GCPtrEff) \
|
---|
10991 | iemFpuStackUnderflowWithMemOp(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff)
|
---|
10992 | /** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
|
---|
10993 | * FPUDS. Pops stack. */
|
---|
10994 | #define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(a_iStDst, a_iEffSeg, a_GCPtrEff) \
|
---|
10995 | iemFpuStackUnderflowWithMemOpThenPop(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff)
|
---|
10996 | /** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
|
---|
10997 | * stack twice. */
|
---|
10998 | #define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP_POP() \
|
---|
10999 | iemFpuStackUnderflowThenPopPop(pVCpu)
|
---|
11000 | /** Raises a FPU stack underflow exception for an instruction pushing a result
|
---|
11001 | * value onto the stack. Sets FPUIP, FPUCS and FOP. */
|
---|
11002 | #define IEM_MC_FPU_STACK_PUSH_UNDERFLOW() \
|
---|
11003 | iemFpuStackPushUnderflow(pVCpu)
|
---|
11004 | /** Raises a FPU stack underflow exception for an instruction pushing a result
|
---|
11005 | * value onto the stack and replacing ST0. Sets FPUIP, FPUCS and FOP. */
|
---|
11006 | #define IEM_MC_FPU_STACK_PUSH_UNDERFLOW_TWO() \
|
---|
11007 | iemFpuStackPushUnderflowTwo(pVCpu)
|
---|
11008 |
|
---|
11009 | /** Raises a FPU stack overflow exception as part of a push attempt. Sets
|
---|
11010 | * FPUIP, FPUCS and FOP. */
|
---|
11011 | #define IEM_MC_FPU_STACK_PUSH_OVERFLOW() \
|
---|
11012 | iemFpuStackPushOverflow(pVCpu)
|
---|
11013 | /** Raises a FPU stack overflow exception as part of a push attempt. Sets
|
---|
11014 | * FPUIP, FPUCS, FOP, FPUDP and FPUDS. */
|
---|
11015 | #define IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(a_iEffSeg, a_GCPtrEff) \
|
---|
11016 | iemFpuStackPushOverflowWithMemOp(pVCpu, a_iEffSeg, a_GCPtrEff)
|
---|
11017 | /** Prepares for using the FPU state.
|
---|
11018 | * Ensures that we can use the host FPU in the current context (RC+R0.
|
---|
11019 | * Ensures the guest FPU state in the CPUMCTX is up to date. */
|
---|
11020 | #define IEM_MC_PREPARE_FPU_USAGE() iemFpuPrepareUsage(pVCpu)
|
---|
11021 | /** Actualizes the guest FPU state so it can be accessed read-only fashion. */
|
---|
11022 | #define IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ() iemFpuActualizeStateForRead(pVCpu)
|
---|
11023 | /** Actualizes the guest FPU state so it can be accessed and modified. */
|
---|
11024 | #define IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE() iemFpuActualizeStateForChange(pVCpu)
|
---|
11025 |
|
---|
11026 | /** Prepares for using the SSE state.
|
---|
11027 | * Ensures that we can use the host SSE/FPU in the current context (RC+R0.
|
---|
11028 | * Ensures the guest SSE state in the CPUMCTX is up to date. */
|
---|
11029 | #define IEM_MC_PREPARE_SSE_USAGE() iemFpuPrepareUsageSse(pVCpu)
|
---|
11030 | /** Actualizes the guest XMM0..15 register state for read-only access. */
|
---|
11031 | #define IEM_MC_ACTUALIZE_SSE_STATE_FOR_READ() iemFpuActualizeSseStateForRead(pVCpu)
|
---|
11032 | /** Actualizes the guest XMM0..15 register state for read-write access. */
|
---|
11033 | #define IEM_MC_ACTUALIZE_SSE_STATE_FOR_CHANGE() iemFpuActualizeSseStateForChange(pVCpu)
|
---|
11034 |
|
---|
11035 | /**
|
---|
11036 | * Calls a MMX assembly implementation taking two visible arguments.
|
---|
11037 | *
|
---|
11038 | * @param a_pfnAImpl Pointer to the assembly MMX routine.
|
---|
11039 | * @param a0 The first extra argument.
|
---|
11040 | * @param a1 The second extra argument.
|
---|
11041 | */
|
---|
11042 | #define IEM_MC_CALL_MMX_AIMPL_2(a_pfnAImpl, a0, a1) \
|
---|
11043 | do { \
|
---|
11044 | IEM_MC_PREPARE_FPU_USAGE(); \
|
---|
11045 | a_pfnAImpl(&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87, (a0), (a1)); \
|
---|
11046 | } while (0)
|
---|
11047 |
|
---|
11048 | /**
|
---|
11049 | * Calls a MMX assembly implementation taking three visible arguments.
|
---|
11050 | *
|
---|
11051 | * @param a_pfnAImpl Pointer to the assembly MMX routine.
|
---|
11052 | * @param a0 The first extra argument.
|
---|
11053 | * @param a1 The second extra argument.
|
---|
11054 | * @param a2 The third extra argument.
|
---|
11055 | */
|
---|
11056 | #define IEM_MC_CALL_MMX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
|
---|
11057 | do { \
|
---|
11058 | IEM_MC_PREPARE_FPU_USAGE(); \
|
---|
11059 | a_pfnAImpl(&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87, (a0), (a1), (a2)); \
|
---|
11060 | } while (0)
|
---|
11061 |
|
---|
11062 |
|
---|
11063 | /**
|
---|
11064 | * Calls a SSE assembly implementation taking two visible arguments.
|
---|
11065 | *
|
---|
11066 | * @param a_pfnAImpl Pointer to the assembly MMX routine.
|
---|
11067 | * @param a0 The first extra argument.
|
---|
11068 | * @param a1 The second extra argument.
|
---|
11069 | */
|
---|
11070 | #define IEM_MC_CALL_SSE_AIMPL_2(a_pfnAImpl, a0, a1) \
|
---|
11071 | do { \
|
---|
11072 | IEM_MC_PREPARE_SSE_USAGE(); \
|
---|
11073 | a_pfnAImpl(&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87, (a0), (a1)); \
|
---|
11074 | } while (0)
|
---|
11075 |
|
---|
11076 | /**
|
---|
11077 | * Calls a SSE assembly implementation taking three visible arguments.
|
---|
11078 | *
|
---|
11079 | * @param a_pfnAImpl Pointer to the assembly MMX routine.
|
---|
11080 | * @param a0 The first extra argument.
|
---|
11081 | * @param a1 The second extra argument.
|
---|
11082 | * @param a2 The third extra argument.
|
---|
11083 | */
|
---|
11084 | #define IEM_MC_CALL_SSE_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
|
---|
11085 | do { \
|
---|
11086 | IEM_MC_PREPARE_SSE_USAGE(); \
|
---|
11087 | a_pfnAImpl(&IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87, (a0), (a1), (a2)); \
|
---|
11088 | } while (0)
|
---|
11089 |
|
---|
11090 | /** @note Not for IOPL or IF testing. */
|
---|
11091 | #define IEM_MC_IF_EFL_BIT_SET(a_fBit) if (IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit)) {
|
---|
11092 | /** @note Not for IOPL or IF testing. */
|
---|
11093 | #define IEM_MC_IF_EFL_BIT_NOT_SET(a_fBit) if (!(IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit))) {
|
---|
11094 | /** @note Not for IOPL or IF testing. */
|
---|
11095 | #define IEM_MC_IF_EFL_ANY_BITS_SET(a_fBits) if (IEM_GET_CTX(pVCpu)->eflags.u & (a_fBits)) {
|
---|
11096 | /** @note Not for IOPL or IF testing. */
|
---|
11097 | #define IEM_MC_IF_EFL_NO_BITS_SET(a_fBits) if (!(IEM_GET_CTX(pVCpu)->eflags.u & (a_fBits))) {
|
---|
11098 | /** @note Not for IOPL or IF testing. */
|
---|
11099 | #define IEM_MC_IF_EFL_BITS_NE(a_fBit1, a_fBit2) \
|
---|
11100 | if ( !!(IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit1)) \
|
---|
11101 | != !!(IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit2)) ) {
|
---|
11102 | /** @note Not for IOPL or IF testing. */
|
---|
11103 | #define IEM_MC_IF_EFL_BITS_EQ(a_fBit1, a_fBit2) \
|
---|
11104 | if ( !!(IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit1)) \
|
---|
11105 | == !!(IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit2)) ) {
|
---|
11106 | /** @note Not for IOPL or IF testing. */
|
---|
11107 | #define IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(a_fBit, a_fBit1, a_fBit2) \
|
---|
11108 | if ( (IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit)) \
|
---|
11109 | || !!(IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit1)) \
|
---|
11110 | != !!(IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit2)) ) {
|
---|
11111 | /** @note Not for IOPL or IF testing. */
|
---|
11112 | #define IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ(a_fBit, a_fBit1, a_fBit2) \
|
---|
11113 | if ( !(IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit)) \
|
---|
11114 | && !!(IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit1)) \
|
---|
11115 | == !!(IEM_GET_CTX(pVCpu)->eflags.u & (a_fBit2)) ) {
|
---|
11116 | #define IEM_MC_IF_CX_IS_NZ() if (IEM_GET_CTX(pVCpu)->cx != 0) {
|
---|
11117 | #define IEM_MC_IF_ECX_IS_NZ() if (IEM_GET_CTX(pVCpu)->ecx != 0) {
|
---|
11118 | #define IEM_MC_IF_RCX_IS_NZ() if (IEM_GET_CTX(pVCpu)->rcx != 0) {
|
---|
11119 | /** @note Not for IOPL or IF testing. */
|
---|
11120 | #define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
|
---|
11121 | if ( IEM_GET_CTX(pVCpu)->cx != 0 \
|
---|
11122 | && (IEM_GET_CTX(pVCpu)->eflags.u & a_fBit)) {
|
---|
11123 | /** @note Not for IOPL or IF testing. */
|
---|
11124 | #define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
|
---|
11125 | if ( IEM_GET_CTX(pVCpu)->ecx != 0 \
|
---|
11126 | && (IEM_GET_CTX(pVCpu)->eflags.u & a_fBit)) {
|
---|
11127 | /** @note Not for IOPL or IF testing. */
|
---|
11128 | #define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
|
---|
11129 | if ( IEM_GET_CTX(pVCpu)->rcx != 0 \
|
---|
11130 | && (IEM_GET_CTX(pVCpu)->eflags.u & a_fBit)) {
|
---|
11131 | /** @note Not for IOPL or IF testing. */
|
---|
11132 | #define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
11133 | if ( IEM_GET_CTX(pVCpu)->cx != 0 \
|
---|
11134 | && !(IEM_GET_CTX(pVCpu)->eflags.u & a_fBit)) {
|
---|
11135 | /** @note Not for IOPL or IF testing. */
|
---|
11136 | #define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
11137 | if ( IEM_GET_CTX(pVCpu)->ecx != 0 \
|
---|
11138 | && !(IEM_GET_CTX(pVCpu)->eflags.u & a_fBit)) {
|
---|
11139 | /** @note Not for IOPL or IF testing. */
|
---|
11140 | #define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
11141 | if ( IEM_GET_CTX(pVCpu)->rcx != 0 \
|
---|
11142 | && !(IEM_GET_CTX(pVCpu)->eflags.u & a_fBit)) {
|
---|
11143 | #define IEM_MC_IF_LOCAL_IS_Z(a_Local) if ((a_Local) == 0) {
|
---|
11144 | #define IEM_MC_IF_GREG_BIT_SET(a_iGReg, a_iBitNo) if (iemGRegFetchU64(pVCpu, (a_iGReg)) & RT_BIT_64(a_iBitNo)) {
|
---|
11145 |
|
---|
11146 | #define IEM_MC_IF_FPUREG_NOT_EMPTY(a_iSt) \
|
---|
11147 | if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) == VINF_SUCCESS) {
|
---|
11148 | #define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
|
---|
11149 | if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
|
---|
11150 | #define IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(a_pr80Dst, a_iSt) \
|
---|
11151 | if (iemFpuStRegNotEmptyRef(pVCpu, (a_iSt), &(a_pr80Dst)) == VINF_SUCCESS) {
|
---|
11152 | #define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(a_pr80Dst0, a_iSt0, a_pr80Dst1, a_iSt1) \
|
---|
11153 | if (iemFpu2StRegsNotEmptyRef(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1), &(a_pr80Dst1)) == VINF_SUCCESS) {
|
---|
11154 | #define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(a_pr80Dst0, a_iSt0, a_iSt1) \
|
---|
11155 | if (iemFpu2StRegsNotEmptyRefFirst(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1)) == VINF_SUCCESS) {
|
---|
11156 | #define IEM_MC_IF_FCW_IM() \
|
---|
11157 | if (IEM_GET_CTX(pVCpu)->CTX_SUFF(pXState)->x87.FCW & X86_FCW_IM) {
|
---|
11158 |
|
---|
11159 | #define IEM_MC_ELSE() } else {
|
---|
11160 | #define IEM_MC_ENDIF() } do {} while (0)
|
---|
11161 |
|
---|
11162 | /** @} */
|
---|
11163 |
|
---|
11164 |
|
---|
11165 | /** @name Opcode Debug Helpers.
|
---|
11166 | * @{
|
---|
11167 | */
|
---|
11168 | #ifdef DEBUG
|
---|
11169 | # define IEMOP_MNEMONIC(a_szMnemonic) \
|
---|
11170 | Log4(("decode - %04x:%RGv %s%s [#%u]\n", IEM_GET_CTX(pVCpu)->cs.Sel, IEM_GET_CTX(pVCpu)->rip, \
|
---|
11171 | pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK ? "lock " : "", a_szMnemonic, pVCpu->iem.s.cInstructions))
|
---|
11172 | # define IEMOP_MNEMONIC2(a_szMnemonic, a_szOps) \
|
---|
11173 | Log4(("decode - %04x:%RGv %s%s %s [#%u]\n", IEM_GET_CTX(pVCpu)->cs.Sel, IEM_GET_CTX(pVCpu)->rip, \
|
---|
11174 | pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK ? "lock " : "", a_szMnemonic, a_szOps, pVCpu->iem.s.cInstructions))
|
---|
11175 | #else
|
---|
11176 | # define IEMOP_MNEMONIC(a_szMnemonic) do { } while (0)
|
---|
11177 | # define IEMOP_MNEMONIC2(a_szMnemonic, a_szOps) do { } while (0)
|
---|
11178 | #endif
|
---|
11179 |
|
---|
11180 | /** @} */
|
---|
11181 |
|
---|
11182 |
|
---|
11183 | /** @name Opcode Helpers.
|
---|
11184 | * @{
|
---|
11185 | */
|
---|
11186 |
|
---|
11187 | #ifdef IN_RING3
|
---|
11188 | # define IEMOP_HLP_MIN_CPU(a_uMinCpu, a_fOnlyIf) \
|
---|
11189 | do { \
|
---|
11190 | if (IEM_GET_TARGET_CPU(pVCpu) >= (a_uMinCpu) || !(a_fOnlyIf)) { } \
|
---|
11191 | else \
|
---|
11192 | { \
|
---|
11193 | DBGFSTOP(pVCpu->CTX_SUFF(pVM)); \
|
---|
11194 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
11195 | } \
|
---|
11196 | } while (0)
|
---|
11197 | #else
|
---|
11198 | # define IEMOP_HLP_MIN_CPU(a_uMinCpu, a_fOnlyIf) \
|
---|
11199 | do { \
|
---|
11200 | if (IEM_GET_TARGET_CPU(pVCpu) >= (a_uMinCpu) || !(a_fOnlyIf)) { } \
|
---|
11201 | else return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
11202 | } while (0)
|
---|
11203 | #endif
|
---|
11204 |
|
---|
11205 | /** The instruction requires a 186 or later. */
|
---|
11206 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_186
|
---|
11207 | # define IEMOP_HLP_MIN_186() do { } while (0)
|
---|
11208 | #else
|
---|
11209 | # define IEMOP_HLP_MIN_186() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_186, true)
|
---|
11210 | #endif
|
---|
11211 |
|
---|
11212 | /** The instruction requires a 286 or later. */
|
---|
11213 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_286
|
---|
11214 | # define IEMOP_HLP_MIN_286() do { } while (0)
|
---|
11215 | #else
|
---|
11216 | # define IEMOP_HLP_MIN_286() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_286, true)
|
---|
11217 | #endif
|
---|
11218 |
|
---|
11219 | /** The instruction requires a 386 or later. */
|
---|
11220 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_386
|
---|
11221 | # define IEMOP_HLP_MIN_386() do { } while (0)
|
---|
11222 | #else
|
---|
11223 | # define IEMOP_HLP_MIN_386() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_386, true)
|
---|
11224 | #endif
|
---|
11225 |
|
---|
11226 | /** The instruction requires a 386 or later if the given expression is true. */
|
---|
11227 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_386
|
---|
11228 | # define IEMOP_HLP_MIN_386_EX(a_fOnlyIf) do { } while (0)
|
---|
11229 | #else
|
---|
11230 | # define IEMOP_HLP_MIN_386_EX(a_fOnlyIf) IEMOP_HLP_MIN_CPU(IEMTARGETCPU_386, a_fOnlyIf)
|
---|
11231 | #endif
|
---|
11232 |
|
---|
11233 | /** The instruction requires a 486 or later. */
|
---|
11234 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_486
|
---|
11235 | # define IEMOP_HLP_MIN_486() do { } while (0)
|
---|
11236 | #else
|
---|
11237 | # define IEMOP_HLP_MIN_486() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_486, true)
|
---|
11238 | #endif
|
---|
11239 |
|
---|
11240 | /** The instruction requires a Pentium (586) or later. */
|
---|
11241 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_586
|
---|
11242 | # define IEMOP_HLP_MIN_586() do { } while (0)
|
---|
11243 | #else
|
---|
11244 | # define IEMOP_HLP_MIN_586() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_586, true)
|
---|
11245 | #endif
|
---|
11246 |
|
---|
11247 | /** The instruction requires a PentiumPro (686) or later. */
|
---|
11248 | #if IEM_CFG_TARGET_CPU >= IEMTARGETCPU_686
|
---|
11249 | # define IEMOP_HLP_MIN_686() do { } while (0)
|
---|
11250 | #else
|
---|
11251 | # define IEMOP_HLP_MIN_686() IEMOP_HLP_MIN_CPU(IEMTARGETCPU_686, true)
|
---|
11252 | #endif
|
---|
11253 |
|
---|
11254 |
|
---|
11255 | /** The instruction raises an \#UD in real and V8086 mode. */
|
---|
11256 | #define IEMOP_HLP_NO_REAL_OR_V86_MODE() \
|
---|
11257 | do \
|
---|
11258 | { \
|
---|
11259 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) \
|
---|
11260 | return IEMOP_RAISE_INVALID_LOCK_PREFIX(); \
|
---|
11261 | } while (0)
|
---|
11262 |
|
---|
11263 | /** The instruction is not available in 64-bit mode, throw \#UD if we're in
|
---|
11264 | * 64-bit mode. */
|
---|
11265 | #define IEMOP_HLP_NO_64BIT() \
|
---|
11266 | do \
|
---|
11267 | { \
|
---|
11268 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) \
|
---|
11269 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
11270 | } while (0)
|
---|
11271 |
|
---|
11272 | /** The instruction is only available in 64-bit mode, throw \#UD if we're not in
|
---|
11273 | * 64-bit mode. */
|
---|
11274 | #define IEMOP_HLP_ONLY_64BIT() \
|
---|
11275 | do \
|
---|
11276 | { \
|
---|
11277 | if (pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT) \
|
---|
11278 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
11279 | } while (0)
|
---|
11280 |
|
---|
11281 | /** The instruction defaults to 64-bit operand size if 64-bit mode. */
|
---|
11282 | #define IEMOP_HLP_DEFAULT_64BIT_OP_SIZE() \
|
---|
11283 | do \
|
---|
11284 | { \
|
---|
11285 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) \
|
---|
11286 | iemRecalEffOpSize64Default(pVCpu); \
|
---|
11287 | } while (0)
|
---|
11288 |
|
---|
11289 | /** The instruction has 64-bit operand size if 64-bit mode. */
|
---|
11290 | #define IEMOP_HLP_64BIT_OP_SIZE() \
|
---|
11291 | do \
|
---|
11292 | { \
|
---|
11293 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) \
|
---|
11294 | pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT; \
|
---|
11295 | } while (0)
|
---|
11296 |
|
---|
11297 | /** Only a REX prefix immediately preceeding the first opcode byte takes
|
---|
11298 | * effect. This macro helps ensuring this as well as logging bad guest code. */
|
---|
11299 | #define IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE(a_szPrf) \
|
---|
11300 | do \
|
---|
11301 | { \
|
---|
11302 | if (RT_UNLIKELY(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX)) \
|
---|
11303 | { \
|
---|
11304 | Log5((a_szPrf ": Overriding REX prefix at %RX16! fPrefixes=%#x\n", \
|
---|
11305 | IEM_GET_CTX(pVCpu)->rip, pVCpu->iem.s.fPrefixes)); \
|
---|
11306 | pVCpu->iem.s.fPrefixes &= ~IEM_OP_PRF_REX_MASK; \
|
---|
11307 | pVCpu->iem.s.uRexB = 0; \
|
---|
11308 | pVCpu->iem.s.uRexIndex = 0; \
|
---|
11309 | pVCpu->iem.s.uRexReg = 0; \
|
---|
11310 | iemRecalEffOpSize(pVCpu); \
|
---|
11311 | } \
|
---|
11312 | } while (0)
|
---|
11313 |
|
---|
11314 | /**
|
---|
11315 | * Done decoding.
|
---|
11316 | */
|
---|
11317 | #define IEMOP_HLP_DONE_DECODING() \
|
---|
11318 | do \
|
---|
11319 | { \
|
---|
11320 | /*nothing for now, maybe later... */ \
|
---|
11321 | } while (0)
|
---|
11322 |
|
---|
11323 | /**
|
---|
11324 | * Done decoding, raise \#UD exception if lock prefix present.
|
---|
11325 | */
|
---|
11326 | #define IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX() \
|
---|
11327 | do \
|
---|
11328 | { \
|
---|
11329 | if (RT_LIKELY(!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))) \
|
---|
11330 | { /* likely */ } \
|
---|
11331 | else \
|
---|
11332 | return IEMOP_RAISE_INVALID_LOCK_PREFIX(); \
|
---|
11333 | } while (0)
|
---|
11334 | #define IEMOP_HLP_DECODED_NL_1(a_uDisOpNo, a_fIemOpFlags, a_uDisParam0, a_fDisOpType) \
|
---|
11335 | do \
|
---|
11336 | { \
|
---|
11337 | if (RT_LIKELY(!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))) \
|
---|
11338 | { /* likely */ } \
|
---|
11339 | else \
|
---|
11340 | { \
|
---|
11341 | NOREF(a_uDisOpNo); NOREF(a_fIemOpFlags); NOREF(a_uDisParam0); NOREF(a_fDisOpType); \
|
---|
11342 | return IEMOP_RAISE_INVALID_LOCK_PREFIX(); \
|
---|
11343 | } \
|
---|
11344 | } while (0)
|
---|
11345 | #define IEMOP_HLP_DECODED_NL_2(a_uDisOpNo, a_fIemOpFlags, a_uDisParam0, a_uDisParam1, a_fDisOpType) \
|
---|
11346 | do \
|
---|
11347 | { \
|
---|
11348 | if (RT_LIKELY(!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))) \
|
---|
11349 | { /* likely */ } \
|
---|
11350 | else \
|
---|
11351 | { \
|
---|
11352 | NOREF(a_uDisOpNo); NOREF(a_fIemOpFlags); NOREF(a_uDisParam0); NOREF(a_uDisParam1); NOREF(a_fDisOpType); \
|
---|
11353 | return IEMOP_RAISE_INVALID_LOCK_PREFIX(); \
|
---|
11354 | } \
|
---|
11355 | } while (0)
|
---|
11356 |
|
---|
11357 | /**
|
---|
11358 | * Done decoding, raise \#UD exception if any lock, repz or repnz prefixes
|
---|
11359 | * are present.
|
---|
11360 | */
|
---|
11361 | #define IEMOP_HLP_DONE_DECODING_NO_LOCK_REPZ_OR_REPNZ_PREFIXES() \
|
---|
11362 | do \
|
---|
11363 | { \
|
---|
11364 | if (RT_LIKELY(!(pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_LOCK | IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ)))) \
|
---|
11365 | { /* likely */ } \
|
---|
11366 | else \
|
---|
11367 | return IEMOP_RAISE_INVALID_OPCODE(); \
|
---|
11368 | } while (0)
|
---|
11369 |
|
---|
11370 |
|
---|
11371 | /**
|
---|
11372 | * Calculates the effective address of a ModR/M memory operand.
|
---|
11373 | *
|
---|
11374 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
11375 | *
|
---|
11376 | * @return Strict VBox status code.
|
---|
11377 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
11378 | * @param bRm The ModRM byte.
|
---|
11379 | * @param cbImm The size of any immediate following the
|
---|
11380 | * effective address opcode bytes. Important for
|
---|
11381 | * RIP relative addressing.
|
---|
11382 | * @param pGCPtrEff Where to return the effective address.
|
---|
11383 | */
|
---|
11384 | IEM_STATIC VBOXSTRICTRC iemOpHlpCalcRmEffAddr(PVMCPU pVCpu, uint8_t bRm, uint8_t cbImm, PRTGCPTR pGCPtrEff)
|
---|
11385 | {
|
---|
11386 | Log5(("iemOpHlpCalcRmEffAddr: bRm=%#x\n", bRm));
|
---|
11387 | PCCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
11388 | # define SET_SS_DEF() \
|
---|
11389 | do \
|
---|
11390 | { \
|
---|
11391 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
11392 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
11393 | } while (0)
|
---|
11394 |
|
---|
11395 | if (pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT)
|
---|
11396 | {
|
---|
11397 | /** @todo Check the effective address size crap! */
|
---|
11398 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
11399 | {
|
---|
11400 | uint16_t u16EffAddr;
|
---|
11401 |
|
---|
11402 | /* Handle the disp16 form with no registers first. */
|
---|
11403 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
11404 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
11405 | else
|
---|
11406 | {
|
---|
11407 | /* Get the displacment. */
|
---|
11408 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
11409 | {
|
---|
11410 | case 0: u16EffAddr = 0; break;
|
---|
11411 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
11412 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
11413 | default: AssertFailedReturn(VERR_IEM_IPE_1); /* (caller checked for these) */
|
---|
11414 | }
|
---|
11415 |
|
---|
11416 | /* Add the base and index registers to the disp. */
|
---|
11417 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
11418 | {
|
---|
11419 | case 0: u16EffAddr += pCtx->bx + pCtx->si; break;
|
---|
11420 | case 1: u16EffAddr += pCtx->bx + pCtx->di; break;
|
---|
11421 | case 2: u16EffAddr += pCtx->bp + pCtx->si; SET_SS_DEF(); break;
|
---|
11422 | case 3: u16EffAddr += pCtx->bp + pCtx->di; SET_SS_DEF(); break;
|
---|
11423 | case 4: u16EffAddr += pCtx->si; break;
|
---|
11424 | case 5: u16EffAddr += pCtx->di; break;
|
---|
11425 | case 6: u16EffAddr += pCtx->bp; SET_SS_DEF(); break;
|
---|
11426 | case 7: u16EffAddr += pCtx->bx; break;
|
---|
11427 | }
|
---|
11428 | }
|
---|
11429 |
|
---|
11430 | *pGCPtrEff = u16EffAddr;
|
---|
11431 | }
|
---|
11432 | else
|
---|
11433 | {
|
---|
11434 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
11435 | uint32_t u32EffAddr;
|
---|
11436 |
|
---|
11437 | /* Handle the disp32 form with no registers first. */
|
---|
11438 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
11439 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
11440 | else
|
---|
11441 | {
|
---|
11442 | /* Get the register (or SIB) value. */
|
---|
11443 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
11444 | {
|
---|
11445 | case 0: u32EffAddr = pCtx->eax; break;
|
---|
11446 | case 1: u32EffAddr = pCtx->ecx; break;
|
---|
11447 | case 2: u32EffAddr = pCtx->edx; break;
|
---|
11448 | case 3: u32EffAddr = pCtx->ebx; break;
|
---|
11449 | case 4: /* SIB */
|
---|
11450 | {
|
---|
11451 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
11452 |
|
---|
11453 | /* Get the index and scale it. */
|
---|
11454 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
11455 | {
|
---|
11456 | case 0: u32EffAddr = pCtx->eax; break;
|
---|
11457 | case 1: u32EffAddr = pCtx->ecx; break;
|
---|
11458 | case 2: u32EffAddr = pCtx->edx; break;
|
---|
11459 | case 3: u32EffAddr = pCtx->ebx; break;
|
---|
11460 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
11461 | case 5: u32EffAddr = pCtx->ebp; break;
|
---|
11462 | case 6: u32EffAddr = pCtx->esi; break;
|
---|
11463 | case 7: u32EffAddr = pCtx->edi; break;
|
---|
11464 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11465 | }
|
---|
11466 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
11467 |
|
---|
11468 | /* add base */
|
---|
11469 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
11470 | {
|
---|
11471 | case 0: u32EffAddr += pCtx->eax; break;
|
---|
11472 | case 1: u32EffAddr += pCtx->ecx; break;
|
---|
11473 | case 2: u32EffAddr += pCtx->edx; break;
|
---|
11474 | case 3: u32EffAddr += pCtx->ebx; break;
|
---|
11475 | case 4: u32EffAddr += pCtx->esp; SET_SS_DEF(); break;
|
---|
11476 | case 5:
|
---|
11477 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
11478 | {
|
---|
11479 | u32EffAddr += pCtx->ebp;
|
---|
11480 | SET_SS_DEF();
|
---|
11481 | }
|
---|
11482 | else
|
---|
11483 | {
|
---|
11484 | uint32_t u32Disp;
|
---|
11485 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
11486 | u32EffAddr += u32Disp;
|
---|
11487 | }
|
---|
11488 | break;
|
---|
11489 | case 6: u32EffAddr += pCtx->esi; break;
|
---|
11490 | case 7: u32EffAddr += pCtx->edi; break;
|
---|
11491 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11492 | }
|
---|
11493 | break;
|
---|
11494 | }
|
---|
11495 | case 5: u32EffAddr = pCtx->ebp; SET_SS_DEF(); break;
|
---|
11496 | case 6: u32EffAddr = pCtx->esi; break;
|
---|
11497 | case 7: u32EffAddr = pCtx->edi; break;
|
---|
11498 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11499 | }
|
---|
11500 |
|
---|
11501 | /* Get and add the displacement. */
|
---|
11502 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
11503 | {
|
---|
11504 | case 0:
|
---|
11505 | break;
|
---|
11506 | case 1:
|
---|
11507 | {
|
---|
11508 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
11509 | u32EffAddr += i8Disp;
|
---|
11510 | break;
|
---|
11511 | }
|
---|
11512 | case 2:
|
---|
11513 | {
|
---|
11514 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
11515 | u32EffAddr += u32Disp;
|
---|
11516 | break;
|
---|
11517 | }
|
---|
11518 | default:
|
---|
11519 | AssertFailedReturn(VERR_IEM_IPE_2); /* (caller checked for these) */
|
---|
11520 | }
|
---|
11521 |
|
---|
11522 | }
|
---|
11523 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
11524 | *pGCPtrEff = u32EffAddr;
|
---|
11525 | else
|
---|
11526 | {
|
---|
11527 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT);
|
---|
11528 | *pGCPtrEff = u32EffAddr & UINT16_MAX;
|
---|
11529 | }
|
---|
11530 | }
|
---|
11531 | }
|
---|
11532 | else
|
---|
11533 | {
|
---|
11534 | uint64_t u64EffAddr;
|
---|
11535 |
|
---|
11536 | /* Handle the rip+disp32 form with no registers first. */
|
---|
11537 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
11538 | {
|
---|
11539 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
11540 | u64EffAddr += pCtx->rip + IEM_GET_INSTR_LEN(pVCpu) + cbImm;
|
---|
11541 | }
|
---|
11542 | else
|
---|
11543 | {
|
---|
11544 | /* Get the register (or SIB) value. */
|
---|
11545 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
11546 | {
|
---|
11547 | case 0: u64EffAddr = pCtx->rax; break;
|
---|
11548 | case 1: u64EffAddr = pCtx->rcx; break;
|
---|
11549 | case 2: u64EffAddr = pCtx->rdx; break;
|
---|
11550 | case 3: u64EffAddr = pCtx->rbx; break;
|
---|
11551 | case 5: u64EffAddr = pCtx->rbp; SET_SS_DEF(); break;
|
---|
11552 | case 6: u64EffAddr = pCtx->rsi; break;
|
---|
11553 | case 7: u64EffAddr = pCtx->rdi; break;
|
---|
11554 | case 8: u64EffAddr = pCtx->r8; break;
|
---|
11555 | case 9: u64EffAddr = pCtx->r9; break;
|
---|
11556 | case 10: u64EffAddr = pCtx->r10; break;
|
---|
11557 | case 11: u64EffAddr = pCtx->r11; break;
|
---|
11558 | case 13: u64EffAddr = pCtx->r13; break;
|
---|
11559 | case 14: u64EffAddr = pCtx->r14; break;
|
---|
11560 | case 15: u64EffAddr = pCtx->r15; break;
|
---|
11561 | /* SIB */
|
---|
11562 | case 4:
|
---|
11563 | case 12:
|
---|
11564 | {
|
---|
11565 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
11566 |
|
---|
11567 | /* Get the index and scale it. */
|
---|
11568 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
11569 | {
|
---|
11570 | case 0: u64EffAddr = pCtx->rax; break;
|
---|
11571 | case 1: u64EffAddr = pCtx->rcx; break;
|
---|
11572 | case 2: u64EffAddr = pCtx->rdx; break;
|
---|
11573 | case 3: u64EffAddr = pCtx->rbx; break;
|
---|
11574 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
11575 | case 5: u64EffAddr = pCtx->rbp; break;
|
---|
11576 | case 6: u64EffAddr = pCtx->rsi; break;
|
---|
11577 | case 7: u64EffAddr = pCtx->rdi; break;
|
---|
11578 | case 8: u64EffAddr = pCtx->r8; break;
|
---|
11579 | case 9: u64EffAddr = pCtx->r9; break;
|
---|
11580 | case 10: u64EffAddr = pCtx->r10; break;
|
---|
11581 | case 11: u64EffAddr = pCtx->r11; break;
|
---|
11582 | case 12: u64EffAddr = pCtx->r12; break;
|
---|
11583 | case 13: u64EffAddr = pCtx->r13; break;
|
---|
11584 | case 14: u64EffAddr = pCtx->r14; break;
|
---|
11585 | case 15: u64EffAddr = pCtx->r15; break;
|
---|
11586 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11587 | }
|
---|
11588 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
11589 |
|
---|
11590 | /* add base */
|
---|
11591 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
11592 | {
|
---|
11593 | case 0: u64EffAddr += pCtx->rax; break;
|
---|
11594 | case 1: u64EffAddr += pCtx->rcx; break;
|
---|
11595 | case 2: u64EffAddr += pCtx->rdx; break;
|
---|
11596 | case 3: u64EffAddr += pCtx->rbx; break;
|
---|
11597 | case 4: u64EffAddr += pCtx->rsp; SET_SS_DEF(); break;
|
---|
11598 | case 6: u64EffAddr += pCtx->rsi; break;
|
---|
11599 | case 7: u64EffAddr += pCtx->rdi; break;
|
---|
11600 | case 8: u64EffAddr += pCtx->r8; break;
|
---|
11601 | case 9: u64EffAddr += pCtx->r9; break;
|
---|
11602 | case 10: u64EffAddr += pCtx->r10; break;
|
---|
11603 | case 11: u64EffAddr += pCtx->r11; break;
|
---|
11604 | case 12: u64EffAddr += pCtx->r12; break;
|
---|
11605 | case 14: u64EffAddr += pCtx->r14; break;
|
---|
11606 | case 15: u64EffAddr += pCtx->r15; break;
|
---|
11607 | /* complicated encodings */
|
---|
11608 | case 5:
|
---|
11609 | case 13:
|
---|
11610 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
11611 | {
|
---|
11612 | if (!pVCpu->iem.s.uRexB)
|
---|
11613 | {
|
---|
11614 | u64EffAddr += pCtx->rbp;
|
---|
11615 | SET_SS_DEF();
|
---|
11616 | }
|
---|
11617 | else
|
---|
11618 | u64EffAddr += pCtx->r13;
|
---|
11619 | }
|
---|
11620 | else
|
---|
11621 | {
|
---|
11622 | uint32_t u32Disp;
|
---|
11623 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
11624 | u64EffAddr += (int32_t)u32Disp;
|
---|
11625 | }
|
---|
11626 | break;
|
---|
11627 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11628 | }
|
---|
11629 | break;
|
---|
11630 | }
|
---|
11631 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11632 | }
|
---|
11633 |
|
---|
11634 | /* Get and add the displacement. */
|
---|
11635 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
11636 | {
|
---|
11637 | case 0:
|
---|
11638 | break;
|
---|
11639 | case 1:
|
---|
11640 | {
|
---|
11641 | int8_t i8Disp;
|
---|
11642 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
11643 | u64EffAddr += i8Disp;
|
---|
11644 | break;
|
---|
11645 | }
|
---|
11646 | case 2:
|
---|
11647 | {
|
---|
11648 | uint32_t u32Disp;
|
---|
11649 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
11650 | u64EffAddr += (int32_t)u32Disp;
|
---|
11651 | break;
|
---|
11652 | }
|
---|
11653 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* (caller checked for these) */
|
---|
11654 | }
|
---|
11655 |
|
---|
11656 | }
|
---|
11657 |
|
---|
11658 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
11659 | *pGCPtrEff = u64EffAddr;
|
---|
11660 | else
|
---|
11661 | {
|
---|
11662 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
11663 | *pGCPtrEff = u64EffAddr & UINT32_MAX;
|
---|
11664 | }
|
---|
11665 | }
|
---|
11666 |
|
---|
11667 | Log5(("iemOpHlpCalcRmEffAddr: EffAddr=%#010RGv\n", *pGCPtrEff));
|
---|
11668 | return VINF_SUCCESS;
|
---|
11669 | }
|
---|
11670 |
|
---|
11671 |
|
---|
11672 | /**
|
---|
11673 | * Calculates the effective address of a ModR/M memory operand.
|
---|
11674 | *
|
---|
11675 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
11676 | *
|
---|
11677 | * @return Strict VBox status code.
|
---|
11678 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
11679 | * @param bRm The ModRM byte.
|
---|
11680 | * @param cbImm The size of any immediate following the
|
---|
11681 | * effective address opcode bytes. Important for
|
---|
11682 | * RIP relative addressing.
|
---|
11683 | * @param pGCPtrEff Where to return the effective address.
|
---|
11684 | * @param offRsp RSP displacement.
|
---|
11685 | */
|
---|
11686 | IEM_STATIC VBOXSTRICTRC iemOpHlpCalcRmEffAddrEx(PVMCPU pVCpu, uint8_t bRm, uint8_t cbImm, PRTGCPTR pGCPtrEff, int8_t offRsp)
|
---|
11687 | {
|
---|
11688 | Log5(("iemOpHlpCalcRmEffAddr: bRm=%#x\n", bRm));
|
---|
11689 | PCCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
11690 | # define SET_SS_DEF() \
|
---|
11691 | do \
|
---|
11692 | { \
|
---|
11693 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
11694 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
11695 | } while (0)
|
---|
11696 |
|
---|
11697 | if (pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT)
|
---|
11698 | {
|
---|
11699 | /** @todo Check the effective address size crap! */
|
---|
11700 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
11701 | {
|
---|
11702 | uint16_t u16EffAddr;
|
---|
11703 |
|
---|
11704 | /* Handle the disp16 form with no registers first. */
|
---|
11705 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
11706 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
11707 | else
|
---|
11708 | {
|
---|
11709 | /* Get the displacment. */
|
---|
11710 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
11711 | {
|
---|
11712 | case 0: u16EffAddr = 0; break;
|
---|
11713 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
11714 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
11715 | default: AssertFailedReturn(VERR_IEM_IPE_1); /* (caller checked for these) */
|
---|
11716 | }
|
---|
11717 |
|
---|
11718 | /* Add the base and index registers to the disp. */
|
---|
11719 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
11720 | {
|
---|
11721 | case 0: u16EffAddr += pCtx->bx + pCtx->si; break;
|
---|
11722 | case 1: u16EffAddr += pCtx->bx + pCtx->di; break;
|
---|
11723 | case 2: u16EffAddr += pCtx->bp + pCtx->si; SET_SS_DEF(); break;
|
---|
11724 | case 3: u16EffAddr += pCtx->bp + pCtx->di; SET_SS_DEF(); break;
|
---|
11725 | case 4: u16EffAddr += pCtx->si; break;
|
---|
11726 | case 5: u16EffAddr += pCtx->di; break;
|
---|
11727 | case 6: u16EffAddr += pCtx->bp; SET_SS_DEF(); break;
|
---|
11728 | case 7: u16EffAddr += pCtx->bx; break;
|
---|
11729 | }
|
---|
11730 | }
|
---|
11731 |
|
---|
11732 | *pGCPtrEff = u16EffAddr;
|
---|
11733 | }
|
---|
11734 | else
|
---|
11735 | {
|
---|
11736 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
11737 | uint32_t u32EffAddr;
|
---|
11738 |
|
---|
11739 | /* Handle the disp32 form with no registers first. */
|
---|
11740 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
11741 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
11742 | else
|
---|
11743 | {
|
---|
11744 | /* Get the register (or SIB) value. */
|
---|
11745 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
11746 | {
|
---|
11747 | case 0: u32EffAddr = pCtx->eax; break;
|
---|
11748 | case 1: u32EffAddr = pCtx->ecx; break;
|
---|
11749 | case 2: u32EffAddr = pCtx->edx; break;
|
---|
11750 | case 3: u32EffAddr = pCtx->ebx; break;
|
---|
11751 | case 4: /* SIB */
|
---|
11752 | {
|
---|
11753 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
11754 |
|
---|
11755 | /* Get the index and scale it. */
|
---|
11756 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
11757 | {
|
---|
11758 | case 0: u32EffAddr = pCtx->eax; break;
|
---|
11759 | case 1: u32EffAddr = pCtx->ecx; break;
|
---|
11760 | case 2: u32EffAddr = pCtx->edx; break;
|
---|
11761 | case 3: u32EffAddr = pCtx->ebx; break;
|
---|
11762 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
11763 | case 5: u32EffAddr = pCtx->ebp; break;
|
---|
11764 | case 6: u32EffAddr = pCtx->esi; break;
|
---|
11765 | case 7: u32EffAddr = pCtx->edi; break;
|
---|
11766 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11767 | }
|
---|
11768 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
11769 |
|
---|
11770 | /* add base */
|
---|
11771 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
11772 | {
|
---|
11773 | case 0: u32EffAddr += pCtx->eax; break;
|
---|
11774 | case 1: u32EffAddr += pCtx->ecx; break;
|
---|
11775 | case 2: u32EffAddr += pCtx->edx; break;
|
---|
11776 | case 3: u32EffAddr += pCtx->ebx; break;
|
---|
11777 | case 4:
|
---|
11778 | u32EffAddr += pCtx->esp + offRsp;
|
---|
11779 | SET_SS_DEF();
|
---|
11780 | break;
|
---|
11781 | case 5:
|
---|
11782 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
11783 | {
|
---|
11784 | u32EffAddr += pCtx->ebp;
|
---|
11785 | SET_SS_DEF();
|
---|
11786 | }
|
---|
11787 | else
|
---|
11788 | {
|
---|
11789 | uint32_t u32Disp;
|
---|
11790 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
11791 | u32EffAddr += u32Disp;
|
---|
11792 | }
|
---|
11793 | break;
|
---|
11794 | case 6: u32EffAddr += pCtx->esi; break;
|
---|
11795 | case 7: u32EffAddr += pCtx->edi; break;
|
---|
11796 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11797 | }
|
---|
11798 | break;
|
---|
11799 | }
|
---|
11800 | case 5: u32EffAddr = pCtx->ebp; SET_SS_DEF(); break;
|
---|
11801 | case 6: u32EffAddr = pCtx->esi; break;
|
---|
11802 | case 7: u32EffAddr = pCtx->edi; break;
|
---|
11803 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11804 | }
|
---|
11805 |
|
---|
11806 | /* Get and add the displacement. */
|
---|
11807 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
11808 | {
|
---|
11809 | case 0:
|
---|
11810 | break;
|
---|
11811 | case 1:
|
---|
11812 | {
|
---|
11813 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
11814 | u32EffAddr += i8Disp;
|
---|
11815 | break;
|
---|
11816 | }
|
---|
11817 | case 2:
|
---|
11818 | {
|
---|
11819 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
11820 | u32EffAddr += u32Disp;
|
---|
11821 | break;
|
---|
11822 | }
|
---|
11823 | default:
|
---|
11824 | AssertFailedReturn(VERR_IEM_IPE_2); /* (caller checked for these) */
|
---|
11825 | }
|
---|
11826 |
|
---|
11827 | }
|
---|
11828 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
11829 | *pGCPtrEff = u32EffAddr;
|
---|
11830 | else
|
---|
11831 | {
|
---|
11832 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT);
|
---|
11833 | *pGCPtrEff = u32EffAddr & UINT16_MAX;
|
---|
11834 | }
|
---|
11835 | }
|
---|
11836 | }
|
---|
11837 | else
|
---|
11838 | {
|
---|
11839 | uint64_t u64EffAddr;
|
---|
11840 |
|
---|
11841 | /* Handle the rip+disp32 form with no registers first. */
|
---|
11842 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
11843 | {
|
---|
11844 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
11845 | u64EffAddr += pCtx->rip + IEM_GET_INSTR_LEN(pVCpu) + cbImm;
|
---|
11846 | }
|
---|
11847 | else
|
---|
11848 | {
|
---|
11849 | /* Get the register (or SIB) value. */
|
---|
11850 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
11851 | {
|
---|
11852 | case 0: u64EffAddr = pCtx->rax; break;
|
---|
11853 | case 1: u64EffAddr = pCtx->rcx; break;
|
---|
11854 | case 2: u64EffAddr = pCtx->rdx; break;
|
---|
11855 | case 3: u64EffAddr = pCtx->rbx; break;
|
---|
11856 | case 5: u64EffAddr = pCtx->rbp; SET_SS_DEF(); break;
|
---|
11857 | case 6: u64EffAddr = pCtx->rsi; break;
|
---|
11858 | case 7: u64EffAddr = pCtx->rdi; break;
|
---|
11859 | case 8: u64EffAddr = pCtx->r8; break;
|
---|
11860 | case 9: u64EffAddr = pCtx->r9; break;
|
---|
11861 | case 10: u64EffAddr = pCtx->r10; break;
|
---|
11862 | case 11: u64EffAddr = pCtx->r11; break;
|
---|
11863 | case 13: u64EffAddr = pCtx->r13; break;
|
---|
11864 | case 14: u64EffAddr = pCtx->r14; break;
|
---|
11865 | case 15: u64EffAddr = pCtx->r15; break;
|
---|
11866 | /* SIB */
|
---|
11867 | case 4:
|
---|
11868 | case 12:
|
---|
11869 | {
|
---|
11870 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
11871 |
|
---|
11872 | /* Get the index and scale it. */
|
---|
11873 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
11874 | {
|
---|
11875 | case 0: u64EffAddr = pCtx->rax; break;
|
---|
11876 | case 1: u64EffAddr = pCtx->rcx; break;
|
---|
11877 | case 2: u64EffAddr = pCtx->rdx; break;
|
---|
11878 | case 3: u64EffAddr = pCtx->rbx; break;
|
---|
11879 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
11880 | case 5: u64EffAddr = pCtx->rbp; break;
|
---|
11881 | case 6: u64EffAddr = pCtx->rsi; break;
|
---|
11882 | case 7: u64EffAddr = pCtx->rdi; break;
|
---|
11883 | case 8: u64EffAddr = pCtx->r8; break;
|
---|
11884 | case 9: u64EffAddr = pCtx->r9; break;
|
---|
11885 | case 10: u64EffAddr = pCtx->r10; break;
|
---|
11886 | case 11: u64EffAddr = pCtx->r11; break;
|
---|
11887 | case 12: u64EffAddr = pCtx->r12; break;
|
---|
11888 | case 13: u64EffAddr = pCtx->r13; break;
|
---|
11889 | case 14: u64EffAddr = pCtx->r14; break;
|
---|
11890 | case 15: u64EffAddr = pCtx->r15; break;
|
---|
11891 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11892 | }
|
---|
11893 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
11894 |
|
---|
11895 | /* add base */
|
---|
11896 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
11897 | {
|
---|
11898 | case 0: u64EffAddr += pCtx->rax; break;
|
---|
11899 | case 1: u64EffAddr += pCtx->rcx; break;
|
---|
11900 | case 2: u64EffAddr += pCtx->rdx; break;
|
---|
11901 | case 3: u64EffAddr += pCtx->rbx; break;
|
---|
11902 | case 4: u64EffAddr += pCtx->rsp + offRsp; SET_SS_DEF(); break;
|
---|
11903 | case 6: u64EffAddr += pCtx->rsi; break;
|
---|
11904 | case 7: u64EffAddr += pCtx->rdi; break;
|
---|
11905 | case 8: u64EffAddr += pCtx->r8; break;
|
---|
11906 | case 9: u64EffAddr += pCtx->r9; break;
|
---|
11907 | case 10: u64EffAddr += pCtx->r10; break;
|
---|
11908 | case 11: u64EffAddr += pCtx->r11; break;
|
---|
11909 | case 12: u64EffAddr += pCtx->r12; break;
|
---|
11910 | case 14: u64EffAddr += pCtx->r14; break;
|
---|
11911 | case 15: u64EffAddr += pCtx->r15; break;
|
---|
11912 | /* complicated encodings */
|
---|
11913 | case 5:
|
---|
11914 | case 13:
|
---|
11915 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
11916 | {
|
---|
11917 | if (!pVCpu->iem.s.uRexB)
|
---|
11918 | {
|
---|
11919 | u64EffAddr += pCtx->rbp;
|
---|
11920 | SET_SS_DEF();
|
---|
11921 | }
|
---|
11922 | else
|
---|
11923 | u64EffAddr += pCtx->r13;
|
---|
11924 | }
|
---|
11925 | else
|
---|
11926 | {
|
---|
11927 | uint32_t u32Disp;
|
---|
11928 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
11929 | u64EffAddr += (int32_t)u32Disp;
|
---|
11930 | }
|
---|
11931 | break;
|
---|
11932 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11933 | }
|
---|
11934 | break;
|
---|
11935 | }
|
---|
11936 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
11937 | }
|
---|
11938 |
|
---|
11939 | /* Get and add the displacement. */
|
---|
11940 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
11941 | {
|
---|
11942 | case 0:
|
---|
11943 | break;
|
---|
11944 | case 1:
|
---|
11945 | {
|
---|
11946 | int8_t i8Disp;
|
---|
11947 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
11948 | u64EffAddr += i8Disp;
|
---|
11949 | break;
|
---|
11950 | }
|
---|
11951 | case 2:
|
---|
11952 | {
|
---|
11953 | uint32_t u32Disp;
|
---|
11954 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
11955 | u64EffAddr += (int32_t)u32Disp;
|
---|
11956 | break;
|
---|
11957 | }
|
---|
11958 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* (caller checked for these) */
|
---|
11959 | }
|
---|
11960 |
|
---|
11961 | }
|
---|
11962 |
|
---|
11963 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
11964 | *pGCPtrEff = u64EffAddr;
|
---|
11965 | else
|
---|
11966 | {
|
---|
11967 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
11968 | *pGCPtrEff = u64EffAddr & UINT32_MAX;
|
---|
11969 | }
|
---|
11970 | }
|
---|
11971 |
|
---|
11972 | Log5(("iemOpHlpCalcRmEffAddr: EffAddr=%#010RGv\n", *pGCPtrEff));
|
---|
11973 | return VINF_SUCCESS;
|
---|
11974 | }
|
---|
11975 |
|
---|
11976 |
|
---|
11977 | #ifdef IEM_WITH_SETJMP
|
---|
11978 | /**
|
---|
11979 | * Calculates the effective address of a ModR/M memory operand.
|
---|
11980 | *
|
---|
11981 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
11982 | *
|
---|
11983 | * May longjmp on internal error.
|
---|
11984 | *
|
---|
11985 | * @return The effective address.
|
---|
11986 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
11987 | * @param bRm The ModRM byte.
|
---|
11988 | * @param cbImm The size of any immediate following the
|
---|
11989 | * effective address opcode bytes. Important for
|
---|
11990 | * RIP relative addressing.
|
---|
11991 | */
|
---|
11992 | IEM_STATIC RTGCPTR iemOpHlpCalcRmEffAddrJmp(PVMCPU pVCpu, uint8_t bRm, uint8_t cbImm)
|
---|
11993 | {
|
---|
11994 | Log5(("iemOpHlpCalcRmEffAddrJmp: bRm=%#x\n", bRm));
|
---|
11995 | PCCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
11996 | # define SET_SS_DEF() \
|
---|
11997 | do \
|
---|
11998 | { \
|
---|
11999 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
12000 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
12001 | } while (0)
|
---|
12002 |
|
---|
12003 | if (pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT)
|
---|
12004 | {
|
---|
12005 | /** @todo Check the effective address size crap! */
|
---|
12006 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
12007 | {
|
---|
12008 | uint16_t u16EffAddr;
|
---|
12009 |
|
---|
12010 | /* Handle the disp16 form with no registers first. */
|
---|
12011 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
12012 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
12013 | else
|
---|
12014 | {
|
---|
12015 | /* Get the displacment. */
|
---|
12016 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
12017 | {
|
---|
12018 | case 0: u16EffAddr = 0; break;
|
---|
12019 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
12020 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
12021 | default: AssertFailedStmt(longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), VERR_IEM_IPE_1)); /* (caller checked for these) */
|
---|
12022 | }
|
---|
12023 |
|
---|
12024 | /* Add the base and index registers to the disp. */
|
---|
12025 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
12026 | {
|
---|
12027 | case 0: u16EffAddr += pCtx->bx + pCtx->si; break;
|
---|
12028 | case 1: u16EffAddr += pCtx->bx + pCtx->di; break;
|
---|
12029 | case 2: u16EffAddr += pCtx->bp + pCtx->si; SET_SS_DEF(); break;
|
---|
12030 | case 3: u16EffAddr += pCtx->bp + pCtx->di; SET_SS_DEF(); break;
|
---|
12031 | case 4: u16EffAddr += pCtx->si; break;
|
---|
12032 | case 5: u16EffAddr += pCtx->di; break;
|
---|
12033 | case 6: u16EffAddr += pCtx->bp; SET_SS_DEF(); break;
|
---|
12034 | case 7: u16EffAddr += pCtx->bx; break;
|
---|
12035 | }
|
---|
12036 | }
|
---|
12037 |
|
---|
12038 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#06RX16\n", u16EffAddr));
|
---|
12039 | return u16EffAddr;
|
---|
12040 | }
|
---|
12041 |
|
---|
12042 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
12043 | uint32_t u32EffAddr;
|
---|
12044 |
|
---|
12045 | /* Handle the disp32 form with no registers first. */
|
---|
12046 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
12047 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
12048 | else
|
---|
12049 | {
|
---|
12050 | /* Get the register (or SIB) value. */
|
---|
12051 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
12052 | {
|
---|
12053 | case 0: u32EffAddr = pCtx->eax; break;
|
---|
12054 | case 1: u32EffAddr = pCtx->ecx; break;
|
---|
12055 | case 2: u32EffAddr = pCtx->edx; break;
|
---|
12056 | case 3: u32EffAddr = pCtx->ebx; break;
|
---|
12057 | case 4: /* SIB */
|
---|
12058 | {
|
---|
12059 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
12060 |
|
---|
12061 | /* Get the index and scale it. */
|
---|
12062 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
12063 | {
|
---|
12064 | case 0: u32EffAddr = pCtx->eax; break;
|
---|
12065 | case 1: u32EffAddr = pCtx->ecx; break;
|
---|
12066 | case 2: u32EffAddr = pCtx->edx; break;
|
---|
12067 | case 3: u32EffAddr = pCtx->ebx; break;
|
---|
12068 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
12069 | case 5: u32EffAddr = pCtx->ebp; break;
|
---|
12070 | case 6: u32EffAddr = pCtx->esi; break;
|
---|
12071 | case 7: u32EffAddr = pCtx->edi; break;
|
---|
12072 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
12073 | }
|
---|
12074 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
12075 |
|
---|
12076 | /* add base */
|
---|
12077 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
12078 | {
|
---|
12079 | case 0: u32EffAddr += pCtx->eax; break;
|
---|
12080 | case 1: u32EffAddr += pCtx->ecx; break;
|
---|
12081 | case 2: u32EffAddr += pCtx->edx; break;
|
---|
12082 | case 3: u32EffAddr += pCtx->ebx; break;
|
---|
12083 | case 4: u32EffAddr += pCtx->esp; SET_SS_DEF(); break;
|
---|
12084 | case 5:
|
---|
12085 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
12086 | {
|
---|
12087 | u32EffAddr += pCtx->ebp;
|
---|
12088 | SET_SS_DEF();
|
---|
12089 | }
|
---|
12090 | else
|
---|
12091 | {
|
---|
12092 | uint32_t u32Disp;
|
---|
12093 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
12094 | u32EffAddr += u32Disp;
|
---|
12095 | }
|
---|
12096 | break;
|
---|
12097 | case 6: u32EffAddr += pCtx->esi; break;
|
---|
12098 | case 7: u32EffAddr += pCtx->edi; break;
|
---|
12099 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
12100 | }
|
---|
12101 | break;
|
---|
12102 | }
|
---|
12103 | case 5: u32EffAddr = pCtx->ebp; SET_SS_DEF(); break;
|
---|
12104 | case 6: u32EffAddr = pCtx->esi; break;
|
---|
12105 | case 7: u32EffAddr = pCtx->edi; break;
|
---|
12106 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
12107 | }
|
---|
12108 |
|
---|
12109 | /* Get and add the displacement. */
|
---|
12110 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
12111 | {
|
---|
12112 | case 0:
|
---|
12113 | break;
|
---|
12114 | case 1:
|
---|
12115 | {
|
---|
12116 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
12117 | u32EffAddr += i8Disp;
|
---|
12118 | break;
|
---|
12119 | }
|
---|
12120 | case 2:
|
---|
12121 | {
|
---|
12122 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
12123 | u32EffAddr += u32Disp;
|
---|
12124 | break;
|
---|
12125 | }
|
---|
12126 | default:
|
---|
12127 | AssertFailedReturn(VERR_IEM_IPE_2); /* (caller checked for these) */
|
---|
12128 | }
|
---|
12129 | }
|
---|
12130 |
|
---|
12131 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
12132 | {
|
---|
12133 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RX32\n", u32EffAddr));
|
---|
12134 | return u32EffAddr;
|
---|
12135 | }
|
---|
12136 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT);
|
---|
12137 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#06RX32\n", u32EffAddr & UINT16_MAX));
|
---|
12138 | return u32EffAddr & UINT16_MAX;
|
---|
12139 | }
|
---|
12140 |
|
---|
12141 | uint64_t u64EffAddr;
|
---|
12142 |
|
---|
12143 | /* Handle the rip+disp32 form with no registers first. */
|
---|
12144 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
12145 | {
|
---|
12146 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
12147 | u64EffAddr += pCtx->rip + IEM_GET_INSTR_LEN(pVCpu) + cbImm;
|
---|
12148 | }
|
---|
12149 | else
|
---|
12150 | {
|
---|
12151 | /* Get the register (or SIB) value. */
|
---|
12152 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
12153 | {
|
---|
12154 | case 0: u64EffAddr = pCtx->rax; break;
|
---|
12155 | case 1: u64EffAddr = pCtx->rcx; break;
|
---|
12156 | case 2: u64EffAddr = pCtx->rdx; break;
|
---|
12157 | case 3: u64EffAddr = pCtx->rbx; break;
|
---|
12158 | case 5: u64EffAddr = pCtx->rbp; SET_SS_DEF(); break;
|
---|
12159 | case 6: u64EffAddr = pCtx->rsi; break;
|
---|
12160 | case 7: u64EffAddr = pCtx->rdi; break;
|
---|
12161 | case 8: u64EffAddr = pCtx->r8; break;
|
---|
12162 | case 9: u64EffAddr = pCtx->r9; break;
|
---|
12163 | case 10: u64EffAddr = pCtx->r10; break;
|
---|
12164 | case 11: u64EffAddr = pCtx->r11; break;
|
---|
12165 | case 13: u64EffAddr = pCtx->r13; break;
|
---|
12166 | case 14: u64EffAddr = pCtx->r14; break;
|
---|
12167 | case 15: u64EffAddr = pCtx->r15; break;
|
---|
12168 | /* SIB */
|
---|
12169 | case 4:
|
---|
12170 | case 12:
|
---|
12171 | {
|
---|
12172 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
12173 |
|
---|
12174 | /* Get the index and scale it. */
|
---|
12175 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
12176 | {
|
---|
12177 | case 0: u64EffAddr = pCtx->rax; break;
|
---|
12178 | case 1: u64EffAddr = pCtx->rcx; break;
|
---|
12179 | case 2: u64EffAddr = pCtx->rdx; break;
|
---|
12180 | case 3: u64EffAddr = pCtx->rbx; break;
|
---|
12181 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
12182 | case 5: u64EffAddr = pCtx->rbp; break;
|
---|
12183 | case 6: u64EffAddr = pCtx->rsi; break;
|
---|
12184 | case 7: u64EffAddr = pCtx->rdi; break;
|
---|
12185 | case 8: u64EffAddr = pCtx->r8; break;
|
---|
12186 | case 9: u64EffAddr = pCtx->r9; break;
|
---|
12187 | case 10: u64EffAddr = pCtx->r10; break;
|
---|
12188 | case 11: u64EffAddr = pCtx->r11; break;
|
---|
12189 | case 12: u64EffAddr = pCtx->r12; break;
|
---|
12190 | case 13: u64EffAddr = pCtx->r13; break;
|
---|
12191 | case 14: u64EffAddr = pCtx->r14; break;
|
---|
12192 | case 15: u64EffAddr = pCtx->r15; break;
|
---|
12193 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
12194 | }
|
---|
12195 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
12196 |
|
---|
12197 | /* add base */
|
---|
12198 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
12199 | {
|
---|
12200 | case 0: u64EffAddr += pCtx->rax; break;
|
---|
12201 | case 1: u64EffAddr += pCtx->rcx; break;
|
---|
12202 | case 2: u64EffAddr += pCtx->rdx; break;
|
---|
12203 | case 3: u64EffAddr += pCtx->rbx; break;
|
---|
12204 | case 4: u64EffAddr += pCtx->rsp; SET_SS_DEF(); break;
|
---|
12205 | case 6: u64EffAddr += pCtx->rsi; break;
|
---|
12206 | case 7: u64EffAddr += pCtx->rdi; break;
|
---|
12207 | case 8: u64EffAddr += pCtx->r8; break;
|
---|
12208 | case 9: u64EffAddr += pCtx->r9; break;
|
---|
12209 | case 10: u64EffAddr += pCtx->r10; break;
|
---|
12210 | case 11: u64EffAddr += pCtx->r11; break;
|
---|
12211 | case 12: u64EffAddr += pCtx->r12; break;
|
---|
12212 | case 14: u64EffAddr += pCtx->r14; break;
|
---|
12213 | case 15: u64EffAddr += pCtx->r15; break;
|
---|
12214 | /* complicated encodings */
|
---|
12215 | case 5:
|
---|
12216 | case 13:
|
---|
12217 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
12218 | {
|
---|
12219 | if (!pVCpu->iem.s.uRexB)
|
---|
12220 | {
|
---|
12221 | u64EffAddr += pCtx->rbp;
|
---|
12222 | SET_SS_DEF();
|
---|
12223 | }
|
---|
12224 | else
|
---|
12225 | u64EffAddr += pCtx->r13;
|
---|
12226 | }
|
---|
12227 | else
|
---|
12228 | {
|
---|
12229 | uint32_t u32Disp;
|
---|
12230 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
12231 | u64EffAddr += (int32_t)u32Disp;
|
---|
12232 | }
|
---|
12233 | break;
|
---|
12234 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
12235 | }
|
---|
12236 | break;
|
---|
12237 | }
|
---|
12238 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
12239 | }
|
---|
12240 |
|
---|
12241 | /* Get and add the displacement. */
|
---|
12242 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
12243 | {
|
---|
12244 | case 0:
|
---|
12245 | break;
|
---|
12246 | case 1:
|
---|
12247 | {
|
---|
12248 | int8_t i8Disp;
|
---|
12249 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
12250 | u64EffAddr += i8Disp;
|
---|
12251 | break;
|
---|
12252 | }
|
---|
12253 | case 2:
|
---|
12254 | {
|
---|
12255 | uint32_t u32Disp;
|
---|
12256 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
12257 | u64EffAddr += (int32_t)u32Disp;
|
---|
12258 | break;
|
---|
12259 | }
|
---|
12260 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* (caller checked for these) */
|
---|
12261 | }
|
---|
12262 |
|
---|
12263 | }
|
---|
12264 |
|
---|
12265 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
12266 | {
|
---|
12267 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv\n", u64EffAddr));
|
---|
12268 | return u64EffAddr;
|
---|
12269 | }
|
---|
12270 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
12271 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv\n", u64EffAddr & UINT32_MAX));
|
---|
12272 | return u64EffAddr & UINT32_MAX;
|
---|
12273 | }
|
---|
12274 | #endif /* IEM_WITH_SETJMP */
|
---|
12275 |
|
---|
12276 |
|
---|
12277 | /** @} */
|
---|
12278 |
|
---|
12279 |
|
---|
12280 |
|
---|
12281 | /*
|
---|
12282 | * Include the instructions
|
---|
12283 | */
|
---|
12284 | #include "IEMAllInstructions.cpp.h"
|
---|
12285 |
|
---|
12286 |
|
---|
12287 |
|
---|
12288 |
|
---|
12289 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
12290 |
|
---|
12291 | /**
|
---|
12292 | * Sets up execution verification mode.
|
---|
12293 | */
|
---|
12294 | IEM_STATIC void iemExecVerificationModeSetup(PVMCPU pVCpu)
|
---|
12295 | {
|
---|
12296 | PVMCPU pVCpu = pVCpu;
|
---|
12297 | PCPUMCTX pOrgCtx = IEM_GET_CTX(pVCpu);
|
---|
12298 |
|
---|
12299 | /*
|
---|
12300 | * Always note down the address of the current instruction.
|
---|
12301 | */
|
---|
12302 | pVCpu->iem.s.uOldCs = pOrgCtx->cs.Sel;
|
---|
12303 | pVCpu->iem.s.uOldRip = pOrgCtx->rip;
|
---|
12304 |
|
---|
12305 | /*
|
---|
12306 | * Enable verification and/or logging.
|
---|
12307 | */
|
---|
12308 | bool fNewNoRem = !LogIs6Enabled(); /* logging triggers the no-rem/rem verification stuff */;
|
---|
12309 | if ( fNewNoRem
|
---|
12310 | && ( 0
|
---|
12311 | #if 0 /* auto enable on first paged protected mode interrupt */
|
---|
12312 | || ( pOrgCtx->eflags.Bits.u1IF
|
---|
12313 | && (pOrgCtx->cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG)
|
---|
12314 | && TRPMHasTrap(pVCpu)
|
---|
12315 | && EMGetInhibitInterruptsPC(pVCpu) != pOrgCtx->rip) )
|
---|
12316 | #endif
|
---|
12317 | #if 0
|
---|
12318 | || ( pOrgCtx->cs == 0x10
|
---|
12319 | && ( pOrgCtx->rip == 0x90119e3e
|
---|
12320 | || pOrgCtx->rip == 0x901d9810)
|
---|
12321 | #endif
|
---|
12322 | #if 0 /* Auto enable DSL - FPU stuff. */
|
---|
12323 | || ( pOrgCtx->cs == 0x10
|
---|
12324 | && (// pOrgCtx->rip == 0xc02ec07f
|
---|
12325 | //|| pOrgCtx->rip == 0xc02ec082
|
---|
12326 | //|| pOrgCtx->rip == 0xc02ec0c9
|
---|
12327 | 0
|
---|
12328 | || pOrgCtx->rip == 0x0c010e7c4 /* fxsave */ ) )
|
---|
12329 | #endif
|
---|
12330 | #if 0 /* Auto enable DSL - fstp st0 stuff. */
|
---|
12331 | || (pOrgCtx->cs.Sel == 0x23 pOrgCtx->rip == 0x804aff7)
|
---|
12332 | #endif
|
---|
12333 | #if 0
|
---|
12334 | || pOrgCtx->rip == 0x9022bb3a
|
---|
12335 | #endif
|
---|
12336 | #if 0
|
---|
12337 | || (pOrgCtx->cs.Sel == 0x58 && pOrgCtx->rip == 0x3be) /* NT4SP1 sidt/sgdt in early loader code */
|
---|
12338 | #endif
|
---|
12339 | #if 0
|
---|
12340 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013ec28) /* NT4SP1 first str (early boot) */
|
---|
12341 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x80119e3f) /* NT4SP1 second str (early boot) */
|
---|
12342 | #endif
|
---|
12343 | #if 0 /* NT4SP1 - later on the blue screen, things goes wrong... */
|
---|
12344 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8010a5df)
|
---|
12345 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013a7c4)
|
---|
12346 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013a7d2)
|
---|
12347 | #endif
|
---|
12348 | #if 0 /* NT4SP1 - xadd early boot. */
|
---|
12349 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8019cf0f)
|
---|
12350 | #endif
|
---|
12351 | #if 0 /* NT4SP1 - wrmsr (intel MSR). */
|
---|
12352 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8011a6d4)
|
---|
12353 | #endif
|
---|
12354 | #if 0 /* NT4SP1 - cmpxchg (AMD). */
|
---|
12355 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x801684c1)
|
---|
12356 | #endif
|
---|
12357 | #if 0 /* NT4SP1 - fnstsw + 2 (AMD). */
|
---|
12358 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x801c6b88+2)
|
---|
12359 | #endif
|
---|
12360 | #if 0 /* NT4SP1 - iret to v8086 -- too generic a place? (N/A with GAs installed) */
|
---|
12361 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013bd5d)
|
---|
12362 |
|
---|
12363 | #endif
|
---|
12364 | #if 0 /* NT4SP1 - iret to v8086 (executing edlin) */
|
---|
12365 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013b609)
|
---|
12366 |
|
---|
12367 | #endif
|
---|
12368 | #if 0 /* NT4SP1 - frstor [ecx] */
|
---|
12369 | || (pOrgCtx->cs.Sel == 8 && pOrgCtx->rip == 0x8013d11f)
|
---|
12370 | #endif
|
---|
12371 | #if 0 /* xxxxxx - All long mode code. */
|
---|
12372 | || (pOrgCtx->msrEFER & MSR_K6_EFER_LMA)
|
---|
12373 | #endif
|
---|
12374 | #if 0 /* rep movsq linux 3.7 64-bit boot. */
|
---|
12375 | || (pOrgCtx->rip == 0x0000000000100241)
|
---|
12376 | #endif
|
---|
12377 | #if 0 /* linux 3.7 64-bit boot - '000000000215e240'. */
|
---|
12378 | || (pOrgCtx->rip == 0x000000000215e240)
|
---|
12379 | #endif
|
---|
12380 | #if 0 /* DOS's size-overridden iret to v8086. */
|
---|
12381 | || (pOrgCtx->rip == 0x427 && pOrgCtx->cs.Sel == 0xb8)
|
---|
12382 | #endif
|
---|
12383 | )
|
---|
12384 | )
|
---|
12385 | {
|
---|
12386 | RTLogGroupSettings(NULL, "iem.eo.l6.l2");
|
---|
12387 | RTLogFlags(NULL, "enabled");
|
---|
12388 | fNewNoRem = false;
|
---|
12389 | }
|
---|
12390 | if (fNewNoRem != pVCpu->iem.s.fNoRem)
|
---|
12391 | {
|
---|
12392 | pVCpu->iem.s.fNoRem = fNewNoRem;
|
---|
12393 | if (!fNewNoRem)
|
---|
12394 | {
|
---|
12395 | LogAlways(("Enabling verification mode!\n"));
|
---|
12396 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
|
---|
12397 | }
|
---|
12398 | else
|
---|
12399 | LogAlways(("Disabling verification mode!\n"));
|
---|
12400 | }
|
---|
12401 |
|
---|
12402 | /*
|
---|
12403 | * Switch state.
|
---|
12404 | */
|
---|
12405 | if (IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
12406 | {
|
---|
12407 | static CPUMCTX s_DebugCtx; /* Ugly! */
|
---|
12408 |
|
---|
12409 | s_DebugCtx = *pOrgCtx;
|
---|
12410 | IEM_GET_CTX(pVCpu) = &s_DebugCtx;
|
---|
12411 | }
|
---|
12412 |
|
---|
12413 | /*
|
---|
12414 | * See if there is an interrupt pending in TRPM and inject it if we can.
|
---|
12415 | */
|
---|
12416 | pVCpu->iem.s.uInjectCpl = UINT8_MAX;
|
---|
12417 | if ( pOrgCtx->eflags.Bits.u1IF
|
---|
12418 | && TRPMHasTrap(pVCpu)
|
---|
12419 | && EMGetInhibitInterruptsPC(pVCpu) != pOrgCtx->rip)
|
---|
12420 | {
|
---|
12421 | uint8_t u8TrapNo;
|
---|
12422 | TRPMEVENT enmType;
|
---|
12423 | RTGCUINT uErrCode;
|
---|
12424 | RTGCPTR uCr2;
|
---|
12425 | int rc2 = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, NULL /* pu8InstLen */); AssertRC(rc2);
|
---|
12426 | IEMInjectTrap(pVCpu, u8TrapNo, enmType, (uint16_t)uErrCode, uCr2, 0 /* cbInstr */);
|
---|
12427 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
12428 | TRPMResetTrap(pVCpu);
|
---|
12429 | pVCpu->iem.s.uInjectCpl = pVCpu->iem.s.uCpl;
|
---|
12430 | }
|
---|
12431 |
|
---|
12432 | /*
|
---|
12433 | * Reset the counters.
|
---|
12434 | */
|
---|
12435 | pVCpu->iem.s.cIOReads = 0;
|
---|
12436 | pVCpu->iem.s.cIOWrites = 0;
|
---|
12437 | pVCpu->iem.s.fIgnoreRaxRdx = false;
|
---|
12438 | pVCpu->iem.s.fOverlappingMovs = false;
|
---|
12439 | pVCpu->iem.s.fProblematicMemory = false;
|
---|
12440 | pVCpu->iem.s.fUndefinedEFlags = 0;
|
---|
12441 |
|
---|
12442 | if (IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
12443 | {
|
---|
12444 | /*
|
---|
12445 | * Free all verification records.
|
---|
12446 | */
|
---|
12447 | PIEMVERIFYEVTREC pEvtRec = pVCpu->iem.s.pIemEvtRecHead;
|
---|
12448 | pVCpu->iem.s.pIemEvtRecHead = NULL;
|
---|
12449 | pVCpu->iem.s.ppIemEvtRecNext = &pVCpu->iem.s.pIemEvtRecHead;
|
---|
12450 | do
|
---|
12451 | {
|
---|
12452 | while (pEvtRec)
|
---|
12453 | {
|
---|
12454 | PIEMVERIFYEVTREC pNext = pEvtRec->pNext;
|
---|
12455 | pEvtRec->pNext = pVCpu->iem.s.pFreeEvtRec;
|
---|
12456 | pVCpu->iem.s.pFreeEvtRec = pEvtRec;
|
---|
12457 | pEvtRec = pNext;
|
---|
12458 | }
|
---|
12459 | pEvtRec = pVCpu->iem.s.pOtherEvtRecHead;
|
---|
12460 | pVCpu->iem.s.pOtherEvtRecHead = NULL;
|
---|
12461 | pVCpu->iem.s.ppOtherEvtRecNext = &pVCpu->iem.s.pOtherEvtRecHead;
|
---|
12462 | } while (pEvtRec);
|
---|
12463 | }
|
---|
12464 | }
|
---|
12465 |
|
---|
12466 |
|
---|
12467 | /**
|
---|
12468 | * Allocate an event record.
|
---|
12469 | * @returns Pointer to a record.
|
---|
12470 | */
|
---|
12471 | IEM_STATIC PIEMVERIFYEVTREC iemVerifyAllocRecord(PVMCPU pVCpu)
|
---|
12472 | {
|
---|
12473 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
12474 | return NULL;
|
---|
12475 |
|
---|
12476 | PIEMVERIFYEVTREC pEvtRec = pVCpu->iem.s.pFreeEvtRec;
|
---|
12477 | if (pEvtRec)
|
---|
12478 | pVCpu->iem.s.pFreeEvtRec = pEvtRec->pNext;
|
---|
12479 | else
|
---|
12480 | {
|
---|
12481 | if (!pVCpu->iem.s.ppIemEvtRecNext)
|
---|
12482 | return NULL; /* Too early (fake PCIBIOS), ignore notification. */
|
---|
12483 |
|
---|
12484 | pEvtRec = (PIEMVERIFYEVTREC)MMR3HeapAlloc(pVCpu->CTX_SUFF(pVM), MM_TAG_EM /* lazy bird*/, sizeof(*pEvtRec));
|
---|
12485 | if (!pEvtRec)
|
---|
12486 | return NULL;
|
---|
12487 | }
|
---|
12488 | pEvtRec->enmEvent = IEMVERIFYEVENT_INVALID;
|
---|
12489 | pEvtRec->pNext = NULL;
|
---|
12490 | return pEvtRec;
|
---|
12491 | }
|
---|
12492 |
|
---|
12493 |
|
---|
12494 | /**
|
---|
12495 | * IOMMMIORead notification.
|
---|
12496 | */
|
---|
12497 | VMM_INT_DECL(void) IEMNotifyMMIORead(PVM pVM, RTGCPHYS GCPhys, size_t cbValue)
|
---|
12498 | {
|
---|
12499 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
12500 | if (!pVCpu)
|
---|
12501 | return;
|
---|
12502 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
12503 | if (!pEvtRec)
|
---|
12504 | return;
|
---|
12505 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_READ;
|
---|
12506 | pEvtRec->u.RamRead.GCPhys = GCPhys;
|
---|
12507 | pEvtRec->u.RamRead.cb = (uint32_t)cbValue;
|
---|
12508 | pEvtRec->pNext = *pVCpu->iem.s.ppOtherEvtRecNext;
|
---|
12509 | *pVCpu->iem.s.ppOtherEvtRecNext = pEvtRec;
|
---|
12510 | }
|
---|
12511 |
|
---|
12512 |
|
---|
12513 | /**
|
---|
12514 | * IOMMMIOWrite notification.
|
---|
12515 | */
|
---|
12516 | VMM_INT_DECL(void) IEMNotifyMMIOWrite(PVM pVM, RTGCPHYS GCPhys, uint32_t u32Value, size_t cbValue)
|
---|
12517 | {
|
---|
12518 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
12519 | if (!pVCpu)
|
---|
12520 | return;
|
---|
12521 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
12522 | if (!pEvtRec)
|
---|
12523 | return;
|
---|
12524 | pEvtRec->enmEvent = IEMVERIFYEVENT_RAM_WRITE;
|
---|
12525 | pEvtRec->u.RamWrite.GCPhys = GCPhys;
|
---|
12526 | pEvtRec->u.RamWrite.cb = (uint32_t)cbValue;
|
---|
12527 | pEvtRec->u.RamWrite.ab[0] = RT_BYTE1(u32Value);
|
---|
12528 | pEvtRec->u.RamWrite.ab[1] = RT_BYTE2(u32Value);
|
---|
12529 | pEvtRec->u.RamWrite.ab[2] = RT_BYTE3(u32Value);
|
---|
12530 | pEvtRec->u.RamWrite.ab[3] = RT_BYTE4(u32Value);
|
---|
12531 | pEvtRec->pNext = *pVCpu->iem.s.ppOtherEvtRecNext;
|
---|
12532 | *pVCpu->iem.s.ppOtherEvtRecNext = pEvtRec;
|
---|
12533 | }
|
---|
12534 |
|
---|
12535 |
|
---|
12536 | /**
|
---|
12537 | * IOMIOPortRead notification.
|
---|
12538 | */
|
---|
12539 | VMM_INT_DECL(void) IEMNotifyIOPortRead(PVM pVM, RTIOPORT Port, size_t cbValue)
|
---|
12540 | {
|
---|
12541 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
12542 | if (!pVCpu)
|
---|
12543 | return;
|
---|
12544 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
12545 | if (!pEvtRec)
|
---|
12546 | return;
|
---|
12547 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_READ;
|
---|
12548 | pEvtRec->u.IOPortRead.Port = Port;
|
---|
12549 | pEvtRec->u.IOPortRead.cbValue = (uint8_t)cbValue;
|
---|
12550 | pEvtRec->pNext = *pVCpu->iem.s.ppOtherEvtRecNext;
|
---|
12551 | *pVCpu->iem.s.ppOtherEvtRecNext = pEvtRec;
|
---|
12552 | }
|
---|
12553 |
|
---|
12554 | /**
|
---|
12555 | * IOMIOPortWrite notification.
|
---|
12556 | */
|
---|
12557 | VMM_INT_DECL(void) IEMNotifyIOPortWrite(PVM pVM, RTIOPORT Port, uint32_t u32Value, size_t cbValue)
|
---|
12558 | {
|
---|
12559 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
12560 | if (!pVCpu)
|
---|
12561 | return;
|
---|
12562 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
12563 | if (!pEvtRec)
|
---|
12564 | return;
|
---|
12565 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_WRITE;
|
---|
12566 | pEvtRec->u.IOPortWrite.Port = Port;
|
---|
12567 | pEvtRec->u.IOPortWrite.cbValue = (uint8_t)cbValue;
|
---|
12568 | pEvtRec->u.IOPortWrite.u32Value = u32Value;
|
---|
12569 | pEvtRec->pNext = *pVCpu->iem.s.ppOtherEvtRecNext;
|
---|
12570 | *pVCpu->iem.s.ppOtherEvtRecNext = pEvtRec;
|
---|
12571 | }
|
---|
12572 |
|
---|
12573 |
|
---|
12574 | VMM_INT_DECL(void) IEMNotifyIOPortReadString(PVM pVM, RTIOPORT Port, void *pvDst, RTGCUINTREG cTransfers, size_t cbValue)
|
---|
12575 | {
|
---|
12576 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
12577 | if (!pVCpu)
|
---|
12578 | return;
|
---|
12579 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
12580 | if (!pEvtRec)
|
---|
12581 | return;
|
---|
12582 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_STR_READ;
|
---|
12583 | pEvtRec->u.IOPortStrRead.Port = Port;
|
---|
12584 | pEvtRec->u.IOPortStrRead.cbValue = (uint8_t)cbValue;
|
---|
12585 | pEvtRec->u.IOPortStrRead.cTransfers = cTransfers;
|
---|
12586 | pEvtRec->pNext = *pVCpu->iem.s.ppOtherEvtRecNext;
|
---|
12587 | *pVCpu->iem.s.ppOtherEvtRecNext = pEvtRec;
|
---|
12588 | }
|
---|
12589 |
|
---|
12590 |
|
---|
12591 | VMM_INT_DECL(void) IEMNotifyIOPortWriteString(PVM pVM, RTIOPORT Port, void const *pvSrc, RTGCUINTREG cTransfers, size_t cbValue)
|
---|
12592 | {
|
---|
12593 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
12594 | if (!pVCpu)
|
---|
12595 | return;
|
---|
12596 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
12597 | if (!pEvtRec)
|
---|
12598 | return;
|
---|
12599 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_STR_WRITE;
|
---|
12600 | pEvtRec->u.IOPortStrWrite.Port = Port;
|
---|
12601 | pEvtRec->u.IOPortStrWrite.cbValue = (uint8_t)cbValue;
|
---|
12602 | pEvtRec->u.IOPortStrWrite.cTransfers = cTransfers;
|
---|
12603 | pEvtRec->pNext = *pVCpu->iem.s.ppOtherEvtRecNext;
|
---|
12604 | *pVCpu->iem.s.ppOtherEvtRecNext = pEvtRec;
|
---|
12605 | }
|
---|
12606 |
|
---|
12607 |
|
---|
12608 | /**
|
---|
12609 | * Fakes and records an I/O port read.
|
---|
12610 | *
|
---|
12611 | * @returns VINF_SUCCESS.
|
---|
12612 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
12613 | * @param Port The I/O port.
|
---|
12614 | * @param pu32Value Where to store the fake value.
|
---|
12615 | * @param cbValue The size of the access.
|
---|
12616 | */
|
---|
12617 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortRead(PVMCPU pVCpu, RTIOPORT Port, uint32_t *pu32Value, size_t cbValue)
|
---|
12618 | {
|
---|
12619 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
12620 | if (pEvtRec)
|
---|
12621 | {
|
---|
12622 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_READ;
|
---|
12623 | pEvtRec->u.IOPortRead.Port = Port;
|
---|
12624 | pEvtRec->u.IOPortRead.cbValue = (uint8_t)cbValue;
|
---|
12625 | pEvtRec->pNext = *pVCpu->iem.s.ppIemEvtRecNext;
|
---|
12626 | *pVCpu->iem.s.ppIemEvtRecNext = pEvtRec;
|
---|
12627 | }
|
---|
12628 | pVCpu->iem.s.cIOReads++;
|
---|
12629 | *pu32Value = 0xcccccccc;
|
---|
12630 | return VINF_SUCCESS;
|
---|
12631 | }
|
---|
12632 |
|
---|
12633 |
|
---|
12634 | /**
|
---|
12635 | * Fakes and records an I/O port write.
|
---|
12636 | *
|
---|
12637 | * @returns VINF_SUCCESS.
|
---|
12638 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
12639 | * @param Port The I/O port.
|
---|
12640 | * @param u32Value The value being written.
|
---|
12641 | * @param cbValue The size of the access.
|
---|
12642 | */
|
---|
12643 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortWrite(PVMCPU pVCpu, RTIOPORT Port, uint32_t u32Value, size_t cbValue)
|
---|
12644 | {
|
---|
12645 | PIEMVERIFYEVTREC pEvtRec = iemVerifyAllocRecord(pVCpu);
|
---|
12646 | if (pEvtRec)
|
---|
12647 | {
|
---|
12648 | pEvtRec->enmEvent = IEMVERIFYEVENT_IOPORT_WRITE;
|
---|
12649 | pEvtRec->u.IOPortWrite.Port = Port;
|
---|
12650 | pEvtRec->u.IOPortWrite.cbValue = (uint8_t)cbValue;
|
---|
12651 | pEvtRec->u.IOPortWrite.u32Value = u32Value;
|
---|
12652 | pEvtRec->pNext = *pVCpu->iem.s.ppIemEvtRecNext;
|
---|
12653 | *pVCpu->iem.s.ppIemEvtRecNext = pEvtRec;
|
---|
12654 | }
|
---|
12655 | pVCpu->iem.s.cIOWrites++;
|
---|
12656 | return VINF_SUCCESS;
|
---|
12657 | }
|
---|
12658 |
|
---|
12659 |
|
---|
12660 | /**
|
---|
12661 | * Used to add extra details about a stub case.
|
---|
12662 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
12663 | */
|
---|
12664 | IEM_STATIC void iemVerifyAssertMsg2(PVMCPU pVCpu)
|
---|
12665 | {
|
---|
12666 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
12667 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
12668 | PVMCPU pVCpu = pVCpu;
|
---|
12669 | char szRegs[4096];
|
---|
12670 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
12671 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
12672 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
12673 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
12674 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
12675 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
12676 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
12677 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
12678 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
12679 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
12680 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
12681 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
12682 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
12683 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
12684 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
12685 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
12686 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
12687 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
12688 | " efer=%016VR{efer}\n"
|
---|
12689 | " pat=%016VR{pat}\n"
|
---|
12690 | " sf_mask=%016VR{sf_mask}\n"
|
---|
12691 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
12692 | " lstar=%016VR{lstar}\n"
|
---|
12693 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
12694 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
12695 | );
|
---|
12696 |
|
---|
12697 | char szInstr1[256];
|
---|
12698 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pVCpu->iem.s.uOldCs, pVCpu->iem.s.uOldRip,
|
---|
12699 | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
12700 | szInstr1, sizeof(szInstr1), NULL);
|
---|
12701 | char szInstr2[256];
|
---|
12702 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
12703 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
12704 | szInstr2, sizeof(szInstr2), NULL);
|
---|
12705 |
|
---|
12706 | RTAssertMsg2Weak("%s%s\n%s\n", szRegs, szInstr1, szInstr2);
|
---|
12707 | }
|
---|
12708 |
|
---|
12709 |
|
---|
12710 | /**
|
---|
12711 | * Used by iemVerifyAssertRecord and iemVerifyAssertRecords to add a record
|
---|
12712 | * dump to the assertion info.
|
---|
12713 | *
|
---|
12714 | * @param pEvtRec The record to dump.
|
---|
12715 | */
|
---|
12716 | IEM_STATIC void iemVerifyAssertAddRecordDump(PIEMVERIFYEVTREC pEvtRec)
|
---|
12717 | {
|
---|
12718 | switch (pEvtRec->enmEvent)
|
---|
12719 | {
|
---|
12720 | case IEMVERIFYEVENT_IOPORT_READ:
|
---|
12721 | RTAssertMsg2Add("I/O PORT READ from %#6x, %d bytes\n",
|
---|
12722 | pEvtRec->u.IOPortWrite.Port,
|
---|
12723 | pEvtRec->u.IOPortWrite.cbValue);
|
---|
12724 | break;
|
---|
12725 | case IEMVERIFYEVENT_IOPORT_WRITE:
|
---|
12726 | RTAssertMsg2Add("I/O PORT WRITE to %#6x, %d bytes, value %#x\n",
|
---|
12727 | pEvtRec->u.IOPortWrite.Port,
|
---|
12728 | pEvtRec->u.IOPortWrite.cbValue,
|
---|
12729 | pEvtRec->u.IOPortWrite.u32Value);
|
---|
12730 | break;
|
---|
12731 | case IEMVERIFYEVENT_IOPORT_STR_READ:
|
---|
12732 | RTAssertMsg2Add("I/O PORT STRING READ from %#6x, %d bytes, %#x times\n",
|
---|
12733 | pEvtRec->u.IOPortStrWrite.Port,
|
---|
12734 | pEvtRec->u.IOPortStrWrite.cbValue,
|
---|
12735 | pEvtRec->u.IOPortStrWrite.cTransfers);
|
---|
12736 | break;
|
---|
12737 | case IEMVERIFYEVENT_IOPORT_STR_WRITE:
|
---|
12738 | RTAssertMsg2Add("I/O PORT STRING WRITE to %#6x, %d bytes, %#x times\n",
|
---|
12739 | pEvtRec->u.IOPortStrWrite.Port,
|
---|
12740 | pEvtRec->u.IOPortStrWrite.cbValue,
|
---|
12741 | pEvtRec->u.IOPortStrWrite.cTransfers);
|
---|
12742 | break;
|
---|
12743 | case IEMVERIFYEVENT_RAM_READ:
|
---|
12744 | RTAssertMsg2Add("RAM READ at %RGp, %#4zx bytes\n",
|
---|
12745 | pEvtRec->u.RamRead.GCPhys,
|
---|
12746 | pEvtRec->u.RamRead.cb);
|
---|
12747 | break;
|
---|
12748 | case IEMVERIFYEVENT_RAM_WRITE:
|
---|
12749 | RTAssertMsg2Add("RAM WRITE at %RGp, %#4zx bytes: %.*Rhxs\n",
|
---|
12750 | pEvtRec->u.RamWrite.GCPhys,
|
---|
12751 | pEvtRec->u.RamWrite.cb,
|
---|
12752 | (int)pEvtRec->u.RamWrite.cb,
|
---|
12753 | pEvtRec->u.RamWrite.ab);
|
---|
12754 | break;
|
---|
12755 | default:
|
---|
12756 | AssertMsgFailed(("Invalid event type %d\n", pEvtRec->enmEvent));
|
---|
12757 | break;
|
---|
12758 | }
|
---|
12759 | }
|
---|
12760 |
|
---|
12761 |
|
---|
12762 | /**
|
---|
12763 | * Raises an assertion on the specified record, showing the given message with
|
---|
12764 | * a record dump attached.
|
---|
12765 | *
|
---|
12766 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
12767 | * @param pEvtRec1 The first record.
|
---|
12768 | * @param pEvtRec2 The second record.
|
---|
12769 | * @param pszMsg The message explaining why we're asserting.
|
---|
12770 | */
|
---|
12771 | IEM_STATIC void iemVerifyAssertRecords(PVMCPU pVCpu, PIEMVERIFYEVTREC pEvtRec1, PIEMVERIFYEVTREC pEvtRec2, const char *pszMsg)
|
---|
12772 | {
|
---|
12773 | RTAssertMsg1(pszMsg, __LINE__, __FILE__, __PRETTY_FUNCTION__);
|
---|
12774 | iemVerifyAssertAddRecordDump(pEvtRec1);
|
---|
12775 | iemVerifyAssertAddRecordDump(pEvtRec2);
|
---|
12776 | iemVerifyAssertMsg2(pVCpu);
|
---|
12777 | RTAssertPanic();
|
---|
12778 | }
|
---|
12779 |
|
---|
12780 |
|
---|
12781 | /**
|
---|
12782 | * Raises an assertion on the specified record, showing the given message with
|
---|
12783 | * a record dump attached.
|
---|
12784 | *
|
---|
12785 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
12786 | * @param pEvtRec1 The first record.
|
---|
12787 | * @param pszMsg The message explaining why we're asserting.
|
---|
12788 | */
|
---|
12789 | IEM_STATIC void iemVerifyAssertRecord(PVMCPU pVCpu, PIEMVERIFYEVTREC pEvtRec, const char *pszMsg)
|
---|
12790 | {
|
---|
12791 | RTAssertMsg1(pszMsg, __LINE__, __FILE__, __PRETTY_FUNCTION__);
|
---|
12792 | iemVerifyAssertAddRecordDump(pEvtRec);
|
---|
12793 | iemVerifyAssertMsg2(pVCpu);
|
---|
12794 | RTAssertPanic();
|
---|
12795 | }
|
---|
12796 |
|
---|
12797 |
|
---|
12798 | /**
|
---|
12799 | * Verifies a write record.
|
---|
12800 | *
|
---|
12801 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
12802 | * @param pEvtRec The write record.
|
---|
12803 | * @param fRem Set if REM was doing the other executing. If clear
|
---|
12804 | * it was HM.
|
---|
12805 | */
|
---|
12806 | IEM_STATIC void iemVerifyWriteRecord(PVMCPU pVCpu, PIEMVERIFYEVTREC pEvtRec, bool fRem)
|
---|
12807 | {
|
---|
12808 | uint8_t abBuf[sizeof(pEvtRec->u.RamWrite.ab)]; RT_ZERO(abBuf);
|
---|
12809 | Assert(sizeof(abBuf) >= pEvtRec->u.RamWrite.cb);
|
---|
12810 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), abBuf, pEvtRec->u.RamWrite.GCPhys, pEvtRec->u.RamWrite.cb);
|
---|
12811 | if ( RT_FAILURE(rc)
|
---|
12812 | || memcmp(abBuf, pEvtRec->u.RamWrite.ab, pEvtRec->u.RamWrite.cb) )
|
---|
12813 | {
|
---|
12814 | /* fend off ins */
|
---|
12815 | if ( !pVCpu->iem.s.cIOReads
|
---|
12816 | || pEvtRec->u.RamWrite.ab[0] != 0xcc
|
---|
12817 | || ( pEvtRec->u.RamWrite.cb != 1
|
---|
12818 | && pEvtRec->u.RamWrite.cb != 2
|
---|
12819 | && pEvtRec->u.RamWrite.cb != 4) )
|
---|
12820 | {
|
---|
12821 | /* fend off ROMs and MMIO */
|
---|
12822 | if ( pEvtRec->u.RamWrite.GCPhys - UINT32_C(0x000a0000) > UINT32_C(0x60000)
|
---|
12823 | && pEvtRec->u.RamWrite.GCPhys - UINT32_C(0xfffc0000) > UINT32_C(0x40000) )
|
---|
12824 | {
|
---|
12825 | /* fend off fxsave */
|
---|
12826 | if (pEvtRec->u.RamWrite.cb != 512)
|
---|
12827 | {
|
---|
12828 | const char *pszWho = fRem ? "rem" : HMR3IsVmxEnabled(pVCpu->CTX_SUFF(pVM)->pUVM) ? "vmx" : "svm";
|
---|
12829 | RTAssertMsg1(NULL, __LINE__, __FILE__, __PRETTY_FUNCTION__);
|
---|
12830 | RTAssertMsg2Weak("Memory at %RGv differs\n", pEvtRec->u.RamWrite.GCPhys);
|
---|
12831 | RTAssertMsg2Add("%s: %.*Rhxs\n"
|
---|
12832 | "iem: %.*Rhxs\n",
|
---|
12833 | pszWho, pEvtRec->u.RamWrite.cb, abBuf,
|
---|
12834 | pEvtRec->u.RamWrite.cb, pEvtRec->u.RamWrite.ab);
|
---|
12835 | iemVerifyAssertAddRecordDump(pEvtRec);
|
---|
12836 | iemVerifyAssertMsg2(pVCpu);
|
---|
12837 | RTAssertPanic();
|
---|
12838 | }
|
---|
12839 | }
|
---|
12840 | }
|
---|
12841 | }
|
---|
12842 |
|
---|
12843 | }
|
---|
12844 |
|
---|
12845 | /**
|
---|
12846 | * Performs the post-execution verfication checks.
|
---|
12847 | */
|
---|
12848 | IEM_STATIC VBOXSTRICTRC iemExecVerificationModeCheck(PVMCPU pVCpu, VBOXSTRICTRC rcStrictIem)
|
---|
12849 | {
|
---|
12850 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
12851 | return rcStrictIem;
|
---|
12852 |
|
---|
12853 | /*
|
---|
12854 | * Switch back the state.
|
---|
12855 | */
|
---|
12856 | PCPUMCTX pOrgCtx = CPUMQueryGuestCtxPtr(pVCpu);
|
---|
12857 | PCPUMCTX pDebugCtx = IEM_GET_CTX(pVCpu);
|
---|
12858 | Assert(pOrgCtx != pDebugCtx);
|
---|
12859 | IEM_GET_CTX(pVCpu) = pOrgCtx;
|
---|
12860 |
|
---|
12861 | /*
|
---|
12862 | * Execute the instruction in REM.
|
---|
12863 | */
|
---|
12864 | bool fRem = false;
|
---|
12865 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
12866 | PVMCPU pVCpu = pVCpu;
|
---|
12867 | VBOXSTRICTRC rc = VERR_EM_CANNOT_EXEC_GUEST;
|
---|
12868 | #ifdef IEM_VERIFICATION_MODE_FULL_HM
|
---|
12869 | if ( HMIsEnabled(pVM)
|
---|
12870 | && pVCpu->iem.s.cIOReads == 0
|
---|
12871 | && pVCpu->iem.s.cIOWrites == 0
|
---|
12872 | && !pVCpu->iem.s.fProblematicMemory)
|
---|
12873 | {
|
---|
12874 | uint64_t uStartRip = pOrgCtx->rip;
|
---|
12875 | unsigned iLoops = 0;
|
---|
12876 | do
|
---|
12877 | {
|
---|
12878 | rc = EMR3HmSingleInstruction(pVM, pVCpu, EM_ONE_INS_FLAGS_RIP_CHANGE);
|
---|
12879 | iLoops++;
|
---|
12880 | } while ( rc == VINF_SUCCESS
|
---|
12881 | || ( rc == VINF_EM_DBG_STEPPED
|
---|
12882 | && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
12883 | && EMGetInhibitInterruptsPC(pVCpu) == pOrgCtx->rip)
|
---|
12884 | || ( pOrgCtx->rip != pDebugCtx->rip
|
---|
12885 | && pVCpu->iem.s.uInjectCpl != UINT8_MAX
|
---|
12886 | && iLoops < 8) );
|
---|
12887 | if (rc == VINF_EM_RESCHEDULE && pOrgCtx->rip != uStartRip)
|
---|
12888 | rc = VINF_SUCCESS;
|
---|
12889 | }
|
---|
12890 | #endif
|
---|
12891 | if ( rc == VERR_EM_CANNOT_EXEC_GUEST
|
---|
12892 | || rc == VINF_IOM_R3_IOPORT_READ
|
---|
12893 | || rc == VINF_IOM_R3_IOPORT_WRITE
|
---|
12894 | || rc == VINF_IOM_R3_MMIO_READ
|
---|
12895 | || rc == VINF_IOM_R3_MMIO_READ_WRITE
|
---|
12896 | || rc == VINF_IOM_R3_MMIO_WRITE
|
---|
12897 | || rc == VINF_CPUM_R3_MSR_READ
|
---|
12898 | || rc == VINF_CPUM_R3_MSR_WRITE
|
---|
12899 | || rc == VINF_EM_RESCHEDULE
|
---|
12900 | )
|
---|
12901 | {
|
---|
12902 | EMRemLock(pVM);
|
---|
12903 | rc = REMR3EmulateInstruction(pVM, pVCpu);
|
---|
12904 | AssertRC(rc);
|
---|
12905 | EMRemUnlock(pVM);
|
---|
12906 | fRem = true;
|
---|
12907 | }
|
---|
12908 |
|
---|
12909 | # if 1 /* Skip unimplemented instructions for now. */
|
---|
12910 | if (rcStrictIem == VERR_IEM_INSTR_NOT_IMPLEMENTED)
|
---|
12911 | {
|
---|
12912 | IEM_GET_CTX(pVCpu) = pOrgCtx;
|
---|
12913 | if (rc == VINF_EM_DBG_STEPPED)
|
---|
12914 | return VINF_SUCCESS;
|
---|
12915 | return rc;
|
---|
12916 | }
|
---|
12917 | # endif
|
---|
12918 |
|
---|
12919 | /*
|
---|
12920 | * Compare the register states.
|
---|
12921 | */
|
---|
12922 | unsigned cDiffs = 0;
|
---|
12923 | if (memcmp(pOrgCtx, pDebugCtx, sizeof(*pDebugCtx)))
|
---|
12924 | {
|
---|
12925 | //Log(("REM and IEM ends up with different registers!\n"));
|
---|
12926 | const char *pszWho = fRem ? "rem" : HMR3IsVmxEnabled(pVM->pUVM) ? "vmx" : "svm";
|
---|
12927 |
|
---|
12928 | # define CHECK_FIELD(a_Field) \
|
---|
12929 | do \
|
---|
12930 | { \
|
---|
12931 | if (pOrgCtx->a_Field != pDebugCtx->a_Field) \
|
---|
12932 | { \
|
---|
12933 | switch (sizeof(pOrgCtx->a_Field)) \
|
---|
12934 | { \
|
---|
12935 | case 1: RTAssertMsg2Weak(" %8s differs - iem=%02x - %s=%02x\n", #a_Field, pDebugCtx->a_Field, pszWho, pOrgCtx->a_Field); break; \
|
---|
12936 | case 2: RTAssertMsg2Weak(" %8s differs - iem=%04x - %s=%04x\n", #a_Field, pDebugCtx->a_Field, pszWho, pOrgCtx->a_Field); break; \
|
---|
12937 | case 4: RTAssertMsg2Weak(" %8s differs - iem=%08x - %s=%08x\n", #a_Field, pDebugCtx->a_Field, pszWho, pOrgCtx->a_Field); break; \
|
---|
12938 | case 8: RTAssertMsg2Weak(" %8s differs - iem=%016llx - %s=%016llx\n", #a_Field, pDebugCtx->a_Field, pszWho, pOrgCtx->a_Field); break; \
|
---|
12939 | default: RTAssertMsg2Weak(" %8s differs\n", #a_Field); break; \
|
---|
12940 | } \
|
---|
12941 | cDiffs++; \
|
---|
12942 | } \
|
---|
12943 | } while (0)
|
---|
12944 | # define CHECK_XSTATE_FIELD(a_Field) \
|
---|
12945 | do \
|
---|
12946 | { \
|
---|
12947 | if (pOrgXState->a_Field != pDebugXState->a_Field) \
|
---|
12948 | { \
|
---|
12949 | switch (sizeof(pOrgXState->a_Field)) \
|
---|
12950 | { \
|
---|
12951 | case 1: RTAssertMsg2Weak(" %8s differs - iem=%02x - %s=%02x\n", #a_Field, pDebugXState->a_Field, pszWho, pOrgXState->a_Field); break; \
|
---|
12952 | case 2: RTAssertMsg2Weak(" %8s differs - iem=%04x - %s=%04x\n", #a_Field, pDebugXState->a_Field, pszWho, pOrgXState->a_Field); break; \
|
---|
12953 | case 4: RTAssertMsg2Weak(" %8s differs - iem=%08x - %s=%08x\n", #a_Field, pDebugXState->a_Field, pszWho, pOrgXState->a_Field); break; \
|
---|
12954 | case 8: RTAssertMsg2Weak(" %8s differs - iem=%016llx - %s=%016llx\n", #a_Field, pDebugXState->a_Field, pszWho, pOrgXState->a_Field); break; \
|
---|
12955 | default: RTAssertMsg2Weak(" %8s differs\n", #a_Field); break; \
|
---|
12956 | } \
|
---|
12957 | cDiffs++; \
|
---|
12958 | } \
|
---|
12959 | } while (0)
|
---|
12960 |
|
---|
12961 | # define CHECK_BIT_FIELD(a_Field) \
|
---|
12962 | do \
|
---|
12963 | { \
|
---|
12964 | if (pOrgCtx->a_Field != pDebugCtx->a_Field) \
|
---|
12965 | { \
|
---|
12966 | RTAssertMsg2Weak(" %8s differs - iem=%02x - %s=%02x\n", #a_Field, pDebugCtx->a_Field, pszWho, pOrgCtx->a_Field); \
|
---|
12967 | cDiffs++; \
|
---|
12968 | } \
|
---|
12969 | } while (0)
|
---|
12970 |
|
---|
12971 | # define CHECK_SEL(a_Sel) \
|
---|
12972 | do \
|
---|
12973 | { \
|
---|
12974 | CHECK_FIELD(a_Sel.Sel); \
|
---|
12975 | CHECK_FIELD(a_Sel.Attr.u); \
|
---|
12976 | CHECK_FIELD(a_Sel.u64Base); \
|
---|
12977 | CHECK_FIELD(a_Sel.u32Limit); \
|
---|
12978 | CHECK_FIELD(a_Sel.fFlags); \
|
---|
12979 | } while (0)
|
---|
12980 |
|
---|
12981 | PX86XSAVEAREA pOrgXState = pOrgCtx->CTX_SUFF(pXState);
|
---|
12982 | PX86XSAVEAREA pDebugXState = pDebugCtx->CTX_SUFF(pXState);
|
---|
12983 |
|
---|
12984 | #if 1 /* The recompiler doesn't update these the intel way. */
|
---|
12985 | if (fRem)
|
---|
12986 | {
|
---|
12987 | pOrgXState->x87.FOP = pDebugXState->x87.FOP;
|
---|
12988 | pOrgXState->x87.FPUIP = pDebugXState->x87.FPUIP;
|
---|
12989 | pOrgXState->x87.CS = pDebugXState->x87.CS;
|
---|
12990 | pOrgXState->x87.Rsrvd1 = pDebugXState->x87.Rsrvd1;
|
---|
12991 | pOrgXState->x87.FPUDP = pDebugXState->x87.FPUDP;
|
---|
12992 | pOrgXState->x87.DS = pDebugXState->x87.DS;
|
---|
12993 | pOrgXState->x87.Rsrvd2 = pDebugXState->x87.Rsrvd2;
|
---|
12994 | //pOrgXState->x87.MXCSR_MASK = pDebugXState->x87.MXCSR_MASK;
|
---|
12995 | if ((pOrgXState->x87.FSW & X86_FSW_TOP_MASK) == (pDebugXState->x87.FSW & X86_FSW_TOP_MASK))
|
---|
12996 | pOrgXState->x87.FSW = pDebugXState->x87.FSW;
|
---|
12997 | }
|
---|
12998 | #endif
|
---|
12999 | if (memcmp(&pOrgXState->x87, &pDebugXState->x87, sizeof(pDebugXState->x87)))
|
---|
13000 | {
|
---|
13001 | RTAssertMsg2Weak(" the FPU state differs\n");
|
---|
13002 | cDiffs++;
|
---|
13003 | CHECK_XSTATE_FIELD(x87.FCW);
|
---|
13004 | CHECK_XSTATE_FIELD(x87.FSW);
|
---|
13005 | CHECK_XSTATE_FIELD(x87.FTW);
|
---|
13006 | CHECK_XSTATE_FIELD(x87.FOP);
|
---|
13007 | CHECK_XSTATE_FIELD(x87.FPUIP);
|
---|
13008 | CHECK_XSTATE_FIELD(x87.CS);
|
---|
13009 | CHECK_XSTATE_FIELD(x87.Rsrvd1);
|
---|
13010 | CHECK_XSTATE_FIELD(x87.FPUDP);
|
---|
13011 | CHECK_XSTATE_FIELD(x87.DS);
|
---|
13012 | CHECK_XSTATE_FIELD(x87.Rsrvd2);
|
---|
13013 | CHECK_XSTATE_FIELD(x87.MXCSR);
|
---|
13014 | CHECK_XSTATE_FIELD(x87.MXCSR_MASK);
|
---|
13015 | CHECK_XSTATE_FIELD(x87.aRegs[0].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[0].au64[1]);
|
---|
13016 | CHECK_XSTATE_FIELD(x87.aRegs[1].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[1].au64[1]);
|
---|
13017 | CHECK_XSTATE_FIELD(x87.aRegs[2].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[2].au64[1]);
|
---|
13018 | CHECK_XSTATE_FIELD(x87.aRegs[3].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[3].au64[1]);
|
---|
13019 | CHECK_XSTATE_FIELD(x87.aRegs[4].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[4].au64[1]);
|
---|
13020 | CHECK_XSTATE_FIELD(x87.aRegs[5].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[5].au64[1]);
|
---|
13021 | CHECK_XSTATE_FIELD(x87.aRegs[6].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[6].au64[1]);
|
---|
13022 | CHECK_XSTATE_FIELD(x87.aRegs[7].au64[0]); CHECK_XSTATE_FIELD(x87.aRegs[7].au64[1]);
|
---|
13023 | CHECK_XSTATE_FIELD(x87.aXMM[ 0].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 0].au64[1]);
|
---|
13024 | CHECK_XSTATE_FIELD(x87.aXMM[ 1].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 1].au64[1]);
|
---|
13025 | CHECK_XSTATE_FIELD(x87.aXMM[ 2].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 2].au64[1]);
|
---|
13026 | CHECK_XSTATE_FIELD(x87.aXMM[ 3].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 3].au64[1]);
|
---|
13027 | CHECK_XSTATE_FIELD(x87.aXMM[ 4].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 4].au64[1]);
|
---|
13028 | CHECK_XSTATE_FIELD(x87.aXMM[ 5].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 5].au64[1]);
|
---|
13029 | CHECK_XSTATE_FIELD(x87.aXMM[ 6].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 6].au64[1]);
|
---|
13030 | CHECK_XSTATE_FIELD(x87.aXMM[ 7].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 7].au64[1]);
|
---|
13031 | CHECK_XSTATE_FIELD(x87.aXMM[ 8].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 8].au64[1]);
|
---|
13032 | CHECK_XSTATE_FIELD(x87.aXMM[ 9].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[ 9].au64[1]);
|
---|
13033 | CHECK_XSTATE_FIELD(x87.aXMM[10].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[10].au64[1]);
|
---|
13034 | CHECK_XSTATE_FIELD(x87.aXMM[11].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[11].au64[1]);
|
---|
13035 | CHECK_XSTATE_FIELD(x87.aXMM[12].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[12].au64[1]);
|
---|
13036 | CHECK_XSTATE_FIELD(x87.aXMM[13].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[13].au64[1]);
|
---|
13037 | CHECK_XSTATE_FIELD(x87.aXMM[14].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[14].au64[1]);
|
---|
13038 | CHECK_XSTATE_FIELD(x87.aXMM[15].au64[0]); CHECK_XSTATE_FIELD(x87.aXMM[15].au64[1]);
|
---|
13039 | for (unsigned i = 0; i < RT_ELEMENTS(pOrgXState->x87.au32RsrvdRest); i++)
|
---|
13040 | CHECK_XSTATE_FIELD(x87.au32RsrvdRest[i]);
|
---|
13041 | }
|
---|
13042 | CHECK_FIELD(rip);
|
---|
13043 | uint32_t fFlagsMask = UINT32_MAX & ~pVCpu->iem.s.fUndefinedEFlags;
|
---|
13044 | if ((pOrgCtx->rflags.u & fFlagsMask) != (pDebugCtx->rflags.u & fFlagsMask))
|
---|
13045 | {
|
---|
13046 | RTAssertMsg2Weak(" rflags differs - iem=%08llx %s=%08llx\n", pDebugCtx->rflags.u, pszWho, pOrgCtx->rflags.u);
|
---|
13047 | CHECK_BIT_FIELD(rflags.Bits.u1CF);
|
---|
13048 | CHECK_BIT_FIELD(rflags.Bits.u1Reserved0);
|
---|
13049 | CHECK_BIT_FIELD(rflags.Bits.u1PF);
|
---|
13050 | CHECK_BIT_FIELD(rflags.Bits.u1Reserved1);
|
---|
13051 | CHECK_BIT_FIELD(rflags.Bits.u1AF);
|
---|
13052 | CHECK_BIT_FIELD(rflags.Bits.u1Reserved2);
|
---|
13053 | CHECK_BIT_FIELD(rflags.Bits.u1ZF);
|
---|
13054 | CHECK_BIT_FIELD(rflags.Bits.u1SF);
|
---|
13055 | CHECK_BIT_FIELD(rflags.Bits.u1TF);
|
---|
13056 | CHECK_BIT_FIELD(rflags.Bits.u1IF);
|
---|
13057 | CHECK_BIT_FIELD(rflags.Bits.u1DF);
|
---|
13058 | CHECK_BIT_FIELD(rflags.Bits.u1OF);
|
---|
13059 | CHECK_BIT_FIELD(rflags.Bits.u2IOPL);
|
---|
13060 | CHECK_BIT_FIELD(rflags.Bits.u1NT);
|
---|
13061 | CHECK_BIT_FIELD(rflags.Bits.u1Reserved3);
|
---|
13062 | if (0 && !fRem) /** @todo debug the occational clear RF flags when running against VT-x. */
|
---|
13063 | CHECK_BIT_FIELD(rflags.Bits.u1RF);
|
---|
13064 | CHECK_BIT_FIELD(rflags.Bits.u1VM);
|
---|
13065 | CHECK_BIT_FIELD(rflags.Bits.u1AC);
|
---|
13066 | CHECK_BIT_FIELD(rflags.Bits.u1VIF);
|
---|
13067 | CHECK_BIT_FIELD(rflags.Bits.u1VIP);
|
---|
13068 | CHECK_BIT_FIELD(rflags.Bits.u1ID);
|
---|
13069 | }
|
---|
13070 |
|
---|
13071 | if (pVCpu->iem.s.cIOReads != 1 && !pVCpu->iem.s.fIgnoreRaxRdx)
|
---|
13072 | CHECK_FIELD(rax);
|
---|
13073 | CHECK_FIELD(rcx);
|
---|
13074 | if (!pVCpu->iem.s.fIgnoreRaxRdx)
|
---|
13075 | CHECK_FIELD(rdx);
|
---|
13076 | CHECK_FIELD(rbx);
|
---|
13077 | CHECK_FIELD(rsp);
|
---|
13078 | CHECK_FIELD(rbp);
|
---|
13079 | CHECK_FIELD(rsi);
|
---|
13080 | CHECK_FIELD(rdi);
|
---|
13081 | CHECK_FIELD(r8);
|
---|
13082 | CHECK_FIELD(r9);
|
---|
13083 | CHECK_FIELD(r10);
|
---|
13084 | CHECK_FIELD(r11);
|
---|
13085 | CHECK_FIELD(r12);
|
---|
13086 | CHECK_FIELD(r13);
|
---|
13087 | CHECK_SEL(cs);
|
---|
13088 | CHECK_SEL(ss);
|
---|
13089 | CHECK_SEL(ds);
|
---|
13090 | CHECK_SEL(es);
|
---|
13091 | CHECK_SEL(fs);
|
---|
13092 | CHECK_SEL(gs);
|
---|
13093 | CHECK_FIELD(cr0);
|
---|
13094 |
|
---|
13095 | /* Klugde #1: REM fetches code and across the page boundrary and faults on the next page, while we execute
|
---|
13096 | the faulting instruction first: 001b:77f61ff3 66 8b 42 02 mov ax, word [edx+002h] (NT4SP1) */
|
---|
13097 | /* Kludge #2: CR2 differs slightly on cross page boundrary faults, we report the last address of the access
|
---|
13098 | while REM reports the address of the first byte on the page. Pending investigation as to which is correct. */
|
---|
13099 | if (pOrgCtx->cr2 != pDebugCtx->cr2)
|
---|
13100 | {
|
---|
13101 | if (pVCpu->iem.s.uOldCs == 0x1b && pVCpu->iem.s.uOldRip == 0x77f61ff3 && fRem)
|
---|
13102 | { /* ignore */ }
|
---|
13103 | else if ( (pOrgCtx->cr2 & ~(uint64_t)3) == (pDebugCtx->cr2 & ~(uint64_t)3)
|
---|
13104 | && (pOrgCtx->cr2 & PAGE_OFFSET_MASK) == 0
|
---|
13105 | && fRem)
|
---|
13106 | { /* ignore */ }
|
---|
13107 | else
|
---|
13108 | CHECK_FIELD(cr2);
|
---|
13109 | }
|
---|
13110 | CHECK_FIELD(cr3);
|
---|
13111 | CHECK_FIELD(cr4);
|
---|
13112 | CHECK_FIELD(dr[0]);
|
---|
13113 | CHECK_FIELD(dr[1]);
|
---|
13114 | CHECK_FIELD(dr[2]);
|
---|
13115 | CHECK_FIELD(dr[3]);
|
---|
13116 | CHECK_FIELD(dr[6]);
|
---|
13117 | if (!fRem || (pOrgCtx->dr[7] & ~X86_DR7_RA1_MASK) != (pDebugCtx->dr[7] & ~X86_DR7_RA1_MASK)) /* REM 'mov drX,greg' bug.*/
|
---|
13118 | CHECK_FIELD(dr[7]);
|
---|
13119 | CHECK_FIELD(gdtr.cbGdt);
|
---|
13120 | CHECK_FIELD(gdtr.pGdt);
|
---|
13121 | CHECK_FIELD(idtr.cbIdt);
|
---|
13122 | CHECK_FIELD(idtr.pIdt);
|
---|
13123 | CHECK_SEL(ldtr);
|
---|
13124 | CHECK_SEL(tr);
|
---|
13125 | CHECK_FIELD(SysEnter.cs);
|
---|
13126 | CHECK_FIELD(SysEnter.eip);
|
---|
13127 | CHECK_FIELD(SysEnter.esp);
|
---|
13128 | CHECK_FIELD(msrEFER);
|
---|
13129 | CHECK_FIELD(msrSTAR);
|
---|
13130 | CHECK_FIELD(msrPAT);
|
---|
13131 | CHECK_FIELD(msrLSTAR);
|
---|
13132 | CHECK_FIELD(msrCSTAR);
|
---|
13133 | CHECK_FIELD(msrSFMASK);
|
---|
13134 | CHECK_FIELD(msrKERNELGSBASE);
|
---|
13135 |
|
---|
13136 | if (cDiffs != 0)
|
---|
13137 | {
|
---|
13138 | DBGFR3InfoEx(pVM->pUVM, pVCpu->idCpu, "cpumguest", "verbose", NULL);
|
---|
13139 | RTAssertMsg1(NULL, __LINE__, __FILE__, __FUNCTION__);
|
---|
13140 | RTAssertPanic();
|
---|
13141 | static bool volatile s_fEnterDebugger = true;
|
---|
13142 | if (s_fEnterDebugger)
|
---|
13143 | DBGFSTOP(pVM);
|
---|
13144 |
|
---|
13145 | # if 1 /* Ignore unimplemented instructions for now. */
|
---|
13146 | if (rcStrictIem == VERR_IEM_INSTR_NOT_IMPLEMENTED)
|
---|
13147 | rcStrictIem = VINF_SUCCESS;
|
---|
13148 | # endif
|
---|
13149 | }
|
---|
13150 | # undef CHECK_FIELD
|
---|
13151 | # undef CHECK_BIT_FIELD
|
---|
13152 | }
|
---|
13153 |
|
---|
13154 | /*
|
---|
13155 | * If the register state compared fine, check the verification event
|
---|
13156 | * records.
|
---|
13157 | */
|
---|
13158 | if (cDiffs == 0 && !pVCpu->iem.s.fOverlappingMovs)
|
---|
13159 | {
|
---|
13160 | /*
|
---|
13161 | * Compare verficiation event records.
|
---|
13162 | * - I/O port accesses should be a 1:1 match.
|
---|
13163 | */
|
---|
13164 | PIEMVERIFYEVTREC pIemRec = pVCpu->iem.s.pIemEvtRecHead;
|
---|
13165 | PIEMVERIFYEVTREC pOtherRec = pVCpu->iem.s.pOtherEvtRecHead;
|
---|
13166 | while (pIemRec && pOtherRec)
|
---|
13167 | {
|
---|
13168 | /* Since we might miss RAM writes and reads, ignore reads and check
|
---|
13169 | that any written memory is the same extra ones. */
|
---|
13170 | while ( IEMVERIFYEVENT_IS_RAM(pIemRec->enmEvent)
|
---|
13171 | && !IEMVERIFYEVENT_IS_RAM(pOtherRec->enmEvent)
|
---|
13172 | && pIemRec->pNext)
|
---|
13173 | {
|
---|
13174 | if (pIemRec->enmEvent == IEMVERIFYEVENT_RAM_WRITE)
|
---|
13175 | iemVerifyWriteRecord(pVCpu, pIemRec, fRem);
|
---|
13176 | pIemRec = pIemRec->pNext;
|
---|
13177 | }
|
---|
13178 |
|
---|
13179 | /* Do the compare. */
|
---|
13180 | if (pIemRec->enmEvent != pOtherRec->enmEvent)
|
---|
13181 | {
|
---|
13182 | iemVerifyAssertRecords(pVCpu, pIemRec, pOtherRec, "Type mismatches");
|
---|
13183 | break;
|
---|
13184 | }
|
---|
13185 | bool fEquals;
|
---|
13186 | switch (pIemRec->enmEvent)
|
---|
13187 | {
|
---|
13188 | case IEMVERIFYEVENT_IOPORT_READ:
|
---|
13189 | fEquals = pIemRec->u.IOPortRead.Port == pOtherRec->u.IOPortRead.Port
|
---|
13190 | && pIemRec->u.IOPortRead.cbValue == pOtherRec->u.IOPortRead.cbValue;
|
---|
13191 | break;
|
---|
13192 | case IEMVERIFYEVENT_IOPORT_WRITE:
|
---|
13193 | fEquals = pIemRec->u.IOPortWrite.Port == pOtherRec->u.IOPortWrite.Port
|
---|
13194 | && pIemRec->u.IOPortWrite.cbValue == pOtherRec->u.IOPortWrite.cbValue
|
---|
13195 | && pIemRec->u.IOPortWrite.u32Value == pOtherRec->u.IOPortWrite.u32Value;
|
---|
13196 | break;
|
---|
13197 | case IEMVERIFYEVENT_IOPORT_STR_READ:
|
---|
13198 | fEquals = pIemRec->u.IOPortStrRead.Port == pOtherRec->u.IOPortStrRead.Port
|
---|
13199 | && pIemRec->u.IOPortStrRead.cbValue == pOtherRec->u.IOPortStrRead.cbValue
|
---|
13200 | && pIemRec->u.IOPortStrRead.cTransfers == pOtherRec->u.IOPortStrRead.cTransfers;
|
---|
13201 | break;
|
---|
13202 | case IEMVERIFYEVENT_IOPORT_STR_WRITE:
|
---|
13203 | fEquals = pIemRec->u.IOPortStrWrite.Port == pOtherRec->u.IOPortStrWrite.Port
|
---|
13204 | && pIemRec->u.IOPortStrWrite.cbValue == pOtherRec->u.IOPortStrWrite.cbValue
|
---|
13205 | && pIemRec->u.IOPortStrWrite.cTransfers == pOtherRec->u.IOPortStrWrite.cTransfers;
|
---|
13206 | break;
|
---|
13207 | case IEMVERIFYEVENT_RAM_READ:
|
---|
13208 | fEquals = pIemRec->u.RamRead.GCPhys == pOtherRec->u.RamRead.GCPhys
|
---|
13209 | && pIemRec->u.RamRead.cb == pOtherRec->u.RamRead.cb;
|
---|
13210 | break;
|
---|
13211 | case IEMVERIFYEVENT_RAM_WRITE:
|
---|
13212 | fEquals = pIemRec->u.RamWrite.GCPhys == pOtherRec->u.RamWrite.GCPhys
|
---|
13213 | && pIemRec->u.RamWrite.cb == pOtherRec->u.RamWrite.cb
|
---|
13214 | && !memcmp(pIemRec->u.RamWrite.ab, pOtherRec->u.RamWrite.ab, pIemRec->u.RamWrite.cb);
|
---|
13215 | break;
|
---|
13216 | default:
|
---|
13217 | fEquals = false;
|
---|
13218 | break;
|
---|
13219 | }
|
---|
13220 | if (!fEquals)
|
---|
13221 | {
|
---|
13222 | iemVerifyAssertRecords(pVCpu, pIemRec, pOtherRec, "Mismatch");
|
---|
13223 | break;
|
---|
13224 | }
|
---|
13225 |
|
---|
13226 | /* advance */
|
---|
13227 | pIemRec = pIemRec->pNext;
|
---|
13228 | pOtherRec = pOtherRec->pNext;
|
---|
13229 | }
|
---|
13230 |
|
---|
13231 | /* Ignore extra writes and reads. */
|
---|
13232 | while (pIemRec && IEMVERIFYEVENT_IS_RAM(pIemRec->enmEvent))
|
---|
13233 | {
|
---|
13234 | if (pIemRec->enmEvent == IEMVERIFYEVENT_RAM_WRITE)
|
---|
13235 | iemVerifyWriteRecord(pVCpu, pIemRec, fRem);
|
---|
13236 | pIemRec = pIemRec->pNext;
|
---|
13237 | }
|
---|
13238 | if (pIemRec != NULL)
|
---|
13239 | iemVerifyAssertRecord(pVCpu, pIemRec, "Extra IEM record!");
|
---|
13240 | else if (pOtherRec != NULL)
|
---|
13241 | iemVerifyAssertRecord(pVCpu, pOtherRec, "Extra Other record!");
|
---|
13242 | }
|
---|
13243 | IEM_GET_CTX(pVCpu) = pOrgCtx;
|
---|
13244 |
|
---|
13245 | return rcStrictIem;
|
---|
13246 | }
|
---|
13247 |
|
---|
13248 | #else /* !IEM_VERIFICATION_MODE_FULL || !IN_RING3 */
|
---|
13249 |
|
---|
13250 | /* stubs */
|
---|
13251 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortRead(PVMCPU pVCpu, RTIOPORT Port, uint32_t *pu32Value, size_t cbValue)
|
---|
13252 | {
|
---|
13253 | NOREF(pVCpu); NOREF(Port); NOREF(pu32Value); NOREF(cbValue);
|
---|
13254 | return VERR_INTERNAL_ERROR;
|
---|
13255 | }
|
---|
13256 |
|
---|
13257 | IEM_STATIC VBOXSTRICTRC iemVerifyFakeIOPortWrite(PVMCPU pVCpu, RTIOPORT Port, uint32_t u32Value, size_t cbValue)
|
---|
13258 | {
|
---|
13259 | NOREF(pVCpu); NOREF(Port); NOREF(u32Value); NOREF(cbValue);
|
---|
13260 | return VERR_INTERNAL_ERROR;
|
---|
13261 | }
|
---|
13262 |
|
---|
13263 | #endif /* !IEM_VERIFICATION_MODE_FULL || !IN_RING3 */
|
---|
13264 |
|
---|
13265 |
|
---|
13266 | #ifdef LOG_ENABLED
|
---|
13267 | /**
|
---|
13268 | * Logs the current instruction.
|
---|
13269 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
13270 | * @param pCtx The current CPU context.
|
---|
13271 | * @param fSameCtx Set if we have the same context information as the VMM,
|
---|
13272 | * clear if we may have already executed an instruction in
|
---|
13273 | * our debug context. When clear, we assume IEMCPU holds
|
---|
13274 | * valid CPU mode info.
|
---|
13275 | */
|
---|
13276 | IEM_STATIC void iemLogCurInstr(PVMCPU pVCpu, PCPUMCTX pCtx, bool fSameCtx)
|
---|
13277 | {
|
---|
13278 | # ifdef IN_RING3
|
---|
13279 | if (LogIs2Enabled())
|
---|
13280 | {
|
---|
13281 | char szInstr[256];
|
---|
13282 | uint32_t cbInstr = 0;
|
---|
13283 | if (fSameCtx)
|
---|
13284 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, 0, 0,
|
---|
13285 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
13286 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
13287 | else
|
---|
13288 | {
|
---|
13289 | uint32_t fFlags = 0;
|
---|
13290 | switch (pVCpu->iem.s.enmCpuMode)
|
---|
13291 | {
|
---|
13292 | case IEMMODE_64BIT: fFlags |= DBGF_DISAS_FLAGS_64BIT_MODE; break;
|
---|
13293 | case IEMMODE_32BIT: fFlags |= DBGF_DISAS_FLAGS_32BIT_MODE; break;
|
---|
13294 | case IEMMODE_16BIT:
|
---|
13295 | if (!(pCtx->cr0 & X86_CR0_PE) || pCtx->eflags.Bits.u1VM)
|
---|
13296 | fFlags |= DBGF_DISAS_FLAGS_16BIT_REAL_MODE;
|
---|
13297 | else
|
---|
13298 | fFlags |= DBGF_DISAS_FLAGS_16BIT_MODE;
|
---|
13299 | break;
|
---|
13300 | }
|
---|
13301 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, pCtx->cs.Sel, pCtx->rip, fFlags,
|
---|
13302 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
13303 | }
|
---|
13304 |
|
---|
13305 | PCX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
13306 | Log2(("****\n"
|
---|
13307 | " eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
|
---|
13308 | " eip=%08x esp=%08x ebp=%08x iopl=%d tr=%04x\n"
|
---|
13309 | " cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x efl=%08x\n"
|
---|
13310 | " fsw=%04x fcw=%04x ftw=%02x mxcsr=%04x/%04x\n"
|
---|
13311 | " %s\n"
|
---|
13312 | ,
|
---|
13313 | pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
|
---|
13314 | pCtx->eip, pCtx->esp, pCtx->ebp, pCtx->eflags.Bits.u2IOPL, pCtx->tr.Sel,
|
---|
13315 | pCtx->cs.Sel, pCtx->ss.Sel, pCtx->ds.Sel, pCtx->es.Sel,
|
---|
13316 | pCtx->fs.Sel, pCtx->gs.Sel, pCtx->eflags.u,
|
---|
13317 | pFpuCtx->FSW, pFpuCtx->FCW, pFpuCtx->FTW, pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK,
|
---|
13318 | szInstr));
|
---|
13319 |
|
---|
13320 | if (LogIs3Enabled())
|
---|
13321 | DBGFR3InfoEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, "cpumguest", "verbose", NULL);
|
---|
13322 | }
|
---|
13323 | else
|
---|
13324 | # endif
|
---|
13325 | LogFlow(("IEMExecOne: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x\n",
|
---|
13326 | pCtx->cs.Sel, pCtx->rip, pCtx->ss.Sel, pCtx->rsp, pCtx->eflags.u));
|
---|
13327 | }
|
---|
13328 | #endif
|
---|
13329 |
|
---|
13330 |
|
---|
13331 | /**
|
---|
13332 | * Makes status code addjustments (pass up from I/O and access handler)
|
---|
13333 | * as well as maintaining statistics.
|
---|
13334 | *
|
---|
13335 | * @returns Strict VBox status code to pass up.
|
---|
13336 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
13337 | * @param rcStrict The status from executing an instruction.
|
---|
13338 | */
|
---|
13339 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemExecStatusCodeFiddling(PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
|
---|
13340 | {
|
---|
13341 | if (rcStrict != VINF_SUCCESS)
|
---|
13342 | {
|
---|
13343 | if (RT_SUCCESS(rcStrict))
|
---|
13344 | {
|
---|
13345 | AssertMsg( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
|
---|
13346 | || rcStrict == VINF_IOM_R3_IOPORT_READ
|
---|
13347 | || rcStrict == VINF_IOM_R3_IOPORT_WRITE
|
---|
13348 | || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
|
---|
13349 | || rcStrict == VINF_IOM_R3_MMIO_READ
|
---|
13350 | || rcStrict == VINF_IOM_R3_MMIO_READ_WRITE
|
---|
13351 | || rcStrict == VINF_IOM_R3_MMIO_WRITE
|
---|
13352 | || rcStrict == VINF_IOM_R3_MMIO_COMMIT_WRITE
|
---|
13353 | || rcStrict == VINF_CPUM_R3_MSR_READ
|
---|
13354 | || rcStrict == VINF_CPUM_R3_MSR_WRITE
|
---|
13355 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR
|
---|
13356 | || rcStrict == VINF_EM_RAW_TO_R3
|
---|
13357 | || rcStrict == VINF_EM_RAW_EMULATE_IO_BLOCK
|
---|
13358 | /* raw-mode / virt handlers only: */
|
---|
13359 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT
|
---|
13360 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT
|
---|
13361 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT
|
---|
13362 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT
|
---|
13363 | || rcStrict == VINF_SELM_SYNC_GDT
|
---|
13364 | || rcStrict == VINF_CSAM_PENDING_ACTION
|
---|
13365 | || rcStrict == VINF_PATM_CHECK_PATCH_PAGE
|
---|
13366 | , ("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
13367 | /** @todo adjust for VINF_EM_RAW_EMULATE_INSTR */
|
---|
13368 | int32_t const rcPassUp = pVCpu->iem.s.rcPassUp;
|
---|
13369 | if (rcPassUp == VINF_SUCCESS)
|
---|
13370 | pVCpu->iem.s.cRetInfStatuses++;
|
---|
13371 | else if ( rcPassUp < VINF_EM_FIRST
|
---|
13372 | || rcPassUp > VINF_EM_LAST
|
---|
13373 | || rcPassUp < VBOXSTRICTRC_VAL(rcStrict))
|
---|
13374 | {
|
---|
13375 | Log(("IEM: rcPassUp=%Rrc! rcStrict=%Rrc\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
13376 | pVCpu->iem.s.cRetPassUpStatus++;
|
---|
13377 | rcStrict = rcPassUp;
|
---|
13378 | }
|
---|
13379 | else
|
---|
13380 | {
|
---|
13381 | Log(("IEM: rcPassUp=%Rrc rcStrict=%Rrc!\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
13382 | pVCpu->iem.s.cRetInfStatuses++;
|
---|
13383 | }
|
---|
13384 | }
|
---|
13385 | else if (rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED)
|
---|
13386 | pVCpu->iem.s.cRetAspectNotImplemented++;
|
---|
13387 | else if (rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED)
|
---|
13388 | pVCpu->iem.s.cRetInstrNotImplemented++;
|
---|
13389 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
13390 | else if (rcStrict == VERR_IEM_RESTART_INSTRUCTION)
|
---|
13391 | rcStrict = VINF_SUCCESS;
|
---|
13392 | #endif
|
---|
13393 | else
|
---|
13394 | pVCpu->iem.s.cRetErrStatuses++;
|
---|
13395 | }
|
---|
13396 | else if (pVCpu->iem.s.rcPassUp != VINF_SUCCESS)
|
---|
13397 | {
|
---|
13398 | pVCpu->iem.s.cRetPassUpStatus++;
|
---|
13399 | rcStrict = pVCpu->iem.s.rcPassUp;
|
---|
13400 | }
|
---|
13401 |
|
---|
13402 | return rcStrict;
|
---|
13403 | }
|
---|
13404 |
|
---|
13405 |
|
---|
13406 | /**
|
---|
13407 | * The actual code execution bits of IEMExecOne, IEMExecOneEx, and
|
---|
13408 | * IEMExecOneWithPrefetchedByPC.
|
---|
13409 | *
|
---|
13410 | * Similar code is found in IEMExecLots.
|
---|
13411 | *
|
---|
13412 | * @return Strict VBox status code.
|
---|
13413 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
13414 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
13415 | * @param fExecuteInhibit If set, execute the instruction following CLI,
|
---|
13416 | * POP SS and MOV SS,GR.
|
---|
13417 | */
|
---|
13418 | #ifdef __GNUC__
|
---|
13419 | DECLINLINE(VBOXSTRICTRC) iemExecOneInner(PVMCPU pVCpu, bool fExecuteInhibit)
|
---|
13420 | #else
|
---|
13421 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemExecOneInner(PVMCPU pVCpu, bool fExecuteInhibit)
|
---|
13422 | #endif
|
---|
13423 | {
|
---|
13424 | #ifdef IEM_WITH_SETJMP
|
---|
13425 | VBOXSTRICTRC rcStrict;
|
---|
13426 | jmp_buf JmpBuf;
|
---|
13427 | jmp_buf *pSavedJmpBuf = pVCpu->iem.s.CTX_SUFF(pJmpBuf);
|
---|
13428 | pVCpu->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf;
|
---|
13429 | if ((rcStrict = setjmp(JmpBuf)) == 0)
|
---|
13430 | {
|
---|
13431 | uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
|
---|
13432 | rcStrict = FNIEMOP_CALL(g_apfnOneByteMap[b]);
|
---|
13433 | }
|
---|
13434 | else
|
---|
13435 | pVCpu->iem.s.cLongJumps++;
|
---|
13436 | pVCpu->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf;
|
---|
13437 | #else
|
---|
13438 | uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
|
---|
13439 | VBOXSTRICTRC rcStrict = FNIEMOP_CALL(g_apfnOneByteMap[b]);
|
---|
13440 | #endif
|
---|
13441 | if (rcStrict == VINF_SUCCESS)
|
---|
13442 | pVCpu->iem.s.cInstructions++;
|
---|
13443 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
13444 | {
|
---|
13445 | Assert(rcStrict != VINF_SUCCESS);
|
---|
13446 | iemMemRollback(pVCpu);
|
---|
13447 | }
|
---|
13448 | //#ifdef DEBUG
|
---|
13449 | // AssertMsg(IEM_GET_INSTR_LEN(pVCpu) == cbInstr || rcStrict != VINF_SUCCESS, ("%u %u\n", IEM_GET_INSTR_LEN(pVCpu), cbInstr));
|
---|
13450 | //#endif
|
---|
13451 |
|
---|
13452 | /* Execute the next instruction as well if a cli, pop ss or
|
---|
13453 | mov ss, Gr has just completed successfully. */
|
---|
13454 | if ( fExecuteInhibit
|
---|
13455 | && rcStrict == VINF_SUCCESS
|
---|
13456 | && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
13457 | && EMGetInhibitInterruptsPC(pVCpu) == IEM_GET_CTX(pVCpu)->rip )
|
---|
13458 | {
|
---|
13459 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, pVCpu->iem.s.fBypassHandlers);
|
---|
13460 | if (rcStrict == VINF_SUCCESS)
|
---|
13461 | {
|
---|
13462 | #ifdef LOG_ENABLED
|
---|
13463 | iemLogCurInstr(pVCpu, IEM_GET_CTX(pVCpu), false);
|
---|
13464 | #endif
|
---|
13465 | #ifdef IEM_WITH_SETJMP
|
---|
13466 | pVCpu->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf;
|
---|
13467 | if ((rcStrict = setjmp(JmpBuf)) == 0)
|
---|
13468 | {
|
---|
13469 | uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
|
---|
13470 | rcStrict = FNIEMOP_CALL(g_apfnOneByteMap[b]);
|
---|
13471 | }
|
---|
13472 | else
|
---|
13473 | pVCpu->iem.s.cLongJumps++;
|
---|
13474 | pVCpu->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf;
|
---|
13475 | #else
|
---|
13476 | IEM_OPCODE_GET_NEXT_U8(&b);
|
---|
13477 | rcStrict = FNIEMOP_CALL(g_apfnOneByteMap[b]);
|
---|
13478 | #endif
|
---|
13479 | if (rcStrict == VINF_SUCCESS)
|
---|
13480 | pVCpu->iem.s.cInstructions++;
|
---|
13481 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
13482 | {
|
---|
13483 | Assert(rcStrict != VINF_SUCCESS);
|
---|
13484 | iemMemRollback(pVCpu);
|
---|
13485 | }
|
---|
13486 | }
|
---|
13487 | EMSetInhibitInterruptsPC(pVCpu, UINT64_C(0x7777555533331111));
|
---|
13488 | }
|
---|
13489 |
|
---|
13490 | /*
|
---|
13491 | * Return value fiddling, statistics and sanity assertions.
|
---|
13492 | */
|
---|
13493 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
13494 |
|
---|
13495 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->cs));
|
---|
13496 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->ss));
|
---|
13497 | #if defined(IEM_VERIFICATION_MODE_FULL)
|
---|
13498 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->es));
|
---|
13499 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->ds));
|
---|
13500 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->fs));
|
---|
13501 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->gs));
|
---|
13502 | #endif
|
---|
13503 | return rcStrict;
|
---|
13504 | }
|
---|
13505 |
|
---|
13506 |
|
---|
13507 | #ifdef IN_RC
|
---|
13508 | /**
|
---|
13509 | * Re-enters raw-mode or ensure we return to ring-3.
|
---|
13510 | *
|
---|
13511 | * @returns rcStrict, maybe modified.
|
---|
13512 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
13513 | * @param pCtx The current CPU context.
|
---|
13514 | * @param rcStrict The status code returne by the interpreter.
|
---|
13515 | */
|
---|
13516 | DECLINLINE(VBOXSTRICTRC) iemRCRawMaybeReenter(PVMCPU pVCpu, PCPUMCTX pCtx, VBOXSTRICTRC rcStrict)
|
---|
13517 | {
|
---|
13518 | if ( !pVCpu->iem.s.fInPatchCode
|
---|
13519 | && ( rcStrict == VINF_SUCCESS
|
---|
13520 | || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED /* pgmPoolAccessPfHandlerFlush */
|
---|
13521 | || rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED /* ditto */ ) )
|
---|
13522 | {
|
---|
13523 | if (pCtx->eflags.Bits.u1IF || rcStrict != VINF_SUCCESS)
|
---|
13524 | CPUMRawEnter(pVCpu);
|
---|
13525 | else
|
---|
13526 | {
|
---|
13527 | Log(("iemRCRawMaybeReenter: VINF_EM_RESCHEDULE\n"));
|
---|
13528 | rcStrict = VINF_EM_RESCHEDULE;
|
---|
13529 | }
|
---|
13530 | }
|
---|
13531 | return rcStrict;
|
---|
13532 | }
|
---|
13533 | #endif
|
---|
13534 |
|
---|
13535 |
|
---|
13536 | /**
|
---|
13537 | * Execute one instruction.
|
---|
13538 | *
|
---|
13539 | * @return Strict VBox status code.
|
---|
13540 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
13541 | */
|
---|
13542 | VMMDECL(VBOXSTRICTRC) IEMExecOne(PVMCPU pVCpu)
|
---|
13543 | {
|
---|
13544 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
13545 | if (++pVCpu->iem.s.cVerifyDepth == 1)
|
---|
13546 | iemExecVerificationModeSetup(pVCpu);
|
---|
13547 | #endif
|
---|
13548 | #ifdef LOG_ENABLED
|
---|
13549 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
13550 | iemLogCurInstr(pVCpu, pCtx, true);
|
---|
13551 | #endif
|
---|
13552 |
|
---|
13553 | /*
|
---|
13554 | * Do the decoding and emulation.
|
---|
13555 | */
|
---|
13556 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, false);
|
---|
13557 | if (rcStrict == VINF_SUCCESS)
|
---|
13558 | rcStrict = iemExecOneInner(pVCpu, true);
|
---|
13559 |
|
---|
13560 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
13561 | /*
|
---|
13562 | * Assert some sanity.
|
---|
13563 | */
|
---|
13564 | if (pVCpu->iem.s.cVerifyDepth == 1)
|
---|
13565 | rcStrict = iemExecVerificationModeCheck(pVCpu, rcStrict);
|
---|
13566 | pVCpu->iem.s.cVerifyDepth--;
|
---|
13567 | #endif
|
---|
13568 | #ifdef IN_RC
|
---|
13569 | rcStrict = iemRCRawMaybeReenter(pVCpu, IEM_GET_CTX(pVCpu), rcStrict);
|
---|
13570 | #endif
|
---|
13571 | if (rcStrict != VINF_SUCCESS)
|
---|
13572 | LogFlow(("IEMExecOne: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
13573 | pCtx->cs.Sel, pCtx->rip, pCtx->ss.Sel, pCtx->rsp, pCtx->eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
13574 | return rcStrict;
|
---|
13575 | }
|
---|
13576 |
|
---|
13577 |
|
---|
13578 | VMMDECL(VBOXSTRICTRC) IEMExecOneEx(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, uint32_t *pcbWritten)
|
---|
13579 | {
|
---|
13580 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
13581 | AssertReturn(CPUMCTX2CORE(pCtx) == pCtxCore, VERR_IEM_IPE_3);
|
---|
13582 |
|
---|
13583 | uint32_t const cbOldWritten = pVCpu->iem.s.cbWritten;
|
---|
13584 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, false);
|
---|
13585 | if (rcStrict == VINF_SUCCESS)
|
---|
13586 | {
|
---|
13587 | rcStrict = iemExecOneInner(pVCpu, true);
|
---|
13588 | if (pcbWritten)
|
---|
13589 | *pcbWritten = pVCpu->iem.s.cbWritten - cbOldWritten;
|
---|
13590 | }
|
---|
13591 |
|
---|
13592 | #ifdef IN_RC
|
---|
13593 | rcStrict = iemRCRawMaybeReenter(pVCpu, pCtx, rcStrict);
|
---|
13594 | #endif
|
---|
13595 | return rcStrict;
|
---|
13596 | }
|
---|
13597 |
|
---|
13598 |
|
---|
13599 | VMMDECL(VBOXSTRICTRC) IEMExecOneWithPrefetchedByPC(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, uint64_t OpcodeBytesPC,
|
---|
13600 | const void *pvOpcodeBytes, size_t cbOpcodeBytes)
|
---|
13601 | {
|
---|
13602 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
13603 | AssertReturn(CPUMCTX2CORE(pCtx) == pCtxCore, VERR_IEM_IPE_3);
|
---|
13604 |
|
---|
13605 | VBOXSTRICTRC rcStrict;
|
---|
13606 | if ( cbOpcodeBytes
|
---|
13607 | && pCtx->rip == OpcodeBytesPC)
|
---|
13608 | {
|
---|
13609 | iemInitDecoder(pVCpu, false);
|
---|
13610 | #ifdef IEM_WITH_CODE_TLB
|
---|
13611 | pVCpu->iem.s.uInstrBufPc = OpcodeBytesPC;
|
---|
13612 | pVCpu->iem.s.pbInstrBuf = (uint8_t const *)pvOpcodeBytes;
|
---|
13613 | pVCpu->iem.s.cbInstrBufTotal = (uint16_t)RT_MIN(X86_PAGE_SIZE, cbOpcodeBytes);
|
---|
13614 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
13615 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
13616 | #else
|
---|
13617 | pVCpu->iem.s.cbOpcode = (uint8_t)RT_MIN(cbOpcodeBytes, sizeof(pVCpu->iem.s.abOpcode));
|
---|
13618 | memcpy(pVCpu->iem.s.abOpcode, pvOpcodeBytes, pVCpu->iem.s.cbOpcode);
|
---|
13619 | #endif
|
---|
13620 | rcStrict = VINF_SUCCESS;
|
---|
13621 | }
|
---|
13622 | else
|
---|
13623 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, false);
|
---|
13624 | if (rcStrict == VINF_SUCCESS)
|
---|
13625 | {
|
---|
13626 | rcStrict = iemExecOneInner(pVCpu, true);
|
---|
13627 | }
|
---|
13628 |
|
---|
13629 | #ifdef IN_RC
|
---|
13630 | rcStrict = iemRCRawMaybeReenter(pVCpu, pCtx, rcStrict);
|
---|
13631 | #endif
|
---|
13632 | return rcStrict;
|
---|
13633 | }
|
---|
13634 |
|
---|
13635 |
|
---|
13636 | VMMDECL(VBOXSTRICTRC) IEMExecOneBypassEx(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, uint32_t *pcbWritten)
|
---|
13637 | {
|
---|
13638 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
13639 | AssertReturn(CPUMCTX2CORE(pCtx) == pCtxCore, VERR_IEM_IPE_3);
|
---|
13640 |
|
---|
13641 | uint32_t const cbOldWritten = pVCpu->iem.s.cbWritten;
|
---|
13642 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, true);
|
---|
13643 | if (rcStrict == VINF_SUCCESS)
|
---|
13644 | {
|
---|
13645 | rcStrict = iemExecOneInner(pVCpu, false);
|
---|
13646 | if (pcbWritten)
|
---|
13647 | *pcbWritten = pVCpu->iem.s.cbWritten - cbOldWritten;
|
---|
13648 | }
|
---|
13649 |
|
---|
13650 | #ifdef IN_RC
|
---|
13651 | rcStrict = iemRCRawMaybeReenter(pVCpu, pCtx, rcStrict);
|
---|
13652 | #endif
|
---|
13653 | return rcStrict;
|
---|
13654 | }
|
---|
13655 |
|
---|
13656 |
|
---|
13657 | VMMDECL(VBOXSTRICTRC) IEMExecOneBypassWithPrefetchedByPC(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, uint64_t OpcodeBytesPC,
|
---|
13658 | const void *pvOpcodeBytes, size_t cbOpcodeBytes)
|
---|
13659 | {
|
---|
13660 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
13661 | AssertReturn(CPUMCTX2CORE(pCtx) == pCtxCore, VERR_IEM_IPE_3);
|
---|
13662 |
|
---|
13663 | VBOXSTRICTRC rcStrict;
|
---|
13664 | if ( cbOpcodeBytes
|
---|
13665 | && pCtx->rip == OpcodeBytesPC)
|
---|
13666 | {
|
---|
13667 | iemInitDecoder(pVCpu, true);
|
---|
13668 | #ifdef IEM_WITH_CODE_TLB
|
---|
13669 | pVCpu->iem.s.uInstrBufPc = OpcodeBytesPC;
|
---|
13670 | pVCpu->iem.s.pbInstrBuf = (uint8_t const *)pvOpcodeBytes;
|
---|
13671 | pVCpu->iem.s.cbInstrBufTotal = (uint16_t)RT_MIN(X86_PAGE_SIZE, cbOpcodeBytes);
|
---|
13672 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
13673 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
13674 | #else
|
---|
13675 | pVCpu->iem.s.cbOpcode = (uint8_t)RT_MIN(cbOpcodeBytes, sizeof(pVCpu->iem.s.abOpcode));
|
---|
13676 | memcpy(pVCpu->iem.s.abOpcode, pvOpcodeBytes, pVCpu->iem.s.cbOpcode);
|
---|
13677 | #endif
|
---|
13678 | rcStrict = VINF_SUCCESS;
|
---|
13679 | }
|
---|
13680 | else
|
---|
13681 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, true);
|
---|
13682 | if (rcStrict == VINF_SUCCESS)
|
---|
13683 | rcStrict = iemExecOneInner(pVCpu, false);
|
---|
13684 |
|
---|
13685 | #ifdef IN_RC
|
---|
13686 | rcStrict = iemRCRawMaybeReenter(pVCpu, pCtx, rcStrict);
|
---|
13687 | #endif
|
---|
13688 | return rcStrict;
|
---|
13689 | }
|
---|
13690 |
|
---|
13691 |
|
---|
13692 | /**
|
---|
13693 | * For debugging DISGetParamSize, may come in handy.
|
---|
13694 | *
|
---|
13695 | * @returns Strict VBox status code.
|
---|
13696 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
13697 | * calling EMT.
|
---|
13698 | * @param pCtxCore The context core structure.
|
---|
13699 | * @param OpcodeBytesPC The PC of the opcode bytes.
|
---|
13700 | * @param pvOpcodeBytes Prefeched opcode bytes.
|
---|
13701 | * @param cbOpcodeBytes Number of prefetched bytes.
|
---|
13702 | * @param pcbWritten Where to return the number of bytes written.
|
---|
13703 | * Optional.
|
---|
13704 | */
|
---|
13705 | VMMDECL(VBOXSTRICTRC) IEMExecOneBypassWithPrefetchedByPCWritten(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, uint64_t OpcodeBytesPC,
|
---|
13706 | const void *pvOpcodeBytes, size_t cbOpcodeBytes,
|
---|
13707 | uint32_t *pcbWritten)
|
---|
13708 | {
|
---|
13709 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
13710 | AssertReturn(CPUMCTX2CORE(pCtx) == pCtxCore, VERR_IEM_IPE_3);
|
---|
13711 |
|
---|
13712 | uint32_t const cbOldWritten = pVCpu->iem.s.cbWritten;
|
---|
13713 | VBOXSTRICTRC rcStrict;
|
---|
13714 | if ( cbOpcodeBytes
|
---|
13715 | && pCtx->rip == OpcodeBytesPC)
|
---|
13716 | {
|
---|
13717 | iemInitDecoder(pVCpu, true);
|
---|
13718 | #ifdef IEM_WITH_CODE_TLB
|
---|
13719 | pVCpu->iem.s.uInstrBufPc = OpcodeBytesPC;
|
---|
13720 | pVCpu->iem.s.pbInstrBuf = (uint8_t const *)pvOpcodeBytes;
|
---|
13721 | pVCpu->iem.s.cbInstrBufTotal = (uint16_t)RT_MIN(X86_PAGE_SIZE, cbOpcodeBytes);
|
---|
13722 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
13723 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
13724 | #else
|
---|
13725 | pVCpu->iem.s.cbOpcode = (uint8_t)RT_MIN(cbOpcodeBytes, sizeof(pVCpu->iem.s.abOpcode));
|
---|
13726 | memcpy(pVCpu->iem.s.abOpcode, pvOpcodeBytes, pVCpu->iem.s.cbOpcode);
|
---|
13727 | #endif
|
---|
13728 | rcStrict = VINF_SUCCESS;
|
---|
13729 | }
|
---|
13730 | else
|
---|
13731 | rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, true);
|
---|
13732 | if (rcStrict == VINF_SUCCESS)
|
---|
13733 | {
|
---|
13734 | rcStrict = iemExecOneInner(pVCpu, false);
|
---|
13735 | if (pcbWritten)
|
---|
13736 | *pcbWritten = pVCpu->iem.s.cbWritten - cbOldWritten;
|
---|
13737 | }
|
---|
13738 |
|
---|
13739 | #ifdef IN_RC
|
---|
13740 | rcStrict = iemRCRawMaybeReenter(pVCpu, pCtx, rcStrict);
|
---|
13741 | #endif
|
---|
13742 | return rcStrict;
|
---|
13743 | }
|
---|
13744 |
|
---|
13745 |
|
---|
13746 | VMMDECL(VBOXSTRICTRC) IEMExecLots(PVMCPU pVCpu, uint32_t *pcInstructions)
|
---|
13747 | {
|
---|
13748 | uint32_t const cInstructionsAtStart = pVCpu->iem.s.cInstructions;
|
---|
13749 |
|
---|
13750 | #if defined(IEM_VERIFICATION_MODE_FULL) && defined(IN_RING3)
|
---|
13751 | /*
|
---|
13752 | * See if there is an interrupt pending in TRPM, inject it if we can.
|
---|
13753 | */
|
---|
13754 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
13755 | # ifdef IEM_VERIFICATION_MODE_FULL
|
---|
13756 | pVCpu->iem.s.uInjectCpl = UINT8_MAX;
|
---|
13757 | # endif
|
---|
13758 | if ( pCtx->eflags.Bits.u1IF
|
---|
13759 | && TRPMHasTrap(pVCpu)
|
---|
13760 | && EMGetInhibitInterruptsPC(pVCpu) != pCtx->rip)
|
---|
13761 | {
|
---|
13762 | uint8_t u8TrapNo;
|
---|
13763 | TRPMEVENT enmType;
|
---|
13764 | RTGCUINT uErrCode;
|
---|
13765 | RTGCPTR uCr2;
|
---|
13766 | int rc2 = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, NULL /* pu8InstLen */); AssertRC(rc2);
|
---|
13767 | IEMInjectTrap(pVCpu, u8TrapNo, enmType, (uint16_t)uErrCode, uCr2, 0 /* cbInstr */);
|
---|
13768 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
13769 | TRPMResetTrap(pVCpu);
|
---|
13770 | }
|
---|
13771 |
|
---|
13772 | /*
|
---|
13773 | * Log the state.
|
---|
13774 | */
|
---|
13775 | # ifdef LOG_ENABLED
|
---|
13776 | iemLogCurInstr(pVCpu, pCtx, true);
|
---|
13777 | # endif
|
---|
13778 |
|
---|
13779 | /*
|
---|
13780 | * Do the decoding and emulation.
|
---|
13781 | */
|
---|
13782 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, false);
|
---|
13783 | if (rcStrict == VINF_SUCCESS)
|
---|
13784 | rcStrict = iemExecOneInner(pVCpu, true);
|
---|
13785 |
|
---|
13786 | /*
|
---|
13787 | * Assert some sanity.
|
---|
13788 | */
|
---|
13789 | rcStrict = iemExecVerificationModeCheck(pVCpu, rcStrict);
|
---|
13790 |
|
---|
13791 | /*
|
---|
13792 | * Log and return.
|
---|
13793 | */
|
---|
13794 | if (rcStrict != VINF_SUCCESS)
|
---|
13795 | LogFlow(("IEMExecLots: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
13796 | pCtx->cs.Sel, pCtx->rip, pCtx->ss.Sel, pCtx->rsp, pCtx->eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
13797 | if (pcInstructions)
|
---|
13798 | *pcInstructions = pVCpu->iem.s.cInstructions - cInstructionsAtStart;
|
---|
13799 | return rcStrict;
|
---|
13800 |
|
---|
13801 | #else /* Not verification mode */
|
---|
13802 |
|
---|
13803 | /*
|
---|
13804 | * See if there is an interrupt pending in TRPM, inject it if we can.
|
---|
13805 | */
|
---|
13806 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
13807 | # ifdef IEM_VERIFICATION_MODE_FULL
|
---|
13808 | pVCpu->iem.s.uInjectCpl = UINT8_MAX;
|
---|
13809 | # endif
|
---|
13810 | if ( pCtx->eflags.Bits.u1IF
|
---|
13811 | && TRPMHasTrap(pVCpu)
|
---|
13812 | && EMGetInhibitInterruptsPC(pVCpu) != pCtx->rip)
|
---|
13813 | {
|
---|
13814 | uint8_t u8TrapNo;
|
---|
13815 | TRPMEVENT enmType;
|
---|
13816 | RTGCUINT uErrCode;
|
---|
13817 | RTGCPTR uCr2;
|
---|
13818 | int rc2 = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, NULL /* pu8InstLen */); AssertRC(rc2);
|
---|
13819 | IEMInjectTrap(pVCpu, u8TrapNo, enmType, (uint16_t)uErrCode, uCr2, 0 /* cbInstr */);
|
---|
13820 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
13821 | TRPMResetTrap(pVCpu);
|
---|
13822 | }
|
---|
13823 |
|
---|
13824 | /*
|
---|
13825 | * Initial decoder init w/ prefetch, then setup setjmp.
|
---|
13826 | */
|
---|
13827 | VBOXSTRICTRC rcStrict = iemInitDecoderAndPrefetchOpcodes(pVCpu, false);
|
---|
13828 | if (rcStrict == VINF_SUCCESS)
|
---|
13829 | {
|
---|
13830 | # ifdef IEM_WITH_SETJMP
|
---|
13831 | jmp_buf JmpBuf;
|
---|
13832 | jmp_buf *pSavedJmpBuf = pVCpu->iem.s.CTX_SUFF(pJmpBuf);
|
---|
13833 | pVCpu->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf;
|
---|
13834 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
13835 | if ((rcStrict = setjmp(JmpBuf)) == 0)
|
---|
13836 | # endif
|
---|
13837 | {
|
---|
13838 | /*
|
---|
13839 | * The run loop. We limit ourselves to 4096 instructions right now.
|
---|
13840 | */
|
---|
13841 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
13842 | uint32_t cInstr = 4096;
|
---|
13843 | for (;;)
|
---|
13844 | {
|
---|
13845 | /*
|
---|
13846 | * Log the state.
|
---|
13847 | */
|
---|
13848 | # ifdef LOG_ENABLED
|
---|
13849 | iemLogCurInstr(pVCpu, pCtx, true);
|
---|
13850 | # endif
|
---|
13851 |
|
---|
13852 | /*
|
---|
13853 | * Do the decoding and emulation.
|
---|
13854 | */
|
---|
13855 | uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
|
---|
13856 | rcStrict = FNIEMOP_CALL(g_apfnOneByteMap[b]);
|
---|
13857 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
13858 | {
|
---|
13859 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
13860 | pVCpu->iem.s.cInstructions++;
|
---|
13861 | if (RT_LIKELY(pVCpu->iem.s.rcPassUp == VINF_SUCCESS))
|
---|
13862 | {
|
---|
13863 | uint32_t fCpu = pVCpu->fLocalForcedActions
|
---|
13864 | & ( VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
13865 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
13866 | | VMCPU_FF_TLB_FLUSH
|
---|
13867 | # ifdef VBOX_WITH_RAW_MODE
|
---|
13868 | | VMCPU_FF_TRPM_SYNC_IDT
|
---|
13869 | | VMCPU_FF_SELM_SYNC_TSS
|
---|
13870 | | VMCPU_FF_SELM_SYNC_GDT
|
---|
13871 | | VMCPU_FF_SELM_SYNC_LDT
|
---|
13872 | # endif
|
---|
13873 | | VMCPU_FF_INHIBIT_INTERRUPTS
|
---|
13874 | | VMCPU_FF_BLOCK_NMIS ));
|
---|
13875 |
|
---|
13876 | if (RT_LIKELY( ( !fCpu
|
---|
13877 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
13878 | && !pCtx->rflags.Bits.u1IF) )
|
---|
13879 | && !VM_FF_IS_PENDING(pVM, VM_FF_ALL_MASK) ))
|
---|
13880 | {
|
---|
13881 | if (cInstr-- > 0)
|
---|
13882 | {
|
---|
13883 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
13884 | iemReInitDecoder(pVCpu);
|
---|
13885 | continue;
|
---|
13886 | }
|
---|
13887 | }
|
---|
13888 | }
|
---|
13889 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
13890 | }
|
---|
13891 | else if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
13892 | iemMemRollback(pVCpu);
|
---|
13893 | rcStrict = iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
13894 | break;
|
---|
13895 | }
|
---|
13896 | }
|
---|
13897 | # ifdef IEM_WITH_SETJMP
|
---|
13898 | else
|
---|
13899 | {
|
---|
13900 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
13901 | iemMemRollback(pVCpu);
|
---|
13902 | pVCpu->iem.s.cLongJumps++;
|
---|
13903 | }
|
---|
13904 | pVCpu->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf;
|
---|
13905 | # endif
|
---|
13906 |
|
---|
13907 | /*
|
---|
13908 | * Assert hidden register sanity (also done in iemInitDecoder and iemReInitDecoder).
|
---|
13909 | */
|
---|
13910 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->cs));
|
---|
13911 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->ss));
|
---|
13912 | # if defined(IEM_VERIFICATION_MODE_FULL)
|
---|
13913 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->es));
|
---|
13914 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->ds));
|
---|
13915 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->fs));
|
---|
13916 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &IEM_GET_CTX(pVCpu)->gs));
|
---|
13917 | # endif
|
---|
13918 | }
|
---|
13919 |
|
---|
13920 | /*
|
---|
13921 | * Maybe re-enter raw-mode and log.
|
---|
13922 | */
|
---|
13923 | # ifdef IN_RC
|
---|
13924 | rcStrict = iemRCRawMaybeReenter(pVCpu, IEM_GET_CTX(pVCpu), rcStrict);
|
---|
13925 | # endif
|
---|
13926 | if (rcStrict != VINF_SUCCESS)
|
---|
13927 | LogFlow(("IEMExecLots: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
13928 | pCtx->cs.Sel, pCtx->rip, pCtx->ss.Sel, pCtx->rsp, pCtx->eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
13929 | if (pcInstructions)
|
---|
13930 | *pcInstructions = pVCpu->iem.s.cInstructions - cInstructionsAtStart;
|
---|
13931 | return rcStrict;
|
---|
13932 | #endif /* Not verification mode */
|
---|
13933 | }
|
---|
13934 |
|
---|
13935 |
|
---|
13936 |
|
---|
13937 | /**
|
---|
13938 | * Injects a trap, fault, abort, software interrupt or external interrupt.
|
---|
13939 | *
|
---|
13940 | * The parameter list matches TRPMQueryTrapAll pretty closely.
|
---|
13941 | *
|
---|
13942 | * @returns Strict VBox status code.
|
---|
13943 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
13944 | * @param u8TrapNo The trap number.
|
---|
13945 | * @param enmType What type is it (trap/fault/abort), software
|
---|
13946 | * interrupt or hardware interrupt.
|
---|
13947 | * @param uErrCode The error code if applicable.
|
---|
13948 | * @param uCr2 The CR2 value if applicable.
|
---|
13949 | * @param cbInstr The instruction length (only relevant for
|
---|
13950 | * software interrupts).
|
---|
13951 | */
|
---|
13952 | VMM_INT_DECL(VBOXSTRICTRC) IEMInjectTrap(PVMCPU pVCpu, uint8_t u8TrapNo, TRPMEVENT enmType, uint16_t uErrCode, RTGCPTR uCr2,
|
---|
13953 | uint8_t cbInstr)
|
---|
13954 | {
|
---|
13955 | iemInitDecoder(pVCpu, false);
|
---|
13956 | #ifdef DBGFTRACE_ENABLED
|
---|
13957 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "IEMInjectTrap: %x %d %x %llx",
|
---|
13958 | u8TrapNo, enmType, uErrCode, uCr2);
|
---|
13959 | #endif
|
---|
13960 |
|
---|
13961 | uint32_t fFlags;
|
---|
13962 | switch (enmType)
|
---|
13963 | {
|
---|
13964 | case TRPM_HARDWARE_INT:
|
---|
13965 | Log(("IEMInjectTrap: %#4x ext\n", u8TrapNo));
|
---|
13966 | fFlags = IEM_XCPT_FLAGS_T_EXT_INT;
|
---|
13967 | uErrCode = uCr2 = 0;
|
---|
13968 | break;
|
---|
13969 |
|
---|
13970 | case TRPM_SOFTWARE_INT:
|
---|
13971 | Log(("IEMInjectTrap: %#4x soft\n", u8TrapNo));
|
---|
13972 | fFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
13973 | uErrCode = uCr2 = 0;
|
---|
13974 | break;
|
---|
13975 |
|
---|
13976 | case TRPM_TRAP:
|
---|
13977 | Log(("IEMInjectTrap: %#4x trap err=%#x cr2=%#RGv\n", u8TrapNo, uErrCode, uCr2));
|
---|
13978 | fFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
13979 | if (u8TrapNo == X86_XCPT_PF)
|
---|
13980 | fFlags |= IEM_XCPT_FLAGS_CR2;
|
---|
13981 | switch (u8TrapNo)
|
---|
13982 | {
|
---|
13983 | case X86_XCPT_DF:
|
---|
13984 | case X86_XCPT_TS:
|
---|
13985 | case X86_XCPT_NP:
|
---|
13986 | case X86_XCPT_SS:
|
---|
13987 | case X86_XCPT_PF:
|
---|
13988 | case X86_XCPT_AC:
|
---|
13989 | fFlags |= IEM_XCPT_FLAGS_ERR;
|
---|
13990 | break;
|
---|
13991 |
|
---|
13992 | case X86_XCPT_NMI:
|
---|
13993 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
13994 | break;
|
---|
13995 | }
|
---|
13996 | break;
|
---|
13997 |
|
---|
13998 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
13999 | }
|
---|
14000 |
|
---|
14001 | return iemRaiseXcptOrInt(pVCpu, cbInstr, u8TrapNo, fFlags, uErrCode, uCr2);
|
---|
14002 | }
|
---|
14003 |
|
---|
14004 |
|
---|
14005 | /**
|
---|
14006 | * Injects the active TRPM event.
|
---|
14007 | *
|
---|
14008 | * @returns Strict VBox status code.
|
---|
14009 | * @param pVCpu The cross context virtual CPU structure.
|
---|
14010 | */
|
---|
14011 | VMMDECL(VBOXSTRICTRC) IEMInjectTrpmEvent(PVMCPU pVCpu)
|
---|
14012 | {
|
---|
14013 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
14014 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(("Event injection\n"));
|
---|
14015 | #else
|
---|
14016 | uint8_t u8TrapNo;
|
---|
14017 | TRPMEVENT enmType;
|
---|
14018 | RTGCUINT uErrCode;
|
---|
14019 | RTGCUINTPTR uCr2;
|
---|
14020 | uint8_t cbInstr;
|
---|
14021 | int rc = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrCode, &uCr2, &cbInstr);
|
---|
14022 | if (RT_FAILURE(rc))
|
---|
14023 | return rc;
|
---|
14024 |
|
---|
14025 | VBOXSTRICTRC rcStrict = IEMInjectTrap(pVCpu, u8TrapNo, enmType, uErrCode, uCr2, cbInstr);
|
---|
14026 |
|
---|
14027 | /** @todo Are there any other codes that imply the event was successfully
|
---|
14028 | * delivered to the guest? See @bugref{6607}. */
|
---|
14029 | if ( rcStrict == VINF_SUCCESS
|
---|
14030 | || rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
14031 | {
|
---|
14032 | TRPMResetTrap(pVCpu);
|
---|
14033 | }
|
---|
14034 | return rcStrict;
|
---|
14035 | #endif
|
---|
14036 | }
|
---|
14037 |
|
---|
14038 |
|
---|
14039 | VMM_INT_DECL(int) IEMBreakpointSet(PVM pVM, RTGCPTR GCPtrBp)
|
---|
14040 | {
|
---|
14041 | return VERR_NOT_IMPLEMENTED;
|
---|
14042 | }
|
---|
14043 |
|
---|
14044 |
|
---|
14045 | VMM_INT_DECL(int) IEMBreakpointClear(PVM pVM, RTGCPTR GCPtrBp)
|
---|
14046 | {
|
---|
14047 | return VERR_NOT_IMPLEMENTED;
|
---|
14048 | }
|
---|
14049 |
|
---|
14050 |
|
---|
14051 | #if 0 /* The IRET-to-v8086 mode in PATM is very optimistic, so I don't dare do this yet. */
|
---|
14052 | /**
|
---|
14053 | * Executes a IRET instruction with default operand size.
|
---|
14054 | *
|
---|
14055 | * This is for PATM.
|
---|
14056 | *
|
---|
14057 | * @returns VBox status code.
|
---|
14058 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
14059 | * @param pCtxCore The register frame.
|
---|
14060 | */
|
---|
14061 | VMM_INT_DECL(int) IEMExecInstr_iret(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
|
---|
14062 | {
|
---|
14063 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
14064 |
|
---|
14065 | iemCtxCoreToCtx(pCtx, pCtxCore);
|
---|
14066 | iemInitDecoder(pVCpu);
|
---|
14067 | VBOXSTRICTRC rcStrict = iemCImpl_iret(pVCpu, 1, pVCpu->iem.s.enmDefOpSize);
|
---|
14068 | if (rcStrict == VINF_SUCCESS)
|
---|
14069 | iemCtxToCtxCore(pCtxCore, pCtx);
|
---|
14070 | else
|
---|
14071 | LogFlow(("IEMExecInstr_iret: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x - rcStrict=%Rrc\n",
|
---|
14072 | pCtx->cs, pCtx->rip, pCtx->ss, pCtx->rsp, pCtx->eflags.u, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
14073 | return rcStrict;
|
---|
14074 | }
|
---|
14075 | #endif
|
---|
14076 |
|
---|
14077 |
|
---|
14078 | /**
|
---|
14079 | * Macro used by the IEMExec* method to check the given instruction length.
|
---|
14080 | *
|
---|
14081 | * Will return on failure!
|
---|
14082 | *
|
---|
14083 | * @param a_cbInstr The given instruction length.
|
---|
14084 | * @param a_cbMin The minimum length.
|
---|
14085 | */
|
---|
14086 | #define IEMEXEC_ASSERT_INSTR_LEN_RETURN(a_cbInstr, a_cbMin) \
|
---|
14087 | AssertMsgReturn((unsigned)(a_cbInstr) - (unsigned)(a_cbMin) <= (unsigned)15 - (unsigned)(a_cbMin), \
|
---|
14088 | ("cbInstr=%u cbMin=%u\n", (a_cbInstr), (a_cbMin)), VERR_IEM_INVALID_INSTR_LENGTH)
|
---|
14089 |
|
---|
14090 |
|
---|
14091 | /**
|
---|
14092 | * Calls iemUninitExec, iemExecStatusCodeFiddling and iemRCRawMaybeReenter.
|
---|
14093 | *
|
---|
14094 | * Only calling iemRCRawMaybeReenter in raw-mode, obviously.
|
---|
14095 | *
|
---|
14096 | * @returns Fiddled strict vbox status code, ready to return to non-IEM caller.
|
---|
14097 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
14098 | * @param rcStrict The status code to fiddle.
|
---|
14099 | */
|
---|
14100 | DECLINLINE(VBOXSTRICTRC) iemUninitExecAndFiddleStatusAndMaybeReenter(PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
|
---|
14101 | {
|
---|
14102 | iemUninitExec(pVCpu);
|
---|
14103 | #ifdef IN_RC
|
---|
14104 | return iemRCRawMaybeReenter(pVCpu, IEM_GET_CTX(pVCpu),
|
---|
14105 | iemExecStatusCodeFiddling(pVCpu, rcStrict));
|
---|
14106 | #else
|
---|
14107 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
14108 | #endif
|
---|
14109 | }
|
---|
14110 |
|
---|
14111 |
|
---|
14112 | /**
|
---|
14113 | * Interface for HM and EM for executing string I/O OUT (write) instructions.
|
---|
14114 | *
|
---|
14115 | * This API ASSUMES that the caller has already verified that the guest code is
|
---|
14116 | * allowed to access the I/O port. (The I/O port is in the DX register in the
|
---|
14117 | * guest state.)
|
---|
14118 | *
|
---|
14119 | * @returns Strict VBox status code.
|
---|
14120 | * @param pVCpu The cross context virtual CPU structure.
|
---|
14121 | * @param cbValue The size of the I/O port access (1, 2, or 4).
|
---|
14122 | * @param enmAddrMode The addressing mode.
|
---|
14123 | * @param fRepPrefix Indicates whether a repeat prefix is used
|
---|
14124 | * (doesn't matter which for this instruction).
|
---|
14125 | * @param cbInstr The instruction length in bytes.
|
---|
14126 | * @param iEffSeg The effective segment address.
|
---|
14127 | * @param fIoChecked Whether the access to the I/O port has been
|
---|
14128 | * checked or not. It's typically checked in the
|
---|
14129 | * HM scenario.
|
---|
14130 | */
|
---|
14131 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecStringIoWrite(PVMCPU pVCpu, uint8_t cbValue, IEMMODE enmAddrMode,
|
---|
14132 | bool fRepPrefix, uint8_t cbInstr, uint8_t iEffSeg, bool fIoChecked)
|
---|
14133 | {
|
---|
14134 | AssertMsgReturn(iEffSeg < X86_SREG_COUNT, ("%#x\n", iEffSeg), VERR_IEM_INVALID_EFF_SEG);
|
---|
14135 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
14136 |
|
---|
14137 | /*
|
---|
14138 | * State init.
|
---|
14139 | */
|
---|
14140 | iemInitExec(pVCpu, false /*fBypassHandlers*/);
|
---|
14141 |
|
---|
14142 | /*
|
---|
14143 | * Switch orgy for getting to the right handler.
|
---|
14144 | */
|
---|
14145 | VBOXSTRICTRC rcStrict;
|
---|
14146 | if (fRepPrefix)
|
---|
14147 | {
|
---|
14148 | switch (enmAddrMode)
|
---|
14149 | {
|
---|
14150 | case IEMMODE_16BIT:
|
---|
14151 | switch (cbValue)
|
---|
14152 | {
|
---|
14153 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14154 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14155 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14156 | default:
|
---|
14157 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14158 | }
|
---|
14159 | break;
|
---|
14160 |
|
---|
14161 | case IEMMODE_32BIT:
|
---|
14162 | switch (cbValue)
|
---|
14163 | {
|
---|
14164 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14165 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14166 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14167 | default:
|
---|
14168 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14169 | }
|
---|
14170 | break;
|
---|
14171 |
|
---|
14172 | case IEMMODE_64BIT:
|
---|
14173 | switch (cbValue)
|
---|
14174 | {
|
---|
14175 | case 1: rcStrict = iemCImpl_rep_outs_op8_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14176 | case 2: rcStrict = iemCImpl_rep_outs_op16_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14177 | case 4: rcStrict = iemCImpl_rep_outs_op32_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14178 | default:
|
---|
14179 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14180 | }
|
---|
14181 | break;
|
---|
14182 |
|
---|
14183 | default:
|
---|
14184 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
14185 | }
|
---|
14186 | }
|
---|
14187 | else
|
---|
14188 | {
|
---|
14189 | switch (enmAddrMode)
|
---|
14190 | {
|
---|
14191 | case IEMMODE_16BIT:
|
---|
14192 | switch (cbValue)
|
---|
14193 | {
|
---|
14194 | case 1: rcStrict = iemCImpl_outs_op8_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14195 | case 2: rcStrict = iemCImpl_outs_op16_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14196 | case 4: rcStrict = iemCImpl_outs_op32_addr16(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14197 | default:
|
---|
14198 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14199 | }
|
---|
14200 | break;
|
---|
14201 |
|
---|
14202 | case IEMMODE_32BIT:
|
---|
14203 | switch (cbValue)
|
---|
14204 | {
|
---|
14205 | case 1: rcStrict = iemCImpl_outs_op8_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14206 | case 2: rcStrict = iemCImpl_outs_op16_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14207 | case 4: rcStrict = iemCImpl_outs_op32_addr32(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14208 | default:
|
---|
14209 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14210 | }
|
---|
14211 | break;
|
---|
14212 |
|
---|
14213 | case IEMMODE_64BIT:
|
---|
14214 | switch (cbValue)
|
---|
14215 | {
|
---|
14216 | case 1: rcStrict = iemCImpl_outs_op8_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14217 | case 2: rcStrict = iemCImpl_outs_op16_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14218 | case 4: rcStrict = iemCImpl_outs_op32_addr64(pVCpu, cbInstr, iEffSeg, fIoChecked); break;
|
---|
14219 | default:
|
---|
14220 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14221 | }
|
---|
14222 | break;
|
---|
14223 |
|
---|
14224 | default:
|
---|
14225 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
14226 | }
|
---|
14227 | }
|
---|
14228 |
|
---|
14229 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
14230 | }
|
---|
14231 |
|
---|
14232 |
|
---|
14233 | /**
|
---|
14234 | * Interface for HM and EM for executing string I/O IN (read) instructions.
|
---|
14235 | *
|
---|
14236 | * This API ASSUMES that the caller has already verified that the guest code is
|
---|
14237 | * allowed to access the I/O port. (The I/O port is in the DX register in the
|
---|
14238 | * guest state.)
|
---|
14239 | *
|
---|
14240 | * @returns Strict VBox status code.
|
---|
14241 | * @param pVCpu The cross context virtual CPU structure.
|
---|
14242 | * @param cbValue The size of the I/O port access (1, 2, or 4).
|
---|
14243 | * @param enmAddrMode The addressing mode.
|
---|
14244 | * @param fRepPrefix Indicates whether a repeat prefix is used
|
---|
14245 | * (doesn't matter which for this instruction).
|
---|
14246 | * @param cbInstr The instruction length in bytes.
|
---|
14247 | * @param fIoChecked Whether the access to the I/O port has been
|
---|
14248 | * checked or not. It's typically checked in the
|
---|
14249 | * HM scenario.
|
---|
14250 | */
|
---|
14251 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecStringIoRead(PVMCPU pVCpu, uint8_t cbValue, IEMMODE enmAddrMode,
|
---|
14252 | bool fRepPrefix, uint8_t cbInstr, bool fIoChecked)
|
---|
14253 | {
|
---|
14254 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
14255 |
|
---|
14256 | /*
|
---|
14257 | * State init.
|
---|
14258 | */
|
---|
14259 | iemInitExec(pVCpu, false /*fBypassHandlers*/);
|
---|
14260 |
|
---|
14261 | /*
|
---|
14262 | * Switch orgy for getting to the right handler.
|
---|
14263 | */
|
---|
14264 | VBOXSTRICTRC rcStrict;
|
---|
14265 | if (fRepPrefix)
|
---|
14266 | {
|
---|
14267 | switch (enmAddrMode)
|
---|
14268 | {
|
---|
14269 | case IEMMODE_16BIT:
|
---|
14270 | switch (cbValue)
|
---|
14271 | {
|
---|
14272 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
14273 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
14274 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
14275 | default:
|
---|
14276 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14277 | }
|
---|
14278 | break;
|
---|
14279 |
|
---|
14280 | case IEMMODE_32BIT:
|
---|
14281 | switch (cbValue)
|
---|
14282 | {
|
---|
14283 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
14284 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
14285 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
14286 | default:
|
---|
14287 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14288 | }
|
---|
14289 | break;
|
---|
14290 |
|
---|
14291 | case IEMMODE_64BIT:
|
---|
14292 | switch (cbValue)
|
---|
14293 | {
|
---|
14294 | case 1: rcStrict = iemCImpl_rep_ins_op8_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
14295 | case 2: rcStrict = iemCImpl_rep_ins_op16_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
14296 | case 4: rcStrict = iemCImpl_rep_ins_op32_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
14297 | default:
|
---|
14298 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14299 | }
|
---|
14300 | break;
|
---|
14301 |
|
---|
14302 | default:
|
---|
14303 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
14304 | }
|
---|
14305 | }
|
---|
14306 | else
|
---|
14307 | {
|
---|
14308 | switch (enmAddrMode)
|
---|
14309 | {
|
---|
14310 | case IEMMODE_16BIT:
|
---|
14311 | switch (cbValue)
|
---|
14312 | {
|
---|
14313 | case 1: rcStrict = iemCImpl_ins_op8_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
14314 | case 2: rcStrict = iemCImpl_ins_op16_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
14315 | case 4: rcStrict = iemCImpl_ins_op32_addr16(pVCpu, cbInstr, fIoChecked); break;
|
---|
14316 | default:
|
---|
14317 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14318 | }
|
---|
14319 | break;
|
---|
14320 |
|
---|
14321 | case IEMMODE_32BIT:
|
---|
14322 | switch (cbValue)
|
---|
14323 | {
|
---|
14324 | case 1: rcStrict = iemCImpl_ins_op8_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
14325 | case 2: rcStrict = iemCImpl_ins_op16_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
14326 | case 4: rcStrict = iemCImpl_ins_op32_addr32(pVCpu, cbInstr, fIoChecked); break;
|
---|
14327 | default:
|
---|
14328 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14329 | }
|
---|
14330 | break;
|
---|
14331 |
|
---|
14332 | case IEMMODE_64BIT:
|
---|
14333 | switch (cbValue)
|
---|
14334 | {
|
---|
14335 | case 1: rcStrict = iemCImpl_ins_op8_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
14336 | case 2: rcStrict = iemCImpl_ins_op16_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
14337 | case 4: rcStrict = iemCImpl_ins_op32_addr64(pVCpu, cbInstr, fIoChecked); break;
|
---|
14338 | default:
|
---|
14339 | AssertMsgFailedReturn(("cbValue=%#x\n", cbValue), VERR_IEM_INVALID_OPERAND_SIZE);
|
---|
14340 | }
|
---|
14341 | break;
|
---|
14342 |
|
---|
14343 | default:
|
---|
14344 | AssertMsgFailedReturn(("enmAddrMode=%d\n", enmAddrMode), VERR_IEM_INVALID_ADDRESS_MODE);
|
---|
14345 | }
|
---|
14346 | }
|
---|
14347 |
|
---|
14348 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
14349 | }
|
---|
14350 |
|
---|
14351 |
|
---|
14352 | /**
|
---|
14353 | * Interface for rawmode to write execute an OUT instruction.
|
---|
14354 | *
|
---|
14355 | * @returns Strict VBox status code.
|
---|
14356 | * @param pVCpu The cross context virtual CPU structure.
|
---|
14357 | * @param cbInstr The instruction length in bytes.
|
---|
14358 | * @param u16Port The port to read.
|
---|
14359 | * @param cbReg The register size.
|
---|
14360 | *
|
---|
14361 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
14362 | */
|
---|
14363 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedOut(PVMCPU pVCpu, uint8_t cbInstr, uint16_t u16Port, uint8_t cbReg)
|
---|
14364 | {
|
---|
14365 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
14366 | Assert(cbReg <= 4 && cbReg != 3);
|
---|
14367 |
|
---|
14368 | iemInitExec(pVCpu, false /*fBypassHandlers*/);
|
---|
14369 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_out, u16Port, cbReg);
|
---|
14370 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
14371 | }
|
---|
14372 |
|
---|
14373 |
|
---|
14374 | /**
|
---|
14375 | * Interface for rawmode to write execute an IN instruction.
|
---|
14376 | *
|
---|
14377 | * @returns Strict VBox status code.
|
---|
14378 | * @param pVCpu The cross context virtual CPU structure.
|
---|
14379 | * @param cbInstr The instruction length in bytes.
|
---|
14380 | * @param u16Port The port to read.
|
---|
14381 | * @param cbReg The register size.
|
---|
14382 | */
|
---|
14383 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedIn(PVMCPU pVCpu, uint8_t cbInstr, uint16_t u16Port, uint8_t cbReg)
|
---|
14384 | {
|
---|
14385 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 1);
|
---|
14386 | Assert(cbReg <= 4 && cbReg != 3);
|
---|
14387 |
|
---|
14388 | iemInitExec(pVCpu, false /*fBypassHandlers*/);
|
---|
14389 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_in, u16Port, cbReg);
|
---|
14390 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
14391 | }
|
---|
14392 |
|
---|
14393 |
|
---|
14394 | /**
|
---|
14395 | * Interface for HM and EM to write to a CRx register.
|
---|
14396 | *
|
---|
14397 | * @returns Strict VBox status code.
|
---|
14398 | * @param pVCpu The cross context virtual CPU structure.
|
---|
14399 | * @param cbInstr The instruction length in bytes.
|
---|
14400 | * @param iCrReg The control register number (destination).
|
---|
14401 | * @param iGReg The general purpose register number (source).
|
---|
14402 | *
|
---|
14403 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
14404 | */
|
---|
14405 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovCRxWrite(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iCrReg, uint8_t iGReg)
|
---|
14406 | {
|
---|
14407 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
14408 | Assert(iCrReg < 16);
|
---|
14409 | Assert(iGReg < 16);
|
---|
14410 |
|
---|
14411 | iemInitExec(pVCpu, false /*fBypassHandlers*/);
|
---|
14412 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Cd_Rd, iCrReg, iGReg);
|
---|
14413 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
14414 | }
|
---|
14415 |
|
---|
14416 |
|
---|
14417 | /**
|
---|
14418 | * Interface for HM and EM to read from a CRx register.
|
---|
14419 | *
|
---|
14420 | * @returns Strict VBox status code.
|
---|
14421 | * @param pVCpu The cross context virtual CPU structure.
|
---|
14422 | * @param cbInstr The instruction length in bytes.
|
---|
14423 | * @param iGReg The general purpose register number (destination).
|
---|
14424 | * @param iCrReg The control register number (source).
|
---|
14425 | *
|
---|
14426 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
14427 | */
|
---|
14428 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedMovCRxRead(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
|
---|
14429 | {
|
---|
14430 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
14431 | Assert(iCrReg < 16);
|
---|
14432 | Assert(iGReg < 16);
|
---|
14433 |
|
---|
14434 | iemInitExec(pVCpu, false /*fBypassHandlers*/);
|
---|
14435 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_mov_Rd_Cd, iGReg, iCrReg);
|
---|
14436 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
14437 | }
|
---|
14438 |
|
---|
14439 |
|
---|
14440 | /**
|
---|
14441 | * Interface for HM and EM to clear the CR0[TS] bit.
|
---|
14442 | *
|
---|
14443 | * @returns Strict VBox status code.
|
---|
14444 | * @param pVCpu The cross context virtual CPU structure.
|
---|
14445 | * @param cbInstr The instruction length in bytes.
|
---|
14446 | *
|
---|
14447 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
14448 | */
|
---|
14449 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedClts(PVMCPU pVCpu, uint8_t cbInstr)
|
---|
14450 | {
|
---|
14451 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 2);
|
---|
14452 |
|
---|
14453 | iemInitExec(pVCpu, false /*fBypassHandlers*/);
|
---|
14454 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_clts);
|
---|
14455 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
14456 | }
|
---|
14457 |
|
---|
14458 |
|
---|
14459 | /**
|
---|
14460 | * Interface for HM and EM to emulate the LMSW instruction (loads CR0).
|
---|
14461 | *
|
---|
14462 | * @returns Strict VBox status code.
|
---|
14463 | * @param pVCpu The cross context virtual CPU structure.
|
---|
14464 | * @param cbInstr The instruction length in bytes.
|
---|
14465 | * @param uValue The value to load into CR0.
|
---|
14466 | *
|
---|
14467 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
14468 | */
|
---|
14469 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedLmsw(PVMCPU pVCpu, uint8_t cbInstr, uint16_t uValue)
|
---|
14470 | {
|
---|
14471 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
14472 |
|
---|
14473 | iemInitExec(pVCpu, false /*fBypassHandlers*/);
|
---|
14474 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_1(iemCImpl_lmsw, uValue);
|
---|
14475 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
14476 | }
|
---|
14477 |
|
---|
14478 |
|
---|
14479 | /**
|
---|
14480 | * Interface for HM and EM to emulate the XSETBV instruction (loads XCRx).
|
---|
14481 | *
|
---|
14482 | * Takes input values in ecx and edx:eax of the CPU context of the calling EMT.
|
---|
14483 | *
|
---|
14484 | * @returns Strict VBox status code.
|
---|
14485 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
14486 | * @param cbInstr The instruction length in bytes.
|
---|
14487 | * @remarks In ring-0 not all of the state needs to be synced in.
|
---|
14488 | * @thread EMT(pVCpu)
|
---|
14489 | */
|
---|
14490 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedXsetbv(PVMCPU pVCpu, uint8_t cbInstr)
|
---|
14491 | {
|
---|
14492 | IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
|
---|
14493 |
|
---|
14494 | iemInitExec(pVCpu, false /*fBypassHandlers*/);
|
---|
14495 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_xsetbv);
|
---|
14496 | return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
|
---|
14497 | }
|
---|
14498 |
|
---|
14499 | #ifdef IN_RING3
|
---|
14500 |
|
---|
14501 | /**
|
---|
14502 | * Handles the unlikely and probably fatal merge cases.
|
---|
14503 | *
|
---|
14504 | * @returns Merged status code.
|
---|
14505 | * @param rcStrict Current EM status code.
|
---|
14506 | * @param rcStrictCommit The IOM I/O or MMIO write commit status to merge
|
---|
14507 | * with @a rcStrict.
|
---|
14508 | * @param iMemMap The memory mapping index. For error reporting only.
|
---|
14509 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
14510 | * thread, for error reporting only.
|
---|
14511 | */
|
---|
14512 | DECL_NO_INLINE(static, VBOXSTRICTRC) iemR3MergeStatusSlow(VBOXSTRICTRC rcStrict, VBOXSTRICTRC rcStrictCommit,
|
---|
14513 | unsigned iMemMap, PVMCPU pVCpu)
|
---|
14514 | {
|
---|
14515 | if (RT_FAILURE_NP(rcStrict))
|
---|
14516 | return rcStrict;
|
---|
14517 |
|
---|
14518 | if (RT_FAILURE_NP(rcStrictCommit))
|
---|
14519 | return rcStrictCommit;
|
---|
14520 |
|
---|
14521 | if (rcStrict == rcStrictCommit)
|
---|
14522 | return rcStrictCommit;
|
---|
14523 |
|
---|
14524 | AssertLogRelMsgFailed(("rcStrictCommit=%Rrc rcStrict=%Rrc iMemMap=%u fAccess=%#x FirstPg=%RGp LB %u SecondPg=%RGp LB %u\n",
|
---|
14525 | VBOXSTRICTRC_VAL(rcStrictCommit), VBOXSTRICTRC_VAL(rcStrict), iMemMap,
|
---|
14526 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess,
|
---|
14527 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst,
|
---|
14528 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond));
|
---|
14529 | return VERR_IOM_FF_STATUS_IPE;
|
---|
14530 | }
|
---|
14531 |
|
---|
14532 |
|
---|
14533 | /**
|
---|
14534 | * Helper for IOMR3ProcessForceFlag.
|
---|
14535 | *
|
---|
14536 | * @returns Merged status code.
|
---|
14537 | * @param rcStrict Current EM status code.
|
---|
14538 | * @param rcStrictCommit The IOM I/O or MMIO write commit status to merge
|
---|
14539 | * with @a rcStrict.
|
---|
14540 | * @param iMemMap The memory mapping index. For error reporting only.
|
---|
14541 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
14542 | * thread, for error reporting only.
|
---|
14543 | */
|
---|
14544 | DECLINLINE(VBOXSTRICTRC) iemR3MergeStatus(VBOXSTRICTRC rcStrict, VBOXSTRICTRC rcStrictCommit, unsigned iMemMap, PVMCPU pVCpu)
|
---|
14545 | {
|
---|
14546 | /* Simple. */
|
---|
14547 | if (RT_LIKELY(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RAW_TO_R3))
|
---|
14548 | return rcStrictCommit;
|
---|
14549 |
|
---|
14550 | if (RT_LIKELY(rcStrictCommit == VINF_SUCCESS))
|
---|
14551 | return rcStrict;
|
---|
14552 |
|
---|
14553 | /* EM scheduling status codes. */
|
---|
14554 | if (RT_LIKELY( rcStrict >= VINF_EM_FIRST
|
---|
14555 | && rcStrict <= VINF_EM_LAST))
|
---|
14556 | {
|
---|
14557 | if (RT_LIKELY( rcStrictCommit >= VINF_EM_FIRST
|
---|
14558 | && rcStrictCommit <= VINF_EM_LAST))
|
---|
14559 | return rcStrict < rcStrictCommit ? rcStrict : rcStrictCommit;
|
---|
14560 | }
|
---|
14561 |
|
---|
14562 | /* Unlikely */
|
---|
14563 | return iemR3MergeStatusSlow(rcStrict, rcStrictCommit, iMemMap, pVCpu);
|
---|
14564 | }
|
---|
14565 |
|
---|
14566 |
|
---|
14567 | /**
|
---|
14568 | * Called by force-flag handling code when VMCPU_FF_IEM is set.
|
---|
14569 | *
|
---|
14570 | * @returns Merge between @a rcStrict and what the commit operation returned.
|
---|
14571 | * @param pVM The cross context VM structure.
|
---|
14572 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
14573 | * @param rcStrict The status code returned by ring-0 or raw-mode.
|
---|
14574 | */
|
---|
14575 | VMMR3_INT_DECL(VBOXSTRICTRC) IEMR3ProcessForceFlag(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
|
---|
14576 | {
|
---|
14577 | /*
|
---|
14578 | * Reset the pending commit.
|
---|
14579 | */
|
---|
14580 | AssertMsg( (pVCpu->iem.s.aMemMappings[0].fAccess | pVCpu->iem.s.aMemMappings[1].fAccess | pVCpu->iem.s.aMemMappings[2].fAccess)
|
---|
14581 | & (IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND),
|
---|
14582 | ("%#x %#x %#x\n",
|
---|
14583 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemMappings[2].fAccess));
|
---|
14584 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_IEM);
|
---|
14585 |
|
---|
14586 | /*
|
---|
14587 | * Commit the pending bounce buffers (usually just one).
|
---|
14588 | */
|
---|
14589 | unsigned cBufs = 0;
|
---|
14590 | unsigned iMemMap = RT_ELEMENTS(pVCpu->iem.s.aMemMappings);
|
---|
14591 | while (iMemMap-- > 0)
|
---|
14592 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & (IEM_ACCESS_PENDING_R3_WRITE_1ST | IEM_ACCESS_PENDING_R3_WRITE_2ND))
|
---|
14593 | {
|
---|
14594 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_TYPE_WRITE);
|
---|
14595 | Assert(pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_BOUNCE_BUFFERED);
|
---|
14596 | Assert(!pVCpu->iem.s.aMemBbMappings[iMemMap].fUnassigned);
|
---|
14597 |
|
---|
14598 | uint16_t const cbFirst = pVCpu->iem.s.aMemBbMappings[iMemMap].cbFirst;
|
---|
14599 | uint16_t const cbSecond = pVCpu->iem.s.aMemBbMappings[iMemMap].cbSecond;
|
---|
14600 | uint8_t const *pbBuf = &pVCpu->iem.s.aBounceBuffers[iMemMap].ab[0];
|
---|
14601 |
|
---|
14602 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_PENDING_R3_WRITE_1ST)
|
---|
14603 | {
|
---|
14604 | VBOXSTRICTRC rcStrictCommit1 = PGMPhysWrite(pVM,
|
---|
14605 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst,
|
---|
14606 | pbBuf,
|
---|
14607 | cbFirst,
|
---|
14608 | PGMACCESSORIGIN_IEM);
|
---|
14609 | rcStrict = iemR3MergeStatus(rcStrict, rcStrictCommit1, iMemMap, pVCpu);
|
---|
14610 | Log(("IEMR3ProcessForceFlag: iMemMap=%u GCPhysFirst=%RGp LB %#x %Rrc => %Rrc\n",
|
---|
14611 | iMemMap, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysFirst, cbFirst,
|
---|
14612 | VBOXSTRICTRC_VAL(rcStrictCommit1), VBOXSTRICTRC_VAL(rcStrict)));
|
---|
14613 | }
|
---|
14614 |
|
---|
14615 | if (pVCpu->iem.s.aMemMappings[iMemMap].fAccess & IEM_ACCESS_PENDING_R3_WRITE_2ND)
|
---|
14616 | {
|
---|
14617 | VBOXSTRICTRC rcStrictCommit2 = PGMPhysWrite(pVM,
|
---|
14618 | pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond,
|
---|
14619 | pbBuf + cbFirst,
|
---|
14620 | cbSecond,
|
---|
14621 | PGMACCESSORIGIN_IEM);
|
---|
14622 | rcStrict = iemR3MergeStatus(rcStrict, rcStrictCommit2, iMemMap, pVCpu);
|
---|
14623 | Log(("IEMR3ProcessForceFlag: iMemMap=%u GCPhysSecond=%RGp LB %#x %Rrc => %Rrc\n",
|
---|
14624 | iMemMap, pVCpu->iem.s.aMemBbMappings[iMemMap].GCPhysSecond, cbSecond,
|
---|
14625 | VBOXSTRICTRC_VAL(rcStrictCommit2), VBOXSTRICTRC_VAL(rcStrict)));
|
---|
14626 | }
|
---|
14627 | cBufs++;
|
---|
14628 | pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID;
|
---|
14629 | }
|
---|
14630 |
|
---|
14631 | AssertMsg(cBufs > 0 && cBufs == pVCpu->iem.s.cActiveMappings,
|
---|
14632 | ("cBufs=%u cActiveMappings=%u - %#x %#x %#x\n", cBufs, pVCpu->iem.s.cActiveMappings,
|
---|
14633 | pVCpu->iem.s.aMemMappings[0].fAccess, pVCpu->iem.s.aMemMappings[1].fAccess, pVCpu->iem.s.aMemMappings[2].fAccess));
|
---|
14634 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
14635 | return rcStrict;
|
---|
14636 | }
|
---|
14637 |
|
---|
14638 | #endif /* IN_RING3 */
|
---|
14639 |
|
---|