/* $Id: IEMAllAImplC.cpp 96681 2022-09-09 14:52:20Z vboxsync $ */ /** @file * IEM - Instruction Implementation in Assembly, portable C variant. */ /* * Copyright (C) 2011-2022 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "IEMInternal.h" #include #include #include #include #include #include RT_C_DECLS_BEGIN #include RT_C_DECLS_END /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** @def IEM_WITHOUT_ASSEMBLY * Enables all the code in this file. */ #if !defined(IEM_WITHOUT_ASSEMBLY) # if defined(RT_ARCH_ARM32) || defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING) # define IEM_WITHOUT_ASSEMBLY # endif #endif /* IEM_WITH_ASSEMBLY trumps IEM_WITHOUT_ASSEMBLY for tstIEMAImplAsm purposes. */ #ifdef IEM_WITH_ASSEMBLY # undef IEM_WITHOUT_ASSEMBLY #endif /** * Calculates the signed flag value given a result and it's bit width. * * The signed flag (SF) is a duplication of the most significant bit in the * result. * * @returns X86_EFL_SF or 0. * @param a_uResult Unsigned result value. * @param a_cBitsWidth The width of the result (8, 16, 32, 64). */ #define X86_EFL_CALC_SF(a_uResult, a_cBitsWidth) \ ( (uint32_t)((a_uResult) >> ((a_cBitsWidth) - X86_EFL_SF_BIT - 1)) & X86_EFL_SF ) /** * Calculates the zero flag value given a result. * * The zero flag (ZF) indicates whether the result is zero or not. * * @returns X86_EFL_ZF or 0. * @param a_uResult Unsigned result value. */ #define X86_EFL_CALC_ZF(a_uResult) \ ( (uint32_t)((a_uResult) == 0) << X86_EFL_ZF_BIT ) /** * Extracts the OF flag from a OF calculation result. * * These are typically used by concating with a bitcount. The problem is that * 8-bit values needs shifting in the other direction than the others. */ #define X86_EFL_GET_OF_8(a_uValue) (((uint32_t)(a_uValue) << (X86_EFL_OF_BIT - 8 + 1)) & X86_EFL_OF) #define X86_EFL_GET_OF_16(a_uValue) ((uint32_t)((a_uValue) >> (16 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF) #define X86_EFL_GET_OF_32(a_uValue) ((uint32_t)((a_uValue) >> (32 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF) #define X86_EFL_GET_OF_64(a_uValue) ((uint32_t)((a_uValue) >> (64 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF) /** * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after arithmetic op. * * @returns Status bits. * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update. * @param a_uResult Unsigned result value. * @param a_uSrc The source value (for AF calc). * @param a_uDst The original destination value (for AF calc). * @param a_cBitsWidth The width of the result (8, 16, 32, 64). * @param a_CfExpr Bool expression for the carry flag (CF). * @param a_uSrcOf The a_uSrc value to use for overflow calculation. */ #define IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(a_pfEFlags, a_uResult, a_uDst, a_uSrc, a_cBitsWidth, a_CfExpr, a_uSrcOf) \ do { \ uint32_t fEflTmp = *(a_pfEFlags); \ fEflTmp &= ~X86_EFL_STATUS_BITS; \ fEflTmp |= (a_CfExpr) << X86_EFL_CF_BIT; \ fEflTmp |= g_afParity[(a_uResult) & 0xff]; \ fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uSrc) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \ fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \ fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \ \ /* Overflow during ADDition happens when both inputs have the same signed \ bit value and the result has a different sign bit value. \ \ Since subtraction can be rewritten as addition: 2 - 1 == 2 + -1, it \ follows that for SUBtraction the signed bit value must differ between \ the two inputs and the result's signed bit diff from the first input. \ Note! Must xor with sign bit to convert, not do (0 - a_uSrc). \ \ See also: http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt */ \ fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth( ( ((uint ## a_cBitsWidth ## _t)~((a_uDst) ^ (a_uSrcOf))) \ & RT_BIT_64(a_cBitsWidth - 1)) \ & ((a_uResult) ^ (a_uDst)) ); \ *(a_pfEFlags) = fEflTmp; \ } while (0) /** * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after a logical op. * * CF and OF are defined to be 0 by logical operations. AF on the other hand is * undefined. We do not set AF, as that seems to make the most sense (which * probably makes it the most wrong in real life). * * @returns Status bits. * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update. * @param a_uResult Unsigned result value. * @param a_cBitsWidth The width of the result (8, 16, 32, 64). * @param a_fExtra Additional bits to set. */ #define IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(a_pfEFlags, a_uResult, a_cBitsWidth, a_fExtra) \ do { \ uint32_t fEflTmp = *(a_pfEFlags); \ fEflTmp &= ~X86_EFL_STATUS_BITS; \ fEflTmp |= g_afParity[(a_uResult) & 0xff]; \ fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \ fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \ fEflTmp |= (a_fExtra); \ *(a_pfEFlags) = fEflTmp; \ } while (0) /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** * Parity calculation table. * * This is also used by iemAllAImpl.asm. * * The generator code: * @code * #include * * int main() * { * unsigned b; * for (b = 0; b < 256; b++) * { * int cOnes = ( b & 1) * + ((b >> 1) & 1) * + ((b >> 2) & 1) * + ((b >> 3) & 1) * + ((b >> 4) & 1) * + ((b >> 5) & 1) * + ((b >> 6) & 1) * + ((b >> 7) & 1); * printf(" /" "* %#04x = %u%u%u%u%u%u%u%ub *" "/ %s,\n", * b, * (b >> 7) & 1, * (b >> 6) & 1, * (b >> 5) & 1, * (b >> 4) & 1, * (b >> 3) & 1, * (b >> 2) & 1, * (b >> 1) & 1, * b & 1, * cOnes & 1 ? "0" : "X86_EFL_PF"); * } * return 0; * } * @endcode */ uint8_t const g_afParity[256] = { /* 0000 = 00000000b */ X86_EFL_PF, /* 0x01 = 00000001b */ 0, /* 0x02 = 00000010b */ 0, /* 0x03 = 00000011b */ X86_EFL_PF, /* 0x04 = 00000100b */ 0, /* 0x05 = 00000101b */ X86_EFL_PF, /* 0x06 = 00000110b */ X86_EFL_PF, /* 0x07 = 00000111b */ 0, /* 0x08 = 00001000b */ 0, /* 0x09 = 00001001b */ X86_EFL_PF, /* 0x0a = 00001010b */ X86_EFL_PF, /* 0x0b = 00001011b */ 0, /* 0x0c = 00001100b */ X86_EFL_PF, /* 0x0d = 00001101b */ 0, /* 0x0e = 00001110b */ 0, /* 0x0f = 00001111b */ X86_EFL_PF, /* 0x10 = 00010000b */ 0, /* 0x11 = 00010001b */ X86_EFL_PF, /* 0x12 = 00010010b */ X86_EFL_PF, /* 0x13 = 00010011b */ 0, /* 0x14 = 00010100b */ X86_EFL_PF, /* 0x15 = 00010101b */ 0, /* 0x16 = 00010110b */ 0, /* 0x17 = 00010111b */ X86_EFL_PF, /* 0x18 = 00011000b */ X86_EFL_PF, /* 0x19 = 00011001b */ 0, /* 0x1a = 00011010b */ 0, /* 0x1b = 00011011b */ X86_EFL_PF, /* 0x1c = 00011100b */ 0, /* 0x1d = 00011101b */ X86_EFL_PF, /* 0x1e = 00011110b */ X86_EFL_PF, /* 0x1f = 00011111b */ 0, /* 0x20 = 00100000b */ 0, /* 0x21 = 00100001b */ X86_EFL_PF, /* 0x22 = 00100010b */ X86_EFL_PF, /* 0x23 = 00100011b */ 0, /* 0x24 = 00100100b */ X86_EFL_PF, /* 0x25 = 00100101b */ 0, /* 0x26 = 00100110b */ 0, /* 0x27 = 00100111b */ X86_EFL_PF, /* 0x28 = 00101000b */ X86_EFL_PF, /* 0x29 = 00101001b */ 0, /* 0x2a = 00101010b */ 0, /* 0x2b = 00101011b */ X86_EFL_PF, /* 0x2c = 00101100b */ 0, /* 0x2d = 00101101b */ X86_EFL_PF, /* 0x2e = 00101110b */ X86_EFL_PF, /* 0x2f = 00101111b */ 0, /* 0x30 = 00110000b */ X86_EFL_PF, /* 0x31 = 00110001b */ 0, /* 0x32 = 00110010b */ 0, /* 0x33 = 00110011b */ X86_EFL_PF, /* 0x34 = 00110100b */ 0, /* 0x35 = 00110101b */ X86_EFL_PF, /* 0x36 = 00110110b */ X86_EFL_PF, /* 0x37 = 00110111b */ 0, /* 0x38 = 00111000b */ 0, /* 0x39 = 00111001b */ X86_EFL_PF, /* 0x3a = 00111010b */ X86_EFL_PF, /* 0x3b = 00111011b */ 0, /* 0x3c = 00111100b */ X86_EFL_PF, /* 0x3d = 00111101b */ 0, /* 0x3e = 00111110b */ 0, /* 0x3f = 00111111b */ X86_EFL_PF, /* 0x40 = 01000000b */ 0, /* 0x41 = 01000001b */ X86_EFL_PF, /* 0x42 = 01000010b */ X86_EFL_PF, /* 0x43 = 01000011b */ 0, /* 0x44 = 01000100b */ X86_EFL_PF, /* 0x45 = 01000101b */ 0, /* 0x46 = 01000110b */ 0, /* 0x47 = 01000111b */ X86_EFL_PF, /* 0x48 = 01001000b */ X86_EFL_PF, /* 0x49 = 01001001b */ 0, /* 0x4a = 01001010b */ 0, /* 0x4b = 01001011b */ X86_EFL_PF, /* 0x4c = 01001100b */ 0, /* 0x4d = 01001101b */ X86_EFL_PF, /* 0x4e = 01001110b */ X86_EFL_PF, /* 0x4f = 01001111b */ 0, /* 0x50 = 01010000b */ X86_EFL_PF, /* 0x51 = 01010001b */ 0, /* 0x52 = 01010010b */ 0, /* 0x53 = 01010011b */ X86_EFL_PF, /* 0x54 = 01010100b */ 0, /* 0x55 = 01010101b */ X86_EFL_PF, /* 0x56 = 01010110b */ X86_EFL_PF, /* 0x57 = 01010111b */ 0, /* 0x58 = 01011000b */ 0, /* 0x59 = 01011001b */ X86_EFL_PF, /* 0x5a = 01011010b */ X86_EFL_PF, /* 0x5b = 01011011b */ 0, /* 0x5c = 01011100b */ X86_EFL_PF, /* 0x5d = 01011101b */ 0, /* 0x5e = 01011110b */ 0, /* 0x5f = 01011111b */ X86_EFL_PF, /* 0x60 = 01100000b */ X86_EFL_PF, /* 0x61 = 01100001b */ 0, /* 0x62 = 01100010b */ 0, /* 0x63 = 01100011b */ X86_EFL_PF, /* 0x64 = 01100100b */ 0, /* 0x65 = 01100101b */ X86_EFL_PF, /* 0x66 = 01100110b */ X86_EFL_PF, /* 0x67 = 01100111b */ 0, /* 0x68 = 01101000b */ 0, /* 0x69 = 01101001b */ X86_EFL_PF, /* 0x6a = 01101010b */ X86_EFL_PF, /* 0x6b = 01101011b */ 0, /* 0x6c = 01101100b */ X86_EFL_PF, /* 0x6d = 01101101b */ 0, /* 0x6e = 01101110b */ 0, /* 0x6f = 01101111b */ X86_EFL_PF, /* 0x70 = 01110000b */ 0, /* 0x71 = 01110001b */ X86_EFL_PF, /* 0x72 = 01110010b */ X86_EFL_PF, /* 0x73 = 01110011b */ 0, /* 0x74 = 01110100b */ X86_EFL_PF, /* 0x75 = 01110101b */ 0, /* 0x76 = 01110110b */ 0, /* 0x77 = 01110111b */ X86_EFL_PF, /* 0x78 = 01111000b */ X86_EFL_PF, /* 0x79 = 01111001b */ 0, /* 0x7a = 01111010b */ 0, /* 0x7b = 01111011b */ X86_EFL_PF, /* 0x7c = 01111100b */ 0, /* 0x7d = 01111101b */ X86_EFL_PF, /* 0x7e = 01111110b */ X86_EFL_PF, /* 0x7f = 01111111b */ 0, /* 0x80 = 10000000b */ 0, /* 0x81 = 10000001b */ X86_EFL_PF, /* 0x82 = 10000010b */ X86_EFL_PF, /* 0x83 = 10000011b */ 0, /* 0x84 = 10000100b */ X86_EFL_PF, /* 0x85 = 10000101b */ 0, /* 0x86 = 10000110b */ 0, /* 0x87 = 10000111b */ X86_EFL_PF, /* 0x88 = 10001000b */ X86_EFL_PF, /* 0x89 = 10001001b */ 0, /* 0x8a = 10001010b */ 0, /* 0x8b = 10001011b */ X86_EFL_PF, /* 0x8c = 10001100b */ 0, /* 0x8d = 10001101b */ X86_EFL_PF, /* 0x8e = 10001110b */ X86_EFL_PF, /* 0x8f = 10001111b */ 0, /* 0x90 = 10010000b */ X86_EFL_PF, /* 0x91 = 10010001b */ 0, /* 0x92 = 10010010b */ 0, /* 0x93 = 10010011b */ X86_EFL_PF, /* 0x94 = 10010100b */ 0, /* 0x95 = 10010101b */ X86_EFL_PF, /* 0x96 = 10010110b */ X86_EFL_PF, /* 0x97 = 10010111b */ 0, /* 0x98 = 10011000b */ 0, /* 0x99 = 10011001b */ X86_EFL_PF, /* 0x9a = 10011010b */ X86_EFL_PF, /* 0x9b = 10011011b */ 0, /* 0x9c = 10011100b */ X86_EFL_PF, /* 0x9d = 10011101b */ 0, /* 0x9e = 10011110b */ 0, /* 0x9f = 10011111b */ X86_EFL_PF, /* 0xa0 = 10100000b */ X86_EFL_PF, /* 0xa1 = 10100001b */ 0, /* 0xa2 = 10100010b */ 0, /* 0xa3 = 10100011b */ X86_EFL_PF, /* 0xa4 = 10100100b */ 0, /* 0xa5 = 10100101b */ X86_EFL_PF, /* 0xa6 = 10100110b */ X86_EFL_PF, /* 0xa7 = 10100111b */ 0, /* 0xa8 = 10101000b */ 0, /* 0xa9 = 10101001b */ X86_EFL_PF, /* 0xaa = 10101010b */ X86_EFL_PF, /* 0xab = 10101011b */ 0, /* 0xac = 10101100b */ X86_EFL_PF, /* 0xad = 10101101b */ 0, /* 0xae = 10101110b */ 0, /* 0xaf = 10101111b */ X86_EFL_PF, /* 0xb0 = 10110000b */ 0, /* 0xb1 = 10110001b */ X86_EFL_PF, /* 0xb2 = 10110010b */ X86_EFL_PF, /* 0xb3 = 10110011b */ 0, /* 0xb4 = 10110100b */ X86_EFL_PF, /* 0xb5 = 10110101b */ 0, /* 0xb6 = 10110110b */ 0, /* 0xb7 = 10110111b */ X86_EFL_PF, /* 0xb8 = 10111000b */ X86_EFL_PF, /* 0xb9 = 10111001b */ 0, /* 0xba = 10111010b */ 0, /* 0xbb = 10111011b */ X86_EFL_PF, /* 0xbc = 10111100b */ 0, /* 0xbd = 10111101b */ X86_EFL_PF, /* 0xbe = 10111110b */ X86_EFL_PF, /* 0xbf = 10111111b */ 0, /* 0xc0 = 11000000b */ X86_EFL_PF, /* 0xc1 = 11000001b */ 0, /* 0xc2 = 11000010b */ 0, /* 0xc3 = 11000011b */ X86_EFL_PF, /* 0xc4 = 11000100b */ 0, /* 0xc5 = 11000101b */ X86_EFL_PF, /* 0xc6 = 11000110b */ X86_EFL_PF, /* 0xc7 = 11000111b */ 0, /* 0xc8 = 11001000b */ 0, /* 0xc9 = 11001001b */ X86_EFL_PF, /* 0xca = 11001010b */ X86_EFL_PF, /* 0xcb = 11001011b */ 0, /* 0xcc = 11001100b */ X86_EFL_PF, /* 0xcd = 11001101b */ 0, /* 0xce = 11001110b */ 0, /* 0xcf = 11001111b */ X86_EFL_PF, /* 0xd0 = 11010000b */ 0, /* 0xd1 = 11010001b */ X86_EFL_PF, /* 0xd2 = 11010010b */ X86_EFL_PF, /* 0xd3 = 11010011b */ 0, /* 0xd4 = 11010100b */ X86_EFL_PF, /* 0xd5 = 11010101b */ 0, /* 0xd6 = 11010110b */ 0, /* 0xd7 = 11010111b */ X86_EFL_PF, /* 0xd8 = 11011000b */ X86_EFL_PF, /* 0xd9 = 11011001b */ 0, /* 0xda = 11011010b */ 0, /* 0xdb = 11011011b */ X86_EFL_PF, /* 0xdc = 11011100b */ 0, /* 0xdd = 11011101b */ X86_EFL_PF, /* 0xde = 11011110b */ X86_EFL_PF, /* 0xdf = 11011111b */ 0, /* 0xe0 = 11100000b */ 0, /* 0xe1 = 11100001b */ X86_EFL_PF, /* 0xe2 = 11100010b */ X86_EFL_PF, /* 0xe3 = 11100011b */ 0, /* 0xe4 = 11100100b */ X86_EFL_PF, /* 0xe5 = 11100101b */ 0, /* 0xe6 = 11100110b */ 0, /* 0xe7 = 11100111b */ X86_EFL_PF, /* 0xe8 = 11101000b */ X86_EFL_PF, /* 0xe9 = 11101001b */ 0, /* 0xea = 11101010b */ 0, /* 0xeb = 11101011b */ X86_EFL_PF, /* 0xec = 11101100b */ 0, /* 0xed = 11101101b */ X86_EFL_PF, /* 0xee = 11101110b */ X86_EFL_PF, /* 0xef = 11101111b */ 0, /* 0xf0 = 11110000b */ X86_EFL_PF, /* 0xf1 = 11110001b */ 0, /* 0xf2 = 11110010b */ 0, /* 0xf3 = 11110011b */ X86_EFL_PF, /* 0xf4 = 11110100b */ 0, /* 0xf5 = 11110101b */ X86_EFL_PF, /* 0xf6 = 11110110b */ X86_EFL_PF, /* 0xf7 = 11110111b */ 0, /* 0xf8 = 11111000b */ 0, /* 0xf9 = 11111001b */ X86_EFL_PF, /* 0xfa = 11111010b */ X86_EFL_PF, /* 0xfb = 11111011b */ 0, /* 0xfc = 11111100b */ X86_EFL_PF, /* 0xfd = 11111101b */ 0, /* 0xfe = 11111110b */ 0, /* 0xff = 11111111b */ X86_EFL_PF, }; /* for clang: */ extern const RTFLOAT32U g_ar32Zero[]; extern const RTFLOAT64U g_ar64Zero[]; extern const RTFLOAT80U g_ar80Zero[]; extern const RTFLOAT80U g_ar80One[]; extern const RTFLOAT80U g_r80Indefinite; extern const RTFLOAT32U g_ar32Infinity[]; extern const RTFLOAT64U g_ar64Infinity[]; extern const RTFLOAT80U g_ar80Infinity[]; extern const RTFLOAT128U g_r128Ln2; extern const RTUINT128U g_u128Ln2Mantissa; extern const RTUINT128U g_u128Ln2MantissaIntel; extern const RTFLOAT128U g_ar128F2xm1HornerConsts[]; extern const RTFLOAT32U g_ar32QNaN[]; extern const RTFLOAT64U g_ar64QNaN[]; /** Zero values (indexed by fSign). */ RTFLOAT32U const g_ar32Zero[] = { RTFLOAT32U_INIT_ZERO(0), RTFLOAT32U_INIT_ZERO(1) }; RTFLOAT64U const g_ar64Zero[] = { RTFLOAT64U_INIT_ZERO(0), RTFLOAT64U_INIT_ZERO(1) }; RTFLOAT80U const g_ar80Zero[] = { RTFLOAT80U_INIT_ZERO(0), RTFLOAT80U_INIT_ZERO(1) }; /** One values (indexed by fSign). */ RTFLOAT80U const g_ar80One[] = { RTFLOAT80U_INIT(0, RT_BIT_64(63), RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT(1, RT_BIT_64(63), RTFLOAT80U_EXP_BIAS) }; /** Indefinite (negative). */ RTFLOAT80U const g_r80Indefinite = RTFLOAT80U_INIT_INDEFINITE(1); /** Infinities (indexed by fSign). */ RTFLOAT32U const g_ar32Infinity[] = { RTFLOAT32U_INIT_INF(0), RTFLOAT32U_INIT_INF(1) }; RTFLOAT64U const g_ar64Infinity[] = { RTFLOAT64U_INIT_INF(0), RTFLOAT64U_INIT_INF(1) }; RTFLOAT80U const g_ar80Infinity[] = { RTFLOAT80U_INIT_INF(0), RTFLOAT80U_INIT_INF(1) }; /** Default QNaNs (indexed by fSign). */ RTFLOAT32U const g_ar32QNaN[] = { RTFLOAT32U_INIT_QNAN(0), RTFLOAT32U_INIT_QNAN(1) }; RTFLOAT64U const g_ar64QNaN[] = { RTFLOAT64U_INIT_QNAN(0), RTFLOAT64U_INIT_QNAN(1) }; #if 0 /** 128-bit floating point constant: 2.0 */ const RTFLOAT128U g_r128Two = RTFLOAT128U_INIT_C(0, 0, 0, RTFLOAT128U_EXP_BIAS + 1); #endif /* The next section is generated by tools/IEMGenFpuConstants: */ /** The ln2 constant as 128-bit floating point value. * base-10: 6.93147180559945309417232121458176575e-1 * base-16: b.17217f7d1cf79abc9e3b39803f30@-1 * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100100111100011101100111001100000000011111100110e-1 */ //const RTFLOAT128U g_r128Ln2 = RTFLOAT128U_INIT_C(0, 0x62e42fefa39e, 0xf35793c7673007e6, 0x3ffe); const RTFLOAT128U g_r128Ln2 = RTFLOAT128U_INIT_C(0, 0x62e42fefa39e, 0xf357900000000000, 0x3ffe); /** High precision ln2 value. * base-10: 6.931471805599453094172321214581765680747e-1 * base-16: b.17217f7d1cf79abc9e3b39803f2f6af0@-1 * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100100111100011101100111001100000000011111100101111011010101111e-1 */ const RTUINT128U g_u128Ln2Mantissa = RTUINT128_INIT_C(0xb17217f7d1cf79ab, 0xc9e3b39803f2f6af); /** High precision ln2 value, compatible with f2xm1 results on intel 10980XE. * base-10: 6.931471805599453094151379470289064954613e-1 * base-16: b.17217f7d1cf79abc0000000000000000@-1 * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100000000000000000000000000000000000000000000000000000000000000e-1 */ const RTUINT128U g_u128Ln2MantissaIntel = RTUINT128_INIT_C(0xb17217f7d1cf79ab, 0xc000000000000000); /** Horner constants for f2xm1 */ const RTFLOAT128U g_ar128F2xm1HornerConsts[] = { /* a0 * base-10: 1.00000000000000000000000000000000000e0 * base-16: 1.0000000000000000000000000000@0 * base-2 : 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e0 */ RTFLOAT128U_INIT_C(0, 0x000000000000, 0x0000000000000000, 0x3fff), /* a1 * base-10: 5.00000000000000000000000000000000000e-1 * base-16: 8.0000000000000000000000000000@-1 * base-2 : 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-1 */ RTFLOAT128U_INIT_C(0, 0x000000000000, 0x0000000000000000, 0x3ffe), /* a2 * base-10: 1.66666666666666666666666666666666658e-1 * base-16: 2.aaaaaaaaaaaaaaaaaaaaaaaaaaaa@-1 * base-2 : 1.0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101e-3 */ RTFLOAT128U_INIT_C(0, 0x555555555555, 0x5555555555555555, 0x3ffc), /* a3 * base-10: 4.16666666666666666666666666666666646e-2 * base-16: a.aaaaaaaaaaaaaaaaaaaaaaaaaaa8@-2 * base-2 : 1.0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101e-5 */ RTFLOAT128U_INIT_C(0, 0x555555555555, 0x5555555555555555, 0x3ffa), /* a4 * base-10: 8.33333333333333333333333333333333323e-3 * base-16: 2.2222222222222222222222222222@-2 * base-2 : 1.0001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001e-7 */ RTFLOAT128U_INIT_C(0, 0x111111111111, 0x1111111111111111, 0x3ff8), /* a5 * base-10: 1.38888888888888888888888888888888874e-3 * base-16: 5.b05b05b05b05b05b05b05b05b058@-3 * base-2 : 1.0110110000010110110000010110110000010110110000010110110000010110110000010110110000010110110000010110110000010110e-10 */ RTFLOAT128U_INIT_C(0, 0x6c16c16c16c1, 0x6c16c16c16c16c16, 0x3ff5), /* a6 * base-10: 1.98412698412698412698412698412698412e-4 * base-16: d.00d00d00d00d00d00d00d00d00d0@-4 * base-2 : 1.1010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010e-13 */ RTFLOAT128U_INIT_C(0, 0xa01a01a01a01, 0xa01a01a01a01a01a, 0x3ff2), /* a7 * base-10: 2.48015873015873015873015873015873015e-5 * base-16: 1.a01a01a01a01a01a01a01a01a01a@-4 * base-2 : 1.1010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010e-16 */ RTFLOAT128U_INIT_C(0, 0xa01a01a01a01, 0xa01a01a01a01a01a, 0x3fef), /* a8 * base-10: 2.75573192239858906525573192239858902e-6 * base-16: 2.e3bc74aad8e671f5583911ca002e@-5 * base-2 : 1.0111000111011110001110100101010101101100011100110011100011111010101011000001110010001000111001010000000000010111e-19 */ RTFLOAT128U_INIT_C(0, 0x71de3a556c73, 0x38faac1c88e50017, 0x3fec), /* a9 * base-10: 2.75573192239858906525573192239858865e-7 * base-16: 4.9f93edde27d71cbbc05b4fa999e0@-6 * base-2 : 1.0010011111100100111110110111011110001001111101011100011100101110111100000001011011010011111010100110011001111000e-22 */ RTFLOAT128U_INIT_C(0, 0x27e4fb7789f5, 0xc72ef016d3ea6678, 0x3fe9), /* a10 * base-10: 2.50521083854417187750521083854417184e-8 * base-16: 6.b99159fd5138e3f9d1f92e0df71c@-7 * base-2 : 1.1010111001100100010101100111111101010100010011100011100011111110011101000111111001001011100000110111110111000111e-26 */ RTFLOAT128U_INIT_C(0, 0xae64567f544e, 0x38fe747e4b837dc7, 0x3fe5), /* a11 * base-10: 2.08767569878680989792100903212014296e-9 * base-16: 8.f76c77fc6c4bdaa26d4c3d67f420@-8 * base-2 : 1.0001111011101101100011101111111110001101100010010111101101010100010011011010100110000111101011001111111010000100e-29 */ RTFLOAT128U_INIT_C(0, 0x1eed8eff8d89, 0x7b544da987acfe84, 0x3fe2), /* a12 * base-10: 1.60590438368216145993923771701549472e-10 * base-16: b.092309d43684be51c198e91d7b40@-9 * base-2 : 1.0110000100100100011000010011101010000110110100001001011111001010001110000011001100011101001000111010111101101000e-33 */ RTFLOAT128U_INIT_C(0, 0x6124613a86d0, 0x97ca38331d23af68, 0x3fde), /* a13 * base-10: 1.14707455977297247138516979786821043e-11 * base-16: c.9cba54603e4e905d6f8a2efd1f20@-10 * base-2 : 1.1001001110010111010010101000110000000111110010011101001000001011101011011111000101000101110111111010001111100100e-37 */ RTFLOAT128U_INIT_C(0, 0x93974a8c07c9, 0xd20badf145dfa3e4, 0x3fda), /* a14 * base-10: 7.64716373181981647590113198578806964e-13 * base-16: d.73f9f399dc0f88ec32b587746578@-11 * base-2 : 1.1010111001111111001111100111001100111011100000011111000100011101100001100101011010110000111011101000110010101111e-41 */ RTFLOAT128U_INIT_C(0, 0xae7f3e733b81, 0xf11d8656b0ee8caf, 0x3fd6), /* a15 * base-10: 4.77947733238738529743820749111754352e-14 * base-16: d.73f9f399dc0f88ec32b587746578@-12 * base-2 : 1.1010111001111111001111100111001100111011100000011111000100011101100001100101011010110000111011101000110010101111e-45 */ RTFLOAT128U_INIT_C(0, 0xae7f3e733b81, 0xf11d8656b0ee8caf, 0x3fd2), /* a16 * base-10: 2.81145725434552076319894558301031970e-15 * base-16: c.a963b81856a53593028cbbb8d7f8@-13 * base-2 : 1.1001010100101100011101110000001100001010110101001010011010110010011000000101000110010111011101110001101011111111e-49 */ RTFLOAT128U_INIT_C(0, 0x952c77030ad4, 0xa6b2605197771aff, 0x3fce), /* a17 * base-10: 1.56192069685862264622163643500573321e-16 * base-16: b.413c31dcbecbbdd8024435161550@-14 * base-2 : 1.0110100000100111100001100011101110010111110110010111011110111011000000000100100010000110101000101100001010101010e-53 */ RTFLOAT128U_INIT_C(0, 0x6827863b97d9, 0x77bb004886a2c2aa, 0x3fca), /* a18 * base-10: 8.22063524662432971695598123687227980e-18 * base-16: 9.7a4da340a0ab92650f61dbdcb3a0@-15 * base-2 : 1.0010111101001001101101000110100000010100000101010111001001001100101000011110110000111011011110111001011001110100e-57 */ RTFLOAT128U_INIT_C(0, 0x2f49b4681415, 0x724ca1ec3b7b9674, 0x3fc6), /* a19 * base-10: 4.11031762331216485847799061843614006e-19 * base-16: 7.950ae900808941ea72b4afe3c2e8@-16 * base-2 : 1.1110010101000010101110100100000000100000001000100101000001111010100111001010110100101011111110001111000010111010e-62 */ RTFLOAT128U_INIT_C(0, 0xe542ba402022, 0x507a9cad2bf8f0ba, 0x3fc1), /* a20 * base-10: 1.95729410633912612308475743735054143e-20 * base-16: 5.c6e3bdb73d5c62fbc51bf3b9b8fc@-17 * base-2 : 1.0111000110111000111011110110110111001111010101110001100010111110111100010100011011111100111011100110111000111111e-66 */ RTFLOAT128U_INIT_C(0, 0x71b8ef6dcf57, 0x18bef146fcee6e3f, 0x3fbd), /* a21 * base-10: 8.89679139245057328674889744250246106e-22 * base-16: 4.338e5b6dfe14a5143242dfcce3a0@-18 * base-2 : 1.0000110011100011100101101101101101111111100001010010100101000101000011001001000010110111111100110011100011101000e-70 */ RTFLOAT128U_INIT_C(0, 0x0ce396db7f85, 0x29450c90b7f338e8, 0x3fb9), }; /* * There are a few 64-bit on 32-bit things we'd rather do in C. Actually, doing * it all in C is probably safer atm., optimize what's necessary later, maybe. */ #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) /********************************************************************************************************************************* * Binary Operations * *********************************************************************************************************************************/ /* * ADD */ IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = uDst + uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uResult < uDst, uSrc); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_add_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { uint32_t uDst = *puDst; uint32_t uResult = uDst + uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uResult < uDst, uSrc); } IEM_DECL_IMPL_DEF(void, iemAImpl_add_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { uint16_t uDst = *puDst; uint16_t uResult = uDst + uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uResult < uDst, uSrc); } IEM_DECL_IMPL_DEF(void, iemAImpl_add_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) { uint8_t uDst = *puDst; uint8_t uResult = uDst + uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uResult < uDst, uSrc); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * ADC */ IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { if (!(*pfEFlags & X86_EFL_CF)) iemAImpl_add_u64(puDst, uSrc, pfEFlags); else { uint64_t uDst = *puDst; uint64_t uResult = uDst + uSrc + 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uResult <= uDst, uSrc); } } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { if (!(*pfEFlags & X86_EFL_CF)) iemAImpl_add_u32(puDst, uSrc, pfEFlags); else { uint32_t uDst = *puDst; uint32_t uResult = uDst + uSrc + 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uResult <= uDst, uSrc); } } IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { if (!(*pfEFlags & X86_EFL_CF)) iemAImpl_add_u16(puDst, uSrc, pfEFlags); else { uint16_t uDst = *puDst; uint16_t uResult = uDst + uSrc + 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uResult <= uDst, uSrc); } } IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) { if (!(*pfEFlags & X86_EFL_CF)) iemAImpl_add_u8(puDst, uSrc, pfEFlags); else { uint8_t uDst = *puDst; uint8_t uResult = uDst + uSrc + 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uResult <= uDst, uSrc); } } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * SUB */ IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = uDst - uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uDst < uSrc, uSrc ^ RT_BIT_64(63)); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { uint32_t uDst = *puDst; uint32_t uResult = uDst - uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uDst < uSrc, uSrc ^ RT_BIT_32(31)); } IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { uint16_t uDst = *puDst; uint16_t uResult = uDst - uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uDst < uSrc, uSrc ^ (uint16_t)0x8000); } IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) { uint8_t uDst = *puDst; uint8_t uResult = uDst - uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uDst < uSrc, uSrc ^ (uint8_t)0x80); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * SBB */ IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { if (!(*pfEFlags & X86_EFL_CF)) iemAImpl_sub_u64(puDst, uSrc, pfEFlags); else { uint64_t uDst = *puDst; uint64_t uResult = uDst - uSrc - 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uDst <= uSrc, uSrc ^ RT_BIT_64(63)); } } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { if (!(*pfEFlags & X86_EFL_CF)) iemAImpl_sub_u32(puDst, uSrc, pfEFlags); else { uint32_t uDst = *puDst; uint32_t uResult = uDst - uSrc - 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uDst <= uSrc, uSrc ^ RT_BIT_32(31)); } } IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { if (!(*pfEFlags & X86_EFL_CF)) iemAImpl_sub_u16(puDst, uSrc, pfEFlags); else { uint16_t uDst = *puDst; uint16_t uResult = uDst - uSrc - 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uDst <= uSrc, uSrc ^ (uint16_t)0x8000); } } IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) { if (!(*pfEFlags & X86_EFL_CF)) iemAImpl_sub_u8(puDst, uSrc, pfEFlags); else { uint8_t uDst = *puDst; uint8_t uResult = uDst - uSrc - 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uDst <= uSrc, uSrc ^ (uint8_t)0x80); } } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * OR */ IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uResult = *puDst | uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_or_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { uint32_t uResult = *puDst | uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_or_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { uint16_t uResult = *puDst | uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_or_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) { uint8_t uResult = *puDst | uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * XOR */ IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uResult = *puDst ^ uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { uint32_t uResult = *puDst ^ uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { uint16_t uResult = *puDst ^ uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) { uint8_t uResult = *puDst ^ uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * AND */ IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t const uResult = *puDst & uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_and_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { uint32_t const uResult = *puDst & uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_and_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { uint16_t const uResult = *puDst & uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_and_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) { uint8_t const uResult = *puDst & uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ #endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * ANDN (BMI1 instruction) */ IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u64_fallback,(uint64_t *puDst, uint64_t uSrc1, uint64_t uSrc2, uint32_t *pfEFlags)) { uint64_t const uResult = ~uSrc1 & uSrc2; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u32_fallback,(uint32_t *puDst, uint32_t uSrc1, uint32_t uSrc2, uint32_t *pfEFlags)) { uint32_t const uResult = ~uSrc1 & uSrc2; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0); } #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u64,(uint64_t *puDst, uint64_t uSrc1, uint64_t uSrc2, uint32_t *pfEFlags)) { iemAImpl_andn_u64_fallback(puDst, uSrc1, uSrc2, pfEFlags); } #endif #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u32,(uint32_t *puDst, uint32_t uSrc1, uint32_t uSrc2, uint32_t *pfEFlags)) { iemAImpl_andn_u32_fallback(puDst, uSrc1, uSrc2, pfEFlags); } #endif #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) /* * CMP */ IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uDstTmp = *puDst; iemAImpl_sub_u64(&uDstTmp, uSrc, pfEFlags); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { uint32_t uDstTmp = *puDst; iemAImpl_sub_u32(&uDstTmp, uSrc, pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { uint16_t uDstTmp = *puDst; iemAImpl_sub_u16(&uDstTmp, uSrc, pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) { uint8_t uDstTmp = *puDst; iemAImpl_sub_u8(&uDstTmp, uSrc, pfEFlags); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * TEST */ IEM_DECL_IMPL_DEF(void, iemAImpl_test_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uResult = *puDst & uSrc; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_test_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { uint32_t uResult = *puDst & uSrc; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_test_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { uint16_t uResult = *puDst & uSrc; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_test_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags)) { uint8_t uResult = *puDst & uSrc; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * LOCK prefixed variants of the above */ /** 64-bit locked binary operand operation. */ # define DO_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth) \ do { \ uint ## a_cBitsWidth ## _t uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \ uint ## a_cBitsWidth ## _t uTmp; \ uint32_t fEflTmp; \ do \ { \ uTmp = uOld; \ fEflTmp = *pfEFlags; \ iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth(&uTmp, uSrc, &fEflTmp); \ } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uTmp, uOld, &uOld)); \ *pfEFlags = fEflTmp; \ } while (0) #define EMIT_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth) \ IEM_DECL_IMPL_DEF(void, iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth ## _locked,(uint ## a_cBitsWidth ## _t *puDst, \ uint ## a_cBitsWidth ## _t uSrc, \ uint32_t *pfEFlags)) \ { \ DO_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth); \ } EMIT_LOCKED_BIN_OP(add, 64) EMIT_LOCKED_BIN_OP(adc, 64) EMIT_LOCKED_BIN_OP(sub, 64) EMIT_LOCKED_BIN_OP(sbb, 64) EMIT_LOCKED_BIN_OP(or, 64) EMIT_LOCKED_BIN_OP(xor, 64) EMIT_LOCKED_BIN_OP(and, 64) # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_LOCKED_BIN_OP(add, 32) EMIT_LOCKED_BIN_OP(adc, 32) EMIT_LOCKED_BIN_OP(sub, 32) EMIT_LOCKED_BIN_OP(sbb, 32) EMIT_LOCKED_BIN_OP(or, 32) EMIT_LOCKED_BIN_OP(xor, 32) EMIT_LOCKED_BIN_OP(and, 32) EMIT_LOCKED_BIN_OP(add, 16) EMIT_LOCKED_BIN_OP(adc, 16) EMIT_LOCKED_BIN_OP(sub, 16) EMIT_LOCKED_BIN_OP(sbb, 16) EMIT_LOCKED_BIN_OP(or, 16) EMIT_LOCKED_BIN_OP(xor, 16) EMIT_LOCKED_BIN_OP(and, 16) EMIT_LOCKED_BIN_OP(add, 8) EMIT_LOCKED_BIN_OP(adc, 8) EMIT_LOCKED_BIN_OP(sub, 8) EMIT_LOCKED_BIN_OP(sbb, 8) EMIT_LOCKED_BIN_OP(or, 8) EMIT_LOCKED_BIN_OP(xor, 8) EMIT_LOCKED_BIN_OP(and, 8) # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * Bit operations (same signature as above). */ /* * BT */ IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're not modified by either AMD (3990x) or Intel (i9-9980HK). */ Assert(uSrc < 64); uint64_t uDst = *puDst; if (uDst & RT_BIT_64(uSrc)) *pfEFlags |= X86_EFL_CF; else *pfEFlags &= ~X86_EFL_CF; } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're not modified by either AMD (3990x) or Intel (i9-9980HK). */ Assert(uSrc < 32); uint32_t uDst = *puDst; if (uDst & RT_BIT_32(uSrc)) *pfEFlags |= X86_EFL_CF; else *pfEFlags &= ~X86_EFL_CF; } IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're not modified by either AMD (3990x) or Intel (i9-9980HK). */ Assert(uSrc < 16); uint16_t uDst = *puDst; if (uDst & RT_BIT_32(uSrc)) *pfEFlags |= X86_EFL_CF; else *pfEFlags &= ~X86_EFL_CF; } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * BTC */ IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're not modified by either AMD (3990x) or Intel (i9-9980HK). */ Assert(uSrc < 64); uint64_t fMask = RT_BIT_64(uSrc); uint64_t uDst = *puDst; if (uDst & fMask) { uDst &= ~fMask; *puDst = uDst; *pfEFlags |= X86_EFL_CF; } else { uDst |= fMask; *puDst = uDst; *pfEFlags &= ~X86_EFL_CF; } } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're not modified by either AMD (3990x) or Intel (i9-9980HK). */ Assert(uSrc < 32); uint32_t fMask = RT_BIT_32(uSrc); uint32_t uDst = *puDst; if (uDst & fMask) { uDst &= ~fMask; *puDst = uDst; *pfEFlags |= X86_EFL_CF; } else { uDst |= fMask; *puDst = uDst; *pfEFlags &= ~X86_EFL_CF; } } IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're not modified by either AMD (3990x) or Intel (i9-9980HK). */ Assert(uSrc < 16); uint16_t fMask = RT_BIT_32(uSrc); uint16_t uDst = *puDst; if (uDst & fMask) { uDst &= ~fMask; *puDst = uDst; *pfEFlags |= X86_EFL_CF; } else { uDst |= fMask; *puDst = uDst; *pfEFlags &= ~X86_EFL_CF; } } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * BTR */ IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an logical operation (AND/OR/whatever). */ Assert(uSrc < 64); uint64_t fMask = RT_BIT_64(uSrc); uint64_t uDst = *puDst; if (uDst & fMask) { uDst &= ~fMask; *puDst = uDst; *pfEFlags |= X86_EFL_CF; } else *pfEFlags &= ~X86_EFL_CF; } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an logical operation (AND/OR/whatever). */ Assert(uSrc < 32); uint32_t fMask = RT_BIT_32(uSrc); uint32_t uDst = *puDst; if (uDst & fMask) { uDst &= ~fMask; *puDst = uDst; *pfEFlags |= X86_EFL_CF; } else *pfEFlags &= ~X86_EFL_CF; } IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an logical operation (AND/OR/whatever). */ Assert(uSrc < 16); uint16_t fMask = RT_BIT_32(uSrc); uint16_t uDst = *puDst; if (uDst & fMask) { uDst &= ~fMask; *puDst = uDst; *pfEFlags |= X86_EFL_CF; } else *pfEFlags &= ~X86_EFL_CF; } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * BTS */ IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an logical operation (AND/OR/whatever). */ Assert(uSrc < 64); uint64_t fMask = RT_BIT_64(uSrc); uint64_t uDst = *puDst; if (uDst & fMask) *pfEFlags |= X86_EFL_CF; else { uDst |= fMask; *puDst = uDst; *pfEFlags &= ~X86_EFL_CF; } } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an logical operation (AND/OR/whatever). */ Assert(uSrc < 32); uint32_t fMask = RT_BIT_32(uSrc); uint32_t uDst = *puDst; if (uDst & fMask) *pfEFlags |= X86_EFL_CF; else { uDst |= fMask; *puDst = uDst; *pfEFlags &= ~X86_EFL_CF; } } IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an logical operation (AND/OR/whatever). */ Assert(uSrc < 16); uint16_t fMask = RT_BIT_32(uSrc); uint32_t uDst = *puDst; if (uDst & fMask) *pfEFlags |= X86_EFL_CF; else { uDst |= fMask; *puDst = uDst; *pfEFlags &= ~X86_EFL_CF; } } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ EMIT_LOCKED_BIN_OP(btc, 64) EMIT_LOCKED_BIN_OP(btr, 64) EMIT_LOCKED_BIN_OP(bts, 64) # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_LOCKED_BIN_OP(btc, 32) EMIT_LOCKED_BIN_OP(btr, 32) EMIT_LOCKED_BIN_OP(bts, 32) EMIT_LOCKED_BIN_OP(btc, 16) EMIT_LOCKED_BIN_OP(btr, 16) EMIT_LOCKED_BIN_OP(bts, 16) # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * Helpers for BSR and BSF. * * Note! "undefined" flags: OF, SF, AF, PF, CF. * Intel behavior modelled on 10980xe, AMD on 3990X. Other marchs may * produce different result (see https://www.sandpile.org/x86/flags.htm), * but we restrict ourselves to emulating these recent marchs. */ #define SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlag, a_iBit) do { \ unsigned iBit = (a_iBit); \ uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \ if (iBit) \ { \ *puDst = --iBit; \ fEfl |= g_afParity[iBit]; \ } \ else \ fEfl |= X86_EFL_ZF | X86_EFL_PF; \ *pfEFlags = fEfl; \ } while (0) #define SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlag, a_iBit) do { \ unsigned const iBit = (a_iBit); \ if (iBit) \ { \ *puDst = iBit - 1; \ *pfEFlags &= ~X86_EFL_ZF; \ } \ else \ *pfEFlags |= X86_EFL_ZF; \ } while (0) /* * BSF - first (least significant) bit set */ IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU64(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU64(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU64(uSrc)); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU32(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU32(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU32(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU16(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU16(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU16(uSrc)); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * BSR - last (most significant) bit set */ IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU64(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU64(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU64(uSrc)); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU32(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU32(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU32(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU16(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU16(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU16(uSrc)); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * Helpers for LZCNT and TZCNT. */ #define SET_BIT_CNT_SEARCH_RESULT_INTEL(a_puDst, a_uSrc, a_pfEFlags, a_uResult) do { \ unsigned const uResult = (a_uResult); \ *(a_puDst) = uResult; \ uint32_t fEfl = *(a_pfEFlags) & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \ if (uResult) \ fEfl |= g_afParity[uResult]; \ else \ fEfl |= X86_EFL_ZF | X86_EFL_PF; \ if (!a_uSrc) \ fEfl |= X86_EFL_CF; \ *(a_pfEFlags) = fEfl; \ } while (0) #define SET_BIT_CNT_SEARCH_RESULT_AMD(a_puDst, a_uSrc, a_pfEFlags, a_uResult) do { \ unsigned const uResult = (a_uResult); \ *(a_puDst) = uResult; \ uint32_t fEfl = *(a_pfEFlags) & ~(X86_EFL_ZF | X86_EFL_CF); \ if (!uResult) \ fEfl |= X86_EFL_ZF; \ if (!a_uSrc) \ fEfl |= X86_EFL_CF; \ *(a_pfEFlags) = fEfl; \ } while (0) /* * LZCNT - count leading zero bits. */ IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { iemAImpl_lzcnt_u64_intel(puDst, uSrc, pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU64(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU64(uSrc)); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { iemAImpl_lzcnt_u32_intel(puDst, uSrc, pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU32(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU32(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { iemAImpl_lzcnt_u16_intel(puDst, uSrc, pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU16(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU16(uSrc)); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * TZCNT - count leading zero bits. */ IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { iemAImpl_tzcnt_u64_intel(puDst, uSrc, pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU64(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU64(uSrc)); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { iemAImpl_tzcnt_u32_intel(puDst, uSrc, pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU32(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU32(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { iemAImpl_tzcnt_u16_intel(puDst, uSrc, pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU16(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags)) { SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU16(uSrc)); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ #endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * BEXTR (BMI1 instruction) */ #define EMIT_BEXTR(a_cBits, a_Type, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_bextr_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc1, \ a_Type uSrc2, uint32_t *pfEFlags)) \ { \ /* uSrc1 is considered virtually zero extended to 512 bits width. */ \ uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \ a_Type uResult; \ uint8_t const iFirstBit = (uint8_t)uSrc2; \ if (iFirstBit < a_cBits) \ { \ uResult = uSrc1 >> iFirstBit; \ uint8_t const cBits = (uint8_t)(uSrc2 >> 8); \ if (cBits < a_cBits) \ uResult &= RT_CONCAT(RT_BIT_,a_cBits)(cBits) - 1; \ *puDst = uResult; \ if (!uResult) \ fEfl |= X86_EFL_ZF; \ } \ else \ { \ *puDst = uResult = 0; \ fEfl |= X86_EFL_ZF; \ } \ /** @todo complete flag calculations. */ \ *pfEFlags = fEfl; \ } EMIT_BEXTR(64, uint64_t, _fallback) EMIT_BEXTR(32, uint32_t, _fallback) #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_BEXTR(64, uint64_t, RT_NOTHING) #endif #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_BEXTR(32, uint32_t, RT_NOTHING) #endif /* * BLSR (BMI1 instruction) */ #define EMIT_BLSR(a_cBits, a_Type, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsr_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \ { \ uint32_t fEfl1 = *pfEFlags; \ uint32_t fEfl2 = fEfl1; \ *puDst = uSrc; \ iemAImpl_sub_u ## a_cBits(&uSrc, 1, &fEfl1); \ iemAImpl_and_u ## a_cBits(puDst, uSrc, &fEfl2); \ \ /* AMD: The carry flag is from the SUB operation. */ \ /* 10890xe: PF always cleared? */ \ fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \ fEfl2 |= fEfl1 & X86_EFL_CF; \ *pfEFlags = fEfl2; \ } EMIT_BLSR(64, uint64_t, _fallback) EMIT_BLSR(32, uint32_t, _fallback) #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_BLSR(64, uint64_t, RT_NOTHING) #endif #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_BLSR(32, uint32_t, RT_NOTHING) #endif /* * BLSMSK (BMI1 instruction) */ #define EMIT_BLSMSK(a_cBits, a_Type, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsmsk_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \ { \ uint32_t fEfl1 = *pfEFlags; \ uint32_t fEfl2 = fEfl1; \ *puDst = uSrc; \ iemAImpl_sub_u ## a_cBits(&uSrc, 1, &fEfl1); \ iemAImpl_xor_u ## a_cBits(puDst, uSrc, &fEfl2); \ \ /* AMD: The carry flag is from the SUB operation. */ \ /* 10890xe: PF always cleared? */ \ fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \ fEfl2 |= fEfl1 & X86_EFL_CF; \ *pfEFlags = fEfl2; \ } EMIT_BLSMSK(64, uint64_t, _fallback) EMIT_BLSMSK(32, uint32_t, _fallback) #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_BLSMSK(64, uint64_t, RT_NOTHING) #endif #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_BLSMSK(32, uint32_t, RT_NOTHING) #endif /* * BLSI (BMI1 instruction) */ #define EMIT_BLSI(a_cBits, a_Type, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsi_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \ { \ uint32_t fEfl1 = *pfEFlags; \ uint32_t fEfl2 = fEfl1; \ *puDst = uSrc; \ iemAImpl_neg_u ## a_cBits(&uSrc, &fEfl1); \ iemAImpl_and_u ## a_cBits(puDst, uSrc, &fEfl2); \ \ /* AMD: The carry flag is from the SUB operation. */ \ /* 10890xe: PF always cleared? */ \ fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \ fEfl2 |= fEfl1 & X86_EFL_CF; \ *pfEFlags = fEfl2; \ } EMIT_BLSI(64, uint64_t, _fallback) EMIT_BLSI(32, uint32_t, _fallback) #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_BLSI(64, uint64_t, RT_NOTHING) #endif #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_BLSI(32, uint32_t, RT_NOTHING) #endif /* * BZHI (BMI2 instruction) */ #define EMIT_BZHI(a_cBits, a_Type, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_bzhi_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc1, \ a_Type uSrc2, uint32_t *pfEFlags)) \ { \ uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \ a_Type uResult; \ uint8_t const iFirstBit = (uint8_t)uSrc2; \ if (iFirstBit < a_cBits) \ uResult = uSrc1 & (((a_Type)1 << iFirstBit) - 1); \ else \ { \ uResult = uSrc1; \ fEfl |= X86_EFL_CF; \ } \ *puDst = uResult; \ fEfl |= X86_EFL_CALC_ZF(uResult); \ fEfl |= X86_EFL_CALC_SF(uResult, a_cBits); \ *pfEFlags = fEfl; \ } EMIT_BZHI(64, uint64_t, _fallback) EMIT_BZHI(32, uint32_t, _fallback) #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_BZHI(64, uint64_t, RT_NOTHING) #endif #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_BZHI(32, uint32_t, RT_NOTHING) #endif /* * POPCNT */ RT_ALIGNAS_VAR(64) static uint8_t const g_abBitCounts6[64] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, }; /** @todo Use native popcount where possible and employ some more efficient * algorithm here (or in asm.h fallback)! */ DECLINLINE(uint8_t) iemPopCountU16(uint16_t u16) { return g_abBitCounts6[ u16 & 0x3f] + g_abBitCounts6[(u16 >> 6) & 0x3f] + g_abBitCounts6[(u16 >> 12) & 0x3f]; } DECLINLINE(uint8_t) iemPopCountU32(uint32_t u32) { return g_abBitCounts6[ u32 & 0x3f] + g_abBitCounts6[(u32 >> 6) & 0x3f] + g_abBitCounts6[(u32 >> 12) & 0x3f] + g_abBitCounts6[(u32 >> 18) & 0x3f] + g_abBitCounts6[(u32 >> 24) & 0x3f] + g_abBitCounts6[(u32 >> 30) & 0x3f]; } DECLINLINE(uint8_t) iemPopCountU64(uint64_t u64) { return g_abBitCounts6[ u64 & 0x3f] + g_abBitCounts6[(u64 >> 6) & 0x3f] + g_abBitCounts6[(u64 >> 12) & 0x3f] + g_abBitCounts6[(u64 >> 18) & 0x3f] + g_abBitCounts6[(u64 >> 24) & 0x3f] + g_abBitCounts6[(u64 >> 30) & 0x3f] + g_abBitCounts6[(u64 >> 36) & 0x3f] + g_abBitCounts6[(u64 >> 42) & 0x3f] + g_abBitCounts6[(u64 >> 48) & 0x3f] + g_abBitCounts6[(u64 >> 54) & 0x3f] + g_abBitCounts6[(u64 >> 60) & 0x3f]; } #define EMIT_POPCNT(a_cBits, a_Type, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_popcnt_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \ { \ uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \ a_Type uResult; \ if (uSrc) \ uResult = iemPopCountU ## a_cBits(uSrc); \ else \ { \ fEfl |= X86_EFL_ZF; \ uResult = 0; \ } \ *puDst = uResult; \ *pfEFlags = fEfl; \ } EMIT_POPCNT(64, uint64_t, _fallback) EMIT_POPCNT(32, uint32_t, _fallback) EMIT_POPCNT(16, uint16_t, _fallback) #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_POPCNT(64, uint64_t, RT_NOTHING) #endif #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_POPCNT(32, uint32_t, RT_NOTHING) EMIT_POPCNT(16, uint16_t, RT_NOTHING) #endif #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) /* * XCHG */ IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *puMem, uint64_t *puReg)) { #if ARCH_BITS >= 64 *puReg = ASMAtomicXchgU64(puMem, *puReg); #else uint64_t uOldMem = *puMem; while (!ASMAtomicCmpXchgExU64(puMem, *puReg, uOldMem, &uOldMem)) ASMNopPause(); *puReg = uOldMem; #endif } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *puMem, uint32_t *puReg)) { *puReg = ASMAtomicXchgU32(puMem, *puReg); } IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *puMem, uint16_t *puReg)) { *puReg = ASMAtomicXchgU16(puMem, *puReg); } IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked,(uint8_t *puMem, uint8_t *puReg)) { *puReg = ASMAtomicXchgU8(puMem, *puReg); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* Unlocked variants for fDisregardLock mode: */ IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *puMem, uint64_t *puReg)) { uint64_t const uOld = *puMem; *puMem = *puReg; *puReg = uOld; } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *puMem, uint32_t *puReg)) { uint32_t const uOld = *puMem; *puMem = *puReg; *puReg = uOld; } IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *puMem, uint16_t *puReg)) { uint16_t const uOld = *puMem; *puMem = *puReg; *puReg = uOld; } IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked,(uint8_t *puMem, uint8_t *puReg)) { uint8_t const uOld = *puMem; *puMem = *puReg; *puReg = uOld; } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * XADD and LOCK XADD. */ #define EMIT_XADD(a_cBitsWidth, a_Type) \ IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u ## a_cBitsWidth,(a_Type *puDst, a_Type *puReg, uint32_t *pfEFlags)) \ { \ a_Type uDst = *puDst; \ a_Type uResult = uDst; \ iemAImpl_add_u ## a_cBitsWidth(&uResult, *puReg, pfEFlags); \ *puDst = uResult; \ *puReg = uDst; \ } \ \ IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u ## a_cBitsWidth ## _locked,(a_Type *puDst, a_Type *puReg, uint32_t *pfEFlags)) \ { \ a_Type uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \ a_Type uResult; \ uint32_t fEflTmp; \ do \ { \ uResult = uOld; \ fEflTmp = *pfEFlags; \ iemAImpl_add_u ## a_cBitsWidth(&uResult, *puReg, &fEflTmp); \ } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uResult, uOld, &uOld)); \ *puReg = uOld; \ *pfEFlags = fEflTmp; \ } EMIT_XADD(64, uint64_t) # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_XADD(32, uint32_t) EMIT_XADD(16, uint16_t) EMIT_XADD(8, uint8_t) # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ #endif /* * CMPXCHG, CMPXCHG8B, CMPXCHG16B * * Note! We don't have non-locking/atomic cmpxchg primitives, so all cmpxchg * instructions are emulated as locked. */ #if defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags)) { uint8_t uOld = *puAl; if (ASMAtomicCmpXchgExU8(pu8Dst, uSrcReg, uOld, puAl)) Assert(*puAl == uOld); iemAImpl_cmp_u8(&uOld, *puAl, pEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags)) { uint16_t uOld = *puAx; if (ASMAtomicCmpXchgExU16(pu16Dst, uSrcReg, uOld, puAx)) Assert(*puAx == uOld); iemAImpl_cmp_u16(&uOld, *puAx, pEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags)) { uint32_t uOld = *puEax; if (ASMAtomicCmpXchgExU32(pu32Dst, uSrcReg, uOld, puEax)) Assert(*puEax == uOld); iemAImpl_cmp_u32(&uOld, *puEax, pEFlags); } # if ARCH_BITS == 32 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags)) # else IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags)) # endif { # if ARCH_BITS == 32 uint64_t const uSrcReg = *puSrcReg; # endif uint64_t uOld = *puRax; if (ASMAtomicCmpXchgExU64(pu64Dst, uSrcReg, uOld, puRax)) Assert(*puRax == uOld); iemAImpl_cmp_u64(&uOld, *puRax, pEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx, uint32_t *pEFlags)) { uint64_t const uNew = pu64EbxEcx->u; uint64_t const uOld = pu64EaxEdx->u; if (ASMAtomicCmpXchgExU64(pu64Dst, uNew, uOld, &pu64EaxEdx->u)) { Assert(pu64EaxEdx->u == uOld); *pEFlags |= X86_EFL_ZF; } else *pEFlags &= ~X86_EFL_ZF; } # if defined(RT_ARCH_AMD64) || defined(RT_ARCH_ARM64) IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx, uint32_t *pEFlags)) { # ifdef VBOX_STRICT RTUINT128U const uOld = *pu128RaxRdx; # endif # if defined(RT_ARCH_AMD64) if (ASMAtomicCmpXchgU128v2(&pu128Dst->u, pu128RbxRcx->s.Hi, pu128RbxRcx->s.Lo, pu128RaxRdx->s.Hi, pu128RaxRdx->s.Lo, &pu128RaxRdx->u)) # else if (ASMAtomicCmpXchgU128(&pu128Dst->u, pu128RbxRcx->u, pu128RaxRdx->u, &pu128RaxRdx->u)) # endif { Assert(pu128RaxRdx->s.Lo == uOld.s.Lo && pu128RaxRdx->s.Hi == uOld.s.Hi); *pEFlags |= X86_EFL_ZF; } else *pEFlags &= ~X86_EFL_ZF; } # endif #endif /* defined(IEM_WITHOUT_ASSEMBLY) */ # if !defined(RT_ARCH_ARM64) /** @todo may need this for unaligned accesses... */ IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx, uint32_t *pEFlags)) { RTUINT128U u128Tmp = *pu128Dst; if ( u128Tmp.s.Lo == pu128RaxRdx->s.Lo && u128Tmp.s.Hi == pu128RaxRdx->s.Hi) { *pu128Dst = *pu128RbxRcx; *pEFlags |= X86_EFL_ZF; } else { *pu128RaxRdx = u128Tmp; *pEFlags &= ~X86_EFL_ZF; } } #endif /* !RT_ARCH_ARM64 */ #if defined(IEM_WITHOUT_ASSEMBLY) /* Unlocked versions mapped to the locked ones: */ IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags)) { iemAImpl_cmpxchg_u8_locked(pu8Dst, puAl, uSrcReg, pEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags)) { iemAImpl_cmpxchg_u16_locked(pu16Dst, puAx, uSrcReg, pEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags)) { iemAImpl_cmpxchg_u32_locked(pu32Dst, puEax, uSrcReg, pEFlags); } # if ARCH_BITS == 32 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags)) { iemAImpl_cmpxchg_u64_locked(pu64Dst, puRax, puSrcReg, pEFlags); } # else IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags)) { iemAImpl_cmpxchg_u64_locked(pu64Dst, puRax, uSrcReg, pEFlags); } # endif IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx, uint32_t *pEFlags)) { iemAImpl_cmpxchg8b_locked(pu64Dst, pu64EaxEdx, pu64EbxEcx, pEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx, uint32_t *pEFlags)) { iemAImpl_cmpxchg16b_locked(pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags); } #endif /* defined(IEM_WITHOUT_ASSEMBLY) */ #if (!defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)) \ && !defined(DOXYGEN_RUNNING) /* Doxygen has some groking issues here and ends up mixing up input. Not worth tracking down now. */ /* * MUL, IMUL, DIV and IDIV helpers. * * - The U64 versions must use 128-bit intermediates, so we need to abstract the * division step so we can select between using C operators and * RTUInt128DivRem/RTUInt128MulU64ByU64. * * - The U8 versions work returns output in AL + AH instead of xDX + xAX, with the * IDIV/DIV taking all the input in AX too. This means we have to abstract some * input loads and the result storing. */ DECLINLINE(void) RTUInt128DivRemByU64(PRTUINT128U pQuotient, PRTUINT128U pRemainder, PCRTUINT128U pDividend, uint64_t u64Divisor) { # ifdef __GNUC__ /* GCC maybe really annoying in function. */ pQuotient->s.Lo = 0; pQuotient->s.Hi = 0; # endif RTUINT128U Divisor; Divisor.s.Lo = u64Divisor; Divisor.s.Hi = 0; RTUInt128DivRem(pQuotient, pRemainder, pDividend, &Divisor); } # define DIV_LOAD(a_Dividend) \ a_Dividend.s.Lo = *puA, a_Dividend.s.Hi = *puD # define DIV_LOAD_U8(a_Dividend) \ a_Dividend.u = *puAX # define DIV_STORE(a_Quotient, a_uReminder) *puA = (a_Quotient), *puD = (a_uReminder) # define DIV_STORE_U8(a_Quotient, a_uReminder) *puAX = (uint8_t)(a_Quotient) | ((uint16_t)(a_uReminder) << 8) # define MUL_LOAD_F1() *puA # define MUL_LOAD_F1_U8() ((uint8_t)*puAX) # define MUL_STORE(a_Result) *puA = (a_Result).s.Lo, *puD = (a_Result).s.Hi # define MUL_STORE_U8(a_Result) *puAX = a_Result.u # define MULDIV_NEG(a_Value, a_cBitsWidth2x) \ (a_Value).u = UINT ## a_cBitsWidth2x ## _C(0) - (a_Value).u # define MULDIV_NEG_U128(a_Value, a_cBitsWidth2x) \ RTUInt128AssignNeg(&(a_Value)) # define MULDIV_MUL(a_Result, a_Factor1, a_Factor2, a_cBitsWidth2x) \ (a_Result).u = (uint ## a_cBitsWidth2x ## _t)(a_Factor1) * (a_Factor2) # define MULDIV_MUL_U128(a_Result, a_Factor1, a_Factor2, a_cBitsWidth2x) \ RTUInt128MulU64ByU64(&(a_Result), a_Factor1, a_Factor2); # define MULDIV_MODDIV(a_Quotient, a_Remainder, a_Dividend, a_uDivisor) \ a_Quotient.u = (a_Dividend).u / (a_uDivisor), \ a_Remainder.u = (a_Dividend).u % (a_uDivisor) # define MULDIV_MODDIV_U128(a_Quotient, a_Remainder, a_Dividend, a_uDivisor) \ RTUInt128DivRemByU64(&a_Quotient, &a_Remainder, &a_Dividend, a_uDivisor) /* * MUL */ # define EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_mul_u,a_cBitsWidth,a_Suffix), a_Args) \ { \ RTUINT ## a_cBitsWidth2x ## U Result; \ a_fnMul(Result, a_fnLoadF1(), uFactor, a_cBitsWidth2x); \ a_fnStore(Result); \ \ /* Calc EFLAGS: */ \ uint32_t fEfl = *pfEFlags; \ if (a_fIntelFlags) \ { /* Intel: 6700K and 10980XE behavior */ \ fEfl &= ~(X86_EFL_SF | X86_EFL_CF | X86_EFL_OF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF); \ if (Result.s.Lo & RT_BIT_64(a_cBitsWidth - 1)) \ fEfl |= X86_EFL_SF; \ fEfl |= g_afParity[Result.s.Lo & 0xff]; \ if (Result.s.Hi != 0) \ fEfl |= X86_EFL_CF | X86_EFL_OF; \ } \ else \ { /* AMD: 3990X */ \ if (Result.s.Hi != 0) \ fEfl |= X86_EFL_CF | X86_EFL_OF; \ else \ fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \ } \ *pfEFlags = fEfl; \ return 0; \ } \ # define EMIT_MUL(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul) \ EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, RT_NOTHING, 1) \ EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, _intel, 1) \ EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, _amd, 0) \ # ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */ EMIT_MUL(64, 128, (uint64_t *puA, uint64_t *puD, uint64_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags), MUL_LOAD_F1, MUL_STORE, MULDIV_MUL_U128) # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_MUL(32, 64, (uint32_t *puA, uint32_t *puD, uint32_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags), MUL_LOAD_F1, MUL_STORE, MULDIV_MUL) EMIT_MUL(16, 32, (uint16_t *puA, uint16_t *puD, uint16_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags), MUL_LOAD_F1, MUL_STORE, MULDIV_MUL) EMIT_MUL(8, 16, (uint16_t *puAX, uint8_t uFactor, uint32_t *pfEFlags), (puAX, uFactor, pfEFlags), MUL_LOAD_F1_U8, MUL_STORE_U8, MULDIV_MUL) # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ # endif /* !DOXYGEN_RUNNING */ /* * MULX */ # define EMIT_MULX(a_cBitsWidth, a_cBitsWidth2x, a_uType, a_fnMul, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_mulx_u,a_cBitsWidth,a_Suffix), \ (a_uType *puDst1, a_uType *puDst2, a_uType uSrc1, a_uType uSrc2)) \ { \ RTUINT ## a_cBitsWidth2x ## U Result; \ a_fnMul(Result, uSrc1, uSrc2, a_cBitsWidth2x); \ *puDst2 = Result.s.Lo; /* Lower part first, as we should return the high part when puDst2 == puDst1. */ \ *puDst1 = Result.s.Hi; \ } \ # ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */ EMIT_MULX(64, 128, uint64_t, MULDIV_MUL_U128, RT_NOTHING) EMIT_MULX(64, 128, uint64_t, MULDIV_MUL_U128, _fallback) # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_MULX(32, 64, uint32_t, MULDIV_MUL, RT_NOTHING) EMIT_MULX(32, 64, uint32_t, MULDIV_MUL, _fallback) # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ # endif /* !DOXYGEN_RUNNING */ /* * IMUL * * The SF, ZF, AF and PF flags are "undefined". AMD (3990x) leaves these * flags as is. Whereas Intel skylake (6700K and 10980X (Cascade Lake)) always * clear AF and ZF and calculates SF and PF as per the lower half of the result. */ # define EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, \ a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_imul_u,a_cBitsWidth,a_Suffix),a_Args) \ { \ RTUINT ## a_cBitsWidth2x ## U Result; \ uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF); \ \ uint ## a_cBitsWidth ## _t const uFactor1 = a_fnLoadF1(); \ if (!(uFactor1 & RT_BIT_64(a_cBitsWidth - 1))) \ { \ if (!(uFactor2 & RT_BIT_64(a_cBitsWidth - 1))) \ { \ a_fnMul(Result, uFactor1, uFactor2, a_cBitsWidth2x); \ if (Result.s.Hi != 0 || Result.s.Lo >= RT_BIT_64(a_cBitsWidth - 1)) \ fEfl |= X86_EFL_CF | X86_EFL_OF; \ } \ else \ { \ uint ## a_cBitsWidth ## _t const uPositiveFactor2 = UINT ## a_cBitsWidth ## _C(0) - uFactor2; \ a_fnMul(Result, uFactor1, uPositiveFactor2, a_cBitsWidth2x); \ if (Result.s.Hi != 0 || Result.s.Lo > RT_BIT_64(a_cBitsWidth - 1)) \ fEfl |= X86_EFL_CF | X86_EFL_OF; \ a_fnNeg(Result, a_cBitsWidth2x); \ } \ } \ else \ { \ if (!(uFactor2 & RT_BIT_64(a_cBitsWidth - 1))) \ { \ uint ## a_cBitsWidth ## _t const uPositiveFactor1 = UINT ## a_cBitsWidth ## _C(0) - uFactor1; \ a_fnMul(Result, uPositiveFactor1, uFactor2, a_cBitsWidth2x); \ if (Result.s.Hi != 0 || Result.s.Lo > RT_BIT_64(a_cBitsWidth - 1)) \ fEfl |= X86_EFL_CF | X86_EFL_OF; \ a_fnNeg(Result, a_cBitsWidth2x); \ } \ else \ { \ uint ## a_cBitsWidth ## _t const uPositiveFactor1 = UINT ## a_cBitsWidth ## _C(0) - uFactor1; \ uint ## a_cBitsWidth ## _t const uPositiveFactor2 = UINT ## a_cBitsWidth ## _C(0) - uFactor2; \ a_fnMul(Result, uPositiveFactor1, uPositiveFactor2, a_cBitsWidth2x); \ if (Result.s.Hi != 0 || Result.s.Lo >= RT_BIT_64(a_cBitsWidth - 1)) \ fEfl |= X86_EFL_CF | X86_EFL_OF; \ } \ } \ a_fnStore(Result); \ \ if (a_fIntelFlags) \ { \ fEfl &= ~(X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_PF); \ if (Result.s.Lo & RT_BIT_64(a_cBitsWidth - 1)) \ fEfl |= X86_EFL_SF; \ fEfl |= g_afParity[Result.s.Lo & 0xff]; \ } \ *pfEFlags = fEfl; \ return 0; \ } # define EMIT_IMUL(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul) \ EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, RT_NOTHING, 1) \ EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, _intel, 1) \ EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, _amd, 0) # ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */ EMIT_IMUL(64, 128, (uint64_t *puA, uint64_t *puD, uint64_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags), MUL_LOAD_F1, MUL_STORE, MULDIV_NEG_U128, MULDIV_MUL_U128) # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_IMUL(32, 64, (uint32_t *puA, uint32_t *puD, uint32_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags), MUL_LOAD_F1, MUL_STORE, MULDIV_NEG, MULDIV_MUL) EMIT_IMUL(16, 32, (uint16_t *puA, uint16_t *puD, uint16_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags), MUL_LOAD_F1, MUL_STORE, MULDIV_NEG, MULDIV_MUL) EMIT_IMUL(8, 16, (uint16_t *puAX, uint8_t uFactor2, uint32_t *pfEFlags), (puAX, uFactor2, pfEFlags), MUL_LOAD_F1_U8, MUL_STORE_U8, MULDIV_NEG, MULDIV_MUL) # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ # endif /* !DOXYGEN_RUNNING */ /* * IMUL with two operands are mapped onto the three operand variant, ignoring * the high part of the product. */ # define EMIT_IMUL_TWO(a_cBits, a_uType) \ IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \ { \ a_uType uIgn; \ iemAImpl_imul_u ## a_cBits(puDst, &uIgn, uSrc, pfEFlags); \ } \ \ IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits ## _intel,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \ { \ a_uType uIgn; \ iemAImpl_imul_u ## a_cBits ## _intel(puDst, &uIgn, uSrc, pfEFlags); \ } \ \ IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits ## _amd,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \ { \ a_uType uIgn; \ iemAImpl_imul_u ## a_cBits ## _amd(puDst, &uIgn, uSrc, pfEFlags); \ } EMIT_IMUL_TWO(64, uint64_t) # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_IMUL_TWO(32, uint32_t) EMIT_IMUL_TWO(16, uint16_t) # endif /* * DIV */ # define EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, \ a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_div_u,a_cBitsWidth,a_Suffix),a_Args) \ { \ RTUINT ## a_cBitsWidth2x ## U Dividend; \ a_fnLoad(Dividend); \ if ( uDivisor != 0 \ && Dividend.s.Hi < uDivisor) \ { \ RTUINT ## a_cBitsWidth2x ## U Remainder, Quotient; \ a_fnDivRem(Quotient, Remainder, Dividend, uDivisor); \ a_fnStore(Quotient.s.Lo, Remainder.s.Lo); \ \ /* Calc EFLAGS: Intel 6700K and 10980XE leaves them alone. AMD 3990X sets AF and clears PF, ZF and SF. */ \ if (!a_fIntelFlags) \ *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \ return 0; \ } \ /* #DE */ \ return -1; \ } # define EMIT_DIV(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem) \ EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, RT_NOTHING, 1) \ EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, _intel, 1) \ EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, _amd, 0) # ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */ EMIT_DIV(64,128,(uint64_t *puA, uint64_t *puD, uint64_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), DIV_LOAD, DIV_STORE, MULDIV_MODDIV_U128) # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_DIV(32,64, (uint32_t *puA, uint32_t *puD, uint32_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), DIV_LOAD, DIV_STORE, MULDIV_MODDIV) EMIT_DIV(16,32, (uint16_t *puA, uint16_t *puD, uint16_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), DIV_LOAD, DIV_STORE, MULDIV_MODDIV) EMIT_DIV(8,16, (uint16_t *puAX, uint8_t uDivisor, uint32_t *pfEFlags), (puAX, uDivisor, pfEFlags), DIV_LOAD_U8, DIV_STORE_U8, MULDIV_MODDIV) # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ # endif /* !DOXYGEN_RUNNING */ /* * IDIV * * EFLAGS are ignored and left as-is by Intel 6700K and 10980XE. AMD 3990X will * set AF and clear PF, ZF and SF just like it does for DIV. * */ # define EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, \ a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_idiv_u,a_cBitsWidth,a_Suffix),a_Args) \ { \ /* Note! Skylake leaves all flags alone. */ \ \ /** @todo overflow checks */ \ if (uDivisor != 0) \ { \ /* \ * Convert to unsigned division. \ */ \ RTUINT ## a_cBitsWidth2x ## U Dividend; \ a_fnLoad(Dividend); \ bool const fSignedDividend = RT_BOOL(Dividend.s.Hi & RT_BIT_64(a_cBitsWidth - 1)); \ if (fSignedDividend) \ a_fnNeg(Dividend, a_cBitsWidth2x); \ \ uint ## a_cBitsWidth ## _t uDivisorPositive; \ if (!(uDivisor & RT_BIT_64(a_cBitsWidth - 1))) \ uDivisorPositive = uDivisor; \ else \ uDivisorPositive = UINT ## a_cBitsWidth ## _C(0) - uDivisor; \ \ RTUINT ## a_cBitsWidth2x ## U Remainder, Quotient; \ a_fnDivRem(Quotient, Remainder, Dividend, uDivisorPositive); \ \ /* \ * Setup the result, checking for overflows. \ */ \ if (!(uDivisor & RT_BIT_64(a_cBitsWidth - 1))) \ { \ if (!fSignedDividend) \ { \ /* Positive divisor, positive dividend => result positive. */ \ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint ## a_cBitsWidth ## _t)INT ## a_cBitsWidth ## _MAX) \ { \ a_fnStore(Quotient.s.Lo, Remainder.s.Lo); \ if (!a_fIntelFlags) \ *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \ return 0; \ } \ } \ else \ { \ /* Positive divisor, negative dividend => result negative. */ \ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= RT_BIT_64(a_cBitsWidth - 1)) \ { \ a_fnStore(UINT ## a_cBitsWidth ## _C(0) - Quotient.s.Lo, UINT ## a_cBitsWidth ## _C(0) - Remainder.s.Lo); \ if (!a_fIntelFlags) \ *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \ return 0; \ } \ } \ } \ else \ { \ if (!fSignedDividend) \ { \ /* Negative divisor, positive dividend => negative quotient, positive remainder. */ \ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= RT_BIT_64(a_cBitsWidth - 1)) \ { \ a_fnStore(UINT ## a_cBitsWidth ## _C(0) - Quotient.s.Lo, Remainder.s.Lo); \ if (!a_fIntelFlags) \ *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \ return 0; \ } \ } \ else \ { \ /* Negative divisor, negative dividend => positive quotient, negative remainder. */ \ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint ## a_cBitsWidth ## _t)INT ## a_cBitsWidth ## _MAX) \ { \ a_fnStore(Quotient.s.Lo, UINT ## a_cBitsWidth ## _C(0) - Remainder.s.Lo); \ if (!a_fIntelFlags) \ *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \ return 0; \ } \ } \ } \ } \ /* #DE */ \ return -1; \ } # define EMIT_IDIV(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem) \ EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, RT_NOTHING, 1) \ EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, _intel, 1) \ EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, _amd, 0) # ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */ EMIT_IDIV(64,128,(uint64_t *puA, uint64_t *puD, uint64_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), DIV_LOAD, DIV_STORE, MULDIV_NEG_U128, MULDIV_MODDIV_U128) # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_IDIV(32,64,(uint32_t *puA, uint32_t *puD, uint32_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), DIV_LOAD, DIV_STORE, MULDIV_NEG, MULDIV_MODDIV) EMIT_IDIV(16,32,(uint16_t *puA, uint16_t *puD, uint16_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags), DIV_LOAD, DIV_STORE, MULDIV_NEG, MULDIV_MODDIV) EMIT_IDIV(8,16,(uint16_t *puAX, uint8_t uDivisor, uint32_t *pfEFlags), (puAX, uDivisor, pfEFlags), DIV_LOAD_U8, DIV_STORE_U8, MULDIV_NEG, MULDIV_MODDIV) # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ # endif /* !DOXYGEN_RUNNING */ #endif /* (!defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)) && !defined(DOXYGEN_RUNNING) */ /********************************************************************************************************************************* * Unary operations. * *********************************************************************************************************************************/ #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) /** @def IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC * Updates the status bits (CF, PF, AF, ZF, SF, and OF) for an INC or DEC instruction. * * CF is NOT modified for hysterical raisins (allegedly for carrying and * borrowing in arithmetic loops on intel 8008). * * @returns Status bits. * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update. * @param a_uResult Unsigned result value. * @param a_uDst The original destination value (for AF calc). * @param a_cBitsWidth The width of the result (8, 16, 32, 64). * @param a_OfMethod 0 for INC-style, 1 for DEC-style. */ #define IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(a_pfEFlags, a_uResult, a_uDst, a_cBitsWidth, a_OfMethod) \ do { \ uint32_t fEflTmp = *(a_pfEFlags); \ fEflTmp &= ~X86_EFL_STATUS_BITS | X86_EFL_CF; \ fEflTmp |= g_afParity[(a_uResult) & 0xff]; \ fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \ fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \ fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \ fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth(a_OfMethod == 0 ? (((a_uDst) ^ RT_BIT_64(a_cBitsWidth - 1)) & (a_uResult)) \ : ((a_uDst) & ((a_uResult) ^ RT_BIT_64(a_cBitsWidth - 1))) ); \ *(a_pfEFlags) = fEflTmp; \ } while (0) /* * INC */ IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64,(uint64_t *puDst, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = uDst + 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 64, 0 /*INC*/); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u32,(uint32_t *puDst, uint32_t *pfEFlags)) { uint32_t uDst = *puDst; uint32_t uResult = uDst + 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 32, 0 /*INC*/); } IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u16,(uint16_t *puDst, uint32_t *pfEFlags)) { uint16_t uDst = *puDst; uint16_t uResult = uDst + 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 16, 0 /*INC*/); } IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u8,(uint8_t *puDst, uint32_t *pfEFlags)) { uint8_t uDst = *puDst; uint8_t uResult = uDst + 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 8, 0 /*INC*/); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * DEC */ IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64,(uint64_t *puDst, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = uDst - 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 64, 1 /*INC*/); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u32,(uint32_t *puDst, uint32_t *pfEFlags)) { uint32_t uDst = *puDst; uint32_t uResult = uDst - 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 32, 1 /*INC*/); } IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u16,(uint16_t *puDst, uint32_t *pfEFlags)) { uint16_t uDst = *puDst; uint16_t uResult = uDst - 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 16, 1 /*INC*/); } IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u8,(uint8_t *puDst, uint32_t *pfEFlags)) { uint8_t uDst = *puDst; uint8_t uResult = uDst - 1; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 8, 1 /*INC*/); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * NOT */ IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64,(uint64_t *puDst, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = ~uDst; *puDst = uResult; /* EFLAGS are not modified. */ RT_NOREF_PV(pfEFlags); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_not_u32,(uint32_t *puDst, uint32_t *pfEFlags)) { uint32_t uDst = *puDst; uint32_t uResult = ~uDst; *puDst = uResult; /* EFLAGS are not modified. */ RT_NOREF_PV(pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_not_u16,(uint16_t *puDst, uint32_t *pfEFlags)) { uint16_t uDst = *puDst; uint16_t uResult = ~uDst; *puDst = uResult; /* EFLAGS are not modified. */ RT_NOREF_PV(pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_not_u8,(uint8_t *puDst, uint32_t *pfEFlags)) { uint8_t uDst = *puDst; uint8_t uResult = ~uDst; *puDst = uResult; /* EFLAGS are not modified. */ RT_NOREF_PV(pfEFlags); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * NEG */ /** * Updates the status bits (CF, PF, AF, ZF, SF, and OF) for an NEG instruction. * * @returns Status bits. * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update. * @param a_uResult Unsigned result value. * @param a_uDst The original destination value (for AF calc). * @param a_cBitsWidth The width of the result (8, 16, 32, 64). */ #define IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(a_pfEFlags, a_uResult, a_uDst, a_cBitsWidth) \ do { \ uint32_t fEflTmp = *(a_pfEFlags); \ fEflTmp &= ~X86_EFL_STATUS_BITS & ~X86_EFL_CF; \ fEflTmp |= ((a_uDst) != 0) << X86_EFL_CF_BIT; \ fEflTmp |= g_afParity[(a_uResult) & 0xff]; \ fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \ fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \ fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \ fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth((a_uDst) & (a_uResult)); \ *(a_pfEFlags) = fEflTmp; \ } while (0) IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64,(uint64_t *puDst, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = (uint64_t)0 - uDst; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 64); } # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u32,(uint32_t *puDst, uint32_t *pfEFlags)) { uint32_t uDst = *puDst; uint32_t uResult = (uint32_t)0 - uDst; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 32); } IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u16,(uint16_t *puDst, uint32_t *pfEFlags)) { uint16_t uDst = *puDst; uint16_t uResult = (uint16_t)0 - uDst; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 16); } IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u8,(uint8_t *puDst, uint32_t *pfEFlags)) { uint8_t uDst = *puDst; uint8_t uResult = (uint8_t)0 - uDst; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 8); } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ /* * Locked variants. */ /** Emit a function for doing a locked unary operand operation. */ # define EMIT_LOCKED_UNARY_OP(a_Mnemonic, a_cBitsWidth) \ IEM_DECL_IMPL_DEF(void, iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth ## _locked,(uint ## a_cBitsWidth ## _t *puDst, \ uint32_t *pfEFlags)) \ { \ uint ## a_cBitsWidth ## _t uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \ uint ## a_cBitsWidth ## _t uTmp; \ uint32_t fEflTmp; \ do \ { \ uTmp = uOld; \ fEflTmp = *pfEFlags; \ iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth(&uTmp, &fEflTmp); \ } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uTmp, uOld, &uOld)); \ *pfEFlags = fEflTmp; \ } EMIT_LOCKED_UNARY_OP(inc, 64) EMIT_LOCKED_UNARY_OP(dec, 64) EMIT_LOCKED_UNARY_OP(not, 64) EMIT_LOCKED_UNARY_OP(neg, 64) # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_LOCKED_UNARY_OP(inc, 32) EMIT_LOCKED_UNARY_OP(dec, 32) EMIT_LOCKED_UNARY_OP(not, 32) EMIT_LOCKED_UNARY_OP(neg, 32) EMIT_LOCKED_UNARY_OP(inc, 16) EMIT_LOCKED_UNARY_OP(dec, 16) EMIT_LOCKED_UNARY_OP(not, 16) EMIT_LOCKED_UNARY_OP(neg, 16) EMIT_LOCKED_UNARY_OP(inc, 8) EMIT_LOCKED_UNARY_OP(dec, 8) EMIT_LOCKED_UNARY_OP(not, 8) EMIT_LOCKED_UNARY_OP(neg, 8) # endif #endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */ /********************************************************************************************************************************* * Shifting and Rotating * *********************************************************************************************************************************/ /* * ROL */ #define EMIT_ROL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags, a_fnHlp) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rol_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ { \ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ if (cShift) \ { \ if (a_cBitsWidth < 32) \ cShift &= a_cBitsWidth - 1; \ a_uType const uDst = *puDst; \ a_uType const uResult = a_fnHlp(uDst, cShift); \ *puDst = uResult; \ \ /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement \ it the same way as for 1 bit shifts. */ \ AssertCompile(X86_EFL_CF_BIT == 0); \ uint32_t fEfl = *pfEFlags; \ fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \ uint32_t const fCarry = (uResult & X86_EFL_CF); \ fEfl |= fCarry; \ if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \ fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fCarry) << X86_EFL_OF_BIT; \ else /* Intel 10980XE: According to the first sub-shift: */ \ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \ *pfEFlags = fEfl; \ } \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_ROL(64, uint64_t, RT_NOTHING, 1, ASMRotateLeftU64) #endif EMIT_ROL(64, uint64_t, _intel, 1, ASMRotateLeftU64) EMIT_ROL(64, uint64_t, _amd, 0, ASMRotateLeftU64) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_ROL(32, uint32_t, RT_NOTHING, 1, ASMRotateLeftU32) #endif EMIT_ROL(32, uint32_t, _intel, 1, ASMRotateLeftU32) EMIT_ROL(32, uint32_t, _amd, 0, ASMRotateLeftU32) DECL_FORCE_INLINE(uint16_t) iemAImpl_rol_u16_hlp(uint16_t uValue, uint8_t cShift) { return (uValue << cShift) | (uValue >> (16 - cShift)); } #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_ROL(16, uint16_t, RT_NOTHING, 1, iemAImpl_rol_u16_hlp) #endif EMIT_ROL(16, uint16_t, _intel, 1, iemAImpl_rol_u16_hlp) EMIT_ROL(16, uint16_t, _amd, 0, iemAImpl_rol_u16_hlp) DECL_FORCE_INLINE(uint8_t) iemAImpl_rol_u8_hlp(uint8_t uValue, uint8_t cShift) { return (uValue << cShift) | (uValue >> (8 - cShift)); } #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_ROL(8, uint8_t, RT_NOTHING, 1, iemAImpl_rol_u8_hlp) #endif EMIT_ROL(8, uint8_t, _intel, 1, iemAImpl_rol_u8_hlp) EMIT_ROL(8, uint8_t, _amd, 0, iemAImpl_rol_u8_hlp) /* * ROR */ #define EMIT_ROR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags, a_fnHlp) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_ror_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ { \ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ if (cShift) \ { \ if (a_cBitsWidth < 32) \ cShift &= a_cBitsWidth - 1; \ a_uType const uDst = *puDst; \ a_uType const uResult = a_fnHlp(uDst, cShift); \ *puDst = uResult; \ \ /* Calc EFLAGS: */ \ AssertCompile(X86_EFL_CF_BIT == 0); \ uint32_t fEfl = *pfEFlags; \ fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \ uint32_t const fCarry = (uResult >> ((a_cBitsWidth) - 1)) & X86_EFL_CF; \ fEfl |= fCarry; \ if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \ fEfl |= (((uResult >> ((a_cBitsWidth) - 2)) ^ fCarry) & 1) << X86_EFL_OF_BIT; \ else /* Intel 10980XE: According to the first sub-shift: */ \ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << (a_cBitsWidth - 1))); \ *pfEFlags = fEfl; \ } \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_ROR(64, uint64_t, RT_NOTHING, 1, ASMRotateRightU64) #endif EMIT_ROR(64, uint64_t, _intel, 1, ASMRotateRightU64) EMIT_ROR(64, uint64_t, _amd, 0, ASMRotateRightU64) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_ROR(32, uint32_t, RT_NOTHING, 1, ASMRotateRightU32) #endif EMIT_ROR(32, uint32_t, _intel, 1, ASMRotateRightU32) EMIT_ROR(32, uint32_t, _amd, 0, ASMRotateRightU32) DECL_FORCE_INLINE(uint16_t) iemAImpl_ror_u16_hlp(uint16_t uValue, uint8_t cShift) { return (uValue >> cShift) | (uValue << (16 - cShift)); } #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_ROR(16, uint16_t, RT_NOTHING, 1, iemAImpl_ror_u16_hlp) #endif EMIT_ROR(16, uint16_t, _intel, 1, iemAImpl_ror_u16_hlp) EMIT_ROR(16, uint16_t, _amd, 0, iemAImpl_ror_u16_hlp) DECL_FORCE_INLINE(uint8_t) iemAImpl_ror_u8_hlp(uint8_t uValue, uint8_t cShift) { return (uValue >> cShift) | (uValue << (8 - cShift)); } #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_ROR(8, uint8_t, RT_NOTHING, 1, iemAImpl_ror_u8_hlp) #endif EMIT_ROR(8, uint8_t, _intel, 1, iemAImpl_ror_u8_hlp) EMIT_ROR(8, uint8_t, _amd, 0, iemAImpl_ror_u8_hlp) /* * RCL */ #define EMIT_RCL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rcl_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ { \ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ if (a_cBitsWidth < 32 && a_fIntelFlags) \ cShift %= a_cBitsWidth + 1; \ if (cShift) \ { \ if (a_cBitsWidth < 32 && !a_fIntelFlags) \ cShift %= a_cBitsWidth + 1; \ a_uType const uDst = *puDst; \ a_uType uResult = uDst << cShift; \ if (cShift > 1) \ uResult |= uDst >> (a_cBitsWidth + 1 - cShift); \ \ AssertCompile(X86_EFL_CF_BIT == 0); \ uint32_t fEfl = *pfEFlags; \ uint32_t fInCarry = fEfl & X86_EFL_CF; \ uResult |= (a_uType)fInCarry << (cShift - 1); \ \ *puDst = uResult; \ \ /* Calc EFLAGS. */ \ fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \ uint32_t const fOutCarry = a_cBitsWidth >= 32 || a_fIntelFlags || cShift \ ? (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF : fInCarry; \ fEfl |= fOutCarry; \ if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \ fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fOutCarry) << X86_EFL_OF_BIT; \ else /* Intel 10980XE: According to the first sub-shift: */ \ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \ *pfEFlags = fEfl; \ } \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_RCL(64, uint64_t, RT_NOTHING, 1) #endif EMIT_RCL(64, uint64_t, _intel, 1) EMIT_RCL(64, uint64_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_RCL(32, uint32_t, RT_NOTHING, 1) #endif EMIT_RCL(32, uint32_t, _intel, 1) EMIT_RCL(32, uint32_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_RCL(16, uint16_t, RT_NOTHING, 1) #endif EMIT_RCL(16, uint16_t, _intel, 1) EMIT_RCL(16, uint16_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_RCL(8, uint8_t, RT_NOTHING, 1) #endif EMIT_RCL(8, uint8_t, _intel, 1) EMIT_RCL(8, uint8_t, _amd, 0) /* * RCR */ #define EMIT_RCR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rcr_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ { \ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ if (a_cBitsWidth < 32 && a_fIntelFlags) \ cShift %= a_cBitsWidth + 1; \ if (cShift) \ { \ if (a_cBitsWidth < 32 && !a_fIntelFlags) \ cShift %= a_cBitsWidth + 1; \ a_uType const uDst = *puDst; \ a_uType uResult = uDst >> cShift; \ if (cShift > 1) \ uResult |= uDst << (a_cBitsWidth + 1 - cShift); \ \ AssertCompile(X86_EFL_CF_BIT == 0); \ uint32_t fEfl = *pfEFlags; \ uint32_t fInCarry = fEfl & X86_EFL_CF; \ uResult |= (a_uType)fInCarry << (a_cBitsWidth - cShift); \ *puDst = uResult; \ \ /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement \ it the same way as for 1 bit shifts. */ \ fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \ uint32_t const fOutCarry = a_cBitsWidth >= 32 || a_fIntelFlags || cShift \ ? (uDst >> (cShift - 1)) & X86_EFL_CF : fInCarry; \ fEfl |= fOutCarry; \ if (!a_fIntelFlags) /* AMD 3990X: XOR two most signficant bits of the result: */ \ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uResult ^ (uResult << 1)); \ else /* Intel 10980XE: same as AMD, but only for the first sub-shift: */ \ fEfl |= (fInCarry ^ (uint32_t)(uDst >> (a_cBitsWidth - 1))) << X86_EFL_OF_BIT; \ *pfEFlags = fEfl; \ } \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_RCR(64, uint64_t, RT_NOTHING, 1) #endif EMIT_RCR(64, uint64_t, _intel, 1) EMIT_RCR(64, uint64_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_RCR(32, uint32_t, RT_NOTHING, 1) #endif EMIT_RCR(32, uint32_t, _intel, 1) EMIT_RCR(32, uint32_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_RCR(16, uint16_t, RT_NOTHING, 1) #endif EMIT_RCR(16, uint16_t, _intel, 1) EMIT_RCR(16, uint16_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_RCR(8, uint8_t, RT_NOTHING, 1) #endif EMIT_RCR(8, uint8_t, _intel, 1) EMIT_RCR(8, uint8_t, _amd, 0) /* * SHL */ #define EMIT_SHL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shl_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ { \ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ if (cShift) \ { \ a_uType const uDst = *puDst; \ a_uType uResult = uDst << cShift; \ *puDst = uResult; \ \ /* Calc EFLAGS. */ \ AssertCompile(X86_EFL_CF_BIT == 0); \ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ uint32_t fCarry = (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF; \ fEfl |= fCarry; \ if (!a_fIntelFlags) \ fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fCarry) << X86_EFL_OF_BIT; /* AMD 3990X: Last shift result. */ \ else \ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); /* Intel 10980XE: First shift result. */ \ fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \ fEfl |= X86_EFL_CALC_ZF(uResult); \ fEfl |= g_afParity[uResult & 0xff]; \ if (!a_fIntelFlags) \ fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \ *pfEFlags = fEfl; \ } \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHL(64, uint64_t, RT_NOTHING, 1) #endif EMIT_SHL(64, uint64_t, _intel, 1) EMIT_SHL(64, uint64_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHL(32, uint32_t, RT_NOTHING, 1) #endif EMIT_SHL(32, uint32_t, _intel, 1) EMIT_SHL(32, uint32_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHL(16, uint16_t, RT_NOTHING, 1) #endif EMIT_SHL(16, uint16_t, _intel, 1) EMIT_SHL(16, uint16_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHL(8, uint8_t, RT_NOTHING, 1) #endif EMIT_SHL(8, uint8_t, _intel, 1) EMIT_SHL(8, uint8_t, _amd, 0) /* * SHR */ #define EMIT_SHR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shr_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ { \ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ if (cShift) \ { \ a_uType const uDst = *puDst; \ a_uType uResult = uDst >> cShift; \ *puDst = uResult; \ \ /* Calc EFLAGS. */ \ AssertCompile(X86_EFL_CF_BIT == 0); \ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \ if (a_fIntelFlags || cShift == 1) /* AMD 3990x does what intel documents; Intel 10980XE does this for all shift counts. */ \ fEfl |= (uDst >> (a_cBitsWidth - 1)) << X86_EFL_OF_BIT; \ fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \ fEfl |= X86_EFL_CALC_ZF(uResult); \ fEfl |= g_afParity[uResult & 0xff]; \ if (!a_fIntelFlags) \ fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \ *pfEFlags = fEfl; \ } \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHR(64, uint64_t, RT_NOTHING, 1) #endif EMIT_SHR(64, uint64_t, _intel, 1) EMIT_SHR(64, uint64_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHR(32, uint32_t, RT_NOTHING, 1) #endif EMIT_SHR(32, uint32_t, _intel, 1) EMIT_SHR(32, uint32_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHR(16, uint16_t, RT_NOTHING, 1) #endif EMIT_SHR(16, uint16_t, _intel, 1) EMIT_SHR(16, uint16_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHR(8, uint8_t, RT_NOTHING, 1) #endif EMIT_SHR(8, uint8_t, _intel, 1) EMIT_SHR(8, uint8_t, _amd, 0) /* * SAR */ #define EMIT_SAR(a_cBitsWidth, a_uType, a_iType, a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_sar_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \ { \ cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \ if (cShift) \ { \ a_iType const iDst = (a_iType)*puDst; \ a_uType uResult = iDst >> cShift; \ *puDst = uResult; \ \ /* Calc EFLAGS. \ Note! The OF flag is always zero because the result never differs from the input. */ \ AssertCompile(X86_EFL_CF_BIT == 0); \ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ fEfl |= (iDst >> (cShift - 1)) & X86_EFL_CF; \ fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \ fEfl |= X86_EFL_CALC_ZF(uResult); \ fEfl |= g_afParity[uResult & 0xff]; \ if (!a_fIntelFlags) \ fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \ *pfEFlags = fEfl; \ } \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SAR(64, uint64_t, int64_t, RT_NOTHING, 1) #endif EMIT_SAR(64, uint64_t, int64_t, _intel, 1) EMIT_SAR(64, uint64_t, int64_t, _amd, 0) #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SAR(32, uint32_t, int32_t, RT_NOTHING, 1) #endif EMIT_SAR(32, uint32_t, int32_t, _intel, 1) EMIT_SAR(32, uint32_t, int32_t, _amd, 0) #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SAR(16, uint16_t, int16_t, RT_NOTHING, 1) #endif EMIT_SAR(16, uint16_t, int16_t, _intel, 1) EMIT_SAR(16, uint16_t, int16_t, _amd, 0) #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SAR(8, uint8_t, int8_t, RT_NOTHING, 1) #endif EMIT_SAR(8, uint8_t, int8_t, _intel, 1) EMIT_SAR(8, uint8_t, int8_t, _amd, 0) /* * SHLD * * - CF is the last bit shifted out of puDst. * - AF is always cleared by Intel 10980XE. * - AF is always set by AMD 3990X. * - OF is set according to the first shift on Intel 10980XE, it seems. * - OF is set according to the last sub-shift on AMD 3990X. * - ZF, SF and PF are calculated according to the result by both vendors. * * For 16-bit shifts the count mask isn't 15, but 31, and the CPU will * pick either the source register or the destination register for input bits * when going beyond 16. According to https://www.sandpile.org/x86/flags.htm * intel has changed behaviour here several times. We implement what current * skylake based does for now, we can extend this later as needed. */ #define EMIT_SHLD(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shld_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, uint8_t cShift, \ uint32_t *pfEFlags)) \ { \ cShift &= a_cBitsWidth - 1; \ if (cShift) \ { \ a_uType const uDst = *puDst; \ a_uType uResult = uDst << cShift; \ uResult |= uSrc >> (a_cBitsWidth - cShift); \ *puDst = uResult; \ \ /* CALC EFLAGS: */ \ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ if (a_fIntelFlags) \ /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \ else \ { /* AMD 3990X: Set according to last shift. AF always set. */ \ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth((uDst << (cShift - 1)) ^ uResult); \ fEfl |= X86_EFL_AF; \ } \ AssertCompile(X86_EFL_CF_BIT == 0); \ fEfl |= (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF; /* CF = last bit shifted out */ \ fEfl |= g_afParity[uResult & 0xff]; \ fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \ fEfl |= X86_EFL_CALC_ZF(uResult); \ *pfEFlags = fEfl; \ } \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHLD(64, uint64_t, RT_NOTHING, 1) #endif EMIT_SHLD(64, uint64_t, _intel, 1) EMIT_SHLD(64, uint64_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHLD(32, uint32_t, RT_NOTHING, 1) #endif EMIT_SHLD(32, uint32_t, _intel, 1) EMIT_SHLD(32, uint32_t, _amd, 0) #define EMIT_SHLD_16(a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_shld_u16,a_Suffix),(uint16_t *puDst, uint16_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) \ { \ cShift &= 31; \ if (cShift) \ { \ uint16_t const uDst = *puDst; \ uint64_t const uTmp = a_fIntelFlags \ ? ((uint64_t)uDst << 32) | ((uint32_t)uSrc << 16) | uDst \ : ((uint64_t)uDst << 32) | ((uint32_t)uSrc << 16) | uSrc; \ uint16_t const uResult = (uint16_t)((uTmp << cShift) >> 32); \ *puDst = uResult; \ \ /* CALC EFLAGS: */ \ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ AssertCompile(X86_EFL_CF_BIT == 0); \ if (a_fIntelFlags) \ { \ fEfl |= (uTmp >> (48 - cShift)) & X86_EFL_CF; /* CF = last bit shifted out of the combined operand */ \ /* Intel 6700K & 10980XE: OF is et according to the first shift. AF always cleared. */ \ fEfl |= X86_EFL_GET_OF_16(uDst ^ (uDst << 1)); \ } \ else \ { \ /* AMD 3990X: OF is set according to last shift, with some weirdness. AF always set. CF = last bit shifted out of uDst. */ \ if (cShift < 16) \ { \ fEfl |= (uDst >> (16 - cShift)) & X86_EFL_CF; \ fEfl |= X86_EFL_GET_OF_16((uDst << (cShift - 1)) ^ uResult); \ } \ else \ { \ if (cShift == 16) \ fEfl |= uDst & X86_EFL_CF; \ fEfl |= X86_EFL_GET_OF_16((uDst << (cShift - 1)) ^ 0); \ } \ fEfl |= X86_EFL_AF; \ } \ fEfl |= g_afParity[uResult & 0xff]; \ fEfl |= X86_EFL_CALC_SF(uResult, 16); \ fEfl |= X86_EFL_CALC_ZF(uResult); \ *pfEFlags = fEfl; \ } \ } #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHLD_16(RT_NOTHING, 1) #endif EMIT_SHLD_16(_intel, 1) EMIT_SHLD_16(_amd, 0) /* * SHRD * * EFLAGS behaviour seems to be the same as with SHLD: * - CF is the last bit shifted out of puDst. * - AF is always cleared by Intel 10980XE. * - AF is always set by AMD 3990X. * - OF is set according to the first shift on Intel 10980XE, it seems. * - OF is set according to the last sub-shift on AMD 3990X. * - ZF, SF and PF are calculated according to the result by both vendors. * * For 16-bit shifts the count mask isn't 15, but 31, and the CPU will * pick either the source register or the destination register for input bits * when going beyond 16. According to https://www.sandpile.org/x86/flags.htm * intel has changed behaviour here several times. We implement what current * skylake based does for now, we can extend this later as needed. */ #define EMIT_SHRD(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shrd_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, uint8_t cShift, uint32_t *pfEFlags)) \ { \ cShift &= a_cBitsWidth - 1; \ if (cShift) \ { \ a_uType const uDst = *puDst; \ a_uType uResult = uDst >> cShift; \ uResult |= uSrc << (a_cBitsWidth - cShift); \ *puDst = uResult; \ \ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ AssertCompile(X86_EFL_CF_BIT == 0); \ fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \ if (a_fIntelFlags) \ /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uSrc << (a_cBitsWidth - 1))); \ else \ { /* AMD 3990X: Set according to last shift. AF always set. */ \ if (cShift > 1) /* Set according to last shift. */ \ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth((uSrc << (a_cBitsWidth - cShift + 1)) ^ uResult); \ else \ fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ uResult); \ fEfl |= X86_EFL_AF; \ } \ fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \ fEfl |= X86_EFL_CALC_ZF(uResult); \ fEfl |= g_afParity[uResult & 0xff]; \ *pfEFlags = fEfl; \ } \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHRD(64, uint64_t, RT_NOTHING, 1) #endif EMIT_SHRD(64, uint64_t, _intel, 1) EMIT_SHRD(64, uint64_t, _amd, 0) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHRD(32, uint32_t, RT_NOTHING, 1) #endif EMIT_SHRD(32, uint32_t, _intel, 1) EMIT_SHRD(32, uint32_t, _amd, 0) #define EMIT_SHRD_16(a_Suffix, a_fIntelFlags) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_shrd_u16,a_Suffix),(uint16_t *puDst, uint16_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) \ { \ cShift &= 31; \ if (cShift) \ { \ uint16_t const uDst = *puDst; \ uint64_t const uTmp = a_fIntelFlags \ ? uDst | ((uint32_t)uSrc << 16) | ((uint64_t)uDst << 32) \ : uDst | ((uint32_t)uSrc << 16) | ((uint64_t)uSrc << 32); \ uint16_t const uResult = (uint16_t)(uTmp >> cShift); \ *puDst = uResult; \ \ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \ AssertCompile(X86_EFL_CF_BIT == 0); \ if (a_fIntelFlags) \ { \ /* Intel 10980XE: The CF is the last shifted out of the combined uTmp operand. */ \ fEfl |= (uTmp >> (cShift - 1)) & X86_EFL_CF; \ /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \ fEfl |= X86_EFL_GET_OF_16(uDst ^ (uSrc << 15)); \ } \ else \ { \ /* AMD 3990X: CF flag seems to be last bit shifted out of uDst, not the combined uSrc:uSrc:uDst operand. */ \ fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \ /* AMD 3990X: Set according to last shift. AF always set. */ \ if (cShift > 1) /* Set according to last shift. */ \ fEfl |= X86_EFL_GET_OF_16((uint16_t)(uTmp >> (cShift - 1)) ^ uResult); \ else \ fEfl |= X86_EFL_GET_OF_16(uDst ^ uResult); \ fEfl |= X86_EFL_AF; \ } \ fEfl |= X86_EFL_CALC_SF(uResult, 16); \ fEfl |= X86_EFL_CALC_ZF(uResult); \ fEfl |= g_afParity[uResult & 0xff]; \ *pfEFlags = fEfl; \ } \ } #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHRD_16(RT_NOTHING, 1) #endif EMIT_SHRD_16(_intel, 1) EMIT_SHRD_16(_amd, 0) /* * RORX (BMI2) */ #define EMIT_RORX(a_cBitsWidth, a_uType, a_fnHlp) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_rorx_u,a_cBitsWidth),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \ { \ *puDst = a_fnHlp(uSrc, cShift & (a_cBitsWidth - 1)); \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_RORX(64, uint64_t, ASMRotateRightU64) #endif #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_RORX(32, uint32_t, ASMRotateRightU32) #endif /* * SHLX (BMI2) */ #define EMIT_SHLX(a_cBitsWidth, a_uType, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shlx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \ { \ cShift &= a_cBitsWidth - 1; \ *puDst = uSrc << cShift; \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHLX(64, uint64_t, RT_NOTHING) EMIT_SHLX(64, uint64_t, _fallback) #endif #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHLX(32, uint32_t, RT_NOTHING) EMIT_SHLX(32, uint32_t, _fallback) #endif /* * SHRX (BMI2) */ #define EMIT_SHRX(a_cBitsWidth, a_uType, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shrx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \ { \ cShift &= a_cBitsWidth - 1; \ *puDst = uSrc >> cShift; \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHRX(64, uint64_t, RT_NOTHING) EMIT_SHRX(64, uint64_t, _fallback) #endif #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SHRX(32, uint32_t, RT_NOTHING) EMIT_SHRX(32, uint32_t, _fallback) #endif /* * SARX (BMI2) */ #define EMIT_SARX(a_cBitsWidth, a_uType, a_iType, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_sarx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \ { \ cShift &= a_cBitsWidth - 1; \ *puDst = (a_iType)uSrc >> cShift; \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SARX(64, uint64_t, int64_t, RT_NOTHING) EMIT_SARX(64, uint64_t, int64_t, _fallback) #endif #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_SARX(32, uint32_t, int32_t, RT_NOTHING) EMIT_SARX(32, uint32_t, int32_t, _fallback) #endif /* * PDEP (BMI2) */ #define EMIT_PDEP(a_cBitsWidth, a_uType, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_pdep_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType fMask)) \ { \ a_uType uResult = 0; \ for (unsigned iMaskBit = 0, iBit = 0; iMaskBit < a_cBitsWidth; iMaskBit++) \ if (fMask & ((a_uType)1 << iMaskBit)) \ { \ uResult |= ((uSrc >> iBit) & 1) << iMaskBit; \ iBit++; \ } \ *puDst = uResult; \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_PDEP(64, uint64_t, RT_NOTHING) #endif EMIT_PDEP(64, uint64_t, _fallback) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_PDEP(32, uint32_t, RT_NOTHING) #endif EMIT_PDEP(32, uint32_t, _fallback) /* * PEXT (BMI2) */ #define EMIT_PEXT(a_cBitsWidth, a_uType, a_Suffix) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_pext_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType fMask)) \ { \ a_uType uResult = 0; \ for (unsigned iMaskBit = 0, iBit = 0; iMaskBit < a_cBitsWidth; iMaskBit++) \ if (fMask & ((a_uType)1 << iMaskBit)) \ { \ uResult |= ((uSrc >> iMaskBit) & 1) << iBit; \ iBit++; \ } \ *puDst = uResult; \ } #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_PEXT(64, uint64_t, RT_NOTHING) #endif EMIT_PEXT(64, uint64_t, _fallback) #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY) EMIT_PEXT(32, uint32_t, RT_NOTHING) #endif EMIT_PEXT(32, uint32_t, _fallback) #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) /* * BSWAP */ IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u64,(uint64_t *puDst)) { *puDst = ASMByteSwapU64(*puDst); } IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u32,(uint32_t *puDst)) { *puDst = ASMByteSwapU32(*puDst); } /* Note! undocument, so 32-bit arg */ IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u16,(uint32_t *puDst)) { #if 0 *(uint16_t *)puDst = ASMByteSwapU16(*(uint16_t *)puDst); #else /* This is the behaviour AMD 3990x (64-bit mode): */ *(uint16_t *)puDst = 0; #endif } # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */ # if defined(IEM_WITHOUT_ASSEMBLY) /* * LFENCE, SFENCE & MFENCE. */ IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void)) { ASMReadFence(); } IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void)) { ASMWriteFence(); } IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void)) { ASMMemoryFence(); } # ifndef RT_ARCH_ARM64 IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void)) { ASMMemoryFence(); } # endif # endif #endif /* !RT_ARCH_AMD64 || IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_arpl,(uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pfEFlags)) { if ((*pu16Dst & X86_SEL_RPL) < (u16Src & X86_SEL_RPL)) { *pu16Dst &= X86_SEL_MASK_OFF_RPL; *pu16Dst |= u16Src & X86_SEL_RPL; *pfEFlags |= X86_EFL_ZF; } else *pfEFlags &= ~X86_EFL_ZF; } #if defined(IEM_WITHOUT_ASSEMBLY) /********************************************************************************************************************************* * x87 FPU Loads * *********************************************************************************************************************************/ IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val)) { pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ if (RTFLOAT32U_IS_NORMAL(pr32Val)) { pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign; pFpuRes->r80Result.sj64.fInteger = 1; pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS); pFpuRes->r80Result.sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS; Assert(RTFLOAT80U_IS_NORMAL(&pFpuRes->r80Result)); } else if (RTFLOAT32U_IS_ZERO(pr32Val)) { pFpuRes->r80Result.s.fSign = pr32Val->s.fSign; pFpuRes->r80Result.s.uExponent = 0; pFpuRes->r80Result.s.uMantissa = 0; Assert(RTFLOAT80U_IS_ZERO(&pFpuRes->r80Result)); } else if (RTFLOAT32U_IS_SUBNORMAL(pr32Val)) { /* Subnormal values gets normalized. */ pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign; pFpuRes->r80Result.sj64.fInteger = 1; unsigned const cExtraShift = RTFLOAT32U_FRACTION_BITS - ASMBitLastSetU32(pr32Val->s.uFraction); pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS + cExtraShift + 1); pFpuRes->r80Result.sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift; pFpuRes->FSW |= X86_FSW_DE; if (!(pFpuState->FCW & X86_FCW_DM)) pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; /* The value is still pushed. */ } else if (RTFLOAT32U_IS_INF(pr32Val)) { pFpuRes->r80Result.s.fSign = pr32Val->s.fSign; pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_MAX; pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63); Assert(RTFLOAT80U_IS_INF(&pFpuRes->r80Result)); } else { /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */ Assert(RTFLOAT32U_IS_NAN(pr32Val)); pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign; pFpuRes->r80Result.sj64.uExponent = RTFLOAT80U_EXP_MAX; pFpuRes->r80Result.sj64.fInteger = 1; pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS); if (RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val)) { pFpuRes->r80Result.sj64.uFraction |= RT_BIT_64(62); /* make quiet */ Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result)); pFpuRes->FSW |= X86_FSW_IE; if (!(pFpuState->FCW & X86_FCW_IM)) { /* The value is not pushed. */ pFpuRes->FSW &= ~X86_FSW_TOP_MASK; pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; pFpuRes->r80Result.au64[0] = 0; pFpuRes->r80Result.au16[4] = 0; } } else Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result)); } } IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val)) { pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ if (RTFLOAT64U_IS_NORMAL(pr64Val)) { pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign; pFpuRes->r80Result.sj64.fInteger = 1; pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS); pFpuRes->r80Result.sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS; Assert(RTFLOAT80U_IS_NORMAL(&pFpuRes->r80Result)); } else if (RTFLOAT64U_IS_ZERO(pr64Val)) { pFpuRes->r80Result.s.fSign = pr64Val->s.fSign; pFpuRes->r80Result.s.uExponent = 0; pFpuRes->r80Result.s.uMantissa = 0; Assert(RTFLOAT80U_IS_ZERO(&pFpuRes->r80Result)); } else if (RTFLOAT64U_IS_SUBNORMAL(pr64Val)) { /* Subnormal values gets normalized. */ pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign; pFpuRes->r80Result.sj64.fInteger = 1; unsigned const cExtraShift = RTFLOAT64U_FRACTION_BITS - ASMBitLastSetU64(pr64Val->s64.uFraction); pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS + cExtraShift + 1); pFpuRes->r80Result.sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift; pFpuRes->FSW |= X86_FSW_DE; if (!(pFpuState->FCW & X86_FCW_DM)) pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; /* The value is still pushed. */ } else if (RTFLOAT64U_IS_INF(pr64Val)) { pFpuRes->r80Result.s.fSign = pr64Val->s.fSign; pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_MAX; pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63); Assert(RTFLOAT80U_IS_INF(&pFpuRes->r80Result)); } else { /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */ Assert(RTFLOAT64U_IS_NAN(pr64Val)); pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign; pFpuRes->r80Result.sj64.uExponent = RTFLOAT80U_EXP_MAX; pFpuRes->r80Result.sj64.fInteger = 1; pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS); if (RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val)) { pFpuRes->r80Result.sj64.uFraction |= RT_BIT_64(62); /* make quiet */ Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result)); pFpuRes->FSW |= X86_FSW_IE; if (!(pFpuState->FCW & X86_FCW_IM)) { /* The value is not pushed. */ pFpuRes->FSW &= ~X86_FSW_TOP_MASK; pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; pFpuRes->r80Result.au64[0] = 0; pFpuRes->r80Result.au16[4] = 0; } } else Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result)); } } IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { pFpuRes->r80Result.au64[0] = pr80Val->au64[0]; pFpuRes->r80Result.au16[4] = pr80Val->au16[4]; /* Raises no exceptions. */ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ } IEM_DECL_IMPL_DEF(void, iemAImpl_fld1,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) { pFpuRes->r80Result.sj64.fSign = 0; pFpuRes->r80Result.sj64.uExponent = 0 + 16383; pFpuRes->r80Result.sj64.fInteger = 1; pFpuRes->r80Result.sj64.uFraction = 0; /* * FPU status word: * - TOP is irrelevant, but we must match x86 assembly version. * - C1 is always cleared as we don't have any stack overflows. * - C0, C2, and C3 are undefined and Intel 10980XE does not touch them. */ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); } IEM_DECL_IMPL_DEF(void, iemAImpl_fldl2e,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) { pFpuRes->r80Result.sj64.fSign = 0; pFpuRes->r80Result.sj64.uExponent = 0 + 16383; pFpuRes->r80Result.sj64.fInteger = 1; pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP ? UINT64_C(0x38aa3b295c17f0bc) : UINT64_C(0x38aa3b295c17f0bb); pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ } IEM_DECL_IMPL_DEF(void, iemAImpl_fldl2t,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) { pFpuRes->r80Result.sj64.fSign = 0; pFpuRes->r80Result.sj64.uExponent = 1 + 16383; pFpuRes->r80Result.sj64.fInteger = 1; pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) != X86_FCW_RC_UP ? UINT64_C(0x549a784bcd1b8afe) : UINT64_C(0x549a784bcd1b8aff); pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ } IEM_DECL_IMPL_DEF(void, iemAImpl_fldlg2,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) { pFpuRes->r80Result.sj64.fSign = 0; pFpuRes->r80Result.sj64.uExponent = -2 + 16383; pFpuRes->r80Result.sj64.fInteger = 1; pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP ? UINT64_C(0x1a209a84fbcff799) : UINT64_C(0x1a209a84fbcff798); pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ } IEM_DECL_IMPL_DEF(void, iemAImpl_fldln2,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) { pFpuRes->r80Result.sj64.fSign = 0; pFpuRes->r80Result.sj64.uExponent = -1 + 16383; pFpuRes->r80Result.sj64.fInteger = 1; pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP ? UINT64_C(0x317217f7d1cf79ac) : UINT64_C(0x317217f7d1cf79ab); pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ } IEM_DECL_IMPL_DEF(void, iemAImpl_fldpi,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) { pFpuRes->r80Result.sj64.fSign = 0; pFpuRes->r80Result.sj64.uExponent = 1 + 16383; pFpuRes->r80Result.sj64.fInteger = 1; pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP ? UINT64_C(0x490fdaa22168c235) : UINT64_C(0x490fdaa22168c234); pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ } IEM_DECL_IMPL_DEF(void, iemAImpl_fldz,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)) { pFpuRes->r80Result.s.fSign = 0; pFpuRes->r80Result.s.uExponent = 0; pFpuRes->r80Result.s.uMantissa = 0; pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ } #define EMIT_FILD(a_cBits) \ IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i ## a_cBits,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, \ int ## a_cBits ## _t const *piVal)) \ { \ int ## a_cBits ## _t iVal = *piVal; \ if (iVal == 0) \ { \ pFpuRes->r80Result.s.fSign = 0; \ pFpuRes->r80Result.s.uExponent = 0; \ pFpuRes->r80Result.s.uMantissa = 0; \ } \ else \ { \ if (iVal > 0) \ pFpuRes->r80Result.s.fSign = 0; \ else \ { \ pFpuRes->r80Result.s.fSign = 1; \ iVal = -iVal; \ } \ unsigned const cBits = ASMBitLastSetU ## a_cBits((uint ## a_cBits ## _t)iVal); \ pFpuRes->r80Result.s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS; \ pFpuRes->r80Result.s.uMantissa = (uint64_t)iVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits); \ } \ pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ \ } EMIT_FILD(16) EMIT_FILD(32) EMIT_FILD(64) IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val)) { pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ if ( pd80Val->s.abPairs[0] == 0 && pd80Val->s.abPairs[1] == 0 && pd80Val->s.abPairs[2] == 0 && pd80Val->s.abPairs[3] == 0 && pd80Val->s.abPairs[4] == 0 && pd80Val->s.abPairs[5] == 0 && pd80Val->s.abPairs[6] == 0 && pd80Val->s.abPairs[7] == 0 && pd80Val->s.abPairs[8] == 0) { pFpuRes->r80Result.s.fSign = pd80Val->s.fSign; pFpuRes->r80Result.s.uExponent = 0; pFpuRes->r80Result.s.uMantissa = 0; } else { pFpuRes->r80Result.s.fSign = pd80Val->s.fSign; size_t cPairs = RT_ELEMENTS(pd80Val->s.abPairs); while (cPairs > 0 && pd80Val->s.abPairs[cPairs - 1] == 0) cPairs--; uint64_t uVal = 0; uint64_t uFactor = 1; for (size_t iPair = 0; iPair < cPairs; iPair++, uFactor *= 100) uVal += RTPBCD80U_LO_DIGIT(pd80Val->s.abPairs[iPair]) * uFactor + RTPBCD80U_HI_DIGIT(pd80Val->s.abPairs[iPair]) * uFactor * 10; unsigned const cBits = ASMBitLastSetU64(uVal); pFpuRes->r80Result.s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS; pFpuRes->r80Result.s.uMantissa = uVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits); } } /********************************************************************************************************************************* * x87 FPU Stores * *********************************************************************************************************************************/ /** * Helper for storing a deconstructed and normal R80 value as a 64-bit one. * * This uses the rounding rules indicated by fFcw and returns updated fFsw. * * @returns Updated FPU status word value. * @param fSignIn Incoming sign indicator. * @param uMantissaIn Incoming mantissa (dot between bit 63 and 62). * @param iExponentIn Unbiased exponent. * @param fFcw The FPU control word. * @param fFsw Prepped FPU status word, i.e. exceptions and C1 clear. * @param pr32Dst Where to return the output value, if one should be * returned. * * @note Tailored as a helper for iemAImpl_fst_r80_to_r32 right now. * @note Exact same logic as iemAImpl_StoreNormalR80AsR64. */ static uint16_t iemAImpl_StoreNormalR80AsR32(bool fSignIn, uint64_t uMantissaIn, int32_t iExponentIn, uint16_t fFcw, uint16_t fFsw, PRTFLOAT32U pr32Dst) { uint64_t const fRoundingOffMask = RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS) - 1; /* 0x7ff */ uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST ? RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS - 1) /* 0x400 */ : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) ? fRoundingOffMask : 0; uint64_t fRoundedOff = uMantissaIn & fRoundingOffMask; /* * Deal with potential overflows/underflows first, optimizing for none. * 0 and MAX are used for special values; MAX-1 may be rounded up to MAX. */ int32_t iExponentOut = (int32_t)iExponentIn + RTFLOAT32U_EXP_BIAS; if ((uint32_t)iExponentOut - 1 < (uint32_t)(RTFLOAT32U_EXP_MAX - 3)) { /* likely? */ } /* * Underflow if the exponent zero or negative. This is attempted mapped * to a subnormal number when possible, with some additional trickery ofc. */ else if (iExponentOut <= 0) { bool const fIsTiny = iExponentOut < 0 || UINT64_MAX - uMantissaIn > uRoundingAdd; if (!(fFcw & X86_FCW_UM) && fIsTiny) /* Note! 754-1985 sec 7.4 has something about bias adjust of 192 here, not in 2008 & 2019. Perhaps only 8087 & 287? */ return fFsw | X86_FSW_UE | X86_FSW_ES | X86_FSW_B; if (iExponentOut <= 0) { uMantissaIn = iExponentOut <= -63 ? uMantissaIn != 0 : (uMantissaIn >> (-iExponentOut + 1)) | ((uMantissaIn & (RT_BIT_64(-iExponentOut + 1) - 1)) != 0); fRoundedOff = uMantissaIn & fRoundingOffMask; if (fRoundedOff && fIsTiny) fFsw |= X86_FSW_UE; iExponentOut = 0; } } /* * Overflow if at or above max exponent value or if we will reach max * when rounding. Will return +/-zero or +/-max value depending on * whether we're rounding or not. */ else if ( iExponentOut >= RTFLOAT32U_EXP_MAX || ( iExponentOut == RTFLOAT32U_EXP_MAX - 1 && UINT64_MAX - uMantissaIn <= uRoundingAdd)) { fFsw |= X86_FSW_OE; if (!(fFcw & X86_FCW_OM)) return fFsw | X86_FSW_ES | X86_FSW_B; fFsw |= X86_FSW_PE; if (uRoundingAdd) fFsw |= X86_FSW_C1; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; pr32Dst->s.fSign = fSignIn; if (uRoundingAdd) { /* Zero */ pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX; pr32Dst->s.uFraction = 0; } else { /* Max */ pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX - 1; pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1; } return fFsw; } /* * Normal or subnormal number. */ /* Do rounding - just truncate in near mode when midway on an even outcome. */ uint64_t uMantissaOut = uMantissaIn; if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST || (uMantissaIn & RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS)) || fRoundedOff != uRoundingAdd) { uMantissaOut = uMantissaIn + uRoundingAdd; if (uMantissaOut >= uMantissaIn) { /* likely */ } else { uMantissaOut >>= 1; /* (We don't need to add bit 63 here (the integer bit), as it will be chopped off below.) */ iExponentOut++; Assert(iExponentOut < RTFLOAT32U_EXP_MAX); /* checked above */ fFsw |= X86_FSW_C1; } } else uMantissaOut = uMantissaIn; /* Truncate the mantissa and set the return value. */ uMantissaOut >>= RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS; pr32Dst->s.uFraction = (uint32_t)uMantissaOut; /* Note! too big for bitfield if normal. */ pr32Dst->s.uExponent = iExponentOut; pr32Dst->s.fSign = fSignIn; /* Set status flags realted to rounding. */ if (fRoundedOff) { fFsw |= X86_FSW_PE; if (uMantissaOut > (uMantissaIn >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS))) fFsw |= X86_FSW_C1; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } return fFsw; } /** * @note Exact same logic as iemAImpl_fst_r80_to_r64. */ IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, PRTFLOAT32U pr32Dst, PCRTFLOAT80U pr80Src)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); if (RTFLOAT80U_IS_NORMAL(pr80Src)) fFsw = iemAImpl_StoreNormalR80AsR32(pr80Src->s.fSign, pr80Src->s.uMantissa, (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS, fFcw, fFsw, pr32Dst); else if (RTFLOAT80U_IS_ZERO(pr80Src)) { pr32Dst->s.fSign = pr80Src->s.fSign; pr32Dst->s.uExponent = 0; pr32Dst->s.uFraction = 0; Assert(RTFLOAT32U_IS_ZERO(pr32Dst)); } else if (RTFLOAT80U_IS_INF(pr80Src)) { pr32Dst->s.fSign = pr80Src->s.fSign; pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX; pr32Dst->s.uFraction = 0; Assert(RTFLOAT32U_IS_INF(pr32Dst)); } else if (RTFLOAT80U_IS_INDEFINITE(pr80Src)) { /* Mapped to +/-QNaN */ pr32Dst->s.fSign = pr80Src->s.fSign; pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX; pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); } else if (RTFLOAT80U_IS_PSEUDO_INF(pr80Src) || RTFLOAT80U_IS_UNNORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Src)) { /* Pseudo-Inf / Pseudo-Nan / Unnormal -> QNaN (during load, probably) */ if (fFcw & X86_FCW_IM) { pr32Dst->s.fSign = 1; pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX; pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); fFsw |= X86_FSW_IE; } else fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;; } else if (RTFLOAT80U_IS_NAN(pr80Src)) { /* IM applies to signalled NaN input only. Everything is converted to quiet NaN. */ if ((fFcw & X86_FCW_IM) || !RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src)) { pr32Dst->s.fSign = pr80Src->s.fSign; pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX; pr32Dst->s.uFraction = (uint32_t)(pr80Src->sj64.uFraction >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS)); pr32Dst->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src)) fFsw |= X86_FSW_IE; } else fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B; } else { /* Denormal values causes both an underflow and precision exception. */ Assert(RTFLOAT80U_IS_DENORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src)); if (fFcw & X86_FCW_UM) { pr32Dst->s.fSign = pr80Src->s.fSign; pr32Dst->s.uExponent = 0; if ((fFcw & X86_FCW_RC_MASK) == (!pr80Src->s.fSign ? X86_FCW_RC_UP : X86_FCW_RC_DOWN)) { pr32Dst->s.uFraction = 1; fFsw |= X86_FSW_UE | X86_FSW_PE | X86_FSW_C1; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } else { pr32Dst->s.uFraction = 0; fFsw |= X86_FSW_UE | X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } } else fFsw |= X86_FSW_UE | X86_FSW_ES | X86_FSW_B; } *pu16FSW = fFsw; } /** * Helper for storing a deconstructed and normal R80 value as a 64-bit one. * * This uses the rounding rules indicated by fFcw and returns updated fFsw. * * @returns Updated FPU status word value. * @param fSignIn Incoming sign indicator. * @param uMantissaIn Incoming mantissa (dot between bit 63 and 62). * @param iExponentIn Unbiased exponent. * @param fFcw The FPU control word. * @param fFsw Prepped FPU status word, i.e. exceptions and C1 clear. * @param pr64Dst Where to return the output value, if one should be * returned. * * @note Tailored as a helper for iemAImpl_fst_r80_to_r64 right now. * @note Exact same logic as iemAImpl_StoreNormalR80AsR32. */ static uint16_t iemAImpl_StoreNormalR80AsR64(bool fSignIn, uint64_t uMantissaIn, int32_t iExponentIn, uint16_t fFcw, uint16_t fFsw, PRTFLOAT64U pr64Dst) { uint64_t const fRoundingOffMask = RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS) - 1; /* 0x7ff */ uint32_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST ? RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS - 1) /* 0x400 */ : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) ? fRoundingOffMask : 0; uint32_t fRoundedOff = uMantissaIn & fRoundingOffMask; /* * Deal with potential overflows/underflows first, optimizing for none. * 0 and MAX are used for special values; MAX-1 may be rounded up to MAX. */ int32_t iExponentOut = (int32_t)iExponentIn + RTFLOAT64U_EXP_BIAS; if ((uint32_t)iExponentOut - 1 < (uint32_t)(RTFLOAT64U_EXP_MAX - 3)) { /* likely? */ } /* * Underflow if the exponent zero or negative. This is attempted mapped * to a subnormal number when possible, with some additional trickery ofc. */ else if (iExponentOut <= 0) { bool const fIsTiny = iExponentOut < 0 || UINT64_MAX - uMantissaIn > uRoundingAdd; if (!(fFcw & X86_FCW_UM) && fIsTiny) /* Note! 754-1985 sec 7.4 has something about bias adjust of 1536 here, not in 2008 & 2019. Perhaps only 8087 & 287? */ return fFsw | X86_FSW_UE | X86_FSW_ES | X86_FSW_B; if (iExponentOut <= 0) { uMantissaIn = iExponentOut <= -63 ? uMantissaIn != 0 : (uMantissaIn >> (-iExponentOut + 1)) | ((uMantissaIn & (RT_BIT_64(-iExponentOut + 1) - 1)) != 0); fRoundedOff = uMantissaIn & fRoundingOffMask; if (fRoundedOff && fIsTiny) fFsw |= X86_FSW_UE; iExponentOut = 0; } } /* * Overflow if at or above max exponent value or if we will reach max * when rounding. Will return +/-zero or +/-max value depending on * whether we're rounding or not. */ else if ( iExponentOut >= RTFLOAT64U_EXP_MAX || ( iExponentOut == RTFLOAT64U_EXP_MAX - 1 && UINT64_MAX - uMantissaIn <= uRoundingAdd)) { fFsw |= X86_FSW_OE; if (!(fFcw & X86_FCW_OM)) return fFsw | X86_FSW_ES | X86_FSW_B; fFsw |= X86_FSW_PE; if (uRoundingAdd) fFsw |= X86_FSW_C1; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; pr64Dst->s64.fSign = fSignIn; if (uRoundingAdd) { /* Zero */ pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX; pr64Dst->s64.uFraction = 0; } else { /* Max */ pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX - 1; pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1; } return fFsw; } /* * Normal or subnormal number. */ /* Do rounding - just truncate in near mode when midway on an even outcome. */ uint64_t uMantissaOut = uMantissaIn; if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST || (uMantissaIn & RT_BIT_32(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS)) || fRoundedOff != uRoundingAdd) { uMantissaOut = uMantissaIn + uRoundingAdd; if (uMantissaOut >= uMantissaIn) { /* likely */ } else { uMantissaOut >>= 1; /* (We don't need to add bit 63 here (the integer bit), as it will be chopped off below.) */ iExponentOut++; Assert(iExponentOut < RTFLOAT64U_EXP_MAX); /* checked above */ fFsw |= X86_FSW_C1; } } else uMantissaOut = uMantissaIn; /* Truncate the mantissa and set the return value. */ uMantissaOut >>= RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS; pr64Dst->s64.uFraction = uMantissaOut; /* Note! too big for bitfield if normal. */ pr64Dst->s64.uExponent = iExponentOut; pr64Dst->s64.fSign = fSignIn; /* Set status flags realted to rounding. */ if (fRoundedOff) { fFsw |= X86_FSW_PE; if (uMantissaOut > (uMantissaIn >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS))) fFsw |= X86_FSW_C1; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } return fFsw; } /** * @note Exact same logic as iemAImpl_fst_r80_to_r32. */ IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, PRTFLOAT64U pr64Dst, PCRTFLOAT80U pr80Src)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); if (RTFLOAT80U_IS_NORMAL(pr80Src)) fFsw = iemAImpl_StoreNormalR80AsR64(pr80Src->s.fSign, pr80Src->s.uMantissa, (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS, fFcw, fFsw, pr64Dst); else if (RTFLOAT80U_IS_ZERO(pr80Src)) { pr64Dst->s64.fSign = pr80Src->s.fSign; pr64Dst->s64.uExponent = 0; pr64Dst->s64.uFraction = 0; Assert(RTFLOAT64U_IS_ZERO(pr64Dst)); } else if (RTFLOAT80U_IS_INF(pr80Src)) { pr64Dst->s64.fSign = pr80Src->s.fSign; pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX; pr64Dst->s64.uFraction = 0; Assert(RTFLOAT64U_IS_INF(pr64Dst)); } else if (RTFLOAT80U_IS_INDEFINITE(pr80Src)) { /* Mapped to +/-QNaN */ pr64Dst->s64.fSign = pr80Src->s.fSign; pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX; pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); } else if (RTFLOAT80U_IS_PSEUDO_INF(pr80Src) || RTFLOAT80U_IS_UNNORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Src)) { /* Pseudo-Inf / Pseudo-Nan / Unnormal -> QNaN (during load, probably) */ if (fFcw & X86_FCW_IM) { pr64Dst->s64.fSign = 1; pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX; pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); fFsw |= X86_FSW_IE; } else fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;; } else if (RTFLOAT80U_IS_NAN(pr80Src)) { /* IM applies to signalled NaN input only. Everything is converted to quiet NaN. */ if ((fFcw & X86_FCW_IM) || !RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src)) { pr64Dst->s64.fSign = pr80Src->s.fSign; pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX; pr64Dst->s64.uFraction = pr80Src->sj64.uFraction >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS); pr64Dst->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src)) fFsw |= X86_FSW_IE; } else fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B; } else { /* Denormal values causes both an underflow and precision exception. */ Assert(RTFLOAT80U_IS_DENORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src)); if (fFcw & X86_FCW_UM) { pr64Dst->s64.fSign = pr80Src->s.fSign; pr64Dst->s64.uExponent = 0; if ((fFcw & X86_FCW_RC_MASK) == (!pr80Src->s.fSign ? X86_FCW_RC_UP : X86_FCW_RC_DOWN)) { pr64Dst->s64.uFraction = 1; fFsw |= X86_FSW_UE | X86_FSW_PE | X86_FSW_C1; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } else { pr64Dst->s64.uFraction = 0; fFsw |= X86_FSW_UE | X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } } else fFsw |= X86_FSW_UE | X86_FSW_ES | X86_FSW_B; } *pu16FSW = fFsw; } IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src)) { /* * FPU status word: * - TOP is irrelevant, but we must match x86 assembly version (0). * - C1 is always cleared as we don't have any stack overflows. * - C0, C2, and C3 are undefined and Intel 10980XE does not touch them. */ *pu16FSW = pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3); /* see iemAImpl_fld1 */ *pr80Dst = *pr80Src; } /* * * Mantissa: * 63 56 48 40 32 24 16 8 0 * v v v v v v v v v * 1[.]111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 * \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ * Exp: 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 * * int64_t has the same width, only bit 63 is the sign bit. So, the max we can map over * are bits 1 thru 63, dropping off bit 0, with an exponent of 62. The number of bits we * drop off from the mantissa increases with decreasing exponent, till an exponent of 0 * where we'll drop off all but bit 63. */ #define EMIT_FIST(a_cBits, a_iType, a_iTypeMin, a_iTypeIndefinite) \ IEM_DECL_IMPL_DEF(void, iemAImpl_fist_r80_to_i ## a_cBits,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, \ a_iType *piDst, PCRTFLOAT80U pr80Val)) \ { \ uint16_t const fFcw = pFpuState->FCW; \ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); \ bool const fSignIn = pr80Val->s.fSign; \ \ /* \ * Deal with normal numbers first. \ */ \ if (RTFLOAT80U_IS_NORMAL(pr80Val)) \ { \ uint64_t uMantissa = pr80Val->s.uMantissa; \ int32_t iExponent = (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS; \ \ if ((uint32_t)iExponent <= a_cBits - 2) \ { \ unsigned const cShiftOff = 63 - iExponent; \ uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; \ uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST \ ? RT_BIT_64(cShiftOff - 1) \ : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) \ ? fRoundingOffMask \ : 0; \ uint64_t fRoundedOff = uMantissa & fRoundingOffMask; \ \ uMantissa >>= cShiftOff; \ uint64_t const uRounding = (fRoundedOff + uRoundingAdd) >> cShiftOff; \ uMantissa += uRounding; \ if (!(uMantissa & RT_BIT_64(a_cBits - 1))) \ { \ if (fRoundedOff) \ { \ if ((uMantissa & 1) && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST && fRoundedOff == uRoundingAdd) \ uMantissa &= ~(uint64_t)1; /* round to even number if equal distance between up/down. */ \ else if (uRounding) \ fFsw |= X86_FSW_C1; \ fFsw |= X86_FSW_PE; \ if (!(fFcw & X86_FCW_PM)) \ fFsw |= X86_FSW_ES | X86_FSW_B; \ } \ \ if (!fSignIn) \ *piDst = (a_iType)uMantissa; \ else \ *piDst = -(a_iType)uMantissa; \ } \ else \ { \ /* overflowed after rounding. */ \ AssertMsg(iExponent == a_cBits - 2 && uMantissa == RT_BIT_64(a_cBits - 1), \ ("e=%d m=%#RX64 (org %#RX64) s=%d; shift=%d ro=%#RX64 rm=%#RX64 ra=%#RX64\n", iExponent, uMantissa, \ pr80Val->s.uMantissa, fSignIn, cShiftOff, fRoundedOff, fRoundingOffMask, uRoundingAdd)); \ \ /* Special case for the integer minimum value. */ \ if (fSignIn) \ { \ *piDst = a_iTypeMin; \ fFsw |= X86_FSW_PE | X86_FSW_C1; \ if (!(fFcw & X86_FCW_PM)) \ fFsw |= X86_FSW_ES | X86_FSW_B; \ } \ else \ { \ fFsw |= X86_FSW_IE; \ if (fFcw & X86_FCW_IM) \ *piDst = a_iTypeMin; \ else \ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \ } \ } \ } \ /* \ * Tiny sub-zero numbers. \ */ \ else if (iExponent < 0) \ { \ if (!fSignIn) \ { \ if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP \ || (iExponent == -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) \ { \ *piDst = 1; \ fFsw |= X86_FSW_C1; \ } \ else \ *piDst = 0; \ } \ else \ { \ if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP \ || (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_ZERO \ || (iExponent < -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) \ *piDst = 0; \ else \ { \ *piDst = -1; \ fFsw |= X86_FSW_C1; \ } \ } \ fFsw |= X86_FSW_PE; \ if (!(fFcw & X86_FCW_PM)) \ fFsw |= X86_FSW_ES | X86_FSW_B; \ } \ /* \ * Special MIN case. \ */ \ else if ( fSignIn && iExponent == a_cBits - 1 \ && ( a_cBits < 64 && (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_DOWN \ ? uMantissa < (RT_BIT_64(63) | RT_BIT_64(65 - a_cBits)) \ : uMantissa == RT_BIT_64(63))) \ { \ *piDst = a_iTypeMin; \ if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \ { \ fFsw |= X86_FSW_PE; \ if (!(fFcw & X86_FCW_PM)) \ fFsw |= X86_FSW_ES | X86_FSW_B; \ } \ } \ /* \ * Too large/small number outside the target integer range. \ */ \ else \ { \ fFsw |= X86_FSW_IE; \ if (fFcw & X86_FCW_IM) \ *piDst = a_iTypeIndefinite; \ else \ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \ } \ } \ /* \ * Map both +0 and -0 to integer zero (signless/+). \ */ \ else if (RTFLOAT80U_IS_ZERO(pr80Val)) \ *piDst = 0; \ /* \ * Denormals are just really tiny sub-zero numbers that are either rounded \ * to zero, 1 or -1 depending on sign and rounding control. \ */ \ else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) || RTFLOAT80U_IS_DENORMAL(pr80Val)) \ { \ if ((fFcw & X86_FCW_RC_MASK) != (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)) \ *piDst = 0; \ else \ { \ *piDst = fSignIn ? -1 : 1; \ fFsw |= X86_FSW_C1; \ } \ fFsw |= X86_FSW_PE; \ if (!(fFcw & X86_FCW_PM)) \ fFsw |= X86_FSW_ES | X86_FSW_B; \ } \ /* \ * All other special values are considered invalid arguments and result \ * in an IE exception and indefinite value if masked. \ */ \ else \ { \ fFsw |= X86_FSW_IE; \ if (fFcw & X86_FCW_IM) \ *piDst = a_iTypeIndefinite; \ else \ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \ } \ *pu16FSW = fFsw; \ } EMIT_FIST(64, int64_t, INT64_MIN, X86_FPU_INT64_INDEFINITE) EMIT_FIST(32, int32_t, INT32_MIN, X86_FPU_INT32_INDEFINITE) EMIT_FIST(16, int16_t, INT16_MIN, X86_FPU_INT16_INDEFINITE) #endif /*IEM_WITHOUT_ASSEMBLY */ /* * The FISTT instruction was added with SSE3 and are a lot simpler than FIST. * * The 16-bit version is a bit peculiar, though, as it seems to be raising IE * as if it was the 32-bit version (i.e. starting with exp 31 instead of 15), * thus the @a a_cBitsIn. */ #define EMIT_FISTT(a_cBits, a_cBitsIn, a_iType, a_iTypeMin, a_iTypeMax, a_iTypeIndefinite, a_Suffix, a_fIntelVersion) \ IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_fistt_r80_to_i,a_cBits,a_Suffix),(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, \ a_iType *piDst, PCRTFLOAT80U pr80Val)) \ { \ uint16_t const fFcw = pFpuState->FCW; \ uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); \ bool const fSignIn = pr80Val->s.fSign; \ \ /* \ * Deal with normal numbers first. \ */ \ if (RTFLOAT80U_IS_NORMAL(pr80Val)) \ { \ uint64_t uMantissa = pr80Val->s.uMantissa; \ int32_t iExponent = (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS; \ \ if ((uint32_t)iExponent <= a_cBitsIn - 2) \ { \ unsigned const cShiftOff = 63 - iExponent; \ uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; \ uint64_t const fRoundedOff = uMantissa & fRoundingOffMask; \ uMantissa >>= cShiftOff; \ /*Assert(!(uMantissa & RT_BIT_64(a_cBits - 1)));*/ \ if (!fSignIn) \ *piDst = (a_iType)uMantissa; \ else \ *piDst = -(a_iType)uMantissa; \ \ if (fRoundedOff) \ { \ fFsw |= X86_FSW_PE; \ if (!(fFcw & X86_FCW_PM)) \ fFsw |= X86_FSW_ES | X86_FSW_B; \ } \ } \ /* \ * Tiny sub-zero numbers. \ */ \ else if (iExponent < 0) \ { \ *piDst = 0; \ fFsw |= X86_FSW_PE; \ if (!(fFcw & X86_FCW_PM)) \ fFsw |= X86_FSW_ES | X86_FSW_B; \ } \ /* \ * Special MIN case. \ */ \ else if ( fSignIn && iExponent == a_cBits - 1 \ && (a_cBits < 64 \ ? uMantissa < (RT_BIT_64(63) | RT_BIT_64(65 - a_cBits)) \ : uMantissa == RT_BIT_64(63)) ) \ { \ *piDst = a_iTypeMin; \ if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \ { \ fFsw |= X86_FSW_PE; \ if (!(fFcw & X86_FCW_PM)) \ fFsw |= X86_FSW_ES | X86_FSW_B; \ } \ } \ /* \ * Figure this weirdness. \ */ \ else if (0 /* huh? gone? */ && a_cBits == 16 && fSignIn && iExponent == 31 && uMantissa < UINT64_C(0x8000100000000000) ) \ { \ *piDst = 0; \ if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \ { \ fFsw |= X86_FSW_PE; \ if (!(fFcw & X86_FCW_PM)) \ fFsw |= X86_FSW_ES | X86_FSW_B; \ } \ } \ /* \ * Too large/small number outside the target integer range. \ */ \ else \ { \ fFsw |= X86_FSW_IE; \ if (fFcw & X86_FCW_IM) \ *piDst = a_iTypeIndefinite; \ else \ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \ } \ } \ /* \ * Map both +0 and -0 to integer zero (signless/+). \ */ \ else if (RTFLOAT80U_IS_ZERO(pr80Val)) \ *piDst = 0; \ /* \ * Denormals are just really tiny sub-zero numbers that are trucated to zero. \ */ \ else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) || RTFLOAT80U_IS_DENORMAL(pr80Val)) \ { \ *piDst = 0; \ fFsw |= X86_FSW_PE; \ if (!(fFcw & X86_FCW_PM)) \ fFsw |= X86_FSW_ES | X86_FSW_B; \ } \ /* \ * All other special values are considered invalid arguments and result \ * in an IE exception and indefinite value if masked. \ */ \ else \ { \ fFsw |= X86_FSW_IE; \ if (fFcw & X86_FCW_IM) \ *piDst = a_iTypeIndefinite; \ else \ fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \ } \ *pu16FSW = fFsw; \ } #if defined(IEM_WITHOUT_ASSEMBLY) EMIT_FISTT(64, 64, int64_t, INT64_MIN, INT64_MAX, X86_FPU_INT64_INDEFINITE, RT_NOTHING, 1) EMIT_FISTT(32, 32, int32_t, INT32_MIN, INT32_MAX, X86_FPU_INT32_INDEFINITE, RT_NOTHING, 1) EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, RT_NOTHING, 1) #endif EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, _intel, 1) EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, _amd, 0) #if defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src)) { /*static RTPBCD80U const s_ad80MaxMin[2] = { RTPBCD80U_INIT_MAX(), RTPBCD80U_INIT_MIN() };*/ static RTPBCD80U const s_ad80Zeros[2] = { RTPBCD80U_INIT_ZERO(0), RTPBCD80U_INIT_ZERO(1) }; static RTPBCD80U const s_ad80One[2] = { RTPBCD80U_INIT_C(0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,1), RTPBCD80U_INIT_C(1, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,1) }; static RTPBCD80U const s_d80Indefinite = RTPBCD80U_INIT_INDEFINITE(); uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); bool const fSignIn = pr80Src->s.fSign; /* * Deal with normal numbers first. */ if (RTFLOAT80U_IS_NORMAL(pr80Src)) { uint64_t uMantissa = pr80Src->s.uMantissa; int32_t iExponent = (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS; if ( (uint32_t)iExponent <= 58 || ((uint32_t)iExponent == 59 && uMantissa <= UINT64_C(0xde0b6b3a763fffff)) ) { unsigned const cShiftOff = 63 - iExponent; uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST ? RT_BIT_64(cShiftOff - 1) : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) ? fRoundingOffMask : 0; uint64_t fRoundedOff = uMantissa & fRoundingOffMask; uMantissa >>= cShiftOff; uint64_t const uRounding = (fRoundedOff + uRoundingAdd) >> cShiftOff; uMantissa += uRounding; if (uMantissa <= (uint64_t)RTPBCD80U_MAX) { if (fRoundedOff) { if ((uMantissa & 1) && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST && fRoundedOff == uRoundingAdd) uMantissa &= ~(uint64_t)1; /* round to even number if equal distance between up/down. */ else if (uRounding) fFsw |= X86_FSW_C1; fFsw |= X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } pd80Dst->s.fSign = fSignIn; pd80Dst->s.uPad = 0; for (size_t iPair = 0; iPair < RT_ELEMENTS(pd80Dst->s.abPairs); iPair++) { unsigned const uDigits = uMantissa % 100; uMantissa /= 100; uint8_t const bLo = uDigits % 10; uint8_t const bHi = uDigits / 10; pd80Dst->s.abPairs[iPair] = RTPBCD80U_MAKE_PAIR(bHi, bLo); } } else { /* overflowed after rounding. */ fFsw |= X86_FSW_IE; if (fFcw & X86_FCW_IM) *pd80Dst = s_d80Indefinite; else fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); } } /* * Tiny sub-zero numbers. */ else if (iExponent < 0) { if (!fSignIn) { if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP || (iExponent == -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) { *pd80Dst = s_ad80One[fSignIn]; fFsw |= X86_FSW_C1; } else *pd80Dst = s_ad80Zeros[fSignIn]; } else { if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP || (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_ZERO || (iExponent < -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) *pd80Dst = s_ad80Zeros[fSignIn]; else { *pd80Dst = s_ad80One[fSignIn]; fFsw |= X86_FSW_C1; } } fFsw |= X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } /* * Too large/small number outside the target integer range. */ else { fFsw |= X86_FSW_IE; if (fFcw & X86_FCW_IM) *pd80Dst = s_d80Indefinite; else fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); } } /* * Map both +0 and -0 to integer zero (signless/+). */ else if (RTFLOAT80U_IS_ZERO(pr80Src)) *pd80Dst = s_ad80Zeros[fSignIn]; /* * Denormals are just really tiny sub-zero numbers that are either rounded * to zero, 1 or -1 depending on sign and rounding control. */ else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src) || RTFLOAT80U_IS_DENORMAL(pr80Src)) { if ((fFcw & X86_FCW_RC_MASK) != (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)) *pd80Dst = s_ad80Zeros[fSignIn]; else { *pd80Dst = s_ad80One[fSignIn]; fFsw |= X86_FSW_C1; } fFsw |= X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } /* * All other special values are considered invalid arguments and result * in an IE exception and indefinite value if masked. */ else { fFsw |= X86_FSW_IE; if (fFcw & X86_FCW_IM) *pd80Dst = s_d80Indefinite; else fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); } *pu16FSW = fFsw; } /********************************************************************************************************************************* * FPU Helpers * *********************************************************************************************************************************/ AssertCompileSize(RTFLOAT128U, 16); AssertCompileSize(RTFLOAT80U, 10); AssertCompileSize(RTFLOAT64U, 8); AssertCompileSize(RTFLOAT32U, 4); /** * Normalizes a possible pseudo-normal value. * * Psuedo-normal values are some oddities from the 8087 & 287 days. They are * denormals with the J-bit set, so they can simply be rewritten as 2**-16382, * i.e. changing uExponent from 0 to 1. * * This macro will declare a RTFLOAT80U with the name given by * @a a_r80ValNormalized and update the @a a_pr80Val variable to point to it if * a normalization was performed. * * @note This must be applied before calling SoftFloat with a value that couldbe * a pseudo-denormal, as SoftFloat doesn't handle pseudo-denormals * correctly. */ #define IEM_NORMALIZE_PSEUDO_DENORMAL(a_pr80Val, a_r80ValNormalized) \ RTFLOAT80U a_r80ValNormalized; \ if (RTFLOAT80U_IS_PSEUDO_DENORMAL(a_pr80Val)) \ { \ a_r80ValNormalized = *a_pr80Val; \ a_r80ValNormalized.s.uExponent = 1; \ a_pr80Val = &a_r80ValNormalized; \ } else do {} while (0) #ifdef IEM_WITH_FLOAT128_FOR_FPU DECLINLINE(int) iemFpuF128SetRounding(uint16_t fFcw) { int fNew; switch (fFcw & X86_FCW_RC_MASK) { default: case X86_FCW_RC_NEAREST: fNew = FE_TONEAREST; break; case X86_FCW_RC_ZERO: fNew = FE_TOWARDZERO; break; case X86_FCW_RC_UP: fNew = FE_UPWARD; break; case X86_FCW_RC_DOWN: fNew = FE_DOWNWARD; break; } int fOld = fegetround(); fesetround(fNew); return fOld; } DECLINLINE(void) iemFpuF128RestoreRounding(int fOld) { fesetround(fOld); } DECLINLINE(_Float128) iemFpuF128FromFloat80(PCRTFLOAT80U pr80Val, uint16_t fFcw) { RT_NOREF(fFcw); RTFLOAT128U Tmp; Tmp.s2.uSignAndExponent = pr80Val->s2.uSignAndExponent; Tmp.s2.uFractionHigh = (uint16_t)((pr80Val->s2.uMantissa & (RT_BIT_64(63) - 1)) >> 48); Tmp.s2.uFractionMid = (uint32_t)((pr80Val->s2.uMantissa & UINT32_MAX) >> 16); Tmp.s2.uFractionLow = pr80Val->s2.uMantissa << 48; if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val)) { Assert(Tmp.s.uExponent == 0); Tmp.s2.uSignAndExponent++; } return *(_Float128 *)&Tmp; } DECLINLINE(uint16_t) iemFpuF128ToFloat80(PRTFLOAT80U pr80Dst, _Float128 rd128ValSrc, uint16_t fFcw, uint16_t fFsw) { RT_NOREF(fFcw); RTFLOAT128U Tmp; *(_Float128 *)&Tmp = rd128ValSrc; ASMCompilerBarrier(); if (RTFLOAT128U_IS_NORMAL(&Tmp)) { pr80Dst->s.fSign = Tmp.s64.fSign; pr80Dst->s.uExponent = Tmp.s64.uExponent; uint64_t uFraction = Tmp.s64.uFractionHi << (63 - 48) | Tmp.s64.uFractionLo >> (64 - 15); /* Do rounding - just truncate in near mode when midway on an even outcome. */ unsigned const cShiftOff = 64 - 15; uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; uint64_t const uRoundedOff = Tmp.s64.uFractionLo & fRoundingOffMask; if (uRoundedOff) { uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST ? RT_BIT_64(cShiftOff - 1) : (fFcw & X86_FCW_RC_MASK) == (Tmp.s64.fSign ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) ? fRoundingOffMask : 0; if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST || (Tmp.s64.uFractionLo & RT_BIT_64(cShiftOff)) || uRoundedOff != uRoundingAdd) { if ((uRoundedOff + uRoundingAdd) >> cShiftOff) { uFraction += 1; if (!(uFraction & RT_BIT_64(63))) { /* likely */ } else { uFraction >>= 1; pr80Dst->s.uExponent++; if (pr80Dst->s.uExponent == RTFLOAT64U_EXP_MAX) return fFsw; } fFsw |= X86_FSW_C1; } } fFsw |= X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } pr80Dst->s.uMantissa = RT_BIT_64(63) | uFraction; } else if (RTFLOAT128U_IS_ZERO(&Tmp)) { pr80Dst->s.fSign = Tmp.s64.fSign; pr80Dst->s.uExponent = 0; pr80Dst->s.uMantissa = 0; } else if (RTFLOAT128U_IS_INF(&Tmp)) { pr80Dst->s.fSign = Tmp.s64.fSign; pr80Dst->s.uExponent = 0; pr80Dst->s.uMantissa = 0; } return fFsw; } #else /* !IEM_WITH_FLOAT128_FOR_FPU - SoftFloat */ /** Initializer for the SoftFloat state structure. */ # define IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(a_fFcw) \ { \ softfloat_tininess_afterRounding, \ ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST ? (uint8_t)softfloat_round_near_even \ : ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_UP ? (uint8_t)softfloat_round_max \ : ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_DOWN ? (uint8_t)softfloat_round_min \ : (uint8_t)softfloat_round_minMag, \ 0, \ (uint8_t)((a_fFcw) & X86_FCW_XCPT_MASK), \ ((a_fFcw) & X86_FCW_PC_MASK) == X86_FCW_PC_53 ? (uint8_t)64 \ : ((a_fFcw) & X86_FCW_PC_MASK) == X86_FCW_PC_24 ? (uint8_t)32 : (uint8_t)80 \ } /** Returns updated FSW from a SoftFloat state and exception mask (FCW). */ # define IEM_SOFTFLOAT_STATE_TO_FSW(a_fFsw, a_pSoftState, a_fFcw) \ ( (a_fFsw) \ | (uint16_t)(((a_pSoftState)->exceptionFlags & softfloat_flag_c1) << 2) \ | ((a_pSoftState)->exceptionFlags & X86_FSW_XCPT_MASK) \ | ( ((a_pSoftState)->exceptionFlags & X86_FSW_XCPT_MASK) & (~(a_fFcw) & X86_FSW_XCPT_MASK) \ ? X86_FSW_ES | X86_FSW_B : 0) ) DECLINLINE(float128_t) iemFpuSoftF128Precision(float128_t r128, unsigned cBits, uint16_t fFcw = X86_FCW_RC_NEAREST) { RT_NOREF(fFcw); Assert(cBits > 64); # if 0 /* rounding does not seem to help */ uint64_t off = r128.v[0] & (RT_BIT_64(1 + 112 - cBits) - 1); r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1); if (off >= RT_BIT_64(1 + 112 - cBits - 1) && (r128.v[0] & RT_BIT_64(1 + 112 - cBits))) { uint64_t uOld = r128.v[0]; r128.v[0] += RT_BIT_64(1 + 112 - cBits); if (r128.v[0] < uOld) r128.v[1] += 1; } # else r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1); # endif return r128; } DECLINLINE(float128_t) iemFpuSoftF128PrecisionIprt(PCRTFLOAT128U pr128, unsigned cBits, uint16_t fFcw = X86_FCW_RC_NEAREST) { RT_NOREF(fFcw); Assert(cBits > 64); # if 0 /* rounding does not seem to help, not even on constants */ float128_t r128 = { pr128->au64[0], pr128->au64[1] }; uint64_t off = r128.v[0] & (RT_BIT_64(1 + 112 - cBits) - 1); r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1); if (off >= RT_BIT_64(1 + 112 - cBits - 1) && (r128.v[0] & RT_BIT_64(1 + 112 - cBits))) { uint64_t uOld = r128.v[0]; r128.v[0] += RT_BIT_64(1 + 112 - cBits); if (r128.v[0] < uOld) r128.v[1] += 1; } return r128; # else float128_t r128 = { { pr128->au64[0] & ~(RT_BIT_64(1 + 112 - cBits) - 1), pr128->au64[1] } }; return r128; # endif } # if 0 /* unused */ DECLINLINE(float128_t) iemFpuSoftF128FromIprt(PCRTFLOAT128U pr128) { float128_t r128 = { { pr128->au64[0], pr128->au64[1] } }; return r128; } # endif /** Converts a 80-bit floating point value to SoftFloat 128-bit floating point. */ DECLINLINE(float128_t) iemFpuSoftF128FromFloat80(PCRTFLOAT80U pr80Val) { extFloat80_t Tmp; Tmp.signExp = pr80Val->s2.uSignAndExponent; Tmp.signif = pr80Val->s2.uMantissa; softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS(); return extF80_to_f128(Tmp, &Ignored); } /** * Converts from the packed IPRT 80-bit floating point (RTFLOAT80U) format to * the SoftFloat extended 80-bit floating point format (extFloat80_t). * * This is only a structure format conversion, nothing else. */ DECLINLINE(extFloat80_t) iemFpuSoftF80FromIprt(PCRTFLOAT80U pr80Val) { extFloat80_t Tmp; Tmp.signExp = pr80Val->s2.uSignAndExponent; Tmp.signif = pr80Val->s2.uMantissa; return Tmp; } /** * Converts from SoftFloat extended 80-bit floating point format (extFloat80_t) * to the packed IPRT 80-bit floating point (RTFLOAT80U) format. * * This is only a structure format conversion, nothing else. */ DECLINLINE(PRTFLOAT80U) iemFpuSoftF80ToIprt(PRTFLOAT80U pr80Dst, extFloat80_t const r80XSrc) { pr80Dst->s2.uSignAndExponent = r80XSrc.signExp; pr80Dst->s2.uMantissa = r80XSrc.signif; return pr80Dst; } DECLINLINE(uint16_t) iemFpuSoftF128ToFloat80(PRTFLOAT80U pr80Dst, float128_t r128Src, uint16_t fFcw, uint16_t fFsw) { RT_NOREF(fFcw); RTFLOAT128U Tmp; *(float128_t *)&Tmp = r128Src; ASMCompilerBarrier(); if (RTFLOAT128U_IS_NORMAL(&Tmp)) { pr80Dst->s.fSign = Tmp.s64.fSign; pr80Dst->s.uExponent = Tmp.s64.uExponent; uint64_t uFraction = Tmp.s64.uFractionHi << (63 - 48) | Tmp.s64.uFractionLo >> (64 - 15); /* Do rounding - just truncate in near mode when midway on an even outcome. */ unsigned const cShiftOff = 64 - 15; uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; uint64_t const uRoundedOff = Tmp.s64.uFractionLo & fRoundingOffMask; if (uRoundedOff) { uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST ? RT_BIT_64(cShiftOff - 1) : (fFcw & X86_FCW_RC_MASK) == (Tmp.s64.fSign ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) ? fRoundingOffMask : 0; if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST || (Tmp.s64.uFractionLo & RT_BIT_64(cShiftOff)) || uRoundedOff != uRoundingAdd) { if ((uRoundedOff + uRoundingAdd) >> cShiftOff) { uFraction += 1; if (!(uFraction & RT_BIT_64(63))) { /* likely */ } else { uFraction >>= 1; pr80Dst->s.uExponent++; if (pr80Dst->s.uExponent == RTFLOAT64U_EXP_MAX) return fFsw; } fFsw |= X86_FSW_C1; } } fFsw |= X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } pr80Dst->s.uMantissa = RT_BIT_64(63) | uFraction; } else if (RTFLOAT128U_IS_ZERO(&Tmp)) { pr80Dst->s.fSign = Tmp.s64.fSign; pr80Dst->s.uExponent = 0; pr80Dst->s.uMantissa = 0; } else if (RTFLOAT128U_IS_INF(&Tmp)) { pr80Dst->s.fSign = Tmp.s64.fSign; pr80Dst->s.uExponent = 0x7fff; pr80Dst->s.uMantissa = 0; } return fFsw; } /** * Helper for transfering exception and C1 to FSW and setting the result value * accordingly. * * @returns Updated FSW. * @param pSoftState The SoftFloat state following the operation. * @param r80XResult The result of the SoftFloat operation. * @param pr80Result Where to store the result for IEM. * @param fFcw The FPU control word. * @param fFsw The FSW before the operation, with necessary bits * cleared and such. * @param pr80XcptResult Alternative return value for use an unmasked \#IE is * raised. */ DECLINLINE(uint16_t) iemFpuSoftStateAndF80ToFswAndIprtResult(softfloat_state_t const *pSoftState, extFloat80_t r80XResult, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80XcptResult) { fFsw |= (pSoftState->exceptionFlags & X86_FSW_XCPT_MASK) | (uint16_t)((pSoftState->exceptionFlags & softfloat_flag_c1) << 2); if (fFsw & ~fFcw & X86_FSW_XCPT_MASK) fFsw |= X86_FSW_ES | X86_FSW_B; if (!(fFsw & ~fFcw & (X86_FSW_IE | X86_FSW_DE))) iemFpuSoftF80ToIprt(pr80Result, r80XResult); else { fFsw &= ~(X86_FSW_OE | X86_FSW_UE | X86_FSW_PE | X86_FSW_ZE | X86_FSW_C1); *pr80Result = *pr80XcptResult; } return fFsw; } /** * Helper doing polynomial evaluation using Horner's method. * * See https://en.wikipedia.org/wiki/Horner%27s_method for details. */ float128_t iemFpuSoftF128HornerPoly(float128_t z, PCRTFLOAT128U g_par128HornerConsts, size_t cHornerConsts, unsigned cPrecision, softfloat_state_t *pSoftState) { Assert(cHornerConsts > 1); size_t i = cHornerConsts - 1; float128_t r128Result = iemFpuSoftF128PrecisionIprt(&g_par128HornerConsts[i], cPrecision); while (i-- > 0) { r128Result = iemFpuSoftF128Precision(f128_mul(r128Result, z, pSoftState), cPrecision); r128Result = f128_add(r128Result, iemFpuSoftF128PrecisionIprt(&g_par128HornerConsts[i], cPrecision), pSoftState); r128Result = iemFpuSoftF128Precision(r128Result, cPrecision); } return r128Result; } #endif /* !IEM_WITH_FLOAT128_FOR_FPU - SoftFloat */ /** * Composes a normalized and rounded RTFLOAT80U result from a 192 bit wide * mantissa, exponent and sign. * * @returns Updated FSW. * @param pr80Dst Where to return the composed value. * @param fSign The sign. * @param puMantissa The mantissa, 256-bit type but the to 64-bits are * ignored and should be zero. This will probably be * modified during normalization and rounding. * @param iExponent Unbiased exponent. * @param fFcw The FPU control word. * @param fFsw The FPU status word. */ static uint16_t iemFpuFloat80RoundAndComposeFrom192(PRTFLOAT80U pr80Dst, bool fSign, PRTUINT256U puMantissa, int32_t iExponent, uint16_t fFcw, uint16_t fFsw) { AssertStmt(puMantissa->QWords.qw3 == 0, puMantissa->QWords.qw3 = 0); iExponent += RTFLOAT80U_EXP_BIAS; /* Do normalization if necessary and possible. */ if (!(puMantissa->QWords.qw2 & RT_BIT_64(63))) { int cShift = 192 - RTUInt256BitCount(puMantissa); if (iExponent > cShift) iExponent -= cShift; else { if (fFcw & X86_FCW_UM) { if (iExponent > 0) cShift = --iExponent; else cShift = 0; } iExponent -= cShift; } RTUInt256AssignShiftLeft(puMantissa, cShift); } /* Do rounding. */ uint64_t uMantissa = puMantissa->QWords.qw2; if (puMantissa->QWords.qw1 || puMantissa->QWords.qw0) { bool fAdd; switch (fFcw & X86_FCW_RC_MASK) { default: /* (for the simple-minded MSC which otherwise things fAdd would be used uninitialized) */ case X86_FCW_RC_NEAREST: if (puMantissa->QWords.qw1 & RT_BIT_64(63)) { if ( (uMantissa & 1) || puMantissa->QWords.qw0 != 0 || puMantissa->QWords.qw1 != RT_BIT_64(63)) { fAdd = true; break; } uMantissa &= ~(uint64_t)1; } fAdd = false; break; case X86_FCW_RC_ZERO: fAdd = false; break; case X86_FCW_RC_UP: fAdd = !fSign; break; case X86_FCW_RC_DOWN: fAdd = fSign; break; } if (fAdd) { uint64_t const uTmp = uMantissa; uMantissa = uTmp + 1; if (uMantissa < uTmp) { uMantissa >>= 1; uMantissa |= RT_BIT_64(63); iExponent++; } fFsw |= X86_FSW_C1; } fFsw |= X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } /* Check for underflow (denormals). */ if (iExponent <= 0) { if (fFcw & X86_FCW_UM) { if (uMantissa & RT_BIT_64(63)) uMantissa >>= 1; iExponent = 0; } else { iExponent += RTFLOAT80U_EXP_BIAS_ADJUST; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_UE; } /* Check for overflow */ else if (iExponent >= RTFLOAT80U_EXP_MAX) { Assert(iExponent < RTFLOAT80U_EXP_MAX); } /* Compose the result. */ pr80Dst->s.uMantissa = uMantissa; pr80Dst->s.uExponent = iExponent; pr80Dst->s.fSign = fSign; return fFsw; } /** * See also iemAImpl_fld_r80_from_r32 */ static uint16_t iemAImplConvertR32ToR80(PCRTFLOAT32U pr32Val, PRTFLOAT80U pr80Dst) { uint16_t fFsw = 0; if (RTFLOAT32U_IS_NORMAL(pr32Val)) { pr80Dst->sj64.fSign = pr32Val->s.fSign; pr80Dst->sj64.fInteger = 1; pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS); pr80Dst->sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS; Assert(RTFLOAT80U_IS_NORMAL(pr80Dst)); } else if (RTFLOAT32U_IS_ZERO(pr32Val)) { pr80Dst->s.fSign = pr32Val->s.fSign; pr80Dst->s.uExponent = 0; pr80Dst->s.uMantissa = 0; Assert(RTFLOAT80U_IS_ZERO(pr80Dst)); } else if (RTFLOAT32U_IS_SUBNORMAL(pr32Val)) { /* Subnormal -> normalized + X86_FSW_DE return. */ pr80Dst->sj64.fSign = pr32Val->s.fSign; pr80Dst->sj64.fInteger = 1; unsigned const cExtraShift = RTFLOAT32U_FRACTION_BITS - ASMBitLastSetU32(pr32Val->s.uFraction); pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS + cExtraShift + 1); pr80Dst->sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift; fFsw = X86_FSW_DE; } else if (RTFLOAT32U_IS_INF(pr32Val)) { pr80Dst->s.fSign = pr32Val->s.fSign; pr80Dst->s.uExponent = RTFLOAT80U_EXP_MAX; pr80Dst->s.uMantissa = RT_BIT_64(63); Assert(RTFLOAT80U_IS_INF(pr80Dst)); } else { Assert(RTFLOAT32U_IS_NAN(pr32Val)); pr80Dst->sj64.fSign = pr32Val->s.fSign; pr80Dst->sj64.uExponent = RTFLOAT80U_EXP_MAX; pr80Dst->sj64.fInteger = 1; pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS); Assert(RTFLOAT80U_IS_NAN(pr80Dst)); Assert(RTFLOAT80U_IS_SIGNALLING_NAN(pr80Dst) == RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val)); } return fFsw; } /** * See also iemAImpl_fld_r80_from_r64 */ static uint16_t iemAImplConvertR64ToR80(PCRTFLOAT64U pr64Val, PRTFLOAT80U pr80Dst) { uint16_t fFsw = 0; if (RTFLOAT64U_IS_NORMAL(pr64Val)) { pr80Dst->sj64.fSign = pr64Val->s.fSign; pr80Dst->sj64.fInteger = 1; pr80Dst->sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS); pr80Dst->sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS; Assert(RTFLOAT80U_IS_NORMAL(pr80Dst)); } else if (RTFLOAT64U_IS_ZERO(pr64Val)) { pr80Dst->s.fSign = pr64Val->s.fSign; pr80Dst->s.uExponent = 0; pr80Dst->s.uMantissa = 0; Assert(RTFLOAT80U_IS_ZERO(pr80Dst)); } else if (RTFLOAT64U_IS_SUBNORMAL(pr64Val)) { /* Subnormal values gets normalized. */ pr80Dst->sj64.fSign = pr64Val->s.fSign; pr80Dst->sj64.fInteger = 1; unsigned const cExtraShift = RTFLOAT64U_FRACTION_BITS - ASMBitLastSetU64(pr64Val->s64.uFraction); pr80Dst->sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS + cExtraShift + 1); pr80Dst->sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift; fFsw = X86_FSW_DE; } else if (RTFLOAT64U_IS_INF(pr64Val)) { pr80Dst->s.fSign = pr64Val->s.fSign; pr80Dst->s.uExponent = RTFLOAT80U_EXP_MAX; pr80Dst->s.uMantissa = RT_BIT_64(63); Assert(RTFLOAT80U_IS_INF(pr80Dst)); } else { /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */ Assert(RTFLOAT64U_IS_NAN(pr64Val)); pr80Dst->sj64.fSign = pr64Val->s.fSign; pr80Dst->sj64.uExponent = RTFLOAT80U_EXP_MAX; pr80Dst->sj64.fInteger = 1; pr80Dst->sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS); Assert(RTFLOAT80U_IS_NAN(pr80Dst)); Assert(RTFLOAT80U_IS_SIGNALLING_NAN(pr80Dst) == RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val)); } return fFsw; } /** * See also EMIT_FILD. */ #define EMIT_CONVERT_IXX_TO_R80(a_cBits) \ static PRTFLOAT80U iemAImplConvertI ## a_cBits ## ToR80(int ## a_cBits ## _t iVal, PRTFLOAT80U pr80Dst) \ { \ if (iVal == 0) \ { \ pr80Dst->s.fSign = 0; \ pr80Dst->s.uExponent = 0; \ pr80Dst->s.uMantissa = 0; \ } \ else \ { \ if (iVal > 0) \ pr80Dst->s.fSign = 0; \ else \ { \ pr80Dst->s.fSign = 1; \ iVal = -iVal; \ } \ unsigned const cBits = ASMBitLastSetU ## a_cBits((uint ## a_cBits ## _t)iVal); \ pr80Dst->s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS; \ pr80Dst->s.uMantissa = (uint64_t)iVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits); \ } \ return pr80Dst; \ } EMIT_CONVERT_IXX_TO_R80(16) EMIT_CONVERT_IXX_TO_R80(32) //EMIT_CONVERT_IXX_TO_R80(64) /** For implementing iemAImpl_fmul_r80_by_r64 and such. */ #define EMIT_R80_BY_R64(a_Name, a_fnR80ByR80, a_DenormalException) \ IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2)) \ { \ RTFLOAT80U r80Val2; \ uint16_t fFsw = iemAImplConvertR64ToR80(pr64Val2, &r80Val2); \ Assert(!fFsw || fFsw == X86_FSW_DE); \ if (fFsw) \ { \ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_NAN(pr80Val1) || (a_DenormalException)) \ fFsw = 0; \ else if (!(pFpuState->FCW & X86_FCW_DM)) \ { \ pFpuRes->r80Result = *pr80Val1; \ pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT) \ | X86_FSW_DE | X86_FSW_ES | X86_FSW_B; \ return; \ } \ } \ a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, &r80Val2); \ pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT) | fFsw; \ } /** For implementing iemAImpl_fmul_r80_by_r32 and such. */ #define EMIT_R80_BY_R32(a_Name, a_fnR80ByR80, a_DenormalException) \ IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2)) \ { \ RTFLOAT80U r80Val2; \ uint16_t fFsw = iemAImplConvertR32ToR80(pr32Val2, &r80Val2); \ Assert(!fFsw || fFsw == X86_FSW_DE); \ if (fFsw) \ { \ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_NAN(pr80Val1) || (a_DenormalException)) \ fFsw = 0; \ else if (!(pFpuState->FCW & X86_FCW_DM)) \ { \ pFpuRes->r80Result = *pr80Val1; \ pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT) \ | X86_FSW_DE | X86_FSW_ES | X86_FSW_B; \ return; \ } \ } \ a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, &r80Val2); \ pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT) | fFsw; \ } /** For implementing iemAImpl_fimul_r80_by_i32 and such. */ #define EMIT_R80_BY_I32(a_Name, a_fnR80ByR80) \ IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2)) \ { \ RTFLOAT80U r80Val2; \ a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, iemAImplConvertI32ToR80(*pi32Val2, &r80Val2)); \ pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); \ } /** For implementing iemAImpl_fimul_r80_by_i16 and such. */ #define EMIT_R80_BY_I16(a_Name, a_fnR80ByR80) \ IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2)) \ { \ RTFLOAT80U r80Val2; \ a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, iemAImplConvertI16ToR80(*pi16Val2, &r80Val2)); \ pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); \ } /********************************************************************************************************************************* * x86 FPU Division Operations * *********************************************************************************************************************************/ /** Worker for iemAImpl_fdiv_r80_by_r80 & iemAImpl_fdivr_r80_by_r80. */ static uint16_t iemAImpl_fdiv_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org) { if (!RTFLOAT80U_IS_ZERO(pr80Val2) || RTFLOAT80U_IS_NAN(pr80Val1) || RTFLOAT80U_IS_INF(pr80Val1)) { softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); extFloat80_t r80XResult = extF80_div(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState); return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org); } if (!RTFLOAT80U_IS_ZERO(pr80Val1)) { /* Div by zero. */ if (fFcw & X86_FCW_ZM) *pr80Result = g_ar80Infinity[pr80Val1->s.fSign != pr80Val2->s.fSign]; else { *pr80Result = *pr80Val1Org; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_ZE; } else { /* Invalid operand */ if (fFcw & X86_FCW_IM) *pr80Result = g_r80Indefinite; else { *pr80Result = *pr80Val1Org; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_IE; } return fFsw; } IEM_DECL_IMPL_DEF(void, iemAImpl_fdiv_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) { if (fFcw & X86_FCW_IM) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_IE; } /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2) && !RTFLOAT80U_IS_ZERO(pr80Val2)) || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) ) { if (fFcw & X86_FCW_DM) { PCRTFLOAT80U const pr80Val1Org = pr80Val1; IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); } else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_DE; } /* SoftFloat can handle the rest: */ else fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); pFpuRes->FSW = fFsw; } EMIT_R80_BY_R64(iemAImpl_fdiv_r80_by_r64, iemAImpl_fdiv_r80_by_r80, 0) EMIT_R80_BY_R32(iemAImpl_fdiv_r80_by_r32, iemAImpl_fdiv_r80_by_r80, 0) EMIT_R80_BY_I32(iemAImpl_fidiv_r80_by_i32, iemAImpl_fdiv_r80_by_r80) EMIT_R80_BY_I16(iemAImpl_fidiv_r80_by_i16, iemAImpl_fdiv_r80_by_r80) IEM_DECL_IMPL_DEF(void, iemAImpl_fdivr_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) { if (fFcw & X86_FCW_IM) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_IE; } /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2)) || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_ZERO(pr80Val1)) ) { if (fFcw & X86_FCW_DM) { PCRTFLOAT80U const pr80Val1Org = pr80Val1; IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); } else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_DE; } /* SoftFloat can handle the rest: */ else fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); pFpuRes->FSW = fFsw; } EMIT_R80_BY_R64(iemAImpl_fdivr_r80_by_r64, iemAImpl_fdivr_r80_by_r80, RTFLOAT80U_IS_ZERO(pr80Val1)) EMIT_R80_BY_R32(iemAImpl_fdivr_r80_by_r32, iemAImpl_fdivr_r80_by_r80, RTFLOAT80U_IS_ZERO(pr80Val1)) EMIT_R80_BY_I32(iemAImpl_fidivr_r80_by_i32, iemAImpl_fdivr_r80_by_r80) EMIT_R80_BY_I16(iemAImpl_fidivr_r80_by_i16, iemAImpl_fdivr_r80_by_r80) /** Worker for iemAImpl_fprem_r80_by_r80 & iemAImpl_fprem1_r80_by_r80. */ static uint16_t iemAImpl_fprem_fprem1_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org, bool fLegacyInstr) { if (!RTFLOAT80U_IS_ZERO(pr80Val2) || RTFLOAT80U_IS_NAN(pr80Val1) || RTFLOAT80U_IS_INF(pr80Val1)) { softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); uint16_t fCxFlags = 0; extFloat80_t r80XResult = extF80_partialRem(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), fLegacyInstr ? softfloat_round_minMag : softfloat_round_near_even, &fCxFlags, &SoftState); Assert(!(fCxFlags & ~X86_FSW_C_MASK)); fFsw = iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org); if ( !(fFsw & X86_FSW_IE) && !RTFLOAT80U_IS_NAN(pr80Result) && !RTFLOAT80U_IS_INDEFINITE(pr80Result)) { fFsw &= ~(uint16_t)X86_FSW_C_MASK; fFsw |= fCxFlags & X86_FSW_C_MASK; } return fFsw; } /* Invalid operand */ if (fFcw & X86_FCW_IM) *pr80Result = g_r80Indefinite; else { *pr80Result = *pr80Val1Org; fFsw |= X86_FSW_ES | X86_FSW_B; } return fFsw | X86_FSW_IE; } static void iemAImpl_fprem_fprem1_r80_by_r80(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, bool fLegacyInstr) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 /*| X86_FSW_C2*/ | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. In addition, we'd like to handle zero ST(1) now as SoftFloat returns Inf instead of Indefinite. (Note! There is no #Z like the footnotes to tables 3-31 and 3-32 for the FPREM1 & FPREM1 instructions in the intel reference manual claims!) */ if ( RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2) || (RTFLOAT80U_IS_ZERO(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_INDEFINITE(pr80Val1))) { if (fFcw & X86_FCW_IM) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_IE; } /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2) && !RTFLOAT80U_IS_ZERO(pr80Val2)) || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_INF(pr80Val1)) ) { if (fFcw & X86_FCW_DM) { PCRTFLOAT80U const pr80Val1Org = pr80Val1; IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); fFsw = iemAImpl_fprem_fprem1_r80_by_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org, fLegacyInstr); } else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_DE; } /* SoftFloat can handle the rest: */ else fFsw = iemAImpl_fprem_fprem1_r80_by_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1, fLegacyInstr); pFpuRes->FSW = fFsw; } IEM_DECL_IMPL_DEF(void, iemAImpl_fprem_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { iemAImpl_fprem_fprem1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2, true /*fLegacyInstr*/); } IEM_DECL_IMPL_DEF(void, iemAImpl_fprem1_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { iemAImpl_fprem_fprem1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2, false /*fLegacyInstr*/); } /********************************************************************************************************************************* * x87 FPU Multiplication Operations * *********************************************************************************************************************************/ /** Worker for iemAImpl_fmul_r80_by_r80. */ static uint16_t iemAImpl_fmul_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org) { softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); extFloat80_t r80XResult = extF80_mul(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState); return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org); } IEM_DECL_IMPL_DEF(void, iemAImpl_fmul_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) { if (fFcw & X86_FCW_IM) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_IE; } /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2)) || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) ) { if (fFcw & X86_FCW_DM) { PCRTFLOAT80U const pr80Val1Org = pr80Val1; IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); fFsw = iemAImpl_fmul_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); } else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_DE; } /* SoftFloat can handle the rest: */ else fFsw = iemAImpl_fmul_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); pFpuRes->FSW = fFsw; } EMIT_R80_BY_R64(iemAImpl_fmul_r80_by_r64, iemAImpl_fmul_r80_by_r80, 0) EMIT_R80_BY_R32(iemAImpl_fmul_r80_by_r32, iemAImpl_fmul_r80_by_r80, 0) EMIT_R80_BY_I32(iemAImpl_fimul_r80_by_i32, iemAImpl_fmul_r80_by_r80) EMIT_R80_BY_I16(iemAImpl_fimul_r80_by_i16, iemAImpl_fmul_r80_by_r80) /********************************************************************************************************************************* * x87 FPU Addition * *********************************************************************************************************************************/ /** Worker for iemAImpl_fadd_r80_by_r80. */ static uint16_t iemAImpl_fadd_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org) { softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); extFloat80_t r80XResult = extF80_add(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState); return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org); } IEM_DECL_IMPL_DEF(void, iemAImpl_fadd_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) { if (fFcw & X86_FCW_IM) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_IE; } /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2)) || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) ) { if (fFcw & X86_FCW_DM) { PCRTFLOAT80U const pr80Val1Org = pr80Val1; IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); fFsw = iemAImpl_fadd_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); } else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_DE; } /* SoftFloat can handle the rest: */ else fFsw = iemAImpl_fadd_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); pFpuRes->FSW = fFsw; } EMIT_R80_BY_R64(iemAImpl_fadd_r80_by_r64, iemAImpl_fadd_r80_by_r80, 0) EMIT_R80_BY_R32(iemAImpl_fadd_r80_by_r32, iemAImpl_fadd_r80_by_r80, 0) EMIT_R80_BY_I32(iemAImpl_fiadd_r80_by_i32, iemAImpl_fadd_r80_by_r80) EMIT_R80_BY_I16(iemAImpl_fiadd_r80_by_i16, iemAImpl_fadd_r80_by_r80) /********************************************************************************************************************************* * x87 FPU Subtraction * *********************************************************************************************************************************/ /** Worker for iemAImpl_fsub_r80_by_r80 and iemAImpl_fsubr_r80_by_r80. */ static uint16_t iemAImpl_fsub_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org) { softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); extFloat80_t r80XResult = extF80_sub(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState); return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org); } IEM_DECL_IMPL_DEF(void, iemAImpl_fsub_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) { if (fFcw & X86_FCW_IM) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_IE; } /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2)) || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) ) { if (fFcw & X86_FCW_DM) { PCRTFLOAT80U const pr80Val1Org = pr80Val1; IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); } else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_DE; } /* SoftFloat can handle the rest: */ else fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); pFpuRes->FSW = fFsw; } EMIT_R80_BY_R64(iemAImpl_fsub_r80_by_r64, iemAImpl_fsub_r80_by_r80, 0) EMIT_R80_BY_R32(iemAImpl_fsub_r80_by_r32, iemAImpl_fsub_r80_by_r80, 0) EMIT_R80_BY_I32(iemAImpl_fisub_r80_by_i32, iemAImpl_fsub_r80_by_r80) EMIT_R80_BY_I16(iemAImpl_fisub_r80_by_i16, iemAImpl_fsub_r80_by_r80) /* Same as iemAImpl_fsub_r80_by_r80, but with input operands switched. */ IEM_DECL_IMPL_DEF(void, iemAImpl_fsubr_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */ if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)) { if (fFcw & X86_FCW_IM) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_IE; } /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */ else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2)) || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) ) { if (fFcw & X86_FCW_DM) { PCRTFLOAT80U const pr80Val1Org = pr80Val1; IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized); IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized); fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org); } else { pFpuRes->r80Result = *pr80Val1; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_DE; } /* SoftFloat can handle the rest: */ else fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); pFpuRes->FSW = fFsw; } EMIT_R80_BY_R64(iemAImpl_fsubr_r80_by_r64, iemAImpl_fsubr_r80_by_r80, 0) EMIT_R80_BY_R32(iemAImpl_fsubr_r80_by_r32, iemAImpl_fsubr_r80_by_r80, 0) EMIT_R80_BY_I32(iemAImpl_fisubr_r80_by_i32, iemAImpl_fsubr_r80_by_r80) EMIT_R80_BY_I16(iemAImpl_fisubr_r80_by_i16, iemAImpl_fsubr_r80_by_r80) /********************************************************************************************************************************* * x87 FPU Trigometric Operations * *********************************************************************************************************************************/ IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { RT_NOREF(pFpuState, pFpuRes, pr80Val1, pr80Val2); AssertReleaseFailed(); } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { iemAImpl_fpatan_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); } IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { iemAImpl_fpatan_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); } #if defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) { RT_NOREF(pFpuState, pFpuResTwo, pr80Val); AssertReleaseFailed(); } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) { iemAImpl_fptan_r80_r80(pFpuState, pFpuResTwo, pr80Val); } IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) { iemAImpl_fptan_r80_r80(pFpuState, pFpuResTwo, pr80Val); } #ifdef IEM_WITHOUT_ASSEMBLY static uint16_t iemAImpl_fsin_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) { softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val); extFloat80_t v; (void)fFcw; v = extF80_sin(x, &SoftState); iemFpuSoftF80ToIprt(pr80Result, v); return fFsw; } IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | /*X86_FSW_C2 |*/ X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); if (RTFLOAT80U_IS_ZERO(pr80Val)) { pFpuRes->r80Result = *pr80Val; } else if (RTFLOAT80U_IS_NORMAL(pr80Val)) { if (pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS + 63) { fFsw |= X86_FSW_C2; pFpuRes->r80Result = *pr80Val; } else { if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 63) { pFpuRes->r80Result = *pr80Val; } else { fFsw = iemAImpl_fsin_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); } fFsw |= X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } } else if (RTFLOAT80U_IS_INF(pr80Val)) { fFsw |= X86_FSW_IE; if (!(fFcw & X86_FCW_IM)) { fFsw |= X86_FSW_ES | X86_FSW_B; pFpuRes->r80Result = *pr80Val; } else { pFpuRes->r80Result = g_r80Indefinite; } } else if (RTFLOAT80U_IS_DENORMAL(pr80Val)) { pFpuRes->r80Result = *pr80Val; fFsw |= X86_FSW_DE; if (fFcw & X86_FCW_DM) { fFsw |= X86_FSW_UE | X86_FSW_PE; if (!(fFcw & X86_FCW_UM) || !(fFcw & X86_FCW_PM)) { fFsw |= X86_FSW_ES | X86_FSW_B; } } else { fFsw |= X86_FSW_ES | X86_FSW_B; } } else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val)) { pFpuRes->r80Result = *pr80Val; fFsw |= X86_FSW_DE; if (fFcw & X86_FCW_DM) { if (fFcw & X86_FCW_PM) { fFsw |= X86_FSW_PE; } else { fFsw |= X86_FSW_ES | X86_FSW_B | X86_FSW_PE; } pFpuRes->r80Result.sj64.uExponent = 1; } else { fFsw |= X86_FSW_ES | X86_FSW_B; } } else if ( RTFLOAT80U_IS_QUIET_NAN(pr80Val) || RTFLOAT80U_IS_INDEFINITE(pr80Val)) { pFpuRes->r80Result = *pr80Val; } else { if ( ( RTFLOAT80U_IS_UNNORMAL(pr80Val) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val)) && (fFcw & X86_FCW_IM)) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val; if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val) && (fFcw & X86_FCW_IM)) pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ } fFsw |= X86_FSW_IE; if (!(fFcw & X86_FCW_IM)) fFsw |= X86_FSW_ES | X86_FSW_B; } pFpuRes->FSW = fFsw; } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { iemAImpl_fsin_r80(pFpuState, pFpuRes, pr80Val); } IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { iemAImpl_fsin_r80(pFpuState, pFpuRes, pr80Val); } #ifdef IEM_WITHOUT_ASSEMBLY static uint16_t iemAImpl_fcos_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) { softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val); extFloat80_t v; (void)fFcw; v = extF80_cos(x, &SoftState); iemFpuSoftF80ToIprt(pr80Result, v); return fFsw; } IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | /*X86_FSW_C2 |*/ X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); if (RTFLOAT80U_IS_ZERO(pr80Val)) { pFpuRes->r80Result = g_ar80One[0]; } else if (RTFLOAT80U_IS_NORMAL(pr80Val)) { if (pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS + 63) { fFsw |= X86_FSW_C2; pFpuRes->r80Result = *pr80Val; } else { if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 63) { pFpuRes->r80Result = g_ar80One[0]; } else { fFsw = iemAImpl_fcos_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); fFsw |= X86_FSW_C1; // TBD: If the inexact result was rounded up (C1 is set) or “not rounded up” (C1 is cleared). } fFsw |= X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } } else if (RTFLOAT80U_IS_INF(pr80Val)) { fFsw |= X86_FSW_IE; if (!(fFcw & X86_FCW_IM)) { fFsw |= X86_FSW_ES | X86_FSW_B; pFpuRes->r80Result = *pr80Val; } else { pFpuRes->r80Result = g_r80Indefinite; } } else if (RTFLOAT80U_IS_DENORMAL(pr80Val) || RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val)) { fFsw |= X86_FSW_DE; if (fFcw & X86_FCW_DM) { pFpuRes->r80Result = g_ar80One[0]; if (fFcw & X86_FCW_PM) { fFsw |= X86_FSW_PE; } else { fFsw |= X86_FSW_PE | X86_FSW_ES | X86_FSW_B; } } else { pFpuRes->r80Result = *pr80Val; fFsw |= X86_FSW_ES | X86_FSW_B; } } else if ( RTFLOAT80U_IS_QUIET_NAN(pr80Val) || RTFLOAT80U_IS_INDEFINITE(pr80Val)) { pFpuRes->r80Result = *pr80Val; } else { if ( ( RTFLOAT80U_IS_UNNORMAL(pr80Val) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val)) && (fFcw & X86_FCW_IM)) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val; if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val) && (fFcw & X86_FCW_IM)) pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ } fFsw |= X86_FSW_IE; if (!(fFcw & X86_FCW_IM)) fFsw |= X86_FSW_ES | X86_FSW_B; } pFpuRes->FSW = fFsw; } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { iemAImpl_fcos_r80(pFpuState, pFpuRes, pr80Val); } IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { iemAImpl_fcos_r80(pFpuState, pFpuRes, pr80Val); } #ifdef IEM_WITHOUT_ASSEMBLY static uint16_t iemAImpl_fsincos_r80_r80_normal(PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val, uint16_t fFcw, uint16_t fFsw) { softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); extFloat80_t x = iemFpuSoftF80FromIprt(pr80Val); extFloat80_t r80Sin, r80Cos; (void)fFcw; extF80_sincos(x, &r80Sin, &r80Cos, &SoftState); iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, r80Sin); iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result2, r80Cos); return fFsw; } IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | /*X86_FSW_C2 |*/ X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); if (RTFLOAT80U_IS_ZERO(pr80Val)) { pFpuResTwo->r80Result1 = *pr80Val; pFpuResTwo->r80Result2 = g_ar80One[0]; fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); } else if (RTFLOAT80U_IS_NORMAL(pr80Val)) { if (pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS + 63) { fFsw |= X86_FSW_C2; if (fFcw & X86_FCW_IM) { pFpuResTwo->r80Result1 = g_r80Indefinite; } else { pFpuResTwo->r80Result1 = g_ar80Zero[0]; } pFpuResTwo->r80Result2 = *pr80Val; } else { fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 63) { pFpuResTwo->r80Result1 = *pr80Val; pFpuResTwo->r80Result2 = g_ar80One[0]; } else { fFsw = iemAImpl_fsincos_r80_r80_normal(pFpuResTwo, pr80Val, fFcw, fFsw); fFsw |= X86_FSW_C1; // TBD: If the inexact result was rounded up (C1 is set) or “not rounded up” (C1 is cleared). } fFsw |= X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } } else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val)) { fFsw |= X86_FSW_DE; if (fFcw & X86_FCW_DM) { pFpuResTwo->r80Result1 = *pr80Val; pFpuResTwo->r80Result2 = g_ar80One[0]; fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); if (fFcw & X86_FCW_PM) { fFsw |= X86_FSW_PE; } else { fFsw |= X86_FSW_PE | X86_FSW_ES | X86_FSW_B; } pFpuResTwo->r80Result1.sj64.uExponent = 1; } else { pFpuResTwo->r80Result1 = g_ar80Zero[0]; pFpuResTwo->r80Result2 = *pr80Val; fFsw |= X86_FSW_ES | X86_FSW_B; } } else if (RTFLOAT80U_IS_DENORMAL(pr80Val)) { fFsw |= X86_FSW_DE; if (fFcw & X86_FCW_DM) { pFpuResTwo->r80Result1 = *pr80Val; pFpuResTwo->r80Result2 = g_ar80One[0]; fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); fFsw |= X86_FSW_UE | X86_FSW_PE; if (fFcw & X86_FCW_PM) { if (!(fFcw & X86_FCW_UM)) fFsw |= X86_FSW_ES | X86_FSW_B; } else { fFsw |= X86_FSW_ES | X86_FSW_B; } } else { pFpuResTwo->r80Result1 = g_ar80Zero[0]; pFpuResTwo->r80Result2 = *pr80Val; fFsw |= X86_FSW_ES | X86_FSW_B; } } else if (RTFLOAT80U_IS_QUIET_NAN(pr80Val) || RTFLOAT80U_IS_INDEFINITE(pr80Val)) { pFpuResTwo->r80Result1 = *pr80Val; pFpuResTwo->r80Result2 = *pr80Val; fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); } else if (RTFLOAT80U_IS_UNNORMAL(pr80Val) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val)) { if (fFcw & X86_FCW_IM) { pFpuResTwo->r80Result1 = g_r80Indefinite; pFpuResTwo->r80Result2 = g_r80Indefinite; fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); } else { pFpuResTwo->r80Result1 = g_ar80Zero[0]; pFpuResTwo->r80Result2 = *pr80Val; } fFsw |= X86_FSW_IE; if (!(fFcw & X86_FCW_IM)) fFsw |= X86_FSW_ES | X86_FSW_B; } else if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val)) { pFpuResTwo->r80Result1 = *pr80Val; pFpuResTwo->r80Result2 = *pr80Val; if (fFcw & X86_FCW_IM) { pFpuResTwo->r80Result1.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ pFpuResTwo->r80Result2.s.uMantissa |= RT_BIT_64(62); fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); } else { pFpuResTwo->r80Result1 = g_ar80Zero[0]; pFpuResTwo->r80Result2 = *pr80Val; } fFsw |= X86_FSW_IE; if (!(fFcw & X86_FCW_IM)) fFsw |= X86_FSW_ES | X86_FSW_B; } else if (RTFLOAT80U_IS_INF(pr80Val)) { if (fFcw & X86_FCW_IM) { pFpuResTwo->r80Result1 = g_r80Indefinite; pFpuResTwo->r80Result2 = g_r80Indefinite; fFsw &= ~X86_FSW_TOP_MASK | (6 << X86_FSW_TOP_SHIFT); } else { pFpuResTwo->r80Result1 = g_ar80Zero[0]; pFpuResTwo->r80Result2 = *pr80Val; } fFsw |= X86_FSW_IE; if (!(fFcw & X86_FCW_IM)) fFsw |= X86_FSW_ES | X86_FSW_B; } pFpuResTwo->FSW = fFsw; } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) { iemAImpl_fsincos_r80_r80(pFpuState, pFpuResTwo, pr80Val); } IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) { iemAImpl_fsincos_r80_r80(pFpuState, pFpuResTwo, pr80Val); } #ifdef IEM_WITHOUT_ASSEMBLY /********************************************************************************************************************************* * x87 FPU Compare and Testing Operations * *********************************************************************************************************************************/ IEM_DECL_IMPL_DEF(void, iemAImpl_ftst_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val)) { uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT); if (RTFLOAT80U_IS_ZERO(pr80Val)) fFsw |= X86_FSW_C3; else if (RTFLOAT80U_IS_NORMAL(pr80Val) || RTFLOAT80U_IS_INF(pr80Val)) fFsw |= pr80Val->s.fSign ? X86_FSW_C0 : 0; else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val)) { fFsw |= pr80Val->s.fSign ? X86_FSW_C0 | X86_FSW_DE : X86_FSW_DE; if (!(pFpuState->FCW & X86_FCW_DM)) fFsw |= X86_FSW_ES | X86_FSW_B; } else { fFsw |= X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3 | X86_FSW_IE; if (!(pFpuState->FCW & X86_FCW_IM)) fFsw |= X86_FSW_ES | X86_FSW_B; } *pu16Fsw = fFsw; } IEM_DECL_IMPL_DEF(void, iemAImpl_fxam_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val)) { RT_NOREF(pFpuState); uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT); /* C1 = sign bit (always, even if empty Intel says). */ if (pr80Val->s.fSign) fFsw |= X86_FSW_C1; /* Classify the value in C0, C2, C3. */ if (!(pFpuState->FTW & RT_BIT_32(X86_FSW_TOP_GET(pFpuState->FSW)))) fFsw |= X86_FSW_C0 | X86_FSW_C3; /* empty */ else if (RTFLOAT80U_IS_NORMAL(pr80Val)) fFsw |= X86_FSW_C2; else if (RTFLOAT80U_IS_ZERO(pr80Val)) fFsw |= X86_FSW_C3; else if (RTFLOAT80U_IS_QUIET_OR_SIGNALLING_NAN(pr80Val)) fFsw |= X86_FSW_C0; else if (RTFLOAT80U_IS_INF(pr80Val)) fFsw |= X86_FSW_C0 | X86_FSW_C2; else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val)) fFsw |= X86_FSW_C2 | X86_FSW_C3; /* whatever else: 0 */ *pu16Fsw = fFsw; } /** * Worker for fcom, fucom, and friends. */ static uint16_t iemAImpl_fcom_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, uint16_t fFcw, uint16_t fFsw, bool fIeOnAllNaNs) { /* * Unpack the values. */ bool const fSign1 = pr80Val1->s.fSign; int32_t iExponent1 = pr80Val1->s.uExponent; uint64_t uMantissa1 = pr80Val1->s.uMantissa; bool const fSign2 = pr80Val2->s.fSign; int32_t iExponent2 = pr80Val2->s.uExponent; uint64_t uMantissa2 = pr80Val2->s.uMantissa; /* * Check for invalid inputs. */ if ( RTFLOAT80U_IS_387_INVALID_EX(uMantissa1, iExponent1) || RTFLOAT80U_IS_387_INVALID_EX(uMantissa2, iExponent2)) { if (!(fFcw & X86_FCW_IM)) fFsw |= X86_FSW_ES | X86_FSW_B; return fFsw | X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3 | X86_FSW_IE; } /* * Check for NaNs and indefinites, they are all unordered and trumps #DE. */ if ( RTFLOAT80U_IS_INDEFINITE_OR_QUIET_OR_SIGNALLING_NAN_EX(uMantissa1, iExponent1) || RTFLOAT80U_IS_INDEFINITE_OR_QUIET_OR_SIGNALLING_NAN_EX(uMantissa2, iExponent2)) { if ( fIeOnAllNaNs || RTFLOAT80U_IS_SIGNALLING_NAN_EX(uMantissa1, iExponent1) || RTFLOAT80U_IS_SIGNALLING_NAN_EX(uMantissa2, iExponent2)) { fFsw |= X86_FSW_IE; if (!(fFcw & X86_FCW_IM)) fFsw |= X86_FSW_ES | X86_FSW_B; } return fFsw | X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3; } /* * Normalize the values. */ if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL_EX(uMantissa1, iExponent1)) { if (RTFLOAT80U_IS_PSEUDO_DENORMAL_EX(uMantissa1, iExponent1)) iExponent1 = 1; else { iExponent1 = 64 - ASMBitLastSetU64(uMantissa1); uMantissa1 <<= iExponent1; iExponent1 = 1 - iExponent1; } fFsw |= X86_FSW_DE; if (!(fFcw & X86_FCW_DM)) fFsw |= X86_FSW_ES | X86_FSW_B; } if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL_EX(uMantissa2, iExponent2)) { if (RTFLOAT80U_IS_PSEUDO_DENORMAL_EX(uMantissa2, iExponent2)) iExponent2 = 1; else { iExponent2 = 64 - ASMBitLastSetU64(uMantissa2); uMantissa2 <<= iExponent2; iExponent2 = 1 - iExponent2; } fFsw |= X86_FSW_DE; if (!(fFcw & X86_FCW_DM)) fFsw |= X86_FSW_ES | X86_FSW_B; } /* * Test if equal (val1 == val2): */ if ( uMantissa1 == uMantissa2 && iExponent1 == iExponent2 && ( fSign1 == fSign2 || (uMantissa1 == 0 && iExponent1 == 0) /* ignore sign for zero */ ) ) fFsw |= X86_FSW_C3; /* * Test if less than (val1 < val2): */ else if (fSign1 && !fSign2) fFsw |= X86_FSW_C0; else if (fSign1 == fSign2) { /* Zeros are problematic, however at the most one can be zero here. */ if (RTFLOAT80U_IS_ZERO_EX(uMantissa1, iExponent1)) return !fSign1 ? fFsw | X86_FSW_C0 : fFsw; if (RTFLOAT80U_IS_ZERO_EX(uMantissa2, iExponent2)) return fSign1 ? fFsw | X86_FSW_C0 : fFsw; if ( fSign1 ^ ( iExponent1 < iExponent2 || ( iExponent1 == iExponent2 && uMantissa1 < uMantissa2 ) ) ) fFsw |= X86_FSW_C0; } /* else: No flags set if greater. */ return fFsw; } IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, 6 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/); } IEM_DECL_IMPL_DEF(void, iemAImpl_fucom_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, 6 << X86_FSW_TOP_SHIFT, false /*fIeOnAllNaNs*/); } IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r64,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2)) { RTFLOAT80U r80Val2; uint16_t fFsw = iemAImplConvertR64ToR80(pr64Val2, &r80Val2); Assert(!fFsw || fFsw == X86_FSW_DE); *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, &r80Val2, pFpuState->FCW, 7 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/); if (fFsw != 0 && !(*pfFsw & X86_FSW_IE)) { if (!(pFpuState->FCW & X86_FCW_DM)) fFsw |= X86_FSW_ES | X86_FSW_B; *pfFsw |= fFsw; } } IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r32,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2)) { RTFLOAT80U r80Val2; uint16_t fFsw = iemAImplConvertR32ToR80(pr32Val2, &r80Val2); Assert(!fFsw || fFsw == X86_FSW_DE); *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, &r80Val2, pFpuState->FCW, 7 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/); if (fFsw != 0 && !(*pfFsw & X86_FSW_IE)) { if (!(pFpuState->FCW & X86_FCW_DM)) fFsw |= X86_FSW_ES | X86_FSW_B; *pfFsw |= fFsw; } } IEM_DECL_IMPL_DEF(void, iemAImpl_ficom_r80_by_i32,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2)) { RTFLOAT80U r80Val2; iemAImpl_fcom_r80_by_r80(pFpuState, pfFsw, pr80Val1, iemAImplConvertI32ToR80(*pi32Val2, &r80Val2)); *pfFsw = (*pfFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); } IEM_DECL_IMPL_DEF(void, iemAImpl_ficom_r80_by_i16,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2)) { RTFLOAT80U r80Val2; iemAImpl_fcom_r80_by_r80(pFpuState, pfFsw, pr80Val1, iemAImplConvertI16ToR80(*pi16Val2, &r80Val2)); *pfFsw = (*pfFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); } /** * Worker for fcomi & fucomi. */ static uint32_t iemAImpl_fcomi_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, uint16_t fFcw, uint16_t fFswIn, bool fIeOnAllNaNs, uint16_t *pfFsw) { uint16_t fFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, fFcw, 6 << X86_FSW_TOP_SHIFT, fIeOnAllNaNs); uint32_t fEflags = ((fFsw & X86_FSW_C3) >> (X86_FSW_C3_BIT - X86_EFL_ZF_BIT)) | ((fFsw & X86_FSW_C2) >> (X86_FSW_C2_BIT - X86_EFL_PF_BIT)) | ((fFsw & X86_FSW_C0) >> (X86_FSW_C0_BIT - X86_EFL_CF_BIT)); /* Note! C1 is not cleared as per docs! Everything is preserved. */ *pfFsw = (fFsw & ~X86_FSW_C_MASK) | (fFswIn & X86_FSW_C_MASK); return fEflags | X86_EFL_IF | X86_EFL_RA1_MASK; } IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_fcomi_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { return iemAImpl_fcomi_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, pFpuState->FSW, true /*fIeOnAllNaNs*/, pfFsw); } IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_fucomi_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { return iemAImpl_fcomi_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, pFpuState->FSW, false /*fIeOnAllNaNs*/, pfFsw); } /********************************************************************************************************************************* * x87 FPU Other Operations * *********************************************************************************************************************************/ /** * Helper for iemAImpl_frndint_r80, called both on normal and denormal numbers. */ static uint16_t iemAImpl_frndint_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) { softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); iemFpuSoftF80ToIprt(pr80Result, extF80_roundToInt(iemFpuSoftF80FromIprt(pr80Val), SoftState.roundingMode, true /*exact / generate #PE */, &SoftState)); return IEM_SOFTFLOAT_STATE_TO_FSW(fFsw, &SoftState, fFcw); } IEM_DECL_IMPL_DEF(void, iemAImpl_frndint_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); if (RTFLOAT80U_IS_NORMAL(pr80Val)) fFsw = iemAImpl_frndint_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); else if ( RTFLOAT80U_IS_ZERO(pr80Val) || RTFLOAT80U_IS_QUIET_NAN(pr80Val) || RTFLOAT80U_IS_INDEFINITE(pr80Val) || RTFLOAT80U_IS_INF(pr80Val)) pFpuRes->r80Result = *pr80Val; else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val)) { fFsw |= X86_FSW_DE; if (fFcw & X86_FCW_DM) fFsw = iemAImpl_frndint_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); else { pFpuRes->r80Result = *pr80Val; fFsw |= X86_FSW_ES | X86_FSW_B; } } else { if (fFcw & X86_FCW_IM) { if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val)) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val; pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ } } else { pFpuRes->r80Result = *pr80Val; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_IE; } pFpuRes->FSW = fFsw; } IEM_DECL_IMPL_DEF(void, iemAImpl_fscale_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { /* The SoftFloat worker function extF80_scale_extF80 is of our creation, so it does everything we need it to do. */ uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); extFloat80_t r80XResult = extF80_scale_extF80(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState); pFpuRes->FSW = iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1); } /** * Helper for iemAImpl_fsqrt_r80, called both on normal and denormal numbers. */ static uint16_t iemAImpl_fsqrt_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) { Assert(!pr80Val->s.fSign); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw); iemFpuSoftF80ToIprt(pr80Result, extF80_sqrt(iemFpuSoftF80FromIprt(pr80Val), &SoftState)); return IEM_SOFTFLOAT_STATE_TO_FSW(fFsw, &SoftState, fFcw); } IEM_DECL_IMPL_DEF(void, iemAImpl_fsqrt_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); if (RTFLOAT80U_IS_NORMAL(pr80Val) && !pr80Val->s.fSign) fFsw = iemAImpl_fsqrt_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); else if ( RTFLOAT80U_IS_ZERO(pr80Val) || RTFLOAT80U_IS_QUIET_NAN(pr80Val) || RTFLOAT80U_IS_INDEFINITE(pr80Val) || (RTFLOAT80U_IS_INF(pr80Val) && !pr80Val->s.fSign)) pFpuRes->r80Result = *pr80Val; else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val) && !pr80Val->s.fSign) /* Negative denormals only generate #IE! */ { fFsw |= X86_FSW_DE; if (fFcw & X86_FCW_DM) fFsw = iemAImpl_fsqrt_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); else { pFpuRes->r80Result = *pr80Val; fFsw |= X86_FSW_ES | X86_FSW_B; } } else { if (fFcw & X86_FCW_IM) { if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val)) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val; pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ } } else { pFpuRes->r80Result = *pr80Val; fFsw |= X86_FSW_ES | X86_FSW_B; } fFsw |= X86_FSW_IE; } pFpuRes->FSW = fFsw; } /** * @code{.unparsed} * x x * ln2 * f(x) = 2 - 1 = e - 1 * * @endcode * * We can approximate e^x by a Taylor/Maclaurin series (see * https://en.wikipedia.org/wiki/Taylor_series#Exponential_function): * @code{.unparsed} * n 0 1 2 3 4 * inf x x x x x x * SUM ----- = --- + --- + --- + --- + --- + ... * n=0 n! 0! 1! 2! 3! 4! * * 2 3 4 * x x x * = 1 + x + --- + --- + --- + ... * 2! 3! 4! * @endcode * * Given z = x * ln2, we get: * @code{.unparsed} * 2 3 4 n * z z z z z * e - 1 = z + --- + --- + --- + ... + --- * 2! 3! 4! n! * @endcode * * Wanting to use Horner's method, we move one z outside and get: * @code{.unparsed} * 2 3 (n-1) * z z z z * = z ( 1 + --- + --- + --- + ... + ------- ) * 2! 3! 4! n! * @endcode * * The constants we need for using Horner's methods are 1 and 1 / n!. * * For very tiny x values, we can get away with f(x) = x * ln 2, because * because we don't have the necessary precision to represent 1.0 + z/3 + ... * and can approximate it to be 1.0. For a visual demonstration of this * check out https://www.desmos.com/calculator/vidcdxizd9 (for as long * as it valid), plotting f(x) = 2^x - 1 and f(x) = x * ln2. * * * As constant accuracy goes, figure 0.1 "80387 Block Diagram" in the "80387 * Data Sheet" (order 231920-002; Appendix E in 80387 PRM 231917-001; Military * i387SX 271166-002), indicates that constants are 67-bit (constant rom block) * and the internal mantissa size is 68-bit (mantissa adder & barrel shifter * blocks). (The one bit difference is probably an implicit one missing from * the constant ROM.) A paper on division and sqrt on the AMD-K7 by Stuart F. * Oberman states that it internally used a 68 bit mantissa with a 18-bit * exponent. * * However, even when sticking to 67 constants / 68 mantissas, I have not yet * successfully reproduced the exact results from an Intel 10980XE, there is * always a portition of rounding differences. Not going to spend too much time * on getting this 100% the same, at least not now. * * P.S. If someone are really curious about 8087 and its contstants: * http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html * * * @param pr80Val The exponent value (x), less than 1.0, greater than * -1.0 and not zero. This can be a normal, denormal * or pseudo-denormal value. * @param pr80Result Where to return the result. * @param fFcw FPU control word. * @param fFsw FPU status word. */ static uint16_t iemAImpl_f2xm1_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw) { /* As mentioned above, we can skip the expensive polynomial calculation as it will be close enough to 1.0 that it makes no difference. The cutoff point for intel 10980XE is exponents >= -69. Intel also seems to be using a 67-bit or 68-bit constant value, and we get a smattering of rounding differences if we go for higher precision. */ if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 69) { RTUINT256U u256; RTUInt128MulByU64Ex(&u256, &g_u128Ln2MantissaIntel, pr80Val->s.uMantissa); u256.QWords.qw0 |= 1; /* force #PE */ fFsw = iemFpuFloat80RoundAndComposeFrom192(pr80Result, pr80Val->s.fSign, &u256, !RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) && !RTFLOAT80U_IS_DENORMAL(pr80Val) ? (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS : 1 - RTFLOAT80U_EXP_BIAS, fFcw, fFsw); } else { #ifdef IEM_WITH_FLOAT128_FOR_FPU /* This approach is not good enough for small values, we end up with zero. */ int const fOldRounding = iemFpuF128SetRounding(fFcw); _Float128 rd128Val = iemFpuF128FromFloat80(pr80Val, fFcw); _Float128 rd128Result = powf128(2.0L, rd128Val); rd128Result -= 1.0L; fFsw = iemFpuF128ToFloat80(pr80Result, rd128Result, fFcw, fFsw); iemFpuF128RestoreRounding(fOldRounding); # else softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS(); float128_t const x = iemFpuSoftF128FromFloat80(pr80Val); /* As mentioned above, enforce 68-bit internal mantissa width to better match the Intel 10980XE results. */ unsigned const cPrecision = 68; /* first calculate z = x * ln2 */ float128_t z = iemFpuSoftF128Precision(f128_mul(x, iemFpuSoftF128PrecisionIprt(&g_r128Ln2, cPrecision), &SoftState), cPrecision); /* Then do the polynomial evaluation. */ float128_t r = iemFpuSoftF128HornerPoly(z, g_ar128F2xm1HornerConsts, RT_ELEMENTS(g_ar128F2xm1HornerConsts), cPrecision, &SoftState); r = f128_mul(z, r, &SoftState); /* Output the result. */ fFsw = iemFpuSoftF128ToFloat80(pr80Result, r, fFcw, fFsw); # endif } return fFsw; } IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); if (RTFLOAT80U_IS_NORMAL(pr80Val)) { if (pr80Val->s.uExponent < RTFLOAT80U_EXP_BIAS) fFsw = iemAImpl_f2xm1_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); else { /* Special case: 2^+1.0 - 1.0 = 1.0 2^-1.0 - 1.0 = -0.5 */ if ( pr80Val->s.uExponent == RTFLOAT80U_EXP_BIAS && pr80Val->s.uMantissa == RT_BIT_64(63)) { pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63); pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_BIAS - pr80Val->s.fSign; pFpuRes->r80Result.s.fSign = pr80Val->s.fSign; } /* ST(0) > 1.0 || ST(0) < -1.0: undefined behavior */ /** @todo 287 is documented to only accept values 0 <= ST(0) <= 0.5. */ else pFpuRes->r80Result = *pr80Val; fFsw |= X86_FSW_PE; if (!(fFcw & X86_FCW_PM)) fFsw |= X86_FSW_ES | X86_FSW_B; } } else if ( RTFLOAT80U_IS_ZERO(pr80Val) || RTFLOAT80U_IS_QUIET_NAN(pr80Val) || RTFLOAT80U_IS_INDEFINITE(pr80Val)) pFpuRes->r80Result = *pr80Val; else if (RTFLOAT80U_IS_INF(pr80Val)) pFpuRes->r80Result = pr80Val->s.fSign ? g_ar80One[1] : *pr80Val; else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val)) { fFsw |= X86_FSW_DE; if (fFcw & X86_FCW_DM) fFsw = iemAImpl_f2xm1_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw); else { pFpuRes->r80Result = *pr80Val; fFsw |= X86_FSW_ES | X86_FSW_B; } } else { if ( ( RTFLOAT80U_IS_UNNORMAL(pr80Val) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val)) && (fFcw & X86_FCW_IM)) pFpuRes->r80Result = g_r80Indefinite; else { pFpuRes->r80Result = *pr80Val; if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val) && (fFcw & X86_FCW_IM)) pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ } fFsw |= X86_FSW_IE; if (!(fFcw & X86_FCW_IM)) fFsw |= X86_FSW_ES | X86_FSW_B; } pFpuRes->FSW = fFsw; } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { iemAImpl_f2xm1_r80(pFpuState, pFpuRes, pr80Val); } IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { iemAImpl_f2xm1_r80(pFpuState, pFpuRes, pr80Val); } #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_fabs_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); pFpuRes->r80Result = *pr80Val; pFpuRes->r80Result.s.fSign = 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_fchs_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)) { pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT); pFpuRes->r80Result = *pr80Val; pFpuRes->r80Result.s.fSign = !pr80Val->s.fSign; } IEM_DECL_IMPL_DEF(void, iemAImpl_fxtract_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)) { uint16_t const fFcw = pFpuState->FCW; uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT); if (RTFLOAT80U_IS_NORMAL(pr80Val)) { softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS(); iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, i32_to_extF80((int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS, &Ignored)); pFpuResTwo->r80Result2.s.fSign = pr80Val->s.fSign; pFpuResTwo->r80Result2.s.uExponent = RTFLOAT80U_EXP_BIAS; pFpuResTwo->r80Result2.s.uMantissa = pr80Val->s.uMantissa; } else if (RTFLOAT80U_IS_ZERO(pr80Val)) { fFsw |= X86_FSW_ZE; if (fFcw & X86_FCW_ZM) { pFpuResTwo->r80Result1 = g_ar80Infinity[1]; pFpuResTwo->r80Result2 = *pr80Val; } else { pFpuResTwo->r80Result2 = *pr80Val; fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); } } else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val)) { fFsw |= X86_FSW_DE; if (fFcw & X86_FCW_DM) { pFpuResTwo->r80Result2.s.fSign = pr80Val->s.fSign; pFpuResTwo->r80Result2.s.uExponent = RTFLOAT80U_EXP_BIAS; pFpuResTwo->r80Result2.s.uMantissa = pr80Val->s.uMantissa; int32_t iExponent = -16382; while (!(pFpuResTwo->r80Result2.s.uMantissa & RT_BIT_64(63))) { pFpuResTwo->r80Result2.s.uMantissa <<= 1; iExponent--; } softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS(); iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, i32_to_extF80(iExponent, &Ignored)); } else { pFpuResTwo->r80Result2 = *pr80Val; fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); } } else if ( RTFLOAT80U_IS_QUIET_NAN(pr80Val) || RTFLOAT80U_IS_INDEFINITE(pr80Val)) { pFpuResTwo->r80Result1 = *pr80Val; pFpuResTwo->r80Result2 = *pr80Val; } else if (RTFLOAT80U_IS_INF(pr80Val)) { pFpuResTwo->r80Result1 = g_ar80Infinity[0]; pFpuResTwo->r80Result2 = *pr80Val; } else { if (fFcw & X86_FCW_IM) { if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val)) pFpuResTwo->r80Result1 = g_r80Indefinite; else { pFpuResTwo->r80Result1 = *pr80Val; pFpuResTwo->r80Result1.s.uMantissa |= RT_BIT_64(62); /* make it quiet */ } pFpuResTwo->r80Result2 = pFpuResTwo->r80Result1; } else { pFpuResTwo->r80Result2 = *pr80Val; fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); } fFsw |= X86_FSW_IE; } pFpuResTwo->FSW = fFsw; } IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { RT_NOREF(pFpuState, pFpuRes, pr80Val1, pr80Val2); AssertReleaseFailed(); } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { iemAImpl_fyl2x_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); } IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { iemAImpl_fyl2x_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); } #if defined(IEM_WITHOUT_ASSEMBLY) IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { RT_NOREF(pFpuState, pFpuRes, pr80Val1, pr80Val2); AssertReleaseFailed(); } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { iemAImpl_fyl2xp1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); } IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)) { iemAImpl_fyl2xp1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2); } /********************************************************************************************************************************* * MMX, SSE & AVX * *********************************************************************************************************************************/ /* * MOVSLDUP / VMOVSLDUP */ IEM_DECL_IMPL_DEF(void, iemAImpl_movsldup,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { puDst->au32[0] = puSrc->au32[0]; puDst->au32[1] = puSrc->au32[0]; puDst->au32[2] = puSrc->au32[2]; puDst->au32[3] = puSrc->au32[2]; } #ifdef IEM_WITH_VEX IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc)) { pXState->x87.aXMM[iYRegDst].au32[0] = pXState->x87.aXMM[iYRegSrc].au32[0]; pXState->x87.aXMM[iYRegDst].au32[1] = pXState->x87.aXMM[iYRegSrc].au32[0]; pXState->x87.aXMM[iYRegDst].au32[2] = pXState->x87.aXMM[iYRegSrc].au32[2]; pXState->x87.aXMM[iYRegDst].au32[3] = pXState->x87.aXMM[iYRegSrc].au32[2]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[0]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[0]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[2]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[2]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc)) { pXState->x87.aXMM[iYRegDst].au32[0] = pSrc->au32[0]; pXState->x87.aXMM[iYRegDst].au32[1] = pSrc->au32[0]; pXState->x87.aXMM[iYRegDst].au32[2] = pSrc->au32[2]; pXState->x87.aXMM[iYRegDst].au32[3] = pSrc->au32[2]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pSrc->au32[4]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pSrc->au32[4]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pSrc->au32[6]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pSrc->au32[6]; } #endif /* IEM_WITH_VEX */ /* * MOVSHDUP / VMOVSHDUP */ IEM_DECL_IMPL_DEF(void, iemAImpl_movshdup,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { puDst->au32[0] = puSrc->au32[1]; puDst->au32[1] = puSrc->au32[1]; puDst->au32[2] = puSrc->au32[3]; puDst->au32[3] = puSrc->au32[3]; } #ifdef IEM_WITH_VEX IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc)) { pXState->x87.aXMM[iYRegDst].au32[0] = pXState->x87.aXMM[iYRegSrc].au32[1]; pXState->x87.aXMM[iYRegDst].au32[1] = pXState->x87.aXMM[iYRegSrc].au32[1]; pXState->x87.aXMM[iYRegDst].au32[2] = pXState->x87.aXMM[iYRegSrc].au32[3]; pXState->x87.aXMM[iYRegDst].au32[3] = pXState->x87.aXMM[iYRegSrc].au32[3]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[1]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[1]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[3]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc)) { pXState->x87.aXMM[iYRegDst].au32[0] = pSrc->au32[1]; pXState->x87.aXMM[iYRegDst].au32[1] = pSrc->au32[1]; pXState->x87.aXMM[iYRegDst].au32[2] = pSrc->au32[3]; pXState->x87.aXMM[iYRegDst].au32[3] = pSrc->au32[3]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pSrc->au32[5]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pSrc->au32[5]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pSrc->au32[7]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pSrc->au32[7]; } #endif /* IEM_WITH_VEX */ /* * MOVDDUP / VMOVDDUP */ IEM_DECL_IMPL_DEF(void, iemAImpl_movddup,(PRTUINT128U puDst, uint64_t uSrc)) { puDst->au64[0] = uSrc; puDst->au64[1] = uSrc; } #ifdef IEM_WITH_VEX IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc)) { pXState->x87.aXMM[iYRegDst].au64[0] = pXState->x87.aXMM[iYRegSrc].au64[0]; pXState->x87.aXMM[iYRegDst].au64[1] = pXState->x87.aXMM[iYRegSrc].au64[0]; pXState->u.YmmHi.aYmmHi[iYRegDst].au64[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au64[0]; pXState->u.YmmHi.aYmmHi[iYRegDst].au64[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au64[0]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc)) { pXState->x87.aXMM[iYRegDst].au64[0] = pSrc->au64[0]; pXState->x87.aXMM[iYRegDst].au64[1] = pSrc->au64[0]; pXState->u.YmmHi.aYmmHi[iYRegDst].au64[0] = pSrc->au64[2]; pXState->u.YmmHi.aYmmHi[iYRegDst].au64[1] = pSrc->au64[2]; } #endif /* IEM_WITH_VEX */ /* * PAND / VPAND / PANDPS / VPANDPS / PANDPD / VPANDPD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pand_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); *puDst &= *puSrc; } IEM_DECL_IMPL_DEF(void, iemAImpl_pand_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); puDst->au64[0] &= puSrc->au64[0]; puDst->au64[1] &= puSrc->au64[1]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpand_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] & puSrc2->au64[0]; puDst->au64[1] = puSrc1->au64[1] & puSrc2->au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpand_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] & puSrc2->au64[0]; puDst->au64[1] = puSrc1->au64[1] & puSrc2->au64[1]; puDst->au64[2] = puSrc1->au64[2] & puSrc2->au64[2]; puDst->au64[3] = puSrc1->au64[3] & puSrc2->au64[3]; } /* * PANDN / VPANDN / PANDNPS / VPANDNPS / PANDNPD / VPANDNPD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pandn_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); *puDst = ~*puDst & *puSrc; } IEM_DECL_IMPL_DEF(void, iemAImpl_pandn_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); puDst->au64[0] = ~puDst->au64[0] & puSrc->au64[0]; puDst->au64[1] = ~puDst->au64[1] & puSrc->au64[1]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpandn_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = ~puSrc1->au64[0] & puSrc2->au64[0]; puDst->au64[1] = ~puSrc1->au64[1] & puSrc2->au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpandn_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = ~puSrc1->au64[0] & puSrc2->au64[0]; puDst->au64[1] = ~puSrc1->au64[1] & puSrc2->au64[1]; puDst->au64[2] = ~puSrc1->au64[2] & puSrc2->au64[2]; puDst->au64[3] = ~puSrc1->au64[3] & puSrc2->au64[3]; } /* * POR / VPOR / PORPS / VPORPS / PORPD / VPORPD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_por_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); *puDst |= *puSrc; } IEM_DECL_IMPL_DEF(void, iemAImpl_por_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); puDst->au64[0] |= puSrc->au64[0]; puDst->au64[1] |= puSrc->au64[1]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpor_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] | puSrc2->au64[0]; puDst->au64[1] = puSrc1->au64[1] | puSrc2->au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpor_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] | puSrc2->au64[0]; puDst->au64[1] = puSrc1->au64[1] | puSrc2->au64[1]; puDst->au64[2] = puSrc1->au64[2] | puSrc2->au64[2]; puDst->au64[3] = puSrc1->au64[3] | puSrc2->au64[3]; } /* * PXOR / VPXOR / PXORPS / VPXORPS / PXORPD / VPXORPD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pxor_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); *puDst ^= *puSrc; } IEM_DECL_IMPL_DEF(void, iemAImpl_pxor_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); puDst->au64[0] ^= puSrc->au64[0]; puDst->au64[1] ^= puSrc->au64[1]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpxor_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] ^ puSrc2->au64[0]; puDst->au64[1] = puSrc1->au64[1] ^ puSrc2->au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpxor_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] ^ puSrc2->au64[0]; puDst->au64[1] = puSrc1->au64[1] ^ puSrc2->au64[1]; puDst->au64[2] = puSrc1->au64[2] ^ puSrc2->au64[2]; puDst->au64[3] = puSrc1->au64[3] ^ puSrc2->au64[3]; } /* * PCMPEQB / VPCMPEQB */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au8[0] = uSrc1.au8[0] == uSrc2.au8[0] ? 0xff : 0; uDst.au8[1] = uSrc1.au8[1] == uSrc2.au8[1] ? 0xff : 0; uDst.au8[2] = uSrc1.au8[2] == uSrc2.au8[2] ? 0xff : 0; uDst.au8[3] = uSrc1.au8[3] == uSrc2.au8[3] ? 0xff : 0; uDst.au8[4] = uSrc1.au8[4] == uSrc2.au8[4] ? 0xff : 0; uDst.au8[5] = uSrc1.au8[5] == uSrc2.au8[5] ? 0xff : 0; uDst.au8[6] = uSrc1.au8[6] == uSrc2.au8[6] ? 0xff : 0; uDst.au8[7] = uSrc1.au8[7] == uSrc2.au8[7] ? 0xff : 0; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au8[0] = uSrc1.au8[0] == puSrc->au8[0] ? UINT8_MAX : 0; puDst->au8[1] = uSrc1.au8[1] == puSrc->au8[1] ? UINT8_MAX : 0; puDst->au8[2] = uSrc1.au8[2] == puSrc->au8[2] ? UINT8_MAX : 0; puDst->au8[3] = uSrc1.au8[3] == puSrc->au8[3] ? UINT8_MAX : 0; puDst->au8[4] = uSrc1.au8[4] == puSrc->au8[4] ? UINT8_MAX : 0; puDst->au8[5] = uSrc1.au8[5] == puSrc->au8[5] ? UINT8_MAX : 0; puDst->au8[6] = uSrc1.au8[6] == puSrc->au8[6] ? UINT8_MAX : 0; puDst->au8[7] = uSrc1.au8[7] == puSrc->au8[7] ? UINT8_MAX : 0; puDst->au8[8] = uSrc1.au8[8] == puSrc->au8[8] ? UINT8_MAX : 0; puDst->au8[9] = uSrc1.au8[9] == puSrc->au8[9] ? UINT8_MAX : 0; puDst->au8[10] = uSrc1.au8[10] == puSrc->au8[10] ? UINT8_MAX : 0; puDst->au8[11] = uSrc1.au8[11] == puSrc->au8[11] ? UINT8_MAX : 0; puDst->au8[12] = uSrc1.au8[12] == puSrc->au8[12] ? UINT8_MAX : 0; puDst->au8[13] = uSrc1.au8[13] == puSrc->au8[13] ? UINT8_MAX : 0; puDst->au8[14] = uSrc1.au8[14] == puSrc->au8[14] ? UINT8_MAX : 0; puDst->au8[15] = uSrc1.au8[15] == puSrc->au8[15] ? UINT8_MAX : 0; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au8[0] = puSrc1->au8[0] == puSrc2->au8[0] ? UINT8_MAX : 0; puDst->au8[1] = puSrc1->au8[1] == puSrc2->au8[1] ? UINT8_MAX : 0; puDst->au8[2] = puSrc1->au8[2] == puSrc2->au8[2] ? UINT8_MAX : 0; puDst->au8[3] = puSrc1->au8[3] == puSrc2->au8[3] ? UINT8_MAX : 0; puDst->au8[4] = puSrc1->au8[4] == puSrc2->au8[4] ? UINT8_MAX : 0; puDst->au8[5] = puSrc1->au8[5] == puSrc2->au8[5] ? UINT8_MAX : 0; puDst->au8[6] = puSrc1->au8[6] == puSrc2->au8[6] ? UINT8_MAX : 0; puDst->au8[7] = puSrc1->au8[7] == puSrc2->au8[7] ? UINT8_MAX : 0; puDst->au8[8] = puSrc1->au8[8] == puSrc2->au8[8] ? UINT8_MAX : 0; puDst->au8[9] = puSrc1->au8[9] == puSrc2->au8[9] ? UINT8_MAX : 0; puDst->au8[10] = puSrc1->au8[10] == puSrc2->au8[10] ? UINT8_MAX : 0; puDst->au8[11] = puSrc1->au8[11] == puSrc2->au8[11] ? UINT8_MAX : 0; puDst->au8[12] = puSrc1->au8[12] == puSrc2->au8[12] ? UINT8_MAX : 0; puDst->au8[13] = puSrc1->au8[13] == puSrc2->au8[13] ? UINT8_MAX : 0; puDst->au8[14] = puSrc1->au8[14] == puSrc2->au8[14] ? UINT8_MAX : 0; puDst->au8[15] = puSrc1->au8[15] == puSrc2->au8[15] ? UINT8_MAX : 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au8[0] = puSrc1->au8[0] == puSrc2->au8[0] ? UINT8_MAX : 0; puDst->au8[1] = puSrc1->au8[1] == puSrc2->au8[1] ? UINT8_MAX : 0; puDst->au8[2] = puSrc1->au8[2] == puSrc2->au8[2] ? UINT8_MAX : 0; puDst->au8[3] = puSrc1->au8[3] == puSrc2->au8[3] ? UINT8_MAX : 0; puDst->au8[4] = puSrc1->au8[4] == puSrc2->au8[4] ? UINT8_MAX : 0; puDst->au8[5] = puSrc1->au8[5] == puSrc2->au8[5] ? UINT8_MAX : 0; puDst->au8[6] = puSrc1->au8[6] == puSrc2->au8[6] ? UINT8_MAX : 0; puDst->au8[7] = puSrc1->au8[7] == puSrc2->au8[7] ? UINT8_MAX : 0; puDst->au8[8] = puSrc1->au8[8] == puSrc2->au8[8] ? UINT8_MAX : 0; puDst->au8[9] = puSrc1->au8[9] == puSrc2->au8[9] ? UINT8_MAX : 0; puDst->au8[10] = puSrc1->au8[10] == puSrc2->au8[10] ? UINT8_MAX : 0; puDst->au8[11] = puSrc1->au8[11] == puSrc2->au8[11] ? UINT8_MAX : 0; puDst->au8[12] = puSrc1->au8[12] == puSrc2->au8[12] ? UINT8_MAX : 0; puDst->au8[13] = puSrc1->au8[13] == puSrc2->au8[13] ? UINT8_MAX : 0; puDst->au8[14] = puSrc1->au8[14] == puSrc2->au8[14] ? UINT8_MAX : 0; puDst->au8[15] = puSrc1->au8[15] == puSrc2->au8[15] ? UINT8_MAX : 0; puDst->au8[16] = puSrc1->au8[16] == puSrc2->au8[16] ? UINT8_MAX : 0; puDst->au8[17] = puSrc1->au8[17] == puSrc2->au8[17] ? UINT8_MAX : 0; puDst->au8[18] = puSrc1->au8[18] == puSrc2->au8[18] ? UINT8_MAX : 0; puDst->au8[19] = puSrc1->au8[19] == puSrc2->au8[19] ? UINT8_MAX : 0; puDst->au8[20] = puSrc1->au8[20] == puSrc2->au8[20] ? UINT8_MAX : 0; puDst->au8[21] = puSrc1->au8[21] == puSrc2->au8[21] ? UINT8_MAX : 0; puDst->au8[22] = puSrc1->au8[22] == puSrc2->au8[22] ? UINT8_MAX : 0; puDst->au8[23] = puSrc1->au8[23] == puSrc2->au8[23] ? UINT8_MAX : 0; puDst->au8[24] = puSrc1->au8[24] == puSrc2->au8[24] ? UINT8_MAX : 0; puDst->au8[25] = puSrc1->au8[25] == puSrc2->au8[25] ? UINT8_MAX : 0; puDst->au8[26] = puSrc1->au8[26] == puSrc2->au8[26] ? UINT8_MAX : 0; puDst->au8[27] = puSrc1->au8[27] == puSrc2->au8[27] ? UINT8_MAX : 0; puDst->au8[28] = puSrc1->au8[28] == puSrc2->au8[28] ? UINT8_MAX : 0; puDst->au8[29] = puSrc1->au8[29] == puSrc2->au8[29] ? UINT8_MAX : 0; puDst->au8[30] = puSrc1->au8[30] == puSrc2->au8[30] ? UINT8_MAX : 0; puDst->au8[31] = puSrc1->au8[31] == puSrc2->au8[31] ? UINT8_MAX : 0; } /* * PCMPEQW / VPCMPEQW */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au16[0] = uSrc1.au16[0] == uSrc2.au16[0] ? UINT16_MAX : 0; uDst.au16[1] = uSrc1.au16[1] == uSrc2.au16[1] ? UINT16_MAX : 0; uDst.au16[2] = uSrc1.au16[2] == uSrc2.au16[2] ? UINT16_MAX : 0; uDst.au16[3] = uSrc1.au16[3] == uSrc2.au16[3] ? UINT16_MAX : 0; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au16[0] = uSrc1.au16[0] == puSrc->au16[0] ? UINT16_MAX : 0; puDst->au16[1] = uSrc1.au16[1] == puSrc->au16[1] ? UINT16_MAX : 0; puDst->au16[2] = uSrc1.au16[2] == puSrc->au16[2] ? UINT16_MAX : 0; puDst->au16[3] = uSrc1.au16[3] == puSrc->au16[3] ? UINT16_MAX : 0; puDst->au16[4] = uSrc1.au16[4] == puSrc->au16[4] ? UINT16_MAX : 0; puDst->au16[5] = uSrc1.au16[5] == puSrc->au16[5] ? UINT16_MAX : 0; puDst->au16[6] = uSrc1.au16[6] == puSrc->au16[6] ? UINT16_MAX : 0; puDst->au16[7] = uSrc1.au16[7] == puSrc->au16[7] ? UINT16_MAX : 0; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au16[0] = puSrc1->au16[0] == puSrc2->au16[0] ? UINT16_MAX : 0; puDst->au16[1] = puSrc1->au16[1] == puSrc2->au16[1] ? UINT16_MAX : 0; puDst->au16[2] = puSrc1->au16[2] == puSrc2->au16[2] ? UINT16_MAX : 0; puDst->au16[3] = puSrc1->au16[3] == puSrc2->au16[3] ? UINT16_MAX : 0; puDst->au16[4] = puSrc1->au16[4] == puSrc2->au16[4] ? UINT16_MAX : 0; puDst->au16[5] = puSrc1->au16[5] == puSrc2->au16[5] ? UINT16_MAX : 0; puDst->au16[6] = puSrc1->au16[6] == puSrc2->au16[6] ? UINT16_MAX : 0; puDst->au16[7] = puSrc1->au16[7] == puSrc2->au16[7] ? UINT16_MAX : 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au16[0] = puSrc1->au16[0] == puSrc2->au16[0] ? UINT16_MAX : 0; puDst->au16[1] = puSrc1->au16[1] == puSrc2->au16[1] ? UINT16_MAX : 0; puDst->au16[2] = puSrc1->au16[2] == puSrc2->au16[2] ? UINT16_MAX : 0; puDst->au16[3] = puSrc1->au16[3] == puSrc2->au16[3] ? UINT16_MAX : 0; puDst->au16[4] = puSrc1->au16[4] == puSrc2->au16[4] ? UINT16_MAX : 0; puDst->au16[5] = puSrc1->au16[5] == puSrc2->au16[5] ? UINT16_MAX : 0; puDst->au16[6] = puSrc1->au16[6] == puSrc2->au16[6] ? UINT16_MAX : 0; puDst->au16[7] = puSrc1->au16[7] == puSrc2->au16[7] ? UINT16_MAX : 0; puDst->au16[8] = puSrc1->au16[8] == puSrc2->au16[8] ? UINT16_MAX : 0; puDst->au16[9] = puSrc1->au16[9] == puSrc2->au16[9] ? UINT16_MAX : 0; puDst->au16[10] = puSrc1->au16[10] == puSrc2->au16[10] ? UINT16_MAX : 0; puDst->au16[11] = puSrc1->au16[11] == puSrc2->au16[11] ? UINT16_MAX : 0; puDst->au16[12] = puSrc1->au16[12] == puSrc2->au16[12] ? UINT16_MAX : 0; puDst->au16[13] = puSrc1->au16[13] == puSrc2->au16[13] ? UINT16_MAX : 0; puDst->au16[14] = puSrc1->au16[14] == puSrc2->au16[14] ? UINT16_MAX : 0; puDst->au16[15] = puSrc1->au16[15] == puSrc2->au16[15] ? UINT16_MAX : 0; } /* * PCMPEQD / VPCMPEQD. */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au32[0] = uSrc1.au32[0] == uSrc2.au32[0] ? UINT32_MAX : 0; uDst.au32[1] = uSrc1.au32[1] == uSrc2.au32[1] ? UINT32_MAX : 0; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au32[0] = uSrc1.au32[0] == puSrc->au32[0] ? UINT32_MAX : 0; puDst->au32[1] = uSrc1.au32[1] == puSrc->au32[1] ? UINT32_MAX : 0; puDst->au32[2] = uSrc1.au32[2] == puSrc->au32[2] ? UINT32_MAX : 0; puDst->au32[3] = uSrc1.au32[3] == puSrc->au32[3] ? UINT32_MAX : 0; } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au32[0] = puSrc1->au32[0] == puSrc2->au32[0] ? UINT32_MAX : 0; puDst->au32[1] = puSrc1->au32[1] == puSrc2->au32[1] ? UINT32_MAX : 0; puDst->au32[2] = puSrc1->au32[2] == puSrc2->au32[2] ? UINT32_MAX : 0; puDst->au32[3] = puSrc1->au32[3] == puSrc2->au32[3] ? UINT32_MAX : 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au32[0] = puSrc1->au32[0] == puSrc2->au32[0] ? UINT32_MAX : 0; puDst->au32[1] = puSrc1->au32[1] == puSrc2->au32[1] ? UINT32_MAX : 0; puDst->au32[2] = puSrc1->au32[2] == puSrc2->au32[2] ? UINT32_MAX : 0; puDst->au32[3] = puSrc1->au32[3] == puSrc2->au32[3] ? UINT32_MAX : 0; puDst->au32[4] = puSrc1->au32[4] == puSrc2->au32[4] ? UINT32_MAX : 0; puDst->au32[5] = puSrc1->au32[5] == puSrc2->au32[5] ? UINT32_MAX : 0; puDst->au32[6] = puSrc1->au32[6] == puSrc2->au32[6] ? UINT32_MAX : 0; puDst->au32[7] = puSrc1->au32[7] == puSrc2->au32[7] ? UINT32_MAX : 0; } /* * PCMPEQQ / VPCMPEQQ. */ IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqq_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au64[0] = uSrc1.au64[0] == puSrc->au64[0] ? UINT64_MAX : 0; puDst->au64[1] = uSrc1.au64[1] == puSrc->au64[1] ? UINT64_MAX : 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] == puSrc2->au64[0] ? UINT64_MAX : 0; puDst->au64[1] = puSrc1->au64[1] == puSrc2->au64[1] ? UINT64_MAX : 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] == puSrc2->au64[0] ? UINT64_MAX : 0; puDst->au64[1] = puSrc1->au64[1] == puSrc2->au64[1] ? UINT64_MAX : 0; puDst->au64[2] = puSrc1->au64[2] == puSrc2->au64[2] ? UINT64_MAX : 0; puDst->au64[3] = puSrc1->au64[3] == puSrc2->au64[3] ? UINT64_MAX : 0; } /* * PCMPGTB / VPCMPGTB */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au8[0] = uSrc1.ai8[0] > uSrc2.ai8[0] ? UINT8_MAX : 0; uDst.au8[1] = uSrc1.ai8[1] > uSrc2.ai8[1] ? UINT8_MAX : 0; uDst.au8[2] = uSrc1.ai8[2] > uSrc2.ai8[2] ? UINT8_MAX : 0; uDst.au8[3] = uSrc1.ai8[3] > uSrc2.ai8[3] ? UINT8_MAX : 0; uDst.au8[4] = uSrc1.ai8[4] > uSrc2.ai8[4] ? UINT8_MAX : 0; uDst.au8[5] = uSrc1.ai8[5] > uSrc2.ai8[5] ? UINT8_MAX : 0; uDst.au8[6] = uSrc1.ai8[6] > uSrc2.ai8[6] ? UINT8_MAX : 0; uDst.au8[7] = uSrc1.ai8[7] > uSrc2.ai8[7] ? UINT8_MAX : 0; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au8[0] = uSrc1.ai8[0] > puSrc->ai8[0] ? UINT8_MAX : 0; puDst->au8[1] = uSrc1.ai8[1] > puSrc->ai8[1] ? UINT8_MAX : 0; puDst->au8[2] = uSrc1.ai8[2] > puSrc->ai8[2] ? UINT8_MAX : 0; puDst->au8[3] = uSrc1.ai8[3] > puSrc->ai8[3] ? UINT8_MAX : 0; puDst->au8[4] = uSrc1.ai8[4] > puSrc->ai8[4] ? UINT8_MAX : 0; puDst->au8[5] = uSrc1.ai8[5] > puSrc->ai8[5] ? UINT8_MAX : 0; puDst->au8[6] = uSrc1.ai8[6] > puSrc->ai8[6] ? UINT8_MAX : 0; puDst->au8[7] = uSrc1.ai8[7] > puSrc->ai8[7] ? UINT8_MAX : 0; puDst->au8[8] = uSrc1.ai8[8] > puSrc->ai8[8] ? UINT8_MAX : 0; puDst->au8[9] = uSrc1.ai8[9] > puSrc->ai8[9] ? UINT8_MAX : 0; puDst->au8[10] = uSrc1.ai8[10] > puSrc->ai8[10] ? UINT8_MAX : 0; puDst->au8[11] = uSrc1.ai8[11] > puSrc->ai8[11] ? UINT8_MAX : 0; puDst->au8[12] = uSrc1.ai8[12] > puSrc->ai8[12] ? UINT8_MAX : 0; puDst->au8[13] = uSrc1.ai8[13] > puSrc->ai8[13] ? UINT8_MAX : 0; puDst->au8[14] = uSrc1.ai8[14] > puSrc->ai8[14] ? UINT8_MAX : 0; puDst->au8[15] = uSrc1.ai8[15] > puSrc->ai8[15] ? UINT8_MAX : 0; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au8[0] = puSrc1->ai8[0] > puSrc2->ai8[0] ? UINT8_MAX : 0; puDst->au8[1] = puSrc1->ai8[1] > puSrc2->ai8[1] ? UINT8_MAX : 0; puDst->au8[2] = puSrc1->ai8[2] > puSrc2->ai8[2] ? UINT8_MAX : 0; puDst->au8[3] = puSrc1->ai8[3] > puSrc2->ai8[3] ? UINT8_MAX : 0; puDst->au8[4] = puSrc1->ai8[4] > puSrc2->ai8[4] ? UINT8_MAX : 0; puDst->au8[5] = puSrc1->ai8[5] > puSrc2->ai8[5] ? UINT8_MAX : 0; puDst->au8[6] = puSrc1->ai8[6] > puSrc2->ai8[6] ? UINT8_MAX : 0; puDst->au8[7] = puSrc1->ai8[7] > puSrc2->ai8[7] ? UINT8_MAX : 0; puDst->au8[8] = puSrc1->ai8[8] > puSrc2->ai8[8] ? UINT8_MAX : 0; puDst->au8[9] = puSrc1->ai8[9] > puSrc2->ai8[9] ? UINT8_MAX : 0; puDst->au8[10] = puSrc1->ai8[10] > puSrc2->ai8[10] ? UINT8_MAX : 0; puDst->au8[11] = puSrc1->ai8[11] > puSrc2->ai8[11] ? UINT8_MAX : 0; puDst->au8[12] = puSrc1->ai8[12] > puSrc2->ai8[12] ? UINT8_MAX : 0; puDst->au8[13] = puSrc1->ai8[13] > puSrc2->ai8[13] ? UINT8_MAX : 0; puDst->au8[14] = puSrc1->ai8[14] > puSrc2->ai8[14] ? UINT8_MAX : 0; puDst->au8[15] = puSrc1->ai8[15] > puSrc2->ai8[15] ? UINT8_MAX : 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au8[0] = puSrc1->ai8[0] > puSrc2->ai8[0] ? UINT8_MAX : 0; puDst->au8[1] = puSrc1->ai8[1] > puSrc2->ai8[1] ? UINT8_MAX : 0; puDst->au8[2] = puSrc1->ai8[2] > puSrc2->ai8[2] ? UINT8_MAX : 0; puDst->au8[3] = puSrc1->ai8[3] > puSrc2->ai8[3] ? UINT8_MAX : 0; puDst->au8[4] = puSrc1->ai8[4] > puSrc2->ai8[4] ? UINT8_MAX : 0; puDst->au8[5] = puSrc1->ai8[5] > puSrc2->ai8[5] ? UINT8_MAX : 0; puDst->au8[6] = puSrc1->ai8[6] > puSrc2->ai8[6] ? UINT8_MAX : 0; puDst->au8[7] = puSrc1->ai8[7] > puSrc2->ai8[7] ? UINT8_MAX : 0; puDst->au8[8] = puSrc1->ai8[8] > puSrc2->ai8[8] ? UINT8_MAX : 0; puDst->au8[9] = puSrc1->ai8[9] > puSrc2->ai8[9] ? UINT8_MAX : 0; puDst->au8[10] = puSrc1->ai8[10] > puSrc2->ai8[10] ? UINT8_MAX : 0; puDst->au8[11] = puSrc1->ai8[11] > puSrc2->ai8[11] ? UINT8_MAX : 0; puDst->au8[12] = puSrc1->ai8[12] > puSrc2->ai8[12] ? UINT8_MAX : 0; puDst->au8[13] = puSrc1->ai8[13] > puSrc2->ai8[13] ? UINT8_MAX : 0; puDst->au8[14] = puSrc1->ai8[14] > puSrc2->ai8[14] ? UINT8_MAX : 0; puDst->au8[15] = puSrc1->ai8[15] > puSrc2->ai8[15] ? UINT8_MAX : 0; puDst->au8[16] = puSrc1->ai8[16] > puSrc2->ai8[16] ? UINT8_MAX : 0; puDst->au8[17] = puSrc1->ai8[17] > puSrc2->ai8[17] ? UINT8_MAX : 0; puDst->au8[18] = puSrc1->ai8[18] > puSrc2->ai8[18] ? UINT8_MAX : 0; puDst->au8[19] = puSrc1->ai8[19] > puSrc2->ai8[19] ? UINT8_MAX : 0; puDst->au8[20] = puSrc1->ai8[20] > puSrc2->ai8[20] ? UINT8_MAX : 0; puDst->au8[21] = puSrc1->ai8[21] > puSrc2->ai8[21] ? UINT8_MAX : 0; puDst->au8[22] = puSrc1->ai8[22] > puSrc2->ai8[22] ? UINT8_MAX : 0; puDst->au8[23] = puSrc1->ai8[23] > puSrc2->ai8[23] ? UINT8_MAX : 0; puDst->au8[24] = puSrc1->ai8[24] > puSrc2->ai8[24] ? UINT8_MAX : 0; puDst->au8[25] = puSrc1->ai8[25] > puSrc2->ai8[25] ? UINT8_MAX : 0; puDst->au8[26] = puSrc1->ai8[26] > puSrc2->ai8[26] ? UINT8_MAX : 0; puDst->au8[27] = puSrc1->ai8[27] > puSrc2->ai8[27] ? UINT8_MAX : 0; puDst->au8[28] = puSrc1->ai8[28] > puSrc2->ai8[28] ? UINT8_MAX : 0; puDst->au8[29] = puSrc1->ai8[29] > puSrc2->ai8[29] ? UINT8_MAX : 0; puDst->au8[30] = puSrc1->ai8[30] > puSrc2->ai8[30] ? UINT8_MAX : 0; puDst->au8[31] = puSrc1->ai8[31] > puSrc2->ai8[31] ? UINT8_MAX : 0; } /* * PCMPGTW / VPCMPGTW */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au16[0] = uSrc1.ai16[0] > uSrc2.ai16[0] ? UINT16_MAX : 0; uDst.au16[1] = uSrc1.ai16[1] > uSrc2.ai16[1] ? UINT16_MAX : 0; uDst.au16[2] = uSrc1.ai16[2] > uSrc2.ai16[2] ? UINT16_MAX : 0; uDst.au16[3] = uSrc1.ai16[3] > uSrc2.ai16[3] ? UINT16_MAX : 0; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au16[0] = uSrc1.ai16[0] > puSrc->ai16[0] ? UINT16_MAX : 0; puDst->au16[1] = uSrc1.ai16[1] > puSrc->ai16[1] ? UINT16_MAX : 0; puDst->au16[2] = uSrc1.ai16[2] > puSrc->ai16[2] ? UINT16_MAX : 0; puDst->au16[3] = uSrc1.ai16[3] > puSrc->ai16[3] ? UINT16_MAX : 0; puDst->au16[4] = uSrc1.ai16[4] > puSrc->ai16[4] ? UINT16_MAX : 0; puDst->au16[5] = uSrc1.ai16[5] > puSrc->ai16[5] ? UINT16_MAX : 0; puDst->au16[6] = uSrc1.ai16[6] > puSrc->ai16[6] ? UINT16_MAX : 0; puDst->au16[7] = uSrc1.ai16[7] > puSrc->ai16[7] ? UINT16_MAX : 0; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au16[0] = puSrc1->ai16[0] > puSrc2->ai16[0] ? UINT16_MAX : 0; puDst->au16[1] = puSrc1->ai16[1] > puSrc2->ai16[1] ? UINT16_MAX : 0; puDst->au16[2] = puSrc1->ai16[2] > puSrc2->ai16[2] ? UINT16_MAX : 0; puDst->au16[3] = puSrc1->ai16[3] > puSrc2->ai16[3] ? UINT16_MAX : 0; puDst->au16[4] = puSrc1->ai16[4] > puSrc2->ai16[4] ? UINT16_MAX : 0; puDst->au16[5] = puSrc1->ai16[5] > puSrc2->ai16[5] ? UINT16_MAX : 0; puDst->au16[6] = puSrc1->ai16[6] > puSrc2->ai16[6] ? UINT16_MAX : 0; puDst->au16[7] = puSrc1->ai16[7] > puSrc2->ai16[7] ? UINT16_MAX : 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au16[0] = puSrc1->ai16[0] > puSrc2->ai16[0] ? UINT16_MAX : 0; puDst->au16[1] = puSrc1->ai16[1] > puSrc2->ai16[1] ? UINT16_MAX : 0; puDst->au16[2] = puSrc1->ai16[2] > puSrc2->ai16[2] ? UINT16_MAX : 0; puDst->au16[3] = puSrc1->ai16[3] > puSrc2->ai16[3] ? UINT16_MAX : 0; puDst->au16[4] = puSrc1->ai16[4] > puSrc2->ai16[4] ? UINT16_MAX : 0; puDst->au16[5] = puSrc1->ai16[5] > puSrc2->ai16[5] ? UINT16_MAX : 0; puDst->au16[6] = puSrc1->ai16[6] > puSrc2->ai16[6] ? UINT16_MAX : 0; puDst->au16[7] = puSrc1->ai16[7] > puSrc2->ai16[7] ? UINT16_MAX : 0; puDst->au16[8] = puSrc1->ai16[8] > puSrc2->ai16[8] ? UINT16_MAX : 0; puDst->au16[9] = puSrc1->ai16[9] > puSrc2->ai16[9] ? UINT16_MAX : 0; puDst->au16[10] = puSrc1->ai16[10] > puSrc2->ai16[10] ? UINT16_MAX : 0; puDst->au16[11] = puSrc1->ai16[11] > puSrc2->ai16[11] ? UINT16_MAX : 0; puDst->au16[12] = puSrc1->ai16[12] > puSrc2->ai16[12] ? UINT16_MAX : 0; puDst->au16[13] = puSrc1->ai16[13] > puSrc2->ai16[13] ? UINT16_MAX : 0; puDst->au16[14] = puSrc1->ai16[14] > puSrc2->ai16[14] ? UINT16_MAX : 0; puDst->au16[15] = puSrc1->ai16[15] > puSrc2->ai16[15] ? UINT16_MAX : 0; } /* * PCMPGTD / VPCMPGTD. */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au32[0] = uSrc1.ai32[0] > uSrc2.ai32[0] ? UINT32_MAX : 0; uDst.au32[1] = uSrc1.ai32[1] > uSrc2.ai32[1] ? UINT32_MAX : 0; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au32[0] = uSrc1.ai32[0] > puSrc->ai32[0] ? UINT32_MAX : 0; puDst->au32[1] = uSrc1.ai32[1] > puSrc->ai32[1] ? UINT32_MAX : 0; puDst->au32[2] = uSrc1.ai32[2] > puSrc->ai32[2] ? UINT32_MAX : 0; puDst->au32[3] = uSrc1.ai32[3] > puSrc->ai32[3] ? UINT32_MAX : 0; } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au32[0] = puSrc1->ai32[0] > puSrc2->ai32[0] ? UINT32_MAX : 0; puDst->au32[1] = puSrc1->ai32[1] > puSrc2->ai32[1] ? UINT32_MAX : 0; puDst->au32[2] = puSrc1->ai32[2] > puSrc2->ai32[2] ? UINT32_MAX : 0; puDst->au32[3] = puSrc1->ai32[3] > puSrc2->ai32[3] ? UINT32_MAX : 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au32[0] = puSrc1->ai32[0] > puSrc2->ai32[0] ? UINT32_MAX : 0; puDst->au32[1] = puSrc1->ai32[1] > puSrc2->ai32[1] ? UINT32_MAX : 0; puDst->au32[2] = puSrc1->ai32[2] > puSrc2->ai32[2] ? UINT32_MAX : 0; puDst->au32[3] = puSrc1->ai32[3] > puSrc2->ai32[3] ? UINT32_MAX : 0; puDst->au32[4] = puSrc1->ai32[4] > puSrc2->ai32[4] ? UINT32_MAX : 0; puDst->au32[5] = puSrc1->ai32[5] > puSrc2->ai32[5] ? UINT32_MAX : 0; puDst->au32[6] = puSrc1->ai32[6] > puSrc2->ai32[6] ? UINT32_MAX : 0; puDst->au32[7] = puSrc1->ai32[7] > puSrc2->ai32[7] ? UINT32_MAX : 0; } /* * PCMPGTQ / VPCMPGTQ. */ IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtq_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au64[0] = uSrc1.ai64[0] > puSrc->ai64[0] ? UINT64_MAX : 0; puDst->au64[1] = uSrc1.ai64[1] > puSrc->ai64[1] ? UINT64_MAX : 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->ai64[0] > puSrc2->ai64[0] ? UINT64_MAX : 0; puDst->au64[1] = puSrc1->ai64[1] > puSrc2->ai64[1] ? UINT64_MAX : 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->ai64[0] > puSrc2->ai64[0] ? UINT64_MAX : 0; puDst->au64[1] = puSrc1->ai64[1] > puSrc2->ai64[1] ? UINT64_MAX : 0; puDst->au64[2] = puSrc1->ai64[2] > puSrc2->ai64[2] ? UINT64_MAX : 0; puDst->au64[3] = puSrc1->ai64[3] > puSrc2->ai64[3] ? UINT64_MAX : 0; } /* * PADDB / VPADDB */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_paddb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au8[0] = uSrc1.au8[0] + uSrc2.au8[0]; uDst.au8[1] = uSrc1.au8[1] + uSrc2.au8[1]; uDst.au8[2] = uSrc1.au8[2] + uSrc2.au8[2]; uDst.au8[3] = uSrc1.au8[3] + uSrc2.au8[3]; uDst.au8[4] = uSrc1.au8[4] + uSrc2.au8[4]; uDst.au8[5] = uSrc1.au8[5] + uSrc2.au8[5]; uDst.au8[6] = uSrc1.au8[6] + uSrc2.au8[6]; uDst.au8[7] = uSrc1.au8[7] + uSrc2.au8[7]; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_paddb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au8[0] = uSrc1.au8[0] + puSrc->au8[0]; puDst->au8[1] = uSrc1.au8[1] + puSrc->au8[1]; puDst->au8[2] = uSrc1.au8[2] + puSrc->au8[2]; puDst->au8[3] = uSrc1.au8[3] + puSrc->au8[3]; puDst->au8[4] = uSrc1.au8[4] + puSrc->au8[4]; puDst->au8[5] = uSrc1.au8[5] + puSrc->au8[5]; puDst->au8[6] = uSrc1.au8[6] + puSrc->au8[6]; puDst->au8[7] = uSrc1.au8[7] + puSrc->au8[7]; puDst->au8[8] = uSrc1.au8[8] + puSrc->au8[8]; puDst->au8[9] = uSrc1.au8[9] + puSrc->au8[9]; puDst->au8[10] = uSrc1.au8[10] + puSrc->au8[10]; puDst->au8[11] = uSrc1.au8[11] + puSrc->au8[11]; puDst->au8[12] = uSrc1.au8[12] + puSrc->au8[12]; puDst->au8[13] = uSrc1.au8[13] + puSrc->au8[13]; puDst->au8[14] = uSrc1.au8[14] + puSrc->au8[14]; puDst->au8[15] = uSrc1.au8[15] + puSrc->au8[15]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au8[0] = puSrc1->au8[0] + puSrc2->au8[0]; puDst->au8[1] = puSrc1->au8[1] + puSrc2->au8[1]; puDst->au8[2] = puSrc1->au8[2] + puSrc2->au8[2]; puDst->au8[3] = puSrc1->au8[3] + puSrc2->au8[3]; puDst->au8[4] = puSrc1->au8[4] + puSrc2->au8[4]; puDst->au8[5] = puSrc1->au8[5] + puSrc2->au8[5]; puDst->au8[6] = puSrc1->au8[6] + puSrc2->au8[6]; puDst->au8[7] = puSrc1->au8[7] + puSrc2->au8[7]; puDst->au8[8] = puSrc1->au8[8] + puSrc2->au8[8]; puDst->au8[9] = puSrc1->au8[9] + puSrc2->au8[9]; puDst->au8[10] = puSrc1->au8[10] + puSrc2->au8[10]; puDst->au8[11] = puSrc1->au8[11] + puSrc2->au8[11]; puDst->au8[12] = puSrc1->au8[12] + puSrc2->au8[12]; puDst->au8[13] = puSrc1->au8[13] + puSrc2->au8[13]; puDst->au8[14] = puSrc1->au8[14] + puSrc2->au8[14]; puDst->au8[15] = puSrc1->au8[15] + puSrc2->au8[15]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au8[0] = puSrc1->au8[0] + puSrc2->au8[0]; puDst->au8[1] = puSrc1->au8[1] + puSrc2->au8[1]; puDst->au8[2] = puSrc1->au8[2] + puSrc2->au8[2]; puDst->au8[3] = puSrc1->au8[3] + puSrc2->au8[3]; puDst->au8[4] = puSrc1->au8[4] + puSrc2->au8[4]; puDst->au8[5] = puSrc1->au8[5] + puSrc2->au8[5]; puDst->au8[6] = puSrc1->au8[6] + puSrc2->au8[6]; puDst->au8[7] = puSrc1->au8[7] + puSrc2->au8[7]; puDst->au8[8] = puSrc1->au8[8] + puSrc2->au8[8]; puDst->au8[9] = puSrc1->au8[9] + puSrc2->au8[9]; puDst->au8[10] = puSrc1->au8[10] + puSrc2->au8[10]; puDst->au8[11] = puSrc1->au8[11] + puSrc2->au8[11]; puDst->au8[12] = puSrc1->au8[12] + puSrc2->au8[12]; puDst->au8[13] = puSrc1->au8[13] + puSrc2->au8[13]; puDst->au8[14] = puSrc1->au8[14] + puSrc2->au8[14]; puDst->au8[15] = puSrc1->au8[15] + puSrc2->au8[15]; puDst->au8[16] = puSrc1->au8[16] + puSrc2->au8[16]; puDst->au8[17] = puSrc1->au8[17] + puSrc2->au8[17]; puDst->au8[18] = puSrc1->au8[18] + puSrc2->au8[18]; puDst->au8[19] = puSrc1->au8[19] + puSrc2->au8[19]; puDst->au8[20] = puSrc1->au8[20] + puSrc2->au8[20]; puDst->au8[21] = puSrc1->au8[21] + puSrc2->au8[21]; puDst->au8[22] = puSrc1->au8[22] + puSrc2->au8[22]; puDst->au8[23] = puSrc1->au8[23] + puSrc2->au8[23]; puDst->au8[24] = puSrc1->au8[24] + puSrc2->au8[24]; puDst->au8[25] = puSrc1->au8[25] + puSrc2->au8[25]; puDst->au8[26] = puSrc1->au8[26] + puSrc2->au8[26]; puDst->au8[27] = puSrc1->au8[27] + puSrc2->au8[27]; puDst->au8[28] = puSrc1->au8[28] + puSrc2->au8[28]; puDst->au8[29] = puSrc1->au8[29] + puSrc2->au8[29]; puDst->au8[30] = puSrc1->au8[30] + puSrc2->au8[30]; puDst->au8[31] = puSrc1->au8[31] + puSrc2->au8[31]; } /* * PADDSB / VPADDSB */ #define SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(a_iWord) \ ( (uint16_t)((a_iWord) + 0x80) <= (uint16_t)0xff \ ? (uint8_t)(a_iWord) \ : (uint8_t)0x7f + (uint8_t)(((a_iWord) >> 15) & 1) ) /* 0x7f = INT8_MAX; 0x80 = INT8_MIN; source bit 15 = sign */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_paddsb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] + uSrc2.ai8[0]); uDst.au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] + uSrc2.ai8[1]); uDst.au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] + uSrc2.ai8[2]); uDst.au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] + uSrc2.ai8[3]); uDst.au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] + uSrc2.ai8[4]); uDst.au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] + uSrc2.ai8[5]); uDst.au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] + uSrc2.ai8[6]); uDst.au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] + uSrc2.ai8[7]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_paddsb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] + puSrc->ai8[0]); puDst->au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] + puSrc->ai8[1]); puDst->au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] + puSrc->ai8[2]); puDst->au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] + puSrc->ai8[3]); puDst->au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] + puSrc->ai8[4]); puDst->au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] + puSrc->ai8[5]); puDst->au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] + puSrc->ai8[6]); puDst->au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] + puSrc->ai8[7]); puDst->au8[8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[8] + puSrc->ai8[8]); puDst->au8[9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[9] + puSrc->ai8[9]); puDst->au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[10] + puSrc->ai8[10]); puDst->au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[11] + puSrc->ai8[11]); puDst->au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[12] + puSrc->ai8[12]); puDst->au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[13] + puSrc->ai8[13]); puDst->au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[14] + puSrc->ai8[14]); puDst->au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[15] + puSrc->ai8[15]); } #endif /* * PADDSB / VPADDSB */ #define SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(a_uWord) \ ( (uint16_t)(a_uWord) <= (uint16_t)0xff \ ? (uint8_t)(a_uWord) \ : (uint8_t)0xff ) /* 0xff = UINT8_MAX */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_paddusb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[0] + uSrc2.au8[0]); uDst.au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[1] + uSrc2.au8[1]); uDst.au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[2] + uSrc2.au8[2]); uDst.au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[3] + uSrc2.au8[3]); uDst.au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[4] + uSrc2.au8[4]); uDst.au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[5] + uSrc2.au8[5]); uDst.au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[6] + uSrc2.au8[6]); uDst.au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[7] + uSrc2.au8[7]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_paddusb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[0] + puSrc->au8[0]); puDst->au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[1] + puSrc->au8[1]); puDst->au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[2] + puSrc->au8[2]); puDst->au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[3] + puSrc->au8[3]); puDst->au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[4] + puSrc->au8[4]); puDst->au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[5] + puSrc->au8[5]); puDst->au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[6] + puSrc->au8[6]); puDst->au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[7] + puSrc->au8[7]); puDst->au8[8] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[8] + puSrc->au8[8]); puDst->au8[9] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[9] + puSrc->au8[9]); puDst->au8[10] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[10] + puSrc->au8[10]); puDst->au8[11] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[11] + puSrc->au8[11]); puDst->au8[12] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[12] + puSrc->au8[12]); puDst->au8[13] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[13] + puSrc->au8[13]); puDst->au8[14] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[14] + puSrc->au8[14]); puDst->au8[15] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au8[15] + puSrc->au8[15]); } #endif /* * PADDW / VPADDW */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_paddw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au16[0] = uSrc1.au16[0] + uSrc2.au16[0]; uDst.au16[1] = uSrc1.au16[1] + uSrc2.au16[1]; uDst.au16[2] = uSrc1.au16[2] + uSrc2.au16[2]; uDst.au16[3] = uSrc1.au16[3] + uSrc2.au16[3]; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_paddw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au16[0] = uSrc1.au16[0] + puSrc->au16[0]; puDst->au16[1] = uSrc1.au16[1] + puSrc->au16[1]; puDst->au16[2] = uSrc1.au16[2] + puSrc->au16[2]; puDst->au16[3] = uSrc1.au16[3] + puSrc->au16[3]; puDst->au16[4] = uSrc1.au16[4] + puSrc->au16[4]; puDst->au16[5] = uSrc1.au16[5] + puSrc->au16[5]; puDst->au16[6] = uSrc1.au16[6] + puSrc->au16[6]; puDst->au16[7] = uSrc1.au16[7] + puSrc->au16[7]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au16[0] = puSrc1->au16[0] + puSrc2->au16[0]; puDst->au16[1] = puSrc1->au16[1] + puSrc2->au16[1]; puDst->au16[2] = puSrc1->au16[2] + puSrc2->au16[2]; puDst->au16[3] = puSrc1->au16[3] + puSrc2->au16[3]; puDst->au16[4] = puSrc1->au16[4] + puSrc2->au16[4]; puDst->au16[5] = puSrc1->au16[5] + puSrc2->au16[5]; puDst->au16[6] = puSrc1->au16[6] + puSrc2->au16[6]; puDst->au16[7] = puSrc1->au16[7] + puSrc2->au16[7]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au16[0] = puSrc1->au16[0] + puSrc2->au16[0]; puDst->au16[1] = puSrc1->au16[1] + puSrc2->au16[1]; puDst->au16[2] = puSrc1->au16[2] + puSrc2->au16[2]; puDst->au16[3] = puSrc1->au16[3] + puSrc2->au16[3]; puDst->au16[4] = puSrc1->au16[4] + puSrc2->au16[4]; puDst->au16[5] = puSrc1->au16[5] + puSrc2->au16[5]; puDst->au16[6] = puSrc1->au16[6] + puSrc2->au16[6]; puDst->au16[7] = puSrc1->au16[7] + puSrc2->au16[7]; puDst->au16[8] = puSrc1->au16[8] + puSrc2->au16[8]; puDst->au16[9] = puSrc1->au16[9] + puSrc2->au16[9]; puDst->au16[10] = puSrc1->au16[10] + puSrc2->au16[10]; puDst->au16[11] = puSrc1->au16[11] + puSrc2->au16[11]; puDst->au16[12] = puSrc1->au16[12] + puSrc2->au16[12]; puDst->au16[13] = puSrc1->au16[13] + puSrc2->au16[13]; puDst->au16[14] = puSrc1->au16[14] + puSrc2->au16[14]; puDst->au16[15] = puSrc1->au16[15] + puSrc2->au16[15]; } /* * PADDSW / VPADDSW */ #define SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(a_iDword) \ ( (uint32_t)((a_iDword) + 0x8000) <= (uint16_t)0xffff \ ? (uint16_t)(a_iDword) \ : (uint16_t)0x7fff + (uint16_t)(((a_iDword) >> 31) & 1) ) /* 0x7fff = INT16_MAX; 0x8000 = INT16_MIN; source bit 31 = sign */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_paddsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + uSrc2.ai16[0]); uDst.au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] + uSrc2.ai16[1]); uDst.au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + uSrc2.ai16[2]); uDst.au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] + uSrc2.ai16[3]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_paddsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + puSrc->ai16[0]); puDst->au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] + puSrc->ai16[1]); puDst->au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + puSrc->ai16[2]); puDst->au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] + puSrc->ai16[3]); puDst->au16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] + puSrc->ai16[4]); puDst->au16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[5] + puSrc->ai16[5]); puDst->au16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] + puSrc->ai16[6]); puDst->au16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[7] + puSrc->ai16[7]); } #endif /* * PADDUSW / VPADDUSW */ #define SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(a_uDword) \ ( (uint32_t)(a_uDword) <= (uint16_t)0xffff \ ? (uint16_t)(a_uDword) \ : (uint16_t)0xffff ) /* 0xffff = UINT16_MAX */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_paddusw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[0] + uSrc2.au16[0]); uDst.au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[1] + uSrc2.au16[1]); uDst.au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[2] + uSrc2.au16[2]); uDst.au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[3] + uSrc2.au16[3]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_paddusw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[0] + puSrc->au16[0]); puDst->au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[1] + puSrc->au16[1]); puDst->au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[2] + puSrc->au16[2]); puDst->au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[3] + puSrc->au16[3]); puDst->au16[4] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[4] + puSrc->au16[4]); puDst->au16[5] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[5] + puSrc->au16[5]); puDst->au16[6] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[6] + puSrc->au16[6]); puDst->au16[7] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au16[7] + puSrc->au16[7]); } #endif /* * PADDD / VPADDD. */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_paddd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au32[0] = uSrc1.au32[0] + uSrc2.au32[0]; uDst.au32[1] = uSrc1.au32[1] + uSrc2.au32[1]; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_paddd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au32[0] = uSrc1.au32[0] + puSrc->au32[0]; puDst->au32[1] = uSrc1.au32[1] + puSrc->au32[1]; puDst->au32[2] = uSrc1.au32[2] + puSrc->au32[2]; puDst->au32[3] = uSrc1.au32[3] + puSrc->au32[3]; } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au32[0] = puSrc1->au32[0] + puSrc2->au32[0]; puDst->au32[1] = puSrc1->au32[1] + puSrc2->au32[1]; puDst->au32[2] = puSrc1->au32[2] + puSrc2->au32[2]; puDst->au32[3] = puSrc1->au32[3] + puSrc2->au32[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au32[0] = puSrc1->au32[0] + puSrc2->au32[0]; puDst->au32[1] = puSrc1->au32[1] + puSrc2->au32[1]; puDst->au32[2] = puSrc1->au32[2] + puSrc2->au32[2]; puDst->au32[3] = puSrc1->au32[3] + puSrc2->au32[3]; puDst->au32[4] = puSrc1->au32[4] + puSrc2->au32[4]; puDst->au32[5] = puSrc1->au32[5] + puSrc2->au32[5]; puDst->au32[6] = puSrc1->au32[6] + puSrc2->au32[6]; puDst->au32[7] = puSrc1->au32[7] + puSrc2->au32[7]; } /* * PADDQ / VPADDQ. */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_paddq_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); *puDst = *puDst + *puSrc; } IEM_DECL_IMPL_DEF(void, iemAImpl_paddq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au64[0] = uSrc1.au64[0] + puSrc->au64[0]; puDst->au64[1] = uSrc1.au64[1] + puSrc->au64[1]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] + puSrc2->au64[0]; puDst->au64[1] = puSrc1->au64[1] + puSrc2->au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] + puSrc2->au64[0]; puDst->au64[1] = puSrc1->au64[1] + puSrc2->au64[1]; puDst->au64[2] = puSrc1->au64[2] + puSrc2->au64[2]; puDst->au64[3] = puSrc1->au64[3] + puSrc2->au64[3]; } /* * PSUBB / VPSUBB */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psubb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au8[0] = uSrc1.au8[0] - uSrc2.au8[0]; uDst.au8[1] = uSrc1.au8[1] - uSrc2.au8[1]; uDst.au8[2] = uSrc1.au8[2] - uSrc2.au8[2]; uDst.au8[3] = uSrc1.au8[3] - uSrc2.au8[3]; uDst.au8[4] = uSrc1.au8[4] - uSrc2.au8[4]; uDst.au8[5] = uSrc1.au8[5] - uSrc2.au8[5]; uDst.au8[6] = uSrc1.au8[6] - uSrc2.au8[6]; uDst.au8[7] = uSrc1.au8[7] - uSrc2.au8[7]; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psubb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au8[0] = uSrc1.au8[0] - puSrc->au8[0]; puDst->au8[1] = uSrc1.au8[1] - puSrc->au8[1]; puDst->au8[2] = uSrc1.au8[2] - puSrc->au8[2]; puDst->au8[3] = uSrc1.au8[3] - puSrc->au8[3]; puDst->au8[4] = uSrc1.au8[4] - puSrc->au8[4]; puDst->au8[5] = uSrc1.au8[5] - puSrc->au8[5]; puDst->au8[6] = uSrc1.au8[6] - puSrc->au8[6]; puDst->au8[7] = uSrc1.au8[7] - puSrc->au8[7]; puDst->au8[8] = uSrc1.au8[8] - puSrc->au8[8]; puDst->au8[9] = uSrc1.au8[9] - puSrc->au8[9]; puDst->au8[10] = uSrc1.au8[10] - puSrc->au8[10]; puDst->au8[11] = uSrc1.au8[11] - puSrc->au8[11]; puDst->au8[12] = uSrc1.au8[12] - puSrc->au8[12]; puDst->au8[13] = uSrc1.au8[13] - puSrc->au8[13]; puDst->au8[14] = uSrc1.au8[14] - puSrc->au8[14]; puDst->au8[15] = uSrc1.au8[15] - puSrc->au8[15]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au8[0] = puSrc1->au8[0] - puSrc2->au8[0]; puDst->au8[1] = puSrc1->au8[1] - puSrc2->au8[1]; puDst->au8[2] = puSrc1->au8[2] - puSrc2->au8[2]; puDst->au8[3] = puSrc1->au8[3] - puSrc2->au8[3]; puDst->au8[4] = puSrc1->au8[4] - puSrc2->au8[4]; puDst->au8[5] = puSrc1->au8[5] - puSrc2->au8[5]; puDst->au8[6] = puSrc1->au8[6] - puSrc2->au8[6]; puDst->au8[7] = puSrc1->au8[7] - puSrc2->au8[7]; puDst->au8[8] = puSrc1->au8[8] - puSrc2->au8[8]; puDst->au8[9] = puSrc1->au8[9] - puSrc2->au8[9]; puDst->au8[10] = puSrc1->au8[10] - puSrc2->au8[10]; puDst->au8[11] = puSrc1->au8[11] - puSrc2->au8[11]; puDst->au8[12] = puSrc1->au8[12] - puSrc2->au8[12]; puDst->au8[13] = puSrc1->au8[13] - puSrc2->au8[13]; puDst->au8[14] = puSrc1->au8[14] - puSrc2->au8[14]; puDst->au8[15] = puSrc1->au8[15] - puSrc2->au8[15]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au8[0] = puSrc1->au8[0] - puSrc2->au8[0]; puDst->au8[1] = puSrc1->au8[1] - puSrc2->au8[1]; puDst->au8[2] = puSrc1->au8[2] - puSrc2->au8[2]; puDst->au8[3] = puSrc1->au8[3] - puSrc2->au8[3]; puDst->au8[4] = puSrc1->au8[4] - puSrc2->au8[4]; puDst->au8[5] = puSrc1->au8[5] - puSrc2->au8[5]; puDst->au8[6] = puSrc1->au8[6] - puSrc2->au8[6]; puDst->au8[7] = puSrc1->au8[7] - puSrc2->au8[7]; puDst->au8[8] = puSrc1->au8[8] - puSrc2->au8[8]; puDst->au8[9] = puSrc1->au8[9] - puSrc2->au8[9]; puDst->au8[10] = puSrc1->au8[10] - puSrc2->au8[10]; puDst->au8[11] = puSrc1->au8[11] - puSrc2->au8[11]; puDst->au8[12] = puSrc1->au8[12] - puSrc2->au8[12]; puDst->au8[13] = puSrc1->au8[13] - puSrc2->au8[13]; puDst->au8[14] = puSrc1->au8[14] - puSrc2->au8[14]; puDst->au8[15] = puSrc1->au8[15] - puSrc2->au8[15]; puDst->au8[16] = puSrc1->au8[16] - puSrc2->au8[16]; puDst->au8[17] = puSrc1->au8[17] - puSrc2->au8[17]; puDst->au8[18] = puSrc1->au8[18] - puSrc2->au8[18]; puDst->au8[19] = puSrc1->au8[19] - puSrc2->au8[19]; puDst->au8[20] = puSrc1->au8[20] - puSrc2->au8[20]; puDst->au8[21] = puSrc1->au8[21] - puSrc2->au8[21]; puDst->au8[22] = puSrc1->au8[22] - puSrc2->au8[22]; puDst->au8[23] = puSrc1->au8[23] - puSrc2->au8[23]; puDst->au8[24] = puSrc1->au8[24] - puSrc2->au8[24]; puDst->au8[25] = puSrc1->au8[25] - puSrc2->au8[25]; puDst->au8[26] = puSrc1->au8[26] - puSrc2->au8[26]; puDst->au8[27] = puSrc1->au8[27] - puSrc2->au8[27]; puDst->au8[28] = puSrc1->au8[28] - puSrc2->au8[28]; puDst->au8[29] = puSrc1->au8[29] - puSrc2->au8[29]; puDst->au8[30] = puSrc1->au8[30] - puSrc2->au8[30]; puDst->au8[31] = puSrc1->au8[31] - puSrc2->au8[31]; } /* * PSUBSB / VSUBSB */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psubsb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] - uSrc2.ai8[0]); uDst.au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] - uSrc2.ai8[1]); uDst.au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] - uSrc2.ai8[2]); uDst.au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] - uSrc2.ai8[3]); uDst.au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] - uSrc2.ai8[4]); uDst.au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] - uSrc2.ai8[5]); uDst.au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] - uSrc2.ai8[6]); uDst.au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] - uSrc2.ai8[7]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psubsb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[0] - puSrc->ai8[0]); puDst->au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[1] - puSrc->ai8[1]); puDst->au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[2] - puSrc->ai8[2]); puDst->au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[3] - puSrc->ai8[3]); puDst->au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[4] - puSrc->ai8[4]); puDst->au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[5] - puSrc->ai8[5]); puDst->au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[6] - puSrc->ai8[6]); puDst->au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[7] - puSrc->ai8[7]); puDst->au8[8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[8] - puSrc->ai8[8]); puDst->au8[9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[9] - puSrc->ai8[9]); puDst->au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[10] - puSrc->ai8[10]); puDst->au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[11] - puSrc->ai8[11]); puDst->au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[12] - puSrc->ai8[12]); puDst->au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[13] - puSrc->ai8[13]); puDst->au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[14] - puSrc->ai8[14]); puDst->au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.ai8[15] - puSrc->ai8[15]); } #endif /* * PADDSB / VPADDSB */ #define SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(a_uWord) \ ( (uint16_t)(a_uWord) <= (uint16_t)0xff \ ? (uint8_t)(a_uWord) \ : (uint8_t)0 ) #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psubusb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[0] - uSrc2.au8[0]); uDst.au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[1] - uSrc2.au8[1]); uDst.au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[2] - uSrc2.au8[2]); uDst.au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[3] - uSrc2.au8[3]); uDst.au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[4] - uSrc2.au8[4]); uDst.au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[5] - uSrc2.au8[5]); uDst.au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[6] - uSrc2.au8[6]); uDst.au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[7] - uSrc2.au8[7]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psubusb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au8[0] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[0] - puSrc->au8[0]); puDst->au8[1] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[1] - puSrc->au8[1]); puDst->au8[2] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[2] - puSrc->au8[2]); puDst->au8[3] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[3] - puSrc->au8[3]); puDst->au8[4] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[4] - puSrc->au8[4]); puDst->au8[5] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[5] - puSrc->au8[5]); puDst->au8[6] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[6] - puSrc->au8[6]); puDst->au8[7] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[7] - puSrc->au8[7]); puDst->au8[8] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[8] - puSrc->au8[8]); puDst->au8[9] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[9] - puSrc->au8[9]); puDst->au8[10] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[10] - puSrc->au8[10]); puDst->au8[11] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[11] - puSrc->au8[11]); puDst->au8[12] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[12] - puSrc->au8[12]); puDst->au8[13] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[13] - puSrc->au8[13]); puDst->au8[14] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[14] - puSrc->au8[14]); puDst->au8[15] = SATURATED_UNSIGNED_WORD_TO_UNSIGNED_BYTE_SUB(uSrc1.au8[15] - puSrc->au8[15]); } #endif /* * PSUBW / VPSUBW */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psubw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au16[0] = uSrc1.au16[0] - uSrc2.au16[0]; uDst.au16[1] = uSrc1.au16[1] - uSrc2.au16[1]; uDst.au16[2] = uSrc1.au16[2] - uSrc2.au16[2]; uDst.au16[3] = uSrc1.au16[3] - uSrc2.au16[3]; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psubw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au16[0] = uSrc1.au16[0] - puSrc->au16[0]; puDst->au16[1] = uSrc1.au16[1] - puSrc->au16[1]; puDst->au16[2] = uSrc1.au16[2] - puSrc->au16[2]; puDst->au16[3] = uSrc1.au16[3] - puSrc->au16[3]; puDst->au16[4] = uSrc1.au16[4] - puSrc->au16[4]; puDst->au16[5] = uSrc1.au16[5] - puSrc->au16[5]; puDst->au16[6] = uSrc1.au16[6] - puSrc->au16[6]; puDst->au16[7] = uSrc1.au16[7] - puSrc->au16[7]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au16[0] = puSrc1->au16[0] - puSrc2->au16[0]; puDst->au16[1] = puSrc1->au16[1] - puSrc2->au16[1]; puDst->au16[2] = puSrc1->au16[2] - puSrc2->au16[2]; puDst->au16[3] = puSrc1->au16[3] - puSrc2->au16[3]; puDst->au16[4] = puSrc1->au16[4] - puSrc2->au16[4]; puDst->au16[5] = puSrc1->au16[5] - puSrc2->au16[5]; puDst->au16[6] = puSrc1->au16[6] - puSrc2->au16[6]; puDst->au16[7] = puSrc1->au16[7] - puSrc2->au16[7]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au16[0] = puSrc1->au16[0] - puSrc2->au16[0]; puDst->au16[1] = puSrc1->au16[1] - puSrc2->au16[1]; puDst->au16[2] = puSrc1->au16[2] - puSrc2->au16[2]; puDst->au16[3] = puSrc1->au16[3] - puSrc2->au16[3]; puDst->au16[4] = puSrc1->au16[4] - puSrc2->au16[4]; puDst->au16[5] = puSrc1->au16[5] - puSrc2->au16[5]; puDst->au16[6] = puSrc1->au16[6] - puSrc2->au16[6]; puDst->au16[7] = puSrc1->au16[7] - puSrc2->au16[7]; puDst->au16[8] = puSrc1->au16[8] - puSrc2->au16[8]; puDst->au16[9] = puSrc1->au16[9] - puSrc2->au16[9]; puDst->au16[10] = puSrc1->au16[10] - puSrc2->au16[10]; puDst->au16[11] = puSrc1->au16[11] - puSrc2->au16[11]; puDst->au16[12] = puSrc1->au16[12] - puSrc2->au16[12]; puDst->au16[13] = puSrc1->au16[13] - puSrc2->au16[13]; puDst->au16[14] = puSrc1->au16[14] - puSrc2->au16[14]; puDst->au16[15] = puSrc1->au16[15] - puSrc2->au16[15]; } /* * PSUBSW / VPSUBSW */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psubsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - uSrc2.ai16[0]); uDst.au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] - uSrc2.ai16[1]); uDst.au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - uSrc2.ai16[2]); uDst.au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] - uSrc2.ai16[3]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psubsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - puSrc->ai16[0]); puDst->au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[1] - puSrc->ai16[1]); puDst->au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - puSrc->ai16[2]); puDst->au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[3] - puSrc->ai16[3]); puDst->au16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] - puSrc->ai16[4]); puDst->au16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[5] - puSrc->ai16[5]); puDst->au16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] - puSrc->ai16[6]); puDst->au16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[7] - puSrc->ai16[7]); } #endif /* * PSUBUSW / VPSUBUSW */ #define SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(a_uDword) \ ( (uint32_t)(a_uDword) <= (uint16_t)0xffff \ ? (uint16_t)(a_uDword) \ : (uint16_t)0 ) #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psubusw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[0] - uSrc2.au16[0]); uDst.au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[1] - uSrc2.au16[1]); uDst.au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[2] - uSrc2.au16[2]); uDst.au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[3] - uSrc2.au16[3]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psubusw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au16[0] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[0] - puSrc->au16[0]); puDst->au16[1] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[1] - puSrc->au16[1]); puDst->au16[2] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[2] - puSrc->au16[2]); puDst->au16[3] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[3] - puSrc->au16[3]); puDst->au16[4] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[4] - puSrc->au16[4]); puDst->au16[5] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[5] - puSrc->au16[5]); puDst->au16[6] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[6] - puSrc->au16[6]); puDst->au16[7] = SATURATED_UNSIGNED_DWORD_TO_UNSIGNED_WORD_SUB(uSrc1.au16[7] - puSrc->au16[7]); } #endif /* * PSUBD / VPSUBD. */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psubd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au32[0] = uSrc1.au32[0] - uSrc2.au32[0]; uDst.au32[1] = uSrc1.au32[1] - uSrc2.au32[1]; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psubd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au32[0] = uSrc1.au32[0] - puSrc->au32[0]; puDst->au32[1] = uSrc1.au32[1] - puSrc->au32[1]; puDst->au32[2] = uSrc1.au32[2] - puSrc->au32[2]; puDst->au32[3] = uSrc1.au32[3] - puSrc->au32[3]; } #endif /* IEM_WITHOUT_ASSEMBLY */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au32[0] = puSrc1->au32[0] - puSrc2->au32[0]; puDst->au32[1] = puSrc1->au32[1] - puSrc2->au32[1]; puDst->au32[2] = puSrc1->au32[2] - puSrc2->au32[2]; puDst->au32[3] = puSrc1->au32[3] - puSrc2->au32[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au32[0] = puSrc1->au32[0] - puSrc2->au32[0]; puDst->au32[1] = puSrc1->au32[1] - puSrc2->au32[1]; puDst->au32[2] = puSrc1->au32[2] - puSrc2->au32[2]; puDst->au32[3] = puSrc1->au32[3] - puSrc2->au32[3]; puDst->au32[4] = puSrc1->au32[4] - puSrc2->au32[4]; puDst->au32[5] = puSrc1->au32[5] - puSrc2->au32[5]; puDst->au32[6] = puSrc1->au32[6] - puSrc2->au32[6]; puDst->au32[7] = puSrc1->au32[7] - puSrc2->au32[7]; } /* * PSUBQ / VPSUBQ. */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psubq_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); *puDst = *puDst - *puSrc; } IEM_DECL_IMPL_DEF(void, iemAImpl_psubq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->au64[0] = uSrc1.au64[0] - puSrc->au64[0]; puDst->au64[1] = uSrc1.au64[1] - puSrc->au64[1]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] - puSrc2->au64[0]; puDst->au64[1] = puSrc1->au64[1] - puSrc2->au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpsubq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RT_NOREF(pExtState); puDst->au64[0] = puSrc1->au64[0] - puSrc2->au64[0]; puDst->au64[1] = puSrc1->au64[1] - puSrc2->au64[1]; puDst->au64[2] = puSrc1->au64[2] - puSrc2->au64[2]; puDst->au64[3] = puSrc1->au64[3] - puSrc2->au64[3]; } /* * PMULLW / VPMULLW / PMULLD / VPMULLD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pmullw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.ai16[0] = uSrc1.ai16[0] * uSrc2.ai16[0]; uDst.ai16[1] = uSrc1.ai16[1] * uSrc2.ai16[1]; uDst.ai16[2] = uSrc1.ai16[2] * uSrc2.ai16[2]; uDst.ai16[3] = uSrc1.ai16[3] * uSrc2.ai16[3]; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pmullw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->ai16[0] = uSrc1.ai16[0] * puSrc->ai16[0]; puDst->ai16[1] = uSrc1.ai16[1] * puSrc->ai16[1]; puDst->ai16[2] = uSrc1.ai16[2] * puSrc->ai16[2]; puDst->ai16[3] = uSrc1.ai16[3] * puSrc->ai16[3]; puDst->ai16[4] = uSrc1.ai16[4] * puSrc->ai16[4]; puDst->ai16[5] = uSrc1.ai16[5] * puSrc->ai16[5]; puDst->ai16[6] = uSrc1.ai16[6] * puSrc->ai16[6]; puDst->ai16[7] = uSrc1.ai16[7] * puSrc->ai16[7]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_pmulld_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai32[0] = uSrc1.ai32[0] * puSrc->ai32[0]; puDst->ai32[1] = uSrc1.ai32[1] * puSrc->ai32[1]; puDst->ai32[2] = uSrc1.ai32[2] * puSrc->ai32[2]; puDst->ai32[3] = uSrc1.ai32[3] * puSrc->ai32[3]; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmullw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->ai16[0] = puSrc1->ai16[0] * puSrc2->ai16[0]; puDst->ai16[1] = puSrc1->ai16[1] * puSrc2->ai16[1]; puDst->ai16[2] = puSrc1->ai16[2] * puSrc2->ai16[2]; puDst->ai16[3] = puSrc1->ai16[3] * puSrc2->ai16[3]; puDst->ai16[4] = puSrc1->ai16[4] * puSrc2->ai16[4]; puDst->ai16[5] = puSrc1->ai16[5] * puSrc2->ai16[5]; puDst->ai16[6] = puSrc1->ai16[6] * puSrc2->ai16[6]; puDst->ai16[7] = puSrc1->ai16[7] * puSrc2->ai16[7]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmullw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->ai16[ 0] = puSrc1->ai16[ 0] * puSrc2->ai16[ 0]; puDst->ai16[ 1] = puSrc1->ai16[ 1] * puSrc2->ai16[ 1]; puDst->ai16[ 2] = puSrc1->ai16[ 2] * puSrc2->ai16[ 2]; puDst->ai16[ 3] = puSrc1->ai16[ 3] * puSrc2->ai16[ 3]; puDst->ai16[ 4] = puSrc1->ai16[ 4] * puSrc2->ai16[ 4]; puDst->ai16[ 5] = puSrc1->ai16[ 5] * puSrc2->ai16[ 5]; puDst->ai16[ 6] = puSrc1->ai16[ 6] * puSrc2->ai16[ 6]; puDst->ai16[ 7] = puSrc1->ai16[ 7] * puSrc2->ai16[ 7]; puDst->ai16[ 8] = puSrc1->ai16[ 8] * puSrc2->ai16[ 8]; puDst->ai16[ 9] = puSrc1->ai16[ 9] * puSrc2->ai16[ 9]; puDst->ai16[10] = puSrc1->ai16[10] * puSrc2->ai16[10]; puDst->ai16[11] = puSrc1->ai16[11] * puSrc2->ai16[11]; puDst->ai16[12] = puSrc1->ai16[12] * puSrc2->ai16[12]; puDst->ai16[13] = puSrc1->ai16[13] * puSrc2->ai16[13]; puDst->ai16[14] = puSrc1->ai16[14] * puSrc2->ai16[14]; puDst->ai16[15] = puSrc1->ai16[15] * puSrc2->ai16[15]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulld_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->ai32[0] = puSrc1->ai32[0] * puSrc2->ai32[0]; puDst->ai32[1] = puSrc1->ai32[1] * puSrc2->ai32[1]; puDst->ai32[2] = puSrc1->ai32[2] * puSrc2->ai32[2]; puDst->ai32[3] = puSrc1->ai32[3] * puSrc2->ai32[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulld_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->ai32[0] = puSrc1->ai32[0] * puSrc2->ai32[0]; puDst->ai32[1] = puSrc1->ai32[1] * puSrc2->ai32[1]; puDst->ai32[2] = puSrc1->ai32[2] * puSrc2->ai32[2]; puDst->ai32[3] = puSrc1->ai32[3] * puSrc2->ai32[3]; puDst->ai32[4] = puSrc1->ai32[4] * puSrc2->ai32[4]; puDst->ai32[5] = puSrc1->ai32[5] * puSrc2->ai32[5]; puDst->ai32[6] = puSrc1->ai32[6] * puSrc2->ai32[6]; puDst->ai32[7] = puSrc1->ai32[7] * puSrc2->ai32[7]; } /* * PMULHW / VPMULHW */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RT_NOREF(pFpuState); RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.ai16[0] = RT_HIWORD(uSrc1.ai16[0] * uSrc2.ai16[0]); uDst.ai16[1] = RT_HIWORD(uSrc1.ai16[1] * uSrc2.ai16[1]); uDst.ai16[2] = RT_HIWORD(uSrc1.ai16[2] * uSrc2.ai16[2]); uDst.ai16[3] = RT_HIWORD(uSrc1.ai16[3] * uSrc2.ai16[3]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); RTUINT128U uSrc1 = *puDst; puDst->ai16[0] = RT_HIWORD(uSrc1.ai16[0] * puSrc->ai16[0]); puDst->ai16[1] = RT_HIWORD(uSrc1.ai16[1] * puSrc->ai16[1]); puDst->ai16[2] = RT_HIWORD(uSrc1.ai16[2] * puSrc->ai16[2]); puDst->ai16[3] = RT_HIWORD(uSrc1.ai16[3] * puSrc->ai16[3]); puDst->ai16[4] = RT_HIWORD(uSrc1.ai16[4] * puSrc->ai16[4]); puDst->ai16[5] = RT_HIWORD(uSrc1.ai16[5] * puSrc->ai16[5]); puDst->ai16[6] = RT_HIWORD(uSrc1.ai16[6] * puSrc->ai16[6]); puDst->ai16[7] = RT_HIWORD(uSrc1.ai16[7] * puSrc->ai16[7]); } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->ai16[0] = RT_HIWORD(puSrc1->ai16[0] * puSrc2->ai16[0]); puDst->ai16[1] = RT_HIWORD(puSrc1->ai16[1] * puSrc2->ai16[1]); puDst->ai16[2] = RT_HIWORD(puSrc1->ai16[2] * puSrc2->ai16[2]); puDst->ai16[3] = RT_HIWORD(puSrc1->ai16[3] * puSrc2->ai16[3]); puDst->ai16[4] = RT_HIWORD(puSrc1->ai16[4] * puSrc2->ai16[4]); puDst->ai16[5] = RT_HIWORD(puSrc1->ai16[5] * puSrc2->ai16[5]); puDst->ai16[6] = RT_HIWORD(puSrc1->ai16[6] * puSrc2->ai16[6]); puDst->ai16[7] = RT_HIWORD(puSrc1->ai16[7] * puSrc2->ai16[7]); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->ai16[ 0] = RT_HIWORD(puSrc1->ai16[ 0] * puSrc2->ai16[ 0]); puDst->ai16[ 1] = RT_HIWORD(puSrc1->ai16[ 1] * puSrc2->ai16[ 1]); puDst->ai16[ 2] = RT_HIWORD(puSrc1->ai16[ 2] * puSrc2->ai16[ 2]); puDst->ai16[ 3] = RT_HIWORD(puSrc1->ai16[ 3] * puSrc2->ai16[ 3]); puDst->ai16[ 4] = RT_HIWORD(puSrc1->ai16[ 4] * puSrc2->ai16[ 4]); puDst->ai16[ 5] = RT_HIWORD(puSrc1->ai16[ 5] * puSrc2->ai16[ 5]); puDst->ai16[ 6] = RT_HIWORD(puSrc1->ai16[ 6] * puSrc2->ai16[ 6]); puDst->ai16[ 7] = RT_HIWORD(puSrc1->ai16[ 7] * puSrc2->ai16[ 7]); puDst->ai16[ 8] = RT_HIWORD(puSrc1->ai16[ 8] * puSrc2->ai16[ 8]); puDst->ai16[ 9] = RT_HIWORD(puSrc1->ai16[ 9] * puSrc2->ai16[ 9]); puDst->ai16[10] = RT_HIWORD(puSrc1->ai16[10] * puSrc2->ai16[10]); puDst->ai16[11] = RT_HIWORD(puSrc1->ai16[11] * puSrc2->ai16[11]); puDst->ai16[12] = RT_HIWORD(puSrc1->ai16[12] * puSrc2->ai16[12]); puDst->ai16[13] = RT_HIWORD(puSrc1->ai16[13] * puSrc2->ai16[13]); puDst->ai16[14] = RT_HIWORD(puSrc1->ai16[14] * puSrc2->ai16[14]); puDst->ai16[15] = RT_HIWORD(puSrc1->ai16[15] * puSrc2->ai16[15]); } /* * PMULHUW / VPMULHUW */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhuw_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au16[0] = RT_HIWORD(uSrc1.au16[0] * uSrc2.au16[0]); uDst.au16[1] = RT_HIWORD(uSrc1.au16[1] * uSrc2.au16[1]); uDst.au16[2] = RT_HIWORD(uSrc1.au16[2] * uSrc2.au16[2]); uDst.au16[3] = RT_HIWORD(uSrc1.au16[3] * uSrc2.au16[3]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhuw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au16[0] = RT_HIWORD(uSrc1.au16[0] * puSrc->au16[0]); puDst->au16[1] = RT_HIWORD(uSrc1.au16[1] * puSrc->au16[1]); puDst->au16[2] = RT_HIWORD(uSrc1.au16[2] * puSrc->au16[2]); puDst->au16[3] = RT_HIWORD(uSrc1.au16[3] * puSrc->au16[3]); puDst->au16[4] = RT_HIWORD(uSrc1.au16[4] * puSrc->au16[4]); puDst->au16[5] = RT_HIWORD(uSrc1.au16[5] * puSrc->au16[5]); puDst->au16[6] = RT_HIWORD(uSrc1.au16[6] * puSrc->au16[6]); puDst->au16[7] = RT_HIWORD(uSrc1.au16[7] * puSrc->au16[7]); } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhuw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->au16[0] = RT_HIWORD(puSrc1->au16[0] * puSrc2->au16[0]); puDst->au16[1] = RT_HIWORD(puSrc1->au16[1] * puSrc2->au16[1]); puDst->au16[2] = RT_HIWORD(puSrc1->au16[2] * puSrc2->au16[2]); puDst->au16[3] = RT_HIWORD(puSrc1->au16[3] * puSrc2->au16[3]); puDst->au16[4] = RT_HIWORD(puSrc1->au16[4] * puSrc2->au16[4]); puDst->au16[5] = RT_HIWORD(puSrc1->au16[5] * puSrc2->au16[5]); puDst->au16[6] = RT_HIWORD(puSrc1->au16[6] * puSrc2->au16[6]); puDst->au16[7] = RT_HIWORD(puSrc1->au16[7] * puSrc2->au16[7]); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhuw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->au16[ 0] = RT_HIWORD(puSrc1->au16[ 0] * puSrc2->au16[ 0]); puDst->au16[ 1] = RT_HIWORD(puSrc1->au16[ 1] * puSrc2->au16[ 1]); puDst->au16[ 2] = RT_HIWORD(puSrc1->au16[ 2] * puSrc2->au16[ 2]); puDst->au16[ 3] = RT_HIWORD(puSrc1->au16[ 3] * puSrc2->au16[ 3]); puDst->au16[ 4] = RT_HIWORD(puSrc1->au16[ 4] * puSrc2->au16[ 4]); puDst->au16[ 5] = RT_HIWORD(puSrc1->au16[ 5] * puSrc2->au16[ 5]); puDst->au16[ 6] = RT_HIWORD(puSrc1->au16[ 6] * puSrc2->au16[ 6]); puDst->au16[ 7] = RT_HIWORD(puSrc1->au16[ 7] * puSrc2->au16[ 7]); puDst->au16[ 8] = RT_HIWORD(puSrc1->au16[ 8] * puSrc2->au16[ 8]); puDst->au16[ 9] = RT_HIWORD(puSrc1->au16[ 9] * puSrc2->au16[ 9]); puDst->au16[10] = RT_HIWORD(puSrc1->au16[10] * puSrc2->au16[10]); puDst->au16[11] = RT_HIWORD(puSrc1->au16[11] * puSrc2->au16[11]); puDst->au16[12] = RT_HIWORD(puSrc1->au16[12] * puSrc2->au16[12]); puDst->au16[13] = RT_HIWORD(puSrc1->au16[13] * puSrc2->au16[13]); puDst->au16[14] = RT_HIWORD(puSrc1->au16[14] * puSrc2->au16[14]); puDst->au16[15] = RT_HIWORD(puSrc1->au16[15] * puSrc2->au16[15]); } /* * PSRLW / VPSRLW */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; if (uSrc2.au64[0] <= 15) { uDst.au16[0] = uSrc1.au16[0] >> uSrc2.au8[0]; uDst.au16[1] = uSrc1.au16[1] >> uSrc2.au8[0]; uDst.au16[2] = uSrc1.au16[2] >> uSrc2.au8[0]; uDst.au16[3] = uSrc1.au16[3] >> uSrc2.au8[0]; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_imm_u64,(uint64_t *puDst, uint8_t uShift)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uDst; if (uShift <= 15) { uDst.au16[0] = uSrc1.au16[0] >> uShift; uDst.au16[1] = uSrc1.au16[1] >> uShift; uDst.au16[2] = uSrc1.au16[2] >> uShift; uDst.au16[3] = uSrc1.au16[3] >> uShift; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; if (puSrc->au64[0] <= 15) { puDst->au16[0] = uSrc1.au16[0] >> puSrc->au8[0]; puDst->au16[1] = uSrc1.au16[1] >> puSrc->au8[0]; puDst->au16[2] = uSrc1.au16[2] >> puSrc->au8[0]; puDst->au16[3] = uSrc1.au16[3] >> puSrc->au8[0]; puDst->au16[4] = uSrc1.au16[4] >> puSrc->au8[0]; puDst->au16[5] = uSrc1.au16[5] >> puSrc->au8[0]; puDst->au16[6] = uSrc1.au16[6] >> puSrc->au8[0]; puDst->au16[7] = uSrc1.au16[7] >> puSrc->au8[0]; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } IEM_DECL_IMPL_DEF(void, iemAImpl_psrlw_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) { RTUINT128U uSrc1 = *puDst; if (uShift <= 15) { puDst->au16[0] = uSrc1.au16[0] >> uShift; puDst->au16[1] = uSrc1.au16[1] >> uShift; puDst->au16[2] = uSrc1.au16[2] >> uShift; puDst->au16[3] = uSrc1.au16[3] >> uShift; puDst->au16[4] = uSrc1.au16[4] >> uShift; puDst->au16[5] = uSrc1.au16[5] >> uShift; puDst->au16[6] = uSrc1.au16[6] >> uShift; puDst->au16[7] = uSrc1.au16[7] >> uShift; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } #endif /* * PSRAW / VPSRAW */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; if (uSrc2.au64[0] <= 15) { uDst.ai16[0] = uSrc1.ai16[0] >> uSrc2.au8[0]; uDst.ai16[1] = uSrc1.ai16[1] >> uSrc2.au8[0]; uDst.ai16[2] = uSrc1.ai16[2] >> uSrc2.au8[0]; uDst.ai16[3] = uSrc1.ai16[3] >> uSrc2.au8[0]; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_imm_u64,(uint64_t *puDst, uint8_t uShift)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uDst; if (uShift <= 15) { uDst.ai16[0] = uSrc1.ai16[0] >> uShift; uDst.ai16[1] = uSrc1.ai16[1] >> uShift; uDst.ai16[2] = uSrc1.ai16[2] >> uShift; uDst.ai16[3] = uSrc1.ai16[3] >> uShift; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; if (puSrc->au64[0] <= 15) { puDst->ai16[0] = uSrc1.ai16[0] >> puSrc->au8[0]; puDst->ai16[1] = uSrc1.ai16[1] >> puSrc->au8[0]; puDst->ai16[2] = uSrc1.ai16[2] >> puSrc->au8[0]; puDst->ai16[3] = uSrc1.ai16[3] >> puSrc->au8[0]; puDst->ai16[4] = uSrc1.ai16[4] >> puSrc->au8[0]; puDst->ai16[5] = uSrc1.ai16[5] >> puSrc->au8[0]; puDst->ai16[6] = uSrc1.ai16[6] >> puSrc->au8[0]; puDst->ai16[7] = uSrc1.ai16[7] >> puSrc->au8[0]; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } IEM_DECL_IMPL_DEF(void, iemAImpl_psraw_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) { RTUINT128U uSrc1 = *puDst; if (uShift <= 15) { puDst->ai16[0] = uSrc1.ai16[0] >> uShift; puDst->ai16[1] = uSrc1.ai16[1] >> uShift; puDst->ai16[2] = uSrc1.ai16[2] >> uShift; puDst->ai16[3] = uSrc1.ai16[3] >> uShift; puDst->ai16[4] = uSrc1.ai16[4] >> uShift; puDst->ai16[5] = uSrc1.ai16[5] >> uShift; puDst->ai16[6] = uSrc1.ai16[6] >> uShift; puDst->ai16[7] = uSrc1.ai16[7] >> uShift; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } #endif /* * PSLLW / VPSLLW */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; if (uSrc2.au64[0] <= 15) { uDst.au16[0] = uSrc1.au16[0] << uSrc2.au8[0]; uDst.au16[1] = uSrc1.au16[1] << uSrc2.au8[0]; uDst.au16[2] = uSrc1.au16[2] << uSrc2.au8[0]; uDst.au16[3] = uSrc1.au16[3] << uSrc2.au8[0]; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_imm_u64,(uint64_t *puDst, uint8_t uShift)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uDst; if (uShift <= 15) { uDst.au16[0] = uSrc1.au16[0] << uShift; uDst.au16[1] = uSrc1.au16[1] << uShift; uDst.au16[2] = uSrc1.au16[2] << uShift; uDst.au16[3] = uSrc1.au16[3] << uShift; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; if (puSrc->au64[0] <= 15) { puDst->au16[0] = uSrc1.au16[0] << puSrc->au8[0]; puDst->au16[1] = uSrc1.au16[1] << puSrc->au8[0]; puDst->au16[2] = uSrc1.au16[2] << puSrc->au8[0]; puDst->au16[3] = uSrc1.au16[3] << puSrc->au8[0]; puDst->au16[4] = uSrc1.au16[4] << puSrc->au8[0]; puDst->au16[5] = uSrc1.au16[5] << puSrc->au8[0]; puDst->au16[6] = uSrc1.au16[6] << puSrc->au8[0]; puDst->au16[7] = uSrc1.au16[7] << puSrc->au8[0]; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } IEM_DECL_IMPL_DEF(void, iemAImpl_psllw_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) { RTUINT128U uSrc1 = *puDst; if (uShift <= 15) { puDst->au16[0] = uSrc1.au16[0] << uShift; puDst->au16[1] = uSrc1.au16[1] << uShift; puDst->au16[2] = uSrc1.au16[2] << uShift; puDst->au16[3] = uSrc1.au16[3] << uShift; puDst->au16[4] = uSrc1.au16[4] << uShift; puDst->au16[5] = uSrc1.au16[5] << uShift; puDst->au16[6] = uSrc1.au16[6] << uShift; puDst->au16[7] = uSrc1.au16[7] << uShift; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } #endif /* * PSRLD / VPSRLD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; if (uSrc2.au64[0] <= 31) { uDst.au32[0] = uSrc1.au32[0] >> uSrc2.au8[0]; uDst.au32[1] = uSrc1.au32[1] >> uSrc2.au8[0]; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_imm_u64,(uint64_t *puDst, uint8_t uShift)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uDst; if (uShift <= 31) { uDst.au32[0] = uSrc1.au32[0] >> uShift; uDst.au32[1] = uSrc1.au32[1] >> uShift; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; if (puSrc->au64[0] <= 31) { puDst->au32[0] = uSrc1.au32[0] >> puSrc->au8[0]; puDst->au32[1] = uSrc1.au32[1] >> puSrc->au8[0]; puDst->au32[2] = uSrc1.au32[2] >> puSrc->au8[0]; puDst->au32[3] = uSrc1.au32[3] >> puSrc->au8[0]; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } IEM_DECL_IMPL_DEF(void, iemAImpl_psrld_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) { RTUINT128U uSrc1 = *puDst; if (uShift <= 31) { puDst->au32[0] = uSrc1.au32[0] >> uShift; puDst->au32[1] = uSrc1.au32[1] >> uShift; puDst->au32[2] = uSrc1.au32[2] >> uShift; puDst->au32[3] = uSrc1.au32[3] >> uShift; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } #endif /* * PSRAD / VPSRAD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; if (uSrc2.au64[0] <= 31) { uDst.ai32[0] = uSrc1.ai32[0] >> uSrc2.au8[0]; uDst.ai32[1] = uSrc1.ai32[1] >> uSrc2.au8[0]; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_imm_u64,(uint64_t *puDst, uint8_t uShift)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uDst; if (uShift <= 31) { uDst.ai32[0] = uSrc1.ai32[0] >> uShift; uDst.ai32[1] = uSrc1.ai32[1] >> uShift; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; if (puSrc->au64[0] <= 31) { puDst->ai32[0] = uSrc1.ai32[0] >> puSrc->au8[0]; puDst->ai32[1] = uSrc1.ai32[1] >> puSrc->au8[0]; puDst->ai32[2] = uSrc1.ai32[2] >> puSrc->au8[0]; puDst->ai32[3] = uSrc1.ai32[3] >> puSrc->au8[0]; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } IEM_DECL_IMPL_DEF(void, iemAImpl_psrad_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) { RTUINT128U uSrc1 = *puDst; if (uShift <= 31) { puDst->ai32[0] = uSrc1.ai32[0] >> uShift; puDst->ai32[1] = uSrc1.ai32[1] >> uShift; puDst->ai32[2] = uSrc1.ai32[2] >> uShift; puDst->ai32[3] = uSrc1.ai32[3] >> uShift; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } #endif /* * PSLLD / VPSLLD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; if (uSrc2.au64[0] <= 31) { uDst.au32[0] = uSrc1.au32[0] << uSrc2.au8[0]; uDst.au32[1] = uSrc1.au32[1] << uSrc2.au8[0]; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_imm_u64,(uint64_t *puDst, uint8_t uShift)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uDst; if (uShift <= 31) { uDst.au32[0] = uSrc1.au32[0] << uShift; uDst.au32[1] = uSrc1.au32[1] << uShift; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; if (puSrc->au64[0] <= 31) { puDst->au32[0] = uSrc1.au32[0] << puSrc->au8[0]; puDst->au32[1] = uSrc1.au32[1] << puSrc->au8[0]; puDst->au32[2] = uSrc1.au32[2] << puSrc->au8[0]; puDst->au32[3] = uSrc1.au32[3] << puSrc->au8[0]; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } IEM_DECL_IMPL_DEF(void, iemAImpl_pslld_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) { RTUINT128U uSrc1 = *puDst; if (uShift <= 31) { puDst->au32[0] = uSrc1.au32[0] << uShift; puDst->au32[1] = uSrc1.au32[1] << uShift; puDst->au32[2] = uSrc1.au32[2] << uShift; puDst->au32[3] = uSrc1.au32[3] << uShift; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } #endif /* * PSRLQ / VPSRLQ */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; if (uSrc2.au64[0] <= 63) { uDst.au64[0] = uSrc1.au64[0] >> uSrc2.au8[0]; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_imm_u64,(uint64_t *puDst, uint8_t uShift)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uDst; if (uShift <= 63) { uDst.au64[0] = uSrc1.au64[0] >> uShift; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; if (puSrc->au64[0] <= 63) { puDst->au64[0] = uSrc1.au64[0] >> puSrc->au8[0]; puDst->au64[1] = uSrc1.au64[1] >> puSrc->au8[0]; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } IEM_DECL_IMPL_DEF(void, iemAImpl_psrlq_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) { RTUINT128U uSrc1 = *puDst; if (uShift <= 63) { puDst->au64[0] = uSrc1.au64[0] >> uShift; puDst->au64[1] = uSrc1.au64[1] >> uShift; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } #endif /* * PSLLQ / VPSLLQ */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; if (uSrc2.au64[0] <= 63) { uDst.au64[0] = uSrc1.au64[0] << uSrc2.au8[0]; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_imm_u64,(uint64_t *puDst, uint8_t uShift)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uDst; if (uShift <= 63) { uDst.au64[0] = uSrc1.au64[0] << uShift; } else { uDst.au64[0] = 0; } *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; if (puSrc->au64[0] <= 63) { puDst->au64[0] = uSrc1.au64[0] << puSrc->au8[0]; puDst->au64[1] = uSrc1.au64[1] << puSrc->au8[0]; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } IEM_DECL_IMPL_DEF(void, iemAImpl_psllq_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) { RTUINT128U uSrc1 = *puDst; if (uShift <= 63) { puDst->au64[0] = uSrc1.au64[0] << uShift; puDst->au64[1] = uSrc1.au64[1] << uShift; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } #endif /* * PSRLDQ / VPSRLDQ */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psrldq_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) { RTUINT128U uSrc1 = *puDst; if (uShift < 16) { int i; for (i = 0; i < 16 - uShift; ++i) puDst->au8[i] = uSrc1.au8[i + uShift]; for (i = 16 - uShift; i < 16; ++i) puDst->au8[i] = 0; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } #endif /* * PSLLDQ / VPSLLDQ */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pslldq_imm_u128,(PRTUINT128U puDst, uint8_t uShift)) { RTUINT128U uSrc1 = *puDst; if (uShift < 16) { int i; for (i = 0; i < uShift; ++i) puDst->au8[i] = 0; for (i = uShift; i < 16; ++i) puDst->au8[i] = uSrc1.au8[i - uShift]; } else { puDst->au64[0] = 0; puDst->au64[1] = 0; } } #endif /* * PMADDWD / VPMADDWD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddwd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.ai32[0] = (int32_t)uSrc1.ai16[0] * uSrc2.ai16[0] + (int32_t)uSrc1.ai16[1] * uSrc2.ai16[1]; uDst.ai32[1] = (int32_t)uSrc1.ai16[2] * uSrc2.ai16[2] + (int32_t)uSrc1.ai16[3] * uSrc2.ai16[3]; *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddwd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai32[0] = (int32_t)uSrc1.ai16[0] * puSrc->ai16[0] + (int32_t)uSrc1.ai16[1] * puSrc->ai16[1]; puDst->ai32[1] = (int32_t)uSrc1.ai16[2] * puSrc->ai16[2] + (int32_t)uSrc1.ai16[3] * puSrc->ai16[3]; puDst->ai32[2] = (int32_t)uSrc1.ai16[4] * puSrc->ai16[4] + (int32_t)uSrc1.ai16[5] * puSrc->ai16[5]; puDst->ai32[3] = (int32_t)uSrc1.ai16[6] * puSrc->ai16[6] + (int32_t)uSrc1.ai16[7] * puSrc->ai16[7]; RT_NOREF(pFpuState); } #endif /* * PMAXUB / VPMAXUB / PMAXUW / VPMAXUW / PMAXUD / VPMAXUD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxub_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au8[0] = RT_MAX(uSrc1.au8[0], uSrc2.au8[0]); uDst.au8[1] = RT_MAX(uSrc1.au8[1], uSrc2.au8[1]); uDst.au8[2] = RT_MAX(uSrc1.au8[2], uSrc2.au8[2]); uDst.au8[3] = RT_MAX(uSrc1.au8[3], uSrc2.au8[3]); uDst.au8[4] = RT_MAX(uSrc1.au8[4], uSrc2.au8[4]); uDst.au8[5] = RT_MAX(uSrc1.au8[5], uSrc2.au8[5]); uDst.au8[6] = RT_MAX(uSrc1.au8[6], uSrc2.au8[6]); uDst.au8[7] = RT_MAX(uSrc1.au8[7], uSrc2.au8[7]); *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxub_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au8[ 0] = RT_MAX(uSrc1.au8[ 0], puSrc->au8[ 0]); puDst->au8[ 1] = RT_MAX(uSrc1.au8[ 1], puSrc->au8[ 1]); puDst->au8[ 2] = RT_MAX(uSrc1.au8[ 2], puSrc->au8[ 2]); puDst->au8[ 3] = RT_MAX(uSrc1.au8[ 3], puSrc->au8[ 3]); puDst->au8[ 4] = RT_MAX(uSrc1.au8[ 4], puSrc->au8[ 4]); puDst->au8[ 5] = RT_MAX(uSrc1.au8[ 5], puSrc->au8[ 5]); puDst->au8[ 6] = RT_MAX(uSrc1.au8[ 6], puSrc->au8[ 6]); puDst->au8[ 7] = RT_MAX(uSrc1.au8[ 7], puSrc->au8[ 7]); puDst->au8[ 8] = RT_MAX(uSrc1.au8[ 8], puSrc->au8[ 8]); puDst->au8[ 9] = RT_MAX(uSrc1.au8[ 9], puSrc->au8[ 9]); puDst->au8[10] = RT_MAX(uSrc1.au8[10], puSrc->au8[10]); puDst->au8[11] = RT_MAX(uSrc1.au8[11], puSrc->au8[11]); puDst->au8[12] = RT_MAX(uSrc1.au8[12], puSrc->au8[12]); puDst->au8[13] = RT_MAX(uSrc1.au8[13], puSrc->au8[13]); puDst->au8[14] = RT_MAX(uSrc1.au8[14], puSrc->au8[14]); puDst->au8[15] = RT_MAX(uSrc1.au8[15], puSrc->au8[15]); RT_NOREF(pFpuState); } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxuw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au16[ 0] = RT_MAX(uSrc1.au16[ 0], puSrc->au16[ 0]); puDst->au16[ 1] = RT_MAX(uSrc1.au16[ 1], puSrc->au16[ 1]); puDst->au16[ 2] = RT_MAX(uSrc1.au16[ 2], puSrc->au16[ 2]); puDst->au16[ 3] = RT_MAX(uSrc1.au16[ 3], puSrc->au16[ 3]); puDst->au16[ 4] = RT_MAX(uSrc1.au16[ 4], puSrc->au16[ 4]); puDst->au16[ 5] = RT_MAX(uSrc1.au16[ 5], puSrc->au16[ 5]); puDst->au16[ 6] = RT_MAX(uSrc1.au16[ 6], puSrc->au16[ 6]); puDst->au16[ 7] = RT_MAX(uSrc1.au16[ 7], puSrc->au16[ 7]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxud_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au32[ 0] = RT_MAX(uSrc1.au32[ 0], puSrc->au32[ 0]); puDst->au32[ 1] = RT_MAX(uSrc1.au32[ 1], puSrc->au32[ 1]); puDst->au32[ 2] = RT_MAX(uSrc1.au32[ 2], puSrc->au32[ 2]); puDst->au32[ 3] = RT_MAX(uSrc1.au32[ 3], puSrc->au32[ 3]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxub_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->au8[ 0] = RT_MAX(puSrc1->au8[ 0], puSrc2->au8[ 0]); puDst->au8[ 1] = RT_MAX(puSrc1->au8[ 1], puSrc2->au8[ 1]); puDst->au8[ 2] = RT_MAX(puSrc1->au8[ 2], puSrc2->au8[ 2]); puDst->au8[ 3] = RT_MAX(puSrc1->au8[ 3], puSrc2->au8[ 3]); puDst->au8[ 4] = RT_MAX(puSrc1->au8[ 4], puSrc2->au8[ 4]); puDst->au8[ 5] = RT_MAX(puSrc1->au8[ 5], puSrc2->au8[ 5]); puDst->au8[ 6] = RT_MAX(puSrc1->au8[ 6], puSrc2->au8[ 6]); puDst->au8[ 7] = RT_MAX(puSrc1->au8[ 7], puSrc2->au8[ 7]); puDst->au8[ 8] = RT_MAX(puSrc1->au8[ 8], puSrc2->au8[ 8]); puDst->au8[ 9] = RT_MAX(puSrc1->au8[ 9], puSrc2->au8[ 9]); puDst->au8[10] = RT_MAX(puSrc1->au8[10], puSrc2->au8[10]); puDst->au8[11] = RT_MAX(puSrc1->au8[11], puSrc2->au8[11]); puDst->au8[12] = RT_MAX(puSrc1->au8[12], puSrc2->au8[12]); puDst->au8[13] = RT_MAX(puSrc1->au8[13], puSrc2->au8[13]); puDst->au8[14] = RT_MAX(puSrc1->au8[14], puSrc2->au8[14]); puDst->au8[15] = RT_MAX(puSrc1->au8[15], puSrc2->au8[15]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxub_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->au8[ 0] = RT_MAX(puSrc1->au8[ 0], puSrc2->au8[ 0]); puDst->au8[ 1] = RT_MAX(puSrc1->au8[ 1], puSrc2->au8[ 1]); puDst->au8[ 2] = RT_MAX(puSrc1->au8[ 2], puSrc2->au8[ 2]); puDst->au8[ 3] = RT_MAX(puSrc1->au8[ 3], puSrc2->au8[ 3]); puDst->au8[ 4] = RT_MAX(puSrc1->au8[ 4], puSrc2->au8[ 4]); puDst->au8[ 5] = RT_MAX(puSrc1->au8[ 5], puSrc2->au8[ 5]); puDst->au8[ 6] = RT_MAX(puSrc1->au8[ 6], puSrc2->au8[ 6]); puDst->au8[ 7] = RT_MAX(puSrc1->au8[ 7], puSrc2->au8[ 7]); puDst->au8[ 8] = RT_MAX(puSrc1->au8[ 8], puSrc2->au8[ 8]); puDst->au8[ 9] = RT_MAX(puSrc1->au8[ 9], puSrc2->au8[ 9]); puDst->au8[10] = RT_MAX(puSrc1->au8[10], puSrc2->au8[10]); puDst->au8[11] = RT_MAX(puSrc1->au8[11], puSrc2->au8[11]); puDst->au8[12] = RT_MAX(puSrc1->au8[12], puSrc2->au8[12]); puDst->au8[13] = RT_MAX(puSrc1->au8[13], puSrc2->au8[13]); puDst->au8[14] = RT_MAX(puSrc1->au8[14], puSrc2->au8[14]); puDst->au8[15] = RT_MAX(puSrc1->au8[15], puSrc2->au8[15]); puDst->au8[16] = RT_MAX(puSrc1->au8[16], puSrc2->au8[16]); puDst->au8[17] = RT_MAX(puSrc1->au8[17], puSrc2->au8[17]); puDst->au8[18] = RT_MAX(puSrc1->au8[18], puSrc2->au8[18]); puDst->au8[19] = RT_MAX(puSrc1->au8[19], puSrc2->au8[19]); puDst->au8[20] = RT_MAX(puSrc1->au8[20], puSrc2->au8[20]); puDst->au8[21] = RT_MAX(puSrc1->au8[21], puSrc2->au8[21]); puDst->au8[22] = RT_MAX(puSrc1->au8[22], puSrc2->au8[22]); puDst->au8[23] = RT_MAX(puSrc1->au8[23], puSrc2->au8[23]); puDst->au8[24] = RT_MAX(puSrc1->au8[24], puSrc2->au8[24]); puDst->au8[25] = RT_MAX(puSrc1->au8[25], puSrc2->au8[25]); puDst->au8[26] = RT_MAX(puSrc1->au8[26], puSrc2->au8[26]); puDst->au8[27] = RT_MAX(puSrc1->au8[27], puSrc2->au8[27]); puDst->au8[28] = RT_MAX(puSrc1->au8[28], puSrc2->au8[28]); puDst->au8[29] = RT_MAX(puSrc1->au8[29], puSrc2->au8[29]); puDst->au8[30] = RT_MAX(puSrc1->au8[30], puSrc2->au8[30]); puDst->au8[31] = RT_MAX(puSrc1->au8[31], puSrc2->au8[31]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxuw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->au16[ 0] = RT_MAX(puSrc1->au16[ 0], puSrc2->au16[ 0]); puDst->au16[ 1] = RT_MAX(puSrc1->au16[ 1], puSrc2->au16[ 1]); puDst->au16[ 2] = RT_MAX(puSrc1->au16[ 2], puSrc2->au16[ 2]); puDst->au16[ 3] = RT_MAX(puSrc1->au16[ 3], puSrc2->au16[ 3]); puDst->au16[ 4] = RT_MAX(puSrc1->au16[ 4], puSrc2->au16[ 4]); puDst->au16[ 5] = RT_MAX(puSrc1->au16[ 5], puSrc2->au16[ 5]); puDst->au16[ 6] = RT_MAX(puSrc1->au16[ 6], puSrc2->au16[ 6]); puDst->au16[ 7] = RT_MAX(puSrc1->au16[ 7], puSrc2->au16[ 7]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxuw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->au16[ 0] = RT_MAX(puSrc1->au16[ 0], puSrc2->au16[ 0]); puDst->au16[ 1] = RT_MAX(puSrc1->au16[ 1], puSrc2->au16[ 1]); puDst->au16[ 2] = RT_MAX(puSrc1->au16[ 2], puSrc2->au16[ 2]); puDst->au16[ 3] = RT_MAX(puSrc1->au16[ 3], puSrc2->au16[ 3]); puDst->au16[ 4] = RT_MAX(puSrc1->au16[ 4], puSrc2->au16[ 4]); puDst->au16[ 5] = RT_MAX(puSrc1->au16[ 5], puSrc2->au16[ 5]); puDst->au16[ 6] = RT_MAX(puSrc1->au16[ 6], puSrc2->au16[ 6]); puDst->au16[ 7] = RT_MAX(puSrc1->au16[ 7], puSrc2->au16[ 7]); puDst->au16[ 8] = RT_MAX(puSrc1->au16[ 8], puSrc2->au16[ 8]); puDst->au16[ 9] = RT_MAX(puSrc1->au16[ 9], puSrc2->au16[ 9]); puDst->au16[10] = RT_MAX(puSrc1->au16[10], puSrc2->au16[10]); puDst->au16[11] = RT_MAX(puSrc1->au16[11], puSrc2->au16[11]); puDst->au16[12] = RT_MAX(puSrc1->au16[12], puSrc2->au16[12]); puDst->au16[13] = RT_MAX(puSrc1->au16[13], puSrc2->au16[13]); puDst->au16[14] = RT_MAX(puSrc1->au16[14], puSrc2->au16[14]); puDst->au16[15] = RT_MAX(puSrc1->au16[15], puSrc2->au16[15]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxud_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->au32[ 0] = RT_MAX(puSrc1->au32[ 0], puSrc2->au32[ 0]); puDst->au32[ 1] = RT_MAX(puSrc1->au32[ 1], puSrc2->au32[ 1]); puDst->au32[ 2] = RT_MAX(puSrc1->au32[ 2], puSrc2->au32[ 2]); puDst->au32[ 3] = RT_MAX(puSrc1->au32[ 3], puSrc2->au32[ 3]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxud_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->au32[ 0] = RT_MAX(puSrc1->au32[ 0], puSrc2->au32[ 0]); puDst->au32[ 1] = RT_MAX(puSrc1->au32[ 1], puSrc2->au32[ 1]); puDst->au32[ 2] = RT_MAX(puSrc1->au32[ 2], puSrc2->au32[ 2]); puDst->au32[ 3] = RT_MAX(puSrc1->au32[ 3], puSrc2->au32[ 3]); puDst->au32[ 4] = RT_MAX(puSrc1->au32[ 4], puSrc2->au32[ 4]); puDst->au32[ 5] = RT_MAX(puSrc1->au32[ 5], puSrc2->au32[ 5]); puDst->au32[ 6] = RT_MAX(puSrc1->au32[ 6], puSrc2->au32[ 6]); puDst->au32[ 7] = RT_MAX(puSrc1->au32[ 7], puSrc2->au32[ 7]); RT_NOREF(pExtState); } /* * PMAXSB / VPMAXSB / PMAXSW / VPMAXSW / PMAXSD / VPMAXSD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.ai16[0] = RT_MAX(uSrc1.ai16[0], uSrc2.ai16[0]); uDst.ai16[1] = RT_MAX(uSrc1.ai16[1], uSrc2.ai16[1]); uDst.ai16[2] = RT_MAX(uSrc1.ai16[2], uSrc2.ai16[2]); uDst.ai16[3] = RT_MAX(uSrc1.ai16[3], uSrc2.ai16[3]); *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai16[ 0] = RT_MAX(uSrc1.ai16[ 0], puSrc->ai16[ 0]); puDst->ai16[ 1] = RT_MAX(uSrc1.ai16[ 1], puSrc->ai16[ 1]); puDst->ai16[ 2] = RT_MAX(uSrc1.ai16[ 2], puSrc->ai16[ 2]); puDst->ai16[ 3] = RT_MAX(uSrc1.ai16[ 3], puSrc->ai16[ 3]); puDst->ai16[ 4] = RT_MAX(uSrc1.ai16[ 4], puSrc->ai16[ 4]); puDst->ai16[ 5] = RT_MAX(uSrc1.ai16[ 5], puSrc->ai16[ 5]); puDst->ai16[ 6] = RT_MAX(uSrc1.ai16[ 6], puSrc->ai16[ 6]); puDst->ai16[ 7] = RT_MAX(uSrc1.ai16[ 7], puSrc->ai16[ 7]); RT_NOREF(pFpuState); } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai8[ 0] = RT_MAX(uSrc1.ai8[ 0], puSrc->ai8[ 0]); puDst->ai8[ 1] = RT_MAX(uSrc1.ai8[ 1], puSrc->ai8[ 1]); puDst->ai8[ 2] = RT_MAX(uSrc1.ai8[ 2], puSrc->ai8[ 2]); puDst->ai8[ 3] = RT_MAX(uSrc1.ai8[ 3], puSrc->ai8[ 3]); puDst->ai8[ 4] = RT_MAX(uSrc1.ai8[ 4], puSrc->ai8[ 4]); puDst->ai8[ 5] = RT_MAX(uSrc1.ai8[ 5], puSrc->ai8[ 5]); puDst->ai8[ 6] = RT_MAX(uSrc1.ai8[ 6], puSrc->ai8[ 6]); puDst->ai8[ 7] = RT_MAX(uSrc1.ai8[ 7], puSrc->ai8[ 7]); puDst->ai8[ 8] = RT_MAX(uSrc1.ai8[ 8], puSrc->ai8[ 8]); puDst->ai8[ 9] = RT_MAX(uSrc1.ai8[ 9], puSrc->ai8[ 9]); puDst->ai8[10] = RT_MAX(uSrc1.ai8[10], puSrc->ai8[10]); puDst->ai8[11] = RT_MAX(uSrc1.ai8[11], puSrc->ai8[11]); puDst->ai8[12] = RT_MAX(uSrc1.ai8[12], puSrc->ai8[12]); puDst->ai8[13] = RT_MAX(uSrc1.ai8[13], puSrc->ai8[13]); puDst->ai8[14] = RT_MAX(uSrc1.ai8[14], puSrc->ai8[14]); puDst->ai8[15] = RT_MAX(uSrc1.ai8[15], puSrc->ai8[15]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pmaxsd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai32[ 0] = RT_MAX(uSrc1.ai32[ 0], puSrc->ai32[ 0]); puDst->ai32[ 1] = RT_MAX(uSrc1.ai32[ 1], puSrc->ai32[ 1]); puDst->ai32[ 2] = RT_MAX(uSrc1.ai32[ 2], puSrc->ai32[ 2]); puDst->ai32[ 3] = RT_MAX(uSrc1.ai32[ 3], puSrc->ai32[ 3]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->ai8[ 0] = RT_MAX(puSrc1->ai8[ 0], puSrc2->ai8[ 0]); puDst->ai8[ 1] = RT_MAX(puSrc1->ai8[ 1], puSrc2->ai8[ 1]); puDst->ai8[ 2] = RT_MAX(puSrc1->ai8[ 2], puSrc2->ai8[ 2]); puDst->ai8[ 3] = RT_MAX(puSrc1->ai8[ 3], puSrc2->ai8[ 3]); puDst->ai8[ 4] = RT_MAX(puSrc1->ai8[ 4], puSrc2->ai8[ 4]); puDst->ai8[ 5] = RT_MAX(puSrc1->ai8[ 5], puSrc2->ai8[ 5]); puDst->ai8[ 6] = RT_MAX(puSrc1->ai8[ 6], puSrc2->ai8[ 6]); puDst->ai8[ 7] = RT_MAX(puSrc1->ai8[ 7], puSrc2->ai8[ 7]); puDst->ai8[ 8] = RT_MAX(puSrc1->ai8[ 8], puSrc2->ai8[ 8]); puDst->ai8[ 9] = RT_MAX(puSrc1->ai8[ 9], puSrc2->ai8[ 9]); puDst->ai8[10] = RT_MAX(puSrc1->ai8[10], puSrc2->ai8[10]); puDst->ai8[11] = RT_MAX(puSrc1->ai8[11], puSrc2->ai8[11]); puDst->ai8[12] = RT_MAX(puSrc1->ai8[12], puSrc2->ai8[12]); puDst->ai8[13] = RT_MAX(puSrc1->ai8[13], puSrc2->ai8[13]); puDst->ai8[14] = RT_MAX(puSrc1->ai8[14], puSrc2->ai8[14]); puDst->ai8[15] = RT_MAX(puSrc1->ai8[15], puSrc2->ai8[15]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->ai8[ 0] = RT_MAX(puSrc1->ai8[ 0], puSrc2->ai8[ 0]); puDst->ai8[ 1] = RT_MAX(puSrc1->ai8[ 1], puSrc2->ai8[ 1]); puDst->ai8[ 2] = RT_MAX(puSrc1->ai8[ 2], puSrc2->ai8[ 2]); puDst->ai8[ 3] = RT_MAX(puSrc1->ai8[ 3], puSrc2->ai8[ 3]); puDst->ai8[ 4] = RT_MAX(puSrc1->ai8[ 4], puSrc2->ai8[ 4]); puDst->ai8[ 5] = RT_MAX(puSrc1->ai8[ 5], puSrc2->ai8[ 5]); puDst->ai8[ 6] = RT_MAX(puSrc1->ai8[ 6], puSrc2->ai8[ 6]); puDst->ai8[ 7] = RT_MAX(puSrc1->ai8[ 7], puSrc2->ai8[ 7]); puDst->ai8[ 8] = RT_MAX(puSrc1->ai8[ 8], puSrc2->ai8[ 8]); puDst->ai8[ 9] = RT_MAX(puSrc1->ai8[ 9], puSrc2->ai8[ 9]); puDst->ai8[10] = RT_MAX(puSrc1->ai8[10], puSrc2->ai8[10]); puDst->ai8[11] = RT_MAX(puSrc1->ai8[11], puSrc2->ai8[11]); puDst->ai8[12] = RT_MAX(puSrc1->ai8[12], puSrc2->ai8[12]); puDst->ai8[13] = RT_MAX(puSrc1->ai8[13], puSrc2->ai8[13]); puDst->ai8[14] = RT_MAX(puSrc1->ai8[14], puSrc2->ai8[14]); puDst->ai8[15] = RT_MAX(puSrc1->ai8[15], puSrc2->ai8[15]); puDst->ai8[16] = RT_MAX(puSrc1->ai8[16], puSrc2->ai8[16]); puDst->ai8[17] = RT_MAX(puSrc1->ai8[17], puSrc2->ai8[17]); puDst->ai8[18] = RT_MAX(puSrc1->ai8[18], puSrc2->ai8[18]); puDst->ai8[19] = RT_MAX(puSrc1->ai8[19], puSrc2->ai8[19]); puDst->ai8[20] = RT_MAX(puSrc1->ai8[20], puSrc2->ai8[20]); puDst->ai8[21] = RT_MAX(puSrc1->ai8[21], puSrc2->ai8[21]); puDst->ai8[22] = RT_MAX(puSrc1->ai8[22], puSrc2->ai8[22]); puDst->ai8[23] = RT_MAX(puSrc1->ai8[23], puSrc2->ai8[23]); puDst->ai8[24] = RT_MAX(puSrc1->ai8[24], puSrc2->ai8[24]); puDst->ai8[25] = RT_MAX(puSrc1->ai8[25], puSrc2->ai8[25]); puDst->ai8[26] = RT_MAX(puSrc1->ai8[26], puSrc2->ai8[26]); puDst->ai8[27] = RT_MAX(puSrc1->ai8[27], puSrc2->ai8[27]); puDst->ai8[28] = RT_MAX(puSrc1->ai8[28], puSrc2->ai8[28]); puDst->ai8[29] = RT_MAX(puSrc1->ai8[29], puSrc2->ai8[29]); puDst->ai8[30] = RT_MAX(puSrc1->ai8[30], puSrc2->ai8[30]); puDst->ai8[31] = RT_MAX(puSrc1->ai8[31], puSrc2->ai8[31]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->ai16[ 0] = RT_MAX(puSrc1->ai16[ 0], puSrc2->ai16[ 0]); puDst->ai16[ 1] = RT_MAX(puSrc1->ai16[ 1], puSrc2->ai16[ 1]); puDst->ai16[ 2] = RT_MAX(puSrc1->ai16[ 2], puSrc2->ai16[ 2]); puDst->ai16[ 3] = RT_MAX(puSrc1->ai16[ 3], puSrc2->ai16[ 3]); puDst->ai16[ 4] = RT_MAX(puSrc1->ai16[ 4], puSrc2->ai16[ 4]); puDst->ai16[ 5] = RT_MAX(puSrc1->ai16[ 5], puSrc2->ai16[ 5]); puDst->ai16[ 6] = RT_MAX(puSrc1->ai16[ 6], puSrc2->ai16[ 6]); puDst->ai16[ 7] = RT_MAX(puSrc1->ai16[ 7], puSrc2->ai16[ 7]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->ai16[ 0] = RT_MAX(puSrc1->ai16[ 0], puSrc2->ai16[ 0]); puDst->ai16[ 1] = RT_MAX(puSrc1->ai16[ 1], puSrc2->ai16[ 1]); puDst->ai16[ 2] = RT_MAX(puSrc1->ai16[ 2], puSrc2->ai16[ 2]); puDst->ai16[ 3] = RT_MAX(puSrc1->ai16[ 3], puSrc2->ai16[ 3]); puDst->ai16[ 4] = RT_MAX(puSrc1->ai16[ 4], puSrc2->ai16[ 4]); puDst->ai16[ 5] = RT_MAX(puSrc1->ai16[ 5], puSrc2->ai16[ 5]); puDst->ai16[ 6] = RT_MAX(puSrc1->ai16[ 6], puSrc2->ai16[ 6]); puDst->ai16[ 7] = RT_MAX(puSrc1->ai16[ 7], puSrc2->ai16[ 7]); puDst->ai16[ 8] = RT_MAX(puSrc1->ai16[ 8], puSrc2->ai16[ 8]); puDst->ai16[ 9] = RT_MAX(puSrc1->ai16[ 9], puSrc2->ai16[ 9]); puDst->ai16[10] = RT_MAX(puSrc1->ai16[10], puSrc2->ai16[10]); puDst->ai16[11] = RT_MAX(puSrc1->ai16[11], puSrc2->ai16[11]); puDst->ai16[12] = RT_MAX(puSrc1->ai16[12], puSrc2->ai16[12]); puDst->ai16[13] = RT_MAX(puSrc1->ai16[13], puSrc2->ai16[13]); puDst->ai16[14] = RT_MAX(puSrc1->ai16[14], puSrc2->ai16[14]); puDst->ai16[15] = RT_MAX(puSrc1->ai16[15], puSrc2->ai16[15]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->ai32[ 0] = RT_MAX(puSrc1->ai32[ 0], puSrc2->ai32[ 0]); puDst->ai32[ 1] = RT_MAX(puSrc1->ai32[ 1], puSrc2->ai32[ 1]); puDst->ai32[ 2] = RT_MAX(puSrc1->ai32[ 2], puSrc2->ai32[ 2]); puDst->ai32[ 3] = RT_MAX(puSrc1->ai32[ 3], puSrc2->ai32[ 3]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaxsd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->ai32[ 0] = RT_MAX(puSrc1->ai32[ 0], puSrc2->ai32[ 0]); puDst->ai32[ 1] = RT_MAX(puSrc1->ai32[ 1], puSrc2->ai32[ 1]); puDst->ai32[ 2] = RT_MAX(puSrc1->ai32[ 2], puSrc2->ai32[ 2]); puDst->ai32[ 3] = RT_MAX(puSrc1->ai32[ 3], puSrc2->ai32[ 3]); puDst->ai32[ 4] = RT_MAX(puSrc1->ai32[ 4], puSrc2->ai32[ 4]); puDst->ai32[ 5] = RT_MAX(puSrc1->ai32[ 5], puSrc2->ai32[ 5]); puDst->ai32[ 6] = RT_MAX(puSrc1->ai32[ 6], puSrc2->ai32[ 6]); puDst->ai32[ 7] = RT_MAX(puSrc1->ai32[ 7], puSrc2->ai32[ 7]); RT_NOREF(pExtState); } /* * PMINUB / VPMINUB / PMINUW / VPMINUW / PMINUD / VPMINUD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pminub_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au8[0] = RT_MIN(uSrc1.au8[0], uSrc2.au8[0]); uDst.au8[1] = RT_MIN(uSrc1.au8[1], uSrc2.au8[1]); uDst.au8[2] = RT_MIN(uSrc1.au8[2], uSrc2.au8[2]); uDst.au8[3] = RT_MIN(uSrc1.au8[3], uSrc2.au8[3]); uDst.au8[4] = RT_MIN(uSrc1.au8[4], uSrc2.au8[4]); uDst.au8[5] = RT_MIN(uSrc1.au8[5], uSrc2.au8[5]); uDst.au8[6] = RT_MIN(uSrc1.au8[6], uSrc2.au8[6]); uDst.au8[7] = RT_MIN(uSrc1.au8[7], uSrc2.au8[7]); *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pminub_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au8[ 0] = RT_MIN(uSrc1.au8[ 0], puSrc->au8[ 0]); puDst->au8[ 1] = RT_MIN(uSrc1.au8[ 1], puSrc->au8[ 1]); puDst->au8[ 2] = RT_MIN(uSrc1.au8[ 2], puSrc->au8[ 2]); puDst->au8[ 3] = RT_MIN(uSrc1.au8[ 3], puSrc->au8[ 3]); puDst->au8[ 4] = RT_MIN(uSrc1.au8[ 4], puSrc->au8[ 4]); puDst->au8[ 5] = RT_MIN(uSrc1.au8[ 5], puSrc->au8[ 5]); puDst->au8[ 6] = RT_MIN(uSrc1.au8[ 6], puSrc->au8[ 6]); puDst->au8[ 7] = RT_MIN(uSrc1.au8[ 7], puSrc->au8[ 7]); puDst->au8[ 8] = RT_MIN(uSrc1.au8[ 8], puSrc->au8[ 8]); puDst->au8[ 9] = RT_MIN(uSrc1.au8[ 9], puSrc->au8[ 9]); puDst->au8[10] = RT_MIN(uSrc1.au8[10], puSrc->au8[10]); puDst->au8[11] = RT_MIN(uSrc1.au8[11], puSrc->au8[11]); puDst->au8[12] = RT_MIN(uSrc1.au8[12], puSrc->au8[12]); puDst->au8[13] = RT_MIN(uSrc1.au8[13], puSrc->au8[13]); puDst->au8[14] = RT_MIN(uSrc1.au8[14], puSrc->au8[14]); puDst->au8[15] = RT_MIN(uSrc1.au8[15], puSrc->au8[15]); RT_NOREF(pFpuState); } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_pminuw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au16[ 0] = RT_MIN(uSrc1.au16[ 0], puSrc->au16[ 0]); puDst->au16[ 1] = RT_MIN(uSrc1.au16[ 1], puSrc->au16[ 1]); puDst->au16[ 2] = RT_MIN(uSrc1.au16[ 2], puSrc->au16[ 2]); puDst->au16[ 3] = RT_MIN(uSrc1.au16[ 3], puSrc->au16[ 3]); puDst->au16[ 4] = RT_MIN(uSrc1.au16[ 4], puSrc->au16[ 4]); puDst->au16[ 5] = RT_MIN(uSrc1.au16[ 5], puSrc->au16[ 5]); puDst->au16[ 6] = RT_MIN(uSrc1.au16[ 6], puSrc->au16[ 6]); puDst->au16[ 7] = RT_MIN(uSrc1.au16[ 7], puSrc->au16[ 7]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pminud_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au32[ 0] = RT_MIN(uSrc1.au32[ 0], puSrc->au32[ 0]); puDst->au32[ 1] = RT_MIN(uSrc1.au32[ 1], puSrc->au32[ 1]); puDst->au32[ 2] = RT_MIN(uSrc1.au32[ 2], puSrc->au32[ 2]); puDst->au32[ 3] = RT_MIN(uSrc1.au32[ 3], puSrc->au32[ 3]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminub_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->au8[ 0] = RT_MIN(puSrc1->au8[ 0], puSrc2->au8[ 0]); puDst->au8[ 1] = RT_MIN(puSrc1->au8[ 1], puSrc2->au8[ 1]); puDst->au8[ 2] = RT_MIN(puSrc1->au8[ 2], puSrc2->au8[ 2]); puDst->au8[ 3] = RT_MIN(puSrc1->au8[ 3], puSrc2->au8[ 3]); puDst->au8[ 4] = RT_MIN(puSrc1->au8[ 4], puSrc2->au8[ 4]); puDst->au8[ 5] = RT_MIN(puSrc1->au8[ 5], puSrc2->au8[ 5]); puDst->au8[ 6] = RT_MIN(puSrc1->au8[ 6], puSrc2->au8[ 6]); puDst->au8[ 7] = RT_MIN(puSrc1->au8[ 7], puSrc2->au8[ 7]); puDst->au8[ 8] = RT_MIN(puSrc1->au8[ 8], puSrc2->au8[ 8]); puDst->au8[ 9] = RT_MIN(puSrc1->au8[ 9], puSrc2->au8[ 9]); puDst->au8[10] = RT_MIN(puSrc1->au8[10], puSrc2->au8[10]); puDst->au8[11] = RT_MIN(puSrc1->au8[11], puSrc2->au8[11]); puDst->au8[12] = RT_MIN(puSrc1->au8[12], puSrc2->au8[12]); puDst->au8[13] = RT_MIN(puSrc1->au8[13], puSrc2->au8[13]); puDst->au8[14] = RT_MIN(puSrc1->au8[14], puSrc2->au8[14]); puDst->au8[15] = RT_MIN(puSrc1->au8[15], puSrc2->au8[15]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminub_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->au8[ 0] = RT_MIN(puSrc1->au8[ 0], puSrc2->au8[ 0]); puDst->au8[ 1] = RT_MIN(puSrc1->au8[ 1], puSrc2->au8[ 1]); puDst->au8[ 2] = RT_MIN(puSrc1->au8[ 2], puSrc2->au8[ 2]); puDst->au8[ 3] = RT_MIN(puSrc1->au8[ 3], puSrc2->au8[ 3]); puDst->au8[ 4] = RT_MIN(puSrc1->au8[ 4], puSrc2->au8[ 4]); puDst->au8[ 5] = RT_MIN(puSrc1->au8[ 5], puSrc2->au8[ 5]); puDst->au8[ 6] = RT_MIN(puSrc1->au8[ 6], puSrc2->au8[ 6]); puDst->au8[ 7] = RT_MIN(puSrc1->au8[ 7], puSrc2->au8[ 7]); puDst->au8[ 8] = RT_MIN(puSrc1->au8[ 8], puSrc2->au8[ 8]); puDst->au8[ 9] = RT_MIN(puSrc1->au8[ 9], puSrc2->au8[ 9]); puDst->au8[10] = RT_MIN(puSrc1->au8[10], puSrc2->au8[10]); puDst->au8[11] = RT_MIN(puSrc1->au8[11], puSrc2->au8[11]); puDst->au8[12] = RT_MIN(puSrc1->au8[12], puSrc2->au8[12]); puDst->au8[13] = RT_MIN(puSrc1->au8[13], puSrc2->au8[13]); puDst->au8[14] = RT_MIN(puSrc1->au8[14], puSrc2->au8[14]); puDst->au8[15] = RT_MIN(puSrc1->au8[15], puSrc2->au8[15]); puDst->au8[16] = RT_MIN(puSrc1->au8[16], puSrc2->au8[16]); puDst->au8[17] = RT_MIN(puSrc1->au8[17], puSrc2->au8[17]); puDst->au8[18] = RT_MIN(puSrc1->au8[18], puSrc2->au8[18]); puDst->au8[19] = RT_MIN(puSrc1->au8[19], puSrc2->au8[19]); puDst->au8[20] = RT_MIN(puSrc1->au8[20], puSrc2->au8[20]); puDst->au8[21] = RT_MIN(puSrc1->au8[21], puSrc2->au8[21]); puDst->au8[22] = RT_MIN(puSrc1->au8[22], puSrc2->au8[22]); puDst->au8[23] = RT_MIN(puSrc1->au8[23], puSrc2->au8[23]); puDst->au8[24] = RT_MIN(puSrc1->au8[24], puSrc2->au8[24]); puDst->au8[25] = RT_MIN(puSrc1->au8[25], puSrc2->au8[25]); puDst->au8[26] = RT_MIN(puSrc1->au8[26], puSrc2->au8[26]); puDst->au8[27] = RT_MIN(puSrc1->au8[27], puSrc2->au8[27]); puDst->au8[28] = RT_MIN(puSrc1->au8[28], puSrc2->au8[28]); puDst->au8[29] = RT_MIN(puSrc1->au8[29], puSrc2->au8[29]); puDst->au8[30] = RT_MIN(puSrc1->au8[30], puSrc2->au8[30]); puDst->au8[31] = RT_MIN(puSrc1->au8[31], puSrc2->au8[31]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminuw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->au16[ 0] = RT_MIN(puSrc1->au16[ 0], puSrc2->au16[ 0]); puDst->au16[ 1] = RT_MIN(puSrc1->au16[ 1], puSrc2->au16[ 1]); puDst->au16[ 2] = RT_MIN(puSrc1->au16[ 2], puSrc2->au16[ 2]); puDst->au16[ 3] = RT_MIN(puSrc1->au16[ 3], puSrc2->au16[ 3]); puDst->au16[ 4] = RT_MIN(puSrc1->au16[ 4], puSrc2->au16[ 4]); puDst->au16[ 5] = RT_MIN(puSrc1->au16[ 5], puSrc2->au16[ 5]); puDst->au16[ 6] = RT_MIN(puSrc1->au16[ 6], puSrc2->au16[ 6]); puDst->au16[ 7] = RT_MIN(puSrc1->au16[ 7], puSrc2->au16[ 7]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminuw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->au16[ 0] = RT_MIN(puSrc1->au16[ 0], puSrc2->au16[ 0]); puDst->au16[ 1] = RT_MIN(puSrc1->au16[ 1], puSrc2->au16[ 1]); puDst->au16[ 2] = RT_MIN(puSrc1->au16[ 2], puSrc2->au16[ 2]); puDst->au16[ 3] = RT_MIN(puSrc1->au16[ 3], puSrc2->au16[ 3]); puDst->au16[ 4] = RT_MIN(puSrc1->au16[ 4], puSrc2->au16[ 4]); puDst->au16[ 5] = RT_MIN(puSrc1->au16[ 5], puSrc2->au16[ 5]); puDst->au16[ 6] = RT_MIN(puSrc1->au16[ 6], puSrc2->au16[ 6]); puDst->au16[ 7] = RT_MIN(puSrc1->au16[ 7], puSrc2->au16[ 7]); puDst->au16[ 8] = RT_MIN(puSrc1->au16[ 8], puSrc2->au16[ 8]); puDst->au16[ 9] = RT_MIN(puSrc1->au16[ 9], puSrc2->au16[ 9]); puDst->au16[10] = RT_MIN(puSrc1->au16[10], puSrc2->au16[10]); puDst->au16[11] = RT_MIN(puSrc1->au16[11], puSrc2->au16[11]); puDst->au16[12] = RT_MIN(puSrc1->au16[12], puSrc2->au16[12]); puDst->au16[13] = RT_MIN(puSrc1->au16[13], puSrc2->au16[13]); puDst->au16[14] = RT_MIN(puSrc1->au16[14], puSrc2->au16[14]); puDst->au16[15] = RT_MIN(puSrc1->au16[15], puSrc2->au16[15]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminud_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->au32[ 0] = RT_MIN(puSrc1->au32[ 0], puSrc2->au32[ 0]); puDst->au32[ 1] = RT_MIN(puSrc1->au32[ 1], puSrc2->au32[ 1]); puDst->au32[ 2] = RT_MIN(puSrc1->au32[ 2], puSrc2->au32[ 2]); puDst->au32[ 3] = RT_MIN(puSrc1->au32[ 3], puSrc2->au32[ 3]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminud_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->au32[ 0] = RT_MIN(puSrc1->au32[ 0], puSrc2->au32[ 0]); puDst->au32[ 1] = RT_MIN(puSrc1->au32[ 1], puSrc2->au32[ 1]); puDst->au32[ 2] = RT_MIN(puSrc1->au32[ 2], puSrc2->au32[ 2]); puDst->au32[ 3] = RT_MIN(puSrc1->au32[ 3], puSrc2->au32[ 3]); puDst->au32[ 4] = RT_MIN(puSrc1->au32[ 4], puSrc2->au32[ 4]); puDst->au32[ 5] = RT_MIN(puSrc1->au32[ 5], puSrc2->au32[ 5]); puDst->au32[ 6] = RT_MIN(puSrc1->au32[ 6], puSrc2->au32[ 6]); puDst->au32[ 7] = RT_MIN(puSrc1->au32[ 7], puSrc2->au32[ 7]); RT_NOREF(pExtState); } /* * PMINSB / VPMINSB / PMINSW / VPMINSW / PMINSD / VPMINSD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pminsw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.ai16[0] = RT_MIN(uSrc1.ai16[0], uSrc2.ai16[0]); uDst.ai16[1] = RT_MIN(uSrc1.ai16[1], uSrc2.ai16[1]); uDst.ai16[2] = RT_MIN(uSrc1.ai16[2], uSrc2.ai16[2]); uDst.ai16[3] = RT_MIN(uSrc1.ai16[3], uSrc2.ai16[3]); *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pminsw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai16[ 0] = RT_MIN(uSrc1.ai16[ 0], puSrc->ai16[ 0]); puDst->ai16[ 1] = RT_MIN(uSrc1.ai16[ 1], puSrc->ai16[ 1]); puDst->ai16[ 2] = RT_MIN(uSrc1.ai16[ 2], puSrc->ai16[ 2]); puDst->ai16[ 3] = RT_MIN(uSrc1.ai16[ 3], puSrc->ai16[ 3]); puDst->ai16[ 4] = RT_MIN(uSrc1.ai16[ 4], puSrc->ai16[ 4]); puDst->ai16[ 5] = RT_MIN(uSrc1.ai16[ 5], puSrc->ai16[ 5]); puDst->ai16[ 6] = RT_MIN(uSrc1.ai16[ 6], puSrc->ai16[ 6]); puDst->ai16[ 7] = RT_MIN(uSrc1.ai16[ 7], puSrc->ai16[ 7]); RT_NOREF(pFpuState); } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_pminsb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai8[ 0] = RT_MIN(uSrc1.ai8[ 0], puSrc->ai8[ 0]); puDst->ai8[ 1] = RT_MIN(uSrc1.ai8[ 1], puSrc->ai8[ 1]); puDst->ai8[ 2] = RT_MIN(uSrc1.ai8[ 2], puSrc->ai8[ 2]); puDst->ai8[ 3] = RT_MIN(uSrc1.ai8[ 3], puSrc->ai8[ 3]); puDst->ai8[ 4] = RT_MIN(uSrc1.ai8[ 4], puSrc->ai8[ 4]); puDst->ai8[ 5] = RT_MIN(uSrc1.ai8[ 5], puSrc->ai8[ 5]); puDst->ai8[ 6] = RT_MIN(uSrc1.ai8[ 6], puSrc->ai8[ 6]); puDst->ai8[ 7] = RT_MIN(uSrc1.ai8[ 7], puSrc->ai8[ 7]); puDst->ai8[ 8] = RT_MIN(uSrc1.ai8[ 8], puSrc->ai8[ 8]); puDst->ai8[ 9] = RT_MIN(uSrc1.ai8[ 9], puSrc->ai8[ 9]); puDst->ai8[10] = RT_MIN(uSrc1.ai8[10], puSrc->ai8[10]); puDst->ai8[11] = RT_MIN(uSrc1.ai8[11], puSrc->ai8[11]); puDst->ai8[12] = RT_MIN(uSrc1.ai8[12], puSrc->ai8[12]); puDst->ai8[13] = RT_MIN(uSrc1.ai8[13], puSrc->ai8[13]); puDst->ai8[14] = RT_MIN(uSrc1.ai8[14], puSrc->ai8[14]); puDst->ai8[15] = RT_MIN(uSrc1.ai8[15], puSrc->ai8[15]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pminsd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai32[ 0] = RT_MIN(uSrc1.ai32[ 0], puSrc->ai32[ 0]); puDst->ai32[ 1] = RT_MIN(uSrc1.ai32[ 1], puSrc->ai32[ 1]); puDst->ai32[ 2] = RT_MIN(uSrc1.ai32[ 2], puSrc->ai32[ 2]); puDst->ai32[ 3] = RT_MIN(uSrc1.ai32[ 3], puSrc->ai32[ 3]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->ai8[ 0] = RT_MIN(puSrc1->ai8[ 0], puSrc2->ai8[ 0]); puDst->ai8[ 1] = RT_MIN(puSrc1->ai8[ 1], puSrc2->ai8[ 1]); puDst->ai8[ 2] = RT_MIN(puSrc1->ai8[ 2], puSrc2->ai8[ 2]); puDst->ai8[ 3] = RT_MIN(puSrc1->ai8[ 3], puSrc2->ai8[ 3]); puDst->ai8[ 4] = RT_MIN(puSrc1->ai8[ 4], puSrc2->ai8[ 4]); puDst->ai8[ 5] = RT_MIN(puSrc1->ai8[ 5], puSrc2->ai8[ 5]); puDst->ai8[ 6] = RT_MIN(puSrc1->ai8[ 6], puSrc2->ai8[ 6]); puDst->ai8[ 7] = RT_MIN(puSrc1->ai8[ 7], puSrc2->ai8[ 7]); puDst->ai8[ 8] = RT_MIN(puSrc1->ai8[ 8], puSrc2->ai8[ 8]); puDst->ai8[ 9] = RT_MIN(puSrc1->ai8[ 9], puSrc2->ai8[ 9]); puDst->ai8[10] = RT_MIN(puSrc1->ai8[10], puSrc2->ai8[10]); puDst->ai8[11] = RT_MIN(puSrc1->ai8[11], puSrc2->ai8[11]); puDst->ai8[12] = RT_MIN(puSrc1->ai8[12], puSrc2->ai8[12]); puDst->ai8[13] = RT_MIN(puSrc1->ai8[13], puSrc2->ai8[13]); puDst->ai8[14] = RT_MIN(puSrc1->ai8[14], puSrc2->ai8[14]); puDst->ai8[15] = RT_MIN(puSrc1->ai8[15], puSrc2->ai8[15]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->ai8[ 0] = RT_MIN(puSrc1->ai8[ 0], puSrc2->ai8[ 0]); puDst->ai8[ 1] = RT_MIN(puSrc1->ai8[ 1], puSrc2->ai8[ 1]); puDst->ai8[ 2] = RT_MIN(puSrc1->ai8[ 2], puSrc2->ai8[ 2]); puDst->ai8[ 3] = RT_MIN(puSrc1->ai8[ 3], puSrc2->ai8[ 3]); puDst->ai8[ 4] = RT_MIN(puSrc1->ai8[ 4], puSrc2->ai8[ 4]); puDst->ai8[ 5] = RT_MIN(puSrc1->ai8[ 5], puSrc2->ai8[ 5]); puDst->ai8[ 6] = RT_MIN(puSrc1->ai8[ 6], puSrc2->ai8[ 6]); puDst->ai8[ 7] = RT_MIN(puSrc1->ai8[ 7], puSrc2->ai8[ 7]); puDst->ai8[ 8] = RT_MIN(puSrc1->ai8[ 8], puSrc2->ai8[ 8]); puDst->ai8[ 9] = RT_MIN(puSrc1->ai8[ 9], puSrc2->ai8[ 9]); puDst->ai8[10] = RT_MIN(puSrc1->ai8[10], puSrc2->ai8[10]); puDst->ai8[11] = RT_MIN(puSrc1->ai8[11], puSrc2->ai8[11]); puDst->ai8[12] = RT_MIN(puSrc1->ai8[12], puSrc2->ai8[12]); puDst->ai8[13] = RT_MIN(puSrc1->ai8[13], puSrc2->ai8[13]); puDst->ai8[14] = RT_MIN(puSrc1->ai8[14], puSrc2->ai8[14]); puDst->ai8[15] = RT_MIN(puSrc1->ai8[15], puSrc2->ai8[15]); puDst->ai8[16] = RT_MIN(puSrc1->ai8[16], puSrc2->ai8[16]); puDst->ai8[17] = RT_MIN(puSrc1->ai8[17], puSrc2->ai8[17]); puDst->ai8[18] = RT_MIN(puSrc1->ai8[18], puSrc2->ai8[18]); puDst->ai8[19] = RT_MIN(puSrc1->ai8[19], puSrc2->ai8[19]); puDst->ai8[20] = RT_MIN(puSrc1->ai8[20], puSrc2->ai8[20]); puDst->ai8[21] = RT_MIN(puSrc1->ai8[21], puSrc2->ai8[21]); puDst->ai8[22] = RT_MIN(puSrc1->ai8[22], puSrc2->ai8[22]); puDst->ai8[23] = RT_MIN(puSrc1->ai8[23], puSrc2->ai8[23]); puDst->ai8[24] = RT_MIN(puSrc1->ai8[24], puSrc2->ai8[24]); puDst->ai8[25] = RT_MIN(puSrc1->ai8[25], puSrc2->ai8[25]); puDst->ai8[26] = RT_MIN(puSrc1->ai8[26], puSrc2->ai8[26]); puDst->ai8[27] = RT_MIN(puSrc1->ai8[27], puSrc2->ai8[27]); puDst->ai8[28] = RT_MIN(puSrc1->ai8[28], puSrc2->ai8[28]); puDst->ai8[29] = RT_MIN(puSrc1->ai8[29], puSrc2->ai8[29]); puDst->ai8[30] = RT_MIN(puSrc1->ai8[30], puSrc2->ai8[30]); puDst->ai8[31] = RT_MIN(puSrc1->ai8[31], puSrc2->ai8[31]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->ai16[ 0] = RT_MIN(puSrc1->ai16[ 0], puSrc2->ai16[ 0]); puDst->ai16[ 1] = RT_MIN(puSrc1->ai16[ 1], puSrc2->ai16[ 1]); puDst->ai16[ 2] = RT_MIN(puSrc1->ai16[ 2], puSrc2->ai16[ 2]); puDst->ai16[ 3] = RT_MIN(puSrc1->ai16[ 3], puSrc2->ai16[ 3]); puDst->ai16[ 4] = RT_MIN(puSrc1->ai16[ 4], puSrc2->ai16[ 4]); puDst->ai16[ 5] = RT_MIN(puSrc1->ai16[ 5], puSrc2->ai16[ 5]); puDst->ai16[ 6] = RT_MIN(puSrc1->ai16[ 6], puSrc2->ai16[ 6]); puDst->ai16[ 7] = RT_MIN(puSrc1->ai16[ 7], puSrc2->ai16[ 7]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->ai16[ 0] = RT_MIN(puSrc1->ai16[ 0], puSrc2->ai16[ 0]); puDst->ai16[ 1] = RT_MIN(puSrc1->ai16[ 1], puSrc2->ai16[ 1]); puDst->ai16[ 2] = RT_MIN(puSrc1->ai16[ 2], puSrc2->ai16[ 2]); puDst->ai16[ 3] = RT_MIN(puSrc1->ai16[ 3], puSrc2->ai16[ 3]); puDst->ai16[ 4] = RT_MIN(puSrc1->ai16[ 4], puSrc2->ai16[ 4]); puDst->ai16[ 5] = RT_MIN(puSrc1->ai16[ 5], puSrc2->ai16[ 5]); puDst->ai16[ 6] = RT_MIN(puSrc1->ai16[ 6], puSrc2->ai16[ 6]); puDst->ai16[ 7] = RT_MIN(puSrc1->ai16[ 7], puSrc2->ai16[ 7]); puDst->ai16[ 8] = RT_MIN(puSrc1->ai16[ 8], puSrc2->ai16[ 8]); puDst->ai16[ 9] = RT_MIN(puSrc1->ai16[ 9], puSrc2->ai16[ 9]); puDst->ai16[10] = RT_MIN(puSrc1->ai16[10], puSrc2->ai16[10]); puDst->ai16[11] = RT_MIN(puSrc1->ai16[11], puSrc2->ai16[11]); puDst->ai16[12] = RT_MIN(puSrc1->ai16[12], puSrc2->ai16[12]); puDst->ai16[13] = RT_MIN(puSrc1->ai16[13], puSrc2->ai16[13]); puDst->ai16[14] = RT_MIN(puSrc1->ai16[14], puSrc2->ai16[14]); puDst->ai16[15] = RT_MIN(puSrc1->ai16[15], puSrc2->ai16[15]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->ai32[ 0] = RT_MIN(puSrc1->ai32[ 0], puSrc2->ai32[ 0]); puDst->ai32[ 1] = RT_MIN(puSrc1->ai32[ 1], puSrc2->ai32[ 1]); puDst->ai32[ 2] = RT_MIN(puSrc1->ai32[ 2], puSrc2->ai32[ 2]); puDst->ai32[ 3] = RT_MIN(puSrc1->ai32[ 3], puSrc2->ai32[ 3]); RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpminsd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->ai32[ 0] = RT_MIN(puSrc1->ai32[ 0], puSrc2->ai32[ 0]); puDst->ai32[ 1] = RT_MIN(puSrc1->ai32[ 1], puSrc2->ai32[ 1]); puDst->ai32[ 2] = RT_MIN(puSrc1->ai32[ 2], puSrc2->ai32[ 2]); puDst->ai32[ 3] = RT_MIN(puSrc1->ai32[ 3], puSrc2->ai32[ 3]); puDst->ai32[ 4] = RT_MIN(puSrc1->ai32[ 4], puSrc2->ai32[ 4]); puDst->ai32[ 5] = RT_MIN(puSrc1->ai32[ 5], puSrc2->ai32[ 5]); puDst->ai32[ 6] = RT_MIN(puSrc1->ai32[ 6], puSrc2->ai32[ 6]); puDst->ai32[ 7] = RT_MIN(puSrc1->ai32[ 7], puSrc2->ai32[ 7]); RT_NOREF(pExtState); } /* * PAVGB / VPAVGB / PAVGW / VPAVGW */ #define PAVGB_EXEC(a_Src1, a_Src2) ((uint8_t)(((uint16_t)(a_Src1) + (a_Src2) + 1) >> 1)) #define PAVGW_EXEC(a_Src1, a_Src2) ((uint16_t)(((uint32_t)(a_Src1) + (a_Src2) + 1) >> 1)) #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pavgb_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au8[0] = PAVGB_EXEC(uSrc1.au8[0], uSrc2.au8[0]); uDst.au8[1] = PAVGB_EXEC(uSrc1.au8[1], uSrc2.au8[1]); uDst.au8[2] = PAVGB_EXEC(uSrc1.au8[2], uSrc2.au8[2]); uDst.au8[3] = PAVGB_EXEC(uSrc1.au8[3], uSrc2.au8[3]); uDst.au8[4] = PAVGB_EXEC(uSrc1.au8[4], uSrc2.au8[4]); uDst.au8[5] = PAVGB_EXEC(uSrc1.au8[5], uSrc2.au8[5]); uDst.au8[6] = PAVGB_EXEC(uSrc1.au8[6], uSrc2.au8[6]); uDst.au8[7] = PAVGB_EXEC(uSrc1.au8[7], uSrc2.au8[7]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pavgb_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au8[ 0] = PAVGB_EXEC(uSrc1.au8[ 0], puSrc->au8[ 0]); puDst->au8[ 1] = PAVGB_EXEC(uSrc1.au8[ 1], puSrc->au8[ 1]); puDst->au8[ 2] = PAVGB_EXEC(uSrc1.au8[ 2], puSrc->au8[ 2]); puDst->au8[ 3] = PAVGB_EXEC(uSrc1.au8[ 3], puSrc->au8[ 3]); puDst->au8[ 4] = PAVGB_EXEC(uSrc1.au8[ 4], puSrc->au8[ 4]); puDst->au8[ 5] = PAVGB_EXEC(uSrc1.au8[ 5], puSrc->au8[ 5]); puDst->au8[ 6] = PAVGB_EXEC(uSrc1.au8[ 6], puSrc->au8[ 6]); puDst->au8[ 7] = PAVGB_EXEC(uSrc1.au8[ 7], puSrc->au8[ 7]); puDst->au8[ 8] = PAVGB_EXEC(uSrc1.au8[ 8], puSrc->au8[ 8]); puDst->au8[ 9] = PAVGB_EXEC(uSrc1.au8[ 9], puSrc->au8[ 9]); puDst->au8[10] = PAVGB_EXEC(uSrc1.au8[10], puSrc->au8[10]); puDst->au8[11] = PAVGB_EXEC(uSrc1.au8[11], puSrc->au8[11]); puDst->au8[12] = PAVGB_EXEC(uSrc1.au8[12], puSrc->au8[12]); puDst->au8[13] = PAVGB_EXEC(uSrc1.au8[13], puSrc->au8[13]); puDst->au8[14] = PAVGB_EXEC(uSrc1.au8[14], puSrc->au8[14]); puDst->au8[15] = PAVGB_EXEC(uSrc1.au8[15], puSrc->au8[15]); } IEM_DECL_IMPL_DEF(void, iemAImpl_pavgw_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au16[0] = PAVGW_EXEC(uSrc1.au16[0], uSrc2.au16[0]); uDst.au16[1] = PAVGW_EXEC(uSrc1.au16[1], uSrc2.au16[1]); uDst.au16[2] = PAVGW_EXEC(uSrc1.au16[2], uSrc2.au16[2]); uDst.au16[3] = PAVGW_EXEC(uSrc1.au16[3], uSrc2.au16[3]); *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_pavgw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au16[0] = PAVGW_EXEC(uSrc1.au16[0], puSrc->au16[0]); puDst->au16[1] = PAVGW_EXEC(uSrc1.au16[1], puSrc->au16[1]); puDst->au16[2] = PAVGW_EXEC(uSrc1.au16[2], puSrc->au16[2]); puDst->au16[3] = PAVGW_EXEC(uSrc1.au16[3], puSrc->au16[3]); puDst->au16[4] = PAVGW_EXEC(uSrc1.au16[4], puSrc->au16[4]); puDst->au16[5] = PAVGW_EXEC(uSrc1.au16[5], puSrc->au16[5]); puDst->au16[6] = PAVGW_EXEC(uSrc1.au16[6], puSrc->au16[6]); puDst->au16[7] = PAVGW_EXEC(uSrc1.au16[7], puSrc->au16[7]); } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_pavgb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au8[ 0] = PAVGB_EXEC(uSrc1.au8[ 0], puSrc->au8[ 0]); puDst->au8[ 1] = PAVGB_EXEC(uSrc1.au8[ 1], puSrc->au8[ 1]); puDst->au8[ 2] = PAVGB_EXEC(uSrc1.au8[ 2], puSrc->au8[ 2]); puDst->au8[ 3] = PAVGB_EXEC(uSrc1.au8[ 3], puSrc->au8[ 3]); puDst->au8[ 4] = PAVGB_EXEC(uSrc1.au8[ 4], puSrc->au8[ 4]); puDst->au8[ 5] = PAVGB_EXEC(uSrc1.au8[ 5], puSrc->au8[ 5]); puDst->au8[ 6] = PAVGB_EXEC(uSrc1.au8[ 6], puSrc->au8[ 6]); puDst->au8[ 7] = PAVGB_EXEC(uSrc1.au8[ 7], puSrc->au8[ 7]); puDst->au8[ 8] = PAVGB_EXEC(uSrc1.au8[ 8], puSrc->au8[ 8]); puDst->au8[ 9] = PAVGB_EXEC(uSrc1.au8[ 9], puSrc->au8[ 9]); puDst->au8[10] = PAVGB_EXEC(uSrc1.au8[10], puSrc->au8[10]); puDst->au8[11] = PAVGB_EXEC(uSrc1.au8[11], puSrc->au8[11]); puDst->au8[12] = PAVGB_EXEC(uSrc1.au8[12], puSrc->au8[12]); puDst->au8[13] = PAVGB_EXEC(uSrc1.au8[13], puSrc->au8[13]); puDst->au8[14] = PAVGB_EXEC(uSrc1.au8[14], puSrc->au8[14]); puDst->au8[15] = PAVGB_EXEC(uSrc1.au8[15], puSrc->au8[15]); } IEM_DECL_IMPL_DEF(void, iemAImpl_pavgw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au8[ 0] = PAVGW_EXEC(uSrc1.au8[ 0], puSrc->au8[ 0]); puDst->au8[ 1] = PAVGW_EXEC(uSrc1.au8[ 1], puSrc->au8[ 1]); puDst->au8[ 2] = PAVGW_EXEC(uSrc1.au8[ 2], puSrc->au8[ 2]); puDst->au8[ 3] = PAVGW_EXEC(uSrc1.au8[ 3], puSrc->au8[ 3]); puDst->au8[ 4] = PAVGW_EXEC(uSrc1.au8[ 4], puSrc->au8[ 4]); puDst->au8[ 5] = PAVGW_EXEC(uSrc1.au8[ 5], puSrc->au8[ 5]); puDst->au8[ 6] = PAVGW_EXEC(uSrc1.au8[ 6], puSrc->au8[ 6]); puDst->au8[ 7] = PAVGW_EXEC(uSrc1.au8[ 7], puSrc->au8[ 7]); puDst->au8[ 8] = PAVGW_EXEC(uSrc1.au8[ 8], puSrc->au8[ 8]); puDst->au8[ 9] = PAVGW_EXEC(uSrc1.au8[ 9], puSrc->au8[ 9]); puDst->au8[10] = PAVGW_EXEC(uSrc1.au8[10], puSrc->au8[10]); puDst->au8[11] = PAVGW_EXEC(uSrc1.au8[11], puSrc->au8[11]); puDst->au8[12] = PAVGW_EXEC(uSrc1.au8[12], puSrc->au8[12]); puDst->au8[13] = PAVGW_EXEC(uSrc1.au8[13], puSrc->au8[13]); puDst->au8[14] = PAVGW_EXEC(uSrc1.au8[14], puSrc->au8[14]); puDst->au8[15] = PAVGW_EXEC(uSrc1.au8[15], puSrc->au8[15]); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->au8[ 0] = PAVGB_EXEC(puSrc1->au8[ 0], puSrc2->au8[ 0]); puDst->au8[ 1] = PAVGB_EXEC(puSrc1->au8[ 1], puSrc2->au8[ 1]); puDst->au8[ 2] = PAVGB_EXEC(puSrc1->au8[ 2], puSrc2->au8[ 2]); puDst->au8[ 3] = PAVGB_EXEC(puSrc1->au8[ 3], puSrc2->au8[ 3]); puDst->au8[ 4] = PAVGB_EXEC(puSrc1->au8[ 4], puSrc2->au8[ 4]); puDst->au8[ 5] = PAVGB_EXEC(puSrc1->au8[ 5], puSrc2->au8[ 5]); puDst->au8[ 6] = PAVGB_EXEC(puSrc1->au8[ 6], puSrc2->au8[ 6]); puDst->au8[ 7] = PAVGB_EXEC(puSrc1->au8[ 7], puSrc2->au8[ 7]); puDst->au8[ 8] = PAVGB_EXEC(puSrc1->au8[ 8], puSrc2->au8[ 8]); puDst->au8[ 9] = PAVGB_EXEC(puSrc1->au8[ 9], puSrc2->au8[ 9]); puDst->au8[10] = PAVGB_EXEC(puSrc1->au8[10], puSrc2->au8[10]); puDst->au8[11] = PAVGB_EXEC(puSrc1->au8[11], puSrc2->au8[11]); puDst->au8[12] = PAVGB_EXEC(puSrc1->au8[12], puSrc2->au8[12]); puDst->au8[13] = PAVGB_EXEC(puSrc1->au8[13], puSrc2->au8[13]); puDst->au8[14] = PAVGB_EXEC(puSrc1->au8[14], puSrc2->au8[14]); puDst->au8[15] = PAVGB_EXEC(puSrc1->au8[15], puSrc2->au8[15]); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->au8[ 0] = PAVGB_EXEC(puSrc1->au8[ 0], puSrc2->au8[ 0]); puDst->au8[ 1] = PAVGB_EXEC(puSrc1->au8[ 1], puSrc2->au8[ 1]); puDst->au8[ 2] = PAVGB_EXEC(puSrc1->au8[ 2], puSrc2->au8[ 2]); puDst->au8[ 3] = PAVGB_EXEC(puSrc1->au8[ 3], puSrc2->au8[ 3]); puDst->au8[ 4] = PAVGB_EXEC(puSrc1->au8[ 4], puSrc2->au8[ 4]); puDst->au8[ 5] = PAVGB_EXEC(puSrc1->au8[ 5], puSrc2->au8[ 5]); puDst->au8[ 6] = PAVGB_EXEC(puSrc1->au8[ 6], puSrc2->au8[ 6]); puDst->au8[ 7] = PAVGB_EXEC(puSrc1->au8[ 7], puSrc2->au8[ 7]); puDst->au8[ 8] = PAVGB_EXEC(puSrc1->au8[ 8], puSrc2->au8[ 8]); puDst->au8[ 9] = PAVGB_EXEC(puSrc1->au8[ 9], puSrc2->au8[ 9]); puDst->au8[10] = PAVGB_EXEC(puSrc1->au8[10], puSrc2->au8[10]); puDst->au8[11] = PAVGB_EXEC(puSrc1->au8[11], puSrc2->au8[11]); puDst->au8[12] = PAVGB_EXEC(puSrc1->au8[12], puSrc2->au8[12]); puDst->au8[13] = PAVGB_EXEC(puSrc1->au8[13], puSrc2->au8[13]); puDst->au8[14] = PAVGB_EXEC(puSrc1->au8[14], puSrc2->au8[14]); puDst->au8[15] = PAVGB_EXEC(puSrc1->au8[15], puSrc2->au8[15]); puDst->au8[16] = PAVGB_EXEC(puSrc1->au8[16], puSrc2->au8[16]); puDst->au8[17] = PAVGB_EXEC(puSrc1->au8[17], puSrc2->au8[17]); puDst->au8[18] = PAVGB_EXEC(puSrc1->au8[18], puSrc2->au8[18]); puDst->au8[19] = PAVGB_EXEC(puSrc1->au8[19], puSrc2->au8[19]); puDst->au8[20] = PAVGB_EXEC(puSrc1->au8[20], puSrc2->au8[20]); puDst->au8[21] = PAVGB_EXEC(puSrc1->au8[21], puSrc2->au8[21]); puDst->au8[22] = PAVGB_EXEC(puSrc1->au8[22], puSrc2->au8[22]); puDst->au8[23] = PAVGB_EXEC(puSrc1->au8[23], puSrc2->au8[23]); puDst->au8[24] = PAVGB_EXEC(puSrc1->au8[24], puSrc2->au8[24]); puDst->au8[25] = PAVGB_EXEC(puSrc1->au8[25], puSrc2->au8[25]); puDst->au8[26] = PAVGB_EXEC(puSrc1->au8[26], puSrc2->au8[26]); puDst->au8[27] = PAVGB_EXEC(puSrc1->au8[27], puSrc2->au8[27]); puDst->au8[28] = PAVGB_EXEC(puSrc1->au8[28], puSrc2->au8[28]); puDst->au8[29] = PAVGB_EXEC(puSrc1->au8[29], puSrc2->au8[29]); puDst->au8[30] = PAVGB_EXEC(puSrc1->au8[30], puSrc2->au8[30]); puDst->au8[31] = PAVGB_EXEC(puSrc1->au8[31], puSrc2->au8[31]); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { puDst->au16[ 0] = PAVGW_EXEC(puSrc1->au16[ 0], puSrc2->au16[ 0]); puDst->au16[ 1] = PAVGW_EXEC(puSrc1->au16[ 1], puSrc2->au16[ 1]); puDst->au16[ 2] = PAVGW_EXEC(puSrc1->au16[ 2], puSrc2->au16[ 2]); puDst->au16[ 3] = PAVGW_EXEC(puSrc1->au16[ 3], puSrc2->au16[ 3]); puDst->au16[ 4] = PAVGW_EXEC(puSrc1->au16[ 4], puSrc2->au16[ 4]); puDst->au16[ 5] = PAVGW_EXEC(puSrc1->au16[ 5], puSrc2->au16[ 5]); puDst->au16[ 6] = PAVGW_EXEC(puSrc1->au16[ 6], puSrc2->au16[ 6]); puDst->au16[ 7] = PAVGW_EXEC(puSrc1->au16[ 7], puSrc2->au16[ 7]); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpavgw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { puDst->au16[ 0] = PAVGW_EXEC(puSrc1->au16[ 0], puSrc2->au16[ 0]); puDst->au16[ 1] = PAVGW_EXEC(puSrc1->au16[ 1], puSrc2->au16[ 1]); puDst->au16[ 2] = PAVGW_EXEC(puSrc1->au16[ 2], puSrc2->au16[ 2]); puDst->au16[ 3] = PAVGW_EXEC(puSrc1->au16[ 3], puSrc2->au16[ 3]); puDst->au16[ 4] = PAVGW_EXEC(puSrc1->au16[ 4], puSrc2->au16[ 4]); puDst->au16[ 5] = PAVGW_EXEC(puSrc1->au16[ 5], puSrc2->au16[ 5]); puDst->au16[ 6] = PAVGW_EXEC(puSrc1->au16[ 6], puSrc2->au16[ 6]); puDst->au16[ 7] = PAVGW_EXEC(puSrc1->au16[ 7], puSrc2->au16[ 7]); puDst->au16[ 8] = PAVGW_EXEC(puSrc1->au16[ 8], puSrc2->au16[ 8]); puDst->au16[ 9] = PAVGW_EXEC(puSrc1->au16[ 9], puSrc2->au16[ 9]); puDst->au16[10] = PAVGW_EXEC(puSrc1->au16[10], puSrc2->au16[10]); puDst->au16[11] = PAVGW_EXEC(puSrc1->au16[11], puSrc2->au16[11]); puDst->au16[12] = PAVGW_EXEC(puSrc1->au16[12], puSrc2->au16[12]); puDst->au16[13] = PAVGW_EXEC(puSrc1->au16[13], puSrc2->au16[13]); puDst->au16[14] = PAVGW_EXEC(puSrc1->au16[14], puSrc2->au16[14]); puDst->au16[15] = PAVGW_EXEC(puSrc1->au16[15], puSrc2->au16[15]); } #undef PAVGB_EXEC #undef PAVGW_EXEC /* * PMOVMSKB / VPMOVMSKB */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *pu64Src)) { /* The the most signficant bit from each byte and store them in the given general purpose register. */ uint64_t const uSrc = *pu64Src; *pu64Dst = ((uSrc >> ( 7-0)) & RT_BIT_64(0)) | ((uSrc >> (15-1)) & RT_BIT_64(1)) | ((uSrc >> (23-2)) & RT_BIT_64(2)) | ((uSrc >> (31-3)) & RT_BIT_64(3)) | ((uSrc >> (39-4)) & RT_BIT_64(4)) | ((uSrc >> (47-5)) & RT_BIT_64(5)) | ((uSrc >> (55-6)) & RT_BIT_64(6)) | ((uSrc >> (63-7)) & RT_BIT_64(7)); } IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U pu128Src)) { /* The the most signficant bit from each byte and store them in the given general purpose register. */ uint64_t const uSrc0 = pu128Src->QWords.qw0; uint64_t const uSrc1 = pu128Src->QWords.qw1; *pu64Dst = ((uSrc0 >> ( 7-0)) & RT_BIT_64(0)) | ((uSrc0 >> (15-1)) & RT_BIT_64(1)) | ((uSrc0 >> (23-2)) & RT_BIT_64(2)) | ((uSrc0 >> (31-3)) & RT_BIT_64(3)) | ((uSrc0 >> (39-4)) & RT_BIT_64(4)) | ((uSrc0 >> (47-5)) & RT_BIT_64(5)) | ((uSrc0 >> (55-6)) & RT_BIT_64(6)) | ((uSrc0 >> (63-7)) & RT_BIT_64(7)) | ((uSrc1 << (1 /*7-8*/)) & RT_BIT_64(8)) | ((uSrc1 >> (15-9)) & RT_BIT_64(9)) | ((uSrc1 >> (23-10)) & RT_BIT_64(10)) | ((uSrc1 >> (31-11)) & RT_BIT_64(11)) | ((uSrc1 >> (39-12)) & RT_BIT_64(12)) | ((uSrc1 >> (47-13)) & RT_BIT_64(13)) | ((uSrc1 >> (55-14)) & RT_BIT_64(14)) | ((uSrc1 >> (63-15)) & RT_BIT_64(15)); } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc)) { /* The the most signficant bit from each byte and store them in the given general purpose register. */ uint64_t const uSrc0 = puSrc->QWords.qw0; uint64_t const uSrc1 = puSrc->QWords.qw1; uint64_t const uSrc2 = puSrc->QWords.qw2; uint64_t const uSrc3 = puSrc->QWords.qw3; *pu64Dst = ((uSrc0 >> ( 7-0)) & RT_BIT_64(0)) | ((uSrc0 >> (15-1)) & RT_BIT_64(1)) | ((uSrc0 >> (23-2)) & RT_BIT_64(2)) | ((uSrc0 >> (31-3)) & RT_BIT_64(3)) | ((uSrc0 >> (39-4)) & RT_BIT_64(4)) | ((uSrc0 >> (47-5)) & RT_BIT_64(5)) | ((uSrc0 >> (55-6)) & RT_BIT_64(6)) | ((uSrc0 >> (63-7)) & RT_BIT_64(7)) | ((uSrc1 << (1 /*7-8*/)) & RT_BIT_64(8)) | ((uSrc1 >> (15-9)) & RT_BIT_64(9)) | ((uSrc1 >> (23-10)) & RT_BIT_64(10)) | ((uSrc1 >> (31-11)) & RT_BIT_64(11)) | ((uSrc1 >> (39-12)) & RT_BIT_64(12)) | ((uSrc1 >> (47-13)) & RT_BIT_64(13)) | ((uSrc1 >> (55-14)) & RT_BIT_64(14)) | ((uSrc1 >> (63-15)) & RT_BIT_64(15)) | ((uSrc2 << (9 /* 7-16*/)) & RT_BIT_64(16)) | ((uSrc2 << (2 /*15-17*/)) & RT_BIT_64(17)) | ((uSrc2 >> (23-18)) & RT_BIT_64(18)) | ((uSrc2 >> (31-19)) & RT_BIT_64(19)) | ((uSrc2 >> (39-20)) & RT_BIT_64(20)) | ((uSrc2 >> (47-21)) & RT_BIT_64(21)) | ((uSrc2 >> (55-22)) & RT_BIT_64(22)) | ((uSrc2 >> (63-23)) & RT_BIT_64(23)) | ((uSrc3 << (17 /* 7-24*/)) & RT_BIT_64(24)) | ((uSrc3 << (10 /*15-25*/)) & RT_BIT_64(25)) | ((uSrc3 << (3 /*23-26*/)) & RT_BIT_64(26)) | ((uSrc3 >> (31-27)) & RT_BIT_64(27)) | ((uSrc3 >> (39-28)) & RT_BIT_64(28)) | ((uSrc3 >> (47-29)) & RT_BIT_64(29)) | ((uSrc3 >> (55-30)) & RT_BIT_64(30)) | ((uSrc3 >> (63-31)) & RT_BIT_64(31)); } /* * [V]PSHUFB */ IEM_DECL_IMPL_DEF(void, iemAImpl_pshufb_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc = { *puSrc }; RTUINT64U const uDstIn = { *puDst }; ASMCompilerBarrier(); RTUINT64U uDstOut = { 0 }; for (unsigned iByte = 0; iByte < RT_ELEMENTS(uDstIn.au8); iByte++) { uint8_t idxSrc = uSrc.au8[iByte]; if (!(idxSrc & 0x80)) uDstOut.au8[iByte] = uDstIn.au8[idxSrc & 7]; } *puDst = uDstOut.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pshufb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc = *puSrc; RTUINT128U const uDstIn = *puDst; ASMCompilerBarrier(); puDst->au64[0] = 0; puDst->au64[1] = 0; for (unsigned iByte = 0; iByte < RT_ELEMENTS(puDst->au8); iByte++) { uint8_t idxSrc = uSrc.au8[iByte]; if (!(idxSrc & 0x80)) puDst->au8[iByte] = uDstIn.au8[idxSrc & 15]; } RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc1 = *puSrc1; /* could be same as puDst */ RTUINT128U const uSrc2 = *puSrc2; /* could be same as puDst */ ASMCompilerBarrier(); puDst->au64[0] = 0; puDst->au64[1] = 0; for (unsigned iByte = 0; iByte < 16; iByte++) { uint8_t idxSrc = uSrc2.au8[iByte]; if (!(idxSrc & 0x80)) puDst->au8[iByte] = uSrc1.au8[(idxSrc & 15)]; } RT_NOREF(pExtState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc1 = *puSrc1; /* could be same as puDst */ RTUINT256U const uSrc2 = *puSrc2; /* could be same as puDst */ ASMCompilerBarrier(); puDst->au64[0] = 0; puDst->au64[1] = 0; puDst->au64[2] = 0; puDst->au64[3] = 0; for (unsigned iByte = 0; iByte < 16; iByte++) { uint8_t idxSrc = uSrc2.au8[iByte]; if (!(idxSrc & 0x80)) puDst->au8[iByte] = uSrc1.au8[(idxSrc & 15)]; } for (unsigned iByte = 16; iByte < RT_ELEMENTS(puDst->au8); iByte++) { uint8_t idxSrc = uSrc2.au8[iByte]; if (!(idxSrc & 0x80)) puDst->au8[iByte] = uSrc1.au8[(idxSrc & 15) + 16]; /* baka intel */ } RT_NOREF(pExtState); } /* * PSHUFW, [V]PSHUFHW, [V]PSHUFLW, [V]PSHUFD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil)) { uint64_t const uSrc = *puSrc; ASMCompilerBarrier(); *puDst = RT_MAKE_U64_FROM_U16(uSrc >> (( bEvil & 3) * 16), uSrc >> (((bEvil >> 2) & 3) * 16), uSrc >> (((bEvil >> 4) & 3) * 16), uSrc >> (((bEvil >> 6) & 3) * 16)); } IEM_DECL_IMPL_DEF(void, iemAImpl_pshufhw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) { puDst->QWords.qw0 = puSrc->QWords.qw0; uint64_t const uSrc = puSrc->QWords.qw1; ASMCompilerBarrier(); puDst->QWords.qw1 = RT_MAKE_U64_FROM_U16(uSrc >> (( bEvil & 3) * 16), uSrc >> (((bEvil >> 2) & 3) * 16), uSrc >> (((bEvil >> 4) & 3) * 16), uSrc >> (((bEvil >> 6) & 3) * 16)); } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufhw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil)) { puDst->QWords.qw0 = puSrc->QWords.qw0; uint64_t const uSrc1 = puSrc->QWords.qw1; puDst->QWords.qw2 = puSrc->QWords.qw2; uint64_t const uSrc3 = puSrc->QWords.qw3; ASMCompilerBarrier(); puDst->QWords.qw1 = RT_MAKE_U64_FROM_U16(uSrc1 >> (( bEvil & 3) * 16), uSrc1 >> (((bEvil >> 2) & 3) * 16), uSrc1 >> (((bEvil >> 4) & 3) * 16), uSrc1 >> (((bEvil >> 6) & 3) * 16)); puDst->QWords.qw3 = RT_MAKE_U64_FROM_U16(uSrc3 >> (( bEvil & 3) * 16), uSrc3 >> (((bEvil >> 2) & 3) * 16), uSrc3 >> (((bEvil >> 4) & 3) * 16), uSrc3 >> (((bEvil >> 6) & 3) * 16)); } #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pshuflw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) { puDst->QWords.qw1 = puSrc->QWords.qw1; uint64_t const uSrc = puSrc->QWords.qw0; ASMCompilerBarrier(); puDst->QWords.qw0 = RT_MAKE_U64_FROM_U16(uSrc >> (( bEvil & 3) * 16), uSrc >> (((bEvil >> 2) & 3) * 16), uSrc >> (((bEvil >> 4) & 3) * 16), uSrc >> (((bEvil >> 6) & 3) * 16)); } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpshuflw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil)) { puDst->QWords.qw3 = puSrc->QWords.qw3; uint64_t const uSrc2 = puSrc->QWords.qw2; puDst->QWords.qw1 = puSrc->QWords.qw1; uint64_t const uSrc0 = puSrc->QWords.qw0; ASMCompilerBarrier(); puDst->QWords.qw0 = RT_MAKE_U64_FROM_U16(uSrc0 >> (( bEvil & 3) * 16), uSrc0 >> (((bEvil >> 2) & 3) * 16), uSrc0 >> (((bEvil >> 4) & 3) * 16), uSrc0 >> (((bEvil >> 6) & 3) * 16)); puDst->QWords.qw2 = RT_MAKE_U64_FROM_U16(uSrc2 >> (( bEvil & 3) * 16), uSrc2 >> (((bEvil >> 2) & 3) * 16), uSrc2 >> (((bEvil >> 4) & 3) * 16), uSrc2 >> (((bEvil >> 6) & 3) * 16)); } #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pshufd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) { RTUINT128U const uSrc = *puSrc; ASMCompilerBarrier(); puDst->au32[0] = uSrc.au32[bEvil & 3]; puDst->au32[1] = uSrc.au32[(bEvil >> 2) & 3]; puDst->au32[2] = uSrc.au32[(bEvil >> 4) & 3]; puDst->au32[3] = uSrc.au32[(bEvil >> 6) & 3]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpshufd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil)) { RTUINT256U const uSrc = *puSrc; ASMCompilerBarrier(); puDst->au128[0].au32[0] = uSrc.au128[0].au32[bEvil & 3]; puDst->au128[0].au32[1] = uSrc.au128[0].au32[(bEvil >> 2) & 3]; puDst->au128[0].au32[2] = uSrc.au128[0].au32[(bEvil >> 4) & 3]; puDst->au128[0].au32[3] = uSrc.au128[0].au32[(bEvil >> 6) & 3]; puDst->au128[1].au32[0] = uSrc.au128[1].au32[bEvil & 3]; puDst->au128[1].au32[1] = uSrc.au128[1].au32[(bEvil >> 2) & 3]; puDst->au128[1].au32[2] = uSrc.au128[1].au32[(bEvil >> 4) & 3]; puDst->au128[1].au32[3] = uSrc.au128[1].au32[(bEvil >> 6) & 3]; } /* * PUNPCKHBW - high bytes -> words */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhbw_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc2 = { *puSrc }; RTUINT64U const uSrc1 = { *puDst }; ASMCompilerBarrier(); RTUINT64U uDstOut; uDstOut.au8[0] = uSrc1.au8[4]; uDstOut.au8[1] = uSrc2.au8[4]; uDstOut.au8[2] = uSrc1.au8[5]; uDstOut.au8[3] = uSrc2.au8[5]; uDstOut.au8[4] = uSrc1.au8[6]; uDstOut.au8[5] = uSrc2.au8[6]; uDstOut.au8[6] = uSrc1.au8[7]; uDstOut.au8[7] = uSrc2.au8[7]; *puDst = uDstOut.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhbw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au8[ 0] = uSrc1.au8[ 8]; uDstOut.au8[ 1] = uSrc2.au8[ 8]; uDstOut.au8[ 2] = uSrc1.au8[ 9]; uDstOut.au8[ 3] = uSrc2.au8[ 9]; uDstOut.au8[ 4] = uSrc1.au8[10]; uDstOut.au8[ 5] = uSrc2.au8[10]; uDstOut.au8[ 6] = uSrc1.au8[11]; uDstOut.au8[ 7] = uSrc2.au8[11]; uDstOut.au8[ 8] = uSrc1.au8[12]; uDstOut.au8[ 9] = uSrc2.au8[12]; uDstOut.au8[10] = uSrc1.au8[13]; uDstOut.au8[11] = uSrc2.au8[13]; uDstOut.au8[12] = uSrc1.au8[14]; uDstOut.au8[13] = uSrc2.au8[14]; uDstOut.au8[14] = uSrc1.au8[15]; uDstOut.au8[15] = uSrc2.au8[15]; *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhbw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au8[ 0] = uSrc1.au8[ 8]; uDstOut.au8[ 1] = uSrc2.au8[ 8]; uDstOut.au8[ 2] = uSrc1.au8[ 9]; uDstOut.au8[ 3] = uSrc2.au8[ 9]; uDstOut.au8[ 4] = uSrc1.au8[10]; uDstOut.au8[ 5] = uSrc2.au8[10]; uDstOut.au8[ 6] = uSrc1.au8[11]; uDstOut.au8[ 7] = uSrc2.au8[11]; uDstOut.au8[ 8] = uSrc1.au8[12]; uDstOut.au8[ 9] = uSrc2.au8[12]; uDstOut.au8[10] = uSrc1.au8[13]; uDstOut.au8[11] = uSrc2.au8[13]; uDstOut.au8[12] = uSrc1.au8[14]; uDstOut.au8[13] = uSrc2.au8[14]; uDstOut.au8[14] = uSrc1.au8[15]; uDstOut.au8[15] = uSrc2.au8[15]; *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au8[ 0] = uSrc1.au8[ 8]; uDstOut.au8[ 1] = uSrc2.au8[ 8]; uDstOut.au8[ 2] = uSrc1.au8[ 9]; uDstOut.au8[ 3] = uSrc2.au8[ 9]; uDstOut.au8[ 4] = uSrc1.au8[10]; uDstOut.au8[ 5] = uSrc2.au8[10]; uDstOut.au8[ 6] = uSrc1.au8[11]; uDstOut.au8[ 7] = uSrc2.au8[11]; uDstOut.au8[ 8] = uSrc1.au8[12]; uDstOut.au8[ 9] = uSrc2.au8[12]; uDstOut.au8[10] = uSrc1.au8[13]; uDstOut.au8[11] = uSrc2.au8[13]; uDstOut.au8[12] = uSrc1.au8[14]; uDstOut.au8[13] = uSrc2.au8[14]; uDstOut.au8[14] = uSrc1.au8[15]; uDstOut.au8[15] = uSrc2.au8[15]; /* As usual, the upper 128-bits are treated like a parallel register to the lower half. */ uDstOut.au8[16] = uSrc1.au8[24]; uDstOut.au8[17] = uSrc2.au8[24]; uDstOut.au8[18] = uSrc1.au8[25]; uDstOut.au8[19] = uSrc2.au8[25]; uDstOut.au8[20] = uSrc1.au8[26]; uDstOut.au8[21] = uSrc2.au8[26]; uDstOut.au8[22] = uSrc1.au8[27]; uDstOut.au8[23] = uSrc2.au8[27]; uDstOut.au8[24] = uSrc1.au8[28]; uDstOut.au8[25] = uSrc2.au8[28]; uDstOut.au8[26] = uSrc1.au8[29]; uDstOut.au8[27] = uSrc2.au8[29]; uDstOut.au8[28] = uSrc1.au8[30]; uDstOut.au8[29] = uSrc2.au8[30]; uDstOut.au8[30] = uSrc1.au8[31]; uDstOut.au8[31] = uSrc2.au8[31]; *puDst = uDstOut; } /* * PUNPCKHBW - high words -> dwords */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhwd_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc2 = { *puSrc }; RTUINT64U const uSrc1 = { *puDst }; ASMCompilerBarrier(); RTUINT64U uDstOut; uDstOut.au16[0] = uSrc1.au16[2]; uDstOut.au16[1] = uSrc2.au16[2]; uDstOut.au16[2] = uSrc1.au16[3]; uDstOut.au16[3] = uSrc2.au16[3]; *puDst = uDstOut.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhwd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au16[0] = uSrc1.au16[4]; uDstOut.au16[1] = uSrc2.au16[4]; uDstOut.au16[2] = uSrc1.au16[5]; uDstOut.au16[3] = uSrc2.au16[5]; uDstOut.au16[4] = uSrc1.au16[6]; uDstOut.au16[5] = uSrc2.au16[6]; uDstOut.au16[6] = uSrc1.au16[7]; uDstOut.au16[7] = uSrc2.au16[7]; *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhwd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au16[0] = uSrc1.au16[4]; uDstOut.au16[1] = uSrc2.au16[4]; uDstOut.au16[2] = uSrc1.au16[5]; uDstOut.au16[3] = uSrc2.au16[5]; uDstOut.au16[4] = uSrc1.au16[6]; uDstOut.au16[5] = uSrc2.au16[6]; uDstOut.au16[6] = uSrc1.au16[7]; uDstOut.au16[7] = uSrc2.au16[7]; *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au16[0] = uSrc1.au16[4]; uDstOut.au16[1] = uSrc2.au16[4]; uDstOut.au16[2] = uSrc1.au16[5]; uDstOut.au16[3] = uSrc2.au16[5]; uDstOut.au16[4] = uSrc1.au16[6]; uDstOut.au16[5] = uSrc2.au16[6]; uDstOut.au16[6] = uSrc1.au16[7]; uDstOut.au16[7] = uSrc2.au16[7]; uDstOut.au16[8] = uSrc1.au16[12]; uDstOut.au16[9] = uSrc2.au16[12]; uDstOut.au16[10] = uSrc1.au16[13]; uDstOut.au16[11] = uSrc2.au16[13]; uDstOut.au16[12] = uSrc1.au16[14]; uDstOut.au16[13] = uSrc2.au16[14]; uDstOut.au16[14] = uSrc1.au16[15]; uDstOut.au16[15] = uSrc2.au16[15]; *puDst = uDstOut; } /* * PUNPCKHBW - high dwords -> qword(s) */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhdq_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc2 = { *puSrc }; RTUINT64U const uSrc1 = { *puDst }; ASMCompilerBarrier(); RTUINT64U uDstOut; uDstOut.au32[0] = uSrc1.au32[1]; uDstOut.au32[1] = uSrc2.au32[1]; *puDst = uDstOut.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhdq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au32[0] = uSrc1.au32[2]; uDstOut.au32[1] = uSrc2.au32[2]; uDstOut.au32[2] = uSrc1.au32[3]; uDstOut.au32[3] = uSrc2.au32[3]; *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au32[0] = uSrc1.au32[2]; uDstOut.au32[1] = uSrc2.au32[2]; uDstOut.au32[2] = uSrc1.au32[3]; uDstOut.au32[3] = uSrc2.au32[3]; *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au32[0] = uSrc1.au32[2]; uDstOut.au32[1] = uSrc2.au32[2]; uDstOut.au32[2] = uSrc1.au32[3]; uDstOut.au32[3] = uSrc2.au32[3]; uDstOut.au32[4] = uSrc1.au32[6]; uDstOut.au32[5] = uSrc2.au32[6]; uDstOut.au32[6] = uSrc1.au32[7]; uDstOut.au32[7] = uSrc2.au32[7]; *puDst = uDstOut; } /* * PUNPCKHQDQ -> High qwords -> double qword(s). */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhqdq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au64[0] = uSrc1.au64[1]; uDstOut.au64[1] = uSrc2.au64[1]; *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au64[0] = uSrc1.au64[1]; uDstOut.au64[1] = uSrc2.au64[1]; *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckhqdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au64[0] = uSrc1.au64[1]; uDstOut.au64[1] = uSrc2.au64[1]; uDstOut.au64[2] = uSrc1.au64[3]; uDstOut.au64[3] = uSrc2.au64[3]; *puDst = uDstOut; } /* * PUNPCKLBW - low bytes -> words */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklbw_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc2 = { *puSrc }; RTUINT64U const uSrc1 = { *puDst }; ASMCompilerBarrier(); RTUINT64U uDstOut; uDstOut.au8[0] = uSrc1.au8[0]; uDstOut.au8[1] = uSrc2.au8[0]; uDstOut.au8[2] = uSrc1.au8[1]; uDstOut.au8[3] = uSrc2.au8[1]; uDstOut.au8[4] = uSrc1.au8[2]; uDstOut.au8[5] = uSrc2.au8[2]; uDstOut.au8[6] = uSrc1.au8[3]; uDstOut.au8[7] = uSrc2.au8[3]; *puDst = uDstOut.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklbw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au8[ 0] = uSrc1.au8[0]; uDstOut.au8[ 1] = uSrc2.au8[0]; uDstOut.au8[ 2] = uSrc1.au8[1]; uDstOut.au8[ 3] = uSrc2.au8[1]; uDstOut.au8[ 4] = uSrc1.au8[2]; uDstOut.au8[ 5] = uSrc2.au8[2]; uDstOut.au8[ 6] = uSrc1.au8[3]; uDstOut.au8[ 7] = uSrc2.au8[3]; uDstOut.au8[ 8] = uSrc1.au8[4]; uDstOut.au8[ 9] = uSrc2.au8[4]; uDstOut.au8[10] = uSrc1.au8[5]; uDstOut.au8[11] = uSrc2.au8[5]; uDstOut.au8[12] = uSrc1.au8[6]; uDstOut.au8[13] = uSrc2.au8[6]; uDstOut.au8[14] = uSrc1.au8[7]; uDstOut.au8[15] = uSrc2.au8[7]; *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklbw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au8[ 0] = uSrc1.au8[0]; uDstOut.au8[ 1] = uSrc2.au8[0]; uDstOut.au8[ 2] = uSrc1.au8[1]; uDstOut.au8[ 3] = uSrc2.au8[1]; uDstOut.au8[ 4] = uSrc1.au8[2]; uDstOut.au8[ 5] = uSrc2.au8[2]; uDstOut.au8[ 6] = uSrc1.au8[3]; uDstOut.au8[ 7] = uSrc2.au8[3]; uDstOut.au8[ 8] = uSrc1.au8[4]; uDstOut.au8[ 9] = uSrc2.au8[4]; uDstOut.au8[10] = uSrc1.au8[5]; uDstOut.au8[11] = uSrc2.au8[5]; uDstOut.au8[12] = uSrc1.au8[6]; uDstOut.au8[13] = uSrc2.au8[6]; uDstOut.au8[14] = uSrc1.au8[7]; uDstOut.au8[15] = uSrc2.au8[7]; *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au8[ 0] = uSrc1.au8[0]; uDstOut.au8[ 1] = uSrc2.au8[0]; uDstOut.au8[ 2] = uSrc1.au8[1]; uDstOut.au8[ 3] = uSrc2.au8[1]; uDstOut.au8[ 4] = uSrc1.au8[2]; uDstOut.au8[ 5] = uSrc2.au8[2]; uDstOut.au8[ 6] = uSrc1.au8[3]; uDstOut.au8[ 7] = uSrc2.au8[3]; uDstOut.au8[ 8] = uSrc1.au8[4]; uDstOut.au8[ 9] = uSrc2.au8[4]; uDstOut.au8[10] = uSrc1.au8[5]; uDstOut.au8[11] = uSrc2.au8[5]; uDstOut.au8[12] = uSrc1.au8[6]; uDstOut.au8[13] = uSrc2.au8[6]; uDstOut.au8[14] = uSrc1.au8[7]; uDstOut.au8[15] = uSrc2.au8[7]; /* As usual, the upper 128-bits are treated like a parallel register to the lower half. */ uDstOut.au8[16] = uSrc1.au8[16]; uDstOut.au8[17] = uSrc2.au8[16]; uDstOut.au8[18] = uSrc1.au8[17]; uDstOut.au8[19] = uSrc2.au8[17]; uDstOut.au8[20] = uSrc1.au8[18]; uDstOut.au8[21] = uSrc2.au8[18]; uDstOut.au8[22] = uSrc1.au8[19]; uDstOut.au8[23] = uSrc2.au8[19]; uDstOut.au8[24] = uSrc1.au8[20]; uDstOut.au8[25] = uSrc2.au8[20]; uDstOut.au8[26] = uSrc1.au8[21]; uDstOut.au8[27] = uSrc2.au8[21]; uDstOut.au8[28] = uSrc1.au8[22]; uDstOut.au8[29] = uSrc2.au8[22]; uDstOut.au8[30] = uSrc1.au8[23]; uDstOut.au8[31] = uSrc2.au8[23]; *puDst = uDstOut; } /* * PUNPCKLBW - low words -> dwords */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklwd_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc2 = { *puSrc }; RTUINT64U const uSrc1 = { *puDst }; ASMCompilerBarrier(); RTUINT64U uDstOut; uDstOut.au16[0] = uSrc1.au16[0]; uDstOut.au16[1] = uSrc2.au16[0]; uDstOut.au16[2] = uSrc1.au16[1]; uDstOut.au16[3] = uSrc2.au16[1]; *puDst = uDstOut.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklwd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au16[0] = uSrc1.au16[0]; uDstOut.au16[1] = uSrc2.au16[0]; uDstOut.au16[2] = uSrc1.au16[1]; uDstOut.au16[3] = uSrc2.au16[1]; uDstOut.au16[4] = uSrc1.au16[2]; uDstOut.au16[5] = uSrc2.au16[2]; uDstOut.au16[6] = uSrc1.au16[3]; uDstOut.au16[7] = uSrc2.au16[3]; *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklwd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au16[0] = uSrc1.au16[0]; uDstOut.au16[1] = uSrc2.au16[0]; uDstOut.au16[2] = uSrc1.au16[1]; uDstOut.au16[3] = uSrc2.au16[1]; uDstOut.au16[4] = uSrc1.au16[2]; uDstOut.au16[5] = uSrc2.au16[2]; uDstOut.au16[6] = uSrc1.au16[3]; uDstOut.au16[7] = uSrc2.au16[3]; *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au16[0] = uSrc1.au16[0]; uDstOut.au16[1] = uSrc2.au16[0]; uDstOut.au16[2] = uSrc1.au16[1]; uDstOut.au16[3] = uSrc2.au16[1]; uDstOut.au16[4] = uSrc1.au16[2]; uDstOut.au16[5] = uSrc2.au16[2]; uDstOut.au16[6] = uSrc1.au16[3]; uDstOut.au16[7] = uSrc2.au16[3]; uDstOut.au16[8] = uSrc1.au16[8]; uDstOut.au16[9] = uSrc2.au16[8]; uDstOut.au16[10] = uSrc1.au16[9]; uDstOut.au16[11] = uSrc2.au16[9]; uDstOut.au16[12] = uSrc1.au16[10]; uDstOut.au16[13] = uSrc2.au16[10]; uDstOut.au16[14] = uSrc1.au16[11]; uDstOut.au16[15] = uSrc2.au16[11]; *puDst = uDstOut; } /* * PUNPCKLBW - low dwords -> qword(s) */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_punpckldq_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc2 = { *puSrc }; RTUINT64U const uSrc1 = { *puDst }; ASMCompilerBarrier(); RTUINT64U uDstOut; uDstOut.au32[0] = uSrc1.au32[0]; uDstOut.au32[1] = uSrc2.au32[0]; *puDst = uDstOut.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_punpckldq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au32[0] = uSrc1.au32[0]; uDstOut.au32[1] = uSrc2.au32[0]; uDstOut.au32[2] = uSrc1.au32[1]; uDstOut.au32[3] = uSrc2.au32[1]; *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckldq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au32[0] = uSrc1.au32[0]; uDstOut.au32[1] = uSrc2.au32[0]; uDstOut.au32[2] = uSrc1.au32[1]; uDstOut.au32[3] = uSrc2.au32[1]; *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpckldq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au32[0] = uSrc1.au32[0]; uDstOut.au32[1] = uSrc2.au32[0]; uDstOut.au32[2] = uSrc1.au32[1]; uDstOut.au32[3] = uSrc2.au32[1]; uDstOut.au32[4] = uSrc1.au32[4]; uDstOut.au32[5] = uSrc2.au32[4]; uDstOut.au32[6] = uSrc1.au32[5]; uDstOut.au32[7] = uSrc2.au32[5]; *puDst = uDstOut; } /* * PUNPCKLQDQ -> Low qwords -> double qword(s). */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklqdq_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au64[0] = uSrc1.au64[0]; uDstOut.au64[1] = uSrc2.au64[0]; *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au64[0] = uSrc1.au64[0]; uDstOut.au64[1] = uSrc2.au64[0]; *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpunpcklqdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au64[0] = uSrc1.au64[0]; uDstOut.au64[1] = uSrc2.au64[0]; uDstOut.au64[2] = uSrc1.au64[2]; uDstOut.au64[3] = uSrc2.au64[2]; *puDst = uDstOut; } /* * PACKSSWB - signed words -> signed bytes */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_packsswb_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc2 = { *puSrc }; RTUINT64U const uSrc1 = { *puDst }; ASMCompilerBarrier(); RTUINT64U uDstOut; uDstOut.au8[0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]); uDstOut.au8[1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]); uDstOut.au8[2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]); uDstOut.au8[3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]); uDstOut.au8[4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]); uDstOut.au8[5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]); uDstOut.au8[6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]); uDstOut.au8[7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]); *puDst = uDstOut.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_packsswb_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]); uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]); uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]); uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]); uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[4]); uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[5]); uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[6]); uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[7]); uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]); uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]); uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]); uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]); uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[4]); uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[5]); uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[6]); uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[7]); *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpacksswb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]); uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]); uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]); uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]); uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[4]); uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[5]); uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[6]); uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[7]); uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]); uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]); uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]); uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]); uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[4]); uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[5]); uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[6]); uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[7]); *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpacksswb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[0]); uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[1]); uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[2]); uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[3]); uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[4]); uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[5]); uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[6]); uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[7]); uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[0]); uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[1]); uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[2]); uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[3]); uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[4]); uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[5]); uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[6]); uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[7]); uDstOut.au8[16] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[ 8]); uDstOut.au8[17] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[ 9]); uDstOut.au8[18] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[10]); uDstOut.au8[19] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[11]); uDstOut.au8[20] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[12]); uDstOut.au8[21] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[13]); uDstOut.au8[22] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[14]); uDstOut.au8[23] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc1.au16[15]); uDstOut.au8[24] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[ 8]); uDstOut.au8[25] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[ 9]); uDstOut.au8[26] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[10]); uDstOut.au8[27] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[11]); uDstOut.au8[28] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[12]); uDstOut.au8[29] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[13]); uDstOut.au8[30] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[14]); uDstOut.au8[31] = SATURATED_SIGNED_WORD_TO_SIGNED_BYTE(uSrc2.au16[15]); *puDst = uDstOut; } /* * PACKUSWB - signed words -> unsigned bytes */ #define SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(a_iWord) \ ( (uint16_t)(a_iWord) <= (uint16_t)0xff \ ? (uint8_t)(a_iWord) \ : (uint8_t)0xff * (uint8_t)((((a_iWord) >> 15) & 1) ^ 1) ) /* 0xff = UINT8_MAX; 0x00 == UINT8_MIN; source bit 15 = sign */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_packuswb_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc2 = { *puSrc }; RTUINT64U const uSrc1 = { *puDst }; ASMCompilerBarrier(); RTUINT64U uDstOut; uDstOut.au8[0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]); uDstOut.au8[1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]); uDstOut.au8[2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]); uDstOut.au8[3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]); uDstOut.au8[4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]); uDstOut.au8[5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]); uDstOut.au8[6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]); uDstOut.au8[7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]); *puDst = uDstOut.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_packuswb_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]); uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]); uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]); uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]); uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[4]); uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[5]); uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[6]); uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[7]); uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]); uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]); uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]); uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]); uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[4]); uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[5]); uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[6]); uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[7]); *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpackuswb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]); uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]); uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]); uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]); uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[4]); uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[5]); uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[6]); uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[7]); uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]); uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]); uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]); uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]); uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[4]); uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[5]); uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[6]); uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[7]); *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpackuswb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au8[ 0] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[0]); uDstOut.au8[ 1] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[1]); uDstOut.au8[ 2] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[2]); uDstOut.au8[ 3] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[3]); uDstOut.au8[ 4] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[4]); uDstOut.au8[ 5] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[5]); uDstOut.au8[ 6] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[6]); uDstOut.au8[ 7] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[7]); uDstOut.au8[ 8] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[0]); uDstOut.au8[ 9] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[1]); uDstOut.au8[10] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[2]); uDstOut.au8[11] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[3]); uDstOut.au8[12] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[4]); uDstOut.au8[13] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[5]); uDstOut.au8[14] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[6]); uDstOut.au8[15] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[7]); uDstOut.au8[16] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[ 8]); uDstOut.au8[17] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[ 9]); uDstOut.au8[18] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[10]); uDstOut.au8[19] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[11]); uDstOut.au8[20] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[12]); uDstOut.au8[21] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[13]); uDstOut.au8[22] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[14]); uDstOut.au8[23] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc1.au16[15]); uDstOut.au8[24] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[ 8]); uDstOut.au8[25] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[ 9]); uDstOut.au8[26] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[10]); uDstOut.au8[27] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[11]); uDstOut.au8[28] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[12]); uDstOut.au8[29] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[13]); uDstOut.au8[30] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[14]); uDstOut.au8[31] = SATURATED_SIGNED_WORD_TO_UNSIGNED_BYTE(uSrc2.au16[15]); *puDst = uDstOut; } /* * PACKSSDW - signed dwords -> signed words */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_packssdw_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc2 = { *puSrc }; RTUINT64U const uSrc1 = { *puDst }; ASMCompilerBarrier(); RTUINT64U uDstOut; uDstOut.au16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]); uDstOut.au16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]); uDstOut.au16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]); uDstOut.au16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]); *puDst = uDstOut.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_packssdw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]); uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]); uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[2]); uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[3]); uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]); uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]); uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[2]); uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[3]); *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpackssdw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]); uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]); uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[2]); uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[3]); uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]); uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]); uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[2]); uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[3]); *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpackssdw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[0]); uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[1]); uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[2]); uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[3]); uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[0]); uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[1]); uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[2]); uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[3]); uDstOut.au16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[4]); uDstOut.au16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[5]); uDstOut.au16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[6]); uDstOut.au16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.au32[7]); uDstOut.au16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[4]); uDstOut.au16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[5]); uDstOut.au16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[6]); uDstOut.au16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.au32[7]); *puDst = uDstOut; } /* * PACKUSDW - signed dwords -> unsigned words */ #define SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(a_iDword) \ ( (uint32_t)(a_iDword) <= (uint16_t)0xffff \ ? (uint16_t)(a_iDword) \ : (uint16_t)0xffff * (uint16_t)((((a_iDword) >> 31) & 1) ^ 1) ) /* 0xffff = UINT16_MAX; source bit 31 = sign */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_packusdw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U const uSrc2 = *puSrc; RTUINT128U const uSrc1 = *puDst; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[0]); uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[1]); uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[2]); uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[3]); uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[0]); uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[1]); uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[2]); uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[3]); *puDst = uDstOut; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpackusdw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U const uSrc2 = *puSrc2; RTUINT128U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT128U uDstOut; uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[0]); uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[1]); uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[2]); uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[3]); uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[0]); uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[1]); uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[2]); uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[3]); *puDst = uDstOut; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpackusdw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U const uSrc2 = *puSrc2; RTUINT256U const uSrc1 = *puSrc1; ASMCompilerBarrier(); RTUINT256U uDstOut; uDstOut.au16[ 0] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[0]); uDstOut.au16[ 1] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[1]); uDstOut.au16[ 2] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[2]); uDstOut.au16[ 3] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[3]); uDstOut.au16[ 4] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[0]); uDstOut.au16[ 5] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[1]); uDstOut.au16[ 6] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[2]); uDstOut.au16[ 7] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[3]); uDstOut.au16[ 8] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[4]); uDstOut.au16[ 9] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[5]); uDstOut.au16[10] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[6]); uDstOut.au16[11] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc1.au32[7]); uDstOut.au16[12] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[4]); uDstOut.au16[13] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[5]); uDstOut.au16[14] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[6]); uDstOut.au16[15] = SATURATED_SIGNED_DWORD_TO_UNSIGNED_WORD(uSrc2.au32[7]); *puDst = uDstOut; } /* * [V]PABSB / [V]PABSW / [V]PABSD */ IEM_DECL_IMPL_DEF(void, iemAImpl_pabsb_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc = { *puSrc }; RTUINT64U uDstOut = { 0 }; uDstOut.au8[0] = RT_ABS(uSrc.ai8[0]); uDstOut.au8[1] = RT_ABS(uSrc.ai8[1]); uDstOut.au8[2] = RT_ABS(uSrc.ai8[2]); uDstOut.au8[3] = RT_ABS(uSrc.ai8[3]); uDstOut.au8[4] = RT_ABS(uSrc.ai8[4]); uDstOut.au8[5] = RT_ABS(uSrc.ai8[5]); uDstOut.au8[6] = RT_ABS(uSrc.ai8[6]); uDstOut.au8[7] = RT_ABS(uSrc.ai8[7]); *puDst = uDstOut.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pabsb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { puDst->au8[ 0] = RT_ABS(puSrc->ai8[ 0]); puDst->au8[ 1] = RT_ABS(puSrc->ai8[ 1]); puDst->au8[ 2] = RT_ABS(puSrc->ai8[ 2]); puDst->au8[ 3] = RT_ABS(puSrc->ai8[ 3]); puDst->au8[ 4] = RT_ABS(puSrc->ai8[ 4]); puDst->au8[ 5] = RT_ABS(puSrc->ai8[ 5]); puDst->au8[ 6] = RT_ABS(puSrc->ai8[ 6]); puDst->au8[ 7] = RT_ABS(puSrc->ai8[ 7]); puDst->au8[ 8] = RT_ABS(puSrc->ai8[ 8]); puDst->au8[ 9] = RT_ABS(puSrc->ai8[ 9]); puDst->au8[10] = RT_ABS(puSrc->ai8[10]); puDst->au8[11] = RT_ABS(puSrc->ai8[11]); puDst->au8[12] = RT_ABS(puSrc->ai8[12]); puDst->au8[13] = RT_ABS(puSrc->ai8[13]); puDst->au8[14] = RT_ABS(puSrc->ai8[14]); puDst->au8[15] = RT_ABS(puSrc->ai8[15]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pabsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc = { *puSrc }; RTUINT64U uDstOut = { 0 }; uDstOut.au16[0] = RT_ABS(uSrc.ai16[0]); uDstOut.au16[1] = RT_ABS(uSrc.ai16[1]); uDstOut.au16[2] = RT_ABS(uSrc.ai16[2]); uDstOut.au16[3] = RT_ABS(uSrc.ai16[3]); *puDst = uDstOut.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pabsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { puDst->au16[ 0] = RT_ABS(puSrc->ai16[ 0]); puDst->au16[ 1] = RT_ABS(puSrc->ai16[ 1]); puDst->au16[ 2] = RT_ABS(puSrc->ai16[ 2]); puDst->au16[ 3] = RT_ABS(puSrc->ai16[ 3]); puDst->au16[ 4] = RT_ABS(puSrc->ai16[ 4]); puDst->au16[ 5] = RT_ABS(puSrc->ai16[ 5]); puDst->au16[ 6] = RT_ABS(puSrc->ai16[ 6]); puDst->au16[ 7] = RT_ABS(puSrc->ai16[ 7]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pabsd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U const uSrc = { *puSrc }; RTUINT64U uDstOut = { 0 }; uDstOut.au32[0] = RT_ABS(uSrc.ai32[0]); uDstOut.au32[1] = RT_ABS(uSrc.ai32[1]); *puDst = uDstOut.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pabsd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { puDst->au32[ 0] = RT_ABS(puSrc->ai32[ 0]); puDst->au32[ 1] = RT_ABS(puSrc->ai32[ 1]); puDst->au32[ 2] = RT_ABS(puSrc->ai32[ 2]); puDst->au32[ 3] = RT_ABS(puSrc->ai32[ 3]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { puDst->au8[ 0] = RT_ABS(puSrc->ai8[ 0]); puDst->au8[ 1] = RT_ABS(puSrc->ai8[ 1]); puDst->au8[ 2] = RT_ABS(puSrc->ai8[ 2]); puDst->au8[ 3] = RT_ABS(puSrc->ai8[ 3]); puDst->au8[ 4] = RT_ABS(puSrc->ai8[ 4]); puDst->au8[ 5] = RT_ABS(puSrc->ai8[ 5]); puDst->au8[ 6] = RT_ABS(puSrc->ai8[ 6]); puDst->au8[ 7] = RT_ABS(puSrc->ai8[ 7]); puDst->au8[ 8] = RT_ABS(puSrc->ai8[ 8]); puDst->au8[ 9] = RT_ABS(puSrc->ai8[ 9]); puDst->au8[10] = RT_ABS(puSrc->ai8[10]); puDst->au8[11] = RT_ABS(puSrc->ai8[11]); puDst->au8[12] = RT_ABS(puSrc->ai8[12]); puDst->au8[13] = RT_ABS(puSrc->ai8[13]); puDst->au8[14] = RT_ABS(puSrc->ai8[14]); puDst->au8[15] = RT_ABS(puSrc->ai8[15]); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc)) { puDst->au8[ 0] = RT_ABS(puSrc->ai8[ 0]); puDst->au8[ 1] = RT_ABS(puSrc->ai8[ 1]); puDst->au8[ 2] = RT_ABS(puSrc->ai8[ 2]); puDst->au8[ 3] = RT_ABS(puSrc->ai8[ 3]); puDst->au8[ 4] = RT_ABS(puSrc->ai8[ 4]); puDst->au8[ 5] = RT_ABS(puSrc->ai8[ 5]); puDst->au8[ 6] = RT_ABS(puSrc->ai8[ 6]); puDst->au8[ 7] = RT_ABS(puSrc->ai8[ 7]); puDst->au8[ 8] = RT_ABS(puSrc->ai8[ 8]); puDst->au8[ 9] = RT_ABS(puSrc->ai8[ 9]); puDst->au8[10] = RT_ABS(puSrc->ai8[10]); puDst->au8[11] = RT_ABS(puSrc->ai8[11]); puDst->au8[12] = RT_ABS(puSrc->ai8[12]); puDst->au8[13] = RT_ABS(puSrc->ai8[13]); puDst->au8[14] = RT_ABS(puSrc->ai8[14]); puDst->au8[15] = RT_ABS(puSrc->ai8[15]); puDst->au8[16] = RT_ABS(puSrc->ai8[16]); puDst->au8[17] = RT_ABS(puSrc->ai8[17]); puDst->au8[18] = RT_ABS(puSrc->ai8[18]); puDst->au8[19] = RT_ABS(puSrc->ai8[19]); puDst->au8[20] = RT_ABS(puSrc->ai8[20]); puDst->au8[21] = RT_ABS(puSrc->ai8[21]); puDst->au8[22] = RT_ABS(puSrc->ai8[22]); puDst->au8[23] = RT_ABS(puSrc->ai8[23]); puDst->au8[24] = RT_ABS(puSrc->ai8[24]); puDst->au8[25] = RT_ABS(puSrc->ai8[25]); puDst->au8[26] = RT_ABS(puSrc->ai8[26]); puDst->au8[27] = RT_ABS(puSrc->ai8[27]); puDst->au8[28] = RT_ABS(puSrc->ai8[28]); puDst->au8[29] = RT_ABS(puSrc->ai8[29]); puDst->au8[30] = RT_ABS(puSrc->ai8[30]); puDst->au8[31] = RT_ABS(puSrc->ai8[31]); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { puDst->au16[ 0] = RT_ABS(puSrc->ai16[ 0]); puDst->au16[ 1] = RT_ABS(puSrc->ai16[ 1]); puDst->au16[ 2] = RT_ABS(puSrc->ai16[ 2]); puDst->au16[ 3] = RT_ABS(puSrc->ai16[ 3]); puDst->au16[ 4] = RT_ABS(puSrc->ai16[ 4]); puDst->au16[ 5] = RT_ABS(puSrc->ai16[ 5]); puDst->au16[ 6] = RT_ABS(puSrc->ai16[ 6]); puDst->au16[ 7] = RT_ABS(puSrc->ai16[ 7]); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc)) { puDst->au16[ 0] = RT_ABS(puSrc->ai16[ 0]); puDst->au16[ 1] = RT_ABS(puSrc->ai16[ 1]); puDst->au16[ 2] = RT_ABS(puSrc->ai16[ 2]); puDst->au16[ 3] = RT_ABS(puSrc->ai16[ 3]); puDst->au16[ 4] = RT_ABS(puSrc->ai16[ 4]); puDst->au16[ 5] = RT_ABS(puSrc->ai16[ 5]); puDst->au16[ 6] = RT_ABS(puSrc->ai16[ 6]); puDst->au16[ 7] = RT_ABS(puSrc->ai16[ 7]); puDst->au16[ 8] = RT_ABS(puSrc->ai16[ 8]); puDst->au16[ 9] = RT_ABS(puSrc->ai16[ 9]); puDst->au16[10] = RT_ABS(puSrc->ai16[10]); puDst->au16[11] = RT_ABS(puSrc->ai16[11]); puDst->au16[12] = RT_ABS(puSrc->ai16[12]); puDst->au16[13] = RT_ABS(puSrc->ai16[13]); puDst->au16[14] = RT_ABS(puSrc->ai16[14]); puDst->au16[15] = RT_ABS(puSrc->ai16[15]); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { puDst->au32[ 0] = RT_ABS(puSrc->ai32[ 0]); puDst->au32[ 1] = RT_ABS(puSrc->ai32[ 1]); puDst->au32[ 2] = RT_ABS(puSrc->ai32[ 2]); puDst->au32[ 3] = RT_ABS(puSrc->ai32[ 3]); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpabsd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc)) { puDst->au32[ 0] = RT_ABS(puSrc->ai32[ 0]); puDst->au32[ 1] = RT_ABS(puSrc->ai32[ 1]); puDst->au32[ 2] = RT_ABS(puSrc->ai32[ 2]); puDst->au32[ 3] = RT_ABS(puSrc->ai32[ 3]); puDst->au32[ 4] = RT_ABS(puSrc->ai32[ 4]); puDst->au32[ 5] = RT_ABS(puSrc->ai32[ 5]); puDst->au32[ 6] = RT_ABS(puSrc->ai32[ 6]); puDst->au32[ 7] = RT_ABS(puSrc->ai32[ 7]); } /* * PSIGNB / VPSIGNB / PSIGNW / VPSIGNW / PSIGND / VPSIGND */ IEM_DECL_IMPL_DEF(void, iemAImpl_psignb_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ for (uint32_t i = 0; i < RT_ELEMENTS(uDst.ai8); i++) { if (uSrc2.ai8[i] < 0) uDst.ai8[i] = -uSrc1.ai8[i]; else if (uSrc2.ai8[i] == 0) uDst.ai8[i] = 0; else /* uSrc2.ai8[i] > 0 */ uDst.ai8[i] = uSrc1.ai8[i]; } *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_psignb_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai8); i++) { if (puSrc->ai8[i] < 0) puDst->ai8[i] = -uSrc1.ai8[i]; else if (puSrc->ai8[i] == 0) puDst->ai8[i] = 0; else /* puSrc->ai8[i] > 0 */ puDst->ai8[i] = uSrc1.ai8[i]; } RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_psignw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ for (uint32_t i = 0; i < RT_ELEMENTS(uDst.ai16); i++) { if (uSrc2.ai16[i] < 0) uDst.ai16[i] = -uSrc1.ai16[i]; else if (uSrc2.ai16[i] == 0) uDst.ai16[i] = 0; else /* uSrc2.ai16[i] > 0 */ uDst.ai16[i] = uSrc1.ai16[i]; } *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_psignw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai16); i++) { if (puSrc->ai16[i] < 0) puDst->ai16[i] = -uSrc1.ai16[i]; else if (puSrc->ai16[i] == 0) puDst->ai16[i] = 0; else /* puSrc->ai16[i] > 0 */ puDst->ai16[i] = uSrc1.ai16[i]; } RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_psignd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ for (uint32_t i = 0; i < RT_ELEMENTS(uDst.ai32); i++) { if (uSrc2.ai32[i] < 0) uDst.ai32[i] = -uSrc1.ai32[i]; else if (uSrc2.ai32[i] == 0) uDst.ai32[i] = 0; else /* uSrc2.ai32[i] > 0 */ uDst.ai32[i] = uSrc1.ai32[i]; } *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_psignd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai32); i++) { if (puSrc->ai32[i] < 0) puDst->ai32[i] = -uSrc1.ai32[i]; else if (puSrc->ai32[i] == 0) puDst->ai32[i] = 0; else /* puSrc->ai32[i] > 0 */ puDst->ai32[i] = uSrc1.ai32[i]; } RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai8); i++) { if (puSrc2->ai8[i] < 0) puDst->ai8[i] = -puSrc1->ai8[i]; else if (puSrc2->ai8[i] == 0) puDst->ai8[i] = 0; else /* puSrc2->ai8[i] > 0 */ puDst->ai8[i] = puSrc1->ai8[i]; } } IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai8); i++) { if (puSrc2->ai8[i] < 0) puDst->ai8[i] = -puSrc1->ai8[i]; else if (puSrc2->ai8[i] == 0) puDst->ai8[i] = 0; else /* puSrc2->ai8[i] > 0 */ puDst->ai8[i] = puSrc1->ai8[i]; } } IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai16); i++) { if (puSrc2->ai16[i] < 0) puDst->ai16[i] = -puSrc1->ai16[i]; else if (puSrc2->ai16[i] == 0) puDst->ai16[i] = 0; else /* puSrc2->ai16[i] > 0 */ puDst->ai16[i] = puSrc1->ai16[i]; } } IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai16); i++) { if (puSrc2->ai16[i] < 0) puDst->ai16[i] = -puSrc1->ai16[i]; else if (puSrc2->ai16[i] == 0) puDst->ai16[i] = 0; else /* puSrc2->ai16[i] > 0 */ puDst->ai16[i] = puSrc1->ai16[i]; } } IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai32); i++) { if (puSrc2->ai32[i] < 0) puDst->ai32[i] = -puSrc1->ai32[i]; else if (puSrc2->ai32[i] == 0) puDst->ai32[i] = 0; else /* puSrc2->ai32[i] > 0 */ puDst->ai32[i] = puSrc1->ai32[i]; } } IEM_DECL_IMPL_DEF(void, iemAImpl_vpsignd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { for (uint32_t i = 0; i < RT_ELEMENTS(puDst->ai32); i++) { if (puSrc2->ai32[i] < 0) puDst->ai32[i] = -puSrc1->ai32[i]; else if (puSrc2->ai32[i] == 0) puDst->ai32[i] = 0; else /* puSrc2->ai32[i] > 0 */ puDst->ai32[i] = puSrc1->ai32[i]; } } /* * PHADDW / VPHADDW / PHADDD / VPHADDD */ IEM_DECL_IMPL_DEF(void, iemAImpl_phaddw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ uDst.ai16[0] = uSrc1.ai16[0] + uSrc1.ai16[1]; uDst.ai16[1] = uSrc1.ai16[2] + uSrc1.ai16[3]; uDst.ai16[2] = uSrc2.ai16[0] + uSrc2.ai16[1]; uDst.ai16[3] = uSrc2.ai16[2] + uSrc2.ai16[3]; *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_phaddw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai16[0] = uSrc1.ai16[0] + uSrc1.ai16[1]; puDst->ai16[1] = uSrc1.ai16[2] + uSrc1.ai16[3]; puDst->ai16[2] = uSrc1.ai16[4] + uSrc1.ai16[5]; puDst->ai16[3] = uSrc1.ai16[6] + uSrc1.ai16[7]; puDst->ai16[4] = puSrc->ai16[0] + puSrc->ai16[1]; puDst->ai16[5] = puSrc->ai16[2] + puSrc->ai16[3]; puDst->ai16[6] = puSrc->ai16[4] + puSrc->ai16[5]; puDst->ai16[7] = puSrc->ai16[6] + puSrc->ai16[7]; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_phaddd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ uDst.ai32[0] = uSrc1.ai32[0] + uSrc1.ai32[1]; uDst.ai32[1] = uSrc2.ai32[0] + uSrc2.ai32[1]; *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_phaddd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai32[0] = uSrc1.ai32[0] + uSrc1.ai32[1]; puDst->ai32[1] = uSrc1.ai32[2] + uSrc1.ai32[3]; puDst->ai32[2] = puSrc->ai32[0] + puSrc->ai32[1]; puDst->ai32[3] = puSrc->ai32[2] + puSrc->ai32[3]; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[0] = puSrc1->ai16[0] + puSrc1->ai16[1]; uDst.ai16[1] = puSrc1->ai16[2] + puSrc1->ai16[3]; uDst.ai16[2] = puSrc1->ai16[4] + puSrc1->ai16[5]; uDst.ai16[3] = puSrc1->ai16[6] + puSrc1->ai16[7]; uDst.ai16[4] = puSrc2->ai16[0] + puSrc2->ai16[1]; uDst.ai16[5] = puSrc2->ai16[2] + puSrc2->ai16[3]; uDst.ai16[6] = puSrc2->ai16[4] + puSrc2->ai16[5]; uDst.ai16[7] = puSrc2->ai16[6] + puSrc2->ai16[7]; puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[ 0] = puSrc1->ai16[ 0] + puSrc1->ai16[ 1]; uDst.ai16[ 1] = puSrc1->ai16[ 2] + puSrc1->ai16[ 3]; uDst.ai16[ 2] = puSrc1->ai16[ 4] + puSrc1->ai16[ 5]; uDst.ai16[ 3] = puSrc1->ai16[ 6] + puSrc1->ai16[ 7]; uDst.ai16[ 4] = puSrc2->ai16[ 0] + puSrc2->ai16[ 1]; uDst.ai16[ 5] = puSrc2->ai16[ 2] + puSrc2->ai16[ 3]; uDst.ai16[ 6] = puSrc2->ai16[ 4] + puSrc2->ai16[ 5]; uDst.ai16[ 7] = puSrc2->ai16[ 6] + puSrc2->ai16[ 7]; uDst.ai16[ 8] = puSrc1->ai16[ 8] + puSrc1->ai16[ 9]; uDst.ai16[ 9] = puSrc1->ai16[10] + puSrc1->ai16[11]; uDst.ai16[10] = puSrc1->ai16[12] + puSrc1->ai16[13]; uDst.ai16[11] = puSrc1->ai16[14] + puSrc1->ai16[15]; uDst.ai16[12] = puSrc2->ai16[ 8] + puSrc2->ai16[ 9]; uDst.ai16[13] = puSrc2->ai16[10] + puSrc2->ai16[11]; uDst.ai16[14] = puSrc2->ai16[12] + puSrc2->ai16[13]; uDst.ai16[15] = puSrc2->ai16[14] + puSrc2->ai16[15]; puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; puDst->au64[2] = uDst.au64[2]; puDst->au64[3] = uDst.au64[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai32[0] = puSrc1->ai32[0] + puSrc1->ai32[1]; uDst.ai32[1] = puSrc1->ai32[2] + puSrc1->ai32[3]; uDst.ai32[2] = puSrc2->ai32[0] + puSrc2->ai32[1]; uDst.ai32[3] = puSrc2->ai32[2] + puSrc2->ai32[3]; puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai32[0] = puSrc1->ai32[ 0] + puSrc1->ai32[ 1]; uDst.ai32[1] = puSrc1->ai32[ 2] + puSrc1->ai32[ 3]; uDst.ai32[2] = puSrc2->ai32[ 0] + puSrc2->ai32[ 1]; uDst.ai32[3] = puSrc2->ai32[ 2] + puSrc2->ai32[ 3]; uDst.ai32[4] = puSrc1->ai32[ 4] + puSrc1->ai32[ 5]; uDst.ai32[5] = puSrc1->ai32[ 6] + puSrc1->ai32[ 7]; uDst.ai32[6] = puSrc2->ai32[ 4] + puSrc2->ai32[ 5]; uDst.ai32[7] = puSrc2->ai32[ 6] + puSrc2->ai32[ 7]; puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; puDst->au64[2] = uDst.au64[2]; puDst->au64[3] = uDst.au64[3]; } /* * PHSUBW / VPHSUBW / PHSUBD / VPHSUBD */ IEM_DECL_IMPL_DEF(void, iemAImpl_phsubw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ uDst.ai16[0] = uSrc1.ai16[0] - uSrc1.ai16[1]; uDst.ai16[1] = uSrc1.ai16[2] - uSrc1.ai16[3]; uDst.ai16[2] = uSrc2.ai16[0] - uSrc2.ai16[1]; uDst.ai16[3] = uSrc2.ai16[2] - uSrc2.ai16[3]; *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_phsubw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai16[0] = uSrc1.ai16[0] - uSrc1.ai16[1]; puDst->ai16[1] = uSrc1.ai16[2] - uSrc1.ai16[3]; puDst->ai16[2] = uSrc1.ai16[4] - uSrc1.ai16[5]; puDst->ai16[3] = uSrc1.ai16[6] - uSrc1.ai16[7]; puDst->ai16[4] = puSrc->ai16[0] - puSrc->ai16[1]; puDst->ai16[5] = puSrc->ai16[2] - puSrc->ai16[3]; puDst->ai16[6] = puSrc->ai16[4] - puSrc->ai16[5]; puDst->ai16[7] = puSrc->ai16[6] - puSrc->ai16[7]; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_phsubd_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ uDst.ai32[0] = uSrc1.ai32[0] - uSrc1.ai32[1]; uDst.ai32[1] = uSrc2.ai32[0] - uSrc2.ai32[1]; *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_phsubd_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai32[0] = uSrc1.ai32[0] - uSrc1.ai32[1]; puDst->ai32[1] = uSrc1.ai32[2] - uSrc1.ai32[3]; puDst->ai32[2] = puSrc->ai32[0] - puSrc->ai32[1]; puDst->ai32[3] = puSrc->ai32[2] - puSrc->ai32[3]; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[0] = puSrc1->ai16[0] - puSrc1->ai16[1]; uDst.ai16[1] = puSrc1->ai16[2] - puSrc1->ai16[3]; uDst.ai16[2] = puSrc1->ai16[4] - puSrc1->ai16[5]; uDst.ai16[3] = puSrc1->ai16[6] - puSrc1->ai16[7]; uDst.ai16[4] = puSrc2->ai16[0] - puSrc2->ai16[1]; uDst.ai16[5] = puSrc2->ai16[2] - puSrc2->ai16[3]; uDst.ai16[6] = puSrc2->ai16[4] - puSrc2->ai16[5]; uDst.ai16[7] = puSrc2->ai16[6] - puSrc2->ai16[7]; puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[ 0] = puSrc1->ai16[ 0] - puSrc1->ai16[ 1]; uDst.ai16[ 1] = puSrc1->ai16[ 2] - puSrc1->ai16[ 3]; uDst.ai16[ 2] = puSrc1->ai16[ 4] - puSrc1->ai16[ 5]; uDst.ai16[ 3] = puSrc1->ai16[ 6] - puSrc1->ai16[ 7]; uDst.ai16[ 4] = puSrc2->ai16[ 0] - puSrc2->ai16[ 1]; uDst.ai16[ 5] = puSrc2->ai16[ 2] - puSrc2->ai16[ 3]; uDst.ai16[ 6] = puSrc2->ai16[ 4] - puSrc2->ai16[ 5]; uDst.ai16[ 7] = puSrc2->ai16[ 6] - puSrc2->ai16[ 7]; uDst.ai16[ 8] = puSrc1->ai16[ 8] - puSrc1->ai16[ 9]; uDst.ai16[ 9] = puSrc1->ai16[10] - puSrc1->ai16[11]; uDst.ai16[10] = puSrc1->ai16[12] - puSrc1->ai16[13]; uDst.ai16[11] = puSrc1->ai16[14] - puSrc1->ai16[15]; uDst.ai16[12] = puSrc2->ai16[ 8] - puSrc2->ai16[ 9]; uDst.ai16[13] = puSrc2->ai16[10] - puSrc2->ai16[11]; uDst.ai16[14] = puSrc2->ai16[12] - puSrc2->ai16[13]; uDst.ai16[15] = puSrc2->ai16[14] - puSrc2->ai16[15]; puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; puDst->au64[2] = uDst.au64[2]; puDst->au64[3] = uDst.au64[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai32[0] = puSrc1->ai32[0] - puSrc1->ai32[1]; uDst.ai32[1] = puSrc1->ai32[2] - puSrc1->ai32[3]; uDst.ai32[2] = puSrc2->ai32[0] - puSrc2->ai32[1]; uDst.ai32[3] = puSrc2->ai32[2] - puSrc2->ai32[3]; puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai32[0] = puSrc1->ai32[ 0] - puSrc1->ai32[ 1]; uDst.ai32[1] = puSrc1->ai32[ 2] - puSrc1->ai32[ 3]; uDst.ai32[2] = puSrc2->ai32[ 0] - puSrc2->ai32[ 1]; uDst.ai32[3] = puSrc2->ai32[ 2] - puSrc2->ai32[ 3]; uDst.ai32[4] = puSrc1->ai32[ 4] - puSrc1->ai32[ 5]; uDst.ai32[5] = puSrc1->ai32[ 6] - puSrc1->ai32[ 7]; uDst.ai32[6] = puSrc2->ai32[ 4] - puSrc2->ai32[ 5]; uDst.ai32[7] = puSrc2->ai32[ 6] - puSrc2->ai32[ 7]; puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; puDst->au64[2] = uDst.au64[2]; puDst->au64[3] = uDst.au64[3]; } /* * PHADDSW / VPHADDSW */ IEM_DECL_IMPL_DEF(void, iemAImpl_phaddsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + uSrc1.ai16[1]); uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + uSrc1.ai16[3]); uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[0] + uSrc2.ai16[1]); uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[2] + uSrc2.ai16[3]); *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_phaddsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] + uSrc1.ai16[1]); puDst->ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] + uSrc1.ai16[3]); puDst->ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] + uSrc1.ai16[5]); puDst->ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] + uSrc1.ai16[7]); puDst->ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[0] + puSrc->ai16[1]); puDst->ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[2] + puSrc->ai16[3]); puDst->ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[4] + puSrc->ai16[5]); puDst->ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[6] + puSrc->ai16[7]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[0] + puSrc1->ai16[1]); uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[2] + puSrc1->ai16[3]); uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[4] + puSrc1->ai16[5]); uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[6] + puSrc1->ai16[7]); uDst.ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[0] + puSrc2->ai16[1]); uDst.ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[2] + puSrc2->ai16[3]); uDst.ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[4] + puSrc2->ai16[5]); uDst.ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[6] + puSrc2->ai16[7]); puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vphaddsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 0] + puSrc1->ai16[ 1]); uDst.ai16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 2] + puSrc1->ai16[ 3]); uDst.ai16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 4] + puSrc1->ai16[ 5]); uDst.ai16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 6] + puSrc1->ai16[ 7]); uDst.ai16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 0] + puSrc2->ai16[ 1]); uDst.ai16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 2] + puSrc2->ai16[ 3]); uDst.ai16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 4] + puSrc2->ai16[ 5]); uDst.ai16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 6] + puSrc2->ai16[ 7]); uDst.ai16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 8] + puSrc1->ai16[ 9]); uDst.ai16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[10] + puSrc1->ai16[11]); uDst.ai16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[12] + puSrc1->ai16[13]); uDst.ai16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[14] + puSrc1->ai16[15]); uDst.ai16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 8] + puSrc2->ai16[ 9]); uDst.ai16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[10] + puSrc2->ai16[11]); uDst.ai16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[12] + puSrc2->ai16[13]); uDst.ai16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[14] + puSrc2->ai16[15]); puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; puDst->au64[2] = uDst.au64[2]; puDst->au64[3] = uDst.au64[3]; } /* * PHSUBSW / VPHSUBSW */ IEM_DECL_IMPL_DEF(void, iemAImpl_phsubsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - uSrc1.ai16[1]); uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - uSrc1.ai16[3]); uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[0] - uSrc2.ai16[1]); uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc2.ai16[2] - uSrc2.ai16[3]); *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_phsubsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[0] - uSrc1.ai16[1]); puDst->ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[2] - uSrc1.ai16[3]); puDst->ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[4] - uSrc1.ai16[5]); puDst->ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(uSrc1.ai16[6] - uSrc1.ai16[7]); puDst->ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[0] - puSrc->ai16[1]); puDst->ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[2] - puSrc->ai16[3]); puDst->ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[4] - puSrc->ai16[5]); puDst->ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc->ai16[6] - puSrc->ai16[7]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[0] - puSrc1->ai16[1]); uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[2] - puSrc1->ai16[3]); uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[4] - puSrc1->ai16[5]); uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[6] - puSrc1->ai16[7]); uDst.ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[0] - puSrc2->ai16[1]); uDst.ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[2] - puSrc2->ai16[3]); uDst.ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[4] - puSrc2->ai16[5]); uDst.ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[6] - puSrc2->ai16[7]); puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vphsubsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 0] - puSrc1->ai16[ 1]); uDst.ai16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 2] - puSrc1->ai16[ 3]); uDst.ai16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 4] - puSrc1->ai16[ 5]); uDst.ai16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 6] - puSrc1->ai16[ 7]); uDst.ai16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 0] - puSrc2->ai16[ 1]); uDst.ai16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 2] - puSrc2->ai16[ 3]); uDst.ai16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 4] - puSrc2->ai16[ 5]); uDst.ai16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 6] - puSrc2->ai16[ 7]); uDst.ai16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[ 8] - puSrc1->ai16[ 9]); uDst.ai16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[10] - puSrc1->ai16[11]); uDst.ai16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[12] - puSrc1->ai16[13]); uDst.ai16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc1->ai16[14] - puSrc1->ai16[15]); uDst.ai16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[ 8] - puSrc2->ai16[ 9]); uDst.ai16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[10] - puSrc2->ai16[11]); uDst.ai16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[12] - puSrc2->ai16[13]); uDst.ai16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD(puSrc2->ai16[14] - puSrc2->ai16[15]); puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; puDst->au64[2] = uDst.au64[2]; puDst->au64[3] = uDst.au64[3]; } /* * PMADDUBSW / VPMADDUBSW */ IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddubsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst = { 0 }; /* Shut up MSVC. */ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[0] * uSrc2.ai8[0] + (uint16_t)uSrc1.au8[1] * uSrc2.ai8[1]); uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[2] * uSrc2.ai8[2] + (uint16_t)uSrc1.au8[3] * uSrc2.ai8[3]); uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[4] * uSrc2.ai8[4] + (uint16_t)uSrc1.au8[5] * uSrc2.ai8[5]); uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[6] * uSrc2.ai8[6] + (uint16_t)uSrc1.au8[7] * uSrc2.ai8[7]); *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pmaddubsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 0] * puSrc->ai8[ 0] + (uint16_t)uSrc1.au8[ 1] * puSrc->ai8[ 1]); puDst->ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 2] * puSrc->ai8[ 2] + (uint16_t)uSrc1.au8[ 3] * puSrc->ai8[ 3]); puDst->ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 4] * puSrc->ai8[ 4] + (uint16_t)uSrc1.au8[ 5] * puSrc->ai8[ 5]); puDst->ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 6] * puSrc->ai8[ 6] + (uint16_t)uSrc1.au8[ 7] * puSrc->ai8[ 7]); puDst->ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[ 8] * puSrc->ai8[ 8] + (uint16_t)uSrc1.au8[ 9] * puSrc->ai8[ 9]); puDst->ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[10] * puSrc->ai8[10] + (uint16_t)uSrc1.au8[11] * puSrc->ai8[11]); puDst->ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[12] * puSrc->ai8[12] + (uint16_t)uSrc1.au8[13] * puSrc->ai8[13]); puDst->ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)uSrc1.au8[14] * puSrc->ai8[14] + (uint16_t)uSrc1.au8[15] * puSrc->ai8[15]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaddubsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 0] * puSrc2->ai8[ 0] + (uint16_t)puSrc1->au8[ 1] * puSrc2->ai8[ 1]); uDst.ai16[1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 2] * puSrc2->ai8[ 2] + (uint16_t)puSrc1->au8[ 3] * puSrc2->ai8[ 3]); uDst.ai16[2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 4] * puSrc2->ai8[ 4] + (uint16_t)puSrc1->au8[ 5] * puSrc2->ai8[ 5]); uDst.ai16[3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 6] * puSrc2->ai8[ 6] + (uint16_t)puSrc1->au8[ 7] * puSrc2->ai8[ 7]); uDst.ai16[4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 8] * puSrc2->ai8[ 8] + (uint16_t)puSrc1->au8[ 9] * puSrc2->ai8[ 9]); uDst.ai16[5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[10] * puSrc2->ai8[10] + (uint16_t)puSrc1->au8[11] * puSrc2->ai8[11]); uDst.ai16[6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[12] * puSrc2->ai8[12] + (uint16_t)puSrc1->au8[13] * puSrc2->ai8[13]); uDst.ai16[7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[14] * puSrc2->ai8[14] + (uint16_t)puSrc1->au8[15] * puSrc2->ai8[15]); puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmaddubsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[ 0] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 0] * puSrc2->ai8[ 0] + (uint16_t)puSrc1->au8[ 1] * puSrc2->ai8[ 1]); uDst.ai16[ 1] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 2] * puSrc2->ai8[ 2] + (uint16_t)puSrc1->au8[ 3] * puSrc2->ai8[ 3]); uDst.ai16[ 2] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 4] * puSrc2->ai8[ 4] + (uint16_t)puSrc1->au8[ 5] * puSrc2->ai8[ 5]); uDst.ai16[ 3] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 6] * puSrc2->ai8[ 6] + (uint16_t)puSrc1->au8[ 7] * puSrc2->ai8[ 7]); uDst.ai16[ 4] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[ 8] * puSrc2->ai8[ 8] + (uint16_t)puSrc1->au8[ 9] * puSrc2->ai8[ 9]); uDst.ai16[ 5] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[10] * puSrc2->ai8[10] + (uint16_t)puSrc1->au8[11] * puSrc2->ai8[11]); uDst.ai16[ 6] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[12] * puSrc2->ai8[12] + (uint16_t)puSrc1->au8[13] * puSrc2->ai8[13]); uDst.ai16[ 7] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[14] * puSrc2->ai8[14] + (uint16_t)puSrc1->au8[15] * puSrc2->ai8[15]); uDst.ai16[ 8] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[16] * puSrc2->ai8[16] + (uint16_t)puSrc1->au8[17] * puSrc2->ai8[17]); uDst.ai16[ 9] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[18] * puSrc2->ai8[18] + (uint16_t)puSrc1->au8[19] * puSrc2->ai8[19]); uDst.ai16[10] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[20] * puSrc2->ai8[20] + (uint16_t)puSrc1->au8[21] * puSrc2->ai8[21]); uDst.ai16[11] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[22] * puSrc2->ai8[22] + (uint16_t)puSrc1->au8[23] * puSrc2->ai8[23]); uDst.ai16[12] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[24] * puSrc2->ai8[24] + (uint16_t)puSrc1->au8[25] * puSrc2->ai8[25]); uDst.ai16[13] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[26] * puSrc2->ai8[26] + (uint16_t)puSrc1->au8[27] * puSrc2->ai8[27]); uDst.ai16[14] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[28] * puSrc2->ai8[28] + (uint16_t)puSrc1->au8[29] * puSrc2->ai8[29]); uDst.ai16[15] = SATURATED_SIGNED_DWORD_TO_SIGNED_WORD((uint16_t)puSrc1->au8[30] * puSrc2->ai8[30] + (uint16_t)puSrc1->au8[31] * puSrc2->ai8[31]); puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; puDst->au64[2] = uDst.au64[2]; puDst->au64[3] = uDst.au64[3]; } /* * PMULHRSW / VPMULHRSW */ #define DO_PMULHRSW(a_Src1, a_Src2) \ (uint16_t)(((((int32_t)(a_Src1) * (a_Src2)) >> 14 ) + 1) >> 1) IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhrsw_u64_fallback,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uDst.au16[0] = DO_PMULHRSW(uSrc1.ai16[0], uSrc2.ai16[0]); uDst.au16[1] = DO_PMULHRSW(uSrc1.ai16[1], uSrc2.ai16[1]); uDst.au16[2] = DO_PMULHRSW(uSrc1.ai16[2], uSrc2.ai16[2]); uDst.au16[3] = DO_PMULHRSW(uSrc1.ai16[3], uSrc2.ai16[3]); *puDst = uDst.u; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pmulhrsw_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->ai16[0] = DO_PMULHRSW(uSrc1.ai16[0], puSrc->ai16[0]); puDst->ai16[1] = DO_PMULHRSW(uSrc1.ai16[1], puSrc->ai16[1]); puDst->ai16[2] = DO_PMULHRSW(uSrc1.ai16[2], puSrc->ai16[2]); puDst->ai16[3] = DO_PMULHRSW(uSrc1.ai16[3], puSrc->ai16[3]); puDst->ai16[4] = DO_PMULHRSW(uSrc1.ai16[4], puSrc->ai16[4]); puDst->ai16[5] = DO_PMULHRSW(uSrc1.ai16[5], puSrc->ai16[5]); puDst->ai16[6] = DO_PMULHRSW(uSrc1.ai16[6], puSrc->ai16[6]); puDst->ai16[7] = DO_PMULHRSW(uSrc1.ai16[7], puSrc->ai16[7]); RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhrsw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[0] = DO_PMULHRSW(puSrc1->ai16[0], puSrc2->ai16[0]); uDst.ai16[1] = DO_PMULHRSW(puSrc1->ai16[1], puSrc2->ai16[1]); uDst.ai16[2] = DO_PMULHRSW(puSrc1->ai16[2], puSrc2->ai16[2]); uDst.ai16[3] = DO_PMULHRSW(puSrc1->ai16[3], puSrc2->ai16[3]); uDst.ai16[4] = DO_PMULHRSW(puSrc1->ai16[4], puSrc2->ai16[4]); uDst.ai16[5] = DO_PMULHRSW(puSrc1->ai16[5], puSrc2->ai16[5]); uDst.ai16[6] = DO_PMULHRSW(puSrc1->ai16[6], puSrc2->ai16[6]); uDst.ai16[7] = DO_PMULHRSW(puSrc1->ai16[7], puSrc2->ai16[7]); puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmulhrsw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uDst; /* puDst can be the same as one of the source operands. */ uDst.ai16[ 0] = DO_PMULHRSW(puSrc1->ai16[ 0], puSrc2->ai16[ 0]); uDst.ai16[ 1] = DO_PMULHRSW(puSrc1->ai16[ 1], puSrc2->ai16[ 1]); uDst.ai16[ 2] = DO_PMULHRSW(puSrc1->ai16[ 2], puSrc2->ai16[ 2]); uDst.ai16[ 3] = DO_PMULHRSW(puSrc1->ai16[ 3], puSrc2->ai16[ 3]); uDst.ai16[ 4] = DO_PMULHRSW(puSrc1->ai16[ 4], puSrc2->ai16[ 4]); uDst.ai16[ 5] = DO_PMULHRSW(puSrc1->ai16[ 5], puSrc2->ai16[ 5]); uDst.ai16[ 6] = DO_PMULHRSW(puSrc1->ai16[ 6], puSrc2->ai16[ 6]); uDst.ai16[ 7] = DO_PMULHRSW(puSrc1->ai16[ 7], puSrc2->ai16[ 7]); uDst.ai16[ 8] = DO_PMULHRSW(puSrc1->ai16[ 8], puSrc2->ai16[ 8]); uDst.ai16[ 9] = DO_PMULHRSW(puSrc1->ai16[ 9], puSrc2->ai16[ 9]); uDst.ai16[10] = DO_PMULHRSW(puSrc1->ai16[10], puSrc2->ai16[10]); uDst.ai16[11] = DO_PMULHRSW(puSrc1->ai16[11], puSrc2->ai16[11]); uDst.ai16[12] = DO_PMULHRSW(puSrc1->ai16[12], puSrc2->ai16[12]); uDst.ai16[13] = DO_PMULHRSW(puSrc1->ai16[13], puSrc2->ai16[13]); uDst.ai16[14] = DO_PMULHRSW(puSrc1->ai16[14], puSrc2->ai16[14]); uDst.ai16[15] = DO_PMULHRSW(puSrc1->ai16[15], puSrc2->ai16[15]); puDst->au64[0] = uDst.au64[0]; puDst->au64[1] = uDst.au64[1]; puDst->au64[2] = uDst.au64[2]; puDst->au64[3] = uDst.au64[3]; } /* * PSADBW / VPSADBW */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_psadbw_u64,(uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; RTUINT64U uDst; uint16_t uSum = RT_ABS((int16_t)uSrc1.au8[0] - uSrc2.au8[0]); uSum += RT_ABS((int16_t)uSrc1.au8[1] - uSrc2.au8[1]); uSum += RT_ABS((int16_t)uSrc1.au8[2] - uSrc2.au8[2]); uSum += RT_ABS((int16_t)uSrc1.au8[3] - uSrc2.au8[3]); uSum += RT_ABS((int16_t)uSrc1.au8[4] - uSrc2.au8[4]); uSum += RT_ABS((int16_t)uSrc1.au8[5] - uSrc2.au8[5]); uSum += RT_ABS((int16_t)uSrc1.au8[6] - uSrc2.au8[6]); uSum += RT_ABS((int16_t)uSrc1.au8[7] - uSrc2.au8[7]); uDst.au64[0] = 0; uDst.au16[0] = uSum; *puDst = uDst.u; } IEM_DECL_IMPL_DEF(void, iemAImpl_psadbw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au64[0] = 0; puDst->au64[1] = 0; uint16_t uSum = RT_ABS((int16_t)uSrc1.ai8[0] - puSrc->ai8[0]); uSum += RT_ABS((int16_t)uSrc1.au8[1] - puSrc->au8[1]); uSum += RT_ABS((int16_t)uSrc1.au8[2] - puSrc->au8[2]); uSum += RT_ABS((int16_t)uSrc1.au8[3] - puSrc->au8[3]); uSum += RT_ABS((int16_t)uSrc1.au8[4] - puSrc->au8[4]); uSum += RT_ABS((int16_t)uSrc1.au8[5] - puSrc->au8[5]); uSum += RT_ABS((int16_t)uSrc1.au8[6] - puSrc->au8[6]); uSum += RT_ABS((int16_t)uSrc1.au8[7] - puSrc->au8[7]); puDst->au16[0] = uSum; uSum = RT_ABS((int16_t)uSrc1.au8[ 8] - puSrc->au8[ 8]); uSum += RT_ABS((int16_t)uSrc1.au8[ 9] - puSrc->au8[ 9]); uSum += RT_ABS((int16_t)uSrc1.au8[10] - puSrc->au8[10]); uSum += RT_ABS((int16_t)uSrc1.au8[11] - puSrc->au8[11]); uSum += RT_ABS((int16_t)uSrc1.au8[12] - puSrc->au8[12]); uSum += RT_ABS((int16_t)uSrc1.au8[13] - puSrc->au8[13]); uSum += RT_ABS((int16_t)uSrc1.au8[14] - puSrc->au8[14]); uSum += RT_ABS((int16_t)uSrc1.au8[15] - puSrc->au8[15]); puDst->au16[4] = uSum; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpsadbw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uSrc1 = *puSrc1; RTUINT128U uSrc2 = *puSrc2; puDst->au64[0] = 0; puDst->au64[1] = 0; uint16_t uSum = RT_ABS((int16_t)uSrc1.ai8[0] - uSrc2.ai8[0]); uSum += RT_ABS((int16_t)uSrc1.au8[1] - uSrc2.au8[1]); uSum += RT_ABS((int16_t)uSrc1.au8[2] - uSrc2.au8[2]); uSum += RT_ABS((int16_t)uSrc1.au8[3] - uSrc2.au8[3]); uSum += RT_ABS((int16_t)uSrc1.au8[4] - uSrc2.au8[4]); uSum += RT_ABS((int16_t)uSrc1.au8[5] - uSrc2.au8[5]); uSum += RT_ABS((int16_t)uSrc1.au8[6] - uSrc2.au8[6]); uSum += RT_ABS((int16_t)uSrc1.au8[7] - uSrc2.au8[7]); puDst->au16[0] = uSum; uSum = RT_ABS((int16_t)uSrc1.au8[ 8] - uSrc2.au8[ 8]); uSum += RT_ABS((int16_t)uSrc1.au8[ 9] - uSrc2.au8[ 9]); uSum += RT_ABS((int16_t)uSrc1.au8[10] - uSrc2.au8[10]); uSum += RT_ABS((int16_t)uSrc1.au8[11] - uSrc2.au8[11]); uSum += RT_ABS((int16_t)uSrc1.au8[12] - uSrc2.au8[12]); uSum += RT_ABS((int16_t)uSrc1.au8[13] - uSrc2.au8[13]); uSum += RT_ABS((int16_t)uSrc1.au8[14] - uSrc2.au8[14]); uSum += RT_ABS((int16_t)uSrc1.au8[15] - uSrc2.au8[15]); puDst->au16[4] = uSum; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpsadbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uSrc1 = *puSrc1; RTUINT256U uSrc2 = *puSrc2; puDst->au64[0] = 0; puDst->au64[1] = 0; puDst->au64[2] = 0; puDst->au64[3] = 0; uint16_t uSum = RT_ABS((int16_t)uSrc1.au8[0] - uSrc2.au8[0]); uSum += RT_ABS((int16_t)uSrc1.au8[1] - uSrc2.au8[1]); uSum += RT_ABS((int16_t)uSrc1.au8[2] - uSrc2.au8[2]); uSum += RT_ABS((int16_t)uSrc1.au8[3] - uSrc2.au8[3]); uSum += RT_ABS((int16_t)uSrc1.au8[4] - uSrc2.au8[4]); uSum += RT_ABS((int16_t)uSrc1.au8[5] - uSrc2.au8[5]); uSum += RT_ABS((int16_t)uSrc1.au8[6] - uSrc2.au8[6]); uSum += RT_ABS((int16_t)uSrc1.au8[7] - uSrc2.au8[7]); puDst->au16[0] = uSum; uSum = RT_ABS((int16_t)uSrc1.au8[ 8] - uSrc2.au8[ 8]); uSum += RT_ABS((int16_t)uSrc1.au8[ 9] - uSrc2.au8[ 9]); uSum += RT_ABS((int16_t)uSrc1.au8[10] - uSrc2.au8[10]); uSum += RT_ABS((int16_t)uSrc1.au8[11] - uSrc2.au8[11]); uSum += RT_ABS((int16_t)uSrc1.au8[12] - uSrc2.au8[12]); uSum += RT_ABS((int16_t)uSrc1.au8[13] - uSrc2.au8[13]); uSum += RT_ABS((int16_t)uSrc1.au8[14] - uSrc2.au8[14]); uSum += RT_ABS((int16_t)uSrc1.au8[15] - uSrc2.au8[15]); puDst->au16[4] = uSum; uSum = RT_ABS((int16_t)uSrc1.au8[16] - uSrc2.au8[16]); uSum += RT_ABS((int16_t)uSrc1.au8[17] - uSrc2.au8[17]); uSum += RT_ABS((int16_t)uSrc1.au8[18] - uSrc2.au8[18]); uSum += RT_ABS((int16_t)uSrc1.au8[19] - uSrc2.au8[19]); uSum += RT_ABS((int16_t)uSrc1.au8[20] - uSrc2.au8[20]); uSum += RT_ABS((int16_t)uSrc1.au8[21] - uSrc2.au8[21]); uSum += RT_ABS((int16_t)uSrc1.au8[22] - uSrc2.au8[22]); uSum += RT_ABS((int16_t)uSrc1.au8[23] - uSrc2.au8[23]); puDst->au16[8] = uSum; uSum = RT_ABS((int16_t)uSrc1.au8[24] - uSrc2.au8[24]); uSum += RT_ABS((int16_t)uSrc1.au8[25] - uSrc2.au8[25]); uSum += RT_ABS((int16_t)uSrc1.au8[26] - uSrc2.au8[26]); uSum += RT_ABS((int16_t)uSrc1.au8[27] - uSrc2.au8[27]); uSum += RT_ABS((int16_t)uSrc1.au8[28] - uSrc2.au8[28]); uSum += RT_ABS((int16_t)uSrc1.au8[29] - uSrc2.au8[29]); uSum += RT_ABS((int16_t)uSrc1.au8[30] - uSrc2.au8[30]); uSum += RT_ABS((int16_t)uSrc1.au8[31] - uSrc2.au8[31]); puDst->au16[12] = uSum; } /* * PMULDQ / VPMULDQ */ IEM_DECL_IMPL_DEF(void, iemAImpl_pmuldq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; puDst->au64[0] = (int64_t)uSrc1.ai32[0] * puSrc->ai32[0]; puDst->au64[1] = (int64_t)uSrc1.ai32[2] * puSrc->ai32[2]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuldq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uSrc1 = *puSrc1; RTUINT128U uSrc2 = *puSrc2; puDst->au64[0] = (int64_t)uSrc1.ai32[0] * uSrc2.ai32[0]; puDst->au64[1] = (int64_t)uSrc1.ai32[2] * uSrc2.ai32[2]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuldq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uSrc1 = *puSrc1; RTUINT256U uSrc2 = *puSrc2; puDst->au64[0] = (int64_t)uSrc1.ai32[0] * uSrc2.ai32[0]; puDst->au64[1] = (int64_t)uSrc1.ai32[2] * uSrc2.ai32[2]; puDst->au64[2] = (int64_t)uSrc1.ai32[4] * uSrc2.ai32[4]; puDst->au64[3] = (int64_t)uSrc1.ai32[6] * uSrc2.ai32[6]; } /* * PMULUDQ / VPMULUDQ */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_pmuludq_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc)) { RTUINT64U uSrc1 = { *puDst }; RTUINT64U uSrc2 = { *puSrc }; ASMCompilerBarrier(); *puDst = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0]; RT_NOREF(pFpuState); } IEM_DECL_IMPL_DEF(void, iemAImpl_pmuludq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; RTUINT128U uSrc2 = *puSrc; ASMCompilerBarrier(); puDst->au64[0] = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0]; puDst->au64[1] = (uint64_t)uSrc1.au32[2] * uSrc2.au32[2]; RT_NOREF(pFpuState); } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuludq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */ RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */ ASMCompilerBarrier(); puDst->au64[0] = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0]; puDst->au64[1] = (uint64_t)uSrc1.au32[2] * uSrc2.au32[2]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmuludq_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */ RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */ ASMCompilerBarrier(); puDst->au64[0] = (uint64_t)uSrc1.au32[0] * uSrc2.au32[0]; puDst->au64[1] = (uint64_t)uSrc1.au32[2] * uSrc2.au32[2]; puDst->au64[2] = (uint64_t)uSrc1.au32[4] * uSrc2.au32[4]; puDst->au64[3] = (uint64_t)uSrc1.au32[6] * uSrc2.au32[6]; } /* * UNPCKLPS / VUNPCKLPS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_unpcklps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; RTUINT128U uSrc2 = *puSrc; ASMCompilerBarrier(); puDst->au32[0] = uSrc1.au32[0]; puDst->au32[1] = uSrc2.au32[0]; puDst->au32[2] = uSrc1.au32[1]; puDst->au32[3] = uSrc2.au32[1]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */ RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */ ASMCompilerBarrier(); puDst->au32[0] = uSrc1.au32[0]; puDst->au32[1] = uSrc2.au32[0]; puDst->au32[2] = uSrc1.au32[1]; puDst->au32[3] = uSrc2.au32[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */ RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */ ASMCompilerBarrier(); puDst->au32[0] = uSrc1.au32[0]; puDst->au32[1] = uSrc2.au32[0]; puDst->au32[2] = uSrc1.au32[1]; puDst->au32[3] = uSrc2.au32[1]; puDst->au32[4] = uSrc1.au32[4]; puDst->au32[5] = uSrc2.au32[4]; puDst->au32[6] = uSrc1.au32[5]; puDst->au32[7] = uSrc2.au32[5]; } /* * UNPCKLPD / VUNPCKLPD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_unpcklpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; RTUINT128U uSrc2 = *puSrc; ASMCompilerBarrier(); puDst->au64[0] = uSrc1.au64[0]; puDst->au64[1] = uSrc2.au64[0]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */ RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */ ASMCompilerBarrier(); puDst->au64[0] = uSrc1.au64[0]; puDst->au64[1] = uSrc2.au64[0]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vunpcklpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */ RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */ ASMCompilerBarrier(); puDst->au64[0] = uSrc1.au64[0]; puDst->au64[1] = uSrc2.au64[0]; puDst->au64[2] = uSrc1.au64[2]; puDst->au64[3] = uSrc2.au64[2]; } /* * UNPCKHPS / VUNPCKHPS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_unpckhps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; RTUINT128U uSrc2 = *puSrc; ASMCompilerBarrier(); puDst->au32[0] = uSrc1.au32[2]; puDst->au32[1] = uSrc2.au32[2]; puDst->au32[2] = uSrc1.au32[3]; puDst->au32[3] = uSrc2.au32[3]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */ RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */ ASMCompilerBarrier(); puDst->au32[0] = uSrc1.au32[2]; puDst->au32[1] = uSrc2.au32[2]; puDst->au32[2] = uSrc1.au32[3]; puDst->au32[3] = uSrc2.au32[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */ RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */ ASMCompilerBarrier(); puDst->au32[0] = uSrc1.au32[2]; puDst->au32[1] = uSrc2.au32[2]; puDst->au32[2] = uSrc1.au32[3]; puDst->au32[3] = uSrc2.au32[3]; puDst->au32[4] = uSrc1.au32[6]; puDst->au32[5] = uSrc2.au32[6]; puDst->au32[6] = uSrc1.au32[7]; puDst->au32[7] = uSrc2.au32[7]; } /* * UNPCKHPD / VUNPCKHPD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_unpckhpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puDst; RTUINT128U uSrc2 = *puSrc; ASMCompilerBarrier(); puDst->au64[0] = uSrc1.au64[1]; puDst->au64[1] = uSrc2.au64[1]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2)) { RTUINT128U uSrc1 = *puSrc1; /* Could overlap with puDst */ RTUINT128U uSrc2 = *puSrc2; /* Could overlap with puDst */ ASMCompilerBarrier(); puDst->au64[0] = uSrc1.au64[1]; puDst->au64[1] = uSrc2.au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vunpckhpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2)) { RTUINT256U uSrc1 = *puSrc1; /* Could overlap with puDst */ RTUINT256U uSrc2 = *puSrc2; /* Could overlap with puDst */ ASMCompilerBarrier(); puDst->au64[0] = uSrc1.au64[1]; puDst->au64[1] = uSrc2.au64[1]; puDst->au64[2] = uSrc1.au64[3]; puDst->au64[3] = uSrc2.au64[3]; } /* * CRC32 (SEE 4.2). */ IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u8_fallback,(uint32_t *puDst, uint8_t uSrc)) { *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u16_fallback,(uint32_t *puDst, uint16_t uSrc)) { *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u32_fallback,(uint32_t *puDst, uint32_t uSrc)) { *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc)); } IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u64_fallback,(uint32_t *puDst, uint64_t uSrc)) { *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc)); } /* * PTEST (SSE 4.1) - special as it output only EFLAGS. */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_ptest_u128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pfEFlags)) { uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; if ( (puSrc1->au64[0] & puSrc2->au64[0]) == 0 && (puSrc1->au64[1] & puSrc2->au64[1]) == 0) fEfl |= X86_EFL_ZF; if ( (~puSrc1->au64[0] & puSrc2->au64[0]) == 0 && (~puSrc1->au64[1] & puSrc2->au64[1]) == 0) fEfl |= X86_EFL_CF; *pfEFlags = fEfl; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vptest_u256_fallback,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pfEFlags)) { uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; if ( (puSrc1->au64[0] & puSrc2->au64[0]) == 0 && (puSrc1->au64[1] & puSrc2->au64[1]) == 0 && (puSrc1->au64[2] & puSrc2->au64[2]) == 0 && (puSrc1->au64[3] & puSrc2->au64[3]) == 0) fEfl |= X86_EFL_ZF; if ( (~puSrc1->au64[0] & puSrc2->au64[0]) == 0 && (~puSrc1->au64[1] & puSrc2->au64[1]) == 0 && (~puSrc1->au64[2] & puSrc2->au64[2]) == 0 && (~puSrc1->au64[3] & puSrc2->au64[3]) == 0) fEfl |= X86_EFL_CF; *pfEFlags = fEfl; } /* * PMOVSXBW / VPMOVSXBW */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) { RTUINT64U uSrc1 = { uSrc }; puDst->ai16[0] = uSrc1.ai8[0]; puDst->ai16[1] = uSrc1.ai8[1]; puDst->ai16[2] = uSrc1.ai8[2]; puDst->ai16[3] = uSrc1.ai8[3]; puDst->ai16[4] = uSrc1.ai8[4]; puDst->ai16[5] = uSrc1.ai8[5]; puDst->ai16[6] = uSrc1.ai8[6]; puDst->ai16[7] = uSrc1.ai8[7]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->ai16[ 0] = uSrc1.ai8[ 0]; puDst->ai16[ 1] = uSrc1.ai8[ 1]; puDst->ai16[ 2] = uSrc1.ai8[ 2]; puDst->ai16[ 3] = uSrc1.ai8[ 3]; puDst->ai16[ 4] = uSrc1.ai8[ 4]; puDst->ai16[ 5] = uSrc1.ai8[ 5]; puDst->ai16[ 6] = uSrc1.ai8[ 6]; puDst->ai16[ 7] = uSrc1.ai8[ 7]; puDst->ai16[ 8] = uSrc1.ai8[ 8]; puDst->ai16[ 9] = uSrc1.ai8[ 9]; puDst->ai16[10] = uSrc1.ai8[10]; puDst->ai16[11] = uSrc1.ai8[11]; puDst->ai16[12] = uSrc1.ai8[12]; puDst->ai16[13] = uSrc1.ai8[13]; puDst->ai16[14] = uSrc1.ai8[14]; puDst->ai16[15] = uSrc1.ai8[15]; } /* * PMOVSXBD / VPMOVSXBD */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc)) { RTUINT32U uSrc1 = { uSrc }; puDst->ai32[0] = uSrc1.ai8[0]; puDst->ai32[1] = uSrc1.ai8[1]; puDst->ai32[2] = uSrc1.ai8[2]; puDst->ai32[3] = uSrc1.ai8[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->ai32[0] = uSrc1.ai8[0]; puDst->ai32[1] = uSrc1.ai8[1]; puDst->ai32[2] = uSrc1.ai8[2]; puDst->ai32[3] = uSrc1.ai8[3]; puDst->ai32[4] = uSrc1.ai8[4]; puDst->ai32[5] = uSrc1.ai8[5]; puDst->ai32[6] = uSrc1.ai8[6]; puDst->ai32[7] = uSrc1.ai8[7]; } /* * PMOVSXBQ / VPMOVSXBQ */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc)) { RTUINT16U uSrc1 = { uSrc }; puDst->ai64[0] = uSrc1.ai8[0]; puDst->ai64[1] = uSrc1.ai8[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->ai64[0] = uSrc1.ai8[0]; puDst->ai64[1] = uSrc1.ai8[1]; puDst->ai64[2] = uSrc1.ai8[2]; puDst->ai64[3] = uSrc1.ai8[3]; } /* * PMOVSXWD / VPMOVSXWD */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) { RTUINT64U uSrc1 = { uSrc }; puDst->ai32[0] = uSrc1.ai16[0]; puDst->ai32[1] = uSrc1.ai16[1]; puDst->ai32[2] = uSrc1.ai16[2]; puDst->ai32[3] = uSrc1.ai16[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->ai32[0] = uSrc1.ai16[0]; puDst->ai32[1] = uSrc1.ai16[1]; puDst->ai32[2] = uSrc1.ai16[2]; puDst->ai32[3] = uSrc1.ai16[3]; puDst->ai32[4] = uSrc1.ai16[4]; puDst->ai32[5] = uSrc1.ai16[5]; puDst->ai32[6] = uSrc1.ai16[6]; puDst->ai32[7] = uSrc1.ai16[7]; } /* * PMOVSXWQ / VPMOVSXWQ */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc)) { RTUINT32U uSrc1 = { uSrc }; puDst->ai64[0] = uSrc1.ai16[0]; puDst->ai64[1] = uSrc1.ai16[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->ai64[0] = uSrc1.ai16[0]; puDst->ai64[1] = uSrc1.ai16[1]; puDst->ai64[2] = uSrc1.ai16[2]; puDst->ai64[3] = uSrc1.ai16[3]; } /* * PMOVSXDQ / VPMOVSXDQ */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) { RTUINT64U uSrc1 = { uSrc }; puDst->ai64[0] = uSrc1.ai32[0]; puDst->ai64[1] = uSrc1.ai32[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->ai64[0] = uSrc1.ai32[0]; puDst->ai64[1] = uSrc1.ai32[1]; puDst->ai64[2] = uSrc1.ai32[2]; puDst->ai64[3] = uSrc1.ai32[3]; } /* * PMOVZXBW / VPMOVZXBW */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) { RTUINT64U uSrc1 = { uSrc }; puDst->au16[0] = uSrc1.au8[0]; puDst->au16[1] = uSrc1.au8[1]; puDst->au16[2] = uSrc1.au8[2]; puDst->au16[3] = uSrc1.au8[3]; puDst->au16[4] = uSrc1.au8[4]; puDst->au16[5] = uSrc1.au8[5]; puDst->au16[6] = uSrc1.au8[6]; puDst->au16[7] = uSrc1.au8[7]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->au16[ 0] = uSrc1.au8[ 0]; puDst->au16[ 1] = uSrc1.au8[ 1]; puDst->au16[ 2] = uSrc1.au8[ 2]; puDst->au16[ 3] = uSrc1.au8[ 3]; puDst->au16[ 4] = uSrc1.au8[ 4]; puDst->au16[ 5] = uSrc1.au8[ 5]; puDst->au16[ 6] = uSrc1.au8[ 6]; puDst->au16[ 7] = uSrc1.au8[ 7]; puDst->au16[ 8] = uSrc1.au8[ 8]; puDst->au16[ 9] = uSrc1.au8[ 9]; puDst->au16[10] = uSrc1.au8[10]; puDst->au16[11] = uSrc1.au8[11]; puDst->au16[12] = uSrc1.au8[12]; puDst->au16[13] = uSrc1.au8[13]; puDst->au16[14] = uSrc1.au8[14]; puDst->au16[15] = uSrc1.au8[15]; } /* * PMOVZXBD / VPMOVZXBD */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc)) { RTUINT32U uSrc1 = { uSrc }; puDst->au32[0] = uSrc1.au8[0]; puDst->au32[1] = uSrc1.au8[1]; puDst->au32[2] = uSrc1.au8[2]; puDst->au32[3] = uSrc1.au8[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->au32[0] = uSrc1.au8[0]; puDst->au32[1] = uSrc1.au8[1]; puDst->au32[2] = uSrc1.au8[2]; puDst->au32[3] = uSrc1.au8[3]; puDst->au32[4] = uSrc1.au8[4]; puDst->au32[5] = uSrc1.au8[5]; puDst->au32[6] = uSrc1.au8[6]; puDst->au32[7] = uSrc1.au8[7]; } /* * PMOVZXBQ / VPMOVZXBQ */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc)) { RTUINT16U uSrc1 = { uSrc }; puDst->au64[0] = uSrc1.au8[0]; puDst->au64[1] = uSrc1.au8[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->au64[0] = uSrc1.au8[0]; puDst->au64[1] = uSrc1.au8[1]; puDst->au64[2] = uSrc1.au8[2]; puDst->au64[3] = uSrc1.au8[3]; } /* * PMOVZXWD / VPMOVZXWD */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) { RTUINT64U uSrc1 = { uSrc }; puDst->au32[0] = uSrc1.au16[0]; puDst->au32[1] = uSrc1.au16[1]; puDst->au32[2] = uSrc1.au16[2]; puDst->au32[3] = uSrc1.au16[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->au32[0] = uSrc1.au16[0]; puDst->au32[1] = uSrc1.au16[1]; puDst->au32[2] = uSrc1.au16[2]; puDst->au32[3] = uSrc1.au16[3]; puDst->au32[4] = uSrc1.au16[4]; puDst->au32[5] = uSrc1.au16[5]; puDst->au32[6] = uSrc1.au16[6]; puDst->au32[7] = uSrc1.au16[7]; } /* * PMOVZXWQ / VPMOVZXWQ */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc)) { RTUINT32U uSrc1 = { uSrc }; puDst->au64[0] = uSrc1.au16[0]; puDst->au64[1] = uSrc1.au16[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->au64[0] = uSrc1.au16[0]; puDst->au64[1] = uSrc1.au16[1]; puDst->au64[2] = uSrc1.au16[2]; puDst->au64[3] = uSrc1.au16[3]; } /* * PMOVZXDQ / VPMOVZXDQ */ IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc)) { RTUINT64U uSrc1 = { uSrc }; puDst->au64[0] = uSrc1.au32[0]; puDst->au64[1] = uSrc1.au32[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc)) { RTUINT128U uSrc1 = *puSrc; /* puDst could overlap */ puDst->au64[0] = uSrc1.au32[0]; puDst->au64[1] = uSrc1.au32[1]; puDst->au64[2] = uSrc1.au32[2]; puDst->au64[3] = uSrc1.au32[3]; } #ifdef IEM_WITHOUT_ASSEMBLY /** * Converts from the packed IPRT 32-bit (single precision) floating point format to * the SoftFloat 32-bit floating point format (float32_t). * * This is only a structure format conversion, nothing else. */ DECLINLINE(float32_t) iemFpSoftF32FromIprt(PCRTFLOAT32U pr32Val) { float32_t Tmp; Tmp.v = pr32Val->u; return Tmp; } /** * Converts from SoftFloat 32-bit floating point format (float32_t) * to the packed IPRT 32-bit floating point (RTFLOAT32U) format. * * This is only a structure format conversion, nothing else. */ DECLINLINE(PRTFLOAT32U) iemFpSoftF32ToIprt(PRTFLOAT32U pr32Dst, float32_t const r32XSrc) { pr32Dst->u = r32XSrc.v; return pr32Dst; } /** * Converts from the packed IPRT 64-bit (single precision) floating point format to * the SoftFloat 64-bit floating point format (float64_t). * * This is only a structure format conversion, nothing else. */ DECLINLINE(float64_t) iemFpSoftF64FromIprt(PCRTFLOAT64U pr64Val) { float64_t Tmp; Tmp.v = pr64Val->u; return Tmp; } /** * Converts from SoftFloat 64-bit floating point format (float64_t) * to the packed IPRT 64-bit floating point (RTFLOAT64U) format. * * This is only a structure format conversion, nothing else. */ DECLINLINE(PRTFLOAT64U) iemFpSoftF64ToIprt(PRTFLOAT64U pr64Dst, float64_t const r64XSrc) { pr64Dst->u = r64XSrc.v; return pr64Dst; } /** Initializer for the SoftFloat state structure. */ # define IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(a_Mxcsr) \ { \ softfloat_tininess_afterRounding, \ ((a_Mxcsr) & X86_MXCSR_RC_MASK) == X86_MXCSR_RC_NEAREST ? (uint8_t)softfloat_round_near_even \ : ((a_Mxcsr) & X86_MXCSR_RC_MASK) == X86_MXCSR_RC_UP ? (uint8_t)softfloat_round_max \ : ((a_Mxcsr) & X86_MXCSR_RC_MASK) == X86_MXCSR_RC_DOWN ? (uint8_t)softfloat_round_min \ : (uint8_t)softfloat_round_minMag, \ 0, \ (uint8_t)(((a_Mxcsr) & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT), /* Matches X86_FSW_?E */\ 32 /* Rounding precision, not relevant for SIMD. */ \ } /** * Helper for transfering exception to MXCSR and setting the result value * accordingly. * * @returns Updated MXCSR. * @param pSoftState The SoftFloat state following the operation. * @param r32Result The result of the SoftFloat operation. * @param pr32Result Where to store the result for IEM. * @param fMxcsr The original MXCSR value. */ DECLINLINE(uint32_t) iemSseSoftStateAndR32ToMxcsrAndIprtResult(softfloat_state_t const *pSoftState, float32_t r32Result, PRTFLOAT32U pr32Result, uint32_t fMxcsr) { iemFpSoftF32ToIprt(pr32Result, r32Result); uint8_t fXcpt = pSoftState->exceptionFlags; if ( (fMxcsr & X86_MXCSR_FZ) && RTFLOAT32U_IS_SUBNORMAL(pr32Result)) { /* Underflow masked and flush to zero is set. */ pr32Result->s.uFraction = 0; pr32Result->s.uExponent = 0; fXcpt |= X86_MXCSR_UE | X86_MXCSR_PE; } /* If DAZ is set \#DE is never set. */ if ( fMxcsr & X86_MXCSR_DAZ || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */ && (RTFLOAT32U_IS_SUBNORMAL(pr32Result)))) fXcpt &= ~X86_MXCSR_DE; return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS); } /** * Helper for transfering exception to MXCSR and setting the result value * accordingly - ignores Flush-to-Zero. * * @returns Updated MXCSR. * @param pSoftState The SoftFloat state following the operation. * @param r32Result The result of the SoftFloat operation. * @param pr32Result Where to store the result for IEM. * @param fMxcsr The original MXCSR value. */ DECLINLINE(uint32_t) iemSseSoftStateAndR32ToMxcsrAndIprtResultNoFz(softfloat_state_t const *pSoftState, float32_t r32Result, PRTFLOAT32U pr32Result, uint32_t fMxcsr) { iemFpSoftF32ToIprt(pr32Result, r32Result); uint8_t fXcpt = pSoftState->exceptionFlags; /* If DAZ is set \#DE is never set. */ if ( fMxcsr & X86_MXCSR_DAZ || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */ && (RTFLOAT32U_IS_SUBNORMAL(pr32Result)))) fXcpt &= ~X86_MXCSR_DE; return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS); } /** * Helper for transfering exception to MXCSR and setting the result value * accordingly. * * @returns Updated MXCSR. * @param pSoftState The SoftFloat state following the operation. * @param r64Result The result of the SoftFloat operation. * @param pr64Result Where to store the result for IEM. * @param fMxcsr The original MXCSR value. */ DECLINLINE(uint32_t) iemSseSoftStateAndR64ToMxcsrAndIprtResult(softfloat_state_t const *pSoftState, float64_t r64Result, PRTFLOAT64U pr64Result, uint32_t fMxcsr) { iemFpSoftF64ToIprt(pr64Result, r64Result); uint8_t fXcpt = pSoftState->exceptionFlags; if ( (fMxcsr & X86_MXCSR_FZ) && RTFLOAT64U_IS_SUBNORMAL(pr64Result)) { /* Underflow masked and flush to zero is set. */ iemFpSoftF64ToIprt(pr64Result, r64Result); pr64Result->s.uFractionHigh = 0; pr64Result->s.uFractionLow = 0; pr64Result->s.uExponent = 0; fXcpt |= X86_MXCSR_UE | X86_MXCSR_PE; } /* If DAZ is set \#DE is never set. */ if ( fMxcsr & X86_MXCSR_DAZ || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */ && (RTFLOAT64U_IS_SUBNORMAL(pr64Result)))) fXcpt &= ~X86_MXCSR_DE; return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS); } /** * Helper for transfering exception to MXCSR and setting the result value * accordingly - ignores Flush-to-Zero. * * @returns Updated MXCSR. * @param pSoftState The SoftFloat state following the operation. * @param r64Result The result of the SoftFloat operation. * @param pr64Result Where to store the result for IEM. * @param fMxcsr The original MXCSR value. */ DECLINLINE(uint32_t) iemSseSoftStateAndR64ToMxcsrAndIprtResultNoFz(softfloat_state_t const *pSoftState, float64_t r64Result, PRTFLOAT64U pr64Result, uint32_t fMxcsr) { iemFpSoftF64ToIprt(pr64Result, r64Result); uint8_t fXcpt = pSoftState->exceptionFlags; /* If DAZ is set \#DE is never set. */ if ( fMxcsr & X86_MXCSR_DAZ || ( (fXcpt & X86_MXCSR_DE) /* Softfloat sets DE for sub-normal values. */ && (RTFLOAT64U_IS_SUBNORMAL(pr64Result)))) fXcpt &= ~X86_MXCSR_DE; return fMxcsr | (fXcpt & X86_MXCSR_XCPT_FLAGS); } /** * Sets the given single precision floating point input value to the given output taking the Denormals-as-zero flag * in MXCSR into account. * * @returns The output MXCSR De-normal flag if the input is a de-normal and the DAZ flag is not set. * @param pr32Val Where to store the result. * @param fMxcsr The input MXCSR value. * @param pr32Src The value to use. */ DECLINLINE(uint32_t) iemSsePrepareValueR32(PRTFLOAT32U pr32Val, uint32_t fMxcsr, PCRTFLOAT32U pr32Src) { if (RTFLOAT32U_IS_SUBNORMAL(pr32Src)) { if (fMxcsr & X86_MXCSR_DAZ) { /* De-normals are changed to 0. */ pr32Val->s.fSign = pr32Src->s.fSign; pr32Val->s.uFraction = 0; pr32Val->s.uExponent = 0; return 0; } *pr32Val = *pr32Src; return X86_MXCSR_DE; } *pr32Val = *pr32Src; return 0; } /** * Sets the given double precision floating point input value to the given output taking the Denormals-as-zero flag * in MXCSR into account. * * @returns The output MXCSR De-normal flag if the input is a de-normal and the DAZ flag is not set. * @param pr64Val Where to store the result. * @param fMxcsr The input MXCSR value. * @param pr64Src The value to use. */ DECLINLINE(uint32_t) iemSsePrepareValueR64(PRTFLOAT64U pr64Val, uint32_t fMxcsr, PCRTFLOAT64U pr64Src) { if (RTFLOAT64U_IS_SUBNORMAL(pr64Src)) { if (fMxcsr & X86_MXCSR_DAZ) { /* De-normals are changed to 0. */ pr64Val->s64.fSign = pr64Src->s.fSign; pr64Val->s64.uFraction = 0; pr64Val->s64.uExponent = 0; return 0; } *pr64Val = *pr64Src; return X86_MXCSR_DE; } *pr64Val = *pr64Src; return 0; } /** * Validates the given input operands returning whether the operation can continue or whether one * of the source operands contains a NaN value, setting the output accordingly. * * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in one of the operands (true). * @param pr32Res Where to store the result in case the operation can't continue. * @param pr32Val1 The first input operand. * @param pr32Val2 The second input operand. * @param pfMxcsr Where to return the modified MXCSR state when false is returned. */ DECLINLINE(bool) iemSseBinaryValIsNaNR32(PRTFLOAT32U pr32Res, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2, uint32_t *pfMxcsr) { uint8_t cQNan = RTFLOAT32U_IS_QUIET_NAN(pr32Val1) + RTFLOAT32U_IS_QUIET_NAN(pr32Val2); uint8_t cSNan = RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val1) + RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val2); if (cSNan + cQNan == 2) { /* Both values are either SNan or QNan, first operand is placed into the result and converted to a QNan. */ *pr32Res = *pr32Val1; pr32Res->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); *pfMxcsr |= (cSNan ? X86_MXCSR_IE : 0); return true; } else if (cSNan) { /* One operand is an SNan and placed into the result, converting it to a QNan. */ *pr32Res = RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val1) ? *pr32Val1 : *pr32Val2; pr32Res->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); *pfMxcsr |= X86_MXCSR_IE; return true; } else if (cQNan) { /* The QNan operand is placed into the result. */ *pr32Res = RTFLOAT32U_IS_QUIET_NAN(pr32Val1) ? *pr32Val1 : *pr32Val2; return true; } Assert(!cQNan && !cSNan); return false; } /** * Validates the given double precision input operands returning whether the operation can continue or whether one * of the source operands contains a NaN value, setting the output accordingly. * * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in one of the operands (true). * @param pr64Res Where to store the result in case the operation can't continue. * @param pr64Val1 The first input operand. * @param pr64Val2 The second input operand. * @param pfMxcsr Where to return the modified MXCSR state when false is returned. */ DECLINLINE(bool) iemSseBinaryValIsNaNR64(PRTFLOAT64U pr64Res, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2, uint32_t *pfMxcsr) { uint8_t cQNan = RTFLOAT64U_IS_QUIET_NAN(pr64Val1) + RTFLOAT64U_IS_QUIET_NAN(pr64Val2); uint8_t cSNan = RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val1) + RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val2); if (cSNan + cQNan == 2) { /* Both values are either SNan or QNan, first operand is placed into the result and converted to a QNan. */ *pr64Res = *pr64Val1; pr64Res->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); *pfMxcsr |= (cSNan ? X86_MXCSR_IE : 0); return true; } else if (cSNan) { /* One operand is an SNan and placed into the result, converting it to a QNan. */ *pr64Res = RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val1) ? *pr64Val1 : *pr64Val2; pr64Res->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); *pfMxcsr |= X86_MXCSR_IE; return true; } else if (cQNan) { /* The QNan operand is placed into the result. */ *pr64Res = RTFLOAT64U_IS_QUIET_NAN(pr64Val1) ? *pr64Val1 : *pr64Val2; return true; } Assert(!cQNan && !cSNan); return false; } /** * Validates the given single input operand returning whether the operation can continue or whether * contains a NaN value, setting the output accordingly. * * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in the operand (true). * @param pr32Res Where to store the result in case the operation can't continue. * @param pr32Val The input operand. * @param pfMxcsr Where to return the modified MXCSR state when false is returned. */ DECLINLINE(bool) iemSseUnaryValIsNaNR32(PRTFLOAT32U pr32Res, PCRTFLOAT32U pr32Val, uint32_t *pfMxcsr) { if (RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val)) { /* One operand is an SNan and placed into the result, converting it to a QNan. */ *pr32Res = *pr32Val; pr32Res->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); *pfMxcsr |= X86_MXCSR_IE; return true; } else if (RTFLOAT32U_IS_QUIET_NAN(pr32Val)) { /* The QNan operand is placed into the result. */ *pr32Res = *pr32Val; return true; } return false; } /** * Validates the given double input operand returning whether the operation can continue or whether * contains a NaN value, setting the output accordingly. * * @returns Flag whether the operation can continue (false) or whether a NaN value was detected in the operand (true). * @param pr64Res Where to store the result in case the operation can't continue. * @param pr64Val The input operand. * @param pfMxcsr Where to return the modified MXCSR state when false is returned. */ DECLINLINE(bool) iemSseUnaryValIsNaNR64(PRTFLOAT64U pr64Res, PCRTFLOAT64U pr64Val, uint32_t *pfMxcsr) { if (RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val)) { /* One operand is an SNan and placed into the result, converting it to a QNan. */ *pr64Res = *pr64Val; pr64Res->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); *pfMxcsr |= X86_MXCSR_IE; return true; } else if (RTFLOAT64U_IS_QUIET_NAN(pr64Val)) { /* The QNan operand is placed into the result. */ *pr64Res = *pr64Val; return true; } return false; } #endif /** * ADDPS */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_addps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) { if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr)) return fMxcsr; RTFLOAT32U r32Src1, r32Src2; fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float32_t r32Result = f32_add(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_addps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_addps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); } #endif /** * ADDSS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_addss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) { pResult->MXCSR = iemAImpl_addps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); pResult->uResult.ar32[1] = puSrc1->ar32[1]; pResult->uResult.ar32[2] = puSrc1->ar32[2]; pResult->uResult.ar32[3] = puSrc1->ar32[3]; } #endif /** * ADDPD */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_addpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) { if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr)) return fMxcsr; RTFLOAT64U r64Src1, r64Src2; fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float64_t r64Result = f64_add(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_addpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); pResult->MXCSR |= iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); } #endif /** * ADDSD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_addsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) { pResult->MXCSR = iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); pResult->uResult.ar64[1] = puSrc1->ar64[1]; } #endif /** * MULPS */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_mulps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) { if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr)) return fMxcsr; RTFLOAT32U r32Src1, r32Src2; fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float32_t r32Result = f32_mul(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_mulps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); pResult->MXCSR |= iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); pResult->MXCSR |= iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); pResult->MXCSR |= iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); } #endif /** * MULSS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_mulss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) { pResult->MXCSR = iemAImpl_mulps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); pResult->uResult.ar32[1] = puSrc1->ar32[1]; pResult->uResult.ar32[2] = puSrc1->ar32[2]; pResult->uResult.ar32[3] = puSrc1->ar32[3]; } #endif /** * MULPD */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_mulpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) { if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr)) return fMxcsr; RTFLOAT64U r64Src1, r64Src2; fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float64_t r64Result = f64_mul(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_mulpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_mulpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); pResult->MXCSR |= iemAImpl_mulpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); } #endif /** * MULSD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_mulsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) { pResult->MXCSR = iemAImpl_mulpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); pResult->uResult.ar64[1] = puSrc1->ar64[1]; } #endif /** * SUBPS */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_subps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) { if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr)) return fMxcsr; RTFLOAT32U r32Src1, r32Src2; fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float32_t r32Result = f32_sub(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_subps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); } #endif /** * SUBSS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_subss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) { pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); pResult->uResult.ar32[1] = puSrc1->ar32[1]; pResult->uResult.ar32[2] = puSrc1->ar32[2]; pResult->uResult.ar32[3] = puSrc1->ar32[3]; } #endif /** * SUBPD */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_subpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) { if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr)) return fMxcsr; RTFLOAT64U r64Src1, r64Src2; fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float64_t r64Result = f64_sub(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_subpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); pResult->MXCSR |= iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); } #endif /** * SUBSD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_subsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) { pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); pResult->uResult.ar64[1] = puSrc1->ar64[1]; } #endif /** * MINPS */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_minps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) { if (RTFLOAT32U_IS_NAN(pr32Val1) || RTFLOAT32U_IS_NAN(pr32Val2)) { /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */ iemSsePrepareValueR32(pr32Res, fMxcsr, pr32Val2); return fMxcsr | X86_MXCSR_IE; } RTFLOAT32U r32Src1, r32Src2; fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); if (RTFLOAT32U_IS_ZERO(&r32Src1) && RTFLOAT32U_IS_ZERO(&r32Src2)) { *pr32Res = r32Src2; return fMxcsr; } softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); bool fLe = f32_le(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); return iemSseSoftStateAndR32ToMxcsrAndIprtResultNoFz(&SoftState, fLe ? iemFpSoftF32FromIprt(&r32Src1) : iemFpSoftF32FromIprt(&r32Src2), pr32Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_minps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_minps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); pResult->MXCSR |= iemAImpl_minps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); pResult->MXCSR |= iemAImpl_minps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); pResult->MXCSR |= iemAImpl_minps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); } #endif /** * MINSS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_minss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) { pResult->MXCSR = iemAImpl_minps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); pResult->uResult.ar32[1] = puSrc1->ar32[1]; pResult->uResult.ar32[2] = puSrc1->ar32[2]; pResult->uResult.ar32[3] = puSrc1->ar32[3]; } #endif /** * MINPD */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_minpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) { if (RTFLOAT64U_IS_NAN(pr64Val1) || RTFLOAT64U_IS_NAN(pr64Val2)) { /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */ iemSsePrepareValueR64(pr64Res, fMxcsr, pr64Val2); return fMxcsr | X86_MXCSR_IE; } RTFLOAT64U r64Src1, r64Src2; fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); if (RTFLOAT64U_IS_ZERO(&r64Src1) && RTFLOAT64U_IS_ZERO(&r64Src2)) { *pr64Res = r64Src2; return fMxcsr; } softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); bool fLe = f64_le(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); return iemSseSoftStateAndR64ToMxcsrAndIprtResultNoFz(&SoftState, fLe ? iemFpSoftF64FromIprt(&r64Src1) : iemFpSoftF64FromIprt(&r64Src2), pr64Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_minpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_minpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); pResult->MXCSR |= iemAImpl_minpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); } #endif /** * MINSD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_minsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) { pResult->MXCSR = iemAImpl_minpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); pResult->uResult.ar64[1] = puSrc1->ar64[1]; } #endif /** * DIVPS */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_divps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) { if (iemSseBinaryValIsNaNR32(pr32Res, pr32Val1, pr32Val2, &fMxcsr)) return fMxcsr; RTFLOAT32U r32Src1, r32Src2; uint32_t fDe = iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); fDe |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); if (RTFLOAT32U_IS_ZERO(&r32Src2)) { if ( RTFLOAT32U_IS_ZERO(&r32Src1) || RTFLOAT32U_IS_QUIET_NAN(&r32Src1)) { *pr32Res = g_ar32QNaN[1]; return fMxcsr | X86_MXCSR_IE; } else if (RTFLOAT32U_IS_INF(&r32Src1)) { *pr32Res = g_ar32Infinity[r32Src1.s.fSign != r32Src2.s.fSign]; return fMxcsr; } else { *pr32Res = g_ar32Infinity[r32Src1.s.fSign != r32Src2.s.fSign]; return fMxcsr | X86_MXCSR_ZE; } } softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float32_t r32Result = f32_div(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr | fDe); } IEM_DECL_IMPL_DEF(void, iemAImpl_divps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_divps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); pResult->MXCSR |= iemAImpl_divps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); pResult->MXCSR |= iemAImpl_divps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); pResult->MXCSR |= iemAImpl_divps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); } #endif /** * DIVSS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_divss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) { pResult->MXCSR = iemAImpl_divps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); pResult->uResult.ar32[1] = puSrc1->ar32[1]; pResult->uResult.ar32[2] = puSrc1->ar32[2]; pResult->uResult.ar32[3] = puSrc1->ar32[3]; } #endif /** * DIVPD */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_divpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) { if (iemSseBinaryValIsNaNR64(pr64Res, pr64Val1, pr64Val2, &fMxcsr)) return fMxcsr; RTFLOAT64U r64Src1, r64Src2; uint32_t fDe = iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); fDe |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); if (RTFLOAT64U_IS_ZERO(&r64Src2)) { if ( RTFLOAT64U_IS_ZERO(&r64Src1) || RTFLOAT64U_IS_QUIET_NAN(&r64Src1)) { *pr64Res = g_ar64QNaN[1]; return fMxcsr | X86_MXCSR_IE; } else if (RTFLOAT64U_IS_INF(&r64Src1)) { *pr64Res = g_ar64Infinity[r64Src1.s.fSign != r64Src2.s.fSign]; return fMxcsr; } else { *pr64Res = g_ar64Infinity[r64Src1.s.fSign != r64Src2.s.fSign]; return fMxcsr | X86_MXCSR_ZE; } } softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float64_t r64Result = f64_div(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr | fDe); } IEM_DECL_IMPL_DEF(void, iemAImpl_divpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_divpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); pResult->MXCSR |= iemAImpl_divpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); } #endif /** * DIVSD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_divsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) { pResult->MXCSR = iemAImpl_divpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); pResult->uResult.ar64[1] = puSrc1->ar64[1]; } #endif /** * MAXPS */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_maxps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1, PCRTFLOAT32U pr32Val2) { if (RTFLOAT32U_IS_NAN(pr32Val1) || RTFLOAT32U_IS_NAN(pr32Val2)) { /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */ iemSsePrepareValueR32(pr32Res, fMxcsr, pr32Val2); return fMxcsr | X86_MXCSR_IE; } RTFLOAT32U r32Src1, r32Src2; fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); fMxcsr |= iemSsePrepareValueR32(&r32Src2, fMxcsr, pr32Val2); if (RTFLOAT32U_IS_ZERO(&r32Src1) && RTFLOAT32U_IS_ZERO(&r32Src2)) { *pr32Res = r32Src2; return fMxcsr; } softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); bool fLe = f32_le(iemFpSoftF32FromIprt(&r32Src1), iemFpSoftF32FromIprt(&r32Src2), &SoftState); return iemSseSoftStateAndR32ToMxcsrAndIprtResultNoFz(&SoftState, fLe ? iemFpSoftF32FromIprt(&r32Src2) : iemFpSoftF32FromIprt(&r32Src1), pr32Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_maxps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); pResult->MXCSR |= iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); pResult->MXCSR |= iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); pResult->MXCSR |= iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); } #endif /** * MAXSS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_maxss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) { pResult->MXCSR = iemAImpl_maxps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], pr32Src2); pResult->uResult.ar32[1] = puSrc1->ar32[1]; pResult->uResult.ar32[2] = puSrc1->ar32[2]; pResult->uResult.ar32[3] = puSrc1->ar32[3]; } #endif /** * MAXPD */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_maxpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1, PCRTFLOAT64U pr64Val2) { if (RTFLOAT64U_IS_NAN(pr64Val1) || RTFLOAT64U_IS_NAN(pr64Val2)) { /* The DAZ flag gets honored but the DE flag will not get set because \#IE has higher priority. */ iemSsePrepareValueR64(pr64Res, fMxcsr, pr64Val2); return fMxcsr | X86_MXCSR_IE; } RTFLOAT64U r64Src1, r64Src2; fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); fMxcsr |= iemSsePrepareValueR64(&r64Src2, fMxcsr, pr64Val2); if (RTFLOAT64U_IS_ZERO(&r64Src1) && RTFLOAT64U_IS_ZERO(&r64Src2)) { *pr64Res = r64Src2; return fMxcsr; } softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); bool fLe = f64_le(iemFpSoftF64FromIprt(&r64Src1), iemFpSoftF64FromIprt(&r64Src2), &SoftState); return iemSseSoftStateAndR64ToMxcsrAndIprtResultNoFz(&SoftState, fLe ? iemFpSoftF64FromIprt(&r64Src2) : iemFpSoftF64FromIprt(&r64Src1), pr64Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_maxpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_maxpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); pResult->MXCSR |= iemAImpl_maxpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); } #endif /** * MAXSD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_maxsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) { pResult->MXCSR = iemAImpl_maxpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], pr64Src2); pResult->uResult.ar64[1] = puSrc1->ar64[1]; } #endif /** * CVTSS2SD */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_cvtss2sd_u128_r32_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1) { RTFLOAT32U r32Src1; fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float64_t r64Result = f32_to_f64(iemFpSoftF32FromIprt(&r32Src1), &SoftState); return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_cvtss2sd_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) { pResult->MXCSR = iemAImpl_cvtss2sd_u128_r32_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, pr32Src2); pResult->uResult.ar64[1] = puSrc1->ar64[1]; } #endif /** * CVTSD2SS */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_cvtsd2ss_u128_r64_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1) { RTFLOAT64U r64Src1; fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float32_t r32Result = f64_to_f32(iemFpSoftF64FromIprt(&r64Src1), &SoftState); return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_cvtsd2ss_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) { pResult->MXCSR = iemAImpl_cvtsd2ss_u128_r64_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, pr64Src2); pResult->uResult.ar32[1] = puSrc1->ar32[1]; pResult->uResult.ar32[2] = puSrc1->ar32[2]; pResult->uResult.ar32[3] = puSrc1->ar32[3]; } #endif /** * HADDPS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_haddps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_addps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc1->ar32[1]); pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc1->ar32[3]); pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc2->ar32[0], &puSrc2->ar32[1]); pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc2->ar32[2], &puSrc2->ar32[3]); } #endif /** * HADDPD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_haddpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc1->ar64[1]); pResult->MXCSR |= iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar64[0], &puSrc2->ar64[1]); } #endif /** * HSUBPS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_hsubps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc1->ar32[1]); pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc1->ar32[3]); pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc2->ar32[0], &puSrc2->ar32[1]); pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc2->ar32[2], &puSrc2->ar32[3]); } #endif /** * HSUBPD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_hsubpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc1->ar64[1]); pResult->MXCSR |= iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar64[0], &puSrc2->ar64[1]); } #endif /** * SQRTPS */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_sqrtps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val) { if (iemSseUnaryValIsNaNR32(pr32Res, pr32Val, &fMxcsr)) return fMxcsr; RTFLOAT32U r32Src; uint32_t fDe = iemSsePrepareValueR32(&r32Src, fMxcsr, pr32Val); if (RTFLOAT32U_IS_ZERO(&r32Src)) { *pr32Res = r32Src; return fMxcsr; } else if (r32Src.s.fSign) { *pr32Res = g_ar32QNaN[1]; return fMxcsr | X86_MXCSR_IE; } softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float32_t r32Result = f32_sqrt(iemFpSoftF32FromIprt(&r32Src), &SoftState); return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr | fDe); } IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { RT_NOREF(puSrc1); pResult->MXCSR = iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc2->ar32[0]); pResult->MXCSR |= iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc2->ar32[1]); pResult->MXCSR |= iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc2->ar32[2]); pResult->MXCSR |= iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc2->ar32[3]); } #endif /** * SQRTSS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtss_u128_r32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2)) { pResult->MXCSR = iemAImpl_sqrtps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, pr32Src2); pResult->uResult.ar32[1] = puSrc1->ar32[1]; pResult->uResult.ar32[2] = puSrc1->ar32[2]; pResult->uResult.ar32[3] = puSrc1->ar32[3]; } #endif /** * SQRTPD */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_sqrtpd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val) { if (iemSseUnaryValIsNaNR64(pr64Res, pr64Val, &fMxcsr)) return fMxcsr; RTFLOAT64U r64Src; uint32_t fDe = iemSsePrepareValueR64(&r64Src, fMxcsr, pr64Val); if (RTFLOAT64U_IS_ZERO(&r64Src)) { *pr64Res = r64Src; return fMxcsr; } else if (r64Src.s.fSign) { *pr64Res = g_ar64QNaN[1]; return fMxcsr | X86_MXCSR_IE; } softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float64_t r64Result = f64_sqrt(iemFpSoftF64FromIprt(&r64Src), &SoftState); return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr | fDe); } IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { RT_NOREF(puSrc1); pResult->MXCSR = iemAImpl_sqrtpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc2->ar64[0]); pResult->MXCSR |= iemAImpl_sqrtpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar64[1]); } #endif /** * SQRTSD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_sqrtsd_u128_r64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2)) { pResult->MXCSR = iemAImpl_sqrtpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, pr64Src2); pResult->uResult.ar64[1] = puSrc1->ar64[1]; } #endif /** * ADDSUBPS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_addsubps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { RT_NOREF(puSrc1); pResult->MXCSR = iemAImpl_subps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc1->ar32[0], &puSrc2->ar32[0]); pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc1->ar32[1], &puSrc2->ar32[1]); pResult->MXCSR |= iemAImpl_subps_u128_worker(&pResult->uResult.ar32[2], pFpuState->MXCSR, &puSrc1->ar32[2], &puSrc2->ar32[2]); pResult->MXCSR |= iemAImpl_addps_u128_worker(&pResult->uResult.ar32[3], pFpuState->MXCSR, &puSrc1->ar32[3], &puSrc2->ar32[3]); } #endif /** * ADDSUBPD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_addsubpd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { RT_NOREF(puSrc1); pResult->MXCSR = iemAImpl_subpd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc1->ar64[0], &puSrc2->ar64[0]); pResult->MXCSR |= iemAImpl_addpd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc1->ar64[1], &puSrc2->ar64[1]); } #endif /** * CVTPD2PS */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_cvtpd2ps_u128_worker(PRTFLOAT32U pr32Res, uint32_t fMxcsr, PCRTFLOAT64U pr64Val1) { RTFLOAT64U r64Src1; fMxcsr |= iemSsePrepareValueR64(&r64Src1, fMxcsr, pr64Val1); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float32_t r32Result = f64_to_f32(iemFpSoftF64FromIprt(&r64Src1), &SoftState); return iemSseSoftStateAndR32ToMxcsrAndIprtResult(&SoftState, r32Result, pr32Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_cvtpd2ps_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { RT_NOREF(puSrc1); pResult->MXCSR = iemAImpl_cvtpd2ps_u128_worker(&pResult->uResult.ar32[0], pFpuState->MXCSR, &puSrc2->ar64[0]); pResult->MXCSR |= iemAImpl_cvtpd2ps_u128_worker(&pResult->uResult.ar32[1], pFpuState->MXCSR, &puSrc2->ar64[1]); pResult->uResult.au32[2] = 0; pResult->uResult.au32[3] = 0; } #endif /** * CVTPS2PD */ #ifdef IEM_WITHOUT_ASSEMBLY static uint32_t iemAImpl_cvtps2pd_u128_worker(PRTFLOAT64U pr64Res, uint32_t fMxcsr, PCRTFLOAT32U pr32Val1) { RTFLOAT32U r32Src1; fMxcsr |= iemSsePrepareValueR32(&r32Src1, fMxcsr, pr32Val1); softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_MXCSR(fMxcsr); float64_t r64Result = f32_to_f64(iemFpSoftF32FromIprt(&r32Src1), &SoftState); return iemSseSoftStateAndR64ToMxcsrAndIprtResult(&SoftState, r64Result, pr64Res, fMxcsr); } IEM_DECL_IMPL_DEF(void, iemAImpl_cvtps2pd_u128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2)) { RT_NOREF(puSrc1); pResult->MXCSR = iemAImpl_cvtps2pd_u128_worker(&pResult->uResult.ar64[0], pFpuState->MXCSR, &puSrc2->ar32[0]); pResult->MXCSR |= iemAImpl_cvtps2pd_u128_worker(&pResult->uResult.ar64[1], pFpuState->MXCSR, &puSrc2->ar32[1]); } #endif /** * [V]SHUFPS */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) { RTUINT128U const uSrc1 = *puDst; RTUINT128U const uSrc2 = *puSrc; ASMCompilerBarrier(); puDst->au32[0] = uSrc1.au32[bEvil & 0x3]; puDst->au32[1] = uSrc1.au32[(bEvil >> 2) & 0x3]; puDst->au32[2] = uSrc2.au32[(bEvil >> 4) & 0x3]; puDst->au32[3] = uSrc2.au32[(bEvil >> 6) & 0x3]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) { RTUINT128U const uSrc1 = *puSrc1; RTUINT128U const uSrc2 = *puSrc2; ASMCompilerBarrier(); puDst->au32[0] = uSrc1.au32[bEvil & 0x3]; puDst->au32[1] = uSrc1.au32[(bEvil >> 2) & 0x3]; puDst->au32[2] = uSrc2.au32[(bEvil >> 4) & 0x3]; puDst->au32[3] = uSrc2.au32[(bEvil >> 6) & 0x3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) { RTUINT256U const uSrc1 = *puSrc1; RTUINT256U const uSrc2 = *puSrc2; ASMCompilerBarrier(); puDst->au32[0] = uSrc1.au32[bEvil & 0x3]; puDst->au32[1] = uSrc1.au32[(bEvil >> 2) & 0x3]; puDst->au32[2] = uSrc2.au32[(bEvil >> 4) & 0x3]; puDst->au32[3] = uSrc2.au32[(bEvil >> 6) & 0x3]; puDst->au32[4] = uSrc1.au32[4 + (bEvil & 0x3)]; puDst->au32[5] = uSrc1.au32[4 + ((bEvil >> 2) & 0x3)]; puDst->au32[6] = uSrc2.au32[4 + ((bEvil >> 4) & 0x3)]; puDst->au32[7] = uSrc2.au32[4 + ((bEvil >> 6) & 0x3)]; } /** * [V]SHUFPD */ #ifdef IEM_WITHOUT_ASSEMBLY IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) { RTUINT128U const uSrc1 = *puDst; RTUINT128U const uSrc2 = *puSrc; ASMCompilerBarrier(); puDst->au64[0] = (bEvil & RT_BIT(0)) ? uSrc1.au64[1] : uSrc1.au64[0]; puDst->au64[1] = (bEvil & RT_BIT(1)) ? uSrc2.au64[1] : uSrc2.au64[0]; } #endif IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) { RTUINT128U const uSrc1 = *puSrc1; RTUINT128U const uSrc2 = *puSrc2; ASMCompilerBarrier(); puDst->au64[0] = (bEvil & RT_BIT(0)) ? uSrc1.au64[1] : uSrc1.au64[0]; puDst->au64[1] = (bEvil & RT_BIT(1)) ? uSrc2.au64[1] : uSrc2.au64[0]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) { RTUINT256U const uSrc1 = *puSrc1; RTUINT256U const uSrc2 = *puSrc2; ASMCompilerBarrier(); puDst->au64[0] = (bEvil & RT_BIT(0)) ? uSrc1.au64[1] : uSrc1.au64[0]; puDst->au64[1] = (bEvil & RT_BIT(1)) ? uSrc2.au64[1] : uSrc2.au64[0]; puDst->au64[2] = (bEvil & RT_BIT(2)) ? uSrc1.au64[3] : uSrc1.au64[2]; puDst->au64[3] = (bEvil & RT_BIT(3)) ? uSrc2.au64[3] : uSrc2.au64[2]; } /* * PHMINPOSUW / VPHMINPOSUW */ IEM_DECL_IMPL_DEF(void, iemAImpl_phminposuw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { uint16_t u16Min = puSrc->au16[0]; uint8_t idxMin = 0; for (uint8_t i = 1; i < RT_ELEMENTS(puSrc->au16); i++) if (puSrc->au16[i] < u16Min) { u16Min = puSrc->au16[i]; idxMin = i; } puDst->au64[0] = 0; puDst->au64[1] = 0; puDst->au16[0] = u16Min; puDst->au16[1] = idxMin; } IEM_DECL_IMPL_DEF(void, iemAImpl_vphminposuw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc)) { iemAImpl_phminposuw_u128_fallback(puDst, puSrc); } /* * [V]PBLENDVB */ IEM_DECL_IMPL_DEF(void, iemAImpl_pblendvb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8); i++) if (puMask->au8[i] & RT_BIT(7)) puDst->au8[i] = puSrc->au8[i]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendvb_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8); i++) puDst->au8[i] = puMask->au8[i] & RT_BIT(7) ? puSrc2->au8[i] : puSrc1->au8[i]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendvb_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8); i++) puDst->au8[i] = puMask->au8[i] & RT_BIT(7) ? puSrc2->au8[i] : puSrc1->au8[i]; } /* * [V]BLENDVPS */ IEM_DECL_IMPL_DEF(void, iemAImpl_blendvps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) if (puMask->au32[i] & RT_BIT_32(31)) puDst->au32[i] = puSrc->au32[i]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) puDst->au32[i] = (puMask->au32[i] & RT_BIT_32(31)) ? puSrc2->au32[i] : puSrc1->au32[i]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) puDst->au32[i] = (puMask->au32[i] & RT_BIT_32(31)) ? puSrc2->au32[i] : puSrc1->au32[i]; } /* * [V]BLENDVPD */ IEM_DECL_IMPL_DEF(void, iemAImpl_blendvpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask)) { if (puMask->au64[0] & RT_BIT_64(63)) puDst->au64[0] = puSrc->au64[0]; if (puMask->au64[1] & RT_BIT_64(63)) puDst->au64[1] = puSrc->au64[1]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++) puDst->au64[i] = (puMask->au64[i] & RT_BIT_64(63)) ? puSrc2->au64[i] : puSrc1->au64[i]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vblendvpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++) puDst->au64[i] = (puMask->au64[i] & RT_BIT_64(63)) ? puSrc2->au64[i] : puSrc1->au64[i]; } /** * [V]PALIGNR */ IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src2, uint8_t bEvil)) { uint64_t const u64Src1 = *pu64Dst; ASMCompilerBarrier(); if (bEvil >= 16) *pu64Dst = 0; else if (bEvil >= 8) *pu64Dst = u64Src1 >> ((bEvil - 8) * 8); else { uint8_t cShift = bEvil * 8; *pu64Dst = ((u64Src1 & (RT_BIT_64(cShift) - 1)) << ((8 - bEvil) * 8)) | (u64Src2 >> cShift); } } IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) { RTUINT128U const uSrc1 = *puDst; RTUINT128U const uSrc2 = *puSrc; ASMCompilerBarrier(); puDst->au64[0] = 0; puDst->au64[1] = 0; if (bEvil >= 32) { /* Everything stays 0. */ } else if (bEvil >= 16) { bEvil -= 16; for (uint8_t i = bEvil; i < RT_ELEMENTS(puDst->au8); i++) puDst->au8[i - bEvil] = uSrc1.au8[i]; } else { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8) - bEvil; i++) puDst->au8[i] = uSrc2.au8[i + bEvil]; for (uint8_t i = 0; i < bEvil; i++) puDst->au8[i + RT_ELEMENTS(puDst->au8) - bEvil] = uSrc1.au8[i]; } } IEM_DECL_IMPL_DEF(void, iemAImpl_vpalignr_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) { RTUINT128U const uSrc1 = *puSrc1; /* Might overlap with destination. */ RTUINT128U const uSrc2 = *puSrc2; ASMCompilerBarrier(); puDst->au64[0] = 0; puDst->au64[1] = 0; if (bEvil >= 32) { /* Everything stays 0. */ } else if (bEvil >= 16) { bEvil -= 16; for (uint8_t i = bEvil; i < RT_ELEMENTS(puDst->au8); i++) puDst->au8[i - bEvil] = uSrc1.au8[i]; } else { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au8) - bEvil; i++) puDst->au8[i] = uSrc2.au8[i + bEvil]; for (uint8_t i = 0; i < bEvil; i++) puDst->au8[i + RT_ELEMENTS(puDst->au8) - bEvil] = uSrc1.au8[i]; } } IEM_DECL_IMPL_DEF(void, iemAImpl_vpalignr_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) { RTUINT256U const uSrc1 = *puSrc1; /* Might overlap with destination. */ RTUINT256U const uSrc2 = *puSrc2; ASMCompilerBarrier(); iemAImpl_vpalignr_u128_fallback(&puDst->au128[0], &uSrc1.au128[0], &uSrc2.au128[0], bEvil); iemAImpl_vpalignr_u128_fallback(&puDst->au128[1], &uSrc1.au128[1], &uSrc2.au128[1], bEvil); } /** * [V]PBLENDW */ IEM_DECL_IMPL_DEF(void, iemAImpl_pblendw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au16); i++) if (bEvil & RT_BIT(i)) puDst->au16[i] = puSrc->au16[i]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au16); i++) if (bEvil & RT_BIT(i)) puDst->au16[i] = puSrc2->au16[i]; else puDst->au16[i] = puSrc1->au16[i]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vpblendw_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) { for (uint8_t i = 0; i < 8; i++) if (bEvil & RT_BIT(i)) { puDst->au16[ i] = puSrc2->au16[ i]; puDst->au16[8 + i] = puSrc2->au16[8 + i]; } else { puDst->au16[ i] = puSrc1->au16[ i]; puDst->au16[8 + i] = puSrc1->au16[8 + i]; } } /** * [V]BLENDPS */ IEM_DECL_IMPL_DEF(void, iemAImpl_blendps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) if (bEvil & RT_BIT(i)) puDst->au32[i] = puSrc->au32[i]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vblendps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) if (bEvil & RT_BIT(i)) puDst->au32[i] = puSrc2->au32[i]; else puDst->au32[i] = puSrc1->au32[i]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vblendps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au32); i++) if (bEvil & RT_BIT(i)) puDst->au32[i] = puSrc2->au32[i]; else puDst->au32[i] = puSrc1->au32[i]; } /** * [V]BLENDPD */ IEM_DECL_IMPL_DEF(void, iemAImpl_blendpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++) if (bEvil & RT_BIT(i)) puDst->au64[i] = puSrc->au64[i]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vblendpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++) if (bEvil & RT_BIT(i)) puDst->au64[i] = puSrc2->au64[i]; else puDst->au64[i] = puSrc1->au64[i]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vblendpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil)) { for (uint8_t i = 0; i < RT_ELEMENTS(puDst->au64); i++) if (bEvil & RT_BIT(i)) puDst->au64[i] = puSrc2->au64[i]; else puDst->au64[i] = puSrc1->au64[i]; } /** * [V]PCMPISTRI */ IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpistri_u128_fallback,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRISRC pSrc, uint8_t bEvil)) { RT_NOREF(pu32Ecx, pEFlags, pSrc, bEvil); AssertReleaseFailed(); } /* * [V]PCLMULQDQ */ IEM_DECL_IMPL_DEF(void, iemAImpl_pclmulqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil)) { iemAImpl_vpclmulqdq_u128_fallback(puDst, puDst, puSrc, bEvil); } IEM_DECL_IMPL_DEF(void, iemAImpl_vpclmulqdq_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil)) { uint64_t uSrc1 = puSrc1->au64[bEvil & 0x1]; uint64_t uSrc2 = puSrc2->au64[(bEvil >> 4) & 0x1]; puDst->au64[0] = 0; puDst->au64[1] = 0; /* * See https://en.wikipedia.org/wiki/Carry-less_product#Example (as of 2022-09-08) for the algorithm. * Do the first round outside the loop to avoid ASAN complaining about shift exponent being too large (64) * and squeeze out some optimizations. */ if (uSrc1 & 0x1) puDst->au64[0] = uSrc2; uSrc1 >>= 1; uint8_t iDigit = 1; while (uSrc1) { if (uSrc1 & 0x1) { puDst->au64[0] ^= (uSrc2 << iDigit); puDst->au64[1] ^= uSrc2 >> (64 - iDigit); } uSrc1 >>= 1; iDigit++; } }