VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp@ 48172

Last change on this file since 48172 was 48172, checked in by vboxsync, 11 years ago

IEM: Implemented 64-bit rol, ror, rcl, rcr, shl, shr, sar, shld, shrd and xadd for 32-bit hosts.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 35.3 KB
Line 
1/* $Id: IEMAllAImplC.cpp 48172 2013-08-30 00:54:04Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in Assembly, portable C variant.
4 */
5
6/*
7 * Copyright (C) 2011-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#include "IEMInternal.h"
22#include <VBox/vmm/vm.h>
23#include <iprt/x86.h>
24
25
26/*******************************************************************************
27* Global Variables *
28*******************************************************************************/
29/**
30 * Parity calculation table.
31 *
32 * The generator code:
33 * @code
34 * #include <stdio.h>
35 *
36 * int main()
37 * {
38 * unsigned b;
39 * for (b = 0; b < 256; b++)
40 * {
41 * int cOnes = ( b & 1)
42 * + ((b >> 1) & 1)
43 * + ((b >> 2) & 1)
44 * + ((b >> 3) & 1)
45 * + ((b >> 4) & 1)
46 * + ((b >> 5) & 1)
47 * + ((b >> 6) & 1)
48 * + ((b >> 7) & 1);
49 * printf(" /" "* %#04x = %u%u%u%u%u%u%u%ub *" "/ %s,\n",
50 * b,
51 * (b >> 7) & 1,
52 * (b >> 6) & 1,
53 * (b >> 5) & 1,
54 * (b >> 4) & 1,
55 * (b >> 3) & 1,
56 * (b >> 2) & 1,
57 * (b >> 1) & 1,
58 * b & 1,
59 * cOnes & 1 ? "0" : "X86_EFL_PF");
60 * }
61 * return 0;
62 * }
63 * @endcode
64 */
65static uint8_t const g_afParity[256] =
66{
67 /* 0000 = 00000000b */ X86_EFL_PF,
68 /* 0x01 = 00000001b */ 0,
69 /* 0x02 = 00000010b */ 0,
70 /* 0x03 = 00000011b */ X86_EFL_PF,
71 /* 0x04 = 00000100b */ 0,
72 /* 0x05 = 00000101b */ X86_EFL_PF,
73 /* 0x06 = 00000110b */ X86_EFL_PF,
74 /* 0x07 = 00000111b */ 0,
75 /* 0x08 = 00001000b */ 0,
76 /* 0x09 = 00001001b */ X86_EFL_PF,
77 /* 0x0a = 00001010b */ X86_EFL_PF,
78 /* 0x0b = 00001011b */ 0,
79 /* 0x0c = 00001100b */ X86_EFL_PF,
80 /* 0x0d = 00001101b */ 0,
81 /* 0x0e = 00001110b */ 0,
82 /* 0x0f = 00001111b */ X86_EFL_PF,
83 /* 0x10 = 00010000b */ 0,
84 /* 0x11 = 00010001b */ X86_EFL_PF,
85 /* 0x12 = 00010010b */ X86_EFL_PF,
86 /* 0x13 = 00010011b */ 0,
87 /* 0x14 = 00010100b */ X86_EFL_PF,
88 /* 0x15 = 00010101b */ 0,
89 /* 0x16 = 00010110b */ 0,
90 /* 0x17 = 00010111b */ X86_EFL_PF,
91 /* 0x18 = 00011000b */ X86_EFL_PF,
92 /* 0x19 = 00011001b */ 0,
93 /* 0x1a = 00011010b */ 0,
94 /* 0x1b = 00011011b */ X86_EFL_PF,
95 /* 0x1c = 00011100b */ 0,
96 /* 0x1d = 00011101b */ X86_EFL_PF,
97 /* 0x1e = 00011110b */ X86_EFL_PF,
98 /* 0x1f = 00011111b */ 0,
99 /* 0x20 = 00100000b */ 0,
100 /* 0x21 = 00100001b */ X86_EFL_PF,
101 /* 0x22 = 00100010b */ X86_EFL_PF,
102 /* 0x23 = 00100011b */ 0,
103 /* 0x24 = 00100100b */ X86_EFL_PF,
104 /* 0x25 = 00100101b */ 0,
105 /* 0x26 = 00100110b */ 0,
106 /* 0x27 = 00100111b */ X86_EFL_PF,
107 /* 0x28 = 00101000b */ X86_EFL_PF,
108 /* 0x29 = 00101001b */ 0,
109 /* 0x2a = 00101010b */ 0,
110 /* 0x2b = 00101011b */ X86_EFL_PF,
111 /* 0x2c = 00101100b */ 0,
112 /* 0x2d = 00101101b */ X86_EFL_PF,
113 /* 0x2e = 00101110b */ X86_EFL_PF,
114 /* 0x2f = 00101111b */ 0,
115 /* 0x30 = 00110000b */ X86_EFL_PF,
116 /* 0x31 = 00110001b */ 0,
117 /* 0x32 = 00110010b */ 0,
118 /* 0x33 = 00110011b */ X86_EFL_PF,
119 /* 0x34 = 00110100b */ 0,
120 /* 0x35 = 00110101b */ X86_EFL_PF,
121 /* 0x36 = 00110110b */ X86_EFL_PF,
122 /* 0x37 = 00110111b */ 0,
123 /* 0x38 = 00111000b */ 0,
124 /* 0x39 = 00111001b */ X86_EFL_PF,
125 /* 0x3a = 00111010b */ X86_EFL_PF,
126 /* 0x3b = 00111011b */ 0,
127 /* 0x3c = 00111100b */ X86_EFL_PF,
128 /* 0x3d = 00111101b */ 0,
129 /* 0x3e = 00111110b */ 0,
130 /* 0x3f = 00111111b */ X86_EFL_PF,
131 /* 0x40 = 01000000b */ 0,
132 /* 0x41 = 01000001b */ X86_EFL_PF,
133 /* 0x42 = 01000010b */ X86_EFL_PF,
134 /* 0x43 = 01000011b */ 0,
135 /* 0x44 = 01000100b */ X86_EFL_PF,
136 /* 0x45 = 01000101b */ 0,
137 /* 0x46 = 01000110b */ 0,
138 /* 0x47 = 01000111b */ X86_EFL_PF,
139 /* 0x48 = 01001000b */ X86_EFL_PF,
140 /* 0x49 = 01001001b */ 0,
141 /* 0x4a = 01001010b */ 0,
142 /* 0x4b = 01001011b */ X86_EFL_PF,
143 /* 0x4c = 01001100b */ 0,
144 /* 0x4d = 01001101b */ X86_EFL_PF,
145 /* 0x4e = 01001110b */ X86_EFL_PF,
146 /* 0x4f = 01001111b */ 0,
147 /* 0x50 = 01010000b */ X86_EFL_PF,
148 /* 0x51 = 01010001b */ 0,
149 /* 0x52 = 01010010b */ 0,
150 /* 0x53 = 01010011b */ X86_EFL_PF,
151 /* 0x54 = 01010100b */ 0,
152 /* 0x55 = 01010101b */ X86_EFL_PF,
153 /* 0x56 = 01010110b */ X86_EFL_PF,
154 /* 0x57 = 01010111b */ 0,
155 /* 0x58 = 01011000b */ 0,
156 /* 0x59 = 01011001b */ X86_EFL_PF,
157 /* 0x5a = 01011010b */ X86_EFL_PF,
158 /* 0x5b = 01011011b */ 0,
159 /* 0x5c = 01011100b */ X86_EFL_PF,
160 /* 0x5d = 01011101b */ 0,
161 /* 0x5e = 01011110b */ 0,
162 /* 0x5f = 01011111b */ X86_EFL_PF,
163 /* 0x60 = 01100000b */ X86_EFL_PF,
164 /* 0x61 = 01100001b */ 0,
165 /* 0x62 = 01100010b */ 0,
166 /* 0x63 = 01100011b */ X86_EFL_PF,
167 /* 0x64 = 01100100b */ 0,
168 /* 0x65 = 01100101b */ X86_EFL_PF,
169 /* 0x66 = 01100110b */ X86_EFL_PF,
170 /* 0x67 = 01100111b */ 0,
171 /* 0x68 = 01101000b */ 0,
172 /* 0x69 = 01101001b */ X86_EFL_PF,
173 /* 0x6a = 01101010b */ X86_EFL_PF,
174 /* 0x6b = 01101011b */ 0,
175 /* 0x6c = 01101100b */ X86_EFL_PF,
176 /* 0x6d = 01101101b */ 0,
177 /* 0x6e = 01101110b */ 0,
178 /* 0x6f = 01101111b */ X86_EFL_PF,
179 /* 0x70 = 01110000b */ 0,
180 /* 0x71 = 01110001b */ X86_EFL_PF,
181 /* 0x72 = 01110010b */ X86_EFL_PF,
182 /* 0x73 = 01110011b */ 0,
183 /* 0x74 = 01110100b */ X86_EFL_PF,
184 /* 0x75 = 01110101b */ 0,
185 /* 0x76 = 01110110b */ 0,
186 /* 0x77 = 01110111b */ X86_EFL_PF,
187 /* 0x78 = 01111000b */ X86_EFL_PF,
188 /* 0x79 = 01111001b */ 0,
189 /* 0x7a = 01111010b */ 0,
190 /* 0x7b = 01111011b */ X86_EFL_PF,
191 /* 0x7c = 01111100b */ 0,
192 /* 0x7d = 01111101b */ X86_EFL_PF,
193 /* 0x7e = 01111110b */ X86_EFL_PF,
194 /* 0x7f = 01111111b */ 0,
195 /* 0x80 = 10000000b */ 0,
196 /* 0x81 = 10000001b */ X86_EFL_PF,
197 /* 0x82 = 10000010b */ X86_EFL_PF,
198 /* 0x83 = 10000011b */ 0,
199 /* 0x84 = 10000100b */ X86_EFL_PF,
200 /* 0x85 = 10000101b */ 0,
201 /* 0x86 = 10000110b */ 0,
202 /* 0x87 = 10000111b */ X86_EFL_PF,
203 /* 0x88 = 10001000b */ X86_EFL_PF,
204 /* 0x89 = 10001001b */ 0,
205 /* 0x8a = 10001010b */ 0,
206 /* 0x8b = 10001011b */ X86_EFL_PF,
207 /* 0x8c = 10001100b */ 0,
208 /* 0x8d = 10001101b */ X86_EFL_PF,
209 /* 0x8e = 10001110b */ X86_EFL_PF,
210 /* 0x8f = 10001111b */ 0,
211 /* 0x90 = 10010000b */ X86_EFL_PF,
212 /* 0x91 = 10010001b */ 0,
213 /* 0x92 = 10010010b */ 0,
214 /* 0x93 = 10010011b */ X86_EFL_PF,
215 /* 0x94 = 10010100b */ 0,
216 /* 0x95 = 10010101b */ X86_EFL_PF,
217 /* 0x96 = 10010110b */ X86_EFL_PF,
218 /* 0x97 = 10010111b */ 0,
219 /* 0x98 = 10011000b */ 0,
220 /* 0x99 = 10011001b */ X86_EFL_PF,
221 /* 0x9a = 10011010b */ X86_EFL_PF,
222 /* 0x9b = 10011011b */ 0,
223 /* 0x9c = 10011100b */ X86_EFL_PF,
224 /* 0x9d = 10011101b */ 0,
225 /* 0x9e = 10011110b */ 0,
226 /* 0x9f = 10011111b */ X86_EFL_PF,
227 /* 0xa0 = 10100000b */ X86_EFL_PF,
228 /* 0xa1 = 10100001b */ 0,
229 /* 0xa2 = 10100010b */ 0,
230 /* 0xa3 = 10100011b */ X86_EFL_PF,
231 /* 0xa4 = 10100100b */ 0,
232 /* 0xa5 = 10100101b */ X86_EFL_PF,
233 /* 0xa6 = 10100110b */ X86_EFL_PF,
234 /* 0xa7 = 10100111b */ 0,
235 /* 0xa8 = 10101000b */ 0,
236 /* 0xa9 = 10101001b */ X86_EFL_PF,
237 /* 0xaa = 10101010b */ X86_EFL_PF,
238 /* 0xab = 10101011b */ 0,
239 /* 0xac = 10101100b */ X86_EFL_PF,
240 /* 0xad = 10101101b */ 0,
241 /* 0xae = 10101110b */ 0,
242 /* 0xaf = 10101111b */ X86_EFL_PF,
243 /* 0xb0 = 10110000b */ 0,
244 /* 0xb1 = 10110001b */ X86_EFL_PF,
245 /* 0xb2 = 10110010b */ X86_EFL_PF,
246 /* 0xb3 = 10110011b */ 0,
247 /* 0xb4 = 10110100b */ X86_EFL_PF,
248 /* 0xb5 = 10110101b */ 0,
249 /* 0xb6 = 10110110b */ 0,
250 /* 0xb7 = 10110111b */ X86_EFL_PF,
251 /* 0xb8 = 10111000b */ X86_EFL_PF,
252 /* 0xb9 = 10111001b */ 0,
253 /* 0xba = 10111010b */ 0,
254 /* 0xbb = 10111011b */ X86_EFL_PF,
255 /* 0xbc = 10111100b */ 0,
256 /* 0xbd = 10111101b */ X86_EFL_PF,
257 /* 0xbe = 10111110b */ X86_EFL_PF,
258 /* 0xbf = 10111111b */ 0,
259 /* 0xc0 = 11000000b */ X86_EFL_PF,
260 /* 0xc1 = 11000001b */ 0,
261 /* 0xc2 = 11000010b */ 0,
262 /* 0xc3 = 11000011b */ X86_EFL_PF,
263 /* 0xc4 = 11000100b */ 0,
264 /* 0xc5 = 11000101b */ X86_EFL_PF,
265 /* 0xc6 = 11000110b */ X86_EFL_PF,
266 /* 0xc7 = 11000111b */ 0,
267 /* 0xc8 = 11001000b */ 0,
268 /* 0xc9 = 11001001b */ X86_EFL_PF,
269 /* 0xca = 11001010b */ X86_EFL_PF,
270 /* 0xcb = 11001011b */ 0,
271 /* 0xcc = 11001100b */ X86_EFL_PF,
272 /* 0xcd = 11001101b */ 0,
273 /* 0xce = 11001110b */ 0,
274 /* 0xcf = 11001111b */ X86_EFL_PF,
275 /* 0xd0 = 11010000b */ 0,
276 /* 0xd1 = 11010001b */ X86_EFL_PF,
277 /* 0xd2 = 11010010b */ X86_EFL_PF,
278 /* 0xd3 = 11010011b */ 0,
279 /* 0xd4 = 11010100b */ X86_EFL_PF,
280 /* 0xd5 = 11010101b */ 0,
281 /* 0xd6 = 11010110b */ 0,
282 /* 0xd7 = 11010111b */ X86_EFL_PF,
283 /* 0xd8 = 11011000b */ X86_EFL_PF,
284 /* 0xd9 = 11011001b */ 0,
285 /* 0xda = 11011010b */ 0,
286 /* 0xdb = 11011011b */ X86_EFL_PF,
287 /* 0xdc = 11011100b */ 0,
288 /* 0xdd = 11011101b */ X86_EFL_PF,
289 /* 0xde = 11011110b */ X86_EFL_PF,
290 /* 0xdf = 11011111b */ 0,
291 /* 0xe0 = 11100000b */ 0,
292 /* 0xe1 = 11100001b */ X86_EFL_PF,
293 /* 0xe2 = 11100010b */ X86_EFL_PF,
294 /* 0xe3 = 11100011b */ 0,
295 /* 0xe4 = 11100100b */ X86_EFL_PF,
296 /* 0xe5 = 11100101b */ 0,
297 /* 0xe6 = 11100110b */ 0,
298 /* 0xe7 = 11100111b */ X86_EFL_PF,
299 /* 0xe8 = 11101000b */ X86_EFL_PF,
300 /* 0xe9 = 11101001b */ 0,
301 /* 0xea = 11101010b */ 0,
302 /* 0xeb = 11101011b */ X86_EFL_PF,
303 /* 0xec = 11101100b */ 0,
304 /* 0xed = 11101101b */ X86_EFL_PF,
305 /* 0xee = 11101110b */ X86_EFL_PF,
306 /* 0xef = 11101111b */ 0,
307 /* 0xf0 = 11110000b */ X86_EFL_PF,
308 /* 0xf1 = 11110001b */ 0,
309 /* 0xf2 = 11110010b */ 0,
310 /* 0xf3 = 11110011b */ X86_EFL_PF,
311 /* 0xf4 = 11110100b */ 0,
312 /* 0xf5 = 11110101b */ X86_EFL_PF,
313 /* 0xf6 = 11110110b */ X86_EFL_PF,
314 /* 0xf7 = 11110111b */ 0,
315 /* 0xf8 = 11111000b */ 0,
316 /* 0xf9 = 11111001b */ X86_EFL_PF,
317 /* 0xfa = 11111010b */ X86_EFL_PF,
318 /* 0xfb = 11111011b */ 0,
319 /* 0xfc = 11111100b */ X86_EFL_PF,
320 /* 0xfd = 11111101b */ 0,
321 /* 0xfe = 11111110b */ 0,
322 /* 0xff = 11111111b */ X86_EFL_PF,
323};
324
325
326/**
327 * Calculates the signed flag value given a result and it's bit width.
328 *
329 * The signed flag (SF) is a duplication of the most significant bit in the
330 * result.
331 *
332 * @returns X86_EFL_SF or 0.
333 * @param a_uResult Unsigned result value.
334 * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
335 */
336#define X86_EFL_CALC_SF(a_uResult, a_cBitsWidth) \
337 ( (uint32_t)((a_uResult) >> ((a_cBitsWidth) - X86_EFL_SF_BIT)) & X86_EFL_SF )
338
339/**
340 * Calculates the zero flag value given a result.
341 *
342 * The zero flag (ZF) indicates whether the result is zero or not.
343 *
344 * @returns X86_EFL_ZF or 0.
345 * @param a_uResult Unsigned result value.
346 */
347#define X86_EFL_CALC_ZF(a_uResult) \
348 ( (uint32_t)((a_uResult) == 0) << X86_EFL_ZF_BIT )
349
350/**
351 * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after a logical op.
352 *
353 * CF and OF are defined to be 0 by logical operations. AF on the other hand is
354 * undefined. We do not set AF, as that seems to make the most sense (which
355 * probably makes it the most wrong in real life).
356 *
357 * @returns Status bits.
358 * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update.
359 * @param a_uResult Unsigned result value.
360 * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
361 * @param a_fExtra Additional bits to set.
362 */
363#define IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(a_pfEFlags, a_uResult, a_cBitsWidth, a_fExtra) \
364 do { \
365 uint32_t fEflTmp = *(a_pfEFlags); \
366 fEflTmp &= ~X86_EFL_STATUS_BITS; \
367 fEflTmp |= g_afParity[(a_uResult) & 0xff]; \
368 fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \
369 fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \
370 fEflTmp |= (a_fExtra); \
371 *(a_pfEFlags) = fEflTmp; \
372 } while (0)
373
374
375#ifdef RT_ARCH_X86
376/*
377 * There are a few 64-bit on 32-bit things we'd rather do in C. Actually, doing
378 * it all in C is probably safer atm., optimize what's necessary later, maybe.
379 */
380
381
382/* Binary ops */
383
384IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
385{
386 uint64_t uDst = *puDst;
387 uint64_t uResult = uDst + uSrc;
388 *puDst = uResult;
389
390 /* Calc EFLAGS. */
391 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
392 fEfl |= (uResult < uDst) << X86_EFL_CF_BIT;
393 fEfl |= g_afParity[uResult & 0xff];
394 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
395 fEfl |= X86_EFL_CALC_ZF(uResult);
396 fEfl |= X86_EFL_CALC_SF(uResult, 64);
397 fEfl |= (((uDst ^ uSrc ^ RT_BIT_64(63)) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
398 *pfEFlags = fEfl;
399}
400
401
402IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
403{
404 if (!(*pfEFlags & X86_EFL_CF))
405 iemAImpl_add_u64(puDst, uSrc, pfEFlags);
406 else
407 {
408 uint64_t uDst = *puDst;
409 uint64_t uResult = uDst + uSrc + 1;
410 *puDst = uResult;
411
412 /* Calc EFLAGS. */
413 /** @todo verify AF and OF calculations. */
414 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
415 fEfl |= (uResult <= uDst) << X86_EFL_CF_BIT;
416 fEfl |= g_afParity[uResult & 0xff];
417 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
418 fEfl |= X86_EFL_CALC_ZF(uResult);
419 fEfl |= X86_EFL_CALC_SF(uResult, 64);
420 fEfl |= (((uDst ^ uSrc ^ RT_BIT_64(63)) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
421 *pfEFlags = fEfl;
422 }
423}
424
425
426IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
427{
428 uint64_t uDst = *puDst;
429 uint64_t uResult = uDst - uSrc;
430 *puDst = uResult;
431
432 /* Calc EFLAGS. */
433 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
434 fEfl |= (uDst < uSrc) << X86_EFL_CF_BIT;
435 fEfl |= g_afParity[uResult & 0xff];
436 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
437 fEfl |= X86_EFL_CALC_ZF(uResult);
438 fEfl |= X86_EFL_CALC_SF(uResult, 64);
439 fEfl |= (((uDst ^ uSrc) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
440 *pfEFlags = fEfl;
441}
442
443
444IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
445{
446 if (!(*pfEFlags & X86_EFL_CF))
447 iemAImpl_sub_u64(puDst, uSrc, pfEFlags);
448 else
449 {
450 uint64_t uDst = *puDst;
451 uint64_t uResult = uDst - uSrc - 1;
452 *puDst = uResult;
453
454 /* Calc EFLAGS. */
455 /** @todo verify AF and OF calculations. */
456 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
457 fEfl |= (uDst <= uSrc) << X86_EFL_CF_BIT;
458 fEfl |= g_afParity[uResult & 0xff];
459 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
460 fEfl |= X86_EFL_CALC_ZF(uResult);
461 fEfl |= X86_EFL_CALC_SF(uResult, 64);
462 fEfl |= (((uDst ^ uSrc) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
463 *pfEFlags = fEfl;
464 }
465}
466
467
468IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
469{
470 uint64_t uResult = *puDst | uSrc;
471 *puDst = uResult;
472 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
473}
474
475
476IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
477{
478 uint64_t uResult = *puDst ^ uSrc;
479 *puDst = uResult;
480 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
481}
482
483
484IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
485{
486 uint64_t uResult = *puDst & uSrc;
487 *puDst = uResult;
488 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
489}
490
491
492IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
493{
494 uint64_t uDstTmp = *puDst;
495 iemAImpl_sub_u64(&uDstTmp, uSrc, pfEFlags);
496}
497
498
499IEM_DECL_IMPL_DEF(void, iemAImpl_test_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
500{
501 uint64_t uResult = *puDst & uSrc;
502 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
503}
504
505
506/** 64-bit locked binary operand operation. */
507# define DO_LOCKED_BIN_OP_U64(a_Mnemonic) \
508 do { \
509 uint64_t uOld = ASMAtomicReadU64(puDst); \
510 uint64_t uTmp; \
511 uint32_t fEflTmp; \
512 do \
513 { \
514 uTmp = uOld; \
515 fEflTmp = *pfEFlags; \
516 iemAImpl_ ## a_Mnemonic ## _u64(&uTmp, uSrc, &fEflTmp); \
517 } while (ASMAtomicCmpXchgExU64(puDst, uTmp, uOld, &uOld)); \
518 *pfEFlags = fEflTmp; \
519 } while (0)
520
521
522IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
523{
524 DO_LOCKED_BIN_OP_U64(adc);
525}
526
527
528IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
529{
530 DO_LOCKED_BIN_OP_U64(adc);
531}
532
533
534IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
535{
536 DO_LOCKED_BIN_OP_U64(sub);
537}
538
539
540IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
541{
542 DO_LOCKED_BIN_OP_U64(sbb);
543}
544
545
546IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
547{
548 DO_LOCKED_BIN_OP_U64(or);
549}
550
551
552IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
553{
554 DO_LOCKED_BIN_OP_U64(xor);
555}
556
557
558IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
559{
560 DO_LOCKED_BIN_OP_U64(and);
561}
562
563
564/* Bit operations (same signature as above). */
565
566IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
567{
568 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
569 logical operation (AND/OR/whatever). */
570 Assert(uSrc < 64);
571 uint64_t uDst = *puDst;
572 if (uDst & RT_BIT_64(uSrc))
573 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
574 else
575 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
576}
577
578IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
579{
580 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
581 logical operation (AND/OR/whatever). */
582 Assert(uSrc < 64);
583 uint64_t fMask = RT_BIT_64(uSrc);
584 uint64_t uDst = *puDst;
585 if (uDst & fMask)
586 {
587 uDst &= ~fMask;
588 *puDst = uDst;
589 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
590 }
591 else
592 {
593 uDst |= fMask;
594 *puDst = uDst;
595 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
596 }
597}
598
599IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
600{
601 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
602 logical operation (AND/OR/whatever). */
603 Assert(uSrc < 64);
604 uint64_t fMask = RT_BIT_64(uSrc);
605 uint64_t uDst = *puDst;
606 if (uDst & fMask)
607 {
608 uDst &= ~fMask;
609 *puDst = uDst;
610 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
611 }
612 else
613 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
614}
615
616IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
617{
618 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
619 logical operation (AND/OR/whatever). */
620 Assert(uSrc < 64);
621 uint64_t fMask = RT_BIT_64(uSrc);
622 uint64_t uDst = *puDst;
623 if (uDst & fMask)
624 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
625 else
626 {
627 uDst |= fMask;
628 *puDst = uDst;
629 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
630 }
631}
632
633
634IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
635{
636 DO_LOCKED_BIN_OP_U64(btc);
637}
638
639IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
640{
641 DO_LOCKED_BIN_OP_U64(btr);
642}
643
644IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
645{
646 DO_LOCKED_BIN_OP_U64(bts);
647}
648
649
650/* bit scan */
651
652IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
653{
654 /* Note! "undefined" flags: OF, SF, AF, PF, CF. */
655 /** @todo check what real CPUs does. */
656 if (uSrc)
657 {
658 uint8_t iBit;
659 uint32_t u32Src;
660 if (uSrc & UINT32_MAX)
661 {
662 iBit = 0;
663 u32Src = uSrc;
664 }
665 else
666 {
667 iBit = 32;
668 u32Src = uSrc >> 32;
669 }
670 if (!(u32Src & UINT16_MAX))
671 {
672 iBit += 16;
673 u32Src >>= 16;
674 }
675 if (!(u32Src & UINT8_MAX))
676 {
677 iBit += 8;
678 u32Src >>= 8;
679 }
680 if (!(u32Src & 0xf))
681 {
682 iBit += 4;
683 u32Src >>= 4;
684 }
685 if (!(u32Src & 0x3))
686 {
687 iBit += 2;
688 u32Src >>= 2;
689 }
690 if (!(u32Src & 1))
691 {
692 iBit += 1;
693 Assert(u32Src & 2);
694 }
695
696 *puDst = iBit;
697 *pfEFlags &= ~X86_EFL_ZF;
698 }
699 else
700 *pfEFlags |= X86_EFL_ZF;
701}
702
703IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
704{
705 /* Note! "undefined" flags: OF, SF, AF, PF, CF. */
706 /** @todo check what real CPUs does. */
707 if (uSrc)
708 {
709 uint8_t iBit;
710 uint32_t u32Src;
711 if (uSrc & UINT64_C(0xffffffff00000000))
712 {
713 iBit = 64;
714 u32Src = uSrc >> 32;
715 }
716 else
717 {
718 iBit = 32;
719 u32Src = uSrc;
720 }
721 if (!(u32Src & UINT32_C(0xffff0000)))
722 {
723 iBit -= 16;
724 u32Src <<= 16;
725 }
726 if (!(u32Src & UINT32_C(0xff000000)))
727 {
728 iBit -= 8;
729 u32Src <<= 8;
730 }
731 if (!(u32Src & UINT32_C(0xf0000000)))
732 {
733 iBit -= 4;
734 u32Src <<= 4;
735 }
736 if (!(u32Src & UINT32_C(0xc0000000)))
737 {
738 iBit -= 2;
739 u32Src <<= 2;
740 }
741 if (!(u32Src & UINT32_C(0x10000000)))
742 {
743 iBit -= 1;
744 u32Src <<= 1;
745 Assert(u32Src & RT_BIT_64(63));
746 }
747
748 *puDst = iBit;
749 *pfEFlags &= ~X86_EFL_ZF;
750 }
751 else
752 *pfEFlags |= X86_EFL_ZF;
753}
754
755
756/* Unary operands. */
757
758IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64,(uint64_t *puDst, uint32_t *pfEFlags))
759{
760 uint64_t uDst = *puDst;
761 uint64_t uResult = uDst + 1;
762 *puDst = uResult;
763
764 /*
765 * Calc EFLAGS.
766 * CF is NOT modified for hysterical raisins (allegedly for carrying and
767 * borrowing in arithmetic loops on intel 8008).
768 */
769 uint32_t fEfl = *pfEFlags & ~(X86_EFL_STATUS_BITS & ~X86_EFL_CF);
770 fEfl |= g_afParity[uResult & 0xff];
771 fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF;
772 fEfl |= X86_EFL_CALC_ZF(uResult);
773 fEfl |= X86_EFL_CALC_SF(uResult, 64);
774 fEfl |= (((uDst ^ RT_BIT_64(63)) & uResult) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
775 *pfEFlags = fEfl;
776}
777
778
779IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64,(uint64_t *puDst, uint32_t *pfEFlags))
780{
781 uint64_t uDst = *puDst;
782 uint64_t uResult = uDst - 1;
783 *puDst = uResult;
784
785 /*
786 * Calc EFLAGS.
787 * CF is NOT modified for hysterical raisins (allegedly for carrying and
788 * borrowing in arithmetic loops on intel 8008).
789 */
790 uint32_t fEfl = *pfEFlags & ~(X86_EFL_STATUS_BITS & ~X86_EFL_CF);
791 fEfl |= g_afParity[uResult & 0xff];
792 fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF;
793 fEfl |= X86_EFL_CALC_ZF(uResult);
794 fEfl |= X86_EFL_CALC_SF(uResult, 64);
795 fEfl |= ((uDst & (uResult ^ RT_BIT_64(63))) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
796 *pfEFlags = fEfl;
797}
798
799
800IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64,(uint64_t *puDst, uint32_t *pfEFlags))
801{
802 uint64_t uDst = *puDst;
803 uint64_t uResult = ~uDst;
804 *puDst = uResult;
805 /* EFLAGS are not modified. */
806}
807
808
809IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64,(uint64_t *puDst, uint32_t *pfEFlags))
810{
811 uint64_t uDst = 0;
812 uint64_t uSrc = *puDst;
813 uint64_t uResult = uDst - uSrc;
814 *puDst = uResult;
815
816 /* Calc EFLAGS. */
817 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
818 fEfl |= (uSrc != 0) << X86_EFL_CF_BIT;
819 fEfl |= g_afParity[uResult & 0xff];
820 fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF;
821 fEfl |= X86_EFL_CALC_ZF(uResult);
822 fEfl |= X86_EFL_CALC_SF(uResult, 64);
823 fEfl |= ((uSrc & uResult) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
824 *pfEFlags = fEfl;
825}
826
827
828/** 64-bit locked unary operand operation. */
829# define DO_LOCKED_UNARY_OP_U64(a_Mnemonic) \
830 do { \
831 uint64_t uOld = ASMAtomicReadU64(puDst); \
832 uint64_t uTmp; \
833 uint32_t fEflTmp; \
834 do \
835 { \
836 uTmp = uOld; \
837 fEflTmp = *pfEFlags; \
838 iemAImpl_ ## a_Mnemonic ## _u64(&uTmp, &fEflTmp); \
839 } while (ASMAtomicCmpXchgExU64(puDst, uTmp, uOld, &uOld)); \
840 *pfEFlags = fEflTmp; \
841 } while (0)
842
843IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
844{
845 DO_LOCKED_UNARY_OP_U64(inc);
846}
847
848
849IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
850{
851 DO_LOCKED_UNARY_OP_U64(dec);
852}
853
854
855IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
856{
857 DO_LOCKED_UNARY_OP_U64(not);
858}
859
860
861IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
862{
863 DO_LOCKED_UNARY_OP_U64(neg);
864}
865
866
867/* Shift and rotate. */
868
869IEM_DECL_IMPL_DEF(void, iemAImpl_rol_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
870{
871 cShift &= 63;
872 if (cShift)
873 {
874 uint64_t uDst = *puDst;
875 uint64_t uResult;
876 uResult = uDst << cShift;
877 uResult |= uDst >> (64 - cShift);
878 *puDst = uResult;
879
880 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
881 it the same way as for 1 bit shifts. */
882 AssertCompile(X86_EFL_CF_BIT == 0);
883 uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF);
884 uint32_t fCarry = (uResult & 1);
885 fEfl |= fCarry;
886 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
887 *pfEFlags = fEfl;
888 }
889}
890
891
892IEM_DECL_IMPL_DEF(void, iemAImpl_ror_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
893{
894 cShift &= 63;
895 if (cShift)
896 {
897 uint64_t uDst = *puDst;
898 uint64_t uResult;
899 uResult = uDst >> cShift;
900 uResult |= uDst << (64 - cShift);
901 *puDst = uResult;
902
903 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
904 it the same way as for 1 bit shifts (OF = OF XOR New-CF). */
905 AssertCompile(X86_EFL_CF_BIT == 0);
906 uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF);
907 uint32_t fCarry = (uResult >> 63) & X86_EFL_CF;
908 fEfl |= fCarry;
909 fEfl |= (((uResult >> 62) ^ fCarry) << X86_EFL_OF_BIT) & X86_EFL_OF;
910 *pfEFlags = fEfl;
911 }
912}
913
914
915IEM_DECL_IMPL_DEF(void, iemAImpl_rcl_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
916{
917 cShift &= 63;
918 if (cShift)
919 {
920 uint32_t fEfl = *pfEFlags;
921 uint64_t uDst = *puDst;
922 uint64_t uResult;
923 uResult = uDst << cShift;
924 AssertCompile(X86_EFL_CF_BIT == 0);
925 if (cShift > 1)
926 uResult |= uDst >> (65 - cShift);
927 uResult |= (uint64_t)(fEfl & X86_EFL_CF) << (cShift - 1);
928 *puDst = uResult;
929
930 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
931 it the same way as for 1 bit shifts. */
932 uint32_t fCarry = (uDst >> (64 - cShift)) & X86_EFL_CF;
933 fEfl &= ~(X86_EFL_CF | X86_EFL_OF);
934 fEfl |= fCarry;
935 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
936 *pfEFlags = fEfl;
937 }
938}
939
940
941IEM_DECL_IMPL_DEF(void, iemAImpl_rcr_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
942{
943 cShift &= 63;
944 if (cShift)
945 {
946 uint32_t fEfl = *pfEFlags;
947 uint64_t uDst = *puDst;
948 uint64_t uResult;
949 uResult = uDst >> cShift;
950 AssertCompile(X86_EFL_CF_BIT == 0);
951 if (cShift > 1)
952 uResult |= uDst << (65 - cShift);
953 uResult |= (uint64_t)(fEfl & X86_EFL_CF) << (64 - cShift);
954 *puDst = uResult;
955
956 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
957 it the same way as for 1 bit shifts. */
958 uint32_t fCarry = (uDst >> (cShift - 1)) & X86_EFL_CF;
959 fEfl &= ~(X86_EFL_CF | X86_EFL_OF);
960 fEfl |= fCarry;
961 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
962 *pfEFlags = fEfl;
963 }
964}
965
966
967IEM_DECL_IMPL_DEF(void, iemAImpl_shl_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
968{
969 cShift &= 63;
970 if (cShift)
971 {
972 uint64_t uDst = *puDst;
973 uint64_t uResult = uDst << cShift;
974 *puDst = uResult;
975
976 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
977 it the same way as for 1 bit shifts. The AF bit is undefined, we
978 always set it to zero atm. */
979 AssertCompile(X86_EFL_CF_BIT == 0);
980 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
981 uint32_t fCarry = (uDst >> (64 - cShift)) & X86_EFL_CF;
982 fEfl |= fCarry;
983 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
984 fEfl |= X86_EFL_CALC_SF(uResult, 64);
985 fEfl |= X86_EFL_CALC_ZF(uResult);
986 fEfl |= g_afParity[uResult & 0xff];
987 *pfEFlags = fEfl;
988 }
989}
990
991
992IEM_DECL_IMPL_DEF(void, iemAImpl_shr_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
993{
994 cShift &= 63;
995 if (cShift)
996 {
997 uint64_t uDst = *puDst;
998 uint64_t uResult = uDst >> cShift;
999 *puDst = uResult;
1000
1001 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1002 it the same way as for 1 bit shifts. The AF bit is undefined, we
1003 always set it to zero atm. */
1004 AssertCompile(X86_EFL_CF_BIT == 0);
1005 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1006 fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF;
1007 fEfl |= (uDst >> 63) << X86_EFL_OF_BIT;
1008 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1009 fEfl |= X86_EFL_CALC_ZF(uResult);
1010 fEfl |= g_afParity[uResult & 0xff];
1011 *pfEFlags = fEfl;
1012 }
1013}
1014
1015
1016IEM_DECL_IMPL_DEF(void, iemAImpl_sar_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
1017{
1018 cShift &= 63;
1019 if (cShift)
1020 {
1021 uint64_t uDst = *puDst;
1022 uint64_t uResult = (int64_t)uDst >> cShift;
1023 *puDst = uResult;
1024
1025 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1026 it the same way as for 1 bit shifts (0). The AF bit is undefined,
1027 we always set it to zero atm. */
1028 AssertCompile(X86_EFL_CF_BIT == 0);
1029 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1030 fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF;
1031 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1032 fEfl |= X86_EFL_CALC_ZF(uResult);
1033 fEfl |= g_afParity[uResult & 0xff];
1034 *pfEFlags = fEfl;
1035 }
1036}
1037
1038
1039IEM_DECL_IMPL_DEF(void, iemAImpl_shld_u64,(uint64_t *puDst, uint64_t uSrc, uint8_t cShift, uint32_t *pfEFlags))
1040{
1041 cShift &= 63;
1042 if (cShift)
1043 {
1044 uint64_t uDst = *puDst;
1045 uint64_t uResult;
1046 uResult = uDst << cShift;
1047 uResult |= uSrc >> (64 - cShift);
1048 *puDst = uResult;
1049
1050 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1051 it the same way as for 1 bit shifts. The AF bit is undefined,
1052 we always set it to zero atm. */
1053 AssertCompile(X86_EFL_CF_BIT == 0);
1054 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1055 fEfl |= (uDst >> (64 - cShift)) & X86_EFL_CF;
1056 fEfl |= (uint32_t)((uDst >> 63) ^ (uint32_t)(uResult >> 63)) << X86_EFL_OF_BIT;
1057 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1058 fEfl |= X86_EFL_CALC_ZF(uResult);
1059 fEfl |= g_afParity[uResult & 0xff];
1060 *pfEFlags = fEfl;
1061 }
1062}
1063
1064
1065IEM_DECL_IMPL_DEF(void, iemAImpl_shrd_u64,(uint64_t *puDst, uint64_t uSrc, uint8_t cShift, uint32_t *pfEFlags))
1066{
1067 cShift &= 63;
1068 if (cShift)
1069 {
1070 uint64_t uDst = *puDst;
1071 uint64_t uResult;
1072 uResult = uDst >> cShift;
1073 uResult |= uSrc << (64 - cShift);
1074 *puDst = uResult;
1075
1076 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1077 it the same way as for 1 bit shifts. The AF bit is undefined,
1078 we always set it to zero atm. */
1079 AssertCompile(X86_EFL_CF_BIT == 0);
1080 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1081 fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF;
1082 fEfl |= (uint32_t)((uDst >> 63) ^ (uint32_t)(uResult >> 63)) << X86_EFL_OF_BIT;
1083 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1084 fEfl |= X86_EFL_CALC_ZF(uResult);
1085 fEfl |= g_afParity[uResult & 0xff];
1086 *pfEFlags = fEfl;
1087 }
1088}
1089
1090
1091/* multiplication and division */
1092
1093IEM_DECL_IMPL_DEF(int, iemAImpl_mul_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Factor, uint32_t *pfEFlags))
1094{
1095 AssertFailed();
1096 return -1;
1097}
1098
1099
1100IEM_DECL_IMPL_DEF(int, iemAImpl_imul_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Factor, uint32_t *pfEFlags))
1101{
1102 AssertFailed();
1103 return -1;
1104}
1105
1106
1107IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
1108{
1109 AssertFailed();
1110}
1111
1112
1113
1114IEM_DECL_IMPL_DEF(int, iemAImpl_div_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Divisor, uint32_t *pfEFlags))
1115{
1116 AssertFailed();
1117 return -1;
1118}
1119
1120
1121IEM_DECL_IMPL_DEF(int, iemAImpl_idiv_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Divisor, uint32_t *pfEFlags))
1122{
1123 AssertFailed();
1124 return -1;
1125}
1126
1127
1128IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64,(uint64_t *puMem, uint64_t *puReg))
1129{
1130 /* XCHG implies LOCK. */
1131 uint64_t uOldMem = *puMem;
1132 while (!ASMAtomicCmpXchgExU64(puMem, *puReg, uOldMem, &uOldMem))
1133 ASMNopPause();
1134 *puReg = uOldMem;
1135}
1136
1137
1138IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *puDst, uint64_t *puReg, uint32_t *pfEFlags))
1139{
1140 uint64_t uDst = *puDst;
1141 uint64_t uResult = uDst;
1142 iemAImpl_add_u64(&uResult, *puReg, pfEFlags);
1143 *puDst = uResult;
1144 *puReg = uDst;
1145}
1146
1147
1148IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *puDst, uint64_t *puReg, uint32_t *pfEFlags))
1149{
1150 uint64_t uOld = ASMAtomicReadU64(puDst);
1151 uint64_t uTmpDst;
1152 uint32_t fEflTmp;
1153 do
1154 {
1155 uTmpDst = uOld;
1156 fEflTmp = *pfEFlags;
1157 iemAImpl_add_u64(&uTmpDst, *puReg, pfEFlags);
1158 } while (ASMAtomicCmpXchgExU64(puDst, uTmpDst, uOld, &uOld));
1159 *puReg = uOld;
1160 *pfEFlags = fEflTmp;
1161}
1162
1163
1164#endif /* RT_ARCH_X86 */
1165
1166
1167IEM_DECL_IMPL_DEF(void, iemAImpl_arpl,(uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pfEFlags))
1168{
1169 if ((*pu16Dst & X86_SEL_RPL) < (u16Src & X86_SEL_RPL))
1170 {
1171 *pu16Dst &= X86_SEL_MASK_OFF_RPL;
1172 *pu16Dst |= u16Src & X86_SEL_RPL;
1173
1174 *pfEFlags |= X86_EFL_ZF;
1175 }
1176 else
1177 *pfEFlags &= ~X86_EFL_ZF;
1178}
1179
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette