VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllAImplC.cpp@ 62398

Last change on this file since 62398 was 62398, checked in by vboxsync, 8 years ago

iemAImpl_imul_u64: duh!

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 40.9 KB
Line 
1/* $Id: IEMAllAImplC.cpp 62398 2016-07-21 13:36:29Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in Assembly, portable C variant.
4 */
5
6/*
7 * Copyright (C) 2011-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#include "IEMInternal.h"
23#include <VBox/vmm/vm.h>
24#include <iprt/x86.h>
25#include <iprt/uint128.h>
26
27
28/*********************************************************************************************************************************
29* Global Variables *
30*********************************************************************************************************************************/
31/**
32 * Parity calculation table.
33 *
34 * The generator code:
35 * @code
36 * #include <stdio.h>
37 *
38 * int main()
39 * {
40 * unsigned b;
41 * for (b = 0; b < 256; b++)
42 * {
43 * int cOnes = ( b & 1)
44 * + ((b >> 1) & 1)
45 * + ((b >> 2) & 1)
46 * + ((b >> 3) & 1)
47 * + ((b >> 4) & 1)
48 * + ((b >> 5) & 1)
49 * + ((b >> 6) & 1)
50 * + ((b >> 7) & 1);
51 * printf(" /" "* %#04x = %u%u%u%u%u%u%u%ub *" "/ %s,\n",
52 * b,
53 * (b >> 7) & 1,
54 * (b >> 6) & 1,
55 * (b >> 5) & 1,
56 * (b >> 4) & 1,
57 * (b >> 3) & 1,
58 * (b >> 2) & 1,
59 * (b >> 1) & 1,
60 * b & 1,
61 * cOnes & 1 ? "0" : "X86_EFL_PF");
62 * }
63 * return 0;
64 * }
65 * @endcode
66 */
67static uint8_t const g_afParity[256] =
68{
69 /* 0000 = 00000000b */ X86_EFL_PF,
70 /* 0x01 = 00000001b */ 0,
71 /* 0x02 = 00000010b */ 0,
72 /* 0x03 = 00000011b */ X86_EFL_PF,
73 /* 0x04 = 00000100b */ 0,
74 /* 0x05 = 00000101b */ X86_EFL_PF,
75 /* 0x06 = 00000110b */ X86_EFL_PF,
76 /* 0x07 = 00000111b */ 0,
77 /* 0x08 = 00001000b */ 0,
78 /* 0x09 = 00001001b */ X86_EFL_PF,
79 /* 0x0a = 00001010b */ X86_EFL_PF,
80 /* 0x0b = 00001011b */ 0,
81 /* 0x0c = 00001100b */ X86_EFL_PF,
82 /* 0x0d = 00001101b */ 0,
83 /* 0x0e = 00001110b */ 0,
84 /* 0x0f = 00001111b */ X86_EFL_PF,
85 /* 0x10 = 00010000b */ 0,
86 /* 0x11 = 00010001b */ X86_EFL_PF,
87 /* 0x12 = 00010010b */ X86_EFL_PF,
88 /* 0x13 = 00010011b */ 0,
89 /* 0x14 = 00010100b */ X86_EFL_PF,
90 /* 0x15 = 00010101b */ 0,
91 /* 0x16 = 00010110b */ 0,
92 /* 0x17 = 00010111b */ X86_EFL_PF,
93 /* 0x18 = 00011000b */ X86_EFL_PF,
94 /* 0x19 = 00011001b */ 0,
95 /* 0x1a = 00011010b */ 0,
96 /* 0x1b = 00011011b */ X86_EFL_PF,
97 /* 0x1c = 00011100b */ 0,
98 /* 0x1d = 00011101b */ X86_EFL_PF,
99 /* 0x1e = 00011110b */ X86_EFL_PF,
100 /* 0x1f = 00011111b */ 0,
101 /* 0x20 = 00100000b */ 0,
102 /* 0x21 = 00100001b */ X86_EFL_PF,
103 /* 0x22 = 00100010b */ X86_EFL_PF,
104 /* 0x23 = 00100011b */ 0,
105 /* 0x24 = 00100100b */ X86_EFL_PF,
106 /* 0x25 = 00100101b */ 0,
107 /* 0x26 = 00100110b */ 0,
108 /* 0x27 = 00100111b */ X86_EFL_PF,
109 /* 0x28 = 00101000b */ X86_EFL_PF,
110 /* 0x29 = 00101001b */ 0,
111 /* 0x2a = 00101010b */ 0,
112 /* 0x2b = 00101011b */ X86_EFL_PF,
113 /* 0x2c = 00101100b */ 0,
114 /* 0x2d = 00101101b */ X86_EFL_PF,
115 /* 0x2e = 00101110b */ X86_EFL_PF,
116 /* 0x2f = 00101111b */ 0,
117 /* 0x30 = 00110000b */ X86_EFL_PF,
118 /* 0x31 = 00110001b */ 0,
119 /* 0x32 = 00110010b */ 0,
120 /* 0x33 = 00110011b */ X86_EFL_PF,
121 /* 0x34 = 00110100b */ 0,
122 /* 0x35 = 00110101b */ X86_EFL_PF,
123 /* 0x36 = 00110110b */ X86_EFL_PF,
124 /* 0x37 = 00110111b */ 0,
125 /* 0x38 = 00111000b */ 0,
126 /* 0x39 = 00111001b */ X86_EFL_PF,
127 /* 0x3a = 00111010b */ X86_EFL_PF,
128 /* 0x3b = 00111011b */ 0,
129 /* 0x3c = 00111100b */ X86_EFL_PF,
130 /* 0x3d = 00111101b */ 0,
131 /* 0x3e = 00111110b */ 0,
132 /* 0x3f = 00111111b */ X86_EFL_PF,
133 /* 0x40 = 01000000b */ 0,
134 /* 0x41 = 01000001b */ X86_EFL_PF,
135 /* 0x42 = 01000010b */ X86_EFL_PF,
136 /* 0x43 = 01000011b */ 0,
137 /* 0x44 = 01000100b */ X86_EFL_PF,
138 /* 0x45 = 01000101b */ 0,
139 /* 0x46 = 01000110b */ 0,
140 /* 0x47 = 01000111b */ X86_EFL_PF,
141 /* 0x48 = 01001000b */ X86_EFL_PF,
142 /* 0x49 = 01001001b */ 0,
143 /* 0x4a = 01001010b */ 0,
144 /* 0x4b = 01001011b */ X86_EFL_PF,
145 /* 0x4c = 01001100b */ 0,
146 /* 0x4d = 01001101b */ X86_EFL_PF,
147 /* 0x4e = 01001110b */ X86_EFL_PF,
148 /* 0x4f = 01001111b */ 0,
149 /* 0x50 = 01010000b */ X86_EFL_PF,
150 /* 0x51 = 01010001b */ 0,
151 /* 0x52 = 01010010b */ 0,
152 /* 0x53 = 01010011b */ X86_EFL_PF,
153 /* 0x54 = 01010100b */ 0,
154 /* 0x55 = 01010101b */ X86_EFL_PF,
155 /* 0x56 = 01010110b */ X86_EFL_PF,
156 /* 0x57 = 01010111b */ 0,
157 /* 0x58 = 01011000b */ 0,
158 /* 0x59 = 01011001b */ X86_EFL_PF,
159 /* 0x5a = 01011010b */ X86_EFL_PF,
160 /* 0x5b = 01011011b */ 0,
161 /* 0x5c = 01011100b */ X86_EFL_PF,
162 /* 0x5d = 01011101b */ 0,
163 /* 0x5e = 01011110b */ 0,
164 /* 0x5f = 01011111b */ X86_EFL_PF,
165 /* 0x60 = 01100000b */ X86_EFL_PF,
166 /* 0x61 = 01100001b */ 0,
167 /* 0x62 = 01100010b */ 0,
168 /* 0x63 = 01100011b */ X86_EFL_PF,
169 /* 0x64 = 01100100b */ 0,
170 /* 0x65 = 01100101b */ X86_EFL_PF,
171 /* 0x66 = 01100110b */ X86_EFL_PF,
172 /* 0x67 = 01100111b */ 0,
173 /* 0x68 = 01101000b */ 0,
174 /* 0x69 = 01101001b */ X86_EFL_PF,
175 /* 0x6a = 01101010b */ X86_EFL_PF,
176 /* 0x6b = 01101011b */ 0,
177 /* 0x6c = 01101100b */ X86_EFL_PF,
178 /* 0x6d = 01101101b */ 0,
179 /* 0x6e = 01101110b */ 0,
180 /* 0x6f = 01101111b */ X86_EFL_PF,
181 /* 0x70 = 01110000b */ 0,
182 /* 0x71 = 01110001b */ X86_EFL_PF,
183 /* 0x72 = 01110010b */ X86_EFL_PF,
184 /* 0x73 = 01110011b */ 0,
185 /* 0x74 = 01110100b */ X86_EFL_PF,
186 /* 0x75 = 01110101b */ 0,
187 /* 0x76 = 01110110b */ 0,
188 /* 0x77 = 01110111b */ X86_EFL_PF,
189 /* 0x78 = 01111000b */ X86_EFL_PF,
190 /* 0x79 = 01111001b */ 0,
191 /* 0x7a = 01111010b */ 0,
192 /* 0x7b = 01111011b */ X86_EFL_PF,
193 /* 0x7c = 01111100b */ 0,
194 /* 0x7d = 01111101b */ X86_EFL_PF,
195 /* 0x7e = 01111110b */ X86_EFL_PF,
196 /* 0x7f = 01111111b */ 0,
197 /* 0x80 = 10000000b */ 0,
198 /* 0x81 = 10000001b */ X86_EFL_PF,
199 /* 0x82 = 10000010b */ X86_EFL_PF,
200 /* 0x83 = 10000011b */ 0,
201 /* 0x84 = 10000100b */ X86_EFL_PF,
202 /* 0x85 = 10000101b */ 0,
203 /* 0x86 = 10000110b */ 0,
204 /* 0x87 = 10000111b */ X86_EFL_PF,
205 /* 0x88 = 10001000b */ X86_EFL_PF,
206 /* 0x89 = 10001001b */ 0,
207 /* 0x8a = 10001010b */ 0,
208 /* 0x8b = 10001011b */ X86_EFL_PF,
209 /* 0x8c = 10001100b */ 0,
210 /* 0x8d = 10001101b */ X86_EFL_PF,
211 /* 0x8e = 10001110b */ X86_EFL_PF,
212 /* 0x8f = 10001111b */ 0,
213 /* 0x90 = 10010000b */ X86_EFL_PF,
214 /* 0x91 = 10010001b */ 0,
215 /* 0x92 = 10010010b */ 0,
216 /* 0x93 = 10010011b */ X86_EFL_PF,
217 /* 0x94 = 10010100b */ 0,
218 /* 0x95 = 10010101b */ X86_EFL_PF,
219 /* 0x96 = 10010110b */ X86_EFL_PF,
220 /* 0x97 = 10010111b */ 0,
221 /* 0x98 = 10011000b */ 0,
222 /* 0x99 = 10011001b */ X86_EFL_PF,
223 /* 0x9a = 10011010b */ X86_EFL_PF,
224 /* 0x9b = 10011011b */ 0,
225 /* 0x9c = 10011100b */ X86_EFL_PF,
226 /* 0x9d = 10011101b */ 0,
227 /* 0x9e = 10011110b */ 0,
228 /* 0x9f = 10011111b */ X86_EFL_PF,
229 /* 0xa0 = 10100000b */ X86_EFL_PF,
230 /* 0xa1 = 10100001b */ 0,
231 /* 0xa2 = 10100010b */ 0,
232 /* 0xa3 = 10100011b */ X86_EFL_PF,
233 /* 0xa4 = 10100100b */ 0,
234 /* 0xa5 = 10100101b */ X86_EFL_PF,
235 /* 0xa6 = 10100110b */ X86_EFL_PF,
236 /* 0xa7 = 10100111b */ 0,
237 /* 0xa8 = 10101000b */ 0,
238 /* 0xa9 = 10101001b */ X86_EFL_PF,
239 /* 0xaa = 10101010b */ X86_EFL_PF,
240 /* 0xab = 10101011b */ 0,
241 /* 0xac = 10101100b */ X86_EFL_PF,
242 /* 0xad = 10101101b */ 0,
243 /* 0xae = 10101110b */ 0,
244 /* 0xaf = 10101111b */ X86_EFL_PF,
245 /* 0xb0 = 10110000b */ 0,
246 /* 0xb1 = 10110001b */ X86_EFL_PF,
247 /* 0xb2 = 10110010b */ X86_EFL_PF,
248 /* 0xb3 = 10110011b */ 0,
249 /* 0xb4 = 10110100b */ X86_EFL_PF,
250 /* 0xb5 = 10110101b */ 0,
251 /* 0xb6 = 10110110b */ 0,
252 /* 0xb7 = 10110111b */ X86_EFL_PF,
253 /* 0xb8 = 10111000b */ X86_EFL_PF,
254 /* 0xb9 = 10111001b */ 0,
255 /* 0xba = 10111010b */ 0,
256 /* 0xbb = 10111011b */ X86_EFL_PF,
257 /* 0xbc = 10111100b */ 0,
258 /* 0xbd = 10111101b */ X86_EFL_PF,
259 /* 0xbe = 10111110b */ X86_EFL_PF,
260 /* 0xbf = 10111111b */ 0,
261 /* 0xc0 = 11000000b */ X86_EFL_PF,
262 /* 0xc1 = 11000001b */ 0,
263 /* 0xc2 = 11000010b */ 0,
264 /* 0xc3 = 11000011b */ X86_EFL_PF,
265 /* 0xc4 = 11000100b */ 0,
266 /* 0xc5 = 11000101b */ X86_EFL_PF,
267 /* 0xc6 = 11000110b */ X86_EFL_PF,
268 /* 0xc7 = 11000111b */ 0,
269 /* 0xc8 = 11001000b */ 0,
270 /* 0xc9 = 11001001b */ X86_EFL_PF,
271 /* 0xca = 11001010b */ X86_EFL_PF,
272 /* 0xcb = 11001011b */ 0,
273 /* 0xcc = 11001100b */ X86_EFL_PF,
274 /* 0xcd = 11001101b */ 0,
275 /* 0xce = 11001110b */ 0,
276 /* 0xcf = 11001111b */ X86_EFL_PF,
277 /* 0xd0 = 11010000b */ 0,
278 /* 0xd1 = 11010001b */ X86_EFL_PF,
279 /* 0xd2 = 11010010b */ X86_EFL_PF,
280 /* 0xd3 = 11010011b */ 0,
281 /* 0xd4 = 11010100b */ X86_EFL_PF,
282 /* 0xd5 = 11010101b */ 0,
283 /* 0xd6 = 11010110b */ 0,
284 /* 0xd7 = 11010111b */ X86_EFL_PF,
285 /* 0xd8 = 11011000b */ X86_EFL_PF,
286 /* 0xd9 = 11011001b */ 0,
287 /* 0xda = 11011010b */ 0,
288 /* 0xdb = 11011011b */ X86_EFL_PF,
289 /* 0xdc = 11011100b */ 0,
290 /* 0xdd = 11011101b */ X86_EFL_PF,
291 /* 0xde = 11011110b */ X86_EFL_PF,
292 /* 0xdf = 11011111b */ 0,
293 /* 0xe0 = 11100000b */ 0,
294 /* 0xe1 = 11100001b */ X86_EFL_PF,
295 /* 0xe2 = 11100010b */ X86_EFL_PF,
296 /* 0xe3 = 11100011b */ 0,
297 /* 0xe4 = 11100100b */ X86_EFL_PF,
298 /* 0xe5 = 11100101b */ 0,
299 /* 0xe6 = 11100110b */ 0,
300 /* 0xe7 = 11100111b */ X86_EFL_PF,
301 /* 0xe8 = 11101000b */ X86_EFL_PF,
302 /* 0xe9 = 11101001b */ 0,
303 /* 0xea = 11101010b */ 0,
304 /* 0xeb = 11101011b */ X86_EFL_PF,
305 /* 0xec = 11101100b */ 0,
306 /* 0xed = 11101101b */ X86_EFL_PF,
307 /* 0xee = 11101110b */ X86_EFL_PF,
308 /* 0xef = 11101111b */ 0,
309 /* 0xf0 = 11110000b */ X86_EFL_PF,
310 /* 0xf1 = 11110001b */ 0,
311 /* 0xf2 = 11110010b */ 0,
312 /* 0xf3 = 11110011b */ X86_EFL_PF,
313 /* 0xf4 = 11110100b */ 0,
314 /* 0xf5 = 11110101b */ X86_EFL_PF,
315 /* 0xf6 = 11110110b */ X86_EFL_PF,
316 /* 0xf7 = 11110111b */ 0,
317 /* 0xf8 = 11111000b */ 0,
318 /* 0xf9 = 11111001b */ X86_EFL_PF,
319 /* 0xfa = 11111010b */ X86_EFL_PF,
320 /* 0xfb = 11111011b */ 0,
321 /* 0xfc = 11111100b */ X86_EFL_PF,
322 /* 0xfd = 11111101b */ 0,
323 /* 0xfe = 11111110b */ 0,
324 /* 0xff = 11111111b */ X86_EFL_PF,
325};
326
327
328/**
329 * Calculates the signed flag value given a result and it's bit width.
330 *
331 * The signed flag (SF) is a duplication of the most significant bit in the
332 * result.
333 *
334 * @returns X86_EFL_SF or 0.
335 * @param a_uResult Unsigned result value.
336 * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
337 */
338#define X86_EFL_CALC_SF(a_uResult, a_cBitsWidth) \
339 ( (uint32_t)((a_uResult) >> ((a_cBitsWidth) - X86_EFL_SF_BIT)) & X86_EFL_SF )
340
341/**
342 * Calculates the zero flag value given a result.
343 *
344 * The zero flag (ZF) indicates whether the result is zero or not.
345 *
346 * @returns X86_EFL_ZF or 0.
347 * @param a_uResult Unsigned result value.
348 */
349#define X86_EFL_CALC_ZF(a_uResult) \
350 ( (uint32_t)((a_uResult) == 0) << X86_EFL_ZF_BIT )
351
352/**
353 * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after a logical op.
354 *
355 * CF and OF are defined to be 0 by logical operations. AF on the other hand is
356 * undefined. We do not set AF, as that seems to make the most sense (which
357 * probably makes it the most wrong in real life).
358 *
359 * @returns Status bits.
360 * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update.
361 * @param a_uResult Unsigned result value.
362 * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
363 * @param a_fExtra Additional bits to set.
364 */
365#define IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(a_pfEFlags, a_uResult, a_cBitsWidth, a_fExtra) \
366 do { \
367 uint32_t fEflTmp = *(a_pfEFlags); \
368 fEflTmp &= ~X86_EFL_STATUS_BITS; \
369 fEflTmp |= g_afParity[(a_uResult) & 0xff]; \
370 fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \
371 fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \
372 fEflTmp |= (a_fExtra); \
373 *(a_pfEFlags) = fEflTmp; \
374 } while (0)
375
376
377#ifdef RT_ARCH_X86
378/*
379 * There are a few 64-bit on 32-bit things we'd rather do in C. Actually, doing
380 * it all in C is probably safer atm., optimize what's necessary later, maybe.
381 */
382
383
384/* Binary ops */
385
386IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
387{
388 uint64_t uDst = *puDst;
389 uint64_t uResult = uDst + uSrc;
390 *puDst = uResult;
391
392 /* Calc EFLAGS. */
393 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
394 fEfl |= (uResult < uDst) << X86_EFL_CF_BIT;
395 fEfl |= g_afParity[uResult & 0xff];
396 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
397 fEfl |= X86_EFL_CALC_ZF(uResult);
398 fEfl |= X86_EFL_CALC_SF(uResult, 64);
399 fEfl |= (((uDst ^ uSrc ^ RT_BIT_64(63)) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
400 *pfEFlags = fEfl;
401}
402
403
404IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
405{
406 if (!(*pfEFlags & X86_EFL_CF))
407 iemAImpl_add_u64(puDst, uSrc, pfEFlags);
408 else
409 {
410 uint64_t uDst = *puDst;
411 uint64_t uResult = uDst + uSrc + 1;
412 *puDst = uResult;
413
414 /* Calc EFLAGS. */
415 /** @todo verify AF and OF calculations. */
416 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
417 fEfl |= (uResult <= uDst) << X86_EFL_CF_BIT;
418 fEfl |= g_afParity[uResult & 0xff];
419 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
420 fEfl |= X86_EFL_CALC_ZF(uResult);
421 fEfl |= X86_EFL_CALC_SF(uResult, 64);
422 fEfl |= (((uDst ^ uSrc ^ RT_BIT_64(63)) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
423 *pfEFlags = fEfl;
424 }
425}
426
427
428IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
429{
430 uint64_t uDst = *puDst;
431 uint64_t uResult = uDst - uSrc;
432 *puDst = uResult;
433
434 /* Calc EFLAGS. */
435 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
436 fEfl |= (uDst < uSrc) << X86_EFL_CF_BIT;
437 fEfl |= g_afParity[uResult & 0xff];
438 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
439 fEfl |= X86_EFL_CALC_ZF(uResult);
440 fEfl |= X86_EFL_CALC_SF(uResult, 64);
441 fEfl |= (((uDst ^ uSrc) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
442 *pfEFlags = fEfl;
443}
444
445
446IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
447{
448 if (!(*pfEFlags & X86_EFL_CF))
449 iemAImpl_sub_u64(puDst, uSrc, pfEFlags);
450 else
451 {
452 uint64_t uDst = *puDst;
453 uint64_t uResult = uDst - uSrc - 1;
454 *puDst = uResult;
455
456 /* Calc EFLAGS. */
457 /** @todo verify AF and OF calculations. */
458 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
459 fEfl |= (uDst <= uSrc) << X86_EFL_CF_BIT;
460 fEfl |= g_afParity[uResult & 0xff];
461 fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF;
462 fEfl |= X86_EFL_CALC_ZF(uResult);
463 fEfl |= X86_EFL_CALC_SF(uResult, 64);
464 fEfl |= (((uDst ^ uSrc) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
465 *pfEFlags = fEfl;
466 }
467}
468
469
470IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
471{
472 uint64_t uResult = *puDst | uSrc;
473 *puDst = uResult;
474 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
475}
476
477
478IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
479{
480 uint64_t uResult = *puDst ^ uSrc;
481 *puDst = uResult;
482 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
483}
484
485
486IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
487{
488 uint64_t uResult = *puDst & uSrc;
489 *puDst = uResult;
490 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
491}
492
493
494IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
495{
496 uint64_t uDstTmp = *puDst;
497 iemAImpl_sub_u64(&uDstTmp, uSrc, pfEFlags);
498}
499
500
501IEM_DECL_IMPL_DEF(void, iemAImpl_test_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
502{
503 uint64_t uResult = *puDst & uSrc;
504 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
505}
506
507
508/** 64-bit locked binary operand operation. */
509# define DO_LOCKED_BIN_OP_U64(a_Mnemonic) \
510 do { \
511 uint64_t uOld = ASMAtomicReadU64(puDst); \
512 uint64_t uTmp; \
513 uint32_t fEflTmp; \
514 do \
515 { \
516 uTmp = uOld; \
517 fEflTmp = *pfEFlags; \
518 iemAImpl_ ## a_Mnemonic ## _u64(&uTmp, uSrc, &fEflTmp); \
519 } while (!ASMAtomicCmpXchgExU64(puDst, uTmp, uOld, &uOld)); \
520 *pfEFlags = fEflTmp; \
521 } while (0)
522
523
524IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
525{
526 DO_LOCKED_BIN_OP_U64(adc);
527}
528
529
530IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
531{
532 DO_LOCKED_BIN_OP_U64(adc);
533}
534
535
536IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
537{
538 DO_LOCKED_BIN_OP_U64(sub);
539}
540
541
542IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
543{
544 DO_LOCKED_BIN_OP_U64(sbb);
545}
546
547
548IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
549{
550 DO_LOCKED_BIN_OP_U64(or);
551}
552
553
554IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
555{
556 DO_LOCKED_BIN_OP_U64(xor);
557}
558
559
560IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
561{
562 DO_LOCKED_BIN_OP_U64(and);
563}
564
565
566IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *puDst, uint64_t *puReg, uint32_t *pfEFlags))
567{
568 uint64_t uDst = *puDst;
569 uint64_t uResult = uDst;
570 iemAImpl_add_u64(&uResult, *puReg, pfEFlags);
571 *puDst = uResult;
572 *puReg = uDst;
573}
574
575
576IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *puDst, uint64_t *puReg, uint32_t *pfEFlags))
577{
578 uint64_t uOld = ASMAtomicReadU64(puDst);
579 uint64_t uTmpDst;
580 uint32_t fEflTmp;
581 do
582 {
583 uTmpDst = uOld;
584 fEflTmp = *pfEFlags;
585 iemAImpl_add_u64(&uTmpDst, *puReg, pfEFlags);
586 } while (!ASMAtomicCmpXchgExU64(puDst, uTmpDst, uOld, &uOld));
587 *puReg = uOld;
588 *pfEFlags = fEflTmp;
589}
590
591
592/* Bit operations (same signature as above). */
593
594IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
595{
596 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
597 logical operation (AND/OR/whatever). */
598 Assert(uSrc < 64);
599 uint64_t uDst = *puDst;
600 if (uDst & RT_BIT_64(uSrc))
601 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
602 else
603 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
604}
605
606IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
607{
608 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
609 logical operation (AND/OR/whatever). */
610 Assert(uSrc < 64);
611 uint64_t fMask = RT_BIT_64(uSrc);
612 uint64_t uDst = *puDst;
613 if (uDst & fMask)
614 {
615 uDst &= ~fMask;
616 *puDst = uDst;
617 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
618 }
619 else
620 {
621 uDst |= fMask;
622 *puDst = uDst;
623 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
624 }
625}
626
627IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
628{
629 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
630 logical operation (AND/OR/whatever). */
631 Assert(uSrc < 64);
632 uint64_t fMask = RT_BIT_64(uSrc);
633 uint64_t uDst = *puDst;
634 if (uDst & fMask)
635 {
636 uDst &= ~fMask;
637 *puDst = uDst;
638 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
639 }
640 else
641 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
642}
643
644IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
645{
646 /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
647 logical operation (AND/OR/whatever). */
648 Assert(uSrc < 64);
649 uint64_t fMask = RT_BIT_64(uSrc);
650 uint64_t uDst = *puDst;
651 if (uDst & fMask)
652 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF);
653 else
654 {
655 uDst |= fMask;
656 *puDst = uDst;
657 IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0);
658 }
659}
660
661
662IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
663{
664 DO_LOCKED_BIN_OP_U64(btc);
665}
666
667IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
668{
669 DO_LOCKED_BIN_OP_U64(btr);
670}
671
672IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
673{
674 DO_LOCKED_BIN_OP_U64(bts);
675}
676
677
678/* bit scan */
679
680IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
681{
682 /* Note! "undefined" flags: OF, SF, AF, PF, CF. */
683 /** @todo check what real CPUs does. */
684 if (uSrc)
685 {
686 uint8_t iBit;
687 uint32_t u32Src;
688 if (uSrc & UINT32_MAX)
689 {
690 iBit = 0;
691 u32Src = uSrc;
692 }
693 else
694 {
695 iBit = 32;
696 u32Src = uSrc >> 32;
697 }
698 if (!(u32Src & UINT16_MAX))
699 {
700 iBit += 16;
701 u32Src >>= 16;
702 }
703 if (!(u32Src & UINT8_MAX))
704 {
705 iBit += 8;
706 u32Src >>= 8;
707 }
708 if (!(u32Src & 0xf))
709 {
710 iBit += 4;
711 u32Src >>= 4;
712 }
713 if (!(u32Src & 0x3))
714 {
715 iBit += 2;
716 u32Src >>= 2;
717 }
718 if (!(u32Src & 1))
719 {
720 iBit += 1;
721 Assert(u32Src & 2);
722 }
723
724 *puDst = iBit;
725 *pfEFlags &= ~X86_EFL_ZF;
726 }
727 else
728 *pfEFlags |= X86_EFL_ZF;
729}
730
731IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
732{
733 /* Note! "undefined" flags: OF, SF, AF, PF, CF. */
734 /** @todo check what real CPUs does. */
735 if (uSrc)
736 {
737 uint8_t iBit;
738 uint32_t u32Src;
739 if (uSrc & UINT64_C(0xffffffff00000000))
740 {
741 iBit = 64;
742 u32Src = uSrc >> 32;
743 }
744 else
745 {
746 iBit = 32;
747 u32Src = uSrc;
748 }
749 if (!(u32Src & UINT32_C(0xffff0000)))
750 {
751 iBit -= 16;
752 u32Src <<= 16;
753 }
754 if (!(u32Src & UINT32_C(0xff000000)))
755 {
756 iBit -= 8;
757 u32Src <<= 8;
758 }
759 if (!(u32Src & UINT32_C(0xf0000000)))
760 {
761 iBit -= 4;
762 u32Src <<= 4;
763 }
764 if (!(u32Src & UINT32_C(0xc0000000)))
765 {
766 iBit -= 2;
767 u32Src <<= 2;
768 }
769 if (!(u32Src & UINT32_C(0x10000000)))
770 {
771 iBit -= 1;
772 u32Src <<= 1;
773 Assert(u32Src & RT_BIT_64(63));
774 }
775
776 *puDst = iBit;
777 *pfEFlags &= ~X86_EFL_ZF;
778 }
779 else
780 *pfEFlags |= X86_EFL_ZF;
781}
782
783
784/* Unary operands. */
785
786IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64,(uint64_t *puDst, uint32_t *pfEFlags))
787{
788 uint64_t uDst = *puDst;
789 uint64_t uResult = uDst + 1;
790 *puDst = uResult;
791
792 /*
793 * Calc EFLAGS.
794 * CF is NOT modified for hysterical raisins (allegedly for carrying and
795 * borrowing in arithmetic loops on intel 8008).
796 */
797 uint32_t fEfl = *pfEFlags & ~(X86_EFL_STATUS_BITS & ~X86_EFL_CF);
798 fEfl |= g_afParity[uResult & 0xff];
799 fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF;
800 fEfl |= X86_EFL_CALC_ZF(uResult);
801 fEfl |= X86_EFL_CALC_SF(uResult, 64);
802 fEfl |= (((uDst ^ RT_BIT_64(63)) & uResult) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
803 *pfEFlags = fEfl;
804}
805
806
807IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64,(uint64_t *puDst, uint32_t *pfEFlags))
808{
809 uint64_t uDst = *puDst;
810 uint64_t uResult = uDst - 1;
811 *puDst = uResult;
812
813 /*
814 * Calc EFLAGS.
815 * CF is NOT modified for hysterical raisins (allegedly for carrying and
816 * borrowing in arithmetic loops on intel 8008).
817 */
818 uint32_t fEfl = *pfEFlags & ~(X86_EFL_STATUS_BITS & ~X86_EFL_CF);
819 fEfl |= g_afParity[uResult & 0xff];
820 fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF;
821 fEfl |= X86_EFL_CALC_ZF(uResult);
822 fEfl |= X86_EFL_CALC_SF(uResult, 64);
823 fEfl |= ((uDst & (uResult ^ RT_BIT_64(63))) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
824 *pfEFlags = fEfl;
825}
826
827
828IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64,(uint64_t *puDst, uint32_t *pfEFlags))
829{
830 uint64_t uDst = *puDst;
831 uint64_t uResult = ~uDst;
832 *puDst = uResult;
833 /* EFLAGS are not modified. */
834}
835
836
837IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64,(uint64_t *puDst, uint32_t *pfEFlags))
838{
839 uint64_t uDst = 0;
840 uint64_t uSrc = *puDst;
841 uint64_t uResult = uDst - uSrc;
842 *puDst = uResult;
843
844 /* Calc EFLAGS. */
845 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
846 fEfl |= (uSrc != 0) << X86_EFL_CF_BIT;
847 fEfl |= g_afParity[uResult & 0xff];
848 fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF;
849 fEfl |= X86_EFL_CALC_ZF(uResult);
850 fEfl |= X86_EFL_CALC_SF(uResult, 64);
851 fEfl |= ((uSrc & uResult) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF;
852 *pfEFlags = fEfl;
853}
854
855
856/** 64-bit locked unary operand operation. */
857# define DO_LOCKED_UNARY_OP_U64(a_Mnemonic) \
858 do { \
859 uint64_t uOld = ASMAtomicReadU64(puDst); \
860 uint64_t uTmp; \
861 uint32_t fEflTmp; \
862 do \
863 { \
864 uTmp = uOld; \
865 fEflTmp = *pfEFlags; \
866 iemAImpl_ ## a_Mnemonic ## _u64(&uTmp, &fEflTmp); \
867 } while (!ASMAtomicCmpXchgExU64(puDst, uTmp, uOld, &uOld)); \
868 *pfEFlags = fEflTmp; \
869 } while (0)
870
871IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
872{
873 DO_LOCKED_UNARY_OP_U64(inc);
874}
875
876
877IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
878{
879 DO_LOCKED_UNARY_OP_U64(dec);
880}
881
882
883IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
884{
885 DO_LOCKED_UNARY_OP_U64(not);
886}
887
888
889IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags))
890{
891 DO_LOCKED_UNARY_OP_U64(neg);
892}
893
894
895/* Shift and rotate. */
896
897IEM_DECL_IMPL_DEF(void, iemAImpl_rol_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
898{
899 cShift &= 63;
900 if (cShift)
901 {
902 uint64_t uDst = *puDst;
903 uint64_t uResult;
904 uResult = uDst << cShift;
905 uResult |= uDst >> (64 - cShift);
906 *puDst = uResult;
907
908 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
909 it the same way as for 1 bit shifts. */
910 AssertCompile(X86_EFL_CF_BIT == 0);
911 uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF);
912 uint32_t fCarry = (uResult & 1);
913 fEfl |= fCarry;
914 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
915 *pfEFlags = fEfl;
916 }
917}
918
919
920IEM_DECL_IMPL_DEF(void, iemAImpl_ror_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
921{
922 cShift &= 63;
923 if (cShift)
924 {
925 uint64_t uDst = *puDst;
926 uint64_t uResult;
927 uResult = uDst >> cShift;
928 uResult |= uDst << (64 - cShift);
929 *puDst = uResult;
930
931 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
932 it the same way as for 1 bit shifts (OF = OF XOR New-CF). */
933 AssertCompile(X86_EFL_CF_BIT == 0);
934 uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF);
935 uint32_t fCarry = (uResult >> 63) & X86_EFL_CF;
936 fEfl |= fCarry;
937 fEfl |= (((uResult >> 62) ^ fCarry) << X86_EFL_OF_BIT) & X86_EFL_OF;
938 *pfEFlags = fEfl;
939 }
940}
941
942
943IEM_DECL_IMPL_DEF(void, iemAImpl_rcl_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
944{
945 cShift &= 63;
946 if (cShift)
947 {
948 uint32_t fEfl = *pfEFlags;
949 uint64_t uDst = *puDst;
950 uint64_t uResult;
951 uResult = uDst << cShift;
952 AssertCompile(X86_EFL_CF_BIT == 0);
953 if (cShift > 1)
954 uResult |= uDst >> (65 - cShift);
955 uResult |= (uint64_t)(fEfl & X86_EFL_CF) << (cShift - 1);
956 *puDst = uResult;
957
958 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
959 it the same way as for 1 bit shifts. */
960 uint32_t fCarry = (uDst >> (64 - cShift)) & X86_EFL_CF;
961 fEfl &= ~(X86_EFL_CF | X86_EFL_OF);
962 fEfl |= fCarry;
963 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
964 *pfEFlags = fEfl;
965 }
966}
967
968
969IEM_DECL_IMPL_DEF(void, iemAImpl_rcr_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
970{
971 cShift &= 63;
972 if (cShift)
973 {
974 uint32_t fEfl = *pfEFlags;
975 uint64_t uDst = *puDst;
976 uint64_t uResult;
977 uResult = uDst >> cShift;
978 AssertCompile(X86_EFL_CF_BIT == 0);
979 if (cShift > 1)
980 uResult |= uDst << (65 - cShift);
981 uResult |= (uint64_t)(fEfl & X86_EFL_CF) << (64 - cShift);
982 *puDst = uResult;
983
984 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
985 it the same way as for 1 bit shifts. */
986 uint32_t fCarry = (uDst >> (cShift - 1)) & X86_EFL_CF;
987 fEfl &= ~(X86_EFL_CF | X86_EFL_OF);
988 fEfl |= fCarry;
989 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
990 *pfEFlags = fEfl;
991 }
992}
993
994
995IEM_DECL_IMPL_DEF(void, iemAImpl_shl_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
996{
997 cShift &= 63;
998 if (cShift)
999 {
1000 uint64_t uDst = *puDst;
1001 uint64_t uResult = uDst << cShift;
1002 *puDst = uResult;
1003
1004 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1005 it the same way as for 1 bit shifts. The AF bit is undefined, we
1006 always set it to zero atm. */
1007 AssertCompile(X86_EFL_CF_BIT == 0);
1008 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1009 uint32_t fCarry = (uDst >> (64 - cShift)) & X86_EFL_CF;
1010 fEfl |= fCarry;
1011 fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT;
1012 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1013 fEfl |= X86_EFL_CALC_ZF(uResult);
1014 fEfl |= g_afParity[uResult & 0xff];
1015 *pfEFlags = fEfl;
1016 }
1017}
1018
1019
1020IEM_DECL_IMPL_DEF(void, iemAImpl_shr_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
1021{
1022 cShift &= 63;
1023 if (cShift)
1024 {
1025 uint64_t uDst = *puDst;
1026 uint64_t uResult = uDst >> cShift;
1027 *puDst = uResult;
1028
1029 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1030 it the same way as for 1 bit shifts. The AF bit is undefined, we
1031 always set it to zero atm. */
1032 AssertCompile(X86_EFL_CF_BIT == 0);
1033 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1034 fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF;
1035 fEfl |= (uDst >> 63) << X86_EFL_OF_BIT;
1036 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1037 fEfl |= X86_EFL_CALC_ZF(uResult);
1038 fEfl |= g_afParity[uResult & 0xff];
1039 *pfEFlags = fEfl;
1040 }
1041}
1042
1043
1044IEM_DECL_IMPL_DEF(void, iemAImpl_sar_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags))
1045{
1046 cShift &= 63;
1047 if (cShift)
1048 {
1049 uint64_t uDst = *puDst;
1050 uint64_t uResult = (int64_t)uDst >> cShift;
1051 *puDst = uResult;
1052
1053 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1054 it the same way as for 1 bit shifts (0). The AF bit is undefined,
1055 we always set it to zero atm. */
1056 AssertCompile(X86_EFL_CF_BIT == 0);
1057 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1058 fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF;
1059 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1060 fEfl |= X86_EFL_CALC_ZF(uResult);
1061 fEfl |= g_afParity[uResult & 0xff];
1062 *pfEFlags = fEfl;
1063 }
1064}
1065
1066
1067IEM_DECL_IMPL_DEF(void, iemAImpl_shld_u64,(uint64_t *puDst, uint64_t uSrc, uint8_t cShift, uint32_t *pfEFlags))
1068{
1069 cShift &= 63;
1070 if (cShift)
1071 {
1072 uint64_t uDst = *puDst;
1073 uint64_t uResult;
1074 uResult = uDst << cShift;
1075 uResult |= uSrc >> (64 - cShift);
1076 *puDst = uResult;
1077
1078 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1079 it the same way as for 1 bit shifts. The AF bit is undefined,
1080 we always set it to zero atm. */
1081 AssertCompile(X86_EFL_CF_BIT == 0);
1082 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1083 fEfl |= (uDst >> (64 - cShift)) & X86_EFL_CF;
1084 fEfl |= (uint32_t)((uDst >> 63) ^ (uint32_t)(uResult >> 63)) << X86_EFL_OF_BIT;
1085 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1086 fEfl |= X86_EFL_CALC_ZF(uResult);
1087 fEfl |= g_afParity[uResult & 0xff];
1088 *pfEFlags = fEfl;
1089 }
1090}
1091
1092
1093IEM_DECL_IMPL_DEF(void, iemAImpl_shrd_u64,(uint64_t *puDst, uint64_t uSrc, uint8_t cShift, uint32_t *pfEFlags))
1094{
1095 cShift &= 63;
1096 if (cShift)
1097 {
1098 uint64_t uDst = *puDst;
1099 uint64_t uResult;
1100 uResult = uDst >> cShift;
1101 uResult |= uSrc << (64 - cShift);
1102 *puDst = uResult;
1103
1104 /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement
1105 it the same way as for 1 bit shifts. The AF bit is undefined,
1106 we always set it to zero atm. */
1107 AssertCompile(X86_EFL_CF_BIT == 0);
1108 uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS;
1109 fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF;
1110 fEfl |= (uint32_t)((uDst >> 63) ^ (uint32_t)(uResult >> 63)) << X86_EFL_OF_BIT;
1111 fEfl |= X86_EFL_CALC_SF(uResult, 64);
1112 fEfl |= X86_EFL_CALC_ZF(uResult);
1113 fEfl |= g_afParity[uResult & 0xff];
1114 *pfEFlags = fEfl;
1115 }
1116}
1117
1118
1119/* misc */
1120
1121IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64,(uint64_t *puMem, uint64_t *puReg))
1122{
1123 /* XCHG implies LOCK. */
1124 uint64_t uOldMem = *puMem;
1125 while (!ASMAtomicCmpXchgExU64(puMem, *puReg, uOldMem, &uOldMem))
1126 ASMNopPause();
1127 *puReg = uOldMem;
1128}
1129
1130
1131/* multiplication and division */
1132
1133
1134
1135IEM_DECL_IMPL_DEF(int, iemAImpl_mul_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Factor, uint32_t *pfEFlags))
1136{
1137 RTUINT128U Result;
1138 RTUInt128MulU64ByU64(&Result, *pu64RAX, u64Factor);
1139 *pu64RAX = Result.s.Lo;
1140 *pu64RDX = Result.s.Hi;
1141 /** @todo research the undefined MUL flags. */
1142 return 0;
1143}
1144
1145
1146IEM_DECL_IMPL_DEF(int, iemAImpl_imul_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Factor, uint32_t *pfEFlags))
1147{
1148/** @todo Testcase: IMUL 1 operand */
1149 RTUINT128U Result;
1150 *pfEFlags &= ~(X86_EFL_SF | X86_EFL_CF | X86_EFL_OF);
1151 if ((int64_t)*pu64RAX >= 0)
1152 {
1153 if ((int64_t)*pu64RDX >= 0)
1154 {
1155 RTUInt128MulU64ByU64(&Result, *pu64RAX, u64Factor);
1156 *pu64RAX = Result.s.Lo;
1157 *pu64RDX = Result.s.Hi;
1158 if (Result.s.Hi != 0 || Result.s.Lo >= UINT64_C(0x8000000000000000))
1159 *pfEFlags |= X86_EFL_CF | X86_EFL_OF;
1160 }
1161 else
1162 {
1163 RTUInt128MulU64ByU64(&Result, *pu64RAX, UINT64_C(0) - u64Factor);
1164 if (Result.s.Hi != 0 || Result.s.Lo > UINT64_C(0x8000000000000000))
1165 *pfEFlags |= X86_EFL_CF | X86_EFL_OF;
1166 *pu64RAX = UINT64_C(0) - Result.s.Lo;
1167 *pu64RDX = UINT64_C(0) - Result.s.Hi;
1168 }
1169 }
1170 else
1171 {
1172 if ((int64_t)u64Factor >= 0)
1173 {
1174 RTUInt128MulU64ByU64(&Result, UINT64_C(0) - *pu64RAX, u64Factor);
1175 if (Result.s.Hi != 0 || Result.s.Lo > UINT64_C(0x8000000000000000))
1176 *pfEFlags |= X86_EFL_CF | X86_EFL_OF;
1177 *pu64RAX = UINT64_C(0) - Result.s.Lo;
1178 *pu64RDX = UINT64_C(0) - Result.s.Hi;
1179 }
1180 else
1181 {
1182 RTUInt128MulU64ByU64(&Result, UINT64_C(0) - *pu64RAX, UINT64_C(0) - u64Factor);
1183 if (Result.s.Hi != 0 || Result.s.Lo >= UINT64_C(0x8000000000000000))
1184 *pfEFlags |= X86_EFL_CF | X86_EFL_OF;
1185 *pu64RAX = Result.s.Lo;
1186 *pu64RDX = Result.s.Hi;
1187 }
1188 }
1189 if (*pu64RAX & RT_BIT_64(63))
1190 *pfEFlags |= X86_EFL_SF;
1191
1192 /** @todo research the undefined IMUL flags. */
1193 return 0;
1194}
1195
1196
1197IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
1198{
1199/** @todo Testcase: IMUL 2 and 3 operands. */
1200 uint64_t u64Ign;
1201 iemAImpl_imul_u64(puDst, &u64Ign, uSrc, pfEFlags);
1202}
1203
1204
1205
1206IEM_DECL_IMPL_DEF(int, iemAImpl_div_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Divisor, uint32_t *pfEFlags))
1207{
1208 if ( u64Divisor != 0
1209 && *pu64RDX < u64Divisor)
1210 {
1211 RTUINT128U Dividend;
1212 Dividend.s.Lo = *pu64RAX;
1213 Dividend.s.Hi = *pu64RDX;
1214
1215 RTUINT128U Divisor;
1216 Divisor.s.Lo = u64Divisor;
1217 Divisor.s.Hi = 0;
1218
1219 RTUINT128U Remainder;
1220 RTUINT128U Quotient;
1221# ifdef __GNUC__ /* GCC maybe really annoying in function. */
1222 Quotient.s.Lo = 0;
1223 Quotient.s.Hi = 0;
1224# endif
1225 RTUInt128DivRem(&Quotient, &Remainder, &Dividend, &Divisor);
1226 Assert(Quotient.s.Hi == 0);
1227 Assert(Remainder.s.Hi == 0);
1228
1229 *pu64RAX = Quotient.s.Lo;
1230 *pu64RDX = Remainder.s.Lo;
1231 /** @todo research the undefined DIV flags. */
1232 return 0;
1233
1234 }
1235 /* #DE */
1236 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
1237}
1238
1239
1240IEM_DECL_IMPL_DEF(int, iemAImpl_idiv_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Divisor, uint32_t *pfEFlags))
1241{
1242 if (u64Divisor != 0)
1243 {
1244 /*
1245 * Convert to unsigned division.
1246 */
1247 RTUINT128U Dividend;
1248 Dividend.s.Hi = 0;
1249 if ((int64_t)*pu64RDX >= 0)
1250 {
1251 Dividend.s.Lo = *pu64RAX;
1252 Dividend.s.Hi = *pu64RDX;
1253 }
1254 else
1255 {
1256 Dividend.s.Lo = UINT64_C(0) - *pu64RAX;
1257 Dividend.s.Hi = UINT64_C(0) - *pu64RDX;
1258 }
1259
1260 RTUINT128U Divisor;
1261 Divisor.s.Hi = 0;
1262 if ((int64_t)u64Divisor >= 0)
1263 Divisor.s.Lo = u64Divisor;
1264 else
1265 Divisor.s.Lo = UINT64_C(0) - u64Divisor;
1266
1267 RTUINT128U Remainder;
1268 RTUINT128U Quotient;
1269# ifdef __GNUC__ /* GCC maybe really annoying in function. */
1270 Quotient.s.Lo = 0;
1271 Quotient.s.Hi = 0;
1272# endif
1273 RTUInt128DivRem(&Quotient, &Remainder, &Dividend, &Divisor);
1274
1275 /*
1276 * Setup the result, checking for overflows.
1277 */
1278 if ((int64_t)u64Divisor >= 0)
1279 {
1280 if ((int64_t)*pu64RDX >= 0)
1281 {
1282 /* Positive divisor, positive dividend => result positive. */
1283 if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint64_t)INT64_MAX)
1284 {
1285 *pu64RAX = Quotient.s.Lo;
1286 *pu64RDX = Remainder.s.Lo;
1287 return 0;
1288 }
1289 }
1290 else
1291 {
1292 /* Positive divisor, positive dividend => result negative. */
1293 if (Quotient.s.Hi == 0 && Quotient.s.Lo <= UINT64_C(0x8000000000000000))
1294 {
1295 *pu64RAX = UINT64_C(0) - Quotient.s.Lo;
1296 *pu64RDX = UINT64_C(0) - Remainder.s.Lo;
1297 return 0;
1298 }
1299 }
1300 }
1301 else
1302 {
1303 if ((int64_t)*pu64RDX >= 0)
1304 {
1305 /* Negative divisor, positive dividend => negative quotient, positive remainder. */
1306 if (Quotient.s.Hi == 0 && Quotient.s.Lo <= UINT64_C(0x8000000000000000))
1307 {
1308 *pu64RAX = UINT64_C(0) - Quotient.s.Lo;
1309 *pu64RDX = Remainder.s.Lo;
1310 return 0;
1311 }
1312 }
1313 else
1314 {
1315 /* Negative divisor, negative dividend => positive quotient, negative remainder. */
1316 if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint64_t)INT64_MAX)
1317 {
1318 *pu64RAX = Quotient.s.Lo;
1319 *pu64RDX = UINT64_C(0) - Remainder.s.Lo;
1320 return 0;
1321 }
1322 }
1323 }
1324 }
1325 /* #DE */
1326 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
1327}
1328
1329
1330#endif /* RT_ARCH_X86 */
1331
1332
1333IEM_DECL_IMPL_DEF(void, iemAImpl_arpl,(uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pfEFlags))
1334{
1335 if ((*pu16Dst & X86_SEL_RPL) < (u16Src & X86_SEL_RPL))
1336 {
1337 *pu16Dst &= X86_SEL_MASK_OFF_RPL;
1338 *pu16Dst |= u16Src & X86_SEL_RPL;
1339
1340 *pfEFlags |= X86_EFL_ZF;
1341 }
1342 else
1343 *pfEFlags &= ~X86_EFL_ZF;
1344}
1345
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette