1 | /* $Id: IEMAllAImplC.cpp 95460 2022-06-30 12:52:13Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Instruction Implementation in Assembly, portable C variant.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2022 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #include "IEMInternal.h"
|
---|
23 | #include <VBox/vmm/vmcc.h>
|
---|
24 | #include <iprt/errcore.h>
|
---|
25 | #include <iprt/x86.h>
|
---|
26 | #include <iprt/uint128.h>
|
---|
27 | #include <iprt/uint256.h>
|
---|
28 | #include <iprt/crc.h>
|
---|
29 |
|
---|
30 | RT_C_DECLS_BEGIN
|
---|
31 | #include <softfloat.h>
|
---|
32 | RT_C_DECLS_END
|
---|
33 |
|
---|
34 |
|
---|
35 | /*********************************************************************************************************************************
|
---|
36 | * Defined Constants And Macros *
|
---|
37 | *********************************************************************************************************************************/
|
---|
38 | /** @def IEM_WITHOUT_ASSEMBLY
|
---|
39 | * Enables all the code in this file.
|
---|
40 | */
|
---|
41 | #if !defined(IEM_WITHOUT_ASSEMBLY)
|
---|
42 | # if defined(RT_ARCH_ARM32) || defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
|
---|
43 | # define IEM_WITHOUT_ASSEMBLY
|
---|
44 | # endif
|
---|
45 | #endif
|
---|
46 | /* IEM_WITH_ASSEMBLY trumps IEM_WITHOUT_ASSEMBLY for tstIEMAImplAsm purposes. */
|
---|
47 | #ifdef IEM_WITH_ASSEMBLY
|
---|
48 | # undef IEM_WITHOUT_ASSEMBLY
|
---|
49 | #endif
|
---|
50 |
|
---|
51 | /**
|
---|
52 | * Calculates the signed flag value given a result and it's bit width.
|
---|
53 | *
|
---|
54 | * The signed flag (SF) is a duplication of the most significant bit in the
|
---|
55 | * result.
|
---|
56 | *
|
---|
57 | * @returns X86_EFL_SF or 0.
|
---|
58 | * @param a_uResult Unsigned result value.
|
---|
59 | * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
|
---|
60 | */
|
---|
61 | #define X86_EFL_CALC_SF(a_uResult, a_cBitsWidth) \
|
---|
62 | ( (uint32_t)((a_uResult) >> ((a_cBitsWidth) - X86_EFL_SF_BIT - 1)) & X86_EFL_SF )
|
---|
63 |
|
---|
64 | /**
|
---|
65 | * Calculates the zero flag value given a result.
|
---|
66 | *
|
---|
67 | * The zero flag (ZF) indicates whether the result is zero or not.
|
---|
68 | *
|
---|
69 | * @returns X86_EFL_ZF or 0.
|
---|
70 | * @param a_uResult Unsigned result value.
|
---|
71 | */
|
---|
72 | #define X86_EFL_CALC_ZF(a_uResult) \
|
---|
73 | ( (uint32_t)((a_uResult) == 0) << X86_EFL_ZF_BIT )
|
---|
74 |
|
---|
75 | /**
|
---|
76 | * Extracts the OF flag from a OF calculation result.
|
---|
77 | *
|
---|
78 | * These are typically used by concating with a bitcount. The problem is that
|
---|
79 | * 8-bit values needs shifting in the other direction than the others.
|
---|
80 | */
|
---|
81 | #define X86_EFL_GET_OF_8(a_uValue) (((uint32_t)(a_uValue) << (X86_EFL_OF_BIT - 8 + 1)) & X86_EFL_OF)
|
---|
82 | #define X86_EFL_GET_OF_16(a_uValue) ((uint32_t)((a_uValue) >> (16 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF)
|
---|
83 | #define X86_EFL_GET_OF_32(a_uValue) ((uint32_t)((a_uValue) >> (32 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF)
|
---|
84 | #define X86_EFL_GET_OF_64(a_uValue) ((uint32_t)((a_uValue) >> (64 - X86_EFL_OF_BIT - 1)) & X86_EFL_OF)
|
---|
85 |
|
---|
86 | /**
|
---|
87 | * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after arithmetic op.
|
---|
88 | *
|
---|
89 | * @returns Status bits.
|
---|
90 | * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update.
|
---|
91 | * @param a_uResult Unsigned result value.
|
---|
92 | * @param a_uSrc The source value (for AF calc).
|
---|
93 | * @param a_uDst The original destination value (for AF calc).
|
---|
94 | * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
|
---|
95 | * @param a_CfExpr Bool expression for the carry flag (CF).
|
---|
96 | * @param a_uSrcOf The a_uSrc value to use for overflow calculation.
|
---|
97 | */
|
---|
98 | #define IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(a_pfEFlags, a_uResult, a_uDst, a_uSrc, a_cBitsWidth, a_CfExpr, a_uSrcOf) \
|
---|
99 | do { \
|
---|
100 | uint32_t fEflTmp = *(a_pfEFlags); \
|
---|
101 | fEflTmp &= ~X86_EFL_STATUS_BITS; \
|
---|
102 | fEflTmp |= (a_CfExpr) << X86_EFL_CF_BIT; \
|
---|
103 | fEflTmp |= g_afParity[(a_uResult) & 0xff]; \
|
---|
104 | fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uSrc) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \
|
---|
105 | fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \
|
---|
106 | fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \
|
---|
107 | \
|
---|
108 | /* Overflow during ADDition happens when both inputs have the same signed \
|
---|
109 | bit value and the result has a different sign bit value. \
|
---|
110 | \
|
---|
111 | Since subtraction can be rewritten as addition: 2 - 1 == 2 + -1, it \
|
---|
112 | follows that for SUBtraction the signed bit value must differ between \
|
---|
113 | the two inputs and the result's signed bit diff from the first input. \
|
---|
114 | Note! Must xor with sign bit to convert, not do (0 - a_uSrc). \
|
---|
115 | \
|
---|
116 | See also: http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt */ \
|
---|
117 | fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth( ( ((uint ## a_cBitsWidth ## _t)~((a_uDst) ^ (a_uSrcOf))) \
|
---|
118 | & RT_BIT_64(a_cBitsWidth - 1)) \
|
---|
119 | & ((a_uResult) ^ (a_uDst)) ); \
|
---|
120 | *(a_pfEFlags) = fEflTmp; \
|
---|
121 | } while (0)
|
---|
122 |
|
---|
123 | /**
|
---|
124 | * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after a logical op.
|
---|
125 | *
|
---|
126 | * CF and OF are defined to be 0 by logical operations. AF on the other hand is
|
---|
127 | * undefined. We do not set AF, as that seems to make the most sense (which
|
---|
128 | * probably makes it the most wrong in real life).
|
---|
129 | *
|
---|
130 | * @returns Status bits.
|
---|
131 | * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update.
|
---|
132 | * @param a_uResult Unsigned result value.
|
---|
133 | * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
|
---|
134 | * @param a_fExtra Additional bits to set.
|
---|
135 | */
|
---|
136 | #define IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(a_pfEFlags, a_uResult, a_cBitsWidth, a_fExtra) \
|
---|
137 | do { \
|
---|
138 | uint32_t fEflTmp = *(a_pfEFlags); \
|
---|
139 | fEflTmp &= ~X86_EFL_STATUS_BITS; \
|
---|
140 | fEflTmp |= g_afParity[(a_uResult) & 0xff]; \
|
---|
141 | fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \
|
---|
142 | fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \
|
---|
143 | fEflTmp |= (a_fExtra); \
|
---|
144 | *(a_pfEFlags) = fEflTmp; \
|
---|
145 | } while (0)
|
---|
146 |
|
---|
147 |
|
---|
148 | /*********************************************************************************************************************************
|
---|
149 | * Global Variables *
|
---|
150 | *********************************************************************************************************************************/
|
---|
151 | /**
|
---|
152 | * Parity calculation table.
|
---|
153 | *
|
---|
154 | * This is also used by iemAllAImpl.asm.
|
---|
155 | *
|
---|
156 | * The generator code:
|
---|
157 | * @code
|
---|
158 | * #include <stdio.h>
|
---|
159 | *
|
---|
160 | * int main()
|
---|
161 | * {
|
---|
162 | * unsigned b;
|
---|
163 | * for (b = 0; b < 256; b++)
|
---|
164 | * {
|
---|
165 | * int cOnes = ( b & 1)
|
---|
166 | * + ((b >> 1) & 1)
|
---|
167 | * + ((b >> 2) & 1)
|
---|
168 | * + ((b >> 3) & 1)
|
---|
169 | * + ((b >> 4) & 1)
|
---|
170 | * + ((b >> 5) & 1)
|
---|
171 | * + ((b >> 6) & 1)
|
---|
172 | * + ((b >> 7) & 1);
|
---|
173 | * printf(" /" "* %#04x = %u%u%u%u%u%u%u%ub *" "/ %s,\n",
|
---|
174 | * b,
|
---|
175 | * (b >> 7) & 1,
|
---|
176 | * (b >> 6) & 1,
|
---|
177 | * (b >> 5) & 1,
|
---|
178 | * (b >> 4) & 1,
|
---|
179 | * (b >> 3) & 1,
|
---|
180 | * (b >> 2) & 1,
|
---|
181 | * (b >> 1) & 1,
|
---|
182 | * b & 1,
|
---|
183 | * cOnes & 1 ? "0" : "X86_EFL_PF");
|
---|
184 | * }
|
---|
185 | * return 0;
|
---|
186 | * }
|
---|
187 | * @endcode
|
---|
188 | */
|
---|
189 | uint8_t const g_afParity[256] =
|
---|
190 | {
|
---|
191 | /* 0000 = 00000000b */ X86_EFL_PF,
|
---|
192 | /* 0x01 = 00000001b */ 0,
|
---|
193 | /* 0x02 = 00000010b */ 0,
|
---|
194 | /* 0x03 = 00000011b */ X86_EFL_PF,
|
---|
195 | /* 0x04 = 00000100b */ 0,
|
---|
196 | /* 0x05 = 00000101b */ X86_EFL_PF,
|
---|
197 | /* 0x06 = 00000110b */ X86_EFL_PF,
|
---|
198 | /* 0x07 = 00000111b */ 0,
|
---|
199 | /* 0x08 = 00001000b */ 0,
|
---|
200 | /* 0x09 = 00001001b */ X86_EFL_PF,
|
---|
201 | /* 0x0a = 00001010b */ X86_EFL_PF,
|
---|
202 | /* 0x0b = 00001011b */ 0,
|
---|
203 | /* 0x0c = 00001100b */ X86_EFL_PF,
|
---|
204 | /* 0x0d = 00001101b */ 0,
|
---|
205 | /* 0x0e = 00001110b */ 0,
|
---|
206 | /* 0x0f = 00001111b */ X86_EFL_PF,
|
---|
207 | /* 0x10 = 00010000b */ 0,
|
---|
208 | /* 0x11 = 00010001b */ X86_EFL_PF,
|
---|
209 | /* 0x12 = 00010010b */ X86_EFL_PF,
|
---|
210 | /* 0x13 = 00010011b */ 0,
|
---|
211 | /* 0x14 = 00010100b */ X86_EFL_PF,
|
---|
212 | /* 0x15 = 00010101b */ 0,
|
---|
213 | /* 0x16 = 00010110b */ 0,
|
---|
214 | /* 0x17 = 00010111b */ X86_EFL_PF,
|
---|
215 | /* 0x18 = 00011000b */ X86_EFL_PF,
|
---|
216 | /* 0x19 = 00011001b */ 0,
|
---|
217 | /* 0x1a = 00011010b */ 0,
|
---|
218 | /* 0x1b = 00011011b */ X86_EFL_PF,
|
---|
219 | /* 0x1c = 00011100b */ 0,
|
---|
220 | /* 0x1d = 00011101b */ X86_EFL_PF,
|
---|
221 | /* 0x1e = 00011110b */ X86_EFL_PF,
|
---|
222 | /* 0x1f = 00011111b */ 0,
|
---|
223 | /* 0x20 = 00100000b */ 0,
|
---|
224 | /* 0x21 = 00100001b */ X86_EFL_PF,
|
---|
225 | /* 0x22 = 00100010b */ X86_EFL_PF,
|
---|
226 | /* 0x23 = 00100011b */ 0,
|
---|
227 | /* 0x24 = 00100100b */ X86_EFL_PF,
|
---|
228 | /* 0x25 = 00100101b */ 0,
|
---|
229 | /* 0x26 = 00100110b */ 0,
|
---|
230 | /* 0x27 = 00100111b */ X86_EFL_PF,
|
---|
231 | /* 0x28 = 00101000b */ X86_EFL_PF,
|
---|
232 | /* 0x29 = 00101001b */ 0,
|
---|
233 | /* 0x2a = 00101010b */ 0,
|
---|
234 | /* 0x2b = 00101011b */ X86_EFL_PF,
|
---|
235 | /* 0x2c = 00101100b */ 0,
|
---|
236 | /* 0x2d = 00101101b */ X86_EFL_PF,
|
---|
237 | /* 0x2e = 00101110b */ X86_EFL_PF,
|
---|
238 | /* 0x2f = 00101111b */ 0,
|
---|
239 | /* 0x30 = 00110000b */ X86_EFL_PF,
|
---|
240 | /* 0x31 = 00110001b */ 0,
|
---|
241 | /* 0x32 = 00110010b */ 0,
|
---|
242 | /* 0x33 = 00110011b */ X86_EFL_PF,
|
---|
243 | /* 0x34 = 00110100b */ 0,
|
---|
244 | /* 0x35 = 00110101b */ X86_EFL_PF,
|
---|
245 | /* 0x36 = 00110110b */ X86_EFL_PF,
|
---|
246 | /* 0x37 = 00110111b */ 0,
|
---|
247 | /* 0x38 = 00111000b */ 0,
|
---|
248 | /* 0x39 = 00111001b */ X86_EFL_PF,
|
---|
249 | /* 0x3a = 00111010b */ X86_EFL_PF,
|
---|
250 | /* 0x3b = 00111011b */ 0,
|
---|
251 | /* 0x3c = 00111100b */ X86_EFL_PF,
|
---|
252 | /* 0x3d = 00111101b */ 0,
|
---|
253 | /* 0x3e = 00111110b */ 0,
|
---|
254 | /* 0x3f = 00111111b */ X86_EFL_PF,
|
---|
255 | /* 0x40 = 01000000b */ 0,
|
---|
256 | /* 0x41 = 01000001b */ X86_EFL_PF,
|
---|
257 | /* 0x42 = 01000010b */ X86_EFL_PF,
|
---|
258 | /* 0x43 = 01000011b */ 0,
|
---|
259 | /* 0x44 = 01000100b */ X86_EFL_PF,
|
---|
260 | /* 0x45 = 01000101b */ 0,
|
---|
261 | /* 0x46 = 01000110b */ 0,
|
---|
262 | /* 0x47 = 01000111b */ X86_EFL_PF,
|
---|
263 | /* 0x48 = 01001000b */ X86_EFL_PF,
|
---|
264 | /* 0x49 = 01001001b */ 0,
|
---|
265 | /* 0x4a = 01001010b */ 0,
|
---|
266 | /* 0x4b = 01001011b */ X86_EFL_PF,
|
---|
267 | /* 0x4c = 01001100b */ 0,
|
---|
268 | /* 0x4d = 01001101b */ X86_EFL_PF,
|
---|
269 | /* 0x4e = 01001110b */ X86_EFL_PF,
|
---|
270 | /* 0x4f = 01001111b */ 0,
|
---|
271 | /* 0x50 = 01010000b */ X86_EFL_PF,
|
---|
272 | /* 0x51 = 01010001b */ 0,
|
---|
273 | /* 0x52 = 01010010b */ 0,
|
---|
274 | /* 0x53 = 01010011b */ X86_EFL_PF,
|
---|
275 | /* 0x54 = 01010100b */ 0,
|
---|
276 | /* 0x55 = 01010101b */ X86_EFL_PF,
|
---|
277 | /* 0x56 = 01010110b */ X86_EFL_PF,
|
---|
278 | /* 0x57 = 01010111b */ 0,
|
---|
279 | /* 0x58 = 01011000b */ 0,
|
---|
280 | /* 0x59 = 01011001b */ X86_EFL_PF,
|
---|
281 | /* 0x5a = 01011010b */ X86_EFL_PF,
|
---|
282 | /* 0x5b = 01011011b */ 0,
|
---|
283 | /* 0x5c = 01011100b */ X86_EFL_PF,
|
---|
284 | /* 0x5d = 01011101b */ 0,
|
---|
285 | /* 0x5e = 01011110b */ 0,
|
---|
286 | /* 0x5f = 01011111b */ X86_EFL_PF,
|
---|
287 | /* 0x60 = 01100000b */ X86_EFL_PF,
|
---|
288 | /* 0x61 = 01100001b */ 0,
|
---|
289 | /* 0x62 = 01100010b */ 0,
|
---|
290 | /* 0x63 = 01100011b */ X86_EFL_PF,
|
---|
291 | /* 0x64 = 01100100b */ 0,
|
---|
292 | /* 0x65 = 01100101b */ X86_EFL_PF,
|
---|
293 | /* 0x66 = 01100110b */ X86_EFL_PF,
|
---|
294 | /* 0x67 = 01100111b */ 0,
|
---|
295 | /* 0x68 = 01101000b */ 0,
|
---|
296 | /* 0x69 = 01101001b */ X86_EFL_PF,
|
---|
297 | /* 0x6a = 01101010b */ X86_EFL_PF,
|
---|
298 | /* 0x6b = 01101011b */ 0,
|
---|
299 | /* 0x6c = 01101100b */ X86_EFL_PF,
|
---|
300 | /* 0x6d = 01101101b */ 0,
|
---|
301 | /* 0x6e = 01101110b */ 0,
|
---|
302 | /* 0x6f = 01101111b */ X86_EFL_PF,
|
---|
303 | /* 0x70 = 01110000b */ 0,
|
---|
304 | /* 0x71 = 01110001b */ X86_EFL_PF,
|
---|
305 | /* 0x72 = 01110010b */ X86_EFL_PF,
|
---|
306 | /* 0x73 = 01110011b */ 0,
|
---|
307 | /* 0x74 = 01110100b */ X86_EFL_PF,
|
---|
308 | /* 0x75 = 01110101b */ 0,
|
---|
309 | /* 0x76 = 01110110b */ 0,
|
---|
310 | /* 0x77 = 01110111b */ X86_EFL_PF,
|
---|
311 | /* 0x78 = 01111000b */ X86_EFL_PF,
|
---|
312 | /* 0x79 = 01111001b */ 0,
|
---|
313 | /* 0x7a = 01111010b */ 0,
|
---|
314 | /* 0x7b = 01111011b */ X86_EFL_PF,
|
---|
315 | /* 0x7c = 01111100b */ 0,
|
---|
316 | /* 0x7d = 01111101b */ X86_EFL_PF,
|
---|
317 | /* 0x7e = 01111110b */ X86_EFL_PF,
|
---|
318 | /* 0x7f = 01111111b */ 0,
|
---|
319 | /* 0x80 = 10000000b */ 0,
|
---|
320 | /* 0x81 = 10000001b */ X86_EFL_PF,
|
---|
321 | /* 0x82 = 10000010b */ X86_EFL_PF,
|
---|
322 | /* 0x83 = 10000011b */ 0,
|
---|
323 | /* 0x84 = 10000100b */ X86_EFL_PF,
|
---|
324 | /* 0x85 = 10000101b */ 0,
|
---|
325 | /* 0x86 = 10000110b */ 0,
|
---|
326 | /* 0x87 = 10000111b */ X86_EFL_PF,
|
---|
327 | /* 0x88 = 10001000b */ X86_EFL_PF,
|
---|
328 | /* 0x89 = 10001001b */ 0,
|
---|
329 | /* 0x8a = 10001010b */ 0,
|
---|
330 | /* 0x8b = 10001011b */ X86_EFL_PF,
|
---|
331 | /* 0x8c = 10001100b */ 0,
|
---|
332 | /* 0x8d = 10001101b */ X86_EFL_PF,
|
---|
333 | /* 0x8e = 10001110b */ X86_EFL_PF,
|
---|
334 | /* 0x8f = 10001111b */ 0,
|
---|
335 | /* 0x90 = 10010000b */ X86_EFL_PF,
|
---|
336 | /* 0x91 = 10010001b */ 0,
|
---|
337 | /* 0x92 = 10010010b */ 0,
|
---|
338 | /* 0x93 = 10010011b */ X86_EFL_PF,
|
---|
339 | /* 0x94 = 10010100b */ 0,
|
---|
340 | /* 0x95 = 10010101b */ X86_EFL_PF,
|
---|
341 | /* 0x96 = 10010110b */ X86_EFL_PF,
|
---|
342 | /* 0x97 = 10010111b */ 0,
|
---|
343 | /* 0x98 = 10011000b */ 0,
|
---|
344 | /* 0x99 = 10011001b */ X86_EFL_PF,
|
---|
345 | /* 0x9a = 10011010b */ X86_EFL_PF,
|
---|
346 | /* 0x9b = 10011011b */ 0,
|
---|
347 | /* 0x9c = 10011100b */ X86_EFL_PF,
|
---|
348 | /* 0x9d = 10011101b */ 0,
|
---|
349 | /* 0x9e = 10011110b */ 0,
|
---|
350 | /* 0x9f = 10011111b */ X86_EFL_PF,
|
---|
351 | /* 0xa0 = 10100000b */ X86_EFL_PF,
|
---|
352 | /* 0xa1 = 10100001b */ 0,
|
---|
353 | /* 0xa2 = 10100010b */ 0,
|
---|
354 | /* 0xa3 = 10100011b */ X86_EFL_PF,
|
---|
355 | /* 0xa4 = 10100100b */ 0,
|
---|
356 | /* 0xa5 = 10100101b */ X86_EFL_PF,
|
---|
357 | /* 0xa6 = 10100110b */ X86_EFL_PF,
|
---|
358 | /* 0xa7 = 10100111b */ 0,
|
---|
359 | /* 0xa8 = 10101000b */ 0,
|
---|
360 | /* 0xa9 = 10101001b */ X86_EFL_PF,
|
---|
361 | /* 0xaa = 10101010b */ X86_EFL_PF,
|
---|
362 | /* 0xab = 10101011b */ 0,
|
---|
363 | /* 0xac = 10101100b */ X86_EFL_PF,
|
---|
364 | /* 0xad = 10101101b */ 0,
|
---|
365 | /* 0xae = 10101110b */ 0,
|
---|
366 | /* 0xaf = 10101111b */ X86_EFL_PF,
|
---|
367 | /* 0xb0 = 10110000b */ 0,
|
---|
368 | /* 0xb1 = 10110001b */ X86_EFL_PF,
|
---|
369 | /* 0xb2 = 10110010b */ X86_EFL_PF,
|
---|
370 | /* 0xb3 = 10110011b */ 0,
|
---|
371 | /* 0xb4 = 10110100b */ X86_EFL_PF,
|
---|
372 | /* 0xb5 = 10110101b */ 0,
|
---|
373 | /* 0xb6 = 10110110b */ 0,
|
---|
374 | /* 0xb7 = 10110111b */ X86_EFL_PF,
|
---|
375 | /* 0xb8 = 10111000b */ X86_EFL_PF,
|
---|
376 | /* 0xb9 = 10111001b */ 0,
|
---|
377 | /* 0xba = 10111010b */ 0,
|
---|
378 | /* 0xbb = 10111011b */ X86_EFL_PF,
|
---|
379 | /* 0xbc = 10111100b */ 0,
|
---|
380 | /* 0xbd = 10111101b */ X86_EFL_PF,
|
---|
381 | /* 0xbe = 10111110b */ X86_EFL_PF,
|
---|
382 | /* 0xbf = 10111111b */ 0,
|
---|
383 | /* 0xc0 = 11000000b */ X86_EFL_PF,
|
---|
384 | /* 0xc1 = 11000001b */ 0,
|
---|
385 | /* 0xc2 = 11000010b */ 0,
|
---|
386 | /* 0xc3 = 11000011b */ X86_EFL_PF,
|
---|
387 | /* 0xc4 = 11000100b */ 0,
|
---|
388 | /* 0xc5 = 11000101b */ X86_EFL_PF,
|
---|
389 | /* 0xc6 = 11000110b */ X86_EFL_PF,
|
---|
390 | /* 0xc7 = 11000111b */ 0,
|
---|
391 | /* 0xc8 = 11001000b */ 0,
|
---|
392 | /* 0xc9 = 11001001b */ X86_EFL_PF,
|
---|
393 | /* 0xca = 11001010b */ X86_EFL_PF,
|
---|
394 | /* 0xcb = 11001011b */ 0,
|
---|
395 | /* 0xcc = 11001100b */ X86_EFL_PF,
|
---|
396 | /* 0xcd = 11001101b */ 0,
|
---|
397 | /* 0xce = 11001110b */ 0,
|
---|
398 | /* 0xcf = 11001111b */ X86_EFL_PF,
|
---|
399 | /* 0xd0 = 11010000b */ 0,
|
---|
400 | /* 0xd1 = 11010001b */ X86_EFL_PF,
|
---|
401 | /* 0xd2 = 11010010b */ X86_EFL_PF,
|
---|
402 | /* 0xd3 = 11010011b */ 0,
|
---|
403 | /* 0xd4 = 11010100b */ X86_EFL_PF,
|
---|
404 | /* 0xd5 = 11010101b */ 0,
|
---|
405 | /* 0xd6 = 11010110b */ 0,
|
---|
406 | /* 0xd7 = 11010111b */ X86_EFL_PF,
|
---|
407 | /* 0xd8 = 11011000b */ X86_EFL_PF,
|
---|
408 | /* 0xd9 = 11011001b */ 0,
|
---|
409 | /* 0xda = 11011010b */ 0,
|
---|
410 | /* 0xdb = 11011011b */ X86_EFL_PF,
|
---|
411 | /* 0xdc = 11011100b */ 0,
|
---|
412 | /* 0xdd = 11011101b */ X86_EFL_PF,
|
---|
413 | /* 0xde = 11011110b */ X86_EFL_PF,
|
---|
414 | /* 0xdf = 11011111b */ 0,
|
---|
415 | /* 0xe0 = 11100000b */ 0,
|
---|
416 | /* 0xe1 = 11100001b */ X86_EFL_PF,
|
---|
417 | /* 0xe2 = 11100010b */ X86_EFL_PF,
|
---|
418 | /* 0xe3 = 11100011b */ 0,
|
---|
419 | /* 0xe4 = 11100100b */ X86_EFL_PF,
|
---|
420 | /* 0xe5 = 11100101b */ 0,
|
---|
421 | /* 0xe6 = 11100110b */ 0,
|
---|
422 | /* 0xe7 = 11100111b */ X86_EFL_PF,
|
---|
423 | /* 0xe8 = 11101000b */ X86_EFL_PF,
|
---|
424 | /* 0xe9 = 11101001b */ 0,
|
---|
425 | /* 0xea = 11101010b */ 0,
|
---|
426 | /* 0xeb = 11101011b */ X86_EFL_PF,
|
---|
427 | /* 0xec = 11101100b */ 0,
|
---|
428 | /* 0xed = 11101101b */ X86_EFL_PF,
|
---|
429 | /* 0xee = 11101110b */ X86_EFL_PF,
|
---|
430 | /* 0xef = 11101111b */ 0,
|
---|
431 | /* 0xf0 = 11110000b */ X86_EFL_PF,
|
---|
432 | /* 0xf1 = 11110001b */ 0,
|
---|
433 | /* 0xf2 = 11110010b */ 0,
|
---|
434 | /* 0xf3 = 11110011b */ X86_EFL_PF,
|
---|
435 | /* 0xf4 = 11110100b */ 0,
|
---|
436 | /* 0xf5 = 11110101b */ X86_EFL_PF,
|
---|
437 | /* 0xf6 = 11110110b */ X86_EFL_PF,
|
---|
438 | /* 0xf7 = 11110111b */ 0,
|
---|
439 | /* 0xf8 = 11111000b */ 0,
|
---|
440 | /* 0xf9 = 11111001b */ X86_EFL_PF,
|
---|
441 | /* 0xfa = 11111010b */ X86_EFL_PF,
|
---|
442 | /* 0xfb = 11111011b */ 0,
|
---|
443 | /* 0xfc = 11111100b */ X86_EFL_PF,
|
---|
444 | /* 0xfd = 11111101b */ 0,
|
---|
445 | /* 0xfe = 11111110b */ 0,
|
---|
446 | /* 0xff = 11111111b */ X86_EFL_PF,
|
---|
447 | };
|
---|
448 |
|
---|
449 | /* for clang: */
|
---|
450 | extern const RTFLOAT80U g_ar80Zero[];
|
---|
451 | extern const RTFLOAT80U g_ar80One[];
|
---|
452 | extern const RTFLOAT80U g_r80Indefinite;
|
---|
453 | extern const RTFLOAT80U g_ar80Infinity[];
|
---|
454 | extern const RTFLOAT128U g_r128Ln2;
|
---|
455 | extern const RTUINT128U g_u128Ln2Mantissa;
|
---|
456 | extern const RTUINT128U g_u128Ln2MantissaIntel;
|
---|
457 | extern const RTFLOAT128U g_ar128F2xm1HornerConsts[];
|
---|
458 |
|
---|
459 | /** Zero values (indexed by fSign). */
|
---|
460 | RTFLOAT80U const g_ar80Zero[] = { RTFLOAT80U_INIT_ZERO(0), RTFLOAT80U_INIT_ZERO(1) };
|
---|
461 |
|
---|
462 | /** One values (indexed by fSign). */
|
---|
463 | RTFLOAT80U const g_ar80One[] =
|
---|
464 | { RTFLOAT80U_INIT(0, RT_BIT_64(63), RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT(1, RT_BIT_64(63), RTFLOAT80U_EXP_BIAS) };
|
---|
465 |
|
---|
466 | /** Indefinite (negative). */
|
---|
467 | RTFLOAT80U const g_r80Indefinite = RTFLOAT80U_INIT_INDEFINITE(1);
|
---|
468 |
|
---|
469 | /** Infinities (indexed by fSign). */
|
---|
470 | RTFLOAT80U const g_ar80Infinity[] = { RTFLOAT80U_INIT_INF(0), RTFLOAT80U_INIT_INF(1) };
|
---|
471 |
|
---|
472 | #if 0
|
---|
473 | /** 128-bit floating point constant: 2.0 */
|
---|
474 | const RTFLOAT128U g_r128Two = RTFLOAT128U_INIT_C(0, 0, 0, RTFLOAT128U_EXP_BIAS + 1);
|
---|
475 | #endif
|
---|
476 |
|
---|
477 |
|
---|
478 | /* The next section is generated by tools/IEMGenFpuConstants: */
|
---|
479 |
|
---|
480 | /** The ln2 constant as 128-bit floating point value.
|
---|
481 | * base-10: 6.93147180559945309417232121458176575e-1
|
---|
482 | * base-16: b.17217f7d1cf79abc9e3b39803f30@-1
|
---|
483 | * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100100111100011101100111001100000000011111100110e-1 */
|
---|
484 | //const RTFLOAT128U g_r128Ln2 = RTFLOAT128U_INIT_C(0, 0x62e42fefa39e, 0xf35793c7673007e6, 0x3ffe);
|
---|
485 | const RTFLOAT128U g_r128Ln2 = RTFLOAT128U_INIT_C(0, 0x62e42fefa39e, 0xf357900000000000, 0x3ffe);
|
---|
486 | /** High precision ln2 value.
|
---|
487 | * base-10: 6.931471805599453094172321214581765680747e-1
|
---|
488 | * base-16: b.17217f7d1cf79abc9e3b39803f2f6af0@-1
|
---|
489 | * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100100111100011101100111001100000000011111100101111011010101111e-1 */
|
---|
490 | const RTUINT128U g_u128Ln2Mantissa = RTUINT128_INIT_C(0xb17217f7d1cf79ab, 0xc9e3b39803f2f6af);
|
---|
491 | /** High precision ln2 value, compatible with f2xm1 results on intel 10980XE.
|
---|
492 | * base-10: 6.931471805599453094151379470289064954613e-1
|
---|
493 | * base-16: b.17217f7d1cf79abc0000000000000000@-1
|
---|
494 | * base-2 : 1.0110001011100100001011111110111110100011100111101111001101010111100000000000000000000000000000000000000000000000000000000000000e-1 */
|
---|
495 | const RTUINT128U g_u128Ln2MantissaIntel = RTUINT128_INIT_C(0xb17217f7d1cf79ab, 0xc000000000000000);
|
---|
496 |
|
---|
497 | /** Horner constants for f2xm1 */
|
---|
498 | const RTFLOAT128U g_ar128F2xm1HornerConsts[] =
|
---|
499 | {
|
---|
500 | /* a0
|
---|
501 | * base-10: 1.00000000000000000000000000000000000e0
|
---|
502 | * base-16: 1.0000000000000000000000000000@0
|
---|
503 | * base-2 : 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e0 */
|
---|
504 | RTFLOAT128U_INIT_C(0, 0x000000000000, 0x0000000000000000, 0x3fff),
|
---|
505 | /* a1
|
---|
506 | * base-10: 5.00000000000000000000000000000000000e-1
|
---|
507 | * base-16: 8.0000000000000000000000000000@-1
|
---|
508 | * base-2 : 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-1 */
|
---|
509 | RTFLOAT128U_INIT_C(0, 0x000000000000, 0x0000000000000000, 0x3ffe),
|
---|
510 | /* a2
|
---|
511 | * base-10: 1.66666666666666666666666666666666658e-1
|
---|
512 | * base-16: 2.aaaaaaaaaaaaaaaaaaaaaaaaaaaa@-1
|
---|
513 | * base-2 : 1.0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101e-3 */
|
---|
514 | RTFLOAT128U_INIT_C(0, 0x555555555555, 0x5555555555555555, 0x3ffc),
|
---|
515 | /* a3
|
---|
516 | * base-10: 4.16666666666666666666666666666666646e-2
|
---|
517 | * base-16: a.aaaaaaaaaaaaaaaaaaaaaaaaaaa8@-2
|
---|
518 | * base-2 : 1.0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101e-5 */
|
---|
519 | RTFLOAT128U_INIT_C(0, 0x555555555555, 0x5555555555555555, 0x3ffa),
|
---|
520 | /* a4
|
---|
521 | * base-10: 8.33333333333333333333333333333333323e-3
|
---|
522 | * base-16: 2.2222222222222222222222222222@-2
|
---|
523 | * base-2 : 1.0001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001e-7 */
|
---|
524 | RTFLOAT128U_INIT_C(0, 0x111111111111, 0x1111111111111111, 0x3ff8),
|
---|
525 | /* a5
|
---|
526 | * base-10: 1.38888888888888888888888888888888874e-3
|
---|
527 | * base-16: 5.b05b05b05b05b05b05b05b05b058@-3
|
---|
528 | * base-2 : 1.0110110000010110110000010110110000010110110000010110110000010110110000010110110000010110110000010110110000010110e-10 */
|
---|
529 | RTFLOAT128U_INIT_C(0, 0x6c16c16c16c1, 0x6c16c16c16c16c16, 0x3ff5),
|
---|
530 | /* a6
|
---|
531 | * base-10: 1.98412698412698412698412698412698412e-4
|
---|
532 | * base-16: d.00d00d00d00d00d00d00d00d00d0@-4
|
---|
533 | * base-2 : 1.1010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010e-13 */
|
---|
534 | RTFLOAT128U_INIT_C(0, 0xa01a01a01a01, 0xa01a01a01a01a01a, 0x3ff2),
|
---|
535 | /* a7
|
---|
536 | * base-10: 2.48015873015873015873015873015873015e-5
|
---|
537 | * base-16: 1.a01a01a01a01a01a01a01a01a01a@-4
|
---|
538 | * base-2 : 1.1010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010000000011010e-16 */
|
---|
539 | RTFLOAT128U_INIT_C(0, 0xa01a01a01a01, 0xa01a01a01a01a01a, 0x3fef),
|
---|
540 | /* a8
|
---|
541 | * base-10: 2.75573192239858906525573192239858902e-6
|
---|
542 | * base-16: 2.e3bc74aad8e671f5583911ca002e@-5
|
---|
543 | * base-2 : 1.0111000111011110001110100101010101101100011100110011100011111010101011000001110010001000111001010000000000010111e-19 */
|
---|
544 | RTFLOAT128U_INIT_C(0, 0x71de3a556c73, 0x38faac1c88e50017, 0x3fec),
|
---|
545 | /* a9
|
---|
546 | * base-10: 2.75573192239858906525573192239858865e-7
|
---|
547 | * base-16: 4.9f93edde27d71cbbc05b4fa999e0@-6
|
---|
548 | * base-2 : 1.0010011111100100111110110111011110001001111101011100011100101110111100000001011011010011111010100110011001111000e-22 */
|
---|
549 | RTFLOAT128U_INIT_C(0, 0x27e4fb7789f5, 0xc72ef016d3ea6678, 0x3fe9),
|
---|
550 | /* a10
|
---|
551 | * base-10: 2.50521083854417187750521083854417184e-8
|
---|
552 | * base-16: 6.b99159fd5138e3f9d1f92e0df71c@-7
|
---|
553 | * base-2 : 1.1010111001100100010101100111111101010100010011100011100011111110011101000111111001001011100000110111110111000111e-26 */
|
---|
554 | RTFLOAT128U_INIT_C(0, 0xae64567f544e, 0x38fe747e4b837dc7, 0x3fe5),
|
---|
555 | /* a11
|
---|
556 | * base-10: 2.08767569878680989792100903212014296e-9
|
---|
557 | * base-16: 8.f76c77fc6c4bdaa26d4c3d67f420@-8
|
---|
558 | * base-2 : 1.0001111011101101100011101111111110001101100010010111101101010100010011011010100110000111101011001111111010000100e-29 */
|
---|
559 | RTFLOAT128U_INIT_C(0, 0x1eed8eff8d89, 0x7b544da987acfe84, 0x3fe2),
|
---|
560 | /* a12
|
---|
561 | * base-10: 1.60590438368216145993923771701549472e-10
|
---|
562 | * base-16: b.092309d43684be51c198e91d7b40@-9
|
---|
563 | * base-2 : 1.0110000100100100011000010011101010000110110100001001011111001010001110000011001100011101001000111010111101101000e-33 */
|
---|
564 | RTFLOAT128U_INIT_C(0, 0x6124613a86d0, 0x97ca38331d23af68, 0x3fde),
|
---|
565 | /* a13
|
---|
566 | * base-10: 1.14707455977297247138516979786821043e-11
|
---|
567 | * base-16: c.9cba54603e4e905d6f8a2efd1f20@-10
|
---|
568 | * base-2 : 1.1001001110010111010010101000110000000111110010011101001000001011101011011111000101000101110111111010001111100100e-37 */
|
---|
569 | RTFLOAT128U_INIT_C(0, 0x93974a8c07c9, 0xd20badf145dfa3e4, 0x3fda),
|
---|
570 | /* a14
|
---|
571 | * base-10: 7.64716373181981647590113198578806964e-13
|
---|
572 | * base-16: d.73f9f399dc0f88ec32b587746578@-11
|
---|
573 | * base-2 : 1.1010111001111111001111100111001100111011100000011111000100011101100001100101011010110000111011101000110010101111e-41 */
|
---|
574 | RTFLOAT128U_INIT_C(0, 0xae7f3e733b81, 0xf11d8656b0ee8caf, 0x3fd6),
|
---|
575 | /* a15
|
---|
576 | * base-10: 4.77947733238738529743820749111754352e-14
|
---|
577 | * base-16: d.73f9f399dc0f88ec32b587746578@-12
|
---|
578 | * base-2 : 1.1010111001111111001111100111001100111011100000011111000100011101100001100101011010110000111011101000110010101111e-45 */
|
---|
579 | RTFLOAT128U_INIT_C(0, 0xae7f3e733b81, 0xf11d8656b0ee8caf, 0x3fd2),
|
---|
580 | /* a16
|
---|
581 | * base-10: 2.81145725434552076319894558301031970e-15
|
---|
582 | * base-16: c.a963b81856a53593028cbbb8d7f8@-13
|
---|
583 | * base-2 : 1.1001010100101100011101110000001100001010110101001010011010110010011000000101000110010111011101110001101011111111e-49 */
|
---|
584 | RTFLOAT128U_INIT_C(0, 0x952c77030ad4, 0xa6b2605197771aff, 0x3fce),
|
---|
585 | /* a17
|
---|
586 | * base-10: 1.56192069685862264622163643500573321e-16
|
---|
587 | * base-16: b.413c31dcbecbbdd8024435161550@-14
|
---|
588 | * base-2 : 1.0110100000100111100001100011101110010111110110010111011110111011000000000100100010000110101000101100001010101010e-53 */
|
---|
589 | RTFLOAT128U_INIT_C(0, 0x6827863b97d9, 0x77bb004886a2c2aa, 0x3fca),
|
---|
590 | /* a18
|
---|
591 | * base-10: 8.22063524662432971695598123687227980e-18
|
---|
592 | * base-16: 9.7a4da340a0ab92650f61dbdcb3a0@-15
|
---|
593 | * base-2 : 1.0010111101001001101101000110100000010100000101010111001001001100101000011110110000111011011110111001011001110100e-57 */
|
---|
594 | RTFLOAT128U_INIT_C(0, 0x2f49b4681415, 0x724ca1ec3b7b9674, 0x3fc6),
|
---|
595 | /* a19
|
---|
596 | * base-10: 4.11031762331216485847799061843614006e-19
|
---|
597 | * base-16: 7.950ae900808941ea72b4afe3c2e8@-16
|
---|
598 | * base-2 : 1.1110010101000010101110100100000000100000001000100101000001111010100111001010110100101011111110001111000010111010e-62 */
|
---|
599 | RTFLOAT128U_INIT_C(0, 0xe542ba402022, 0x507a9cad2bf8f0ba, 0x3fc1),
|
---|
600 | /* a20
|
---|
601 | * base-10: 7.04351638180413298434020229233492164e-20
|
---|
602 | * base-16: 1.4c9ee35db1d1f3c946fdcd48fd88@-16
|
---|
603 | * base-2 : 1.0100110010011110111000110101110110110001110100011111001111001001010001101111110111001101010010001111110110001000e-64 */
|
---|
604 | RTFLOAT128U_INIT_C(0, 0x4c9ee35db1d1, 0xf3c946fdcd48fd88, 0x3fbf),
|
---|
605 | /* a21
|
---|
606 | * base-10: 5.81527769640186708776361513365257702e-20
|
---|
607 | * base-16: 1.129e64bff606a2b9c9fc624481cd@-16
|
---|
608 | * base-2 : 1.0001001010011110011001001011111111110110000001101010001010111001110010011111110001100010010001001000000111001101e-64 */
|
---|
609 | RTFLOAT128U_INIT_C(0, 0x129e64bff606, 0xa2b9c9fc624481cd, 0x3fbf),
|
---|
610 | };
|
---|
611 |
|
---|
612 |
|
---|
613 | /*
|
---|
614 | * There are a few 64-bit on 32-bit things we'd rather do in C. Actually, doing
|
---|
615 | * it all in C is probably safer atm., optimize what's necessary later, maybe.
|
---|
616 | */
|
---|
617 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
618 |
|
---|
619 |
|
---|
620 | /*********************************************************************************************************************************
|
---|
621 | * Binary Operations *
|
---|
622 | *********************************************************************************************************************************/
|
---|
623 |
|
---|
624 | /*
|
---|
625 | * ADD
|
---|
626 | */
|
---|
627 |
|
---|
628 | IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
629 | {
|
---|
630 | uint64_t uDst = *puDst;
|
---|
631 | uint64_t uResult = uDst + uSrc;
|
---|
632 | *puDst = uResult;
|
---|
633 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uResult < uDst, uSrc);
|
---|
634 | }
|
---|
635 |
|
---|
636 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
637 |
|
---|
638 | IEM_DECL_IMPL_DEF(void, iemAImpl_add_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
639 | {
|
---|
640 | uint32_t uDst = *puDst;
|
---|
641 | uint32_t uResult = uDst + uSrc;
|
---|
642 | *puDst = uResult;
|
---|
643 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uResult < uDst, uSrc);
|
---|
644 | }
|
---|
645 |
|
---|
646 |
|
---|
647 | IEM_DECL_IMPL_DEF(void, iemAImpl_add_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
648 | {
|
---|
649 | uint16_t uDst = *puDst;
|
---|
650 | uint16_t uResult = uDst + uSrc;
|
---|
651 | *puDst = uResult;
|
---|
652 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uResult < uDst, uSrc);
|
---|
653 | }
|
---|
654 |
|
---|
655 |
|
---|
656 | IEM_DECL_IMPL_DEF(void, iemAImpl_add_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
|
---|
657 | {
|
---|
658 | uint8_t uDst = *puDst;
|
---|
659 | uint8_t uResult = uDst + uSrc;
|
---|
660 | *puDst = uResult;
|
---|
661 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uResult < uDst, uSrc);
|
---|
662 | }
|
---|
663 |
|
---|
664 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
665 |
|
---|
666 | /*
|
---|
667 | * ADC
|
---|
668 | */
|
---|
669 |
|
---|
670 | IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
671 | {
|
---|
672 | if (!(*pfEFlags & X86_EFL_CF))
|
---|
673 | iemAImpl_add_u64(puDst, uSrc, pfEFlags);
|
---|
674 | else
|
---|
675 | {
|
---|
676 | uint64_t uDst = *puDst;
|
---|
677 | uint64_t uResult = uDst + uSrc + 1;
|
---|
678 | *puDst = uResult;
|
---|
679 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uResult <= uDst, uSrc);
|
---|
680 | }
|
---|
681 | }
|
---|
682 |
|
---|
683 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
684 |
|
---|
685 | IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
686 | {
|
---|
687 | if (!(*pfEFlags & X86_EFL_CF))
|
---|
688 | iemAImpl_add_u32(puDst, uSrc, pfEFlags);
|
---|
689 | else
|
---|
690 | {
|
---|
691 | uint32_t uDst = *puDst;
|
---|
692 | uint32_t uResult = uDst + uSrc + 1;
|
---|
693 | *puDst = uResult;
|
---|
694 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uResult <= uDst, uSrc);
|
---|
695 | }
|
---|
696 | }
|
---|
697 |
|
---|
698 |
|
---|
699 | IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
700 | {
|
---|
701 | if (!(*pfEFlags & X86_EFL_CF))
|
---|
702 | iemAImpl_add_u16(puDst, uSrc, pfEFlags);
|
---|
703 | else
|
---|
704 | {
|
---|
705 | uint16_t uDst = *puDst;
|
---|
706 | uint16_t uResult = uDst + uSrc + 1;
|
---|
707 | *puDst = uResult;
|
---|
708 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uResult <= uDst, uSrc);
|
---|
709 | }
|
---|
710 | }
|
---|
711 |
|
---|
712 |
|
---|
713 | IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
|
---|
714 | {
|
---|
715 | if (!(*pfEFlags & X86_EFL_CF))
|
---|
716 | iemAImpl_add_u8(puDst, uSrc, pfEFlags);
|
---|
717 | else
|
---|
718 | {
|
---|
719 | uint8_t uDst = *puDst;
|
---|
720 | uint8_t uResult = uDst + uSrc + 1;
|
---|
721 | *puDst = uResult;
|
---|
722 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uResult <= uDst, uSrc);
|
---|
723 | }
|
---|
724 | }
|
---|
725 |
|
---|
726 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
727 |
|
---|
728 | /*
|
---|
729 | * SUB
|
---|
730 | */
|
---|
731 |
|
---|
732 | IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
733 | {
|
---|
734 | uint64_t uDst = *puDst;
|
---|
735 | uint64_t uResult = uDst - uSrc;
|
---|
736 | *puDst = uResult;
|
---|
737 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uDst < uSrc, uSrc ^ RT_BIT_64(63));
|
---|
738 | }
|
---|
739 |
|
---|
740 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
741 |
|
---|
742 | IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
743 | {
|
---|
744 | uint32_t uDst = *puDst;
|
---|
745 | uint32_t uResult = uDst - uSrc;
|
---|
746 | *puDst = uResult;
|
---|
747 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uDst < uSrc, uSrc ^ RT_BIT_32(31));
|
---|
748 | }
|
---|
749 |
|
---|
750 |
|
---|
751 | IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
752 | {
|
---|
753 | uint16_t uDst = *puDst;
|
---|
754 | uint16_t uResult = uDst - uSrc;
|
---|
755 | *puDst = uResult;
|
---|
756 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uDst < uSrc, uSrc ^ (uint16_t)0x8000);
|
---|
757 | }
|
---|
758 |
|
---|
759 |
|
---|
760 | IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
|
---|
761 | {
|
---|
762 | uint8_t uDst = *puDst;
|
---|
763 | uint8_t uResult = uDst - uSrc;
|
---|
764 | *puDst = uResult;
|
---|
765 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uDst < uSrc, uSrc ^ (uint8_t)0x80);
|
---|
766 | }
|
---|
767 |
|
---|
768 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
769 |
|
---|
770 | /*
|
---|
771 | * SBB
|
---|
772 | */
|
---|
773 |
|
---|
774 | IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
775 | {
|
---|
776 | if (!(*pfEFlags & X86_EFL_CF))
|
---|
777 | iemAImpl_sub_u64(puDst, uSrc, pfEFlags);
|
---|
778 | else
|
---|
779 | {
|
---|
780 | uint64_t uDst = *puDst;
|
---|
781 | uint64_t uResult = uDst - uSrc - 1;
|
---|
782 | *puDst = uResult;
|
---|
783 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 64, uDst <= uSrc, uSrc ^ RT_BIT_64(63));
|
---|
784 | }
|
---|
785 | }
|
---|
786 |
|
---|
787 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
788 |
|
---|
789 | IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
790 | {
|
---|
791 | if (!(*pfEFlags & X86_EFL_CF))
|
---|
792 | iemAImpl_sub_u32(puDst, uSrc, pfEFlags);
|
---|
793 | else
|
---|
794 | {
|
---|
795 | uint32_t uDst = *puDst;
|
---|
796 | uint32_t uResult = uDst - uSrc - 1;
|
---|
797 | *puDst = uResult;
|
---|
798 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 32, uDst <= uSrc, uSrc ^ RT_BIT_32(31));
|
---|
799 | }
|
---|
800 | }
|
---|
801 |
|
---|
802 |
|
---|
803 | IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
804 | {
|
---|
805 | if (!(*pfEFlags & X86_EFL_CF))
|
---|
806 | iemAImpl_sub_u16(puDst, uSrc, pfEFlags);
|
---|
807 | else
|
---|
808 | {
|
---|
809 | uint16_t uDst = *puDst;
|
---|
810 | uint16_t uResult = uDst - uSrc - 1;
|
---|
811 | *puDst = uResult;
|
---|
812 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 16, uDst <= uSrc, uSrc ^ (uint16_t)0x8000);
|
---|
813 | }
|
---|
814 | }
|
---|
815 |
|
---|
816 |
|
---|
817 | IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
|
---|
818 | {
|
---|
819 | if (!(*pfEFlags & X86_EFL_CF))
|
---|
820 | iemAImpl_sub_u8(puDst, uSrc, pfEFlags);
|
---|
821 | else
|
---|
822 | {
|
---|
823 | uint8_t uDst = *puDst;
|
---|
824 | uint8_t uResult = uDst - uSrc - 1;
|
---|
825 | *puDst = uResult;
|
---|
826 | IEM_EFL_UPDATE_STATUS_BITS_FOR_ARITHMETIC(pfEFlags, uResult, uDst, uSrc, 8, uDst <= uSrc, uSrc ^ (uint8_t)0x80);
|
---|
827 | }
|
---|
828 | }
|
---|
829 |
|
---|
830 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
831 |
|
---|
832 |
|
---|
833 | /*
|
---|
834 | * OR
|
---|
835 | */
|
---|
836 |
|
---|
837 | IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
838 | {
|
---|
839 | uint64_t uResult = *puDst | uSrc;
|
---|
840 | *puDst = uResult;
|
---|
841 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
|
---|
842 | }
|
---|
843 |
|
---|
844 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
845 |
|
---|
846 | IEM_DECL_IMPL_DEF(void, iemAImpl_or_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
847 | {
|
---|
848 | uint32_t uResult = *puDst | uSrc;
|
---|
849 | *puDst = uResult;
|
---|
850 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0);
|
---|
851 | }
|
---|
852 |
|
---|
853 |
|
---|
854 | IEM_DECL_IMPL_DEF(void, iemAImpl_or_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
855 | {
|
---|
856 | uint16_t uResult = *puDst | uSrc;
|
---|
857 | *puDst = uResult;
|
---|
858 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0);
|
---|
859 | }
|
---|
860 |
|
---|
861 |
|
---|
862 | IEM_DECL_IMPL_DEF(void, iemAImpl_or_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
|
---|
863 | {
|
---|
864 | uint8_t uResult = *puDst | uSrc;
|
---|
865 | *puDst = uResult;
|
---|
866 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0);
|
---|
867 | }
|
---|
868 |
|
---|
869 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
870 |
|
---|
871 | /*
|
---|
872 | * XOR
|
---|
873 | */
|
---|
874 |
|
---|
875 | IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
876 | {
|
---|
877 | uint64_t uResult = *puDst ^ uSrc;
|
---|
878 | *puDst = uResult;
|
---|
879 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
|
---|
880 | }
|
---|
881 |
|
---|
882 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
883 |
|
---|
884 | IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
885 | {
|
---|
886 | uint32_t uResult = *puDst ^ uSrc;
|
---|
887 | *puDst = uResult;
|
---|
888 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0);
|
---|
889 | }
|
---|
890 |
|
---|
891 |
|
---|
892 | IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
893 | {
|
---|
894 | uint16_t uResult = *puDst ^ uSrc;
|
---|
895 | *puDst = uResult;
|
---|
896 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0);
|
---|
897 | }
|
---|
898 |
|
---|
899 |
|
---|
900 | IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
|
---|
901 | {
|
---|
902 | uint8_t uResult = *puDst ^ uSrc;
|
---|
903 | *puDst = uResult;
|
---|
904 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0);
|
---|
905 | }
|
---|
906 |
|
---|
907 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
908 |
|
---|
909 | /*
|
---|
910 | * AND
|
---|
911 | */
|
---|
912 |
|
---|
913 | IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
914 | {
|
---|
915 | uint64_t const uResult = *puDst & uSrc;
|
---|
916 | *puDst = uResult;
|
---|
917 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
|
---|
918 | }
|
---|
919 |
|
---|
920 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
921 |
|
---|
922 | IEM_DECL_IMPL_DEF(void, iemAImpl_and_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
923 | {
|
---|
924 | uint32_t const uResult = *puDst & uSrc;
|
---|
925 | *puDst = uResult;
|
---|
926 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0);
|
---|
927 | }
|
---|
928 |
|
---|
929 |
|
---|
930 | IEM_DECL_IMPL_DEF(void, iemAImpl_and_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
931 | {
|
---|
932 | uint16_t const uResult = *puDst & uSrc;
|
---|
933 | *puDst = uResult;
|
---|
934 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0);
|
---|
935 | }
|
---|
936 |
|
---|
937 |
|
---|
938 | IEM_DECL_IMPL_DEF(void, iemAImpl_and_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
|
---|
939 | {
|
---|
940 | uint8_t const uResult = *puDst & uSrc;
|
---|
941 | *puDst = uResult;
|
---|
942 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0);
|
---|
943 | }
|
---|
944 |
|
---|
945 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
946 | #endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
947 |
|
---|
948 | /*
|
---|
949 | * ANDN (BMI1 instruction)
|
---|
950 | */
|
---|
951 |
|
---|
952 | IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u64_fallback,(uint64_t *puDst, uint64_t uSrc1, uint64_t uSrc2, uint32_t *pfEFlags))
|
---|
953 | {
|
---|
954 | uint64_t const uResult = ~uSrc1 & uSrc2;
|
---|
955 | *puDst = uResult;
|
---|
956 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
|
---|
957 | }
|
---|
958 |
|
---|
959 |
|
---|
960 | IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u32_fallback,(uint32_t *puDst, uint32_t uSrc1, uint32_t uSrc2, uint32_t *pfEFlags))
|
---|
961 | {
|
---|
962 | uint32_t const uResult = ~uSrc1 & uSrc2;
|
---|
963 | *puDst = uResult;
|
---|
964 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0);
|
---|
965 | }
|
---|
966 |
|
---|
967 |
|
---|
968 | #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
969 | IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u64,(uint64_t *puDst, uint64_t uSrc1, uint64_t uSrc2, uint32_t *pfEFlags))
|
---|
970 | {
|
---|
971 | iemAImpl_andn_u64_fallback(puDst, uSrc1, uSrc2, pfEFlags);
|
---|
972 | }
|
---|
973 | #endif
|
---|
974 |
|
---|
975 |
|
---|
976 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
977 | IEM_DECL_IMPL_DEF(void, iemAImpl_andn_u32,(uint32_t *puDst, uint32_t uSrc1, uint32_t uSrc2, uint32_t *pfEFlags))
|
---|
978 | {
|
---|
979 | iemAImpl_andn_u32_fallback(puDst, uSrc1, uSrc2, pfEFlags);
|
---|
980 | }
|
---|
981 | #endif
|
---|
982 |
|
---|
983 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
984 |
|
---|
985 | /*
|
---|
986 | * CMP
|
---|
987 | */
|
---|
988 |
|
---|
989 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
990 | {
|
---|
991 | uint64_t uDstTmp = *puDst;
|
---|
992 | iemAImpl_sub_u64(&uDstTmp, uSrc, pfEFlags);
|
---|
993 | }
|
---|
994 |
|
---|
995 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
996 |
|
---|
997 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
998 | {
|
---|
999 | uint32_t uDstTmp = *puDst;
|
---|
1000 | iemAImpl_sub_u32(&uDstTmp, uSrc, pfEFlags);
|
---|
1001 | }
|
---|
1002 |
|
---|
1003 |
|
---|
1004 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1005 | {
|
---|
1006 | uint16_t uDstTmp = *puDst;
|
---|
1007 | iemAImpl_sub_u16(&uDstTmp, uSrc, pfEFlags);
|
---|
1008 | }
|
---|
1009 |
|
---|
1010 |
|
---|
1011 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
|
---|
1012 | {
|
---|
1013 | uint8_t uDstTmp = *puDst;
|
---|
1014 | iemAImpl_sub_u8(&uDstTmp, uSrc, pfEFlags);
|
---|
1015 | }
|
---|
1016 |
|
---|
1017 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1018 |
|
---|
1019 | /*
|
---|
1020 | * TEST
|
---|
1021 | */
|
---|
1022 |
|
---|
1023 | IEM_DECL_IMPL_DEF(void, iemAImpl_test_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1024 | {
|
---|
1025 | uint64_t uResult = *puDst & uSrc;
|
---|
1026 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0);
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1030 |
|
---|
1031 | IEM_DECL_IMPL_DEF(void, iemAImpl_test_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1032 | {
|
---|
1033 | uint32_t uResult = *puDst & uSrc;
|
---|
1034 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 32, 0);
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 |
|
---|
1038 | IEM_DECL_IMPL_DEF(void, iemAImpl_test_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1039 | {
|
---|
1040 | uint16_t uResult = *puDst & uSrc;
|
---|
1041 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 16, 0);
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 |
|
---|
1045 | IEM_DECL_IMPL_DEF(void, iemAImpl_test_u8,(uint8_t *puDst, uint8_t uSrc, uint32_t *pfEFlags))
|
---|
1046 | {
|
---|
1047 | uint8_t uResult = *puDst & uSrc;
|
---|
1048 | IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 8, 0);
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1052 |
|
---|
1053 |
|
---|
1054 | /*
|
---|
1055 | * LOCK prefixed variants of the above
|
---|
1056 | */
|
---|
1057 |
|
---|
1058 | /** 64-bit locked binary operand operation. */
|
---|
1059 | # define DO_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth) \
|
---|
1060 | do { \
|
---|
1061 | uint ## a_cBitsWidth ## _t uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \
|
---|
1062 | uint ## a_cBitsWidth ## _t uTmp; \
|
---|
1063 | uint32_t fEflTmp; \
|
---|
1064 | do \
|
---|
1065 | { \
|
---|
1066 | uTmp = uOld; \
|
---|
1067 | fEflTmp = *pfEFlags; \
|
---|
1068 | iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth(&uTmp, uSrc, &fEflTmp); \
|
---|
1069 | } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uTmp, uOld, &uOld)); \
|
---|
1070 | *pfEFlags = fEflTmp; \
|
---|
1071 | } while (0)
|
---|
1072 |
|
---|
1073 |
|
---|
1074 | #define EMIT_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth) \
|
---|
1075 | IEM_DECL_IMPL_DEF(void, iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth ## _locked,(uint ## a_cBitsWidth ## _t *puDst, \
|
---|
1076 | uint ## a_cBitsWidth ## _t uSrc, \
|
---|
1077 | uint32_t *pfEFlags)) \
|
---|
1078 | { \
|
---|
1079 | DO_LOCKED_BIN_OP(a_Mnemonic, a_cBitsWidth); \
|
---|
1080 | }
|
---|
1081 |
|
---|
1082 | EMIT_LOCKED_BIN_OP(add, 64)
|
---|
1083 | EMIT_LOCKED_BIN_OP(adc, 64)
|
---|
1084 | EMIT_LOCKED_BIN_OP(sub, 64)
|
---|
1085 | EMIT_LOCKED_BIN_OP(sbb, 64)
|
---|
1086 | EMIT_LOCKED_BIN_OP(or, 64)
|
---|
1087 | EMIT_LOCKED_BIN_OP(xor, 64)
|
---|
1088 | EMIT_LOCKED_BIN_OP(and, 64)
|
---|
1089 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1090 | EMIT_LOCKED_BIN_OP(add, 32)
|
---|
1091 | EMIT_LOCKED_BIN_OP(adc, 32)
|
---|
1092 | EMIT_LOCKED_BIN_OP(sub, 32)
|
---|
1093 | EMIT_LOCKED_BIN_OP(sbb, 32)
|
---|
1094 | EMIT_LOCKED_BIN_OP(or, 32)
|
---|
1095 | EMIT_LOCKED_BIN_OP(xor, 32)
|
---|
1096 | EMIT_LOCKED_BIN_OP(and, 32)
|
---|
1097 |
|
---|
1098 | EMIT_LOCKED_BIN_OP(add, 16)
|
---|
1099 | EMIT_LOCKED_BIN_OP(adc, 16)
|
---|
1100 | EMIT_LOCKED_BIN_OP(sub, 16)
|
---|
1101 | EMIT_LOCKED_BIN_OP(sbb, 16)
|
---|
1102 | EMIT_LOCKED_BIN_OP(or, 16)
|
---|
1103 | EMIT_LOCKED_BIN_OP(xor, 16)
|
---|
1104 | EMIT_LOCKED_BIN_OP(and, 16)
|
---|
1105 |
|
---|
1106 | EMIT_LOCKED_BIN_OP(add, 8)
|
---|
1107 | EMIT_LOCKED_BIN_OP(adc, 8)
|
---|
1108 | EMIT_LOCKED_BIN_OP(sub, 8)
|
---|
1109 | EMIT_LOCKED_BIN_OP(sbb, 8)
|
---|
1110 | EMIT_LOCKED_BIN_OP(or, 8)
|
---|
1111 | EMIT_LOCKED_BIN_OP(xor, 8)
|
---|
1112 | EMIT_LOCKED_BIN_OP(and, 8)
|
---|
1113 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1114 |
|
---|
1115 |
|
---|
1116 | /*
|
---|
1117 | * Bit operations (same signature as above).
|
---|
1118 | */
|
---|
1119 |
|
---|
1120 | /*
|
---|
1121 | * BT
|
---|
1122 | */
|
---|
1123 |
|
---|
1124 | IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1125 | {
|
---|
1126 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
|
---|
1127 | not modified by either AMD (3990x) or Intel (i9-9980HK). */
|
---|
1128 | Assert(uSrc < 64);
|
---|
1129 | uint64_t uDst = *puDst;
|
---|
1130 | if (uDst & RT_BIT_64(uSrc))
|
---|
1131 | *pfEFlags |= X86_EFL_CF;
|
---|
1132 | else
|
---|
1133 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1134 | }
|
---|
1135 |
|
---|
1136 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1137 |
|
---|
1138 | IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1139 | {
|
---|
1140 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
|
---|
1141 | not modified by either AMD (3990x) or Intel (i9-9980HK). */
|
---|
1142 | Assert(uSrc < 32);
|
---|
1143 | uint32_t uDst = *puDst;
|
---|
1144 | if (uDst & RT_BIT_32(uSrc))
|
---|
1145 | *pfEFlags |= X86_EFL_CF;
|
---|
1146 | else
|
---|
1147 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1148 | }
|
---|
1149 |
|
---|
1150 | IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1151 | {
|
---|
1152 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
|
---|
1153 | not modified by either AMD (3990x) or Intel (i9-9980HK). */
|
---|
1154 | Assert(uSrc < 16);
|
---|
1155 | uint16_t uDst = *puDst;
|
---|
1156 | if (uDst & RT_BIT_32(uSrc))
|
---|
1157 | *pfEFlags |= X86_EFL_CF;
|
---|
1158 | else
|
---|
1159 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1163 |
|
---|
1164 | /*
|
---|
1165 | * BTC
|
---|
1166 | */
|
---|
1167 |
|
---|
1168 | IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1169 | {
|
---|
1170 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
|
---|
1171 | not modified by either AMD (3990x) or Intel (i9-9980HK). */
|
---|
1172 | Assert(uSrc < 64);
|
---|
1173 | uint64_t fMask = RT_BIT_64(uSrc);
|
---|
1174 | uint64_t uDst = *puDst;
|
---|
1175 | if (uDst & fMask)
|
---|
1176 | {
|
---|
1177 | uDst &= ~fMask;
|
---|
1178 | *puDst = uDst;
|
---|
1179 | *pfEFlags |= X86_EFL_CF;
|
---|
1180 | }
|
---|
1181 | else
|
---|
1182 | {
|
---|
1183 | uDst |= fMask;
|
---|
1184 | *puDst = uDst;
|
---|
1185 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1186 | }
|
---|
1187 | }
|
---|
1188 |
|
---|
1189 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1190 |
|
---|
1191 | IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1192 | {
|
---|
1193 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
|
---|
1194 | not modified by either AMD (3990x) or Intel (i9-9980HK). */
|
---|
1195 | Assert(uSrc < 32);
|
---|
1196 | uint32_t fMask = RT_BIT_32(uSrc);
|
---|
1197 | uint32_t uDst = *puDst;
|
---|
1198 | if (uDst & fMask)
|
---|
1199 | {
|
---|
1200 | uDst &= ~fMask;
|
---|
1201 | *puDst = uDst;
|
---|
1202 | *pfEFlags |= X86_EFL_CF;
|
---|
1203 | }
|
---|
1204 | else
|
---|
1205 | {
|
---|
1206 | uDst |= fMask;
|
---|
1207 | *puDst = uDst;
|
---|
1208 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1209 | }
|
---|
1210 | }
|
---|
1211 |
|
---|
1212 |
|
---|
1213 | IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1214 | {
|
---|
1215 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. However, it seems they're
|
---|
1216 | not modified by either AMD (3990x) or Intel (i9-9980HK). */
|
---|
1217 | Assert(uSrc < 16);
|
---|
1218 | uint16_t fMask = RT_BIT_32(uSrc);
|
---|
1219 | uint16_t uDst = *puDst;
|
---|
1220 | if (uDst & fMask)
|
---|
1221 | {
|
---|
1222 | uDst &= ~fMask;
|
---|
1223 | *puDst = uDst;
|
---|
1224 | *pfEFlags |= X86_EFL_CF;
|
---|
1225 | }
|
---|
1226 | else
|
---|
1227 | {
|
---|
1228 | uDst |= fMask;
|
---|
1229 | *puDst = uDst;
|
---|
1230 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1231 | }
|
---|
1232 | }
|
---|
1233 |
|
---|
1234 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1235 |
|
---|
1236 | /*
|
---|
1237 | * BTR
|
---|
1238 | */
|
---|
1239 |
|
---|
1240 | IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1241 | {
|
---|
1242 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
|
---|
1243 | logical operation (AND/OR/whatever). */
|
---|
1244 | Assert(uSrc < 64);
|
---|
1245 | uint64_t fMask = RT_BIT_64(uSrc);
|
---|
1246 | uint64_t uDst = *puDst;
|
---|
1247 | if (uDst & fMask)
|
---|
1248 | {
|
---|
1249 | uDst &= ~fMask;
|
---|
1250 | *puDst = uDst;
|
---|
1251 | *pfEFlags |= X86_EFL_CF;
|
---|
1252 | }
|
---|
1253 | else
|
---|
1254 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1255 | }
|
---|
1256 |
|
---|
1257 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1258 |
|
---|
1259 | IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1260 | {
|
---|
1261 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
|
---|
1262 | logical operation (AND/OR/whatever). */
|
---|
1263 | Assert(uSrc < 32);
|
---|
1264 | uint32_t fMask = RT_BIT_32(uSrc);
|
---|
1265 | uint32_t uDst = *puDst;
|
---|
1266 | if (uDst & fMask)
|
---|
1267 | {
|
---|
1268 | uDst &= ~fMask;
|
---|
1269 | *puDst = uDst;
|
---|
1270 | *pfEFlags |= X86_EFL_CF;
|
---|
1271 | }
|
---|
1272 | else
|
---|
1273 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1274 | }
|
---|
1275 |
|
---|
1276 |
|
---|
1277 | IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1278 | {
|
---|
1279 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
|
---|
1280 | logical operation (AND/OR/whatever). */
|
---|
1281 | Assert(uSrc < 16);
|
---|
1282 | uint16_t fMask = RT_BIT_32(uSrc);
|
---|
1283 | uint16_t uDst = *puDst;
|
---|
1284 | if (uDst & fMask)
|
---|
1285 | {
|
---|
1286 | uDst &= ~fMask;
|
---|
1287 | *puDst = uDst;
|
---|
1288 | *pfEFlags |= X86_EFL_CF;
|
---|
1289 | }
|
---|
1290 | else
|
---|
1291 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1292 | }
|
---|
1293 |
|
---|
1294 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1295 |
|
---|
1296 | /*
|
---|
1297 | * BTS
|
---|
1298 | */
|
---|
1299 |
|
---|
1300 | IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1301 | {
|
---|
1302 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
|
---|
1303 | logical operation (AND/OR/whatever). */
|
---|
1304 | Assert(uSrc < 64);
|
---|
1305 | uint64_t fMask = RT_BIT_64(uSrc);
|
---|
1306 | uint64_t uDst = *puDst;
|
---|
1307 | if (uDst & fMask)
|
---|
1308 | *pfEFlags |= X86_EFL_CF;
|
---|
1309 | else
|
---|
1310 | {
|
---|
1311 | uDst |= fMask;
|
---|
1312 | *puDst = uDst;
|
---|
1313 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1314 | }
|
---|
1315 | }
|
---|
1316 |
|
---|
1317 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1318 |
|
---|
1319 | IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1320 | {
|
---|
1321 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
|
---|
1322 | logical operation (AND/OR/whatever). */
|
---|
1323 | Assert(uSrc < 32);
|
---|
1324 | uint32_t fMask = RT_BIT_32(uSrc);
|
---|
1325 | uint32_t uDst = *puDst;
|
---|
1326 | if (uDst & fMask)
|
---|
1327 | *pfEFlags |= X86_EFL_CF;
|
---|
1328 | else
|
---|
1329 | {
|
---|
1330 | uDst |= fMask;
|
---|
1331 | *puDst = uDst;
|
---|
1332 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1333 | }
|
---|
1334 | }
|
---|
1335 |
|
---|
1336 |
|
---|
1337 | IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1338 | {
|
---|
1339 | /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an
|
---|
1340 | logical operation (AND/OR/whatever). */
|
---|
1341 | Assert(uSrc < 16);
|
---|
1342 | uint16_t fMask = RT_BIT_32(uSrc);
|
---|
1343 | uint32_t uDst = *puDst;
|
---|
1344 | if (uDst & fMask)
|
---|
1345 | *pfEFlags |= X86_EFL_CF;
|
---|
1346 | else
|
---|
1347 | {
|
---|
1348 | uDst |= fMask;
|
---|
1349 | *puDst = uDst;
|
---|
1350 | *pfEFlags &= ~X86_EFL_CF;
|
---|
1351 | }
|
---|
1352 | }
|
---|
1353 |
|
---|
1354 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1355 |
|
---|
1356 |
|
---|
1357 | EMIT_LOCKED_BIN_OP(btc, 64)
|
---|
1358 | EMIT_LOCKED_BIN_OP(btr, 64)
|
---|
1359 | EMIT_LOCKED_BIN_OP(bts, 64)
|
---|
1360 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1361 | EMIT_LOCKED_BIN_OP(btc, 32)
|
---|
1362 | EMIT_LOCKED_BIN_OP(btr, 32)
|
---|
1363 | EMIT_LOCKED_BIN_OP(bts, 32)
|
---|
1364 |
|
---|
1365 | EMIT_LOCKED_BIN_OP(btc, 16)
|
---|
1366 | EMIT_LOCKED_BIN_OP(btr, 16)
|
---|
1367 | EMIT_LOCKED_BIN_OP(bts, 16)
|
---|
1368 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1369 |
|
---|
1370 |
|
---|
1371 | /*
|
---|
1372 | * Helpers for BSR and BSF.
|
---|
1373 | *
|
---|
1374 | * Note! "undefined" flags: OF, SF, AF, PF, CF.
|
---|
1375 | * Intel behavior modelled on 10980xe, AMD on 3990X. Other marchs may
|
---|
1376 | * produce different result (see https://www.sandpile.org/x86/flags.htm),
|
---|
1377 | * but we restrict ourselves to emulating these recent marchs.
|
---|
1378 | */
|
---|
1379 | #define SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlag, a_iBit) do { \
|
---|
1380 | unsigned iBit = (a_iBit); \
|
---|
1381 | uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \
|
---|
1382 | if (iBit) \
|
---|
1383 | { \
|
---|
1384 | *puDst = --iBit; \
|
---|
1385 | fEfl |= g_afParity[iBit]; \
|
---|
1386 | } \
|
---|
1387 | else \
|
---|
1388 | fEfl |= X86_EFL_ZF | X86_EFL_PF; \
|
---|
1389 | *pfEFlags = fEfl; \
|
---|
1390 | } while (0)
|
---|
1391 | #define SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlag, a_iBit) do { \
|
---|
1392 | unsigned const iBit = (a_iBit); \
|
---|
1393 | if (iBit) \
|
---|
1394 | { \
|
---|
1395 | *puDst = iBit - 1; \
|
---|
1396 | *pfEFlags &= ~X86_EFL_ZF; \
|
---|
1397 | } \
|
---|
1398 | else \
|
---|
1399 | *pfEFlags |= X86_EFL_ZF; \
|
---|
1400 | } while (0)
|
---|
1401 |
|
---|
1402 |
|
---|
1403 | /*
|
---|
1404 | * BSF - first (least significant) bit set
|
---|
1405 | */
|
---|
1406 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1407 | {
|
---|
1408 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU64(uSrc));
|
---|
1409 | }
|
---|
1410 |
|
---|
1411 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1412 | {
|
---|
1413 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU64(uSrc));
|
---|
1414 | }
|
---|
1415 |
|
---|
1416 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1417 | {
|
---|
1418 | SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU64(uSrc));
|
---|
1419 | }
|
---|
1420 |
|
---|
1421 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1422 |
|
---|
1423 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1424 | {
|
---|
1425 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU32(uSrc));
|
---|
1426 | }
|
---|
1427 |
|
---|
1428 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1429 | {
|
---|
1430 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU32(uSrc));
|
---|
1431 | }
|
---|
1432 |
|
---|
1433 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1434 | {
|
---|
1435 | SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU32(uSrc));
|
---|
1436 | }
|
---|
1437 |
|
---|
1438 |
|
---|
1439 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1440 | {
|
---|
1441 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU16(uSrc));
|
---|
1442 | }
|
---|
1443 |
|
---|
1444 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1445 | {
|
---|
1446 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitFirstSetU16(uSrc));
|
---|
1447 | }
|
---|
1448 |
|
---|
1449 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1450 | {
|
---|
1451 | SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitFirstSetU16(uSrc));
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1455 |
|
---|
1456 |
|
---|
1457 | /*
|
---|
1458 | * BSR - last (most significant) bit set
|
---|
1459 | */
|
---|
1460 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1461 | {
|
---|
1462 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU64(uSrc));
|
---|
1463 | }
|
---|
1464 |
|
---|
1465 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1466 | {
|
---|
1467 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU64(uSrc));
|
---|
1468 | }
|
---|
1469 |
|
---|
1470 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1471 | {
|
---|
1472 | SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU64(uSrc));
|
---|
1473 | }
|
---|
1474 |
|
---|
1475 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1476 |
|
---|
1477 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1478 | {
|
---|
1479 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU32(uSrc));
|
---|
1480 | }
|
---|
1481 |
|
---|
1482 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1483 | {
|
---|
1484 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU32(uSrc));
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1488 | {
|
---|
1489 | SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU32(uSrc));
|
---|
1490 | }
|
---|
1491 |
|
---|
1492 |
|
---|
1493 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1494 | {
|
---|
1495 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU16(uSrc));
|
---|
1496 | }
|
---|
1497 |
|
---|
1498 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1499 | {
|
---|
1500 | SET_BIT_SEARCH_RESULT_INTEL(puDst, pfEFlags, ASMBitLastSetU16(uSrc));
|
---|
1501 | }
|
---|
1502 |
|
---|
1503 | IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1504 | {
|
---|
1505 | SET_BIT_SEARCH_RESULT_AMD(puDst, pfEFlags, ASMBitLastSetU16(uSrc));
|
---|
1506 | }
|
---|
1507 |
|
---|
1508 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1509 |
|
---|
1510 |
|
---|
1511 | /*
|
---|
1512 | * Helpers for LZCNT and TZCNT.
|
---|
1513 | */
|
---|
1514 | #define SET_BIT_CNT_SEARCH_RESULT_INTEL(a_puDst, a_uSrc, a_pfEFlags, a_uResult) do { \
|
---|
1515 | unsigned const uResult = (a_uResult); \
|
---|
1516 | *(a_puDst) = uResult; \
|
---|
1517 | uint32_t fEfl = *(a_pfEFlags) & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \
|
---|
1518 | if (uResult) \
|
---|
1519 | fEfl |= g_afParity[uResult]; \
|
---|
1520 | else \
|
---|
1521 | fEfl |= X86_EFL_ZF | X86_EFL_PF; \
|
---|
1522 | if (!a_uSrc) \
|
---|
1523 | fEfl |= X86_EFL_CF; \
|
---|
1524 | *(a_pfEFlags) = fEfl; \
|
---|
1525 | } while (0)
|
---|
1526 | #define SET_BIT_CNT_SEARCH_RESULT_AMD(a_puDst, a_uSrc, a_pfEFlags, a_uResult) do { \
|
---|
1527 | unsigned const uResult = (a_uResult); \
|
---|
1528 | *(a_puDst) = uResult; \
|
---|
1529 | uint32_t fEfl = *(a_pfEFlags) & ~(X86_EFL_ZF | X86_EFL_CF); \
|
---|
1530 | if (!uResult) \
|
---|
1531 | fEfl |= X86_EFL_ZF; \
|
---|
1532 | if (!a_uSrc) \
|
---|
1533 | fEfl |= X86_EFL_CF; \
|
---|
1534 | *(a_pfEFlags) = fEfl; \
|
---|
1535 | } while (0)
|
---|
1536 |
|
---|
1537 |
|
---|
1538 | /*
|
---|
1539 | * LZCNT - count leading zero bits.
|
---|
1540 | */
|
---|
1541 | IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1542 | {
|
---|
1543 | iemAImpl_lzcnt_u64_intel(puDst, uSrc, pfEFlags);
|
---|
1544 | }
|
---|
1545 |
|
---|
1546 | IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1547 | {
|
---|
1548 | SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU64(uSrc));
|
---|
1549 | }
|
---|
1550 |
|
---|
1551 | IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1552 | {
|
---|
1553 | SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU64(uSrc));
|
---|
1554 | }
|
---|
1555 |
|
---|
1556 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1557 |
|
---|
1558 | IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1559 | {
|
---|
1560 | iemAImpl_lzcnt_u32_intel(puDst, uSrc, pfEFlags);
|
---|
1561 | }
|
---|
1562 |
|
---|
1563 | IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1564 | {
|
---|
1565 | SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU32(uSrc));
|
---|
1566 | }
|
---|
1567 |
|
---|
1568 | IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1569 | {
|
---|
1570 | SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU32(uSrc));
|
---|
1571 | }
|
---|
1572 |
|
---|
1573 |
|
---|
1574 | IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1575 | {
|
---|
1576 | iemAImpl_lzcnt_u16_intel(puDst, uSrc, pfEFlags);
|
---|
1577 | }
|
---|
1578 |
|
---|
1579 | IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1580 | {
|
---|
1581 | SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU16(uSrc));
|
---|
1582 | }
|
---|
1583 |
|
---|
1584 | IEM_DECL_IMPL_DEF(void, iemAImpl_lzcnt_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1585 | {
|
---|
1586 | SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountLeadingZerosU16(uSrc));
|
---|
1587 | }
|
---|
1588 |
|
---|
1589 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1590 |
|
---|
1591 |
|
---|
1592 | /*
|
---|
1593 | * TZCNT - count leading zero bits.
|
---|
1594 | */
|
---|
1595 | IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1596 | {
|
---|
1597 | iemAImpl_tzcnt_u64_intel(puDst, uSrc, pfEFlags);
|
---|
1598 | }
|
---|
1599 |
|
---|
1600 | IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64_intel,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1601 | {
|
---|
1602 | SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU64(uSrc));
|
---|
1603 | }
|
---|
1604 |
|
---|
1605 | IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u64_amd,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags))
|
---|
1606 | {
|
---|
1607 | SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU64(uSrc));
|
---|
1608 | }
|
---|
1609 |
|
---|
1610 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1611 |
|
---|
1612 | IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1613 | {
|
---|
1614 | iemAImpl_tzcnt_u32_intel(puDst, uSrc, pfEFlags);
|
---|
1615 | }
|
---|
1616 |
|
---|
1617 | IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32_intel,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1618 | {
|
---|
1619 | SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU32(uSrc));
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u32_amd,(uint32_t *puDst, uint32_t uSrc, uint32_t *pfEFlags))
|
---|
1623 | {
|
---|
1624 | SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU32(uSrc));
|
---|
1625 | }
|
---|
1626 |
|
---|
1627 |
|
---|
1628 | IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1629 | {
|
---|
1630 | iemAImpl_tzcnt_u16_intel(puDst, uSrc, pfEFlags);
|
---|
1631 | }
|
---|
1632 |
|
---|
1633 | IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16_intel,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1634 | {
|
---|
1635 | SET_BIT_CNT_SEARCH_RESULT_INTEL(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU16(uSrc));
|
---|
1636 | }
|
---|
1637 |
|
---|
1638 | IEM_DECL_IMPL_DEF(void, iemAImpl_tzcnt_u16_amd,(uint16_t *puDst, uint16_t uSrc, uint32_t *pfEFlags))
|
---|
1639 | {
|
---|
1640 | SET_BIT_CNT_SEARCH_RESULT_AMD(puDst, uSrc, pfEFlags, ASMCountTrailingZerosU16(uSrc));
|
---|
1641 | }
|
---|
1642 |
|
---|
1643 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1644 | #endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1645 |
|
---|
1646 | /*
|
---|
1647 | * BEXTR (BMI1 instruction)
|
---|
1648 | */
|
---|
1649 | #define EMIT_BEXTR(a_cBits, a_Type, a_Suffix) \
|
---|
1650 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_bextr_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc1, \
|
---|
1651 | a_Type uSrc2, uint32_t *pfEFlags)) \
|
---|
1652 | { \
|
---|
1653 | /* uSrc1 is considered virtually zero extended to 512 bits width. */ \
|
---|
1654 | uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \
|
---|
1655 | a_Type uResult; \
|
---|
1656 | uint8_t const iFirstBit = (uint8_t)uSrc2; \
|
---|
1657 | if (iFirstBit < a_cBits) \
|
---|
1658 | { \
|
---|
1659 | uResult = uSrc1 >> iFirstBit; \
|
---|
1660 | uint8_t const cBits = (uint8_t)(uSrc2 >> 8); \
|
---|
1661 | if (cBits < a_cBits) \
|
---|
1662 | uResult &= RT_CONCAT(RT_BIT_,a_cBits)(cBits) - 1; \
|
---|
1663 | *puDst = uResult; \
|
---|
1664 | if (!uResult) \
|
---|
1665 | fEfl |= X86_EFL_ZF; \
|
---|
1666 | } \
|
---|
1667 | else \
|
---|
1668 | { \
|
---|
1669 | *puDst = uResult = 0; \
|
---|
1670 | fEfl |= X86_EFL_ZF; \
|
---|
1671 | } \
|
---|
1672 | /** @todo complete flag calculations. */ \
|
---|
1673 | *pfEFlags = fEfl; \
|
---|
1674 | }
|
---|
1675 |
|
---|
1676 | EMIT_BEXTR(64, uint64_t, _fallback)
|
---|
1677 | EMIT_BEXTR(32, uint32_t, _fallback)
|
---|
1678 | #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1679 | EMIT_BEXTR(64, uint64_t, RT_NOTHING)
|
---|
1680 | #endif
|
---|
1681 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1682 | EMIT_BEXTR(32, uint32_t, RT_NOTHING)
|
---|
1683 | #endif
|
---|
1684 |
|
---|
1685 | /*
|
---|
1686 | * BLSR (BMI1 instruction)
|
---|
1687 | */
|
---|
1688 | #define EMIT_BLSR(a_cBits, a_Type, a_Suffix) \
|
---|
1689 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsr_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \
|
---|
1690 | { \
|
---|
1691 | uint32_t fEfl1 = *pfEFlags; \
|
---|
1692 | uint32_t fEfl2 = fEfl1; \
|
---|
1693 | *puDst = uSrc; \
|
---|
1694 | iemAImpl_sub_u ## a_cBits(&uSrc, 1, &fEfl1); \
|
---|
1695 | iemAImpl_and_u ## a_cBits(puDst, uSrc, &fEfl2); \
|
---|
1696 | \
|
---|
1697 | /* AMD: The carry flag is from the SUB operation. */ \
|
---|
1698 | /* 10890xe: PF always cleared? */ \
|
---|
1699 | fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \
|
---|
1700 | fEfl2 |= fEfl1 & X86_EFL_CF; \
|
---|
1701 | *pfEFlags = fEfl2; \
|
---|
1702 | }
|
---|
1703 |
|
---|
1704 | EMIT_BLSR(64, uint64_t, _fallback)
|
---|
1705 | EMIT_BLSR(32, uint32_t, _fallback)
|
---|
1706 | #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1707 | EMIT_BLSR(64, uint64_t, RT_NOTHING)
|
---|
1708 | #endif
|
---|
1709 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1710 | EMIT_BLSR(32, uint32_t, RT_NOTHING)
|
---|
1711 | #endif
|
---|
1712 |
|
---|
1713 | /*
|
---|
1714 | * BLSMSK (BMI1 instruction)
|
---|
1715 | */
|
---|
1716 | #define EMIT_BLSMSK(a_cBits, a_Type, a_Suffix) \
|
---|
1717 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsmsk_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \
|
---|
1718 | { \
|
---|
1719 | uint32_t fEfl1 = *pfEFlags; \
|
---|
1720 | uint32_t fEfl2 = fEfl1; \
|
---|
1721 | *puDst = uSrc; \
|
---|
1722 | iemAImpl_sub_u ## a_cBits(&uSrc, 1, &fEfl1); \
|
---|
1723 | iemAImpl_xor_u ## a_cBits(puDst, uSrc, &fEfl2); \
|
---|
1724 | \
|
---|
1725 | /* AMD: The carry flag is from the SUB operation. */ \
|
---|
1726 | /* 10890xe: PF always cleared? */ \
|
---|
1727 | fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \
|
---|
1728 | fEfl2 |= fEfl1 & X86_EFL_CF; \
|
---|
1729 | *pfEFlags = fEfl2; \
|
---|
1730 | }
|
---|
1731 |
|
---|
1732 | EMIT_BLSMSK(64, uint64_t, _fallback)
|
---|
1733 | EMIT_BLSMSK(32, uint32_t, _fallback)
|
---|
1734 | #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1735 | EMIT_BLSMSK(64, uint64_t, RT_NOTHING)
|
---|
1736 | #endif
|
---|
1737 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1738 | EMIT_BLSMSK(32, uint32_t, RT_NOTHING)
|
---|
1739 | #endif
|
---|
1740 |
|
---|
1741 | /*
|
---|
1742 | * BLSI (BMI1 instruction)
|
---|
1743 | */
|
---|
1744 | #define EMIT_BLSI(a_cBits, a_Type, a_Suffix) \
|
---|
1745 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_blsi_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \
|
---|
1746 | { \
|
---|
1747 | uint32_t fEfl1 = *pfEFlags; \
|
---|
1748 | uint32_t fEfl2 = fEfl1; \
|
---|
1749 | *puDst = uSrc; \
|
---|
1750 | iemAImpl_neg_u ## a_cBits(&uSrc, &fEfl1); \
|
---|
1751 | iemAImpl_and_u ## a_cBits(puDst, uSrc, &fEfl2); \
|
---|
1752 | \
|
---|
1753 | /* AMD: The carry flag is from the SUB operation. */ \
|
---|
1754 | /* 10890xe: PF always cleared? */ \
|
---|
1755 | fEfl2 &= ~(X86_EFL_CF | X86_EFL_PF); \
|
---|
1756 | fEfl2 |= fEfl1 & X86_EFL_CF; \
|
---|
1757 | *pfEFlags = fEfl2; \
|
---|
1758 | }
|
---|
1759 |
|
---|
1760 | EMIT_BLSI(64, uint64_t, _fallback)
|
---|
1761 | EMIT_BLSI(32, uint32_t, _fallback)
|
---|
1762 | #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1763 | EMIT_BLSI(64, uint64_t, RT_NOTHING)
|
---|
1764 | #endif
|
---|
1765 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1766 | EMIT_BLSI(32, uint32_t, RT_NOTHING)
|
---|
1767 | #endif
|
---|
1768 |
|
---|
1769 | /*
|
---|
1770 | * BZHI (BMI2 instruction)
|
---|
1771 | */
|
---|
1772 | #define EMIT_BZHI(a_cBits, a_Type, a_Suffix) \
|
---|
1773 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_bzhi_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc1, \
|
---|
1774 | a_Type uSrc2, uint32_t *pfEFlags)) \
|
---|
1775 | { \
|
---|
1776 | uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \
|
---|
1777 | a_Type uResult; \
|
---|
1778 | uint8_t const iFirstBit = (uint8_t)uSrc2; \
|
---|
1779 | if (iFirstBit < a_cBits) \
|
---|
1780 | uResult = uSrc1 & (((a_Type)1 << iFirstBit) - 1); \
|
---|
1781 | else \
|
---|
1782 | { \
|
---|
1783 | uResult = uSrc1; \
|
---|
1784 | fEfl |= X86_EFL_CF; \
|
---|
1785 | } \
|
---|
1786 | *puDst = uResult; \
|
---|
1787 | fEfl |= X86_EFL_CALC_ZF(uResult); \
|
---|
1788 | fEfl |= X86_EFL_CALC_SF(uResult, a_cBits); \
|
---|
1789 | *pfEFlags = fEfl; \
|
---|
1790 | }
|
---|
1791 |
|
---|
1792 | EMIT_BZHI(64, uint64_t, _fallback)
|
---|
1793 | EMIT_BZHI(32, uint32_t, _fallback)
|
---|
1794 | #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1795 | EMIT_BZHI(64, uint64_t, RT_NOTHING)
|
---|
1796 | #endif
|
---|
1797 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1798 | EMIT_BZHI(32, uint32_t, RT_NOTHING)
|
---|
1799 | #endif
|
---|
1800 |
|
---|
1801 | /*
|
---|
1802 | * POPCNT
|
---|
1803 | */
|
---|
1804 | RT_ALIGNAS_VAR(64) static uint8_t const g_abBitCounts6[64] =
|
---|
1805 | {
|
---|
1806 | 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
|
---|
1807 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
---|
1808 | 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
---|
1809 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
---|
1810 | };
|
---|
1811 |
|
---|
1812 | /** @todo Use native popcount where possible and employ some more efficient
|
---|
1813 | * algorithm here (or in asm.h fallback)! */
|
---|
1814 |
|
---|
1815 | DECLINLINE(uint8_t) iemPopCountU16(uint16_t u16)
|
---|
1816 | {
|
---|
1817 | return g_abBitCounts6[ u16 & 0x3f]
|
---|
1818 | + g_abBitCounts6[(u16 >> 6) & 0x3f]
|
---|
1819 | + g_abBitCounts6[(u16 >> 12) & 0x3f];
|
---|
1820 | }
|
---|
1821 |
|
---|
1822 | DECLINLINE(uint8_t) iemPopCountU32(uint32_t u32)
|
---|
1823 | {
|
---|
1824 | return g_abBitCounts6[ u32 & 0x3f]
|
---|
1825 | + g_abBitCounts6[(u32 >> 6) & 0x3f]
|
---|
1826 | + g_abBitCounts6[(u32 >> 12) & 0x3f]
|
---|
1827 | + g_abBitCounts6[(u32 >> 18) & 0x3f]
|
---|
1828 | + g_abBitCounts6[(u32 >> 24) & 0x3f]
|
---|
1829 | + g_abBitCounts6[(u32 >> 30) & 0x3f];
|
---|
1830 | }
|
---|
1831 |
|
---|
1832 | DECLINLINE(uint8_t) iemPopCountU64(uint64_t u64)
|
---|
1833 | {
|
---|
1834 | return g_abBitCounts6[ u64 & 0x3f]
|
---|
1835 | + g_abBitCounts6[(u64 >> 6) & 0x3f]
|
---|
1836 | + g_abBitCounts6[(u64 >> 12) & 0x3f]
|
---|
1837 | + g_abBitCounts6[(u64 >> 18) & 0x3f]
|
---|
1838 | + g_abBitCounts6[(u64 >> 24) & 0x3f]
|
---|
1839 | + g_abBitCounts6[(u64 >> 30) & 0x3f]
|
---|
1840 | + g_abBitCounts6[(u64 >> 36) & 0x3f]
|
---|
1841 | + g_abBitCounts6[(u64 >> 42) & 0x3f]
|
---|
1842 | + g_abBitCounts6[(u64 >> 48) & 0x3f]
|
---|
1843 | + g_abBitCounts6[(u64 >> 54) & 0x3f]
|
---|
1844 | + g_abBitCounts6[(u64 >> 60) & 0x3f];
|
---|
1845 | }
|
---|
1846 |
|
---|
1847 | #define EMIT_POPCNT(a_cBits, a_Type, a_Suffix) \
|
---|
1848 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_popcnt_u,a_cBits,a_Suffix),(a_Type *puDst, a_Type uSrc, uint32_t *pfEFlags)) \
|
---|
1849 | { \
|
---|
1850 | uint32_t fEfl = *pfEFlags & ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF); \
|
---|
1851 | a_Type uResult; \
|
---|
1852 | if (uSrc) \
|
---|
1853 | uResult = iemPopCountU ## a_cBits(uSrc); \
|
---|
1854 | else \
|
---|
1855 | { \
|
---|
1856 | fEfl |= X86_EFL_ZF; \
|
---|
1857 | uResult = 0; \
|
---|
1858 | } \
|
---|
1859 | *puDst = uResult; \
|
---|
1860 | *pfEFlags = fEfl; \
|
---|
1861 | }
|
---|
1862 |
|
---|
1863 | EMIT_POPCNT(64, uint64_t, _fallback)
|
---|
1864 | EMIT_POPCNT(32, uint32_t, _fallback)
|
---|
1865 | EMIT_POPCNT(16, uint16_t, _fallback)
|
---|
1866 | #if defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1867 | EMIT_POPCNT(64, uint64_t, RT_NOTHING)
|
---|
1868 | #endif
|
---|
1869 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1870 | EMIT_POPCNT(32, uint32_t, RT_NOTHING)
|
---|
1871 | EMIT_POPCNT(16, uint16_t, RT_NOTHING)
|
---|
1872 | #endif
|
---|
1873 |
|
---|
1874 |
|
---|
1875 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1876 |
|
---|
1877 | /*
|
---|
1878 | * XCHG
|
---|
1879 | */
|
---|
1880 |
|
---|
1881 | IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *puMem, uint64_t *puReg))
|
---|
1882 | {
|
---|
1883 | #if ARCH_BITS >= 64
|
---|
1884 | *puReg = ASMAtomicXchgU64(puMem, *puReg);
|
---|
1885 | #else
|
---|
1886 | uint64_t uOldMem = *puMem;
|
---|
1887 | while (!ASMAtomicCmpXchgExU64(puMem, *puReg, uOldMem, &uOldMem))
|
---|
1888 | ASMNopPause();
|
---|
1889 | *puReg = uOldMem;
|
---|
1890 | #endif
|
---|
1891 | }
|
---|
1892 |
|
---|
1893 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1894 |
|
---|
1895 | IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *puMem, uint32_t *puReg))
|
---|
1896 | {
|
---|
1897 | *puReg = ASMAtomicXchgU32(puMem, *puReg);
|
---|
1898 | }
|
---|
1899 |
|
---|
1900 |
|
---|
1901 | IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *puMem, uint16_t *puReg))
|
---|
1902 | {
|
---|
1903 | *puReg = ASMAtomicXchgU16(puMem, *puReg);
|
---|
1904 | }
|
---|
1905 |
|
---|
1906 |
|
---|
1907 | IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked,(uint8_t *puMem, uint8_t *puReg))
|
---|
1908 | {
|
---|
1909 | *puReg = ASMAtomicXchgU8(puMem, *puReg);
|
---|
1910 | }
|
---|
1911 |
|
---|
1912 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1913 |
|
---|
1914 |
|
---|
1915 | /* Unlocked variants for fDisregardLock mode: */
|
---|
1916 |
|
---|
1917 | IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *puMem, uint64_t *puReg))
|
---|
1918 | {
|
---|
1919 | uint64_t const uOld = *puMem;
|
---|
1920 | *puMem = *puReg;
|
---|
1921 | *puReg = uOld;
|
---|
1922 | }
|
---|
1923 |
|
---|
1924 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1925 |
|
---|
1926 | IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *puMem, uint32_t *puReg))
|
---|
1927 | {
|
---|
1928 | uint32_t const uOld = *puMem;
|
---|
1929 | *puMem = *puReg;
|
---|
1930 | *puReg = uOld;
|
---|
1931 | }
|
---|
1932 |
|
---|
1933 |
|
---|
1934 | IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *puMem, uint16_t *puReg))
|
---|
1935 | {
|
---|
1936 | uint16_t const uOld = *puMem;
|
---|
1937 | *puMem = *puReg;
|
---|
1938 | *puReg = uOld;
|
---|
1939 | }
|
---|
1940 |
|
---|
1941 |
|
---|
1942 | IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked,(uint8_t *puMem, uint8_t *puReg))
|
---|
1943 | {
|
---|
1944 | uint8_t const uOld = *puMem;
|
---|
1945 | *puMem = *puReg;
|
---|
1946 | *puReg = uOld;
|
---|
1947 | }
|
---|
1948 |
|
---|
1949 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1950 |
|
---|
1951 |
|
---|
1952 | /*
|
---|
1953 | * XADD and LOCK XADD.
|
---|
1954 | */
|
---|
1955 | #define EMIT_XADD(a_cBitsWidth, a_Type) \
|
---|
1956 | IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u ## a_cBitsWidth,(a_Type *puDst, a_Type *puReg, uint32_t *pfEFlags)) \
|
---|
1957 | { \
|
---|
1958 | a_Type uDst = *puDst; \
|
---|
1959 | a_Type uResult = uDst; \
|
---|
1960 | iemAImpl_add_u ## a_cBitsWidth(&uResult, *puReg, pfEFlags); \
|
---|
1961 | *puDst = uResult; \
|
---|
1962 | *puReg = uDst; \
|
---|
1963 | } \
|
---|
1964 | \
|
---|
1965 | IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u ## a_cBitsWidth ## _locked,(a_Type *puDst, a_Type *puReg, uint32_t *pfEFlags)) \
|
---|
1966 | { \
|
---|
1967 | a_Type uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \
|
---|
1968 | a_Type uResult; \
|
---|
1969 | uint32_t fEflTmp; \
|
---|
1970 | do \
|
---|
1971 | { \
|
---|
1972 | uResult = uOld; \
|
---|
1973 | fEflTmp = *pfEFlags; \
|
---|
1974 | iemAImpl_add_u ## a_cBitsWidth(&uResult, *puReg, &fEflTmp); \
|
---|
1975 | } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uResult, uOld, &uOld)); \
|
---|
1976 | *puReg = uOld; \
|
---|
1977 | *pfEFlags = fEflTmp; \
|
---|
1978 | }
|
---|
1979 | EMIT_XADD(64, uint64_t)
|
---|
1980 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1981 | EMIT_XADD(32, uint32_t)
|
---|
1982 | EMIT_XADD(16, uint16_t)
|
---|
1983 | EMIT_XADD(8, uint8_t)
|
---|
1984 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
1985 |
|
---|
1986 | #endif
|
---|
1987 |
|
---|
1988 | /*
|
---|
1989 | * CMPXCHG, CMPXCHG8B, CMPXCHG16B
|
---|
1990 | *
|
---|
1991 | * Note! We don't have non-locking/atomic cmpxchg primitives, so all cmpxchg
|
---|
1992 | * instructions are emulated as locked.
|
---|
1993 | */
|
---|
1994 | #if defined(IEM_WITHOUT_ASSEMBLY)
|
---|
1995 |
|
---|
1996 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags))
|
---|
1997 | {
|
---|
1998 | uint8_t uOld = *puAl;
|
---|
1999 | if (ASMAtomicCmpXchgExU8(pu8Dst, uSrcReg, uOld, puAl))
|
---|
2000 | Assert(*puAl == uOld);
|
---|
2001 | iemAImpl_cmp_u8(&uOld, *puAl, pEFlags);
|
---|
2002 | }
|
---|
2003 |
|
---|
2004 |
|
---|
2005 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags))
|
---|
2006 | {
|
---|
2007 | uint16_t uOld = *puAx;
|
---|
2008 | if (ASMAtomicCmpXchgExU16(pu16Dst, uSrcReg, uOld, puAx))
|
---|
2009 | Assert(*puAx == uOld);
|
---|
2010 | iemAImpl_cmp_u16(&uOld, *puAx, pEFlags);
|
---|
2011 | }
|
---|
2012 |
|
---|
2013 |
|
---|
2014 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags))
|
---|
2015 | {
|
---|
2016 | uint32_t uOld = *puEax;
|
---|
2017 | if (ASMAtomicCmpXchgExU32(pu32Dst, uSrcReg, uOld, puEax))
|
---|
2018 | Assert(*puEax == uOld);
|
---|
2019 | iemAImpl_cmp_u32(&uOld, *puEax, pEFlags);
|
---|
2020 | }
|
---|
2021 |
|
---|
2022 |
|
---|
2023 | # if ARCH_BITS == 32
|
---|
2024 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags))
|
---|
2025 | # else
|
---|
2026 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags))
|
---|
2027 | # endif
|
---|
2028 | {
|
---|
2029 | # if ARCH_BITS == 32
|
---|
2030 | uint64_t const uSrcReg = *puSrcReg;
|
---|
2031 | # endif
|
---|
2032 | uint64_t uOld = *puRax;
|
---|
2033 | if (ASMAtomicCmpXchgExU64(pu64Dst, uSrcReg, uOld, puRax))
|
---|
2034 | Assert(*puRax == uOld);
|
---|
2035 | iemAImpl_cmp_u64(&uOld, *puRax, pEFlags);
|
---|
2036 | }
|
---|
2037 |
|
---|
2038 |
|
---|
2039 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
|
---|
2040 | uint32_t *pEFlags))
|
---|
2041 | {
|
---|
2042 | uint64_t const uNew = pu64EbxEcx->u;
|
---|
2043 | uint64_t const uOld = pu64EaxEdx->u;
|
---|
2044 | if (ASMAtomicCmpXchgExU64(pu64Dst, uNew, uOld, &pu64EaxEdx->u))
|
---|
2045 | {
|
---|
2046 | Assert(pu64EaxEdx->u == uOld);
|
---|
2047 | *pEFlags |= X86_EFL_ZF;
|
---|
2048 | }
|
---|
2049 | else
|
---|
2050 | *pEFlags &= ~X86_EFL_ZF;
|
---|
2051 | }
|
---|
2052 |
|
---|
2053 |
|
---|
2054 | # if defined(RT_ARCH_AMD64) || defined(RT_ARCH_ARM64)
|
---|
2055 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
|
---|
2056 | uint32_t *pEFlags))
|
---|
2057 | {
|
---|
2058 | # ifdef VBOX_STRICT
|
---|
2059 | RTUINT128U const uOld = *pu128RaxRdx;
|
---|
2060 | # endif
|
---|
2061 | # if defined(RT_ARCH_AMD64)
|
---|
2062 | if (ASMAtomicCmpXchgU128v2(&pu128Dst->u, pu128RbxRcx->s.Hi, pu128RbxRcx->s.Lo, pu128RaxRdx->s.Hi, pu128RaxRdx->s.Lo,
|
---|
2063 | &pu128RaxRdx->u))
|
---|
2064 | # else
|
---|
2065 | if (ASMAtomicCmpXchgU128(&pu128Dst->u, pu128RbxRcx->u, pu128RaxRdx->u, &pu128RaxRdx->u))
|
---|
2066 | # endif
|
---|
2067 | {
|
---|
2068 | Assert(pu128RaxRdx->s.Lo == uOld.s.Lo && pu128RaxRdx->s.Hi == uOld.s.Hi);
|
---|
2069 | *pEFlags |= X86_EFL_ZF;
|
---|
2070 | }
|
---|
2071 | else
|
---|
2072 | *pEFlags &= ~X86_EFL_ZF;
|
---|
2073 | }
|
---|
2074 | # endif
|
---|
2075 |
|
---|
2076 | #endif /* defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2077 |
|
---|
2078 | # if !defined(RT_ARCH_ARM64) /** @todo may need this for unaligned accesses... */
|
---|
2079 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
|
---|
2080 | PRTUINT128U pu128RbxRcx, uint32_t *pEFlags))
|
---|
2081 | {
|
---|
2082 | RTUINT128U u128Tmp = *pu128Dst;
|
---|
2083 | if ( u128Tmp.s.Lo == pu128RaxRdx->s.Lo
|
---|
2084 | && u128Tmp.s.Hi == pu128RaxRdx->s.Hi)
|
---|
2085 | {
|
---|
2086 | *pu128Dst = *pu128RbxRcx;
|
---|
2087 | *pEFlags |= X86_EFL_ZF;
|
---|
2088 | }
|
---|
2089 | else
|
---|
2090 | {
|
---|
2091 | *pu128RaxRdx = u128Tmp;
|
---|
2092 | *pEFlags &= ~X86_EFL_ZF;
|
---|
2093 | }
|
---|
2094 | }
|
---|
2095 | #endif /* !RT_ARCH_ARM64 */
|
---|
2096 |
|
---|
2097 | #if defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2098 |
|
---|
2099 | /* Unlocked versions mapped to the locked ones: */
|
---|
2100 |
|
---|
2101 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags))
|
---|
2102 | {
|
---|
2103 | iemAImpl_cmpxchg_u8_locked(pu8Dst, puAl, uSrcReg, pEFlags);
|
---|
2104 | }
|
---|
2105 |
|
---|
2106 |
|
---|
2107 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags))
|
---|
2108 | {
|
---|
2109 | iemAImpl_cmpxchg_u16_locked(pu16Dst, puAx, uSrcReg, pEFlags);
|
---|
2110 | }
|
---|
2111 |
|
---|
2112 |
|
---|
2113 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags))
|
---|
2114 | {
|
---|
2115 | iemAImpl_cmpxchg_u32_locked(pu32Dst, puEax, uSrcReg, pEFlags);
|
---|
2116 | }
|
---|
2117 |
|
---|
2118 |
|
---|
2119 | # if ARCH_BITS == 32
|
---|
2120 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags))
|
---|
2121 | {
|
---|
2122 | iemAImpl_cmpxchg_u64_locked(pu64Dst, puRax, puSrcReg, pEFlags);
|
---|
2123 | }
|
---|
2124 | # else
|
---|
2125 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags))
|
---|
2126 | {
|
---|
2127 | iemAImpl_cmpxchg_u64_locked(pu64Dst, puRax, uSrcReg, pEFlags);
|
---|
2128 | }
|
---|
2129 | # endif
|
---|
2130 |
|
---|
2131 |
|
---|
2132 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx, uint32_t *pEFlags))
|
---|
2133 | {
|
---|
2134 | iemAImpl_cmpxchg8b_locked(pu64Dst, pu64EaxEdx, pu64EbxEcx, pEFlags);
|
---|
2135 | }
|
---|
2136 |
|
---|
2137 |
|
---|
2138 | IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
|
---|
2139 | uint32_t *pEFlags))
|
---|
2140 | {
|
---|
2141 | iemAImpl_cmpxchg16b_locked(pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
|
---|
2142 | }
|
---|
2143 |
|
---|
2144 | #endif /* defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2145 |
|
---|
2146 | #if (!defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)) \
|
---|
2147 | && !defined(DOXYGEN_RUNNING) /* Doxygen has some groking issues here and ends up mixing up input. Not worth tracking down now. */
|
---|
2148 |
|
---|
2149 | /*
|
---|
2150 | * MUL, IMUL, DIV and IDIV helpers.
|
---|
2151 | *
|
---|
2152 | * - The U64 versions must use 128-bit intermediates, so we need to abstract the
|
---|
2153 | * division step so we can select between using C operators and
|
---|
2154 | * RTUInt128DivRem/RTUInt128MulU64ByU64.
|
---|
2155 | *
|
---|
2156 | * - The U8 versions work returns output in AL + AH instead of xDX + xAX, with the
|
---|
2157 | * IDIV/DIV taking all the input in AX too. This means we have to abstract some
|
---|
2158 | * input loads and the result storing.
|
---|
2159 | */
|
---|
2160 |
|
---|
2161 | DECLINLINE(void) RTUInt128DivRemByU64(PRTUINT128U pQuotient, PRTUINT128U pRemainder, PCRTUINT128U pDividend, uint64_t u64Divisor)
|
---|
2162 | {
|
---|
2163 | # ifdef __GNUC__ /* GCC maybe really annoying in function. */
|
---|
2164 | pQuotient->s.Lo = 0;
|
---|
2165 | pQuotient->s.Hi = 0;
|
---|
2166 | # endif
|
---|
2167 | RTUINT128U Divisor;
|
---|
2168 | Divisor.s.Lo = u64Divisor;
|
---|
2169 | Divisor.s.Hi = 0;
|
---|
2170 | RTUInt128DivRem(pQuotient, pRemainder, pDividend, &Divisor);
|
---|
2171 | }
|
---|
2172 |
|
---|
2173 | # define DIV_LOAD(a_Dividend) \
|
---|
2174 | a_Dividend.s.Lo = *puA, a_Dividend.s.Hi = *puD
|
---|
2175 | # define DIV_LOAD_U8(a_Dividend) \
|
---|
2176 | a_Dividend.u = *puAX
|
---|
2177 |
|
---|
2178 | # define DIV_STORE(a_Quotient, a_uReminder) *puA = (a_Quotient), *puD = (a_uReminder)
|
---|
2179 | # define DIV_STORE_U8(a_Quotient, a_uReminder) *puAX = (uint8_t)(a_Quotient) | ((uint16_t)(a_uReminder) << 8)
|
---|
2180 |
|
---|
2181 | # define MUL_LOAD_F1() *puA
|
---|
2182 | # define MUL_LOAD_F1_U8() ((uint8_t)*puAX)
|
---|
2183 |
|
---|
2184 | # define MUL_STORE(a_Result) *puA = (a_Result).s.Lo, *puD = (a_Result).s.Hi
|
---|
2185 | # define MUL_STORE_U8(a_Result) *puAX = a_Result.u
|
---|
2186 |
|
---|
2187 | # define MULDIV_NEG(a_Value, a_cBitsWidth2x) \
|
---|
2188 | (a_Value).u = UINT ## a_cBitsWidth2x ## _C(0) - (a_Value).u
|
---|
2189 | # define MULDIV_NEG_U128(a_Value, a_cBitsWidth2x) \
|
---|
2190 | RTUInt128AssignNeg(&(a_Value))
|
---|
2191 |
|
---|
2192 | # define MULDIV_MUL(a_Result, a_Factor1, a_Factor2, a_cBitsWidth2x) \
|
---|
2193 | (a_Result).u = (uint ## a_cBitsWidth2x ## _t)(a_Factor1) * (a_Factor2)
|
---|
2194 | # define MULDIV_MUL_U128(a_Result, a_Factor1, a_Factor2, a_cBitsWidth2x) \
|
---|
2195 | RTUInt128MulU64ByU64(&(a_Result), a_Factor1, a_Factor2);
|
---|
2196 |
|
---|
2197 | # define MULDIV_MODDIV(a_Quotient, a_Remainder, a_Dividend, a_uDivisor) \
|
---|
2198 | a_Quotient.u = (a_Dividend).u / (a_uDivisor), \
|
---|
2199 | a_Remainder.u = (a_Dividend).u % (a_uDivisor)
|
---|
2200 | # define MULDIV_MODDIV_U128(a_Quotient, a_Remainder, a_Dividend, a_uDivisor) \
|
---|
2201 | RTUInt128DivRemByU64(&a_Quotient, &a_Remainder, &a_Dividend, a_uDivisor)
|
---|
2202 |
|
---|
2203 |
|
---|
2204 | /*
|
---|
2205 | * MUL
|
---|
2206 | */
|
---|
2207 | # define EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, a_Suffix, a_fIntelFlags) \
|
---|
2208 | IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_mul_u,a_cBitsWidth,a_Suffix), a_Args) \
|
---|
2209 | { \
|
---|
2210 | RTUINT ## a_cBitsWidth2x ## U Result; \
|
---|
2211 | a_fnMul(Result, a_fnLoadF1(), uFactor, a_cBitsWidth2x); \
|
---|
2212 | a_fnStore(Result); \
|
---|
2213 | \
|
---|
2214 | /* Calc EFLAGS: */ \
|
---|
2215 | uint32_t fEfl = *pfEFlags; \
|
---|
2216 | if (a_fIntelFlags) \
|
---|
2217 | { /* Intel: 6700K and 10980XE behavior */ \
|
---|
2218 | fEfl &= ~(X86_EFL_SF | X86_EFL_CF | X86_EFL_OF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF); \
|
---|
2219 | if (Result.s.Lo & RT_BIT_64(a_cBitsWidth - 1)) \
|
---|
2220 | fEfl |= X86_EFL_SF; \
|
---|
2221 | fEfl |= g_afParity[Result.s.Lo & 0xff]; \
|
---|
2222 | if (Result.s.Hi != 0) \
|
---|
2223 | fEfl |= X86_EFL_CF | X86_EFL_OF; \
|
---|
2224 | } \
|
---|
2225 | else \
|
---|
2226 | { /* AMD: 3990X */ \
|
---|
2227 | if (Result.s.Hi != 0) \
|
---|
2228 | fEfl |= X86_EFL_CF | X86_EFL_OF; \
|
---|
2229 | else \
|
---|
2230 | fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \
|
---|
2231 | } \
|
---|
2232 | *pfEFlags = fEfl; \
|
---|
2233 | return 0; \
|
---|
2234 | } \
|
---|
2235 |
|
---|
2236 | # define EMIT_MUL(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul) \
|
---|
2237 | EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, RT_NOTHING, 1) \
|
---|
2238 | EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, _intel, 1) \
|
---|
2239 | EMIT_MUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnMul, _amd, 0) \
|
---|
2240 |
|
---|
2241 | # ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */
|
---|
2242 | EMIT_MUL(64, 128, (uint64_t *puA, uint64_t *puD, uint64_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags),
|
---|
2243 | MUL_LOAD_F1, MUL_STORE, MULDIV_MUL_U128)
|
---|
2244 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2245 | EMIT_MUL(32, 64, (uint32_t *puA, uint32_t *puD, uint32_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags),
|
---|
2246 | MUL_LOAD_F1, MUL_STORE, MULDIV_MUL)
|
---|
2247 | EMIT_MUL(16, 32, (uint16_t *puA, uint16_t *puD, uint16_t uFactor, uint32_t *pfEFlags), (puA, puD, uFactor, pfEFlags),
|
---|
2248 | MUL_LOAD_F1, MUL_STORE, MULDIV_MUL)
|
---|
2249 | EMIT_MUL(8, 16, (uint16_t *puAX, uint8_t uFactor, uint32_t *pfEFlags), (puAX, uFactor, pfEFlags),
|
---|
2250 | MUL_LOAD_F1_U8, MUL_STORE_U8, MULDIV_MUL)
|
---|
2251 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2252 | # endif /* !DOXYGEN_RUNNING */
|
---|
2253 |
|
---|
2254 | /*
|
---|
2255 | * MULX
|
---|
2256 | */
|
---|
2257 | # define EMIT_MULX(a_cBitsWidth, a_cBitsWidth2x, a_uType, a_fnMul, a_Suffix) \
|
---|
2258 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_mulx_u,a_cBitsWidth,a_Suffix), \
|
---|
2259 | (a_uType *puDst1, a_uType *puDst2, a_uType uSrc1, a_uType uSrc2)) \
|
---|
2260 | { \
|
---|
2261 | RTUINT ## a_cBitsWidth2x ## U Result; \
|
---|
2262 | a_fnMul(Result, uSrc1, uSrc2, a_cBitsWidth2x); \
|
---|
2263 | *puDst2 = Result.s.Lo; /* Lower part first, as we should return the high part when puDst2 == puDst1. */ \
|
---|
2264 | *puDst1 = Result.s.Hi; \
|
---|
2265 | } \
|
---|
2266 |
|
---|
2267 | # ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */
|
---|
2268 | EMIT_MULX(64, 128, uint64_t, MULDIV_MUL_U128, RT_NOTHING)
|
---|
2269 | EMIT_MULX(64, 128, uint64_t, MULDIV_MUL_U128, _fallback)
|
---|
2270 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2271 | EMIT_MULX(32, 64, uint32_t, MULDIV_MUL, RT_NOTHING)
|
---|
2272 | EMIT_MULX(32, 64, uint32_t, MULDIV_MUL, _fallback)
|
---|
2273 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2274 | # endif /* !DOXYGEN_RUNNING */
|
---|
2275 |
|
---|
2276 |
|
---|
2277 | /*
|
---|
2278 | * IMUL
|
---|
2279 | *
|
---|
2280 | * The SF, ZF, AF and PF flags are "undefined". AMD (3990x) leaves these
|
---|
2281 | * flags as is. Whereas Intel skylake (6700K and 10980X (Cascade Lake)) always
|
---|
2282 | * clear AF and ZF and calculates SF and PF as per the lower half of the result.
|
---|
2283 | */
|
---|
2284 | # define EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, \
|
---|
2285 | a_Suffix, a_fIntelFlags) \
|
---|
2286 | IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_imul_u,a_cBitsWidth,a_Suffix),a_Args) \
|
---|
2287 | { \
|
---|
2288 | RTUINT ## a_cBitsWidth2x ## U Result; \
|
---|
2289 | uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF); \
|
---|
2290 | \
|
---|
2291 | uint ## a_cBitsWidth ## _t const uFactor1 = a_fnLoadF1(); \
|
---|
2292 | if (!(uFactor1 & RT_BIT_64(a_cBitsWidth - 1))) \
|
---|
2293 | { \
|
---|
2294 | if (!(uFactor2 & RT_BIT_64(a_cBitsWidth - 1))) \
|
---|
2295 | { \
|
---|
2296 | a_fnMul(Result, uFactor1, uFactor2, a_cBitsWidth2x); \
|
---|
2297 | if (Result.s.Hi != 0 || Result.s.Lo >= RT_BIT_64(a_cBitsWidth - 1)) \
|
---|
2298 | fEfl |= X86_EFL_CF | X86_EFL_OF; \
|
---|
2299 | } \
|
---|
2300 | else \
|
---|
2301 | { \
|
---|
2302 | uint ## a_cBitsWidth ## _t const uPositiveFactor2 = UINT ## a_cBitsWidth ## _C(0) - uFactor2; \
|
---|
2303 | a_fnMul(Result, uFactor1, uPositiveFactor2, a_cBitsWidth2x); \
|
---|
2304 | if (Result.s.Hi != 0 || Result.s.Lo > RT_BIT_64(a_cBitsWidth - 1)) \
|
---|
2305 | fEfl |= X86_EFL_CF | X86_EFL_OF; \
|
---|
2306 | a_fnNeg(Result, a_cBitsWidth2x); \
|
---|
2307 | } \
|
---|
2308 | } \
|
---|
2309 | else \
|
---|
2310 | { \
|
---|
2311 | if (!(uFactor2 & RT_BIT_64(a_cBitsWidth - 1))) \
|
---|
2312 | { \
|
---|
2313 | uint ## a_cBitsWidth ## _t const uPositiveFactor1 = UINT ## a_cBitsWidth ## _C(0) - uFactor1; \
|
---|
2314 | a_fnMul(Result, uPositiveFactor1, uFactor2, a_cBitsWidth2x); \
|
---|
2315 | if (Result.s.Hi != 0 || Result.s.Lo > RT_BIT_64(a_cBitsWidth - 1)) \
|
---|
2316 | fEfl |= X86_EFL_CF | X86_EFL_OF; \
|
---|
2317 | a_fnNeg(Result, a_cBitsWidth2x); \
|
---|
2318 | } \
|
---|
2319 | else \
|
---|
2320 | { \
|
---|
2321 | uint ## a_cBitsWidth ## _t const uPositiveFactor1 = UINT ## a_cBitsWidth ## _C(0) - uFactor1; \
|
---|
2322 | uint ## a_cBitsWidth ## _t const uPositiveFactor2 = UINT ## a_cBitsWidth ## _C(0) - uFactor2; \
|
---|
2323 | a_fnMul(Result, uPositiveFactor1, uPositiveFactor2, a_cBitsWidth2x); \
|
---|
2324 | if (Result.s.Hi != 0 || Result.s.Lo >= RT_BIT_64(a_cBitsWidth - 1)) \
|
---|
2325 | fEfl |= X86_EFL_CF | X86_EFL_OF; \
|
---|
2326 | } \
|
---|
2327 | } \
|
---|
2328 | a_fnStore(Result); \
|
---|
2329 | \
|
---|
2330 | if (a_fIntelFlags) \
|
---|
2331 | { \
|
---|
2332 | fEfl &= ~(X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_PF); \
|
---|
2333 | if (Result.s.Lo & RT_BIT_64(a_cBitsWidth - 1)) \
|
---|
2334 | fEfl |= X86_EFL_SF; \
|
---|
2335 | fEfl |= g_afParity[Result.s.Lo & 0xff]; \
|
---|
2336 | } \
|
---|
2337 | *pfEFlags = fEfl; \
|
---|
2338 | return 0; \
|
---|
2339 | }
|
---|
2340 | # define EMIT_IMUL(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul) \
|
---|
2341 | EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, RT_NOTHING, 1) \
|
---|
2342 | EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, _intel, 1) \
|
---|
2343 | EMIT_IMUL_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoadF1, a_fnStore, a_fnNeg, a_fnMul, _amd, 0)
|
---|
2344 |
|
---|
2345 | # ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */
|
---|
2346 | EMIT_IMUL(64, 128, (uint64_t *puA, uint64_t *puD, uint64_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags),
|
---|
2347 | MUL_LOAD_F1, MUL_STORE, MULDIV_NEG_U128, MULDIV_MUL_U128)
|
---|
2348 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2349 | EMIT_IMUL(32, 64, (uint32_t *puA, uint32_t *puD, uint32_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags),
|
---|
2350 | MUL_LOAD_F1, MUL_STORE, MULDIV_NEG, MULDIV_MUL)
|
---|
2351 | EMIT_IMUL(16, 32, (uint16_t *puA, uint16_t *puD, uint16_t uFactor2, uint32_t *pfEFlags), (puA, puD, uFactor2, pfEFlags),
|
---|
2352 | MUL_LOAD_F1, MUL_STORE, MULDIV_NEG, MULDIV_MUL)
|
---|
2353 | EMIT_IMUL(8, 16, (uint16_t *puAX, uint8_t uFactor2, uint32_t *pfEFlags), (puAX, uFactor2, pfEFlags),
|
---|
2354 | MUL_LOAD_F1_U8, MUL_STORE_U8, MULDIV_NEG, MULDIV_MUL)
|
---|
2355 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2356 | # endif /* !DOXYGEN_RUNNING */
|
---|
2357 |
|
---|
2358 |
|
---|
2359 | /*
|
---|
2360 | * IMUL with two operands are mapped onto the three operand variant, ignoring
|
---|
2361 | * the high part of the product.
|
---|
2362 | */
|
---|
2363 | # define EMIT_IMUL_TWO(a_cBits, a_uType) \
|
---|
2364 | IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \
|
---|
2365 | { \
|
---|
2366 | a_uType uIgn; \
|
---|
2367 | iemAImpl_imul_u ## a_cBits(puDst, &uIgn, uSrc, pfEFlags); \
|
---|
2368 | } \
|
---|
2369 | \
|
---|
2370 | IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits ## _intel,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \
|
---|
2371 | { \
|
---|
2372 | a_uType uIgn; \
|
---|
2373 | iemAImpl_imul_u ## a_cBits ## _intel(puDst, &uIgn, uSrc, pfEFlags); \
|
---|
2374 | } \
|
---|
2375 | \
|
---|
2376 | IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u ## a_cBits ## _amd,(a_uType *puDst, a_uType uSrc, uint32_t *pfEFlags)) \
|
---|
2377 | { \
|
---|
2378 | a_uType uIgn; \
|
---|
2379 | iemAImpl_imul_u ## a_cBits ## _amd(puDst, &uIgn, uSrc, pfEFlags); \
|
---|
2380 | }
|
---|
2381 |
|
---|
2382 | EMIT_IMUL_TWO(64, uint64_t)
|
---|
2383 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2384 | EMIT_IMUL_TWO(32, uint32_t)
|
---|
2385 | EMIT_IMUL_TWO(16, uint16_t)
|
---|
2386 | # endif
|
---|
2387 |
|
---|
2388 |
|
---|
2389 | /*
|
---|
2390 | * DIV
|
---|
2391 | */
|
---|
2392 | # define EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, \
|
---|
2393 | a_Suffix, a_fIntelFlags) \
|
---|
2394 | IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_div_u,a_cBitsWidth,a_Suffix),a_Args) \
|
---|
2395 | { \
|
---|
2396 | RTUINT ## a_cBitsWidth2x ## U Dividend; \
|
---|
2397 | a_fnLoad(Dividend); \
|
---|
2398 | if ( uDivisor != 0 \
|
---|
2399 | && Dividend.s.Hi < uDivisor) \
|
---|
2400 | { \
|
---|
2401 | RTUINT ## a_cBitsWidth2x ## U Remainder, Quotient; \
|
---|
2402 | a_fnDivRem(Quotient, Remainder, Dividend, uDivisor); \
|
---|
2403 | a_fnStore(Quotient.s.Lo, Remainder.s.Lo); \
|
---|
2404 | \
|
---|
2405 | /* Calc EFLAGS: Intel 6700K and 10980XE leaves them alone. AMD 3990X sets AF and clears PF, ZF and SF. */ \
|
---|
2406 | if (!a_fIntelFlags) \
|
---|
2407 | *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \
|
---|
2408 | return 0; \
|
---|
2409 | } \
|
---|
2410 | /* #DE */ \
|
---|
2411 | return -1; \
|
---|
2412 | }
|
---|
2413 | # define EMIT_DIV(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem) \
|
---|
2414 | EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, RT_NOTHING, 1) \
|
---|
2415 | EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, _intel, 1) \
|
---|
2416 | EMIT_DIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnDivRem, _amd, 0)
|
---|
2417 |
|
---|
2418 | # ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */
|
---|
2419 | EMIT_DIV(64,128,(uint64_t *puA, uint64_t *puD, uint64_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
|
---|
2420 | DIV_LOAD, DIV_STORE, MULDIV_MODDIV_U128)
|
---|
2421 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2422 | EMIT_DIV(32,64, (uint32_t *puA, uint32_t *puD, uint32_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
|
---|
2423 | DIV_LOAD, DIV_STORE, MULDIV_MODDIV)
|
---|
2424 | EMIT_DIV(16,32, (uint16_t *puA, uint16_t *puD, uint16_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
|
---|
2425 | DIV_LOAD, DIV_STORE, MULDIV_MODDIV)
|
---|
2426 | EMIT_DIV(8,16, (uint16_t *puAX, uint8_t uDivisor, uint32_t *pfEFlags), (puAX, uDivisor, pfEFlags),
|
---|
2427 | DIV_LOAD_U8, DIV_STORE_U8, MULDIV_MODDIV)
|
---|
2428 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2429 | # endif /* !DOXYGEN_RUNNING */
|
---|
2430 |
|
---|
2431 |
|
---|
2432 | /*
|
---|
2433 | * IDIV
|
---|
2434 | *
|
---|
2435 | * EFLAGS are ignored and left as-is by Intel 6700K and 10980XE. AMD 3990X will
|
---|
2436 | * set AF and clear PF, ZF and SF just like it does for DIV.
|
---|
2437 | *
|
---|
2438 | */
|
---|
2439 | # define EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, \
|
---|
2440 | a_Suffix, a_fIntelFlags) \
|
---|
2441 | IEM_DECL_IMPL_DEF(int, RT_CONCAT3(iemAImpl_idiv_u,a_cBitsWidth,a_Suffix),a_Args) \
|
---|
2442 | { \
|
---|
2443 | /* Note! Skylake leaves all flags alone. */ \
|
---|
2444 | \
|
---|
2445 | /** @todo overflow checks */ \
|
---|
2446 | if (uDivisor != 0) \
|
---|
2447 | { \
|
---|
2448 | /* \
|
---|
2449 | * Convert to unsigned division. \
|
---|
2450 | */ \
|
---|
2451 | RTUINT ## a_cBitsWidth2x ## U Dividend; \
|
---|
2452 | a_fnLoad(Dividend); \
|
---|
2453 | bool const fSignedDividend = RT_BOOL(Dividend.s.Hi & RT_BIT_64(a_cBitsWidth - 1)); \
|
---|
2454 | if (fSignedDividend) \
|
---|
2455 | a_fnNeg(Dividend, a_cBitsWidth2x); \
|
---|
2456 | \
|
---|
2457 | uint ## a_cBitsWidth ## _t uDivisorPositive; \
|
---|
2458 | if (!(uDivisor & RT_BIT_64(a_cBitsWidth - 1))) \
|
---|
2459 | uDivisorPositive = uDivisor; \
|
---|
2460 | else \
|
---|
2461 | uDivisorPositive = UINT ## a_cBitsWidth ## _C(0) - uDivisor; \
|
---|
2462 | \
|
---|
2463 | RTUINT ## a_cBitsWidth2x ## U Remainder, Quotient; \
|
---|
2464 | a_fnDivRem(Quotient, Remainder, Dividend, uDivisorPositive); \
|
---|
2465 | \
|
---|
2466 | /* \
|
---|
2467 | * Setup the result, checking for overflows. \
|
---|
2468 | */ \
|
---|
2469 | if (!(uDivisor & RT_BIT_64(a_cBitsWidth - 1))) \
|
---|
2470 | { \
|
---|
2471 | if (!fSignedDividend) \
|
---|
2472 | { \
|
---|
2473 | /* Positive divisor, positive dividend => result positive. */ \
|
---|
2474 | if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint ## a_cBitsWidth ## _t)INT ## a_cBitsWidth ## _MAX) \
|
---|
2475 | { \
|
---|
2476 | a_fnStore(Quotient.s.Lo, Remainder.s.Lo); \
|
---|
2477 | if (!a_fIntelFlags) \
|
---|
2478 | *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \
|
---|
2479 | return 0; \
|
---|
2480 | } \
|
---|
2481 | } \
|
---|
2482 | else \
|
---|
2483 | { \
|
---|
2484 | /* Positive divisor, negative dividend => result negative. */ \
|
---|
2485 | if (Quotient.s.Hi == 0 && Quotient.s.Lo <= RT_BIT_64(a_cBitsWidth - 1)) \
|
---|
2486 | { \
|
---|
2487 | a_fnStore(UINT ## a_cBitsWidth ## _C(0) - Quotient.s.Lo, UINT ## a_cBitsWidth ## _C(0) - Remainder.s.Lo); \
|
---|
2488 | if (!a_fIntelFlags) \
|
---|
2489 | *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \
|
---|
2490 | return 0; \
|
---|
2491 | } \
|
---|
2492 | } \
|
---|
2493 | } \
|
---|
2494 | else \
|
---|
2495 | { \
|
---|
2496 | if (!fSignedDividend) \
|
---|
2497 | { \
|
---|
2498 | /* Negative divisor, positive dividend => negative quotient, positive remainder. */ \
|
---|
2499 | if (Quotient.s.Hi == 0 && Quotient.s.Lo <= RT_BIT_64(a_cBitsWidth - 1)) \
|
---|
2500 | { \
|
---|
2501 | a_fnStore(UINT ## a_cBitsWidth ## _C(0) - Quotient.s.Lo, Remainder.s.Lo); \
|
---|
2502 | if (!a_fIntelFlags) \
|
---|
2503 | *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \
|
---|
2504 | return 0; \
|
---|
2505 | } \
|
---|
2506 | } \
|
---|
2507 | else \
|
---|
2508 | { \
|
---|
2509 | /* Negative divisor, negative dividend => positive quotient, negative remainder. */ \
|
---|
2510 | if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint ## a_cBitsWidth ## _t)INT ## a_cBitsWidth ## _MAX) \
|
---|
2511 | { \
|
---|
2512 | a_fnStore(Quotient.s.Lo, UINT ## a_cBitsWidth ## _C(0) - Remainder.s.Lo); \
|
---|
2513 | if (!a_fIntelFlags) \
|
---|
2514 | *pfEFlags = (*pfEFlags & ~(X86_EFL_PF | X86_EFL_ZF | X86_EFL_SF)) | X86_EFL_AF; \
|
---|
2515 | return 0; \
|
---|
2516 | } \
|
---|
2517 | } \
|
---|
2518 | } \
|
---|
2519 | } \
|
---|
2520 | /* #DE */ \
|
---|
2521 | return -1; \
|
---|
2522 | }
|
---|
2523 | # define EMIT_IDIV(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem) \
|
---|
2524 | EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, RT_NOTHING, 1) \
|
---|
2525 | EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, _intel, 1) \
|
---|
2526 | EMIT_IDIV_INNER(a_cBitsWidth, a_cBitsWidth2x, a_Args, a_CallArgs, a_fnLoad, a_fnStore, a_fnNeg, a_fnDivRem, _amd, 0)
|
---|
2527 |
|
---|
2528 | # ifndef DOXYGEN_RUNNING /* this totally confuses doxygen for some reason */
|
---|
2529 | EMIT_IDIV(64,128,(uint64_t *puA, uint64_t *puD, uint64_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
|
---|
2530 | DIV_LOAD, DIV_STORE, MULDIV_NEG_U128, MULDIV_MODDIV_U128)
|
---|
2531 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2532 | EMIT_IDIV(32,64,(uint32_t *puA, uint32_t *puD, uint32_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
|
---|
2533 | DIV_LOAD, DIV_STORE, MULDIV_NEG, MULDIV_MODDIV)
|
---|
2534 | EMIT_IDIV(16,32,(uint16_t *puA, uint16_t *puD, uint16_t uDivisor, uint32_t *pfEFlags), (puA, puD, uDivisor, pfEFlags),
|
---|
2535 | DIV_LOAD, DIV_STORE, MULDIV_NEG, MULDIV_MODDIV)
|
---|
2536 | EMIT_IDIV(8,16,(uint16_t *puAX, uint8_t uDivisor, uint32_t *pfEFlags), (puAX, uDivisor, pfEFlags),
|
---|
2537 | DIV_LOAD_U8, DIV_STORE_U8, MULDIV_NEG, MULDIV_MODDIV)
|
---|
2538 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2539 | # endif /* !DOXYGEN_RUNNING */
|
---|
2540 |
|
---|
2541 | #endif /* (!defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)) && !defined(DOXYGEN_RUNNING) */
|
---|
2542 |
|
---|
2543 |
|
---|
2544 | /*********************************************************************************************************************************
|
---|
2545 | * Unary operations. *
|
---|
2546 | *********************************************************************************************************************************/
|
---|
2547 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2548 |
|
---|
2549 | /** @def IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC
|
---|
2550 | * Updates the status bits (CF, PF, AF, ZF, SF, and OF) for an INC or DEC instruction.
|
---|
2551 | *
|
---|
2552 | * CF is NOT modified for hysterical raisins (allegedly for carrying and
|
---|
2553 | * borrowing in arithmetic loops on intel 8008).
|
---|
2554 | *
|
---|
2555 | * @returns Status bits.
|
---|
2556 | * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update.
|
---|
2557 | * @param a_uResult Unsigned result value.
|
---|
2558 | * @param a_uDst The original destination value (for AF calc).
|
---|
2559 | * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
|
---|
2560 | * @param a_OfMethod 0 for INC-style, 1 for DEC-style.
|
---|
2561 | */
|
---|
2562 | #define IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(a_pfEFlags, a_uResult, a_uDst, a_cBitsWidth, a_OfMethod) \
|
---|
2563 | do { \
|
---|
2564 | uint32_t fEflTmp = *(a_pfEFlags); \
|
---|
2565 | fEflTmp &= ~X86_EFL_STATUS_BITS | X86_EFL_CF; \
|
---|
2566 | fEflTmp |= g_afParity[(a_uResult) & 0xff]; \
|
---|
2567 | fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \
|
---|
2568 | fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \
|
---|
2569 | fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \
|
---|
2570 | fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth(a_OfMethod == 0 ? (((a_uDst) ^ RT_BIT_64(a_cBitsWidth - 1)) & (a_uResult)) \
|
---|
2571 | : ((a_uDst) & ((a_uResult) ^ RT_BIT_64(a_cBitsWidth - 1))) ); \
|
---|
2572 | *(a_pfEFlags) = fEflTmp; \
|
---|
2573 | } while (0)
|
---|
2574 |
|
---|
2575 | /*
|
---|
2576 | * INC
|
---|
2577 | */
|
---|
2578 |
|
---|
2579 | IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64,(uint64_t *puDst, uint32_t *pfEFlags))
|
---|
2580 | {
|
---|
2581 | uint64_t uDst = *puDst;
|
---|
2582 | uint64_t uResult = uDst + 1;
|
---|
2583 | *puDst = uResult;
|
---|
2584 | IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 64, 0 /*INC*/);
|
---|
2585 | }
|
---|
2586 |
|
---|
2587 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2588 |
|
---|
2589 | IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u32,(uint32_t *puDst, uint32_t *pfEFlags))
|
---|
2590 | {
|
---|
2591 | uint32_t uDst = *puDst;
|
---|
2592 | uint32_t uResult = uDst + 1;
|
---|
2593 | *puDst = uResult;
|
---|
2594 | IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 32, 0 /*INC*/);
|
---|
2595 | }
|
---|
2596 |
|
---|
2597 |
|
---|
2598 | IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u16,(uint16_t *puDst, uint32_t *pfEFlags))
|
---|
2599 | {
|
---|
2600 | uint16_t uDst = *puDst;
|
---|
2601 | uint16_t uResult = uDst + 1;
|
---|
2602 | *puDst = uResult;
|
---|
2603 | IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 16, 0 /*INC*/);
|
---|
2604 | }
|
---|
2605 |
|
---|
2606 | IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u8,(uint8_t *puDst, uint32_t *pfEFlags))
|
---|
2607 | {
|
---|
2608 | uint8_t uDst = *puDst;
|
---|
2609 | uint8_t uResult = uDst + 1;
|
---|
2610 | *puDst = uResult;
|
---|
2611 | IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 8, 0 /*INC*/);
|
---|
2612 | }
|
---|
2613 |
|
---|
2614 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2615 |
|
---|
2616 |
|
---|
2617 | /*
|
---|
2618 | * DEC
|
---|
2619 | */
|
---|
2620 |
|
---|
2621 | IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64,(uint64_t *puDst, uint32_t *pfEFlags))
|
---|
2622 | {
|
---|
2623 | uint64_t uDst = *puDst;
|
---|
2624 | uint64_t uResult = uDst - 1;
|
---|
2625 | *puDst = uResult;
|
---|
2626 | IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 64, 1 /*INC*/);
|
---|
2627 | }
|
---|
2628 |
|
---|
2629 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2630 |
|
---|
2631 | IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u32,(uint32_t *puDst, uint32_t *pfEFlags))
|
---|
2632 | {
|
---|
2633 | uint32_t uDst = *puDst;
|
---|
2634 | uint32_t uResult = uDst - 1;
|
---|
2635 | *puDst = uResult;
|
---|
2636 | IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 32, 1 /*INC*/);
|
---|
2637 | }
|
---|
2638 |
|
---|
2639 |
|
---|
2640 | IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u16,(uint16_t *puDst, uint32_t *pfEFlags))
|
---|
2641 | {
|
---|
2642 | uint16_t uDst = *puDst;
|
---|
2643 | uint16_t uResult = uDst - 1;
|
---|
2644 | *puDst = uResult;
|
---|
2645 | IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 16, 1 /*INC*/);
|
---|
2646 | }
|
---|
2647 |
|
---|
2648 |
|
---|
2649 | IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u8,(uint8_t *puDst, uint32_t *pfEFlags))
|
---|
2650 | {
|
---|
2651 | uint8_t uDst = *puDst;
|
---|
2652 | uint8_t uResult = uDst - 1;
|
---|
2653 | *puDst = uResult;
|
---|
2654 | IEM_EFL_UPDATE_STATUS_BITS_FOR_INC_DEC(pfEFlags, uResult, uDst, 8, 1 /*INC*/);
|
---|
2655 | }
|
---|
2656 |
|
---|
2657 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2658 |
|
---|
2659 |
|
---|
2660 | /*
|
---|
2661 | * NOT
|
---|
2662 | */
|
---|
2663 |
|
---|
2664 | IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64,(uint64_t *puDst, uint32_t *pfEFlags))
|
---|
2665 | {
|
---|
2666 | uint64_t uDst = *puDst;
|
---|
2667 | uint64_t uResult = ~uDst;
|
---|
2668 | *puDst = uResult;
|
---|
2669 | /* EFLAGS are not modified. */
|
---|
2670 | RT_NOREF_PV(pfEFlags);
|
---|
2671 | }
|
---|
2672 |
|
---|
2673 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2674 |
|
---|
2675 | IEM_DECL_IMPL_DEF(void, iemAImpl_not_u32,(uint32_t *puDst, uint32_t *pfEFlags))
|
---|
2676 | {
|
---|
2677 | uint32_t uDst = *puDst;
|
---|
2678 | uint32_t uResult = ~uDst;
|
---|
2679 | *puDst = uResult;
|
---|
2680 | /* EFLAGS are not modified. */
|
---|
2681 | RT_NOREF_PV(pfEFlags);
|
---|
2682 | }
|
---|
2683 |
|
---|
2684 | IEM_DECL_IMPL_DEF(void, iemAImpl_not_u16,(uint16_t *puDst, uint32_t *pfEFlags))
|
---|
2685 | {
|
---|
2686 | uint16_t uDst = *puDst;
|
---|
2687 | uint16_t uResult = ~uDst;
|
---|
2688 | *puDst = uResult;
|
---|
2689 | /* EFLAGS are not modified. */
|
---|
2690 | RT_NOREF_PV(pfEFlags);
|
---|
2691 | }
|
---|
2692 |
|
---|
2693 | IEM_DECL_IMPL_DEF(void, iemAImpl_not_u8,(uint8_t *puDst, uint32_t *pfEFlags))
|
---|
2694 | {
|
---|
2695 | uint8_t uDst = *puDst;
|
---|
2696 | uint8_t uResult = ~uDst;
|
---|
2697 | *puDst = uResult;
|
---|
2698 | /* EFLAGS are not modified. */
|
---|
2699 | RT_NOREF_PV(pfEFlags);
|
---|
2700 | }
|
---|
2701 |
|
---|
2702 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2703 |
|
---|
2704 |
|
---|
2705 | /*
|
---|
2706 | * NEG
|
---|
2707 | */
|
---|
2708 |
|
---|
2709 | /**
|
---|
2710 | * Updates the status bits (CF, PF, AF, ZF, SF, and OF) for an NEG instruction.
|
---|
2711 | *
|
---|
2712 | * @returns Status bits.
|
---|
2713 | * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update.
|
---|
2714 | * @param a_uResult Unsigned result value.
|
---|
2715 | * @param a_uDst The original destination value (for AF calc).
|
---|
2716 | * @param a_cBitsWidth The width of the result (8, 16, 32, 64).
|
---|
2717 | */
|
---|
2718 | #define IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(a_pfEFlags, a_uResult, a_uDst, a_cBitsWidth) \
|
---|
2719 | do { \
|
---|
2720 | uint32_t fEflTmp = *(a_pfEFlags); \
|
---|
2721 | fEflTmp &= ~X86_EFL_STATUS_BITS & ~X86_EFL_CF; \
|
---|
2722 | fEflTmp |= ((a_uDst) != 0) << X86_EFL_CF_BIT; \
|
---|
2723 | fEflTmp |= g_afParity[(a_uResult) & 0xff]; \
|
---|
2724 | fEflTmp |= ((uint32_t)(a_uResult) ^ (uint32_t)(a_uDst)) & X86_EFL_AF; \
|
---|
2725 | fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \
|
---|
2726 | fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \
|
---|
2727 | fEflTmp |= X86_EFL_GET_OF_ ## a_cBitsWidth((a_uDst) & (a_uResult)); \
|
---|
2728 | *(a_pfEFlags) = fEflTmp; \
|
---|
2729 | } while (0)
|
---|
2730 |
|
---|
2731 | IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64,(uint64_t *puDst, uint32_t *pfEFlags))
|
---|
2732 | {
|
---|
2733 | uint64_t uDst = *puDst;
|
---|
2734 | uint64_t uResult = (uint64_t)0 - uDst;
|
---|
2735 | *puDst = uResult;
|
---|
2736 | IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 64);
|
---|
2737 | }
|
---|
2738 |
|
---|
2739 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2740 |
|
---|
2741 | IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u32,(uint32_t *puDst, uint32_t *pfEFlags))
|
---|
2742 | {
|
---|
2743 | uint32_t uDst = *puDst;
|
---|
2744 | uint32_t uResult = (uint32_t)0 - uDst;
|
---|
2745 | *puDst = uResult;
|
---|
2746 | IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 32);
|
---|
2747 | }
|
---|
2748 |
|
---|
2749 |
|
---|
2750 | IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u16,(uint16_t *puDst, uint32_t *pfEFlags))
|
---|
2751 | {
|
---|
2752 | uint16_t uDst = *puDst;
|
---|
2753 | uint16_t uResult = (uint16_t)0 - uDst;
|
---|
2754 | *puDst = uResult;
|
---|
2755 | IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 16);
|
---|
2756 | }
|
---|
2757 |
|
---|
2758 |
|
---|
2759 | IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u8,(uint8_t *puDst, uint32_t *pfEFlags))
|
---|
2760 | {
|
---|
2761 | uint8_t uDst = *puDst;
|
---|
2762 | uint8_t uResult = (uint8_t)0 - uDst;
|
---|
2763 | *puDst = uResult;
|
---|
2764 | IEM_EFL_UPDATE_STATUS_BITS_FOR_NEG(pfEFlags, uResult, uDst, 8);
|
---|
2765 | }
|
---|
2766 |
|
---|
2767 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2768 |
|
---|
2769 | /*
|
---|
2770 | * Locked variants.
|
---|
2771 | */
|
---|
2772 |
|
---|
2773 | /** Emit a function for doing a locked unary operand operation. */
|
---|
2774 | # define EMIT_LOCKED_UNARY_OP(a_Mnemonic, a_cBitsWidth) \
|
---|
2775 | IEM_DECL_IMPL_DEF(void, iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth ## _locked,(uint ## a_cBitsWidth ## _t *puDst, \
|
---|
2776 | uint32_t *pfEFlags)) \
|
---|
2777 | { \
|
---|
2778 | uint ## a_cBitsWidth ## _t uOld = ASMAtomicUoReadU ## a_cBitsWidth(puDst); \
|
---|
2779 | uint ## a_cBitsWidth ## _t uTmp; \
|
---|
2780 | uint32_t fEflTmp; \
|
---|
2781 | do \
|
---|
2782 | { \
|
---|
2783 | uTmp = uOld; \
|
---|
2784 | fEflTmp = *pfEFlags; \
|
---|
2785 | iemAImpl_ ## a_Mnemonic ## _u ## a_cBitsWidth(&uTmp, &fEflTmp); \
|
---|
2786 | } while (!ASMAtomicCmpXchgExU ## a_cBitsWidth(puDst, uTmp, uOld, &uOld)); \
|
---|
2787 | *pfEFlags = fEflTmp; \
|
---|
2788 | }
|
---|
2789 |
|
---|
2790 | EMIT_LOCKED_UNARY_OP(inc, 64)
|
---|
2791 | EMIT_LOCKED_UNARY_OP(dec, 64)
|
---|
2792 | EMIT_LOCKED_UNARY_OP(not, 64)
|
---|
2793 | EMIT_LOCKED_UNARY_OP(neg, 64)
|
---|
2794 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2795 | EMIT_LOCKED_UNARY_OP(inc, 32)
|
---|
2796 | EMIT_LOCKED_UNARY_OP(dec, 32)
|
---|
2797 | EMIT_LOCKED_UNARY_OP(not, 32)
|
---|
2798 | EMIT_LOCKED_UNARY_OP(neg, 32)
|
---|
2799 |
|
---|
2800 | EMIT_LOCKED_UNARY_OP(inc, 16)
|
---|
2801 | EMIT_LOCKED_UNARY_OP(dec, 16)
|
---|
2802 | EMIT_LOCKED_UNARY_OP(not, 16)
|
---|
2803 | EMIT_LOCKED_UNARY_OP(neg, 16)
|
---|
2804 |
|
---|
2805 | EMIT_LOCKED_UNARY_OP(inc, 8)
|
---|
2806 | EMIT_LOCKED_UNARY_OP(dec, 8)
|
---|
2807 | EMIT_LOCKED_UNARY_OP(not, 8)
|
---|
2808 | EMIT_LOCKED_UNARY_OP(neg, 8)
|
---|
2809 | # endif
|
---|
2810 |
|
---|
2811 | #endif /* !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
2812 |
|
---|
2813 |
|
---|
2814 | /*********************************************************************************************************************************
|
---|
2815 | * Shifting and Rotating *
|
---|
2816 | *********************************************************************************************************************************/
|
---|
2817 |
|
---|
2818 | /*
|
---|
2819 | * ROL
|
---|
2820 | */
|
---|
2821 | #define EMIT_ROL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags, a_fnHlp) \
|
---|
2822 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rol_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
|
---|
2823 | { \
|
---|
2824 | cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
|
---|
2825 | if (cShift) \
|
---|
2826 | { \
|
---|
2827 | if (a_cBitsWidth < 32) \
|
---|
2828 | cShift &= a_cBitsWidth - 1; \
|
---|
2829 | a_uType const uDst = *puDst; \
|
---|
2830 | a_uType const uResult = a_fnHlp(uDst, cShift); \
|
---|
2831 | *puDst = uResult; \
|
---|
2832 | \
|
---|
2833 | /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement \
|
---|
2834 | it the same way as for 1 bit shifts. */ \
|
---|
2835 | AssertCompile(X86_EFL_CF_BIT == 0); \
|
---|
2836 | uint32_t fEfl = *pfEFlags; \
|
---|
2837 | fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \
|
---|
2838 | uint32_t const fCarry = (uResult & X86_EFL_CF); \
|
---|
2839 | fEfl |= fCarry; \
|
---|
2840 | if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \
|
---|
2841 | fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fCarry) << X86_EFL_OF_BIT; \
|
---|
2842 | else /* Intel 10980XE: According to the first sub-shift: */ \
|
---|
2843 | fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \
|
---|
2844 | *pfEFlags = fEfl; \
|
---|
2845 | } \
|
---|
2846 | }
|
---|
2847 |
|
---|
2848 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2849 | EMIT_ROL(64, uint64_t, RT_NOTHING, 1, ASMRotateLeftU64)
|
---|
2850 | #endif
|
---|
2851 | EMIT_ROL(64, uint64_t, _intel, 1, ASMRotateLeftU64)
|
---|
2852 | EMIT_ROL(64, uint64_t, _amd, 0, ASMRotateLeftU64)
|
---|
2853 |
|
---|
2854 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2855 | EMIT_ROL(32, uint32_t, RT_NOTHING, 1, ASMRotateLeftU32)
|
---|
2856 | #endif
|
---|
2857 | EMIT_ROL(32, uint32_t, _intel, 1, ASMRotateLeftU32)
|
---|
2858 | EMIT_ROL(32, uint32_t, _amd, 0, ASMRotateLeftU32)
|
---|
2859 |
|
---|
2860 | DECL_FORCE_INLINE(uint16_t) iemAImpl_rol_u16_hlp(uint16_t uValue, uint8_t cShift)
|
---|
2861 | {
|
---|
2862 | return (uValue << cShift) | (uValue >> (16 - cShift));
|
---|
2863 | }
|
---|
2864 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2865 | EMIT_ROL(16, uint16_t, RT_NOTHING, 1, iemAImpl_rol_u16_hlp)
|
---|
2866 | #endif
|
---|
2867 | EMIT_ROL(16, uint16_t, _intel, 1, iemAImpl_rol_u16_hlp)
|
---|
2868 | EMIT_ROL(16, uint16_t, _amd, 0, iemAImpl_rol_u16_hlp)
|
---|
2869 |
|
---|
2870 | DECL_FORCE_INLINE(uint8_t) iemAImpl_rol_u8_hlp(uint8_t uValue, uint8_t cShift)
|
---|
2871 | {
|
---|
2872 | return (uValue << cShift) | (uValue >> (8 - cShift));
|
---|
2873 | }
|
---|
2874 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2875 | EMIT_ROL(8, uint8_t, RT_NOTHING, 1, iemAImpl_rol_u8_hlp)
|
---|
2876 | #endif
|
---|
2877 | EMIT_ROL(8, uint8_t, _intel, 1, iemAImpl_rol_u8_hlp)
|
---|
2878 | EMIT_ROL(8, uint8_t, _amd, 0, iemAImpl_rol_u8_hlp)
|
---|
2879 |
|
---|
2880 |
|
---|
2881 | /*
|
---|
2882 | * ROR
|
---|
2883 | */
|
---|
2884 | #define EMIT_ROR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags, a_fnHlp) \
|
---|
2885 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_ror_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
|
---|
2886 | { \
|
---|
2887 | cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
|
---|
2888 | if (cShift) \
|
---|
2889 | { \
|
---|
2890 | if (a_cBitsWidth < 32) \
|
---|
2891 | cShift &= a_cBitsWidth - 1; \
|
---|
2892 | a_uType const uDst = *puDst; \
|
---|
2893 | a_uType const uResult = a_fnHlp(uDst, cShift); \
|
---|
2894 | *puDst = uResult; \
|
---|
2895 | \
|
---|
2896 | /* Calc EFLAGS: */ \
|
---|
2897 | AssertCompile(X86_EFL_CF_BIT == 0); \
|
---|
2898 | uint32_t fEfl = *pfEFlags; \
|
---|
2899 | fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \
|
---|
2900 | uint32_t const fCarry = (uResult >> ((a_cBitsWidth) - 1)) & X86_EFL_CF; \
|
---|
2901 | fEfl |= fCarry; \
|
---|
2902 | if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \
|
---|
2903 | fEfl |= (((uResult >> ((a_cBitsWidth) - 2)) ^ fCarry) & 1) << X86_EFL_OF_BIT; \
|
---|
2904 | else /* Intel 10980XE: According to the first sub-shift: */ \
|
---|
2905 | fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << (a_cBitsWidth - 1))); \
|
---|
2906 | *pfEFlags = fEfl; \
|
---|
2907 | } \
|
---|
2908 | }
|
---|
2909 |
|
---|
2910 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2911 | EMIT_ROR(64, uint64_t, RT_NOTHING, 1, ASMRotateRightU64)
|
---|
2912 | #endif
|
---|
2913 | EMIT_ROR(64, uint64_t, _intel, 1, ASMRotateRightU64)
|
---|
2914 | EMIT_ROR(64, uint64_t, _amd, 0, ASMRotateRightU64)
|
---|
2915 |
|
---|
2916 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2917 | EMIT_ROR(32, uint32_t, RT_NOTHING, 1, ASMRotateRightU32)
|
---|
2918 | #endif
|
---|
2919 | EMIT_ROR(32, uint32_t, _intel, 1, ASMRotateRightU32)
|
---|
2920 | EMIT_ROR(32, uint32_t, _amd, 0, ASMRotateRightU32)
|
---|
2921 |
|
---|
2922 | DECL_FORCE_INLINE(uint16_t) iemAImpl_ror_u16_hlp(uint16_t uValue, uint8_t cShift)
|
---|
2923 | {
|
---|
2924 | return (uValue >> cShift) | (uValue << (16 - cShift));
|
---|
2925 | }
|
---|
2926 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2927 | EMIT_ROR(16, uint16_t, RT_NOTHING, 1, iemAImpl_ror_u16_hlp)
|
---|
2928 | #endif
|
---|
2929 | EMIT_ROR(16, uint16_t, _intel, 1, iemAImpl_ror_u16_hlp)
|
---|
2930 | EMIT_ROR(16, uint16_t, _amd, 0, iemAImpl_ror_u16_hlp)
|
---|
2931 |
|
---|
2932 | DECL_FORCE_INLINE(uint8_t) iemAImpl_ror_u8_hlp(uint8_t uValue, uint8_t cShift)
|
---|
2933 | {
|
---|
2934 | return (uValue >> cShift) | (uValue << (8 - cShift));
|
---|
2935 | }
|
---|
2936 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2937 | EMIT_ROR(8, uint8_t, RT_NOTHING, 1, iemAImpl_ror_u8_hlp)
|
---|
2938 | #endif
|
---|
2939 | EMIT_ROR(8, uint8_t, _intel, 1, iemAImpl_ror_u8_hlp)
|
---|
2940 | EMIT_ROR(8, uint8_t, _amd, 0, iemAImpl_ror_u8_hlp)
|
---|
2941 |
|
---|
2942 |
|
---|
2943 | /*
|
---|
2944 | * RCL
|
---|
2945 | */
|
---|
2946 | #define EMIT_RCL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
|
---|
2947 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rcl_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
|
---|
2948 | { \
|
---|
2949 | cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
|
---|
2950 | if (a_cBitsWidth < 32 && a_fIntelFlags) \
|
---|
2951 | cShift %= a_cBitsWidth + 1; \
|
---|
2952 | if (cShift) \
|
---|
2953 | { \
|
---|
2954 | if (a_cBitsWidth < 32 && !a_fIntelFlags) \
|
---|
2955 | cShift %= a_cBitsWidth + 1; \
|
---|
2956 | a_uType const uDst = *puDst; \
|
---|
2957 | a_uType uResult = uDst << cShift; \
|
---|
2958 | if (cShift > 1) \
|
---|
2959 | uResult |= uDst >> (a_cBitsWidth + 1 - cShift); \
|
---|
2960 | \
|
---|
2961 | AssertCompile(X86_EFL_CF_BIT == 0); \
|
---|
2962 | uint32_t fEfl = *pfEFlags; \
|
---|
2963 | uint32_t fInCarry = fEfl & X86_EFL_CF; \
|
---|
2964 | uResult |= (a_uType)fInCarry << (cShift - 1); \
|
---|
2965 | \
|
---|
2966 | *puDst = uResult; \
|
---|
2967 | \
|
---|
2968 | /* Calc EFLAGS. */ \
|
---|
2969 | fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \
|
---|
2970 | uint32_t const fOutCarry = a_cBitsWidth >= 32 || a_fIntelFlags || cShift \
|
---|
2971 | ? (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF : fInCarry; \
|
---|
2972 | fEfl |= fOutCarry; \
|
---|
2973 | if (!a_fIntelFlags) /* AMD 3990X: According to the last sub-shift: */ \
|
---|
2974 | fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fOutCarry) << X86_EFL_OF_BIT; \
|
---|
2975 | else /* Intel 10980XE: According to the first sub-shift: */ \
|
---|
2976 | fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \
|
---|
2977 | *pfEFlags = fEfl; \
|
---|
2978 | } \
|
---|
2979 | }
|
---|
2980 |
|
---|
2981 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2982 | EMIT_RCL(64, uint64_t, RT_NOTHING, 1)
|
---|
2983 | #endif
|
---|
2984 | EMIT_RCL(64, uint64_t, _intel, 1)
|
---|
2985 | EMIT_RCL(64, uint64_t, _amd, 0)
|
---|
2986 |
|
---|
2987 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2988 | EMIT_RCL(32, uint32_t, RT_NOTHING, 1)
|
---|
2989 | #endif
|
---|
2990 | EMIT_RCL(32, uint32_t, _intel, 1)
|
---|
2991 | EMIT_RCL(32, uint32_t, _amd, 0)
|
---|
2992 |
|
---|
2993 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
2994 | EMIT_RCL(16, uint16_t, RT_NOTHING, 1)
|
---|
2995 | #endif
|
---|
2996 | EMIT_RCL(16, uint16_t, _intel, 1)
|
---|
2997 | EMIT_RCL(16, uint16_t, _amd, 0)
|
---|
2998 |
|
---|
2999 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3000 | EMIT_RCL(8, uint8_t, RT_NOTHING, 1)
|
---|
3001 | #endif
|
---|
3002 | EMIT_RCL(8, uint8_t, _intel, 1)
|
---|
3003 | EMIT_RCL(8, uint8_t, _amd, 0)
|
---|
3004 |
|
---|
3005 |
|
---|
3006 | /*
|
---|
3007 | * RCR
|
---|
3008 | */
|
---|
3009 | #define EMIT_RCR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
|
---|
3010 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_rcr_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
|
---|
3011 | { \
|
---|
3012 | cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
|
---|
3013 | if (a_cBitsWidth < 32 && a_fIntelFlags) \
|
---|
3014 | cShift %= a_cBitsWidth + 1; \
|
---|
3015 | if (cShift) \
|
---|
3016 | { \
|
---|
3017 | if (a_cBitsWidth < 32 && !a_fIntelFlags) \
|
---|
3018 | cShift %= a_cBitsWidth + 1; \
|
---|
3019 | a_uType const uDst = *puDst; \
|
---|
3020 | a_uType uResult = uDst >> cShift; \
|
---|
3021 | if (cShift > 1) \
|
---|
3022 | uResult |= uDst << (a_cBitsWidth + 1 - cShift); \
|
---|
3023 | \
|
---|
3024 | AssertCompile(X86_EFL_CF_BIT == 0); \
|
---|
3025 | uint32_t fEfl = *pfEFlags; \
|
---|
3026 | uint32_t fInCarry = fEfl & X86_EFL_CF; \
|
---|
3027 | uResult |= (a_uType)fInCarry << (a_cBitsWidth - cShift); \
|
---|
3028 | *puDst = uResult; \
|
---|
3029 | \
|
---|
3030 | /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement \
|
---|
3031 | it the same way as for 1 bit shifts. */ \
|
---|
3032 | fEfl &= ~(X86_EFL_CF | X86_EFL_OF); \
|
---|
3033 | uint32_t const fOutCarry = a_cBitsWidth >= 32 || a_fIntelFlags || cShift \
|
---|
3034 | ? (uDst >> (cShift - 1)) & X86_EFL_CF : fInCarry; \
|
---|
3035 | fEfl |= fOutCarry; \
|
---|
3036 | if (!a_fIntelFlags) /* AMD 3990X: XOR two most signficant bits of the result: */ \
|
---|
3037 | fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uResult ^ (uResult << 1)); \
|
---|
3038 | else /* Intel 10980XE: same as AMD, but only for the first sub-shift: */ \
|
---|
3039 | fEfl |= (fInCarry ^ (uint32_t)(uDst >> (a_cBitsWidth - 1))) << X86_EFL_OF_BIT; \
|
---|
3040 | *pfEFlags = fEfl; \
|
---|
3041 | } \
|
---|
3042 | }
|
---|
3043 |
|
---|
3044 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3045 | EMIT_RCR(64, uint64_t, RT_NOTHING, 1)
|
---|
3046 | #endif
|
---|
3047 | EMIT_RCR(64, uint64_t, _intel, 1)
|
---|
3048 | EMIT_RCR(64, uint64_t, _amd, 0)
|
---|
3049 |
|
---|
3050 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3051 | EMIT_RCR(32, uint32_t, RT_NOTHING, 1)
|
---|
3052 | #endif
|
---|
3053 | EMIT_RCR(32, uint32_t, _intel, 1)
|
---|
3054 | EMIT_RCR(32, uint32_t, _amd, 0)
|
---|
3055 |
|
---|
3056 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3057 | EMIT_RCR(16, uint16_t, RT_NOTHING, 1)
|
---|
3058 | #endif
|
---|
3059 | EMIT_RCR(16, uint16_t, _intel, 1)
|
---|
3060 | EMIT_RCR(16, uint16_t, _amd, 0)
|
---|
3061 |
|
---|
3062 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3063 | EMIT_RCR(8, uint8_t, RT_NOTHING, 1)
|
---|
3064 | #endif
|
---|
3065 | EMIT_RCR(8, uint8_t, _intel, 1)
|
---|
3066 | EMIT_RCR(8, uint8_t, _amd, 0)
|
---|
3067 |
|
---|
3068 |
|
---|
3069 | /*
|
---|
3070 | * SHL
|
---|
3071 | */
|
---|
3072 | #define EMIT_SHL(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
|
---|
3073 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shl_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
|
---|
3074 | { \
|
---|
3075 | cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
|
---|
3076 | if (cShift) \
|
---|
3077 | { \
|
---|
3078 | a_uType const uDst = *puDst; \
|
---|
3079 | a_uType uResult = uDst << cShift; \
|
---|
3080 | *puDst = uResult; \
|
---|
3081 | \
|
---|
3082 | /* Calc EFLAGS. */ \
|
---|
3083 | AssertCompile(X86_EFL_CF_BIT == 0); \
|
---|
3084 | uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
|
---|
3085 | uint32_t fCarry = (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF; \
|
---|
3086 | fEfl |= fCarry; \
|
---|
3087 | if (!a_fIntelFlags) \
|
---|
3088 | fEfl |= ((uResult >> (a_cBitsWidth - 1)) ^ fCarry) << X86_EFL_OF_BIT; /* AMD 3990X: Last shift result. */ \
|
---|
3089 | else \
|
---|
3090 | fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); /* Intel 10980XE: First shift result. */ \
|
---|
3091 | fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \
|
---|
3092 | fEfl |= X86_EFL_CALC_ZF(uResult); \
|
---|
3093 | fEfl |= g_afParity[uResult & 0xff]; \
|
---|
3094 | if (!a_fIntelFlags) \
|
---|
3095 | fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \
|
---|
3096 | *pfEFlags = fEfl; \
|
---|
3097 | } \
|
---|
3098 | }
|
---|
3099 |
|
---|
3100 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3101 | EMIT_SHL(64, uint64_t, RT_NOTHING, 1)
|
---|
3102 | #endif
|
---|
3103 | EMIT_SHL(64, uint64_t, _intel, 1)
|
---|
3104 | EMIT_SHL(64, uint64_t, _amd, 0)
|
---|
3105 |
|
---|
3106 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3107 | EMIT_SHL(32, uint32_t, RT_NOTHING, 1)
|
---|
3108 | #endif
|
---|
3109 | EMIT_SHL(32, uint32_t, _intel, 1)
|
---|
3110 | EMIT_SHL(32, uint32_t, _amd, 0)
|
---|
3111 |
|
---|
3112 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3113 | EMIT_SHL(16, uint16_t, RT_NOTHING, 1)
|
---|
3114 | #endif
|
---|
3115 | EMIT_SHL(16, uint16_t, _intel, 1)
|
---|
3116 | EMIT_SHL(16, uint16_t, _amd, 0)
|
---|
3117 |
|
---|
3118 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3119 | EMIT_SHL(8, uint8_t, RT_NOTHING, 1)
|
---|
3120 | #endif
|
---|
3121 | EMIT_SHL(8, uint8_t, _intel, 1)
|
---|
3122 | EMIT_SHL(8, uint8_t, _amd, 0)
|
---|
3123 |
|
---|
3124 |
|
---|
3125 | /*
|
---|
3126 | * SHR
|
---|
3127 | */
|
---|
3128 | #define EMIT_SHR(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
|
---|
3129 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shr_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
|
---|
3130 | { \
|
---|
3131 | cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
|
---|
3132 | if (cShift) \
|
---|
3133 | { \
|
---|
3134 | a_uType const uDst = *puDst; \
|
---|
3135 | a_uType uResult = uDst >> cShift; \
|
---|
3136 | *puDst = uResult; \
|
---|
3137 | \
|
---|
3138 | /* Calc EFLAGS. */ \
|
---|
3139 | AssertCompile(X86_EFL_CF_BIT == 0); \
|
---|
3140 | uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
|
---|
3141 | fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \
|
---|
3142 | if (a_fIntelFlags || cShift == 1) /* AMD 3990x does what intel documents; Intel 10980XE does this for all shift counts. */ \
|
---|
3143 | fEfl |= (uDst >> (a_cBitsWidth - 1)) << X86_EFL_OF_BIT; \
|
---|
3144 | fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \
|
---|
3145 | fEfl |= X86_EFL_CALC_ZF(uResult); \
|
---|
3146 | fEfl |= g_afParity[uResult & 0xff]; \
|
---|
3147 | if (!a_fIntelFlags) \
|
---|
3148 | fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \
|
---|
3149 | *pfEFlags = fEfl; \
|
---|
3150 | } \
|
---|
3151 | }
|
---|
3152 |
|
---|
3153 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3154 | EMIT_SHR(64, uint64_t, RT_NOTHING, 1)
|
---|
3155 | #endif
|
---|
3156 | EMIT_SHR(64, uint64_t, _intel, 1)
|
---|
3157 | EMIT_SHR(64, uint64_t, _amd, 0)
|
---|
3158 |
|
---|
3159 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3160 | EMIT_SHR(32, uint32_t, RT_NOTHING, 1)
|
---|
3161 | #endif
|
---|
3162 | EMIT_SHR(32, uint32_t, _intel, 1)
|
---|
3163 | EMIT_SHR(32, uint32_t, _amd, 0)
|
---|
3164 |
|
---|
3165 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3166 | EMIT_SHR(16, uint16_t, RT_NOTHING, 1)
|
---|
3167 | #endif
|
---|
3168 | EMIT_SHR(16, uint16_t, _intel, 1)
|
---|
3169 | EMIT_SHR(16, uint16_t, _amd, 0)
|
---|
3170 |
|
---|
3171 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3172 | EMIT_SHR(8, uint8_t, RT_NOTHING, 1)
|
---|
3173 | #endif
|
---|
3174 | EMIT_SHR(8, uint8_t, _intel, 1)
|
---|
3175 | EMIT_SHR(8, uint8_t, _amd, 0)
|
---|
3176 |
|
---|
3177 |
|
---|
3178 | /*
|
---|
3179 | * SAR
|
---|
3180 | */
|
---|
3181 | #define EMIT_SAR(a_cBitsWidth, a_uType, a_iType, a_Suffix, a_fIntelFlags) \
|
---|
3182 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_sar_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, uint8_t cShift, uint32_t *pfEFlags)) \
|
---|
3183 | { \
|
---|
3184 | cShift &= a_cBitsWidth >= 32 ? a_cBitsWidth - 1 : 31; \
|
---|
3185 | if (cShift) \
|
---|
3186 | { \
|
---|
3187 | a_iType const iDst = (a_iType)*puDst; \
|
---|
3188 | a_uType uResult = iDst >> cShift; \
|
---|
3189 | *puDst = uResult; \
|
---|
3190 | \
|
---|
3191 | /* Calc EFLAGS. \
|
---|
3192 | Note! The OF flag is always zero because the result never differs from the input. */ \
|
---|
3193 | AssertCompile(X86_EFL_CF_BIT == 0); \
|
---|
3194 | uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
|
---|
3195 | fEfl |= (iDst >> (cShift - 1)) & X86_EFL_CF; \
|
---|
3196 | fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \
|
---|
3197 | fEfl |= X86_EFL_CALC_ZF(uResult); \
|
---|
3198 | fEfl |= g_afParity[uResult & 0xff]; \
|
---|
3199 | if (!a_fIntelFlags) \
|
---|
3200 | fEfl |= X86_EFL_AF; /* AMD 3990x sets it unconditionally, Intel 10980XE does the oposite */ \
|
---|
3201 | *pfEFlags = fEfl; \
|
---|
3202 | } \
|
---|
3203 | }
|
---|
3204 |
|
---|
3205 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3206 | EMIT_SAR(64, uint64_t, int64_t, RT_NOTHING, 1)
|
---|
3207 | #endif
|
---|
3208 | EMIT_SAR(64, uint64_t, int64_t, _intel, 1)
|
---|
3209 | EMIT_SAR(64, uint64_t, int64_t, _amd, 0)
|
---|
3210 |
|
---|
3211 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3212 | EMIT_SAR(32, uint32_t, int32_t, RT_NOTHING, 1)
|
---|
3213 | #endif
|
---|
3214 | EMIT_SAR(32, uint32_t, int32_t, _intel, 1)
|
---|
3215 | EMIT_SAR(32, uint32_t, int32_t, _amd, 0)
|
---|
3216 |
|
---|
3217 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3218 | EMIT_SAR(16, uint16_t, int16_t, RT_NOTHING, 1)
|
---|
3219 | #endif
|
---|
3220 | EMIT_SAR(16, uint16_t, int16_t, _intel, 1)
|
---|
3221 | EMIT_SAR(16, uint16_t, int16_t, _amd, 0)
|
---|
3222 |
|
---|
3223 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3224 | EMIT_SAR(8, uint8_t, int8_t, RT_NOTHING, 1)
|
---|
3225 | #endif
|
---|
3226 | EMIT_SAR(8, uint8_t, int8_t, _intel, 1)
|
---|
3227 | EMIT_SAR(8, uint8_t, int8_t, _amd, 0)
|
---|
3228 |
|
---|
3229 |
|
---|
3230 | /*
|
---|
3231 | * SHLD
|
---|
3232 | *
|
---|
3233 | * - CF is the last bit shifted out of puDst.
|
---|
3234 | * - AF is always cleared by Intel 10980XE.
|
---|
3235 | * - AF is always set by AMD 3990X.
|
---|
3236 | * - OF is set according to the first shift on Intel 10980XE, it seems.
|
---|
3237 | * - OF is set according to the last sub-shift on AMD 3990X.
|
---|
3238 | * - ZF, SF and PF are calculated according to the result by both vendors.
|
---|
3239 | *
|
---|
3240 | * For 16-bit shifts the count mask isn't 15, but 31, and the CPU will
|
---|
3241 | * pick either the source register or the destination register for input bits
|
---|
3242 | * when going beyond 16. According to https://www.sandpile.org/x86/flags.htm
|
---|
3243 | * intel has changed behaviour here several times. We implement what current
|
---|
3244 | * skylake based does for now, we can extend this later as needed.
|
---|
3245 | */
|
---|
3246 | #define EMIT_SHLD(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
|
---|
3247 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shld_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, uint8_t cShift, \
|
---|
3248 | uint32_t *pfEFlags)) \
|
---|
3249 | { \
|
---|
3250 | cShift &= a_cBitsWidth - 1; \
|
---|
3251 | if (cShift) \
|
---|
3252 | { \
|
---|
3253 | a_uType const uDst = *puDst; \
|
---|
3254 | a_uType uResult = uDst << cShift; \
|
---|
3255 | uResult |= uSrc >> (a_cBitsWidth - cShift); \
|
---|
3256 | *puDst = uResult; \
|
---|
3257 | \
|
---|
3258 | /* CALC EFLAGS: */ \
|
---|
3259 | uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
|
---|
3260 | if (a_fIntelFlags) \
|
---|
3261 | /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \
|
---|
3262 | fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uDst << 1)); \
|
---|
3263 | else \
|
---|
3264 | { /* AMD 3990X: Set according to last shift. AF always set. */ \
|
---|
3265 | fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth((uDst << (cShift - 1)) ^ uResult); \
|
---|
3266 | fEfl |= X86_EFL_AF; \
|
---|
3267 | } \
|
---|
3268 | AssertCompile(X86_EFL_CF_BIT == 0); \
|
---|
3269 | fEfl |= (uDst >> (a_cBitsWidth - cShift)) & X86_EFL_CF; /* CF = last bit shifted out */ \
|
---|
3270 | fEfl |= g_afParity[uResult & 0xff]; \
|
---|
3271 | fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \
|
---|
3272 | fEfl |= X86_EFL_CALC_ZF(uResult); \
|
---|
3273 | *pfEFlags = fEfl; \
|
---|
3274 | } \
|
---|
3275 | }
|
---|
3276 |
|
---|
3277 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3278 | EMIT_SHLD(64, uint64_t, RT_NOTHING, 1)
|
---|
3279 | #endif
|
---|
3280 | EMIT_SHLD(64, uint64_t, _intel, 1)
|
---|
3281 | EMIT_SHLD(64, uint64_t, _amd, 0)
|
---|
3282 |
|
---|
3283 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3284 | EMIT_SHLD(32, uint32_t, RT_NOTHING, 1)
|
---|
3285 | #endif
|
---|
3286 | EMIT_SHLD(32, uint32_t, _intel, 1)
|
---|
3287 | EMIT_SHLD(32, uint32_t, _amd, 0)
|
---|
3288 |
|
---|
3289 | #define EMIT_SHLD_16(a_Suffix, a_fIntelFlags) \
|
---|
3290 | IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_shld_u16,a_Suffix),(uint16_t *puDst, uint16_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) \
|
---|
3291 | { \
|
---|
3292 | cShift &= 31; \
|
---|
3293 | if (cShift) \
|
---|
3294 | { \
|
---|
3295 | uint16_t const uDst = *puDst; \
|
---|
3296 | uint64_t const uTmp = a_fIntelFlags \
|
---|
3297 | ? ((uint64_t)uDst << 32) | ((uint32_t)uSrc << 16) | uDst \
|
---|
3298 | : ((uint64_t)uDst << 32) | ((uint32_t)uSrc << 16) | uSrc; \
|
---|
3299 | uint16_t const uResult = (uint16_t)((uTmp << cShift) >> 32); \
|
---|
3300 | *puDst = uResult; \
|
---|
3301 | \
|
---|
3302 | /* CALC EFLAGS: */ \
|
---|
3303 | uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
|
---|
3304 | AssertCompile(X86_EFL_CF_BIT == 0); \
|
---|
3305 | if (a_fIntelFlags) \
|
---|
3306 | { \
|
---|
3307 | fEfl |= (uTmp >> (48 - cShift)) & X86_EFL_CF; /* CF = last bit shifted out of the combined operand */ \
|
---|
3308 | /* Intel 6700K & 10980XE: OF is et according to the first shift. AF always cleared. */ \
|
---|
3309 | fEfl |= X86_EFL_GET_OF_16(uDst ^ (uDst << 1)); \
|
---|
3310 | } \
|
---|
3311 | else \
|
---|
3312 | { \
|
---|
3313 | /* AMD 3990X: OF is set according to last shift, with some weirdness. AF always set. CF = last bit shifted out of uDst. */ \
|
---|
3314 | if (cShift < 16) \
|
---|
3315 | { \
|
---|
3316 | fEfl |= (uDst >> (16 - cShift)) & X86_EFL_CF; \
|
---|
3317 | fEfl |= X86_EFL_GET_OF_16((uDst << (cShift - 1)) ^ uResult); \
|
---|
3318 | } \
|
---|
3319 | else \
|
---|
3320 | { \
|
---|
3321 | if (cShift == 16) \
|
---|
3322 | fEfl |= uDst & X86_EFL_CF; \
|
---|
3323 | fEfl |= X86_EFL_GET_OF_16((uDst << (cShift - 1)) ^ 0); \
|
---|
3324 | } \
|
---|
3325 | fEfl |= X86_EFL_AF; \
|
---|
3326 | } \
|
---|
3327 | fEfl |= g_afParity[uResult & 0xff]; \
|
---|
3328 | fEfl |= X86_EFL_CALC_SF(uResult, 16); \
|
---|
3329 | fEfl |= X86_EFL_CALC_ZF(uResult); \
|
---|
3330 | *pfEFlags = fEfl; \
|
---|
3331 | } \
|
---|
3332 | }
|
---|
3333 |
|
---|
3334 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3335 | EMIT_SHLD_16(RT_NOTHING, 1)
|
---|
3336 | #endif
|
---|
3337 | EMIT_SHLD_16(_intel, 1)
|
---|
3338 | EMIT_SHLD_16(_amd, 0)
|
---|
3339 |
|
---|
3340 |
|
---|
3341 | /*
|
---|
3342 | * SHRD
|
---|
3343 | *
|
---|
3344 | * EFLAGS behaviour seems to be the same as with SHLD:
|
---|
3345 | * - CF is the last bit shifted out of puDst.
|
---|
3346 | * - AF is always cleared by Intel 10980XE.
|
---|
3347 | * - AF is always set by AMD 3990X.
|
---|
3348 | * - OF is set according to the first shift on Intel 10980XE, it seems.
|
---|
3349 | * - OF is set according to the last sub-shift on AMD 3990X.
|
---|
3350 | * - ZF, SF and PF are calculated according to the result by both vendors.
|
---|
3351 | *
|
---|
3352 | * For 16-bit shifts the count mask isn't 15, but 31, and the CPU will
|
---|
3353 | * pick either the source register or the destination register for input bits
|
---|
3354 | * when going beyond 16. According to https://www.sandpile.org/x86/flags.htm
|
---|
3355 | * intel has changed behaviour here several times. We implement what current
|
---|
3356 | * skylake based does for now, we can extend this later as needed.
|
---|
3357 | */
|
---|
3358 | #define EMIT_SHRD(a_cBitsWidth, a_uType, a_Suffix, a_fIntelFlags) \
|
---|
3359 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shrd_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, uint8_t cShift, uint32_t *pfEFlags)) \
|
---|
3360 | { \
|
---|
3361 | cShift &= a_cBitsWidth - 1; \
|
---|
3362 | if (cShift) \
|
---|
3363 | { \
|
---|
3364 | a_uType const uDst = *puDst; \
|
---|
3365 | a_uType uResult = uDst >> cShift; \
|
---|
3366 | uResult |= uSrc << (a_cBitsWidth - cShift); \
|
---|
3367 | *puDst = uResult; \
|
---|
3368 | \
|
---|
3369 | uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
|
---|
3370 | AssertCompile(X86_EFL_CF_BIT == 0); \
|
---|
3371 | fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \
|
---|
3372 | if (a_fIntelFlags) \
|
---|
3373 | /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \
|
---|
3374 | fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ (uSrc << (a_cBitsWidth - 1))); \
|
---|
3375 | else \
|
---|
3376 | { /* AMD 3990X: Set according to last shift. AF always set. */ \
|
---|
3377 | if (cShift > 1) /* Set according to last shift. */ \
|
---|
3378 | fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth((uSrc << (a_cBitsWidth - cShift + 1)) ^ uResult); \
|
---|
3379 | else \
|
---|
3380 | fEfl |= X86_EFL_GET_OF_ ## a_cBitsWidth(uDst ^ uResult); \
|
---|
3381 | fEfl |= X86_EFL_AF; \
|
---|
3382 | } \
|
---|
3383 | fEfl |= X86_EFL_CALC_SF(uResult, a_cBitsWidth); \
|
---|
3384 | fEfl |= X86_EFL_CALC_ZF(uResult); \
|
---|
3385 | fEfl |= g_afParity[uResult & 0xff]; \
|
---|
3386 | *pfEFlags = fEfl; \
|
---|
3387 | } \
|
---|
3388 | }
|
---|
3389 |
|
---|
3390 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3391 | EMIT_SHRD(64, uint64_t, RT_NOTHING, 1)
|
---|
3392 | #endif
|
---|
3393 | EMIT_SHRD(64, uint64_t, _intel, 1)
|
---|
3394 | EMIT_SHRD(64, uint64_t, _amd, 0)
|
---|
3395 |
|
---|
3396 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3397 | EMIT_SHRD(32, uint32_t, RT_NOTHING, 1)
|
---|
3398 | #endif
|
---|
3399 | EMIT_SHRD(32, uint32_t, _intel, 1)
|
---|
3400 | EMIT_SHRD(32, uint32_t, _amd, 0)
|
---|
3401 |
|
---|
3402 | #define EMIT_SHRD_16(a_Suffix, a_fIntelFlags) \
|
---|
3403 | IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_shrd_u16,a_Suffix),(uint16_t *puDst, uint16_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) \
|
---|
3404 | { \
|
---|
3405 | cShift &= 31; \
|
---|
3406 | if (cShift) \
|
---|
3407 | { \
|
---|
3408 | uint16_t const uDst = *puDst; \
|
---|
3409 | uint64_t const uTmp = a_fIntelFlags \
|
---|
3410 | ? uDst | ((uint32_t)uSrc << 16) | ((uint64_t)uDst << 32) \
|
---|
3411 | : uDst | ((uint32_t)uSrc << 16) | ((uint64_t)uSrc << 32); \
|
---|
3412 | uint16_t const uResult = (uint16_t)(uTmp >> cShift); \
|
---|
3413 | *puDst = uResult; \
|
---|
3414 | \
|
---|
3415 | uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; \
|
---|
3416 | AssertCompile(X86_EFL_CF_BIT == 0); \
|
---|
3417 | if (a_fIntelFlags) \
|
---|
3418 | { \
|
---|
3419 | /* Intel 10980XE: The CF is the last shifted out of the combined uTmp operand. */ \
|
---|
3420 | fEfl |= (uTmp >> (cShift - 1)) & X86_EFL_CF; \
|
---|
3421 | /* Intel 6700K & 10980XE: Set according to the first shift. AF always cleared. */ \
|
---|
3422 | fEfl |= X86_EFL_GET_OF_16(uDst ^ (uSrc << 15)); \
|
---|
3423 | } \
|
---|
3424 | else \
|
---|
3425 | { \
|
---|
3426 | /* AMD 3990X: CF flag seems to be last bit shifted out of uDst, not the combined uSrc:uSrc:uDst operand. */ \
|
---|
3427 | fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; \
|
---|
3428 | /* AMD 3990X: Set according to last shift. AF always set. */ \
|
---|
3429 | if (cShift > 1) /* Set according to last shift. */ \
|
---|
3430 | fEfl |= X86_EFL_GET_OF_16((uint16_t)(uTmp >> (cShift - 1)) ^ uResult); \
|
---|
3431 | else \
|
---|
3432 | fEfl |= X86_EFL_GET_OF_16(uDst ^ uResult); \
|
---|
3433 | fEfl |= X86_EFL_AF; \
|
---|
3434 | } \
|
---|
3435 | fEfl |= X86_EFL_CALC_SF(uResult, 16); \
|
---|
3436 | fEfl |= X86_EFL_CALC_ZF(uResult); \
|
---|
3437 | fEfl |= g_afParity[uResult & 0xff]; \
|
---|
3438 | *pfEFlags = fEfl; \
|
---|
3439 | } \
|
---|
3440 | }
|
---|
3441 |
|
---|
3442 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3443 | EMIT_SHRD_16(RT_NOTHING, 1)
|
---|
3444 | #endif
|
---|
3445 | EMIT_SHRD_16(_intel, 1)
|
---|
3446 | EMIT_SHRD_16(_amd, 0)
|
---|
3447 |
|
---|
3448 |
|
---|
3449 | /*
|
---|
3450 | * RORX (BMI2)
|
---|
3451 | */
|
---|
3452 | #define EMIT_RORX(a_cBitsWidth, a_uType, a_fnHlp) \
|
---|
3453 | IEM_DECL_IMPL_DEF(void, RT_CONCAT(iemAImpl_rorx_u,a_cBitsWidth),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \
|
---|
3454 | { \
|
---|
3455 | *puDst = a_fnHlp(uSrc, cShift & (a_cBitsWidth - 1)); \
|
---|
3456 | }
|
---|
3457 |
|
---|
3458 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3459 | EMIT_RORX(64, uint64_t, ASMRotateRightU64)
|
---|
3460 | #endif
|
---|
3461 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3462 | EMIT_RORX(32, uint32_t, ASMRotateRightU32)
|
---|
3463 | #endif
|
---|
3464 |
|
---|
3465 |
|
---|
3466 | /*
|
---|
3467 | * SHLX (BMI2)
|
---|
3468 | */
|
---|
3469 | #define EMIT_SHLX(a_cBitsWidth, a_uType, a_Suffix) \
|
---|
3470 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shlx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \
|
---|
3471 | { \
|
---|
3472 | cShift &= a_cBitsWidth - 1; \
|
---|
3473 | *puDst = uSrc << cShift; \
|
---|
3474 | }
|
---|
3475 |
|
---|
3476 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3477 | EMIT_SHLX(64, uint64_t, RT_NOTHING)
|
---|
3478 | EMIT_SHLX(64, uint64_t, _fallback)
|
---|
3479 | #endif
|
---|
3480 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3481 | EMIT_SHLX(32, uint32_t, RT_NOTHING)
|
---|
3482 | EMIT_SHLX(32, uint32_t, _fallback)
|
---|
3483 | #endif
|
---|
3484 |
|
---|
3485 |
|
---|
3486 | /*
|
---|
3487 | * SHRX (BMI2)
|
---|
3488 | */
|
---|
3489 | #define EMIT_SHRX(a_cBitsWidth, a_uType, a_Suffix) \
|
---|
3490 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_shrx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \
|
---|
3491 | { \
|
---|
3492 | cShift &= a_cBitsWidth - 1; \
|
---|
3493 | *puDst = uSrc >> cShift; \
|
---|
3494 | }
|
---|
3495 |
|
---|
3496 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3497 | EMIT_SHRX(64, uint64_t, RT_NOTHING)
|
---|
3498 | EMIT_SHRX(64, uint64_t, _fallback)
|
---|
3499 | #endif
|
---|
3500 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3501 | EMIT_SHRX(32, uint32_t, RT_NOTHING)
|
---|
3502 | EMIT_SHRX(32, uint32_t, _fallback)
|
---|
3503 | #endif
|
---|
3504 |
|
---|
3505 |
|
---|
3506 | /*
|
---|
3507 | * SARX (BMI2)
|
---|
3508 | */
|
---|
3509 | #define EMIT_SARX(a_cBitsWidth, a_uType, a_iType, a_Suffix) \
|
---|
3510 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_sarx_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType cShift)) \
|
---|
3511 | { \
|
---|
3512 | cShift &= a_cBitsWidth - 1; \
|
---|
3513 | *puDst = (a_iType)uSrc >> cShift; \
|
---|
3514 | }
|
---|
3515 |
|
---|
3516 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3517 | EMIT_SARX(64, uint64_t, int64_t, RT_NOTHING)
|
---|
3518 | EMIT_SARX(64, uint64_t, int64_t, _fallback)
|
---|
3519 | #endif
|
---|
3520 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3521 | EMIT_SARX(32, uint32_t, int32_t, RT_NOTHING)
|
---|
3522 | EMIT_SARX(32, uint32_t, int32_t, _fallback)
|
---|
3523 | #endif
|
---|
3524 |
|
---|
3525 |
|
---|
3526 | /*
|
---|
3527 | * PDEP (BMI2)
|
---|
3528 | */
|
---|
3529 | #define EMIT_PDEP(a_cBitsWidth, a_uType, a_Suffix) \
|
---|
3530 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_pdep_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType fMask)) \
|
---|
3531 | { \
|
---|
3532 | a_uType uResult = 0; \
|
---|
3533 | for (unsigned iMaskBit = 0, iBit = 0; iMaskBit < a_cBitsWidth; iMaskBit++) \
|
---|
3534 | if (fMask & ((a_uType)1 << iMaskBit)) \
|
---|
3535 | { \
|
---|
3536 | uResult |= ((uSrc >> iBit) & 1) << iMaskBit; \
|
---|
3537 | iBit++; \
|
---|
3538 | } \
|
---|
3539 | *puDst = uResult; \
|
---|
3540 | }
|
---|
3541 |
|
---|
3542 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3543 | EMIT_PDEP(64, uint64_t, RT_NOTHING)
|
---|
3544 | #endif
|
---|
3545 | EMIT_PDEP(64, uint64_t, _fallback)
|
---|
3546 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3547 | EMIT_PDEP(32, uint32_t, RT_NOTHING)
|
---|
3548 | #endif
|
---|
3549 | EMIT_PDEP(32, uint32_t, _fallback)
|
---|
3550 |
|
---|
3551 | /*
|
---|
3552 | * PEXT (BMI2)
|
---|
3553 | */
|
---|
3554 | #define EMIT_PEXT(a_cBitsWidth, a_uType, a_Suffix) \
|
---|
3555 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_pext_u,a_cBitsWidth,a_Suffix),(a_uType *puDst, a_uType uSrc, a_uType fMask)) \
|
---|
3556 | { \
|
---|
3557 | a_uType uResult = 0; \
|
---|
3558 | for (unsigned iMaskBit = 0, iBit = 0; iMaskBit < a_cBitsWidth; iMaskBit++) \
|
---|
3559 | if (fMask & ((a_uType)1 << iMaskBit)) \
|
---|
3560 | { \
|
---|
3561 | uResult |= ((uSrc >> iMaskBit) & 1) << iBit; \
|
---|
3562 | iBit++; \
|
---|
3563 | } \
|
---|
3564 | *puDst = uResult; \
|
---|
3565 | }
|
---|
3566 |
|
---|
3567 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3568 | EMIT_PEXT(64, uint64_t, RT_NOTHING)
|
---|
3569 | #endif
|
---|
3570 | EMIT_PEXT(64, uint64_t, _fallback)
|
---|
3571 | #if (!defined(RT_ARCH_X86) && !defined(RT_ARCH_AMD64)) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3572 | EMIT_PEXT(32, uint32_t, RT_NOTHING)
|
---|
3573 | #endif
|
---|
3574 | EMIT_PEXT(32, uint32_t, _fallback)
|
---|
3575 |
|
---|
3576 |
|
---|
3577 | #if !defined(RT_ARCH_AMD64) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3578 |
|
---|
3579 | # if !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3580 | /*
|
---|
3581 | * BSWAP
|
---|
3582 | */
|
---|
3583 |
|
---|
3584 | IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u64,(uint64_t *puDst))
|
---|
3585 | {
|
---|
3586 | *puDst = ASMByteSwapU64(*puDst);
|
---|
3587 | }
|
---|
3588 |
|
---|
3589 |
|
---|
3590 | IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u32,(uint32_t *puDst))
|
---|
3591 | {
|
---|
3592 | *puDst = ASMByteSwapU32(*puDst);
|
---|
3593 | }
|
---|
3594 |
|
---|
3595 |
|
---|
3596 | /* Note! undocument, so 32-bit arg */
|
---|
3597 | IEM_DECL_IMPL_DEF(void, iemAImpl_bswap_u16,(uint32_t *puDst))
|
---|
3598 | {
|
---|
3599 | #if 0
|
---|
3600 | *(uint16_t *)puDst = ASMByteSwapU16(*(uint16_t *)puDst);
|
---|
3601 | #else
|
---|
3602 | /* This is the behaviour AMD 3990x (64-bit mode): */
|
---|
3603 | *(uint16_t *)puDst = 0;
|
---|
3604 | #endif
|
---|
3605 | }
|
---|
3606 |
|
---|
3607 | # endif /* !defined(RT_ARCH_X86) || defined(IEM_WITHOUT_ASSEMBLY) */
|
---|
3608 |
|
---|
3609 |
|
---|
3610 |
|
---|
3611 | # if defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3612 |
|
---|
3613 | /*
|
---|
3614 | * LFENCE, SFENCE & MFENCE.
|
---|
3615 | */
|
---|
3616 |
|
---|
3617 | IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void))
|
---|
3618 | {
|
---|
3619 | ASMReadFence();
|
---|
3620 | }
|
---|
3621 |
|
---|
3622 |
|
---|
3623 | IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void))
|
---|
3624 | {
|
---|
3625 | ASMWriteFence();
|
---|
3626 | }
|
---|
3627 |
|
---|
3628 |
|
---|
3629 | IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void))
|
---|
3630 | {
|
---|
3631 | ASMMemoryFence();
|
---|
3632 | }
|
---|
3633 |
|
---|
3634 |
|
---|
3635 | # ifndef RT_ARCH_ARM64
|
---|
3636 | IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void))
|
---|
3637 | {
|
---|
3638 | ASMMemoryFence();
|
---|
3639 | }
|
---|
3640 | # endif
|
---|
3641 |
|
---|
3642 | # endif
|
---|
3643 |
|
---|
3644 | #endif /* !RT_ARCH_AMD64 || IEM_WITHOUT_ASSEMBLY */
|
---|
3645 |
|
---|
3646 |
|
---|
3647 | IEM_DECL_IMPL_DEF(void, iemAImpl_arpl,(uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pfEFlags))
|
---|
3648 | {
|
---|
3649 | if ((*pu16Dst & X86_SEL_RPL) < (u16Src & X86_SEL_RPL))
|
---|
3650 | {
|
---|
3651 | *pu16Dst &= X86_SEL_MASK_OFF_RPL;
|
---|
3652 | *pu16Dst |= u16Src & X86_SEL_RPL;
|
---|
3653 |
|
---|
3654 | *pfEFlags |= X86_EFL_ZF;
|
---|
3655 | }
|
---|
3656 | else
|
---|
3657 | *pfEFlags &= ~X86_EFL_ZF;
|
---|
3658 | }
|
---|
3659 |
|
---|
3660 |
|
---|
3661 | #if defined(IEM_WITHOUT_ASSEMBLY)
|
---|
3662 |
|
---|
3663 | /*********************************************************************************************************************************
|
---|
3664 | * x87 FPU Loads *
|
---|
3665 | *********************************************************************************************************************************/
|
---|
3666 |
|
---|
3667 | IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val))
|
---|
3668 | {
|
---|
3669 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
|
---|
3670 | if (RTFLOAT32U_IS_NORMAL(pr32Val))
|
---|
3671 | {
|
---|
3672 | pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign;
|
---|
3673 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3674 | pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction
|
---|
3675 | << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS);
|
---|
3676 | pFpuRes->r80Result.sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS;
|
---|
3677 | Assert(RTFLOAT80U_IS_NORMAL(&pFpuRes->r80Result));
|
---|
3678 | }
|
---|
3679 | else if (RTFLOAT32U_IS_ZERO(pr32Val))
|
---|
3680 | {
|
---|
3681 | pFpuRes->r80Result.s.fSign = pr32Val->s.fSign;
|
---|
3682 | pFpuRes->r80Result.s.uExponent = 0;
|
---|
3683 | pFpuRes->r80Result.s.uMantissa = 0;
|
---|
3684 | Assert(RTFLOAT80U_IS_ZERO(&pFpuRes->r80Result));
|
---|
3685 | }
|
---|
3686 | else if (RTFLOAT32U_IS_SUBNORMAL(pr32Val))
|
---|
3687 | {
|
---|
3688 | /* Subnormal values gets normalized. */
|
---|
3689 | pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign;
|
---|
3690 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3691 | unsigned const cExtraShift = RTFLOAT32U_FRACTION_BITS - ASMBitLastSetU32(pr32Val->s.uFraction);
|
---|
3692 | pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction
|
---|
3693 | << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS + cExtraShift + 1);
|
---|
3694 | pFpuRes->r80Result.sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift;
|
---|
3695 | pFpuRes->FSW |= X86_FSW_DE;
|
---|
3696 | if (!(pFpuState->FCW & X86_FCW_DM))
|
---|
3697 | pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; /* The value is still pushed. */
|
---|
3698 | }
|
---|
3699 | else if (RTFLOAT32U_IS_INF(pr32Val))
|
---|
3700 | {
|
---|
3701 | pFpuRes->r80Result.s.fSign = pr32Val->s.fSign;
|
---|
3702 | pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_MAX;
|
---|
3703 | pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63);
|
---|
3704 | Assert(RTFLOAT80U_IS_INF(&pFpuRes->r80Result));
|
---|
3705 | }
|
---|
3706 | else
|
---|
3707 | {
|
---|
3708 | /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */
|
---|
3709 | Assert(RTFLOAT32U_IS_NAN(pr32Val));
|
---|
3710 | pFpuRes->r80Result.sj64.fSign = pr32Val->s.fSign;
|
---|
3711 | pFpuRes->r80Result.sj64.uExponent = RTFLOAT80U_EXP_MAX;
|
---|
3712 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3713 | pFpuRes->r80Result.sj64.uFraction = (uint64_t)pr32Val->s.uFraction
|
---|
3714 | << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS);
|
---|
3715 | if (RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val))
|
---|
3716 | {
|
---|
3717 | pFpuRes->r80Result.sj64.uFraction |= RT_BIT_64(62); /* make quiet */
|
---|
3718 | Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result));
|
---|
3719 | pFpuRes->FSW |= X86_FSW_IE;
|
---|
3720 |
|
---|
3721 | if (!(pFpuState->FCW & X86_FCW_IM))
|
---|
3722 | {
|
---|
3723 | /* The value is not pushed. */
|
---|
3724 | pFpuRes->FSW &= ~X86_FSW_TOP_MASK;
|
---|
3725 | pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B;
|
---|
3726 | pFpuRes->r80Result.au64[0] = 0;
|
---|
3727 | pFpuRes->r80Result.au16[4] = 0;
|
---|
3728 | }
|
---|
3729 | }
|
---|
3730 | else
|
---|
3731 | Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result));
|
---|
3732 | }
|
---|
3733 | }
|
---|
3734 |
|
---|
3735 |
|
---|
3736 | IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val))
|
---|
3737 | {
|
---|
3738 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
|
---|
3739 | if (RTFLOAT64U_IS_NORMAL(pr64Val))
|
---|
3740 | {
|
---|
3741 | pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign;
|
---|
3742 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3743 | pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS);
|
---|
3744 | pFpuRes->r80Result.sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS;
|
---|
3745 | Assert(RTFLOAT80U_IS_NORMAL(&pFpuRes->r80Result));
|
---|
3746 | }
|
---|
3747 | else if (RTFLOAT64U_IS_ZERO(pr64Val))
|
---|
3748 | {
|
---|
3749 | pFpuRes->r80Result.s.fSign = pr64Val->s.fSign;
|
---|
3750 | pFpuRes->r80Result.s.uExponent = 0;
|
---|
3751 | pFpuRes->r80Result.s.uMantissa = 0;
|
---|
3752 | Assert(RTFLOAT80U_IS_ZERO(&pFpuRes->r80Result));
|
---|
3753 | }
|
---|
3754 | else if (RTFLOAT64U_IS_SUBNORMAL(pr64Val))
|
---|
3755 | {
|
---|
3756 | /* Subnormal values gets normalized. */
|
---|
3757 | pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign;
|
---|
3758 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3759 | unsigned const cExtraShift = RTFLOAT64U_FRACTION_BITS - ASMBitLastSetU64(pr64Val->s64.uFraction);
|
---|
3760 | pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction
|
---|
3761 | << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS + cExtraShift + 1);
|
---|
3762 | pFpuRes->r80Result.sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift;
|
---|
3763 | pFpuRes->FSW |= X86_FSW_DE;
|
---|
3764 | if (!(pFpuState->FCW & X86_FCW_DM))
|
---|
3765 | pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B; /* The value is still pushed. */
|
---|
3766 | }
|
---|
3767 | else if (RTFLOAT64U_IS_INF(pr64Val))
|
---|
3768 | {
|
---|
3769 | pFpuRes->r80Result.s.fSign = pr64Val->s.fSign;
|
---|
3770 | pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_MAX;
|
---|
3771 | pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63);
|
---|
3772 | Assert(RTFLOAT80U_IS_INF(&pFpuRes->r80Result));
|
---|
3773 | }
|
---|
3774 | else
|
---|
3775 | {
|
---|
3776 | /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */
|
---|
3777 | Assert(RTFLOAT64U_IS_NAN(pr64Val));
|
---|
3778 | pFpuRes->r80Result.sj64.fSign = pr64Val->s.fSign;
|
---|
3779 | pFpuRes->r80Result.sj64.uExponent = RTFLOAT80U_EXP_MAX;
|
---|
3780 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3781 | pFpuRes->r80Result.sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS);
|
---|
3782 | if (RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val))
|
---|
3783 | {
|
---|
3784 | pFpuRes->r80Result.sj64.uFraction |= RT_BIT_64(62); /* make quiet */
|
---|
3785 | Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result));
|
---|
3786 | pFpuRes->FSW |= X86_FSW_IE;
|
---|
3787 |
|
---|
3788 | if (!(pFpuState->FCW & X86_FCW_IM))
|
---|
3789 | {
|
---|
3790 | /* The value is not pushed. */
|
---|
3791 | pFpuRes->FSW &= ~X86_FSW_TOP_MASK;
|
---|
3792 | pFpuRes->FSW |= X86_FSW_ES | X86_FSW_B;
|
---|
3793 | pFpuRes->r80Result.au64[0] = 0;
|
---|
3794 | pFpuRes->r80Result.au16[4] = 0;
|
---|
3795 | }
|
---|
3796 | }
|
---|
3797 | else
|
---|
3798 | Assert(RTFLOAT80U_IS_QUIET_NAN(&pFpuRes->r80Result));
|
---|
3799 | }
|
---|
3800 | }
|
---|
3801 |
|
---|
3802 |
|
---|
3803 | IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
3804 | {
|
---|
3805 | pFpuRes->r80Result.au64[0] = pr80Val->au64[0];
|
---|
3806 | pFpuRes->r80Result.au16[4] = pr80Val->au16[4];
|
---|
3807 | /* Raises no exceptions. */
|
---|
3808 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
|
---|
3809 | }
|
---|
3810 |
|
---|
3811 |
|
---|
3812 | IEM_DECL_IMPL_DEF(void, iemAImpl_fld1,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
|
---|
3813 | {
|
---|
3814 | pFpuRes->r80Result.sj64.fSign = 0;
|
---|
3815 | pFpuRes->r80Result.sj64.uExponent = 0 + 16383;
|
---|
3816 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3817 | pFpuRes->r80Result.sj64.uFraction = 0;
|
---|
3818 |
|
---|
3819 | /*
|
---|
3820 | * FPU status word:
|
---|
3821 | * - TOP is irrelevant, but we must match x86 assembly version.
|
---|
3822 | * - C1 is always cleared as we don't have any stack overflows.
|
---|
3823 | * - C0, C2, and C3 are undefined and Intel 10980XE does not touch them.
|
---|
3824 | */
|
---|
3825 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3));
|
---|
3826 | }
|
---|
3827 |
|
---|
3828 |
|
---|
3829 | IEM_DECL_IMPL_DEF(void, iemAImpl_fldl2e,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
|
---|
3830 | {
|
---|
3831 | pFpuRes->r80Result.sj64.fSign = 0;
|
---|
3832 | pFpuRes->r80Result.sj64.uExponent = 0 + 16383;
|
---|
3833 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3834 | pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
|
---|
3835 | || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP
|
---|
3836 | ? UINT64_C(0x38aa3b295c17f0bc) : UINT64_C(0x38aa3b295c17f0bb);
|
---|
3837 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
|
---|
3838 | }
|
---|
3839 |
|
---|
3840 |
|
---|
3841 | IEM_DECL_IMPL_DEF(void, iemAImpl_fldl2t,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
|
---|
3842 | {
|
---|
3843 | pFpuRes->r80Result.sj64.fSign = 0;
|
---|
3844 | pFpuRes->r80Result.sj64.uExponent = 1 + 16383;
|
---|
3845 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3846 | pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) != X86_FCW_RC_UP
|
---|
3847 | ? UINT64_C(0x549a784bcd1b8afe) : UINT64_C(0x549a784bcd1b8aff);
|
---|
3848 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
|
---|
3849 | }
|
---|
3850 |
|
---|
3851 |
|
---|
3852 | IEM_DECL_IMPL_DEF(void, iemAImpl_fldlg2,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
|
---|
3853 | {
|
---|
3854 | pFpuRes->r80Result.sj64.fSign = 0;
|
---|
3855 | pFpuRes->r80Result.sj64.uExponent = -2 + 16383;
|
---|
3856 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3857 | pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
|
---|
3858 | || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP
|
---|
3859 | ? UINT64_C(0x1a209a84fbcff799) : UINT64_C(0x1a209a84fbcff798);
|
---|
3860 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
|
---|
3861 | }
|
---|
3862 |
|
---|
3863 |
|
---|
3864 | IEM_DECL_IMPL_DEF(void, iemAImpl_fldln2,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
|
---|
3865 | {
|
---|
3866 | pFpuRes->r80Result.sj64.fSign = 0;
|
---|
3867 | pFpuRes->r80Result.sj64.uExponent = -1 + 16383;
|
---|
3868 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3869 | pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
|
---|
3870 | || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP
|
---|
3871 | ? UINT64_C(0x317217f7d1cf79ac) : UINT64_C(0x317217f7d1cf79ab);
|
---|
3872 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
|
---|
3873 | }
|
---|
3874 |
|
---|
3875 |
|
---|
3876 | IEM_DECL_IMPL_DEF(void, iemAImpl_fldpi,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
|
---|
3877 | {
|
---|
3878 | pFpuRes->r80Result.sj64.fSign = 0;
|
---|
3879 | pFpuRes->r80Result.sj64.uExponent = 1 + 16383;
|
---|
3880 | pFpuRes->r80Result.sj64.fInteger = 1;
|
---|
3881 | pFpuRes->r80Result.sj64.uFraction = (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
|
---|
3882 | || (pFpuState->FCW & X86_FCW_RC_MASK) == X86_FCW_RC_UP
|
---|
3883 | ? UINT64_C(0x490fdaa22168c235) : UINT64_C(0x490fdaa22168c234);
|
---|
3884 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
|
---|
3885 | }
|
---|
3886 |
|
---|
3887 |
|
---|
3888 | IEM_DECL_IMPL_DEF(void, iemAImpl_fldz,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes))
|
---|
3889 | {
|
---|
3890 | pFpuRes->r80Result.s.fSign = 0;
|
---|
3891 | pFpuRes->r80Result.s.uExponent = 0;
|
---|
3892 | pFpuRes->r80Result.s.uMantissa = 0;
|
---|
3893 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
|
---|
3894 | }
|
---|
3895 |
|
---|
3896 | #define EMIT_FILD(a_cBits) \
|
---|
3897 | IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i ## a_cBits,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, \
|
---|
3898 | int ## a_cBits ## _t const *piVal)) \
|
---|
3899 | { \
|
---|
3900 | int ## a_cBits ## _t iVal = *piVal; \
|
---|
3901 | if (iVal == 0) \
|
---|
3902 | { \
|
---|
3903 | pFpuRes->r80Result.s.fSign = 0; \
|
---|
3904 | pFpuRes->r80Result.s.uExponent = 0; \
|
---|
3905 | pFpuRes->r80Result.s.uMantissa = 0; \
|
---|
3906 | } \
|
---|
3907 | else \
|
---|
3908 | { \
|
---|
3909 | if (iVal > 0) \
|
---|
3910 | pFpuRes->r80Result.s.fSign = 0; \
|
---|
3911 | else \
|
---|
3912 | { \
|
---|
3913 | pFpuRes->r80Result.s.fSign = 1; \
|
---|
3914 | iVal = -iVal; \
|
---|
3915 | } \
|
---|
3916 | unsigned const cBits = ASMBitLastSetU ## a_cBits((uint ## a_cBits ## _t)iVal); \
|
---|
3917 | pFpuRes->r80Result.s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS; \
|
---|
3918 | pFpuRes->r80Result.s.uMantissa = (uint64_t)iVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits); \
|
---|
3919 | } \
|
---|
3920 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */ \
|
---|
3921 | }
|
---|
3922 | EMIT_FILD(16)
|
---|
3923 | EMIT_FILD(32)
|
---|
3924 | EMIT_FILD(64)
|
---|
3925 |
|
---|
3926 |
|
---|
3927 | IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val))
|
---|
3928 | {
|
---|
3929 | pFpuRes->FSW = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); /* see iemAImpl_fld1 */
|
---|
3930 | if ( pd80Val->s.abPairs[0] == 0
|
---|
3931 | && pd80Val->s.abPairs[1] == 0
|
---|
3932 | && pd80Val->s.abPairs[2] == 0
|
---|
3933 | && pd80Val->s.abPairs[3] == 0
|
---|
3934 | && pd80Val->s.abPairs[4] == 0
|
---|
3935 | && pd80Val->s.abPairs[5] == 0
|
---|
3936 | && pd80Val->s.abPairs[6] == 0
|
---|
3937 | && pd80Val->s.abPairs[7] == 0
|
---|
3938 | && pd80Val->s.abPairs[8] == 0)
|
---|
3939 | {
|
---|
3940 | pFpuRes->r80Result.s.fSign = pd80Val->s.fSign;
|
---|
3941 | pFpuRes->r80Result.s.uExponent = 0;
|
---|
3942 | pFpuRes->r80Result.s.uMantissa = 0;
|
---|
3943 | }
|
---|
3944 | else
|
---|
3945 | {
|
---|
3946 | pFpuRes->r80Result.s.fSign = pd80Val->s.fSign;
|
---|
3947 |
|
---|
3948 | size_t cPairs = RT_ELEMENTS(pd80Val->s.abPairs);
|
---|
3949 | while (cPairs > 0 && pd80Val->s.abPairs[cPairs - 1] == 0)
|
---|
3950 | cPairs--;
|
---|
3951 |
|
---|
3952 | uint64_t uVal = 0;
|
---|
3953 | uint64_t uFactor = 1;
|
---|
3954 | for (size_t iPair = 0; iPair < cPairs; iPair++, uFactor *= 100)
|
---|
3955 | uVal += RTPBCD80U_LO_DIGIT(pd80Val->s.abPairs[iPair]) * uFactor
|
---|
3956 | + RTPBCD80U_HI_DIGIT(pd80Val->s.abPairs[iPair]) * uFactor * 10;
|
---|
3957 |
|
---|
3958 | unsigned const cBits = ASMBitLastSetU64(uVal);
|
---|
3959 | pFpuRes->r80Result.s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS;
|
---|
3960 | pFpuRes->r80Result.s.uMantissa = uVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits);
|
---|
3961 | }
|
---|
3962 | }
|
---|
3963 |
|
---|
3964 |
|
---|
3965 | /*********************************************************************************************************************************
|
---|
3966 | * x87 FPU Stores *
|
---|
3967 | *********************************************************************************************************************************/
|
---|
3968 |
|
---|
3969 | /**
|
---|
3970 | * Helper for storing a deconstructed and normal R80 value as a 64-bit one.
|
---|
3971 | *
|
---|
3972 | * This uses the rounding rules indicated by fFcw and returns updated fFsw.
|
---|
3973 | *
|
---|
3974 | * @returns Updated FPU status word value.
|
---|
3975 | * @param fSignIn Incoming sign indicator.
|
---|
3976 | * @param uMantissaIn Incoming mantissa (dot between bit 63 and 62).
|
---|
3977 | * @param iExponentIn Unbiased exponent.
|
---|
3978 | * @param fFcw The FPU control word.
|
---|
3979 | * @param fFsw Prepped FPU status word, i.e. exceptions and C1 clear.
|
---|
3980 | * @param pr32Dst Where to return the output value, if one should be
|
---|
3981 | * returned.
|
---|
3982 | *
|
---|
3983 | * @note Tailored as a helper for iemAImpl_fst_r80_to_r32 right now.
|
---|
3984 | * @note Exact same logic as iemAImpl_StoreNormalR80AsR64.
|
---|
3985 | */
|
---|
3986 | static uint16_t iemAImpl_StoreNormalR80AsR32(bool fSignIn, uint64_t uMantissaIn, int32_t iExponentIn,
|
---|
3987 | uint16_t fFcw, uint16_t fFsw, PRTFLOAT32U pr32Dst)
|
---|
3988 | {
|
---|
3989 | uint64_t const fRoundingOffMask = RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS) - 1; /* 0x7ff */
|
---|
3990 | uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
|
---|
3991 | ? RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS - 1) /* 0x400 */
|
---|
3992 | : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)
|
---|
3993 | ? fRoundingOffMask
|
---|
3994 | : 0;
|
---|
3995 | uint64_t fRoundedOff = uMantissaIn & fRoundingOffMask;
|
---|
3996 |
|
---|
3997 | /*
|
---|
3998 | * Deal with potential overflows/underflows first, optimizing for none.
|
---|
3999 | * 0 and MAX are used for special values; MAX-1 may be rounded up to MAX.
|
---|
4000 | */
|
---|
4001 | int32_t iExponentOut = (int32_t)iExponentIn + RTFLOAT32U_EXP_BIAS;
|
---|
4002 | if ((uint32_t)iExponentOut - 1 < (uint32_t)(RTFLOAT32U_EXP_MAX - 3))
|
---|
4003 | { /* likely? */ }
|
---|
4004 | /*
|
---|
4005 | * Underflow if the exponent zero or negative. This is attempted mapped
|
---|
4006 | * to a subnormal number when possible, with some additional trickery ofc.
|
---|
4007 | */
|
---|
4008 | else if (iExponentOut <= 0)
|
---|
4009 | {
|
---|
4010 | bool const fIsTiny = iExponentOut < 0
|
---|
4011 | || UINT64_MAX - uMantissaIn > uRoundingAdd;
|
---|
4012 | if (!(fFcw & X86_FCW_UM) && fIsTiny)
|
---|
4013 | /* Note! 754-1985 sec 7.4 has something about bias adjust of 192 here, not in 2008 & 2019. Perhaps only 8087 & 287? */
|
---|
4014 | return fFsw | X86_FSW_UE | X86_FSW_ES | X86_FSW_B;
|
---|
4015 |
|
---|
4016 | if (iExponentOut <= 0)
|
---|
4017 | {
|
---|
4018 | uMantissaIn = iExponentOut <= -63
|
---|
4019 | ? uMantissaIn != 0
|
---|
4020 | : (uMantissaIn >> (-iExponentOut + 1)) | ((uMantissaIn & (RT_BIT_64(-iExponentOut + 1) - 1)) != 0);
|
---|
4021 | fRoundedOff = uMantissaIn & fRoundingOffMask;
|
---|
4022 | if (fRoundedOff && fIsTiny)
|
---|
4023 | fFsw |= X86_FSW_UE;
|
---|
4024 | iExponentOut = 0;
|
---|
4025 | }
|
---|
4026 | }
|
---|
4027 | /*
|
---|
4028 | * Overflow if at or above max exponent value or if we will reach max
|
---|
4029 | * when rounding. Will return +/-zero or +/-max value depending on
|
---|
4030 | * whether we're rounding or not.
|
---|
4031 | */
|
---|
4032 | else if ( iExponentOut >= RTFLOAT32U_EXP_MAX
|
---|
4033 | || ( iExponentOut == RTFLOAT32U_EXP_MAX - 1
|
---|
4034 | && UINT64_MAX - uMantissaIn <= uRoundingAdd))
|
---|
4035 | {
|
---|
4036 | fFsw |= X86_FSW_OE;
|
---|
4037 | if (!(fFcw & X86_FCW_OM))
|
---|
4038 | return fFsw | X86_FSW_ES | X86_FSW_B;
|
---|
4039 | fFsw |= X86_FSW_PE;
|
---|
4040 | if (uRoundingAdd)
|
---|
4041 | fFsw |= X86_FSW_C1;
|
---|
4042 | if (!(fFcw & X86_FCW_PM))
|
---|
4043 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
4044 |
|
---|
4045 | pr32Dst->s.fSign = fSignIn;
|
---|
4046 | if (uRoundingAdd)
|
---|
4047 | { /* Zero */
|
---|
4048 | pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX;
|
---|
4049 | pr32Dst->s.uFraction = 0;
|
---|
4050 | }
|
---|
4051 | else
|
---|
4052 | { /* Max */
|
---|
4053 | pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX - 1;
|
---|
4054 | pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1;
|
---|
4055 | }
|
---|
4056 | return fFsw;
|
---|
4057 | }
|
---|
4058 |
|
---|
4059 | /*
|
---|
4060 | * Normal or subnormal number.
|
---|
4061 | */
|
---|
4062 | /* Do rounding - just truncate in near mode when midway on an even outcome. */
|
---|
4063 | uint64_t uMantissaOut = uMantissaIn;
|
---|
4064 | if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST
|
---|
4065 | || (uMantissaIn & RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS))
|
---|
4066 | || fRoundedOff != uRoundingAdd)
|
---|
4067 | {
|
---|
4068 | uMantissaOut = uMantissaIn + uRoundingAdd;
|
---|
4069 | if (uMantissaOut >= uMantissaIn)
|
---|
4070 | { /* likely */ }
|
---|
4071 | else
|
---|
4072 | {
|
---|
4073 | uMantissaOut >>= 1; /* (We don't need to add bit 63 here (the integer bit), as it will be chopped off below.) */
|
---|
4074 | iExponentOut++;
|
---|
4075 | Assert(iExponentOut < RTFLOAT32U_EXP_MAX); /* checked above */
|
---|
4076 | fFsw |= X86_FSW_C1;
|
---|
4077 | }
|
---|
4078 | }
|
---|
4079 | else
|
---|
4080 | uMantissaOut = uMantissaIn;
|
---|
4081 |
|
---|
4082 | /* Truncate the mantissa and set the return value. */
|
---|
4083 | uMantissaOut >>= RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS;
|
---|
4084 |
|
---|
4085 | pr32Dst->s.uFraction = (uint32_t)uMantissaOut; /* Note! too big for bitfield if normal. */
|
---|
4086 | pr32Dst->s.uExponent = iExponentOut;
|
---|
4087 | pr32Dst->s.fSign = fSignIn;
|
---|
4088 |
|
---|
4089 | /* Set status flags realted to rounding. */
|
---|
4090 | if (fRoundedOff)
|
---|
4091 | {
|
---|
4092 | fFsw |= X86_FSW_PE;
|
---|
4093 | if (uMantissaOut > (uMantissaIn >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS)))
|
---|
4094 | fFsw |= X86_FSW_C1;
|
---|
4095 | if (!(fFcw & X86_FCW_PM))
|
---|
4096 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
4097 | }
|
---|
4098 |
|
---|
4099 | return fFsw;
|
---|
4100 | }
|
---|
4101 |
|
---|
4102 |
|
---|
4103 | /**
|
---|
4104 | * @note Exact same logic as iemAImpl_fst_r80_to_r64.
|
---|
4105 | */
|
---|
4106 | IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
|
---|
4107 | PRTFLOAT32U pr32Dst, PCRTFLOAT80U pr80Src))
|
---|
4108 | {
|
---|
4109 | uint16_t const fFcw = pFpuState->FCW;
|
---|
4110 | uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3));
|
---|
4111 | if (RTFLOAT80U_IS_NORMAL(pr80Src))
|
---|
4112 | fFsw = iemAImpl_StoreNormalR80AsR32(pr80Src->s.fSign, pr80Src->s.uMantissa,
|
---|
4113 | (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS, fFcw, fFsw, pr32Dst);
|
---|
4114 | else if (RTFLOAT80U_IS_ZERO(pr80Src))
|
---|
4115 | {
|
---|
4116 | pr32Dst->s.fSign = pr80Src->s.fSign;
|
---|
4117 | pr32Dst->s.uExponent = 0;
|
---|
4118 | pr32Dst->s.uFraction = 0;
|
---|
4119 | Assert(RTFLOAT32U_IS_ZERO(pr32Dst));
|
---|
4120 | }
|
---|
4121 | else if (RTFLOAT80U_IS_INF(pr80Src))
|
---|
4122 | {
|
---|
4123 | pr32Dst->s.fSign = pr80Src->s.fSign;
|
---|
4124 | pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX;
|
---|
4125 | pr32Dst->s.uFraction = 0;
|
---|
4126 | Assert(RTFLOAT32U_IS_INF(pr32Dst));
|
---|
4127 | }
|
---|
4128 | else if (RTFLOAT80U_IS_INDEFINITE(pr80Src))
|
---|
4129 | {
|
---|
4130 | /* Mapped to +/-QNaN */
|
---|
4131 | pr32Dst->s.fSign = pr80Src->s.fSign;
|
---|
4132 | pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX;
|
---|
4133 | pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1);
|
---|
4134 | }
|
---|
4135 | else if (RTFLOAT80U_IS_PSEUDO_INF(pr80Src) || RTFLOAT80U_IS_UNNORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Src))
|
---|
4136 | {
|
---|
4137 | /* Pseudo-Inf / Pseudo-Nan / Unnormal -> QNaN (during load, probably) */
|
---|
4138 | if (fFcw & X86_FCW_IM)
|
---|
4139 | {
|
---|
4140 | pr32Dst->s.fSign = 1;
|
---|
4141 | pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX;
|
---|
4142 | pr32Dst->s.uFraction = RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1);
|
---|
4143 | fFsw |= X86_FSW_IE;
|
---|
4144 | }
|
---|
4145 | else
|
---|
4146 | fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;;
|
---|
4147 | }
|
---|
4148 | else if (RTFLOAT80U_IS_NAN(pr80Src))
|
---|
4149 | {
|
---|
4150 | /* IM applies to signalled NaN input only. Everything is converted to quiet NaN. */
|
---|
4151 | if ((fFcw & X86_FCW_IM) || !RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src))
|
---|
4152 | {
|
---|
4153 | pr32Dst->s.fSign = pr80Src->s.fSign;
|
---|
4154 | pr32Dst->s.uExponent = RTFLOAT32U_EXP_MAX;
|
---|
4155 | pr32Dst->s.uFraction = (uint32_t)(pr80Src->sj64.uFraction >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS));
|
---|
4156 | pr32Dst->s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1);
|
---|
4157 | if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src))
|
---|
4158 | fFsw |= X86_FSW_IE;
|
---|
4159 | }
|
---|
4160 | else
|
---|
4161 | fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;
|
---|
4162 | }
|
---|
4163 | else
|
---|
4164 | {
|
---|
4165 | /* Denormal values causes both an underflow and precision exception. */
|
---|
4166 | Assert(RTFLOAT80U_IS_DENORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src));
|
---|
4167 | if (fFcw & X86_FCW_UM)
|
---|
4168 | {
|
---|
4169 | pr32Dst->s.fSign = pr80Src->s.fSign;
|
---|
4170 | pr32Dst->s.uExponent = 0;
|
---|
4171 | if ((fFcw & X86_FCW_RC_MASK) == (!pr80Src->s.fSign ? X86_FCW_RC_UP : X86_FCW_RC_DOWN))
|
---|
4172 | {
|
---|
4173 | pr32Dst->s.uFraction = 1;
|
---|
4174 | fFsw |= X86_FSW_UE | X86_FSW_PE | X86_FSW_C1;
|
---|
4175 | if (!(fFcw & X86_FCW_PM))
|
---|
4176 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
4177 | }
|
---|
4178 | else
|
---|
4179 | {
|
---|
4180 | pr32Dst->s.uFraction = 0;
|
---|
4181 | fFsw |= X86_FSW_UE | X86_FSW_PE;
|
---|
4182 | if (!(fFcw & X86_FCW_PM))
|
---|
4183 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
4184 | }
|
---|
4185 | }
|
---|
4186 | else
|
---|
4187 | fFsw |= X86_FSW_UE | X86_FSW_ES | X86_FSW_B;
|
---|
4188 | }
|
---|
4189 | *pu16FSW = fFsw;
|
---|
4190 | }
|
---|
4191 |
|
---|
4192 |
|
---|
4193 | /**
|
---|
4194 | * Helper for storing a deconstructed and normal R80 value as a 64-bit one.
|
---|
4195 | *
|
---|
4196 | * This uses the rounding rules indicated by fFcw and returns updated fFsw.
|
---|
4197 | *
|
---|
4198 | * @returns Updated FPU status word value.
|
---|
4199 | * @param fSignIn Incoming sign indicator.
|
---|
4200 | * @param uMantissaIn Incoming mantissa (dot between bit 63 and 62).
|
---|
4201 | * @param iExponentIn Unbiased exponent.
|
---|
4202 | * @param fFcw The FPU control word.
|
---|
4203 | * @param fFsw Prepped FPU status word, i.e. exceptions and C1 clear.
|
---|
4204 | * @param pr64Dst Where to return the output value, if one should be
|
---|
4205 | * returned.
|
---|
4206 | *
|
---|
4207 | * @note Tailored as a helper for iemAImpl_fst_r80_to_r64 right now.
|
---|
4208 | * @note Exact same logic as iemAImpl_StoreNormalR80AsR32.
|
---|
4209 | */
|
---|
4210 | static uint16_t iemAImpl_StoreNormalR80AsR64(bool fSignIn, uint64_t uMantissaIn, int32_t iExponentIn,
|
---|
4211 | uint16_t fFcw, uint16_t fFsw, PRTFLOAT64U pr64Dst)
|
---|
4212 | {
|
---|
4213 | uint64_t const fRoundingOffMask = RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS) - 1; /* 0x7ff */
|
---|
4214 | uint32_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
|
---|
4215 | ? RT_BIT_64(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS - 1) /* 0x400 */
|
---|
4216 | : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)
|
---|
4217 | ? fRoundingOffMask
|
---|
4218 | : 0;
|
---|
4219 | uint32_t fRoundedOff = uMantissaIn & fRoundingOffMask;
|
---|
4220 |
|
---|
4221 | /*
|
---|
4222 | * Deal with potential overflows/underflows first, optimizing for none.
|
---|
4223 | * 0 and MAX are used for special values; MAX-1 may be rounded up to MAX.
|
---|
4224 | */
|
---|
4225 | int32_t iExponentOut = (int32_t)iExponentIn + RTFLOAT64U_EXP_BIAS;
|
---|
4226 | if ((uint32_t)iExponentOut - 1 < (uint32_t)(RTFLOAT64U_EXP_MAX - 3))
|
---|
4227 | { /* likely? */ }
|
---|
4228 | /*
|
---|
4229 | * Underflow if the exponent zero or negative. This is attempted mapped
|
---|
4230 | * to a subnormal number when possible, with some additional trickery ofc.
|
---|
4231 | */
|
---|
4232 | else if (iExponentOut <= 0)
|
---|
4233 | {
|
---|
4234 | bool const fIsTiny = iExponentOut < 0
|
---|
4235 | || UINT64_MAX - uMantissaIn > uRoundingAdd;
|
---|
4236 | if (!(fFcw & X86_FCW_UM) && fIsTiny)
|
---|
4237 | /* Note! 754-1985 sec 7.4 has something about bias adjust of 1536 here, not in 2008 & 2019. Perhaps only 8087 & 287? */
|
---|
4238 | return fFsw | X86_FSW_UE | X86_FSW_ES | X86_FSW_B;
|
---|
4239 |
|
---|
4240 | if (iExponentOut <= 0)
|
---|
4241 | {
|
---|
4242 | uMantissaIn = iExponentOut <= -63
|
---|
4243 | ? uMantissaIn != 0
|
---|
4244 | : (uMantissaIn >> (-iExponentOut + 1)) | ((uMantissaIn & (RT_BIT_64(-iExponentOut + 1) - 1)) != 0);
|
---|
4245 | fRoundedOff = uMantissaIn & fRoundingOffMask;
|
---|
4246 | if (fRoundedOff && fIsTiny)
|
---|
4247 | fFsw |= X86_FSW_UE;
|
---|
4248 | iExponentOut = 0;
|
---|
4249 | }
|
---|
4250 | }
|
---|
4251 | /*
|
---|
4252 | * Overflow if at or above max exponent value or if we will reach max
|
---|
4253 | * when rounding. Will return +/-zero or +/-max value depending on
|
---|
4254 | * whether we're rounding or not.
|
---|
4255 | */
|
---|
4256 | else if ( iExponentOut >= RTFLOAT64U_EXP_MAX
|
---|
4257 | || ( iExponentOut == RTFLOAT64U_EXP_MAX - 1
|
---|
4258 | && UINT64_MAX - uMantissaIn <= uRoundingAdd))
|
---|
4259 | {
|
---|
4260 | fFsw |= X86_FSW_OE;
|
---|
4261 | if (!(fFcw & X86_FCW_OM))
|
---|
4262 | return fFsw | X86_FSW_ES | X86_FSW_B;
|
---|
4263 | fFsw |= X86_FSW_PE;
|
---|
4264 | if (uRoundingAdd)
|
---|
4265 | fFsw |= X86_FSW_C1;
|
---|
4266 | if (!(fFcw & X86_FCW_PM))
|
---|
4267 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
4268 |
|
---|
4269 | pr64Dst->s64.fSign = fSignIn;
|
---|
4270 | if (uRoundingAdd)
|
---|
4271 | { /* Zero */
|
---|
4272 | pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX;
|
---|
4273 | pr64Dst->s64.uFraction = 0;
|
---|
4274 | }
|
---|
4275 | else
|
---|
4276 | { /* Max */
|
---|
4277 | pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX - 1;
|
---|
4278 | pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1;
|
---|
4279 | }
|
---|
4280 | return fFsw;
|
---|
4281 | }
|
---|
4282 |
|
---|
4283 | /*
|
---|
4284 | * Normal or subnormal number.
|
---|
4285 | */
|
---|
4286 | /* Do rounding - just truncate in near mode when midway on an even outcome. */
|
---|
4287 | uint64_t uMantissaOut = uMantissaIn;
|
---|
4288 | if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST
|
---|
4289 | || (uMantissaIn & RT_BIT_32(RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS))
|
---|
4290 | || fRoundedOff != uRoundingAdd)
|
---|
4291 | {
|
---|
4292 | uMantissaOut = uMantissaIn + uRoundingAdd;
|
---|
4293 | if (uMantissaOut >= uMantissaIn)
|
---|
4294 | { /* likely */ }
|
---|
4295 | else
|
---|
4296 | {
|
---|
4297 | uMantissaOut >>= 1; /* (We don't need to add bit 63 here (the integer bit), as it will be chopped off below.) */
|
---|
4298 | iExponentOut++;
|
---|
4299 | Assert(iExponentOut < RTFLOAT64U_EXP_MAX); /* checked above */
|
---|
4300 | fFsw |= X86_FSW_C1;
|
---|
4301 | }
|
---|
4302 | }
|
---|
4303 | else
|
---|
4304 | uMantissaOut = uMantissaIn;
|
---|
4305 |
|
---|
4306 | /* Truncate the mantissa and set the return value. */
|
---|
4307 | uMantissaOut >>= RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS;
|
---|
4308 |
|
---|
4309 | pr64Dst->s64.uFraction = uMantissaOut; /* Note! too big for bitfield if normal. */
|
---|
4310 | pr64Dst->s64.uExponent = iExponentOut;
|
---|
4311 | pr64Dst->s64.fSign = fSignIn;
|
---|
4312 |
|
---|
4313 | /* Set status flags realted to rounding. */
|
---|
4314 | if (fRoundedOff)
|
---|
4315 | {
|
---|
4316 | fFsw |= X86_FSW_PE;
|
---|
4317 | if (uMantissaOut > (uMantissaIn >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS)))
|
---|
4318 | fFsw |= X86_FSW_C1;
|
---|
4319 | if (!(fFcw & X86_FCW_PM))
|
---|
4320 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
4321 | }
|
---|
4322 |
|
---|
4323 | return fFsw;
|
---|
4324 | }
|
---|
4325 |
|
---|
4326 |
|
---|
4327 | /**
|
---|
4328 | * @note Exact same logic as iemAImpl_fst_r80_to_r32.
|
---|
4329 | */
|
---|
4330 | IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
|
---|
4331 | PRTFLOAT64U pr64Dst, PCRTFLOAT80U pr80Src))
|
---|
4332 | {
|
---|
4333 | uint16_t const fFcw = pFpuState->FCW;
|
---|
4334 | uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT) | (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3));
|
---|
4335 | if (RTFLOAT80U_IS_NORMAL(pr80Src))
|
---|
4336 | fFsw = iemAImpl_StoreNormalR80AsR64(pr80Src->s.fSign, pr80Src->s.uMantissa,
|
---|
4337 | (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS, fFcw, fFsw, pr64Dst);
|
---|
4338 | else if (RTFLOAT80U_IS_ZERO(pr80Src))
|
---|
4339 | {
|
---|
4340 | pr64Dst->s64.fSign = pr80Src->s.fSign;
|
---|
4341 | pr64Dst->s64.uExponent = 0;
|
---|
4342 | pr64Dst->s64.uFraction = 0;
|
---|
4343 | Assert(RTFLOAT64U_IS_ZERO(pr64Dst));
|
---|
4344 | }
|
---|
4345 | else if (RTFLOAT80U_IS_INF(pr80Src))
|
---|
4346 | {
|
---|
4347 | pr64Dst->s64.fSign = pr80Src->s.fSign;
|
---|
4348 | pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX;
|
---|
4349 | pr64Dst->s64.uFraction = 0;
|
---|
4350 | Assert(RTFLOAT64U_IS_INF(pr64Dst));
|
---|
4351 | }
|
---|
4352 | else if (RTFLOAT80U_IS_INDEFINITE(pr80Src))
|
---|
4353 | {
|
---|
4354 | /* Mapped to +/-QNaN */
|
---|
4355 | pr64Dst->s64.fSign = pr80Src->s.fSign;
|
---|
4356 | pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX;
|
---|
4357 | pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1);
|
---|
4358 | }
|
---|
4359 | else if (RTFLOAT80U_IS_PSEUDO_INF(pr80Src) || RTFLOAT80U_IS_UNNORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_NAN(pr80Src))
|
---|
4360 | {
|
---|
4361 | /* Pseudo-Inf / Pseudo-Nan / Unnormal -> QNaN (during load, probably) */
|
---|
4362 | if (fFcw & X86_FCW_IM)
|
---|
4363 | {
|
---|
4364 | pr64Dst->s64.fSign = 1;
|
---|
4365 | pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX;
|
---|
4366 | pr64Dst->s64.uFraction = RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1);
|
---|
4367 | fFsw |= X86_FSW_IE;
|
---|
4368 | }
|
---|
4369 | else
|
---|
4370 | fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;;
|
---|
4371 | }
|
---|
4372 | else if (RTFLOAT80U_IS_NAN(pr80Src))
|
---|
4373 | {
|
---|
4374 | /* IM applies to signalled NaN input only. Everything is converted to quiet NaN. */
|
---|
4375 | if ((fFcw & X86_FCW_IM) || !RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src))
|
---|
4376 | {
|
---|
4377 | pr64Dst->s64.fSign = pr80Src->s.fSign;
|
---|
4378 | pr64Dst->s64.uExponent = RTFLOAT64U_EXP_MAX;
|
---|
4379 | pr64Dst->s64.uFraction = pr80Src->sj64.uFraction >> (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS);
|
---|
4380 | pr64Dst->s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1);
|
---|
4381 | if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Src))
|
---|
4382 | fFsw |= X86_FSW_IE;
|
---|
4383 | }
|
---|
4384 | else
|
---|
4385 | fFsw |= X86_FSW_IE | X86_FSW_ES | X86_FSW_B;
|
---|
4386 | }
|
---|
4387 | else
|
---|
4388 | {
|
---|
4389 | /* Denormal values causes both an underflow and precision exception. */
|
---|
4390 | Assert(RTFLOAT80U_IS_DENORMAL(pr80Src) || RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src));
|
---|
4391 | if (fFcw & X86_FCW_UM)
|
---|
4392 | {
|
---|
4393 | pr64Dst->s64.fSign = pr80Src->s.fSign;
|
---|
4394 | pr64Dst->s64.uExponent = 0;
|
---|
4395 | if ((fFcw & X86_FCW_RC_MASK) == (!pr80Src->s.fSign ? X86_FCW_RC_UP : X86_FCW_RC_DOWN))
|
---|
4396 | {
|
---|
4397 | pr64Dst->s64.uFraction = 1;
|
---|
4398 | fFsw |= X86_FSW_UE | X86_FSW_PE | X86_FSW_C1;
|
---|
4399 | if (!(fFcw & X86_FCW_PM))
|
---|
4400 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
4401 | }
|
---|
4402 | else
|
---|
4403 | {
|
---|
4404 | pr64Dst->s64.uFraction = 0;
|
---|
4405 | fFsw |= X86_FSW_UE | X86_FSW_PE;
|
---|
4406 | if (!(fFcw & X86_FCW_PM))
|
---|
4407 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
4408 | }
|
---|
4409 | }
|
---|
4410 | else
|
---|
4411 | fFsw |= X86_FSW_UE | X86_FSW_ES | X86_FSW_B;
|
---|
4412 | }
|
---|
4413 | *pu16FSW = fFsw;
|
---|
4414 | }
|
---|
4415 |
|
---|
4416 |
|
---|
4417 | IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
|
---|
4418 | PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src))
|
---|
4419 | {
|
---|
4420 | /*
|
---|
4421 | * FPU status word:
|
---|
4422 | * - TOP is irrelevant, but we must match x86 assembly version (0).
|
---|
4423 | * - C1 is always cleared as we don't have any stack overflows.
|
---|
4424 | * - C0, C2, and C3 are undefined and Intel 10980XE does not touch them.
|
---|
4425 | */
|
---|
4426 | *pu16FSW = pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3); /* see iemAImpl_fld1 */
|
---|
4427 | *pr80Dst = *pr80Src;
|
---|
4428 | }
|
---|
4429 |
|
---|
4430 |
|
---|
4431 | /*
|
---|
4432 | *
|
---|
4433 | * Mantissa:
|
---|
4434 | * 63 56 48 40 32 24 16 8 0
|
---|
4435 | * v v v v v v v v v
|
---|
4436 | * 1[.]111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000
|
---|
4437 | * \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
|
---|
4438 | * Exp: 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
|
---|
4439 | *
|
---|
4440 | * int64_t has the same width, only bit 63 is the sign bit. So, the max we can map over
|
---|
4441 | * are bits 1 thru 63, dropping off bit 0, with an exponent of 62. The number of bits we
|
---|
4442 | * drop off from the mantissa increases with decreasing exponent, till an exponent of 0
|
---|
4443 | * where we'll drop off all but bit 63.
|
---|
4444 | */
|
---|
4445 | #define EMIT_FIST(a_cBits, a_iType, a_iTypeMin, a_iTypeIndefinite) \
|
---|
4446 | IEM_DECL_IMPL_DEF(void, iemAImpl_fist_r80_to_i ## a_cBits,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, \
|
---|
4447 | a_iType *piDst, PCRTFLOAT80U pr80Val)) \
|
---|
4448 | { \
|
---|
4449 | uint16_t const fFcw = pFpuState->FCW; \
|
---|
4450 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); \
|
---|
4451 | bool const fSignIn = pr80Val->s.fSign; \
|
---|
4452 | \
|
---|
4453 | /* \
|
---|
4454 | * Deal with normal numbers first. \
|
---|
4455 | */ \
|
---|
4456 | if (RTFLOAT80U_IS_NORMAL(pr80Val)) \
|
---|
4457 | { \
|
---|
4458 | uint64_t uMantissa = pr80Val->s.uMantissa; \
|
---|
4459 | int32_t iExponent = (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS; \
|
---|
4460 | \
|
---|
4461 | if ((uint32_t)iExponent <= a_cBits - 2) \
|
---|
4462 | { \
|
---|
4463 | unsigned const cShiftOff = 63 - iExponent; \
|
---|
4464 | uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; \
|
---|
4465 | uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST \
|
---|
4466 | ? RT_BIT_64(cShiftOff - 1) \
|
---|
4467 | : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP) \
|
---|
4468 | ? fRoundingOffMask \
|
---|
4469 | : 0; \
|
---|
4470 | uint64_t fRoundedOff = uMantissa & fRoundingOffMask; \
|
---|
4471 | \
|
---|
4472 | uMantissa >>= cShiftOff; \
|
---|
4473 | uint64_t const uRounding = (fRoundedOff + uRoundingAdd) >> cShiftOff; \
|
---|
4474 | uMantissa += uRounding; \
|
---|
4475 | if (!(uMantissa & RT_BIT_64(a_cBits - 1))) \
|
---|
4476 | { \
|
---|
4477 | if (fRoundedOff) \
|
---|
4478 | { \
|
---|
4479 | if ((uMantissa & 1) && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST && fRoundedOff == uRoundingAdd) \
|
---|
4480 | uMantissa &= ~(uint64_t)1; /* round to even number if equal distance between up/down. */ \
|
---|
4481 | else if (uRounding) \
|
---|
4482 | fFsw |= X86_FSW_C1; \
|
---|
4483 | fFsw |= X86_FSW_PE; \
|
---|
4484 | if (!(fFcw & X86_FCW_PM)) \
|
---|
4485 | fFsw |= X86_FSW_ES | X86_FSW_B; \
|
---|
4486 | } \
|
---|
4487 | \
|
---|
4488 | if (!fSignIn) \
|
---|
4489 | *piDst = (a_iType)uMantissa; \
|
---|
4490 | else \
|
---|
4491 | *piDst = -(a_iType)uMantissa; \
|
---|
4492 | } \
|
---|
4493 | else \
|
---|
4494 | { \
|
---|
4495 | /* overflowed after rounding. */ \
|
---|
4496 | AssertMsg(iExponent == a_cBits - 2 && uMantissa == RT_BIT_64(a_cBits - 1), \
|
---|
4497 | ("e=%d m=%#RX64 (org %#RX64) s=%d; shift=%d ro=%#RX64 rm=%#RX64 ra=%#RX64\n", iExponent, uMantissa, \
|
---|
4498 | pr80Val->s.uMantissa, fSignIn, cShiftOff, fRoundedOff, fRoundingOffMask, uRoundingAdd)); \
|
---|
4499 | \
|
---|
4500 | /* Special case for the integer minimum value. */ \
|
---|
4501 | if (fSignIn) \
|
---|
4502 | { \
|
---|
4503 | *piDst = a_iTypeMin; \
|
---|
4504 | fFsw |= X86_FSW_PE | X86_FSW_C1; \
|
---|
4505 | if (!(fFcw & X86_FCW_PM)) \
|
---|
4506 | fFsw |= X86_FSW_ES | X86_FSW_B; \
|
---|
4507 | } \
|
---|
4508 | else \
|
---|
4509 | { \
|
---|
4510 | fFsw |= X86_FSW_IE; \
|
---|
4511 | if (fFcw & X86_FCW_IM) \
|
---|
4512 | *piDst = a_iTypeMin; \
|
---|
4513 | else \
|
---|
4514 | fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \
|
---|
4515 | } \
|
---|
4516 | } \
|
---|
4517 | } \
|
---|
4518 | /* \
|
---|
4519 | * Tiny sub-zero numbers. \
|
---|
4520 | */ \
|
---|
4521 | else if (iExponent < 0) \
|
---|
4522 | { \
|
---|
4523 | if (!fSignIn) \
|
---|
4524 | { \
|
---|
4525 | if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP \
|
---|
4526 | || (iExponent == -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) \
|
---|
4527 | { \
|
---|
4528 | *piDst = 1; \
|
---|
4529 | fFsw |= X86_FSW_C1; \
|
---|
4530 | } \
|
---|
4531 | else \
|
---|
4532 | *piDst = 0; \
|
---|
4533 | } \
|
---|
4534 | else \
|
---|
4535 | { \
|
---|
4536 | if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP \
|
---|
4537 | || (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_ZERO \
|
---|
4538 | || (iExponent < -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST)) \
|
---|
4539 | *piDst = 0; \
|
---|
4540 | else \
|
---|
4541 | { \
|
---|
4542 | *piDst = -1; \
|
---|
4543 | fFsw |= X86_FSW_C1; \
|
---|
4544 | } \
|
---|
4545 | } \
|
---|
4546 | fFsw |= X86_FSW_PE; \
|
---|
4547 | if (!(fFcw & X86_FCW_PM)) \
|
---|
4548 | fFsw |= X86_FSW_ES | X86_FSW_B; \
|
---|
4549 | } \
|
---|
4550 | /* \
|
---|
4551 | * Special MIN case. \
|
---|
4552 | */ \
|
---|
4553 | else if ( fSignIn && iExponent == a_cBits - 1 \
|
---|
4554 | && ( a_cBits < 64 && (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_DOWN \
|
---|
4555 | ? uMantissa < (RT_BIT_64(63) | RT_BIT_64(65 - a_cBits)) \
|
---|
4556 | : uMantissa == RT_BIT_64(63))) \
|
---|
4557 | { \
|
---|
4558 | *piDst = a_iTypeMin; \
|
---|
4559 | if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \
|
---|
4560 | { \
|
---|
4561 | fFsw |= X86_FSW_PE; \
|
---|
4562 | if (!(fFcw & X86_FCW_PM)) \
|
---|
4563 | fFsw |= X86_FSW_ES | X86_FSW_B; \
|
---|
4564 | } \
|
---|
4565 | } \
|
---|
4566 | /* \
|
---|
4567 | * Too large/small number outside the target integer range. \
|
---|
4568 | */ \
|
---|
4569 | else \
|
---|
4570 | { \
|
---|
4571 | fFsw |= X86_FSW_IE; \
|
---|
4572 | if (fFcw & X86_FCW_IM) \
|
---|
4573 | *piDst = a_iTypeIndefinite; \
|
---|
4574 | else \
|
---|
4575 | fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \
|
---|
4576 | } \
|
---|
4577 | } \
|
---|
4578 | /* \
|
---|
4579 | * Map both +0 and -0 to integer zero (signless/+). \
|
---|
4580 | */ \
|
---|
4581 | else if (RTFLOAT80U_IS_ZERO(pr80Val)) \
|
---|
4582 | *piDst = 0; \
|
---|
4583 | /* \
|
---|
4584 | * Denormals are just really tiny sub-zero numbers that are either rounded \
|
---|
4585 | * to zero, 1 or -1 depending on sign and rounding control. \
|
---|
4586 | */ \
|
---|
4587 | else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) || RTFLOAT80U_IS_DENORMAL(pr80Val)) \
|
---|
4588 | { \
|
---|
4589 | if ((fFcw & X86_FCW_RC_MASK) != (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)) \
|
---|
4590 | *piDst = 0; \
|
---|
4591 | else \
|
---|
4592 | { \
|
---|
4593 | *piDst = fSignIn ? -1 : 1; \
|
---|
4594 | fFsw |= X86_FSW_C1; \
|
---|
4595 | } \
|
---|
4596 | fFsw |= X86_FSW_PE; \
|
---|
4597 | if (!(fFcw & X86_FCW_PM)) \
|
---|
4598 | fFsw |= X86_FSW_ES | X86_FSW_B; \
|
---|
4599 | } \
|
---|
4600 | /* \
|
---|
4601 | * All other special values are considered invalid arguments and result \
|
---|
4602 | * in an IE exception and indefinite value if masked. \
|
---|
4603 | */ \
|
---|
4604 | else \
|
---|
4605 | { \
|
---|
4606 | fFsw |= X86_FSW_IE; \
|
---|
4607 | if (fFcw & X86_FCW_IM) \
|
---|
4608 | *piDst = a_iTypeIndefinite; \
|
---|
4609 | else \
|
---|
4610 | fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \
|
---|
4611 | } \
|
---|
4612 | *pu16FSW = fFsw; \
|
---|
4613 | }
|
---|
4614 | EMIT_FIST(64, int64_t, INT64_MIN, X86_FPU_INT64_INDEFINITE)
|
---|
4615 | EMIT_FIST(32, int32_t, INT32_MIN, X86_FPU_INT32_INDEFINITE)
|
---|
4616 | EMIT_FIST(16, int16_t, INT16_MIN, X86_FPU_INT16_INDEFINITE)
|
---|
4617 |
|
---|
4618 | #endif /*IEM_WITHOUT_ASSEMBLY */
|
---|
4619 |
|
---|
4620 |
|
---|
4621 | /*
|
---|
4622 | * The FISTT instruction was added with SSE3 and are a lot simpler than FIST.
|
---|
4623 | *
|
---|
4624 | * The 16-bit version is a bit peculiar, though, as it seems to be raising IE
|
---|
4625 | * as if it was the 32-bit version (i.e. starting with exp 31 instead of 15),
|
---|
4626 | * thus the @a a_cBitsIn.
|
---|
4627 | */
|
---|
4628 | #define EMIT_FISTT(a_cBits, a_cBitsIn, a_iType, a_iTypeMin, a_iTypeMax, a_iTypeIndefinite, a_Suffix, a_fIntelVersion) \
|
---|
4629 | IEM_DECL_IMPL_DEF(void, RT_CONCAT3(iemAImpl_fistt_r80_to_i,a_cBits,a_Suffix),(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, \
|
---|
4630 | a_iType *piDst, PCRTFLOAT80U pr80Val)) \
|
---|
4631 | { \
|
---|
4632 | uint16_t const fFcw = pFpuState->FCW; \
|
---|
4633 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)); \
|
---|
4634 | bool const fSignIn = pr80Val->s.fSign; \
|
---|
4635 | \
|
---|
4636 | /* \
|
---|
4637 | * Deal with normal numbers first. \
|
---|
4638 | */ \
|
---|
4639 | if (RTFLOAT80U_IS_NORMAL(pr80Val)) \
|
---|
4640 | { \
|
---|
4641 | uint64_t uMantissa = pr80Val->s.uMantissa; \
|
---|
4642 | int32_t iExponent = (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS; \
|
---|
4643 | \
|
---|
4644 | if ((uint32_t)iExponent <= a_cBitsIn - 2) \
|
---|
4645 | { \
|
---|
4646 | unsigned const cShiftOff = 63 - iExponent; \
|
---|
4647 | uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1; \
|
---|
4648 | uint64_t const fRoundedOff = uMantissa & fRoundingOffMask; \
|
---|
4649 | uMantissa >>= cShiftOff; \
|
---|
4650 | /*Assert(!(uMantissa & RT_BIT_64(a_cBits - 1)));*/ \
|
---|
4651 | if (!fSignIn) \
|
---|
4652 | *piDst = (a_iType)uMantissa; \
|
---|
4653 | else \
|
---|
4654 | *piDst = -(a_iType)uMantissa; \
|
---|
4655 | \
|
---|
4656 | if (fRoundedOff) \
|
---|
4657 | { \
|
---|
4658 | fFsw |= X86_FSW_PE; \
|
---|
4659 | if (!(fFcw & X86_FCW_PM)) \
|
---|
4660 | fFsw |= X86_FSW_ES | X86_FSW_B; \
|
---|
4661 | } \
|
---|
4662 | } \
|
---|
4663 | /* \
|
---|
4664 | * Tiny sub-zero numbers. \
|
---|
4665 | */ \
|
---|
4666 | else if (iExponent < 0) \
|
---|
4667 | { \
|
---|
4668 | *piDst = 0; \
|
---|
4669 | fFsw |= X86_FSW_PE; \
|
---|
4670 | if (!(fFcw & X86_FCW_PM)) \
|
---|
4671 | fFsw |= X86_FSW_ES | X86_FSW_B; \
|
---|
4672 | } \
|
---|
4673 | /* \
|
---|
4674 | * Special MIN case. \
|
---|
4675 | */ \
|
---|
4676 | else if ( fSignIn && iExponent == a_cBits - 1 \
|
---|
4677 | && (a_cBits < 64 \
|
---|
4678 | ? uMantissa < (RT_BIT_64(63) | RT_BIT_64(65 - a_cBits)) \
|
---|
4679 | : uMantissa == RT_BIT_64(63)) ) \
|
---|
4680 | { \
|
---|
4681 | *piDst = a_iTypeMin; \
|
---|
4682 | if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \
|
---|
4683 | { \
|
---|
4684 | fFsw |= X86_FSW_PE; \
|
---|
4685 | if (!(fFcw & X86_FCW_PM)) \
|
---|
4686 | fFsw |= X86_FSW_ES | X86_FSW_B; \
|
---|
4687 | } \
|
---|
4688 | } \
|
---|
4689 | /* \
|
---|
4690 | * Figure this weirdness. \
|
---|
4691 | */ \
|
---|
4692 | else if (0 /* huh? gone? */ && a_cBits == 16 && fSignIn && iExponent == 31 && uMantissa < UINT64_C(0x8000100000000000) ) \
|
---|
4693 | { \
|
---|
4694 | *piDst = 0; \
|
---|
4695 | if (uMantissa & (RT_BIT_64(64 - a_cBits + 1) - 1)) \
|
---|
4696 | { \
|
---|
4697 | fFsw |= X86_FSW_PE; \
|
---|
4698 | if (!(fFcw & X86_FCW_PM)) \
|
---|
4699 | fFsw |= X86_FSW_ES | X86_FSW_B; \
|
---|
4700 | } \
|
---|
4701 | } \
|
---|
4702 | /* \
|
---|
4703 | * Too large/small number outside the target integer range. \
|
---|
4704 | */ \
|
---|
4705 | else \
|
---|
4706 | { \
|
---|
4707 | fFsw |= X86_FSW_IE; \
|
---|
4708 | if (fFcw & X86_FCW_IM) \
|
---|
4709 | *piDst = a_iTypeIndefinite; \
|
---|
4710 | else \
|
---|
4711 | fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \
|
---|
4712 | } \
|
---|
4713 | } \
|
---|
4714 | /* \
|
---|
4715 | * Map both +0 and -0 to integer zero (signless/+). \
|
---|
4716 | */ \
|
---|
4717 | else if (RTFLOAT80U_IS_ZERO(pr80Val)) \
|
---|
4718 | *piDst = 0; \
|
---|
4719 | /* \
|
---|
4720 | * Denormals are just really tiny sub-zero numbers that are trucated to zero. \
|
---|
4721 | */ \
|
---|
4722 | else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) || RTFLOAT80U_IS_DENORMAL(pr80Val)) \
|
---|
4723 | { \
|
---|
4724 | *piDst = 0; \
|
---|
4725 | fFsw |= X86_FSW_PE; \
|
---|
4726 | if (!(fFcw & X86_FCW_PM)) \
|
---|
4727 | fFsw |= X86_FSW_ES | X86_FSW_B; \
|
---|
4728 | } \
|
---|
4729 | /* \
|
---|
4730 | * All other special values are considered invalid arguments and result \
|
---|
4731 | * in an IE exception and indefinite value if masked. \
|
---|
4732 | */ \
|
---|
4733 | else \
|
---|
4734 | { \
|
---|
4735 | fFsw |= X86_FSW_IE; \
|
---|
4736 | if (fFcw & X86_FCW_IM) \
|
---|
4737 | *piDst = a_iTypeIndefinite; \
|
---|
4738 | else \
|
---|
4739 | fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT); \
|
---|
4740 | } \
|
---|
4741 | *pu16FSW = fFsw; \
|
---|
4742 | }
|
---|
4743 | #if defined(IEM_WITHOUT_ASSEMBLY)
|
---|
4744 | EMIT_FISTT(64, 64, int64_t, INT64_MIN, INT64_MAX, X86_FPU_INT64_INDEFINITE, RT_NOTHING, 1)
|
---|
4745 | EMIT_FISTT(32, 32, int32_t, INT32_MIN, INT32_MAX, X86_FPU_INT32_INDEFINITE, RT_NOTHING, 1)
|
---|
4746 | EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, RT_NOTHING, 1)
|
---|
4747 | #endif
|
---|
4748 | EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, _intel, 1)
|
---|
4749 | EMIT_FISTT(16, 16, int16_t, INT16_MIN, INT16_MAX, X86_FPU_INT16_INDEFINITE, _amd, 0)
|
---|
4750 |
|
---|
4751 |
|
---|
4752 | #if defined(IEM_WITHOUT_ASSEMBLY)
|
---|
4753 |
|
---|
4754 | IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
|
---|
4755 | PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src))
|
---|
4756 | {
|
---|
4757 | /*static RTPBCD80U const s_ad80MaxMin[2] = { RTPBCD80U_INIT_MAX(), RTPBCD80U_INIT_MIN() };*/
|
---|
4758 | static RTPBCD80U const s_ad80Zeros[2] = { RTPBCD80U_INIT_ZERO(0), RTPBCD80U_INIT_ZERO(1) };
|
---|
4759 | static RTPBCD80U const s_ad80One[2] = { RTPBCD80U_INIT_C(0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,1),
|
---|
4760 | RTPBCD80U_INIT_C(1, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,1) };
|
---|
4761 | static RTPBCD80U const s_d80Indefinite = RTPBCD80U_INIT_INDEFINITE();
|
---|
4762 |
|
---|
4763 | uint16_t const fFcw = pFpuState->FCW;
|
---|
4764 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3));
|
---|
4765 | bool const fSignIn = pr80Src->s.fSign;
|
---|
4766 |
|
---|
4767 | /*
|
---|
4768 | * Deal with normal numbers first.
|
---|
4769 | */
|
---|
4770 | if (RTFLOAT80U_IS_NORMAL(pr80Src))
|
---|
4771 | {
|
---|
4772 | uint64_t uMantissa = pr80Src->s.uMantissa;
|
---|
4773 | int32_t iExponent = (int32_t)pr80Src->s.uExponent - RTFLOAT80U_EXP_BIAS;
|
---|
4774 | if ( (uint32_t)iExponent <= 58
|
---|
4775 | || ((uint32_t)iExponent == 59 && uMantissa <= UINT64_C(0xde0b6b3a763fffff)) )
|
---|
4776 | {
|
---|
4777 | unsigned const cShiftOff = 63 - iExponent;
|
---|
4778 | uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1;
|
---|
4779 | uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
|
---|
4780 | ? RT_BIT_64(cShiftOff - 1)
|
---|
4781 | : (fFcw & X86_FCW_RC_MASK) == (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)
|
---|
4782 | ? fRoundingOffMask
|
---|
4783 | : 0;
|
---|
4784 | uint64_t fRoundedOff = uMantissa & fRoundingOffMask;
|
---|
4785 |
|
---|
4786 | uMantissa >>= cShiftOff;
|
---|
4787 | uint64_t const uRounding = (fRoundedOff + uRoundingAdd) >> cShiftOff;
|
---|
4788 | uMantissa += uRounding;
|
---|
4789 | if (uMantissa <= (uint64_t)RTPBCD80U_MAX)
|
---|
4790 | {
|
---|
4791 | if (fRoundedOff)
|
---|
4792 | {
|
---|
4793 | if ((uMantissa & 1) && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST && fRoundedOff == uRoundingAdd)
|
---|
4794 | uMantissa &= ~(uint64_t)1; /* round to even number if equal distance between up/down. */
|
---|
4795 | else if (uRounding)
|
---|
4796 | fFsw |= X86_FSW_C1;
|
---|
4797 | fFsw |= X86_FSW_PE;
|
---|
4798 | if (!(fFcw & X86_FCW_PM))
|
---|
4799 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
4800 | }
|
---|
4801 |
|
---|
4802 | pd80Dst->s.fSign = fSignIn;
|
---|
4803 | pd80Dst->s.uPad = 0;
|
---|
4804 | for (size_t iPair = 0; iPair < RT_ELEMENTS(pd80Dst->s.abPairs); iPair++)
|
---|
4805 | {
|
---|
4806 | unsigned const uDigits = uMantissa % 100;
|
---|
4807 | uMantissa /= 100;
|
---|
4808 | uint8_t const bLo = uDigits % 10;
|
---|
4809 | uint8_t const bHi = uDigits / 10;
|
---|
4810 | pd80Dst->s.abPairs[iPair] = RTPBCD80U_MAKE_PAIR(bHi, bLo);
|
---|
4811 | }
|
---|
4812 | }
|
---|
4813 | else
|
---|
4814 | {
|
---|
4815 | /* overflowed after rounding. */
|
---|
4816 | fFsw |= X86_FSW_IE;
|
---|
4817 | if (fFcw & X86_FCW_IM)
|
---|
4818 | *pd80Dst = s_d80Indefinite;
|
---|
4819 | else
|
---|
4820 | fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT);
|
---|
4821 | }
|
---|
4822 | }
|
---|
4823 | /*
|
---|
4824 | * Tiny sub-zero numbers.
|
---|
4825 | */
|
---|
4826 | else if (iExponent < 0)
|
---|
4827 | {
|
---|
4828 | if (!fSignIn)
|
---|
4829 | {
|
---|
4830 | if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP
|
---|
4831 | || (iExponent == -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST))
|
---|
4832 | {
|
---|
4833 | *pd80Dst = s_ad80One[fSignIn];
|
---|
4834 | fFsw |= X86_FSW_C1;
|
---|
4835 | }
|
---|
4836 | else
|
---|
4837 | *pd80Dst = s_ad80Zeros[fSignIn];
|
---|
4838 | }
|
---|
4839 | else
|
---|
4840 | {
|
---|
4841 | if ( (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_UP
|
---|
4842 | || (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_ZERO
|
---|
4843 | || (iExponent < -1 && (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST))
|
---|
4844 | *pd80Dst = s_ad80Zeros[fSignIn];
|
---|
4845 | else
|
---|
4846 | {
|
---|
4847 | *pd80Dst = s_ad80One[fSignIn];
|
---|
4848 | fFsw |= X86_FSW_C1;
|
---|
4849 | }
|
---|
4850 | }
|
---|
4851 | fFsw |= X86_FSW_PE;
|
---|
4852 | if (!(fFcw & X86_FCW_PM))
|
---|
4853 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
4854 | }
|
---|
4855 | /*
|
---|
4856 | * Too large/small number outside the target integer range.
|
---|
4857 | */
|
---|
4858 | else
|
---|
4859 | {
|
---|
4860 | fFsw |= X86_FSW_IE;
|
---|
4861 | if (fFcw & X86_FCW_IM)
|
---|
4862 | *pd80Dst = s_d80Indefinite;
|
---|
4863 | else
|
---|
4864 | fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT);
|
---|
4865 | }
|
---|
4866 | }
|
---|
4867 | /*
|
---|
4868 | * Map both +0 and -0 to integer zero (signless/+).
|
---|
4869 | */
|
---|
4870 | else if (RTFLOAT80U_IS_ZERO(pr80Src))
|
---|
4871 | *pd80Dst = s_ad80Zeros[fSignIn];
|
---|
4872 | /*
|
---|
4873 | * Denormals are just really tiny sub-zero numbers that are either rounded
|
---|
4874 | * to zero, 1 or -1 depending on sign and rounding control.
|
---|
4875 | */
|
---|
4876 | else if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Src) || RTFLOAT80U_IS_DENORMAL(pr80Src))
|
---|
4877 | {
|
---|
4878 | if ((fFcw & X86_FCW_RC_MASK) != (fSignIn ? X86_FCW_RC_DOWN : X86_FCW_RC_UP))
|
---|
4879 | *pd80Dst = s_ad80Zeros[fSignIn];
|
---|
4880 | else
|
---|
4881 | {
|
---|
4882 | *pd80Dst = s_ad80One[fSignIn];
|
---|
4883 | fFsw |= X86_FSW_C1;
|
---|
4884 | }
|
---|
4885 | fFsw |= X86_FSW_PE;
|
---|
4886 | if (!(fFcw & X86_FCW_PM))
|
---|
4887 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
4888 | }
|
---|
4889 | /*
|
---|
4890 | * All other special values are considered invalid arguments and result
|
---|
4891 | * in an IE exception and indefinite value if masked.
|
---|
4892 | */
|
---|
4893 | else
|
---|
4894 | {
|
---|
4895 | fFsw |= X86_FSW_IE;
|
---|
4896 | if (fFcw & X86_FCW_IM)
|
---|
4897 | *pd80Dst = s_d80Indefinite;
|
---|
4898 | else
|
---|
4899 | fFsw |= X86_FSW_ES | X86_FSW_B | (7 << X86_FSW_TOP_SHIFT);
|
---|
4900 | }
|
---|
4901 | *pu16FSW = fFsw;
|
---|
4902 | }
|
---|
4903 |
|
---|
4904 |
|
---|
4905 | /*********************************************************************************************************************************
|
---|
4906 | * FPU Helpers *
|
---|
4907 | *********************************************************************************************************************************/
|
---|
4908 | AssertCompileSize(RTFLOAT128U, 16);
|
---|
4909 | AssertCompileSize(RTFLOAT80U, 10);
|
---|
4910 | AssertCompileSize(RTFLOAT64U, 8);
|
---|
4911 | AssertCompileSize(RTFLOAT32U, 4);
|
---|
4912 |
|
---|
4913 | /**
|
---|
4914 | * Normalizes a possible pseudo-normal value.
|
---|
4915 | *
|
---|
4916 | * Psuedo-normal values are some oddities from the 8087 & 287 days. They are
|
---|
4917 | * denormals with the J-bit set, so they can simply be rewritten as 2**-16382,
|
---|
4918 | * i.e. changing uExponent from 0 to 1.
|
---|
4919 | *
|
---|
4920 | * This macro will declare a RTFLOAT80U with the name given by
|
---|
4921 | * @a a_r80ValNormalized and update the @a a_pr80Val variable to point to it if
|
---|
4922 | * a normalization was performed.
|
---|
4923 | *
|
---|
4924 | * @note This must be applied before calling SoftFloat with a value that couldbe
|
---|
4925 | * a pseudo-denormal, as SoftFloat doesn't handle pseudo-denormals
|
---|
4926 | * correctly.
|
---|
4927 | */
|
---|
4928 | #define IEM_NORMALIZE_PSEUDO_DENORMAL(a_pr80Val, a_r80ValNormalized) \
|
---|
4929 | RTFLOAT80U a_r80ValNormalized; \
|
---|
4930 | if (RTFLOAT80U_IS_PSEUDO_DENORMAL(a_pr80Val)) \
|
---|
4931 | { \
|
---|
4932 | a_r80ValNormalized = *a_pr80Val; \
|
---|
4933 | a_r80ValNormalized.s.uExponent = 1; \
|
---|
4934 | a_pr80Val = &a_r80ValNormalized; \
|
---|
4935 | } else do {} while (0)
|
---|
4936 |
|
---|
4937 | #ifdef IEM_WITH_FLOAT128_FOR_FPU
|
---|
4938 |
|
---|
4939 | DECLINLINE(int) iemFpuF128SetRounding(uint16_t fFcw)
|
---|
4940 | {
|
---|
4941 | int fNew;
|
---|
4942 | switch (fFcw & X86_FCW_RC_MASK)
|
---|
4943 | {
|
---|
4944 | default:
|
---|
4945 | case X86_FCW_RC_NEAREST: fNew = FE_TONEAREST; break;
|
---|
4946 | case X86_FCW_RC_ZERO: fNew = FE_TOWARDZERO; break;
|
---|
4947 | case X86_FCW_RC_UP: fNew = FE_UPWARD; break;
|
---|
4948 | case X86_FCW_RC_DOWN: fNew = FE_DOWNWARD; break;
|
---|
4949 | }
|
---|
4950 | int fOld = fegetround();
|
---|
4951 | fesetround(fNew);
|
---|
4952 | return fOld;
|
---|
4953 | }
|
---|
4954 |
|
---|
4955 |
|
---|
4956 | DECLINLINE(void) iemFpuF128RestoreRounding(int fOld)
|
---|
4957 | {
|
---|
4958 | fesetround(fOld);
|
---|
4959 | }
|
---|
4960 |
|
---|
4961 | DECLINLINE(_Float128) iemFpuF128FromFloat80(PCRTFLOAT80U pr80Val, uint16_t fFcw)
|
---|
4962 | {
|
---|
4963 | RT_NOREF(fFcw);
|
---|
4964 | RTFLOAT128U Tmp;
|
---|
4965 | Tmp.s2.uSignAndExponent = pr80Val->s2.uSignAndExponent;
|
---|
4966 | Tmp.s2.uFractionHigh = (uint16_t)((pr80Val->s2.uMantissa & (RT_BIT_64(63) - 1)) >> 48);
|
---|
4967 | Tmp.s2.uFractionMid = (uint32_t)((pr80Val->s2.uMantissa & UINT32_MAX) >> 16);
|
---|
4968 | Tmp.s2.uFractionLow = pr80Val->s2.uMantissa << 48;
|
---|
4969 | if (RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val))
|
---|
4970 | {
|
---|
4971 | Assert(Tmp.s.uExponent == 0);
|
---|
4972 | Tmp.s2.uSignAndExponent++;
|
---|
4973 | }
|
---|
4974 | return *(_Float128 *)&Tmp;
|
---|
4975 | }
|
---|
4976 |
|
---|
4977 |
|
---|
4978 | DECLINLINE(uint16_t) iemFpuF128ToFloat80(PRTFLOAT80U pr80Dst, _Float128 rd128ValSrc, uint16_t fFcw, uint16_t fFsw)
|
---|
4979 | {
|
---|
4980 | RT_NOREF(fFcw);
|
---|
4981 | RTFLOAT128U Tmp;
|
---|
4982 | *(_Float128 *)&Tmp = rd128ValSrc;
|
---|
4983 | ASMCompilerBarrier();
|
---|
4984 | if (RTFLOAT128U_IS_NORMAL(&Tmp))
|
---|
4985 | {
|
---|
4986 | pr80Dst->s.fSign = Tmp.s64.fSign;
|
---|
4987 | pr80Dst->s.uExponent = Tmp.s64.uExponent;
|
---|
4988 | uint64_t uFraction = Tmp.s64.uFractionHi << (63 - 48)
|
---|
4989 | | Tmp.s64.uFractionLo >> (64 - 15);
|
---|
4990 |
|
---|
4991 | /* Do rounding - just truncate in near mode when midway on an even outcome. */
|
---|
4992 | unsigned const cShiftOff = 64 - 15;
|
---|
4993 | uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1;
|
---|
4994 | uint64_t const uRoundedOff = Tmp.s64.uFractionLo & fRoundingOffMask;
|
---|
4995 | if (uRoundedOff)
|
---|
4996 | {
|
---|
4997 | uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
|
---|
4998 | ? RT_BIT_64(cShiftOff - 1)
|
---|
4999 | : (fFcw & X86_FCW_RC_MASK) == (Tmp.s64.fSign ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)
|
---|
5000 | ? fRoundingOffMask
|
---|
5001 | : 0;
|
---|
5002 | if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST
|
---|
5003 | || (Tmp.s64.uFractionLo & RT_BIT_64(cShiftOff))
|
---|
5004 | || uRoundedOff != uRoundingAdd)
|
---|
5005 | {
|
---|
5006 | if ((uRoundedOff + uRoundingAdd) >> cShiftOff)
|
---|
5007 | {
|
---|
5008 | uFraction += 1;
|
---|
5009 | if (!(uFraction & RT_BIT_64(63)))
|
---|
5010 | { /* likely */ }
|
---|
5011 | else
|
---|
5012 | {
|
---|
5013 | uFraction >>= 1;
|
---|
5014 | pr80Dst->s.uExponent++;
|
---|
5015 | if (pr80Dst->s.uExponent == RTFLOAT64U_EXP_MAX)
|
---|
5016 | return fFsw;
|
---|
5017 | }
|
---|
5018 | fFsw |= X86_FSW_C1;
|
---|
5019 | }
|
---|
5020 | }
|
---|
5021 | fFsw |= X86_FSW_PE;
|
---|
5022 | if (!(fFcw & X86_FCW_PM))
|
---|
5023 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5024 | }
|
---|
5025 | pr80Dst->s.uMantissa = RT_BIT_64(63) | uFraction;
|
---|
5026 | }
|
---|
5027 | else if (RTFLOAT128U_IS_ZERO(&Tmp))
|
---|
5028 | {
|
---|
5029 | pr80Dst->s.fSign = Tmp.s64.fSign;
|
---|
5030 | pr80Dst->s.uExponent = 0;
|
---|
5031 | pr80Dst->s.uMantissa = 0;
|
---|
5032 | }
|
---|
5033 | else if (RTFLOAT128U_IS_INF(&Tmp))
|
---|
5034 | {
|
---|
5035 | pr80Dst->s.fSign = Tmp.s64.fSign;
|
---|
5036 | pr80Dst->s.uExponent = 0;
|
---|
5037 | pr80Dst->s.uMantissa = 0;
|
---|
5038 | }
|
---|
5039 | return fFsw;
|
---|
5040 | }
|
---|
5041 |
|
---|
5042 |
|
---|
5043 | #else /* !IEM_WITH_FLOAT128_FOR_FPU - SoftFloat */
|
---|
5044 |
|
---|
5045 | /** Initializer for the SoftFloat state structure. */
|
---|
5046 | # define IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(a_fFcw) \
|
---|
5047 | { \
|
---|
5048 | softfloat_tininess_afterRounding, \
|
---|
5049 | ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST ? (uint8_t)softfloat_round_near_even \
|
---|
5050 | : ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_UP ? (uint8_t)softfloat_round_max \
|
---|
5051 | : ((a_fFcw) & X86_FCW_RC_MASK) == X86_FCW_RC_DOWN ? (uint8_t)softfloat_round_min \
|
---|
5052 | : (uint8_t)softfloat_round_minMag, \
|
---|
5053 | 0, \
|
---|
5054 | (uint8_t)((a_fFcw) & X86_FCW_XCPT_MASK), \
|
---|
5055 | ((a_fFcw) & X86_FCW_PC_MASK) == X86_FCW_PC_53 ? (uint8_t)64 \
|
---|
5056 | : ((a_fFcw) & X86_FCW_PC_MASK) == X86_FCW_PC_24 ? (uint8_t)32 : (uint8_t)80 \
|
---|
5057 | }
|
---|
5058 |
|
---|
5059 | /** Returns updated FSW from a SoftFloat state and exception mask (FCW). */
|
---|
5060 | # define IEM_SOFTFLOAT_STATE_TO_FSW(a_fFsw, a_pSoftState, a_fFcw) \
|
---|
5061 | ( (a_fFsw) \
|
---|
5062 | | (uint16_t)(((a_pSoftState)->exceptionFlags & softfloat_flag_c1) << 2) \
|
---|
5063 | | ((a_pSoftState)->exceptionFlags & X86_FSW_XCPT_MASK) \
|
---|
5064 | | ( ((a_pSoftState)->exceptionFlags & X86_FSW_XCPT_MASK) & (~(a_fFcw) & X86_FSW_XCPT_MASK) \
|
---|
5065 | ? X86_FSW_ES | X86_FSW_B : 0) )
|
---|
5066 |
|
---|
5067 |
|
---|
5068 | DECLINLINE(float128_t) iemFpuSoftF128Precision(float128_t r128, unsigned cBits, uint16_t fFcw = X86_FCW_RC_NEAREST)
|
---|
5069 | {
|
---|
5070 | RT_NOREF(fFcw);
|
---|
5071 | Assert(cBits > 64);
|
---|
5072 | # if 0 /* rounding does not seem to help */
|
---|
5073 | uint64_t off = r128.v[0] & (RT_BIT_64(1 + 112 - cBits) - 1);
|
---|
5074 | r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1);
|
---|
5075 | if (off >= RT_BIT_64(1 + 112 - cBits - 1)
|
---|
5076 | && (r128.v[0] & RT_BIT_64(1 + 112 - cBits)))
|
---|
5077 | {
|
---|
5078 | uint64_t uOld = r128.v[0];
|
---|
5079 | r128.v[0] += RT_BIT_64(1 + 112 - cBits);
|
---|
5080 | if (r128.v[0] < uOld)
|
---|
5081 | r128.v[1] += 1;
|
---|
5082 | }
|
---|
5083 | # else
|
---|
5084 | r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1);
|
---|
5085 | # endif
|
---|
5086 | return r128;
|
---|
5087 | }
|
---|
5088 |
|
---|
5089 |
|
---|
5090 | DECLINLINE(float128_t) iemFpuSoftF128PrecisionIprt(PCRTFLOAT128U pr128, unsigned cBits, uint16_t fFcw = X86_FCW_RC_NEAREST)
|
---|
5091 | {
|
---|
5092 | RT_NOREF(fFcw);
|
---|
5093 | Assert(cBits > 64);
|
---|
5094 | # if 0 /* rounding does not seem to help, not even on constants */
|
---|
5095 | float128_t r128 = { pr128->au64[0], pr128->au64[1] };
|
---|
5096 | uint64_t off = r128.v[0] & (RT_BIT_64(1 + 112 - cBits) - 1);
|
---|
5097 | r128.v[0] &= ~(RT_BIT_64(1 + 112 - cBits) - 1);
|
---|
5098 | if (off >= RT_BIT_64(1 + 112 - cBits - 1)
|
---|
5099 | && (r128.v[0] & RT_BIT_64(1 + 112 - cBits)))
|
---|
5100 | {
|
---|
5101 | uint64_t uOld = r128.v[0];
|
---|
5102 | r128.v[0] += RT_BIT_64(1 + 112 - cBits);
|
---|
5103 | if (r128.v[0] < uOld)
|
---|
5104 | r128.v[1] += 1;
|
---|
5105 | }
|
---|
5106 | return r128;
|
---|
5107 | # else
|
---|
5108 | float128_t r128 = { { pr128->au64[0] & ~(RT_BIT_64(1 + 112 - cBits) - 1), pr128->au64[1] } };
|
---|
5109 | return r128;
|
---|
5110 | # endif
|
---|
5111 | }
|
---|
5112 |
|
---|
5113 |
|
---|
5114 | # if 0 /* unused */
|
---|
5115 | DECLINLINE(float128_t) iemFpuSoftF128FromIprt(PCRTFLOAT128U pr128)
|
---|
5116 | {
|
---|
5117 | float128_t r128 = { { pr128->au64[0], pr128->au64[1] } };
|
---|
5118 | return r128;
|
---|
5119 | }
|
---|
5120 | # endif
|
---|
5121 |
|
---|
5122 |
|
---|
5123 | /** Converts a 80-bit floating point value to SoftFloat 128-bit floating point. */
|
---|
5124 | DECLINLINE(float128_t) iemFpuSoftF128FromFloat80(PCRTFLOAT80U pr80Val)
|
---|
5125 | {
|
---|
5126 | extFloat80_t Tmp;
|
---|
5127 | Tmp.signExp = pr80Val->s2.uSignAndExponent;
|
---|
5128 | Tmp.signif = pr80Val->s2.uMantissa;
|
---|
5129 | softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS();
|
---|
5130 | return extF80_to_f128(Tmp, &Ignored);
|
---|
5131 | }
|
---|
5132 |
|
---|
5133 |
|
---|
5134 | /**
|
---|
5135 | * Converts from the packed IPRT 80-bit floating point (RTFLOAT80U) format to
|
---|
5136 | * the SoftFloat extended 80-bit floating point format (extFloat80_t).
|
---|
5137 | *
|
---|
5138 | * This is only a structure format conversion, nothing else.
|
---|
5139 | */
|
---|
5140 | DECLINLINE(extFloat80_t) iemFpuSoftF80FromIprt(PCRTFLOAT80U pr80Val)
|
---|
5141 | {
|
---|
5142 | extFloat80_t Tmp;
|
---|
5143 | Tmp.signExp = pr80Val->s2.uSignAndExponent;
|
---|
5144 | Tmp.signif = pr80Val->s2.uMantissa;
|
---|
5145 | return Tmp;
|
---|
5146 | }
|
---|
5147 |
|
---|
5148 |
|
---|
5149 | /**
|
---|
5150 | * Converts from SoftFloat extended 80-bit floating point format (extFloat80_t)
|
---|
5151 | * to the packed IPRT 80-bit floating point (RTFLOAT80U) format.
|
---|
5152 | *
|
---|
5153 | * This is only a structure format conversion, nothing else.
|
---|
5154 | */
|
---|
5155 | DECLINLINE(PRTFLOAT80U) iemFpuSoftF80ToIprt(PRTFLOAT80U pr80Dst, extFloat80_t const r80XSrc)
|
---|
5156 | {
|
---|
5157 | pr80Dst->s2.uSignAndExponent = r80XSrc.signExp;
|
---|
5158 | pr80Dst->s2.uMantissa = r80XSrc.signif;
|
---|
5159 | return pr80Dst;
|
---|
5160 | }
|
---|
5161 |
|
---|
5162 |
|
---|
5163 | DECLINLINE(uint16_t) iemFpuSoftF128ToFloat80(PRTFLOAT80U pr80Dst, float128_t r128Src, uint16_t fFcw, uint16_t fFsw)
|
---|
5164 | {
|
---|
5165 | RT_NOREF(fFcw);
|
---|
5166 | RTFLOAT128U Tmp;
|
---|
5167 | *(float128_t *)&Tmp = r128Src;
|
---|
5168 | ASMCompilerBarrier();
|
---|
5169 |
|
---|
5170 | if (RTFLOAT128U_IS_NORMAL(&Tmp))
|
---|
5171 | {
|
---|
5172 | pr80Dst->s.fSign = Tmp.s64.fSign;
|
---|
5173 | pr80Dst->s.uExponent = Tmp.s64.uExponent;
|
---|
5174 | uint64_t uFraction = Tmp.s64.uFractionHi << (63 - 48)
|
---|
5175 | | Tmp.s64.uFractionLo >> (64 - 15);
|
---|
5176 |
|
---|
5177 | /* Do rounding - just truncate in near mode when midway on an even outcome. */
|
---|
5178 | unsigned const cShiftOff = 64 - 15;
|
---|
5179 | uint64_t const fRoundingOffMask = RT_BIT_64(cShiftOff) - 1;
|
---|
5180 | uint64_t const uRoundedOff = Tmp.s64.uFractionLo & fRoundingOffMask;
|
---|
5181 | if (uRoundedOff)
|
---|
5182 | {
|
---|
5183 | uint64_t const uRoundingAdd = (fFcw & X86_FCW_RC_MASK) == X86_FCW_RC_NEAREST
|
---|
5184 | ? RT_BIT_64(cShiftOff - 1)
|
---|
5185 | : (fFcw & X86_FCW_RC_MASK) == (Tmp.s64.fSign ? X86_FCW_RC_DOWN : X86_FCW_RC_UP)
|
---|
5186 | ? fRoundingOffMask
|
---|
5187 | : 0;
|
---|
5188 | if ( (fFcw & X86_FCW_RC_MASK) != X86_FCW_RC_NEAREST
|
---|
5189 | || (Tmp.s64.uFractionLo & RT_BIT_64(cShiftOff))
|
---|
5190 | || uRoundedOff != uRoundingAdd)
|
---|
5191 | {
|
---|
5192 | if ((uRoundedOff + uRoundingAdd) >> cShiftOff)
|
---|
5193 | {
|
---|
5194 | uFraction += 1;
|
---|
5195 | if (!(uFraction & RT_BIT_64(63)))
|
---|
5196 | { /* likely */ }
|
---|
5197 | else
|
---|
5198 | {
|
---|
5199 | uFraction >>= 1;
|
---|
5200 | pr80Dst->s.uExponent++;
|
---|
5201 | if (pr80Dst->s.uExponent == RTFLOAT64U_EXP_MAX)
|
---|
5202 | return fFsw;
|
---|
5203 | }
|
---|
5204 | fFsw |= X86_FSW_C1;
|
---|
5205 | }
|
---|
5206 | }
|
---|
5207 | fFsw |= X86_FSW_PE;
|
---|
5208 | if (!(fFcw & X86_FCW_PM))
|
---|
5209 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5210 | }
|
---|
5211 |
|
---|
5212 | pr80Dst->s.uMantissa = RT_BIT_64(63) | uFraction;
|
---|
5213 | }
|
---|
5214 | else if (RTFLOAT128U_IS_ZERO(&Tmp))
|
---|
5215 | {
|
---|
5216 | pr80Dst->s.fSign = Tmp.s64.fSign;
|
---|
5217 | pr80Dst->s.uExponent = 0;
|
---|
5218 | pr80Dst->s.uMantissa = 0;
|
---|
5219 | }
|
---|
5220 | else if (RTFLOAT128U_IS_INF(&Tmp))
|
---|
5221 | {
|
---|
5222 | pr80Dst->s.fSign = Tmp.s64.fSign;
|
---|
5223 | pr80Dst->s.uExponent = 0;
|
---|
5224 | pr80Dst->s.uMantissa = 0;
|
---|
5225 | }
|
---|
5226 | return fFsw;
|
---|
5227 | }
|
---|
5228 |
|
---|
5229 |
|
---|
5230 | /**
|
---|
5231 | * Helper for transfering exception and C1 to FSW and setting the result value
|
---|
5232 | * accordingly.
|
---|
5233 | *
|
---|
5234 | * @returns Updated FSW.
|
---|
5235 | * @param pSoftState The SoftFloat state following the operation.
|
---|
5236 | * @param r80XResult The result of the SoftFloat operation.
|
---|
5237 | * @param pr80Result Where to store the result for IEM.
|
---|
5238 | * @param fFcw The FPU control word.
|
---|
5239 | * @param fFsw The FSW before the operation, with necessary bits
|
---|
5240 | * cleared and such.
|
---|
5241 | * @param pr80XcptResult Alternative return value for use an unmasked \#IE is
|
---|
5242 | * raised.
|
---|
5243 | */
|
---|
5244 | DECLINLINE(uint16_t) iemFpuSoftStateAndF80ToFswAndIprtResult(softfloat_state_t const *pSoftState, extFloat80_t r80XResult,
|
---|
5245 | PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw,
|
---|
5246 | PCRTFLOAT80U pr80XcptResult)
|
---|
5247 | {
|
---|
5248 | fFsw |= (pSoftState->exceptionFlags & X86_FSW_XCPT_MASK)
|
---|
5249 | | (uint16_t)((pSoftState->exceptionFlags & softfloat_flag_c1) << 2);
|
---|
5250 | if (fFsw & ~fFcw & X86_FSW_XCPT_MASK)
|
---|
5251 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5252 |
|
---|
5253 | if (!(fFsw & ~fFcw & (X86_FSW_IE | X86_FSW_DE)))
|
---|
5254 | iemFpuSoftF80ToIprt(pr80Result, r80XResult);
|
---|
5255 | else
|
---|
5256 | {
|
---|
5257 | fFsw &= ~(X86_FSW_OE | X86_FSW_UE | X86_FSW_PE | X86_FSW_ZE | X86_FSW_C1);
|
---|
5258 | *pr80Result = *pr80XcptResult;
|
---|
5259 | }
|
---|
5260 | return fFsw;
|
---|
5261 | }
|
---|
5262 |
|
---|
5263 |
|
---|
5264 | /**
|
---|
5265 | * Helper doing polynomial evaluation using Horner's method.
|
---|
5266 | *
|
---|
5267 | * See https://en.wikipedia.org/wiki/Horner%27s_method for details.
|
---|
5268 | */
|
---|
5269 | float128_t iemFpuSoftF128HornerPoly(float128_t z, PCRTFLOAT128U g_par128HornerConsts, size_t cHornerConsts,
|
---|
5270 | unsigned cPrecision, softfloat_state_t *pSoftState)
|
---|
5271 | {
|
---|
5272 | Assert(cHornerConsts > 1);
|
---|
5273 | size_t i = cHornerConsts - 1;
|
---|
5274 | float128_t r128Result = iemFpuSoftF128PrecisionIprt(&g_par128HornerConsts[i], cPrecision);
|
---|
5275 | while (i-- > 0)
|
---|
5276 | {
|
---|
5277 | r128Result = iemFpuSoftF128Precision(f128_mul(r128Result, z, pSoftState), cPrecision);
|
---|
5278 | r128Result = f128_add(r128Result, iemFpuSoftF128PrecisionIprt(&g_par128HornerConsts[i], cPrecision), pSoftState);
|
---|
5279 | r128Result = iemFpuSoftF128Precision(r128Result, cPrecision);
|
---|
5280 | }
|
---|
5281 | return r128Result;
|
---|
5282 | }
|
---|
5283 |
|
---|
5284 | #endif /* !IEM_WITH_FLOAT128_FOR_FPU - SoftFloat */
|
---|
5285 |
|
---|
5286 |
|
---|
5287 | /**
|
---|
5288 | * Composes a normalized and rounded RTFLOAT80U result from a 192 bit wide
|
---|
5289 | * mantissa, exponent and sign.
|
---|
5290 | *
|
---|
5291 | * @returns Updated FSW.
|
---|
5292 | * @param pr80Dst Where to return the composed value.
|
---|
5293 | * @param fSign The sign.
|
---|
5294 | * @param puMantissa The mantissa, 256-bit type but the to 64-bits are
|
---|
5295 | * ignored and should be zero. This will probably be
|
---|
5296 | * modified during normalization and rounding.
|
---|
5297 | * @param iExponent Unbiased exponent.
|
---|
5298 | * @param fFcw The FPU control word.
|
---|
5299 | * @param fFsw The FPU status word.
|
---|
5300 | */
|
---|
5301 | static uint16_t iemFpuFloat80RoundAndComposeFrom192(PRTFLOAT80U pr80Dst, bool fSign, PRTUINT256U puMantissa,
|
---|
5302 | int32_t iExponent, uint16_t fFcw, uint16_t fFsw)
|
---|
5303 | {
|
---|
5304 | AssertStmt(puMantissa->QWords.qw3 == 0, puMantissa->QWords.qw3 = 0);
|
---|
5305 |
|
---|
5306 | iExponent += RTFLOAT80U_EXP_BIAS;
|
---|
5307 |
|
---|
5308 | /* Do normalization if necessary and possible. */
|
---|
5309 | if (!(puMantissa->QWords.qw2 & RT_BIT_64(63)))
|
---|
5310 | {
|
---|
5311 | int cShift = 192 - RTUInt256BitCount(puMantissa);
|
---|
5312 | if (iExponent > cShift)
|
---|
5313 | iExponent -= cShift;
|
---|
5314 | else
|
---|
5315 | {
|
---|
5316 | if (fFcw & X86_FCW_UM)
|
---|
5317 | {
|
---|
5318 | if (iExponent > 0)
|
---|
5319 | cShift = --iExponent;
|
---|
5320 | else
|
---|
5321 | cShift = 0;
|
---|
5322 | }
|
---|
5323 | iExponent -= cShift;
|
---|
5324 | }
|
---|
5325 | RTUInt256AssignShiftLeft(puMantissa, cShift);
|
---|
5326 | }
|
---|
5327 |
|
---|
5328 | /* Do rounding. */
|
---|
5329 | uint64_t uMantissa = puMantissa->QWords.qw2;
|
---|
5330 | if (puMantissa->QWords.qw1 || puMantissa->QWords.qw0)
|
---|
5331 | {
|
---|
5332 | bool fAdd;
|
---|
5333 | switch (fFcw & X86_FCW_RC_MASK)
|
---|
5334 | {
|
---|
5335 | default: /* (for the simple-minded MSC which otherwise things fAdd would be used uninitialized) */
|
---|
5336 | case X86_FCW_RC_NEAREST:
|
---|
5337 | if (puMantissa->QWords.qw1 & RT_BIT_64(63))
|
---|
5338 | {
|
---|
5339 | if ( (uMantissa & 1)
|
---|
5340 | || puMantissa->QWords.qw0 != 0
|
---|
5341 | || puMantissa->QWords.qw1 != RT_BIT_64(63))
|
---|
5342 | {
|
---|
5343 | fAdd = true;
|
---|
5344 | break;
|
---|
5345 | }
|
---|
5346 | uMantissa &= ~(uint64_t)1;
|
---|
5347 | }
|
---|
5348 | fAdd = false;
|
---|
5349 | break;
|
---|
5350 | case X86_FCW_RC_ZERO:
|
---|
5351 | fAdd = false;
|
---|
5352 | break;
|
---|
5353 | case X86_FCW_RC_UP:
|
---|
5354 | fAdd = !fSign;
|
---|
5355 | break;
|
---|
5356 | case X86_FCW_RC_DOWN:
|
---|
5357 | fAdd = fSign;
|
---|
5358 | break;
|
---|
5359 | }
|
---|
5360 | if (fAdd)
|
---|
5361 | {
|
---|
5362 | uint64_t const uTmp = uMantissa;
|
---|
5363 | uMantissa = uTmp + 1;
|
---|
5364 | if (uMantissa < uTmp)
|
---|
5365 | {
|
---|
5366 | uMantissa >>= 1;
|
---|
5367 | uMantissa |= RT_BIT_64(63);
|
---|
5368 | iExponent++;
|
---|
5369 | }
|
---|
5370 | fFsw |= X86_FSW_C1;
|
---|
5371 | }
|
---|
5372 | fFsw |= X86_FSW_PE;
|
---|
5373 | if (!(fFcw & X86_FCW_PM))
|
---|
5374 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5375 | }
|
---|
5376 |
|
---|
5377 | /* Check for underflow (denormals). */
|
---|
5378 | if (iExponent <= 0)
|
---|
5379 | {
|
---|
5380 | if (fFcw & X86_FCW_UM)
|
---|
5381 | {
|
---|
5382 | if (uMantissa & RT_BIT_64(63))
|
---|
5383 | uMantissa >>= 1;
|
---|
5384 | iExponent = 0;
|
---|
5385 | }
|
---|
5386 | else
|
---|
5387 | {
|
---|
5388 | iExponent += RTFLOAT80U_EXP_BIAS_ADJUST;
|
---|
5389 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5390 | }
|
---|
5391 | fFsw |= X86_FSW_UE;
|
---|
5392 | }
|
---|
5393 | /* Check for overflow */
|
---|
5394 | else if (iExponent >= RTFLOAT80U_EXP_MAX)
|
---|
5395 | {
|
---|
5396 | Assert(iExponent < RTFLOAT80U_EXP_MAX);
|
---|
5397 | }
|
---|
5398 |
|
---|
5399 | /* Compose the result. */
|
---|
5400 | pr80Dst->s.uMantissa = uMantissa;
|
---|
5401 | pr80Dst->s.uExponent = iExponent;
|
---|
5402 | pr80Dst->s.fSign = fSign;
|
---|
5403 | return fFsw;
|
---|
5404 | }
|
---|
5405 |
|
---|
5406 |
|
---|
5407 | /**
|
---|
5408 | * See also iemAImpl_fld_r80_from_r32
|
---|
5409 | */
|
---|
5410 | static uint16_t iemAImplConvertR32ToR80(PCRTFLOAT32U pr32Val, PRTFLOAT80U pr80Dst)
|
---|
5411 | {
|
---|
5412 | uint16_t fFsw = 0;
|
---|
5413 | if (RTFLOAT32U_IS_NORMAL(pr32Val))
|
---|
5414 | {
|
---|
5415 | pr80Dst->sj64.fSign = pr32Val->s.fSign;
|
---|
5416 | pr80Dst->sj64.fInteger = 1;
|
---|
5417 | pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction
|
---|
5418 | << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS);
|
---|
5419 | pr80Dst->sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS;
|
---|
5420 | Assert(RTFLOAT80U_IS_NORMAL(pr80Dst));
|
---|
5421 | }
|
---|
5422 | else if (RTFLOAT32U_IS_ZERO(pr32Val))
|
---|
5423 | {
|
---|
5424 | pr80Dst->s.fSign = pr32Val->s.fSign;
|
---|
5425 | pr80Dst->s.uExponent = 0;
|
---|
5426 | pr80Dst->s.uMantissa = 0;
|
---|
5427 | Assert(RTFLOAT80U_IS_ZERO(pr80Dst));
|
---|
5428 | }
|
---|
5429 | else if (RTFLOAT32U_IS_SUBNORMAL(pr32Val))
|
---|
5430 | {
|
---|
5431 | /* Subnormal -> normalized + X86_FSW_DE return. */
|
---|
5432 | pr80Dst->sj64.fSign = pr32Val->s.fSign;
|
---|
5433 | pr80Dst->sj64.fInteger = 1;
|
---|
5434 | unsigned const cExtraShift = RTFLOAT32U_FRACTION_BITS - ASMBitLastSetU32(pr32Val->s.uFraction);
|
---|
5435 | pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction
|
---|
5436 | << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS + cExtraShift + 1);
|
---|
5437 | pr80Dst->sj64.uExponent = pr32Val->s.uExponent - RTFLOAT32U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift;
|
---|
5438 | fFsw = X86_FSW_DE;
|
---|
5439 | }
|
---|
5440 | else if (RTFLOAT32U_IS_INF(pr32Val))
|
---|
5441 | {
|
---|
5442 | pr80Dst->s.fSign = pr32Val->s.fSign;
|
---|
5443 | pr80Dst->s.uExponent = RTFLOAT80U_EXP_MAX;
|
---|
5444 | pr80Dst->s.uMantissa = RT_BIT_64(63);
|
---|
5445 | Assert(RTFLOAT80U_IS_INF(pr80Dst));
|
---|
5446 | }
|
---|
5447 | else
|
---|
5448 | {
|
---|
5449 | Assert(RTFLOAT32U_IS_NAN(pr32Val));
|
---|
5450 | pr80Dst->sj64.fSign = pr32Val->s.fSign;
|
---|
5451 | pr80Dst->sj64.uExponent = RTFLOAT80U_EXP_MAX;
|
---|
5452 | pr80Dst->sj64.fInteger = 1;
|
---|
5453 | pr80Dst->sj64.uFraction = (uint64_t)pr32Val->s.uFraction
|
---|
5454 | << (RTFLOAT80U_FRACTION_BITS - RTFLOAT32U_FRACTION_BITS);
|
---|
5455 | Assert(RTFLOAT80U_IS_NAN(pr80Dst));
|
---|
5456 | Assert(RTFLOAT80U_IS_SIGNALLING_NAN(pr80Dst) == RTFLOAT32U_IS_SIGNALLING_NAN(pr32Val));
|
---|
5457 | }
|
---|
5458 | return fFsw;
|
---|
5459 | }
|
---|
5460 |
|
---|
5461 |
|
---|
5462 | /**
|
---|
5463 | * See also iemAImpl_fld_r80_from_r64
|
---|
5464 | */
|
---|
5465 | static uint16_t iemAImplConvertR64ToR80(PCRTFLOAT64U pr64Val, PRTFLOAT80U pr80Dst)
|
---|
5466 | {
|
---|
5467 | uint16_t fFsw = 0;
|
---|
5468 | if (RTFLOAT64U_IS_NORMAL(pr64Val))
|
---|
5469 | {
|
---|
5470 | pr80Dst->sj64.fSign = pr64Val->s.fSign;
|
---|
5471 | pr80Dst->sj64.fInteger = 1;
|
---|
5472 | pr80Dst->sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS);
|
---|
5473 | pr80Dst->sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS;
|
---|
5474 | Assert(RTFLOAT80U_IS_NORMAL(pr80Dst));
|
---|
5475 | }
|
---|
5476 | else if (RTFLOAT64U_IS_ZERO(pr64Val))
|
---|
5477 | {
|
---|
5478 | pr80Dst->s.fSign = pr64Val->s.fSign;
|
---|
5479 | pr80Dst->s.uExponent = 0;
|
---|
5480 | pr80Dst->s.uMantissa = 0;
|
---|
5481 | Assert(RTFLOAT80U_IS_ZERO(pr80Dst));
|
---|
5482 | }
|
---|
5483 | else if (RTFLOAT64U_IS_SUBNORMAL(pr64Val))
|
---|
5484 | {
|
---|
5485 | /* Subnormal values gets normalized. */
|
---|
5486 | pr80Dst->sj64.fSign = pr64Val->s.fSign;
|
---|
5487 | pr80Dst->sj64.fInteger = 1;
|
---|
5488 | unsigned const cExtraShift = RTFLOAT64U_FRACTION_BITS - ASMBitLastSetU64(pr64Val->s64.uFraction);
|
---|
5489 | pr80Dst->sj64.uFraction = pr64Val->s64.uFraction
|
---|
5490 | << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS + cExtraShift + 1);
|
---|
5491 | pr80Dst->sj64.uExponent = pr64Val->s.uExponent - RTFLOAT64U_EXP_BIAS + RTFLOAT80U_EXP_BIAS - cExtraShift;
|
---|
5492 | fFsw = X86_FSW_DE;
|
---|
5493 | }
|
---|
5494 | else if (RTFLOAT64U_IS_INF(pr64Val))
|
---|
5495 | {
|
---|
5496 | pr80Dst->s.fSign = pr64Val->s.fSign;
|
---|
5497 | pr80Dst->s.uExponent = RTFLOAT80U_EXP_MAX;
|
---|
5498 | pr80Dst->s.uMantissa = RT_BIT_64(63);
|
---|
5499 | Assert(RTFLOAT80U_IS_INF(pr80Dst));
|
---|
5500 | }
|
---|
5501 | else
|
---|
5502 | {
|
---|
5503 | /* Signalling and quiet NaNs, both turn into quiet ones when loaded (weird). */
|
---|
5504 | Assert(RTFLOAT64U_IS_NAN(pr64Val));
|
---|
5505 | pr80Dst->sj64.fSign = pr64Val->s.fSign;
|
---|
5506 | pr80Dst->sj64.uExponent = RTFLOAT80U_EXP_MAX;
|
---|
5507 | pr80Dst->sj64.fInteger = 1;
|
---|
5508 | pr80Dst->sj64.uFraction = pr64Val->s64.uFraction << (RTFLOAT80U_FRACTION_BITS - RTFLOAT64U_FRACTION_BITS);
|
---|
5509 | Assert(RTFLOAT80U_IS_NAN(pr80Dst));
|
---|
5510 | Assert(RTFLOAT80U_IS_SIGNALLING_NAN(pr80Dst) == RTFLOAT64U_IS_SIGNALLING_NAN(pr64Val));
|
---|
5511 | }
|
---|
5512 | return fFsw;
|
---|
5513 | }
|
---|
5514 |
|
---|
5515 |
|
---|
5516 | /**
|
---|
5517 | * See also EMIT_FILD.
|
---|
5518 | */
|
---|
5519 | #define EMIT_CONVERT_IXX_TO_R80(a_cBits) \
|
---|
5520 | static PRTFLOAT80U iemAImplConvertI ## a_cBits ## ToR80(int ## a_cBits ## _t iVal, PRTFLOAT80U pr80Dst) \
|
---|
5521 | { \
|
---|
5522 | if (iVal == 0) \
|
---|
5523 | { \
|
---|
5524 | pr80Dst->s.fSign = 0; \
|
---|
5525 | pr80Dst->s.uExponent = 0; \
|
---|
5526 | pr80Dst->s.uMantissa = 0; \
|
---|
5527 | } \
|
---|
5528 | else \
|
---|
5529 | { \
|
---|
5530 | if (iVal > 0) \
|
---|
5531 | pr80Dst->s.fSign = 0; \
|
---|
5532 | else \
|
---|
5533 | { \
|
---|
5534 | pr80Dst->s.fSign = 1; \
|
---|
5535 | iVal = -iVal; \
|
---|
5536 | } \
|
---|
5537 | unsigned const cBits = ASMBitLastSetU ## a_cBits((uint ## a_cBits ## _t)iVal); \
|
---|
5538 | pr80Dst->s.uExponent = cBits - 1 + RTFLOAT80U_EXP_BIAS; \
|
---|
5539 | pr80Dst->s.uMantissa = (uint64_t)iVal << (RTFLOAT80U_FRACTION_BITS + 1 - cBits); \
|
---|
5540 | } \
|
---|
5541 | return pr80Dst; \
|
---|
5542 | }
|
---|
5543 | EMIT_CONVERT_IXX_TO_R80(16)
|
---|
5544 | EMIT_CONVERT_IXX_TO_R80(32)
|
---|
5545 | //EMIT_CONVERT_IXX_TO_R80(64)
|
---|
5546 |
|
---|
5547 | /** For implementing iemAImpl_fmul_r80_by_r64 and such. */
|
---|
5548 | #define EMIT_R80_BY_R64(a_Name, a_fnR80ByR80, a_DenormalException) \
|
---|
5549 | IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2)) \
|
---|
5550 | { \
|
---|
5551 | RTFLOAT80U r80Val2; \
|
---|
5552 | uint16_t fFsw = iemAImplConvertR64ToR80(pr64Val2, &r80Val2); \
|
---|
5553 | Assert(!fFsw || fFsw == X86_FSW_DE); \
|
---|
5554 | if (fFsw) \
|
---|
5555 | { \
|
---|
5556 | if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_NAN(pr80Val1) || (a_DenormalException)) \
|
---|
5557 | fFsw = 0; \
|
---|
5558 | else if (!(pFpuState->FCW & X86_FCW_DM)) \
|
---|
5559 | { \
|
---|
5560 | pFpuRes->r80Result = *pr80Val1; \
|
---|
5561 | pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT) \
|
---|
5562 | | X86_FSW_DE | X86_FSW_ES | X86_FSW_B; \
|
---|
5563 | return; \
|
---|
5564 | } \
|
---|
5565 | } \
|
---|
5566 | a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, &r80Val2); \
|
---|
5567 | pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT) | fFsw; \
|
---|
5568 | }
|
---|
5569 |
|
---|
5570 | /** For implementing iemAImpl_fmul_r80_by_r32 and such. */
|
---|
5571 | #define EMIT_R80_BY_R32(a_Name, a_fnR80ByR80, a_DenormalException) \
|
---|
5572 | IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2)) \
|
---|
5573 | { \
|
---|
5574 | RTFLOAT80U r80Val2; \
|
---|
5575 | uint16_t fFsw = iemAImplConvertR32ToR80(pr32Val2, &r80Val2); \
|
---|
5576 | Assert(!fFsw || fFsw == X86_FSW_DE); \
|
---|
5577 | if (fFsw) \
|
---|
5578 | { \
|
---|
5579 | if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_NAN(pr80Val1) || (a_DenormalException)) \
|
---|
5580 | fFsw = 0; \
|
---|
5581 | else if (!(pFpuState->FCW & X86_FCW_DM)) \
|
---|
5582 | { \
|
---|
5583 | pFpuRes->r80Result = *pr80Val1; \
|
---|
5584 | pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT) \
|
---|
5585 | | X86_FSW_DE | X86_FSW_ES | X86_FSW_B; \
|
---|
5586 | return; \
|
---|
5587 | } \
|
---|
5588 | } \
|
---|
5589 | a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, &r80Val2); \
|
---|
5590 | pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT) | fFsw; \
|
---|
5591 | }
|
---|
5592 |
|
---|
5593 | /** For implementing iemAImpl_fimul_r80_by_i32 and such. */
|
---|
5594 | #define EMIT_R80_BY_I32(a_Name, a_fnR80ByR80) \
|
---|
5595 | IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2)) \
|
---|
5596 | { \
|
---|
5597 | RTFLOAT80U r80Val2; \
|
---|
5598 | a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, iemAImplConvertI32ToR80(*pi32Val2, &r80Val2)); \
|
---|
5599 | pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); \
|
---|
5600 | }
|
---|
5601 |
|
---|
5602 | /** For implementing iemAImpl_fimul_r80_by_i16 and such. */
|
---|
5603 | #define EMIT_R80_BY_I16(a_Name, a_fnR80ByR80) \
|
---|
5604 | IEM_DECL_IMPL_DEF(void, a_Name,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2)) \
|
---|
5605 | { \
|
---|
5606 | RTFLOAT80U r80Val2; \
|
---|
5607 | a_fnR80ByR80(pFpuState, pFpuRes, pr80Val1, iemAImplConvertI16ToR80(*pi16Val2, &r80Val2)); \
|
---|
5608 | pFpuRes->FSW = (pFpuRes->FSW & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT); \
|
---|
5609 | }
|
---|
5610 |
|
---|
5611 |
|
---|
5612 |
|
---|
5613 | /*********************************************************************************************************************************
|
---|
5614 | * x86 FPU Division Operations *
|
---|
5615 | *********************************************************************************************************************************/
|
---|
5616 |
|
---|
5617 | /** Worker for iemAImpl_fdiv_r80_by_r80 & iemAImpl_fdivr_r80_by_r80. */
|
---|
5618 | static uint16_t iemAImpl_fdiv_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result,
|
---|
5619 | uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org)
|
---|
5620 | {
|
---|
5621 | if (!RTFLOAT80U_IS_ZERO(pr80Val2) || RTFLOAT80U_IS_NAN(pr80Val1) || RTFLOAT80U_IS_INF(pr80Val1))
|
---|
5622 | {
|
---|
5623 | softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
|
---|
5624 | extFloat80_t r80XResult = extF80_div(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState);
|
---|
5625 | return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org);
|
---|
5626 | }
|
---|
5627 | if (!RTFLOAT80U_IS_ZERO(pr80Val1))
|
---|
5628 | { /* Div by zero. */
|
---|
5629 | if (fFcw & X86_FCW_ZM)
|
---|
5630 | *pr80Result = g_ar80Infinity[pr80Val1->s.fSign != pr80Val2->s.fSign];
|
---|
5631 | else
|
---|
5632 | {
|
---|
5633 | *pr80Result = *pr80Val1Org;
|
---|
5634 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5635 | }
|
---|
5636 | fFsw |= X86_FSW_ZE;
|
---|
5637 | }
|
---|
5638 | else
|
---|
5639 | { /* Invalid operand */
|
---|
5640 | if (fFcw & X86_FCW_IM)
|
---|
5641 | *pr80Result = g_r80Indefinite;
|
---|
5642 | else
|
---|
5643 | {
|
---|
5644 | *pr80Result = *pr80Val1Org;
|
---|
5645 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5646 | }
|
---|
5647 | fFsw |= X86_FSW_IE;
|
---|
5648 | }
|
---|
5649 | return fFsw;
|
---|
5650 | }
|
---|
5651 |
|
---|
5652 |
|
---|
5653 | IEM_DECL_IMPL_DEF(void, iemAImpl_fdiv_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
5654 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
5655 | {
|
---|
5656 | uint16_t const fFcw = pFpuState->FCW;
|
---|
5657 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
|
---|
5658 |
|
---|
5659 | /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
|
---|
5660 | if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
|
---|
5661 | {
|
---|
5662 | if (fFcw & X86_FCW_IM)
|
---|
5663 | pFpuRes->r80Result = g_r80Indefinite;
|
---|
5664 | else
|
---|
5665 | {
|
---|
5666 | pFpuRes->r80Result = *pr80Val1;
|
---|
5667 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5668 | }
|
---|
5669 | fFsw |= X86_FSW_IE;
|
---|
5670 | }
|
---|
5671 | /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */
|
---|
5672 | else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2) && !RTFLOAT80U_IS_ZERO(pr80Val2))
|
---|
5673 | || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) )
|
---|
5674 | {
|
---|
5675 | if (fFcw & X86_FCW_DM)
|
---|
5676 | {
|
---|
5677 | PCRTFLOAT80U const pr80Val1Org = pr80Val1;
|
---|
5678 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
|
---|
5679 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
|
---|
5680 | fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
|
---|
5681 | }
|
---|
5682 | else
|
---|
5683 | {
|
---|
5684 | pFpuRes->r80Result = *pr80Val1;
|
---|
5685 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5686 | }
|
---|
5687 | fFsw |= X86_FSW_DE;
|
---|
5688 | }
|
---|
5689 | /* SoftFloat can handle the rest: */
|
---|
5690 | else
|
---|
5691 | fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
|
---|
5692 |
|
---|
5693 | pFpuRes->FSW = fFsw;
|
---|
5694 | }
|
---|
5695 |
|
---|
5696 |
|
---|
5697 | EMIT_R80_BY_R64(iemAImpl_fdiv_r80_by_r64, iemAImpl_fdiv_r80_by_r80, 0)
|
---|
5698 | EMIT_R80_BY_R32(iemAImpl_fdiv_r80_by_r32, iemAImpl_fdiv_r80_by_r80, 0)
|
---|
5699 | EMIT_R80_BY_I32(iemAImpl_fidiv_r80_by_i32, iemAImpl_fdiv_r80_by_r80)
|
---|
5700 | EMIT_R80_BY_I16(iemAImpl_fidiv_r80_by_i16, iemAImpl_fdiv_r80_by_r80)
|
---|
5701 |
|
---|
5702 |
|
---|
5703 | IEM_DECL_IMPL_DEF(void, iemAImpl_fdivr_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
5704 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
5705 | {
|
---|
5706 | uint16_t const fFcw = pFpuState->FCW;
|
---|
5707 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
|
---|
5708 |
|
---|
5709 | /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
|
---|
5710 | if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
|
---|
5711 | {
|
---|
5712 | if (fFcw & X86_FCW_IM)
|
---|
5713 | pFpuRes->r80Result = g_r80Indefinite;
|
---|
5714 | else
|
---|
5715 | {
|
---|
5716 | pFpuRes->r80Result = *pr80Val1;
|
---|
5717 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5718 | }
|
---|
5719 | fFsw |= X86_FSW_IE;
|
---|
5720 | }
|
---|
5721 | /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */
|
---|
5722 | else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2))
|
---|
5723 | || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_ZERO(pr80Val1)) )
|
---|
5724 | {
|
---|
5725 | if (fFcw & X86_FCW_DM)
|
---|
5726 | {
|
---|
5727 | PCRTFLOAT80U const pr80Val1Org = pr80Val1;
|
---|
5728 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
|
---|
5729 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
|
---|
5730 | fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
|
---|
5731 | }
|
---|
5732 | else
|
---|
5733 | {
|
---|
5734 | pFpuRes->r80Result = *pr80Val1;
|
---|
5735 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5736 | }
|
---|
5737 | fFsw |= X86_FSW_DE;
|
---|
5738 | }
|
---|
5739 | /* SoftFloat can handle the rest: */
|
---|
5740 | else
|
---|
5741 | fFsw = iemAImpl_fdiv_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
|
---|
5742 |
|
---|
5743 | pFpuRes->FSW = fFsw;
|
---|
5744 | }
|
---|
5745 |
|
---|
5746 |
|
---|
5747 | EMIT_R80_BY_R64(iemAImpl_fdivr_r80_by_r64, iemAImpl_fdivr_r80_by_r80, RTFLOAT80U_IS_ZERO(pr80Val1))
|
---|
5748 | EMIT_R80_BY_R32(iemAImpl_fdivr_r80_by_r32, iemAImpl_fdivr_r80_by_r80, RTFLOAT80U_IS_ZERO(pr80Val1))
|
---|
5749 | EMIT_R80_BY_I32(iemAImpl_fidivr_r80_by_i32, iemAImpl_fdivr_r80_by_r80)
|
---|
5750 | EMIT_R80_BY_I16(iemAImpl_fidivr_r80_by_i16, iemAImpl_fdivr_r80_by_r80)
|
---|
5751 |
|
---|
5752 |
|
---|
5753 | /** Worker for iemAImpl_fprem_r80_by_r80 & iemAImpl_fprem1_r80_by_r80. */
|
---|
5754 | static uint16_t iemAImpl_fprem_fprem1_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result,
|
---|
5755 | uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org, bool fLegacyInstr)
|
---|
5756 | {
|
---|
5757 | if (!RTFLOAT80U_IS_ZERO(pr80Val2) || RTFLOAT80U_IS_NAN(pr80Val1) || RTFLOAT80U_IS_INF(pr80Val1))
|
---|
5758 | {
|
---|
5759 | softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
|
---|
5760 | uint16_t fCxFlags = 0;
|
---|
5761 | extFloat80_t r80XResult = extF80_partialRem(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2),
|
---|
5762 | fLegacyInstr ? softfloat_round_minMag : softfloat_round_near_even,
|
---|
5763 | &fCxFlags, &SoftState);
|
---|
5764 | Assert(!(fCxFlags & ~X86_FSW_C_MASK));
|
---|
5765 | fFsw = iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org);
|
---|
5766 | if ( !(fFsw & X86_FSW_IE)
|
---|
5767 | && !RTFLOAT80U_IS_NAN(pr80Result)
|
---|
5768 | && !RTFLOAT80U_IS_INDEFINITE(pr80Result))
|
---|
5769 | {
|
---|
5770 | fFsw &= ~(uint16_t)X86_FSW_C_MASK;
|
---|
5771 | fFsw |= fCxFlags & X86_FSW_C_MASK;
|
---|
5772 | }
|
---|
5773 | return fFsw;
|
---|
5774 | }
|
---|
5775 |
|
---|
5776 | /* Invalid operand */
|
---|
5777 | if (fFcw & X86_FCW_IM)
|
---|
5778 | *pr80Result = g_r80Indefinite;
|
---|
5779 | else
|
---|
5780 | {
|
---|
5781 | *pr80Result = *pr80Val1Org;
|
---|
5782 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5783 | }
|
---|
5784 | return fFsw | X86_FSW_IE;
|
---|
5785 | }
|
---|
5786 |
|
---|
5787 |
|
---|
5788 | static void iemAImpl_fprem_fprem1_r80_by_r80(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
5789 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, bool fLegacyInstr)
|
---|
5790 | {
|
---|
5791 | uint16_t const fFcw = pFpuState->FCW;
|
---|
5792 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 /*| X86_FSW_C2*/ | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
|
---|
5793 |
|
---|
5794 | /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals.
|
---|
5795 | In addition, we'd like to handle zero ST(1) now as SoftFloat returns Inf instead
|
---|
5796 | of Indefinite. (Note! There is no #Z like the footnotes to tables 3-31 and 3-32
|
---|
5797 | for the FPREM1 & FPREM1 instructions in the intel reference manual claims!) */
|
---|
5798 | if ( RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2)
|
---|
5799 | || (RTFLOAT80U_IS_ZERO(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_INDEFINITE(pr80Val1)))
|
---|
5800 | {
|
---|
5801 | if (fFcw & X86_FCW_IM)
|
---|
5802 | pFpuRes->r80Result = g_r80Indefinite;
|
---|
5803 | else
|
---|
5804 | {
|
---|
5805 | pFpuRes->r80Result = *pr80Val1;
|
---|
5806 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5807 | }
|
---|
5808 | fFsw |= X86_FSW_IE;
|
---|
5809 | }
|
---|
5810 | /* SoftFloat does not check for denormals and certainly not report them to us. NaNs & /0 trumps denormals. */
|
---|
5811 | else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2) && !RTFLOAT80U_IS_ZERO(pr80Val2))
|
---|
5812 | || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1) && !RTFLOAT80U_IS_INF(pr80Val1)) )
|
---|
5813 | {
|
---|
5814 | if (fFcw & X86_FCW_DM)
|
---|
5815 | {
|
---|
5816 | PCRTFLOAT80U const pr80Val1Org = pr80Val1;
|
---|
5817 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
|
---|
5818 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
|
---|
5819 | fFsw = iemAImpl_fprem_fprem1_r80_by_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw,
|
---|
5820 | pr80Val1Org, fLegacyInstr);
|
---|
5821 | }
|
---|
5822 | else
|
---|
5823 | {
|
---|
5824 | pFpuRes->r80Result = *pr80Val1;
|
---|
5825 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5826 | }
|
---|
5827 | fFsw |= X86_FSW_DE;
|
---|
5828 | }
|
---|
5829 | /* SoftFloat can handle the rest: */
|
---|
5830 | else
|
---|
5831 | fFsw = iemAImpl_fprem_fprem1_r80_by_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw,
|
---|
5832 | pr80Val1, fLegacyInstr);
|
---|
5833 |
|
---|
5834 | pFpuRes->FSW = fFsw;
|
---|
5835 | }
|
---|
5836 |
|
---|
5837 |
|
---|
5838 | IEM_DECL_IMPL_DEF(void, iemAImpl_fprem_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
5839 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
5840 | {
|
---|
5841 | iemAImpl_fprem_fprem1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2, true /*fLegacyInstr*/);
|
---|
5842 | }
|
---|
5843 |
|
---|
5844 |
|
---|
5845 | IEM_DECL_IMPL_DEF(void, iemAImpl_fprem1_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
5846 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
5847 | {
|
---|
5848 | iemAImpl_fprem_fprem1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2, false /*fLegacyInstr*/);
|
---|
5849 | }
|
---|
5850 |
|
---|
5851 |
|
---|
5852 | /*********************************************************************************************************************************
|
---|
5853 | * x87 FPU Multiplication Operations *
|
---|
5854 | *********************************************************************************************************************************/
|
---|
5855 |
|
---|
5856 | /** Worker for iemAImpl_fmul_r80_by_r80. */
|
---|
5857 | static uint16_t iemAImpl_fmul_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result,
|
---|
5858 | uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org)
|
---|
5859 | {
|
---|
5860 | softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
|
---|
5861 | extFloat80_t r80XResult = extF80_mul(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState);
|
---|
5862 | return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org);
|
---|
5863 | }
|
---|
5864 |
|
---|
5865 |
|
---|
5866 | IEM_DECL_IMPL_DEF(void, iemAImpl_fmul_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
5867 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
5868 | {
|
---|
5869 | uint16_t const fFcw = pFpuState->FCW;
|
---|
5870 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
|
---|
5871 |
|
---|
5872 | /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
|
---|
5873 | if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
|
---|
5874 | {
|
---|
5875 | if (fFcw & X86_FCW_IM)
|
---|
5876 | pFpuRes->r80Result = g_r80Indefinite;
|
---|
5877 | else
|
---|
5878 | {
|
---|
5879 | pFpuRes->r80Result = *pr80Val1;
|
---|
5880 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5881 | }
|
---|
5882 | fFsw |= X86_FSW_IE;
|
---|
5883 | }
|
---|
5884 | /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */
|
---|
5885 | else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2))
|
---|
5886 | || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) )
|
---|
5887 | {
|
---|
5888 | if (fFcw & X86_FCW_DM)
|
---|
5889 | {
|
---|
5890 | PCRTFLOAT80U const pr80Val1Org = pr80Val1;
|
---|
5891 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
|
---|
5892 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
|
---|
5893 | fFsw = iemAImpl_fmul_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
|
---|
5894 | }
|
---|
5895 | else
|
---|
5896 | {
|
---|
5897 | pFpuRes->r80Result = *pr80Val1;
|
---|
5898 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5899 | }
|
---|
5900 | fFsw |= X86_FSW_DE;
|
---|
5901 | }
|
---|
5902 | /* SoftFloat can handle the rest: */
|
---|
5903 | else
|
---|
5904 | fFsw = iemAImpl_fmul_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
|
---|
5905 |
|
---|
5906 | pFpuRes->FSW = fFsw;
|
---|
5907 | }
|
---|
5908 |
|
---|
5909 |
|
---|
5910 | EMIT_R80_BY_R64(iemAImpl_fmul_r80_by_r64, iemAImpl_fmul_r80_by_r80, 0)
|
---|
5911 | EMIT_R80_BY_R32(iemAImpl_fmul_r80_by_r32, iemAImpl_fmul_r80_by_r80, 0)
|
---|
5912 | EMIT_R80_BY_I32(iemAImpl_fimul_r80_by_i32, iemAImpl_fmul_r80_by_r80)
|
---|
5913 | EMIT_R80_BY_I16(iemAImpl_fimul_r80_by_i16, iemAImpl_fmul_r80_by_r80)
|
---|
5914 |
|
---|
5915 |
|
---|
5916 | /*********************************************************************************************************************************
|
---|
5917 | * x87 FPU Addition *
|
---|
5918 | *********************************************************************************************************************************/
|
---|
5919 |
|
---|
5920 | /** Worker for iemAImpl_fadd_r80_by_r80. */
|
---|
5921 | static uint16_t iemAImpl_fadd_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result,
|
---|
5922 | uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org)
|
---|
5923 | {
|
---|
5924 | softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
|
---|
5925 | extFloat80_t r80XResult = extF80_add(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState);
|
---|
5926 | return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org);
|
---|
5927 | }
|
---|
5928 |
|
---|
5929 |
|
---|
5930 | IEM_DECL_IMPL_DEF(void, iemAImpl_fadd_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
5931 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
5932 | {
|
---|
5933 | uint16_t const fFcw = pFpuState->FCW;
|
---|
5934 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
|
---|
5935 |
|
---|
5936 | /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
|
---|
5937 | if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
|
---|
5938 | {
|
---|
5939 | if (fFcw & X86_FCW_IM)
|
---|
5940 | pFpuRes->r80Result = g_r80Indefinite;
|
---|
5941 | else
|
---|
5942 | {
|
---|
5943 | pFpuRes->r80Result = *pr80Val1;
|
---|
5944 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5945 | }
|
---|
5946 | fFsw |= X86_FSW_IE;
|
---|
5947 | }
|
---|
5948 | /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */
|
---|
5949 | else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2))
|
---|
5950 | || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) )
|
---|
5951 | {
|
---|
5952 | if (fFcw & X86_FCW_DM)
|
---|
5953 | {
|
---|
5954 | PCRTFLOAT80U const pr80Val1Org = pr80Val1;
|
---|
5955 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
|
---|
5956 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
|
---|
5957 | fFsw = iemAImpl_fadd_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
|
---|
5958 | }
|
---|
5959 | else
|
---|
5960 | {
|
---|
5961 | pFpuRes->r80Result = *pr80Val1;
|
---|
5962 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
5963 | }
|
---|
5964 | fFsw |= X86_FSW_DE;
|
---|
5965 | }
|
---|
5966 | /* SoftFloat can handle the rest: */
|
---|
5967 | else
|
---|
5968 | fFsw = iemAImpl_fadd_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
|
---|
5969 |
|
---|
5970 | pFpuRes->FSW = fFsw;
|
---|
5971 | }
|
---|
5972 |
|
---|
5973 |
|
---|
5974 | EMIT_R80_BY_R64(iemAImpl_fadd_r80_by_r64, iemAImpl_fadd_r80_by_r80, 0)
|
---|
5975 | EMIT_R80_BY_R32(iemAImpl_fadd_r80_by_r32, iemAImpl_fadd_r80_by_r80, 0)
|
---|
5976 | EMIT_R80_BY_I32(iemAImpl_fiadd_r80_by_i32, iemAImpl_fadd_r80_by_r80)
|
---|
5977 | EMIT_R80_BY_I16(iemAImpl_fiadd_r80_by_i16, iemAImpl_fadd_r80_by_r80)
|
---|
5978 |
|
---|
5979 |
|
---|
5980 | /*********************************************************************************************************************************
|
---|
5981 | * x87 FPU Subtraction *
|
---|
5982 | *********************************************************************************************************************************/
|
---|
5983 |
|
---|
5984 | /** Worker for iemAImpl_fsub_r80_by_r80 and iemAImpl_fsubr_r80_by_r80. */
|
---|
5985 | static uint16_t iemAImpl_fsub_f80_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, PRTFLOAT80U pr80Result,
|
---|
5986 | uint16_t fFcw, uint16_t fFsw, PCRTFLOAT80U pr80Val1Org)
|
---|
5987 | {
|
---|
5988 | softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
|
---|
5989 | extFloat80_t r80XResult = extF80_sub(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState);
|
---|
5990 | return iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, pr80Result, fFcw, fFsw, pr80Val1Org);
|
---|
5991 | }
|
---|
5992 |
|
---|
5993 |
|
---|
5994 | IEM_DECL_IMPL_DEF(void, iemAImpl_fsub_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
5995 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
5996 | {
|
---|
5997 | uint16_t const fFcw = pFpuState->FCW;
|
---|
5998 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
|
---|
5999 |
|
---|
6000 | /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
|
---|
6001 | if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
|
---|
6002 | {
|
---|
6003 | if (fFcw & X86_FCW_IM)
|
---|
6004 | pFpuRes->r80Result = g_r80Indefinite;
|
---|
6005 | else
|
---|
6006 | {
|
---|
6007 | pFpuRes->r80Result = *pr80Val1;
|
---|
6008 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6009 | }
|
---|
6010 | fFsw |= X86_FSW_IE;
|
---|
6011 | }
|
---|
6012 | /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */
|
---|
6013 | else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2))
|
---|
6014 | || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) )
|
---|
6015 | {
|
---|
6016 | if (fFcw & X86_FCW_DM)
|
---|
6017 | {
|
---|
6018 | PCRTFLOAT80U const pr80Val1Org = pr80Val1;
|
---|
6019 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
|
---|
6020 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
|
---|
6021 | fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
|
---|
6022 | }
|
---|
6023 | else
|
---|
6024 | {
|
---|
6025 | pFpuRes->r80Result = *pr80Val1;
|
---|
6026 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6027 | }
|
---|
6028 | fFsw |= X86_FSW_DE;
|
---|
6029 | }
|
---|
6030 | /* SoftFloat can handle the rest: */
|
---|
6031 | else
|
---|
6032 | fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val1, pr80Val2, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
|
---|
6033 |
|
---|
6034 | pFpuRes->FSW = fFsw;
|
---|
6035 | }
|
---|
6036 |
|
---|
6037 |
|
---|
6038 | EMIT_R80_BY_R64(iemAImpl_fsub_r80_by_r64, iemAImpl_fsub_r80_by_r80, 0)
|
---|
6039 | EMIT_R80_BY_R32(iemAImpl_fsub_r80_by_r32, iemAImpl_fsub_r80_by_r80, 0)
|
---|
6040 | EMIT_R80_BY_I32(iemAImpl_fisub_r80_by_i32, iemAImpl_fsub_r80_by_r80)
|
---|
6041 | EMIT_R80_BY_I16(iemAImpl_fisub_r80_by_i16, iemAImpl_fsub_r80_by_r80)
|
---|
6042 |
|
---|
6043 |
|
---|
6044 | /* Same as iemAImpl_fsub_r80_by_r80, but with input operands switched. */
|
---|
6045 | IEM_DECL_IMPL_DEF(void, iemAImpl_fsubr_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
6046 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6047 | {
|
---|
6048 | uint16_t const fFcw = pFpuState->FCW;
|
---|
6049 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
|
---|
6050 |
|
---|
6051 | /* SoftFloat does not check for Pseudo-Infinity, Pseudo-Nan and Unnormals. */
|
---|
6052 | if (RTFLOAT80U_IS_387_INVALID(pr80Val1) || RTFLOAT80U_IS_387_INVALID(pr80Val2))
|
---|
6053 | {
|
---|
6054 | if (fFcw & X86_FCW_IM)
|
---|
6055 | pFpuRes->r80Result = g_r80Indefinite;
|
---|
6056 | else
|
---|
6057 | {
|
---|
6058 | pFpuRes->r80Result = *pr80Val1;
|
---|
6059 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6060 | }
|
---|
6061 | fFsw |= X86_FSW_IE;
|
---|
6062 | }
|
---|
6063 | /* SoftFloat does not check for denormals and certainly not report them to us. NaNs trumps denormals. */
|
---|
6064 | else if ( (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val1) && !RTFLOAT80U_IS_NAN(pr80Val2))
|
---|
6065 | || (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val2) && !RTFLOAT80U_IS_NAN(pr80Val1)) )
|
---|
6066 | {
|
---|
6067 | if (fFcw & X86_FCW_DM)
|
---|
6068 | {
|
---|
6069 | PCRTFLOAT80U const pr80Val1Org = pr80Val1;
|
---|
6070 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val1, r80Val1Normalized);
|
---|
6071 | IEM_NORMALIZE_PSEUDO_DENORMAL(pr80Val2, r80Val2Normalized);
|
---|
6072 | fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1Org);
|
---|
6073 | }
|
---|
6074 | else
|
---|
6075 | {
|
---|
6076 | pFpuRes->r80Result = *pr80Val1;
|
---|
6077 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6078 | }
|
---|
6079 | fFsw |= X86_FSW_DE;
|
---|
6080 | }
|
---|
6081 | /* SoftFloat can handle the rest: */
|
---|
6082 | else
|
---|
6083 | fFsw = iemAImpl_fsub_f80_r80_worker(pr80Val2, pr80Val1, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
|
---|
6084 |
|
---|
6085 | pFpuRes->FSW = fFsw;
|
---|
6086 | }
|
---|
6087 |
|
---|
6088 |
|
---|
6089 | EMIT_R80_BY_R64(iemAImpl_fsubr_r80_by_r64, iemAImpl_fsubr_r80_by_r80, 0)
|
---|
6090 | EMIT_R80_BY_R32(iemAImpl_fsubr_r80_by_r32, iemAImpl_fsubr_r80_by_r80, 0)
|
---|
6091 | EMIT_R80_BY_I32(iemAImpl_fisubr_r80_by_i32, iemAImpl_fsubr_r80_by_r80)
|
---|
6092 | EMIT_R80_BY_I16(iemAImpl_fisubr_r80_by_i16, iemAImpl_fsubr_r80_by_r80)
|
---|
6093 |
|
---|
6094 |
|
---|
6095 | /*********************************************************************************************************************************
|
---|
6096 | * x87 FPU Trigometric Operations *
|
---|
6097 | *********************************************************************************************************************************/
|
---|
6098 |
|
---|
6099 |
|
---|
6100 | IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
6101 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6102 | {
|
---|
6103 | RT_NOREF(pFpuState, pFpuRes, pr80Val1, pr80Val2);
|
---|
6104 | AssertReleaseFailed();
|
---|
6105 | }
|
---|
6106 |
|
---|
6107 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
6108 |
|
---|
6109 | IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
6110 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6111 | {
|
---|
6112 | iemAImpl_fpatan_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
|
---|
6113 | }
|
---|
6114 |
|
---|
6115 | IEM_DECL_IMPL_DEF(void, iemAImpl_fpatan_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
6116 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6117 | {
|
---|
6118 | iemAImpl_fpatan_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
|
---|
6119 | }
|
---|
6120 |
|
---|
6121 |
|
---|
6122 | #if defined(IEM_WITHOUT_ASSEMBLY)
|
---|
6123 | IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
|
---|
6124 | {
|
---|
6125 | RT_NOREF(pFpuState, pFpuResTwo, pr80Val);
|
---|
6126 | AssertReleaseFailed();
|
---|
6127 | }
|
---|
6128 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
6129 |
|
---|
6130 | IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
|
---|
6131 | {
|
---|
6132 | iemAImpl_fptan_r80_r80(pFpuState, pFpuResTwo, pr80Val);
|
---|
6133 | }
|
---|
6134 |
|
---|
6135 | IEM_DECL_IMPL_DEF(void, iemAImpl_fptan_r80_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
|
---|
6136 | {
|
---|
6137 | iemAImpl_fptan_r80_r80(pFpuState, pFpuResTwo, pr80Val);
|
---|
6138 | }
|
---|
6139 |
|
---|
6140 |
|
---|
6141 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
6142 | IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6143 | {
|
---|
6144 | RT_NOREF(pFpuState, pFpuRes, pr80Val);
|
---|
6145 | AssertReleaseFailed();
|
---|
6146 | }
|
---|
6147 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
6148 |
|
---|
6149 | IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6150 | {
|
---|
6151 | iemAImpl_fsin_r80(pFpuState, pFpuRes, pr80Val);
|
---|
6152 | }
|
---|
6153 |
|
---|
6154 | IEM_DECL_IMPL_DEF(void, iemAImpl_fsin_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6155 | {
|
---|
6156 | iemAImpl_fsin_r80(pFpuState, pFpuRes, pr80Val);
|
---|
6157 | }
|
---|
6158 |
|
---|
6159 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
6160 | IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
|
---|
6161 | {
|
---|
6162 | RT_NOREF(pFpuState, pFpuResTwo, pr80Val);
|
---|
6163 | AssertReleaseFailed();
|
---|
6164 | }
|
---|
6165 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
6166 |
|
---|
6167 | IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
|
---|
6168 | {
|
---|
6169 | iemAImpl_fsincos_r80_r80(pFpuState, pFpuResTwo, pr80Val);
|
---|
6170 | }
|
---|
6171 |
|
---|
6172 | IEM_DECL_IMPL_DEF(void, iemAImpl_fsincos_r80_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
|
---|
6173 | {
|
---|
6174 | iemAImpl_fsincos_r80_r80(pFpuState, pFpuResTwo, pr80Val);
|
---|
6175 | }
|
---|
6176 |
|
---|
6177 |
|
---|
6178 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
6179 | IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6180 | {
|
---|
6181 | RT_NOREF(pFpuState, pFpuRes, pr80Val);
|
---|
6182 | AssertReleaseFailed();
|
---|
6183 | }
|
---|
6184 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
6185 |
|
---|
6186 | IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6187 | {
|
---|
6188 | iemAImpl_fcos_r80(pFpuState, pFpuRes, pr80Val);
|
---|
6189 | }
|
---|
6190 |
|
---|
6191 | IEM_DECL_IMPL_DEF(void, iemAImpl_fcos_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6192 | {
|
---|
6193 | iemAImpl_fcos_r80(pFpuState, pFpuRes, pr80Val);
|
---|
6194 | }
|
---|
6195 |
|
---|
6196 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
6197 |
|
---|
6198 |
|
---|
6199 | /*********************************************************************************************************************************
|
---|
6200 | * x87 FPU Compare and Testing Operations *
|
---|
6201 | *********************************************************************************************************************************/
|
---|
6202 |
|
---|
6203 | IEM_DECL_IMPL_DEF(void, iemAImpl_ftst_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val))
|
---|
6204 | {
|
---|
6205 | uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT);
|
---|
6206 |
|
---|
6207 | if (RTFLOAT80U_IS_ZERO(pr80Val))
|
---|
6208 | fFsw |= X86_FSW_C3;
|
---|
6209 | else if (RTFLOAT80U_IS_NORMAL(pr80Val) || RTFLOAT80U_IS_INF(pr80Val))
|
---|
6210 | fFsw |= pr80Val->s.fSign ? X86_FSW_C0 : 0;
|
---|
6211 | else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val))
|
---|
6212 | {
|
---|
6213 | fFsw |= pr80Val->s.fSign ? X86_FSW_C0 | X86_FSW_DE : X86_FSW_DE;
|
---|
6214 | if (!(pFpuState->FCW & X86_FCW_DM))
|
---|
6215 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6216 | }
|
---|
6217 | else
|
---|
6218 | {
|
---|
6219 | fFsw |= X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3 | X86_FSW_IE;
|
---|
6220 | if (!(pFpuState->FCW & X86_FCW_IM))
|
---|
6221 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6222 | }
|
---|
6223 |
|
---|
6224 | *pu16Fsw = fFsw;
|
---|
6225 | }
|
---|
6226 |
|
---|
6227 |
|
---|
6228 | IEM_DECL_IMPL_DEF(void, iemAImpl_fxam_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val))
|
---|
6229 | {
|
---|
6230 | RT_NOREF(pFpuState);
|
---|
6231 | uint16_t fFsw = (7 << X86_FSW_TOP_SHIFT);
|
---|
6232 |
|
---|
6233 | /* C1 = sign bit (always, even if empty Intel says). */
|
---|
6234 | if (pr80Val->s.fSign)
|
---|
6235 | fFsw |= X86_FSW_C1;
|
---|
6236 |
|
---|
6237 | /* Classify the value in C0, C2, C3. */
|
---|
6238 | if (!(pFpuState->FTW & RT_BIT_32(X86_FSW_TOP_GET(pFpuState->FSW))))
|
---|
6239 | fFsw |= X86_FSW_C0 | X86_FSW_C3; /* empty */
|
---|
6240 | else if (RTFLOAT80U_IS_NORMAL(pr80Val))
|
---|
6241 | fFsw |= X86_FSW_C2;
|
---|
6242 | else if (RTFLOAT80U_IS_ZERO(pr80Val))
|
---|
6243 | fFsw |= X86_FSW_C3;
|
---|
6244 | else if (RTFLOAT80U_IS_QUIET_OR_SIGNALLING_NAN(pr80Val))
|
---|
6245 | fFsw |= X86_FSW_C0;
|
---|
6246 | else if (RTFLOAT80U_IS_INF(pr80Val))
|
---|
6247 | fFsw |= X86_FSW_C0 | X86_FSW_C2;
|
---|
6248 | else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val))
|
---|
6249 | fFsw |= X86_FSW_C2 | X86_FSW_C3;
|
---|
6250 | /* whatever else: 0 */
|
---|
6251 |
|
---|
6252 | *pu16Fsw = fFsw;
|
---|
6253 | }
|
---|
6254 |
|
---|
6255 |
|
---|
6256 | /**
|
---|
6257 | * Worker for fcom, fucom, and friends.
|
---|
6258 | */
|
---|
6259 | static uint16_t iemAImpl_fcom_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2,
|
---|
6260 | uint16_t fFcw, uint16_t fFsw, bool fIeOnAllNaNs)
|
---|
6261 | {
|
---|
6262 | /*
|
---|
6263 | * Unpack the values.
|
---|
6264 | */
|
---|
6265 | bool const fSign1 = pr80Val1->s.fSign;
|
---|
6266 | int32_t iExponent1 = pr80Val1->s.uExponent;
|
---|
6267 | uint64_t uMantissa1 = pr80Val1->s.uMantissa;
|
---|
6268 |
|
---|
6269 | bool const fSign2 = pr80Val2->s.fSign;
|
---|
6270 | int32_t iExponent2 = pr80Val2->s.uExponent;
|
---|
6271 | uint64_t uMantissa2 = pr80Val2->s.uMantissa;
|
---|
6272 |
|
---|
6273 | /*
|
---|
6274 | * Check for invalid inputs.
|
---|
6275 | */
|
---|
6276 | if ( RTFLOAT80U_IS_387_INVALID_EX(uMantissa1, iExponent1)
|
---|
6277 | || RTFLOAT80U_IS_387_INVALID_EX(uMantissa2, iExponent2))
|
---|
6278 | {
|
---|
6279 | if (!(fFcw & X86_FCW_IM))
|
---|
6280 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6281 | return fFsw | X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3 | X86_FSW_IE;
|
---|
6282 | }
|
---|
6283 |
|
---|
6284 | /*
|
---|
6285 | * Check for NaNs and indefinites, they are all unordered and trumps #DE.
|
---|
6286 | */
|
---|
6287 | if ( RTFLOAT80U_IS_INDEFINITE_OR_QUIET_OR_SIGNALLING_NAN_EX(uMantissa1, iExponent1)
|
---|
6288 | || RTFLOAT80U_IS_INDEFINITE_OR_QUIET_OR_SIGNALLING_NAN_EX(uMantissa2, iExponent2))
|
---|
6289 | {
|
---|
6290 | if ( fIeOnAllNaNs
|
---|
6291 | || RTFLOAT80U_IS_SIGNALLING_NAN_EX(uMantissa1, iExponent1)
|
---|
6292 | || RTFLOAT80U_IS_SIGNALLING_NAN_EX(uMantissa2, iExponent2))
|
---|
6293 | {
|
---|
6294 | fFsw |= X86_FSW_IE;
|
---|
6295 | if (!(fFcw & X86_FCW_IM))
|
---|
6296 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6297 | }
|
---|
6298 | return fFsw | X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3;
|
---|
6299 | }
|
---|
6300 |
|
---|
6301 | /*
|
---|
6302 | * Normalize the values.
|
---|
6303 | */
|
---|
6304 | if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL_EX(uMantissa1, iExponent1))
|
---|
6305 | {
|
---|
6306 | if (RTFLOAT80U_IS_PSEUDO_DENORMAL_EX(uMantissa1, iExponent1))
|
---|
6307 | iExponent1 = 1;
|
---|
6308 | else
|
---|
6309 | {
|
---|
6310 | iExponent1 = 64 - ASMBitLastSetU64(uMantissa1);
|
---|
6311 | uMantissa1 <<= iExponent1;
|
---|
6312 | iExponent1 = 1 - iExponent1;
|
---|
6313 | }
|
---|
6314 | fFsw |= X86_FSW_DE;
|
---|
6315 | if (!(fFcw & X86_FCW_DM))
|
---|
6316 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6317 | }
|
---|
6318 |
|
---|
6319 | if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL_EX(uMantissa2, iExponent2))
|
---|
6320 | {
|
---|
6321 | if (RTFLOAT80U_IS_PSEUDO_DENORMAL_EX(uMantissa2, iExponent2))
|
---|
6322 | iExponent2 = 1;
|
---|
6323 | else
|
---|
6324 | {
|
---|
6325 | iExponent2 = 64 - ASMBitLastSetU64(uMantissa2);
|
---|
6326 | uMantissa2 <<= iExponent2;
|
---|
6327 | iExponent2 = 1 - iExponent2;
|
---|
6328 | }
|
---|
6329 | fFsw |= X86_FSW_DE;
|
---|
6330 | if (!(fFcw & X86_FCW_DM))
|
---|
6331 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6332 | }
|
---|
6333 |
|
---|
6334 | /*
|
---|
6335 | * Test if equal (val1 == val2):
|
---|
6336 | */
|
---|
6337 | if ( uMantissa1 == uMantissa2
|
---|
6338 | && iExponent1 == iExponent2
|
---|
6339 | && ( fSign1 == fSign2
|
---|
6340 | || (uMantissa1 == 0 && iExponent1 == 0) /* ignore sign for zero */ ) )
|
---|
6341 | fFsw |= X86_FSW_C3;
|
---|
6342 | /*
|
---|
6343 | * Test if less than (val1 < val2):
|
---|
6344 | */
|
---|
6345 | else if (fSign1 && !fSign2)
|
---|
6346 | fFsw |= X86_FSW_C0;
|
---|
6347 | else if (fSign1 == fSign2)
|
---|
6348 | {
|
---|
6349 | /* Zeros are problematic, however at the most one can be zero here. */
|
---|
6350 | if (RTFLOAT80U_IS_ZERO_EX(uMantissa1, iExponent1))
|
---|
6351 | return !fSign1 ? fFsw | X86_FSW_C0 : fFsw;
|
---|
6352 | if (RTFLOAT80U_IS_ZERO_EX(uMantissa2, iExponent2))
|
---|
6353 | return fSign1 ? fFsw | X86_FSW_C0 : fFsw;
|
---|
6354 |
|
---|
6355 | if ( fSign1
|
---|
6356 | ^ ( iExponent1 < iExponent2
|
---|
6357 | || ( iExponent1 == iExponent2
|
---|
6358 | && uMantissa1 < uMantissa2 ) ) )
|
---|
6359 | fFsw |= X86_FSW_C0;
|
---|
6360 | }
|
---|
6361 | /* else: No flags set if greater. */
|
---|
6362 |
|
---|
6363 | return fFsw;
|
---|
6364 | }
|
---|
6365 |
|
---|
6366 |
|
---|
6367 | IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
|
---|
6368 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6369 | {
|
---|
6370 | *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, 6 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/);
|
---|
6371 | }
|
---|
6372 |
|
---|
6373 |
|
---|
6374 |
|
---|
6375 |
|
---|
6376 | IEM_DECL_IMPL_DEF(void, iemAImpl_fucom_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
|
---|
6377 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6378 | {
|
---|
6379 | *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, 6 << X86_FSW_TOP_SHIFT, false /*fIeOnAllNaNs*/);
|
---|
6380 | }
|
---|
6381 |
|
---|
6382 |
|
---|
6383 | IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r64,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
|
---|
6384 | PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2))
|
---|
6385 | {
|
---|
6386 | RTFLOAT80U r80Val2;
|
---|
6387 | uint16_t fFsw = iemAImplConvertR64ToR80(pr64Val2, &r80Val2);
|
---|
6388 | Assert(!fFsw || fFsw == X86_FSW_DE);
|
---|
6389 | *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, &r80Val2, pFpuState->FCW, 7 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/);
|
---|
6390 | if (fFsw != 0 && !(*pfFsw & X86_FSW_IE))
|
---|
6391 | {
|
---|
6392 | if (!(pFpuState->FCW & X86_FCW_DM))
|
---|
6393 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6394 | *pfFsw |= fFsw;
|
---|
6395 | }
|
---|
6396 | }
|
---|
6397 |
|
---|
6398 |
|
---|
6399 | IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r32,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
|
---|
6400 | PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2))
|
---|
6401 | {
|
---|
6402 | RTFLOAT80U r80Val2;
|
---|
6403 | uint16_t fFsw = iemAImplConvertR32ToR80(pr32Val2, &r80Val2);
|
---|
6404 | Assert(!fFsw || fFsw == X86_FSW_DE);
|
---|
6405 | *pfFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, &r80Val2, pFpuState->FCW, 7 << X86_FSW_TOP_SHIFT, true /*fIeOnAllNaNs*/);
|
---|
6406 | if (fFsw != 0 && !(*pfFsw & X86_FSW_IE))
|
---|
6407 | {
|
---|
6408 | if (!(pFpuState->FCW & X86_FCW_DM))
|
---|
6409 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6410 | *pfFsw |= fFsw;
|
---|
6411 | }
|
---|
6412 | }
|
---|
6413 |
|
---|
6414 |
|
---|
6415 | IEM_DECL_IMPL_DEF(void, iemAImpl_ficom_r80_by_i32,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
|
---|
6416 | PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2))
|
---|
6417 | {
|
---|
6418 | RTFLOAT80U r80Val2;
|
---|
6419 | iemAImpl_fcom_r80_by_r80(pFpuState, pfFsw, pr80Val1, iemAImplConvertI32ToR80(*pi32Val2, &r80Val2));
|
---|
6420 | *pfFsw = (*pfFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT);
|
---|
6421 | }
|
---|
6422 |
|
---|
6423 |
|
---|
6424 | IEM_DECL_IMPL_DEF(void, iemAImpl_ficom_r80_by_i16,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
|
---|
6425 | PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2))
|
---|
6426 | {
|
---|
6427 | RTFLOAT80U r80Val2;
|
---|
6428 | iemAImpl_fcom_r80_by_r80(pFpuState, pfFsw, pr80Val1, iemAImplConvertI16ToR80(*pi16Val2, &r80Val2));
|
---|
6429 | *pfFsw = (*pfFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT);
|
---|
6430 | }
|
---|
6431 |
|
---|
6432 |
|
---|
6433 | /**
|
---|
6434 | * Worker for fcomi & fucomi.
|
---|
6435 | */
|
---|
6436 | static uint32_t iemAImpl_fcomi_r80_by_r80_worker(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2,
|
---|
6437 | uint16_t fFcw, uint16_t fFswIn, bool fIeOnAllNaNs, uint16_t *pfFsw)
|
---|
6438 | {
|
---|
6439 | uint16_t fFsw = iemAImpl_fcom_r80_by_r80_worker(pr80Val1, pr80Val2, fFcw, 6 << X86_FSW_TOP_SHIFT, fIeOnAllNaNs);
|
---|
6440 | uint32_t fEflags = ((fFsw & X86_FSW_C3) >> (X86_FSW_C3_BIT - X86_EFL_ZF_BIT))
|
---|
6441 | | ((fFsw & X86_FSW_C2) >> (X86_FSW_C2_BIT - X86_EFL_PF_BIT))
|
---|
6442 | | ((fFsw & X86_FSW_C0) >> (X86_FSW_C0_BIT - X86_EFL_CF_BIT));
|
---|
6443 |
|
---|
6444 | /* Note! C1 is not cleared as per docs! Everything is preserved. */
|
---|
6445 | *pfFsw = (fFsw & ~X86_FSW_C_MASK) | (fFswIn & X86_FSW_C_MASK);
|
---|
6446 | return fEflags | X86_EFL_IF | X86_EFL_RA1_MASK;
|
---|
6447 | }
|
---|
6448 |
|
---|
6449 |
|
---|
6450 | IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_fcomi_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
|
---|
6451 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6452 | {
|
---|
6453 | return iemAImpl_fcomi_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, pFpuState->FSW, true /*fIeOnAllNaNs*/, pfFsw);
|
---|
6454 | }
|
---|
6455 |
|
---|
6456 |
|
---|
6457 | IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_fucomi_r80_by_r80,(PCX86FXSTATE pFpuState, uint16_t *pfFsw,
|
---|
6458 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6459 | {
|
---|
6460 | return iemAImpl_fcomi_r80_by_r80_worker(pr80Val1, pr80Val2, pFpuState->FCW, pFpuState->FSW, false /*fIeOnAllNaNs*/, pfFsw);
|
---|
6461 | }
|
---|
6462 |
|
---|
6463 |
|
---|
6464 | /*********************************************************************************************************************************
|
---|
6465 | * x87 FPU Other Operations *
|
---|
6466 | *********************************************************************************************************************************/
|
---|
6467 |
|
---|
6468 | /**
|
---|
6469 | * Helper for iemAImpl_frndint_r80, called both on normal and denormal numbers.
|
---|
6470 | */
|
---|
6471 | static uint16_t iemAImpl_frndint_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw)
|
---|
6472 | {
|
---|
6473 | softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
|
---|
6474 | iemFpuSoftF80ToIprt(pr80Result, extF80_roundToInt(iemFpuSoftF80FromIprt(pr80Val), SoftState.roundingMode,
|
---|
6475 | true /*exact / generate #PE */, &SoftState));
|
---|
6476 | return IEM_SOFTFLOAT_STATE_TO_FSW(fFsw, &SoftState, fFcw);
|
---|
6477 | }
|
---|
6478 |
|
---|
6479 |
|
---|
6480 | IEM_DECL_IMPL_DEF(void, iemAImpl_frndint_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6481 | {
|
---|
6482 | uint16_t const fFcw = pFpuState->FCW;
|
---|
6483 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
|
---|
6484 |
|
---|
6485 | if (RTFLOAT80U_IS_NORMAL(pr80Val))
|
---|
6486 | fFsw = iemAImpl_frndint_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
|
---|
6487 | else if ( RTFLOAT80U_IS_ZERO(pr80Val)
|
---|
6488 | || RTFLOAT80U_IS_QUIET_NAN(pr80Val)
|
---|
6489 | || RTFLOAT80U_IS_INDEFINITE(pr80Val)
|
---|
6490 | || RTFLOAT80U_IS_INF(pr80Val))
|
---|
6491 | pFpuRes->r80Result = *pr80Val;
|
---|
6492 | else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val))
|
---|
6493 | {
|
---|
6494 | fFsw |= X86_FSW_DE;
|
---|
6495 | if (fFcw & X86_FCW_DM)
|
---|
6496 | fFsw = iemAImpl_frndint_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
|
---|
6497 | else
|
---|
6498 | {
|
---|
6499 | pFpuRes->r80Result = *pr80Val;
|
---|
6500 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6501 | }
|
---|
6502 | }
|
---|
6503 | else
|
---|
6504 | {
|
---|
6505 | if (fFcw & X86_FCW_IM)
|
---|
6506 | {
|
---|
6507 | if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val))
|
---|
6508 | pFpuRes->r80Result = g_r80Indefinite;
|
---|
6509 | else
|
---|
6510 | {
|
---|
6511 | pFpuRes->r80Result = *pr80Val;
|
---|
6512 | pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */
|
---|
6513 | }
|
---|
6514 | }
|
---|
6515 | else
|
---|
6516 | {
|
---|
6517 | pFpuRes->r80Result = *pr80Val;
|
---|
6518 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6519 | }
|
---|
6520 | fFsw |= X86_FSW_IE;
|
---|
6521 | }
|
---|
6522 | pFpuRes->FSW = fFsw;
|
---|
6523 | }
|
---|
6524 |
|
---|
6525 |
|
---|
6526 | IEM_DECL_IMPL_DEF(void, iemAImpl_fscale_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
6527 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6528 | {
|
---|
6529 | /* The SoftFloat worker function extF80_scale_extF80 is of our creation, so
|
---|
6530 | it does everything we need it to do. */
|
---|
6531 | uint16_t const fFcw = pFpuState->FCW;
|
---|
6532 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
|
---|
6533 | softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
|
---|
6534 | extFloat80_t r80XResult = extF80_scale_extF80(iemFpuSoftF80FromIprt(pr80Val1), iemFpuSoftF80FromIprt(pr80Val2), &SoftState);
|
---|
6535 | pFpuRes->FSW = iemFpuSoftStateAndF80ToFswAndIprtResult(&SoftState, r80XResult, &pFpuRes->r80Result, fFcw, fFsw, pr80Val1);
|
---|
6536 | }
|
---|
6537 |
|
---|
6538 |
|
---|
6539 | /**
|
---|
6540 | * Helper for iemAImpl_fsqrt_r80, called both on normal and denormal numbers.
|
---|
6541 | */
|
---|
6542 | static uint16_t iemAImpl_fsqrt_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw)
|
---|
6543 | {
|
---|
6544 | Assert(!pr80Val->s.fSign);
|
---|
6545 | softfloat_state_t SoftState = IEM_SOFTFLOAT_STATE_INITIALIZER_FROM_FCW(fFcw);
|
---|
6546 | iemFpuSoftF80ToIprt(pr80Result, extF80_sqrt(iemFpuSoftF80FromIprt(pr80Val), &SoftState));
|
---|
6547 | return IEM_SOFTFLOAT_STATE_TO_FSW(fFsw, &SoftState, fFcw);
|
---|
6548 | }
|
---|
6549 |
|
---|
6550 |
|
---|
6551 | IEM_DECL_IMPL_DEF(void, iemAImpl_fsqrt_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6552 | {
|
---|
6553 | uint16_t const fFcw = pFpuState->FCW;
|
---|
6554 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
|
---|
6555 |
|
---|
6556 | if (RTFLOAT80U_IS_NORMAL(pr80Val) && !pr80Val->s.fSign)
|
---|
6557 | fFsw = iemAImpl_fsqrt_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
|
---|
6558 | else if ( RTFLOAT80U_IS_ZERO(pr80Val)
|
---|
6559 | || RTFLOAT80U_IS_QUIET_NAN(pr80Val)
|
---|
6560 | || RTFLOAT80U_IS_INDEFINITE(pr80Val)
|
---|
6561 | || (RTFLOAT80U_IS_INF(pr80Val) && !pr80Val->s.fSign))
|
---|
6562 | pFpuRes->r80Result = *pr80Val;
|
---|
6563 | else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val) && !pr80Val->s.fSign) /* Negative denormals only generate #IE! */
|
---|
6564 | {
|
---|
6565 | fFsw |= X86_FSW_DE;
|
---|
6566 | if (fFcw & X86_FCW_DM)
|
---|
6567 | fFsw = iemAImpl_fsqrt_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
|
---|
6568 | else
|
---|
6569 | {
|
---|
6570 | pFpuRes->r80Result = *pr80Val;
|
---|
6571 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6572 | }
|
---|
6573 | }
|
---|
6574 | else
|
---|
6575 | {
|
---|
6576 | if (fFcw & X86_FCW_IM)
|
---|
6577 | {
|
---|
6578 | if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val))
|
---|
6579 | pFpuRes->r80Result = g_r80Indefinite;
|
---|
6580 | else
|
---|
6581 | {
|
---|
6582 | pFpuRes->r80Result = *pr80Val;
|
---|
6583 | pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */
|
---|
6584 | }
|
---|
6585 | }
|
---|
6586 | else
|
---|
6587 | {
|
---|
6588 | pFpuRes->r80Result = *pr80Val;
|
---|
6589 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6590 | }
|
---|
6591 | fFsw |= X86_FSW_IE;
|
---|
6592 | }
|
---|
6593 | pFpuRes->FSW = fFsw;
|
---|
6594 | }
|
---|
6595 |
|
---|
6596 |
|
---|
6597 | /**
|
---|
6598 | * @code{.unparsed}
|
---|
6599 | * x x * ln2
|
---|
6600 | * f(x) = 2 - 1 = e - 1
|
---|
6601 | *
|
---|
6602 | * @endcode
|
---|
6603 | *
|
---|
6604 | * We can approximate e^x by a Taylor/Maclaurin series (see
|
---|
6605 | * https://en.wikipedia.org/wiki/Taylor_series#Exponential_function):
|
---|
6606 | * @code{.unparsed}
|
---|
6607 | * n 0 1 2 3 4
|
---|
6608 | * inf x x x x x x
|
---|
6609 | * SUM ----- = --- + --- + --- + --- + --- + ...
|
---|
6610 | * n=0 n! 0! 1! 2! 3! 4!
|
---|
6611 | *
|
---|
6612 | * 2 3 4
|
---|
6613 | * x x x
|
---|
6614 | * = 1 + x + --- + --- + --- + ...
|
---|
6615 | * 2! 3! 4!
|
---|
6616 | * @endcode
|
---|
6617 | *
|
---|
6618 | * Given z = x * ln2, we get:
|
---|
6619 | * @code{.unparsed}
|
---|
6620 | * 2 3 4 n
|
---|
6621 | * z z z z z
|
---|
6622 | * e - 1 = z + --- + --- + --- + ... + ---
|
---|
6623 | * 2! 3! 4! n!
|
---|
6624 | * @endcode
|
---|
6625 | *
|
---|
6626 | * Wanting to use Horner's method, we move one z outside and get:
|
---|
6627 | * @code{.unparsed}
|
---|
6628 | * 2 3 (n-1)
|
---|
6629 | * z z z z
|
---|
6630 | * = z ( 1 + --- + --- + --- + ... + ------- )
|
---|
6631 | * 2! 3! 4! n!
|
---|
6632 | * @endcode
|
---|
6633 | *
|
---|
6634 | * The constants we need for using Horner's methods are 1 and 1 / n!.
|
---|
6635 | *
|
---|
6636 | * For very tiny x values, we can get away with f(x) = x * ln 2, because
|
---|
6637 | * because we don't have the necessary precision to represent 1.0 + z/3 + ...
|
---|
6638 | * and can approximate it to be 1.0. For a visual demonstration of this
|
---|
6639 | * check out https://www.desmos.com/calculator/vidcdxizd9 (for as long
|
---|
6640 | * as it valid), plotting f(x) = 2^x - 1 and f(x) = x * ln2.
|
---|
6641 | *
|
---|
6642 | *
|
---|
6643 | * As constant accuracy goes, figure 0.1 "80387 Block Diagram" in the "80387
|
---|
6644 | * Data Sheet" (order 231920-002; Appendix E in 80387 PRM 231917-001; Military
|
---|
6645 | * i387SX 271166-002), indicates that constants are 67-bit (constant rom block)
|
---|
6646 | * and the internal mantissa size is 68-bit (mantissa adder & barrel shifter
|
---|
6647 | * blocks). (The one bit difference is probably an implicit one missing from
|
---|
6648 | * the constant ROM.) A paper on division and sqrt on the AMD-K7 by Stuart F.
|
---|
6649 | * Oberman states that it internally used a 68 bit mantissa with a 18-bit
|
---|
6650 | * exponent.
|
---|
6651 | *
|
---|
6652 | * However, even when sticking to 67 constants / 68 mantissas, I have not yet
|
---|
6653 | * successfully reproduced the exact results from an Intel 10980XE, there is
|
---|
6654 | * always a portition of rounding differences. Not going to spend too much time
|
---|
6655 | * on getting this 100% the same, at least not now.
|
---|
6656 | *
|
---|
6657 | * P.S. If someone are really curious about 8087 and its contstants:
|
---|
6658 | * http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html
|
---|
6659 | *
|
---|
6660 | *
|
---|
6661 | * @param pr80Val The exponent value (x), less than 1.0, greater than
|
---|
6662 | * -1.0 and not zero. This can be a normal, denormal
|
---|
6663 | * or pseudo-denormal value.
|
---|
6664 | * @param pr80Result Where to return the result.
|
---|
6665 | * @param fFcw FPU control word.
|
---|
6666 | * @param fFsw FPU status word.
|
---|
6667 | */
|
---|
6668 | static uint16_t iemAImpl_f2xm1_r80_normal(PCRTFLOAT80U pr80Val, PRTFLOAT80U pr80Result, uint16_t fFcw, uint16_t fFsw)
|
---|
6669 | {
|
---|
6670 | /* As mentioned above, we can skip the expensive polynomial calculation
|
---|
6671 | as it will be close enough to 1.0 that it makes no difference.
|
---|
6672 |
|
---|
6673 | The cutoff point for intel 10980XE is exponents >= -69. Intel
|
---|
6674 | also seems to be using a 67-bit or 68-bit constant value, and we get
|
---|
6675 | a smattering of rounding differences if we go for higher precision. */
|
---|
6676 | if (pr80Val->s.uExponent <= RTFLOAT80U_EXP_BIAS - 69)
|
---|
6677 | {
|
---|
6678 | RTUINT256U u256;
|
---|
6679 | RTUInt128MulByU64Ex(&u256, &g_u128Ln2MantissaIntel, pr80Val->s.uMantissa);
|
---|
6680 | u256.QWords.qw0 |= 1; /* force #PE */
|
---|
6681 | fFsw = iemFpuFloat80RoundAndComposeFrom192(pr80Result, pr80Val->s.fSign, &u256,
|
---|
6682 | !RTFLOAT80U_IS_PSEUDO_DENORMAL(pr80Val) && !RTFLOAT80U_IS_DENORMAL(pr80Val)
|
---|
6683 | ? (int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS
|
---|
6684 | : 1 - RTFLOAT80U_EXP_BIAS,
|
---|
6685 | fFcw, fFsw);
|
---|
6686 | }
|
---|
6687 | else
|
---|
6688 | {
|
---|
6689 | #ifdef IEM_WITH_FLOAT128_FOR_FPU
|
---|
6690 | /* This approach is not good enough for small values, we end up with zero. */
|
---|
6691 | int const fOldRounding = iemFpuF128SetRounding(fFcw);
|
---|
6692 | _Float128 rd128Val = iemFpuF128FromFloat80(pr80Val, fFcw);
|
---|
6693 | _Float128 rd128Result = powf128(2.0L, rd128Val);
|
---|
6694 | rd128Result -= 1.0L;
|
---|
6695 | fFsw = iemFpuF128ToFloat80(pr80Result, rd128Result, fFcw, fFsw);
|
---|
6696 | iemFpuF128RestoreRounding(fOldRounding);
|
---|
6697 |
|
---|
6698 | # else
|
---|
6699 | softfloat_state_t SoftState = SOFTFLOAT_STATE_INIT_DEFAULTS();
|
---|
6700 | float128_t const x = iemFpuSoftF128FromFloat80(pr80Val);
|
---|
6701 |
|
---|
6702 | /* As mentioned above, enforce 68-bit internal mantissa width to better
|
---|
6703 | match the Intel 10980XE results. */
|
---|
6704 | unsigned const cPrecision = 68;
|
---|
6705 |
|
---|
6706 | /* first calculate z = x * ln2 */
|
---|
6707 | float128_t z = iemFpuSoftF128Precision(f128_mul(x, iemFpuSoftF128PrecisionIprt(&g_r128Ln2, cPrecision), &SoftState),
|
---|
6708 | cPrecision);
|
---|
6709 |
|
---|
6710 | /* Then do the polynomial evaluation. */
|
---|
6711 | float128_t r = iemFpuSoftF128HornerPoly(z, g_ar128F2xm1HornerConsts, RT_ELEMENTS(g_ar128F2xm1HornerConsts),
|
---|
6712 | cPrecision, &SoftState);
|
---|
6713 | r = f128_mul(z, r, &SoftState);
|
---|
6714 |
|
---|
6715 | /* Output the result. */
|
---|
6716 | fFsw = iemFpuSoftF128ToFloat80(pr80Result, r, fFcw, fFsw);
|
---|
6717 | # endif
|
---|
6718 | }
|
---|
6719 | return fFsw;
|
---|
6720 | }
|
---|
6721 |
|
---|
6722 |
|
---|
6723 | IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6724 | {
|
---|
6725 | uint16_t const fFcw = pFpuState->FCW;
|
---|
6726 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
|
---|
6727 |
|
---|
6728 | if (RTFLOAT80U_IS_NORMAL(pr80Val))
|
---|
6729 | {
|
---|
6730 | if (pr80Val->s.uExponent < RTFLOAT80U_EXP_BIAS)
|
---|
6731 | fFsw = iemAImpl_f2xm1_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
|
---|
6732 | else
|
---|
6733 | {
|
---|
6734 | /* Special case:
|
---|
6735 | 2^+1.0 - 1.0 = 1.0
|
---|
6736 | 2^-1.0 - 1.0 = -0.5 */
|
---|
6737 | if ( pr80Val->s.uExponent == RTFLOAT80U_EXP_BIAS
|
---|
6738 | && pr80Val->s.uMantissa == RT_BIT_64(63))
|
---|
6739 | {
|
---|
6740 | pFpuRes->r80Result.s.uMantissa = RT_BIT_64(63);
|
---|
6741 | pFpuRes->r80Result.s.uExponent = RTFLOAT80U_EXP_BIAS - pr80Val->s.fSign;
|
---|
6742 | pFpuRes->r80Result.s.fSign = pr80Val->s.fSign;
|
---|
6743 | }
|
---|
6744 | /* ST(0) > 1.0 || ST(0) < -1.0: undefined behavior */
|
---|
6745 | /** @todo 287 is documented to only accept values 0 <= ST(0) <= 0.5. */
|
---|
6746 | else
|
---|
6747 | pFpuRes->r80Result = *pr80Val;
|
---|
6748 | fFsw |= X86_FSW_PE;
|
---|
6749 | if (!(fFcw & X86_FCW_PM))
|
---|
6750 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6751 | }
|
---|
6752 | }
|
---|
6753 | else if ( RTFLOAT80U_IS_ZERO(pr80Val)
|
---|
6754 | || RTFLOAT80U_IS_QUIET_NAN(pr80Val)
|
---|
6755 | || RTFLOAT80U_IS_INDEFINITE(pr80Val))
|
---|
6756 | pFpuRes->r80Result = *pr80Val;
|
---|
6757 | else if (RTFLOAT80U_IS_INF(pr80Val))
|
---|
6758 | pFpuRes->r80Result = pr80Val->s.fSign ? g_ar80One[1] : *pr80Val;
|
---|
6759 | else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val))
|
---|
6760 | {
|
---|
6761 | fFsw |= X86_FSW_DE;
|
---|
6762 | if (fFcw & X86_FCW_DM)
|
---|
6763 | fFsw = iemAImpl_f2xm1_r80_normal(pr80Val, &pFpuRes->r80Result, fFcw, fFsw);
|
---|
6764 | else
|
---|
6765 | {
|
---|
6766 | pFpuRes->r80Result = *pr80Val;
|
---|
6767 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6768 | }
|
---|
6769 | }
|
---|
6770 | else
|
---|
6771 | {
|
---|
6772 | if ( ( RTFLOAT80U_IS_UNNORMAL(pr80Val)
|
---|
6773 | || RTFLOAT80U_IS_PSEUDO_NAN(pr80Val))
|
---|
6774 | && (fFcw & X86_FCW_IM))
|
---|
6775 | pFpuRes->r80Result = g_r80Indefinite;
|
---|
6776 | else
|
---|
6777 | {
|
---|
6778 | pFpuRes->r80Result = *pr80Val;
|
---|
6779 | if (RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val) && (fFcw & X86_FCW_IM))
|
---|
6780 | pFpuRes->r80Result.s.uMantissa |= RT_BIT_64(62); /* make it quiet */
|
---|
6781 | }
|
---|
6782 | fFsw |= X86_FSW_IE;
|
---|
6783 | if (!(fFcw & X86_FCW_IM))
|
---|
6784 | fFsw |= X86_FSW_ES | X86_FSW_B;
|
---|
6785 | }
|
---|
6786 | pFpuRes->FSW = fFsw;
|
---|
6787 | }
|
---|
6788 |
|
---|
6789 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
6790 |
|
---|
6791 | IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6792 | {
|
---|
6793 | iemAImpl_f2xm1_r80(pFpuState, pFpuRes, pr80Val);
|
---|
6794 | }
|
---|
6795 |
|
---|
6796 | IEM_DECL_IMPL_DEF(void, iemAImpl_f2xm1_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6797 | {
|
---|
6798 | iemAImpl_f2xm1_r80(pFpuState, pFpuRes, pr80Val);
|
---|
6799 | }
|
---|
6800 |
|
---|
6801 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
6802 |
|
---|
6803 | IEM_DECL_IMPL_DEF(void, iemAImpl_fabs_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6804 | {
|
---|
6805 | pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
|
---|
6806 | pFpuRes->r80Result = *pr80Val;
|
---|
6807 | pFpuRes->r80Result.s.fSign = 0;
|
---|
6808 | }
|
---|
6809 |
|
---|
6810 |
|
---|
6811 | IEM_DECL_IMPL_DEF(void, iemAImpl_fchs_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val))
|
---|
6812 | {
|
---|
6813 | pFpuRes->FSW = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (7 << X86_FSW_TOP_SHIFT);
|
---|
6814 | pFpuRes->r80Result = *pr80Val;
|
---|
6815 | pFpuRes->r80Result.s.fSign = !pr80Val->s.fSign;
|
---|
6816 | }
|
---|
6817 |
|
---|
6818 |
|
---|
6819 | IEM_DECL_IMPL_DEF(void, iemAImpl_fxtract_r80_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val))
|
---|
6820 | {
|
---|
6821 | uint16_t const fFcw = pFpuState->FCW;
|
---|
6822 | uint16_t fFsw = (pFpuState->FSW & (X86_FSW_C0 | X86_FSW_C2 | X86_FSW_C3)) | (6 << X86_FSW_TOP_SHIFT);
|
---|
6823 |
|
---|
6824 | if (RTFLOAT80U_IS_NORMAL(pr80Val))
|
---|
6825 | {
|
---|
6826 | softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS();
|
---|
6827 | iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, i32_to_extF80((int32_t)pr80Val->s.uExponent - RTFLOAT80U_EXP_BIAS, &Ignored));
|
---|
6828 |
|
---|
6829 | pFpuResTwo->r80Result2.s.fSign = pr80Val->s.fSign;
|
---|
6830 | pFpuResTwo->r80Result2.s.uExponent = RTFLOAT80U_EXP_BIAS;
|
---|
6831 | pFpuResTwo->r80Result2.s.uMantissa = pr80Val->s.uMantissa;
|
---|
6832 | }
|
---|
6833 | else if (RTFLOAT80U_IS_ZERO(pr80Val))
|
---|
6834 | {
|
---|
6835 | fFsw |= X86_FSW_ZE;
|
---|
6836 | if (fFcw & X86_FCW_ZM)
|
---|
6837 | {
|
---|
6838 | pFpuResTwo->r80Result1 = g_ar80Infinity[1];
|
---|
6839 | pFpuResTwo->r80Result2 = *pr80Val;
|
---|
6840 | }
|
---|
6841 | else
|
---|
6842 | {
|
---|
6843 | pFpuResTwo->r80Result2 = *pr80Val;
|
---|
6844 | fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT);
|
---|
6845 | }
|
---|
6846 | }
|
---|
6847 | else if (RTFLOAT80U_IS_DENORMAL_OR_PSEUDO_DENORMAL(pr80Val))
|
---|
6848 | {
|
---|
6849 | fFsw |= X86_FSW_DE;
|
---|
6850 | if (fFcw & X86_FCW_DM)
|
---|
6851 | {
|
---|
6852 | pFpuResTwo->r80Result2.s.fSign = pr80Val->s.fSign;
|
---|
6853 | pFpuResTwo->r80Result2.s.uExponent = RTFLOAT80U_EXP_BIAS;
|
---|
6854 | pFpuResTwo->r80Result2.s.uMantissa = pr80Val->s.uMantissa;
|
---|
6855 | int32_t iExponent = -16382;
|
---|
6856 | while (!(pFpuResTwo->r80Result2.s.uMantissa & RT_BIT_64(63)))
|
---|
6857 | {
|
---|
6858 | pFpuResTwo->r80Result2.s.uMantissa <<= 1;
|
---|
6859 | iExponent--;
|
---|
6860 | }
|
---|
6861 |
|
---|
6862 | softfloat_state_t Ignored = SOFTFLOAT_STATE_INIT_DEFAULTS();
|
---|
6863 | iemFpuSoftF80ToIprt(&pFpuResTwo->r80Result1, i32_to_extF80(iExponent, &Ignored));
|
---|
6864 | }
|
---|
6865 | else
|
---|
6866 | {
|
---|
6867 | pFpuResTwo->r80Result2 = *pr80Val;
|
---|
6868 | fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT);
|
---|
6869 | }
|
---|
6870 | }
|
---|
6871 | else if ( RTFLOAT80U_IS_QUIET_NAN(pr80Val)
|
---|
6872 | || RTFLOAT80U_IS_INDEFINITE(pr80Val))
|
---|
6873 | {
|
---|
6874 | pFpuResTwo->r80Result1 = *pr80Val;
|
---|
6875 | pFpuResTwo->r80Result2 = *pr80Val;
|
---|
6876 | }
|
---|
6877 | else if (RTFLOAT80U_IS_INF(pr80Val))
|
---|
6878 | {
|
---|
6879 | pFpuResTwo->r80Result1 = g_ar80Infinity[0];
|
---|
6880 | pFpuResTwo->r80Result2 = *pr80Val;
|
---|
6881 | }
|
---|
6882 | else
|
---|
6883 | {
|
---|
6884 | if (fFcw & X86_FCW_IM)
|
---|
6885 | {
|
---|
6886 | if (!RTFLOAT80U_IS_SIGNALLING_NAN(pr80Val))
|
---|
6887 | pFpuResTwo->r80Result1 = g_r80Indefinite;
|
---|
6888 | else
|
---|
6889 | {
|
---|
6890 | pFpuResTwo->r80Result1 = *pr80Val;
|
---|
6891 | pFpuResTwo->r80Result1.s.uMantissa |= RT_BIT_64(62); /* make it quiet */
|
---|
6892 | }
|
---|
6893 | pFpuResTwo->r80Result2 = pFpuResTwo->r80Result1;
|
---|
6894 | }
|
---|
6895 | else
|
---|
6896 | {
|
---|
6897 | pFpuResTwo->r80Result2 = *pr80Val;
|
---|
6898 | fFsw = X86_FSW_ES | X86_FSW_B | (fFsw & ~X86_FSW_TOP_MASK) | (7 << X86_FSW_TOP_SHIFT);
|
---|
6899 | }
|
---|
6900 | fFsw |= X86_FSW_IE;
|
---|
6901 | }
|
---|
6902 | pFpuResTwo->FSW = fFsw;
|
---|
6903 | }
|
---|
6904 |
|
---|
6905 |
|
---|
6906 | IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
6907 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6908 | {
|
---|
6909 | RT_NOREF(pFpuState, pFpuRes, pr80Val1, pr80Val2);
|
---|
6910 | AssertReleaseFailed();
|
---|
6911 | }
|
---|
6912 |
|
---|
6913 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
6914 |
|
---|
6915 | IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
6916 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6917 | {
|
---|
6918 | iemAImpl_fyl2x_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
|
---|
6919 | }
|
---|
6920 |
|
---|
6921 | IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2x_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
6922 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6923 | {
|
---|
6924 | iemAImpl_fyl2x_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
|
---|
6925 | }
|
---|
6926 |
|
---|
6927 | #if defined(IEM_WITHOUT_ASSEMBLY)
|
---|
6928 |
|
---|
6929 | IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
6930 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6931 | {
|
---|
6932 | RT_NOREF(pFpuState, pFpuRes, pr80Val1, pr80Val2);
|
---|
6933 | AssertReleaseFailed();
|
---|
6934 | }
|
---|
6935 |
|
---|
6936 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
6937 |
|
---|
6938 | IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80_intel,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
6939 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6940 | {
|
---|
6941 | iemAImpl_fyl2xp1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
|
---|
6942 | }
|
---|
6943 |
|
---|
6944 | IEM_DECL_IMPL_DEF(void, iemAImpl_fyl2xp1_r80_by_r80_amd,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
|
---|
6945 | PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2))
|
---|
6946 | {
|
---|
6947 | iemAImpl_fyl2xp1_r80_by_r80(pFpuState, pFpuRes, pr80Val1, pr80Val2);
|
---|
6948 | }
|
---|
6949 |
|
---|
6950 |
|
---|
6951 | /*********************************************************************************************************************************
|
---|
6952 | * MMX, SSE & AVX *
|
---|
6953 | *********************************************************************************************************************************/
|
---|
6954 |
|
---|
6955 | IEM_DECL_IMPL_DEF(void, iemAImpl_movsldup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
6956 | {
|
---|
6957 | RT_NOREF(pFpuState);
|
---|
6958 | puDst->au32[0] = puSrc->au32[0];
|
---|
6959 | puDst->au32[1] = puSrc->au32[0];
|
---|
6960 | puDst->au32[2] = puSrc->au32[2];
|
---|
6961 | puDst->au32[3] = puSrc->au32[2];
|
---|
6962 | }
|
---|
6963 |
|
---|
6964 | #ifdef IEM_WITH_VEX
|
---|
6965 |
|
---|
6966 | IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc))
|
---|
6967 | {
|
---|
6968 | pXState->x87.aXMM[iYRegDst].au32[0] = pXState->x87.aXMM[iYRegSrc].au32[0];
|
---|
6969 | pXState->x87.aXMM[iYRegDst].au32[1] = pXState->x87.aXMM[iYRegSrc].au32[0];
|
---|
6970 | pXState->x87.aXMM[iYRegDst].au32[2] = pXState->x87.aXMM[iYRegSrc].au32[2];
|
---|
6971 | pXState->x87.aXMM[iYRegDst].au32[3] = pXState->x87.aXMM[iYRegSrc].au32[2];
|
---|
6972 | pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[0];
|
---|
6973 | pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[0];
|
---|
6974 | pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[2];
|
---|
6975 | pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[2];
|
---|
6976 | }
|
---|
6977 |
|
---|
6978 |
|
---|
6979 | IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc))
|
---|
6980 | {
|
---|
6981 | pXState->x87.aXMM[iYRegDst].au32[0] = pSrc->au32[0];
|
---|
6982 | pXState->x87.aXMM[iYRegDst].au32[1] = pSrc->au32[0];
|
---|
6983 | pXState->x87.aXMM[iYRegDst].au32[2] = pSrc->au32[2];
|
---|
6984 | pXState->x87.aXMM[iYRegDst].au32[3] = pSrc->au32[2];
|
---|
6985 | pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pSrc->au32[4];
|
---|
6986 | pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pSrc->au32[4];
|
---|
6987 | pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pSrc->au32[6];
|
---|
6988 | pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pSrc->au32[6];
|
---|
6989 | }
|
---|
6990 |
|
---|
6991 | #endif /* IEM_WITH_VEX */
|
---|
6992 |
|
---|
6993 |
|
---|
6994 | IEM_DECL_IMPL_DEF(void, iemAImpl_movshdup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
6995 | {
|
---|
6996 | RT_NOREF(pFpuState);
|
---|
6997 | puDst->au32[0] = puSrc->au32[1];
|
---|
6998 | puDst->au32[1] = puSrc->au32[1];
|
---|
6999 | puDst->au32[2] = puSrc->au32[3];
|
---|
7000 | puDst->au32[3] = puSrc->au32[3];
|
---|
7001 | }
|
---|
7002 |
|
---|
7003 |
|
---|
7004 | IEM_DECL_IMPL_DEF(void, iemAImpl_movddup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, uint64_t uSrc))
|
---|
7005 | {
|
---|
7006 | RT_NOREF(pFpuState);
|
---|
7007 | puDst->au64[0] = uSrc;
|
---|
7008 | puDst->au64[1] = uSrc;
|
---|
7009 | }
|
---|
7010 |
|
---|
7011 | #ifdef IEM_WITH_VEX
|
---|
7012 |
|
---|
7013 | IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc))
|
---|
7014 | {
|
---|
7015 | pXState->x87.aXMM[iYRegDst].au64[0] = pXState->x87.aXMM[iYRegSrc].au64[0];
|
---|
7016 | pXState->x87.aXMM[iYRegDst].au64[1] = pXState->x87.aXMM[iYRegSrc].au64[0];
|
---|
7017 | pXState->u.YmmHi.aYmmHi[iYRegDst].au64[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au64[0];
|
---|
7018 | pXState->u.YmmHi.aYmmHi[iYRegDst].au64[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au64[0];
|
---|
7019 | }
|
---|
7020 |
|
---|
7021 | IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc))
|
---|
7022 | {
|
---|
7023 | pXState->x87.aXMM[iYRegDst].au64[0] = pSrc->au64[0];
|
---|
7024 | pXState->x87.aXMM[iYRegDst].au64[1] = pSrc->au64[0];
|
---|
7025 | pXState->u.YmmHi.aYmmHi[iYRegDst].au64[0] = pSrc->au64[2];
|
---|
7026 | pXState->u.YmmHi.aYmmHi[iYRegDst].au64[1] = pSrc->au64[2];
|
---|
7027 | }
|
---|
7028 |
|
---|
7029 | #endif /* IEM_WITH_VEX */
|
---|
7030 |
|
---|
7031 |
|
---|
7032 | /*
|
---|
7033 | * PAND / VPAND / PANDPS / VPANDPS / PANDPD / VPANDPD
|
---|
7034 | */
|
---|
7035 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7036 |
|
---|
7037 | IEM_DECL_IMPL_DEF(void, iemAImpl_pand_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7038 | {
|
---|
7039 | RT_NOREF(pFpuState);
|
---|
7040 | *puDst &= *puSrc;
|
---|
7041 | }
|
---|
7042 |
|
---|
7043 |
|
---|
7044 | IEM_DECL_IMPL_DEF(void, iemAImpl_pand_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7045 | {
|
---|
7046 | RT_NOREF(pFpuState);
|
---|
7047 | puDst->au64[0] &= puSrc->au64[0];
|
---|
7048 | puDst->au64[1] &= puSrc->au64[1];
|
---|
7049 | }
|
---|
7050 |
|
---|
7051 | #endif
|
---|
7052 |
|
---|
7053 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpand_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7054 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7055 | {
|
---|
7056 | RT_NOREF(pExtState);
|
---|
7057 | puDst->au64[0] = puSrc1->au64[0] & puSrc2->au64[0];
|
---|
7058 | puDst->au64[1] = puSrc1->au64[1] & puSrc2->au64[1];
|
---|
7059 | }
|
---|
7060 |
|
---|
7061 |
|
---|
7062 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpand_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7063 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7064 | {
|
---|
7065 | RT_NOREF(pExtState);
|
---|
7066 | puDst->au64[0] = puSrc1->au64[0] & puSrc2->au64[0];
|
---|
7067 | puDst->au64[1] = puSrc1->au64[1] & puSrc2->au64[1];
|
---|
7068 | puDst->au64[2] = puSrc1->au64[2] & puSrc2->au64[2];
|
---|
7069 | puDst->au64[3] = puSrc1->au64[3] & puSrc2->au64[3];
|
---|
7070 | }
|
---|
7071 |
|
---|
7072 |
|
---|
7073 | /*
|
---|
7074 | * PANDN / VPANDN / PANDNPS / VPANDNPS / PANDNPD / VPANDNPD
|
---|
7075 | */
|
---|
7076 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7077 |
|
---|
7078 | IEM_DECL_IMPL_DEF(void, iemAImpl_pandn_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7079 | {
|
---|
7080 | RT_NOREF(pFpuState);
|
---|
7081 | *puDst = ~*puDst & *puSrc;
|
---|
7082 | }
|
---|
7083 |
|
---|
7084 |
|
---|
7085 | IEM_DECL_IMPL_DEF(void, iemAImpl_pandn_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7086 | {
|
---|
7087 | RT_NOREF(pFpuState);
|
---|
7088 | puDst->au64[0] = ~puDst->au64[0] & puSrc->au64[0];
|
---|
7089 | puDst->au64[1] = ~puDst->au64[1] & puSrc->au64[1];
|
---|
7090 | }
|
---|
7091 |
|
---|
7092 | #endif
|
---|
7093 |
|
---|
7094 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpandn_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7095 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7096 | {
|
---|
7097 | RT_NOREF(pExtState);
|
---|
7098 | puDst->au64[0] = ~puSrc1->au64[0] & puSrc2->au64[0];
|
---|
7099 | puDst->au64[1] = ~puSrc1->au64[1] & puSrc2->au64[1];
|
---|
7100 | }
|
---|
7101 |
|
---|
7102 |
|
---|
7103 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpandn_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7104 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7105 | {
|
---|
7106 | RT_NOREF(pExtState);
|
---|
7107 | puDst->au64[0] = ~puSrc1->au64[0] & puSrc2->au64[0];
|
---|
7108 | puDst->au64[1] = ~puSrc1->au64[1] & puSrc2->au64[1];
|
---|
7109 | puDst->au64[2] = ~puSrc1->au64[2] & puSrc2->au64[2];
|
---|
7110 | puDst->au64[3] = ~puSrc1->au64[3] & puSrc2->au64[3];
|
---|
7111 | }
|
---|
7112 |
|
---|
7113 |
|
---|
7114 | /*
|
---|
7115 | * POR / VPOR / PORPS / VPORPS / PORPD / VPORPD
|
---|
7116 | */
|
---|
7117 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7118 |
|
---|
7119 | IEM_DECL_IMPL_DEF(void, iemAImpl_por_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7120 | {
|
---|
7121 | RT_NOREF(pFpuState);
|
---|
7122 | *puDst |= *puSrc;
|
---|
7123 | }
|
---|
7124 |
|
---|
7125 |
|
---|
7126 | IEM_DECL_IMPL_DEF(void, iemAImpl_por_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7127 | {
|
---|
7128 | RT_NOREF(pFpuState);
|
---|
7129 | puDst->au64[0] |= puSrc->au64[0];
|
---|
7130 | puDst->au64[1] |= puSrc->au64[1];
|
---|
7131 | }
|
---|
7132 |
|
---|
7133 | #endif
|
---|
7134 |
|
---|
7135 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpor_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7136 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7137 | {
|
---|
7138 | RT_NOREF(pExtState);
|
---|
7139 | puDst->au64[0] = puSrc1->au64[0] | puSrc2->au64[0];
|
---|
7140 | puDst->au64[1] = puSrc1->au64[1] | puSrc2->au64[1];
|
---|
7141 | }
|
---|
7142 |
|
---|
7143 |
|
---|
7144 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpor_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7145 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7146 | {
|
---|
7147 | RT_NOREF(pExtState);
|
---|
7148 | puDst->au64[0] = puSrc1->au64[0] | puSrc2->au64[0];
|
---|
7149 | puDst->au64[1] = puSrc1->au64[1] | puSrc2->au64[1];
|
---|
7150 | puDst->au64[2] = puSrc1->au64[2] | puSrc2->au64[2];
|
---|
7151 | puDst->au64[3] = puSrc1->au64[3] | puSrc2->au64[3];
|
---|
7152 | }
|
---|
7153 |
|
---|
7154 |
|
---|
7155 | /*
|
---|
7156 | * PXOR / VPXOR / PXORPS / VPXORPS / PXORPD / VPXORPD
|
---|
7157 | */
|
---|
7158 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7159 |
|
---|
7160 | IEM_DECL_IMPL_DEF(void, iemAImpl_pxor_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7161 | {
|
---|
7162 | RT_NOREF(pFpuState);
|
---|
7163 | *puDst ^= *puSrc;
|
---|
7164 | }
|
---|
7165 |
|
---|
7166 |
|
---|
7167 | IEM_DECL_IMPL_DEF(void, iemAImpl_pxor_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7168 | {
|
---|
7169 | RT_NOREF(pFpuState);
|
---|
7170 | puDst->au64[0] ^= puSrc->au64[0];
|
---|
7171 | puDst->au64[1] ^= puSrc->au64[1];
|
---|
7172 | }
|
---|
7173 |
|
---|
7174 | #endif
|
---|
7175 |
|
---|
7176 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpxor_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7177 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7178 | {
|
---|
7179 | RT_NOREF(pExtState);
|
---|
7180 | puDst->au64[0] = puSrc1->au64[0] ^ puSrc2->au64[0];
|
---|
7181 | puDst->au64[1] = puSrc1->au64[1] ^ puSrc2->au64[1];
|
---|
7182 | }
|
---|
7183 |
|
---|
7184 |
|
---|
7185 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpxor_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7186 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7187 | {
|
---|
7188 | RT_NOREF(pExtState);
|
---|
7189 | puDst->au64[0] = puSrc1->au64[0] ^ puSrc2->au64[0];
|
---|
7190 | puDst->au64[1] = puSrc1->au64[1] ^ puSrc2->au64[1];
|
---|
7191 | puDst->au64[2] = puSrc1->au64[2] ^ puSrc2->au64[2];
|
---|
7192 | puDst->au64[3] = puSrc1->au64[3] ^ puSrc2->au64[3];
|
---|
7193 | }
|
---|
7194 |
|
---|
7195 |
|
---|
7196 | /*
|
---|
7197 | * PCMPEQB / VPCMPEQB
|
---|
7198 | */
|
---|
7199 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7200 |
|
---|
7201 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7202 | {
|
---|
7203 | RT_NOREF(pFpuState);
|
---|
7204 | RTUINT64U uSrc1 = { *puDst };
|
---|
7205 | RTUINT64U uSrc2 = { *puSrc };
|
---|
7206 | RTUINT64U uDst;
|
---|
7207 | uDst.au8[0] = uSrc1.au8[0] == uSrc2.au8[0] ? 0xff : 0;
|
---|
7208 | uDst.au8[1] = uSrc1.au8[1] == uSrc2.au8[1] ? 0xff : 0;
|
---|
7209 | uDst.au8[2] = uSrc1.au8[2] == uSrc2.au8[2] ? 0xff : 0;
|
---|
7210 | uDst.au8[3] = uSrc1.au8[3] == uSrc2.au8[3] ? 0xff : 0;
|
---|
7211 | uDst.au8[4] = uSrc1.au8[4] == uSrc2.au8[4] ? 0xff : 0;
|
---|
7212 | uDst.au8[5] = uSrc1.au8[5] == uSrc2.au8[5] ? 0xff : 0;
|
---|
7213 | uDst.au8[6] = uSrc1.au8[6] == uSrc2.au8[6] ? 0xff : 0;
|
---|
7214 | uDst.au8[7] = uSrc1.au8[7] == uSrc2.au8[7] ? 0xff : 0;
|
---|
7215 | *puDst = uDst.u;
|
---|
7216 | }
|
---|
7217 |
|
---|
7218 |
|
---|
7219 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7220 | {
|
---|
7221 | RT_NOREF(pFpuState);
|
---|
7222 | RTUINT128U uSrc1 = *puDst;
|
---|
7223 | puDst->au8[0] = uSrc1.au8[0] == puSrc->au8[0] ? UINT8_MAX : 0;
|
---|
7224 | puDst->au8[1] = uSrc1.au8[1] == puSrc->au8[1] ? UINT8_MAX : 0;
|
---|
7225 | puDst->au8[2] = uSrc1.au8[2] == puSrc->au8[2] ? UINT8_MAX : 0;
|
---|
7226 | puDst->au8[3] = uSrc1.au8[3] == puSrc->au8[3] ? UINT8_MAX : 0;
|
---|
7227 | puDst->au8[4] = uSrc1.au8[4] == puSrc->au8[4] ? UINT8_MAX : 0;
|
---|
7228 | puDst->au8[5] = uSrc1.au8[5] == puSrc->au8[5] ? UINT8_MAX : 0;
|
---|
7229 | puDst->au8[6] = uSrc1.au8[6] == puSrc->au8[6] ? UINT8_MAX : 0;
|
---|
7230 | puDst->au8[7] = uSrc1.au8[7] == puSrc->au8[7] ? UINT8_MAX : 0;
|
---|
7231 | puDst->au8[8] = uSrc1.au8[8] == puSrc->au8[8] ? UINT8_MAX : 0;
|
---|
7232 | puDst->au8[9] = uSrc1.au8[9] == puSrc->au8[9] ? UINT8_MAX : 0;
|
---|
7233 | puDst->au8[10] = uSrc1.au8[10] == puSrc->au8[10] ? UINT8_MAX : 0;
|
---|
7234 | puDst->au8[11] = uSrc1.au8[11] == puSrc->au8[11] ? UINT8_MAX : 0;
|
---|
7235 | puDst->au8[12] = uSrc1.au8[12] == puSrc->au8[12] ? UINT8_MAX : 0;
|
---|
7236 | puDst->au8[13] = uSrc1.au8[13] == puSrc->au8[13] ? UINT8_MAX : 0;
|
---|
7237 | puDst->au8[14] = uSrc1.au8[14] == puSrc->au8[14] ? UINT8_MAX : 0;
|
---|
7238 | puDst->au8[15] = uSrc1.au8[15] == puSrc->au8[15] ? UINT8_MAX : 0;
|
---|
7239 | }
|
---|
7240 |
|
---|
7241 | #endif
|
---|
7242 |
|
---|
7243 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7244 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7245 | {
|
---|
7246 | RT_NOREF(pExtState);
|
---|
7247 | puDst->au8[0] = puSrc1->au8[0] == puSrc2->au8[0] ? UINT8_MAX : 0;
|
---|
7248 | puDst->au8[1] = puSrc1->au8[1] == puSrc2->au8[1] ? UINT8_MAX : 0;
|
---|
7249 | puDst->au8[2] = puSrc1->au8[2] == puSrc2->au8[2] ? UINT8_MAX : 0;
|
---|
7250 | puDst->au8[3] = puSrc1->au8[3] == puSrc2->au8[3] ? UINT8_MAX : 0;
|
---|
7251 | puDst->au8[4] = puSrc1->au8[4] == puSrc2->au8[4] ? UINT8_MAX : 0;
|
---|
7252 | puDst->au8[5] = puSrc1->au8[5] == puSrc2->au8[5] ? UINT8_MAX : 0;
|
---|
7253 | puDst->au8[6] = puSrc1->au8[6] == puSrc2->au8[6] ? UINT8_MAX : 0;
|
---|
7254 | puDst->au8[7] = puSrc1->au8[7] == puSrc2->au8[7] ? UINT8_MAX : 0;
|
---|
7255 | puDst->au8[8] = puSrc1->au8[8] == puSrc2->au8[8] ? UINT8_MAX : 0;
|
---|
7256 | puDst->au8[9] = puSrc1->au8[9] == puSrc2->au8[9] ? UINT8_MAX : 0;
|
---|
7257 | puDst->au8[10] = puSrc1->au8[10] == puSrc2->au8[10] ? UINT8_MAX : 0;
|
---|
7258 | puDst->au8[11] = puSrc1->au8[11] == puSrc2->au8[11] ? UINT8_MAX : 0;
|
---|
7259 | puDst->au8[12] = puSrc1->au8[12] == puSrc2->au8[12] ? UINT8_MAX : 0;
|
---|
7260 | puDst->au8[13] = puSrc1->au8[13] == puSrc2->au8[13] ? UINT8_MAX : 0;
|
---|
7261 | puDst->au8[14] = puSrc1->au8[14] == puSrc2->au8[14] ? UINT8_MAX : 0;
|
---|
7262 | puDst->au8[15] = puSrc1->au8[15] == puSrc2->au8[15] ? UINT8_MAX : 0;
|
---|
7263 | }
|
---|
7264 |
|
---|
7265 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7266 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7267 | {
|
---|
7268 | RT_NOREF(pExtState);
|
---|
7269 | puDst->au8[0] = puSrc1->au8[0] == puSrc2->au8[0] ? UINT8_MAX : 0;
|
---|
7270 | puDst->au8[1] = puSrc1->au8[1] == puSrc2->au8[1] ? UINT8_MAX : 0;
|
---|
7271 | puDst->au8[2] = puSrc1->au8[2] == puSrc2->au8[2] ? UINT8_MAX : 0;
|
---|
7272 | puDst->au8[3] = puSrc1->au8[3] == puSrc2->au8[3] ? UINT8_MAX : 0;
|
---|
7273 | puDst->au8[4] = puSrc1->au8[4] == puSrc2->au8[4] ? UINT8_MAX : 0;
|
---|
7274 | puDst->au8[5] = puSrc1->au8[5] == puSrc2->au8[5] ? UINT8_MAX : 0;
|
---|
7275 | puDst->au8[6] = puSrc1->au8[6] == puSrc2->au8[6] ? UINT8_MAX : 0;
|
---|
7276 | puDst->au8[7] = puSrc1->au8[7] == puSrc2->au8[7] ? UINT8_MAX : 0;
|
---|
7277 | puDst->au8[8] = puSrc1->au8[8] == puSrc2->au8[8] ? UINT8_MAX : 0;
|
---|
7278 | puDst->au8[9] = puSrc1->au8[9] == puSrc2->au8[9] ? UINT8_MAX : 0;
|
---|
7279 | puDst->au8[10] = puSrc1->au8[10] == puSrc2->au8[10] ? UINT8_MAX : 0;
|
---|
7280 | puDst->au8[11] = puSrc1->au8[11] == puSrc2->au8[11] ? UINT8_MAX : 0;
|
---|
7281 | puDst->au8[12] = puSrc1->au8[12] == puSrc2->au8[12] ? UINT8_MAX : 0;
|
---|
7282 | puDst->au8[13] = puSrc1->au8[13] == puSrc2->au8[13] ? UINT8_MAX : 0;
|
---|
7283 | puDst->au8[14] = puSrc1->au8[14] == puSrc2->au8[14] ? UINT8_MAX : 0;
|
---|
7284 | puDst->au8[15] = puSrc1->au8[15] == puSrc2->au8[15] ? UINT8_MAX : 0;
|
---|
7285 | puDst->au8[16] = puSrc1->au8[16] == puSrc2->au8[16] ? UINT8_MAX : 0;
|
---|
7286 | puDst->au8[17] = puSrc1->au8[17] == puSrc2->au8[17] ? UINT8_MAX : 0;
|
---|
7287 | puDst->au8[18] = puSrc1->au8[18] == puSrc2->au8[18] ? UINT8_MAX : 0;
|
---|
7288 | puDst->au8[19] = puSrc1->au8[19] == puSrc2->au8[19] ? UINT8_MAX : 0;
|
---|
7289 | puDst->au8[20] = puSrc1->au8[20] == puSrc2->au8[20] ? UINT8_MAX : 0;
|
---|
7290 | puDst->au8[21] = puSrc1->au8[21] == puSrc2->au8[21] ? UINT8_MAX : 0;
|
---|
7291 | puDst->au8[22] = puSrc1->au8[22] == puSrc2->au8[22] ? UINT8_MAX : 0;
|
---|
7292 | puDst->au8[23] = puSrc1->au8[23] == puSrc2->au8[23] ? UINT8_MAX : 0;
|
---|
7293 | puDst->au8[24] = puSrc1->au8[24] == puSrc2->au8[24] ? UINT8_MAX : 0;
|
---|
7294 | puDst->au8[25] = puSrc1->au8[25] == puSrc2->au8[25] ? UINT8_MAX : 0;
|
---|
7295 | puDst->au8[26] = puSrc1->au8[26] == puSrc2->au8[26] ? UINT8_MAX : 0;
|
---|
7296 | puDst->au8[27] = puSrc1->au8[27] == puSrc2->au8[27] ? UINT8_MAX : 0;
|
---|
7297 | puDst->au8[28] = puSrc1->au8[28] == puSrc2->au8[28] ? UINT8_MAX : 0;
|
---|
7298 | puDst->au8[29] = puSrc1->au8[29] == puSrc2->au8[29] ? UINT8_MAX : 0;
|
---|
7299 | puDst->au8[30] = puSrc1->au8[30] == puSrc2->au8[30] ? UINT8_MAX : 0;
|
---|
7300 | puDst->au8[31] = puSrc1->au8[31] == puSrc2->au8[31] ? UINT8_MAX : 0;
|
---|
7301 | }
|
---|
7302 |
|
---|
7303 |
|
---|
7304 | /*
|
---|
7305 | * PCMPEQW / VPCMPEQW
|
---|
7306 | */
|
---|
7307 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7308 |
|
---|
7309 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7310 | {
|
---|
7311 | RT_NOREF(pFpuState);
|
---|
7312 | RTUINT64U uSrc1 = { *puDst };
|
---|
7313 | RTUINT64U uSrc2 = { *puSrc };
|
---|
7314 | RTUINT64U uDst;
|
---|
7315 | uDst.au16[0] = uSrc1.au16[0] == uSrc2.au16[0] ? UINT16_MAX : 0;
|
---|
7316 | uDst.au16[1] = uSrc1.au16[1] == uSrc2.au16[1] ? UINT16_MAX : 0;
|
---|
7317 | uDst.au16[2] = uSrc1.au16[2] == uSrc2.au16[2] ? UINT16_MAX : 0;
|
---|
7318 | uDst.au16[3] = uSrc1.au16[3] == uSrc2.au16[3] ? UINT16_MAX : 0;
|
---|
7319 | *puDst = uDst.u;
|
---|
7320 | }
|
---|
7321 |
|
---|
7322 |
|
---|
7323 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7324 | {
|
---|
7325 | RT_NOREF(pFpuState);
|
---|
7326 | RTUINT128U uSrc1 = *puDst;
|
---|
7327 | puDst->au16[0] = uSrc1.au16[0] == puSrc->au16[0] ? UINT16_MAX : 0;
|
---|
7328 | puDst->au16[1] = uSrc1.au16[1] == puSrc->au16[1] ? UINT16_MAX : 0;
|
---|
7329 | puDst->au16[2] = uSrc1.au16[2] == puSrc->au16[2] ? UINT16_MAX : 0;
|
---|
7330 | puDst->au16[3] = uSrc1.au16[3] == puSrc->au16[3] ? UINT16_MAX : 0;
|
---|
7331 | puDst->au16[4] = uSrc1.au16[4] == puSrc->au16[4] ? UINT16_MAX : 0;
|
---|
7332 | puDst->au16[5] = uSrc1.au16[5] == puSrc->au16[5] ? UINT16_MAX : 0;
|
---|
7333 | puDst->au16[6] = uSrc1.au16[6] == puSrc->au16[6] ? UINT16_MAX : 0;
|
---|
7334 | puDst->au16[7] = uSrc1.au16[7] == puSrc->au16[7] ? UINT16_MAX : 0;
|
---|
7335 | }
|
---|
7336 |
|
---|
7337 | #endif
|
---|
7338 |
|
---|
7339 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7340 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7341 | {
|
---|
7342 | RT_NOREF(pExtState);
|
---|
7343 | puDst->au16[0] = puSrc1->au16[0] == puSrc2->au16[0] ? UINT16_MAX : 0;
|
---|
7344 | puDst->au16[1] = puSrc1->au16[1] == puSrc2->au16[1] ? UINT16_MAX : 0;
|
---|
7345 | puDst->au16[2] = puSrc1->au16[2] == puSrc2->au16[2] ? UINT16_MAX : 0;
|
---|
7346 | puDst->au16[3] = puSrc1->au16[3] == puSrc2->au16[3] ? UINT16_MAX : 0;
|
---|
7347 | puDst->au16[4] = puSrc1->au16[4] == puSrc2->au16[4] ? UINT16_MAX : 0;
|
---|
7348 | puDst->au16[5] = puSrc1->au16[5] == puSrc2->au16[5] ? UINT16_MAX : 0;
|
---|
7349 | puDst->au16[6] = puSrc1->au16[6] == puSrc2->au16[6] ? UINT16_MAX : 0;
|
---|
7350 | puDst->au16[7] = puSrc1->au16[7] == puSrc2->au16[7] ? UINT16_MAX : 0;
|
---|
7351 | }
|
---|
7352 |
|
---|
7353 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7354 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7355 | {
|
---|
7356 | RT_NOREF(pExtState);
|
---|
7357 | puDst->au16[0] = puSrc1->au16[0] == puSrc2->au16[0] ? UINT16_MAX : 0;
|
---|
7358 | puDst->au16[1] = puSrc1->au16[1] == puSrc2->au16[1] ? UINT16_MAX : 0;
|
---|
7359 | puDst->au16[2] = puSrc1->au16[2] == puSrc2->au16[2] ? UINT16_MAX : 0;
|
---|
7360 | puDst->au16[3] = puSrc1->au16[3] == puSrc2->au16[3] ? UINT16_MAX : 0;
|
---|
7361 | puDst->au16[4] = puSrc1->au16[4] == puSrc2->au16[4] ? UINT16_MAX : 0;
|
---|
7362 | puDst->au16[5] = puSrc1->au16[5] == puSrc2->au16[5] ? UINT16_MAX : 0;
|
---|
7363 | puDst->au16[6] = puSrc1->au16[6] == puSrc2->au16[6] ? UINT16_MAX : 0;
|
---|
7364 | puDst->au16[7] = puSrc1->au16[7] == puSrc2->au16[7] ? UINT16_MAX : 0;
|
---|
7365 | puDst->au16[8] = puSrc1->au16[8] == puSrc2->au16[8] ? UINT16_MAX : 0;
|
---|
7366 | puDst->au16[9] = puSrc1->au16[9] == puSrc2->au16[9] ? UINT16_MAX : 0;
|
---|
7367 | puDst->au16[10] = puSrc1->au16[10] == puSrc2->au16[10] ? UINT16_MAX : 0;
|
---|
7368 | puDst->au16[11] = puSrc1->au16[11] == puSrc2->au16[11] ? UINT16_MAX : 0;
|
---|
7369 | puDst->au16[12] = puSrc1->au16[12] == puSrc2->au16[12] ? UINT16_MAX : 0;
|
---|
7370 | puDst->au16[13] = puSrc1->au16[13] == puSrc2->au16[13] ? UINT16_MAX : 0;
|
---|
7371 | puDst->au16[14] = puSrc1->au16[14] == puSrc2->au16[14] ? UINT16_MAX : 0;
|
---|
7372 | puDst->au16[15] = puSrc1->au16[15] == puSrc2->au16[15] ? UINT16_MAX : 0;
|
---|
7373 | }
|
---|
7374 |
|
---|
7375 |
|
---|
7376 | /*
|
---|
7377 | * PCMPEQD / VPCMPEQD.
|
---|
7378 | */
|
---|
7379 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7380 |
|
---|
7381 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7382 | {
|
---|
7383 | RT_NOREF(pFpuState);
|
---|
7384 | RTUINT64U uSrc1 = { *puDst };
|
---|
7385 | RTUINT64U uSrc2 = { *puSrc };
|
---|
7386 | RTUINT64U uDst;
|
---|
7387 | uDst.au32[0] = uSrc1.au32[0] == uSrc2.au32[0] ? UINT32_MAX : 0;
|
---|
7388 | uDst.au32[1] = uSrc1.au32[1] == uSrc2.au32[1] ? UINT32_MAX : 0;
|
---|
7389 | *puDst = uDst.u;
|
---|
7390 | }
|
---|
7391 |
|
---|
7392 |
|
---|
7393 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7394 | {
|
---|
7395 | RT_NOREF(pFpuState);
|
---|
7396 | RTUINT128U uSrc1 = *puDst;
|
---|
7397 | puDst->au32[0] = uSrc1.au32[0] == puSrc->au32[0] ? UINT32_MAX : 0;
|
---|
7398 | puDst->au32[1] = uSrc1.au32[1] == puSrc->au32[1] ? UINT32_MAX : 0;
|
---|
7399 | puDst->au32[2] = uSrc1.au32[2] == puSrc->au32[2] ? UINT32_MAX : 0;
|
---|
7400 | puDst->au32[3] = uSrc1.au32[3] == puSrc->au32[3] ? UINT32_MAX : 0;
|
---|
7401 | }
|
---|
7402 |
|
---|
7403 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
7404 |
|
---|
7405 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7406 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7407 | {
|
---|
7408 | RT_NOREF(pExtState);
|
---|
7409 | puDst->au32[0] = puSrc1->au32[0] == puSrc2->au32[0] ? UINT32_MAX : 0;
|
---|
7410 | puDst->au32[1] = puSrc1->au32[1] == puSrc2->au32[1] ? UINT32_MAX : 0;
|
---|
7411 | puDst->au32[2] = puSrc1->au32[2] == puSrc2->au32[2] ? UINT32_MAX : 0;
|
---|
7412 | puDst->au32[3] = puSrc1->au32[3] == puSrc2->au32[3] ? UINT32_MAX : 0;
|
---|
7413 | }
|
---|
7414 |
|
---|
7415 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7416 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7417 | {
|
---|
7418 | RT_NOREF(pExtState);
|
---|
7419 | puDst->au32[0] = puSrc1->au32[0] == puSrc2->au32[0] ? UINT32_MAX : 0;
|
---|
7420 | puDst->au32[1] = puSrc1->au32[1] == puSrc2->au32[1] ? UINT32_MAX : 0;
|
---|
7421 | puDst->au32[2] = puSrc1->au32[2] == puSrc2->au32[2] ? UINT32_MAX : 0;
|
---|
7422 | puDst->au32[3] = puSrc1->au32[3] == puSrc2->au32[3] ? UINT32_MAX : 0;
|
---|
7423 | puDst->au32[4] = puSrc1->au32[4] == puSrc2->au32[4] ? UINT32_MAX : 0;
|
---|
7424 | puDst->au32[5] = puSrc1->au32[5] == puSrc2->au32[5] ? UINT32_MAX : 0;
|
---|
7425 | puDst->au32[6] = puSrc1->au32[6] == puSrc2->au32[6] ? UINT32_MAX : 0;
|
---|
7426 | puDst->au32[7] = puSrc1->au32[7] == puSrc2->au32[7] ? UINT32_MAX : 0;
|
---|
7427 | }
|
---|
7428 |
|
---|
7429 |
|
---|
7430 | /*
|
---|
7431 | * PCMPEQQ / VPCMPEQQ.
|
---|
7432 | */
|
---|
7433 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpeqq_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7434 | {
|
---|
7435 | RT_NOREF(pFpuState);
|
---|
7436 | RTUINT128U uSrc1 = *puDst;
|
---|
7437 | puDst->au64[0] = uSrc1.au64[0] == puSrc->au64[0] ? UINT64_MAX : 0;
|
---|
7438 | puDst->au64[1] = uSrc1.au64[1] == puSrc->au64[1] ? UINT64_MAX : 0;
|
---|
7439 | }
|
---|
7440 |
|
---|
7441 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7442 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7443 | {
|
---|
7444 | RT_NOREF(pExtState);
|
---|
7445 | puDst->au64[0] = puSrc1->au64[0] == puSrc2->au64[0] ? UINT64_MAX : 0;
|
---|
7446 | puDst->au64[1] = puSrc1->au64[1] == puSrc2->au64[1] ? UINT64_MAX : 0;
|
---|
7447 | }
|
---|
7448 |
|
---|
7449 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpeqq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7450 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7451 | {
|
---|
7452 | RT_NOREF(pExtState);
|
---|
7453 | puDst->au64[0] = puSrc1->au64[0] == puSrc2->au64[0] ? UINT64_MAX : 0;
|
---|
7454 | puDst->au64[1] = puSrc1->au64[1] == puSrc2->au64[1] ? UINT64_MAX : 0;
|
---|
7455 | puDst->au64[2] = puSrc1->au64[2] == puSrc2->au64[2] ? UINT64_MAX : 0;
|
---|
7456 | puDst->au64[3] = puSrc1->au64[3] == puSrc2->au64[3] ? UINT64_MAX : 0;
|
---|
7457 | }
|
---|
7458 |
|
---|
7459 |
|
---|
7460 | /*
|
---|
7461 | * PCMPGTB / VPCMPGTB
|
---|
7462 | */
|
---|
7463 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7464 |
|
---|
7465 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7466 | {
|
---|
7467 | RT_NOREF(pFpuState);
|
---|
7468 | RTUINT64U uSrc1 = { *puDst };
|
---|
7469 | RTUINT64U uSrc2 = { *puSrc };
|
---|
7470 | RTUINT64U uDst;
|
---|
7471 | uDst.au8[0] = uSrc1.ai8[0] > uSrc2.ai8[0] ? UINT8_MAX : 0;
|
---|
7472 | uDst.au8[1] = uSrc1.ai8[1] > uSrc2.ai8[1] ? UINT8_MAX : 0;
|
---|
7473 | uDst.au8[2] = uSrc1.ai8[2] > uSrc2.ai8[2] ? UINT8_MAX : 0;
|
---|
7474 | uDst.au8[3] = uSrc1.ai8[3] > uSrc2.ai8[3] ? UINT8_MAX : 0;
|
---|
7475 | uDst.au8[4] = uSrc1.ai8[4] > uSrc2.ai8[4] ? UINT8_MAX : 0;
|
---|
7476 | uDst.au8[5] = uSrc1.ai8[5] > uSrc2.ai8[5] ? UINT8_MAX : 0;
|
---|
7477 | uDst.au8[6] = uSrc1.ai8[6] > uSrc2.ai8[6] ? UINT8_MAX : 0;
|
---|
7478 | uDst.au8[7] = uSrc1.ai8[7] > uSrc2.ai8[7] ? UINT8_MAX : 0;
|
---|
7479 | *puDst = uDst.u;
|
---|
7480 | }
|
---|
7481 |
|
---|
7482 |
|
---|
7483 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7484 | {
|
---|
7485 | RT_NOREF(pFpuState);
|
---|
7486 | RTUINT128U uSrc1 = *puDst;
|
---|
7487 | puDst->au8[0] = uSrc1.ai8[0] > puSrc->ai8[0] ? UINT8_MAX : 0;
|
---|
7488 | puDst->au8[1] = uSrc1.ai8[1] > puSrc->ai8[1] ? UINT8_MAX : 0;
|
---|
7489 | puDst->au8[2] = uSrc1.ai8[2] > puSrc->ai8[2] ? UINT8_MAX : 0;
|
---|
7490 | puDst->au8[3] = uSrc1.ai8[3] > puSrc->ai8[3] ? UINT8_MAX : 0;
|
---|
7491 | puDst->au8[4] = uSrc1.ai8[4] > puSrc->ai8[4] ? UINT8_MAX : 0;
|
---|
7492 | puDst->au8[5] = uSrc1.ai8[5] > puSrc->ai8[5] ? UINT8_MAX : 0;
|
---|
7493 | puDst->au8[6] = uSrc1.ai8[6] > puSrc->ai8[6] ? UINT8_MAX : 0;
|
---|
7494 | puDst->au8[7] = uSrc1.ai8[7] > puSrc->ai8[7] ? UINT8_MAX : 0;
|
---|
7495 | puDst->au8[8] = uSrc1.ai8[8] > puSrc->ai8[8] ? UINT8_MAX : 0;
|
---|
7496 | puDst->au8[9] = uSrc1.ai8[9] > puSrc->ai8[9] ? UINT8_MAX : 0;
|
---|
7497 | puDst->au8[10] = uSrc1.ai8[10] > puSrc->ai8[10] ? UINT8_MAX : 0;
|
---|
7498 | puDst->au8[11] = uSrc1.ai8[11] > puSrc->ai8[11] ? UINT8_MAX : 0;
|
---|
7499 | puDst->au8[12] = uSrc1.ai8[12] > puSrc->ai8[12] ? UINT8_MAX : 0;
|
---|
7500 | puDst->au8[13] = uSrc1.ai8[13] > puSrc->ai8[13] ? UINT8_MAX : 0;
|
---|
7501 | puDst->au8[14] = uSrc1.ai8[14] > puSrc->ai8[14] ? UINT8_MAX : 0;
|
---|
7502 | puDst->au8[15] = uSrc1.ai8[15] > puSrc->ai8[15] ? UINT8_MAX : 0;
|
---|
7503 | }
|
---|
7504 |
|
---|
7505 | #endif
|
---|
7506 |
|
---|
7507 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7508 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7509 | {
|
---|
7510 | RT_NOREF(pExtState);
|
---|
7511 | puDst->au8[0] = puSrc1->ai8[0] > puSrc2->ai8[0] ? UINT8_MAX : 0;
|
---|
7512 | puDst->au8[1] = puSrc1->ai8[1] > puSrc2->ai8[1] ? UINT8_MAX : 0;
|
---|
7513 | puDst->au8[2] = puSrc1->ai8[2] > puSrc2->ai8[2] ? UINT8_MAX : 0;
|
---|
7514 | puDst->au8[3] = puSrc1->ai8[3] > puSrc2->ai8[3] ? UINT8_MAX : 0;
|
---|
7515 | puDst->au8[4] = puSrc1->ai8[4] > puSrc2->ai8[4] ? UINT8_MAX : 0;
|
---|
7516 | puDst->au8[5] = puSrc1->ai8[5] > puSrc2->ai8[5] ? UINT8_MAX : 0;
|
---|
7517 | puDst->au8[6] = puSrc1->ai8[6] > puSrc2->ai8[6] ? UINT8_MAX : 0;
|
---|
7518 | puDst->au8[7] = puSrc1->ai8[7] > puSrc2->ai8[7] ? UINT8_MAX : 0;
|
---|
7519 | puDst->au8[8] = puSrc1->ai8[8] > puSrc2->ai8[8] ? UINT8_MAX : 0;
|
---|
7520 | puDst->au8[9] = puSrc1->ai8[9] > puSrc2->ai8[9] ? UINT8_MAX : 0;
|
---|
7521 | puDst->au8[10] = puSrc1->ai8[10] > puSrc2->ai8[10] ? UINT8_MAX : 0;
|
---|
7522 | puDst->au8[11] = puSrc1->ai8[11] > puSrc2->ai8[11] ? UINT8_MAX : 0;
|
---|
7523 | puDst->au8[12] = puSrc1->ai8[12] > puSrc2->ai8[12] ? UINT8_MAX : 0;
|
---|
7524 | puDst->au8[13] = puSrc1->ai8[13] > puSrc2->ai8[13] ? UINT8_MAX : 0;
|
---|
7525 | puDst->au8[14] = puSrc1->ai8[14] > puSrc2->ai8[14] ? UINT8_MAX : 0;
|
---|
7526 | puDst->au8[15] = puSrc1->ai8[15] > puSrc2->ai8[15] ? UINT8_MAX : 0;
|
---|
7527 | }
|
---|
7528 |
|
---|
7529 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7530 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7531 | {
|
---|
7532 | RT_NOREF(pExtState);
|
---|
7533 | puDst->au8[0] = puSrc1->ai8[0] > puSrc2->ai8[0] ? UINT8_MAX : 0;
|
---|
7534 | puDst->au8[1] = puSrc1->ai8[1] > puSrc2->ai8[1] ? UINT8_MAX : 0;
|
---|
7535 | puDst->au8[2] = puSrc1->ai8[2] > puSrc2->ai8[2] ? UINT8_MAX : 0;
|
---|
7536 | puDst->au8[3] = puSrc1->ai8[3] > puSrc2->ai8[3] ? UINT8_MAX : 0;
|
---|
7537 | puDst->au8[4] = puSrc1->ai8[4] > puSrc2->ai8[4] ? UINT8_MAX : 0;
|
---|
7538 | puDst->au8[5] = puSrc1->ai8[5] > puSrc2->ai8[5] ? UINT8_MAX : 0;
|
---|
7539 | puDst->au8[6] = puSrc1->ai8[6] > puSrc2->ai8[6] ? UINT8_MAX : 0;
|
---|
7540 | puDst->au8[7] = puSrc1->ai8[7] > puSrc2->ai8[7] ? UINT8_MAX : 0;
|
---|
7541 | puDst->au8[8] = puSrc1->ai8[8] > puSrc2->ai8[8] ? UINT8_MAX : 0;
|
---|
7542 | puDst->au8[9] = puSrc1->ai8[9] > puSrc2->ai8[9] ? UINT8_MAX : 0;
|
---|
7543 | puDst->au8[10] = puSrc1->ai8[10] > puSrc2->ai8[10] ? UINT8_MAX : 0;
|
---|
7544 | puDst->au8[11] = puSrc1->ai8[11] > puSrc2->ai8[11] ? UINT8_MAX : 0;
|
---|
7545 | puDst->au8[12] = puSrc1->ai8[12] > puSrc2->ai8[12] ? UINT8_MAX : 0;
|
---|
7546 | puDst->au8[13] = puSrc1->ai8[13] > puSrc2->ai8[13] ? UINT8_MAX : 0;
|
---|
7547 | puDst->au8[14] = puSrc1->ai8[14] > puSrc2->ai8[14] ? UINT8_MAX : 0;
|
---|
7548 | puDst->au8[15] = puSrc1->ai8[15] > puSrc2->ai8[15] ? UINT8_MAX : 0;
|
---|
7549 | puDst->au8[16] = puSrc1->ai8[16] > puSrc2->ai8[16] ? UINT8_MAX : 0;
|
---|
7550 | puDst->au8[17] = puSrc1->ai8[17] > puSrc2->ai8[17] ? UINT8_MAX : 0;
|
---|
7551 | puDst->au8[18] = puSrc1->ai8[18] > puSrc2->ai8[18] ? UINT8_MAX : 0;
|
---|
7552 | puDst->au8[19] = puSrc1->ai8[19] > puSrc2->ai8[19] ? UINT8_MAX : 0;
|
---|
7553 | puDst->au8[20] = puSrc1->ai8[20] > puSrc2->ai8[20] ? UINT8_MAX : 0;
|
---|
7554 | puDst->au8[21] = puSrc1->ai8[21] > puSrc2->ai8[21] ? UINT8_MAX : 0;
|
---|
7555 | puDst->au8[22] = puSrc1->ai8[22] > puSrc2->ai8[22] ? UINT8_MAX : 0;
|
---|
7556 | puDst->au8[23] = puSrc1->ai8[23] > puSrc2->ai8[23] ? UINT8_MAX : 0;
|
---|
7557 | puDst->au8[24] = puSrc1->ai8[24] > puSrc2->ai8[24] ? UINT8_MAX : 0;
|
---|
7558 | puDst->au8[25] = puSrc1->ai8[25] > puSrc2->ai8[25] ? UINT8_MAX : 0;
|
---|
7559 | puDst->au8[26] = puSrc1->ai8[26] > puSrc2->ai8[26] ? UINT8_MAX : 0;
|
---|
7560 | puDst->au8[27] = puSrc1->ai8[27] > puSrc2->ai8[27] ? UINT8_MAX : 0;
|
---|
7561 | puDst->au8[28] = puSrc1->ai8[28] > puSrc2->ai8[28] ? UINT8_MAX : 0;
|
---|
7562 | puDst->au8[29] = puSrc1->ai8[29] > puSrc2->ai8[29] ? UINT8_MAX : 0;
|
---|
7563 | puDst->au8[30] = puSrc1->ai8[30] > puSrc2->ai8[30] ? UINT8_MAX : 0;
|
---|
7564 | puDst->au8[31] = puSrc1->ai8[31] > puSrc2->ai8[31] ? UINT8_MAX : 0;
|
---|
7565 | }
|
---|
7566 |
|
---|
7567 |
|
---|
7568 | /*
|
---|
7569 | * PCMPGTW / VPCMPGTW
|
---|
7570 | */
|
---|
7571 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7572 |
|
---|
7573 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7574 | {
|
---|
7575 | RT_NOREF(pFpuState);
|
---|
7576 | RTUINT64U uSrc1 = { *puDst };
|
---|
7577 | RTUINT64U uSrc2 = { *puSrc };
|
---|
7578 | RTUINT64U uDst;
|
---|
7579 | uDst.au16[0] = uSrc1.ai16[0] > uSrc2.ai16[0] ? UINT16_MAX : 0;
|
---|
7580 | uDst.au16[1] = uSrc1.ai16[1] > uSrc2.ai16[1] ? UINT16_MAX : 0;
|
---|
7581 | uDst.au16[2] = uSrc1.ai16[2] > uSrc2.ai16[2] ? UINT16_MAX : 0;
|
---|
7582 | uDst.au16[3] = uSrc1.ai16[3] > uSrc2.ai16[3] ? UINT16_MAX : 0;
|
---|
7583 | *puDst = uDst.u;
|
---|
7584 | }
|
---|
7585 |
|
---|
7586 |
|
---|
7587 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7588 | {
|
---|
7589 | RT_NOREF(pFpuState);
|
---|
7590 | RTUINT128U uSrc1 = *puDst;
|
---|
7591 | puDst->au16[0] = uSrc1.ai16[0] > puSrc->ai16[0] ? UINT16_MAX : 0;
|
---|
7592 | puDst->au16[1] = uSrc1.ai16[1] > puSrc->ai16[1] ? UINT16_MAX : 0;
|
---|
7593 | puDst->au16[2] = uSrc1.ai16[2] > puSrc->ai16[2] ? UINT16_MAX : 0;
|
---|
7594 | puDst->au16[3] = uSrc1.ai16[3] > puSrc->ai16[3] ? UINT16_MAX : 0;
|
---|
7595 | puDst->au16[4] = uSrc1.ai16[4] > puSrc->ai16[4] ? UINT16_MAX : 0;
|
---|
7596 | puDst->au16[5] = uSrc1.ai16[5] > puSrc->ai16[5] ? UINT16_MAX : 0;
|
---|
7597 | puDst->au16[6] = uSrc1.ai16[6] > puSrc->ai16[6] ? UINT16_MAX : 0;
|
---|
7598 | puDst->au16[7] = uSrc1.ai16[7] > puSrc->ai16[7] ? UINT16_MAX : 0;
|
---|
7599 | }
|
---|
7600 |
|
---|
7601 | #endif
|
---|
7602 |
|
---|
7603 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7604 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7605 | {
|
---|
7606 | RT_NOREF(pExtState);
|
---|
7607 | puDst->au16[0] = puSrc1->ai16[0] > puSrc2->ai16[0] ? UINT16_MAX : 0;
|
---|
7608 | puDst->au16[1] = puSrc1->ai16[1] > puSrc2->ai16[1] ? UINT16_MAX : 0;
|
---|
7609 | puDst->au16[2] = puSrc1->ai16[2] > puSrc2->ai16[2] ? UINT16_MAX : 0;
|
---|
7610 | puDst->au16[3] = puSrc1->ai16[3] > puSrc2->ai16[3] ? UINT16_MAX : 0;
|
---|
7611 | puDst->au16[4] = puSrc1->ai16[4] > puSrc2->ai16[4] ? UINT16_MAX : 0;
|
---|
7612 | puDst->au16[5] = puSrc1->ai16[5] > puSrc2->ai16[5] ? UINT16_MAX : 0;
|
---|
7613 | puDst->au16[6] = puSrc1->ai16[6] > puSrc2->ai16[6] ? UINT16_MAX : 0;
|
---|
7614 | puDst->au16[7] = puSrc1->ai16[7] > puSrc2->ai16[7] ? UINT16_MAX : 0;
|
---|
7615 | }
|
---|
7616 |
|
---|
7617 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7618 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7619 | {
|
---|
7620 | RT_NOREF(pExtState);
|
---|
7621 | puDst->au16[0] = puSrc1->ai16[0] > puSrc2->ai16[0] ? UINT16_MAX : 0;
|
---|
7622 | puDst->au16[1] = puSrc1->ai16[1] > puSrc2->ai16[1] ? UINT16_MAX : 0;
|
---|
7623 | puDst->au16[2] = puSrc1->ai16[2] > puSrc2->ai16[2] ? UINT16_MAX : 0;
|
---|
7624 | puDst->au16[3] = puSrc1->ai16[3] > puSrc2->ai16[3] ? UINT16_MAX : 0;
|
---|
7625 | puDst->au16[4] = puSrc1->ai16[4] > puSrc2->ai16[4] ? UINT16_MAX : 0;
|
---|
7626 | puDst->au16[5] = puSrc1->ai16[5] > puSrc2->ai16[5] ? UINT16_MAX : 0;
|
---|
7627 | puDst->au16[6] = puSrc1->ai16[6] > puSrc2->ai16[6] ? UINT16_MAX : 0;
|
---|
7628 | puDst->au16[7] = puSrc1->ai16[7] > puSrc2->ai16[7] ? UINT16_MAX : 0;
|
---|
7629 | puDst->au16[8] = puSrc1->ai16[8] > puSrc2->ai16[8] ? UINT16_MAX : 0;
|
---|
7630 | puDst->au16[9] = puSrc1->ai16[9] > puSrc2->ai16[9] ? UINT16_MAX : 0;
|
---|
7631 | puDst->au16[10] = puSrc1->ai16[10] > puSrc2->ai16[10] ? UINT16_MAX : 0;
|
---|
7632 | puDst->au16[11] = puSrc1->ai16[11] > puSrc2->ai16[11] ? UINT16_MAX : 0;
|
---|
7633 | puDst->au16[12] = puSrc1->ai16[12] > puSrc2->ai16[12] ? UINT16_MAX : 0;
|
---|
7634 | puDst->au16[13] = puSrc1->ai16[13] > puSrc2->ai16[13] ? UINT16_MAX : 0;
|
---|
7635 | puDst->au16[14] = puSrc1->ai16[14] > puSrc2->ai16[14] ? UINT16_MAX : 0;
|
---|
7636 | puDst->au16[15] = puSrc1->ai16[15] > puSrc2->ai16[15] ? UINT16_MAX : 0;
|
---|
7637 | }
|
---|
7638 |
|
---|
7639 |
|
---|
7640 | /*
|
---|
7641 | * PCMPGTD / VPCMPGTD.
|
---|
7642 | */
|
---|
7643 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7644 |
|
---|
7645 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7646 | {
|
---|
7647 | RT_NOREF(pFpuState);
|
---|
7648 | RTUINT64U uSrc1 = { *puDst };
|
---|
7649 | RTUINT64U uSrc2 = { *puSrc };
|
---|
7650 | RTUINT64U uDst;
|
---|
7651 | uDst.au32[0] = uSrc1.ai32[0] > uSrc2.ai32[0] ? UINT32_MAX : 0;
|
---|
7652 | uDst.au32[1] = uSrc1.ai32[1] > uSrc2.ai32[1] ? UINT32_MAX : 0;
|
---|
7653 | *puDst = uDst.u;
|
---|
7654 | }
|
---|
7655 |
|
---|
7656 |
|
---|
7657 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7658 | {
|
---|
7659 | RT_NOREF(pFpuState);
|
---|
7660 | RTUINT128U uSrc1 = *puDst;
|
---|
7661 | puDst->au32[0] = uSrc1.ai32[0] > puSrc->ai32[0] ? UINT32_MAX : 0;
|
---|
7662 | puDst->au32[1] = uSrc1.ai32[1] > puSrc->ai32[1] ? UINT32_MAX : 0;
|
---|
7663 | puDst->au32[2] = uSrc1.ai32[2] > puSrc->ai32[2] ? UINT32_MAX : 0;
|
---|
7664 | puDst->au32[3] = uSrc1.ai32[3] > puSrc->ai32[3] ? UINT32_MAX : 0;
|
---|
7665 | }
|
---|
7666 |
|
---|
7667 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
7668 |
|
---|
7669 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7670 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7671 | {
|
---|
7672 | RT_NOREF(pExtState);
|
---|
7673 | puDst->au32[0] = puSrc1->ai32[0] > puSrc2->ai32[0] ? UINT32_MAX : 0;
|
---|
7674 | puDst->au32[1] = puSrc1->ai32[1] > puSrc2->ai32[1] ? UINT32_MAX : 0;
|
---|
7675 | puDst->au32[2] = puSrc1->ai32[2] > puSrc2->ai32[2] ? UINT32_MAX : 0;
|
---|
7676 | puDst->au32[3] = puSrc1->ai32[3] > puSrc2->ai32[3] ? UINT32_MAX : 0;
|
---|
7677 | }
|
---|
7678 |
|
---|
7679 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7680 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7681 | {
|
---|
7682 | RT_NOREF(pExtState);
|
---|
7683 | puDst->au32[0] = puSrc1->ai32[0] > puSrc2->ai32[0] ? UINT32_MAX : 0;
|
---|
7684 | puDst->au32[1] = puSrc1->ai32[1] > puSrc2->ai32[1] ? UINT32_MAX : 0;
|
---|
7685 | puDst->au32[2] = puSrc1->ai32[2] > puSrc2->ai32[2] ? UINT32_MAX : 0;
|
---|
7686 | puDst->au32[3] = puSrc1->ai32[3] > puSrc2->ai32[3] ? UINT32_MAX : 0;
|
---|
7687 | puDst->au32[4] = puSrc1->ai32[4] > puSrc2->ai32[4] ? UINT32_MAX : 0;
|
---|
7688 | puDst->au32[5] = puSrc1->ai32[5] > puSrc2->ai32[5] ? UINT32_MAX : 0;
|
---|
7689 | puDst->au32[6] = puSrc1->ai32[6] > puSrc2->ai32[6] ? UINT32_MAX : 0;
|
---|
7690 | puDst->au32[7] = puSrc1->ai32[7] > puSrc2->ai32[7] ? UINT32_MAX : 0;
|
---|
7691 | }
|
---|
7692 |
|
---|
7693 |
|
---|
7694 | /*
|
---|
7695 | * PCMPGTQ / VPCMPGTQ.
|
---|
7696 | */
|
---|
7697 | IEM_DECL_IMPL_DEF(void, iemAImpl_pcmpgtq_u128_fallback,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7698 | {
|
---|
7699 | RT_NOREF(pFpuState);
|
---|
7700 | RTUINT128U uSrc1 = *puDst;
|
---|
7701 | puDst->au64[0] = uSrc1.ai64[0] > puSrc->ai64[0] ? UINT64_MAX : 0;
|
---|
7702 | puDst->au64[1] = uSrc1.ai64[1] > puSrc->ai64[1] ? UINT64_MAX : 0;
|
---|
7703 | }
|
---|
7704 |
|
---|
7705 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7706 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7707 | {
|
---|
7708 | RT_NOREF(pExtState);
|
---|
7709 | puDst->au64[0] = puSrc1->ai64[0] > puSrc2->ai64[0] ? UINT64_MAX : 0;
|
---|
7710 | puDst->au64[1] = puSrc1->ai64[1] > puSrc2->ai64[1] ? UINT64_MAX : 0;
|
---|
7711 | }
|
---|
7712 |
|
---|
7713 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpcmpgtq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7714 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7715 | {
|
---|
7716 | RT_NOREF(pExtState);
|
---|
7717 | puDst->au64[0] = puSrc1->ai64[0] > puSrc2->ai64[0] ? UINT64_MAX : 0;
|
---|
7718 | puDst->au64[1] = puSrc1->ai64[1] > puSrc2->ai64[1] ? UINT64_MAX : 0;
|
---|
7719 | puDst->au64[2] = puSrc1->ai64[2] > puSrc2->ai64[2] ? UINT64_MAX : 0;
|
---|
7720 | puDst->au64[3] = puSrc1->ai64[3] > puSrc2->ai64[3] ? UINT64_MAX : 0;
|
---|
7721 | }
|
---|
7722 |
|
---|
7723 |
|
---|
7724 | /*
|
---|
7725 | * PADDB / VPADDB
|
---|
7726 | */
|
---|
7727 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7728 |
|
---|
7729 | IEM_DECL_IMPL_DEF(void, iemAImpl_paddb_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7730 | {
|
---|
7731 | RT_NOREF(pFpuState);
|
---|
7732 | RTUINT64U uSrc1 = { *puDst };
|
---|
7733 | RTUINT64U uSrc2 = { *puSrc };
|
---|
7734 | RTUINT64U uDst;
|
---|
7735 | uDst.au8[0] = uSrc1.au8[0] + uSrc2.au8[0];
|
---|
7736 | uDst.au8[1] = uSrc1.au8[1] + uSrc2.au8[1];
|
---|
7737 | uDst.au8[2] = uSrc1.au8[2] + uSrc2.au8[2];
|
---|
7738 | uDst.au8[3] = uSrc1.au8[3] + uSrc2.au8[3];
|
---|
7739 | uDst.au8[4] = uSrc1.au8[4] + uSrc2.au8[4];
|
---|
7740 | uDst.au8[5] = uSrc1.au8[5] + uSrc2.au8[5];
|
---|
7741 | uDst.au8[6] = uSrc1.au8[6] + uSrc2.au8[6];
|
---|
7742 | uDst.au8[7] = uSrc1.au8[7] + uSrc2.au8[7];
|
---|
7743 | *puDst = uDst.u;
|
---|
7744 | }
|
---|
7745 |
|
---|
7746 |
|
---|
7747 | IEM_DECL_IMPL_DEF(void, iemAImpl_paddb_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7748 | {
|
---|
7749 | RT_NOREF(pFpuState);
|
---|
7750 | RTUINT128U uSrc1 = *puDst;
|
---|
7751 | puDst->au8[0] = uSrc1.au8[0] + puSrc->au8[0];
|
---|
7752 | puDst->au8[1] = uSrc1.au8[1] + puSrc->au8[1];
|
---|
7753 | puDst->au8[2] = uSrc1.au8[2] + puSrc->au8[2];
|
---|
7754 | puDst->au8[3] = uSrc1.au8[3] + puSrc->au8[3];
|
---|
7755 | puDst->au8[4] = uSrc1.au8[4] + puSrc->au8[4];
|
---|
7756 | puDst->au8[5] = uSrc1.au8[5] + puSrc->au8[5];
|
---|
7757 | puDst->au8[6] = uSrc1.au8[6] + puSrc->au8[6];
|
---|
7758 | puDst->au8[7] = uSrc1.au8[7] + puSrc->au8[7];
|
---|
7759 | puDst->au8[8] = uSrc1.au8[8] + puSrc->au8[8];
|
---|
7760 | puDst->au8[9] = uSrc1.au8[9] + puSrc->au8[9];
|
---|
7761 | puDst->au8[10] = uSrc1.au8[10] + puSrc->au8[10];
|
---|
7762 | puDst->au8[11] = uSrc1.au8[11] + puSrc->au8[11];
|
---|
7763 | puDst->au8[12] = uSrc1.au8[12] + puSrc->au8[12];
|
---|
7764 | puDst->au8[13] = uSrc1.au8[13] + puSrc->au8[13];
|
---|
7765 | puDst->au8[14] = uSrc1.au8[14] + puSrc->au8[14];
|
---|
7766 | puDst->au8[15] = uSrc1.au8[15] + puSrc->au8[15];
|
---|
7767 | }
|
---|
7768 |
|
---|
7769 | #endif
|
---|
7770 |
|
---|
7771 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddb_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7772 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7773 | {
|
---|
7774 | RT_NOREF(pExtState);
|
---|
7775 | puDst->au8[0] = puSrc1->au8[0] + puSrc2->au8[0];
|
---|
7776 | puDst->au8[1] = puSrc1->au8[1] + puSrc2->au8[1];
|
---|
7777 | puDst->au8[2] = puSrc1->au8[2] + puSrc2->au8[2];
|
---|
7778 | puDst->au8[3] = puSrc1->au8[3] + puSrc2->au8[3];
|
---|
7779 | puDst->au8[4] = puSrc1->au8[4] + puSrc2->au8[4];
|
---|
7780 | puDst->au8[5] = puSrc1->au8[5] + puSrc2->au8[5];
|
---|
7781 | puDst->au8[6] = puSrc1->au8[6] + puSrc2->au8[6];
|
---|
7782 | puDst->au8[7] = puSrc1->au8[7] + puSrc2->au8[7];
|
---|
7783 | puDst->au8[8] = puSrc1->au8[8] + puSrc2->au8[8];
|
---|
7784 | puDst->au8[9] = puSrc1->au8[9] + puSrc2->au8[9];
|
---|
7785 | puDst->au8[10] = puSrc1->au8[10] + puSrc2->au8[10];
|
---|
7786 | puDst->au8[11] = puSrc1->au8[11] + puSrc2->au8[11];
|
---|
7787 | puDst->au8[12] = puSrc1->au8[12] + puSrc2->au8[12];
|
---|
7788 | puDst->au8[13] = puSrc1->au8[13] + puSrc2->au8[13];
|
---|
7789 | puDst->au8[14] = puSrc1->au8[14] + puSrc2->au8[14];
|
---|
7790 | puDst->au8[15] = puSrc1->au8[15] + puSrc2->au8[15];
|
---|
7791 | }
|
---|
7792 |
|
---|
7793 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddb_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7794 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7795 | {
|
---|
7796 | RT_NOREF(pExtState);
|
---|
7797 | puDst->au8[0] = puSrc1->au8[0] + puSrc2->au8[0];
|
---|
7798 | puDst->au8[1] = puSrc1->au8[1] + puSrc2->au8[1];
|
---|
7799 | puDst->au8[2] = puSrc1->au8[2] + puSrc2->au8[2];
|
---|
7800 | puDst->au8[3] = puSrc1->au8[3] + puSrc2->au8[3];
|
---|
7801 | puDst->au8[4] = puSrc1->au8[4] + puSrc2->au8[4];
|
---|
7802 | puDst->au8[5] = puSrc1->au8[5] + puSrc2->au8[5];
|
---|
7803 | puDst->au8[6] = puSrc1->au8[6] + puSrc2->au8[6];
|
---|
7804 | puDst->au8[7] = puSrc1->au8[7] + puSrc2->au8[7];
|
---|
7805 | puDst->au8[8] = puSrc1->au8[8] + puSrc2->au8[8];
|
---|
7806 | puDst->au8[9] = puSrc1->au8[9] + puSrc2->au8[9];
|
---|
7807 | puDst->au8[10] = puSrc1->au8[10] + puSrc2->au8[10];
|
---|
7808 | puDst->au8[11] = puSrc1->au8[11] + puSrc2->au8[11];
|
---|
7809 | puDst->au8[12] = puSrc1->au8[12] + puSrc2->au8[12];
|
---|
7810 | puDst->au8[13] = puSrc1->au8[13] + puSrc2->au8[13];
|
---|
7811 | puDst->au8[14] = puSrc1->au8[14] + puSrc2->au8[14];
|
---|
7812 | puDst->au8[15] = puSrc1->au8[15] + puSrc2->au8[15];
|
---|
7813 | puDst->au8[16] = puSrc1->au8[16] + puSrc2->au8[16];
|
---|
7814 | puDst->au8[17] = puSrc1->au8[17] + puSrc2->au8[17];
|
---|
7815 | puDst->au8[18] = puSrc1->au8[18] + puSrc2->au8[18];
|
---|
7816 | puDst->au8[19] = puSrc1->au8[19] + puSrc2->au8[19];
|
---|
7817 | puDst->au8[20] = puSrc1->au8[20] + puSrc2->au8[20];
|
---|
7818 | puDst->au8[21] = puSrc1->au8[21] + puSrc2->au8[21];
|
---|
7819 | puDst->au8[22] = puSrc1->au8[22] + puSrc2->au8[22];
|
---|
7820 | puDst->au8[23] = puSrc1->au8[23] + puSrc2->au8[23];
|
---|
7821 | puDst->au8[24] = puSrc1->au8[24] + puSrc2->au8[24];
|
---|
7822 | puDst->au8[25] = puSrc1->au8[25] + puSrc2->au8[25];
|
---|
7823 | puDst->au8[26] = puSrc1->au8[26] + puSrc2->au8[26];
|
---|
7824 | puDst->au8[27] = puSrc1->au8[27] + puSrc2->au8[27];
|
---|
7825 | puDst->au8[28] = puSrc1->au8[28] + puSrc2->au8[28];
|
---|
7826 | puDst->au8[29] = puSrc1->au8[29] + puSrc2->au8[29];
|
---|
7827 | puDst->au8[30] = puSrc1->au8[30] + puSrc2->au8[30];
|
---|
7828 | puDst->au8[31] = puSrc1->au8[31] + puSrc2->au8[31];
|
---|
7829 | }
|
---|
7830 |
|
---|
7831 |
|
---|
7832 | /*
|
---|
7833 | * PADDW / VPADDW
|
---|
7834 | */
|
---|
7835 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7836 |
|
---|
7837 | IEM_DECL_IMPL_DEF(void, iemAImpl_paddw_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7838 | {
|
---|
7839 | RT_NOREF(pFpuState);
|
---|
7840 | RTUINT64U uSrc1 = { *puDst };
|
---|
7841 | RTUINT64U uSrc2 = { *puSrc };
|
---|
7842 | RTUINT64U uDst;
|
---|
7843 | uDst.au16[0] = uSrc1.au16[0] + uSrc2.au16[0];
|
---|
7844 | uDst.au16[1] = uSrc1.au16[1] + uSrc2.au16[1];
|
---|
7845 | uDst.au16[2] = uSrc1.au16[2] + uSrc2.au16[2];
|
---|
7846 | uDst.au16[3] = uSrc1.au16[3] + uSrc2.au16[3];
|
---|
7847 | *puDst = uDst.u;
|
---|
7848 | }
|
---|
7849 |
|
---|
7850 |
|
---|
7851 | IEM_DECL_IMPL_DEF(void, iemAImpl_paddw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7852 | {
|
---|
7853 | RT_NOREF(pFpuState);
|
---|
7854 | RTUINT128U uSrc1 = *puDst;
|
---|
7855 | puDst->au16[0] = uSrc1.au16[0] + puSrc->au16[0];
|
---|
7856 | puDst->au16[1] = uSrc1.au16[1] + puSrc->au16[1];
|
---|
7857 | puDst->au16[2] = uSrc1.au16[2] + puSrc->au16[2];
|
---|
7858 | puDst->au16[3] = uSrc1.au16[3] + puSrc->au16[3];
|
---|
7859 | puDst->au16[4] = uSrc1.au16[4] + puSrc->au16[4];
|
---|
7860 | puDst->au16[5] = uSrc1.au16[5] + puSrc->au16[5];
|
---|
7861 | puDst->au16[6] = uSrc1.au16[6] + puSrc->au16[6];
|
---|
7862 | puDst->au16[7] = uSrc1.au16[7] + puSrc->au16[7];
|
---|
7863 | }
|
---|
7864 |
|
---|
7865 | #endif
|
---|
7866 |
|
---|
7867 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddw_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7868 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7869 | {
|
---|
7870 | RT_NOREF(pExtState);
|
---|
7871 | puDst->au16[0] = puSrc1->au16[0] + puSrc2->au16[0];
|
---|
7872 | puDst->au16[1] = puSrc1->au16[1] + puSrc2->au16[1];
|
---|
7873 | puDst->au16[2] = puSrc1->au16[2] + puSrc2->au16[2];
|
---|
7874 | puDst->au16[3] = puSrc1->au16[3] + puSrc2->au16[3];
|
---|
7875 | puDst->au16[4] = puSrc1->au16[4] + puSrc2->au16[4];
|
---|
7876 | puDst->au16[5] = puSrc1->au16[5] + puSrc2->au16[5];
|
---|
7877 | puDst->au16[6] = puSrc1->au16[6] + puSrc2->au16[6];
|
---|
7878 | puDst->au16[7] = puSrc1->au16[7] + puSrc2->au16[7];
|
---|
7879 | }
|
---|
7880 |
|
---|
7881 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddw_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7882 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7883 | {
|
---|
7884 | RT_NOREF(pExtState);
|
---|
7885 | puDst->au16[0] = puSrc1->au16[0] + puSrc2->au16[0];
|
---|
7886 | puDst->au16[1] = puSrc1->au16[1] + puSrc2->au16[1];
|
---|
7887 | puDst->au16[2] = puSrc1->au16[2] + puSrc2->au16[2];
|
---|
7888 | puDst->au16[3] = puSrc1->au16[3] + puSrc2->au16[3];
|
---|
7889 | puDst->au16[4] = puSrc1->au16[4] + puSrc2->au16[4];
|
---|
7890 | puDst->au16[5] = puSrc1->au16[5] + puSrc2->au16[5];
|
---|
7891 | puDst->au16[6] = puSrc1->au16[6] + puSrc2->au16[6];
|
---|
7892 | puDst->au16[7] = puSrc1->au16[7] + puSrc2->au16[7];
|
---|
7893 | puDst->au16[8] = puSrc1->au16[8] + puSrc2->au16[8];
|
---|
7894 | puDst->au16[9] = puSrc1->au16[9] + puSrc2->au16[9];
|
---|
7895 | puDst->au16[10] = puSrc1->au16[10] + puSrc2->au16[10];
|
---|
7896 | puDst->au16[11] = puSrc1->au16[11] + puSrc2->au16[11];
|
---|
7897 | puDst->au16[12] = puSrc1->au16[12] + puSrc2->au16[12];
|
---|
7898 | puDst->au16[13] = puSrc1->au16[13] + puSrc2->au16[13];
|
---|
7899 | puDst->au16[14] = puSrc1->au16[14] + puSrc2->au16[14];
|
---|
7900 | puDst->au16[15] = puSrc1->au16[15] + puSrc2->au16[15];
|
---|
7901 | }
|
---|
7902 |
|
---|
7903 |
|
---|
7904 | /*
|
---|
7905 | * PADDD / VPADDD.
|
---|
7906 | */
|
---|
7907 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7908 |
|
---|
7909 | IEM_DECL_IMPL_DEF(void, iemAImpl_paddd_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7910 | {
|
---|
7911 | RT_NOREF(pFpuState);
|
---|
7912 | RTUINT64U uSrc1 = { *puDst };
|
---|
7913 | RTUINT64U uSrc2 = { *puSrc };
|
---|
7914 | RTUINT64U uDst;
|
---|
7915 | uDst.au32[0] = uSrc1.au32[0] + uSrc2.au32[0];
|
---|
7916 | uDst.au32[1] = uSrc1.au32[1] + uSrc2.au32[1];
|
---|
7917 | *puDst = uDst.u;
|
---|
7918 | }
|
---|
7919 |
|
---|
7920 |
|
---|
7921 | IEM_DECL_IMPL_DEF(void, iemAImpl_paddd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7922 | {
|
---|
7923 | RT_NOREF(pFpuState);
|
---|
7924 | RTUINT128U uSrc1 = *puDst;
|
---|
7925 | puDst->au32[0] = uSrc1.au32[0] + puSrc->au32[0];
|
---|
7926 | puDst->au32[1] = uSrc1.au32[1] + puSrc->au32[1];
|
---|
7927 | puDst->au32[2] = uSrc1.au32[2] + puSrc->au32[2];
|
---|
7928 | puDst->au32[3] = uSrc1.au32[3] + puSrc->au32[3];
|
---|
7929 | }
|
---|
7930 |
|
---|
7931 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
7932 |
|
---|
7933 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddd_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7934 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7935 | {
|
---|
7936 | RT_NOREF(pExtState);
|
---|
7937 | puDst->au32[0] = puSrc1->au32[0] + puSrc2->au32[0];
|
---|
7938 | puDst->au32[1] = puSrc1->au32[1] + puSrc2->au32[1];
|
---|
7939 | puDst->au32[2] = puSrc1->au32[2] + puSrc2->au32[2];
|
---|
7940 | puDst->au32[3] = puSrc1->au32[3] + puSrc2->au32[3];
|
---|
7941 | }
|
---|
7942 |
|
---|
7943 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddd_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7944 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7945 | {
|
---|
7946 | RT_NOREF(pExtState);
|
---|
7947 | puDst->au32[0] = puSrc1->au32[0] + puSrc2->au32[0];
|
---|
7948 | puDst->au32[1] = puSrc1->au32[1] + puSrc2->au32[1];
|
---|
7949 | puDst->au32[2] = puSrc1->au32[2] + puSrc2->au32[2];
|
---|
7950 | puDst->au32[3] = puSrc1->au32[3] + puSrc2->au32[3];
|
---|
7951 | puDst->au32[4] = puSrc1->au32[4] + puSrc2->au32[4];
|
---|
7952 | puDst->au32[5] = puSrc1->au32[5] + puSrc2->au32[5];
|
---|
7953 | puDst->au32[6] = puSrc1->au32[6] + puSrc2->au32[6];
|
---|
7954 | puDst->au32[7] = puSrc1->au32[7] + puSrc2->au32[7];
|
---|
7955 | }
|
---|
7956 |
|
---|
7957 |
|
---|
7958 | /*
|
---|
7959 | * PADDQ / VPADDQ.
|
---|
7960 | */
|
---|
7961 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
7962 |
|
---|
7963 | IEM_DECL_IMPL_DEF(void, iemAImpl_paddq_u64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc))
|
---|
7964 | {
|
---|
7965 | RT_NOREF(pFpuState);
|
---|
7966 | *puDst = *puDst + *puSrc;
|
---|
7967 | }
|
---|
7968 |
|
---|
7969 | IEM_DECL_IMPL_DEF(void, iemAImpl_paddq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc))
|
---|
7970 | {
|
---|
7971 | RT_NOREF(pFpuState);
|
---|
7972 | RTUINT128U uSrc1 = *puDst;
|
---|
7973 | puDst->au64[0] = uSrc1.au64[0] + puSrc->au64[0];
|
---|
7974 | puDst->au64[1] = uSrc1.au64[1] + puSrc->au64[1];
|
---|
7975 | }
|
---|
7976 |
|
---|
7977 | #endif
|
---|
7978 |
|
---|
7979 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddq_u128_fallback,(PX86XSAVEAREA pExtState, PRTUINT128U puDst,
|
---|
7980 | PCRTUINT128U puSrc1, PCRTUINT128U puSrc2))
|
---|
7981 | {
|
---|
7982 | RT_NOREF(pExtState);
|
---|
7983 | puDst->au64[0] = puSrc1->au64[0] + puSrc2->au64[0];
|
---|
7984 | puDst->au64[1] = puSrc1->au64[1] + puSrc2->au64[1];
|
---|
7985 | }
|
---|
7986 |
|
---|
7987 | IEM_DECL_IMPL_DEF(void, iemAImpl_vpaddq_u256_fallback,(PX86XSAVEAREA pExtState, PRTUINT256U puDst,
|
---|
7988 | PCRTUINT256U puSrc1, PCRTUINT256U puSrc2))
|
---|
7989 | {
|
---|
7990 | RT_NOREF(pExtState);
|
---|
7991 | puDst->au64[0] = puSrc1->au64[0] + puSrc2->au64[0];
|
---|
7992 | puDst->au64[1] = puSrc1->au64[1] + puSrc2->au64[1];
|
---|
7993 | puDst->au64[2] = puSrc1->au64[2] + puSrc2->au64[2];
|
---|
7994 | puDst->au64[3] = puSrc1->au64[3] + puSrc2->au64[3];
|
---|
7995 | }
|
---|
7996 |
|
---|
7997 |
|
---|
7998 | /*
|
---|
7999 | *
|
---|
8000 | */
|
---|
8001 |
|
---|
8002 | #ifdef IEM_WITHOUT_ASSEMBLY
|
---|
8003 |
|
---|
8004 | IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src))
|
---|
8005 | {
|
---|
8006 | RT_NOREF(pFpuState, pu64Dst, pu64Src);
|
---|
8007 | AssertReleaseFailed();
|
---|
8008 |
|
---|
8009 | }
|
---|
8010 |
|
---|
8011 |
|
---|
8012 | IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, PCRTUINT128U pu128Src))
|
---|
8013 | {
|
---|
8014 | RT_NOREF(pFpuState, pu64Dst, pu128Src);
|
---|
8015 | AssertReleaseFailed();
|
---|
8016 | }
|
---|
8017 |
|
---|
8018 |
|
---|
8019 | IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src, uint8_t bEvil))
|
---|
8020 | {
|
---|
8021 | RT_NOREF(pFpuState, pu64Dst, pu64Src, bEvil);
|
---|
8022 | AssertReleaseFailed();
|
---|
8023 | }
|
---|
8024 |
|
---|
8025 |
|
---|
8026 | IEM_DECL_IMPL_DEF(void, iemAImpl_pshufhw,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src, uint8_t bEvil))
|
---|
8027 | {
|
---|
8028 | RT_NOREF(pFpuState, pu128Dst, pu128Src, bEvil);
|
---|
8029 | AssertReleaseFailed();
|
---|
8030 | }
|
---|
8031 |
|
---|
8032 |
|
---|
8033 | IEM_DECL_IMPL_DEF(void, iemAImpl_pshuflw,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src, uint8_t bEvil))
|
---|
8034 | {
|
---|
8035 | RT_NOREF(pFpuState, pu128Dst, pu128Src, bEvil);
|
---|
8036 | AssertReleaseFailed();
|
---|
8037 | }
|
---|
8038 |
|
---|
8039 |
|
---|
8040 | IEM_DECL_IMPL_DEF(void, iemAImpl_pshufd,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src, uint8_t bEvil))
|
---|
8041 | {
|
---|
8042 | RT_NOREF(pFpuState, pu128Dst, pu128Src, bEvil);
|
---|
8043 | AssertReleaseFailed();
|
---|
8044 | }
|
---|
8045 |
|
---|
8046 | /* PUNPCKHxxx */
|
---|
8047 |
|
---|
8048 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhbw_u64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src))
|
---|
8049 | {
|
---|
8050 | RT_NOREF(pFpuState, pu64Dst, pu64Src);
|
---|
8051 | AssertReleaseFailed();
|
---|
8052 | }
|
---|
8053 |
|
---|
8054 |
|
---|
8055 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhbw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src))
|
---|
8056 | {
|
---|
8057 | RT_NOREF(pFpuState, pu128Dst, pu128Src);
|
---|
8058 | AssertReleaseFailed();
|
---|
8059 | }
|
---|
8060 |
|
---|
8061 |
|
---|
8062 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhwd_u64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src))
|
---|
8063 | {
|
---|
8064 | RT_NOREF(pFpuState, pu64Dst, pu64Src);
|
---|
8065 | AssertReleaseFailed();
|
---|
8066 | }
|
---|
8067 |
|
---|
8068 |
|
---|
8069 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhwd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src))
|
---|
8070 | {
|
---|
8071 | RT_NOREF(pFpuState, pu128Dst, pu128Src);
|
---|
8072 | AssertReleaseFailed();
|
---|
8073 | }
|
---|
8074 |
|
---|
8075 |
|
---|
8076 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhdq_u64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src))
|
---|
8077 | {
|
---|
8078 | RT_NOREF(pFpuState, pu64Dst, pu64Src);
|
---|
8079 | AssertReleaseFailed();
|
---|
8080 | }
|
---|
8081 |
|
---|
8082 |
|
---|
8083 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhdq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src))
|
---|
8084 | {
|
---|
8085 | RT_NOREF(pFpuState, pu128Dst, pu128Src);
|
---|
8086 | AssertReleaseFailed();
|
---|
8087 | }
|
---|
8088 |
|
---|
8089 |
|
---|
8090 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpckhqdq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src))
|
---|
8091 | {
|
---|
8092 | RT_NOREF(pFpuState, pu128Dst, pu128Src);
|
---|
8093 | AssertReleaseFailed();
|
---|
8094 | }
|
---|
8095 |
|
---|
8096 | /* PUNPCKLxxx */
|
---|
8097 |
|
---|
8098 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklbw_u64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint32_t const *pu32Src))
|
---|
8099 | {
|
---|
8100 | RT_NOREF(pFpuState, pu64Dst, pu32Src);
|
---|
8101 | AssertReleaseFailed();
|
---|
8102 | }
|
---|
8103 |
|
---|
8104 |
|
---|
8105 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklbw_u128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, uint64_t const *pu64Src))
|
---|
8106 | {
|
---|
8107 | RT_NOREF(pFpuState, pu128Dst, pu64Src);
|
---|
8108 | AssertReleaseFailed();
|
---|
8109 | }
|
---|
8110 |
|
---|
8111 |
|
---|
8112 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklwd_u64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint32_t const *pu32Src))
|
---|
8113 | {
|
---|
8114 | RT_NOREF(pFpuState, pu64Dst, pu32Src);
|
---|
8115 | AssertReleaseFailed();
|
---|
8116 | }
|
---|
8117 |
|
---|
8118 |
|
---|
8119 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklwd_u128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, uint64_t const *pu64Src))
|
---|
8120 | {
|
---|
8121 | RT_NOREF(pFpuState, pu128Dst, pu64Src);
|
---|
8122 | AssertReleaseFailed();
|
---|
8123 | }
|
---|
8124 |
|
---|
8125 |
|
---|
8126 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpckldq_u64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint32_t const *pu32Src))
|
---|
8127 | {
|
---|
8128 | RT_NOREF(pFpuState, pu64Dst, pu32Src);
|
---|
8129 | AssertReleaseFailed();
|
---|
8130 | }
|
---|
8131 |
|
---|
8132 |
|
---|
8133 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpckldq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, uint64_t const *pu64Src))
|
---|
8134 | {
|
---|
8135 | RT_NOREF(pFpuState, pu128Dst, pu64Src);
|
---|
8136 | AssertReleaseFailed();
|
---|
8137 | }
|
---|
8138 |
|
---|
8139 |
|
---|
8140 | IEM_DECL_IMPL_DEF(void, iemAImpl_punpcklqdq_u128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, uint64_t const *pu64Src))
|
---|
8141 | {
|
---|
8142 | RT_NOREF(pFpuState, pu128Dst, pu64Src);
|
---|
8143 | AssertReleaseFailed();
|
---|
8144 | }
|
---|
8145 |
|
---|
8146 | #endif /* IEM_WITHOUT_ASSEMBLY */
|
---|
8147 |
|
---|
8148 |
|
---|
8149 | /*
|
---|
8150 | * CRC32 (SEE 4.2).
|
---|
8151 | */
|
---|
8152 |
|
---|
8153 | IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u8_fallback,(uint32_t *puDst, uint8_t uSrc))
|
---|
8154 | {
|
---|
8155 | *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc));
|
---|
8156 | }
|
---|
8157 |
|
---|
8158 |
|
---|
8159 | IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u16_fallback,(uint32_t *puDst, uint16_t uSrc))
|
---|
8160 | {
|
---|
8161 | *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc));
|
---|
8162 | }
|
---|
8163 |
|
---|
8164 | IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u32_fallback,(uint32_t *puDst, uint32_t uSrc))
|
---|
8165 | {
|
---|
8166 | *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc));
|
---|
8167 | }
|
---|
8168 |
|
---|
8169 | IEM_DECL_IMPL_DEF(void, iemAImpl_crc32_u64_fallback,(uint32_t *puDst, uint64_t uSrc))
|
---|
8170 | {
|
---|
8171 | *puDst = RTCrc32CProcess(*puDst, &uSrc, sizeof(uSrc));
|
---|
8172 | }
|
---|
8173 |
|
---|