VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h@ 75323

Last change on this file since 75323 was 75301, checked in by vboxsync, 6 years ago

VMM: Nested VMX: bugref:9180 VM-exit bits; APIC-access and APIC-write infrastructure. Handling of instruction/event boundary
pending APIC bits todo.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 324.6 KB
Line 
1/* $Id: IEMAllCImpl.cpp.h 75301 2018-11-07 10:28:57Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#include "IEMAllCImplSvmInstr.cpp.h"
19#include "IEMAllCImplVmxInstr.cpp.h"
20
21
22/** @name Misc Helpers
23 * @{
24 */
25
26
27/**
28 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
29 *
30 * @returns Strict VBox status code.
31 *
32 * @param pVCpu The cross context virtual CPU structure of the calling thread.
33 * @param u16Port The port number.
34 * @param cbOperand The operand size.
35 */
36static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbOperand)
37{
38 /* The TSS bits we're interested in are the same on 386 and AMD64. */
39 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
40 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
41 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
42 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
43
44 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
45
46 /*
47 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
48 */
49 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
50 if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
51 && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
52 {
53 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
54 u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u));
55 return iemRaiseGeneralProtectionFault0(pVCpu);
56 }
57
58 /*
59 * Read the bitmap offset (may #PF).
60 */
61 uint16_t offBitmap;
62 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
63 pVCpu->cpum.GstCtx.tr.u64Base + RT_UOFFSETOF(X86TSS64, offIoBitmap));
64 if (rcStrict != VINF_SUCCESS)
65 {
66 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
67 return rcStrict;
68 }
69
70 /*
71 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
72 * describes the CPU actually reading two bytes regardless of whether the
73 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
74 */
75 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
76 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
77 * for instance sizeof(X86TSS32). */
78 if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */
79 {
80 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
81 offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit));
82 return iemRaiseGeneralProtectionFault0(pVCpu);
83 }
84
85 /*
86 * Read the necessary bits.
87 */
88 /** @todo Test the assertion in the intel manual that the CPU reads two
89 * bytes. The question is how this works wrt to #PF and #GP on the
90 * 2nd byte when it's not required. */
91 uint16_t bmBytes = UINT16_MAX;
92 rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit);
93 if (rcStrict != VINF_SUCCESS)
94 {
95 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
96 return rcStrict;
97 }
98
99 /*
100 * Perform the check.
101 */
102 uint16_t fPortMask = (1 << cbOperand) - 1;
103 bmBytes >>= (u16Port & 7);
104 if (bmBytes & fPortMask)
105 {
106 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
107 u16Port, cbOperand, bmBytes, fPortMask));
108 return iemRaiseGeneralProtectionFault0(pVCpu);
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115/**
116 * Checks if we are allowed to access the given I/O port, raising the
117 * appropriate exceptions if we aren't (or if the I/O bitmap is not
118 * accessible).
119 *
120 * @returns Strict VBox status code.
121 *
122 * @param pVCpu The cross context virtual CPU structure of the calling thread.
123 * @param u16Port The port number.
124 * @param cbOperand The operand size.
125 */
126DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbOperand)
127{
128 X86EFLAGS Efl;
129 Efl.u = IEMMISC_GET_EFL(pVCpu);
130 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
131 && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
132 || Efl.Bits.u1VM) )
133 return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand);
134 return VINF_SUCCESS;
135}
136
137
138#if 0
139/**
140 * Calculates the parity bit.
141 *
142 * @returns true if the bit is set, false if not.
143 * @param u8Result The least significant byte of the result.
144 */
145static bool iemHlpCalcParityFlag(uint8_t u8Result)
146{
147 /*
148 * Parity is set if the number of bits in the least significant byte of
149 * the result is even.
150 */
151 uint8_t cBits;
152 cBits = u8Result & 1; /* 0 */
153 u8Result >>= 1;
154 cBits += u8Result & 1;
155 u8Result >>= 1;
156 cBits += u8Result & 1;
157 u8Result >>= 1;
158 cBits += u8Result & 1;
159 u8Result >>= 1;
160 cBits += u8Result & 1; /* 4 */
161 u8Result >>= 1;
162 cBits += u8Result & 1;
163 u8Result >>= 1;
164 cBits += u8Result & 1;
165 u8Result >>= 1;
166 cBits += u8Result & 1;
167 return !(cBits & 1);
168}
169#endif /* not used */
170
171
172/**
173 * Updates the specified flags according to a 8-bit result.
174 *
175 * @param pVCpu The cross context virtual CPU structure of the calling thread.
176 * @param u8Result The result to set the flags according to.
177 * @param fToUpdate The flags to update.
178 * @param fUndefined The flags that are specified as undefined.
179 */
180static void iemHlpUpdateArithEFlagsU8(PVMCPU pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
181{
182 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
183 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
184 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
185 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
186}
187
188
189/**
190 * Updates the specified flags according to a 16-bit result.
191 *
192 * @param pVCpu The cross context virtual CPU structure of the calling thread.
193 * @param u16Result The result to set the flags according to.
194 * @param fToUpdate The flags to update.
195 * @param fUndefined The flags that are specified as undefined.
196 */
197static void iemHlpUpdateArithEFlagsU16(PVMCPU pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
198{
199 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
200 iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
201 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
202 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
203}
204
205
206/**
207 * Helper used by iret.
208 *
209 * @param pVCpu The cross context virtual CPU structure of the calling thread.
210 * @param uCpl The new CPL.
211 * @param pSReg Pointer to the segment register.
212 */
213static void iemHlpAdjustSelectorForNewCpl(PVMCPU pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
214{
215#ifdef VBOX_WITH_RAW_MODE_NOT_R0
216 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
217 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg);
218#else
219 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
220#endif
221 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
222
223 if ( uCpl > pSReg->Attr.n.u2Dpl
224 && pSReg->Attr.n.u1DescType /* code or data, not system */
225 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
226 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
227 iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
228}
229
230
231/**
232 * Indicates that we have modified the FPU state.
233 *
234 * @param pVCpu The cross context virtual CPU structure of the calling thread.
235 */
236DECLINLINE(void) iemHlpUsedFpu(PVMCPU pVCpu)
237{
238 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
239}
240
241/** @} */
242
243/** @name C Implementations
244 * @{
245 */
246
247/**
248 * Implements a 16-bit popa.
249 */
250IEM_CIMPL_DEF_0(iemCImpl_popa_16)
251{
252 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
253 RTGCPTR GCPtrLast = GCPtrStart + 15;
254 VBOXSTRICTRC rcStrict;
255
256 /*
257 * The docs are a bit hard to comprehend here, but it looks like we wrap
258 * around in real mode as long as none of the individual "popa" crosses the
259 * end of the stack segment. In protected mode we check the whole access
260 * in one go. For efficiency, only do the word-by-word thing if we're in
261 * danger of wrapping around.
262 */
263 /** @todo do popa boundary / wrap-around checks. */
264 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
265 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
266 {
267 /* word-by-word */
268 RTUINT64U TmpRsp;
269 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
270 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp);
271 if (rcStrict == VINF_SUCCESS)
272 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp);
273 if (rcStrict == VINF_SUCCESS)
274 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp);
275 if (rcStrict == VINF_SUCCESS)
276 {
277 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
278 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp);
279 }
280 if (rcStrict == VINF_SUCCESS)
281 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp);
282 if (rcStrict == VINF_SUCCESS)
283 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp);
284 if (rcStrict == VINF_SUCCESS)
285 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp);
286 if (rcStrict == VINF_SUCCESS)
287 {
288 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
289 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
290 }
291 }
292 else
293 {
294 uint16_t const *pa16Mem = NULL;
295 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
296 if (rcStrict == VINF_SUCCESS)
297 {
298 pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI];
299 pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI];
300 pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP];
301 /* skip sp */
302 pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX];
303 pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX];
304 pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX];
305 pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX];
306 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
307 if (rcStrict == VINF_SUCCESS)
308 {
309 iemRegAddToRsp(pVCpu, 16);
310 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
311 }
312 }
313 }
314 return rcStrict;
315}
316
317
318/**
319 * Implements a 32-bit popa.
320 */
321IEM_CIMPL_DEF_0(iemCImpl_popa_32)
322{
323 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
324 RTGCPTR GCPtrLast = GCPtrStart + 31;
325 VBOXSTRICTRC rcStrict;
326
327 /*
328 * The docs are a bit hard to comprehend here, but it looks like we wrap
329 * around in real mode as long as none of the individual "popa" crosses the
330 * end of the stack segment. In protected mode we check the whole access
331 * in one go. For efficiency, only do the word-by-word thing if we're in
332 * danger of wrapping around.
333 */
334 /** @todo do popa boundary / wrap-around checks. */
335 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
336 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
337 {
338 /* word-by-word */
339 RTUINT64U TmpRsp;
340 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
341 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp);
342 if (rcStrict == VINF_SUCCESS)
343 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp);
344 if (rcStrict == VINF_SUCCESS)
345 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp);
346 if (rcStrict == VINF_SUCCESS)
347 {
348 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
349 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp);
350 }
351 if (rcStrict == VINF_SUCCESS)
352 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp);
353 if (rcStrict == VINF_SUCCESS)
354 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp);
355 if (rcStrict == VINF_SUCCESS)
356 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp);
357 if (rcStrict == VINF_SUCCESS)
358 {
359#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
360 pVCpu->cpum.GstCtx.rdi &= UINT32_MAX;
361 pVCpu->cpum.GstCtx.rsi &= UINT32_MAX;
362 pVCpu->cpum.GstCtx.rbp &= UINT32_MAX;
363 pVCpu->cpum.GstCtx.rbx &= UINT32_MAX;
364 pVCpu->cpum.GstCtx.rdx &= UINT32_MAX;
365 pVCpu->cpum.GstCtx.rcx &= UINT32_MAX;
366 pVCpu->cpum.GstCtx.rax &= UINT32_MAX;
367#endif
368 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
369 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
370 }
371 }
372 else
373 {
374 uint32_t const *pa32Mem;
375 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
376 if (rcStrict == VINF_SUCCESS)
377 {
378 pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI];
379 pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI];
380 pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP];
381 /* skip esp */
382 pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX];
383 pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX];
384 pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX];
385 pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX];
386 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
387 if (rcStrict == VINF_SUCCESS)
388 {
389 iemRegAddToRsp(pVCpu, 32);
390 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
391 }
392 }
393 }
394 return rcStrict;
395}
396
397
398/**
399 * Implements a 16-bit pusha.
400 */
401IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
402{
403 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
404 RTGCPTR GCPtrBottom = GCPtrTop - 15;
405 VBOXSTRICTRC rcStrict;
406
407 /*
408 * The docs are a bit hard to comprehend here, but it looks like we wrap
409 * around in real mode as long as none of the individual "pushd" crosses the
410 * end of the stack segment. In protected mode we check the whole access
411 * in one go. For efficiency, only do the word-by-word thing if we're in
412 * danger of wrapping around.
413 */
414 /** @todo do pusha boundary / wrap-around checks. */
415 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
416 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
417 {
418 /* word-by-word */
419 RTUINT64U TmpRsp;
420 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
421 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp);
422 if (rcStrict == VINF_SUCCESS)
423 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp);
424 if (rcStrict == VINF_SUCCESS)
425 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp);
426 if (rcStrict == VINF_SUCCESS)
427 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp);
428 if (rcStrict == VINF_SUCCESS)
429 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp);
430 if (rcStrict == VINF_SUCCESS)
431 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp);
432 if (rcStrict == VINF_SUCCESS)
433 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp);
434 if (rcStrict == VINF_SUCCESS)
435 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp);
436 if (rcStrict == VINF_SUCCESS)
437 {
438 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
439 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
440 }
441 }
442 else
443 {
444 GCPtrBottom--;
445 uint16_t *pa16Mem = NULL;
446 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
447 if (rcStrict == VINF_SUCCESS)
448 {
449 pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di;
450 pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si;
451 pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp;
452 pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp;
453 pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx;
454 pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx;
455 pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx;
456 pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax;
457 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
458 if (rcStrict == VINF_SUCCESS)
459 {
460 iemRegSubFromRsp(pVCpu, 16);
461 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
462 }
463 }
464 }
465 return rcStrict;
466}
467
468
469/**
470 * Implements a 32-bit pusha.
471 */
472IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
473{
474 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
475 RTGCPTR GCPtrBottom = GCPtrTop - 31;
476 VBOXSTRICTRC rcStrict;
477
478 /*
479 * The docs are a bit hard to comprehend here, but it looks like we wrap
480 * around in real mode as long as none of the individual "pusha" crosses the
481 * end of the stack segment. In protected mode we check the whole access
482 * in one go. For efficiency, only do the word-by-word thing if we're in
483 * danger of wrapping around.
484 */
485 /** @todo do pusha boundary / wrap-around checks. */
486 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
487 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
488 {
489 /* word-by-word */
490 RTUINT64U TmpRsp;
491 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
492 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp);
493 if (rcStrict == VINF_SUCCESS)
494 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp);
495 if (rcStrict == VINF_SUCCESS)
496 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp);
497 if (rcStrict == VINF_SUCCESS)
498 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp);
499 if (rcStrict == VINF_SUCCESS)
500 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp);
501 if (rcStrict == VINF_SUCCESS)
502 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp);
503 if (rcStrict == VINF_SUCCESS)
504 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp);
505 if (rcStrict == VINF_SUCCESS)
506 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp);
507 if (rcStrict == VINF_SUCCESS)
508 {
509 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
510 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
511 }
512 }
513 else
514 {
515 GCPtrBottom--;
516 uint32_t *pa32Mem;
517 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
518 if (rcStrict == VINF_SUCCESS)
519 {
520 pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi;
521 pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi;
522 pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp;
523 pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp;
524 pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx;
525 pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx;
526 pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx;
527 pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax;
528 rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
529 if (rcStrict == VINF_SUCCESS)
530 {
531 iemRegSubFromRsp(pVCpu, 32);
532 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
533 }
534 }
535 }
536 return rcStrict;
537}
538
539
540/**
541 * Implements pushf.
542 *
543 *
544 * @param enmEffOpSize The effective operand size.
545 */
546IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
547{
548 VBOXSTRICTRC rcStrict;
549
550 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
551 {
552 Log2(("pushf: Guest intercept -> #VMEXIT\n"));
553 IEM_SVM_UPDATE_NRIP(pVCpu);
554 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
555 }
556
557 /*
558 * If we're in V8086 mode some care is required (which is why we're in
559 * doing this in a C implementation).
560 */
561 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
562 if ( (fEfl & X86_EFL_VM)
563 && X86_EFL_GET_IOPL(fEfl) != 3 )
564 {
565 Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE);
566 if ( enmEffOpSize != IEMMODE_16BIT
567 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
568 return iemRaiseGeneralProtectionFault0(pVCpu);
569 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
570 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
571 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
572 }
573 else
574 {
575
576 /*
577 * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
578 */
579 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
580
581 switch (enmEffOpSize)
582 {
583 case IEMMODE_16BIT:
584 AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
585 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
586 fEfl |= UINT16_C(0xf000);
587 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
588 break;
589 case IEMMODE_32BIT:
590 rcStrict = iemMemStackPushU32(pVCpu, fEfl);
591 break;
592 case IEMMODE_64BIT:
593 rcStrict = iemMemStackPushU64(pVCpu, fEfl);
594 break;
595 IEM_NOT_REACHED_DEFAULT_CASE_RET();
596 }
597 }
598 if (rcStrict != VINF_SUCCESS)
599 return rcStrict;
600
601 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
602 return VINF_SUCCESS;
603}
604
605
606/**
607 * Implements popf.
608 *
609 * @param enmEffOpSize The effective operand size.
610 */
611IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
612{
613 uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu);
614 VBOXSTRICTRC rcStrict;
615 uint32_t fEflNew;
616
617 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
618 {
619 Log2(("popf: Guest intercept -> #VMEXIT\n"));
620 IEM_SVM_UPDATE_NRIP(pVCpu);
621 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
622 }
623
624 /*
625 * V8086 is special as usual.
626 */
627 if (fEflOld & X86_EFL_VM)
628 {
629 /*
630 * Almost anything goes if IOPL is 3.
631 */
632 if (X86_EFL_GET_IOPL(fEflOld) == 3)
633 {
634 switch (enmEffOpSize)
635 {
636 case IEMMODE_16BIT:
637 {
638 uint16_t u16Value;
639 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
640 if (rcStrict != VINF_SUCCESS)
641 return rcStrict;
642 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
643 break;
644 }
645 case IEMMODE_32BIT:
646 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
647 if (rcStrict != VINF_SUCCESS)
648 return rcStrict;
649 break;
650 IEM_NOT_REACHED_DEFAULT_CASE_RET();
651 }
652
653 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
654 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
655 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
656 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
657 }
658 /*
659 * Interrupt flag virtualization with CR4.VME=1.
660 */
661 else if ( enmEffOpSize == IEMMODE_16BIT
662 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
663 {
664 uint16_t u16Value;
665 RTUINT64U TmpRsp;
666 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
667 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
668 if (rcStrict != VINF_SUCCESS)
669 return rcStrict;
670
671 /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
672 * or before? */
673 if ( ( (u16Value & X86_EFL_IF)
674 && (fEflOld & X86_EFL_VIP))
675 || (u16Value & X86_EFL_TF) )
676 return iemRaiseGeneralProtectionFault0(pVCpu);
677
678 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
679 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
680 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
681 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
682
683 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
684 }
685 else
686 return iemRaiseGeneralProtectionFault0(pVCpu);
687
688 }
689 /*
690 * Not in V8086 mode.
691 */
692 else
693 {
694 /* Pop the flags. */
695 switch (enmEffOpSize)
696 {
697 case IEMMODE_16BIT:
698 {
699 uint16_t u16Value;
700 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
701 if (rcStrict != VINF_SUCCESS)
702 return rcStrict;
703 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
704
705 /*
706 * Ancient CPU adjustments:
707 * - 8086, 80186, V20/30:
708 * Fixed bits 15:12 bits are not kept correctly internally, mostly for
709 * practical reasons (masking below). We add them when pushing flags.
710 * - 80286:
711 * The NT and IOPL flags cannot be popped from real mode and are
712 * therefore always zero (since a 286 can never exit from PM and
713 * their initial value is zero). This changed on a 386 and can
714 * therefore be used to detect 286 or 386 CPU in real mode.
715 */
716 if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
717 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
718 fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
719 break;
720 }
721 case IEMMODE_32BIT:
722 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
723 if (rcStrict != VINF_SUCCESS)
724 return rcStrict;
725 break;
726 case IEMMODE_64BIT:
727 {
728 uint64_t u64Value;
729 rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
730 if (rcStrict != VINF_SUCCESS)
731 return rcStrict;
732 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
733 break;
734 }
735 IEM_NOT_REACHED_DEFAULT_CASE_RET();
736 }
737
738 /* Merge them with the current flags. */
739 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
740 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
741 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
742 || pVCpu->iem.s.uCpl == 0)
743 {
744 fEflNew &= fPopfBits;
745 fEflNew |= ~fPopfBits & fEflOld;
746 }
747 else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
748 {
749 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
750 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
751 }
752 else
753 {
754 fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
755 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
756 }
757 }
758
759 /*
760 * Commit the flags.
761 */
762 Assert(fEflNew & RT_BIT_32(1));
763 IEMMISC_SET_EFL(pVCpu, fEflNew);
764 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
765
766 return VINF_SUCCESS;
767}
768
769
770/**
771 * Implements an indirect call.
772 *
773 * @param uNewPC The new program counter (RIP) value (loaded from the
774 * operand).
775 * @param enmEffOpSize The effective operand size.
776 */
777IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
778{
779 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
780 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
781 return iemRaiseGeneralProtectionFault0(pVCpu);
782
783 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
784 if (rcStrict != VINF_SUCCESS)
785 return rcStrict;
786
787 pVCpu->cpum.GstCtx.rip = uNewPC;
788 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
789
790#ifndef IEM_WITH_CODE_TLB
791 /* Flush the prefetch buffer. */
792 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
793#endif
794 return VINF_SUCCESS;
795}
796
797
798/**
799 * Implements a 16-bit relative call.
800 *
801 * @param offDisp The displacment offset.
802 */
803IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
804{
805 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
806 uint16_t uNewPC = uOldPC + offDisp;
807 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
808 return iemRaiseGeneralProtectionFault0(pVCpu);
809
810 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
811 if (rcStrict != VINF_SUCCESS)
812 return rcStrict;
813
814 pVCpu->cpum.GstCtx.rip = uNewPC;
815 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
816
817#ifndef IEM_WITH_CODE_TLB
818 /* Flush the prefetch buffer. */
819 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
820#endif
821 return VINF_SUCCESS;
822}
823
824
825/**
826 * Implements a 32-bit indirect call.
827 *
828 * @param uNewPC The new program counter (RIP) value (loaded from the
829 * operand).
830 * @param enmEffOpSize The effective operand size.
831 */
832IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
833{
834 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
835 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
836 return iemRaiseGeneralProtectionFault0(pVCpu);
837
838 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
839 if (rcStrict != VINF_SUCCESS)
840 return rcStrict;
841
842#if defined(IN_RING3) && defined(VBOX_WITH_RAW_MODE) && defined(VBOX_WITH_CALL_RECORD)
843 /*
844 * CASM hook for recording interesting indirect calls.
845 */
846 if ( !pVCpu->cpum.GstCtx.eflags.Bits.u1IF
847 && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
848 && !CSAMIsEnabled(pVCpu->CTX_SUFF(pVM))
849 && pVCpu->iem.s.uCpl == 0)
850 {
851 EMSTATE enmState = EMGetState(pVCpu);
852 if ( enmState == EMSTATE_IEM_THEN_REM
853 || enmState == EMSTATE_IEM
854 || enmState == EMSTATE_REM)
855 CSAMR3RecordCallAddress(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.eip);
856 }
857#endif
858
859 pVCpu->cpum.GstCtx.rip = uNewPC;
860 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
861
862#ifndef IEM_WITH_CODE_TLB
863 /* Flush the prefetch buffer. */
864 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
865#endif
866 return VINF_SUCCESS;
867}
868
869
870/**
871 * Implements a 32-bit relative call.
872 *
873 * @param offDisp The displacment offset.
874 */
875IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
876{
877 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
878 uint32_t uNewPC = uOldPC + offDisp;
879 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
880 return iemRaiseGeneralProtectionFault0(pVCpu);
881
882 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
883 if (rcStrict != VINF_SUCCESS)
884 return rcStrict;
885
886 pVCpu->cpum.GstCtx.rip = uNewPC;
887 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
888
889#ifndef IEM_WITH_CODE_TLB
890 /* Flush the prefetch buffer. */
891 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
892#endif
893 return VINF_SUCCESS;
894}
895
896
897/**
898 * Implements a 64-bit indirect call.
899 *
900 * @param uNewPC The new program counter (RIP) value (loaded from the
901 * operand).
902 * @param enmEffOpSize The effective operand size.
903 */
904IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
905{
906 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
907 if (!IEM_IS_CANONICAL(uNewPC))
908 return iemRaiseGeneralProtectionFault0(pVCpu);
909
910 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
911 if (rcStrict != VINF_SUCCESS)
912 return rcStrict;
913
914 pVCpu->cpum.GstCtx.rip = uNewPC;
915 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
916
917#ifndef IEM_WITH_CODE_TLB
918 /* Flush the prefetch buffer. */
919 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
920#endif
921 return VINF_SUCCESS;
922}
923
924
925/**
926 * Implements a 64-bit relative call.
927 *
928 * @param offDisp The displacment offset.
929 */
930IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
931{
932 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
933 uint64_t uNewPC = uOldPC + offDisp;
934 if (!IEM_IS_CANONICAL(uNewPC))
935 return iemRaiseNotCanonical(pVCpu);
936
937 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
938 if (rcStrict != VINF_SUCCESS)
939 return rcStrict;
940
941 pVCpu->cpum.GstCtx.rip = uNewPC;
942 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
943
944#ifndef IEM_WITH_CODE_TLB
945 /* Flush the prefetch buffer. */
946 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
947#endif
948
949 return VINF_SUCCESS;
950}
951
952
953/**
954 * Implements far jumps and calls thru task segments (TSS).
955 *
956 * @param uSel The selector.
957 * @param enmBranch The kind of branching we're performing.
958 * @param enmEffOpSize The effective operand size.
959 * @param pDesc The descriptor corresponding to @a uSel. The type is
960 * task gate.
961 */
962IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
963{
964#ifndef IEM_IMPLEMENTS_TASKSWITCH
965 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
966#else
967 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
968 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
969 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
970 RT_NOREF_PV(enmEffOpSize);
971 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
972
973 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
974 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
975 {
976 Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
977 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
978 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
979 }
980
981 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
982 * far calls (see iemCImpl_callf). Most likely in both cases it should be
983 * checked here, need testcases. */
984 if (!pDesc->Legacy.Gen.u1Present)
985 {
986 Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
987 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
988 }
989
990 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
991 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
992 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
993#endif
994}
995
996
997/**
998 * Implements far jumps and calls thru task gates.
999 *
1000 * @param uSel The selector.
1001 * @param enmBranch The kind of branching we're performing.
1002 * @param enmEffOpSize The effective operand size.
1003 * @param pDesc The descriptor corresponding to @a uSel. The type is
1004 * task gate.
1005 */
1006IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1007{
1008#ifndef IEM_IMPLEMENTS_TASKSWITCH
1009 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1010#else
1011 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1012 RT_NOREF_PV(enmEffOpSize);
1013 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1014
1015 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1016 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1017 {
1018 Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1019 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1020 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1021 }
1022
1023 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1024 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1025 * checked here, need testcases. */
1026 if (!pDesc->Legacy.Gen.u1Present)
1027 {
1028 Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
1029 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1030 }
1031
1032 /*
1033 * Fetch the new TSS descriptor from the GDT.
1034 */
1035 RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
1036 if (uSelTss & X86_SEL_LDT)
1037 {
1038 Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
1039 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1040 }
1041
1042 IEMSELDESC TssDesc;
1043 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
1044 if (rcStrict != VINF_SUCCESS)
1045 return rcStrict;
1046
1047 if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
1048 {
1049 Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
1050 TssDesc.Legacy.Gate.u4Type));
1051 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1052 }
1053
1054 if (!TssDesc.Legacy.Gate.u1Present)
1055 {
1056 Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
1057 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
1058 }
1059
1060 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1061 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1062 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
1063#endif
1064}
1065
1066
1067/**
1068 * Implements far jumps and calls thru call gates.
1069 *
1070 * @param uSel The selector.
1071 * @param enmBranch The kind of branching we're performing.
1072 * @param enmEffOpSize The effective operand size.
1073 * @param pDesc The descriptor corresponding to @a uSel. The type is
1074 * call gate.
1075 */
1076IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1077{
1078#define IEM_IMPLEMENTS_CALLGATE
1079#ifndef IEM_IMPLEMENTS_CALLGATE
1080 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1081#else
1082 RT_NOREF_PV(enmEffOpSize);
1083 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1084
1085 /* NB: Far jumps can only do intra-privilege transfers. Far calls support
1086 * inter-privilege calls and are much more complex.
1087 *
1088 * NB: 64-bit call gate has the same type as a 32-bit call gate! If
1089 * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
1090 * must be 16-bit or 32-bit.
1091 */
1092 /** @todo: effective operand size is probably irrelevant here, only the
1093 * call gate bitness matters??
1094 */
1095 VBOXSTRICTRC rcStrict;
1096 RTPTRUNION uPtrRet;
1097 uint64_t uNewRsp;
1098 uint64_t uNewRip;
1099 uint64_t u64Base;
1100 uint32_t cbLimit;
1101 RTSEL uNewCS;
1102 IEMSELDESC DescCS;
1103
1104 AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
1105 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1106 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
1107 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
1108
1109 /* Determine the new instruction pointer from the gate descriptor. */
1110 uNewRip = pDesc->Legacy.Gate.u16OffsetLow
1111 | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
1112 | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
1113
1114 /* Perform DPL checks on the gate descriptor. */
1115 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1116 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1117 {
1118 Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1119 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1120 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1121 }
1122
1123 /** @todo does this catch NULL selectors, too? */
1124 if (!pDesc->Legacy.Gen.u1Present)
1125 {
1126 Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
1127 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1128 }
1129
1130 /*
1131 * Fetch the target CS descriptor from the GDT or LDT.
1132 */
1133 uNewCS = pDesc->Legacy.Gate.u16Sel;
1134 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
1135 if (rcStrict != VINF_SUCCESS)
1136 return rcStrict;
1137
1138 /* Target CS must be a code selector. */
1139 if ( !DescCS.Legacy.Gen.u1DescType
1140 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1141 {
1142 Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1143 uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
1144 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1145 }
1146
1147 /* Privilege checks on target CS. */
1148 if (enmBranch == IEMBRANCH_JUMP)
1149 {
1150 if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1151 {
1152 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1153 {
1154 Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1155 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1156 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1157 }
1158 }
1159 else
1160 {
1161 if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
1162 {
1163 Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1164 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1165 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1166 }
1167 }
1168 }
1169 else
1170 {
1171 Assert(enmBranch == IEMBRANCH_CALL);
1172 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1173 {
1174 Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1175 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1176 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
1177 }
1178 }
1179
1180 /* Additional long mode checks. */
1181 if (IEM_IS_LONG_MODE(pVCpu))
1182 {
1183 if (!DescCS.Legacy.Gen.u1Long)
1184 {
1185 Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
1186 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1187 }
1188
1189 /* L vs D. */
1190 if ( DescCS.Legacy.Gen.u1Long
1191 && DescCS.Legacy.Gen.u1DefBig)
1192 {
1193 Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
1194 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1195 }
1196 }
1197
1198 if (!DescCS.Legacy.Gate.u1Present)
1199 {
1200 Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
1201 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
1202 }
1203
1204 if (enmBranch == IEMBRANCH_JUMP)
1205 {
1206 /** @todo: This is very similar to regular far jumps; merge! */
1207 /* Jumps are fairly simple... */
1208
1209 /* Chop the high bits off if 16-bit gate (Intel says so). */
1210 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1211 uNewRip = (uint16_t)uNewRip;
1212
1213 /* Limit check for non-long segments. */
1214 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1215 if (DescCS.Legacy.Gen.u1Long)
1216 u64Base = 0;
1217 else
1218 {
1219 if (uNewRip > cbLimit)
1220 {
1221 Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
1222 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1223 }
1224 u64Base = X86DESC_BASE(&DescCS.Legacy);
1225 }
1226
1227 /* Canonical address check. */
1228 if (!IEM_IS_CANONICAL(uNewRip))
1229 {
1230 Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1231 return iemRaiseNotCanonical(pVCpu);
1232 }
1233
1234 /*
1235 * Ok, everything checked out fine. Now set the accessed bit before
1236 * committing the result into CS, CSHID and RIP.
1237 */
1238 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1239 {
1240 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1241 if (rcStrict != VINF_SUCCESS)
1242 return rcStrict;
1243 /** @todo check what VT-x and AMD-V does. */
1244 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1245 }
1246
1247 /* commit */
1248 pVCpu->cpum.GstCtx.rip = uNewRip;
1249 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1250 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1251 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1252 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1253 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1254 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1255 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1256 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1257 }
1258 else
1259 {
1260 Assert(enmBranch == IEMBRANCH_CALL);
1261 /* Calls are much more complicated. */
1262
1263 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
1264 {
1265 uint16_t offNewStack; /* Offset of new stack in TSS. */
1266 uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
1267 uint8_t uNewCSDpl;
1268 uint8_t cbWords;
1269 RTSEL uNewSS;
1270 RTSEL uOldSS;
1271 uint64_t uOldRsp;
1272 IEMSELDESC DescSS;
1273 RTPTRUNION uPtrTSS;
1274 RTGCPTR GCPtrTSS;
1275 RTPTRUNION uPtrParmWds;
1276 RTGCPTR GCPtrParmWds;
1277
1278 /* More privilege. This is the fun part. */
1279 Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
1280
1281 /*
1282 * Determine new SS:rSP from the TSS.
1283 */
1284 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
1285
1286 /* Figure out where the new stack pointer is stored in the TSS. */
1287 uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
1288 if (!IEM_IS_LONG_MODE(pVCpu))
1289 {
1290 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1291 {
1292 offNewStack = RT_UOFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
1293 cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
1294 }
1295 else
1296 {
1297 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1298 offNewStack = RT_UOFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
1299 cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
1300 }
1301 }
1302 else
1303 {
1304 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1305 offNewStack = RT_UOFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
1306 cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
1307 }
1308
1309 /* Check against TSS limit. */
1310 if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit)
1311 {
1312 Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit));
1313 return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel);
1314 }
1315
1316 GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack;
1317 rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
1318 if (rcStrict != VINF_SUCCESS)
1319 {
1320 Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1321 return rcStrict;
1322 }
1323
1324 if (!IEM_IS_LONG_MODE(pVCpu))
1325 {
1326 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1327 {
1328 uNewRsp = uPtrTSS.pu32[0];
1329 uNewSS = uPtrTSS.pu16[2];
1330 }
1331 else
1332 {
1333 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1334 uNewRsp = uPtrTSS.pu16[0];
1335 uNewSS = uPtrTSS.pu16[1];
1336 }
1337 }
1338 else
1339 {
1340 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1341 /* SS will be a NULL selector, but that's valid. */
1342 uNewRsp = uPtrTSS.pu64[0];
1343 uNewSS = uNewCSDpl;
1344 }
1345
1346 /* Done with the TSS now. */
1347 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
1348 if (rcStrict != VINF_SUCCESS)
1349 {
1350 Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1351 return rcStrict;
1352 }
1353
1354 /* Only used outside of long mode. */
1355 cbWords = pDesc->Legacy.Gate.u5ParmCount;
1356
1357 /* If EFER.LMA is 0, there's extra work to do. */
1358 if (!IEM_IS_LONG_MODE(pVCpu))
1359 {
1360 if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
1361 {
1362 Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
1363 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1364 }
1365
1366 /* Grab the new SS descriptor. */
1367 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1368 if (rcStrict != VINF_SUCCESS)
1369 return rcStrict;
1370
1371 /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
1372 if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
1373 || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
1374 {
1375 Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
1376 uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
1377 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1378 }
1379
1380 /* Ensure new SS is a writable data segment. */
1381 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
1382 {
1383 Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
1384 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1385 }
1386
1387 if (!DescSS.Legacy.Gen.u1Present)
1388 {
1389 Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
1390 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
1391 }
1392 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1393 cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
1394 else
1395 cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
1396 }
1397 else
1398 {
1399 /* Just grab the new (NULL) SS descriptor. */
1400 /** @todo testcase: Check whether the zero GDT entry is actually loaded here
1401 * like we do... */
1402 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1403 if (rcStrict != VINF_SUCCESS)
1404 return rcStrict;
1405
1406 cbNewStack = sizeof(uint64_t) * 4;
1407 }
1408
1409 /** @todo: According to Intel, new stack is checked for enough space first,
1410 * then switched. According to AMD, the stack is switched first and
1411 * then pushes might fault!
1412 * NB: OS/2 Warp 3/4 actively relies on the fact that possible
1413 * incoming stack #PF happens before actual stack switch. AMD is
1414 * either lying or implicitly assumes that new state is committed
1415 * only if and when an instruction doesn't fault.
1416 */
1417
1418 /** @todo: According to AMD, CS is loaded first, then SS.
1419 * According to Intel, it's the other way around!?
1420 */
1421
1422 /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
1423
1424 /* Set the accessed bit before committing new SS. */
1425 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1426 {
1427 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
1428 if (rcStrict != VINF_SUCCESS)
1429 return rcStrict;
1430 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1431 }
1432
1433 /* Remember the old SS:rSP and their linear address. */
1434 uOldSS = pVCpu->cpum.GstCtx.ss.Sel;
1435 uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp;
1436
1437 GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp;
1438
1439 /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
1440 or #PF, the former is not implemented in this workaround. */
1441 /** @todo Proper fix callgate target stack exceptions. */
1442 /** @todo testcase: Cover callgates with partially or fully inaccessible
1443 * target stacks. */
1444 void *pvNewFrame;
1445 RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
1446 rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW);
1447 if (rcStrict != VINF_SUCCESS)
1448 {
1449 Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
1450 return rcStrict;
1451 }
1452 rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
1453 if (rcStrict != VINF_SUCCESS)
1454 {
1455 Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1456 return rcStrict;
1457 }
1458
1459 /* Commit new SS:rSP. */
1460 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
1461 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
1462 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
1463 pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
1464 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
1465 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1466 pVCpu->cpum.GstCtx.rsp = uNewRsp;
1467 pVCpu->iem.s.uCpl = uNewCSDpl;
1468 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
1469 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
1470
1471 /* At this point the stack access must not fail because new state was already committed. */
1472 /** @todo this can still fail due to SS.LIMIT not check. */
1473 rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
1474 &uPtrRet.pv, &uNewRsp);
1475 AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
1476 VERR_INTERNAL_ERROR_5);
1477
1478 if (!IEM_IS_LONG_MODE(pVCpu))
1479 {
1480 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1481 {
1482 /* Push the old CS:rIP. */
1483 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1484 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1485
1486 if (cbWords)
1487 {
1488 /* Map the relevant chunk of the old stack. */
1489 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1490 if (rcStrict != VINF_SUCCESS)
1491 {
1492 Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1493 return rcStrict;
1494 }
1495
1496 /* Copy the parameter (d)words. */
1497 for (int i = 0; i < cbWords; ++i)
1498 uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
1499
1500 /* Unmap the old stack. */
1501 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1502 if (rcStrict != VINF_SUCCESS)
1503 {
1504 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1505 return rcStrict;
1506 }
1507 }
1508
1509 /* Push the old SS:rSP. */
1510 uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
1511 uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
1512 }
1513 else
1514 {
1515 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1516
1517 /* Push the old CS:rIP. */
1518 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1519 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1520
1521 if (cbWords)
1522 {
1523 /* Map the relevant chunk of the old stack. */
1524 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1525 if (rcStrict != VINF_SUCCESS)
1526 {
1527 Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1528 return rcStrict;
1529 }
1530
1531 /* Copy the parameter words. */
1532 for (int i = 0; i < cbWords; ++i)
1533 uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
1534
1535 /* Unmap the old stack. */
1536 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1537 if (rcStrict != VINF_SUCCESS)
1538 {
1539 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1540 return rcStrict;
1541 }
1542 }
1543
1544 /* Push the old SS:rSP. */
1545 uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
1546 uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
1547 }
1548 }
1549 else
1550 {
1551 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1552
1553 /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
1554 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1555 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1556 uPtrRet.pu64[2] = uOldRsp;
1557 uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
1558 }
1559
1560 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1561 if (rcStrict != VINF_SUCCESS)
1562 {
1563 Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1564 return rcStrict;
1565 }
1566
1567 /* Chop the high bits off if 16-bit gate (Intel says so). */
1568 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1569 uNewRip = (uint16_t)uNewRip;
1570
1571 /* Limit / canonical check. */
1572 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1573 if (!IEM_IS_LONG_MODE(pVCpu))
1574 {
1575 if (uNewRip > cbLimit)
1576 {
1577 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1578 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1579 }
1580 u64Base = X86DESC_BASE(&DescCS.Legacy);
1581 }
1582 else
1583 {
1584 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1585 if (!IEM_IS_CANONICAL(uNewRip))
1586 {
1587 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1588 return iemRaiseNotCanonical(pVCpu);
1589 }
1590 u64Base = 0;
1591 }
1592
1593 /*
1594 * Now set the accessed bit before
1595 * writing the return address to the stack and committing the result into
1596 * CS, CSHID and RIP.
1597 */
1598 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1599 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1600 {
1601 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1602 if (rcStrict != VINF_SUCCESS)
1603 return rcStrict;
1604 /** @todo check what VT-x and AMD-V does. */
1605 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1606 }
1607
1608 /* Commit new CS:rIP. */
1609 pVCpu->cpum.GstCtx.rip = uNewRip;
1610 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1611 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1612 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1613 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1614 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1615 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1616 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1617 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1618 }
1619 else
1620 {
1621 /* Same privilege. */
1622 /** @todo: This is very similar to regular far calls; merge! */
1623
1624 /* Check stack first - may #SS(0). */
1625 /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
1626 * 16-bit code cause a two or four byte CS to be pushed? */
1627 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
1628 IEM_IS_LONG_MODE(pVCpu) ? 8+8
1629 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
1630 &uPtrRet.pv, &uNewRsp);
1631 if (rcStrict != VINF_SUCCESS)
1632 return rcStrict;
1633
1634 /* Chop the high bits off if 16-bit gate (Intel says so). */
1635 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1636 uNewRip = (uint16_t)uNewRip;
1637
1638 /* Limit / canonical check. */
1639 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1640 if (!IEM_IS_LONG_MODE(pVCpu))
1641 {
1642 if (uNewRip > cbLimit)
1643 {
1644 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1645 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1646 }
1647 u64Base = X86DESC_BASE(&DescCS.Legacy);
1648 }
1649 else
1650 {
1651 if (!IEM_IS_CANONICAL(uNewRip))
1652 {
1653 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1654 return iemRaiseNotCanonical(pVCpu);
1655 }
1656 u64Base = 0;
1657 }
1658
1659 /*
1660 * Now set the accessed bit before
1661 * writing the return address to the stack and committing the result into
1662 * CS, CSHID and RIP.
1663 */
1664 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1665 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1666 {
1667 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1668 if (rcStrict != VINF_SUCCESS)
1669 return rcStrict;
1670 /** @todo check what VT-x and AMD-V does. */
1671 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1672 }
1673
1674 /* stack */
1675 if (!IEM_IS_LONG_MODE(pVCpu))
1676 {
1677 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1678 {
1679 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1680 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1681 }
1682 else
1683 {
1684 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1685 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1686 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1687 }
1688 }
1689 else
1690 {
1691 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1692 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1693 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1694 }
1695
1696 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1697 if (rcStrict != VINF_SUCCESS)
1698 return rcStrict;
1699
1700 /* commit */
1701 pVCpu->cpum.GstCtx.rip = uNewRip;
1702 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1703 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1704 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1705 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1706 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1707 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1708 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1709 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1710 }
1711 }
1712 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1713
1714 /* Flush the prefetch buffer. */
1715# ifdef IEM_WITH_CODE_TLB
1716 pVCpu->iem.s.pbInstrBuf = NULL;
1717# else
1718 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1719# endif
1720 return VINF_SUCCESS;
1721#endif
1722}
1723
1724
1725/**
1726 * Implements far jumps and calls thru system selectors.
1727 *
1728 * @param uSel The selector.
1729 * @param enmBranch The kind of branching we're performing.
1730 * @param enmEffOpSize The effective operand size.
1731 * @param pDesc The descriptor corresponding to @a uSel.
1732 */
1733IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1734{
1735 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1736 Assert((uSel & X86_SEL_MASK_OFF_RPL));
1737 IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1738
1739 if (IEM_IS_LONG_MODE(pVCpu))
1740 switch (pDesc->Legacy.Gen.u4Type)
1741 {
1742 case AMD64_SEL_TYPE_SYS_CALL_GATE:
1743 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1744
1745 default:
1746 case AMD64_SEL_TYPE_SYS_LDT:
1747 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
1748 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
1749 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
1750 case AMD64_SEL_TYPE_SYS_INT_GATE:
1751 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1752 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1753 }
1754
1755 switch (pDesc->Legacy.Gen.u4Type)
1756 {
1757 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1758 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1759 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1760
1761 case X86_SEL_TYPE_SYS_TASK_GATE:
1762 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
1763
1764 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1765 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1766 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
1767
1768 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1769 Log(("branch %04x -> busy 286 TSS\n", uSel));
1770 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1771
1772 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1773 Log(("branch %04x -> busy 386 TSS\n", uSel));
1774 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1775
1776 default:
1777 case X86_SEL_TYPE_SYS_LDT:
1778 case X86_SEL_TYPE_SYS_286_INT_GATE:
1779 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1780 case X86_SEL_TYPE_SYS_386_INT_GATE:
1781 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1782 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1783 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1784 }
1785}
1786
1787
1788/**
1789 * Implements far jumps.
1790 *
1791 * @param uSel The selector.
1792 * @param offSeg The segment offset.
1793 * @param enmEffOpSize The effective operand size.
1794 */
1795IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1796{
1797 NOREF(cbInstr);
1798 Assert(offSeg <= UINT32_MAX);
1799
1800 /*
1801 * Real mode and V8086 mode are easy. The only snag seems to be that
1802 * CS.limit doesn't change and the limit check is done against the current
1803 * limit.
1804 */
1805 /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August
1806 * 1998) that up to and including the Intel 486, far control
1807 * transfers in real mode set default CS attributes (0x93) and also
1808 * set a 64K segment limit. Starting with the Pentium, the
1809 * attributes and limit are left alone but the access rights are
1810 * ignored. We only implement the Pentium+ behavior.
1811 * */
1812 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1813 {
1814 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1815 if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit)
1816 {
1817 Log(("iemCImpl_FarJmp: 16-bit limit\n"));
1818 return iemRaiseGeneralProtectionFault0(pVCpu);
1819 }
1820
1821 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1822 pVCpu->cpum.GstCtx.rip = offSeg;
1823 else
1824 pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX;
1825 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1826 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1827 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1828 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1829 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1830 return VINF_SUCCESS;
1831 }
1832
1833 /*
1834 * Protected mode. Need to parse the specified descriptor...
1835 */
1836 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1837 {
1838 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1839 return iemRaiseGeneralProtectionFault0(pVCpu);
1840 }
1841
1842 /* Fetch the descriptor. */
1843 IEMSELDESC Desc;
1844 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
1845 if (rcStrict != VINF_SUCCESS)
1846 return rcStrict;
1847
1848 /* Is it there? */
1849 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1850 {
1851 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1852 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1853 }
1854
1855 /*
1856 * Deal with it according to its type. We do the standard code selectors
1857 * here and dispatch the system selectors to worker functions.
1858 */
1859 if (!Desc.Legacy.Gen.u1DescType)
1860 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1861
1862 /* Only code segments. */
1863 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1864 {
1865 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1866 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1867 }
1868
1869 /* L vs D. */
1870 if ( Desc.Legacy.Gen.u1Long
1871 && Desc.Legacy.Gen.u1DefBig
1872 && IEM_IS_LONG_MODE(pVCpu))
1873 {
1874 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1875 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1876 }
1877
1878 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1879 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1880 {
1881 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
1882 {
1883 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1884 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1885 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1886 }
1887 }
1888 else
1889 {
1890 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
1891 {
1892 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1893 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1894 }
1895 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
1896 {
1897 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
1898 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1899 }
1900 }
1901
1902 /* Chop the high bits if 16-bit (Intel says so). */
1903 if (enmEffOpSize == IEMMODE_16BIT)
1904 offSeg &= UINT16_MAX;
1905
1906 /* Limit check. (Should alternatively check for non-canonical addresses
1907 here, but that is ruled out by offSeg being 32-bit, right?) */
1908 uint64_t u64Base;
1909 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1910 if (Desc.Legacy.Gen.u1Long)
1911 u64Base = 0;
1912 else
1913 {
1914 if (offSeg > cbLimit)
1915 {
1916 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1917 /** @todo: Intel says this is #GP(0)! */
1918 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1919 }
1920 u64Base = X86DESC_BASE(&Desc.Legacy);
1921 }
1922
1923 /*
1924 * Ok, everything checked out fine. Now set the accessed bit before
1925 * committing the result into CS, CSHID and RIP.
1926 */
1927 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1928 {
1929 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
1930 if (rcStrict != VINF_SUCCESS)
1931 return rcStrict;
1932 /** @todo check what VT-x and AMD-V does. */
1933 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1934 }
1935
1936 /* commit */
1937 pVCpu->cpum.GstCtx.rip = offSeg;
1938 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1939 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1940 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1941 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1942 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1943 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1944 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1945 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1946 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1947 /** @todo check if the hidden bits are loaded correctly for 64-bit
1948 * mode. */
1949
1950 /* Flush the prefetch buffer. */
1951#ifdef IEM_WITH_CODE_TLB
1952 pVCpu->iem.s.pbInstrBuf = NULL;
1953#else
1954 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1955#endif
1956
1957 return VINF_SUCCESS;
1958}
1959
1960
1961/**
1962 * Implements far calls.
1963 *
1964 * This very similar to iemCImpl_FarJmp.
1965 *
1966 * @param uSel The selector.
1967 * @param offSeg The segment offset.
1968 * @param enmEffOpSize The operand size (in case we need it).
1969 */
1970IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1971{
1972 VBOXSTRICTRC rcStrict;
1973 uint64_t uNewRsp;
1974 RTPTRUNION uPtrRet;
1975
1976 /*
1977 * Real mode and V8086 mode are easy. The only snag seems to be that
1978 * CS.limit doesn't change and the limit check is done against the current
1979 * limit.
1980 */
1981 /** @todo See comment for similar code in iemCImpl_FarJmp */
1982 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1983 {
1984 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1985
1986 /* Check stack first - may #SS(0). */
1987 rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
1988 &uPtrRet.pv, &uNewRsp);
1989 if (rcStrict != VINF_SUCCESS)
1990 return rcStrict;
1991
1992 /* Check the target address range. */
1993 if (offSeg > UINT32_MAX)
1994 return iemRaiseGeneralProtectionFault0(pVCpu);
1995
1996 /* Everything is fine, push the return address. */
1997 if (enmEffOpSize == IEMMODE_16BIT)
1998 {
1999 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2000 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2001 }
2002 else
2003 {
2004 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2005 uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel;
2006 }
2007 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2008 if (rcStrict != VINF_SUCCESS)
2009 return rcStrict;
2010
2011 /* Branch. */
2012 pVCpu->cpum.GstCtx.rip = offSeg;
2013 pVCpu->cpum.GstCtx.cs.Sel = uSel;
2014 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
2015 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2016 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
2017 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2018 return VINF_SUCCESS;
2019 }
2020
2021 /*
2022 * Protected mode. Need to parse the specified descriptor...
2023 */
2024 if (!(uSel & X86_SEL_MASK_OFF_RPL))
2025 {
2026 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
2027 return iemRaiseGeneralProtectionFault0(pVCpu);
2028 }
2029
2030 /* Fetch the descriptor. */
2031 IEMSELDESC Desc;
2032 rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
2033 if (rcStrict != VINF_SUCCESS)
2034 return rcStrict;
2035
2036 /*
2037 * Deal with it according to its type. We do the standard code selectors
2038 * here and dispatch the system selectors to worker functions.
2039 */
2040 if (!Desc.Legacy.Gen.u1DescType)
2041 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
2042
2043 /* Only code segments. */
2044 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2045 {
2046 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
2047 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2048 }
2049
2050 /* L vs D. */
2051 if ( Desc.Legacy.Gen.u1Long
2052 && Desc.Legacy.Gen.u1DefBig
2053 && IEM_IS_LONG_MODE(pVCpu))
2054 {
2055 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
2056 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2057 }
2058
2059 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
2060 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2061 {
2062 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
2063 {
2064 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
2065 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2066 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2067 }
2068 }
2069 else
2070 {
2071 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
2072 {
2073 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2074 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2075 }
2076 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
2077 {
2078 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
2079 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2080 }
2081 }
2082
2083 /* Is it there? */
2084 if (!Desc.Legacy.Gen.u1Present)
2085 {
2086 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
2087 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
2088 }
2089
2090 /* Check stack first - may #SS(0). */
2091 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
2092 * 16-bit code cause a two or four byte CS to be pushed? */
2093 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
2094 enmEffOpSize == IEMMODE_64BIT ? 8+8
2095 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2096 &uPtrRet.pv, &uNewRsp);
2097 if (rcStrict != VINF_SUCCESS)
2098 return rcStrict;
2099
2100 /* Chop the high bits if 16-bit (Intel says so). */
2101 if (enmEffOpSize == IEMMODE_16BIT)
2102 offSeg &= UINT16_MAX;
2103
2104 /* Limit / canonical check. */
2105 uint64_t u64Base;
2106 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
2107 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2108 {
2109 if (!IEM_IS_CANONICAL(offSeg))
2110 {
2111 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
2112 return iemRaiseNotCanonical(pVCpu);
2113 }
2114 u64Base = 0;
2115 }
2116 else
2117 {
2118 if (offSeg > cbLimit)
2119 {
2120 Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
2121 /** @todo: Intel says this is #GP(0)! */
2122 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2123 }
2124 u64Base = X86DESC_BASE(&Desc.Legacy);
2125 }
2126
2127 /*
2128 * Now set the accessed bit before
2129 * writing the return address to the stack and committing the result into
2130 * CS, CSHID and RIP.
2131 */
2132 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2133 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2134 {
2135 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
2136 if (rcStrict != VINF_SUCCESS)
2137 return rcStrict;
2138 /** @todo check what VT-x and AMD-V does. */
2139 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2140 }
2141
2142 /* stack */
2143 if (enmEffOpSize == IEMMODE_16BIT)
2144 {
2145 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2146 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2147 }
2148 else if (enmEffOpSize == IEMMODE_32BIT)
2149 {
2150 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2151 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
2152 }
2153 else
2154 {
2155 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
2156 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
2157 }
2158 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2159 if (rcStrict != VINF_SUCCESS)
2160 return rcStrict;
2161
2162 /* commit */
2163 pVCpu->cpum.GstCtx.rip = offSeg;
2164 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
2165 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
2166 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
2167 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2168 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
2169 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
2170 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2171 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2172 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2173 /** @todo check if the hidden bits are loaded correctly for 64-bit
2174 * mode. */
2175
2176 /* Flush the prefetch buffer. */
2177#ifdef IEM_WITH_CODE_TLB
2178 pVCpu->iem.s.pbInstrBuf = NULL;
2179#else
2180 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2181#endif
2182 return VINF_SUCCESS;
2183}
2184
2185
2186/**
2187 * Implements retf.
2188 *
2189 * @param enmEffOpSize The effective operand size.
2190 * @param cbPop The amount of arguments to pop from the stack
2191 * (bytes).
2192 */
2193IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2194{
2195 VBOXSTRICTRC rcStrict;
2196 RTCPTRUNION uPtrFrame;
2197 uint64_t uNewRsp;
2198 uint64_t uNewRip;
2199 uint16_t uNewCs;
2200 NOREF(cbInstr);
2201
2202 /*
2203 * Read the stack values first.
2204 */
2205 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
2206 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
2207 rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2208 if (rcStrict != VINF_SUCCESS)
2209 return rcStrict;
2210 if (enmEffOpSize == IEMMODE_16BIT)
2211 {
2212 uNewRip = uPtrFrame.pu16[0];
2213 uNewCs = uPtrFrame.pu16[1];
2214 }
2215 else if (enmEffOpSize == IEMMODE_32BIT)
2216 {
2217 uNewRip = uPtrFrame.pu32[0];
2218 uNewCs = uPtrFrame.pu16[2];
2219 }
2220 else
2221 {
2222 uNewRip = uPtrFrame.pu64[0];
2223 uNewCs = uPtrFrame.pu16[4];
2224 }
2225 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2226 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2227 { /* extremely likely */ }
2228 else
2229 return rcStrict;
2230
2231 /*
2232 * Real mode and V8086 mode are easy.
2233 */
2234 /** @todo See comment for similar code in iemCImpl_FarJmp */
2235 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2236 {
2237 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2238 /** @todo check how this is supposed to work if sp=0xfffe. */
2239
2240 /* Check the limit of the new EIP. */
2241 /** @todo Intel pseudo code only does the limit check for 16-bit
2242 * operands, AMD does not make any distinction. What is right? */
2243 if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit)
2244 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2245
2246 /* commit the operation. */
2247 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2248 pVCpu->cpum.GstCtx.rip = uNewRip;
2249 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2250 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2251 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2252 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2253 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2254 if (cbPop)
2255 iemRegAddToRsp(pVCpu, cbPop);
2256 return VINF_SUCCESS;
2257 }
2258
2259 /*
2260 * Protected mode is complicated, of course.
2261 */
2262 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2263 {
2264 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
2265 return iemRaiseGeneralProtectionFault0(pVCpu);
2266 }
2267
2268 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
2269
2270 /* Fetch the descriptor. */
2271 IEMSELDESC DescCs;
2272 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
2273 if (rcStrict != VINF_SUCCESS)
2274 return rcStrict;
2275
2276 /* Can only return to a code selector. */
2277 if ( !DescCs.Legacy.Gen.u1DescType
2278 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
2279 {
2280 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
2281 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
2282 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2283 }
2284
2285 /* L vs D. */
2286 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
2287 && DescCs.Legacy.Gen.u1DefBig
2288 && IEM_IS_LONG_MODE(pVCpu))
2289 {
2290 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
2291 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2292 }
2293
2294 /* DPL/RPL/CPL checks. */
2295 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
2296 {
2297 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
2298 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2299 }
2300
2301 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2302 {
2303 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
2304 {
2305 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
2306 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2307 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2308 }
2309 }
2310 else
2311 {
2312 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
2313 {
2314 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
2315 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2316 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2317 }
2318 }
2319
2320 /* Is it there? */
2321 if (!DescCs.Legacy.Gen.u1Present)
2322 {
2323 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
2324 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2325 }
2326
2327 /*
2328 * Return to outer privilege? (We'll typically have entered via a call gate.)
2329 */
2330 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
2331 {
2332 /* Read the outer stack pointer stored *after* the parameters. */
2333 rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2334 if (rcStrict != VINF_SUCCESS)
2335 return rcStrict;
2336
2337 uPtrFrame.pu8 += cbPop; /* Skip the parameters. */
2338
2339 uint16_t uNewOuterSs;
2340 uint64_t uNewOuterRsp;
2341 if (enmEffOpSize == IEMMODE_16BIT)
2342 {
2343 uNewOuterRsp = uPtrFrame.pu16[0];
2344 uNewOuterSs = uPtrFrame.pu16[1];
2345 }
2346 else if (enmEffOpSize == IEMMODE_32BIT)
2347 {
2348 uNewOuterRsp = uPtrFrame.pu32[0];
2349 uNewOuterSs = uPtrFrame.pu16[2];
2350 }
2351 else
2352 {
2353 uNewOuterRsp = uPtrFrame.pu64[0];
2354 uNewOuterSs = uPtrFrame.pu16[4];
2355 }
2356 uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */
2357 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2358 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2359 { /* extremely likely */ }
2360 else
2361 return rcStrict;
2362
2363 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
2364 and read the selector. */
2365 IEMSELDESC DescSs;
2366 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
2367 {
2368 if ( !DescCs.Legacy.Gen.u1Long
2369 || (uNewOuterSs & X86_SEL_RPL) == 3)
2370 {
2371 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
2372 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2373 return iemRaiseGeneralProtectionFault0(pVCpu);
2374 }
2375 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
2376 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
2377 }
2378 else
2379 {
2380 /* Fetch the descriptor for the new stack segment. */
2381 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
2382 if (rcStrict != VINF_SUCCESS)
2383 return rcStrict;
2384 }
2385
2386 /* Check that RPL of stack and code selectors match. */
2387 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
2388 {
2389 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2390 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2391 }
2392
2393 /* Must be a writable data segment. */
2394 if ( !DescSs.Legacy.Gen.u1DescType
2395 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
2396 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
2397 {
2398 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
2399 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2400 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2401 }
2402
2403 /* L vs D. (Not mentioned by intel.) */
2404 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
2405 && DescSs.Legacy.Gen.u1DefBig
2406 && IEM_IS_LONG_MODE(pVCpu))
2407 {
2408 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
2409 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2410 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2411 }
2412
2413 /* DPL/RPL/CPL checks. */
2414 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2415 {
2416 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
2417 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
2418 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2419 }
2420
2421 /* Is it there? */
2422 if (!DescSs.Legacy.Gen.u1Present)
2423 {
2424 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2425 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2426 }
2427
2428 /* Calc SS limit.*/
2429 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
2430
2431 /* Is RIP canonical or within CS.limit? */
2432 uint64_t u64Base;
2433 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2434
2435 /** @todo Testcase: Is this correct? */
2436 if ( DescCs.Legacy.Gen.u1Long
2437 && IEM_IS_LONG_MODE(pVCpu) )
2438 {
2439 if (!IEM_IS_CANONICAL(uNewRip))
2440 {
2441 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2442 return iemRaiseNotCanonical(pVCpu);
2443 }
2444 u64Base = 0;
2445 }
2446 else
2447 {
2448 if (uNewRip > cbLimitCs)
2449 {
2450 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
2451 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
2452 /** @todo: Intel says this is #GP(0)! */
2453 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2454 }
2455 u64Base = X86DESC_BASE(&DescCs.Legacy);
2456 }
2457
2458 /*
2459 * Now set the accessed bit before
2460 * writing the return address to the stack and committing the result into
2461 * CS, CSHID and RIP.
2462 */
2463 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
2464 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2465 {
2466 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2467 if (rcStrict != VINF_SUCCESS)
2468 return rcStrict;
2469 /** @todo check what VT-x and AMD-V does. */
2470 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2471 }
2472 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
2473 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2474 {
2475 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
2476 if (rcStrict != VINF_SUCCESS)
2477 return rcStrict;
2478 /** @todo check what VT-x and AMD-V does. */
2479 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2480 }
2481
2482 /* commit */
2483 if (enmEffOpSize == IEMMODE_16BIT)
2484 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2485 else
2486 pVCpu->cpum.GstCtx.rip = uNewRip;
2487 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2488 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2489 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2490 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2491 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2492 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2493 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2494 pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs;
2495 pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs;
2496 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
2497 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
2498 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
2499 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2500 pVCpu->cpum.GstCtx.ss.u64Base = 0;
2501 else
2502 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
2503 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2504 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewOuterRsp;
2505 else
2506 pVCpu->cpum.GstCtx.rsp = uNewOuterRsp;
2507
2508 pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
2509 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
2510 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
2511 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
2512 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
2513
2514 /** @todo check if the hidden bits are loaded correctly for 64-bit
2515 * mode. */
2516
2517 if (cbPop)
2518 iemRegAddToRsp(pVCpu, cbPop);
2519 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2520
2521 /* Done! */
2522 }
2523 /*
2524 * Return to the same privilege level
2525 */
2526 else
2527 {
2528 /* Limit / canonical check. */
2529 uint64_t u64Base;
2530 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2531
2532 /** @todo Testcase: Is this correct? */
2533 if ( DescCs.Legacy.Gen.u1Long
2534 && IEM_IS_LONG_MODE(pVCpu) )
2535 {
2536 if (!IEM_IS_CANONICAL(uNewRip))
2537 {
2538 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
2539 return iemRaiseNotCanonical(pVCpu);
2540 }
2541 u64Base = 0;
2542 }
2543 else
2544 {
2545 if (uNewRip > cbLimitCs)
2546 {
2547 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
2548 /** @todo: Intel says this is #GP(0)! */
2549 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2550 }
2551 u64Base = X86DESC_BASE(&DescCs.Legacy);
2552 }
2553
2554 /*
2555 * Now set the accessed bit before
2556 * writing the return address to the stack and committing the result into
2557 * CS, CSHID and RIP.
2558 */
2559 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2560 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2561 {
2562 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2563 if (rcStrict != VINF_SUCCESS)
2564 return rcStrict;
2565 /** @todo check what VT-x and AMD-V does. */
2566 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2567 }
2568
2569 /* commit */
2570 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2571 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
2572 else
2573 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2574 if (enmEffOpSize == IEMMODE_16BIT)
2575 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2576 else
2577 pVCpu->cpum.GstCtx.rip = uNewRip;
2578 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2579 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2580 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2581 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2582 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2583 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2584 /** @todo check if the hidden bits are loaded correctly for 64-bit
2585 * mode. */
2586 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2587 if (cbPop)
2588 iemRegAddToRsp(pVCpu, cbPop);
2589 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2590 }
2591
2592 /* Flush the prefetch buffer. */
2593#ifdef IEM_WITH_CODE_TLB
2594 pVCpu->iem.s.pbInstrBuf = NULL;
2595#else
2596 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2597#endif
2598 return VINF_SUCCESS;
2599}
2600
2601
2602/**
2603 * Implements retn.
2604 *
2605 * We're doing this in C because of the \#GP that might be raised if the popped
2606 * program counter is out of bounds.
2607 *
2608 * @param enmEffOpSize The effective operand size.
2609 * @param cbPop The amount of arguments to pop from the stack
2610 * (bytes).
2611 */
2612IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2613{
2614 NOREF(cbInstr);
2615
2616 /* Fetch the RSP from the stack. */
2617 VBOXSTRICTRC rcStrict;
2618 RTUINT64U NewRip;
2619 RTUINT64U NewRsp;
2620 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2621
2622 switch (enmEffOpSize)
2623 {
2624 case IEMMODE_16BIT:
2625 NewRip.u = 0;
2626 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
2627 break;
2628 case IEMMODE_32BIT:
2629 NewRip.u = 0;
2630 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
2631 break;
2632 case IEMMODE_64BIT:
2633 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
2634 break;
2635 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2636 }
2637 if (rcStrict != VINF_SUCCESS)
2638 return rcStrict;
2639
2640 /* Check the new RSP before loading it. */
2641 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
2642 * of it. The canonical test is performed here and for call. */
2643 if (enmEffOpSize != IEMMODE_64BIT)
2644 {
2645 if (NewRip.DWords.dw0 > pVCpu->cpum.GstCtx.cs.u32Limit)
2646 {
2647 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit));
2648 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2649 }
2650 }
2651 else
2652 {
2653 if (!IEM_IS_CANONICAL(NewRip.u))
2654 {
2655 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
2656 return iemRaiseNotCanonical(pVCpu);
2657 }
2658 }
2659
2660 /* Apply cbPop */
2661 if (cbPop)
2662 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2663
2664 /* Commit it. */
2665 pVCpu->cpum.GstCtx.rip = NewRip.u;
2666 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2667 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2668
2669 /* Flush the prefetch buffer. */
2670#ifndef IEM_WITH_CODE_TLB
2671 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2672#endif
2673
2674 return VINF_SUCCESS;
2675}
2676
2677
2678/**
2679 * Implements enter.
2680 *
2681 * We're doing this in C because the instruction is insane, even for the
2682 * u8NestingLevel=0 case dealing with the stack is tedious.
2683 *
2684 * @param enmEffOpSize The effective operand size.
2685 */
2686IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
2687{
2688 /* Push RBP, saving the old value in TmpRbp. */
2689 RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2690 RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp;
2691 RTUINT64U NewRbp;
2692 VBOXSTRICTRC rcStrict;
2693 if (enmEffOpSize == IEMMODE_64BIT)
2694 {
2695 rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
2696 NewRbp = NewRsp;
2697 }
2698 else if (enmEffOpSize == IEMMODE_32BIT)
2699 {
2700 rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
2701 NewRbp = NewRsp;
2702 }
2703 else
2704 {
2705 rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
2706 NewRbp = TmpRbp;
2707 NewRbp.Words.w0 = NewRsp.Words.w0;
2708 }
2709 if (rcStrict != VINF_SUCCESS)
2710 return rcStrict;
2711
2712 /* Copy the parameters (aka nesting levels by Intel). */
2713 cParameters &= 0x1f;
2714 if (cParameters > 0)
2715 {
2716 switch (enmEffOpSize)
2717 {
2718 case IEMMODE_16BIT:
2719 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2720 TmpRbp.DWords.dw0 -= 2;
2721 else
2722 TmpRbp.Words.w0 -= 2;
2723 do
2724 {
2725 uint16_t u16Tmp;
2726 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
2727 if (rcStrict != VINF_SUCCESS)
2728 break;
2729 rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
2730 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2731 break;
2732
2733 case IEMMODE_32BIT:
2734 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2735 TmpRbp.DWords.dw0 -= 4;
2736 else
2737 TmpRbp.Words.w0 -= 4;
2738 do
2739 {
2740 uint32_t u32Tmp;
2741 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
2742 if (rcStrict != VINF_SUCCESS)
2743 break;
2744 rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
2745 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2746 break;
2747
2748 case IEMMODE_64BIT:
2749 TmpRbp.u -= 8;
2750 do
2751 {
2752 uint64_t u64Tmp;
2753 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
2754 if (rcStrict != VINF_SUCCESS)
2755 break;
2756 rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
2757 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2758 break;
2759
2760 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2761 }
2762 if (rcStrict != VINF_SUCCESS)
2763 return VINF_SUCCESS;
2764
2765 /* Push the new RBP */
2766 if (enmEffOpSize == IEMMODE_64BIT)
2767 rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
2768 else if (enmEffOpSize == IEMMODE_32BIT)
2769 rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
2770 else
2771 rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
2772 if (rcStrict != VINF_SUCCESS)
2773 return rcStrict;
2774
2775 }
2776
2777 /* Recalc RSP. */
2778 iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame);
2779
2780 /** @todo Should probe write access at the new RSP according to AMD. */
2781
2782 /* Commit it. */
2783 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2784 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2785 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2786
2787 return VINF_SUCCESS;
2788}
2789
2790
2791
2792/**
2793 * Implements leave.
2794 *
2795 * We're doing this in C because messing with the stack registers is annoying
2796 * since they depends on SS attributes.
2797 *
2798 * @param enmEffOpSize The effective operand size.
2799 */
2800IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
2801{
2802 /* Calculate the intermediate RSP from RBP and the stack attributes. */
2803 RTUINT64U NewRsp;
2804 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2805 NewRsp.u = pVCpu->cpum.GstCtx.rbp;
2806 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2807 NewRsp.u = pVCpu->cpum.GstCtx.ebp;
2808 else
2809 {
2810 /** @todo Check that LEAVE actually preserve the high EBP bits. */
2811 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2812 NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp;
2813 }
2814
2815 /* Pop RBP according to the operand size. */
2816 VBOXSTRICTRC rcStrict;
2817 RTUINT64U NewRbp;
2818 switch (enmEffOpSize)
2819 {
2820 case IEMMODE_16BIT:
2821 NewRbp.u = pVCpu->cpum.GstCtx.rbp;
2822 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
2823 break;
2824 case IEMMODE_32BIT:
2825 NewRbp.u = 0;
2826 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
2827 break;
2828 case IEMMODE_64BIT:
2829 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
2830 break;
2831 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2832 }
2833 if (rcStrict != VINF_SUCCESS)
2834 return rcStrict;
2835
2836
2837 /* Commit it. */
2838 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2839 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2840 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2841
2842 return VINF_SUCCESS;
2843}
2844
2845
2846/**
2847 * Implements int3 and int XX.
2848 *
2849 * @param u8Int The interrupt vector number.
2850 * @param enmInt The int instruction type.
2851 */
2852IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
2853{
2854 Assert(pVCpu->iem.s.cXcptRecursions == 0);
2855 return iemRaiseXcptOrInt(pVCpu,
2856 cbInstr,
2857 u8Int,
2858 IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
2859 0,
2860 0);
2861}
2862
2863
2864/**
2865 * Implements iret for real mode and V8086 mode.
2866 *
2867 * @param enmEffOpSize The effective operand size.
2868 */
2869IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2870{
2871 X86EFLAGS Efl;
2872 Efl.u = IEMMISC_GET_EFL(pVCpu);
2873 NOREF(cbInstr);
2874
2875 /*
2876 * iret throws an exception if VME isn't enabled.
2877 */
2878 if ( Efl.Bits.u1VM
2879 && Efl.Bits.u2IOPL != 3
2880 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
2881 return iemRaiseGeneralProtectionFault0(pVCpu);
2882
2883 /*
2884 * Do the stack bits, but don't commit RSP before everything checks
2885 * out right.
2886 */
2887 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2888 VBOXSTRICTRC rcStrict;
2889 RTCPTRUNION uFrame;
2890 uint16_t uNewCs;
2891 uint32_t uNewEip;
2892 uint32_t uNewFlags;
2893 uint64_t uNewRsp;
2894 if (enmEffOpSize == IEMMODE_32BIT)
2895 {
2896 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
2897 if (rcStrict != VINF_SUCCESS)
2898 return rcStrict;
2899 uNewEip = uFrame.pu32[0];
2900 if (uNewEip > UINT16_MAX)
2901 return iemRaiseGeneralProtectionFault0(pVCpu);
2902
2903 uNewCs = (uint16_t)uFrame.pu32[1];
2904 uNewFlags = uFrame.pu32[2];
2905 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2906 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
2907 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
2908 | X86_EFL_ID;
2909 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
2910 uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
2911 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
2912 }
2913 else
2914 {
2915 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
2916 if (rcStrict != VINF_SUCCESS)
2917 return rcStrict;
2918 uNewEip = uFrame.pu16[0];
2919 uNewCs = uFrame.pu16[1];
2920 uNewFlags = uFrame.pu16[2];
2921 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2922 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
2923 uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
2924 /** @todo The intel pseudo code does not indicate what happens to
2925 * reserved flags. We just ignore them. */
2926 /* Ancient CPU adjustments: See iemCImpl_popf. */
2927 if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
2928 uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
2929 }
2930 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
2931 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2932 { /* extremely likely */ }
2933 else
2934 return rcStrict;
2935
2936 /** @todo Check how this is supposed to work if sp=0xfffe. */
2937 Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
2938 uNewCs, uNewEip, uNewFlags, uNewRsp));
2939
2940 /*
2941 * Check the limit of the new EIP.
2942 */
2943 /** @todo Only the AMD pseudo code check the limit here, what's
2944 * right? */
2945 if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit)
2946 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2947
2948 /*
2949 * V8086 checks and flag adjustments
2950 */
2951 if (Efl.Bits.u1VM)
2952 {
2953 if (Efl.Bits.u2IOPL == 3)
2954 {
2955 /* Preserve IOPL and clear RF. */
2956 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
2957 uNewFlags |= Efl.u & (X86_EFL_IOPL);
2958 }
2959 else if ( enmEffOpSize == IEMMODE_16BIT
2960 && ( !(uNewFlags & X86_EFL_IF)
2961 || !Efl.Bits.u1VIP )
2962 && !(uNewFlags & X86_EFL_TF) )
2963 {
2964 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
2965 uNewFlags &= ~X86_EFL_VIF;
2966 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
2967 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
2968 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
2969 }
2970 else
2971 return iemRaiseGeneralProtectionFault0(pVCpu);
2972 Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
2973 }
2974
2975 /*
2976 * Commit the operation.
2977 */
2978#ifdef DBGFTRACE_ENABLED
2979 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
2980 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
2981#endif
2982 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2983 pVCpu->cpum.GstCtx.rip = uNewEip;
2984 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2985 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2986 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2987 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2988 /** @todo do we load attribs and limit as well? */
2989 Assert(uNewFlags & X86_EFL_1);
2990 IEMMISC_SET_EFL(pVCpu, uNewFlags);
2991
2992 /* Flush the prefetch buffer. */
2993#ifdef IEM_WITH_CODE_TLB
2994 pVCpu->iem.s.pbInstrBuf = NULL;
2995#else
2996 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2997#endif
2998
2999 return VINF_SUCCESS;
3000}
3001
3002
3003/**
3004 * Loads a segment register when entering V8086 mode.
3005 *
3006 * @param pSReg The segment register.
3007 * @param uSeg The segment to load.
3008 */
3009static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
3010{
3011 pSReg->Sel = uSeg;
3012 pSReg->ValidSel = uSeg;
3013 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
3014 pSReg->u64Base = (uint32_t)uSeg << 4;
3015 pSReg->u32Limit = 0xffff;
3016 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
3017 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
3018 * IRET'ing to V8086. */
3019}
3020
3021
3022/**
3023 * Implements iret for protected mode returning to V8086 mode.
3024 *
3025 * @param uNewEip The new EIP.
3026 * @param uNewCs The new CS.
3027 * @param uNewFlags The new EFLAGS.
3028 * @param uNewRsp The RSP after the initial IRET frame.
3029 *
3030 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
3031 */
3032IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp)
3033{
3034 RT_NOREF_PV(cbInstr);
3035 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
3036
3037 /*
3038 * Pop the V8086 specific frame bits off the stack.
3039 */
3040 VBOXSTRICTRC rcStrict;
3041 RTCPTRUNION uFrame;
3042 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp);
3043 if (rcStrict != VINF_SUCCESS)
3044 return rcStrict;
3045 uint32_t uNewEsp = uFrame.pu32[0];
3046 uint16_t uNewSs = uFrame.pu32[1];
3047 uint16_t uNewEs = uFrame.pu32[2];
3048 uint16_t uNewDs = uFrame.pu32[3];
3049 uint16_t uNewFs = uFrame.pu32[4];
3050 uint16_t uNewGs = uFrame.pu32[5];
3051 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3052 if (rcStrict != VINF_SUCCESS)
3053 return rcStrict;
3054
3055 /*
3056 * Commit the operation.
3057 */
3058 uNewFlags &= X86_EFL_LIVE_MASK;
3059 uNewFlags |= X86_EFL_RA1_MASK;
3060#ifdef DBGFTRACE_ENABLED
3061 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
3062 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
3063#endif
3064 Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
3065
3066 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3067 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs);
3068 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs);
3069 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs);
3070 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs);
3071 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs);
3072 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs);
3073 pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip;
3074 pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */
3075 pVCpu->iem.s.uCpl = 3;
3076
3077 /* Flush the prefetch buffer. */
3078#ifdef IEM_WITH_CODE_TLB
3079 pVCpu->iem.s.pbInstrBuf = NULL;
3080#else
3081 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3082#endif
3083
3084 return VINF_SUCCESS;
3085}
3086
3087
3088/**
3089 * Implements iret for protected mode returning via a nested task.
3090 *
3091 * @param enmEffOpSize The effective operand size.
3092 */
3093IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
3094{
3095 Log7(("iemCImpl_iret_prot_NestedTask:\n"));
3096#ifndef IEM_IMPLEMENTS_TASKSWITCH
3097 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
3098#else
3099 RT_NOREF_PV(enmEffOpSize);
3100
3101 /*
3102 * Read the segment selector in the link-field of the current TSS.
3103 */
3104 RTSEL uSelRet;
3105 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base);
3106 if (rcStrict != VINF_SUCCESS)
3107 return rcStrict;
3108
3109 /*
3110 * Fetch the returning task's TSS descriptor from the GDT.
3111 */
3112 if (uSelRet & X86_SEL_LDT)
3113 {
3114 Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
3115 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
3116 }
3117
3118 IEMSELDESC TssDesc;
3119 rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
3120 if (rcStrict != VINF_SUCCESS)
3121 return rcStrict;
3122
3123 if (TssDesc.Legacy.Gate.u1DescType)
3124 {
3125 Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
3126 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3127 }
3128
3129 if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
3130 && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
3131 {
3132 Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
3133 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3134 }
3135
3136 if (!TssDesc.Legacy.Gate.u1Present)
3137 {
3138 Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
3139 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3140 }
3141
3142 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
3143 return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
3144 0 /* uCr2 */, uSelRet, &TssDesc);
3145#endif
3146}
3147
3148
3149/**
3150 * Implements iret for protected mode
3151 *
3152 * @param enmEffOpSize The effective operand size.
3153 */
3154IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
3155{
3156 NOREF(cbInstr);
3157 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3158
3159 /*
3160 * Nested task return.
3161 */
3162 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3163 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
3164
3165 /*
3166 * Normal return.
3167 *
3168 * Do the stack bits, but don't commit RSP before everything checks
3169 * out right.
3170 */
3171 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3172 VBOXSTRICTRC rcStrict;
3173 RTCPTRUNION uFrame;
3174 uint16_t uNewCs;
3175 uint32_t uNewEip;
3176 uint32_t uNewFlags;
3177 uint64_t uNewRsp;
3178 if (enmEffOpSize == IEMMODE_32BIT)
3179 {
3180 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
3181 if (rcStrict != VINF_SUCCESS)
3182 return rcStrict;
3183 uNewEip = uFrame.pu32[0];
3184 uNewCs = (uint16_t)uFrame.pu32[1];
3185 uNewFlags = uFrame.pu32[2];
3186 }
3187 else
3188 {
3189 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
3190 if (rcStrict != VINF_SUCCESS)
3191 return rcStrict;
3192 uNewEip = uFrame.pu16[0];
3193 uNewCs = uFrame.pu16[1];
3194 uNewFlags = uFrame.pu16[2];
3195 }
3196 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3197 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3198 { /* extremely likely */ }
3199 else
3200 return rcStrict;
3201 Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
3202
3203 /*
3204 * We're hopefully not returning to V8086 mode...
3205 */
3206 if ( (uNewFlags & X86_EFL_VM)
3207 && pVCpu->iem.s.uCpl == 0)
3208 {
3209 Assert(enmEffOpSize == IEMMODE_32BIT);
3210 return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp);
3211 }
3212
3213 /*
3214 * Protected mode.
3215 */
3216 /* Read the CS descriptor. */
3217 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3218 {
3219 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
3220 return iemRaiseGeneralProtectionFault0(pVCpu);
3221 }
3222
3223 IEMSELDESC DescCS;
3224 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3225 if (rcStrict != VINF_SUCCESS)
3226 {
3227 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
3228 return rcStrict;
3229 }
3230
3231 /* Must be a code descriptor. */
3232 if (!DescCS.Legacy.Gen.u1DescType)
3233 {
3234 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3235 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3236 }
3237 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3238 {
3239 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3240 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3241 }
3242
3243#ifdef VBOX_WITH_RAW_MODE_NOT_R0
3244 /* Raw ring-0 and ring-1 compression adjustments for PATM performance tricks and other CS leaks. */
3245 PVM pVM = pVCpu->CTX_SUFF(pVM);
3246 if (EMIsRawRing0Enabled(pVM) && VM_IS_RAW_MODE_ENABLED(pVM))
3247 {
3248 if ((uNewCs & X86_SEL_RPL) == 1)
3249 {
3250 if ( pVCpu->iem.s.uCpl == 0
3251 && ( !EMIsRawRing1Enabled(pVM)
3252 || pVCpu->cpum.GstCtx.cs.Sel == (uNewCs & X86_SEL_MASK_OFF_RPL)) )
3253 {
3254 Log(("iret: Ring-0 compression fix: uNewCS=%#x -> %#x\n", uNewCs, uNewCs & X86_SEL_MASK_OFF_RPL));
3255 uNewCs &= X86_SEL_MASK_OFF_RPL;
3256 }
3257# ifdef LOG_ENABLED
3258 else if (pVCpu->iem.s.uCpl <= 1 && EMIsRawRing1Enabled(pVM))
3259 Log(("iret: uNewCs=%#x genuine return to ring-1.\n", uNewCs));
3260# endif
3261 }
3262 else if ( (uNewCs & X86_SEL_RPL) == 2
3263 && EMIsRawRing1Enabled(pVM)
3264 && pVCpu->iem.s.uCpl <= 1)
3265 {
3266 Log(("iret: Ring-1 compression fix: uNewCS=%#x -> %#x\n", uNewCs, (uNewCs & X86_SEL_MASK_OFF_RPL) | 1));
3267 uNewCs = (uNewCs & X86_SEL_MASK_OFF_RPL) | 2;
3268 }
3269 }
3270#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
3271
3272
3273 /* Privilege checks. */
3274 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3275 {
3276 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3277 {
3278 Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3279 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3280 }
3281 }
3282 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3283 {
3284 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3285 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3286 }
3287 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3288 {
3289 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
3290 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3291 }
3292
3293 /* Present? */
3294 if (!DescCS.Legacy.Gen.u1Present)
3295 {
3296 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
3297 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3298 }
3299
3300 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3301
3302 /*
3303 * Return to outer level?
3304 */
3305 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
3306 {
3307 uint16_t uNewSS;
3308 uint32_t uNewESP;
3309 if (enmEffOpSize == IEMMODE_32BIT)
3310 {
3311 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp);
3312 if (rcStrict != VINF_SUCCESS)
3313 return rcStrict;
3314/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
3315 * 16-bit or 32-bit are being loaded into SP depends on the D/B
3316 * bit of the popped SS selector it turns out. */
3317 uNewESP = uFrame.pu32[0];
3318 uNewSS = (uint16_t)uFrame.pu32[1];
3319 }
3320 else
3321 {
3322 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp);
3323 if (rcStrict != VINF_SUCCESS)
3324 return rcStrict;
3325 uNewESP = uFrame.pu16[0];
3326 uNewSS = uFrame.pu16[1];
3327 }
3328 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
3329 if (rcStrict != VINF_SUCCESS)
3330 return rcStrict;
3331 Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
3332
3333 /* Read the SS descriptor. */
3334 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
3335 {
3336 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
3337 return iemRaiseGeneralProtectionFault0(pVCpu);
3338 }
3339
3340 IEMSELDESC DescSS;
3341 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
3342 if (rcStrict != VINF_SUCCESS)
3343 {
3344 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
3345 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
3346 return rcStrict;
3347 }
3348
3349 /* Privilege checks. */
3350 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3351 {
3352 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
3353 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3354 }
3355 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3356 {
3357 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
3358 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
3359 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3360 }
3361
3362 /* Must be a writeable data segment descriptor. */
3363 if (!DescSS.Legacy.Gen.u1DescType)
3364 {
3365 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
3366 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3367 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3368 }
3369 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3370 {
3371 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
3372 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3373 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3374 }
3375
3376 /* Present? */
3377 if (!DescSS.Legacy.Gen.u1Present)
3378 {
3379 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
3380 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
3381 }
3382
3383 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3384
3385 /* Check EIP. */
3386 if (uNewEip > cbLimitCS)
3387 {
3388 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
3389 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
3390 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3391 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3392 }
3393
3394 /*
3395 * Commit the changes, marking CS and SS accessed first since
3396 * that may fail.
3397 */
3398 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3399 {
3400 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3401 if (rcStrict != VINF_SUCCESS)
3402 return rcStrict;
3403 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3404 }
3405 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3406 {
3407 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
3408 if (rcStrict != VINF_SUCCESS)
3409 return rcStrict;
3410 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3411 }
3412
3413 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3414 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3415 if (enmEffOpSize != IEMMODE_16BIT)
3416 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3417 if (pVCpu->iem.s.uCpl == 0)
3418 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3419 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3420 fEFlagsMask |= X86_EFL_IF;
3421 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3422 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3423 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3424 fEFlagsNew &= ~fEFlagsMask;
3425 fEFlagsNew |= uNewFlags & fEFlagsMask;
3426#ifdef DBGFTRACE_ENABLED
3427 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
3428 pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3429 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
3430#endif
3431
3432 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3433 pVCpu->cpum.GstCtx.rip = uNewEip;
3434 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3435 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3436 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3437 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3438 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3439 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3440 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3441
3442 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
3443 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
3444 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3445 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3446 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3447 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3448 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3449 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP;
3450 else
3451 pVCpu->cpum.GstCtx.rsp = uNewESP;
3452
3453 pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
3454 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
3455 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
3456 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
3457 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
3458
3459 /* Done! */
3460
3461 }
3462 /*
3463 * Return to the same level.
3464 */
3465 else
3466 {
3467 /* Check EIP. */
3468 if (uNewEip > cbLimitCS)
3469 {
3470 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
3471 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3472 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3473 }
3474
3475 /*
3476 * Commit the changes, marking CS first since it may fail.
3477 */
3478 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3479 {
3480 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3481 if (rcStrict != VINF_SUCCESS)
3482 return rcStrict;
3483 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3484 }
3485
3486 X86EFLAGS NewEfl;
3487 NewEfl.u = IEMMISC_GET_EFL(pVCpu);
3488 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3489 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3490 if (enmEffOpSize != IEMMODE_16BIT)
3491 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3492 if (pVCpu->iem.s.uCpl == 0)
3493 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3494 else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
3495 fEFlagsMask |= X86_EFL_IF;
3496 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3497 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3498 NewEfl.u &= ~fEFlagsMask;
3499 NewEfl.u |= fEFlagsMask & uNewFlags;
3500#ifdef DBGFTRACE_ENABLED
3501 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
3502 pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3503 uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp);
3504#endif
3505
3506 IEMMISC_SET_EFL(pVCpu, NewEfl.u);
3507 pVCpu->cpum.GstCtx.rip = uNewEip;
3508 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3509 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3510 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3511 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3512 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3513 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3514 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3515 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3516 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3517 else
3518 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3519 /* Done! */
3520 }
3521
3522 /* Flush the prefetch buffer. */
3523#ifdef IEM_WITH_CODE_TLB
3524 pVCpu->iem.s.pbInstrBuf = NULL;
3525#else
3526 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3527#endif
3528
3529 return VINF_SUCCESS;
3530}
3531
3532
3533/**
3534 * Implements iret for long mode
3535 *
3536 * @param enmEffOpSize The effective operand size.
3537 */
3538IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
3539{
3540 NOREF(cbInstr);
3541
3542 /*
3543 * Nested task return is not supported in long mode.
3544 */
3545 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3546 {
3547 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u));
3548 return iemRaiseGeneralProtectionFault0(pVCpu);
3549 }
3550
3551 /*
3552 * Normal return.
3553 *
3554 * Do the stack bits, but don't commit RSP before everything checks
3555 * out right.
3556 */
3557 VBOXSTRICTRC rcStrict;
3558 RTCPTRUNION uFrame;
3559 uint64_t uNewRip;
3560 uint16_t uNewCs;
3561 uint16_t uNewSs;
3562 uint32_t uNewFlags;
3563 uint64_t uNewRsp;
3564 if (enmEffOpSize == IEMMODE_64BIT)
3565 {
3566 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp);
3567 if (rcStrict != VINF_SUCCESS)
3568 return rcStrict;
3569 uNewRip = uFrame.pu64[0];
3570 uNewCs = (uint16_t)uFrame.pu64[1];
3571 uNewFlags = (uint32_t)uFrame.pu64[2];
3572 uNewRsp = uFrame.pu64[3];
3573 uNewSs = (uint16_t)uFrame.pu64[4];
3574 }
3575 else if (enmEffOpSize == IEMMODE_32BIT)
3576 {
3577 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp);
3578 if (rcStrict != VINF_SUCCESS)
3579 return rcStrict;
3580 uNewRip = uFrame.pu32[0];
3581 uNewCs = (uint16_t)uFrame.pu32[1];
3582 uNewFlags = uFrame.pu32[2];
3583 uNewRsp = uFrame.pu32[3];
3584 uNewSs = (uint16_t)uFrame.pu32[4];
3585 }
3586 else
3587 {
3588 Assert(enmEffOpSize == IEMMODE_16BIT);
3589 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp);
3590 if (rcStrict != VINF_SUCCESS)
3591 return rcStrict;
3592 uNewRip = uFrame.pu16[0];
3593 uNewCs = uFrame.pu16[1];
3594 uNewFlags = uFrame.pu16[2];
3595 uNewRsp = uFrame.pu16[3];
3596 uNewSs = uFrame.pu16[4];
3597 }
3598 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3599 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3600 { /* extremely like */ }
3601 else
3602 return rcStrict;
3603 Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
3604
3605 /*
3606 * Check stuff.
3607 */
3608 /* Read the CS descriptor. */
3609 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3610 {
3611 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3612 return iemRaiseGeneralProtectionFault0(pVCpu);
3613 }
3614
3615 IEMSELDESC DescCS;
3616 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3617 if (rcStrict != VINF_SUCCESS)
3618 {
3619 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
3620 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3621 return rcStrict;
3622 }
3623
3624 /* Must be a code descriptor. */
3625 if ( !DescCS.Legacy.Gen.u1DescType
3626 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3627 {
3628 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
3629 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
3630 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3631 }
3632
3633 /* Privilege checks. */
3634 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
3635 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3636 {
3637 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3638 {
3639 Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3640 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3641 }
3642 }
3643 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3644 {
3645 Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3646 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3647 }
3648 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3649 {
3650 Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
3651 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3652 }
3653
3654 /* Present? */
3655 if (!DescCS.Legacy.Gen.u1Present)
3656 {
3657 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3658 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3659 }
3660
3661 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3662
3663 /* Read the SS descriptor. */
3664 IEMSELDESC DescSS;
3665 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3666 {
3667 if ( !DescCS.Legacy.Gen.u1Long
3668 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
3669 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
3670 {
3671 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3672 return iemRaiseGeneralProtectionFault0(pVCpu);
3673 }
3674 DescSS.Legacy.u = 0;
3675 }
3676 else
3677 {
3678 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
3679 if (rcStrict != VINF_SUCCESS)
3680 {
3681 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
3682 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3683 return rcStrict;
3684 }
3685 }
3686
3687 /* Privilege checks. */
3688 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3689 {
3690 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3691 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3692 }
3693
3694 uint32_t cbLimitSs;
3695 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3696 cbLimitSs = UINT32_MAX;
3697 else
3698 {
3699 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3700 {
3701 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
3702 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
3703 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3704 }
3705
3706 /* Must be a writeable data segment descriptor. */
3707 if (!DescSS.Legacy.Gen.u1DescType)
3708 {
3709 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
3710 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3711 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3712 }
3713 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3714 {
3715 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
3716 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3717 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3718 }
3719
3720 /* Present? */
3721 if (!DescSS.Legacy.Gen.u1Present)
3722 {
3723 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3724 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
3725 }
3726 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3727 }
3728
3729 /* Check EIP. */
3730 if (DescCS.Legacy.Gen.u1Long)
3731 {
3732 if (!IEM_IS_CANONICAL(uNewRip))
3733 {
3734 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
3735 uNewCs, uNewRip, uNewSs, uNewRsp));
3736 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3737 }
3738 }
3739 else
3740 {
3741 if (uNewRip > cbLimitCS)
3742 {
3743 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
3744 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
3745 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3746 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3747 }
3748 }
3749
3750 /*
3751 * Commit the changes, marking CS and SS accessed first since
3752 * that may fail.
3753 */
3754 /** @todo where exactly are these actually marked accessed by a real CPU? */
3755 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3756 {
3757 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3758 if (rcStrict != VINF_SUCCESS)
3759 return rcStrict;
3760 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3761 }
3762 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3763 {
3764 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
3765 if (rcStrict != VINF_SUCCESS)
3766 return rcStrict;
3767 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3768 }
3769
3770 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3771 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3772 if (enmEffOpSize != IEMMODE_16BIT)
3773 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3774 if (pVCpu->iem.s.uCpl == 0)
3775 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
3776 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3777 fEFlagsMask |= X86_EFL_IF;
3778 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3779 fEFlagsNew &= ~fEFlagsMask;
3780 fEFlagsNew |= uNewFlags & fEFlagsMask;
3781#ifdef DBGFTRACE_ENABLED
3782 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
3783 pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
3784#endif
3785
3786 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3787 pVCpu->cpum.GstCtx.rip = uNewRip;
3788 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3789 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3790 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3791 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3792 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3793 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3794 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3795 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
3796 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3797 else
3798 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3799 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
3800 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
3801 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3802 {
3803 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3804 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
3805 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
3806 pVCpu->cpum.GstCtx.ss.u64Base = 0;
3807 Log2(("iretq new SS: NULL\n"));
3808 }
3809 else
3810 {
3811 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3812 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3813 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3814 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3815 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3816 }
3817
3818 if (pVCpu->iem.s.uCpl != uNewCpl)
3819 {
3820 pVCpu->iem.s.uCpl = uNewCpl;
3821 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds);
3822 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es);
3823 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs);
3824 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs);
3825 }
3826
3827 /* Flush the prefetch buffer. */
3828#ifdef IEM_WITH_CODE_TLB
3829 pVCpu->iem.s.pbInstrBuf = NULL;
3830#else
3831 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3832#endif
3833
3834 return VINF_SUCCESS;
3835}
3836
3837
3838/**
3839 * Implements iret.
3840 *
3841 * @param enmEffOpSize The effective operand size.
3842 */
3843IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
3844{
3845 /*
3846 * First, clear NMI blocking, if any, before causing any exceptions.
3847 * See Intel spec. 6.7.1 "Handling Multiple NMIs".
3848 */
3849 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
3850
3851 /*
3852 * The SVM nested-guest intercept for iret takes priority over all exceptions,
3853 * see AMD spec. "15.9 Instruction Intercepts".
3854 */
3855 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
3856 {
3857 Log(("iret: Guest intercept -> #VMEXIT\n"));
3858 IEM_SVM_UPDATE_NRIP(pVCpu);
3859 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
3860 }
3861
3862 /*
3863 * Call a mode specific worker.
3864 */
3865 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
3866 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
3867 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
3868 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
3869 return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
3870 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
3871}
3872
3873
3874static void iemLoadallSetSelector(PVMCPU pVCpu, uint8_t iSegReg, uint16_t uSel)
3875{
3876 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3877
3878 pHid->Sel = uSel;
3879 pHid->ValidSel = uSel;
3880 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3881}
3882
3883
3884static void iemLoadall286SetDescCache(PVMCPU pVCpu, uint8_t iSegReg, uint8_t const *pbMem)
3885{
3886 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3887
3888 /* The base is in the first three bytes. */
3889 pHid->u64Base = pbMem[0] + (pbMem[1] << 8) + (pbMem[2] << 16);
3890 /* The attributes are in the fourth byte. */
3891 pHid->Attr.u = pbMem[3];
3892 /* The limit is in the last two bytes. */
3893 pHid->u32Limit = pbMem[4] + (pbMem[5] << 8);
3894}
3895
3896
3897/**
3898 * Implements 286 LOADALL (286 CPUs only).
3899 */
3900IEM_CIMPL_DEF_0(iemCImpl_loadall286)
3901{
3902 NOREF(cbInstr);
3903
3904 /* Data is loaded from a buffer at 800h. No checks are done on the
3905 * validity of loaded state.
3906 *
3907 * LOADALL only loads the internal CPU state, it does not access any
3908 * GDT, LDT, or similar tables.
3909 */
3910
3911 if (pVCpu->iem.s.uCpl != 0)
3912 {
3913 Log(("loadall286: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
3914 return iemRaiseGeneralProtectionFault0(pVCpu);
3915 }
3916
3917 uint8_t const *pbMem = NULL;
3918 uint16_t const *pa16Mem;
3919 uint8_t const *pa8Mem;
3920 RTGCPHYS GCPtrStart = 0x800; /* Fixed table location. */
3921 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pbMem, 0x66, UINT8_MAX, GCPtrStart, IEM_ACCESS_SYS_R);
3922 if (rcStrict != VINF_SUCCESS)
3923 return rcStrict;
3924
3925 /* The MSW is at offset 0x06. */
3926 pa16Mem = (uint16_t const *)(pbMem + 0x06);
3927 /* Even LOADALL can't clear the MSW.PE bit, though it can set it. */
3928 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3929 uNewCr0 |= *pa16Mem & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3930 uint64_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
3931
3932 CPUMSetGuestCR0(pVCpu, uNewCr0);
3933 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCr0);
3934
3935 /* Inform PGM if mode changed. */
3936 if ((uNewCr0 & X86_CR0_PE) != (uOldCr0 & X86_CR0_PE))
3937 {
3938 int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
3939 AssertRCReturn(rc, rc);
3940 /* ignore informational status codes */
3941 }
3942 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
3943
3944 /* TR selector is at offset 0x16. */
3945 pa16Mem = (uint16_t const *)(pbMem + 0x16);
3946 pVCpu->cpum.GstCtx.tr.Sel = pa16Mem[0];
3947 pVCpu->cpum.GstCtx.tr.ValidSel = pa16Mem[0];
3948 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3949
3950 /* Followed by FLAGS... */
3951 pVCpu->cpum.GstCtx.eflags.u = pa16Mem[1] | X86_EFL_1;
3952 pVCpu->cpum.GstCtx.ip = pa16Mem[2]; /* ...and IP. */
3953
3954 /* LDT is at offset 0x1C. */
3955 pa16Mem = (uint16_t const *)(pbMem + 0x1C);
3956 pVCpu->cpum.GstCtx.ldtr.Sel = pa16Mem[0];
3957 pVCpu->cpum.GstCtx.ldtr.ValidSel = pa16Mem[0];
3958 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3959
3960 /* Segment registers are at offset 0x1E. */
3961 pa16Mem = (uint16_t const *)(pbMem + 0x1E);
3962 iemLoadallSetSelector(pVCpu, X86_SREG_DS, pa16Mem[0]);
3963 iemLoadallSetSelector(pVCpu, X86_SREG_SS, pa16Mem[1]);
3964 iemLoadallSetSelector(pVCpu, X86_SREG_CS, pa16Mem[2]);
3965 iemLoadallSetSelector(pVCpu, X86_SREG_ES, pa16Mem[3]);
3966
3967 /* GPRs are at offset 0x26. */
3968 pa16Mem = (uint16_t const *)(pbMem + 0x26);
3969 pVCpu->cpum.GstCtx.di = pa16Mem[0];
3970 pVCpu->cpum.GstCtx.si = pa16Mem[1];
3971 pVCpu->cpum.GstCtx.bp = pa16Mem[2];
3972 pVCpu->cpum.GstCtx.sp = pa16Mem[3];
3973 pVCpu->cpum.GstCtx.bx = pa16Mem[4];
3974 pVCpu->cpum.GstCtx.dx = pa16Mem[5];
3975 pVCpu->cpum.GstCtx.cx = pa16Mem[6];
3976 pVCpu->cpum.GstCtx.ax = pa16Mem[7];
3977
3978 /* Descriptor caches are at offset 0x36, 6 bytes per entry. */
3979 iemLoadall286SetDescCache(pVCpu, X86_SREG_ES, pbMem + 0x36);
3980 iemLoadall286SetDescCache(pVCpu, X86_SREG_CS, pbMem + 0x3C);
3981 iemLoadall286SetDescCache(pVCpu, X86_SREG_SS, pbMem + 0x42);
3982 iemLoadall286SetDescCache(pVCpu, X86_SREG_DS, pbMem + 0x48);
3983
3984 /* GDTR contents are at offset 0x4E, 6 bytes. */
3985 RTGCPHYS GCPtrBase;
3986 uint16_t cbLimit;
3987 pa8Mem = pbMem + 0x4E;
3988 /* NB: Fourth byte "should be zero"; we are ignoring it. */
3989 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
3990 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
3991 CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
3992
3993 /* IDTR contents are at offset 0x5A, 6 bytes. */
3994 pa8Mem = pbMem + 0x5A;
3995 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
3996 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
3997 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
3998
3999 Log(("LOADALL: GDTR:%08RX64/%04X, IDTR:%08RX64/%04X\n", pVCpu->cpum.GstCtx.gdtr.pGdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.idtr.pIdt, pVCpu->cpum.GstCtx.idtr.cbIdt));
4000 Log(("LOADALL: CS:%04X, CS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.cs.u64Base, pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.Attr.u));
4001 Log(("LOADALL: DS:%04X, DS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.ds.u64Base, pVCpu->cpum.GstCtx.ds.u32Limit, pVCpu->cpum.GstCtx.ds.Attr.u));
4002 Log(("LOADALL: ES:%04X, ES base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.es.u64Base, pVCpu->cpum.GstCtx.es.u32Limit, pVCpu->cpum.GstCtx.es.Attr.u));
4003 Log(("LOADALL: SS:%04X, SS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
4004 Log(("LOADALL: SI:%04X, DI:%04X, AX:%04X, BX:%04X, CX:%04X, DX:%04X\n", pVCpu->cpum.GstCtx.si, pVCpu->cpum.GstCtx.di, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.cx, pVCpu->cpum.GstCtx.dx));
4005
4006 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pbMem, IEM_ACCESS_SYS_R);
4007 if (rcStrict != VINF_SUCCESS)
4008 return rcStrict;
4009
4010 /* The CPL may change. It is taken from the "DPL fields of the SS and CS
4011 * descriptor caches" but there is no word as to what happens if those are
4012 * not identical (probably bad things).
4013 */
4014 pVCpu->iem.s.uCpl = pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl;
4015
4016 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS | CPUM_CHANGED_IDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_TR | CPUM_CHANGED_LDTR);
4017
4018 /* Flush the prefetch buffer. */
4019#ifdef IEM_WITH_CODE_TLB
4020 pVCpu->iem.s.pbInstrBuf = NULL;
4021#else
4022 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4023#endif
4024 return rcStrict;
4025}
4026
4027
4028/**
4029 * Implements SYSCALL (AMD and Intel64).
4030 *
4031 * @param enmEffOpSize The effective operand size.
4032 */
4033IEM_CIMPL_DEF_0(iemCImpl_syscall)
4034{
4035 /** @todo hack, LOADALL should be decoded as such on a 286. */
4036 if (RT_UNLIKELY(pVCpu->iem.s.uTargetCpu == IEMTARGETCPU_286))
4037 return iemCImpl_loadall286(pVCpu, cbInstr);
4038
4039 /*
4040 * Check preconditions.
4041 *
4042 * Note that CPUs described in the documentation may load a few odd values
4043 * into CS and SS than we allow here. This has yet to be checked on real
4044 * hardware.
4045 */
4046 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4047 {
4048 Log(("syscall: Not enabled in EFER -> #UD\n"));
4049 return iemRaiseUndefinedOpcode(pVCpu);
4050 }
4051 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4052 {
4053 Log(("syscall: Protected mode is required -> #GP(0)\n"));
4054 return iemRaiseGeneralProtectionFault0(pVCpu);
4055 }
4056 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4057 {
4058 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4059 return iemRaiseUndefinedOpcode(pVCpu);
4060 }
4061
4062 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4063
4064 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
4065 /** @todo what about LDT selectors? Shouldn't matter, really. */
4066 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4067 uint16_t uNewSs = uNewCs + 8;
4068 if (uNewCs == 0 || uNewSs == 0)
4069 {
4070 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4071 return iemRaiseGeneralProtectionFault0(pVCpu);
4072 }
4073
4074 /* Long mode and legacy mode differs. */
4075 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4076 {
4077 uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR;
4078
4079 /* This test isn't in the docs, but I'm not trusting the guys writing
4080 the MSRs to have validated the values as canonical like they should. */
4081 if (!IEM_IS_CANONICAL(uNewRip))
4082 {
4083 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4084 return iemRaiseUndefinedOpcode(pVCpu);
4085 }
4086
4087 /*
4088 * Commit it.
4089 */
4090 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip));
4091 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr;
4092 pVCpu->cpum.GstCtx.rip = uNewRip;
4093
4094 pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF;
4095 pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u;
4096 pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK;
4097 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4098
4099 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4100 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4101 }
4102 else
4103 {
4104 /*
4105 * Commit it.
4106 */
4107 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
4108 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
4109 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr;
4110 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
4111 pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
4112
4113 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4114 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4115 }
4116 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
4117 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
4118 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4119 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4120 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4121
4122 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
4123 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
4124 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4125 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4126 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4127
4128 /* Flush the prefetch buffer. */
4129#ifdef IEM_WITH_CODE_TLB
4130 pVCpu->iem.s.pbInstrBuf = NULL;
4131#else
4132 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4133#endif
4134
4135 return VINF_SUCCESS;
4136}
4137
4138
4139/**
4140 * Implements SYSRET (AMD and Intel64).
4141 */
4142IEM_CIMPL_DEF_0(iemCImpl_sysret)
4143
4144{
4145 RT_NOREF_PV(cbInstr);
4146
4147 /*
4148 * Check preconditions.
4149 *
4150 * Note that CPUs described in the documentation may load a few odd values
4151 * into CS and SS than we allow here. This has yet to be checked on real
4152 * hardware.
4153 */
4154 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4155 {
4156 Log(("sysret: Not enabled in EFER -> #UD\n"));
4157 return iemRaiseUndefinedOpcode(pVCpu);
4158 }
4159 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4160 {
4161 Log(("sysret: Only available in long mode on intel -> #UD\n"));
4162 return iemRaiseUndefinedOpcode(pVCpu);
4163 }
4164 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4165 {
4166 Log(("sysret: Protected mode is required -> #GP(0)\n"));
4167 return iemRaiseGeneralProtectionFault0(pVCpu);
4168 }
4169 if (pVCpu->iem.s.uCpl != 0)
4170 {
4171 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
4172 return iemRaiseGeneralProtectionFault0(pVCpu);
4173 }
4174
4175 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4176
4177 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
4178 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4179 uint16_t uNewSs = uNewCs + 8;
4180 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4181 uNewCs += 16;
4182 if (uNewCs == 0 || uNewSs == 0)
4183 {
4184 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4185 return iemRaiseGeneralProtectionFault0(pVCpu);
4186 }
4187
4188 /*
4189 * Commit it.
4190 */
4191 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4192 {
4193 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4194 {
4195 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
4196 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11));
4197 /* Note! We disregard intel manual regarding the RCX cananonical
4198 check, ask intel+xen why AMD doesn't do it. */
4199 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4200 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4201 | (3 << X86DESCATTR_DPL_SHIFT);
4202 }
4203 else
4204 {
4205 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
4206 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11));
4207 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx;
4208 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4209 | (3 << X86DESCATTR_DPL_SHIFT);
4210 }
4211 /** @todo testcase: See what kind of flags we can make SYSRET restore and
4212 * what it really ignores. RF and VM are hinted at being zero, by AMD. */
4213 pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
4214 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4215 }
4216 else
4217 {
4218 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx));
4219 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4220 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF;
4221 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4222 | (3 << X86DESCATTR_DPL_SHIFT);
4223 }
4224 pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3;
4225 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3;
4226 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4227 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4228 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4229
4230 pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3;
4231 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3;
4232 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4233 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
4234 pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
4235 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
4236 * on sysret. */
4237
4238 /* Flush the prefetch buffer. */
4239#ifdef IEM_WITH_CODE_TLB
4240 pVCpu->iem.s.pbInstrBuf = NULL;
4241#else
4242 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4243#endif
4244
4245 return VINF_SUCCESS;
4246}
4247
4248
4249/**
4250 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
4251 *
4252 * @param iSegReg The segment register number (valid).
4253 * @param uSel The new selector value.
4254 */
4255IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
4256{
4257 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
4258 uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
4259 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
4260
4261 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
4262
4263 /*
4264 * Real mode and V8086 mode are easy.
4265 */
4266 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4267 {
4268 *pSel = uSel;
4269 pHid->u64Base = (uint32_t)uSel << 4;
4270 pHid->ValidSel = uSel;
4271 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4272#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
4273 /** @todo Does the CPU actually load limits and attributes in the
4274 * real/V8086 mode segment load case? It doesn't for CS in far
4275 * jumps... Affects unreal mode. */
4276 pHid->u32Limit = 0xffff;
4277 pHid->Attr.u = 0;
4278 pHid->Attr.n.u1Present = 1;
4279 pHid->Attr.n.u1DescType = 1;
4280 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
4281 ? X86_SEL_TYPE_RW
4282 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
4283#endif
4284 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4285 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4286 return VINF_SUCCESS;
4287 }
4288
4289 /*
4290 * Protected mode.
4291 *
4292 * Check if it's a null segment selector value first, that's OK for DS, ES,
4293 * FS and GS. If not null, then we have to load and parse the descriptor.
4294 */
4295 if (!(uSel & X86_SEL_MASK_OFF_RPL))
4296 {
4297 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
4298 if (iSegReg == X86_SREG_SS)
4299 {
4300 /* In 64-bit kernel mode, the stack can be 0 because of the way
4301 interrupts are dispatched. AMD seems to have a slighly more
4302 relaxed relationship to SS.RPL than intel does. */
4303 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
4304 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4305 || pVCpu->iem.s.uCpl > 2
4306 || ( uSel != pVCpu->iem.s.uCpl
4307 && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
4308 {
4309 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
4310 return iemRaiseGeneralProtectionFault0(pVCpu);
4311 }
4312 }
4313
4314 *pSel = uSel; /* Not RPL, remember :-) */
4315 iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
4316 if (iSegReg == X86_SREG_SS)
4317 pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
4318
4319 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4320 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4321
4322 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4323 return VINF_SUCCESS;
4324 }
4325
4326 /* Fetch the descriptor. */
4327 IEMSELDESC Desc;
4328 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
4329 if (rcStrict != VINF_SUCCESS)
4330 return rcStrict;
4331
4332 /* Check GPs first. */
4333 if (!Desc.Legacy.Gen.u1DescType)
4334 {
4335 Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
4336 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4337 }
4338 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
4339 {
4340 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
4341 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
4342 {
4343 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
4344 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4345 }
4346 if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
4347 {
4348 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
4349 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4350 }
4351 if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
4352 {
4353 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
4354 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4355 }
4356 }
4357 else
4358 {
4359 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4360 {
4361 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
4362 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4363 }
4364 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4365 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4366 {
4367#if 0 /* this is what intel says. */
4368 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
4369 && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4370 {
4371 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
4372 iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4373 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4374 }
4375#else /* this is what makes more sense. */
4376 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4377 {
4378 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
4379 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
4380 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4381 }
4382 if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4383 {
4384 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
4385 iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4386 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4387 }
4388#endif
4389 }
4390 }
4391
4392 /* Is it there? */
4393 if (!Desc.Legacy.Gen.u1Present)
4394 {
4395 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
4396 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
4397 }
4398
4399 /* The base and limit. */
4400 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
4401 uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
4402
4403 /*
4404 * Ok, everything checked out fine. Now set the accessed bit before
4405 * committing the result into the registers.
4406 */
4407 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
4408 {
4409 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
4410 if (rcStrict != VINF_SUCCESS)
4411 return rcStrict;
4412 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
4413 }
4414
4415 /* commit */
4416 *pSel = uSel;
4417 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4418 pHid->u32Limit = cbLimit;
4419 pHid->u64Base = u64Base;
4420 pHid->ValidSel = uSel;
4421 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4422
4423 /** @todo check if the hidden bits are loaded correctly for 64-bit
4424 * mode. */
4425 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4426
4427 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4428 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4429 return VINF_SUCCESS;
4430}
4431
4432
4433/**
4434 * Implements 'mov SReg, r/m'.
4435 *
4436 * @param iSegReg The segment register number (valid).
4437 * @param uSel The new selector value.
4438 */
4439IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
4440{
4441 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4442 if (rcStrict == VINF_SUCCESS)
4443 {
4444 if (iSegReg == X86_SREG_SS)
4445 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4446 }
4447 return rcStrict;
4448}
4449
4450
4451/**
4452 * Implements 'pop SReg'.
4453 *
4454 * @param iSegReg The segment register number (valid).
4455 * @param enmEffOpSize The efficient operand size (valid).
4456 */
4457IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
4458{
4459 VBOXSTRICTRC rcStrict;
4460
4461 /*
4462 * Read the selector off the stack and join paths with mov ss, reg.
4463 */
4464 RTUINT64U TmpRsp;
4465 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
4466 switch (enmEffOpSize)
4467 {
4468 case IEMMODE_16BIT:
4469 {
4470 uint16_t uSel;
4471 rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
4472 if (rcStrict == VINF_SUCCESS)
4473 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4474 break;
4475 }
4476
4477 case IEMMODE_32BIT:
4478 {
4479 uint32_t u32Value;
4480 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
4481 if (rcStrict == VINF_SUCCESS)
4482 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
4483 break;
4484 }
4485
4486 case IEMMODE_64BIT:
4487 {
4488 uint64_t u64Value;
4489 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
4490 if (rcStrict == VINF_SUCCESS)
4491 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
4492 break;
4493 }
4494 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4495 }
4496
4497 /*
4498 * Commit the stack on success.
4499 */
4500 if (rcStrict == VINF_SUCCESS)
4501 {
4502 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
4503 if (iSegReg == X86_SREG_SS)
4504 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4505 }
4506 return rcStrict;
4507}
4508
4509
4510/**
4511 * Implements lgs, lfs, les, lds & lss.
4512 */
4513IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
4514 uint16_t, uSel,
4515 uint64_t, offSeg,
4516 uint8_t, iSegReg,
4517 uint8_t, iGReg,
4518 IEMMODE, enmEffOpSize)
4519{
4520 /*
4521 * Use iemCImpl_LoadSReg to do the tricky segment register loading.
4522 */
4523 /** @todo verify and test that mov, pop and lXs works the segment
4524 * register loading in the exact same way. */
4525 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4526 if (rcStrict == VINF_SUCCESS)
4527 {
4528 switch (enmEffOpSize)
4529 {
4530 case IEMMODE_16BIT:
4531 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4532 break;
4533 case IEMMODE_32BIT:
4534 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4535 break;
4536 case IEMMODE_64BIT:
4537 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4538 break;
4539 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4540 }
4541 }
4542
4543 return rcStrict;
4544}
4545
4546
4547/**
4548 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
4549 *
4550 * @retval VINF_SUCCESS on success.
4551 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
4552 * @retval iemMemFetchSysU64 return value.
4553 *
4554 * @param pVCpu The cross context virtual CPU structure of the calling thread.
4555 * @param uSel The selector value.
4556 * @param fAllowSysDesc Whether system descriptors are OK or not.
4557 * @param pDesc Where to return the descriptor on success.
4558 */
4559static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPU pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
4560{
4561 pDesc->Long.au64[0] = 0;
4562 pDesc->Long.au64[1] = 0;
4563
4564 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
4565 return VINF_IEM_SELECTOR_NOT_OK;
4566
4567 /* Within the table limits? */
4568 RTGCPTR GCPtrBase;
4569 if (uSel & X86_SEL_LDT)
4570 {
4571 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
4572 if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
4573 || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
4574 return VINF_IEM_SELECTOR_NOT_OK;
4575 GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
4576 }
4577 else
4578 {
4579 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4580 if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
4581 return VINF_IEM_SELECTOR_NOT_OK;
4582 GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
4583 }
4584
4585 /* Fetch the descriptor. */
4586 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
4587 if (rcStrict != VINF_SUCCESS)
4588 return rcStrict;
4589 if (!pDesc->Legacy.Gen.u1DescType)
4590 {
4591 if (!fAllowSysDesc)
4592 return VINF_IEM_SELECTOR_NOT_OK;
4593 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4594 {
4595 rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
4596 if (rcStrict != VINF_SUCCESS)
4597 return rcStrict;
4598 }
4599
4600 }
4601
4602 return VINF_SUCCESS;
4603}
4604
4605
4606/**
4607 * Implements verr (fWrite = false) and verw (fWrite = true).
4608 */
4609IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
4610{
4611 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4612
4613 /** @todo figure whether the accessed bit is set or not. */
4614
4615 bool fAccessible = true;
4616 IEMSELDESC Desc;
4617 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4618 if (rcStrict == VINF_SUCCESS)
4619 {
4620 /* Check the descriptor, order doesn't matter much here. */
4621 if ( !Desc.Legacy.Gen.u1DescType
4622 || !Desc.Legacy.Gen.u1Present)
4623 fAccessible = false;
4624 else
4625 {
4626 if ( fWrite
4627 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
4628 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4629 fAccessible = false;
4630
4631 /** @todo testcase for the conforming behavior. */
4632 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4633 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4634 {
4635 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4636 fAccessible = false;
4637 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4638 fAccessible = false;
4639 }
4640 }
4641
4642 }
4643 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4644 fAccessible = false;
4645 else
4646 return rcStrict;
4647
4648 /* commit */
4649 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible;
4650
4651 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4652 return VINF_SUCCESS;
4653}
4654
4655
4656/**
4657 * Implements LAR and LSL with 64-bit operand size.
4658 *
4659 * @returns VINF_SUCCESS.
4660 * @param pu16Dst Pointer to the destination register.
4661 * @param uSel The selector to load details for.
4662 * @param fIsLar true = LAR, false = LSL.
4663 */
4664IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
4665{
4666 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4667
4668 /** @todo figure whether the accessed bit is set or not. */
4669
4670 bool fDescOk = true;
4671 IEMSELDESC Desc;
4672 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, true /*fAllowSysDesc*/, &Desc);
4673 if (rcStrict == VINF_SUCCESS)
4674 {
4675 /*
4676 * Check the descriptor type.
4677 */
4678 if (!Desc.Legacy.Gen.u1DescType)
4679 {
4680 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4681 {
4682 if (Desc.Long.Gen.u5Zeros)
4683 fDescOk = false;
4684 else
4685 switch (Desc.Long.Gen.u4Type)
4686 {
4687 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
4688 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
4689 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
4690 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
4691 break;
4692 case AMD64_SEL_TYPE_SYS_CALL_GATE:
4693 fDescOk = fIsLar;
4694 break;
4695 default:
4696 fDescOk = false;
4697 break;
4698 }
4699 }
4700 else
4701 {
4702 switch (Desc.Long.Gen.u4Type)
4703 {
4704 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4705 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4706 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4707 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
4708 case X86_SEL_TYPE_SYS_LDT:
4709 break;
4710 case X86_SEL_TYPE_SYS_286_CALL_GATE:
4711 case X86_SEL_TYPE_SYS_TASK_GATE:
4712 case X86_SEL_TYPE_SYS_386_CALL_GATE:
4713 fDescOk = fIsLar;
4714 break;
4715 default:
4716 fDescOk = false;
4717 break;
4718 }
4719 }
4720 }
4721 if (fDescOk)
4722 {
4723 /*
4724 * Check the RPL/DPL/CPL interaction..
4725 */
4726 /** @todo testcase for the conforming behavior. */
4727 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
4728 || !Desc.Legacy.Gen.u1DescType)
4729 {
4730 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4731 fDescOk = false;
4732 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4733 fDescOk = false;
4734 }
4735 }
4736
4737 if (fDescOk)
4738 {
4739 /*
4740 * All fine, start committing the result.
4741 */
4742 if (fIsLar)
4743 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
4744 else
4745 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
4746 }
4747
4748 }
4749 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4750 fDescOk = false;
4751 else
4752 return rcStrict;
4753
4754 /* commit flags value and advance rip. */
4755 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk;
4756 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4757
4758 return VINF_SUCCESS;
4759}
4760
4761
4762/**
4763 * Implements LAR and LSL with 16-bit operand size.
4764 *
4765 * @returns VINF_SUCCESS.
4766 * @param pu16Dst Pointer to the destination register.
4767 * @param u16Sel The selector to load details for.
4768 * @param fIsLar true = LAR, false = LSL.
4769 */
4770IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
4771{
4772 uint64_t u64TmpDst = *pu16Dst;
4773 IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
4774 *pu16Dst = u64TmpDst;
4775 return VINF_SUCCESS;
4776}
4777
4778
4779/**
4780 * Implements lgdt.
4781 *
4782 * @param iEffSeg The segment of the new gdtr contents
4783 * @param GCPtrEffSrc The address of the new gdtr contents.
4784 * @param enmEffOpSize The effective operand size.
4785 */
4786IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4787{
4788 if (pVCpu->iem.s.uCpl != 0)
4789 return iemRaiseGeneralProtectionFault0(pVCpu);
4790 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4791
4792 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4793 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4794 {
4795 Log(("lgdt: Guest intercept -> VM-exit\n"));
4796 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_LGDT, cbInstr);
4797 }
4798
4799 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
4800 {
4801 Log(("lgdt: Guest intercept -> #VMEXIT\n"));
4802 IEM_SVM_UPDATE_NRIP(pVCpu);
4803 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4804 }
4805
4806 /*
4807 * Fetch the limit and base address.
4808 */
4809 uint16_t cbLimit;
4810 RTGCPTR GCPtrBase;
4811 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4812 if (rcStrict == VINF_SUCCESS)
4813 {
4814 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4815 || X86_IS_CANONICAL(GCPtrBase))
4816 {
4817 rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
4818 if (rcStrict == VINF_SUCCESS)
4819 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4820 }
4821 else
4822 {
4823 Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
4824 return iemRaiseGeneralProtectionFault0(pVCpu);
4825 }
4826 }
4827 return rcStrict;
4828}
4829
4830
4831/**
4832 * Implements sgdt.
4833 *
4834 * @param iEffSeg The segment where to store the gdtr content.
4835 * @param GCPtrEffDst The address where to store the gdtr content.
4836 */
4837IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
4838{
4839 /*
4840 * Join paths with sidt.
4841 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4842 * you really must know.
4843 */
4844 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4845 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4846 {
4847 Log(("sgdt: Guest intercept -> VM-exit\n"));
4848 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_SGDT, cbInstr);
4849 }
4850
4851 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS))
4852 {
4853 Log(("sgdt: Guest intercept -> #VMEXIT\n"));
4854 IEM_SVM_UPDATE_NRIP(pVCpu);
4855 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4856 }
4857
4858 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4859 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst);
4860 if (rcStrict == VINF_SUCCESS)
4861 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4862 return rcStrict;
4863}
4864
4865
4866/**
4867 * Implements lidt.
4868 *
4869 * @param iEffSeg The segment of the new idtr contents
4870 * @param GCPtrEffSrc The address of the new idtr contents.
4871 * @param enmEffOpSize The effective operand size.
4872 */
4873IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4874{
4875 if (pVCpu->iem.s.uCpl != 0)
4876 return iemRaiseGeneralProtectionFault0(pVCpu);
4877 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4878
4879 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
4880 {
4881 Log(("lidt: Guest intercept -> #VMEXIT\n"));
4882 IEM_SVM_UPDATE_NRIP(pVCpu);
4883 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4884 }
4885
4886 /*
4887 * Fetch the limit and base address.
4888 */
4889 uint16_t cbLimit;
4890 RTGCPTR GCPtrBase;
4891 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4892 if (rcStrict == VINF_SUCCESS)
4893 {
4894 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4895 || X86_IS_CANONICAL(GCPtrBase))
4896 {
4897 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
4898 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4899 }
4900 else
4901 {
4902 Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
4903 return iemRaiseGeneralProtectionFault0(pVCpu);
4904 }
4905 }
4906 return rcStrict;
4907}
4908
4909
4910/**
4911 * Implements sidt.
4912 *
4913 * @param iEffSeg The segment where to store the idtr content.
4914 * @param GCPtrEffDst The address where to store the idtr content.
4915 */
4916IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
4917{
4918 /*
4919 * Join paths with sgdt.
4920 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4921 * you really must know.
4922 */
4923 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS))
4924 {
4925 Log(("sidt: Guest intercept -> #VMEXIT\n"));
4926 IEM_SVM_UPDATE_NRIP(pVCpu);
4927 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4928 }
4929
4930 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR);
4931 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst);
4932 if (rcStrict == VINF_SUCCESS)
4933 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4934 return rcStrict;
4935}
4936
4937
4938/**
4939 * Implements lldt.
4940 *
4941 * @param uNewLdt The new LDT selector value.
4942 */
4943IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
4944{
4945 /*
4946 * Check preconditions.
4947 */
4948 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4949 {
4950 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
4951 return iemRaiseUndefinedOpcode(pVCpu);
4952 }
4953 if (pVCpu->iem.s.uCpl != 0)
4954 {
4955 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
4956 return iemRaiseGeneralProtectionFault0(pVCpu);
4957 }
4958 /* Nested-guest VMX intercept. */
4959 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4960 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4961 {
4962 Log(("lldt: Guest intercept -> VM-exit\n"));
4963 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LLDT, cbInstr);
4964 }
4965 if (uNewLdt & X86_SEL_LDT)
4966 {
4967 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
4968 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
4969 }
4970
4971 /*
4972 * Now, loading a NULL selector is easy.
4973 */
4974 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
4975 {
4976 /* Nested-guest SVM intercept. */
4977 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
4978 {
4979 Log(("lldt: Guest intercept -> #VMEXIT\n"));
4980 IEM_SVM_UPDATE_NRIP(pVCpu);
4981 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4982 }
4983
4984 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
4985 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
4986 CPUMSetGuestLDTR(pVCpu, uNewLdt);
4987 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
4988 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
4989 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
4990 {
4991 /* AMD-V seems to leave the base and limit alone. */
4992 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
4993 }
4994 else
4995 {
4996 /* VT-x (Intel 3960x) seems to be doing the following. */
4997 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
4998 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
4999 pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX;
5000 }
5001
5002 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5003 return VINF_SUCCESS;
5004 }
5005
5006 /*
5007 * Read the descriptor.
5008 */
5009 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR);
5010 IEMSELDESC Desc;
5011 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
5012 if (rcStrict != VINF_SUCCESS)
5013 return rcStrict;
5014
5015 /* Check GPs first. */
5016 if (Desc.Legacy.Gen.u1DescType)
5017 {
5018 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5019 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5020 }
5021 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
5022 {
5023 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5024 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5025 }
5026 uint64_t u64Base;
5027 if (!IEM_IS_LONG_MODE(pVCpu))
5028 u64Base = X86DESC_BASE(&Desc.Legacy);
5029 else
5030 {
5031 if (Desc.Long.Gen.u5Zeros)
5032 {
5033 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
5034 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5035 }
5036
5037 u64Base = X86DESC64_BASE(&Desc.Long);
5038 if (!IEM_IS_CANONICAL(u64Base))
5039 {
5040 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
5041 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5042 }
5043 }
5044
5045 /* NP */
5046 if (!Desc.Legacy.Gen.u1Present)
5047 {
5048 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
5049 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
5050 }
5051
5052 /* Nested-guest SVM intercept. */
5053 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5054 {
5055 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5056 IEM_SVM_UPDATE_NRIP(pVCpu);
5057 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5058 }
5059
5060 /*
5061 * It checks out alright, update the registers.
5062 */
5063/** @todo check if the actual value is loaded or if the RPL is dropped */
5064 CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5065 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
5066 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5067 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5068 pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5069 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
5070
5071 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5072 return VINF_SUCCESS;
5073}
5074
5075
5076/**
5077 * Implements sldt GReg
5078 *
5079 * @param iGReg The general register to store the CRx value in.
5080 * @param enmEffOpSize The operand size.
5081 */
5082IEM_CIMPL_DEF_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5083{
5084 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5085 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5086 {
5087 Log(("sldt: Guest intercept -> VM-exit\n"));
5088 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_SLDT, cbInstr);
5089 }
5090
5091 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5092
5093 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5094 switch (enmEffOpSize)
5095 {
5096 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5097 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5098 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5099 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5100 }
5101 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5102 return VINF_SUCCESS;
5103}
5104
5105
5106/**
5107 * Implements sldt mem.
5108 *
5109 * @param iGReg The general register to store the CRx value in.
5110 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5111 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5112 */
5113IEM_CIMPL_DEF_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5114{
5115 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5116
5117 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5118 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.ldtr.Sel);
5119 if (rcStrict == VINF_SUCCESS)
5120 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5121 return rcStrict;
5122}
5123
5124
5125/**
5126 * Implements ltr.
5127 *
5128 * @param uNewTr The new TSS selector value.
5129 */
5130IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
5131{
5132 /*
5133 * Check preconditions.
5134 */
5135 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5136 {
5137 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
5138 return iemRaiseUndefinedOpcode(pVCpu);
5139 }
5140 if (pVCpu->iem.s.uCpl != 0)
5141 {
5142 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
5143 return iemRaiseGeneralProtectionFault0(pVCpu);
5144 }
5145 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5146 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5147 {
5148 Log(("ltr: Guest intercept -> VM-exit\n"));
5149 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LTR, cbInstr);
5150 }
5151 if (uNewTr & X86_SEL_LDT)
5152 {
5153 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
5154 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
5155 }
5156 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
5157 {
5158 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
5159 return iemRaiseGeneralProtectionFault0(pVCpu);
5160 }
5161 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
5162 {
5163 Log(("ltr: Guest intercept -> #VMEXIT\n"));
5164 IEM_SVM_UPDATE_NRIP(pVCpu);
5165 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5166 }
5167
5168 /*
5169 * Read the descriptor.
5170 */
5171 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR);
5172 IEMSELDESC Desc;
5173 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
5174 if (rcStrict != VINF_SUCCESS)
5175 return rcStrict;
5176
5177 /* Check GPs first. */
5178 if (Desc.Legacy.Gen.u1DescType)
5179 {
5180 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5181 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5182 }
5183 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
5184 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
5185 || IEM_IS_LONG_MODE(pVCpu)) )
5186 {
5187 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5188 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5189 }
5190 uint64_t u64Base;
5191 if (!IEM_IS_LONG_MODE(pVCpu))
5192 u64Base = X86DESC_BASE(&Desc.Legacy);
5193 else
5194 {
5195 if (Desc.Long.Gen.u5Zeros)
5196 {
5197 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
5198 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5199 }
5200
5201 u64Base = X86DESC64_BASE(&Desc.Long);
5202 if (!IEM_IS_CANONICAL(u64Base))
5203 {
5204 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
5205 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5206 }
5207 }
5208
5209 /* NP */
5210 if (!Desc.Legacy.Gen.u1Present)
5211 {
5212 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
5213 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
5214 }
5215
5216 /*
5217 * Set it busy.
5218 * Note! Intel says this should lock down the whole descriptor, but we'll
5219 * restrict our selves to 32-bit for now due to lack of inline
5220 * assembly and such.
5221 */
5222 void *pvDesc;
5223 rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
5224 if (rcStrict != VINF_SUCCESS)
5225 return rcStrict;
5226 switch ((uintptr_t)pvDesc & 3)
5227 {
5228 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
5229 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
5230 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
5231 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
5232 }
5233 rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
5234 if (rcStrict != VINF_SUCCESS)
5235 return rcStrict;
5236 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
5237
5238 /*
5239 * It checks out alright, update the registers.
5240 */
5241/** @todo check if the actual value is loaded or if the RPL is dropped */
5242 CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5243 pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
5244 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
5245 pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5246 pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5247 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
5248
5249 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5250 return VINF_SUCCESS;
5251}
5252
5253
5254/**
5255 * Implements str GReg
5256 *
5257 * @param iGReg The general register to store the CRx value in.
5258 * @param enmEffOpSize The operand size.
5259 */
5260IEM_CIMPL_DEF_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5261{
5262 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5263 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5264 {
5265 Log(("str_reg: Guest intercept -> VM-exit\n"));
5266 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5267 }
5268
5269 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5270
5271 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5272 switch (enmEffOpSize)
5273 {
5274 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5275 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5276 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5277 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5278 }
5279 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5280 return VINF_SUCCESS;
5281}
5282
5283
5284/**
5285 * Implements str mem.
5286 *
5287 * @param iGReg The general register to store the CRx value in.
5288 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5289 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5290 */
5291IEM_CIMPL_DEF_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5292{
5293 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5294 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5295 {
5296 Log(("str_mem: Guest intercept -> VM-exit\n"));
5297 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5298 }
5299
5300 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5301
5302 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5303 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.tr.Sel);
5304 if (rcStrict == VINF_SUCCESS)
5305 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5306 return rcStrict;
5307}
5308
5309
5310/**
5311 * Implements mov GReg,CRx.
5312 *
5313 * @param iGReg The general register to store the CRx value in.
5314 * @param iCrReg The CRx register to read (valid).
5315 */
5316IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
5317{
5318 if (pVCpu->iem.s.uCpl != 0)
5319 return iemRaiseGeneralProtectionFault0(pVCpu);
5320 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5321
5322 if (IEM_SVM_IS_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
5323 {
5324 Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg));
5325 IEM_SVM_UPDATE_NRIP(pVCpu);
5326 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
5327 }
5328
5329 /* Read it. */
5330 uint64_t crX;
5331 switch (iCrReg)
5332 {
5333 case 0:
5334 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5335 crX = pVCpu->cpum.GstCtx.cr0;
5336 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
5337 crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
5338 break;
5339 case 2:
5340 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2);
5341 crX = pVCpu->cpum.GstCtx.cr2;
5342 break;
5343 case 3:
5344 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5345 crX = pVCpu->cpum.GstCtx.cr3;
5346 break;
5347 case 4:
5348 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5349 crX = pVCpu->cpum.GstCtx.cr4;
5350 break;
5351 case 8:
5352 {
5353 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5354#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5355 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5356 {
5357 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr8(pVCpu, iGReg, cbInstr);
5358 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5359 return rcStrict;
5360
5361 /*
5362 * If the Mov-from-CR8 doesn't cause a VM-exit, bits 7:4 of the VTPR is copied
5363 * to bits 0:3 of the destination operand. Bits 63:4 of the destination operand
5364 * are cleared.
5365 *
5366 * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5367 */
5368 if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5369 {
5370 uint32_t const uVTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5371 crX = (uVTpr >> 4) & 0xf;
5372 break;
5373 }
5374 }
5375#endif
5376#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5377 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5378 {
5379 PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
5380 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5381 {
5382 crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf;
5383 break;
5384 }
5385 }
5386#endif
5387 uint8_t uTpr;
5388 int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
5389 if (RT_SUCCESS(rc))
5390 crX = uTpr >> 4;
5391 else
5392 crX = 0;
5393 break;
5394 }
5395 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5396 }
5397
5398#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5399 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5400 {
5401 switch (iCrReg)
5402 {
5403 case 0:
5404 case 4:
5405 {
5406 /* CR0/CR4 reads are subject to masking when in VMX non-root mode. */
5407 crX = iemVmxMaskCr0CR4(pVCpu, iCrReg, crX);
5408 break;
5409 }
5410
5411 case 3:
5412 {
5413 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr3(pVCpu, iGReg, cbInstr);
5414 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5415 return rcStrict;
5416 break;
5417 }
5418 }
5419 }
5420#endif
5421
5422 /* Store it. */
5423 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5424 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
5425 else
5426 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
5427
5428 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5429 return VINF_SUCCESS;
5430}
5431
5432
5433/**
5434 * Implements smsw GReg.
5435 *
5436 * @param iGReg The general register to store the CRx value in.
5437 * @param enmEffOpSize The operand size.
5438 */
5439IEM_CIMPL_DEF_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5440{
5441 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5442
5443 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5444#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5445 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5446 u64GuestCr0 = iemVmxMaskCr0CR4(pVCpu, 0 /* iCrReg */, u64GuestCr0);
5447#endif
5448
5449 switch (enmEffOpSize)
5450 {
5451 case IEMMODE_16BIT:
5452 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5453 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0;
5454 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5455 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xffe0;
5456 else
5457 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xfff0;
5458 break;
5459
5460 case IEMMODE_32BIT:
5461 *(uint32_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)u64GuestCr0;
5462 break;
5463
5464 case IEMMODE_64BIT:
5465 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = u64GuestCr0;
5466 break;
5467
5468 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5469 }
5470
5471 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5472 return VINF_SUCCESS;
5473}
5474
5475
5476/**
5477 * Implements smsw mem.
5478 *
5479 * @param iGReg The general register to store the CR0 value in.
5480 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5481 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5482 */
5483IEM_CIMPL_DEF_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5484{
5485 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5486
5487 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5488#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5489 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5490 u64GuestCr0 = iemVmxMaskCr0CR4(pVCpu, 0 /* iCrReg */, u64GuestCr0);
5491#endif
5492
5493 uint16_t u16Value;
5494 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5495 u16Value = (uint16_t)u64GuestCr0;
5496 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5497 u16Value = (uint16_t)u64GuestCr0 | 0xffe0;
5498 else
5499 u16Value = (uint16_t)u64GuestCr0 | 0xfff0;
5500
5501 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, u16Value);
5502 if (rcStrict == VINF_SUCCESS)
5503 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5504 return rcStrict;
5505}
5506
5507
5508/**
5509 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
5510 *
5511 * @param iCrReg The CRx register to write (valid).
5512 * @param uNewCrX The new value.
5513 * @param enmAccessCrx The instruction that caused the CrX load.
5514 * @param iGReg The general register in case of a 'mov CRx,GReg'
5515 * instruction.
5516 */
5517IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
5518{
5519 VBOXSTRICTRC rcStrict;
5520 int rc;
5521#ifndef VBOX_WITH_NESTED_HWVIRT_SVM
5522 RT_NOREF2(iGReg, enmAccessCrX);
5523#endif
5524
5525 /*
5526 * Try store it.
5527 * Unfortunately, CPUM only does a tiny bit of the work.
5528 */
5529 switch (iCrReg)
5530 {
5531 case 0:
5532 {
5533 /*
5534 * Perform checks.
5535 */
5536 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5537
5538 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0;
5539 uint32_t const fValid = X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS
5540 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM
5541 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG;
5542
5543 /* ET is hardcoded on 486 and later. */
5544 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
5545 uNewCrX |= X86_CR0_ET;
5546 /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
5547 else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
5548 {
5549 uNewCrX &= fValid;
5550 uNewCrX |= X86_CR0_ET;
5551 }
5552 else
5553 uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
5554
5555 /* Check for reserved bits. */
5556 if (uNewCrX & ~(uint64_t)fValid)
5557 {
5558 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5559 return iemRaiseGeneralProtectionFault0(pVCpu);
5560 }
5561
5562 /* Check for invalid combinations. */
5563 if ( (uNewCrX & X86_CR0_PG)
5564 && !(uNewCrX & X86_CR0_PE) )
5565 {
5566 Log(("Trying to set CR0.PG without CR0.PE\n"));
5567 return iemRaiseGeneralProtectionFault0(pVCpu);
5568 }
5569
5570 if ( !(uNewCrX & X86_CR0_CD)
5571 && (uNewCrX & X86_CR0_NW) )
5572 {
5573 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
5574 return iemRaiseGeneralProtectionFault0(pVCpu);
5575 }
5576
5577 if ( !(uNewCrX & X86_CR0_PG)
5578 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE))
5579 {
5580 Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n"));
5581 return iemRaiseGeneralProtectionFault0(pVCpu);
5582 }
5583
5584 /* Long mode consistency checks. */
5585 if ( (uNewCrX & X86_CR0_PG)
5586 && !(uOldCrX & X86_CR0_PG)
5587 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5588 {
5589 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE))
5590 {
5591 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
5592 return iemRaiseGeneralProtectionFault0(pVCpu);
5593 }
5594 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long)
5595 {
5596 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
5597 return iemRaiseGeneralProtectionFault0(pVCpu);
5598 }
5599 }
5600
5601 /* Check for bits that must remain set or cleared in VMX operation,
5602 see Intel spec. 23.8 "Restrictions on VMX operation". */
5603 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5604 {
5605 uint32_t const uCr0Fixed0 = CPUMGetGuestIa32VmxCr0Fixed0(pVCpu);
5606 if ((uNewCrX & uCr0Fixed0) != uCr0Fixed0)
5607 {
5608 Log(("Trying to clear reserved CR0 bits in VMX operation: NewCr0=%#llx MB1=%#llx\n", uNewCrX, uCr0Fixed0));
5609 return iemRaiseGeneralProtectionFault0(pVCpu);
5610 }
5611
5612 uint32_t const uCr0Fixed1 = CPUMGetGuestIa32VmxCr0Fixed1(pVCpu);
5613 if (uNewCrX & ~uCr0Fixed1)
5614 {
5615 Log(("Trying to set reserved CR0 bits in VMX operation: NewCr0=%#llx MB0=%#llx\n", uNewCrX, uCr0Fixed1));
5616 return iemRaiseGeneralProtectionFault0(pVCpu);
5617 }
5618 }
5619
5620 /** @todo check reserved PDPTR bits as AMD states. */
5621
5622 /*
5623 * SVM nested-guest CR0 write intercepts.
5624 */
5625 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
5626 {
5627 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5628 IEM_SVM_UPDATE_NRIP(pVCpu);
5629 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
5630 }
5631 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5632 {
5633 /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
5634 if ( enmAccessCrX == IEMACCESSCRX_LMSW
5635 || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
5636 {
5637 Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
5638 Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg));
5639 IEM_SVM_UPDATE_NRIP(pVCpu);
5640 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg);
5641 }
5642 }
5643
5644 /*
5645 * Change CR0.
5646 */
5647 CPUMSetGuestCR0(pVCpu, uNewCrX);
5648 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX);
5649
5650 /*
5651 * Change EFER.LMA if entering or leaving long mode.
5652 */
5653 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
5654 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5655 {
5656 uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER;
5657 if (uNewCrX & X86_CR0_PG)
5658 NewEFER |= MSR_K6_EFER_LMA;
5659 else
5660 NewEFER &= ~MSR_K6_EFER_LMA;
5661
5662 CPUMSetGuestEFER(pVCpu, NewEFER);
5663 Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER);
5664 }
5665
5666 /*
5667 * Inform PGM.
5668 */
5669 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
5670 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
5671 {
5672 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5673 AssertRCReturn(rc, rc);
5674 /* ignore informational status codes */
5675 }
5676 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
5677
5678#ifdef IN_RC
5679 /* Return to ring-3 for rescheduling if WP or AM changes. */
5680 if ( rcStrict == VINF_SUCCESS
5681 && ( (uNewCrX & (X86_CR0_WP | X86_CR0_AM))
5682 != (uOldCrX & (X86_CR0_WP | X86_CR0_AM))) )
5683 rcStrict = VINF_EM_RESCHEDULE;
5684#endif
5685 break;
5686 }
5687
5688 /*
5689 * CR2 can be changed without any restrictions.
5690 */
5691 case 2:
5692 {
5693 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
5694 {
5695 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5696 IEM_SVM_UPDATE_NRIP(pVCpu);
5697 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
5698 }
5699 pVCpu->cpum.GstCtx.cr2 = uNewCrX;
5700 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2;
5701 rcStrict = VINF_SUCCESS;
5702 break;
5703 }
5704
5705 /*
5706 * CR3 is relatively simple, although AMD and Intel have different
5707 * accounts of how setting reserved bits are handled. We take intel's
5708 * word for the lower bits and AMD's for the high bits (63:52). The
5709 * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
5710 * on this.
5711 */
5712 /** @todo Testcase: Setting reserved bits in CR3, especially before
5713 * enabling paging. */
5714 case 3:
5715 {
5716 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5717
5718 /* Bit 63 being clear in the source operand with PCIDE indicates no invalidations are required. */
5719 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)
5720 && (uNewCrX & RT_BIT_64(63)))
5721 {
5722 /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10
5723 * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see
5724 * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and
5725 * Paging-Structure Caches". */
5726 uNewCrX &= ~RT_BIT_64(63);
5727 }
5728
5729 /* Check / mask the value. */
5730 if (uNewCrX & UINT64_C(0xfff0000000000000))
5731 {
5732 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
5733 return iemRaiseGeneralProtectionFault0(pVCpu);
5734 }
5735
5736 uint64_t fValid;
5737 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
5738 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME))
5739 fValid = UINT64_C(0x000fffffffffffff);
5740 else
5741 fValid = UINT64_C(0xffffffff);
5742 if (uNewCrX & ~fValid)
5743 {
5744 Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
5745 uNewCrX, uNewCrX & ~fValid));
5746 uNewCrX &= fValid;
5747 }
5748
5749 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
5750 {
5751 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5752 IEM_SVM_UPDATE_NRIP(pVCpu);
5753 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
5754 }
5755
5756 /** @todo If we're in PAE mode we should check the PDPTRs for
5757 * invalid bits. */
5758
5759 /* Make the change. */
5760 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
5761 AssertRCSuccessReturn(rc, rc);
5762
5763 /* Inform PGM. */
5764 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
5765 {
5766 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE));
5767 AssertRCReturn(rc, rc);
5768 /* ignore informational status codes */
5769 }
5770 rcStrict = VINF_SUCCESS;
5771 break;
5772 }
5773
5774 /*
5775 * CR4 is a bit more tedious as there are bits which cannot be cleared
5776 * under some circumstances and such.
5777 */
5778 case 4:
5779 {
5780 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5781 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4;
5782
5783 /** @todo Shouldn't this look at the guest CPUID bits to determine
5784 * valid bits? e.g. if guest CPUID doesn't allow X86_CR4_OSXMMEEXCPT, we
5785 * should #GP(0). */
5786 /* reserved bits */
5787 uint32_t fValid = X86_CR4_VME | X86_CR4_PVI
5788 | X86_CR4_TSD | X86_CR4_DE
5789 | X86_CR4_PSE | X86_CR4_PAE
5790 | X86_CR4_MCE | X86_CR4_PGE
5791 | X86_CR4_PCE | X86_CR4_OSFXSR
5792 | X86_CR4_OSXMMEEXCPT;
5793 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmx)
5794 fValid |= X86_CR4_VMXE;
5795 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fXSaveRstor)
5796 fValid |= X86_CR4_OSXSAVE;
5797 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fPcid)
5798 fValid |= X86_CR4_PCIDE;
5799 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fFsGsBase)
5800 fValid |= X86_CR4_FSGSBASE;
5801 if (uNewCrX & ~(uint64_t)fValid)
5802 {
5803 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5804 return iemRaiseGeneralProtectionFault0(pVCpu);
5805 }
5806
5807 bool const fPcide = ((uNewCrX ^ uOldCrX) & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE);
5808 bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
5809
5810 /* PCIDE check. */
5811 if ( fPcide
5812 && ( !fLongMode
5813 || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))))
5814 {
5815 Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))));
5816 return iemRaiseGeneralProtectionFault0(pVCpu);
5817 }
5818
5819 /* PAE check. */
5820 if ( fLongMode
5821 && (uOldCrX & X86_CR4_PAE)
5822 && !(uNewCrX & X86_CR4_PAE))
5823 {
5824 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
5825 return iemRaiseGeneralProtectionFault0(pVCpu);
5826 }
5827
5828 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
5829 {
5830 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5831 IEM_SVM_UPDATE_NRIP(pVCpu);
5832 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
5833 }
5834
5835 /* Check for bits that must remain set or cleared in VMX operation,
5836 see Intel spec. 23.8 "Restrictions on VMX operation". */
5837 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5838 {
5839 uint32_t const uCr4Fixed0 = CPUMGetGuestIa32VmxCr4Fixed0(pVCpu);
5840 if ((uNewCrX & uCr4Fixed0) != uCr4Fixed0)
5841 {
5842 Log(("Trying to clear reserved CR4 bits in VMX operation: NewCr4=%#llx MB1=%#llx\n", uNewCrX, uCr4Fixed0));
5843 return iemRaiseGeneralProtectionFault0(pVCpu);
5844 }
5845
5846 uint32_t const uCr4Fixed1 = CPUMGetGuestIa32VmxCr4Fixed1(pVCpu);
5847 if (uNewCrX & ~uCr4Fixed1)
5848 {
5849 Log(("Trying to set reserved CR4 bits in VMX operation: NewCr4=%#llx MB0=%#llx\n", uNewCrX, uCr4Fixed1));
5850 return iemRaiseGeneralProtectionFault0(pVCpu);
5851 }
5852 }
5853
5854 /*
5855 * Change it.
5856 */
5857 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
5858 AssertRCSuccessReturn(rc, rc);
5859 Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX);
5860
5861 /*
5862 * Notify SELM and PGM.
5863 */
5864 /* SELM - VME may change things wrt to the TSS shadowing. */
5865 if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
5866 {
5867 Log(("iemCImpl_load_CrX: VME %d -> %d => Setting VMCPU_FF_SELM_SYNC_TSS\n",
5868 RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) ));
5869#ifdef VBOX_WITH_RAW_MODE
5870 if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
5871 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
5872#endif
5873 }
5874
5875 /* PGM - flushing and mode. */
5876 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */))
5877 {
5878 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5879 AssertRCReturn(rc, rc);
5880 /* ignore informational status codes */
5881 }
5882 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
5883 break;
5884 }
5885
5886 /*
5887 * CR8 maps to the APIC TPR.
5888 */
5889 case 8:
5890 {
5891 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5892 if (uNewCrX & ~(uint64_t)0xf)
5893 {
5894 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
5895 return iemRaiseGeneralProtectionFault0(pVCpu);
5896 }
5897
5898#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5899 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5900 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5901 {
5902 /*
5903 * If the Mov-to-CR8 doesn't cause a VM-exit, bits 0:3 of the source operand
5904 * is copied to bits 7:4 of the VTPR. Bits 0:3 and bits 31:8 of the VTPR are
5905 * cleared. Following this the processor performs TPR virtualization.
5906 *
5907 * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5908 */
5909 uint32_t const uVTpr = (uNewCrX & 0xf) << 4;
5910 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uVTpr);
5911 rcStrict = iemVmxVmexitTprVirtualization(pVCpu, cbInstr);
5912 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5913 return rcStrict;
5914 rcStrict = VINF_SUCCESS;
5915 break;
5916 }
5917#endif
5918
5919#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5920 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5921 {
5922 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
5923 {
5924 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5925 IEM_SVM_UPDATE_NRIP(pVCpu);
5926 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
5927 }
5928
5929 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
5930 pVmcbCtrl->IntCtrl.n.u8VTPR = uNewCrX;
5931 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5932 {
5933 rcStrict = VINF_SUCCESS;
5934 break;
5935 }
5936 }
5937#endif
5938 uint8_t const u8Tpr = (uint8_t)uNewCrX << 4;
5939 APICSetTpr(pVCpu, u8Tpr);
5940 rcStrict = VINF_SUCCESS;
5941 break;
5942 }
5943
5944 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5945 }
5946
5947 /*
5948 * Advance the RIP on success.
5949 */
5950 if (RT_SUCCESS(rcStrict))
5951 {
5952 if (rcStrict != VINF_SUCCESS)
5953 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
5954 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5955 }
5956
5957 return rcStrict;
5958}
5959
5960
5961/**
5962 * Implements mov CRx,GReg.
5963 *
5964 * @param iCrReg The CRx register to write (valid).
5965 * @param iGReg The general register to load the CRx value from.
5966 */
5967IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
5968{
5969 if (pVCpu->iem.s.uCpl != 0)
5970 return iemRaiseGeneralProtectionFault0(pVCpu);
5971 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5972
5973 /*
5974 * Read the new value from the source register and call common worker.
5975 */
5976 uint64_t uNewCrX;
5977 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5978 uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
5979 else
5980 uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
5981
5982#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5983 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5984 {
5985 VBOXSTRICTRC rcStrict = VINF_VMX_INTERCEPT_NOT_ACTIVE;
5986 switch (iCrReg)
5987 {
5988 case 0:
5989 case 4: rcStrict = iemVmxVmexitInstrMovToCr0Cr4(pVCpu, iCrReg, &uNewCrX, iGReg, cbInstr); break;
5990 case 3: rcStrict = iemVmxVmexitInstrMovToCr3(pVCpu, uNewCrX, iGReg, cbInstr); break;
5991 case 8: rcStrict = iemVmxVmexitInstrMovToCr8(pVCpu, iGReg, cbInstr); break;
5992 }
5993 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5994 return rcStrict;
5995 }
5996#endif
5997
5998 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
5999}
6000
6001
6002/**
6003 * Implements 'LMSW r/m16'
6004 *
6005 * @param u16NewMsw The new value.
6006 * @param GCPtrEffDst The guest-linear address of the source operand in case
6007 * of a memory operand. For register operand, pass
6008 * NIL_RTGCPTR.
6009 */
6010IEM_CIMPL_DEF_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst)
6011{
6012 if (pVCpu->iem.s.uCpl != 0)
6013 return iemRaiseGeneralProtectionFault0(pVCpu);
6014 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6015 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6016
6017#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6018 /* Check nested-guest VMX intercept and get updated MSW if there's no VM-exit. */
6019 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6020 {
6021 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrLmsw(pVCpu, pVCpu->cpum.GstCtx.cr0, &u16NewMsw, GCPtrEffDst, cbInstr);
6022 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6023 return rcStrict;
6024 }
6025#else
6026 RT_NOREF_PV(GCPtrEffDst);
6027#endif
6028
6029 /*
6030 * Compose the new CR0 value and call common worker.
6031 */
6032 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6033 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6034 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
6035}
6036
6037
6038/**
6039 * Implements 'CLTS'.
6040 */
6041IEM_CIMPL_DEF_0(iemCImpl_clts)
6042{
6043 if (pVCpu->iem.s.uCpl != 0)
6044 return iemRaiseGeneralProtectionFault0(pVCpu);
6045
6046 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6047 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0;
6048 uNewCr0 &= ~X86_CR0_TS;
6049
6050#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6051 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6052 {
6053 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrClts(pVCpu, cbInstr);
6054 if (rcStrict == VINF_VMX_MODIFIES_BEHAVIOR)
6055 uNewCr0 |= (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS);
6056 else if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6057 return rcStrict;
6058 }
6059#endif
6060
6061 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
6062}
6063
6064
6065/**
6066 * Implements mov GReg,DRx.
6067 *
6068 * @param iGReg The general register to store the DRx value in.
6069 * @param iDrReg The DRx register to read (0-7).
6070 */
6071IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
6072{
6073#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6074 /*
6075 * Check nested-guest VMX intercept.
6076 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6077 * over CPL and CR4.DE and even DR4/DR5 checks.
6078 *
6079 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6080 */
6081 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6082 {
6083 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_FROM_DRX, iDrReg, iGReg, cbInstr);
6084 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6085 return rcStrict;
6086 }
6087#endif
6088
6089 /*
6090 * Check preconditions.
6091 */
6092 /* Raise GPs. */
6093 if (pVCpu->iem.s.uCpl != 0)
6094 return iemRaiseGeneralProtectionFault0(pVCpu);
6095 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6096 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR0);
6097
6098 if ( (iDrReg == 4 || iDrReg == 5)
6099 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) )
6100 {
6101 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
6102 return iemRaiseGeneralProtectionFault0(pVCpu);
6103 }
6104
6105 /* Raise #DB if general access detect is enabled. */
6106 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6107 {
6108 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
6109 return iemRaiseDebugException(pVCpu);
6110 }
6111
6112 /*
6113 * Read the debug register and store it in the specified general register.
6114 */
6115 uint64_t drX;
6116 switch (iDrReg)
6117 {
6118 case 0:
6119 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6120 drX = pVCpu->cpum.GstCtx.dr[0];
6121 break;
6122 case 1:
6123 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6124 drX = pVCpu->cpum.GstCtx.dr[1];
6125 break;
6126 case 2:
6127 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6128 drX = pVCpu->cpum.GstCtx.dr[2];
6129 break;
6130 case 3:
6131 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6132 drX = pVCpu->cpum.GstCtx.dr[3];
6133 break;
6134 case 6:
6135 case 4:
6136 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6137 drX = pVCpu->cpum.GstCtx.dr[6];
6138 drX |= X86_DR6_RA1_MASK;
6139 drX &= ~X86_DR6_RAZ_MASK;
6140 break;
6141 case 7:
6142 case 5:
6143 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6144 drX = pVCpu->cpum.GstCtx.dr[7];
6145 drX |=X86_DR7_RA1_MASK;
6146 drX &= ~X86_DR7_RAZ_MASK;
6147 break;
6148 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6149 }
6150
6151 /** @todo SVM nested-guest intercept for DR8-DR15? */
6152 /*
6153 * Check for any SVM nested-guest intercepts for the DRx read.
6154 */
6155 if (IEM_SVM_IS_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
6156 {
6157 Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
6158 IEM_SVM_UPDATE_NRIP(pVCpu);
6159 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
6160 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6161 }
6162
6163 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6164 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
6165 else
6166 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
6167
6168 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6169 return VINF_SUCCESS;
6170}
6171
6172
6173/**
6174 * Implements mov DRx,GReg.
6175 *
6176 * @param iDrReg The DRx register to write (valid).
6177 * @param iGReg The general register to load the DRx value from.
6178 */
6179IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
6180{
6181#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6182 /*
6183 * Check nested-guest VMX intercept.
6184 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6185 * over CPL and CR4.DE and even DR4/DR5 checks.
6186 *
6187 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6188 */
6189 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6190 {
6191 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_TO_DRX, iDrReg, iGReg, cbInstr);
6192 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6193 return rcStrict;
6194 }
6195#endif
6196
6197 /*
6198 * Check preconditions.
6199 */
6200 if (pVCpu->iem.s.uCpl != 0)
6201 return iemRaiseGeneralProtectionFault0(pVCpu);
6202 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6203 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR4);
6204
6205 if (iDrReg == 4 || iDrReg == 5)
6206 {
6207 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
6208 {
6209 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
6210 return iemRaiseGeneralProtectionFault0(pVCpu);
6211 }
6212 iDrReg += 2;
6213 }
6214
6215 /* Raise #DB if general access detect is enabled. */
6216 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
6217 * \#GP? */
6218 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6219 {
6220 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
6221 return iemRaiseDebugException(pVCpu);
6222 }
6223
6224 /*
6225 * Read the new value from the source register.
6226 */
6227 uint64_t uNewDrX;
6228 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6229 uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
6230 else
6231 uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
6232
6233 /*
6234 * Adjust it.
6235 */
6236 switch (iDrReg)
6237 {
6238 case 0:
6239 case 1:
6240 case 2:
6241 case 3:
6242 /* nothing to adjust */
6243 break;
6244
6245 case 6:
6246 if (uNewDrX & X86_DR6_MBZ_MASK)
6247 {
6248 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6249 return iemRaiseGeneralProtectionFault0(pVCpu);
6250 }
6251 uNewDrX |= X86_DR6_RA1_MASK;
6252 uNewDrX &= ~X86_DR6_RAZ_MASK;
6253 break;
6254
6255 case 7:
6256 if (uNewDrX & X86_DR7_MBZ_MASK)
6257 {
6258 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6259 return iemRaiseGeneralProtectionFault0(pVCpu);
6260 }
6261 uNewDrX |= X86_DR7_RA1_MASK;
6262 uNewDrX &= ~X86_DR7_RAZ_MASK;
6263 break;
6264
6265 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6266 }
6267
6268 /** @todo SVM nested-guest intercept for DR8-DR15? */
6269 /*
6270 * Check for any SVM nested-guest intercepts for the DRx write.
6271 */
6272 if (IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
6273 {
6274 Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
6275 IEM_SVM_UPDATE_NRIP(pVCpu);
6276 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
6277 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6278 }
6279
6280 /*
6281 * Do the actual setting.
6282 */
6283 if (iDrReg < 4)
6284 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6285 else if (iDrReg == 6)
6286 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6287
6288 int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
6289 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
6290
6291 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6292 return VINF_SUCCESS;
6293}
6294
6295
6296/**
6297 * Implements 'INVLPG m'.
6298 *
6299 * @param GCPtrPage The effective address of the page to invalidate.
6300 * @remarks Updates the RIP.
6301 */
6302IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
6303{
6304 /* ring-0 only. */
6305 if (pVCpu->iem.s.uCpl != 0)
6306 return iemRaiseGeneralProtectionFault0(pVCpu);
6307 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6308 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6309
6310#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6311 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6312 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6313 {
6314 Log(("invlpg: Guest intercept (%RGp) -> VM-exit\n", GCPtrPage));
6315 return iemVmxVmexitInstrInvlpg(pVCpu, GCPtrPage, cbInstr);
6316 }
6317#endif
6318
6319 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
6320 {
6321 Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
6322 IEM_SVM_UPDATE_NRIP(pVCpu);
6323 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPG,
6324 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */);
6325 }
6326
6327 int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
6328 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6329
6330 if (rc == VINF_SUCCESS)
6331 return VINF_SUCCESS;
6332 if (rc == VINF_PGM_SYNC_CR3)
6333 return iemSetPassUpStatus(pVCpu, rc);
6334
6335 AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
6336 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
6337 return rc;
6338}
6339
6340
6341/**
6342 * Implements INVPCID.
6343 *
6344 * @param iEffSeg The segment of the invpcid descriptor.
6345 * @param GCPtrInvpcidDesc The address of invpcid descriptor.
6346 * @param uInvpcidType The invalidation type.
6347 * @remarks Updates the RIP.
6348 */
6349IEM_CIMPL_DEF_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint8_t, uInvpcidType)
6350{
6351 /*
6352 * Check preconditions.
6353 */
6354 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid)
6355 return iemRaiseUndefinedOpcode(pVCpu);
6356
6357 /* When in VMX non-root mode and INVPCID is not enabled, it results in #UD. */
6358 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6359 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_INVPCID))
6360 {
6361 Log(("invpcid: Not enabled for nested-guest execution -> #UD\n"));
6362 return iemRaiseUndefinedOpcode(pVCpu);
6363 }
6364
6365 if (pVCpu->iem.s.uCpl != 0)
6366 {
6367 Log(("invpcid: CPL != 0 -> #GP(0)\n"));
6368 return iemRaiseGeneralProtectionFault0(pVCpu);
6369 }
6370
6371 if (IEM_IS_V86_MODE(pVCpu))
6372 {
6373 Log(("invpcid: v8086 mode -> #GP(0)\n"));
6374 return iemRaiseGeneralProtectionFault0(pVCpu);
6375 }
6376
6377 /*
6378 * Check nested-guest intercept.
6379 *
6380 * INVPCID causes a VM-exit if "enable INVPCID" and "INVLPG exiting" are
6381 * both set. We have already checked the former earlier in this function.
6382 *
6383 * CPL checks take priority over VM-exit.
6384 * See Intel spec. "25.1.1 Relative Priority of Faults and VM Exits".
6385 */
6386 /** @todo r=ramshankar: NSTVMX: I'm not entirely certain if V86 mode check has
6387 * higher or lower priority than a VM-exit, we assume higher for the time
6388 * being. */
6389 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6390 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6391 {
6392 Log(("invpcid: Guest intercept -> #VM-exit\n"));
6393 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_INVPCID, VMXINSTRID_NONE, cbInstr);
6394 }
6395
6396 if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID)
6397 {
6398 Log(("invpcid: invalid/unrecognized invpcid type %#x -> #GP(0)\n", uInvpcidType));
6399 return iemRaiseGeneralProtectionFault0(pVCpu);
6400 }
6401 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6402
6403 /*
6404 * Fetch the invpcid descriptor from guest memory.
6405 */
6406 RTUINT128U uDesc;
6407 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvpcidDesc);
6408 if (rcStrict == VINF_SUCCESS)
6409 {
6410 /*
6411 * Validate the descriptor.
6412 */
6413 if (uDesc.s.Lo > 0xfff)
6414 {
6415 Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
6416 return iemRaiseGeneralProtectionFault0(pVCpu);
6417 }
6418
6419 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
6420 uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff);
6421 uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4;
6422 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
6423 switch (uInvpcidType)
6424 {
6425 case X86_INVPCID_TYPE_INDV_ADDR:
6426 {
6427 if (!IEM_IS_CANONICAL(GCPtrInvAddr))
6428 {
6429 Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr));
6430 return iemRaiseGeneralProtectionFault0(pVCpu);
6431 }
6432 if ( !(uCr4 & X86_CR4_PCIDE)
6433 && uPcid != 0)
6434 {
6435 Log(("invpcid: invalid pcid %#x\n", uPcid));
6436 return iemRaiseGeneralProtectionFault0(pVCpu);
6437 }
6438
6439 /* Invalidate mappings for the linear address tagged with PCID except global translations. */
6440 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6441 break;
6442 }
6443
6444 case X86_INVPCID_TYPE_SINGLE_CONTEXT:
6445 {
6446 if ( !(uCr4 & X86_CR4_PCIDE)
6447 && uPcid != 0)
6448 {
6449 Log(("invpcid: invalid pcid %#x\n", uPcid));
6450 return iemRaiseGeneralProtectionFault0(pVCpu);
6451 }
6452 /* Invalidate all mappings associated with PCID except global translations. */
6453 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6454 break;
6455 }
6456
6457 case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL:
6458 {
6459 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
6460 break;
6461 }
6462
6463 case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL:
6464 {
6465 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6466 break;
6467 }
6468 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6469 }
6470 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6471 }
6472 return rcStrict;
6473}
6474
6475
6476/**
6477 * Implements INVD.
6478 */
6479IEM_CIMPL_DEF_0(iemCImpl_invd)
6480{
6481 if (pVCpu->iem.s.uCpl != 0)
6482 {
6483 Log(("invd: CPL != 0 -> #GP(0)\n"));
6484 return iemRaiseGeneralProtectionFault0(pVCpu);
6485 }
6486
6487 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6488 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_INVD, cbInstr);
6489
6490 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_INVD, SVM_EXIT_INVD, 0, 0);
6491
6492 /* We currently take no action here. */
6493 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6494 return VINF_SUCCESS;
6495}
6496
6497
6498/**
6499 * Implements WBINVD.
6500 */
6501IEM_CIMPL_DEF_0(iemCImpl_wbinvd)
6502{
6503 if (pVCpu->iem.s.uCpl != 0)
6504 {
6505 Log(("wbinvd: CPL != 0 -> #GP(0)\n"));
6506 return iemRaiseGeneralProtectionFault0(pVCpu);
6507 }
6508
6509 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6510 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WBINVD, cbInstr);
6511
6512 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_WBINVD, SVM_EXIT_WBINVD, 0, 0);
6513
6514 /* We currently take no action here. */
6515 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6516 return VINF_SUCCESS;
6517}
6518
6519
6520/** Opcode 0x0f 0xaa. */
6521IEM_CIMPL_DEF_0(iemCImpl_rsm)
6522{
6523 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_RSM, SVM_EXIT_RSM, 0, 0);
6524 NOREF(cbInstr);
6525 return iemRaiseUndefinedOpcode(pVCpu);
6526}
6527
6528
6529/**
6530 * Implements RDTSC.
6531 */
6532IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
6533{
6534 /*
6535 * Check preconditions.
6536 */
6537 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
6538 return iemRaiseUndefinedOpcode(pVCpu);
6539
6540 if (pVCpu->iem.s.uCpl != 0)
6541 {
6542 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6543 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6544 {
6545 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6546 return iemRaiseGeneralProtectionFault0(pVCpu);
6547 }
6548 }
6549
6550 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6551 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6552 {
6553 Log(("rdtsc: Guest intercept -> VM-exit\n"));
6554 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSC, cbInstr);
6555 }
6556
6557 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
6558 {
6559 Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
6560 IEM_SVM_UPDATE_NRIP(pVCpu);
6561 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6562 }
6563
6564 /*
6565 * Do the job.
6566 */
6567 uint64_t uTicks = TMCpuTickGet(pVCpu);
6568#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6569 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6570#endif
6571 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6572 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6573 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); /* For IEMExecDecodedRdtsc. */
6574 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6575 return VINF_SUCCESS;
6576}
6577
6578
6579/**
6580 * Implements RDTSC.
6581 */
6582IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
6583{
6584 /*
6585 * Check preconditions.
6586 */
6587 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
6588 return iemRaiseUndefinedOpcode(pVCpu);
6589
6590 if (pVCpu->iem.s.uCpl != 0)
6591 {
6592 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6593 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6594 {
6595 Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6596 return iemRaiseGeneralProtectionFault0(pVCpu);
6597 }
6598 }
6599
6600 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6601 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_RDTSCP))
6602 {
6603 Log(("rdtscp: Guest intercept -> VM-exit\n"));
6604 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSCP, cbInstr);
6605 }
6606 else if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
6607 {
6608 Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
6609 IEM_SVM_UPDATE_NRIP(pVCpu);
6610 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6611 }
6612
6613 /*
6614 * Do the job.
6615 * Query the MSR first in case of trips to ring-3.
6616 */
6617 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
6618 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx);
6619 if (rcStrict == VINF_SUCCESS)
6620 {
6621 /* Low dword of the TSC_AUX msr only. */
6622 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
6623
6624 uint64_t uTicks = TMCpuTickGet(pVCpu);
6625#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6626 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6627#endif
6628 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6629 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6630 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX); /* For IEMExecDecodedRdtscp. */
6631 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6632 }
6633 return rcStrict;
6634}
6635
6636
6637/**
6638 * Implements RDPMC.
6639 */
6640IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
6641{
6642 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6643
6644 if ( pVCpu->iem.s.uCpl != 0
6645 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE))
6646 return iemRaiseGeneralProtectionFault0(pVCpu);
6647
6648 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6649 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDPMC_EXIT))
6650 {
6651 Log(("rdpmc: Guest intercept -> VM-exit\n"));
6652 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDPMC, cbInstr);
6653 }
6654
6655 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
6656 {
6657 Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
6658 IEM_SVM_UPDATE_NRIP(pVCpu);
6659 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6660 }
6661
6662 /** @todo Emulate performance counters, for now just return 0. */
6663 pVCpu->cpum.GstCtx.rax = 0;
6664 pVCpu->cpum.GstCtx.rdx = 0;
6665 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
6666 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
6667 * ecx but see @bugref{3472}! */
6668
6669 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6670 return VINF_SUCCESS;
6671}
6672
6673
6674/**
6675 * Implements RDMSR.
6676 */
6677IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
6678{
6679 /*
6680 * Check preconditions.
6681 */
6682 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
6683 return iemRaiseUndefinedOpcode(pVCpu);
6684 if (pVCpu->iem.s.uCpl != 0)
6685 return iemRaiseGeneralProtectionFault0(pVCpu);
6686
6687 /*
6688 * Check nested-guest intercepts.
6689 */
6690#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6691 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6692 {
6693 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_RDMSR, pVCpu->cpum.GstCtx.ecx))
6694 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDMSR, cbInstr);
6695
6696 /** @todo NSTVMX: Handle other x2APIC MSRs in VMX non-root mode. Perhaps having a
6697 * dedicated virtual-APIC device might be better... */
6698 if ( pVCpu->cpum.GstCtx.ecx == MSR_IA32_X2APIC_TPR
6699 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_X2APIC_MODE))
6700 {
6701 uint32_t const uVTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
6702 pVCpu->cpum.GstCtx.rax = uVTpr;
6703 pVCpu->cpum.GstCtx.rdx = 0;
6704 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6705 return VINF_SUCCESS;
6706 }
6707 }
6708#endif
6709
6710#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6711 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
6712 {
6713 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */);
6714 if (rcStrict == VINF_SVM_VMEXIT)
6715 return VINF_SUCCESS;
6716 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6717 {
6718 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
6719 return rcStrict;
6720 }
6721 }
6722#endif
6723
6724 /*
6725 * Do the job.
6726 */
6727 RTUINT64U uValue;
6728 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
6729 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
6730
6731 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u);
6732 if (rcStrict == VINF_SUCCESS)
6733 {
6734 pVCpu->cpum.GstCtx.rax = uValue.s.Lo;
6735 pVCpu->cpum.GstCtx.rdx = uValue.s.Hi;
6736 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
6737
6738 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6739 return VINF_SUCCESS;
6740 }
6741
6742#ifndef IN_RING3
6743 /* Deferred to ring-3. */
6744 if (rcStrict == VINF_CPUM_R3_MSR_READ)
6745 {
6746 Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
6747 return rcStrict;
6748 }
6749#endif
6750
6751 /* Often a unimplemented MSR or MSR bit, so worth logging. */
6752 if (pVCpu->iem.s.cLogRelRdMsr < 32)
6753 {
6754 pVCpu->iem.s.cLogRelRdMsr++;
6755 LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
6756 }
6757 else
6758 Log(( "IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
6759 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
6760 return iemRaiseGeneralProtectionFault0(pVCpu);
6761}
6762
6763
6764/**
6765 * Implements WRMSR.
6766 */
6767IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
6768{
6769 /*
6770 * Check preconditions.
6771 */
6772 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
6773 return iemRaiseUndefinedOpcode(pVCpu);
6774 if (pVCpu->iem.s.uCpl != 0)
6775 return iemRaiseGeneralProtectionFault0(pVCpu);
6776
6777 RTUINT64U uValue;
6778 uValue.s.Lo = pVCpu->cpum.GstCtx.eax;
6779 uValue.s.Hi = pVCpu->cpum.GstCtx.edx;
6780
6781 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
6782 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
6783
6784 /*
6785 * Check nested-guest intercepts.
6786 */
6787#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6788 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6789 {
6790 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_WRMSR, pVCpu->cpum.GstCtx.ecx))
6791 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WRMSR, cbInstr);
6792
6793 /* Check x2APIC MSRs first. */
6794 if (IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_X2APIC_MODE))
6795 {
6796 switch (pVCpu->cpum.GstCtx.ecx)
6797 {
6798 case MSR_IA32_X2APIC_TPR:
6799 {
6800 if ( !uValue.s.Hi
6801 && !(uValue.s.Lo & UINT32_C(0xffffff00)))
6802 {
6803 uint32_t const uVTpr = uValue.s.Lo;
6804 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uVTpr);
6805 VBOXSTRICTRC rcStrict = iemVmxVmexitTprVirtualization(pVCpu, cbInstr);
6806 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6807 return rcStrict;
6808 return VINF_SUCCESS;
6809 }
6810 Log(("IEM: Invalid TPR MSR write (%#x,%#x) -> #GP(0)\n", uValue.s.Hi, uValue.s.Lo));
6811 return iemRaiseGeneralProtectionFault0(pVCpu);
6812 }
6813
6814 case MSR_IA32_X2APIC_EOI:
6815 case MSR_IA32_X2APIC_SELF_IPI:
6816 {
6817 /** @todo NSTVMX: EOI and Self-IPI virtualization. */
6818 break;
6819 }
6820 }
6821 }
6822 else if (pVCpu->cpum.GstCtx.ecx == MSR_IA32_BIOS_UPDT_TRIG)
6823 {
6824 /** @todo NSTVMX: We must not allow any microcode updates in VMX non-root mode.
6825 * Since we don't implement this MSR anyway it's currently not a problem.
6826 * If we do, we should probably move this check to the MSR handler. */
6827 }
6828 else if (pVCpu->cpum.GstCtx.ecx == MSR_IA32_RTIT_CTL)
6829 {
6830 /** @todo NSTVMX: We don't support Intel PT yet. When we do, this MSR must #GP
6831 * when IntelPT is not supported in VMX. */
6832 }
6833 }
6834#endif
6835
6836#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6837 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
6838 {
6839 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, true /* fWrite */);
6840 if (rcStrict == VINF_SVM_VMEXIT)
6841 return VINF_SUCCESS;
6842 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6843 {
6844 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
6845 return rcStrict;
6846 }
6847 }
6848#endif
6849
6850 /*
6851 * Do the job.
6852 */
6853 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, uValue.u);
6854 if (rcStrict == VINF_SUCCESS)
6855 {
6856 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6857 return VINF_SUCCESS;
6858 }
6859
6860#ifndef IN_RING3
6861 /* Deferred to ring-3. */
6862 if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
6863 {
6864 Log(("IEM: wrmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
6865 return rcStrict;
6866 }
6867#endif
6868
6869 /* Often a unimplemented MSR or MSR bit, so worth logging. */
6870 if (pVCpu->iem.s.cLogRelWrMsr < 32)
6871 {
6872 pVCpu->iem.s.cLogRelWrMsr++;
6873 LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx, uValue.s.Hi, uValue.s.Lo));
6874 }
6875 else
6876 Log(( "IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx, uValue.s.Hi, uValue.s.Lo));
6877 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
6878 return iemRaiseGeneralProtectionFault0(pVCpu);
6879}
6880
6881
6882/**
6883 * Implements 'IN eAX, port'.
6884 *
6885 * @param u16Port The source port.
6886 * @param fImm Whether the port was specified through an immediate operand
6887 * or the implicit DX register.
6888 * @param cbReg The register size.
6889 */
6890IEM_CIMPL_DEF_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
6891{
6892 /*
6893 * CPL check
6894 */
6895 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
6896 if (rcStrict != VINF_SUCCESS)
6897 return rcStrict;
6898
6899 /*
6900 * Check VMX nested-guest IO intercept.
6901 */
6902#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6903 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6904 {
6905 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_IN, u16Port, fImm, cbReg, cbInstr);
6906 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6907 return rcStrict;
6908 }
6909#else
6910 RT_NOREF(fImm);
6911#endif
6912
6913 /*
6914 * Check SVM nested-guest IO intercept.
6915 */
6916#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6917 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
6918 {
6919 uint8_t cAddrSizeBits;
6920 switch (pVCpu->iem.s.enmEffAddrMode)
6921 {
6922 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
6923 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
6924 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
6925 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6926 }
6927 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
6928 false /* fRep */, false /* fStrIo */, cbInstr);
6929 if (rcStrict == VINF_SVM_VMEXIT)
6930 return VINF_SUCCESS;
6931 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6932 {
6933 Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
6934 VBOXSTRICTRC_VAL(rcStrict)));
6935 return rcStrict;
6936 }
6937 }
6938#endif
6939
6940 /*
6941 * Perform the I/O.
6942 */
6943 uint32_t u32Value = 0;
6944 rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg);
6945 if (IOM_SUCCESS(rcStrict))
6946 {
6947 switch (cbReg)
6948 {
6949 case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break;
6950 case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break;
6951 case 4: pVCpu->cpum.GstCtx.rax = u32Value; break;
6952 default: AssertFailedReturn(VERR_IEM_IPE_3);
6953 }
6954 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6955 pVCpu->iem.s.cPotentialExits++;
6956 if (rcStrict != VINF_SUCCESS)
6957 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
6958 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
6959
6960 /*
6961 * Check for I/O breakpoints.
6962 */
6963 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
6964 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6965 && X86_DR7_ANY_RW_IO(uDr7)
6966 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
6967 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
6968 {
6969 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
6970 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
6971 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
6972 rcStrict = iemRaiseDebugException(pVCpu);
6973 }
6974 }
6975
6976 return rcStrict;
6977}
6978
6979
6980/**
6981 * Implements 'IN eAX, DX'.
6982 *
6983 * @param cbReg The register size.
6984 */
6985IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
6986{
6987 return IEM_CIMPL_CALL_3(iemCImpl_in, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
6988}
6989
6990
6991/**
6992 * Implements 'OUT port, eAX'.
6993 *
6994 * @param u16Port The destination port.
6995 * @param fImm Whether the port was specified through an immediate operand
6996 * or the implicit DX register.
6997 * @param cbReg The register size.
6998 */
6999IEM_CIMPL_DEF_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
7000{
7001 /*
7002 * CPL check
7003 */
7004 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
7005 if (rcStrict != VINF_SUCCESS)
7006 return rcStrict;
7007
7008 /*
7009 * Check VMX nested-guest I/O intercept.
7010 */
7011#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7012 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7013 {
7014 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_OUT, u16Port, fImm, cbReg, cbInstr);
7015 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
7016 return rcStrict;
7017 }
7018#else
7019 RT_NOREF(fImm);
7020#endif
7021
7022 /*
7023 * Check SVM nested-guest I/O intercept.
7024 */
7025#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7026 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7027 {
7028 uint8_t cAddrSizeBits;
7029 switch (pVCpu->iem.s.enmEffAddrMode)
7030 {
7031 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7032 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7033 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7034 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7035 }
7036 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7037 false /* fRep */, false /* fStrIo */, cbInstr);
7038 if (rcStrict == VINF_SVM_VMEXIT)
7039 return VINF_SUCCESS;
7040 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7041 {
7042 Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7043 VBOXSTRICTRC_VAL(rcStrict)));
7044 return rcStrict;
7045 }
7046 }
7047#endif
7048
7049 /*
7050 * Perform the I/O.
7051 */
7052 uint32_t u32Value;
7053 switch (cbReg)
7054 {
7055 case 1: u32Value = pVCpu->cpum.GstCtx.al; break;
7056 case 2: u32Value = pVCpu->cpum.GstCtx.ax; break;
7057 case 4: u32Value = pVCpu->cpum.GstCtx.eax; break;
7058 default: AssertFailedReturn(VERR_IEM_IPE_4);
7059 }
7060 rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg);
7061 if (IOM_SUCCESS(rcStrict))
7062 {
7063 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7064 pVCpu->iem.s.cPotentialExits++;
7065 if (rcStrict != VINF_SUCCESS)
7066 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7067 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
7068
7069 /*
7070 * Check for I/O breakpoints.
7071 */
7072 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7073 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7074 && X86_DR7_ANY_RW_IO(uDr7)
7075 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7076 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
7077 {
7078 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7079 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7080 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7081 rcStrict = iemRaiseDebugException(pVCpu);
7082 }
7083 }
7084 return rcStrict;
7085}
7086
7087
7088/**
7089 * Implements 'OUT DX, eAX'.
7090 *
7091 * @param cbReg The register size.
7092 */
7093IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
7094{
7095 return IEM_CIMPL_CALL_3(iemCImpl_out, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7096}
7097
7098
7099/**
7100 * Implements 'CLI'.
7101 */
7102IEM_CIMPL_DEF_0(iemCImpl_cli)
7103{
7104 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7105 uint32_t const fEflOld = fEfl;
7106
7107 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7108 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7109 {
7110 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7111 if (!(fEfl & X86_EFL_VM))
7112 {
7113 if (pVCpu->iem.s.uCpl <= uIopl)
7114 fEfl &= ~X86_EFL_IF;
7115 else if ( pVCpu->iem.s.uCpl == 3
7116 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) )
7117 fEfl &= ~X86_EFL_VIF;
7118 else
7119 return iemRaiseGeneralProtectionFault0(pVCpu);
7120 }
7121 /* V8086 */
7122 else if (uIopl == 3)
7123 fEfl &= ~X86_EFL_IF;
7124 else if ( uIopl < 3
7125 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
7126 fEfl &= ~X86_EFL_VIF;
7127 else
7128 return iemRaiseGeneralProtectionFault0(pVCpu);
7129 }
7130 /* real mode */
7131 else
7132 fEfl &= ~X86_EFL_IF;
7133
7134 /* Commit. */
7135 IEMMISC_SET_EFL(pVCpu, fEfl);
7136 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7137 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
7138 return VINF_SUCCESS;
7139}
7140
7141
7142/**
7143 * Implements 'STI'.
7144 */
7145IEM_CIMPL_DEF_0(iemCImpl_sti)
7146{
7147 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7148 uint32_t const fEflOld = fEfl;
7149
7150 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7151 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7152 {
7153 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7154 if (!(fEfl & X86_EFL_VM))
7155 {
7156 if (pVCpu->iem.s.uCpl <= uIopl)
7157 fEfl |= X86_EFL_IF;
7158 else if ( pVCpu->iem.s.uCpl == 3
7159 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI)
7160 && !(fEfl & X86_EFL_VIP) )
7161 fEfl |= X86_EFL_VIF;
7162 else
7163 return iemRaiseGeneralProtectionFault0(pVCpu);
7164 }
7165 /* V8086 */
7166 else if (uIopl == 3)
7167 fEfl |= X86_EFL_IF;
7168 else if ( uIopl < 3
7169 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)
7170 && !(fEfl & X86_EFL_VIP) )
7171 fEfl |= X86_EFL_VIF;
7172 else
7173 return iemRaiseGeneralProtectionFault0(pVCpu);
7174 }
7175 /* real mode */
7176 else
7177 fEfl |= X86_EFL_IF;
7178
7179 /* Commit. */
7180 IEMMISC_SET_EFL(pVCpu, fEfl);
7181 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7182 if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF))
7183 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7184 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
7185 return VINF_SUCCESS;
7186}
7187
7188
7189/**
7190 * Implements 'HLT'.
7191 */
7192IEM_CIMPL_DEF_0(iemCImpl_hlt)
7193{
7194 if (pVCpu->iem.s.uCpl != 0)
7195 return iemRaiseGeneralProtectionFault0(pVCpu);
7196
7197 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7198 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_HLT_EXIT))
7199 {
7200 Log2(("hlt: Guest intercept -> VM-exit\n"));
7201 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_HLT, cbInstr);
7202 }
7203
7204 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
7205 {
7206 Log2(("hlt: Guest intercept -> #VMEXIT\n"));
7207 IEM_SVM_UPDATE_NRIP(pVCpu);
7208 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7209 }
7210
7211 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7212 return VINF_EM_HALT;
7213}
7214
7215
7216/**
7217 * Implements 'MONITOR'.
7218 */
7219IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
7220{
7221 /*
7222 * Permission checks.
7223 */
7224 if (pVCpu->iem.s.uCpl != 0)
7225 {
7226 Log2(("monitor: CPL != 0\n"));
7227 return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
7228 }
7229 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7230 {
7231 Log2(("monitor: Not in CPUID\n"));
7232 return iemRaiseUndefinedOpcode(pVCpu);
7233 }
7234
7235 /*
7236 * Check VMX guest-intercept.
7237 * This should be considered a fault-like VM-exit.
7238 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
7239 */
7240 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7241 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MONITOR_EXIT))
7242 {
7243 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7244 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_MONITOR, cbInstr);
7245 }
7246
7247 /*
7248 * Gather the operands and validate them.
7249 */
7250 RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
7251 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7252 uint32_t uEdx = pVCpu->cpum.GstCtx.edx;
7253/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
7254 * \#GP first. */
7255 if (uEcx != 0)
7256 {
7257 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
7258 return iemRaiseGeneralProtectionFault0(pVCpu);
7259 }
7260
7261 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
7262 if (rcStrict != VINF_SUCCESS)
7263 return rcStrict;
7264
7265 RTGCPHYS GCPhysMem;
7266 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7267 if (rcStrict != VINF_SUCCESS)
7268 return rcStrict;
7269
7270 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
7271 {
7272 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7273 IEM_SVM_UPDATE_NRIP(pVCpu);
7274 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7275 }
7276
7277 /*
7278 * Call EM to prepare the monitor/wait.
7279 */
7280 rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem);
7281 Assert(rcStrict == VINF_SUCCESS);
7282
7283 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7284 return rcStrict;
7285}
7286
7287
7288/**
7289 * Implements 'MWAIT'.
7290 */
7291IEM_CIMPL_DEF_0(iemCImpl_mwait)
7292{
7293 /*
7294 * Permission checks.
7295 */
7296 if (pVCpu->iem.s.uCpl != 0)
7297 {
7298 Log2(("mwait: CPL != 0\n"));
7299 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
7300 * EFLAGS.VM then.) */
7301 return iemRaiseUndefinedOpcode(pVCpu);
7302 }
7303 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7304 {
7305 Log2(("mwait: Not in CPUID\n"));
7306 return iemRaiseUndefinedOpcode(pVCpu);
7307 }
7308
7309 /* Check VMX nested-guest intercept. */
7310 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7311 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MWAIT_EXIT))
7312 IEM_VMX_VMEXIT_MWAIT_RET(pVCpu, EMMonitorIsArmed(pVCpu), cbInstr);
7313
7314 /*
7315 * Gather the operands and validate them.
7316 */
7317 uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
7318 uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
7319 if (uEcx != 0)
7320 {
7321 /* Only supported extension is break on IRQ when IF=0. */
7322 if (uEcx > 1)
7323 {
7324 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
7325 return iemRaiseGeneralProtectionFault0(pVCpu);
7326 }
7327 uint32_t fMWaitFeatures = 0;
7328 uint32_t uIgnore = 0;
7329 CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
7330 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7331 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7332 {
7333 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
7334 return iemRaiseGeneralProtectionFault0(pVCpu);
7335 }
7336
7337#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7338 /*
7339 * If the interrupt-window exiting control is set or a virtual-interrupt is pending
7340 * for delivery; and interrupts are disabled the processor does not enter its
7341 * mwait state but rather passes control to the next instruction.
7342 *
7343 * See Intel spec. 25.3 "Changes to Instruction Behavior In VMX Non-root Operation".
7344 */
7345 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7346 && !pVCpu->cpum.GstCtx.eflags.Bits.u1IF)
7347 {
7348 if ( IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INT_WINDOW_EXIT)
7349 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
7350 {
7351 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7352 return VINF_SUCCESS;
7353 }
7354 }
7355#endif
7356 }
7357
7358 /*
7359 * Check SVM nested-guest mwait intercepts.
7360 */
7361 if ( IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
7362 && EMMonitorIsArmed(pVCpu))
7363 {
7364 Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
7365 IEM_SVM_UPDATE_NRIP(pVCpu);
7366 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7367 }
7368 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
7369 {
7370 Log2(("mwait: Guest intercept -> #VMEXIT\n"));
7371 IEM_SVM_UPDATE_NRIP(pVCpu);
7372 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7373 }
7374
7375 /*
7376 * Call EM to prepare the monitor/wait.
7377 */
7378 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
7379
7380 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7381 return rcStrict;
7382}
7383
7384
7385/**
7386 * Implements 'SWAPGS'.
7387 */
7388IEM_CIMPL_DEF_0(iemCImpl_swapgs)
7389{
7390 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
7391
7392 /*
7393 * Permission checks.
7394 */
7395 if (pVCpu->iem.s.uCpl != 0)
7396 {
7397 Log2(("swapgs: CPL != 0\n"));
7398 return iemRaiseUndefinedOpcode(pVCpu);
7399 }
7400
7401 /*
7402 * Do the job.
7403 */
7404 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_GS);
7405 uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
7406 pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base;
7407 pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase;
7408
7409 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7410 return VINF_SUCCESS;
7411}
7412
7413
7414/**
7415 * Implements 'CPUID'.
7416 */
7417IEM_CIMPL_DEF_0(iemCImpl_cpuid)
7418{
7419 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7420 {
7421 Log2(("cpuid: Guest intercept -> VM-exit\n"));
7422 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_CPUID, cbInstr);
7423 }
7424
7425 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
7426 {
7427 Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
7428 IEM_SVM_UPDATE_NRIP(pVCpu);
7429 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7430 }
7431
7432 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
7433 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
7434 pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff);
7435 pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff);
7436 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
7437 pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff);
7438 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
7439
7440 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7441 pVCpu->iem.s.cPotentialExits++;
7442 return VINF_SUCCESS;
7443}
7444
7445
7446/**
7447 * Implements 'AAD'.
7448 *
7449 * @param bImm The immediate operand.
7450 */
7451IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
7452{
7453 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7454 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
7455 pVCpu->cpum.GstCtx.ax = al;
7456 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7457 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7458 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7459
7460 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7461 return VINF_SUCCESS;
7462}
7463
7464
7465/**
7466 * Implements 'AAM'.
7467 *
7468 * @param bImm The immediate operand. Cannot be 0.
7469 */
7470IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
7471{
7472 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
7473
7474 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7475 uint8_t const al = (uint8_t)ax % bImm;
7476 uint8_t const ah = (uint8_t)ax / bImm;
7477 pVCpu->cpum.GstCtx.ax = (ah << 8) + al;
7478 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7479 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7480 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7481
7482 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7483 return VINF_SUCCESS;
7484}
7485
7486
7487/**
7488 * Implements 'DAA'.
7489 */
7490IEM_CIMPL_DEF_0(iemCImpl_daa)
7491{
7492 uint8_t const al = pVCpu->cpum.GstCtx.al;
7493 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7494
7495 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7496 || (al & 0xf) >= 10)
7497 {
7498 pVCpu->cpum.GstCtx.al = al + 6;
7499 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7500 }
7501 else
7502 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7503
7504 if (al >= 0x9a || fCarry)
7505 {
7506 pVCpu->cpum.GstCtx.al += 0x60;
7507 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7508 }
7509 else
7510 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7511
7512 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7513 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7514 return VINF_SUCCESS;
7515}
7516
7517
7518/**
7519 * Implements 'DAS'.
7520 */
7521IEM_CIMPL_DEF_0(iemCImpl_das)
7522{
7523 uint8_t const uInputAL = pVCpu->cpum.GstCtx.al;
7524 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7525
7526 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7527 || (uInputAL & 0xf) >= 10)
7528 {
7529 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7530 if (uInputAL < 6)
7531 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7532 pVCpu->cpum.GstCtx.al = uInputAL - 6;
7533 }
7534 else
7535 {
7536 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7537 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7538 }
7539
7540 if (uInputAL >= 0x9a || fCarry)
7541 {
7542 pVCpu->cpum.GstCtx.al -= 0x60;
7543 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7544 }
7545
7546 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7547 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7548 return VINF_SUCCESS;
7549}
7550
7551
7552/**
7553 * Implements 'AAA'.
7554 */
7555IEM_CIMPL_DEF_0(iemCImpl_aaa)
7556{
7557 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7558 {
7559 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7560 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7561 {
7562 iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7563 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7564 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7565 }
7566 else
7567 {
7568 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7569 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7570 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7571 }
7572 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7573 }
7574 else
7575 {
7576 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7577 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7578 {
7579 pVCpu->cpum.GstCtx.ax += UINT16_C(0x106);
7580 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7581 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7582 }
7583 else
7584 {
7585 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7586 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7587 }
7588 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7589 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7590 }
7591
7592 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7593 return VINF_SUCCESS;
7594}
7595
7596
7597/**
7598 * Implements 'AAS'.
7599 */
7600IEM_CIMPL_DEF_0(iemCImpl_aas)
7601{
7602 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7603 {
7604 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7605 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7606 {
7607 iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7608 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7609 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7610 }
7611 else
7612 {
7613 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7614 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7615 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7616 }
7617 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7618 }
7619 else
7620 {
7621 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7622 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7623 {
7624 pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106);
7625 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7626 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7627 }
7628 else
7629 {
7630 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7631 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7632 }
7633 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7634 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7635 }
7636
7637 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7638 return VINF_SUCCESS;
7639}
7640
7641
7642/**
7643 * Implements the 16-bit version of 'BOUND'.
7644 *
7645 * @note We have separate 16-bit and 32-bit variants of this function due to
7646 * the decoder using unsigned parameters, whereas we want signed one to
7647 * do the job. This is significant for a recompiler.
7648 */
7649IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
7650{
7651 /*
7652 * Check if the index is inside the bounds, otherwise raise #BR.
7653 */
7654 if ( idxArray >= idxLowerBound
7655 && idxArray <= idxUpperBound)
7656 {
7657 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7658 return VINF_SUCCESS;
7659 }
7660
7661 return iemRaiseBoundRangeExceeded(pVCpu);
7662}
7663
7664
7665/**
7666 * Implements the 32-bit version of 'BOUND'.
7667 */
7668IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
7669{
7670 /*
7671 * Check if the index is inside the bounds, otherwise raise #BR.
7672 */
7673 if ( idxArray >= idxLowerBound
7674 && idxArray <= idxUpperBound)
7675 {
7676 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7677 return VINF_SUCCESS;
7678 }
7679
7680 return iemRaiseBoundRangeExceeded(pVCpu);
7681}
7682
7683
7684
7685/*
7686 * Instantiate the various string operation combinations.
7687 */
7688#define OP_SIZE 8
7689#define ADDR_SIZE 16
7690#include "IEMAllCImplStrInstr.cpp.h"
7691#define OP_SIZE 8
7692#define ADDR_SIZE 32
7693#include "IEMAllCImplStrInstr.cpp.h"
7694#define OP_SIZE 8
7695#define ADDR_SIZE 64
7696#include "IEMAllCImplStrInstr.cpp.h"
7697
7698#define OP_SIZE 16
7699#define ADDR_SIZE 16
7700#include "IEMAllCImplStrInstr.cpp.h"
7701#define OP_SIZE 16
7702#define ADDR_SIZE 32
7703#include "IEMAllCImplStrInstr.cpp.h"
7704#define OP_SIZE 16
7705#define ADDR_SIZE 64
7706#include "IEMAllCImplStrInstr.cpp.h"
7707
7708#define OP_SIZE 32
7709#define ADDR_SIZE 16
7710#include "IEMAllCImplStrInstr.cpp.h"
7711#define OP_SIZE 32
7712#define ADDR_SIZE 32
7713#include "IEMAllCImplStrInstr.cpp.h"
7714#define OP_SIZE 32
7715#define ADDR_SIZE 64
7716#include "IEMAllCImplStrInstr.cpp.h"
7717
7718#define OP_SIZE 64
7719#define ADDR_SIZE 32
7720#include "IEMAllCImplStrInstr.cpp.h"
7721#define OP_SIZE 64
7722#define ADDR_SIZE 64
7723#include "IEMAllCImplStrInstr.cpp.h"
7724
7725
7726/**
7727 * Implements 'XGETBV'.
7728 */
7729IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
7730{
7731 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
7732 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
7733 {
7734 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7735 switch (uEcx)
7736 {
7737 case 0:
7738 break;
7739
7740 case 1: /** @todo Implement XCR1 support. */
7741 default:
7742 Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
7743 return iemRaiseGeneralProtectionFault0(pVCpu);
7744
7745 }
7746 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
7747 pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
7748 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
7749
7750 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7751 return VINF_SUCCESS;
7752 }
7753 Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
7754 return iemRaiseUndefinedOpcode(pVCpu);
7755}
7756
7757
7758/**
7759 * Implements 'XSETBV'.
7760 */
7761IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
7762{
7763 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
7764 {
7765 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
7766 {
7767 Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
7768 IEM_SVM_UPDATE_NRIP(pVCpu);
7769 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7770 }
7771
7772 if (pVCpu->iem.s.uCpl == 0)
7773 {
7774 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
7775
7776 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7777 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_XSETBV, cbInstr);
7778
7779 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7780 uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx);
7781 switch (uEcx)
7782 {
7783 case 0:
7784 {
7785 int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
7786 if (rc == VINF_SUCCESS)
7787 break;
7788 Assert(rc == VERR_CPUM_RAISE_GP_0);
7789 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
7790 return iemRaiseGeneralProtectionFault0(pVCpu);
7791 }
7792
7793 case 1: /** @todo Implement XCR1 support. */
7794 default:
7795 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
7796 return iemRaiseGeneralProtectionFault0(pVCpu);
7797
7798 }
7799
7800 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7801 return VINF_SUCCESS;
7802 }
7803
7804 Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
7805 return iemRaiseGeneralProtectionFault0(pVCpu);
7806 }
7807 Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
7808 return iemRaiseUndefinedOpcode(pVCpu);
7809}
7810
7811#ifdef IN_RING3
7812
7813/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
7814struct IEMCIMPLCX16ARGS
7815{
7816 PRTUINT128U pu128Dst;
7817 PRTUINT128U pu128RaxRdx;
7818 PRTUINT128U pu128RbxRcx;
7819 uint32_t *pEFlags;
7820# ifdef VBOX_STRICT
7821 uint32_t cCalls;
7822# endif
7823};
7824
7825/**
7826 * @callback_method_impl{FNVMMEMTRENDEZVOUS,
7827 * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
7828 */
7829static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPU pVCpu, void *pvUser)
7830{
7831 RT_NOREF(pVM, pVCpu);
7832 struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
7833# ifdef VBOX_STRICT
7834 Assert(pArgs->cCalls == 0);
7835 pArgs->cCalls++;
7836# endif
7837
7838 iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
7839 return VINF_SUCCESS;
7840}
7841
7842#endif /* IN_RING3 */
7843
7844/**
7845 * Implements 'CMPXCHG16B' fallback using rendezvous.
7846 */
7847IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
7848 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
7849{
7850#ifdef IN_RING3
7851 struct IEMCIMPLCX16ARGS Args;
7852 Args.pu128Dst = pu128Dst;
7853 Args.pu128RaxRdx = pu128RaxRdx;
7854 Args.pu128RbxRcx = pu128RbxRcx;
7855 Args.pEFlags = pEFlags;
7856# ifdef VBOX_STRICT
7857 Args.cCalls = 0;
7858# endif
7859 VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
7860 iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
7861 Assert(Args.cCalls == 1);
7862 if (rcStrict == VINF_SUCCESS)
7863 {
7864 /* Duplicated tail code. */
7865 rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
7866 if (rcStrict == VINF_SUCCESS)
7867 {
7868 pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
7869 if (!(*pEFlags & X86_EFL_ZF))
7870 {
7871 pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo;
7872 pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi;
7873 }
7874 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7875 }
7876 }
7877 return rcStrict;
7878#else
7879 RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
7880 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
7881#endif
7882}
7883
7884
7885/**
7886 * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
7887 *
7888 * This is implemented in C because it triggers a load like behviour without
7889 * actually reading anything. Since that's not so common, it's implemented
7890 * here.
7891 *
7892 * @param iEffSeg The effective segment.
7893 * @param GCPtrEff The address of the image.
7894 */
7895IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
7896{
7897 /*
7898 * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
7899 */
7900 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
7901 if (rcStrict == VINF_SUCCESS)
7902 {
7903 RTGCPHYS GCPhysMem;
7904 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7905 if (rcStrict == VINF_SUCCESS)
7906 {
7907 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7908 return VINF_SUCCESS;
7909 }
7910 }
7911
7912 return rcStrict;
7913}
7914
7915
7916/**
7917 * Implements 'FINIT' and 'FNINIT'.
7918 *
7919 * @param fCheckXcpts Whether to check for umasked pending exceptions or
7920 * not.
7921 */
7922IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
7923{
7924 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
7925 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
7926 return iemRaiseDeviceNotAvailable(pVCpu);
7927
7928 iemFpuActualizeStateForChange(pVCpu);
7929 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_X87);
7930
7931 NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
7932 if (fCheckXcpts && TODO )
7933 return iemRaiseMathFault(pVCpu);
7934 */
7935
7936 PX86XSAVEAREA pXState = pVCpu->cpum.GstCtx.CTX_SUFF(pXState);
7937 pXState->x87.FCW = 0x37f;
7938 pXState->x87.FSW = 0;
7939 pXState->x87.FTW = 0x00; /* 0 - empty. */
7940 pXState->x87.FPUDP = 0;
7941 pXState->x87.DS = 0; //??
7942 pXState->x87.Rsrvd2= 0;
7943 pXState->x87.FPUIP = 0;
7944 pXState->x87.CS = 0; //??
7945 pXState->x87.Rsrvd1= 0;
7946 pXState->x87.FOP = 0;
7947
7948 iemHlpUsedFpu(pVCpu);
7949 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7950 return VINF_SUCCESS;
7951}
7952
7953
7954/**
7955 * Implements 'FXSAVE'.
7956 *
7957 * @param iEffSeg The effective segment.
7958 * @param GCPtrEff The address of the image.
7959 * @param enmEffOpSize The operand size (only REX.W really matters).
7960 */
7961IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
7962{
7963 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
7964
7965 /*
7966 * Raise exceptions.
7967 */
7968 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
7969 return iemRaiseUndefinedOpcode(pVCpu);
7970 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
7971 return iemRaiseDeviceNotAvailable(pVCpu);
7972 if (GCPtrEff & 15)
7973 {
7974 /** @todo CPU/VM detection possible! \#AC might not be signal for
7975 * all/any misalignment sizes, intel says its an implementation detail. */
7976 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
7977 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
7978 && pVCpu->iem.s.uCpl == 3)
7979 return iemRaiseAlignmentCheckException(pVCpu);
7980 return iemRaiseGeneralProtectionFault0(pVCpu);
7981 }
7982
7983 /*
7984 * Access the memory.
7985 */
7986 void *pvMem512;
7987 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7988 if (rcStrict != VINF_SUCCESS)
7989 return rcStrict;
7990 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
7991 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
7992
7993 /*
7994 * Store the registers.
7995 */
7996 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
7997 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
7998
7999 /* common for all formats */
8000 pDst->FCW = pSrc->FCW;
8001 pDst->FSW = pSrc->FSW;
8002 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8003 pDst->FOP = pSrc->FOP;
8004 pDst->MXCSR = pSrc->MXCSR;
8005 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8006 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8007 {
8008 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8009 * them for now... */
8010 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8011 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8012 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8013 pDst->aRegs[i].au32[3] = 0;
8014 }
8015
8016 /* FPU IP, CS, DP and DS. */
8017 pDst->FPUIP = pSrc->FPUIP;
8018 pDst->CS = pSrc->CS;
8019 pDst->FPUDP = pSrc->FPUDP;
8020 pDst->DS = pSrc->DS;
8021 if (enmEffOpSize == IEMMODE_64BIT)
8022 {
8023 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8024 pDst->Rsrvd1 = pSrc->Rsrvd1;
8025 pDst->Rsrvd2 = pSrc->Rsrvd2;
8026 pDst->au32RsrvdForSoftware[0] = 0;
8027 }
8028 else
8029 {
8030 pDst->Rsrvd1 = 0;
8031 pDst->Rsrvd2 = 0;
8032 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8033 }
8034
8035 /* XMM registers. */
8036 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8037 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8038 || pVCpu->iem.s.uCpl != 0)
8039 {
8040 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8041 for (uint32_t i = 0; i < cXmmRegs; i++)
8042 pDst->aXMM[i] = pSrc->aXMM[i];
8043 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8044 * right? */
8045 }
8046
8047 /*
8048 * Commit the memory.
8049 */
8050 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8051 if (rcStrict != VINF_SUCCESS)
8052 return rcStrict;
8053
8054 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8055 return VINF_SUCCESS;
8056}
8057
8058
8059/**
8060 * Implements 'FXRSTOR'.
8061 *
8062 * @param GCPtrEff The address of the image.
8063 * @param enmEffOpSize The operand size (only REX.W really matters).
8064 */
8065IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8066{
8067 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8068
8069 /*
8070 * Raise exceptions.
8071 */
8072 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8073 return iemRaiseUndefinedOpcode(pVCpu);
8074 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8075 return iemRaiseDeviceNotAvailable(pVCpu);
8076 if (GCPtrEff & 15)
8077 {
8078 /** @todo CPU/VM detection possible! \#AC might not be signal for
8079 * all/any misalignment sizes, intel says its an implementation detail. */
8080 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8081 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8082 && pVCpu->iem.s.uCpl == 3)
8083 return iemRaiseAlignmentCheckException(pVCpu);
8084 return iemRaiseGeneralProtectionFault0(pVCpu);
8085 }
8086
8087 /*
8088 * Access the memory.
8089 */
8090 void *pvMem512;
8091 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8092 if (rcStrict != VINF_SUCCESS)
8093 return rcStrict;
8094 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8095 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8096
8097 /*
8098 * Check the state for stuff which will #GP(0).
8099 */
8100 uint32_t const fMXCSR = pSrc->MXCSR;
8101 uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8102 if (fMXCSR & ~fMXCSR_MASK)
8103 {
8104 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
8105 return iemRaiseGeneralProtectionFault0(pVCpu);
8106 }
8107
8108 /*
8109 * Load the registers.
8110 */
8111 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8112 * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
8113
8114 /* common for all formats */
8115 pDst->FCW = pSrc->FCW;
8116 pDst->FSW = pSrc->FSW;
8117 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8118 pDst->FOP = pSrc->FOP;
8119 pDst->MXCSR = fMXCSR;
8120 /* (MXCSR_MASK is read-only) */
8121 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8122 {
8123 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8124 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8125 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8126 pDst->aRegs[i].au32[3] = 0;
8127 }
8128
8129 /* FPU IP, CS, DP and DS. */
8130 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8131 {
8132 pDst->FPUIP = pSrc->FPUIP;
8133 pDst->CS = pSrc->CS;
8134 pDst->Rsrvd1 = pSrc->Rsrvd1;
8135 pDst->FPUDP = pSrc->FPUDP;
8136 pDst->DS = pSrc->DS;
8137 pDst->Rsrvd2 = pSrc->Rsrvd2;
8138 }
8139 else
8140 {
8141 pDst->FPUIP = pSrc->FPUIP;
8142 pDst->CS = pSrc->CS;
8143 pDst->Rsrvd1 = 0;
8144 pDst->FPUDP = pSrc->FPUDP;
8145 pDst->DS = pSrc->DS;
8146 pDst->Rsrvd2 = 0;
8147 }
8148
8149 /* XMM registers. */
8150 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8151 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8152 || pVCpu->iem.s.uCpl != 0)
8153 {
8154 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8155 for (uint32_t i = 0; i < cXmmRegs; i++)
8156 pDst->aXMM[i] = pSrc->aXMM[i];
8157 }
8158
8159 /*
8160 * Commit the memory.
8161 */
8162 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8163 if (rcStrict != VINF_SUCCESS)
8164 return rcStrict;
8165
8166 iemHlpUsedFpu(pVCpu);
8167 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8168 return VINF_SUCCESS;
8169}
8170
8171
8172/**
8173 * Implements 'XSAVE'.
8174 *
8175 * @param iEffSeg The effective segment.
8176 * @param GCPtrEff The address of the image.
8177 * @param enmEffOpSize The operand size (only REX.W really matters).
8178 */
8179IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8180{
8181 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8182
8183 /*
8184 * Raise exceptions.
8185 */
8186 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8187 return iemRaiseUndefinedOpcode(pVCpu);
8188 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8189 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8190 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8191 {
8192 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8193 return iemRaiseUndefinedOpcode(pVCpu);
8194 }
8195 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8196 return iemRaiseDeviceNotAvailable(pVCpu);
8197 if (GCPtrEff & 63)
8198 {
8199 /** @todo CPU/VM detection possible! \#AC might not be signal for
8200 * all/any misalignment sizes, intel says its an implementation detail. */
8201 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8202 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8203 && pVCpu->iem.s.uCpl == 3)
8204 return iemRaiseAlignmentCheckException(pVCpu);
8205 return iemRaiseGeneralProtectionFault0(pVCpu);
8206 }
8207
8208 /*
8209 * Calc the requested mask.
8210 */
8211 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8212 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8213 uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8214
8215/** @todo figure out the exact protocol for the memory access. Currently we
8216 * just need this crap to work halfways to make it possible to test
8217 * AVX instructions. */
8218/** @todo figure out the XINUSE and XMODIFIED */
8219
8220 /*
8221 * Access the x87 memory state.
8222 */
8223 /* The x87+SSE state. */
8224 void *pvMem512;
8225 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8226 if (rcStrict != VINF_SUCCESS)
8227 return rcStrict;
8228 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8229 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8230
8231 /* The header. */
8232 PX86XSAVEHDR pHdr;
8233 rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW);
8234 if (rcStrict != VINF_SUCCESS)
8235 return rcStrict;
8236
8237 /*
8238 * Store the X87 state.
8239 */
8240 if (fReqComponents & XSAVE_C_X87)
8241 {
8242 /* common for all formats */
8243 pDst->FCW = pSrc->FCW;
8244 pDst->FSW = pSrc->FSW;
8245 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8246 pDst->FOP = pSrc->FOP;
8247 pDst->FPUIP = pSrc->FPUIP;
8248 pDst->CS = pSrc->CS;
8249 pDst->FPUDP = pSrc->FPUDP;
8250 pDst->DS = pSrc->DS;
8251 if (enmEffOpSize == IEMMODE_64BIT)
8252 {
8253 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8254 pDst->Rsrvd1 = pSrc->Rsrvd1;
8255 pDst->Rsrvd2 = pSrc->Rsrvd2;
8256 pDst->au32RsrvdForSoftware[0] = 0;
8257 }
8258 else
8259 {
8260 pDst->Rsrvd1 = 0;
8261 pDst->Rsrvd2 = 0;
8262 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8263 }
8264 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8265 {
8266 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8267 * them for now... */
8268 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8269 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8270 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8271 pDst->aRegs[i].au32[3] = 0;
8272 }
8273
8274 }
8275
8276 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8277 {
8278 pDst->MXCSR = pSrc->MXCSR;
8279 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8280 }
8281
8282 if (fReqComponents & XSAVE_C_SSE)
8283 {
8284 /* XMM registers. */
8285 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8286 for (uint32_t i = 0; i < cXmmRegs; i++)
8287 pDst->aXMM[i] = pSrc->aXMM[i];
8288 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8289 * right? */
8290 }
8291
8292 /* Commit the x87 state bits. (probably wrong) */
8293 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8294 if (rcStrict != VINF_SUCCESS)
8295 return rcStrict;
8296
8297 /*
8298 * Store AVX state.
8299 */
8300 if (fReqComponents & XSAVE_C_YMM)
8301 {
8302 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8303 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8304 PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
8305 PX86XSAVEYMMHI pCompDst;
8306 rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
8307 IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8308 if (rcStrict != VINF_SUCCESS)
8309 return rcStrict;
8310
8311 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8312 for (uint32_t i = 0; i < cXmmRegs; i++)
8313 pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
8314
8315 rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8316 if (rcStrict != VINF_SUCCESS)
8317 return rcStrict;
8318 }
8319
8320 /*
8321 * Update the header.
8322 */
8323 pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
8324 | (fReqComponents & fXInUse);
8325
8326 rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
8327 if (rcStrict != VINF_SUCCESS)
8328 return rcStrict;
8329
8330 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8331 return VINF_SUCCESS;
8332}
8333
8334
8335/**
8336 * Implements 'XRSTOR'.
8337 *
8338 * @param iEffSeg The effective segment.
8339 * @param GCPtrEff The address of the image.
8340 * @param enmEffOpSize The operand size (only REX.W really matters).
8341 */
8342IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8343{
8344 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8345
8346 /*
8347 * Raise exceptions.
8348 */
8349 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8350 return iemRaiseUndefinedOpcode(pVCpu);
8351 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8352 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8353 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8354 {
8355 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8356 return iemRaiseUndefinedOpcode(pVCpu);
8357 }
8358 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8359 return iemRaiseDeviceNotAvailable(pVCpu);
8360 if (GCPtrEff & 63)
8361 {
8362 /** @todo CPU/VM detection possible! \#AC might not be signal for
8363 * all/any misalignment sizes, intel says its an implementation detail. */
8364 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8365 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8366 && pVCpu->iem.s.uCpl == 3)
8367 return iemRaiseAlignmentCheckException(pVCpu);
8368 return iemRaiseGeneralProtectionFault0(pVCpu);
8369 }
8370
8371/** @todo figure out the exact protocol for the memory access. Currently we
8372 * just need this crap to work halfways to make it possible to test
8373 * AVX instructions. */
8374/** @todo figure out the XINUSE and XMODIFIED */
8375
8376 /*
8377 * Access the x87 memory state.
8378 */
8379 /* The x87+SSE state. */
8380 void *pvMem512;
8381 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8382 if (rcStrict != VINF_SUCCESS)
8383 return rcStrict;
8384 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8385 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8386
8387 /*
8388 * Calc the requested mask
8389 */
8390 PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->Hdr;
8391 PCX86XSAVEHDR pHdrSrc;
8392 rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R);
8393 if (rcStrict != VINF_SUCCESS)
8394 return rcStrict;
8395
8396 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8397 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8398 //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8399 uint64_t const fRstorMask = pHdrSrc->bmXState;
8400 uint64_t const fCompMask = pHdrSrc->bmXComp;
8401
8402 AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8403
8404 uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8405
8406 /* We won't need this any longer. */
8407 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
8408 if (rcStrict != VINF_SUCCESS)
8409 return rcStrict;
8410
8411 /*
8412 * Store the X87 state.
8413 */
8414 if (fReqComponents & XSAVE_C_X87)
8415 {
8416 if (fRstorMask & XSAVE_C_X87)
8417 {
8418 pDst->FCW = pSrc->FCW;
8419 pDst->FSW = pSrc->FSW;
8420 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8421 pDst->FOP = pSrc->FOP;
8422 pDst->FPUIP = pSrc->FPUIP;
8423 pDst->CS = pSrc->CS;
8424 pDst->FPUDP = pSrc->FPUDP;
8425 pDst->DS = pSrc->DS;
8426 if (enmEffOpSize == IEMMODE_64BIT)
8427 {
8428 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8429 pDst->Rsrvd1 = pSrc->Rsrvd1;
8430 pDst->Rsrvd2 = pSrc->Rsrvd2;
8431 }
8432 else
8433 {
8434 pDst->Rsrvd1 = 0;
8435 pDst->Rsrvd2 = 0;
8436 }
8437 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8438 {
8439 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8440 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8441 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8442 pDst->aRegs[i].au32[3] = 0;
8443 }
8444 }
8445 else
8446 {
8447 pDst->FCW = 0x37f;
8448 pDst->FSW = 0;
8449 pDst->FTW = 0x00; /* 0 - empty. */
8450 pDst->FPUDP = 0;
8451 pDst->DS = 0; //??
8452 pDst->Rsrvd2= 0;
8453 pDst->FPUIP = 0;
8454 pDst->CS = 0; //??
8455 pDst->Rsrvd1= 0;
8456 pDst->FOP = 0;
8457 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8458 {
8459 pDst->aRegs[i].au32[0] = 0;
8460 pDst->aRegs[i].au32[1] = 0;
8461 pDst->aRegs[i].au32[2] = 0;
8462 pDst->aRegs[i].au32[3] = 0;
8463 }
8464 }
8465 pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
8466 }
8467
8468 /* MXCSR */
8469 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8470 {
8471 if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
8472 pDst->MXCSR = pSrc->MXCSR;
8473 else
8474 pDst->MXCSR = 0x1f80;
8475 }
8476
8477 /* XMM registers. */
8478 if (fReqComponents & XSAVE_C_SSE)
8479 {
8480 if (fRstorMask & XSAVE_C_SSE)
8481 {
8482 for (uint32_t i = 0; i < cXmmRegs; i++)
8483 pDst->aXMM[i] = pSrc->aXMM[i];
8484 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8485 * right? */
8486 }
8487 else
8488 {
8489 for (uint32_t i = 0; i < cXmmRegs; i++)
8490 {
8491 pDst->aXMM[i].au64[0] = 0;
8492 pDst->aXMM[i].au64[1] = 0;
8493 }
8494 }
8495 pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
8496 }
8497
8498 /* Unmap the x87 state bits (so we've don't run out of mapping). */
8499 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8500 if (rcStrict != VINF_SUCCESS)
8501 return rcStrict;
8502
8503 /*
8504 * Restore AVX state.
8505 */
8506 if (fReqComponents & XSAVE_C_YMM)
8507 {
8508 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8509 PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
8510
8511 if (fRstorMask & XSAVE_C_YMM)
8512 {
8513 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8514 PCX86XSAVEYMMHI pCompSrc;
8515 rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
8516 iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R);
8517 if (rcStrict != VINF_SUCCESS)
8518 return rcStrict;
8519
8520 for (uint32_t i = 0; i < cXmmRegs; i++)
8521 {
8522 pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
8523 pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
8524 }
8525
8526 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
8527 if (rcStrict != VINF_SUCCESS)
8528 return rcStrict;
8529 }
8530 else
8531 {
8532 for (uint32_t i = 0; i < cXmmRegs; i++)
8533 {
8534 pCompDst->aYmmHi[i].au64[0] = 0;
8535 pCompDst->aYmmHi[i].au64[1] = 0;
8536 }
8537 }
8538 pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
8539 }
8540
8541 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8542 return VINF_SUCCESS;
8543}
8544
8545
8546
8547
8548/**
8549 * Implements 'STMXCSR'.
8550 *
8551 * @param GCPtrEff The address of the image.
8552 */
8553IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8554{
8555 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8556
8557 /*
8558 * Raise exceptions.
8559 */
8560 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8561 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8562 {
8563 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8564 {
8565 /*
8566 * Do the job.
8567 */
8568 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
8569 if (rcStrict == VINF_SUCCESS)
8570 {
8571 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8572 return VINF_SUCCESS;
8573 }
8574 return rcStrict;
8575 }
8576 return iemRaiseDeviceNotAvailable(pVCpu);
8577 }
8578 return iemRaiseUndefinedOpcode(pVCpu);
8579}
8580
8581
8582/**
8583 * Implements 'VSTMXCSR'.
8584 *
8585 * @param GCPtrEff The address of the image.
8586 */
8587IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8588{
8589 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx);
8590
8591 /*
8592 * Raise exceptions.
8593 */
8594 if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
8595 ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
8596 : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
8597 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8598 {
8599 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8600 {
8601 /*
8602 * Do the job.
8603 */
8604 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
8605 if (rcStrict == VINF_SUCCESS)
8606 {
8607 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8608 return VINF_SUCCESS;
8609 }
8610 return rcStrict;
8611 }
8612 return iemRaiseDeviceNotAvailable(pVCpu);
8613 }
8614 return iemRaiseUndefinedOpcode(pVCpu);
8615}
8616
8617
8618/**
8619 * Implements 'LDMXCSR'.
8620 *
8621 * @param GCPtrEff The address of the image.
8622 */
8623IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8624{
8625 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8626
8627 /*
8628 * Raise exceptions.
8629 */
8630 /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
8631 * happen after or before \#UD and \#EM? */
8632 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8633 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8634 {
8635 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8636 {
8637 /*
8638 * Do the job.
8639 */
8640 uint32_t fNewMxCsr;
8641 VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
8642 if (rcStrict == VINF_SUCCESS)
8643 {
8644 uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8645 if (!(fNewMxCsr & ~fMxCsrMask))
8646 {
8647 pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR = fNewMxCsr;
8648 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8649 return VINF_SUCCESS;
8650 }
8651 Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
8652 fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
8653 return iemRaiseGeneralProtectionFault0(pVCpu);
8654 }
8655 return rcStrict;
8656 }
8657 return iemRaiseDeviceNotAvailable(pVCpu);
8658 }
8659 return iemRaiseUndefinedOpcode(pVCpu);
8660}
8661
8662
8663/**
8664 * Commmon routine for fnstenv and fnsave.
8665 *
8666 * @param pVCpu The cross context virtual CPU structure of the calling thread.
8667 * @param enmEffOpSize The effective operand size.
8668 * @param uPtr Where to store the state.
8669 */
8670static void iemCImplCommonFpuStoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr)
8671{
8672 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8673 PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8674 if (enmEffOpSize == IEMMODE_16BIT)
8675 {
8676 uPtr.pu16[0] = pSrcX87->FCW;
8677 uPtr.pu16[1] = pSrcX87->FSW;
8678 uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
8679 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8680 {
8681 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
8682 * protected mode or long mode and we save it in real mode? And vice
8683 * versa? And with 32-bit operand size? I think CPU is storing the
8684 * effective address ((CS << 4) + IP) in the offset register and not
8685 * doing any address calculations here. */
8686 uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
8687 uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
8688 uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
8689 uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
8690 }
8691 else
8692 {
8693 uPtr.pu16[3] = pSrcX87->FPUIP;
8694 uPtr.pu16[4] = pSrcX87->CS;
8695 uPtr.pu16[5] = pSrcX87->FPUDP;
8696 uPtr.pu16[6] = pSrcX87->DS;
8697 }
8698 }
8699 else
8700 {
8701 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
8702 uPtr.pu16[0*2] = pSrcX87->FCW;
8703 uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
8704 uPtr.pu16[1*2] = pSrcX87->FSW;
8705 uPtr.pu16[1*2+1] = 0xffff;
8706 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
8707 uPtr.pu16[2*2+1] = 0xffff;
8708 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8709 {
8710 uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
8711 uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
8712 uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
8713 uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
8714 }
8715 else
8716 {
8717 uPtr.pu32[3] = pSrcX87->FPUIP;
8718 uPtr.pu16[4*2] = pSrcX87->CS;
8719 uPtr.pu16[4*2+1] = pSrcX87->FOP;
8720 uPtr.pu32[5] = pSrcX87->FPUDP;
8721 uPtr.pu16[6*2] = pSrcX87->DS;
8722 uPtr.pu16[6*2+1] = 0xffff;
8723 }
8724 }
8725}
8726
8727
8728/**
8729 * Commmon routine for fldenv and frstor
8730 *
8731 * @param pVCpu The cross context virtual CPU structure of the calling thread.
8732 * @param enmEffOpSize The effective operand size.
8733 * @param uPtr Where to store the state.
8734 */
8735static void iemCImplCommonFpuRestoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr)
8736{
8737 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8738 PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8739 if (enmEffOpSize == IEMMODE_16BIT)
8740 {
8741 pDstX87->FCW = uPtr.pu16[0];
8742 pDstX87->FSW = uPtr.pu16[1];
8743 pDstX87->FTW = uPtr.pu16[2];
8744 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8745 {
8746 pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
8747 pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
8748 pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
8749 pDstX87->CS = 0;
8750 pDstX87->Rsrvd1= 0;
8751 pDstX87->DS = 0;
8752 pDstX87->Rsrvd2= 0;
8753 }
8754 else
8755 {
8756 pDstX87->FPUIP = uPtr.pu16[3];
8757 pDstX87->CS = uPtr.pu16[4];
8758 pDstX87->Rsrvd1= 0;
8759 pDstX87->FPUDP = uPtr.pu16[5];
8760 pDstX87->DS = uPtr.pu16[6];
8761 pDstX87->Rsrvd2= 0;
8762 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
8763 }
8764 }
8765 else
8766 {
8767 pDstX87->FCW = uPtr.pu16[0*2];
8768 pDstX87->FSW = uPtr.pu16[1*2];
8769 pDstX87->FTW = uPtr.pu16[2*2];
8770 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8771 {
8772 pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
8773 pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
8774 pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
8775 pDstX87->CS = 0;
8776 pDstX87->Rsrvd1= 0;
8777 pDstX87->DS = 0;
8778 pDstX87->Rsrvd2= 0;
8779 }
8780 else
8781 {
8782 pDstX87->FPUIP = uPtr.pu32[3];
8783 pDstX87->CS = uPtr.pu16[4*2];
8784 pDstX87->Rsrvd1= 0;
8785 pDstX87->FOP = uPtr.pu16[4*2+1];
8786 pDstX87->FPUDP = uPtr.pu32[5];
8787 pDstX87->DS = uPtr.pu16[6*2];
8788 pDstX87->Rsrvd2= 0;
8789 }
8790 }
8791
8792 /* Make adjustments. */
8793 pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
8794 pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
8795 iemFpuRecalcExceptionStatus(pDstX87);
8796 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
8797 * exceptions are pending after loading the saved state? */
8798}
8799
8800
8801/**
8802 * Implements 'FNSTENV'.
8803 *
8804 * @param enmEffOpSize The operand size (only REX.W really matters).
8805 * @param iEffSeg The effective segment register for @a GCPtrEff.
8806 * @param GCPtrEffDst The address of the image.
8807 */
8808IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
8809{
8810 RTPTRUNION uPtr;
8811 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
8812 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8813 if (rcStrict != VINF_SUCCESS)
8814 return rcStrict;
8815
8816 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
8817
8818 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8819 if (rcStrict != VINF_SUCCESS)
8820 return rcStrict;
8821
8822 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
8823 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8824 return VINF_SUCCESS;
8825}
8826
8827
8828/**
8829 * Implements 'FNSAVE'.
8830 *
8831 * @param GCPtrEffDst The address of the image.
8832 * @param enmEffOpSize The operand size.
8833 */
8834IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
8835{
8836 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8837
8838 RTPTRUNION uPtr;
8839 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
8840 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8841 if (rcStrict != VINF_SUCCESS)
8842 return rcStrict;
8843
8844 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8845 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
8846 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
8847 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
8848 {
8849 paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
8850 paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
8851 paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
8852 }
8853
8854 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8855 if (rcStrict != VINF_SUCCESS)
8856 return rcStrict;
8857
8858 /*
8859 * Re-initialize the FPU context.
8860 */
8861 pFpuCtx->FCW = 0x37f;
8862 pFpuCtx->FSW = 0;
8863 pFpuCtx->FTW = 0x00; /* 0 - empty */
8864 pFpuCtx->FPUDP = 0;
8865 pFpuCtx->DS = 0;
8866 pFpuCtx->Rsrvd2= 0;
8867 pFpuCtx->FPUIP = 0;
8868 pFpuCtx->CS = 0;
8869 pFpuCtx->Rsrvd1= 0;
8870 pFpuCtx->FOP = 0;
8871
8872 iemHlpUsedFpu(pVCpu);
8873 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8874 return VINF_SUCCESS;
8875}
8876
8877
8878
8879/**
8880 * Implements 'FLDENV'.
8881 *
8882 * @param enmEffOpSize The operand size (only REX.W really matters).
8883 * @param iEffSeg The effective segment register for @a GCPtrEff.
8884 * @param GCPtrEffSrc The address of the image.
8885 */
8886IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
8887{
8888 RTCPTRUNION uPtr;
8889 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
8890 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
8891 if (rcStrict != VINF_SUCCESS)
8892 return rcStrict;
8893
8894 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
8895
8896 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
8897 if (rcStrict != VINF_SUCCESS)
8898 return rcStrict;
8899
8900 iemHlpUsedFpu(pVCpu);
8901 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8902 return VINF_SUCCESS;
8903}
8904
8905
8906/**
8907 * Implements 'FRSTOR'.
8908 *
8909 * @param GCPtrEffSrc The address of the image.
8910 * @param enmEffOpSize The operand size.
8911 */
8912IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
8913{
8914 RTCPTRUNION uPtr;
8915 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
8916 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
8917 if (rcStrict != VINF_SUCCESS)
8918 return rcStrict;
8919
8920 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8921 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
8922 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
8923 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
8924 {
8925 pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
8926 pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
8927 pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
8928 pFpuCtx->aRegs[i].au32[3] = 0;
8929 }
8930
8931 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
8932 if (rcStrict != VINF_SUCCESS)
8933 return rcStrict;
8934
8935 iemHlpUsedFpu(pVCpu);
8936 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8937 return VINF_SUCCESS;
8938}
8939
8940
8941/**
8942 * Implements 'FLDCW'.
8943 *
8944 * @param u16Fcw The new FCW.
8945 */
8946IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
8947{
8948 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8949
8950 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
8951 /** @todo Testcase: Try see what happens when trying to set undefined bits
8952 * (other than 6 and 7). Currently ignoring them. */
8953 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
8954 * according to FSW. (This is was is currently implemented.) */
8955 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8956 pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
8957 iemFpuRecalcExceptionStatus(pFpuCtx);
8958
8959 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
8960 iemHlpUsedFpu(pVCpu);
8961 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8962 return VINF_SUCCESS;
8963}
8964
8965
8966
8967/**
8968 * Implements the underflow case of fxch.
8969 *
8970 * @param iStReg The other stack register.
8971 */
8972IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
8973{
8974 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8975
8976 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8977 unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
8978 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
8979 Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
8980
8981 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
8982 * registers are read as QNaN and then exchanged. This could be
8983 * wrong... */
8984 if (pFpuCtx->FCW & X86_FCW_IM)
8985 {
8986 if (RT_BIT(iReg1) & pFpuCtx->FTW)
8987 {
8988 if (RT_BIT(iReg2) & pFpuCtx->FTW)
8989 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
8990 else
8991 pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
8992 iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
8993 }
8994 else
8995 {
8996 pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
8997 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
8998 }
8999 pFpuCtx->FSW &= ~X86_FSW_C_MASK;
9000 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
9001 }
9002 else
9003 {
9004 /* raise underflow exception, don't change anything. */
9005 pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
9006 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9007 }
9008
9009 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9010 iemHlpUsedFpu(pVCpu);
9011 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9012 return VINF_SUCCESS;
9013}
9014
9015
9016/**
9017 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
9018 *
9019 * @param cToAdd 1 or 7.
9020 */
9021IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
9022{
9023 Assert(iStReg < 8);
9024 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9025
9026 /*
9027 * Raise exceptions.
9028 */
9029 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
9030 return iemRaiseDeviceNotAvailable(pVCpu);
9031
9032 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
9033 uint16_t u16Fsw = pFpuCtx->FSW;
9034 if (u16Fsw & X86_FSW_ES)
9035 return iemRaiseMathFault(pVCpu);
9036
9037 /*
9038 * Check if any of the register accesses causes #SF + #IA.
9039 */
9040 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
9041 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9042 if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
9043 {
9044 uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
9045 NOREF(u32Eflags);
9046
9047 pFpuCtx->FSW &= ~X86_FSW_C1;
9048 pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
9049 if ( !(u16Fsw & X86_FSW_IE)
9050 || (pFpuCtx->FCW & X86_FCW_IM) )
9051 {
9052 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9053 pVCpu->cpum.GstCtx.eflags.u |= pVCpu->cpum.GstCtx.eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9054 }
9055 }
9056 else if (pFpuCtx->FCW & X86_FCW_IM)
9057 {
9058 /* Masked underflow. */
9059 pFpuCtx->FSW &= ~X86_FSW_C1;
9060 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
9061 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9062 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
9063 }
9064 else
9065 {
9066 /* Raise underflow - don't touch EFLAGS or TOP. */
9067 pFpuCtx->FSW &= ~X86_FSW_C1;
9068 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9069 fPop = false;
9070 }
9071
9072 /*
9073 * Pop if necessary.
9074 */
9075 if (fPop)
9076 {
9077 pFpuCtx->FTW &= ~RT_BIT(iReg1);
9078 pFpuCtx->FSW &= X86_FSW_TOP_MASK;
9079 pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
9080 }
9081
9082 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9083 iemHlpUsedFpu(pVCpu);
9084 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9085 return VINF_SUCCESS;
9086}
9087
9088/** @} */
9089
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette