VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h@ 92561

Last change on this file since 92561 was 92545, checked in by vboxsync, 3 years ago

VMM/IEM: Nested VMX: bugref:10092 Don't GP(0) only for VERR_PGM_PAE_PDPE_RSVD as a second-level address translation can fail for CR3 itself (prior to even loading PAE PDPTEs).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 336.0 KB
Line 
1/* $Id: IEMAllCImpl.cpp.h 92545 2021-11-22 12:12:53Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#include "IEMAllCImplSvmInstr.cpp.h"
19#include "IEMAllCImplVmxInstr.cpp.h"
20
21
22/** @name Misc Helpers
23 * @{
24 */
25
26
27/**
28 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
29 *
30 * @returns Strict VBox status code.
31 *
32 * @param pVCpu The cross context virtual CPU structure of the calling thread.
33 * @param u16Port The port number.
34 * @param cbOperand The operand size.
35 */
36static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
37{
38 /* The TSS bits we're interested in are the same on 386 and AMD64. */
39 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
40 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
41 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
42 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
43
44 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
45
46 /*
47 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
48 */
49 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
50 if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
51 && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
52 {
53 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
54 u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u));
55 return iemRaiseGeneralProtectionFault0(pVCpu);
56 }
57
58 /*
59 * Read the bitmap offset (may #PF).
60 */
61 uint16_t offBitmap;
62 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
63 pVCpu->cpum.GstCtx.tr.u64Base + RT_UOFFSETOF(X86TSS64, offIoBitmap));
64 if (rcStrict != VINF_SUCCESS)
65 {
66 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
67 return rcStrict;
68 }
69
70 /*
71 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
72 * describes the CPU actually reading two bytes regardless of whether the
73 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
74 */
75 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
76 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
77 * for instance sizeof(X86TSS32). */
78 if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */
79 {
80 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
81 offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit));
82 return iemRaiseGeneralProtectionFault0(pVCpu);
83 }
84
85 /*
86 * Read the necessary bits.
87 */
88 /** @todo Test the assertion in the intel manual that the CPU reads two
89 * bytes. The question is how this works wrt to #PF and #GP on the
90 * 2nd byte when it's not required. */
91 uint16_t bmBytes = UINT16_MAX;
92 rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit);
93 if (rcStrict != VINF_SUCCESS)
94 {
95 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
96 return rcStrict;
97 }
98
99 /*
100 * Perform the check.
101 */
102 uint16_t fPortMask = (1 << cbOperand) - 1;
103 bmBytes >>= (u16Port & 7);
104 if (bmBytes & fPortMask)
105 {
106 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
107 u16Port, cbOperand, bmBytes, fPortMask));
108 return iemRaiseGeneralProtectionFault0(pVCpu);
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115/**
116 * Checks if we are allowed to access the given I/O port, raising the
117 * appropriate exceptions if we aren't (or if the I/O bitmap is not
118 * accessible).
119 *
120 * @returns Strict VBox status code.
121 *
122 * @param pVCpu The cross context virtual CPU structure of the calling thread.
123 * @param u16Port The port number.
124 * @param cbOperand The operand size.
125 */
126DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
127{
128 X86EFLAGS Efl;
129 Efl.u = IEMMISC_GET_EFL(pVCpu);
130 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
131 && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
132 || Efl.Bits.u1VM) )
133 return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand);
134 return VINF_SUCCESS;
135}
136
137
138#if 0
139/**
140 * Calculates the parity bit.
141 *
142 * @returns true if the bit is set, false if not.
143 * @param u8Result The least significant byte of the result.
144 */
145static bool iemHlpCalcParityFlag(uint8_t u8Result)
146{
147 /*
148 * Parity is set if the number of bits in the least significant byte of
149 * the result is even.
150 */
151 uint8_t cBits;
152 cBits = u8Result & 1; /* 0 */
153 u8Result >>= 1;
154 cBits += u8Result & 1;
155 u8Result >>= 1;
156 cBits += u8Result & 1;
157 u8Result >>= 1;
158 cBits += u8Result & 1;
159 u8Result >>= 1;
160 cBits += u8Result & 1; /* 4 */
161 u8Result >>= 1;
162 cBits += u8Result & 1;
163 u8Result >>= 1;
164 cBits += u8Result & 1;
165 u8Result >>= 1;
166 cBits += u8Result & 1;
167 return !(cBits & 1);
168}
169#endif /* not used */
170
171
172/**
173 * Updates the specified flags according to a 8-bit result.
174 *
175 * @param pVCpu The cross context virtual CPU structure of the calling thread.
176 * @param u8Result The result to set the flags according to.
177 * @param fToUpdate The flags to update.
178 * @param fUndefined The flags that are specified as undefined.
179 */
180static void iemHlpUpdateArithEFlagsU8(PVMCPUCC pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
181{
182 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
183 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
184 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
185 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
186}
187
188
189/**
190 * Updates the specified flags according to a 16-bit result.
191 *
192 * @param pVCpu The cross context virtual CPU structure of the calling thread.
193 * @param u16Result The result to set the flags according to.
194 * @param fToUpdate The flags to update.
195 * @param fUndefined The flags that are specified as undefined.
196 */
197static void iemHlpUpdateArithEFlagsU16(PVMCPUCC pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
198{
199 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
200 iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
201 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
202 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
203}
204
205
206/**
207 * Helper used by iret.
208 *
209 * @param pVCpu The cross context virtual CPU structure of the calling thread.
210 * @param uCpl The new CPL.
211 * @param pSReg Pointer to the segment register.
212 */
213static void iemHlpAdjustSelectorForNewCpl(PVMCPUCC pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
214{
215 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
216 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
217
218 if ( uCpl > pSReg->Attr.n.u2Dpl
219 && pSReg->Attr.n.u1DescType /* code or data, not system */
220 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
221 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
222 iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
223}
224
225
226/**
227 * Indicates that we have modified the FPU state.
228 *
229 * @param pVCpu The cross context virtual CPU structure of the calling thread.
230 */
231DECLINLINE(void) iemHlpUsedFpu(PVMCPUCC pVCpu)
232{
233 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
234}
235
236/** @} */
237
238/** @name C Implementations
239 * @{
240 */
241
242/**
243 * Implements a 16-bit popa.
244 */
245IEM_CIMPL_DEF_0(iemCImpl_popa_16)
246{
247 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
248 RTGCPTR GCPtrLast = GCPtrStart + 15;
249 VBOXSTRICTRC rcStrict;
250
251 /*
252 * The docs are a bit hard to comprehend here, but it looks like we wrap
253 * around in real mode as long as none of the individual "popa" crosses the
254 * end of the stack segment. In protected mode we check the whole access
255 * in one go. For efficiency, only do the word-by-word thing if we're in
256 * danger of wrapping around.
257 */
258 /** @todo do popa boundary / wrap-around checks. */
259 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
260 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
261 {
262 /* word-by-word */
263 RTUINT64U TmpRsp;
264 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
265 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp);
266 if (rcStrict == VINF_SUCCESS)
267 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp);
268 if (rcStrict == VINF_SUCCESS)
269 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp);
270 if (rcStrict == VINF_SUCCESS)
271 {
272 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
273 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp);
274 }
275 if (rcStrict == VINF_SUCCESS)
276 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp);
277 if (rcStrict == VINF_SUCCESS)
278 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp);
279 if (rcStrict == VINF_SUCCESS)
280 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp);
281 if (rcStrict == VINF_SUCCESS)
282 {
283 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
284 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
285 }
286 }
287 else
288 {
289 uint16_t const *pa16Mem = NULL;
290 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
291 if (rcStrict == VINF_SUCCESS)
292 {
293 pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI];
294 pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI];
295 pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP];
296 /* skip sp */
297 pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX];
298 pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX];
299 pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX];
300 pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX];
301 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
302 if (rcStrict == VINF_SUCCESS)
303 {
304 iemRegAddToRsp(pVCpu, 16);
305 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
306 }
307 }
308 }
309 return rcStrict;
310}
311
312
313/**
314 * Implements a 32-bit popa.
315 */
316IEM_CIMPL_DEF_0(iemCImpl_popa_32)
317{
318 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
319 RTGCPTR GCPtrLast = GCPtrStart + 31;
320 VBOXSTRICTRC rcStrict;
321
322 /*
323 * The docs are a bit hard to comprehend here, but it looks like we wrap
324 * around in real mode as long as none of the individual "popa" crosses the
325 * end of the stack segment. In protected mode we check the whole access
326 * in one go. For efficiency, only do the word-by-word thing if we're in
327 * danger of wrapping around.
328 */
329 /** @todo do popa boundary / wrap-around checks. */
330 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
331 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
332 {
333 /* word-by-word */
334 RTUINT64U TmpRsp;
335 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
336 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp);
337 if (rcStrict == VINF_SUCCESS)
338 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp);
339 if (rcStrict == VINF_SUCCESS)
340 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp);
341 if (rcStrict == VINF_SUCCESS)
342 {
343 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
344 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp);
345 }
346 if (rcStrict == VINF_SUCCESS)
347 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp);
348 if (rcStrict == VINF_SUCCESS)
349 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp);
350 if (rcStrict == VINF_SUCCESS)
351 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp);
352 if (rcStrict == VINF_SUCCESS)
353 {
354#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
355 pVCpu->cpum.GstCtx.rdi &= UINT32_MAX;
356 pVCpu->cpum.GstCtx.rsi &= UINT32_MAX;
357 pVCpu->cpum.GstCtx.rbp &= UINT32_MAX;
358 pVCpu->cpum.GstCtx.rbx &= UINT32_MAX;
359 pVCpu->cpum.GstCtx.rdx &= UINT32_MAX;
360 pVCpu->cpum.GstCtx.rcx &= UINT32_MAX;
361 pVCpu->cpum.GstCtx.rax &= UINT32_MAX;
362#endif
363 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
364 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
365 }
366 }
367 else
368 {
369 uint32_t const *pa32Mem;
370 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
371 if (rcStrict == VINF_SUCCESS)
372 {
373 pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI];
374 pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI];
375 pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP];
376 /* skip esp */
377 pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX];
378 pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX];
379 pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX];
380 pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX];
381 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
382 if (rcStrict == VINF_SUCCESS)
383 {
384 iemRegAddToRsp(pVCpu, 32);
385 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
386 }
387 }
388 }
389 return rcStrict;
390}
391
392
393/**
394 * Implements a 16-bit pusha.
395 */
396IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
397{
398 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
399 RTGCPTR GCPtrBottom = GCPtrTop - 15;
400 VBOXSTRICTRC rcStrict;
401
402 /*
403 * The docs are a bit hard to comprehend here, but it looks like we wrap
404 * around in real mode as long as none of the individual "pushd" crosses the
405 * end of the stack segment. In protected mode we check the whole access
406 * in one go. For efficiency, only do the word-by-word thing if we're in
407 * danger of wrapping around.
408 */
409 /** @todo do pusha boundary / wrap-around checks. */
410 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
411 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
412 {
413 /* word-by-word */
414 RTUINT64U TmpRsp;
415 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
416 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp);
417 if (rcStrict == VINF_SUCCESS)
418 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp);
419 if (rcStrict == VINF_SUCCESS)
420 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp);
421 if (rcStrict == VINF_SUCCESS)
422 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp);
423 if (rcStrict == VINF_SUCCESS)
424 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp);
425 if (rcStrict == VINF_SUCCESS)
426 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp);
427 if (rcStrict == VINF_SUCCESS)
428 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp);
429 if (rcStrict == VINF_SUCCESS)
430 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp);
431 if (rcStrict == VINF_SUCCESS)
432 {
433 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
434 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
435 }
436 }
437 else
438 {
439 GCPtrBottom--;
440 uint16_t *pa16Mem = NULL;
441 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
442 if (rcStrict == VINF_SUCCESS)
443 {
444 pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di;
445 pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si;
446 pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp;
447 pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp;
448 pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx;
449 pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx;
450 pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx;
451 pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax;
452 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
453 if (rcStrict == VINF_SUCCESS)
454 {
455 iemRegSubFromRsp(pVCpu, 16);
456 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
457 }
458 }
459 }
460 return rcStrict;
461}
462
463
464/**
465 * Implements a 32-bit pusha.
466 */
467IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
468{
469 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
470 RTGCPTR GCPtrBottom = GCPtrTop - 31;
471 VBOXSTRICTRC rcStrict;
472
473 /*
474 * The docs are a bit hard to comprehend here, but it looks like we wrap
475 * around in real mode as long as none of the individual "pusha" crosses the
476 * end of the stack segment. In protected mode we check the whole access
477 * in one go. For efficiency, only do the word-by-word thing if we're in
478 * danger of wrapping around.
479 */
480 /** @todo do pusha boundary / wrap-around checks. */
481 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
482 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
483 {
484 /* word-by-word */
485 RTUINT64U TmpRsp;
486 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
487 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp);
488 if (rcStrict == VINF_SUCCESS)
489 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp);
490 if (rcStrict == VINF_SUCCESS)
491 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp);
492 if (rcStrict == VINF_SUCCESS)
493 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp);
494 if (rcStrict == VINF_SUCCESS)
495 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp);
496 if (rcStrict == VINF_SUCCESS)
497 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp);
498 if (rcStrict == VINF_SUCCESS)
499 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp);
500 if (rcStrict == VINF_SUCCESS)
501 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp);
502 if (rcStrict == VINF_SUCCESS)
503 {
504 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
505 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
506 }
507 }
508 else
509 {
510 GCPtrBottom--;
511 uint32_t *pa32Mem;
512 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
513 if (rcStrict == VINF_SUCCESS)
514 {
515 pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi;
516 pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi;
517 pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp;
518 pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp;
519 pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx;
520 pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx;
521 pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx;
522 pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax;
523 rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
524 if (rcStrict == VINF_SUCCESS)
525 {
526 iemRegSubFromRsp(pVCpu, 32);
527 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
528 }
529 }
530 }
531 return rcStrict;
532}
533
534
535/**
536 * Implements pushf.
537 *
538 *
539 * @param enmEffOpSize The effective operand size.
540 */
541IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
542{
543 VBOXSTRICTRC rcStrict;
544
545 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
546 {
547 Log2(("pushf: Guest intercept -> #VMEXIT\n"));
548 IEM_SVM_UPDATE_NRIP(pVCpu);
549 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
550 }
551
552 /*
553 * If we're in V8086 mode some care is required (which is why we're in
554 * doing this in a C implementation).
555 */
556 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
557 if ( (fEfl & X86_EFL_VM)
558 && X86_EFL_GET_IOPL(fEfl) != 3 )
559 {
560 Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE);
561 if ( enmEffOpSize != IEMMODE_16BIT
562 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
563 return iemRaiseGeneralProtectionFault0(pVCpu);
564 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
565 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
566 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
567 }
568 else
569 {
570
571 /*
572 * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
573 */
574 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
575
576 switch (enmEffOpSize)
577 {
578 case IEMMODE_16BIT:
579 AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
580 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
581 fEfl |= UINT16_C(0xf000);
582 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
583 break;
584 case IEMMODE_32BIT:
585 rcStrict = iemMemStackPushU32(pVCpu, fEfl);
586 break;
587 case IEMMODE_64BIT:
588 rcStrict = iemMemStackPushU64(pVCpu, fEfl);
589 break;
590 IEM_NOT_REACHED_DEFAULT_CASE_RET();
591 }
592 }
593 if (rcStrict != VINF_SUCCESS)
594 return rcStrict;
595
596 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
597 return VINF_SUCCESS;
598}
599
600
601/**
602 * Implements popf.
603 *
604 * @param enmEffOpSize The effective operand size.
605 */
606IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
607{
608 uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu);
609 VBOXSTRICTRC rcStrict;
610 uint32_t fEflNew;
611
612 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
613 {
614 Log2(("popf: Guest intercept -> #VMEXIT\n"));
615 IEM_SVM_UPDATE_NRIP(pVCpu);
616 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
617 }
618
619 /*
620 * V8086 is special as usual.
621 */
622 if (fEflOld & X86_EFL_VM)
623 {
624 /*
625 * Almost anything goes if IOPL is 3.
626 */
627 if (X86_EFL_GET_IOPL(fEflOld) == 3)
628 {
629 switch (enmEffOpSize)
630 {
631 case IEMMODE_16BIT:
632 {
633 uint16_t u16Value;
634 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
635 if (rcStrict != VINF_SUCCESS)
636 return rcStrict;
637 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
638 break;
639 }
640 case IEMMODE_32BIT:
641 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
642 if (rcStrict != VINF_SUCCESS)
643 return rcStrict;
644 break;
645 IEM_NOT_REACHED_DEFAULT_CASE_RET();
646 }
647
648 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
649 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
650 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
651 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
652 }
653 /*
654 * Interrupt flag virtualization with CR4.VME=1.
655 */
656 else if ( enmEffOpSize == IEMMODE_16BIT
657 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
658 {
659 uint16_t u16Value;
660 RTUINT64U TmpRsp;
661 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
662 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
663 if (rcStrict != VINF_SUCCESS)
664 return rcStrict;
665
666 /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
667 * or before? */
668 if ( ( (u16Value & X86_EFL_IF)
669 && (fEflOld & X86_EFL_VIP))
670 || (u16Value & X86_EFL_TF) )
671 return iemRaiseGeneralProtectionFault0(pVCpu);
672
673 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
674 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
675 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
676 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
677
678 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
679 }
680 else
681 return iemRaiseGeneralProtectionFault0(pVCpu);
682
683 }
684 /*
685 * Not in V8086 mode.
686 */
687 else
688 {
689 /* Pop the flags. */
690 switch (enmEffOpSize)
691 {
692 case IEMMODE_16BIT:
693 {
694 uint16_t u16Value;
695 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
696 if (rcStrict != VINF_SUCCESS)
697 return rcStrict;
698 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
699
700 /*
701 * Ancient CPU adjustments:
702 * - 8086, 80186, V20/30:
703 * Fixed bits 15:12 bits are not kept correctly internally, mostly for
704 * practical reasons (masking below). We add them when pushing flags.
705 * - 80286:
706 * The NT and IOPL flags cannot be popped from real mode and are
707 * therefore always zero (since a 286 can never exit from PM and
708 * their initial value is zero). This changed on a 386 and can
709 * therefore be used to detect 286 or 386 CPU in real mode.
710 */
711 if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
712 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
713 fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
714 break;
715 }
716 case IEMMODE_32BIT:
717 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
718 if (rcStrict != VINF_SUCCESS)
719 return rcStrict;
720 break;
721 case IEMMODE_64BIT:
722 {
723 uint64_t u64Value;
724 rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
725 if (rcStrict != VINF_SUCCESS)
726 return rcStrict;
727 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
728 break;
729 }
730 IEM_NOT_REACHED_DEFAULT_CASE_RET();
731 }
732
733 /* Merge them with the current flags. */
734 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
735 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
736 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
737 || pVCpu->iem.s.uCpl == 0)
738 {
739 fEflNew &= fPopfBits;
740 fEflNew |= ~fPopfBits & fEflOld;
741 }
742 else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
743 {
744 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
745 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
746 }
747 else
748 {
749 fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
750 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
751 }
752 }
753
754 /*
755 * Commit the flags.
756 */
757 Assert(fEflNew & RT_BIT_32(1));
758 IEMMISC_SET_EFL(pVCpu, fEflNew);
759 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
760
761 return VINF_SUCCESS;
762}
763
764
765/**
766 * Implements an indirect call.
767 *
768 * @param uNewPC The new program counter (RIP) value (loaded from the
769 * operand).
770 * @param enmEffOpSize The effective operand size.
771 */
772IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
773{
774 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
775 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
776 return iemRaiseGeneralProtectionFault0(pVCpu);
777
778 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
779 if (rcStrict != VINF_SUCCESS)
780 return rcStrict;
781
782 pVCpu->cpum.GstCtx.rip = uNewPC;
783 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
784
785#ifndef IEM_WITH_CODE_TLB
786 /* Flush the prefetch buffer. */
787 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
788#endif
789 return VINF_SUCCESS;
790}
791
792
793/**
794 * Implements a 16-bit relative call.
795 *
796 * @param offDisp The displacment offset.
797 */
798IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
799{
800 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
801 uint16_t uNewPC = uOldPC + offDisp;
802 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
803 return iemRaiseGeneralProtectionFault0(pVCpu);
804
805 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
806 if (rcStrict != VINF_SUCCESS)
807 return rcStrict;
808
809 pVCpu->cpum.GstCtx.rip = uNewPC;
810 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
811
812#ifndef IEM_WITH_CODE_TLB
813 /* Flush the prefetch buffer. */
814 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
815#endif
816 return VINF_SUCCESS;
817}
818
819
820/**
821 * Implements a 32-bit indirect call.
822 *
823 * @param uNewPC The new program counter (RIP) value (loaded from the
824 * operand).
825 * @param enmEffOpSize The effective operand size.
826 */
827IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
828{
829 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
830 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
831 return iemRaiseGeneralProtectionFault0(pVCpu);
832
833 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
834 if (rcStrict != VINF_SUCCESS)
835 return rcStrict;
836
837 pVCpu->cpum.GstCtx.rip = uNewPC;
838 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
839
840#ifndef IEM_WITH_CODE_TLB
841 /* Flush the prefetch buffer. */
842 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
843#endif
844 return VINF_SUCCESS;
845}
846
847
848/**
849 * Implements a 32-bit relative call.
850 *
851 * @param offDisp The displacment offset.
852 */
853IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
854{
855 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
856 uint32_t uNewPC = uOldPC + offDisp;
857 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
858 return iemRaiseGeneralProtectionFault0(pVCpu);
859
860 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
861 if (rcStrict != VINF_SUCCESS)
862 return rcStrict;
863
864 pVCpu->cpum.GstCtx.rip = uNewPC;
865 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
866
867#ifndef IEM_WITH_CODE_TLB
868 /* Flush the prefetch buffer. */
869 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
870#endif
871 return VINF_SUCCESS;
872}
873
874
875/**
876 * Implements a 64-bit indirect call.
877 *
878 * @param uNewPC The new program counter (RIP) value (loaded from the
879 * operand).
880 * @param enmEffOpSize The effective operand size.
881 */
882IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
883{
884 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
885 if (!IEM_IS_CANONICAL(uNewPC))
886 return iemRaiseGeneralProtectionFault0(pVCpu);
887
888 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
889 if (rcStrict != VINF_SUCCESS)
890 return rcStrict;
891
892 pVCpu->cpum.GstCtx.rip = uNewPC;
893 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
894
895#ifndef IEM_WITH_CODE_TLB
896 /* Flush the prefetch buffer. */
897 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
898#endif
899 return VINF_SUCCESS;
900}
901
902
903/**
904 * Implements a 64-bit relative call.
905 *
906 * @param offDisp The displacment offset.
907 */
908IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
909{
910 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
911 uint64_t uNewPC = uOldPC + offDisp;
912 if (!IEM_IS_CANONICAL(uNewPC))
913 return iemRaiseNotCanonical(pVCpu);
914
915 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
916 if (rcStrict != VINF_SUCCESS)
917 return rcStrict;
918
919 pVCpu->cpum.GstCtx.rip = uNewPC;
920 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
921
922#ifndef IEM_WITH_CODE_TLB
923 /* Flush the prefetch buffer. */
924 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
925#endif
926
927 return VINF_SUCCESS;
928}
929
930
931/**
932 * Implements far jumps and calls thru task segments (TSS).
933 *
934 * @param uSel The selector.
935 * @param enmBranch The kind of branching we're performing.
936 * @param enmEffOpSize The effective operand size.
937 * @param pDesc The descriptor corresponding to @a uSel. The type is
938 * task gate.
939 */
940IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
941{
942#ifndef IEM_IMPLEMENTS_TASKSWITCH
943 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
944#else
945 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
946 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
947 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
948 RT_NOREF_PV(enmEffOpSize);
949 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
950
951 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
952 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
953 {
954 Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
955 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
956 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
957 }
958
959 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
960 * far calls (see iemCImpl_callf). Most likely in both cases it should be
961 * checked here, need testcases. */
962 if (!pDesc->Legacy.Gen.u1Present)
963 {
964 Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
965 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
966 }
967
968 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
969 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
970 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
971#endif
972}
973
974
975/**
976 * Implements far jumps and calls thru task gates.
977 *
978 * @param uSel The selector.
979 * @param enmBranch The kind of branching we're performing.
980 * @param enmEffOpSize The effective operand size.
981 * @param pDesc The descriptor corresponding to @a uSel. The type is
982 * task gate.
983 */
984IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
985{
986#ifndef IEM_IMPLEMENTS_TASKSWITCH
987 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
988#else
989 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
990 RT_NOREF_PV(enmEffOpSize);
991 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
992
993 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
994 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
995 {
996 Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
997 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
998 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
999 }
1000
1001 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1002 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1003 * checked here, need testcases. */
1004 if (!pDesc->Legacy.Gen.u1Present)
1005 {
1006 Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
1007 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1008 }
1009
1010 /*
1011 * Fetch the new TSS descriptor from the GDT.
1012 */
1013 RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
1014 if (uSelTss & X86_SEL_LDT)
1015 {
1016 Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
1017 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1018 }
1019
1020 IEMSELDESC TssDesc;
1021 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
1022 if (rcStrict != VINF_SUCCESS)
1023 return rcStrict;
1024
1025 if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
1026 {
1027 Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
1028 TssDesc.Legacy.Gate.u4Type));
1029 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1030 }
1031
1032 if (!TssDesc.Legacy.Gate.u1Present)
1033 {
1034 Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
1035 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
1036 }
1037
1038 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1039 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1040 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
1041#endif
1042}
1043
1044
1045/**
1046 * Implements far jumps and calls thru call gates.
1047 *
1048 * @param uSel The selector.
1049 * @param enmBranch The kind of branching we're performing.
1050 * @param enmEffOpSize The effective operand size.
1051 * @param pDesc The descriptor corresponding to @a uSel. The type is
1052 * call gate.
1053 */
1054IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1055{
1056#define IEM_IMPLEMENTS_CALLGATE
1057#ifndef IEM_IMPLEMENTS_CALLGATE
1058 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1059#else
1060 RT_NOREF_PV(enmEffOpSize);
1061 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1062
1063 /* NB: Far jumps can only do intra-privilege transfers. Far calls support
1064 * inter-privilege calls and are much more complex.
1065 *
1066 * NB: 64-bit call gate has the same type as a 32-bit call gate! If
1067 * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
1068 * must be 16-bit or 32-bit.
1069 */
1070 /** @todo: effective operand size is probably irrelevant here, only the
1071 * call gate bitness matters??
1072 */
1073 VBOXSTRICTRC rcStrict;
1074 RTPTRUNION uPtrRet;
1075 uint64_t uNewRsp;
1076 uint64_t uNewRip;
1077 uint64_t u64Base;
1078 uint32_t cbLimit;
1079 RTSEL uNewCS;
1080 IEMSELDESC DescCS;
1081
1082 AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
1083 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1084 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
1085 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
1086
1087 /* Determine the new instruction pointer from the gate descriptor. */
1088 uNewRip = pDesc->Legacy.Gate.u16OffsetLow
1089 | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
1090 | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
1091
1092 /* Perform DPL checks on the gate descriptor. */
1093 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1094 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1095 {
1096 Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1097 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1098 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1099 }
1100
1101 /** @todo does this catch NULL selectors, too? */
1102 if (!pDesc->Legacy.Gen.u1Present)
1103 {
1104 Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
1105 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1106 }
1107
1108 /*
1109 * Fetch the target CS descriptor from the GDT or LDT.
1110 */
1111 uNewCS = pDesc->Legacy.Gate.u16Sel;
1112 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
1113 if (rcStrict != VINF_SUCCESS)
1114 return rcStrict;
1115
1116 /* Target CS must be a code selector. */
1117 if ( !DescCS.Legacy.Gen.u1DescType
1118 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1119 {
1120 Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1121 uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
1122 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1123 }
1124
1125 /* Privilege checks on target CS. */
1126 if (enmBranch == IEMBRANCH_JUMP)
1127 {
1128 if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1129 {
1130 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1131 {
1132 Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1133 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1134 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1135 }
1136 }
1137 else
1138 {
1139 if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
1140 {
1141 Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1142 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1143 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1144 }
1145 }
1146 }
1147 else
1148 {
1149 Assert(enmBranch == IEMBRANCH_CALL);
1150 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1151 {
1152 Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1153 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1154 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
1155 }
1156 }
1157
1158 /* Additional long mode checks. */
1159 if (IEM_IS_LONG_MODE(pVCpu))
1160 {
1161 if (!DescCS.Legacy.Gen.u1Long)
1162 {
1163 Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
1164 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1165 }
1166
1167 /* L vs D. */
1168 if ( DescCS.Legacy.Gen.u1Long
1169 && DescCS.Legacy.Gen.u1DefBig)
1170 {
1171 Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
1172 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1173 }
1174 }
1175
1176 if (!DescCS.Legacy.Gate.u1Present)
1177 {
1178 Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
1179 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
1180 }
1181
1182 if (enmBranch == IEMBRANCH_JUMP)
1183 {
1184 /** @todo: This is very similar to regular far jumps; merge! */
1185 /* Jumps are fairly simple... */
1186
1187 /* Chop the high bits off if 16-bit gate (Intel says so). */
1188 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1189 uNewRip = (uint16_t)uNewRip;
1190
1191 /* Limit check for non-long segments. */
1192 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1193 if (DescCS.Legacy.Gen.u1Long)
1194 u64Base = 0;
1195 else
1196 {
1197 if (uNewRip > cbLimit)
1198 {
1199 Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
1200 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1201 }
1202 u64Base = X86DESC_BASE(&DescCS.Legacy);
1203 }
1204
1205 /* Canonical address check. */
1206 if (!IEM_IS_CANONICAL(uNewRip))
1207 {
1208 Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1209 return iemRaiseNotCanonical(pVCpu);
1210 }
1211
1212 /*
1213 * Ok, everything checked out fine. Now set the accessed bit before
1214 * committing the result into CS, CSHID and RIP.
1215 */
1216 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1217 {
1218 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1219 if (rcStrict != VINF_SUCCESS)
1220 return rcStrict;
1221 /** @todo check what VT-x and AMD-V does. */
1222 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1223 }
1224
1225 /* commit */
1226 pVCpu->cpum.GstCtx.rip = uNewRip;
1227 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1228 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1229 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1230 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1231 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1232 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1233 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1234 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1235 }
1236 else
1237 {
1238 Assert(enmBranch == IEMBRANCH_CALL);
1239 /* Calls are much more complicated. */
1240
1241 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
1242 {
1243 uint16_t offNewStack; /* Offset of new stack in TSS. */
1244 uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
1245 uint8_t uNewCSDpl;
1246 uint8_t cbWords;
1247 RTSEL uNewSS;
1248 RTSEL uOldSS;
1249 uint64_t uOldRsp;
1250 IEMSELDESC DescSS;
1251 RTPTRUNION uPtrTSS;
1252 RTGCPTR GCPtrTSS;
1253 RTPTRUNION uPtrParmWds;
1254 RTGCPTR GCPtrParmWds;
1255
1256 /* More privilege. This is the fun part. */
1257 Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
1258
1259 /*
1260 * Determine new SS:rSP from the TSS.
1261 */
1262 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
1263
1264 /* Figure out where the new stack pointer is stored in the TSS. */
1265 uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
1266 if (!IEM_IS_LONG_MODE(pVCpu))
1267 {
1268 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1269 {
1270 offNewStack = RT_UOFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
1271 cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
1272 }
1273 else
1274 {
1275 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1276 offNewStack = RT_UOFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
1277 cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
1278 }
1279 }
1280 else
1281 {
1282 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1283 offNewStack = RT_UOFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
1284 cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
1285 }
1286
1287 /* Check against TSS limit. */
1288 if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit)
1289 {
1290 Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit));
1291 return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel);
1292 }
1293
1294 GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack;
1295 rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
1296 if (rcStrict != VINF_SUCCESS)
1297 {
1298 Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1299 return rcStrict;
1300 }
1301
1302 if (!IEM_IS_LONG_MODE(pVCpu))
1303 {
1304 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1305 {
1306 uNewRsp = uPtrTSS.pu32[0];
1307 uNewSS = uPtrTSS.pu16[2];
1308 }
1309 else
1310 {
1311 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1312 uNewRsp = uPtrTSS.pu16[0];
1313 uNewSS = uPtrTSS.pu16[1];
1314 }
1315 }
1316 else
1317 {
1318 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1319 /* SS will be a NULL selector, but that's valid. */
1320 uNewRsp = uPtrTSS.pu64[0];
1321 uNewSS = uNewCSDpl;
1322 }
1323
1324 /* Done with the TSS now. */
1325 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
1326 if (rcStrict != VINF_SUCCESS)
1327 {
1328 Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1329 return rcStrict;
1330 }
1331
1332 /* Only used outside of long mode. */
1333 cbWords = pDesc->Legacy.Gate.u5ParmCount;
1334
1335 /* If EFER.LMA is 0, there's extra work to do. */
1336 if (!IEM_IS_LONG_MODE(pVCpu))
1337 {
1338 if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
1339 {
1340 Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
1341 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1342 }
1343
1344 /* Grab the new SS descriptor. */
1345 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1346 if (rcStrict != VINF_SUCCESS)
1347 return rcStrict;
1348
1349 /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
1350 if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
1351 || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
1352 {
1353 Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
1354 uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
1355 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1356 }
1357
1358 /* Ensure new SS is a writable data segment. */
1359 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
1360 {
1361 Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
1362 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1363 }
1364
1365 if (!DescSS.Legacy.Gen.u1Present)
1366 {
1367 Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
1368 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
1369 }
1370 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1371 cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
1372 else
1373 cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
1374 }
1375 else
1376 {
1377 /* Just grab the new (NULL) SS descriptor. */
1378 /** @todo testcase: Check whether the zero GDT entry is actually loaded here
1379 * like we do... */
1380 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1381 if (rcStrict != VINF_SUCCESS)
1382 return rcStrict;
1383
1384 cbNewStack = sizeof(uint64_t) * 4;
1385 }
1386
1387 /** @todo: According to Intel, new stack is checked for enough space first,
1388 * then switched. According to AMD, the stack is switched first and
1389 * then pushes might fault!
1390 * NB: OS/2 Warp 3/4 actively relies on the fact that possible
1391 * incoming stack #PF happens before actual stack switch. AMD is
1392 * either lying or implicitly assumes that new state is committed
1393 * only if and when an instruction doesn't fault.
1394 */
1395
1396 /** @todo: According to AMD, CS is loaded first, then SS.
1397 * According to Intel, it's the other way around!?
1398 */
1399
1400 /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
1401
1402 /* Set the accessed bit before committing new SS. */
1403 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1404 {
1405 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
1406 if (rcStrict != VINF_SUCCESS)
1407 return rcStrict;
1408 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1409 }
1410
1411 /* Remember the old SS:rSP and their linear address. */
1412 uOldSS = pVCpu->cpum.GstCtx.ss.Sel;
1413 uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp;
1414
1415 GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp;
1416
1417 /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
1418 or #PF, the former is not implemented in this workaround. */
1419 /** @todo Proper fix callgate target stack exceptions. */
1420 /** @todo testcase: Cover callgates with partially or fully inaccessible
1421 * target stacks. */
1422 void *pvNewFrame;
1423 RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
1424 rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW);
1425 if (rcStrict != VINF_SUCCESS)
1426 {
1427 Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
1428 return rcStrict;
1429 }
1430 rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
1431 if (rcStrict != VINF_SUCCESS)
1432 {
1433 Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1434 return rcStrict;
1435 }
1436
1437 /* Commit new SS:rSP. */
1438 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
1439 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
1440 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
1441 pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
1442 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
1443 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1444 pVCpu->cpum.GstCtx.rsp = uNewRsp;
1445 pVCpu->iem.s.uCpl = uNewCSDpl;
1446 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
1447 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
1448
1449 /* At this point the stack access must not fail because new state was already committed. */
1450 /** @todo this can still fail due to SS.LIMIT not check. */
1451 rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
1452 &uPtrRet.pv, &uNewRsp);
1453 AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
1454 VERR_INTERNAL_ERROR_5);
1455
1456 if (!IEM_IS_LONG_MODE(pVCpu))
1457 {
1458 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1459 {
1460 /* Push the old CS:rIP. */
1461 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1462 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1463
1464 if (cbWords)
1465 {
1466 /* Map the relevant chunk of the old stack. */
1467 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1468 if (rcStrict != VINF_SUCCESS)
1469 {
1470 Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1471 return rcStrict;
1472 }
1473
1474 /* Copy the parameter (d)words. */
1475 for (int i = 0; i < cbWords; ++i)
1476 uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
1477
1478 /* Unmap the old stack. */
1479 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1480 if (rcStrict != VINF_SUCCESS)
1481 {
1482 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1483 return rcStrict;
1484 }
1485 }
1486
1487 /* Push the old SS:rSP. */
1488 uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
1489 uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
1490 }
1491 else
1492 {
1493 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1494
1495 /* Push the old CS:rIP. */
1496 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1497 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1498
1499 if (cbWords)
1500 {
1501 /* Map the relevant chunk of the old stack. */
1502 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1503 if (rcStrict != VINF_SUCCESS)
1504 {
1505 Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1506 return rcStrict;
1507 }
1508
1509 /* Copy the parameter words. */
1510 for (int i = 0; i < cbWords; ++i)
1511 uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
1512
1513 /* Unmap the old stack. */
1514 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1515 if (rcStrict != VINF_SUCCESS)
1516 {
1517 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1518 return rcStrict;
1519 }
1520 }
1521
1522 /* Push the old SS:rSP. */
1523 uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
1524 uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
1525 }
1526 }
1527 else
1528 {
1529 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1530
1531 /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
1532 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1533 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1534 uPtrRet.pu64[2] = uOldRsp;
1535 uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
1536 }
1537
1538 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1539 if (rcStrict != VINF_SUCCESS)
1540 {
1541 Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1542 return rcStrict;
1543 }
1544
1545 /* Chop the high bits off if 16-bit gate (Intel says so). */
1546 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1547 uNewRip = (uint16_t)uNewRip;
1548
1549 /* Limit / canonical check. */
1550 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1551 if (!IEM_IS_LONG_MODE(pVCpu))
1552 {
1553 if (uNewRip > cbLimit)
1554 {
1555 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1556 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1557 }
1558 u64Base = X86DESC_BASE(&DescCS.Legacy);
1559 }
1560 else
1561 {
1562 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1563 if (!IEM_IS_CANONICAL(uNewRip))
1564 {
1565 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1566 return iemRaiseNotCanonical(pVCpu);
1567 }
1568 u64Base = 0;
1569 }
1570
1571 /*
1572 * Now set the accessed bit before
1573 * writing the return address to the stack and committing the result into
1574 * CS, CSHID and RIP.
1575 */
1576 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1577 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1578 {
1579 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1580 if (rcStrict != VINF_SUCCESS)
1581 return rcStrict;
1582 /** @todo check what VT-x and AMD-V does. */
1583 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1584 }
1585
1586 /* Commit new CS:rIP. */
1587 pVCpu->cpum.GstCtx.rip = uNewRip;
1588 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1589 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1590 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1591 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1592 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1593 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1594 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1595 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1596 }
1597 else
1598 {
1599 /* Same privilege. */
1600 /** @todo: This is very similar to regular far calls; merge! */
1601
1602 /* Check stack first - may #SS(0). */
1603 /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
1604 * 16-bit code cause a two or four byte CS to be pushed? */
1605 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
1606 IEM_IS_LONG_MODE(pVCpu) ? 8+8
1607 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
1608 &uPtrRet.pv, &uNewRsp);
1609 if (rcStrict != VINF_SUCCESS)
1610 return rcStrict;
1611
1612 /* Chop the high bits off if 16-bit gate (Intel says so). */
1613 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1614 uNewRip = (uint16_t)uNewRip;
1615
1616 /* Limit / canonical check. */
1617 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1618 if (!IEM_IS_LONG_MODE(pVCpu))
1619 {
1620 if (uNewRip > cbLimit)
1621 {
1622 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1623 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1624 }
1625 u64Base = X86DESC_BASE(&DescCS.Legacy);
1626 }
1627 else
1628 {
1629 if (!IEM_IS_CANONICAL(uNewRip))
1630 {
1631 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1632 return iemRaiseNotCanonical(pVCpu);
1633 }
1634 u64Base = 0;
1635 }
1636
1637 /*
1638 * Now set the accessed bit before
1639 * writing the return address to the stack and committing the result into
1640 * CS, CSHID and RIP.
1641 */
1642 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1643 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1644 {
1645 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1646 if (rcStrict != VINF_SUCCESS)
1647 return rcStrict;
1648 /** @todo check what VT-x and AMD-V does. */
1649 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1650 }
1651
1652 /* stack */
1653 if (!IEM_IS_LONG_MODE(pVCpu))
1654 {
1655 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1656 {
1657 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1658 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1659 }
1660 else
1661 {
1662 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1663 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1664 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1665 }
1666 }
1667 else
1668 {
1669 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1670 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1671 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1672 }
1673
1674 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1675 if (rcStrict != VINF_SUCCESS)
1676 return rcStrict;
1677
1678 /* commit */
1679 pVCpu->cpum.GstCtx.rip = uNewRip;
1680 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1681 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1682 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1683 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1684 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1685 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1686 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1687 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1688 }
1689 }
1690 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1691
1692 /* Flush the prefetch buffer. */
1693# ifdef IEM_WITH_CODE_TLB
1694 pVCpu->iem.s.pbInstrBuf = NULL;
1695# else
1696 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1697# endif
1698 return VINF_SUCCESS;
1699#endif
1700}
1701
1702
1703/**
1704 * Implements far jumps and calls thru system selectors.
1705 *
1706 * @param uSel The selector.
1707 * @param enmBranch The kind of branching we're performing.
1708 * @param enmEffOpSize The effective operand size.
1709 * @param pDesc The descriptor corresponding to @a uSel.
1710 */
1711IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1712{
1713 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1714 Assert((uSel & X86_SEL_MASK_OFF_RPL));
1715 IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1716
1717 if (IEM_IS_LONG_MODE(pVCpu))
1718 switch (pDesc->Legacy.Gen.u4Type)
1719 {
1720 case AMD64_SEL_TYPE_SYS_CALL_GATE:
1721 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1722
1723 default:
1724 case AMD64_SEL_TYPE_SYS_LDT:
1725 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
1726 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
1727 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
1728 case AMD64_SEL_TYPE_SYS_INT_GATE:
1729 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1730 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1731 }
1732
1733 switch (pDesc->Legacy.Gen.u4Type)
1734 {
1735 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1736 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1737 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1738
1739 case X86_SEL_TYPE_SYS_TASK_GATE:
1740 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
1741
1742 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1743 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1744 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
1745
1746 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1747 Log(("branch %04x -> busy 286 TSS\n", uSel));
1748 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1749
1750 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1751 Log(("branch %04x -> busy 386 TSS\n", uSel));
1752 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1753
1754 default:
1755 case X86_SEL_TYPE_SYS_LDT:
1756 case X86_SEL_TYPE_SYS_286_INT_GATE:
1757 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1758 case X86_SEL_TYPE_SYS_386_INT_GATE:
1759 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1760 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1761 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1762 }
1763}
1764
1765
1766/**
1767 * Implements far jumps.
1768 *
1769 * @param uSel The selector.
1770 * @param offSeg The segment offset.
1771 * @param enmEffOpSize The effective operand size.
1772 */
1773IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1774{
1775 NOREF(cbInstr);
1776 Assert(offSeg <= UINT32_MAX);
1777
1778 /*
1779 * Real mode and V8086 mode are easy. The only snag seems to be that
1780 * CS.limit doesn't change and the limit check is done against the current
1781 * limit.
1782 */
1783 /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August
1784 * 1998) that up to and including the Intel 486, far control
1785 * transfers in real mode set default CS attributes (0x93) and also
1786 * set a 64K segment limit. Starting with the Pentium, the
1787 * attributes and limit are left alone but the access rights are
1788 * ignored. We only implement the Pentium+ behavior.
1789 * */
1790 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1791 {
1792 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1793 if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit)
1794 {
1795 Log(("iemCImpl_FarJmp: 16-bit limit\n"));
1796 return iemRaiseGeneralProtectionFault0(pVCpu);
1797 }
1798
1799 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1800 pVCpu->cpum.GstCtx.rip = offSeg;
1801 else
1802 pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX;
1803 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1804 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1805 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1806 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1807 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1808 return VINF_SUCCESS;
1809 }
1810
1811 /*
1812 * Protected mode. Need to parse the specified descriptor...
1813 */
1814 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1815 {
1816 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1817 return iemRaiseGeneralProtectionFault0(pVCpu);
1818 }
1819
1820 /* Fetch the descriptor. */
1821 IEMSELDESC Desc;
1822 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
1823 if (rcStrict != VINF_SUCCESS)
1824 return rcStrict;
1825
1826 /* Is it there? */
1827 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1828 {
1829 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1830 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1831 }
1832
1833 /*
1834 * Deal with it according to its type. We do the standard code selectors
1835 * here and dispatch the system selectors to worker functions.
1836 */
1837 if (!Desc.Legacy.Gen.u1DescType)
1838 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1839
1840 /* Only code segments. */
1841 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1842 {
1843 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1844 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1845 }
1846
1847 /* L vs D. */
1848 if ( Desc.Legacy.Gen.u1Long
1849 && Desc.Legacy.Gen.u1DefBig
1850 && IEM_IS_LONG_MODE(pVCpu))
1851 {
1852 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1853 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1854 }
1855
1856 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1857 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1858 {
1859 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
1860 {
1861 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1862 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1863 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1864 }
1865 }
1866 else
1867 {
1868 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
1869 {
1870 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1871 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1872 }
1873 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
1874 {
1875 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
1876 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1877 }
1878 }
1879
1880 /* Chop the high bits if 16-bit (Intel says so). */
1881 if (enmEffOpSize == IEMMODE_16BIT)
1882 offSeg &= UINT16_MAX;
1883
1884 /* Limit check. (Should alternatively check for non-canonical addresses
1885 here, but that is ruled out by offSeg being 32-bit, right?) */
1886 uint64_t u64Base;
1887 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1888 if (Desc.Legacy.Gen.u1Long)
1889 u64Base = 0;
1890 else
1891 {
1892 if (offSeg > cbLimit)
1893 {
1894 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1895 /** @todo: Intel says this is #GP(0)! */
1896 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1897 }
1898 u64Base = X86DESC_BASE(&Desc.Legacy);
1899 }
1900
1901 /*
1902 * Ok, everything checked out fine. Now set the accessed bit before
1903 * committing the result into CS, CSHID and RIP.
1904 */
1905 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1906 {
1907 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
1908 if (rcStrict != VINF_SUCCESS)
1909 return rcStrict;
1910 /** @todo check what VT-x and AMD-V does. */
1911 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1912 }
1913
1914 /* commit */
1915 pVCpu->cpum.GstCtx.rip = offSeg;
1916 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1917 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1918 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1919 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1920 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1921 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1922 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1923 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1924 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1925 /** @todo check if the hidden bits are loaded correctly for 64-bit
1926 * mode. */
1927
1928 /* Flush the prefetch buffer. */
1929#ifdef IEM_WITH_CODE_TLB
1930 pVCpu->iem.s.pbInstrBuf = NULL;
1931#else
1932 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1933#endif
1934
1935 return VINF_SUCCESS;
1936}
1937
1938
1939/**
1940 * Implements far calls.
1941 *
1942 * This very similar to iemCImpl_FarJmp.
1943 *
1944 * @param uSel The selector.
1945 * @param offSeg The segment offset.
1946 * @param enmEffOpSize The operand size (in case we need it).
1947 */
1948IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1949{
1950 VBOXSTRICTRC rcStrict;
1951 uint64_t uNewRsp;
1952 RTPTRUNION uPtrRet;
1953
1954 /*
1955 * Real mode and V8086 mode are easy. The only snag seems to be that
1956 * CS.limit doesn't change and the limit check is done against the current
1957 * limit.
1958 */
1959 /** @todo See comment for similar code in iemCImpl_FarJmp */
1960 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1961 {
1962 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1963
1964 /* Check stack first - may #SS(0). */
1965 rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
1966 &uPtrRet.pv, &uNewRsp);
1967 if (rcStrict != VINF_SUCCESS)
1968 return rcStrict;
1969
1970 /* Check the target address range. */
1971 if (offSeg > UINT32_MAX)
1972 return iemRaiseGeneralProtectionFault0(pVCpu);
1973
1974 /* Everything is fine, push the return address. */
1975 if (enmEffOpSize == IEMMODE_16BIT)
1976 {
1977 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1978 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1979 }
1980 else
1981 {
1982 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1983 uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel;
1984 }
1985 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1986 if (rcStrict != VINF_SUCCESS)
1987 return rcStrict;
1988
1989 /* Branch. */
1990 pVCpu->cpum.GstCtx.rip = offSeg;
1991 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1992 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1993 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1994 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1995 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1996 return VINF_SUCCESS;
1997 }
1998
1999 /*
2000 * Protected mode. Need to parse the specified descriptor...
2001 */
2002 if (!(uSel & X86_SEL_MASK_OFF_RPL))
2003 {
2004 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
2005 return iemRaiseGeneralProtectionFault0(pVCpu);
2006 }
2007
2008 /* Fetch the descriptor. */
2009 IEMSELDESC Desc;
2010 rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
2011 if (rcStrict != VINF_SUCCESS)
2012 return rcStrict;
2013
2014 /*
2015 * Deal with it according to its type. We do the standard code selectors
2016 * here and dispatch the system selectors to worker functions.
2017 */
2018 if (!Desc.Legacy.Gen.u1DescType)
2019 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
2020
2021 /* Only code segments. */
2022 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2023 {
2024 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
2025 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2026 }
2027
2028 /* L vs D. */
2029 if ( Desc.Legacy.Gen.u1Long
2030 && Desc.Legacy.Gen.u1DefBig
2031 && IEM_IS_LONG_MODE(pVCpu))
2032 {
2033 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
2034 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2035 }
2036
2037 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
2038 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2039 {
2040 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
2041 {
2042 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
2043 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2044 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2045 }
2046 }
2047 else
2048 {
2049 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
2050 {
2051 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2052 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2053 }
2054 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
2055 {
2056 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
2057 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2058 }
2059 }
2060
2061 /* Is it there? */
2062 if (!Desc.Legacy.Gen.u1Present)
2063 {
2064 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
2065 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
2066 }
2067
2068 /* Check stack first - may #SS(0). */
2069 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
2070 * 16-bit code cause a two or four byte CS to be pushed? */
2071 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
2072 enmEffOpSize == IEMMODE_64BIT ? 8+8
2073 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2074 &uPtrRet.pv, &uNewRsp);
2075 if (rcStrict != VINF_SUCCESS)
2076 return rcStrict;
2077
2078 /* Chop the high bits if 16-bit (Intel says so). */
2079 if (enmEffOpSize == IEMMODE_16BIT)
2080 offSeg &= UINT16_MAX;
2081
2082 /* Limit / canonical check. */
2083 uint64_t u64Base;
2084 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
2085 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2086 {
2087 if (!IEM_IS_CANONICAL(offSeg))
2088 {
2089 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
2090 return iemRaiseNotCanonical(pVCpu);
2091 }
2092 u64Base = 0;
2093 }
2094 else
2095 {
2096 if (offSeg > cbLimit)
2097 {
2098 Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
2099 /** @todo: Intel says this is #GP(0)! */
2100 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2101 }
2102 u64Base = X86DESC_BASE(&Desc.Legacy);
2103 }
2104
2105 /*
2106 * Now set the accessed bit before
2107 * writing the return address to the stack and committing the result into
2108 * CS, CSHID and RIP.
2109 */
2110 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2111 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2112 {
2113 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
2114 if (rcStrict != VINF_SUCCESS)
2115 return rcStrict;
2116 /** @todo check what VT-x and AMD-V does. */
2117 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2118 }
2119
2120 /* stack */
2121 if (enmEffOpSize == IEMMODE_16BIT)
2122 {
2123 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2124 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2125 }
2126 else if (enmEffOpSize == IEMMODE_32BIT)
2127 {
2128 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2129 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
2130 }
2131 else
2132 {
2133 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
2134 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
2135 }
2136 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2137 if (rcStrict != VINF_SUCCESS)
2138 return rcStrict;
2139
2140 /* commit */
2141 pVCpu->cpum.GstCtx.rip = offSeg;
2142 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
2143 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
2144 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
2145 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2146 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
2147 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
2148 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2149 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2150 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2151 /** @todo check if the hidden bits are loaded correctly for 64-bit
2152 * mode. */
2153
2154 /* Flush the prefetch buffer. */
2155#ifdef IEM_WITH_CODE_TLB
2156 pVCpu->iem.s.pbInstrBuf = NULL;
2157#else
2158 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2159#endif
2160 return VINF_SUCCESS;
2161}
2162
2163
2164/**
2165 * Implements retf.
2166 *
2167 * @param enmEffOpSize The effective operand size.
2168 * @param cbPop The amount of arguments to pop from the stack
2169 * (bytes).
2170 */
2171IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2172{
2173 VBOXSTRICTRC rcStrict;
2174 RTCPTRUNION uPtrFrame;
2175 uint64_t uNewRsp;
2176 uint64_t uNewRip;
2177 uint16_t uNewCs;
2178 NOREF(cbInstr);
2179
2180 /*
2181 * Read the stack values first.
2182 */
2183 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
2184 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
2185 rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2186 if (rcStrict != VINF_SUCCESS)
2187 return rcStrict;
2188 if (enmEffOpSize == IEMMODE_16BIT)
2189 {
2190 uNewRip = uPtrFrame.pu16[0];
2191 uNewCs = uPtrFrame.pu16[1];
2192 }
2193 else if (enmEffOpSize == IEMMODE_32BIT)
2194 {
2195 uNewRip = uPtrFrame.pu32[0];
2196 uNewCs = uPtrFrame.pu16[2];
2197 }
2198 else
2199 {
2200 uNewRip = uPtrFrame.pu64[0];
2201 uNewCs = uPtrFrame.pu16[4];
2202 }
2203 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2204 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2205 { /* extremely likely */ }
2206 else
2207 return rcStrict;
2208
2209 /*
2210 * Real mode and V8086 mode are easy.
2211 */
2212 /** @todo See comment for similar code in iemCImpl_FarJmp */
2213 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2214 {
2215 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2216 /** @todo check how this is supposed to work if sp=0xfffe. */
2217
2218 /* Check the limit of the new EIP. */
2219 /** @todo Intel pseudo code only does the limit check for 16-bit
2220 * operands, AMD does not make any distinction. What is right? */
2221 if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit)
2222 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2223
2224 /* commit the operation. */
2225 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2226 pVCpu->cpum.GstCtx.rip = uNewRip;
2227 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2228 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2229 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2230 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2231 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2232 if (cbPop)
2233 iemRegAddToRsp(pVCpu, cbPop);
2234 return VINF_SUCCESS;
2235 }
2236
2237 /*
2238 * Protected mode is complicated, of course.
2239 */
2240 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2241 {
2242 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
2243 return iemRaiseGeneralProtectionFault0(pVCpu);
2244 }
2245
2246 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
2247
2248 /* Fetch the descriptor. */
2249 IEMSELDESC DescCs;
2250 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
2251 if (rcStrict != VINF_SUCCESS)
2252 return rcStrict;
2253
2254 /* Can only return to a code selector. */
2255 if ( !DescCs.Legacy.Gen.u1DescType
2256 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
2257 {
2258 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
2259 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
2260 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2261 }
2262
2263 /* L vs D. */
2264 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
2265 && DescCs.Legacy.Gen.u1DefBig
2266 && IEM_IS_LONG_MODE(pVCpu))
2267 {
2268 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
2269 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2270 }
2271
2272 /* DPL/RPL/CPL checks. */
2273 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
2274 {
2275 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
2276 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2277 }
2278
2279 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2280 {
2281 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
2282 {
2283 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
2284 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2285 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2286 }
2287 }
2288 else
2289 {
2290 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
2291 {
2292 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
2293 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2294 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2295 }
2296 }
2297
2298 /* Is it there? */
2299 if (!DescCs.Legacy.Gen.u1Present)
2300 {
2301 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
2302 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2303 }
2304
2305 /*
2306 * Return to outer privilege? (We'll typically have entered via a call gate.)
2307 */
2308 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
2309 {
2310 /* Read the outer stack pointer stored *after* the parameters. */
2311 rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2312 if (rcStrict != VINF_SUCCESS)
2313 return rcStrict;
2314
2315 uPtrFrame.pu8 += cbPop; /* Skip the parameters. */
2316
2317 uint16_t uNewOuterSs;
2318 uint64_t uNewOuterRsp;
2319 if (enmEffOpSize == IEMMODE_16BIT)
2320 {
2321 uNewOuterRsp = uPtrFrame.pu16[0];
2322 uNewOuterSs = uPtrFrame.pu16[1];
2323 }
2324 else if (enmEffOpSize == IEMMODE_32BIT)
2325 {
2326 uNewOuterRsp = uPtrFrame.pu32[0];
2327 uNewOuterSs = uPtrFrame.pu16[2];
2328 }
2329 else
2330 {
2331 uNewOuterRsp = uPtrFrame.pu64[0];
2332 uNewOuterSs = uPtrFrame.pu16[4];
2333 }
2334 uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */
2335 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2336 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2337 { /* extremely likely */ }
2338 else
2339 return rcStrict;
2340
2341 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
2342 and read the selector. */
2343 IEMSELDESC DescSs;
2344 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
2345 {
2346 if ( !DescCs.Legacy.Gen.u1Long
2347 || (uNewOuterSs & X86_SEL_RPL) == 3)
2348 {
2349 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
2350 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2351 return iemRaiseGeneralProtectionFault0(pVCpu);
2352 }
2353 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
2354 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
2355 }
2356 else
2357 {
2358 /* Fetch the descriptor for the new stack segment. */
2359 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
2360 if (rcStrict != VINF_SUCCESS)
2361 return rcStrict;
2362 }
2363
2364 /* Check that RPL of stack and code selectors match. */
2365 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
2366 {
2367 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2368 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2369 }
2370
2371 /* Must be a writable data segment. */
2372 if ( !DescSs.Legacy.Gen.u1DescType
2373 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
2374 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
2375 {
2376 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
2377 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2378 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2379 }
2380
2381 /* L vs D. (Not mentioned by intel.) */
2382 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
2383 && DescSs.Legacy.Gen.u1DefBig
2384 && IEM_IS_LONG_MODE(pVCpu))
2385 {
2386 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
2387 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2388 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2389 }
2390
2391 /* DPL/RPL/CPL checks. */
2392 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2393 {
2394 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
2395 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
2396 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2397 }
2398
2399 /* Is it there? */
2400 if (!DescSs.Legacy.Gen.u1Present)
2401 {
2402 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2403 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2404 }
2405
2406 /* Calc SS limit.*/
2407 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
2408
2409 /* Is RIP canonical or within CS.limit? */
2410 uint64_t u64Base;
2411 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2412
2413 /** @todo Testcase: Is this correct? */
2414 if ( DescCs.Legacy.Gen.u1Long
2415 && IEM_IS_LONG_MODE(pVCpu) )
2416 {
2417 if (!IEM_IS_CANONICAL(uNewRip))
2418 {
2419 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2420 return iemRaiseNotCanonical(pVCpu);
2421 }
2422 u64Base = 0;
2423 }
2424 else
2425 {
2426 if (uNewRip > cbLimitCs)
2427 {
2428 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
2429 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
2430 /** @todo: Intel says this is #GP(0)! */
2431 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2432 }
2433 u64Base = X86DESC_BASE(&DescCs.Legacy);
2434 }
2435
2436 /*
2437 * Now set the accessed bit before
2438 * writing the return address to the stack and committing the result into
2439 * CS, CSHID and RIP.
2440 */
2441 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
2442 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2443 {
2444 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2445 if (rcStrict != VINF_SUCCESS)
2446 return rcStrict;
2447 /** @todo check what VT-x and AMD-V does. */
2448 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2449 }
2450 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
2451 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2452 {
2453 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
2454 if (rcStrict != VINF_SUCCESS)
2455 return rcStrict;
2456 /** @todo check what VT-x and AMD-V does. */
2457 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2458 }
2459
2460 /* commit */
2461 if (enmEffOpSize == IEMMODE_16BIT)
2462 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2463 else
2464 pVCpu->cpum.GstCtx.rip = uNewRip;
2465 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2466 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2467 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2468 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2469 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2470 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2471 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2472 pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs;
2473 pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs;
2474 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
2475 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
2476 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
2477 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2478 pVCpu->cpum.GstCtx.ss.u64Base = 0;
2479 else
2480 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
2481 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2482 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewOuterRsp;
2483 else
2484 pVCpu->cpum.GstCtx.rsp = uNewOuterRsp;
2485
2486 pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
2487 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
2488 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
2489 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
2490 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
2491
2492 /** @todo check if the hidden bits are loaded correctly for 64-bit
2493 * mode. */
2494
2495 if (cbPop)
2496 iemRegAddToRsp(pVCpu, cbPop);
2497 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2498
2499 /* Done! */
2500 }
2501 /*
2502 * Return to the same privilege level
2503 */
2504 else
2505 {
2506 /* Limit / canonical check. */
2507 uint64_t u64Base;
2508 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2509
2510 /** @todo Testcase: Is this correct? */
2511 if ( DescCs.Legacy.Gen.u1Long
2512 && IEM_IS_LONG_MODE(pVCpu) )
2513 {
2514 if (!IEM_IS_CANONICAL(uNewRip))
2515 {
2516 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
2517 return iemRaiseNotCanonical(pVCpu);
2518 }
2519 u64Base = 0;
2520 }
2521 else
2522 {
2523 if (uNewRip > cbLimitCs)
2524 {
2525 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
2526 /** @todo: Intel says this is #GP(0)! */
2527 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2528 }
2529 u64Base = X86DESC_BASE(&DescCs.Legacy);
2530 }
2531
2532 /*
2533 * Now set the accessed bit before
2534 * writing the return address to the stack and committing the result into
2535 * CS, CSHID and RIP.
2536 */
2537 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2538 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2539 {
2540 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2541 if (rcStrict != VINF_SUCCESS)
2542 return rcStrict;
2543 /** @todo check what VT-x and AMD-V does. */
2544 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2545 }
2546
2547 /* commit */
2548 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2549 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
2550 else
2551 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2552 if (enmEffOpSize == IEMMODE_16BIT)
2553 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2554 else
2555 pVCpu->cpum.GstCtx.rip = uNewRip;
2556 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2557 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2558 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2559 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2560 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2561 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2562 /** @todo check if the hidden bits are loaded correctly for 64-bit
2563 * mode. */
2564 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2565 if (cbPop)
2566 iemRegAddToRsp(pVCpu, cbPop);
2567 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2568 }
2569
2570 /* Flush the prefetch buffer. */
2571#ifdef IEM_WITH_CODE_TLB
2572 pVCpu->iem.s.pbInstrBuf = NULL;
2573#else
2574 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2575#endif
2576 return VINF_SUCCESS;
2577}
2578
2579
2580/**
2581 * Implements retn.
2582 *
2583 * We're doing this in C because of the \#GP that might be raised if the popped
2584 * program counter is out of bounds.
2585 *
2586 * @param enmEffOpSize The effective operand size.
2587 * @param cbPop The amount of arguments to pop from the stack
2588 * (bytes).
2589 */
2590IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2591{
2592 NOREF(cbInstr);
2593
2594 /* Fetch the RSP from the stack. */
2595 VBOXSTRICTRC rcStrict;
2596 RTUINT64U NewRip;
2597 RTUINT64U NewRsp;
2598 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2599
2600 switch (enmEffOpSize)
2601 {
2602 case IEMMODE_16BIT:
2603 NewRip.u = 0;
2604 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
2605 break;
2606 case IEMMODE_32BIT:
2607 NewRip.u = 0;
2608 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
2609 break;
2610 case IEMMODE_64BIT:
2611 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
2612 break;
2613 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2614 }
2615 if (rcStrict != VINF_SUCCESS)
2616 return rcStrict;
2617
2618 /* Check the new RSP before loading it. */
2619 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
2620 * of it. The canonical test is performed here and for call. */
2621 if (enmEffOpSize != IEMMODE_64BIT)
2622 {
2623 if (NewRip.DWords.dw0 > pVCpu->cpum.GstCtx.cs.u32Limit)
2624 {
2625 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit));
2626 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2627 }
2628 }
2629 else
2630 {
2631 if (!IEM_IS_CANONICAL(NewRip.u))
2632 {
2633 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
2634 return iemRaiseNotCanonical(pVCpu);
2635 }
2636 }
2637
2638 /* Apply cbPop */
2639 if (cbPop)
2640 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2641
2642 /* Commit it. */
2643 pVCpu->cpum.GstCtx.rip = NewRip.u;
2644 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2645 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2646
2647 /* Flush the prefetch buffer. */
2648#ifndef IEM_WITH_CODE_TLB
2649 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2650#endif
2651
2652 return VINF_SUCCESS;
2653}
2654
2655
2656/**
2657 * Implements enter.
2658 *
2659 * We're doing this in C because the instruction is insane, even for the
2660 * u8NestingLevel=0 case dealing with the stack is tedious.
2661 *
2662 * @param enmEffOpSize The effective operand size.
2663 */
2664IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
2665{
2666 /* Push RBP, saving the old value in TmpRbp. */
2667 RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2668 RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp;
2669 RTUINT64U NewRbp;
2670 VBOXSTRICTRC rcStrict;
2671 if (enmEffOpSize == IEMMODE_64BIT)
2672 {
2673 rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
2674 NewRbp = NewRsp;
2675 }
2676 else if (enmEffOpSize == IEMMODE_32BIT)
2677 {
2678 rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
2679 NewRbp = NewRsp;
2680 }
2681 else
2682 {
2683 rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
2684 NewRbp = TmpRbp;
2685 NewRbp.Words.w0 = NewRsp.Words.w0;
2686 }
2687 if (rcStrict != VINF_SUCCESS)
2688 return rcStrict;
2689
2690 /* Copy the parameters (aka nesting levels by Intel). */
2691 cParameters &= 0x1f;
2692 if (cParameters > 0)
2693 {
2694 switch (enmEffOpSize)
2695 {
2696 case IEMMODE_16BIT:
2697 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2698 TmpRbp.DWords.dw0 -= 2;
2699 else
2700 TmpRbp.Words.w0 -= 2;
2701 do
2702 {
2703 uint16_t u16Tmp;
2704 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
2705 if (rcStrict != VINF_SUCCESS)
2706 break;
2707 rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
2708 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2709 break;
2710
2711 case IEMMODE_32BIT:
2712 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2713 TmpRbp.DWords.dw0 -= 4;
2714 else
2715 TmpRbp.Words.w0 -= 4;
2716 do
2717 {
2718 uint32_t u32Tmp;
2719 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
2720 if (rcStrict != VINF_SUCCESS)
2721 break;
2722 rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
2723 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2724 break;
2725
2726 case IEMMODE_64BIT:
2727 TmpRbp.u -= 8;
2728 do
2729 {
2730 uint64_t u64Tmp;
2731 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
2732 if (rcStrict != VINF_SUCCESS)
2733 break;
2734 rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
2735 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2736 break;
2737
2738 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2739 }
2740 if (rcStrict != VINF_SUCCESS)
2741 return VINF_SUCCESS;
2742
2743 /* Push the new RBP */
2744 if (enmEffOpSize == IEMMODE_64BIT)
2745 rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
2746 else if (enmEffOpSize == IEMMODE_32BIT)
2747 rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
2748 else
2749 rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
2750 if (rcStrict != VINF_SUCCESS)
2751 return rcStrict;
2752
2753 }
2754
2755 /* Recalc RSP. */
2756 iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame);
2757
2758 /** @todo Should probe write access at the new RSP according to AMD. */
2759
2760 /* Commit it. */
2761 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2762 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2763 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2764
2765 return VINF_SUCCESS;
2766}
2767
2768
2769
2770/**
2771 * Implements leave.
2772 *
2773 * We're doing this in C because messing with the stack registers is annoying
2774 * since they depends on SS attributes.
2775 *
2776 * @param enmEffOpSize The effective operand size.
2777 */
2778IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
2779{
2780 /* Calculate the intermediate RSP from RBP and the stack attributes. */
2781 RTUINT64U NewRsp;
2782 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2783 NewRsp.u = pVCpu->cpum.GstCtx.rbp;
2784 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2785 NewRsp.u = pVCpu->cpum.GstCtx.ebp;
2786 else
2787 {
2788 /** @todo Check that LEAVE actually preserve the high EBP bits. */
2789 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2790 NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp;
2791 }
2792
2793 /* Pop RBP according to the operand size. */
2794 VBOXSTRICTRC rcStrict;
2795 RTUINT64U NewRbp;
2796 switch (enmEffOpSize)
2797 {
2798 case IEMMODE_16BIT:
2799 NewRbp.u = pVCpu->cpum.GstCtx.rbp;
2800 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
2801 break;
2802 case IEMMODE_32BIT:
2803 NewRbp.u = 0;
2804 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
2805 break;
2806 case IEMMODE_64BIT:
2807 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
2808 break;
2809 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2810 }
2811 if (rcStrict != VINF_SUCCESS)
2812 return rcStrict;
2813
2814
2815 /* Commit it. */
2816 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2817 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2818 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2819
2820 return VINF_SUCCESS;
2821}
2822
2823
2824/**
2825 * Implements int3 and int XX.
2826 *
2827 * @param u8Int The interrupt vector number.
2828 * @param enmInt The int instruction type.
2829 */
2830IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
2831{
2832 Assert(pVCpu->iem.s.cXcptRecursions == 0);
2833 return iemRaiseXcptOrInt(pVCpu,
2834 cbInstr,
2835 u8Int,
2836 IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
2837 0,
2838 0);
2839}
2840
2841
2842/**
2843 * Implements iret for real mode and V8086 mode.
2844 *
2845 * @param enmEffOpSize The effective operand size.
2846 */
2847IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2848{
2849 X86EFLAGS Efl;
2850 Efl.u = IEMMISC_GET_EFL(pVCpu);
2851 NOREF(cbInstr);
2852
2853 /*
2854 * iret throws an exception if VME isn't enabled.
2855 */
2856 if ( Efl.Bits.u1VM
2857 && Efl.Bits.u2IOPL != 3
2858 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
2859 return iemRaiseGeneralProtectionFault0(pVCpu);
2860
2861 /*
2862 * Do the stack bits, but don't commit RSP before everything checks
2863 * out right.
2864 */
2865 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2866 VBOXSTRICTRC rcStrict;
2867 RTCPTRUNION uFrame;
2868 uint16_t uNewCs;
2869 uint32_t uNewEip;
2870 uint32_t uNewFlags;
2871 uint64_t uNewRsp;
2872 if (enmEffOpSize == IEMMODE_32BIT)
2873 {
2874 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
2875 if (rcStrict != VINF_SUCCESS)
2876 return rcStrict;
2877 uNewEip = uFrame.pu32[0];
2878 if (uNewEip > UINT16_MAX)
2879 return iemRaiseGeneralProtectionFault0(pVCpu);
2880
2881 uNewCs = (uint16_t)uFrame.pu32[1];
2882 uNewFlags = uFrame.pu32[2];
2883 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2884 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
2885 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
2886 | X86_EFL_ID;
2887 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
2888 uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
2889 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
2890 }
2891 else
2892 {
2893 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
2894 if (rcStrict != VINF_SUCCESS)
2895 return rcStrict;
2896 uNewEip = uFrame.pu16[0];
2897 uNewCs = uFrame.pu16[1];
2898 uNewFlags = uFrame.pu16[2];
2899 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2900 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
2901 uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
2902 /** @todo The intel pseudo code does not indicate what happens to
2903 * reserved flags. We just ignore them. */
2904 /* Ancient CPU adjustments: See iemCImpl_popf. */
2905 if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
2906 uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
2907 }
2908 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
2909 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2910 { /* extremely likely */ }
2911 else
2912 return rcStrict;
2913
2914 /** @todo Check how this is supposed to work if sp=0xfffe. */
2915 Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
2916 uNewCs, uNewEip, uNewFlags, uNewRsp));
2917
2918 /*
2919 * Check the limit of the new EIP.
2920 */
2921 /** @todo Only the AMD pseudo code check the limit here, what's
2922 * right? */
2923 if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit)
2924 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2925
2926 /*
2927 * V8086 checks and flag adjustments
2928 */
2929 if (Efl.Bits.u1VM)
2930 {
2931 if (Efl.Bits.u2IOPL == 3)
2932 {
2933 /* Preserve IOPL and clear RF. */
2934 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
2935 uNewFlags |= Efl.u & (X86_EFL_IOPL);
2936 }
2937 else if ( enmEffOpSize == IEMMODE_16BIT
2938 && ( !(uNewFlags & X86_EFL_IF)
2939 || !Efl.Bits.u1VIP )
2940 && !(uNewFlags & X86_EFL_TF) )
2941 {
2942 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
2943 uNewFlags &= ~X86_EFL_VIF;
2944 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
2945 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
2946 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
2947 }
2948 else
2949 return iemRaiseGeneralProtectionFault0(pVCpu);
2950 Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
2951 }
2952
2953 /*
2954 * Commit the operation.
2955 */
2956#ifdef DBGFTRACE_ENABLED
2957 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
2958 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
2959#endif
2960 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2961 pVCpu->cpum.GstCtx.rip = uNewEip;
2962 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2963 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2964 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2965 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2966 /** @todo do we load attribs and limit as well? */
2967 Assert(uNewFlags & X86_EFL_1);
2968 IEMMISC_SET_EFL(pVCpu, uNewFlags);
2969
2970 /* Flush the prefetch buffer. */
2971#ifdef IEM_WITH_CODE_TLB
2972 pVCpu->iem.s.pbInstrBuf = NULL;
2973#else
2974 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2975#endif
2976
2977 return VINF_SUCCESS;
2978}
2979
2980
2981/**
2982 * Loads a segment register when entering V8086 mode.
2983 *
2984 * @param pSReg The segment register.
2985 * @param uSeg The segment to load.
2986 */
2987static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
2988{
2989 pSReg->Sel = uSeg;
2990 pSReg->ValidSel = uSeg;
2991 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
2992 pSReg->u64Base = (uint32_t)uSeg << 4;
2993 pSReg->u32Limit = 0xffff;
2994 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
2995 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
2996 * IRET'ing to V8086. */
2997}
2998
2999
3000/**
3001 * Implements iret for protected mode returning to V8086 mode.
3002 *
3003 * @param uNewEip The new EIP.
3004 * @param uNewCs The new CS.
3005 * @param uNewFlags The new EFLAGS.
3006 * @param uNewRsp The RSP after the initial IRET frame.
3007 *
3008 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
3009 */
3010IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp)
3011{
3012 RT_NOREF_PV(cbInstr);
3013 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
3014
3015 /*
3016 * Pop the V8086 specific frame bits off the stack.
3017 */
3018 VBOXSTRICTRC rcStrict;
3019 RTCPTRUNION uFrame;
3020 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp);
3021 if (rcStrict != VINF_SUCCESS)
3022 return rcStrict;
3023 uint32_t uNewEsp = uFrame.pu32[0];
3024 uint16_t uNewSs = uFrame.pu32[1];
3025 uint16_t uNewEs = uFrame.pu32[2];
3026 uint16_t uNewDs = uFrame.pu32[3];
3027 uint16_t uNewFs = uFrame.pu32[4];
3028 uint16_t uNewGs = uFrame.pu32[5];
3029 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3030 if (rcStrict != VINF_SUCCESS)
3031 return rcStrict;
3032
3033 /*
3034 * Commit the operation.
3035 */
3036 uNewFlags &= X86_EFL_LIVE_MASK;
3037 uNewFlags |= X86_EFL_RA1_MASK;
3038#ifdef DBGFTRACE_ENABLED
3039 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
3040 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
3041#endif
3042 Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
3043
3044 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3045 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs);
3046 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs);
3047 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs);
3048 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs);
3049 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs);
3050 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs);
3051 pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip;
3052 pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */
3053 pVCpu->iem.s.uCpl = 3;
3054
3055 /* Flush the prefetch buffer. */
3056#ifdef IEM_WITH_CODE_TLB
3057 pVCpu->iem.s.pbInstrBuf = NULL;
3058#else
3059 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3060#endif
3061
3062 return VINF_SUCCESS;
3063}
3064
3065
3066/**
3067 * Implements iret for protected mode returning via a nested task.
3068 *
3069 * @param enmEffOpSize The effective operand size.
3070 */
3071IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
3072{
3073 Log7(("iemCImpl_iret_prot_NestedTask:\n"));
3074#ifndef IEM_IMPLEMENTS_TASKSWITCH
3075 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
3076#else
3077 RT_NOREF_PV(enmEffOpSize);
3078
3079 /*
3080 * Read the segment selector in the link-field of the current TSS.
3081 */
3082 RTSEL uSelRet;
3083 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base);
3084 if (rcStrict != VINF_SUCCESS)
3085 return rcStrict;
3086
3087 /*
3088 * Fetch the returning task's TSS descriptor from the GDT.
3089 */
3090 if (uSelRet & X86_SEL_LDT)
3091 {
3092 Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
3093 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
3094 }
3095
3096 IEMSELDESC TssDesc;
3097 rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
3098 if (rcStrict != VINF_SUCCESS)
3099 return rcStrict;
3100
3101 if (TssDesc.Legacy.Gate.u1DescType)
3102 {
3103 Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
3104 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3105 }
3106
3107 if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
3108 && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
3109 {
3110 Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
3111 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3112 }
3113
3114 if (!TssDesc.Legacy.Gate.u1Present)
3115 {
3116 Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
3117 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3118 }
3119
3120 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
3121 return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
3122 0 /* uCr2 */, uSelRet, &TssDesc);
3123#endif
3124}
3125
3126
3127/**
3128 * Implements iret for protected mode
3129 *
3130 * @param enmEffOpSize The effective operand size.
3131 */
3132IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
3133{
3134 NOREF(cbInstr);
3135 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3136
3137 /*
3138 * Nested task return.
3139 */
3140 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3141 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
3142
3143 /*
3144 * Normal return.
3145 *
3146 * Do the stack bits, but don't commit RSP before everything checks
3147 * out right.
3148 */
3149 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3150 VBOXSTRICTRC rcStrict;
3151 RTCPTRUNION uFrame;
3152 uint16_t uNewCs;
3153 uint32_t uNewEip;
3154 uint32_t uNewFlags;
3155 uint64_t uNewRsp;
3156 if (enmEffOpSize == IEMMODE_32BIT)
3157 {
3158 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
3159 if (rcStrict != VINF_SUCCESS)
3160 return rcStrict;
3161 uNewEip = uFrame.pu32[0];
3162 uNewCs = (uint16_t)uFrame.pu32[1];
3163 uNewFlags = uFrame.pu32[2];
3164 }
3165 else
3166 {
3167 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
3168 if (rcStrict != VINF_SUCCESS)
3169 return rcStrict;
3170 uNewEip = uFrame.pu16[0];
3171 uNewCs = uFrame.pu16[1];
3172 uNewFlags = uFrame.pu16[2];
3173 }
3174 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3175 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3176 { /* extremely likely */ }
3177 else
3178 return rcStrict;
3179 Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
3180
3181 /*
3182 * We're hopefully not returning to V8086 mode...
3183 */
3184 if ( (uNewFlags & X86_EFL_VM)
3185 && pVCpu->iem.s.uCpl == 0)
3186 {
3187 Assert(enmEffOpSize == IEMMODE_32BIT);
3188 return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp);
3189 }
3190
3191 /*
3192 * Protected mode.
3193 */
3194 /* Read the CS descriptor. */
3195 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3196 {
3197 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
3198 return iemRaiseGeneralProtectionFault0(pVCpu);
3199 }
3200
3201 IEMSELDESC DescCS;
3202 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3203 if (rcStrict != VINF_SUCCESS)
3204 {
3205 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
3206 return rcStrict;
3207 }
3208
3209 /* Must be a code descriptor. */
3210 if (!DescCS.Legacy.Gen.u1DescType)
3211 {
3212 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3213 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3214 }
3215 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3216 {
3217 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3218 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3219 }
3220
3221 /* Privilege checks. */
3222 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3223 {
3224 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3225 {
3226 Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3227 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3228 }
3229 }
3230 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3231 {
3232 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3233 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3234 }
3235 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3236 {
3237 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
3238 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3239 }
3240
3241 /* Present? */
3242 if (!DescCS.Legacy.Gen.u1Present)
3243 {
3244 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
3245 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3246 }
3247
3248 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3249
3250 /*
3251 * Return to outer level?
3252 */
3253 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
3254 {
3255 uint16_t uNewSS;
3256 uint32_t uNewESP;
3257 if (enmEffOpSize == IEMMODE_32BIT)
3258 {
3259 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp);
3260 if (rcStrict != VINF_SUCCESS)
3261 return rcStrict;
3262/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
3263 * 16-bit or 32-bit are being loaded into SP depends on the D/B
3264 * bit of the popped SS selector it turns out. */
3265 uNewESP = uFrame.pu32[0];
3266 uNewSS = (uint16_t)uFrame.pu32[1];
3267 }
3268 else
3269 {
3270 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp);
3271 if (rcStrict != VINF_SUCCESS)
3272 return rcStrict;
3273 uNewESP = uFrame.pu16[0];
3274 uNewSS = uFrame.pu16[1];
3275 }
3276 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
3277 if (rcStrict != VINF_SUCCESS)
3278 return rcStrict;
3279 Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
3280
3281 /* Read the SS descriptor. */
3282 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
3283 {
3284 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
3285 return iemRaiseGeneralProtectionFault0(pVCpu);
3286 }
3287
3288 IEMSELDESC DescSS;
3289 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
3290 if (rcStrict != VINF_SUCCESS)
3291 {
3292 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
3293 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
3294 return rcStrict;
3295 }
3296
3297 /* Privilege checks. */
3298 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3299 {
3300 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
3301 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3302 }
3303 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3304 {
3305 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
3306 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
3307 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3308 }
3309
3310 /* Must be a writeable data segment descriptor. */
3311 if (!DescSS.Legacy.Gen.u1DescType)
3312 {
3313 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
3314 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3315 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3316 }
3317 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3318 {
3319 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
3320 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3321 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3322 }
3323
3324 /* Present? */
3325 if (!DescSS.Legacy.Gen.u1Present)
3326 {
3327 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
3328 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
3329 }
3330
3331 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3332
3333 /* Check EIP. */
3334 if (uNewEip > cbLimitCS)
3335 {
3336 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
3337 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
3338 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3339 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3340 }
3341
3342 /*
3343 * Commit the changes, marking CS and SS accessed first since
3344 * that may fail.
3345 */
3346 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3347 {
3348 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3349 if (rcStrict != VINF_SUCCESS)
3350 return rcStrict;
3351 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3352 }
3353 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3354 {
3355 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
3356 if (rcStrict != VINF_SUCCESS)
3357 return rcStrict;
3358 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3359 }
3360
3361 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3362 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3363 if (enmEffOpSize != IEMMODE_16BIT)
3364 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3365 if (pVCpu->iem.s.uCpl == 0)
3366 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3367 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3368 fEFlagsMask |= X86_EFL_IF;
3369 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3370 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3371 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3372 fEFlagsNew &= ~fEFlagsMask;
3373 fEFlagsNew |= uNewFlags & fEFlagsMask;
3374#ifdef DBGFTRACE_ENABLED
3375 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
3376 pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3377 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
3378#endif
3379
3380 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3381 pVCpu->cpum.GstCtx.rip = uNewEip;
3382 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3383 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3384 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3385 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3386 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3387 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3388 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3389
3390 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
3391 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
3392 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3393 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3394 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3395 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3396 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3397 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP;
3398 else
3399 pVCpu->cpum.GstCtx.rsp = uNewESP;
3400
3401 pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
3402 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
3403 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
3404 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
3405 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
3406
3407 /* Done! */
3408
3409 }
3410 /*
3411 * Return to the same level.
3412 */
3413 else
3414 {
3415 /* Check EIP. */
3416 if (uNewEip > cbLimitCS)
3417 {
3418 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
3419 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3420 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3421 }
3422
3423 /*
3424 * Commit the changes, marking CS first since it may fail.
3425 */
3426 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3427 {
3428 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3429 if (rcStrict != VINF_SUCCESS)
3430 return rcStrict;
3431 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3432 }
3433
3434 X86EFLAGS NewEfl;
3435 NewEfl.u = IEMMISC_GET_EFL(pVCpu);
3436 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3437 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3438 if (enmEffOpSize != IEMMODE_16BIT)
3439 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3440 if (pVCpu->iem.s.uCpl == 0)
3441 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3442 else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
3443 fEFlagsMask |= X86_EFL_IF;
3444 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3445 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3446 NewEfl.u &= ~fEFlagsMask;
3447 NewEfl.u |= fEFlagsMask & uNewFlags;
3448#ifdef DBGFTRACE_ENABLED
3449 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
3450 pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3451 uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp);
3452#endif
3453
3454 IEMMISC_SET_EFL(pVCpu, NewEfl.u);
3455 pVCpu->cpum.GstCtx.rip = uNewEip;
3456 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3457 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3458 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3459 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3460 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3461 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3462 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3463 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3464 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3465 else
3466 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3467 /* Done! */
3468 }
3469
3470 /* Flush the prefetch buffer. */
3471#ifdef IEM_WITH_CODE_TLB
3472 pVCpu->iem.s.pbInstrBuf = NULL;
3473#else
3474 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3475#endif
3476
3477 return VINF_SUCCESS;
3478}
3479
3480
3481/**
3482 * Implements iret for long mode
3483 *
3484 * @param enmEffOpSize The effective operand size.
3485 */
3486IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
3487{
3488 NOREF(cbInstr);
3489
3490 /*
3491 * Nested task return is not supported in long mode.
3492 */
3493 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3494 {
3495 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u));
3496 return iemRaiseGeneralProtectionFault0(pVCpu);
3497 }
3498
3499 /*
3500 * Normal return.
3501 *
3502 * Do the stack bits, but don't commit RSP before everything checks
3503 * out right.
3504 */
3505 VBOXSTRICTRC rcStrict;
3506 RTCPTRUNION uFrame;
3507 uint64_t uNewRip;
3508 uint16_t uNewCs;
3509 uint16_t uNewSs;
3510 uint32_t uNewFlags;
3511 uint64_t uNewRsp;
3512 if (enmEffOpSize == IEMMODE_64BIT)
3513 {
3514 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp);
3515 if (rcStrict != VINF_SUCCESS)
3516 return rcStrict;
3517 uNewRip = uFrame.pu64[0];
3518 uNewCs = (uint16_t)uFrame.pu64[1];
3519 uNewFlags = (uint32_t)uFrame.pu64[2];
3520 uNewRsp = uFrame.pu64[3];
3521 uNewSs = (uint16_t)uFrame.pu64[4];
3522 }
3523 else if (enmEffOpSize == IEMMODE_32BIT)
3524 {
3525 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp);
3526 if (rcStrict != VINF_SUCCESS)
3527 return rcStrict;
3528 uNewRip = uFrame.pu32[0];
3529 uNewCs = (uint16_t)uFrame.pu32[1];
3530 uNewFlags = uFrame.pu32[2];
3531 uNewRsp = uFrame.pu32[3];
3532 uNewSs = (uint16_t)uFrame.pu32[4];
3533 }
3534 else
3535 {
3536 Assert(enmEffOpSize == IEMMODE_16BIT);
3537 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp);
3538 if (rcStrict != VINF_SUCCESS)
3539 return rcStrict;
3540 uNewRip = uFrame.pu16[0];
3541 uNewCs = uFrame.pu16[1];
3542 uNewFlags = uFrame.pu16[2];
3543 uNewRsp = uFrame.pu16[3];
3544 uNewSs = uFrame.pu16[4];
3545 }
3546 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3547 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3548 { /* extremely like */ }
3549 else
3550 return rcStrict;
3551 Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
3552
3553 /*
3554 * Check stuff.
3555 */
3556 /* Read the CS descriptor. */
3557 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3558 {
3559 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3560 return iemRaiseGeneralProtectionFault0(pVCpu);
3561 }
3562
3563 IEMSELDESC DescCS;
3564 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3565 if (rcStrict != VINF_SUCCESS)
3566 {
3567 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
3568 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3569 return rcStrict;
3570 }
3571
3572 /* Must be a code descriptor. */
3573 if ( !DescCS.Legacy.Gen.u1DescType
3574 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3575 {
3576 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
3577 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
3578 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3579 }
3580
3581 /* Privilege checks. */
3582 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
3583 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3584 {
3585 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3586 {
3587 Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3588 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3589 }
3590 }
3591 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3592 {
3593 Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3594 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3595 }
3596 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3597 {
3598 Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
3599 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3600 }
3601
3602 /* Present? */
3603 if (!DescCS.Legacy.Gen.u1Present)
3604 {
3605 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3606 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3607 }
3608
3609 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3610
3611 /* Read the SS descriptor. */
3612 IEMSELDESC DescSS;
3613 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3614 {
3615 if ( !DescCS.Legacy.Gen.u1Long
3616 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
3617 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
3618 {
3619 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3620 return iemRaiseGeneralProtectionFault0(pVCpu);
3621 }
3622 DescSS.Legacy.u = 0;
3623 }
3624 else
3625 {
3626 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
3627 if (rcStrict != VINF_SUCCESS)
3628 {
3629 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
3630 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3631 return rcStrict;
3632 }
3633 }
3634
3635 /* Privilege checks. */
3636 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3637 {
3638 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3639 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3640 }
3641
3642 uint32_t cbLimitSs;
3643 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3644 cbLimitSs = UINT32_MAX;
3645 else
3646 {
3647 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3648 {
3649 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
3650 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
3651 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3652 }
3653
3654 /* Must be a writeable data segment descriptor. */
3655 if (!DescSS.Legacy.Gen.u1DescType)
3656 {
3657 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
3658 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3659 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3660 }
3661 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3662 {
3663 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
3664 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3665 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3666 }
3667
3668 /* Present? */
3669 if (!DescSS.Legacy.Gen.u1Present)
3670 {
3671 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3672 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
3673 }
3674 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3675 }
3676
3677 /* Check EIP. */
3678 if (DescCS.Legacy.Gen.u1Long)
3679 {
3680 if (!IEM_IS_CANONICAL(uNewRip))
3681 {
3682 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
3683 uNewCs, uNewRip, uNewSs, uNewRsp));
3684 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3685 }
3686 }
3687 else
3688 {
3689 if (uNewRip > cbLimitCS)
3690 {
3691 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
3692 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
3693 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3694 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3695 }
3696 }
3697
3698 /*
3699 * Commit the changes, marking CS and SS accessed first since
3700 * that may fail.
3701 */
3702 /** @todo where exactly are these actually marked accessed by a real CPU? */
3703 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3704 {
3705 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3706 if (rcStrict != VINF_SUCCESS)
3707 return rcStrict;
3708 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3709 }
3710 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3711 {
3712 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
3713 if (rcStrict != VINF_SUCCESS)
3714 return rcStrict;
3715 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3716 }
3717
3718 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3719 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3720 if (enmEffOpSize != IEMMODE_16BIT)
3721 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3722 if (pVCpu->iem.s.uCpl == 0)
3723 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
3724 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3725 fEFlagsMask |= X86_EFL_IF;
3726 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3727 fEFlagsNew &= ~fEFlagsMask;
3728 fEFlagsNew |= uNewFlags & fEFlagsMask;
3729#ifdef DBGFTRACE_ENABLED
3730 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
3731 pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
3732#endif
3733
3734 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3735 pVCpu->cpum.GstCtx.rip = uNewRip;
3736 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3737 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3738 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3739 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3740 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3741 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3742 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3743 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
3744 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3745 else
3746 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3747 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
3748 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
3749 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3750 {
3751 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3752 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
3753 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
3754 pVCpu->cpum.GstCtx.ss.u64Base = 0;
3755 Log2(("iretq new SS: NULL\n"));
3756 }
3757 else
3758 {
3759 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3760 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3761 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3762 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3763 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3764 }
3765
3766 if (pVCpu->iem.s.uCpl != uNewCpl)
3767 {
3768 pVCpu->iem.s.uCpl = uNewCpl;
3769 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds);
3770 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es);
3771 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs);
3772 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs);
3773 }
3774
3775 /* Flush the prefetch buffer. */
3776#ifdef IEM_WITH_CODE_TLB
3777 pVCpu->iem.s.pbInstrBuf = NULL;
3778#else
3779 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3780#endif
3781
3782 return VINF_SUCCESS;
3783}
3784
3785
3786/**
3787 * Implements iret.
3788 *
3789 * @param enmEffOpSize The effective operand size.
3790 */
3791IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
3792{
3793 bool fBlockingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3794
3795#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3796 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
3797 {
3798 /*
3799 * Record whether NMI (or virtual-NMI) blocking is in effect during the execution
3800 * of this IRET instruction. We need to provide this information as part of some
3801 * VM-exits.
3802 *
3803 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3804 */
3805 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_VIRT_NMI))
3806 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking;
3807 else
3808 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = fBlockingNmi;
3809
3810 /*
3811 * If "NMI exiting" is set, IRET does not affect blocking of NMIs.
3812 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3813 */
3814 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_NMI_EXIT))
3815 fBlockingNmi = false;
3816
3817 /* Clear virtual-NMI blocking, if any, before causing any further exceptions. */
3818 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
3819 }
3820#endif
3821
3822 /*
3823 * The SVM nested-guest intercept for IRET takes priority over all exceptions,
3824 * The NMI is still held pending (which I assume means blocking of further NMIs
3825 * is in effect).
3826 *
3827 * See AMD spec. 15.9 "Instruction Intercepts".
3828 * See AMD spec. 15.21.9 "NMI Support".
3829 */
3830 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
3831 {
3832 Log(("iret: Guest intercept -> #VMEXIT\n"));
3833 IEM_SVM_UPDATE_NRIP(pVCpu);
3834 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
3835 }
3836
3837 /*
3838 * Clear NMI blocking, if any, before causing any further exceptions.
3839 * See Intel spec. 6.7.1 "Handling Multiple NMIs".
3840 */
3841 if (fBlockingNmi)
3842 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
3843
3844 /*
3845 * Call a mode specific worker.
3846 */
3847 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
3848 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
3849 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
3850 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
3851 return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
3852 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
3853}
3854
3855
3856static void iemLoadallSetSelector(PVMCPUCC pVCpu, uint8_t iSegReg, uint16_t uSel)
3857{
3858 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3859
3860 pHid->Sel = uSel;
3861 pHid->ValidSel = uSel;
3862 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3863}
3864
3865
3866static void iemLoadall286SetDescCache(PVMCPUCC pVCpu, uint8_t iSegReg, uint8_t const *pbMem)
3867{
3868 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3869
3870 /* The base is in the first three bytes. */
3871 pHid->u64Base = pbMem[0] + (pbMem[1] << 8) + (pbMem[2] << 16);
3872 /* The attributes are in the fourth byte. */
3873 pHid->Attr.u = pbMem[3];
3874 /* The limit is in the last two bytes. */
3875 pHid->u32Limit = pbMem[4] + (pbMem[5] << 8);
3876}
3877
3878
3879/**
3880 * Implements 286 LOADALL (286 CPUs only).
3881 */
3882IEM_CIMPL_DEF_0(iemCImpl_loadall286)
3883{
3884 NOREF(cbInstr);
3885
3886 /* Data is loaded from a buffer at 800h. No checks are done on the
3887 * validity of loaded state.
3888 *
3889 * LOADALL only loads the internal CPU state, it does not access any
3890 * GDT, LDT, or similar tables.
3891 */
3892
3893 if (pVCpu->iem.s.uCpl != 0)
3894 {
3895 Log(("loadall286: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
3896 return iemRaiseGeneralProtectionFault0(pVCpu);
3897 }
3898
3899 uint8_t const *pbMem = NULL;
3900 uint16_t const *pa16Mem;
3901 uint8_t const *pa8Mem;
3902 RTGCPHYS GCPtrStart = 0x800; /* Fixed table location. */
3903 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pbMem, 0x66, UINT8_MAX, GCPtrStart, IEM_ACCESS_SYS_R);
3904 if (rcStrict != VINF_SUCCESS)
3905 return rcStrict;
3906
3907 /* The MSW is at offset 0x06. */
3908 pa16Mem = (uint16_t const *)(pbMem + 0x06);
3909 /* Even LOADALL can't clear the MSW.PE bit, though it can set it. */
3910 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3911 uNewCr0 |= *pa16Mem & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3912 uint64_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
3913
3914 CPUMSetGuestCR0(pVCpu, uNewCr0);
3915 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCr0);
3916
3917 /* Inform PGM if mode changed. */
3918 if ((uNewCr0 & X86_CR0_PE) != (uOldCr0 & X86_CR0_PE))
3919 {
3920 int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */, false /* fPdpesMapped */);
3921 AssertRCReturn(rc, rc);
3922 /* ignore informational status codes */
3923 }
3924 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
3925 false /* fForce */);
3926
3927 /* TR selector is at offset 0x16. */
3928 pa16Mem = (uint16_t const *)(pbMem + 0x16);
3929 pVCpu->cpum.GstCtx.tr.Sel = pa16Mem[0];
3930 pVCpu->cpum.GstCtx.tr.ValidSel = pa16Mem[0];
3931 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3932
3933 /* Followed by FLAGS... */
3934 pVCpu->cpum.GstCtx.eflags.u = pa16Mem[1] | X86_EFL_1;
3935 pVCpu->cpum.GstCtx.ip = pa16Mem[2]; /* ...and IP. */
3936
3937 /* LDT is at offset 0x1C. */
3938 pa16Mem = (uint16_t const *)(pbMem + 0x1C);
3939 pVCpu->cpum.GstCtx.ldtr.Sel = pa16Mem[0];
3940 pVCpu->cpum.GstCtx.ldtr.ValidSel = pa16Mem[0];
3941 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3942
3943 /* Segment registers are at offset 0x1E. */
3944 pa16Mem = (uint16_t const *)(pbMem + 0x1E);
3945 iemLoadallSetSelector(pVCpu, X86_SREG_DS, pa16Mem[0]);
3946 iemLoadallSetSelector(pVCpu, X86_SREG_SS, pa16Mem[1]);
3947 iemLoadallSetSelector(pVCpu, X86_SREG_CS, pa16Mem[2]);
3948 iemLoadallSetSelector(pVCpu, X86_SREG_ES, pa16Mem[3]);
3949
3950 /* GPRs are at offset 0x26. */
3951 pa16Mem = (uint16_t const *)(pbMem + 0x26);
3952 pVCpu->cpum.GstCtx.di = pa16Mem[0];
3953 pVCpu->cpum.GstCtx.si = pa16Mem[1];
3954 pVCpu->cpum.GstCtx.bp = pa16Mem[2];
3955 pVCpu->cpum.GstCtx.sp = pa16Mem[3];
3956 pVCpu->cpum.GstCtx.bx = pa16Mem[4];
3957 pVCpu->cpum.GstCtx.dx = pa16Mem[5];
3958 pVCpu->cpum.GstCtx.cx = pa16Mem[6];
3959 pVCpu->cpum.GstCtx.ax = pa16Mem[7];
3960
3961 /* Descriptor caches are at offset 0x36, 6 bytes per entry. */
3962 iemLoadall286SetDescCache(pVCpu, X86_SREG_ES, pbMem + 0x36);
3963 iemLoadall286SetDescCache(pVCpu, X86_SREG_CS, pbMem + 0x3C);
3964 iemLoadall286SetDescCache(pVCpu, X86_SREG_SS, pbMem + 0x42);
3965 iemLoadall286SetDescCache(pVCpu, X86_SREG_DS, pbMem + 0x48);
3966
3967 /* GDTR contents are at offset 0x4E, 6 bytes. */
3968 RTGCPHYS GCPtrBase;
3969 uint16_t cbLimit;
3970 pa8Mem = pbMem + 0x4E;
3971 /* NB: Fourth byte "should be zero"; we are ignoring it. */
3972 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
3973 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
3974 CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
3975
3976 /* IDTR contents are at offset 0x5A, 6 bytes. */
3977 pa8Mem = pbMem + 0x5A;
3978 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
3979 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
3980 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
3981
3982 Log(("LOADALL: GDTR:%08RX64/%04X, IDTR:%08RX64/%04X\n", pVCpu->cpum.GstCtx.gdtr.pGdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.idtr.pIdt, pVCpu->cpum.GstCtx.idtr.cbIdt));
3983 Log(("LOADALL: CS:%04X, CS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.cs.u64Base, pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.Attr.u));
3984 Log(("LOADALL: DS:%04X, DS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.ds.u64Base, pVCpu->cpum.GstCtx.ds.u32Limit, pVCpu->cpum.GstCtx.ds.Attr.u));
3985 Log(("LOADALL: ES:%04X, ES base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.es.u64Base, pVCpu->cpum.GstCtx.es.u32Limit, pVCpu->cpum.GstCtx.es.Attr.u));
3986 Log(("LOADALL: SS:%04X, SS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3987 Log(("LOADALL: SI:%04X, DI:%04X, AX:%04X, BX:%04X, CX:%04X, DX:%04X\n", pVCpu->cpum.GstCtx.si, pVCpu->cpum.GstCtx.di, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.cx, pVCpu->cpum.GstCtx.dx));
3988
3989 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pbMem, IEM_ACCESS_SYS_R);
3990 if (rcStrict != VINF_SUCCESS)
3991 return rcStrict;
3992
3993 /* The CPL may change. It is taken from the "DPL fields of the SS and CS
3994 * descriptor caches" but there is no word as to what happens if those are
3995 * not identical (probably bad things).
3996 */
3997 pVCpu->iem.s.uCpl = pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl;
3998
3999 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS | CPUM_CHANGED_IDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_TR | CPUM_CHANGED_LDTR);
4000
4001 /* Flush the prefetch buffer. */
4002#ifdef IEM_WITH_CODE_TLB
4003 pVCpu->iem.s.pbInstrBuf = NULL;
4004#else
4005 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4006#endif
4007 return rcStrict;
4008}
4009
4010
4011/**
4012 * Implements SYSCALL (AMD and Intel64).
4013 *
4014 * @param enmEffOpSize The effective operand size.
4015 */
4016IEM_CIMPL_DEF_0(iemCImpl_syscall)
4017{
4018 /** @todo hack, LOADALL should be decoded as such on a 286. */
4019 if (RT_UNLIKELY(pVCpu->iem.s.uTargetCpu == IEMTARGETCPU_286))
4020 return iemCImpl_loadall286(pVCpu, cbInstr);
4021
4022 /*
4023 * Check preconditions.
4024 *
4025 * Note that CPUs described in the documentation may load a few odd values
4026 * into CS and SS than we allow here. This has yet to be checked on real
4027 * hardware.
4028 */
4029 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4030 {
4031 Log(("syscall: Not enabled in EFER -> #UD\n"));
4032 return iemRaiseUndefinedOpcode(pVCpu);
4033 }
4034 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4035 {
4036 Log(("syscall: Protected mode is required -> #GP(0)\n"));
4037 return iemRaiseGeneralProtectionFault0(pVCpu);
4038 }
4039 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4040 {
4041 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4042 return iemRaiseUndefinedOpcode(pVCpu);
4043 }
4044
4045 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4046
4047 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
4048 /** @todo what about LDT selectors? Shouldn't matter, really. */
4049 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4050 uint16_t uNewSs = uNewCs + 8;
4051 if (uNewCs == 0 || uNewSs == 0)
4052 {
4053 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4054 return iemRaiseGeneralProtectionFault0(pVCpu);
4055 }
4056
4057 /* Long mode and legacy mode differs. */
4058 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4059 {
4060 uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR;
4061
4062 /* This test isn't in the docs, but I'm not trusting the guys writing
4063 the MSRs to have validated the values as canonical like they should. */
4064 if (!IEM_IS_CANONICAL(uNewRip))
4065 {
4066 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4067 return iemRaiseUndefinedOpcode(pVCpu);
4068 }
4069
4070 /*
4071 * Commit it.
4072 */
4073 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip));
4074 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr;
4075 pVCpu->cpum.GstCtx.rip = uNewRip;
4076
4077 pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF;
4078 pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u;
4079 pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK;
4080 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4081
4082 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4083 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4084 }
4085 else
4086 {
4087 /*
4088 * Commit it.
4089 */
4090 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
4091 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
4092 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr;
4093 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
4094 pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
4095
4096 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4097 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4098 }
4099 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
4100 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
4101 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4102 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4103 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4104
4105 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
4106 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
4107 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4108 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4109 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4110
4111 /* Flush the prefetch buffer. */
4112#ifdef IEM_WITH_CODE_TLB
4113 pVCpu->iem.s.pbInstrBuf = NULL;
4114#else
4115 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4116#endif
4117
4118 return VINF_SUCCESS;
4119}
4120
4121
4122/**
4123 * Implements SYSRET (AMD and Intel64).
4124 */
4125IEM_CIMPL_DEF_0(iemCImpl_sysret)
4126
4127{
4128 RT_NOREF_PV(cbInstr);
4129
4130 /*
4131 * Check preconditions.
4132 *
4133 * Note that CPUs described in the documentation may load a few odd values
4134 * into CS and SS than we allow here. This has yet to be checked on real
4135 * hardware.
4136 */
4137 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4138 {
4139 Log(("sysret: Not enabled in EFER -> #UD\n"));
4140 return iemRaiseUndefinedOpcode(pVCpu);
4141 }
4142 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4143 {
4144 Log(("sysret: Only available in long mode on intel -> #UD\n"));
4145 return iemRaiseUndefinedOpcode(pVCpu);
4146 }
4147 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4148 {
4149 Log(("sysret: Protected mode is required -> #GP(0)\n"));
4150 return iemRaiseGeneralProtectionFault0(pVCpu);
4151 }
4152 if (pVCpu->iem.s.uCpl != 0)
4153 {
4154 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
4155 return iemRaiseGeneralProtectionFault0(pVCpu);
4156 }
4157
4158 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4159
4160 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
4161 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4162 uint16_t uNewSs = uNewCs + 8;
4163 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4164 uNewCs += 16;
4165 if (uNewCs == 0 || uNewSs == 0)
4166 {
4167 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4168 return iemRaiseGeneralProtectionFault0(pVCpu);
4169 }
4170
4171 /*
4172 * Commit it.
4173 */
4174 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4175 {
4176 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4177 {
4178 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
4179 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11));
4180 /* Note! We disregard intel manual regarding the RCX cananonical
4181 check, ask intel+xen why AMD doesn't do it. */
4182 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4183 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4184 | (3 << X86DESCATTR_DPL_SHIFT);
4185 }
4186 else
4187 {
4188 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
4189 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11));
4190 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx;
4191 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4192 | (3 << X86DESCATTR_DPL_SHIFT);
4193 }
4194 /** @todo testcase: See what kind of flags we can make SYSRET restore and
4195 * what it really ignores. RF and VM are hinted at being zero, by AMD. */
4196 pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
4197 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4198 }
4199 else
4200 {
4201 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx));
4202 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4203 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF;
4204 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4205 | (3 << X86DESCATTR_DPL_SHIFT);
4206 }
4207 pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3;
4208 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3;
4209 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4210 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4211 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4212
4213 pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3;
4214 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3;
4215 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4216 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
4217 pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
4218 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
4219 * on sysret. */
4220
4221 /* Flush the prefetch buffer. */
4222#ifdef IEM_WITH_CODE_TLB
4223 pVCpu->iem.s.pbInstrBuf = NULL;
4224#else
4225 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4226#endif
4227
4228 return VINF_SUCCESS;
4229}
4230
4231
4232/**
4233 * Implements SYSENTER (Intel, 32-bit AMD).
4234 */
4235IEM_CIMPL_DEF_0(iemCImpl_sysenter)
4236{
4237 RT_NOREF(cbInstr);
4238
4239 /*
4240 * Check preconditions.
4241 *
4242 * Note that CPUs described in the documentation may load a few odd values
4243 * into CS and SS than we allow here. This has yet to be checked on real
4244 * hardware.
4245 */
4246 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSysEnter)
4247 {
4248 Log(("sysenter: not supported -=> #UD\n"));
4249 return iemRaiseUndefinedOpcode(pVCpu);
4250 }
4251 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4252 {
4253 Log(("sysenter: Protected or long mode is required -> #GP(0)\n"));
4254 return iemRaiseGeneralProtectionFault0(pVCpu);
4255 }
4256 bool fIsLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
4257 if (IEM_IS_GUEST_CPU_AMD(pVCpu) && !fIsLongMode)
4258 {
4259 Log(("sysenter: Only available in protected mode on AMD -> #UD\n"));
4260 return iemRaiseUndefinedOpcode(pVCpu);
4261 }
4262 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4263 uint16_t uNewCs = pVCpu->cpum.GstCtx.SysEnter.cs;
4264 if ((uNewCs & X86_SEL_MASK_OFF_RPL) == 0)
4265 {
4266 Log(("sysenter: SYSENTER_CS = %#x -> #GP(0)\n", uNewCs));
4267 return iemRaiseGeneralProtectionFault0(pVCpu);
4268 }
4269
4270 /* This test isn't in the docs, it's just a safeguard against missing
4271 canonical checks when writing the registers. */
4272 if (RT_LIKELY( !fIsLongMode
4273 || ( IEM_IS_CANONICAL(pVCpu->cpum.GstCtx.SysEnter.eip)
4274 && IEM_IS_CANONICAL(pVCpu->cpum.GstCtx.SysEnter.esp))))
4275 { /* likely */ }
4276 else
4277 {
4278 Log(("sysenter: SYSENTER_EIP = %#RX64 or/and SYSENTER_ESP = %#RX64 not canonical -> #GP(0)\n",
4279 pVCpu->cpum.GstCtx.SysEnter.eip, pVCpu->cpum.GstCtx.SysEnter.esp));
4280 return iemRaiseUndefinedOpcode(pVCpu);
4281 }
4282
4283/** @todo Test: Sysenter from ring-0, ring-1 and ring-2. */
4284
4285 /*
4286 * Update registers and commit.
4287 */
4288 if (fIsLongMode)
4289 {
4290 Log(("sysenter: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4291 pVCpu->cpum.GstCtx.rflags.u, uNewCs & X86_SEL_MASK_OFF_RPL, pVCpu->cpum.GstCtx.SysEnter.eip));
4292 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.SysEnter.eip;
4293 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.SysEnter.esp;
4294 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_L | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4295 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC;
4296 }
4297 else
4298 {
4299 Log(("sysenter: %04x:%08RX32 [efl=%#llx] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, (uint32_t)pVCpu->cpum.GstCtx.rip,
4300 pVCpu->cpum.GstCtx.rflags.u, uNewCs & X86_SEL_MASK_OFF_RPL, (uint32_t)pVCpu->cpum.GstCtx.SysEnter.eip));
4301 pVCpu->cpum.GstCtx.rip = (uint32_t)pVCpu->cpum.GstCtx.SysEnter.eip;
4302 pVCpu->cpum.GstCtx.rsp = (uint32_t)pVCpu->cpum.GstCtx.SysEnter.esp;
4303 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4304 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC;
4305 }
4306 pVCpu->cpum.GstCtx.cs.Sel = uNewCs & X86_SEL_MASK_OFF_RPL;
4307 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs & X86_SEL_MASK_OFF_RPL;
4308 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4309 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4310 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4311
4312 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs & X86_SEL_MASK_OFF_RPL) + 8;
4313 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs & X86_SEL_MASK_OFF_RPL) + 8;
4314 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4315 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4316 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4317 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_RW_ACC;
4318 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4319
4320 pVCpu->cpum.GstCtx.rflags.Bits.u1IF = 0;
4321 pVCpu->cpum.GstCtx.rflags.Bits.u1VM = 0;
4322 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
4323
4324 pVCpu->iem.s.uCpl = 0;
4325
4326 /* Flush the prefetch buffer. */
4327#ifdef IEM_WITH_CODE_TLB
4328 pVCpu->iem.s.pbInstrBuf = NULL;
4329#else
4330 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4331#endif
4332
4333 return VINF_SUCCESS;
4334}
4335
4336
4337/**
4338 * Implements SYSEXIT (Intel, 32-bit AMD).
4339 *
4340 * @param enmEffOpSize The effective operand size.
4341 */
4342IEM_CIMPL_DEF_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize)
4343{
4344 RT_NOREF(cbInstr);
4345
4346 /*
4347 * Check preconditions.
4348 *
4349 * Note that CPUs described in the documentation may load a few odd values
4350 * into CS and SS than we allow here. This has yet to be checked on real
4351 * hardware.
4352 */
4353 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSysEnter)
4354 {
4355 Log(("sysexit: not supported -=> #UD\n"));
4356 return iemRaiseUndefinedOpcode(pVCpu);
4357 }
4358 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4359 {
4360 Log(("sysexit: Protected or long mode is required -> #GP(0)\n"));
4361 return iemRaiseGeneralProtectionFault0(pVCpu);
4362 }
4363 bool fIsLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
4364 if (IEM_IS_GUEST_CPU_AMD(pVCpu) && !fIsLongMode)
4365 {
4366 Log(("sysexit: Only available in protected mode on AMD -> #UD\n"));
4367 return iemRaiseUndefinedOpcode(pVCpu);
4368 }
4369 if (pVCpu->iem.s.uCpl != 0)
4370 {
4371 Log(("sysexit: CPL(=%u) != 0 -> #GP(0)\n", pVCpu->iem.s.uCpl));
4372 return iemRaiseGeneralProtectionFault0(pVCpu);
4373 }
4374 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4375 uint16_t uNewCs = pVCpu->cpum.GstCtx.SysEnter.cs;
4376 if ((uNewCs & X86_SEL_MASK_OFF_RPL) == 0)
4377 {
4378 Log(("sysexit: SYSENTER_CS = %#x -> #GP(0)\n", uNewCs));
4379 return iemRaiseGeneralProtectionFault0(pVCpu);
4380 }
4381
4382 /*
4383 * Update registers and commit.
4384 */
4385 if (enmEffOpSize == IEMMODE_64BIT)
4386 {
4387 Log(("sysexit: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4388 pVCpu->cpum.GstCtx.rflags.u, (uNewCs | 3) + 32, pVCpu->cpum.GstCtx.rcx));
4389 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rdx;
4390 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.rcx;
4391 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_L | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4392 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4393 pVCpu->cpum.GstCtx.cs.Sel = (uNewCs | 3) + 32;
4394 pVCpu->cpum.GstCtx.cs.ValidSel = (uNewCs | 3) + 32;
4395 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs | 3) + 40;
4396 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs | 3) + 40;
4397 }
4398 else
4399 {
4400 Log(("sysexit: %04x:%08RX64 [efl=%#llx] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4401 pVCpu->cpum.GstCtx.rflags.u, (uNewCs | 3) + 16, (uint32_t)pVCpu->cpum.GstCtx.edx));
4402 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.edx;
4403 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.ecx;
4404 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4405 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4406 pVCpu->cpum.GstCtx.cs.Sel = (uNewCs | 3) + 16;
4407 pVCpu->cpum.GstCtx.cs.ValidSel = (uNewCs | 3) + 16;
4408 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs | 3) + 24;
4409 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs | 3) + 24;
4410 }
4411 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4412 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4413 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4414
4415 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4416 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4417 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4418 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_RW_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4419 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4420 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
4421
4422 pVCpu->iem.s.uCpl = 3;
4423
4424 /* Flush the prefetch buffer. */
4425#ifdef IEM_WITH_CODE_TLB
4426 pVCpu->iem.s.pbInstrBuf = NULL;
4427#else
4428 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4429#endif
4430
4431 return VINF_SUCCESS;
4432}
4433
4434
4435/**
4436 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
4437 *
4438 * @param iSegReg The segment register number (valid).
4439 * @param uSel The new selector value.
4440 */
4441IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
4442{
4443 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
4444 uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
4445 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
4446
4447 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
4448
4449 /*
4450 * Real mode and V8086 mode are easy.
4451 */
4452 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4453 {
4454 *pSel = uSel;
4455 pHid->u64Base = (uint32_t)uSel << 4;
4456 pHid->ValidSel = uSel;
4457 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4458#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
4459 /** @todo Does the CPU actually load limits and attributes in the
4460 * real/V8086 mode segment load case? It doesn't for CS in far
4461 * jumps... Affects unreal mode. */
4462 pHid->u32Limit = 0xffff;
4463 pHid->Attr.u = 0;
4464 pHid->Attr.n.u1Present = 1;
4465 pHid->Attr.n.u1DescType = 1;
4466 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
4467 ? X86_SEL_TYPE_RW
4468 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
4469#endif
4470 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4471 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4472 return VINF_SUCCESS;
4473 }
4474
4475 /*
4476 * Protected mode.
4477 *
4478 * Check if it's a null segment selector value first, that's OK for DS, ES,
4479 * FS and GS. If not null, then we have to load and parse the descriptor.
4480 */
4481 if (!(uSel & X86_SEL_MASK_OFF_RPL))
4482 {
4483 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
4484 if (iSegReg == X86_SREG_SS)
4485 {
4486 /* In 64-bit kernel mode, the stack can be 0 because of the way
4487 interrupts are dispatched. AMD seems to have a slighly more
4488 relaxed relationship to SS.RPL than intel does. */
4489 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
4490 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4491 || pVCpu->iem.s.uCpl > 2
4492 || ( uSel != pVCpu->iem.s.uCpl
4493 && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
4494 {
4495 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
4496 return iemRaiseGeneralProtectionFault0(pVCpu);
4497 }
4498 }
4499
4500 *pSel = uSel; /* Not RPL, remember :-) */
4501 iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
4502 if (iSegReg == X86_SREG_SS)
4503 pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
4504
4505 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4506 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4507
4508 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4509 return VINF_SUCCESS;
4510 }
4511
4512 /* Fetch the descriptor. */
4513 IEMSELDESC Desc;
4514 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
4515 if (rcStrict != VINF_SUCCESS)
4516 return rcStrict;
4517
4518 /* Check GPs first. */
4519 if (!Desc.Legacy.Gen.u1DescType)
4520 {
4521 Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
4522 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4523 }
4524 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
4525 {
4526 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
4527 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
4528 {
4529 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
4530 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4531 }
4532 if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
4533 {
4534 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
4535 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4536 }
4537 if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
4538 {
4539 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
4540 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4541 }
4542 }
4543 else
4544 {
4545 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4546 {
4547 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
4548 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4549 }
4550 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4551 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4552 {
4553#if 0 /* this is what intel says. */
4554 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
4555 && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4556 {
4557 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
4558 iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4559 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4560 }
4561#else /* this is what makes more sense. */
4562 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4563 {
4564 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
4565 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
4566 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4567 }
4568 if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4569 {
4570 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
4571 iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4572 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4573 }
4574#endif
4575 }
4576 }
4577
4578 /* Is it there? */
4579 if (!Desc.Legacy.Gen.u1Present)
4580 {
4581 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
4582 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
4583 }
4584
4585 /* The base and limit. */
4586 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
4587 uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
4588
4589 /*
4590 * Ok, everything checked out fine. Now set the accessed bit before
4591 * committing the result into the registers.
4592 */
4593 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
4594 {
4595 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
4596 if (rcStrict != VINF_SUCCESS)
4597 return rcStrict;
4598 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
4599 }
4600
4601 /* commit */
4602 *pSel = uSel;
4603 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4604 pHid->u32Limit = cbLimit;
4605 pHid->u64Base = u64Base;
4606 pHid->ValidSel = uSel;
4607 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4608
4609 /** @todo check if the hidden bits are loaded correctly for 64-bit
4610 * mode. */
4611 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4612
4613 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4614 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4615 return VINF_SUCCESS;
4616}
4617
4618
4619/**
4620 * Implements 'mov SReg, r/m'.
4621 *
4622 * @param iSegReg The segment register number (valid).
4623 * @param uSel The new selector value.
4624 */
4625IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
4626{
4627 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4628 if (rcStrict == VINF_SUCCESS)
4629 {
4630 if (iSegReg == X86_SREG_SS)
4631 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4632 }
4633 return rcStrict;
4634}
4635
4636
4637/**
4638 * Implements 'pop SReg'.
4639 *
4640 * @param iSegReg The segment register number (valid).
4641 * @param enmEffOpSize The efficient operand size (valid).
4642 */
4643IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
4644{
4645 VBOXSTRICTRC rcStrict;
4646
4647 /*
4648 * Read the selector off the stack and join paths with mov ss, reg.
4649 */
4650 RTUINT64U TmpRsp;
4651 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
4652 switch (enmEffOpSize)
4653 {
4654 case IEMMODE_16BIT:
4655 {
4656 uint16_t uSel;
4657 rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
4658 if (rcStrict == VINF_SUCCESS)
4659 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4660 break;
4661 }
4662
4663 case IEMMODE_32BIT:
4664 {
4665 uint32_t u32Value;
4666 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
4667 if (rcStrict == VINF_SUCCESS)
4668 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
4669 break;
4670 }
4671
4672 case IEMMODE_64BIT:
4673 {
4674 uint64_t u64Value;
4675 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
4676 if (rcStrict == VINF_SUCCESS)
4677 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
4678 break;
4679 }
4680 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4681 }
4682
4683 /*
4684 * Commit the stack on success.
4685 */
4686 if (rcStrict == VINF_SUCCESS)
4687 {
4688 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
4689 if (iSegReg == X86_SREG_SS)
4690 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4691 }
4692 return rcStrict;
4693}
4694
4695
4696/**
4697 * Implements lgs, lfs, les, lds & lss.
4698 */
4699IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
4700 uint16_t, uSel,
4701 uint64_t, offSeg,
4702 uint8_t, iSegReg,
4703 uint8_t, iGReg,
4704 IEMMODE, enmEffOpSize)
4705{
4706 /*
4707 * Use iemCImpl_LoadSReg to do the tricky segment register loading.
4708 */
4709 /** @todo verify and test that mov, pop and lXs works the segment
4710 * register loading in the exact same way. */
4711 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4712 if (rcStrict == VINF_SUCCESS)
4713 {
4714 switch (enmEffOpSize)
4715 {
4716 case IEMMODE_16BIT:
4717 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4718 break;
4719 case IEMMODE_32BIT:
4720 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4721 break;
4722 case IEMMODE_64BIT:
4723 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4724 break;
4725 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4726 }
4727 }
4728
4729 return rcStrict;
4730}
4731
4732
4733/**
4734 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
4735 *
4736 * @retval VINF_SUCCESS on success.
4737 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
4738 * @retval iemMemFetchSysU64 return value.
4739 *
4740 * @param pVCpu The cross context virtual CPU structure of the calling thread.
4741 * @param uSel The selector value.
4742 * @param fAllowSysDesc Whether system descriptors are OK or not.
4743 * @param pDesc Where to return the descriptor on success.
4744 */
4745static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPUCC pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
4746{
4747 pDesc->Long.au64[0] = 0;
4748 pDesc->Long.au64[1] = 0;
4749
4750 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
4751 return VINF_IEM_SELECTOR_NOT_OK;
4752
4753 /* Within the table limits? */
4754 RTGCPTR GCPtrBase;
4755 if (uSel & X86_SEL_LDT)
4756 {
4757 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
4758 if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
4759 || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
4760 return VINF_IEM_SELECTOR_NOT_OK;
4761 GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
4762 }
4763 else
4764 {
4765 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4766 if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
4767 return VINF_IEM_SELECTOR_NOT_OK;
4768 GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
4769 }
4770
4771 /* Fetch the descriptor. */
4772 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
4773 if (rcStrict != VINF_SUCCESS)
4774 return rcStrict;
4775 if (!pDesc->Legacy.Gen.u1DescType)
4776 {
4777 if (!fAllowSysDesc)
4778 return VINF_IEM_SELECTOR_NOT_OK;
4779 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4780 {
4781 rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
4782 if (rcStrict != VINF_SUCCESS)
4783 return rcStrict;
4784 }
4785
4786 }
4787
4788 return VINF_SUCCESS;
4789}
4790
4791
4792/**
4793 * Implements verr (fWrite = false) and verw (fWrite = true).
4794 */
4795IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
4796{
4797 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4798
4799 /** @todo figure whether the accessed bit is set or not. */
4800
4801 bool fAccessible = true;
4802 IEMSELDESC Desc;
4803 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4804 if (rcStrict == VINF_SUCCESS)
4805 {
4806 /* Check the descriptor, order doesn't matter much here. */
4807 if ( !Desc.Legacy.Gen.u1DescType
4808 || !Desc.Legacy.Gen.u1Present)
4809 fAccessible = false;
4810 else
4811 {
4812 if ( fWrite
4813 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
4814 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4815 fAccessible = false;
4816
4817 /** @todo testcase for the conforming behavior. */
4818 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4819 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4820 {
4821 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4822 fAccessible = false;
4823 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4824 fAccessible = false;
4825 }
4826 }
4827
4828 }
4829 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4830 fAccessible = false;
4831 else
4832 return rcStrict;
4833
4834 /* commit */
4835 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible;
4836
4837 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4838 return VINF_SUCCESS;
4839}
4840
4841
4842/**
4843 * Implements LAR and LSL with 64-bit operand size.
4844 *
4845 * @returns VINF_SUCCESS.
4846 * @param pu16Dst Pointer to the destination register.
4847 * @param uSel The selector to load details for.
4848 * @param fIsLar true = LAR, false = LSL.
4849 */
4850IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
4851{
4852 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4853
4854 /** @todo figure whether the accessed bit is set or not. */
4855
4856 bool fDescOk = true;
4857 IEMSELDESC Desc;
4858 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, true /*fAllowSysDesc*/, &Desc);
4859 if (rcStrict == VINF_SUCCESS)
4860 {
4861 /*
4862 * Check the descriptor type.
4863 */
4864 if (!Desc.Legacy.Gen.u1DescType)
4865 {
4866 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4867 {
4868 if (Desc.Long.Gen.u5Zeros)
4869 fDescOk = false;
4870 else
4871 switch (Desc.Long.Gen.u4Type)
4872 {
4873 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
4874 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
4875 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
4876 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
4877 break;
4878 case AMD64_SEL_TYPE_SYS_CALL_GATE:
4879 fDescOk = fIsLar;
4880 break;
4881 default:
4882 fDescOk = false;
4883 break;
4884 }
4885 }
4886 else
4887 {
4888 switch (Desc.Long.Gen.u4Type)
4889 {
4890 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4891 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4892 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4893 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
4894 case X86_SEL_TYPE_SYS_LDT:
4895 break;
4896 case X86_SEL_TYPE_SYS_286_CALL_GATE:
4897 case X86_SEL_TYPE_SYS_TASK_GATE:
4898 case X86_SEL_TYPE_SYS_386_CALL_GATE:
4899 fDescOk = fIsLar;
4900 break;
4901 default:
4902 fDescOk = false;
4903 break;
4904 }
4905 }
4906 }
4907 if (fDescOk)
4908 {
4909 /*
4910 * Check the RPL/DPL/CPL interaction..
4911 */
4912 /** @todo testcase for the conforming behavior. */
4913 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
4914 || !Desc.Legacy.Gen.u1DescType)
4915 {
4916 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4917 fDescOk = false;
4918 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4919 fDescOk = false;
4920 }
4921 }
4922
4923 if (fDescOk)
4924 {
4925 /*
4926 * All fine, start committing the result.
4927 */
4928 if (fIsLar)
4929 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
4930 else
4931 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
4932 }
4933
4934 }
4935 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4936 fDescOk = false;
4937 else
4938 return rcStrict;
4939
4940 /* commit flags value and advance rip. */
4941 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk;
4942 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4943
4944 return VINF_SUCCESS;
4945}
4946
4947
4948/**
4949 * Implements LAR and LSL with 16-bit operand size.
4950 *
4951 * @returns VINF_SUCCESS.
4952 * @param pu16Dst Pointer to the destination register.
4953 * @param u16Sel The selector to load details for.
4954 * @param fIsLar true = LAR, false = LSL.
4955 */
4956IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
4957{
4958 uint64_t u64TmpDst = *pu16Dst;
4959 IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
4960 *pu16Dst = u64TmpDst;
4961 return VINF_SUCCESS;
4962}
4963
4964
4965/**
4966 * Implements lgdt.
4967 *
4968 * @param iEffSeg The segment of the new gdtr contents
4969 * @param GCPtrEffSrc The address of the new gdtr contents.
4970 * @param enmEffOpSize The effective operand size.
4971 */
4972IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4973{
4974 if (pVCpu->iem.s.uCpl != 0)
4975 return iemRaiseGeneralProtectionFault0(pVCpu);
4976 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4977
4978 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4979 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4980 {
4981 Log(("lgdt: Guest intercept -> VM-exit\n"));
4982 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_LGDT, cbInstr);
4983 }
4984
4985 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
4986 {
4987 Log(("lgdt: Guest intercept -> #VMEXIT\n"));
4988 IEM_SVM_UPDATE_NRIP(pVCpu);
4989 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4990 }
4991
4992 /*
4993 * Fetch the limit and base address.
4994 */
4995 uint16_t cbLimit;
4996 RTGCPTR GCPtrBase;
4997 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4998 if (rcStrict == VINF_SUCCESS)
4999 {
5000 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
5001 || X86_IS_CANONICAL(GCPtrBase))
5002 {
5003 rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
5004 if (rcStrict == VINF_SUCCESS)
5005 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5006 }
5007 else
5008 {
5009 Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
5010 return iemRaiseGeneralProtectionFault0(pVCpu);
5011 }
5012 }
5013 return rcStrict;
5014}
5015
5016
5017/**
5018 * Implements sgdt.
5019 *
5020 * @param iEffSeg The segment where to store the gdtr content.
5021 * @param GCPtrEffDst The address where to store the gdtr content.
5022 */
5023IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5024{
5025 /*
5026 * Join paths with sidt.
5027 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
5028 * you really must know.
5029 */
5030 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5031 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5032 {
5033 Log(("sgdt: Guest intercept -> VM-exit\n"));
5034 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_SGDT, cbInstr);
5035 }
5036
5037 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS))
5038 {
5039 Log(("sgdt: Guest intercept -> #VMEXIT\n"));
5040 IEM_SVM_UPDATE_NRIP(pVCpu);
5041 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5042 }
5043
5044 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
5045 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst);
5046 if (rcStrict == VINF_SUCCESS)
5047 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5048 return rcStrict;
5049}
5050
5051
5052/**
5053 * Implements lidt.
5054 *
5055 * @param iEffSeg The segment of the new idtr contents
5056 * @param GCPtrEffSrc The address of the new idtr contents.
5057 * @param enmEffOpSize The effective operand size.
5058 */
5059IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
5060{
5061 if (pVCpu->iem.s.uCpl != 0)
5062 return iemRaiseGeneralProtectionFault0(pVCpu);
5063 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5064
5065 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
5066 {
5067 Log(("lidt: Guest intercept -> #VMEXIT\n"));
5068 IEM_SVM_UPDATE_NRIP(pVCpu);
5069 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5070 }
5071
5072 /*
5073 * Fetch the limit and base address.
5074 */
5075 uint16_t cbLimit;
5076 RTGCPTR GCPtrBase;
5077 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
5078 if (rcStrict == VINF_SUCCESS)
5079 {
5080 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
5081 || X86_IS_CANONICAL(GCPtrBase))
5082 {
5083 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
5084 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5085 }
5086 else
5087 {
5088 Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
5089 return iemRaiseGeneralProtectionFault0(pVCpu);
5090 }
5091 }
5092 return rcStrict;
5093}
5094
5095
5096/**
5097 * Implements sidt.
5098 *
5099 * @param iEffSeg The segment where to store the idtr content.
5100 * @param GCPtrEffDst The address where to store the idtr content.
5101 */
5102IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5103{
5104 /*
5105 * Join paths with sgdt.
5106 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
5107 * you really must know.
5108 */
5109 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS))
5110 {
5111 Log(("sidt: Guest intercept -> #VMEXIT\n"));
5112 IEM_SVM_UPDATE_NRIP(pVCpu);
5113 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5114 }
5115
5116 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR);
5117 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst);
5118 if (rcStrict == VINF_SUCCESS)
5119 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5120 return rcStrict;
5121}
5122
5123
5124/**
5125 * Implements lldt.
5126 *
5127 * @param uNewLdt The new LDT selector value.
5128 */
5129IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
5130{
5131 /*
5132 * Check preconditions.
5133 */
5134 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5135 {
5136 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
5137 return iemRaiseUndefinedOpcode(pVCpu);
5138 }
5139 if (pVCpu->iem.s.uCpl != 0)
5140 {
5141 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
5142 return iemRaiseGeneralProtectionFault0(pVCpu);
5143 }
5144 /* Nested-guest VMX intercept. */
5145 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5146 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5147 {
5148 Log(("lldt: Guest intercept -> VM-exit\n"));
5149 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LLDT, cbInstr);
5150 }
5151 if (uNewLdt & X86_SEL_LDT)
5152 {
5153 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
5154 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
5155 }
5156
5157 /*
5158 * Now, loading a NULL selector is easy.
5159 */
5160 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
5161 {
5162 /* Nested-guest SVM intercept. */
5163 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5164 {
5165 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5166 IEM_SVM_UPDATE_NRIP(pVCpu);
5167 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5168 }
5169
5170 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
5171 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
5172 CPUMSetGuestLDTR(pVCpu, uNewLdt);
5173 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
5174 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5175 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
5176 {
5177 /* AMD-V seems to leave the base and limit alone. */
5178 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
5179 }
5180 else
5181 {
5182 /* VT-x (Intel 3960x) seems to be doing the following. */
5183 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
5184 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
5185 pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX;
5186 }
5187
5188 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5189 return VINF_SUCCESS;
5190 }
5191
5192 /*
5193 * Read the descriptor.
5194 */
5195 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR);
5196 IEMSELDESC Desc;
5197 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
5198 if (rcStrict != VINF_SUCCESS)
5199 return rcStrict;
5200
5201 /* Check GPs first. */
5202 if (Desc.Legacy.Gen.u1DescType)
5203 {
5204 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5205 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5206 }
5207 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
5208 {
5209 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5210 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5211 }
5212 uint64_t u64Base;
5213 if (!IEM_IS_LONG_MODE(pVCpu))
5214 u64Base = X86DESC_BASE(&Desc.Legacy);
5215 else
5216 {
5217 if (Desc.Long.Gen.u5Zeros)
5218 {
5219 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
5220 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5221 }
5222
5223 u64Base = X86DESC64_BASE(&Desc.Long);
5224 if (!IEM_IS_CANONICAL(u64Base))
5225 {
5226 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
5227 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5228 }
5229 }
5230
5231 /* NP */
5232 if (!Desc.Legacy.Gen.u1Present)
5233 {
5234 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
5235 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
5236 }
5237
5238 /* Nested-guest SVM intercept. */
5239 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5240 {
5241 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5242 IEM_SVM_UPDATE_NRIP(pVCpu);
5243 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5244 }
5245
5246 /*
5247 * It checks out alright, update the registers.
5248 */
5249/** @todo check if the actual value is loaded or if the RPL is dropped */
5250 CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5251 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
5252 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5253 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5254 pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5255 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
5256
5257 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5258 return VINF_SUCCESS;
5259}
5260
5261
5262/**
5263 * Implements sldt GReg
5264 *
5265 * @param iGReg The general register to store the CRx value in.
5266 * @param enmEffOpSize The operand size.
5267 */
5268IEM_CIMPL_DEF_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5269{
5270 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5271 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5272 {
5273 Log(("sldt: Guest intercept -> VM-exit\n"));
5274 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_SLDT, cbInstr);
5275 }
5276
5277 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5278
5279 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5280 switch (enmEffOpSize)
5281 {
5282 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5283 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5284 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5285 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5286 }
5287 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5288 return VINF_SUCCESS;
5289}
5290
5291
5292/**
5293 * Implements sldt mem.
5294 *
5295 * @param iGReg The general register to store the CRx value in.
5296 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5297 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5298 */
5299IEM_CIMPL_DEF_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5300{
5301 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5302
5303 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5304 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.ldtr.Sel);
5305 if (rcStrict == VINF_SUCCESS)
5306 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5307 return rcStrict;
5308}
5309
5310
5311/**
5312 * Implements ltr.
5313 *
5314 * @param uNewTr The new TSS selector value.
5315 */
5316IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
5317{
5318 /*
5319 * Check preconditions.
5320 */
5321 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5322 {
5323 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
5324 return iemRaiseUndefinedOpcode(pVCpu);
5325 }
5326 if (pVCpu->iem.s.uCpl != 0)
5327 {
5328 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
5329 return iemRaiseGeneralProtectionFault0(pVCpu);
5330 }
5331 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5332 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5333 {
5334 Log(("ltr: Guest intercept -> VM-exit\n"));
5335 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LTR, cbInstr);
5336 }
5337 if (uNewTr & X86_SEL_LDT)
5338 {
5339 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
5340 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
5341 }
5342 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
5343 {
5344 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
5345 return iemRaiseGeneralProtectionFault0(pVCpu);
5346 }
5347 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
5348 {
5349 Log(("ltr: Guest intercept -> #VMEXIT\n"));
5350 IEM_SVM_UPDATE_NRIP(pVCpu);
5351 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5352 }
5353
5354 /*
5355 * Read the descriptor.
5356 */
5357 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR);
5358 IEMSELDESC Desc;
5359 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
5360 if (rcStrict != VINF_SUCCESS)
5361 return rcStrict;
5362
5363 /* Check GPs first. */
5364 if (Desc.Legacy.Gen.u1DescType)
5365 {
5366 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5367 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5368 }
5369 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
5370 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
5371 || IEM_IS_LONG_MODE(pVCpu)) )
5372 {
5373 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5374 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5375 }
5376 uint64_t u64Base;
5377 if (!IEM_IS_LONG_MODE(pVCpu))
5378 u64Base = X86DESC_BASE(&Desc.Legacy);
5379 else
5380 {
5381 if (Desc.Long.Gen.u5Zeros)
5382 {
5383 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
5384 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5385 }
5386
5387 u64Base = X86DESC64_BASE(&Desc.Long);
5388 if (!IEM_IS_CANONICAL(u64Base))
5389 {
5390 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
5391 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5392 }
5393 }
5394
5395 /* NP */
5396 if (!Desc.Legacy.Gen.u1Present)
5397 {
5398 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
5399 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
5400 }
5401
5402 /*
5403 * Set it busy.
5404 * Note! Intel says this should lock down the whole descriptor, but we'll
5405 * restrict our selves to 32-bit for now due to lack of inline
5406 * assembly and such.
5407 */
5408 void *pvDesc;
5409 rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
5410 if (rcStrict != VINF_SUCCESS)
5411 return rcStrict;
5412 switch ((uintptr_t)pvDesc & 3)
5413 {
5414 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
5415 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
5416 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
5417 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
5418 }
5419 rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
5420 if (rcStrict != VINF_SUCCESS)
5421 return rcStrict;
5422 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
5423
5424 /*
5425 * It checks out alright, update the registers.
5426 */
5427/** @todo check if the actual value is loaded or if the RPL is dropped */
5428 CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5429 pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
5430 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
5431 pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5432 pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5433 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
5434
5435 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5436 return VINF_SUCCESS;
5437}
5438
5439
5440/**
5441 * Implements str GReg
5442 *
5443 * @param iGReg The general register to store the CRx value in.
5444 * @param enmEffOpSize The operand size.
5445 */
5446IEM_CIMPL_DEF_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5447{
5448 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5449 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5450 {
5451 Log(("str_reg: Guest intercept -> VM-exit\n"));
5452 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5453 }
5454
5455 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5456
5457 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5458 switch (enmEffOpSize)
5459 {
5460 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5461 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5462 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5463 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5464 }
5465 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5466 return VINF_SUCCESS;
5467}
5468
5469
5470/**
5471 * Implements str mem.
5472 *
5473 * @param iGReg The general register to store the CRx value in.
5474 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5475 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5476 */
5477IEM_CIMPL_DEF_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5478{
5479 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5480 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5481 {
5482 Log(("str_mem: Guest intercept -> VM-exit\n"));
5483 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5484 }
5485
5486 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5487
5488 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5489 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.tr.Sel);
5490 if (rcStrict == VINF_SUCCESS)
5491 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5492 return rcStrict;
5493}
5494
5495
5496/**
5497 * Implements mov GReg,CRx.
5498 *
5499 * @param iGReg The general register to store the CRx value in.
5500 * @param iCrReg The CRx register to read (valid).
5501 */
5502IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
5503{
5504 if (pVCpu->iem.s.uCpl != 0)
5505 return iemRaiseGeneralProtectionFault0(pVCpu);
5506 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5507
5508 if (IEM_SVM_IS_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
5509 {
5510 Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg));
5511 IEM_SVM_UPDATE_NRIP(pVCpu);
5512 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
5513 }
5514
5515 /* Read it. */
5516 uint64_t crX;
5517 switch (iCrReg)
5518 {
5519 case 0:
5520 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5521 crX = pVCpu->cpum.GstCtx.cr0;
5522 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
5523 crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
5524 break;
5525 case 2:
5526 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2);
5527 crX = pVCpu->cpum.GstCtx.cr2;
5528 break;
5529 case 3:
5530 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5531 crX = pVCpu->cpum.GstCtx.cr3;
5532 break;
5533 case 4:
5534 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5535 crX = pVCpu->cpum.GstCtx.cr4;
5536 break;
5537 case 8:
5538 {
5539 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5540#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5541 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5542 {
5543 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr8(pVCpu, iGReg, cbInstr);
5544 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5545 return rcStrict;
5546
5547 /*
5548 * If the Mov-from-CR8 doesn't cause a VM-exit, bits 7:4 of the VTPR is copied
5549 * to bits 0:3 of the destination operand. Bits 63:4 of the destination operand
5550 * are cleared.
5551 *
5552 * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5553 */
5554 if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5555 {
5556 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5557 crX = (uTpr >> 4) & 0xf;
5558 break;
5559 }
5560 }
5561#endif
5562#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5563 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5564 {
5565 PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl;
5566 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5567 {
5568 crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf;
5569 break;
5570 }
5571 }
5572#endif
5573 uint8_t uTpr;
5574 int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
5575 if (RT_SUCCESS(rc))
5576 crX = uTpr >> 4;
5577 else
5578 crX = 0;
5579 break;
5580 }
5581 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5582 }
5583
5584#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5585 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5586 {
5587 switch (iCrReg)
5588 {
5589 /* CR0/CR4 reads are subject to masking when in VMX non-root mode. */
5590 case 0: crX = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u); break;
5591 case 4: crX = CPUMGetGuestVmxMaskedCr4(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr4Mask.u); break;
5592
5593 case 3:
5594 {
5595 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr3(pVCpu, iGReg, cbInstr);
5596 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5597 return rcStrict;
5598 break;
5599 }
5600 }
5601 }
5602#endif
5603
5604 /* Store it. */
5605 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5606 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
5607 else
5608 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
5609
5610 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5611 return VINF_SUCCESS;
5612}
5613
5614
5615/**
5616 * Implements smsw GReg.
5617 *
5618 * @param iGReg The general register to store the CRx value in.
5619 * @param enmEffOpSize The operand size.
5620 */
5621IEM_CIMPL_DEF_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5622{
5623 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5624
5625#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5626 uint64_t u64MaskedCr0;
5627 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5628 u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
5629 else
5630 u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u);
5631 uint64_t const u64GuestCr0 = u64MaskedCr0;
5632#else
5633 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5634#endif
5635
5636 switch (enmEffOpSize)
5637 {
5638 case IEMMODE_16BIT:
5639 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5640 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0;
5641 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5642 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xffe0;
5643 else
5644 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xfff0;
5645 break;
5646
5647 case IEMMODE_32BIT:
5648 *(uint32_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)u64GuestCr0;
5649 break;
5650
5651 case IEMMODE_64BIT:
5652 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = u64GuestCr0;
5653 break;
5654
5655 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5656 }
5657
5658 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5659 return VINF_SUCCESS;
5660}
5661
5662
5663/**
5664 * Implements smsw mem.
5665 *
5666 * @param iGReg The general register to store the CR0 value in.
5667 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5668 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5669 */
5670IEM_CIMPL_DEF_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5671{
5672 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5673
5674#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5675 uint64_t u64MaskedCr0;
5676 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5677 u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
5678 else
5679 u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u);
5680 uint64_t const u64GuestCr0 = u64MaskedCr0;
5681#else
5682 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5683#endif
5684
5685 uint16_t u16Value;
5686 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5687 u16Value = (uint16_t)u64GuestCr0;
5688 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5689 u16Value = (uint16_t)u64GuestCr0 | 0xffe0;
5690 else
5691 u16Value = (uint16_t)u64GuestCr0 | 0xfff0;
5692
5693 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, u16Value);
5694 if (rcStrict == VINF_SUCCESS)
5695 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5696 return rcStrict;
5697}
5698
5699
5700/**
5701 * Helper for mapping CR3 and PAE PDPEs for 'mov CRx,GReg'.
5702 */
5703#define IEM_MAP_PAE_PDPES_AT_CR3_RET(a_pVCpu, a_iCrReg, a_uCr3) \
5704 do \
5705 { \
5706 int const rcX = PGMGstMapPaePdpesAtCr3(a_pVCpu, a_uCr3); \
5707 if (RT_SUCCESS(rcX)) \
5708 { /* likely */ } \
5709 else \
5710 { \
5711 Log(("iemCImpl_load_Cr%#x: Trying to load invalid PAE PDPEs\n", a_iCrReg)); \
5712 return iemRaiseGeneralProtectionFault0(a_pVCpu); \
5713 } \
5714 } while (0)
5715
5716
5717/**
5718 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
5719 *
5720 * @param iCrReg The CRx register to write (valid).
5721 * @param uNewCrX The new value.
5722 * @param enmAccessCrx The instruction that caused the CrX load.
5723 * @param iGReg The general register in case of a 'mov CRx,GReg'
5724 * instruction.
5725 */
5726IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
5727{
5728 VBOXSTRICTRC rcStrict;
5729 int rc;
5730#ifndef VBOX_WITH_NESTED_HWVIRT_SVM
5731 RT_NOREF2(iGReg, enmAccessCrX);
5732#endif
5733
5734 /*
5735 * Try store it.
5736 * Unfortunately, CPUM only does a tiny bit of the work.
5737 */
5738 switch (iCrReg)
5739 {
5740 case 0:
5741 {
5742 /*
5743 * Perform checks.
5744 */
5745 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5746
5747 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0;
5748 uint32_t const fValid = CPUMGetGuestCR0ValidMask();
5749
5750 /* ET is hardcoded on 486 and later. */
5751 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
5752 uNewCrX |= X86_CR0_ET;
5753 /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
5754 else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
5755 {
5756 uNewCrX &= fValid;
5757 uNewCrX |= X86_CR0_ET;
5758 }
5759 else
5760 uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
5761
5762 /* Check for reserved bits. */
5763 if (uNewCrX & ~(uint64_t)fValid)
5764 {
5765 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5766 return iemRaiseGeneralProtectionFault0(pVCpu);
5767 }
5768
5769 /* Check for invalid combinations. */
5770 if ( (uNewCrX & X86_CR0_PG)
5771 && !(uNewCrX & X86_CR0_PE) )
5772 {
5773 Log(("Trying to set CR0.PG without CR0.PE\n"));
5774 return iemRaiseGeneralProtectionFault0(pVCpu);
5775 }
5776
5777 if ( !(uNewCrX & X86_CR0_CD)
5778 && (uNewCrX & X86_CR0_NW) )
5779 {
5780 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
5781 return iemRaiseGeneralProtectionFault0(pVCpu);
5782 }
5783
5784 if ( !(uNewCrX & X86_CR0_PG)
5785 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE))
5786 {
5787 Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n"));
5788 return iemRaiseGeneralProtectionFault0(pVCpu);
5789 }
5790
5791 /* Long mode consistency checks. */
5792 if ( (uNewCrX & X86_CR0_PG)
5793 && !(uOldCrX & X86_CR0_PG)
5794 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5795 {
5796 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE))
5797 {
5798 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
5799 return iemRaiseGeneralProtectionFault0(pVCpu);
5800 }
5801 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long)
5802 {
5803 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
5804 return iemRaiseGeneralProtectionFault0(pVCpu);
5805 }
5806 }
5807
5808 /* Check for bits that must remain set or cleared in VMX operation,
5809 see Intel spec. 23.8 "Restrictions on VMX operation". */
5810 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5811 {
5812 uint64_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
5813 if ((uNewCrX & uCr0Fixed0) != uCr0Fixed0)
5814 {
5815 Log(("Trying to clear reserved CR0 bits in VMX operation: NewCr0=%#llx MB1=%#llx\n", uNewCrX, uCr0Fixed0));
5816 return iemRaiseGeneralProtectionFault0(pVCpu);
5817 }
5818
5819 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5820 if (uNewCrX & ~uCr0Fixed1)
5821 {
5822 Log(("Trying to set reserved CR0 bits in VMX operation: NewCr0=%#llx MB0=%#llx\n", uNewCrX, uCr0Fixed1));
5823 return iemRaiseGeneralProtectionFault0(pVCpu);
5824 }
5825 }
5826
5827 /*
5828 * SVM nested-guest CR0 write intercepts.
5829 */
5830 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
5831 {
5832 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5833 IEM_SVM_UPDATE_NRIP(pVCpu);
5834 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
5835 }
5836 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5837 {
5838 /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
5839 if ( enmAccessCrX == IEMACCESSCRX_LMSW
5840 || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
5841 {
5842 Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
5843 Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg));
5844 IEM_SVM_UPDATE_NRIP(pVCpu);
5845 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg);
5846 }
5847 }
5848
5849 /*
5850 * Change EFER.LMA if entering or leaving long mode.
5851 */
5852 uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER;
5853 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
5854 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5855 {
5856 if (uNewCrX & X86_CR0_PG)
5857 NewEFER |= MSR_K6_EFER_LMA;
5858 else
5859 NewEFER &= ~MSR_K6_EFER_LMA;
5860
5861 CPUMSetGuestEFER(pVCpu, NewEFER);
5862 Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER);
5863 }
5864
5865 /*
5866 * Inform PGM.
5867 */
5868 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE | X86_CR0_CD | X86_CR0_NW))
5869 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE | X86_CR0_CD | X86_CR0_NW)) )
5870 {
5871 bool fPdpesMapped;
5872 if ( enmAccessCrX != IEMACCESSCRX_MOV_CRX
5873 || !CPUMIsPaePagingEnabled(uNewCrX, pVCpu->cpum.GstCtx.cr4, NewEFER)
5874 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5875 fPdpesMapped = false;
5876 else
5877 {
5878 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, pVCpu->cpum.GstCtx.cr3);
5879 fPdpesMapped = true;
5880 }
5881 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */, fPdpesMapped);
5882 AssertRCReturn(rc, rc);
5883 /* ignore informational status codes */
5884 }
5885
5886 /*
5887 * Change CR0.
5888 */
5889 CPUMSetGuestCR0(pVCpu, uNewCrX);
5890 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX);
5891
5892 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
5893 false /* fForce */);
5894 break;
5895 }
5896
5897 /*
5898 * CR2 can be changed without any restrictions.
5899 */
5900 case 2:
5901 {
5902 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
5903 {
5904 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5905 IEM_SVM_UPDATE_NRIP(pVCpu);
5906 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
5907 }
5908 pVCpu->cpum.GstCtx.cr2 = uNewCrX;
5909 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2;
5910 rcStrict = VINF_SUCCESS;
5911 break;
5912 }
5913
5914 /*
5915 * CR3 is relatively simple, although AMD and Intel have different
5916 * accounts of how setting reserved bits are handled. We take intel's
5917 * word for the lower bits and AMD's for the high bits (63:52). The
5918 * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
5919 * on this.
5920 */
5921 /** @todo Testcase: Setting reserved bits in CR3, especially before
5922 * enabling paging. */
5923 case 3:
5924 {
5925 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5926
5927 /* Bit 63 being clear in the source operand with PCIDE indicates no invalidations are required. */
5928 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)
5929 && (uNewCrX & RT_BIT_64(63)))
5930 {
5931 /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10
5932 * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see
5933 * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and
5934 * Paging-Structure Caches". */
5935 uNewCrX &= ~RT_BIT_64(63);
5936 }
5937
5938 /* Check / mask the value. */
5939#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
5940 /* See Intel spec. 27.2.2 "EPT Translation Mechanism" footnote. */
5941 uint64_t const fInvPhysMask = !CPUMIsGuestVmxEptPagingEnabledEx(IEM_GET_CTX(pVCpu))
5942 ? (UINT64_MAX << IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
5943 : (~X86_CR3_EPT_PAGE_MASK & X86_PAGE_4K_BASE_MASK);
5944#else
5945 uint64_t const fInvPhysMask = UINT64_C(0xfff0000000000000);
5946#endif
5947 if (uNewCrX & fInvPhysMask)
5948 {
5949 /** @todo Should we raise this only for 64-bit mode like Intel claims? AMD is
5950 * very vague in this area. As mentioned above, need testcase on real
5951 * hardware... Sigh. */
5952 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
5953 return iemRaiseGeneralProtectionFault0(pVCpu);
5954 }
5955
5956 uint64_t fValid;
5957 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
5958 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME))
5959 {
5960 /** @todo Redundant? This value has already been validated above. */
5961 fValid = UINT64_C(0x000fffffffffffff);
5962 }
5963 else
5964 fValid = UINT64_C(0xffffffff);
5965 if (uNewCrX & ~fValid)
5966 {
5967 Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
5968 uNewCrX, uNewCrX & ~fValid));
5969 uNewCrX &= fValid;
5970 }
5971
5972 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
5973 {
5974 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5975 IEM_SVM_UPDATE_NRIP(pVCpu);
5976 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
5977 }
5978
5979 /* Inform PGM. */
5980 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
5981 {
5982 bool fPdpesMapped;
5983 if ( !CPUMIsGuestInPAEModeEx(IEM_GET_CTX(pVCpu))
5984 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5985 fPdpesMapped = false;
5986 else
5987 {
5988 Assert(enmAccessCrX == IEMACCESSCRX_MOV_CRX);
5989 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, uNewCrX);
5990 fPdpesMapped = true;
5991 }
5992 rc = PGMFlushTLB(pVCpu, uNewCrX, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE), fPdpesMapped);
5993 AssertRCReturn(rc, rc);
5994 /* ignore informational status codes */
5995 }
5996
5997 /* Make the change. */
5998 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
5999 AssertRCSuccessReturn(rc, rc);
6000
6001 rcStrict = VINF_SUCCESS;
6002 break;
6003 }
6004
6005 /*
6006 * CR4 is a bit more tedious as there are bits which cannot be cleared
6007 * under some circumstances and such.
6008 */
6009 case 4:
6010 {
6011 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6012 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4;
6013
6014 /* Reserved bits. */
6015 uint32_t const fValid = CPUMGetGuestCR4ValidMask(pVCpu->CTX_SUFF(pVM));
6016 if (uNewCrX & ~(uint64_t)fValid)
6017 {
6018 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
6019 return iemRaiseGeneralProtectionFault0(pVCpu);
6020 }
6021
6022 bool const fPcide = !(uOldCrX & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE);
6023 bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
6024
6025 /* PCIDE check. */
6026 if ( fPcide
6027 && ( !fLongMode
6028 || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))))
6029 {
6030 Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))));
6031 return iemRaiseGeneralProtectionFault0(pVCpu);
6032 }
6033
6034 /* PAE check. */
6035 if ( fLongMode
6036 && (uOldCrX & X86_CR4_PAE)
6037 && !(uNewCrX & X86_CR4_PAE))
6038 {
6039 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
6040 return iemRaiseGeneralProtectionFault0(pVCpu);
6041 }
6042
6043 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
6044 {
6045 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6046 IEM_SVM_UPDATE_NRIP(pVCpu);
6047 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
6048 }
6049
6050 /* Check for bits that must remain set or cleared in VMX operation,
6051 see Intel spec. 23.8 "Restrictions on VMX operation". */
6052 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
6053 {
6054 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
6055 if ((uNewCrX & uCr4Fixed0) != uCr4Fixed0)
6056 {
6057 Log(("Trying to clear reserved CR4 bits in VMX operation: NewCr4=%#llx MB1=%#llx\n", uNewCrX, uCr4Fixed0));
6058 return iemRaiseGeneralProtectionFault0(pVCpu);
6059 }
6060
6061 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
6062 if (uNewCrX & ~uCr4Fixed1)
6063 {
6064 Log(("Trying to set reserved CR4 bits in VMX operation: NewCr4=%#llx MB0=%#llx\n", uNewCrX, uCr4Fixed1));
6065 return iemRaiseGeneralProtectionFault0(pVCpu);
6066 }
6067 }
6068
6069 /*
6070 * Notify PGM.
6071 */
6072 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */))
6073 {
6074 bool fPdpesMapped;
6075 if ( !CPUMIsPaePagingEnabled(pVCpu->cpum.GstCtx.cr0, uNewCrX, pVCpu->cpum.GstCtx.msrEFER)
6076 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6077 fPdpesMapped = false;
6078 else
6079 {
6080 Assert(enmAccessCrX == IEMACCESSCRX_MOV_CRX);
6081 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, pVCpu->cpum.GstCtx.cr3);
6082 fPdpesMapped = true;
6083 }
6084 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */, fPdpesMapped);
6085 AssertRCReturn(rc, rc);
6086 /* ignore informational status codes */
6087 }
6088
6089 /*
6090 * Change it.
6091 */
6092 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
6093 AssertRCSuccessReturn(rc, rc);
6094 Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX);
6095
6096 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
6097 false /* fForce */);
6098 break;
6099 }
6100
6101 /*
6102 * CR8 maps to the APIC TPR.
6103 */
6104 case 8:
6105 {
6106 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
6107 if (uNewCrX & ~(uint64_t)0xf)
6108 {
6109 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
6110 return iemRaiseGeneralProtectionFault0(pVCpu);
6111 }
6112
6113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6114 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6115 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
6116 {
6117 /*
6118 * If the Mov-to-CR8 doesn't cause a VM-exit, bits 0:3 of the source operand
6119 * is copied to bits 7:4 of the VTPR. Bits 0:3 and bits 31:8 of the VTPR are
6120 * cleared. Following this the processor performs TPR virtualization.
6121 *
6122 * However, we should not perform TPR virtualization immediately here but
6123 * after this instruction has completed.
6124 *
6125 * See Intel spec. 29.3 "Virtualizing CR8-based TPR Accesses"
6126 * See Intel spec. 27.1 "Architectural State Before A VM-exit"
6127 */
6128 uint32_t const uTpr = (uNewCrX & 0xf) << 4;
6129 Log(("iemCImpl_load_Cr%#x: Virtualizing TPR (%#x) write\n", iCrReg, uTpr));
6130 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
6131 iemVmxVirtApicSetPendingWrite(pVCpu, XAPIC_OFF_TPR);
6132 rcStrict = VINF_SUCCESS;
6133 break;
6134 }
6135#endif
6136
6137#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6138 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6139 {
6140 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
6141 {
6142 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6143 IEM_SVM_UPDATE_NRIP(pVCpu);
6144 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
6145 }
6146
6147 pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl.IntCtrl.n.u8VTPR = uNewCrX;
6148 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
6149 {
6150 rcStrict = VINF_SUCCESS;
6151 break;
6152 }
6153 }
6154#endif
6155 uint8_t const u8Tpr = (uint8_t)uNewCrX << 4;
6156 APICSetTpr(pVCpu, u8Tpr);
6157 rcStrict = VINF_SUCCESS;
6158 break;
6159 }
6160
6161 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6162 }
6163
6164 /*
6165 * Advance the RIP on success.
6166 */
6167 if (RT_SUCCESS(rcStrict))
6168 {
6169 if (rcStrict != VINF_SUCCESS)
6170 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
6171 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6172 }
6173
6174 return rcStrict;
6175}
6176
6177
6178/**
6179 * Implements mov CRx,GReg.
6180 *
6181 * @param iCrReg The CRx register to write (valid).
6182 * @param iGReg The general register to load the CRx value from.
6183 */
6184IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
6185{
6186 if (pVCpu->iem.s.uCpl != 0)
6187 return iemRaiseGeneralProtectionFault0(pVCpu);
6188 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6189
6190 /*
6191 * Read the new value from the source register and call common worker.
6192 */
6193 uint64_t uNewCrX;
6194 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6195 uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
6196 else
6197 uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
6198
6199#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6200 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6201 {
6202 VBOXSTRICTRC rcStrict = VINF_VMX_INTERCEPT_NOT_ACTIVE;
6203 switch (iCrReg)
6204 {
6205 case 0:
6206 case 4: rcStrict = iemVmxVmexitInstrMovToCr0Cr4(pVCpu, iCrReg, &uNewCrX, iGReg, cbInstr); break;
6207 case 3: rcStrict = iemVmxVmexitInstrMovToCr3(pVCpu, uNewCrX, iGReg, cbInstr); break;
6208 case 8: rcStrict = iemVmxVmexitInstrMovToCr8(pVCpu, iGReg, cbInstr); break;
6209 }
6210 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6211 return rcStrict;
6212 }
6213#endif
6214
6215 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
6216}
6217
6218
6219/**
6220 * Implements 'LMSW r/m16'
6221 *
6222 * @param u16NewMsw The new value.
6223 * @param GCPtrEffDst The guest-linear address of the source operand in case
6224 * of a memory operand. For register operand, pass
6225 * NIL_RTGCPTR.
6226 */
6227IEM_CIMPL_DEF_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst)
6228{
6229 if (pVCpu->iem.s.uCpl != 0)
6230 return iemRaiseGeneralProtectionFault0(pVCpu);
6231 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6232 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6233
6234#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6235 /* Check nested-guest VMX intercept and get updated MSW if there's no VM-exit. */
6236 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6237 {
6238 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrLmsw(pVCpu, pVCpu->cpum.GstCtx.cr0, &u16NewMsw, GCPtrEffDst, cbInstr);
6239 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6240 return rcStrict;
6241 }
6242#else
6243 RT_NOREF_PV(GCPtrEffDst);
6244#endif
6245
6246 /*
6247 * Compose the new CR0 value and call common worker.
6248 */
6249 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6250 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6251 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
6252}
6253
6254
6255/**
6256 * Implements 'CLTS'.
6257 */
6258IEM_CIMPL_DEF_0(iemCImpl_clts)
6259{
6260 if (pVCpu->iem.s.uCpl != 0)
6261 return iemRaiseGeneralProtectionFault0(pVCpu);
6262
6263 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6264 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0;
6265 uNewCr0 &= ~X86_CR0_TS;
6266
6267#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6268 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6269 {
6270 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrClts(pVCpu, cbInstr);
6271 if (rcStrict == VINF_VMX_MODIFIES_BEHAVIOR)
6272 uNewCr0 |= (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS);
6273 else if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6274 return rcStrict;
6275 }
6276#endif
6277
6278 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
6279}
6280
6281
6282/**
6283 * Implements mov GReg,DRx.
6284 *
6285 * @param iGReg The general register to store the DRx value in.
6286 * @param iDrReg The DRx register to read (0-7).
6287 */
6288IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
6289{
6290#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6291 /*
6292 * Check nested-guest VMX intercept.
6293 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6294 * over CPL and CR4.DE and even DR4/DR5 checks.
6295 *
6296 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6297 */
6298 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6299 {
6300 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_FROM_DRX, iDrReg, iGReg, cbInstr);
6301 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6302 return rcStrict;
6303 }
6304#endif
6305
6306 /*
6307 * Check preconditions.
6308 */
6309 /* Raise GPs. */
6310 if (pVCpu->iem.s.uCpl != 0)
6311 return iemRaiseGeneralProtectionFault0(pVCpu);
6312 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6313 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR0);
6314
6315 if ( (iDrReg == 4 || iDrReg == 5)
6316 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) )
6317 {
6318 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
6319 return iemRaiseGeneralProtectionFault0(pVCpu);
6320 }
6321
6322 /* Raise #DB if general access detect is enabled. */
6323 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6324 {
6325 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
6326 return iemRaiseDebugException(pVCpu);
6327 }
6328
6329 /*
6330 * Read the debug register and store it in the specified general register.
6331 */
6332 uint64_t drX;
6333 switch (iDrReg)
6334 {
6335 case 0:
6336 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6337 drX = pVCpu->cpum.GstCtx.dr[0];
6338 break;
6339 case 1:
6340 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6341 drX = pVCpu->cpum.GstCtx.dr[1];
6342 break;
6343 case 2:
6344 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6345 drX = pVCpu->cpum.GstCtx.dr[2];
6346 break;
6347 case 3:
6348 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6349 drX = pVCpu->cpum.GstCtx.dr[3];
6350 break;
6351 case 6:
6352 case 4:
6353 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6354 drX = pVCpu->cpum.GstCtx.dr[6];
6355 drX |= X86_DR6_RA1_MASK;
6356 drX &= ~X86_DR6_RAZ_MASK;
6357 break;
6358 case 7:
6359 case 5:
6360 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6361 drX = pVCpu->cpum.GstCtx.dr[7];
6362 drX |=X86_DR7_RA1_MASK;
6363 drX &= ~X86_DR7_RAZ_MASK;
6364 break;
6365 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6366 }
6367
6368 /** @todo SVM nested-guest intercept for DR8-DR15? */
6369 /*
6370 * Check for any SVM nested-guest intercepts for the DRx read.
6371 */
6372 if (IEM_SVM_IS_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
6373 {
6374 Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
6375 IEM_SVM_UPDATE_NRIP(pVCpu);
6376 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
6377 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6378 }
6379
6380 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6381 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
6382 else
6383 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
6384
6385 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6386 return VINF_SUCCESS;
6387}
6388
6389
6390/**
6391 * Implements mov DRx,GReg.
6392 *
6393 * @param iDrReg The DRx register to write (valid).
6394 * @param iGReg The general register to load the DRx value from.
6395 */
6396IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
6397{
6398#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6399 /*
6400 * Check nested-guest VMX intercept.
6401 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6402 * over CPL and CR4.DE and even DR4/DR5 checks.
6403 *
6404 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6405 */
6406 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6407 {
6408 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_TO_DRX, iDrReg, iGReg, cbInstr);
6409 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6410 return rcStrict;
6411 }
6412#endif
6413
6414 /*
6415 * Check preconditions.
6416 */
6417 if (pVCpu->iem.s.uCpl != 0)
6418 return iemRaiseGeneralProtectionFault0(pVCpu);
6419 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6420 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR4);
6421
6422 if (iDrReg == 4 || iDrReg == 5)
6423 {
6424 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
6425 {
6426 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
6427 return iemRaiseGeneralProtectionFault0(pVCpu);
6428 }
6429 iDrReg += 2;
6430 }
6431
6432 /* Raise #DB if general access detect is enabled. */
6433 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
6434 * \#GP? */
6435 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6436 {
6437 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
6438 return iemRaiseDebugException(pVCpu);
6439 }
6440
6441 /*
6442 * Read the new value from the source register.
6443 */
6444 uint64_t uNewDrX;
6445 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6446 uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
6447 else
6448 uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
6449
6450 /*
6451 * Adjust it.
6452 */
6453 switch (iDrReg)
6454 {
6455 case 0:
6456 case 1:
6457 case 2:
6458 case 3:
6459 /* nothing to adjust */
6460 break;
6461
6462 case 6:
6463 if (uNewDrX & X86_DR6_MBZ_MASK)
6464 {
6465 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6466 return iemRaiseGeneralProtectionFault0(pVCpu);
6467 }
6468 uNewDrX |= X86_DR6_RA1_MASK;
6469 uNewDrX &= ~X86_DR6_RAZ_MASK;
6470 break;
6471
6472 case 7:
6473 if (uNewDrX & X86_DR7_MBZ_MASK)
6474 {
6475 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6476 return iemRaiseGeneralProtectionFault0(pVCpu);
6477 }
6478 uNewDrX |= X86_DR7_RA1_MASK;
6479 uNewDrX &= ~X86_DR7_RAZ_MASK;
6480 break;
6481
6482 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6483 }
6484
6485 /** @todo SVM nested-guest intercept for DR8-DR15? */
6486 /*
6487 * Check for any SVM nested-guest intercepts for the DRx write.
6488 */
6489 if (IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
6490 {
6491 Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
6492 IEM_SVM_UPDATE_NRIP(pVCpu);
6493 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
6494 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6495 }
6496
6497 /*
6498 * Do the actual setting.
6499 */
6500 if (iDrReg < 4)
6501 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6502 else if (iDrReg == 6)
6503 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6504
6505 int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
6506 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
6507
6508 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6509 return VINF_SUCCESS;
6510}
6511
6512
6513/**
6514 * Implements mov GReg,TRx.
6515 *
6516 * @param iGReg The general register to store the
6517 * TRx value in.
6518 * @param iTrReg The TRx register to read (6/7).
6519 */
6520IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg)
6521{
6522 /*
6523 * Check preconditions. NB: This instruction is 386/486 only.
6524 */
6525
6526 /* Raise GPs. */
6527 if (pVCpu->iem.s.uCpl != 0)
6528 return iemRaiseGeneralProtectionFault0(pVCpu);
6529 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6530
6531 if (iTrReg < 6 || iTrReg > 7)
6532 {
6533 /** @todo Do Intel CPUs reject this or are the TRs aliased? */
6534 Log(("mov r%u,tr%u: invalid register -> #GP(0)\n", iGReg, iTrReg));
6535 return iemRaiseGeneralProtectionFault0(pVCpu);
6536 }
6537
6538 /*
6539 * Read the test register and store it in the specified general register.
6540 * This is currently a dummy implementation that only exists to satisfy
6541 * old debuggers like WDEB386 or OS/2 KDB which unconditionally read the
6542 * TR6/TR7 registers. Software which actually depends on the TR values
6543 * (different on 386/486) is exceedingly rare.
6544 */
6545 uint64_t trX;
6546 switch (iTrReg)
6547 {
6548 case 6:
6549 trX = 0; /* Currently a dummy. */
6550 break;
6551 case 7:
6552 trX = 0; /* Currently a dummy. */
6553 break;
6554 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6555 }
6556
6557 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)trX;
6558
6559 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6560 return VINF_SUCCESS;
6561}
6562
6563
6564/**
6565 * Implements mov TRx,GReg.
6566 *
6567 * @param iTrReg The TRx register to write (valid).
6568 * @param iGReg The general register to load the TRx
6569 * value from.
6570 */
6571IEM_CIMPL_DEF_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg)
6572{
6573 /*
6574 * Check preconditions. NB: This instruction is 386/486 only.
6575 */
6576
6577 /* Raise GPs. */
6578 if (pVCpu->iem.s.uCpl != 0)
6579 return iemRaiseGeneralProtectionFault0(pVCpu);
6580 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6581
6582 if (iTrReg < 6 || iTrReg > 7)
6583 {
6584 /** @todo Do Intel CPUs reject this or are the TRs aliased? */
6585 Log(("mov r%u,tr%u: invalid register -> #GP(0)\n", iGReg, iTrReg));
6586 return iemRaiseGeneralProtectionFault0(pVCpu);
6587 }
6588
6589 /*
6590 * Read the new value from the source register.
6591 */
6592 uint64_t uNewTrX;
6593 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6594 uNewTrX = iemGRegFetchU64(pVCpu, iGReg);
6595 else
6596 uNewTrX = iemGRegFetchU32(pVCpu, iGReg);
6597
6598 /*
6599 * Here we would do the actual setting if this weren't a dummy implementation.
6600 * This is currently a dummy implementation that only exists to prevent
6601 * old debuggers like WDEB386 or OS/2 KDB from crashing.
6602 */
6603 RT_NOREF(uNewTrX);
6604
6605 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6606 return VINF_SUCCESS;
6607}
6608
6609
6610/**
6611 * Implements 'INVLPG m'.
6612 *
6613 * @param GCPtrPage The effective address of the page to invalidate.
6614 * @remarks Updates the RIP.
6615 */
6616IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
6617{
6618 /* ring-0 only. */
6619 if (pVCpu->iem.s.uCpl != 0)
6620 return iemRaiseGeneralProtectionFault0(pVCpu);
6621 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6622 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6623
6624#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6625 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6626 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6627 {
6628 Log(("invlpg: Guest intercept (%RGp) -> VM-exit\n", GCPtrPage));
6629 return iemVmxVmexitInstrInvlpg(pVCpu, GCPtrPage, cbInstr);
6630 }
6631#endif
6632
6633 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
6634 {
6635 Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
6636 IEM_SVM_UPDATE_NRIP(pVCpu);
6637 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPG,
6638 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */);
6639 }
6640
6641 int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
6642 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6643
6644 if (rc == VINF_SUCCESS)
6645 return VINF_SUCCESS;
6646 if (rc == VINF_PGM_SYNC_CR3)
6647 return iemSetPassUpStatus(pVCpu, rc);
6648
6649 AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
6650 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
6651 return rc;
6652}
6653
6654
6655/**
6656 * Implements INVPCID.
6657 *
6658 * @param iEffSeg The segment of the invpcid descriptor.
6659 * @param GCPtrInvpcidDesc The address of invpcid descriptor.
6660 * @param uInvpcidType The invalidation type.
6661 * @remarks Updates the RIP.
6662 */
6663IEM_CIMPL_DEF_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType)
6664{
6665 /*
6666 * Check preconditions.
6667 */
6668 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid)
6669 return iemRaiseUndefinedOpcode(pVCpu);
6670
6671 /* When in VMX non-root mode and INVPCID is not enabled, it results in #UD. */
6672 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6673 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_INVPCID))
6674 {
6675 Log(("invpcid: Not enabled for nested-guest execution -> #UD\n"));
6676 return iemRaiseUndefinedOpcode(pVCpu);
6677 }
6678
6679 if (pVCpu->iem.s.uCpl != 0)
6680 {
6681 Log(("invpcid: CPL != 0 -> #GP(0)\n"));
6682 return iemRaiseGeneralProtectionFault0(pVCpu);
6683 }
6684
6685 if (IEM_IS_V86_MODE(pVCpu))
6686 {
6687 Log(("invpcid: v8086 mode -> #GP(0)\n"));
6688 return iemRaiseGeneralProtectionFault0(pVCpu);
6689 }
6690
6691 /*
6692 * Check nested-guest intercept.
6693 *
6694 * INVPCID causes a VM-exit if "enable INVPCID" and "INVLPG exiting" are
6695 * both set. We have already checked the former earlier in this function.
6696 *
6697 * CPL and virtual-8086 mode checks take priority over this VM-exit.
6698 * See Intel spec. "25.1.1 Relative Priority of Faults and VM Exits".
6699 */
6700 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6701 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6702 {
6703 Log(("invpcid: Guest intercept -> #VM-exit\n"));
6704 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_INVPCID, VMXINSTRID_NONE, cbInstr);
6705 }
6706
6707 if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID)
6708 {
6709 Log(("invpcid: invalid/unrecognized invpcid type %#RX64 -> #GP(0)\n", uInvpcidType));
6710 return iemRaiseGeneralProtectionFault0(pVCpu);
6711 }
6712 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6713
6714 /*
6715 * Fetch the invpcid descriptor from guest memory.
6716 */
6717 RTUINT128U uDesc;
6718 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvpcidDesc);
6719 if (rcStrict == VINF_SUCCESS)
6720 {
6721 /*
6722 * Validate the descriptor.
6723 */
6724 if (uDesc.s.Lo > 0xfff)
6725 {
6726 Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
6727 return iemRaiseGeneralProtectionFault0(pVCpu);
6728 }
6729
6730 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
6731 uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff);
6732 uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4;
6733 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
6734 switch (uInvpcidType)
6735 {
6736 case X86_INVPCID_TYPE_INDV_ADDR:
6737 {
6738 if (!IEM_IS_CANONICAL(GCPtrInvAddr))
6739 {
6740 Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr));
6741 return iemRaiseGeneralProtectionFault0(pVCpu);
6742 }
6743 if ( !(uCr4 & X86_CR4_PCIDE)
6744 && uPcid != 0)
6745 {
6746 Log(("invpcid: invalid pcid %#x\n", uPcid));
6747 return iemRaiseGeneralProtectionFault0(pVCpu);
6748 }
6749
6750 /* Invalidate mappings for the linear address tagged with PCID except global translations. */
6751 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */, false /* fPdpesMapped */);
6752 break;
6753 }
6754
6755 case X86_INVPCID_TYPE_SINGLE_CONTEXT:
6756 {
6757 if ( !(uCr4 & X86_CR4_PCIDE)
6758 && uPcid != 0)
6759 {
6760 Log(("invpcid: invalid pcid %#x\n", uPcid));
6761 return iemRaiseGeneralProtectionFault0(pVCpu);
6762 }
6763 /* Invalidate all mappings associated with PCID except global translations. */
6764 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */, false /* fPdpesMapped */);
6765 break;
6766 }
6767
6768 case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL:
6769 {
6770 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */, false /* fPdpesMapped */);
6771 break;
6772 }
6773
6774 case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL:
6775 {
6776 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */, false /* fPdpesMapped */);
6777 break;
6778 }
6779 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6780 }
6781 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6782 }
6783 return rcStrict;
6784}
6785
6786
6787/**
6788 * Implements INVD.
6789 */
6790IEM_CIMPL_DEF_0(iemCImpl_invd)
6791{
6792 if (pVCpu->iem.s.uCpl != 0)
6793 {
6794 Log(("invd: CPL != 0 -> #GP(0)\n"));
6795 return iemRaiseGeneralProtectionFault0(pVCpu);
6796 }
6797
6798 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6799 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_INVD, cbInstr);
6800
6801 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_INVD, SVM_EXIT_INVD, 0, 0);
6802
6803 /* We currently take no action here. */
6804 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6805 return VINF_SUCCESS;
6806}
6807
6808
6809/**
6810 * Implements WBINVD.
6811 */
6812IEM_CIMPL_DEF_0(iemCImpl_wbinvd)
6813{
6814 if (pVCpu->iem.s.uCpl != 0)
6815 {
6816 Log(("wbinvd: CPL != 0 -> #GP(0)\n"));
6817 return iemRaiseGeneralProtectionFault0(pVCpu);
6818 }
6819
6820 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6821 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WBINVD, cbInstr);
6822
6823 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_WBINVD, SVM_EXIT_WBINVD, 0, 0);
6824
6825 /* We currently take no action here. */
6826 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6827 return VINF_SUCCESS;
6828}
6829
6830
6831/** Opcode 0x0f 0xaa. */
6832IEM_CIMPL_DEF_0(iemCImpl_rsm)
6833{
6834 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_RSM, SVM_EXIT_RSM, 0, 0);
6835 NOREF(cbInstr);
6836 return iemRaiseUndefinedOpcode(pVCpu);
6837}
6838
6839
6840/**
6841 * Implements RDTSC.
6842 */
6843IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
6844{
6845 /*
6846 * Check preconditions.
6847 */
6848 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
6849 return iemRaiseUndefinedOpcode(pVCpu);
6850
6851 if (pVCpu->iem.s.uCpl != 0)
6852 {
6853 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6854 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6855 {
6856 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6857 return iemRaiseGeneralProtectionFault0(pVCpu);
6858 }
6859 }
6860
6861 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6862 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6863 {
6864 Log(("rdtsc: Guest intercept -> VM-exit\n"));
6865 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSC, cbInstr);
6866 }
6867
6868 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
6869 {
6870 Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
6871 IEM_SVM_UPDATE_NRIP(pVCpu);
6872 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6873 }
6874
6875 /*
6876 * Do the job.
6877 */
6878 uint64_t uTicks = TMCpuTickGet(pVCpu);
6879#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
6880 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6881#endif
6882 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6883 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6884 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); /* For IEMExecDecodedRdtsc. */
6885 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6886 return VINF_SUCCESS;
6887}
6888
6889
6890/**
6891 * Implements RDTSC.
6892 */
6893IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
6894{
6895 /*
6896 * Check preconditions.
6897 */
6898 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
6899 return iemRaiseUndefinedOpcode(pVCpu);
6900
6901 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6902 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_RDTSCP))
6903 {
6904 Log(("rdtscp: Not enabled for VMX non-root mode -> #UD\n"));
6905 return iemRaiseUndefinedOpcode(pVCpu);
6906 }
6907
6908 if (pVCpu->iem.s.uCpl != 0)
6909 {
6910 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6911 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6912 {
6913 Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6914 return iemRaiseGeneralProtectionFault0(pVCpu);
6915 }
6916 }
6917
6918 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6919 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6920 {
6921 Log(("rdtscp: Guest intercept -> VM-exit\n"));
6922 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSCP, cbInstr);
6923 }
6924 else if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
6925 {
6926 Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
6927 IEM_SVM_UPDATE_NRIP(pVCpu);
6928 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6929 }
6930
6931 /*
6932 * Do the job.
6933 * Query the MSR first in case of trips to ring-3.
6934 */
6935 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
6936 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx);
6937 if (rcStrict == VINF_SUCCESS)
6938 {
6939 /* Low dword of the TSC_AUX msr only. */
6940 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
6941
6942 uint64_t uTicks = TMCpuTickGet(pVCpu);
6943#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
6944 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6945#endif
6946 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6947 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6948 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX); /* For IEMExecDecodedRdtscp. */
6949 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6950 }
6951 return rcStrict;
6952}
6953
6954
6955/**
6956 * Implements RDPMC.
6957 */
6958IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
6959{
6960 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6961
6962 if ( pVCpu->iem.s.uCpl != 0
6963 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE))
6964 return iemRaiseGeneralProtectionFault0(pVCpu);
6965
6966 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6967 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDPMC_EXIT))
6968 {
6969 Log(("rdpmc: Guest intercept -> VM-exit\n"));
6970 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDPMC, cbInstr);
6971 }
6972
6973 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
6974 {
6975 Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
6976 IEM_SVM_UPDATE_NRIP(pVCpu);
6977 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6978 }
6979
6980 /** @todo Emulate performance counters, for now just return 0. */
6981 pVCpu->cpum.GstCtx.rax = 0;
6982 pVCpu->cpum.GstCtx.rdx = 0;
6983 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
6984 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
6985 * ecx but see @bugref{3472}! */
6986
6987 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6988 return VINF_SUCCESS;
6989}
6990
6991
6992/**
6993 * Implements RDMSR.
6994 */
6995IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
6996{
6997 /*
6998 * Check preconditions.
6999 */
7000 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
7001 return iemRaiseUndefinedOpcode(pVCpu);
7002 if (pVCpu->iem.s.uCpl != 0)
7003 return iemRaiseGeneralProtectionFault0(pVCpu);
7004
7005 /*
7006 * Check nested-guest intercepts.
7007 */
7008#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7009 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7010 {
7011 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_RDMSR, pVCpu->cpum.GstCtx.ecx))
7012 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDMSR, cbInstr);
7013 }
7014#endif
7015
7016#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7017 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
7018 {
7019 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */);
7020 if (rcStrict == VINF_SVM_VMEXIT)
7021 return VINF_SUCCESS;
7022 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7023 {
7024 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
7025 return rcStrict;
7026 }
7027 }
7028#endif
7029
7030 /*
7031 * Do the job.
7032 */
7033 RTUINT64U uValue;
7034 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
7035 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
7036
7037 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u);
7038 if (rcStrict == VINF_SUCCESS)
7039 {
7040 pVCpu->cpum.GstCtx.rax = uValue.s.Lo;
7041 pVCpu->cpum.GstCtx.rdx = uValue.s.Hi;
7042 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
7043
7044 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7045 return VINF_SUCCESS;
7046 }
7047
7048#ifndef IN_RING3
7049 /* Deferred to ring-3. */
7050 if (rcStrict == VINF_CPUM_R3_MSR_READ)
7051 {
7052 Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
7053 return rcStrict;
7054 }
7055#endif
7056
7057 /* Often a unimplemented MSR or MSR bit, so worth logging. */
7058 if (pVCpu->iem.s.cLogRelRdMsr < 32)
7059 {
7060 pVCpu->iem.s.cLogRelRdMsr++;
7061 LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
7062 }
7063 else
7064 Log(( "IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
7065 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
7066 return iemRaiseGeneralProtectionFault0(pVCpu);
7067}
7068
7069
7070/**
7071 * Implements WRMSR.
7072 */
7073IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
7074{
7075 /*
7076 * Check preconditions.
7077 */
7078 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
7079 return iemRaiseUndefinedOpcode(pVCpu);
7080 if (pVCpu->iem.s.uCpl != 0)
7081 return iemRaiseGeneralProtectionFault0(pVCpu);
7082
7083 RTUINT64U uValue;
7084 uValue.s.Lo = pVCpu->cpum.GstCtx.eax;
7085 uValue.s.Hi = pVCpu->cpum.GstCtx.edx;
7086
7087 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
7088
7089 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
7090 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
7091
7092 /*
7093 * Check nested-guest intercepts.
7094 */
7095#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7096 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7097 {
7098 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_WRMSR, idMsr))
7099 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WRMSR, cbInstr);
7100 }
7101#endif
7102
7103#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7104 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
7105 {
7106 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, idMsr, true /* fWrite */);
7107 if (rcStrict == VINF_SVM_VMEXIT)
7108 return VINF_SUCCESS;
7109 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7110 {
7111 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", idMsr, VBOXSTRICTRC_VAL(rcStrict)));
7112 return rcStrict;
7113 }
7114 }
7115#endif
7116
7117 /*
7118 * Do the job.
7119 */
7120 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, idMsr, uValue.u);
7121 if (rcStrict == VINF_SUCCESS)
7122 {
7123 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7124 return VINF_SUCCESS;
7125 }
7126
7127#ifndef IN_RING3
7128 /* Deferred to ring-3. */
7129 if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
7130 {
7131 Log(("IEM: wrmsr(%#x) -> ring-3\n", idMsr));
7132 return rcStrict;
7133 }
7134#endif
7135
7136 /* Often a unimplemented MSR or MSR bit, so worth logging. */
7137 if (pVCpu->iem.s.cLogRelWrMsr < 32)
7138 {
7139 pVCpu->iem.s.cLogRelWrMsr++;
7140 LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
7141 }
7142 else
7143 Log(( "IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
7144 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
7145 return iemRaiseGeneralProtectionFault0(pVCpu);
7146}
7147
7148
7149/**
7150 * Implements 'IN eAX, port'.
7151 *
7152 * @param u16Port The source port.
7153 * @param fImm Whether the port was specified through an immediate operand
7154 * or the implicit DX register.
7155 * @param cbReg The register size.
7156 */
7157IEM_CIMPL_DEF_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
7158{
7159 /*
7160 * CPL check
7161 */
7162 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
7163 if (rcStrict != VINF_SUCCESS)
7164 return rcStrict;
7165
7166 /*
7167 * Check VMX nested-guest IO intercept.
7168 */
7169#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7170 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7171 {
7172 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_IN, u16Port, fImm, cbReg, cbInstr);
7173 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
7174 return rcStrict;
7175 }
7176#else
7177 RT_NOREF(fImm);
7178#endif
7179
7180 /*
7181 * Check SVM nested-guest IO intercept.
7182 */
7183#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7184 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7185 {
7186 uint8_t cAddrSizeBits;
7187 switch (pVCpu->iem.s.enmEffAddrMode)
7188 {
7189 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7190 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7191 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7192 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7193 }
7194 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7195 false /* fRep */, false /* fStrIo */, cbInstr);
7196 if (rcStrict == VINF_SVM_VMEXIT)
7197 return VINF_SUCCESS;
7198 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7199 {
7200 Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7201 VBOXSTRICTRC_VAL(rcStrict)));
7202 return rcStrict;
7203 }
7204 }
7205#endif
7206
7207 /*
7208 * Perform the I/O.
7209 */
7210 uint32_t u32Value = 0;
7211 rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg);
7212 if (IOM_SUCCESS(rcStrict))
7213 {
7214 switch (cbReg)
7215 {
7216 case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break;
7217 case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break;
7218 case 4: pVCpu->cpum.GstCtx.rax = u32Value; break;
7219 default: AssertFailedReturn(VERR_IEM_IPE_3);
7220 }
7221 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7222 pVCpu->iem.s.cPotentialExits++;
7223 if (rcStrict != VINF_SUCCESS)
7224 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7225 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
7226
7227 /*
7228 * Check for I/O breakpoints.
7229 */
7230 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7231 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7232 && X86_DR7_ANY_RW_IO(uDr7)
7233 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7234 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
7235 {
7236 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7237 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7238 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7239 rcStrict = iemRaiseDebugException(pVCpu);
7240 }
7241 }
7242
7243 return rcStrict;
7244}
7245
7246
7247/**
7248 * Implements 'IN eAX, DX'.
7249 *
7250 * @param cbReg The register size.
7251 */
7252IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
7253{
7254 return IEM_CIMPL_CALL_3(iemCImpl_in, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7255}
7256
7257
7258/**
7259 * Implements 'OUT port, eAX'.
7260 *
7261 * @param u16Port The destination port.
7262 * @param fImm Whether the port was specified through an immediate operand
7263 * or the implicit DX register.
7264 * @param cbReg The register size.
7265 */
7266IEM_CIMPL_DEF_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
7267{
7268 /*
7269 * CPL check
7270 */
7271 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
7272 if (rcStrict != VINF_SUCCESS)
7273 return rcStrict;
7274
7275 /*
7276 * Check VMX nested-guest I/O intercept.
7277 */
7278#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7279 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7280 {
7281 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_OUT, u16Port, fImm, cbReg, cbInstr);
7282 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
7283 return rcStrict;
7284 }
7285#else
7286 RT_NOREF(fImm);
7287#endif
7288
7289 /*
7290 * Check SVM nested-guest I/O intercept.
7291 */
7292#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7293 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7294 {
7295 uint8_t cAddrSizeBits;
7296 switch (pVCpu->iem.s.enmEffAddrMode)
7297 {
7298 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7299 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7300 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7301 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7302 }
7303 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7304 false /* fRep */, false /* fStrIo */, cbInstr);
7305 if (rcStrict == VINF_SVM_VMEXIT)
7306 return VINF_SUCCESS;
7307 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7308 {
7309 Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7310 VBOXSTRICTRC_VAL(rcStrict)));
7311 return rcStrict;
7312 }
7313 }
7314#endif
7315
7316 /*
7317 * Perform the I/O.
7318 */
7319 uint32_t u32Value;
7320 switch (cbReg)
7321 {
7322 case 1: u32Value = pVCpu->cpum.GstCtx.al; break;
7323 case 2: u32Value = pVCpu->cpum.GstCtx.ax; break;
7324 case 4: u32Value = pVCpu->cpum.GstCtx.eax; break;
7325 default: AssertFailedReturn(VERR_IEM_IPE_4);
7326 }
7327 rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg);
7328 if (IOM_SUCCESS(rcStrict))
7329 {
7330 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7331 pVCpu->iem.s.cPotentialExits++;
7332 if (rcStrict != VINF_SUCCESS)
7333 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7334 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
7335
7336 /*
7337 * Check for I/O breakpoints.
7338 */
7339 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7340 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7341 && X86_DR7_ANY_RW_IO(uDr7)
7342 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7343 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
7344 {
7345 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7346 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7347 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7348 rcStrict = iemRaiseDebugException(pVCpu);
7349 }
7350 }
7351 return rcStrict;
7352}
7353
7354
7355/**
7356 * Implements 'OUT DX, eAX'.
7357 *
7358 * @param cbReg The register size.
7359 */
7360IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
7361{
7362 return IEM_CIMPL_CALL_3(iemCImpl_out, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7363}
7364
7365
7366/**
7367 * Implements 'CLI'.
7368 */
7369IEM_CIMPL_DEF_0(iemCImpl_cli)
7370{
7371 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7372 uint32_t const fEflOld = fEfl;
7373
7374 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7375 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7376 {
7377 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7378 if (!(fEfl & X86_EFL_VM))
7379 {
7380 if (pVCpu->iem.s.uCpl <= uIopl)
7381 fEfl &= ~X86_EFL_IF;
7382 else if ( pVCpu->iem.s.uCpl == 3
7383 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) )
7384 fEfl &= ~X86_EFL_VIF;
7385 else
7386 return iemRaiseGeneralProtectionFault0(pVCpu);
7387 }
7388 /* V8086 */
7389 else if (uIopl == 3)
7390 fEfl &= ~X86_EFL_IF;
7391 else if ( uIopl < 3
7392 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
7393 fEfl &= ~X86_EFL_VIF;
7394 else
7395 return iemRaiseGeneralProtectionFault0(pVCpu);
7396 }
7397 /* real mode */
7398 else
7399 fEfl &= ~X86_EFL_IF;
7400
7401 /* Commit. */
7402 IEMMISC_SET_EFL(pVCpu, fEfl);
7403 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7404 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
7405 return VINF_SUCCESS;
7406}
7407
7408
7409/**
7410 * Implements 'STI'.
7411 */
7412IEM_CIMPL_DEF_0(iemCImpl_sti)
7413{
7414 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7415 uint32_t const fEflOld = fEfl;
7416
7417 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7418 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7419 {
7420 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7421 if (!(fEfl & X86_EFL_VM))
7422 {
7423 if (pVCpu->iem.s.uCpl <= uIopl)
7424 fEfl |= X86_EFL_IF;
7425 else if ( pVCpu->iem.s.uCpl == 3
7426 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI)
7427 && !(fEfl & X86_EFL_VIP) )
7428 fEfl |= X86_EFL_VIF;
7429 else
7430 return iemRaiseGeneralProtectionFault0(pVCpu);
7431 }
7432 /* V8086 */
7433 else if (uIopl == 3)
7434 fEfl |= X86_EFL_IF;
7435 else if ( uIopl < 3
7436 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)
7437 && !(fEfl & X86_EFL_VIP) )
7438 fEfl |= X86_EFL_VIF;
7439 else
7440 return iemRaiseGeneralProtectionFault0(pVCpu);
7441 }
7442 /* real mode */
7443 else
7444 fEfl |= X86_EFL_IF;
7445
7446 /* Commit. */
7447 IEMMISC_SET_EFL(pVCpu, fEfl);
7448 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7449 if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF))
7450 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7451 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
7452 return VINF_SUCCESS;
7453}
7454
7455
7456/**
7457 * Implements 'HLT'.
7458 */
7459IEM_CIMPL_DEF_0(iemCImpl_hlt)
7460{
7461 if (pVCpu->iem.s.uCpl != 0)
7462 return iemRaiseGeneralProtectionFault0(pVCpu);
7463
7464 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7465 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_HLT_EXIT))
7466 {
7467 Log2(("hlt: Guest intercept -> VM-exit\n"));
7468 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_HLT, cbInstr);
7469 }
7470
7471 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
7472 {
7473 Log2(("hlt: Guest intercept -> #VMEXIT\n"));
7474 IEM_SVM_UPDATE_NRIP(pVCpu);
7475 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7476 }
7477
7478 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7479 return VINF_EM_HALT;
7480}
7481
7482
7483/**
7484 * Implements 'MONITOR'.
7485 */
7486IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
7487{
7488 /*
7489 * Permission checks.
7490 */
7491 if (pVCpu->iem.s.uCpl != 0)
7492 {
7493 Log2(("monitor: CPL != 0\n"));
7494 return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
7495 }
7496 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7497 {
7498 Log2(("monitor: Not in CPUID\n"));
7499 return iemRaiseUndefinedOpcode(pVCpu);
7500 }
7501
7502 /*
7503 * Check VMX guest-intercept.
7504 * This should be considered a fault-like VM-exit.
7505 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
7506 */
7507 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7508 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MONITOR_EXIT))
7509 {
7510 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7511 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_MONITOR, cbInstr);
7512 }
7513
7514 /*
7515 * Gather the operands and validate them.
7516 */
7517 RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
7518 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7519 uint32_t uEdx = pVCpu->cpum.GstCtx.edx;
7520/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
7521 * \#GP first. */
7522 if (uEcx != 0)
7523 {
7524 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
7525 return iemRaiseGeneralProtectionFault0(pVCpu);
7526 }
7527
7528 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
7529 if (rcStrict != VINF_SUCCESS)
7530 return rcStrict;
7531
7532 RTGCPHYS GCPhysMem;
7533 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7534 if (rcStrict != VINF_SUCCESS)
7535 return rcStrict;
7536
7537#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7538 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7539 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
7540 {
7541 /*
7542 * MONITOR does not access the memory, just monitors the address. However,
7543 * if the address falls in the APIC-access page, the address monitored must
7544 * instead be the corresponding address in the virtual-APIC page.
7545 *
7546 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
7547 */
7548 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
7549 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
7550 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
7551 return rcStrict;
7552 }
7553#endif
7554
7555 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
7556 {
7557 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7558 IEM_SVM_UPDATE_NRIP(pVCpu);
7559 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7560 }
7561
7562 /*
7563 * Call EM to prepare the monitor/wait.
7564 */
7565 rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem);
7566 Assert(rcStrict == VINF_SUCCESS);
7567
7568 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7569 return rcStrict;
7570}
7571
7572
7573/**
7574 * Implements 'MWAIT'.
7575 */
7576IEM_CIMPL_DEF_0(iemCImpl_mwait)
7577{
7578 /*
7579 * Permission checks.
7580 */
7581 if (pVCpu->iem.s.uCpl != 0)
7582 {
7583 Log2(("mwait: CPL != 0\n"));
7584 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
7585 * EFLAGS.VM then.) */
7586 return iemRaiseUndefinedOpcode(pVCpu);
7587 }
7588 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7589 {
7590 Log2(("mwait: Not in CPUID\n"));
7591 return iemRaiseUndefinedOpcode(pVCpu);
7592 }
7593
7594 /* Check VMX nested-guest intercept. */
7595 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7596 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MWAIT_EXIT))
7597 IEM_VMX_VMEXIT_MWAIT_RET(pVCpu, EMMonitorIsArmed(pVCpu), cbInstr);
7598
7599 /*
7600 * Gather the operands and validate them.
7601 */
7602 uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
7603 uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
7604 if (uEcx != 0)
7605 {
7606 /* Only supported extension is break on IRQ when IF=0. */
7607 if (uEcx > 1)
7608 {
7609 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
7610 return iemRaiseGeneralProtectionFault0(pVCpu);
7611 }
7612 uint32_t fMWaitFeatures = 0;
7613 uint32_t uIgnore = 0;
7614 CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
7615 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7616 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7617 {
7618 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
7619 return iemRaiseGeneralProtectionFault0(pVCpu);
7620 }
7621
7622#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7623 /*
7624 * If the interrupt-window exiting control is set or a virtual-interrupt is pending
7625 * for delivery; and interrupts are disabled the processor does not enter its
7626 * mwait state but rather passes control to the next instruction.
7627 *
7628 * See Intel spec. 25.3 "Changes to Instruction Behavior In VMX Non-root Operation".
7629 */
7630 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7631 && !pVCpu->cpum.GstCtx.eflags.Bits.u1IF)
7632 {
7633 if ( IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INT_WINDOW_EXIT)
7634 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
7635 {
7636 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7637 return VINF_SUCCESS;
7638 }
7639 }
7640#endif
7641 }
7642
7643 /*
7644 * Check SVM nested-guest mwait intercepts.
7645 */
7646 if ( IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
7647 && EMMonitorIsArmed(pVCpu))
7648 {
7649 Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
7650 IEM_SVM_UPDATE_NRIP(pVCpu);
7651 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7652 }
7653 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
7654 {
7655 Log2(("mwait: Guest intercept -> #VMEXIT\n"));
7656 IEM_SVM_UPDATE_NRIP(pVCpu);
7657 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7658 }
7659
7660 /*
7661 * Call EM to prepare the monitor/wait.
7662 */
7663 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
7664
7665 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7666 return rcStrict;
7667}
7668
7669
7670/**
7671 * Implements 'SWAPGS'.
7672 */
7673IEM_CIMPL_DEF_0(iemCImpl_swapgs)
7674{
7675 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
7676
7677 /*
7678 * Permission checks.
7679 */
7680 if (pVCpu->iem.s.uCpl != 0)
7681 {
7682 Log2(("swapgs: CPL != 0\n"));
7683 return iemRaiseUndefinedOpcode(pVCpu);
7684 }
7685
7686 /*
7687 * Do the job.
7688 */
7689 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_GS);
7690 uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
7691 pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base;
7692 pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase;
7693
7694 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7695 return VINF_SUCCESS;
7696}
7697
7698
7699/**
7700 * Implements 'CPUID'.
7701 */
7702IEM_CIMPL_DEF_0(iemCImpl_cpuid)
7703{
7704 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7705 {
7706 Log2(("cpuid: Guest intercept -> VM-exit\n"));
7707 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_CPUID, cbInstr);
7708 }
7709
7710 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
7711 {
7712 Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
7713 IEM_SVM_UPDATE_NRIP(pVCpu);
7714 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7715 }
7716
7717 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
7718 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
7719 pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff);
7720 pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff);
7721 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
7722 pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff);
7723 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
7724
7725 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7726 pVCpu->iem.s.cPotentialExits++;
7727 return VINF_SUCCESS;
7728}
7729
7730
7731/**
7732 * Implements 'AAD'.
7733 *
7734 * @param bImm The immediate operand.
7735 */
7736IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
7737{
7738 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7739 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
7740 pVCpu->cpum.GstCtx.ax = al;
7741 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7742 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7743 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7744
7745 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7746 return VINF_SUCCESS;
7747}
7748
7749
7750/**
7751 * Implements 'AAM'.
7752 *
7753 * @param bImm The immediate operand. Cannot be 0.
7754 */
7755IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
7756{
7757 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
7758
7759 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7760 uint8_t const al = (uint8_t)ax % bImm;
7761 uint8_t const ah = (uint8_t)ax / bImm;
7762 pVCpu->cpum.GstCtx.ax = (ah << 8) + al;
7763 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7764 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7765 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7766
7767 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7768 return VINF_SUCCESS;
7769}
7770
7771
7772/**
7773 * Implements 'DAA'.
7774 */
7775IEM_CIMPL_DEF_0(iemCImpl_daa)
7776{
7777 uint8_t const al = pVCpu->cpum.GstCtx.al;
7778 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7779
7780 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7781 || (al & 0xf) >= 10)
7782 {
7783 pVCpu->cpum.GstCtx.al = al + 6;
7784 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7785 }
7786 else
7787 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7788
7789 if (al >= 0x9a || fCarry)
7790 {
7791 pVCpu->cpum.GstCtx.al += 0x60;
7792 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7793 }
7794 else
7795 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7796
7797 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7798 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7799 return VINF_SUCCESS;
7800}
7801
7802
7803/**
7804 * Implements 'DAS'.
7805 */
7806IEM_CIMPL_DEF_0(iemCImpl_das)
7807{
7808 uint8_t const uInputAL = pVCpu->cpum.GstCtx.al;
7809 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7810
7811 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7812 || (uInputAL & 0xf) >= 10)
7813 {
7814 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7815 if (uInputAL < 6)
7816 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7817 pVCpu->cpum.GstCtx.al = uInputAL - 6;
7818 }
7819 else
7820 {
7821 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7822 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7823 }
7824
7825 if (uInputAL >= 0x9a || fCarry)
7826 {
7827 pVCpu->cpum.GstCtx.al -= 0x60;
7828 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7829 }
7830
7831 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7832 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7833 return VINF_SUCCESS;
7834}
7835
7836
7837/**
7838 * Implements 'AAA'.
7839 */
7840IEM_CIMPL_DEF_0(iemCImpl_aaa)
7841{
7842 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7843 {
7844 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7845 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7846 {
7847 iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7848 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7849 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7850 }
7851 else
7852 {
7853 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7854 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7855 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7856 }
7857 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7858 }
7859 else
7860 {
7861 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7862 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7863 {
7864 pVCpu->cpum.GstCtx.ax += UINT16_C(0x106);
7865 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7866 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7867 }
7868 else
7869 {
7870 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7871 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7872 }
7873 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7874 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7875 }
7876
7877 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7878 return VINF_SUCCESS;
7879}
7880
7881
7882/**
7883 * Implements 'AAS'.
7884 */
7885IEM_CIMPL_DEF_0(iemCImpl_aas)
7886{
7887 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7888 {
7889 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7890 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7891 {
7892 iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7893 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7894 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7895 }
7896 else
7897 {
7898 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7899 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7900 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7901 }
7902 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7903 }
7904 else
7905 {
7906 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7907 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7908 {
7909 pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106);
7910 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7911 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7912 }
7913 else
7914 {
7915 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7916 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7917 }
7918 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7919 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7920 }
7921
7922 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7923 return VINF_SUCCESS;
7924}
7925
7926
7927/**
7928 * Implements the 16-bit version of 'BOUND'.
7929 *
7930 * @note We have separate 16-bit and 32-bit variants of this function due to
7931 * the decoder using unsigned parameters, whereas we want signed one to
7932 * do the job. This is significant for a recompiler.
7933 */
7934IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
7935{
7936 /*
7937 * Check if the index is inside the bounds, otherwise raise #BR.
7938 */
7939 if ( idxArray >= idxLowerBound
7940 && idxArray <= idxUpperBound)
7941 {
7942 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7943 return VINF_SUCCESS;
7944 }
7945
7946 return iemRaiseBoundRangeExceeded(pVCpu);
7947}
7948
7949
7950/**
7951 * Implements the 32-bit version of 'BOUND'.
7952 */
7953IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
7954{
7955 /*
7956 * Check if the index is inside the bounds, otherwise raise #BR.
7957 */
7958 if ( idxArray >= idxLowerBound
7959 && idxArray <= idxUpperBound)
7960 {
7961 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7962 return VINF_SUCCESS;
7963 }
7964
7965 return iemRaiseBoundRangeExceeded(pVCpu);
7966}
7967
7968
7969
7970/*
7971 * Instantiate the various string operation combinations.
7972 */
7973#define OP_SIZE 8
7974#define ADDR_SIZE 16
7975#include "IEMAllCImplStrInstr.cpp.h"
7976#define OP_SIZE 8
7977#define ADDR_SIZE 32
7978#include "IEMAllCImplStrInstr.cpp.h"
7979#define OP_SIZE 8
7980#define ADDR_SIZE 64
7981#include "IEMAllCImplStrInstr.cpp.h"
7982
7983#define OP_SIZE 16
7984#define ADDR_SIZE 16
7985#include "IEMAllCImplStrInstr.cpp.h"
7986#define OP_SIZE 16
7987#define ADDR_SIZE 32
7988#include "IEMAllCImplStrInstr.cpp.h"
7989#define OP_SIZE 16
7990#define ADDR_SIZE 64
7991#include "IEMAllCImplStrInstr.cpp.h"
7992
7993#define OP_SIZE 32
7994#define ADDR_SIZE 16
7995#include "IEMAllCImplStrInstr.cpp.h"
7996#define OP_SIZE 32
7997#define ADDR_SIZE 32
7998#include "IEMAllCImplStrInstr.cpp.h"
7999#define OP_SIZE 32
8000#define ADDR_SIZE 64
8001#include "IEMAllCImplStrInstr.cpp.h"
8002
8003#define OP_SIZE 64
8004#define ADDR_SIZE 32
8005#include "IEMAllCImplStrInstr.cpp.h"
8006#define OP_SIZE 64
8007#define ADDR_SIZE 64
8008#include "IEMAllCImplStrInstr.cpp.h"
8009
8010
8011/**
8012 * Implements 'XGETBV'.
8013 */
8014IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
8015{
8016 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
8017 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
8018 {
8019 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
8020 switch (uEcx)
8021 {
8022 case 0:
8023 break;
8024
8025 case 1: /** @todo Implement XCR1 support. */
8026 default:
8027 Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
8028 return iemRaiseGeneralProtectionFault0(pVCpu);
8029
8030 }
8031 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
8032 pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
8033 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
8034
8035 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8036 return VINF_SUCCESS;
8037 }
8038 Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
8039 return iemRaiseUndefinedOpcode(pVCpu);
8040}
8041
8042
8043/**
8044 * Implements 'XSETBV'.
8045 */
8046IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
8047{
8048 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
8049 {
8050 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
8051 {
8052 Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
8053 IEM_SVM_UPDATE_NRIP(pVCpu);
8054 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
8055 }
8056
8057 if (pVCpu->iem.s.uCpl == 0)
8058 {
8059 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
8060
8061 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8062 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_XSETBV, cbInstr);
8063
8064 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
8065 uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx);
8066 switch (uEcx)
8067 {
8068 case 0:
8069 {
8070 int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
8071 if (rc == VINF_SUCCESS)
8072 break;
8073 Assert(rc == VERR_CPUM_RAISE_GP_0);
8074 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
8075 return iemRaiseGeneralProtectionFault0(pVCpu);
8076 }
8077
8078 case 1: /** @todo Implement XCR1 support. */
8079 default:
8080 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
8081 return iemRaiseGeneralProtectionFault0(pVCpu);
8082
8083 }
8084
8085 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8086 return VINF_SUCCESS;
8087 }
8088
8089 Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
8090 return iemRaiseGeneralProtectionFault0(pVCpu);
8091 }
8092 Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
8093 return iemRaiseUndefinedOpcode(pVCpu);
8094}
8095
8096#ifdef IN_RING3
8097
8098/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
8099struct IEMCIMPLCX16ARGS
8100{
8101 PRTUINT128U pu128Dst;
8102 PRTUINT128U pu128RaxRdx;
8103 PRTUINT128U pu128RbxRcx;
8104 uint32_t *pEFlags;
8105# ifdef VBOX_STRICT
8106 uint32_t cCalls;
8107# endif
8108};
8109
8110/**
8111 * @callback_method_impl{FNVMMEMTRENDEZVOUS,
8112 * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
8113 */
8114static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPUCC pVCpu, void *pvUser)
8115{
8116 RT_NOREF(pVM, pVCpu);
8117 struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
8118# ifdef VBOX_STRICT
8119 Assert(pArgs->cCalls == 0);
8120 pArgs->cCalls++;
8121# endif
8122
8123 iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
8124 return VINF_SUCCESS;
8125}
8126
8127#endif /* IN_RING3 */
8128
8129/**
8130 * Implements 'CMPXCHG16B' fallback using rendezvous.
8131 */
8132IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
8133 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
8134{
8135#ifdef IN_RING3
8136 struct IEMCIMPLCX16ARGS Args;
8137 Args.pu128Dst = pu128Dst;
8138 Args.pu128RaxRdx = pu128RaxRdx;
8139 Args.pu128RbxRcx = pu128RbxRcx;
8140 Args.pEFlags = pEFlags;
8141# ifdef VBOX_STRICT
8142 Args.cCalls = 0;
8143# endif
8144 VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
8145 iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
8146 Assert(Args.cCalls == 1);
8147 if (rcStrict == VINF_SUCCESS)
8148 {
8149 /* Duplicated tail code. */
8150 rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
8151 if (rcStrict == VINF_SUCCESS)
8152 {
8153 pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
8154 if (!(*pEFlags & X86_EFL_ZF))
8155 {
8156 pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo;
8157 pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi;
8158 }
8159 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8160 }
8161 }
8162 return rcStrict;
8163#else
8164 RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
8165 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
8166#endif
8167}
8168
8169
8170/**
8171 * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
8172 *
8173 * This is implemented in C because it triggers a load like behaviour without
8174 * actually reading anything. Since that's not so common, it's implemented
8175 * here.
8176 *
8177 * @param iEffSeg The effective segment.
8178 * @param GCPtrEff The address of the image.
8179 */
8180IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8181{
8182 /*
8183 * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
8184 */
8185 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
8186 if (rcStrict == VINF_SUCCESS)
8187 {
8188 RTGCPHYS GCPhysMem;
8189 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
8190 if (rcStrict == VINF_SUCCESS)
8191 {
8192#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8193 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8194 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
8195 {
8196 /*
8197 * CLFLUSH/CLFLUSHOPT does not access the memory, but flushes the cache-line
8198 * that contains the address. However, if the address falls in the APIC-access
8199 * page, the address flushed must instead be the corresponding address in the
8200 * virtual-APIC page.
8201 *
8202 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
8203 */
8204 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
8205 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
8206 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
8207 return rcStrict;
8208 }
8209#endif
8210 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8211 return VINF_SUCCESS;
8212 }
8213 }
8214
8215 return rcStrict;
8216}
8217
8218
8219/**
8220 * Implements 'FINIT' and 'FNINIT'.
8221 *
8222 * @param fCheckXcpts Whether to check for umasked pending exceptions or
8223 * not.
8224 */
8225IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
8226{
8227 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
8228 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
8229 return iemRaiseDeviceNotAvailable(pVCpu);
8230
8231 iemFpuActualizeStateForChange(pVCpu);
8232 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_X87);
8233
8234 NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
8235 if (fCheckXcpts && TODO )
8236 return iemRaiseMathFault(pVCpu);
8237 */
8238
8239 PX86XSAVEAREA pXState = &pVCpu->cpum.GstCtx.XState;
8240 pXState->x87.FCW = 0x37f;
8241 pXState->x87.FSW = 0;
8242 pXState->x87.FTW = 0x00; /* 0 - empty. */
8243 pXState->x87.FPUDP = 0;
8244 pXState->x87.DS = 0; //??
8245 pXState->x87.Rsrvd2= 0;
8246 pXState->x87.FPUIP = 0;
8247 pXState->x87.CS = 0; //??
8248 pXState->x87.Rsrvd1= 0;
8249 pXState->x87.FOP = 0;
8250
8251 iemHlpUsedFpu(pVCpu);
8252 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8253 return VINF_SUCCESS;
8254}
8255
8256
8257/**
8258 * Implements 'FXSAVE'.
8259 *
8260 * @param iEffSeg The effective segment.
8261 * @param GCPtrEff The address of the image.
8262 * @param enmEffOpSize The operand size (only REX.W really matters).
8263 */
8264IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8265{
8266 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8267
8268 /*
8269 * Raise exceptions.
8270 */
8271 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8272 return iemRaiseUndefinedOpcode(pVCpu);
8273 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8274 return iemRaiseDeviceNotAvailable(pVCpu);
8275 if (GCPtrEff & 15)
8276 {
8277 /** @todo CPU/VM detection possible! \#AC might not be signal for
8278 * all/any misalignment sizes, intel says its an implementation detail. */
8279 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8280 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8281 && pVCpu->iem.s.uCpl == 3)
8282 return iemRaiseAlignmentCheckException(pVCpu);
8283 return iemRaiseGeneralProtectionFault0(pVCpu);
8284 }
8285
8286 /*
8287 * Access the memory.
8288 */
8289 void *pvMem512;
8290 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8291 if (rcStrict != VINF_SUCCESS)
8292 return rcStrict;
8293 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8294 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.XState.x87;
8295
8296 /*
8297 * Store the registers.
8298 */
8299 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8300 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
8301
8302 /* common for all formats */
8303 pDst->FCW = pSrc->FCW;
8304 pDst->FSW = pSrc->FSW;
8305 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8306 pDst->FOP = pSrc->FOP;
8307 pDst->MXCSR = pSrc->MXCSR;
8308 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8309 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8310 {
8311 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8312 * them for now... */
8313 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8314 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8315 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8316 pDst->aRegs[i].au32[3] = 0;
8317 }
8318
8319 /* FPU IP, CS, DP and DS. */
8320 pDst->FPUIP = pSrc->FPUIP;
8321 pDst->CS = pSrc->CS;
8322 pDst->FPUDP = pSrc->FPUDP;
8323 pDst->DS = pSrc->DS;
8324 if (enmEffOpSize == IEMMODE_64BIT)
8325 {
8326 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8327 pDst->Rsrvd1 = pSrc->Rsrvd1;
8328 pDst->Rsrvd2 = pSrc->Rsrvd2;
8329 pDst->au32RsrvdForSoftware[0] = 0;
8330 }
8331 else
8332 {
8333 pDst->Rsrvd1 = 0;
8334 pDst->Rsrvd2 = 0;
8335 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8336 }
8337
8338 /* XMM registers. */
8339 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8340 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8341 || pVCpu->iem.s.uCpl != 0)
8342 {
8343 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8344 for (uint32_t i = 0; i < cXmmRegs; i++)
8345 pDst->aXMM[i] = pSrc->aXMM[i];
8346 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8347 * right? */
8348 }
8349
8350 /*
8351 * Commit the memory.
8352 */
8353 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8354 if (rcStrict != VINF_SUCCESS)
8355 return rcStrict;
8356
8357 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8358 return VINF_SUCCESS;
8359}
8360
8361
8362/**
8363 * Implements 'FXRSTOR'.
8364 *
8365 * @param GCPtrEff The address of the image.
8366 * @param enmEffOpSize The operand size (only REX.W really matters).
8367 */
8368IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8369{
8370 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8371
8372 /*
8373 * Raise exceptions.
8374 */
8375 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8376 return iemRaiseUndefinedOpcode(pVCpu);
8377 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8378 return iemRaiseDeviceNotAvailable(pVCpu);
8379 if (GCPtrEff & 15)
8380 {
8381 /** @todo CPU/VM detection possible! \#AC might not be signal for
8382 * all/any misalignment sizes, intel says its an implementation detail. */
8383 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8384 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8385 && pVCpu->iem.s.uCpl == 3)
8386 return iemRaiseAlignmentCheckException(pVCpu);
8387 return iemRaiseGeneralProtectionFault0(pVCpu);
8388 }
8389
8390 /*
8391 * Access the memory.
8392 */
8393 void *pvMem512;
8394 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8395 if (rcStrict != VINF_SUCCESS)
8396 return rcStrict;
8397 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8398 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.XState.x87;
8399
8400 /*
8401 * Check the state for stuff which will #GP(0).
8402 */
8403 uint32_t const fMXCSR = pSrc->MXCSR;
8404 uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8405 if (fMXCSR & ~fMXCSR_MASK)
8406 {
8407 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
8408 return iemRaiseGeneralProtectionFault0(pVCpu);
8409 }
8410
8411 /*
8412 * Load the registers.
8413 */
8414 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8415 * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
8416
8417 /* common for all formats */
8418 pDst->FCW = pSrc->FCW;
8419 pDst->FSW = pSrc->FSW;
8420 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8421 pDst->FOP = pSrc->FOP;
8422 pDst->MXCSR = fMXCSR;
8423 /* (MXCSR_MASK is read-only) */
8424 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8425 {
8426 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8427 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8428 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8429 pDst->aRegs[i].au32[3] = 0;
8430 }
8431
8432 /* FPU IP, CS, DP and DS. */
8433 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8434 {
8435 pDst->FPUIP = pSrc->FPUIP;
8436 pDst->CS = pSrc->CS;
8437 pDst->Rsrvd1 = pSrc->Rsrvd1;
8438 pDst->FPUDP = pSrc->FPUDP;
8439 pDst->DS = pSrc->DS;
8440 pDst->Rsrvd2 = pSrc->Rsrvd2;
8441 }
8442 else
8443 {
8444 pDst->FPUIP = pSrc->FPUIP;
8445 pDst->CS = pSrc->CS;
8446 pDst->Rsrvd1 = 0;
8447 pDst->FPUDP = pSrc->FPUDP;
8448 pDst->DS = pSrc->DS;
8449 pDst->Rsrvd2 = 0;
8450 }
8451
8452 /* XMM registers. */
8453 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8454 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8455 || pVCpu->iem.s.uCpl != 0)
8456 {
8457 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8458 for (uint32_t i = 0; i < cXmmRegs; i++)
8459 pDst->aXMM[i] = pSrc->aXMM[i];
8460 }
8461
8462 /*
8463 * Commit the memory.
8464 */
8465 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8466 if (rcStrict != VINF_SUCCESS)
8467 return rcStrict;
8468
8469 iemHlpUsedFpu(pVCpu);
8470 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8471 return VINF_SUCCESS;
8472}
8473
8474
8475/**
8476 * Implements 'XSAVE'.
8477 *
8478 * @param iEffSeg The effective segment.
8479 * @param GCPtrEff The address of the image.
8480 * @param enmEffOpSize The operand size (only REX.W really matters).
8481 */
8482IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8483{
8484 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8485
8486 /*
8487 * Raise exceptions.
8488 */
8489 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8490 return iemRaiseUndefinedOpcode(pVCpu);
8491 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8492 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8493 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8494 {
8495 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8496 return iemRaiseUndefinedOpcode(pVCpu);
8497 }
8498 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8499 return iemRaiseDeviceNotAvailable(pVCpu);
8500 if (GCPtrEff & 63)
8501 {
8502 /** @todo CPU/VM detection possible! \#AC might not be signal for
8503 * all/any misalignment sizes, intel says its an implementation detail. */
8504 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8505 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8506 && pVCpu->iem.s.uCpl == 3)
8507 return iemRaiseAlignmentCheckException(pVCpu);
8508 return iemRaiseGeneralProtectionFault0(pVCpu);
8509 }
8510
8511 /*
8512 * Calc the requested mask.
8513 */
8514 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8515 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8516 uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8517
8518/** @todo figure out the exact protocol for the memory access. Currently we
8519 * just need this crap to work halfways to make it possible to test
8520 * AVX instructions. */
8521/** @todo figure out the XINUSE and XMODIFIED */
8522
8523 /*
8524 * Access the x87 memory state.
8525 */
8526 /* The x87+SSE state. */
8527 void *pvMem512;
8528 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8529 if (rcStrict != VINF_SUCCESS)
8530 return rcStrict;
8531 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8532 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.XState.x87;
8533
8534 /* The header. */
8535 PX86XSAVEHDR pHdr;
8536 rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW);
8537 if (rcStrict != VINF_SUCCESS)
8538 return rcStrict;
8539
8540 /*
8541 * Store the X87 state.
8542 */
8543 if (fReqComponents & XSAVE_C_X87)
8544 {
8545 /* common for all formats */
8546 pDst->FCW = pSrc->FCW;
8547 pDst->FSW = pSrc->FSW;
8548 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8549 pDst->FOP = pSrc->FOP;
8550 pDst->FPUIP = pSrc->FPUIP;
8551 pDst->CS = pSrc->CS;
8552 pDst->FPUDP = pSrc->FPUDP;
8553 pDst->DS = pSrc->DS;
8554 if (enmEffOpSize == IEMMODE_64BIT)
8555 {
8556 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8557 pDst->Rsrvd1 = pSrc->Rsrvd1;
8558 pDst->Rsrvd2 = pSrc->Rsrvd2;
8559 pDst->au32RsrvdForSoftware[0] = 0;
8560 }
8561 else
8562 {
8563 pDst->Rsrvd1 = 0;
8564 pDst->Rsrvd2 = 0;
8565 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8566 }
8567 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8568 {
8569 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8570 * them for now... */
8571 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8572 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8573 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8574 pDst->aRegs[i].au32[3] = 0;
8575 }
8576
8577 }
8578
8579 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8580 {
8581 pDst->MXCSR = pSrc->MXCSR;
8582 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8583 }
8584
8585 if (fReqComponents & XSAVE_C_SSE)
8586 {
8587 /* XMM registers. */
8588 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8589 for (uint32_t i = 0; i < cXmmRegs; i++)
8590 pDst->aXMM[i] = pSrc->aXMM[i];
8591 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8592 * right? */
8593 }
8594
8595 /* Commit the x87 state bits. (probably wrong) */
8596 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8597 if (rcStrict != VINF_SUCCESS)
8598 return rcStrict;
8599
8600 /*
8601 * Store AVX state.
8602 */
8603 if (fReqComponents & XSAVE_C_YMM)
8604 {
8605 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8606 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8607 PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
8608 PX86XSAVEYMMHI pCompDst;
8609 rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
8610 IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8611 if (rcStrict != VINF_SUCCESS)
8612 return rcStrict;
8613
8614 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8615 for (uint32_t i = 0; i < cXmmRegs; i++)
8616 pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
8617
8618 rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8619 if (rcStrict != VINF_SUCCESS)
8620 return rcStrict;
8621 }
8622
8623 /*
8624 * Update the header.
8625 */
8626 pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
8627 | (fReqComponents & fXInUse);
8628
8629 rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
8630 if (rcStrict != VINF_SUCCESS)
8631 return rcStrict;
8632
8633 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8634 return VINF_SUCCESS;
8635}
8636
8637
8638/**
8639 * Implements 'XRSTOR'.
8640 *
8641 * @param iEffSeg The effective segment.
8642 * @param GCPtrEff The address of the image.
8643 * @param enmEffOpSize The operand size (only REX.W really matters).
8644 */
8645IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8646{
8647 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8648
8649 /*
8650 * Raise exceptions.
8651 */
8652 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8653 return iemRaiseUndefinedOpcode(pVCpu);
8654 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8655 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8656 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8657 {
8658 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8659 return iemRaiseUndefinedOpcode(pVCpu);
8660 }
8661 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8662 return iemRaiseDeviceNotAvailable(pVCpu);
8663 if (GCPtrEff & 63)
8664 {
8665 /** @todo CPU/VM detection possible! \#AC might not be signal for
8666 * all/any misalignment sizes, intel says its an implementation detail. */
8667 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8668 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8669 && pVCpu->iem.s.uCpl == 3)
8670 return iemRaiseAlignmentCheckException(pVCpu);
8671 return iemRaiseGeneralProtectionFault0(pVCpu);
8672 }
8673
8674/** @todo figure out the exact protocol for the memory access. Currently we
8675 * just need this crap to work halfways to make it possible to test
8676 * AVX instructions. */
8677/** @todo figure out the XINUSE and XMODIFIED */
8678
8679 /*
8680 * Access the x87 memory state.
8681 */
8682 /* The x87+SSE state. */
8683 void *pvMem512;
8684 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8685 if (rcStrict != VINF_SUCCESS)
8686 return rcStrict;
8687 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8688 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.XState.x87;
8689
8690 /*
8691 * Calc the requested mask
8692 */
8693 PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.XState.Hdr;
8694 PCX86XSAVEHDR pHdrSrc;
8695 rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R);
8696 if (rcStrict != VINF_SUCCESS)
8697 return rcStrict;
8698
8699 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8700 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8701 //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8702 uint64_t const fRstorMask = pHdrSrc->bmXState;
8703 uint64_t const fCompMask = pHdrSrc->bmXComp;
8704
8705 AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8706
8707 uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8708
8709 /* We won't need this any longer. */
8710 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
8711 if (rcStrict != VINF_SUCCESS)
8712 return rcStrict;
8713
8714 /*
8715 * Store the X87 state.
8716 */
8717 if (fReqComponents & XSAVE_C_X87)
8718 {
8719 if (fRstorMask & XSAVE_C_X87)
8720 {
8721 pDst->FCW = pSrc->FCW;
8722 pDst->FSW = pSrc->FSW;
8723 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8724 pDst->FOP = pSrc->FOP;
8725 pDst->FPUIP = pSrc->FPUIP;
8726 pDst->CS = pSrc->CS;
8727 pDst->FPUDP = pSrc->FPUDP;
8728 pDst->DS = pSrc->DS;
8729 if (enmEffOpSize == IEMMODE_64BIT)
8730 {
8731 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8732 pDst->Rsrvd1 = pSrc->Rsrvd1;
8733 pDst->Rsrvd2 = pSrc->Rsrvd2;
8734 }
8735 else
8736 {
8737 pDst->Rsrvd1 = 0;
8738 pDst->Rsrvd2 = 0;
8739 }
8740 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8741 {
8742 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8743 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8744 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8745 pDst->aRegs[i].au32[3] = 0;
8746 }
8747 }
8748 else
8749 {
8750 pDst->FCW = 0x37f;
8751 pDst->FSW = 0;
8752 pDst->FTW = 0x00; /* 0 - empty. */
8753 pDst->FPUDP = 0;
8754 pDst->DS = 0; //??
8755 pDst->Rsrvd2= 0;
8756 pDst->FPUIP = 0;
8757 pDst->CS = 0; //??
8758 pDst->Rsrvd1= 0;
8759 pDst->FOP = 0;
8760 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8761 {
8762 pDst->aRegs[i].au32[0] = 0;
8763 pDst->aRegs[i].au32[1] = 0;
8764 pDst->aRegs[i].au32[2] = 0;
8765 pDst->aRegs[i].au32[3] = 0;
8766 }
8767 }
8768 pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
8769 }
8770
8771 /* MXCSR */
8772 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8773 {
8774 if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
8775 pDst->MXCSR = pSrc->MXCSR;
8776 else
8777 pDst->MXCSR = 0x1f80;
8778 }
8779
8780 /* XMM registers. */
8781 if (fReqComponents & XSAVE_C_SSE)
8782 {
8783 if (fRstorMask & XSAVE_C_SSE)
8784 {
8785 for (uint32_t i = 0; i < cXmmRegs; i++)
8786 pDst->aXMM[i] = pSrc->aXMM[i];
8787 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8788 * right? */
8789 }
8790 else
8791 {
8792 for (uint32_t i = 0; i < cXmmRegs; i++)
8793 {
8794 pDst->aXMM[i].au64[0] = 0;
8795 pDst->aXMM[i].au64[1] = 0;
8796 }
8797 }
8798 pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
8799 }
8800
8801 /* Unmap the x87 state bits (so we've don't run out of mapping). */
8802 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8803 if (rcStrict != VINF_SUCCESS)
8804 return rcStrict;
8805
8806 /*
8807 * Restore AVX state.
8808 */
8809 if (fReqComponents & XSAVE_C_YMM)
8810 {
8811 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8812 PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
8813
8814 if (fRstorMask & XSAVE_C_YMM)
8815 {
8816 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8817 PCX86XSAVEYMMHI pCompSrc;
8818 rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
8819 iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R);
8820 if (rcStrict != VINF_SUCCESS)
8821 return rcStrict;
8822
8823 for (uint32_t i = 0; i < cXmmRegs; i++)
8824 {
8825 pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
8826 pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
8827 }
8828
8829 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
8830 if (rcStrict != VINF_SUCCESS)
8831 return rcStrict;
8832 }
8833 else
8834 {
8835 for (uint32_t i = 0; i < cXmmRegs; i++)
8836 {
8837 pCompDst->aYmmHi[i].au64[0] = 0;
8838 pCompDst->aYmmHi[i].au64[1] = 0;
8839 }
8840 }
8841 pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
8842 }
8843
8844 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8845 return VINF_SUCCESS;
8846}
8847
8848
8849
8850
8851/**
8852 * Implements 'STMXCSR'.
8853 *
8854 * @param GCPtrEff The address of the image.
8855 */
8856IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8857{
8858 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8859
8860 /*
8861 * Raise exceptions.
8862 */
8863 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8864 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8865 {
8866 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8867 {
8868 /*
8869 * Do the job.
8870 */
8871 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.XState.x87.MXCSR);
8872 if (rcStrict == VINF_SUCCESS)
8873 {
8874 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8875 return VINF_SUCCESS;
8876 }
8877 return rcStrict;
8878 }
8879 return iemRaiseDeviceNotAvailable(pVCpu);
8880 }
8881 return iemRaiseUndefinedOpcode(pVCpu);
8882}
8883
8884
8885/**
8886 * Implements 'VSTMXCSR'.
8887 *
8888 * @param GCPtrEff The address of the image.
8889 */
8890IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8891{
8892 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx);
8893
8894 /*
8895 * Raise exceptions.
8896 */
8897 if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
8898 ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
8899 : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
8900 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8901 {
8902 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8903 {
8904 /*
8905 * Do the job.
8906 */
8907 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.XState.x87.MXCSR);
8908 if (rcStrict == VINF_SUCCESS)
8909 {
8910 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8911 return VINF_SUCCESS;
8912 }
8913 return rcStrict;
8914 }
8915 return iemRaiseDeviceNotAvailable(pVCpu);
8916 }
8917 return iemRaiseUndefinedOpcode(pVCpu);
8918}
8919
8920
8921/**
8922 * Implements 'LDMXCSR'.
8923 *
8924 * @param GCPtrEff The address of the image.
8925 */
8926IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8927{
8928 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8929
8930 /*
8931 * Raise exceptions.
8932 */
8933 /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
8934 * happen after or before \#UD and \#EM? */
8935 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8936 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8937 {
8938 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8939 {
8940 /*
8941 * Do the job.
8942 */
8943 uint32_t fNewMxCsr;
8944 VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
8945 if (rcStrict == VINF_SUCCESS)
8946 {
8947 uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8948 if (!(fNewMxCsr & ~fMxCsrMask))
8949 {
8950 pVCpu->cpum.GstCtx.XState.x87.MXCSR = fNewMxCsr;
8951 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8952 return VINF_SUCCESS;
8953 }
8954 Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
8955 fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
8956 return iemRaiseGeneralProtectionFault0(pVCpu);
8957 }
8958 return rcStrict;
8959 }
8960 return iemRaiseDeviceNotAvailable(pVCpu);
8961 }
8962 return iemRaiseUndefinedOpcode(pVCpu);
8963}
8964
8965
8966/**
8967 * Commmon routine for fnstenv and fnsave.
8968 *
8969 * @param pVCpu The cross context virtual CPU structure of the calling thread.
8970 * @param enmEffOpSize The effective operand size.
8971 * @param uPtr Where to store the state.
8972 */
8973static void iemCImplCommonFpuStoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr)
8974{
8975 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8976 PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.XState.x87;
8977 if (enmEffOpSize == IEMMODE_16BIT)
8978 {
8979 uPtr.pu16[0] = pSrcX87->FCW;
8980 uPtr.pu16[1] = pSrcX87->FSW;
8981 uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
8982 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8983 {
8984 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
8985 * protected mode or long mode and we save it in real mode? And vice
8986 * versa? And with 32-bit operand size? I think CPU is storing the
8987 * effective address ((CS << 4) + IP) in the offset register and not
8988 * doing any address calculations here. */
8989 uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
8990 uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
8991 uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
8992 uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
8993 }
8994 else
8995 {
8996 uPtr.pu16[3] = pSrcX87->FPUIP;
8997 uPtr.pu16[4] = pSrcX87->CS;
8998 uPtr.pu16[5] = pSrcX87->FPUDP;
8999 uPtr.pu16[6] = pSrcX87->DS;
9000 }
9001 }
9002 else
9003 {
9004 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
9005 uPtr.pu16[0*2] = pSrcX87->FCW;
9006 uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
9007 uPtr.pu16[1*2] = pSrcX87->FSW;
9008 uPtr.pu16[1*2+1] = 0xffff;
9009 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
9010 uPtr.pu16[2*2+1] = 0xffff;
9011 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9012 {
9013 uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
9014 uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
9015 uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
9016 uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
9017 }
9018 else
9019 {
9020 uPtr.pu32[3] = pSrcX87->FPUIP;
9021 uPtr.pu16[4*2] = pSrcX87->CS;
9022 uPtr.pu16[4*2+1] = pSrcX87->FOP;
9023 uPtr.pu32[5] = pSrcX87->FPUDP;
9024 uPtr.pu16[6*2] = pSrcX87->DS;
9025 uPtr.pu16[6*2+1] = 0xffff;
9026 }
9027 }
9028}
9029
9030
9031/**
9032 * Commmon routine for fldenv and frstor
9033 *
9034 * @param pVCpu The cross context virtual CPU structure of the calling thread.
9035 * @param enmEffOpSize The effective operand size.
9036 * @param uPtr Where to store the state.
9037 */
9038static void iemCImplCommonFpuRestoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr)
9039{
9040 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9041 PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.XState.x87;
9042 if (enmEffOpSize == IEMMODE_16BIT)
9043 {
9044 pDstX87->FCW = uPtr.pu16[0];
9045 pDstX87->FSW = uPtr.pu16[1];
9046 pDstX87->FTW = uPtr.pu16[2];
9047 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9048 {
9049 pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
9050 pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
9051 pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
9052 pDstX87->CS = 0;
9053 pDstX87->Rsrvd1= 0;
9054 pDstX87->DS = 0;
9055 pDstX87->Rsrvd2= 0;
9056 }
9057 else
9058 {
9059 pDstX87->FPUIP = uPtr.pu16[3];
9060 pDstX87->CS = uPtr.pu16[4];
9061 pDstX87->Rsrvd1= 0;
9062 pDstX87->FPUDP = uPtr.pu16[5];
9063 pDstX87->DS = uPtr.pu16[6];
9064 pDstX87->Rsrvd2= 0;
9065 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
9066 }
9067 }
9068 else
9069 {
9070 pDstX87->FCW = uPtr.pu16[0*2];
9071 pDstX87->FSW = uPtr.pu16[1*2];
9072 pDstX87->FTW = uPtr.pu16[2*2];
9073 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9074 {
9075 pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
9076 pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
9077 pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
9078 pDstX87->CS = 0;
9079 pDstX87->Rsrvd1= 0;
9080 pDstX87->DS = 0;
9081 pDstX87->Rsrvd2= 0;
9082 }
9083 else
9084 {
9085 pDstX87->FPUIP = uPtr.pu32[3];
9086 pDstX87->CS = uPtr.pu16[4*2];
9087 pDstX87->Rsrvd1= 0;
9088 pDstX87->FOP = uPtr.pu16[4*2+1];
9089 pDstX87->FPUDP = uPtr.pu32[5];
9090 pDstX87->DS = uPtr.pu16[6*2];
9091 pDstX87->Rsrvd2= 0;
9092 }
9093 }
9094
9095 /* Make adjustments. */
9096 pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
9097 pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
9098 iemFpuRecalcExceptionStatus(pDstX87);
9099 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
9100 * exceptions are pending after loading the saved state? */
9101}
9102
9103
9104/**
9105 * Implements 'FNSTENV'.
9106 *
9107 * @param enmEffOpSize The operand size (only REX.W really matters).
9108 * @param iEffSeg The effective segment register for @a GCPtrEff.
9109 * @param GCPtrEffDst The address of the image.
9110 */
9111IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
9112{
9113 RTPTRUNION uPtr;
9114 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
9115 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9116 if (rcStrict != VINF_SUCCESS)
9117 return rcStrict;
9118
9119 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
9120
9121 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9122 if (rcStrict != VINF_SUCCESS)
9123 return rcStrict;
9124
9125 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
9126 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9127 return VINF_SUCCESS;
9128}
9129
9130
9131/**
9132 * Implements 'FNSAVE'.
9133 *
9134 * @param GCPtrEffDst The address of the image.
9135 * @param enmEffOpSize The operand size.
9136 */
9137IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
9138{
9139 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9140
9141 RTPTRUNION uPtr;
9142 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
9143 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9144 if (rcStrict != VINF_SUCCESS)
9145 return rcStrict;
9146
9147 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9148 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
9149 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
9150 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
9151 {
9152 paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
9153 paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
9154 paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
9155 }
9156
9157 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9158 if (rcStrict != VINF_SUCCESS)
9159 return rcStrict;
9160
9161 /*
9162 * Re-initialize the FPU context.
9163 */
9164 pFpuCtx->FCW = 0x37f;
9165 pFpuCtx->FSW = 0;
9166 pFpuCtx->FTW = 0x00; /* 0 - empty */
9167 pFpuCtx->FPUDP = 0;
9168 pFpuCtx->DS = 0;
9169 pFpuCtx->Rsrvd2= 0;
9170 pFpuCtx->FPUIP = 0;
9171 pFpuCtx->CS = 0;
9172 pFpuCtx->Rsrvd1= 0;
9173 pFpuCtx->FOP = 0;
9174
9175 iemHlpUsedFpu(pVCpu);
9176 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9177 return VINF_SUCCESS;
9178}
9179
9180
9181
9182/**
9183 * Implements 'FLDENV'.
9184 *
9185 * @param enmEffOpSize The operand size (only REX.W really matters).
9186 * @param iEffSeg The effective segment register for @a GCPtrEff.
9187 * @param GCPtrEffSrc The address of the image.
9188 */
9189IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
9190{
9191 RTCPTRUNION uPtr;
9192 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
9193 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
9194 if (rcStrict != VINF_SUCCESS)
9195 return rcStrict;
9196
9197 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
9198
9199 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
9200 if (rcStrict != VINF_SUCCESS)
9201 return rcStrict;
9202
9203 iemHlpUsedFpu(pVCpu);
9204 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9205 return VINF_SUCCESS;
9206}
9207
9208
9209/**
9210 * Implements 'FRSTOR'.
9211 *
9212 * @param GCPtrEffSrc The address of the image.
9213 * @param enmEffOpSize The operand size.
9214 */
9215IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
9216{
9217 RTCPTRUNION uPtr;
9218 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
9219 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
9220 if (rcStrict != VINF_SUCCESS)
9221 return rcStrict;
9222
9223 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9224 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
9225 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
9226 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
9227 {
9228 pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
9229 pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
9230 pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
9231 pFpuCtx->aRegs[i].au32[3] = 0;
9232 }
9233
9234 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
9235 if (rcStrict != VINF_SUCCESS)
9236 return rcStrict;
9237
9238 iemHlpUsedFpu(pVCpu);
9239 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9240 return VINF_SUCCESS;
9241}
9242
9243
9244/**
9245 * Implements 'FLDCW'.
9246 *
9247 * @param u16Fcw The new FCW.
9248 */
9249IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
9250{
9251 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9252
9253 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
9254 /** @todo Testcase: Try see what happens when trying to set undefined bits
9255 * (other than 6 and 7). Currently ignoring them. */
9256 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
9257 * according to FSW. (This is was is currently implemented.) */
9258 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9259 pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
9260 iemFpuRecalcExceptionStatus(pFpuCtx);
9261
9262 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
9263 iemHlpUsedFpu(pVCpu);
9264 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9265 return VINF_SUCCESS;
9266}
9267
9268
9269
9270/**
9271 * Implements the underflow case of fxch.
9272 *
9273 * @param iStReg The other stack register.
9274 */
9275IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
9276{
9277 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9278
9279 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9280 unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
9281 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9282 Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
9283
9284 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
9285 * registers are read as QNaN and then exchanged. This could be
9286 * wrong... */
9287 if (pFpuCtx->FCW & X86_FCW_IM)
9288 {
9289 if (RT_BIT(iReg1) & pFpuCtx->FTW)
9290 {
9291 if (RT_BIT(iReg2) & pFpuCtx->FTW)
9292 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9293 else
9294 pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
9295 iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
9296 }
9297 else
9298 {
9299 pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
9300 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9301 }
9302 pFpuCtx->FSW &= ~X86_FSW_C_MASK;
9303 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
9304 }
9305 else
9306 {
9307 /* raise underflow exception, don't change anything. */
9308 pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
9309 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9310 }
9311
9312 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9313 iemHlpUsedFpu(pVCpu);
9314 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9315 return VINF_SUCCESS;
9316}
9317
9318
9319/**
9320 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
9321 *
9322 * @param cToAdd 1 or 7.
9323 */
9324IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
9325{
9326 Assert(iStReg < 8);
9327 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9328
9329 /*
9330 * Raise exceptions.
9331 */
9332 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
9333 return iemRaiseDeviceNotAvailable(pVCpu);
9334
9335 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9336 uint16_t u16Fsw = pFpuCtx->FSW;
9337 if (u16Fsw & X86_FSW_ES)
9338 return iemRaiseMathFault(pVCpu);
9339
9340 /*
9341 * Check if any of the register accesses causes #SF + #IA.
9342 */
9343 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
9344 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9345 if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
9346 {
9347 uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
9348 NOREF(u32Eflags);
9349
9350 pFpuCtx->FSW &= ~X86_FSW_C1;
9351 pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
9352 if ( !(u16Fsw & X86_FSW_IE)
9353 || (pFpuCtx->FCW & X86_FCW_IM) )
9354 {
9355 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9356 pVCpu->cpum.GstCtx.eflags.u |= pVCpu->cpum.GstCtx.eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9357 }
9358 }
9359 else if (pFpuCtx->FCW & X86_FCW_IM)
9360 {
9361 /* Masked underflow. */
9362 pFpuCtx->FSW &= ~X86_FSW_C1;
9363 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
9364 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9365 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
9366 }
9367 else
9368 {
9369 /* Raise underflow - don't touch EFLAGS or TOP. */
9370 pFpuCtx->FSW &= ~X86_FSW_C1;
9371 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9372 fPop = false;
9373 }
9374
9375 /*
9376 * Pop if necessary.
9377 */
9378 if (fPop)
9379 {
9380 pFpuCtx->FTW &= ~RT_BIT(iReg1);
9381 pFpuCtx->FSW &= X86_FSW_TOP_MASK;
9382 pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
9383 }
9384
9385 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9386 iemHlpUsedFpu(pVCpu);
9387 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9388 return VINF_SUCCESS;
9389}
9390
9391/** @} */
9392
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette