VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h@ 92679

Last change on this file since 92679 was 92626, checked in by vboxsync, 3 years ago

VMM: Nested VMX: bugref:10092 Adjust PGM APIs and translate nested-guest CR3 prior to mapping them when switching mode and other places.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 335.6 KB
Line 
1/* $Id: IEMAllCImpl.cpp.h 92626 2021-11-29 12:32:58Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#include "IEMAllCImplSvmInstr.cpp.h"
19#include "IEMAllCImplVmxInstr.cpp.h"
20
21
22/** @name Misc Helpers
23 * @{
24 */
25
26
27/**
28 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
29 *
30 * @returns Strict VBox status code.
31 *
32 * @param pVCpu The cross context virtual CPU structure of the calling thread.
33 * @param u16Port The port number.
34 * @param cbOperand The operand size.
35 */
36static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
37{
38 /* The TSS bits we're interested in are the same on 386 and AMD64. */
39 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
40 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
41 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
42 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
43
44 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
45
46 /*
47 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
48 */
49 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
50 if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
51 && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
52 {
53 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
54 u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u));
55 return iemRaiseGeneralProtectionFault0(pVCpu);
56 }
57
58 /*
59 * Read the bitmap offset (may #PF).
60 */
61 uint16_t offBitmap;
62 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
63 pVCpu->cpum.GstCtx.tr.u64Base + RT_UOFFSETOF(X86TSS64, offIoBitmap));
64 if (rcStrict != VINF_SUCCESS)
65 {
66 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
67 return rcStrict;
68 }
69
70 /*
71 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
72 * describes the CPU actually reading two bytes regardless of whether the
73 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
74 */
75 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
76 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
77 * for instance sizeof(X86TSS32). */
78 if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */
79 {
80 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
81 offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit));
82 return iemRaiseGeneralProtectionFault0(pVCpu);
83 }
84
85 /*
86 * Read the necessary bits.
87 */
88 /** @todo Test the assertion in the intel manual that the CPU reads two
89 * bytes. The question is how this works wrt to #PF and #GP on the
90 * 2nd byte when it's not required. */
91 uint16_t bmBytes = UINT16_MAX;
92 rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit);
93 if (rcStrict != VINF_SUCCESS)
94 {
95 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
96 return rcStrict;
97 }
98
99 /*
100 * Perform the check.
101 */
102 uint16_t fPortMask = (1 << cbOperand) - 1;
103 bmBytes >>= (u16Port & 7);
104 if (bmBytes & fPortMask)
105 {
106 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
107 u16Port, cbOperand, bmBytes, fPortMask));
108 return iemRaiseGeneralProtectionFault0(pVCpu);
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115/**
116 * Checks if we are allowed to access the given I/O port, raising the
117 * appropriate exceptions if we aren't (or if the I/O bitmap is not
118 * accessible).
119 *
120 * @returns Strict VBox status code.
121 *
122 * @param pVCpu The cross context virtual CPU structure of the calling thread.
123 * @param u16Port The port number.
124 * @param cbOperand The operand size.
125 */
126DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
127{
128 X86EFLAGS Efl;
129 Efl.u = IEMMISC_GET_EFL(pVCpu);
130 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
131 && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
132 || Efl.Bits.u1VM) )
133 return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand);
134 return VINF_SUCCESS;
135}
136
137
138#if 0
139/**
140 * Calculates the parity bit.
141 *
142 * @returns true if the bit is set, false if not.
143 * @param u8Result The least significant byte of the result.
144 */
145static bool iemHlpCalcParityFlag(uint8_t u8Result)
146{
147 /*
148 * Parity is set if the number of bits in the least significant byte of
149 * the result is even.
150 */
151 uint8_t cBits;
152 cBits = u8Result & 1; /* 0 */
153 u8Result >>= 1;
154 cBits += u8Result & 1;
155 u8Result >>= 1;
156 cBits += u8Result & 1;
157 u8Result >>= 1;
158 cBits += u8Result & 1;
159 u8Result >>= 1;
160 cBits += u8Result & 1; /* 4 */
161 u8Result >>= 1;
162 cBits += u8Result & 1;
163 u8Result >>= 1;
164 cBits += u8Result & 1;
165 u8Result >>= 1;
166 cBits += u8Result & 1;
167 return !(cBits & 1);
168}
169#endif /* not used */
170
171
172/**
173 * Updates the specified flags according to a 8-bit result.
174 *
175 * @param pVCpu The cross context virtual CPU structure of the calling thread.
176 * @param u8Result The result to set the flags according to.
177 * @param fToUpdate The flags to update.
178 * @param fUndefined The flags that are specified as undefined.
179 */
180static void iemHlpUpdateArithEFlagsU8(PVMCPUCC pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
181{
182 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
183 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
184 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
185 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
186}
187
188
189/**
190 * Updates the specified flags according to a 16-bit result.
191 *
192 * @param pVCpu The cross context virtual CPU structure of the calling thread.
193 * @param u16Result The result to set the flags according to.
194 * @param fToUpdate The flags to update.
195 * @param fUndefined The flags that are specified as undefined.
196 */
197static void iemHlpUpdateArithEFlagsU16(PVMCPUCC pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
198{
199 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
200 iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
201 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
202 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
203}
204
205
206/**
207 * Helper used by iret.
208 *
209 * @param pVCpu The cross context virtual CPU structure of the calling thread.
210 * @param uCpl The new CPL.
211 * @param pSReg Pointer to the segment register.
212 */
213static void iemHlpAdjustSelectorForNewCpl(PVMCPUCC pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
214{
215 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
216 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
217
218 if ( uCpl > pSReg->Attr.n.u2Dpl
219 && pSReg->Attr.n.u1DescType /* code or data, not system */
220 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
221 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
222 iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
223}
224
225
226/**
227 * Indicates that we have modified the FPU state.
228 *
229 * @param pVCpu The cross context virtual CPU structure of the calling thread.
230 */
231DECLINLINE(void) iemHlpUsedFpu(PVMCPUCC pVCpu)
232{
233 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
234}
235
236/** @} */
237
238/** @name C Implementations
239 * @{
240 */
241
242/**
243 * Implements a 16-bit popa.
244 */
245IEM_CIMPL_DEF_0(iemCImpl_popa_16)
246{
247 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
248 RTGCPTR GCPtrLast = GCPtrStart + 15;
249 VBOXSTRICTRC rcStrict;
250
251 /*
252 * The docs are a bit hard to comprehend here, but it looks like we wrap
253 * around in real mode as long as none of the individual "popa" crosses the
254 * end of the stack segment. In protected mode we check the whole access
255 * in one go. For efficiency, only do the word-by-word thing if we're in
256 * danger of wrapping around.
257 */
258 /** @todo do popa boundary / wrap-around checks. */
259 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
260 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
261 {
262 /* word-by-word */
263 RTUINT64U TmpRsp;
264 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
265 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp);
266 if (rcStrict == VINF_SUCCESS)
267 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp);
268 if (rcStrict == VINF_SUCCESS)
269 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp);
270 if (rcStrict == VINF_SUCCESS)
271 {
272 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
273 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp);
274 }
275 if (rcStrict == VINF_SUCCESS)
276 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp);
277 if (rcStrict == VINF_SUCCESS)
278 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp);
279 if (rcStrict == VINF_SUCCESS)
280 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp);
281 if (rcStrict == VINF_SUCCESS)
282 {
283 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
284 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
285 }
286 }
287 else
288 {
289 uint16_t const *pa16Mem = NULL;
290 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
291 if (rcStrict == VINF_SUCCESS)
292 {
293 pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI];
294 pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI];
295 pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP];
296 /* skip sp */
297 pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX];
298 pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX];
299 pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX];
300 pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX];
301 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
302 if (rcStrict == VINF_SUCCESS)
303 {
304 iemRegAddToRsp(pVCpu, 16);
305 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
306 }
307 }
308 }
309 return rcStrict;
310}
311
312
313/**
314 * Implements a 32-bit popa.
315 */
316IEM_CIMPL_DEF_0(iemCImpl_popa_32)
317{
318 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
319 RTGCPTR GCPtrLast = GCPtrStart + 31;
320 VBOXSTRICTRC rcStrict;
321
322 /*
323 * The docs are a bit hard to comprehend here, but it looks like we wrap
324 * around in real mode as long as none of the individual "popa" crosses the
325 * end of the stack segment. In protected mode we check the whole access
326 * in one go. For efficiency, only do the word-by-word thing if we're in
327 * danger of wrapping around.
328 */
329 /** @todo do popa boundary / wrap-around checks. */
330 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
331 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
332 {
333 /* word-by-word */
334 RTUINT64U TmpRsp;
335 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
336 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp);
337 if (rcStrict == VINF_SUCCESS)
338 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp);
339 if (rcStrict == VINF_SUCCESS)
340 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp);
341 if (rcStrict == VINF_SUCCESS)
342 {
343 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
344 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp);
345 }
346 if (rcStrict == VINF_SUCCESS)
347 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp);
348 if (rcStrict == VINF_SUCCESS)
349 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp);
350 if (rcStrict == VINF_SUCCESS)
351 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp);
352 if (rcStrict == VINF_SUCCESS)
353 {
354#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
355 pVCpu->cpum.GstCtx.rdi &= UINT32_MAX;
356 pVCpu->cpum.GstCtx.rsi &= UINT32_MAX;
357 pVCpu->cpum.GstCtx.rbp &= UINT32_MAX;
358 pVCpu->cpum.GstCtx.rbx &= UINT32_MAX;
359 pVCpu->cpum.GstCtx.rdx &= UINT32_MAX;
360 pVCpu->cpum.GstCtx.rcx &= UINT32_MAX;
361 pVCpu->cpum.GstCtx.rax &= UINT32_MAX;
362#endif
363 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
364 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
365 }
366 }
367 else
368 {
369 uint32_t const *pa32Mem;
370 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
371 if (rcStrict == VINF_SUCCESS)
372 {
373 pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI];
374 pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI];
375 pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP];
376 /* skip esp */
377 pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX];
378 pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX];
379 pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX];
380 pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX];
381 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
382 if (rcStrict == VINF_SUCCESS)
383 {
384 iemRegAddToRsp(pVCpu, 32);
385 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
386 }
387 }
388 }
389 return rcStrict;
390}
391
392
393/**
394 * Implements a 16-bit pusha.
395 */
396IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
397{
398 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
399 RTGCPTR GCPtrBottom = GCPtrTop - 15;
400 VBOXSTRICTRC rcStrict;
401
402 /*
403 * The docs are a bit hard to comprehend here, but it looks like we wrap
404 * around in real mode as long as none of the individual "pushd" crosses the
405 * end of the stack segment. In protected mode we check the whole access
406 * in one go. For efficiency, only do the word-by-word thing if we're in
407 * danger of wrapping around.
408 */
409 /** @todo do pusha boundary / wrap-around checks. */
410 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
411 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
412 {
413 /* word-by-word */
414 RTUINT64U TmpRsp;
415 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
416 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp);
417 if (rcStrict == VINF_SUCCESS)
418 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp);
419 if (rcStrict == VINF_SUCCESS)
420 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp);
421 if (rcStrict == VINF_SUCCESS)
422 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp);
423 if (rcStrict == VINF_SUCCESS)
424 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp);
425 if (rcStrict == VINF_SUCCESS)
426 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp);
427 if (rcStrict == VINF_SUCCESS)
428 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp);
429 if (rcStrict == VINF_SUCCESS)
430 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp);
431 if (rcStrict == VINF_SUCCESS)
432 {
433 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
434 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
435 }
436 }
437 else
438 {
439 GCPtrBottom--;
440 uint16_t *pa16Mem = NULL;
441 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
442 if (rcStrict == VINF_SUCCESS)
443 {
444 pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di;
445 pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si;
446 pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp;
447 pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp;
448 pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx;
449 pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx;
450 pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx;
451 pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax;
452 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
453 if (rcStrict == VINF_SUCCESS)
454 {
455 iemRegSubFromRsp(pVCpu, 16);
456 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
457 }
458 }
459 }
460 return rcStrict;
461}
462
463
464/**
465 * Implements a 32-bit pusha.
466 */
467IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
468{
469 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
470 RTGCPTR GCPtrBottom = GCPtrTop - 31;
471 VBOXSTRICTRC rcStrict;
472
473 /*
474 * The docs are a bit hard to comprehend here, but it looks like we wrap
475 * around in real mode as long as none of the individual "pusha" crosses the
476 * end of the stack segment. In protected mode we check the whole access
477 * in one go. For efficiency, only do the word-by-word thing if we're in
478 * danger of wrapping around.
479 */
480 /** @todo do pusha boundary / wrap-around checks. */
481 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
482 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
483 {
484 /* word-by-word */
485 RTUINT64U TmpRsp;
486 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
487 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp);
488 if (rcStrict == VINF_SUCCESS)
489 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp);
490 if (rcStrict == VINF_SUCCESS)
491 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp);
492 if (rcStrict == VINF_SUCCESS)
493 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp);
494 if (rcStrict == VINF_SUCCESS)
495 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp);
496 if (rcStrict == VINF_SUCCESS)
497 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp);
498 if (rcStrict == VINF_SUCCESS)
499 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp);
500 if (rcStrict == VINF_SUCCESS)
501 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp);
502 if (rcStrict == VINF_SUCCESS)
503 {
504 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
505 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
506 }
507 }
508 else
509 {
510 GCPtrBottom--;
511 uint32_t *pa32Mem;
512 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
513 if (rcStrict == VINF_SUCCESS)
514 {
515 pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi;
516 pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi;
517 pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp;
518 pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp;
519 pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx;
520 pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx;
521 pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx;
522 pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax;
523 rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
524 if (rcStrict == VINF_SUCCESS)
525 {
526 iemRegSubFromRsp(pVCpu, 32);
527 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
528 }
529 }
530 }
531 return rcStrict;
532}
533
534
535/**
536 * Implements pushf.
537 *
538 *
539 * @param enmEffOpSize The effective operand size.
540 */
541IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
542{
543 VBOXSTRICTRC rcStrict;
544
545 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
546 {
547 Log2(("pushf: Guest intercept -> #VMEXIT\n"));
548 IEM_SVM_UPDATE_NRIP(pVCpu);
549 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
550 }
551
552 /*
553 * If we're in V8086 mode some care is required (which is why we're in
554 * doing this in a C implementation).
555 */
556 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
557 if ( (fEfl & X86_EFL_VM)
558 && X86_EFL_GET_IOPL(fEfl) != 3 )
559 {
560 Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE);
561 if ( enmEffOpSize != IEMMODE_16BIT
562 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
563 return iemRaiseGeneralProtectionFault0(pVCpu);
564 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
565 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
566 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
567 }
568 else
569 {
570
571 /*
572 * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
573 */
574 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
575
576 switch (enmEffOpSize)
577 {
578 case IEMMODE_16BIT:
579 AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
580 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
581 fEfl |= UINT16_C(0xf000);
582 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
583 break;
584 case IEMMODE_32BIT:
585 rcStrict = iemMemStackPushU32(pVCpu, fEfl);
586 break;
587 case IEMMODE_64BIT:
588 rcStrict = iemMemStackPushU64(pVCpu, fEfl);
589 break;
590 IEM_NOT_REACHED_DEFAULT_CASE_RET();
591 }
592 }
593 if (rcStrict != VINF_SUCCESS)
594 return rcStrict;
595
596 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
597 return VINF_SUCCESS;
598}
599
600
601/**
602 * Implements popf.
603 *
604 * @param enmEffOpSize The effective operand size.
605 */
606IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
607{
608 uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu);
609 VBOXSTRICTRC rcStrict;
610 uint32_t fEflNew;
611
612 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
613 {
614 Log2(("popf: Guest intercept -> #VMEXIT\n"));
615 IEM_SVM_UPDATE_NRIP(pVCpu);
616 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
617 }
618
619 /*
620 * V8086 is special as usual.
621 */
622 if (fEflOld & X86_EFL_VM)
623 {
624 /*
625 * Almost anything goes if IOPL is 3.
626 */
627 if (X86_EFL_GET_IOPL(fEflOld) == 3)
628 {
629 switch (enmEffOpSize)
630 {
631 case IEMMODE_16BIT:
632 {
633 uint16_t u16Value;
634 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
635 if (rcStrict != VINF_SUCCESS)
636 return rcStrict;
637 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
638 break;
639 }
640 case IEMMODE_32BIT:
641 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
642 if (rcStrict != VINF_SUCCESS)
643 return rcStrict;
644 break;
645 IEM_NOT_REACHED_DEFAULT_CASE_RET();
646 }
647
648 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
649 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
650 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
651 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
652 }
653 /*
654 * Interrupt flag virtualization with CR4.VME=1.
655 */
656 else if ( enmEffOpSize == IEMMODE_16BIT
657 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
658 {
659 uint16_t u16Value;
660 RTUINT64U TmpRsp;
661 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
662 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
663 if (rcStrict != VINF_SUCCESS)
664 return rcStrict;
665
666 /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
667 * or before? */
668 if ( ( (u16Value & X86_EFL_IF)
669 && (fEflOld & X86_EFL_VIP))
670 || (u16Value & X86_EFL_TF) )
671 return iemRaiseGeneralProtectionFault0(pVCpu);
672
673 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
674 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
675 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
676 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
677
678 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
679 }
680 else
681 return iemRaiseGeneralProtectionFault0(pVCpu);
682
683 }
684 /*
685 * Not in V8086 mode.
686 */
687 else
688 {
689 /* Pop the flags. */
690 switch (enmEffOpSize)
691 {
692 case IEMMODE_16BIT:
693 {
694 uint16_t u16Value;
695 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
696 if (rcStrict != VINF_SUCCESS)
697 return rcStrict;
698 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
699
700 /*
701 * Ancient CPU adjustments:
702 * - 8086, 80186, V20/30:
703 * Fixed bits 15:12 bits are not kept correctly internally, mostly for
704 * practical reasons (masking below). We add them when pushing flags.
705 * - 80286:
706 * The NT and IOPL flags cannot be popped from real mode and are
707 * therefore always zero (since a 286 can never exit from PM and
708 * their initial value is zero). This changed on a 386 and can
709 * therefore be used to detect 286 or 386 CPU in real mode.
710 */
711 if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
712 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
713 fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
714 break;
715 }
716 case IEMMODE_32BIT:
717 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
718 if (rcStrict != VINF_SUCCESS)
719 return rcStrict;
720 break;
721 case IEMMODE_64BIT:
722 {
723 uint64_t u64Value;
724 rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
725 if (rcStrict != VINF_SUCCESS)
726 return rcStrict;
727 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
728 break;
729 }
730 IEM_NOT_REACHED_DEFAULT_CASE_RET();
731 }
732
733 /* Merge them with the current flags. */
734 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
735 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
736 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
737 || pVCpu->iem.s.uCpl == 0)
738 {
739 fEflNew &= fPopfBits;
740 fEflNew |= ~fPopfBits & fEflOld;
741 }
742 else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
743 {
744 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
745 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
746 }
747 else
748 {
749 fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
750 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
751 }
752 }
753
754 /*
755 * Commit the flags.
756 */
757 Assert(fEflNew & RT_BIT_32(1));
758 IEMMISC_SET_EFL(pVCpu, fEflNew);
759 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
760
761 return VINF_SUCCESS;
762}
763
764
765/**
766 * Implements an indirect call.
767 *
768 * @param uNewPC The new program counter (RIP) value (loaded from the
769 * operand).
770 * @param enmEffOpSize The effective operand size.
771 */
772IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
773{
774 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
775 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
776 return iemRaiseGeneralProtectionFault0(pVCpu);
777
778 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
779 if (rcStrict != VINF_SUCCESS)
780 return rcStrict;
781
782 pVCpu->cpum.GstCtx.rip = uNewPC;
783 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
784
785#ifndef IEM_WITH_CODE_TLB
786 /* Flush the prefetch buffer. */
787 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
788#endif
789 return VINF_SUCCESS;
790}
791
792
793/**
794 * Implements a 16-bit relative call.
795 *
796 * @param offDisp The displacment offset.
797 */
798IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
799{
800 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
801 uint16_t uNewPC = uOldPC + offDisp;
802 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
803 return iemRaiseGeneralProtectionFault0(pVCpu);
804
805 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
806 if (rcStrict != VINF_SUCCESS)
807 return rcStrict;
808
809 pVCpu->cpum.GstCtx.rip = uNewPC;
810 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
811
812#ifndef IEM_WITH_CODE_TLB
813 /* Flush the prefetch buffer. */
814 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
815#endif
816 return VINF_SUCCESS;
817}
818
819
820/**
821 * Implements a 32-bit indirect call.
822 *
823 * @param uNewPC The new program counter (RIP) value (loaded from the
824 * operand).
825 * @param enmEffOpSize The effective operand size.
826 */
827IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
828{
829 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
830 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
831 return iemRaiseGeneralProtectionFault0(pVCpu);
832
833 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
834 if (rcStrict != VINF_SUCCESS)
835 return rcStrict;
836
837 pVCpu->cpum.GstCtx.rip = uNewPC;
838 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
839
840#ifndef IEM_WITH_CODE_TLB
841 /* Flush the prefetch buffer. */
842 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
843#endif
844 return VINF_SUCCESS;
845}
846
847
848/**
849 * Implements a 32-bit relative call.
850 *
851 * @param offDisp The displacment offset.
852 */
853IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
854{
855 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
856 uint32_t uNewPC = uOldPC + offDisp;
857 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
858 return iemRaiseGeneralProtectionFault0(pVCpu);
859
860 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
861 if (rcStrict != VINF_SUCCESS)
862 return rcStrict;
863
864 pVCpu->cpum.GstCtx.rip = uNewPC;
865 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
866
867#ifndef IEM_WITH_CODE_TLB
868 /* Flush the prefetch buffer. */
869 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
870#endif
871 return VINF_SUCCESS;
872}
873
874
875/**
876 * Implements a 64-bit indirect call.
877 *
878 * @param uNewPC The new program counter (RIP) value (loaded from the
879 * operand).
880 * @param enmEffOpSize The effective operand size.
881 */
882IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
883{
884 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
885 if (!IEM_IS_CANONICAL(uNewPC))
886 return iemRaiseGeneralProtectionFault0(pVCpu);
887
888 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
889 if (rcStrict != VINF_SUCCESS)
890 return rcStrict;
891
892 pVCpu->cpum.GstCtx.rip = uNewPC;
893 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
894
895#ifndef IEM_WITH_CODE_TLB
896 /* Flush the prefetch buffer. */
897 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
898#endif
899 return VINF_SUCCESS;
900}
901
902
903/**
904 * Implements a 64-bit relative call.
905 *
906 * @param offDisp The displacment offset.
907 */
908IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
909{
910 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
911 uint64_t uNewPC = uOldPC + offDisp;
912 if (!IEM_IS_CANONICAL(uNewPC))
913 return iemRaiseNotCanonical(pVCpu);
914
915 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
916 if (rcStrict != VINF_SUCCESS)
917 return rcStrict;
918
919 pVCpu->cpum.GstCtx.rip = uNewPC;
920 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
921
922#ifndef IEM_WITH_CODE_TLB
923 /* Flush the prefetch buffer. */
924 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
925#endif
926
927 return VINF_SUCCESS;
928}
929
930
931/**
932 * Implements far jumps and calls thru task segments (TSS).
933 *
934 * @param uSel The selector.
935 * @param enmBranch The kind of branching we're performing.
936 * @param enmEffOpSize The effective operand size.
937 * @param pDesc The descriptor corresponding to @a uSel. The type is
938 * task gate.
939 */
940IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
941{
942#ifndef IEM_IMPLEMENTS_TASKSWITCH
943 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
944#else
945 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
946 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
947 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
948 RT_NOREF_PV(enmEffOpSize);
949 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
950
951 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
952 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
953 {
954 Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
955 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
956 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
957 }
958
959 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
960 * far calls (see iemCImpl_callf). Most likely in both cases it should be
961 * checked here, need testcases. */
962 if (!pDesc->Legacy.Gen.u1Present)
963 {
964 Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
965 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
966 }
967
968 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
969 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
970 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
971#endif
972}
973
974
975/**
976 * Implements far jumps and calls thru task gates.
977 *
978 * @param uSel The selector.
979 * @param enmBranch The kind of branching we're performing.
980 * @param enmEffOpSize The effective operand size.
981 * @param pDesc The descriptor corresponding to @a uSel. The type is
982 * task gate.
983 */
984IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
985{
986#ifndef IEM_IMPLEMENTS_TASKSWITCH
987 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
988#else
989 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
990 RT_NOREF_PV(enmEffOpSize);
991 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
992
993 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
994 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
995 {
996 Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
997 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
998 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
999 }
1000
1001 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1002 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1003 * checked here, need testcases. */
1004 if (!pDesc->Legacy.Gen.u1Present)
1005 {
1006 Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
1007 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1008 }
1009
1010 /*
1011 * Fetch the new TSS descriptor from the GDT.
1012 */
1013 RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
1014 if (uSelTss & X86_SEL_LDT)
1015 {
1016 Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
1017 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1018 }
1019
1020 IEMSELDESC TssDesc;
1021 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
1022 if (rcStrict != VINF_SUCCESS)
1023 return rcStrict;
1024
1025 if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
1026 {
1027 Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
1028 TssDesc.Legacy.Gate.u4Type));
1029 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1030 }
1031
1032 if (!TssDesc.Legacy.Gate.u1Present)
1033 {
1034 Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
1035 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
1036 }
1037
1038 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1039 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1040 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
1041#endif
1042}
1043
1044
1045/**
1046 * Implements far jumps and calls thru call gates.
1047 *
1048 * @param uSel The selector.
1049 * @param enmBranch The kind of branching we're performing.
1050 * @param enmEffOpSize The effective operand size.
1051 * @param pDesc The descriptor corresponding to @a uSel. The type is
1052 * call gate.
1053 */
1054IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1055{
1056#define IEM_IMPLEMENTS_CALLGATE
1057#ifndef IEM_IMPLEMENTS_CALLGATE
1058 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1059#else
1060 RT_NOREF_PV(enmEffOpSize);
1061 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1062
1063 /* NB: Far jumps can only do intra-privilege transfers. Far calls support
1064 * inter-privilege calls and are much more complex.
1065 *
1066 * NB: 64-bit call gate has the same type as a 32-bit call gate! If
1067 * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
1068 * must be 16-bit or 32-bit.
1069 */
1070 /** @todo: effective operand size is probably irrelevant here, only the
1071 * call gate bitness matters??
1072 */
1073 VBOXSTRICTRC rcStrict;
1074 RTPTRUNION uPtrRet;
1075 uint64_t uNewRsp;
1076 uint64_t uNewRip;
1077 uint64_t u64Base;
1078 uint32_t cbLimit;
1079 RTSEL uNewCS;
1080 IEMSELDESC DescCS;
1081
1082 AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
1083 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1084 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
1085 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
1086
1087 /* Determine the new instruction pointer from the gate descriptor. */
1088 uNewRip = pDesc->Legacy.Gate.u16OffsetLow
1089 | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
1090 | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
1091
1092 /* Perform DPL checks on the gate descriptor. */
1093 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1094 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1095 {
1096 Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1097 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1098 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1099 }
1100
1101 /** @todo does this catch NULL selectors, too? */
1102 if (!pDesc->Legacy.Gen.u1Present)
1103 {
1104 Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
1105 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1106 }
1107
1108 /*
1109 * Fetch the target CS descriptor from the GDT or LDT.
1110 */
1111 uNewCS = pDesc->Legacy.Gate.u16Sel;
1112 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
1113 if (rcStrict != VINF_SUCCESS)
1114 return rcStrict;
1115
1116 /* Target CS must be a code selector. */
1117 if ( !DescCS.Legacy.Gen.u1DescType
1118 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1119 {
1120 Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1121 uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
1122 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1123 }
1124
1125 /* Privilege checks on target CS. */
1126 if (enmBranch == IEMBRANCH_JUMP)
1127 {
1128 if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1129 {
1130 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1131 {
1132 Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1133 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1134 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1135 }
1136 }
1137 else
1138 {
1139 if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
1140 {
1141 Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1142 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1143 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1144 }
1145 }
1146 }
1147 else
1148 {
1149 Assert(enmBranch == IEMBRANCH_CALL);
1150 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1151 {
1152 Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1153 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1154 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
1155 }
1156 }
1157
1158 /* Additional long mode checks. */
1159 if (IEM_IS_LONG_MODE(pVCpu))
1160 {
1161 if (!DescCS.Legacy.Gen.u1Long)
1162 {
1163 Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
1164 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1165 }
1166
1167 /* L vs D. */
1168 if ( DescCS.Legacy.Gen.u1Long
1169 && DescCS.Legacy.Gen.u1DefBig)
1170 {
1171 Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
1172 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1173 }
1174 }
1175
1176 if (!DescCS.Legacy.Gate.u1Present)
1177 {
1178 Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
1179 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
1180 }
1181
1182 if (enmBranch == IEMBRANCH_JUMP)
1183 {
1184 /** @todo: This is very similar to regular far jumps; merge! */
1185 /* Jumps are fairly simple... */
1186
1187 /* Chop the high bits off if 16-bit gate (Intel says so). */
1188 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1189 uNewRip = (uint16_t)uNewRip;
1190
1191 /* Limit check for non-long segments. */
1192 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1193 if (DescCS.Legacy.Gen.u1Long)
1194 u64Base = 0;
1195 else
1196 {
1197 if (uNewRip > cbLimit)
1198 {
1199 Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
1200 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1201 }
1202 u64Base = X86DESC_BASE(&DescCS.Legacy);
1203 }
1204
1205 /* Canonical address check. */
1206 if (!IEM_IS_CANONICAL(uNewRip))
1207 {
1208 Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1209 return iemRaiseNotCanonical(pVCpu);
1210 }
1211
1212 /*
1213 * Ok, everything checked out fine. Now set the accessed bit before
1214 * committing the result into CS, CSHID and RIP.
1215 */
1216 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1217 {
1218 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1219 if (rcStrict != VINF_SUCCESS)
1220 return rcStrict;
1221 /** @todo check what VT-x and AMD-V does. */
1222 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1223 }
1224
1225 /* commit */
1226 pVCpu->cpum.GstCtx.rip = uNewRip;
1227 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1228 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1229 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1230 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1231 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1232 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1233 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1234 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1235 }
1236 else
1237 {
1238 Assert(enmBranch == IEMBRANCH_CALL);
1239 /* Calls are much more complicated. */
1240
1241 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
1242 {
1243 uint16_t offNewStack; /* Offset of new stack in TSS. */
1244 uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
1245 uint8_t uNewCSDpl;
1246 uint8_t cbWords;
1247 RTSEL uNewSS;
1248 RTSEL uOldSS;
1249 uint64_t uOldRsp;
1250 IEMSELDESC DescSS;
1251 RTPTRUNION uPtrTSS;
1252 RTGCPTR GCPtrTSS;
1253 RTPTRUNION uPtrParmWds;
1254 RTGCPTR GCPtrParmWds;
1255
1256 /* More privilege. This is the fun part. */
1257 Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
1258
1259 /*
1260 * Determine new SS:rSP from the TSS.
1261 */
1262 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
1263
1264 /* Figure out where the new stack pointer is stored in the TSS. */
1265 uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
1266 if (!IEM_IS_LONG_MODE(pVCpu))
1267 {
1268 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1269 {
1270 offNewStack = RT_UOFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
1271 cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
1272 }
1273 else
1274 {
1275 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1276 offNewStack = RT_UOFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
1277 cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
1278 }
1279 }
1280 else
1281 {
1282 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1283 offNewStack = RT_UOFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
1284 cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
1285 }
1286
1287 /* Check against TSS limit. */
1288 if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit)
1289 {
1290 Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit));
1291 return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel);
1292 }
1293
1294 GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack;
1295 rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
1296 if (rcStrict != VINF_SUCCESS)
1297 {
1298 Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1299 return rcStrict;
1300 }
1301
1302 if (!IEM_IS_LONG_MODE(pVCpu))
1303 {
1304 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1305 {
1306 uNewRsp = uPtrTSS.pu32[0];
1307 uNewSS = uPtrTSS.pu16[2];
1308 }
1309 else
1310 {
1311 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1312 uNewRsp = uPtrTSS.pu16[0];
1313 uNewSS = uPtrTSS.pu16[1];
1314 }
1315 }
1316 else
1317 {
1318 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1319 /* SS will be a NULL selector, but that's valid. */
1320 uNewRsp = uPtrTSS.pu64[0];
1321 uNewSS = uNewCSDpl;
1322 }
1323
1324 /* Done with the TSS now. */
1325 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
1326 if (rcStrict != VINF_SUCCESS)
1327 {
1328 Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1329 return rcStrict;
1330 }
1331
1332 /* Only used outside of long mode. */
1333 cbWords = pDesc->Legacy.Gate.u5ParmCount;
1334
1335 /* If EFER.LMA is 0, there's extra work to do. */
1336 if (!IEM_IS_LONG_MODE(pVCpu))
1337 {
1338 if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
1339 {
1340 Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
1341 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1342 }
1343
1344 /* Grab the new SS descriptor. */
1345 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1346 if (rcStrict != VINF_SUCCESS)
1347 return rcStrict;
1348
1349 /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
1350 if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
1351 || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
1352 {
1353 Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
1354 uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
1355 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1356 }
1357
1358 /* Ensure new SS is a writable data segment. */
1359 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
1360 {
1361 Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
1362 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1363 }
1364
1365 if (!DescSS.Legacy.Gen.u1Present)
1366 {
1367 Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
1368 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
1369 }
1370 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1371 cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
1372 else
1373 cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
1374 }
1375 else
1376 {
1377 /* Just grab the new (NULL) SS descriptor. */
1378 /** @todo testcase: Check whether the zero GDT entry is actually loaded here
1379 * like we do... */
1380 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1381 if (rcStrict != VINF_SUCCESS)
1382 return rcStrict;
1383
1384 cbNewStack = sizeof(uint64_t) * 4;
1385 }
1386
1387 /** @todo: According to Intel, new stack is checked for enough space first,
1388 * then switched. According to AMD, the stack is switched first and
1389 * then pushes might fault!
1390 * NB: OS/2 Warp 3/4 actively relies on the fact that possible
1391 * incoming stack #PF happens before actual stack switch. AMD is
1392 * either lying or implicitly assumes that new state is committed
1393 * only if and when an instruction doesn't fault.
1394 */
1395
1396 /** @todo: According to AMD, CS is loaded first, then SS.
1397 * According to Intel, it's the other way around!?
1398 */
1399
1400 /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
1401
1402 /* Set the accessed bit before committing new SS. */
1403 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1404 {
1405 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
1406 if (rcStrict != VINF_SUCCESS)
1407 return rcStrict;
1408 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1409 }
1410
1411 /* Remember the old SS:rSP and their linear address. */
1412 uOldSS = pVCpu->cpum.GstCtx.ss.Sel;
1413 uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp;
1414
1415 GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp;
1416
1417 /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
1418 or #PF, the former is not implemented in this workaround. */
1419 /** @todo Proper fix callgate target stack exceptions. */
1420 /** @todo testcase: Cover callgates with partially or fully inaccessible
1421 * target stacks. */
1422 void *pvNewFrame;
1423 RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
1424 rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW);
1425 if (rcStrict != VINF_SUCCESS)
1426 {
1427 Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
1428 return rcStrict;
1429 }
1430 rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
1431 if (rcStrict != VINF_SUCCESS)
1432 {
1433 Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1434 return rcStrict;
1435 }
1436
1437 /* Commit new SS:rSP. */
1438 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
1439 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
1440 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
1441 pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
1442 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
1443 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1444 pVCpu->cpum.GstCtx.rsp = uNewRsp;
1445 pVCpu->iem.s.uCpl = uNewCSDpl;
1446 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
1447 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
1448
1449 /* At this point the stack access must not fail because new state was already committed. */
1450 /** @todo this can still fail due to SS.LIMIT not check. */
1451 rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
1452 &uPtrRet.pv, &uNewRsp);
1453 AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
1454 VERR_INTERNAL_ERROR_5);
1455
1456 if (!IEM_IS_LONG_MODE(pVCpu))
1457 {
1458 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1459 {
1460 /* Push the old CS:rIP. */
1461 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1462 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1463
1464 if (cbWords)
1465 {
1466 /* Map the relevant chunk of the old stack. */
1467 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1468 if (rcStrict != VINF_SUCCESS)
1469 {
1470 Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1471 return rcStrict;
1472 }
1473
1474 /* Copy the parameter (d)words. */
1475 for (int i = 0; i < cbWords; ++i)
1476 uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
1477
1478 /* Unmap the old stack. */
1479 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1480 if (rcStrict != VINF_SUCCESS)
1481 {
1482 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1483 return rcStrict;
1484 }
1485 }
1486
1487 /* Push the old SS:rSP. */
1488 uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
1489 uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
1490 }
1491 else
1492 {
1493 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1494
1495 /* Push the old CS:rIP. */
1496 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1497 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1498
1499 if (cbWords)
1500 {
1501 /* Map the relevant chunk of the old stack. */
1502 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1503 if (rcStrict != VINF_SUCCESS)
1504 {
1505 Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1506 return rcStrict;
1507 }
1508
1509 /* Copy the parameter words. */
1510 for (int i = 0; i < cbWords; ++i)
1511 uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
1512
1513 /* Unmap the old stack. */
1514 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1515 if (rcStrict != VINF_SUCCESS)
1516 {
1517 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1518 return rcStrict;
1519 }
1520 }
1521
1522 /* Push the old SS:rSP. */
1523 uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
1524 uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
1525 }
1526 }
1527 else
1528 {
1529 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1530
1531 /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
1532 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1533 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1534 uPtrRet.pu64[2] = uOldRsp;
1535 uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
1536 }
1537
1538 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1539 if (rcStrict != VINF_SUCCESS)
1540 {
1541 Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1542 return rcStrict;
1543 }
1544
1545 /* Chop the high bits off if 16-bit gate (Intel says so). */
1546 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1547 uNewRip = (uint16_t)uNewRip;
1548
1549 /* Limit / canonical check. */
1550 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1551 if (!IEM_IS_LONG_MODE(pVCpu))
1552 {
1553 if (uNewRip > cbLimit)
1554 {
1555 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1556 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1557 }
1558 u64Base = X86DESC_BASE(&DescCS.Legacy);
1559 }
1560 else
1561 {
1562 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1563 if (!IEM_IS_CANONICAL(uNewRip))
1564 {
1565 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1566 return iemRaiseNotCanonical(pVCpu);
1567 }
1568 u64Base = 0;
1569 }
1570
1571 /*
1572 * Now set the accessed bit before
1573 * writing the return address to the stack and committing the result into
1574 * CS, CSHID and RIP.
1575 */
1576 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1577 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1578 {
1579 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1580 if (rcStrict != VINF_SUCCESS)
1581 return rcStrict;
1582 /** @todo check what VT-x and AMD-V does. */
1583 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1584 }
1585
1586 /* Commit new CS:rIP. */
1587 pVCpu->cpum.GstCtx.rip = uNewRip;
1588 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1589 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1590 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1591 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1592 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1593 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1594 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1595 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1596 }
1597 else
1598 {
1599 /* Same privilege. */
1600 /** @todo: This is very similar to regular far calls; merge! */
1601
1602 /* Check stack first - may #SS(0). */
1603 /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
1604 * 16-bit code cause a two or four byte CS to be pushed? */
1605 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
1606 IEM_IS_LONG_MODE(pVCpu) ? 8+8
1607 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
1608 &uPtrRet.pv, &uNewRsp);
1609 if (rcStrict != VINF_SUCCESS)
1610 return rcStrict;
1611
1612 /* Chop the high bits off if 16-bit gate (Intel says so). */
1613 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1614 uNewRip = (uint16_t)uNewRip;
1615
1616 /* Limit / canonical check. */
1617 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1618 if (!IEM_IS_LONG_MODE(pVCpu))
1619 {
1620 if (uNewRip > cbLimit)
1621 {
1622 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1623 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1624 }
1625 u64Base = X86DESC_BASE(&DescCS.Legacy);
1626 }
1627 else
1628 {
1629 if (!IEM_IS_CANONICAL(uNewRip))
1630 {
1631 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1632 return iemRaiseNotCanonical(pVCpu);
1633 }
1634 u64Base = 0;
1635 }
1636
1637 /*
1638 * Now set the accessed bit before
1639 * writing the return address to the stack and committing the result into
1640 * CS, CSHID and RIP.
1641 */
1642 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1643 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1644 {
1645 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1646 if (rcStrict != VINF_SUCCESS)
1647 return rcStrict;
1648 /** @todo check what VT-x and AMD-V does. */
1649 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1650 }
1651
1652 /* stack */
1653 if (!IEM_IS_LONG_MODE(pVCpu))
1654 {
1655 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1656 {
1657 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1658 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1659 }
1660 else
1661 {
1662 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1663 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1664 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1665 }
1666 }
1667 else
1668 {
1669 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1670 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1671 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1672 }
1673
1674 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1675 if (rcStrict != VINF_SUCCESS)
1676 return rcStrict;
1677
1678 /* commit */
1679 pVCpu->cpum.GstCtx.rip = uNewRip;
1680 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1681 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1682 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1683 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1684 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1685 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1686 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1687 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1688 }
1689 }
1690 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1691
1692 /* Flush the prefetch buffer. */
1693# ifdef IEM_WITH_CODE_TLB
1694 pVCpu->iem.s.pbInstrBuf = NULL;
1695# else
1696 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1697# endif
1698 return VINF_SUCCESS;
1699#endif
1700}
1701
1702
1703/**
1704 * Implements far jumps and calls thru system selectors.
1705 *
1706 * @param uSel The selector.
1707 * @param enmBranch The kind of branching we're performing.
1708 * @param enmEffOpSize The effective operand size.
1709 * @param pDesc The descriptor corresponding to @a uSel.
1710 */
1711IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1712{
1713 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1714 Assert((uSel & X86_SEL_MASK_OFF_RPL));
1715 IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1716
1717 if (IEM_IS_LONG_MODE(pVCpu))
1718 switch (pDesc->Legacy.Gen.u4Type)
1719 {
1720 case AMD64_SEL_TYPE_SYS_CALL_GATE:
1721 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1722
1723 default:
1724 case AMD64_SEL_TYPE_SYS_LDT:
1725 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
1726 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
1727 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
1728 case AMD64_SEL_TYPE_SYS_INT_GATE:
1729 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1730 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1731 }
1732
1733 switch (pDesc->Legacy.Gen.u4Type)
1734 {
1735 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1736 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1737 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1738
1739 case X86_SEL_TYPE_SYS_TASK_GATE:
1740 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
1741
1742 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1743 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1744 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
1745
1746 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1747 Log(("branch %04x -> busy 286 TSS\n", uSel));
1748 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1749
1750 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1751 Log(("branch %04x -> busy 386 TSS\n", uSel));
1752 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1753
1754 default:
1755 case X86_SEL_TYPE_SYS_LDT:
1756 case X86_SEL_TYPE_SYS_286_INT_GATE:
1757 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1758 case X86_SEL_TYPE_SYS_386_INT_GATE:
1759 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1760 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1761 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1762 }
1763}
1764
1765
1766/**
1767 * Implements far jumps.
1768 *
1769 * @param uSel The selector.
1770 * @param offSeg The segment offset.
1771 * @param enmEffOpSize The effective operand size.
1772 */
1773IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1774{
1775 NOREF(cbInstr);
1776 Assert(offSeg <= UINT32_MAX);
1777
1778 /*
1779 * Real mode and V8086 mode are easy. The only snag seems to be that
1780 * CS.limit doesn't change and the limit check is done against the current
1781 * limit.
1782 */
1783 /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August
1784 * 1998) that up to and including the Intel 486, far control
1785 * transfers in real mode set default CS attributes (0x93) and also
1786 * set a 64K segment limit. Starting with the Pentium, the
1787 * attributes and limit are left alone but the access rights are
1788 * ignored. We only implement the Pentium+ behavior.
1789 * */
1790 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1791 {
1792 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1793 if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit)
1794 {
1795 Log(("iemCImpl_FarJmp: 16-bit limit\n"));
1796 return iemRaiseGeneralProtectionFault0(pVCpu);
1797 }
1798
1799 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1800 pVCpu->cpum.GstCtx.rip = offSeg;
1801 else
1802 pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX;
1803 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1804 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1805 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1806 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1807 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1808 return VINF_SUCCESS;
1809 }
1810
1811 /*
1812 * Protected mode. Need to parse the specified descriptor...
1813 */
1814 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1815 {
1816 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1817 return iemRaiseGeneralProtectionFault0(pVCpu);
1818 }
1819
1820 /* Fetch the descriptor. */
1821 IEMSELDESC Desc;
1822 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
1823 if (rcStrict != VINF_SUCCESS)
1824 return rcStrict;
1825
1826 /* Is it there? */
1827 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1828 {
1829 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1830 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1831 }
1832
1833 /*
1834 * Deal with it according to its type. We do the standard code selectors
1835 * here and dispatch the system selectors to worker functions.
1836 */
1837 if (!Desc.Legacy.Gen.u1DescType)
1838 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1839
1840 /* Only code segments. */
1841 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1842 {
1843 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1844 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1845 }
1846
1847 /* L vs D. */
1848 if ( Desc.Legacy.Gen.u1Long
1849 && Desc.Legacy.Gen.u1DefBig
1850 && IEM_IS_LONG_MODE(pVCpu))
1851 {
1852 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1853 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1854 }
1855
1856 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1857 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1858 {
1859 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
1860 {
1861 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1862 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1863 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1864 }
1865 }
1866 else
1867 {
1868 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
1869 {
1870 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1871 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1872 }
1873 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
1874 {
1875 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
1876 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1877 }
1878 }
1879
1880 /* Chop the high bits if 16-bit (Intel says so). */
1881 if (enmEffOpSize == IEMMODE_16BIT)
1882 offSeg &= UINT16_MAX;
1883
1884 /* Limit check. (Should alternatively check for non-canonical addresses
1885 here, but that is ruled out by offSeg being 32-bit, right?) */
1886 uint64_t u64Base;
1887 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1888 if (Desc.Legacy.Gen.u1Long)
1889 u64Base = 0;
1890 else
1891 {
1892 if (offSeg > cbLimit)
1893 {
1894 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1895 /** @todo: Intel says this is #GP(0)! */
1896 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1897 }
1898 u64Base = X86DESC_BASE(&Desc.Legacy);
1899 }
1900
1901 /*
1902 * Ok, everything checked out fine. Now set the accessed bit before
1903 * committing the result into CS, CSHID and RIP.
1904 */
1905 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1906 {
1907 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
1908 if (rcStrict != VINF_SUCCESS)
1909 return rcStrict;
1910 /** @todo check what VT-x and AMD-V does. */
1911 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1912 }
1913
1914 /* commit */
1915 pVCpu->cpum.GstCtx.rip = offSeg;
1916 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1917 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1918 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1919 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1920 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1921 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1922 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1923 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1924 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1925 /** @todo check if the hidden bits are loaded correctly for 64-bit
1926 * mode. */
1927
1928 /* Flush the prefetch buffer. */
1929#ifdef IEM_WITH_CODE_TLB
1930 pVCpu->iem.s.pbInstrBuf = NULL;
1931#else
1932 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1933#endif
1934
1935 return VINF_SUCCESS;
1936}
1937
1938
1939/**
1940 * Implements far calls.
1941 *
1942 * This very similar to iemCImpl_FarJmp.
1943 *
1944 * @param uSel The selector.
1945 * @param offSeg The segment offset.
1946 * @param enmEffOpSize The operand size (in case we need it).
1947 */
1948IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1949{
1950 VBOXSTRICTRC rcStrict;
1951 uint64_t uNewRsp;
1952 RTPTRUNION uPtrRet;
1953
1954 /*
1955 * Real mode and V8086 mode are easy. The only snag seems to be that
1956 * CS.limit doesn't change and the limit check is done against the current
1957 * limit.
1958 */
1959 /** @todo See comment for similar code in iemCImpl_FarJmp */
1960 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1961 {
1962 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1963
1964 /* Check stack first - may #SS(0). */
1965 rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
1966 &uPtrRet.pv, &uNewRsp);
1967 if (rcStrict != VINF_SUCCESS)
1968 return rcStrict;
1969
1970 /* Check the target address range. */
1971 if (offSeg > UINT32_MAX)
1972 return iemRaiseGeneralProtectionFault0(pVCpu);
1973
1974 /* Everything is fine, push the return address. */
1975 if (enmEffOpSize == IEMMODE_16BIT)
1976 {
1977 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1978 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1979 }
1980 else
1981 {
1982 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1983 uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel;
1984 }
1985 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1986 if (rcStrict != VINF_SUCCESS)
1987 return rcStrict;
1988
1989 /* Branch. */
1990 pVCpu->cpum.GstCtx.rip = offSeg;
1991 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1992 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1993 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1994 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1995 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1996 return VINF_SUCCESS;
1997 }
1998
1999 /*
2000 * Protected mode. Need to parse the specified descriptor...
2001 */
2002 if (!(uSel & X86_SEL_MASK_OFF_RPL))
2003 {
2004 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
2005 return iemRaiseGeneralProtectionFault0(pVCpu);
2006 }
2007
2008 /* Fetch the descriptor. */
2009 IEMSELDESC Desc;
2010 rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
2011 if (rcStrict != VINF_SUCCESS)
2012 return rcStrict;
2013
2014 /*
2015 * Deal with it according to its type. We do the standard code selectors
2016 * here and dispatch the system selectors to worker functions.
2017 */
2018 if (!Desc.Legacy.Gen.u1DescType)
2019 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
2020
2021 /* Only code segments. */
2022 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2023 {
2024 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
2025 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2026 }
2027
2028 /* L vs D. */
2029 if ( Desc.Legacy.Gen.u1Long
2030 && Desc.Legacy.Gen.u1DefBig
2031 && IEM_IS_LONG_MODE(pVCpu))
2032 {
2033 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
2034 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2035 }
2036
2037 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
2038 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2039 {
2040 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
2041 {
2042 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
2043 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2044 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2045 }
2046 }
2047 else
2048 {
2049 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
2050 {
2051 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2052 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2053 }
2054 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
2055 {
2056 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
2057 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2058 }
2059 }
2060
2061 /* Is it there? */
2062 if (!Desc.Legacy.Gen.u1Present)
2063 {
2064 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
2065 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
2066 }
2067
2068 /* Check stack first - may #SS(0). */
2069 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
2070 * 16-bit code cause a two or four byte CS to be pushed? */
2071 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
2072 enmEffOpSize == IEMMODE_64BIT ? 8+8
2073 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2074 &uPtrRet.pv, &uNewRsp);
2075 if (rcStrict != VINF_SUCCESS)
2076 return rcStrict;
2077
2078 /* Chop the high bits if 16-bit (Intel says so). */
2079 if (enmEffOpSize == IEMMODE_16BIT)
2080 offSeg &= UINT16_MAX;
2081
2082 /* Limit / canonical check. */
2083 uint64_t u64Base;
2084 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
2085 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2086 {
2087 if (!IEM_IS_CANONICAL(offSeg))
2088 {
2089 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
2090 return iemRaiseNotCanonical(pVCpu);
2091 }
2092 u64Base = 0;
2093 }
2094 else
2095 {
2096 if (offSeg > cbLimit)
2097 {
2098 Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
2099 /** @todo: Intel says this is #GP(0)! */
2100 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2101 }
2102 u64Base = X86DESC_BASE(&Desc.Legacy);
2103 }
2104
2105 /*
2106 * Now set the accessed bit before
2107 * writing the return address to the stack and committing the result into
2108 * CS, CSHID and RIP.
2109 */
2110 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2111 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2112 {
2113 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
2114 if (rcStrict != VINF_SUCCESS)
2115 return rcStrict;
2116 /** @todo check what VT-x and AMD-V does. */
2117 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2118 }
2119
2120 /* stack */
2121 if (enmEffOpSize == IEMMODE_16BIT)
2122 {
2123 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2124 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2125 }
2126 else if (enmEffOpSize == IEMMODE_32BIT)
2127 {
2128 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2129 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
2130 }
2131 else
2132 {
2133 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
2134 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
2135 }
2136 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2137 if (rcStrict != VINF_SUCCESS)
2138 return rcStrict;
2139
2140 /* commit */
2141 pVCpu->cpum.GstCtx.rip = offSeg;
2142 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
2143 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
2144 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
2145 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2146 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
2147 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
2148 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2149 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2150 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2151 /** @todo check if the hidden bits are loaded correctly for 64-bit
2152 * mode. */
2153
2154 /* Flush the prefetch buffer. */
2155#ifdef IEM_WITH_CODE_TLB
2156 pVCpu->iem.s.pbInstrBuf = NULL;
2157#else
2158 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2159#endif
2160 return VINF_SUCCESS;
2161}
2162
2163
2164/**
2165 * Implements retf.
2166 *
2167 * @param enmEffOpSize The effective operand size.
2168 * @param cbPop The amount of arguments to pop from the stack
2169 * (bytes).
2170 */
2171IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2172{
2173 VBOXSTRICTRC rcStrict;
2174 RTCPTRUNION uPtrFrame;
2175 uint64_t uNewRsp;
2176 uint64_t uNewRip;
2177 uint16_t uNewCs;
2178 NOREF(cbInstr);
2179
2180 /*
2181 * Read the stack values first.
2182 */
2183 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
2184 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
2185 rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2186 if (rcStrict != VINF_SUCCESS)
2187 return rcStrict;
2188 if (enmEffOpSize == IEMMODE_16BIT)
2189 {
2190 uNewRip = uPtrFrame.pu16[0];
2191 uNewCs = uPtrFrame.pu16[1];
2192 }
2193 else if (enmEffOpSize == IEMMODE_32BIT)
2194 {
2195 uNewRip = uPtrFrame.pu32[0];
2196 uNewCs = uPtrFrame.pu16[2];
2197 }
2198 else
2199 {
2200 uNewRip = uPtrFrame.pu64[0];
2201 uNewCs = uPtrFrame.pu16[4];
2202 }
2203 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2204 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2205 { /* extremely likely */ }
2206 else
2207 return rcStrict;
2208
2209 /*
2210 * Real mode and V8086 mode are easy.
2211 */
2212 /** @todo See comment for similar code in iemCImpl_FarJmp */
2213 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2214 {
2215 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2216 /** @todo check how this is supposed to work if sp=0xfffe. */
2217
2218 /* Check the limit of the new EIP. */
2219 /** @todo Intel pseudo code only does the limit check for 16-bit
2220 * operands, AMD does not make any distinction. What is right? */
2221 if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit)
2222 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2223
2224 /* commit the operation. */
2225 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2226 pVCpu->cpum.GstCtx.rip = uNewRip;
2227 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2228 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2229 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2230 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2231 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2232 if (cbPop)
2233 iemRegAddToRsp(pVCpu, cbPop);
2234 return VINF_SUCCESS;
2235 }
2236
2237 /*
2238 * Protected mode is complicated, of course.
2239 */
2240 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2241 {
2242 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
2243 return iemRaiseGeneralProtectionFault0(pVCpu);
2244 }
2245
2246 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
2247
2248 /* Fetch the descriptor. */
2249 IEMSELDESC DescCs;
2250 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
2251 if (rcStrict != VINF_SUCCESS)
2252 return rcStrict;
2253
2254 /* Can only return to a code selector. */
2255 if ( !DescCs.Legacy.Gen.u1DescType
2256 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
2257 {
2258 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
2259 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
2260 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2261 }
2262
2263 /* L vs D. */
2264 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
2265 && DescCs.Legacy.Gen.u1DefBig
2266 && IEM_IS_LONG_MODE(pVCpu))
2267 {
2268 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
2269 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2270 }
2271
2272 /* DPL/RPL/CPL checks. */
2273 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
2274 {
2275 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
2276 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2277 }
2278
2279 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2280 {
2281 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
2282 {
2283 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
2284 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2285 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2286 }
2287 }
2288 else
2289 {
2290 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
2291 {
2292 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
2293 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2294 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2295 }
2296 }
2297
2298 /* Is it there? */
2299 if (!DescCs.Legacy.Gen.u1Present)
2300 {
2301 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
2302 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2303 }
2304
2305 /*
2306 * Return to outer privilege? (We'll typically have entered via a call gate.)
2307 */
2308 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
2309 {
2310 /* Read the outer stack pointer stored *after* the parameters. */
2311 rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2312 if (rcStrict != VINF_SUCCESS)
2313 return rcStrict;
2314
2315 uPtrFrame.pu8 += cbPop; /* Skip the parameters. */
2316
2317 uint16_t uNewOuterSs;
2318 uint64_t uNewOuterRsp;
2319 if (enmEffOpSize == IEMMODE_16BIT)
2320 {
2321 uNewOuterRsp = uPtrFrame.pu16[0];
2322 uNewOuterSs = uPtrFrame.pu16[1];
2323 }
2324 else if (enmEffOpSize == IEMMODE_32BIT)
2325 {
2326 uNewOuterRsp = uPtrFrame.pu32[0];
2327 uNewOuterSs = uPtrFrame.pu16[2];
2328 }
2329 else
2330 {
2331 uNewOuterRsp = uPtrFrame.pu64[0];
2332 uNewOuterSs = uPtrFrame.pu16[4];
2333 }
2334 uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */
2335 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2336 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2337 { /* extremely likely */ }
2338 else
2339 return rcStrict;
2340
2341 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
2342 and read the selector. */
2343 IEMSELDESC DescSs;
2344 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
2345 {
2346 if ( !DescCs.Legacy.Gen.u1Long
2347 || (uNewOuterSs & X86_SEL_RPL) == 3)
2348 {
2349 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
2350 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2351 return iemRaiseGeneralProtectionFault0(pVCpu);
2352 }
2353 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
2354 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
2355 }
2356 else
2357 {
2358 /* Fetch the descriptor for the new stack segment. */
2359 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
2360 if (rcStrict != VINF_SUCCESS)
2361 return rcStrict;
2362 }
2363
2364 /* Check that RPL of stack and code selectors match. */
2365 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
2366 {
2367 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2368 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2369 }
2370
2371 /* Must be a writable data segment. */
2372 if ( !DescSs.Legacy.Gen.u1DescType
2373 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
2374 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
2375 {
2376 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
2377 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2378 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2379 }
2380
2381 /* L vs D. (Not mentioned by intel.) */
2382 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
2383 && DescSs.Legacy.Gen.u1DefBig
2384 && IEM_IS_LONG_MODE(pVCpu))
2385 {
2386 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
2387 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2388 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2389 }
2390
2391 /* DPL/RPL/CPL checks. */
2392 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2393 {
2394 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
2395 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
2396 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2397 }
2398
2399 /* Is it there? */
2400 if (!DescSs.Legacy.Gen.u1Present)
2401 {
2402 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2403 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2404 }
2405
2406 /* Calc SS limit.*/
2407 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
2408
2409 /* Is RIP canonical or within CS.limit? */
2410 uint64_t u64Base;
2411 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2412
2413 /** @todo Testcase: Is this correct? */
2414 if ( DescCs.Legacy.Gen.u1Long
2415 && IEM_IS_LONG_MODE(pVCpu) )
2416 {
2417 if (!IEM_IS_CANONICAL(uNewRip))
2418 {
2419 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2420 return iemRaiseNotCanonical(pVCpu);
2421 }
2422 u64Base = 0;
2423 }
2424 else
2425 {
2426 if (uNewRip > cbLimitCs)
2427 {
2428 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
2429 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
2430 /** @todo: Intel says this is #GP(0)! */
2431 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2432 }
2433 u64Base = X86DESC_BASE(&DescCs.Legacy);
2434 }
2435
2436 /*
2437 * Now set the accessed bit before
2438 * writing the return address to the stack and committing the result into
2439 * CS, CSHID and RIP.
2440 */
2441 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
2442 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2443 {
2444 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2445 if (rcStrict != VINF_SUCCESS)
2446 return rcStrict;
2447 /** @todo check what VT-x and AMD-V does. */
2448 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2449 }
2450 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
2451 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2452 {
2453 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
2454 if (rcStrict != VINF_SUCCESS)
2455 return rcStrict;
2456 /** @todo check what VT-x and AMD-V does. */
2457 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2458 }
2459
2460 /* commit */
2461 if (enmEffOpSize == IEMMODE_16BIT)
2462 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2463 else
2464 pVCpu->cpum.GstCtx.rip = uNewRip;
2465 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2466 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2467 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2468 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2469 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2470 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2471 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2472 pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs;
2473 pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs;
2474 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
2475 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
2476 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
2477 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2478 pVCpu->cpum.GstCtx.ss.u64Base = 0;
2479 else
2480 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
2481 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2482 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewOuterRsp;
2483 else
2484 pVCpu->cpum.GstCtx.rsp = uNewOuterRsp;
2485
2486 pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
2487 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
2488 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
2489 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
2490 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
2491
2492 /** @todo check if the hidden bits are loaded correctly for 64-bit
2493 * mode. */
2494
2495 if (cbPop)
2496 iemRegAddToRsp(pVCpu, cbPop);
2497 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2498
2499 /* Done! */
2500 }
2501 /*
2502 * Return to the same privilege level
2503 */
2504 else
2505 {
2506 /* Limit / canonical check. */
2507 uint64_t u64Base;
2508 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2509
2510 /** @todo Testcase: Is this correct? */
2511 if ( DescCs.Legacy.Gen.u1Long
2512 && IEM_IS_LONG_MODE(pVCpu) )
2513 {
2514 if (!IEM_IS_CANONICAL(uNewRip))
2515 {
2516 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
2517 return iemRaiseNotCanonical(pVCpu);
2518 }
2519 u64Base = 0;
2520 }
2521 else
2522 {
2523 if (uNewRip > cbLimitCs)
2524 {
2525 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
2526 /** @todo: Intel says this is #GP(0)! */
2527 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2528 }
2529 u64Base = X86DESC_BASE(&DescCs.Legacy);
2530 }
2531
2532 /*
2533 * Now set the accessed bit before
2534 * writing the return address to the stack and committing the result into
2535 * CS, CSHID and RIP.
2536 */
2537 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2538 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2539 {
2540 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2541 if (rcStrict != VINF_SUCCESS)
2542 return rcStrict;
2543 /** @todo check what VT-x and AMD-V does. */
2544 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2545 }
2546
2547 /* commit */
2548 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2549 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
2550 else
2551 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2552 if (enmEffOpSize == IEMMODE_16BIT)
2553 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2554 else
2555 pVCpu->cpum.GstCtx.rip = uNewRip;
2556 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2557 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2558 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2559 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2560 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2561 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2562 /** @todo check if the hidden bits are loaded correctly for 64-bit
2563 * mode. */
2564 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2565 if (cbPop)
2566 iemRegAddToRsp(pVCpu, cbPop);
2567 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2568 }
2569
2570 /* Flush the prefetch buffer. */
2571#ifdef IEM_WITH_CODE_TLB
2572 pVCpu->iem.s.pbInstrBuf = NULL;
2573#else
2574 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2575#endif
2576 return VINF_SUCCESS;
2577}
2578
2579
2580/**
2581 * Implements retn.
2582 *
2583 * We're doing this in C because of the \#GP that might be raised if the popped
2584 * program counter is out of bounds.
2585 *
2586 * @param enmEffOpSize The effective operand size.
2587 * @param cbPop The amount of arguments to pop from the stack
2588 * (bytes).
2589 */
2590IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2591{
2592 NOREF(cbInstr);
2593
2594 /* Fetch the RSP from the stack. */
2595 VBOXSTRICTRC rcStrict;
2596 RTUINT64U NewRip;
2597 RTUINT64U NewRsp;
2598 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2599
2600 switch (enmEffOpSize)
2601 {
2602 case IEMMODE_16BIT:
2603 NewRip.u = 0;
2604 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
2605 break;
2606 case IEMMODE_32BIT:
2607 NewRip.u = 0;
2608 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
2609 break;
2610 case IEMMODE_64BIT:
2611 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
2612 break;
2613 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2614 }
2615 if (rcStrict != VINF_SUCCESS)
2616 return rcStrict;
2617
2618 /* Check the new RSP before loading it. */
2619 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
2620 * of it. The canonical test is performed here and for call. */
2621 if (enmEffOpSize != IEMMODE_64BIT)
2622 {
2623 if (NewRip.DWords.dw0 > pVCpu->cpum.GstCtx.cs.u32Limit)
2624 {
2625 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit));
2626 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2627 }
2628 }
2629 else
2630 {
2631 if (!IEM_IS_CANONICAL(NewRip.u))
2632 {
2633 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
2634 return iemRaiseNotCanonical(pVCpu);
2635 }
2636 }
2637
2638 /* Apply cbPop */
2639 if (cbPop)
2640 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2641
2642 /* Commit it. */
2643 pVCpu->cpum.GstCtx.rip = NewRip.u;
2644 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2645 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2646
2647 /* Flush the prefetch buffer. */
2648#ifndef IEM_WITH_CODE_TLB
2649 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2650#endif
2651
2652 return VINF_SUCCESS;
2653}
2654
2655
2656/**
2657 * Implements enter.
2658 *
2659 * We're doing this in C because the instruction is insane, even for the
2660 * u8NestingLevel=0 case dealing with the stack is tedious.
2661 *
2662 * @param enmEffOpSize The effective operand size.
2663 */
2664IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
2665{
2666 /* Push RBP, saving the old value in TmpRbp. */
2667 RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2668 RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp;
2669 RTUINT64U NewRbp;
2670 VBOXSTRICTRC rcStrict;
2671 if (enmEffOpSize == IEMMODE_64BIT)
2672 {
2673 rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
2674 NewRbp = NewRsp;
2675 }
2676 else if (enmEffOpSize == IEMMODE_32BIT)
2677 {
2678 rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
2679 NewRbp = NewRsp;
2680 }
2681 else
2682 {
2683 rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
2684 NewRbp = TmpRbp;
2685 NewRbp.Words.w0 = NewRsp.Words.w0;
2686 }
2687 if (rcStrict != VINF_SUCCESS)
2688 return rcStrict;
2689
2690 /* Copy the parameters (aka nesting levels by Intel). */
2691 cParameters &= 0x1f;
2692 if (cParameters > 0)
2693 {
2694 switch (enmEffOpSize)
2695 {
2696 case IEMMODE_16BIT:
2697 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2698 TmpRbp.DWords.dw0 -= 2;
2699 else
2700 TmpRbp.Words.w0 -= 2;
2701 do
2702 {
2703 uint16_t u16Tmp;
2704 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
2705 if (rcStrict != VINF_SUCCESS)
2706 break;
2707 rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
2708 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2709 break;
2710
2711 case IEMMODE_32BIT:
2712 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2713 TmpRbp.DWords.dw0 -= 4;
2714 else
2715 TmpRbp.Words.w0 -= 4;
2716 do
2717 {
2718 uint32_t u32Tmp;
2719 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
2720 if (rcStrict != VINF_SUCCESS)
2721 break;
2722 rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
2723 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2724 break;
2725
2726 case IEMMODE_64BIT:
2727 TmpRbp.u -= 8;
2728 do
2729 {
2730 uint64_t u64Tmp;
2731 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
2732 if (rcStrict != VINF_SUCCESS)
2733 break;
2734 rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
2735 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2736 break;
2737
2738 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2739 }
2740 if (rcStrict != VINF_SUCCESS)
2741 return VINF_SUCCESS;
2742
2743 /* Push the new RBP */
2744 if (enmEffOpSize == IEMMODE_64BIT)
2745 rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
2746 else if (enmEffOpSize == IEMMODE_32BIT)
2747 rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
2748 else
2749 rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
2750 if (rcStrict != VINF_SUCCESS)
2751 return rcStrict;
2752
2753 }
2754
2755 /* Recalc RSP. */
2756 iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame);
2757
2758 /** @todo Should probe write access at the new RSP according to AMD. */
2759
2760 /* Commit it. */
2761 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2762 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2763 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2764
2765 return VINF_SUCCESS;
2766}
2767
2768
2769
2770/**
2771 * Implements leave.
2772 *
2773 * We're doing this in C because messing with the stack registers is annoying
2774 * since they depends on SS attributes.
2775 *
2776 * @param enmEffOpSize The effective operand size.
2777 */
2778IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
2779{
2780 /* Calculate the intermediate RSP from RBP and the stack attributes. */
2781 RTUINT64U NewRsp;
2782 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2783 NewRsp.u = pVCpu->cpum.GstCtx.rbp;
2784 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2785 NewRsp.u = pVCpu->cpum.GstCtx.ebp;
2786 else
2787 {
2788 /** @todo Check that LEAVE actually preserve the high EBP bits. */
2789 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2790 NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp;
2791 }
2792
2793 /* Pop RBP according to the operand size. */
2794 VBOXSTRICTRC rcStrict;
2795 RTUINT64U NewRbp;
2796 switch (enmEffOpSize)
2797 {
2798 case IEMMODE_16BIT:
2799 NewRbp.u = pVCpu->cpum.GstCtx.rbp;
2800 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
2801 break;
2802 case IEMMODE_32BIT:
2803 NewRbp.u = 0;
2804 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
2805 break;
2806 case IEMMODE_64BIT:
2807 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
2808 break;
2809 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2810 }
2811 if (rcStrict != VINF_SUCCESS)
2812 return rcStrict;
2813
2814
2815 /* Commit it. */
2816 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2817 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2818 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2819
2820 return VINF_SUCCESS;
2821}
2822
2823
2824/**
2825 * Implements int3 and int XX.
2826 *
2827 * @param u8Int The interrupt vector number.
2828 * @param enmInt The int instruction type.
2829 */
2830IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
2831{
2832 Assert(pVCpu->iem.s.cXcptRecursions == 0);
2833 return iemRaiseXcptOrInt(pVCpu,
2834 cbInstr,
2835 u8Int,
2836 IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
2837 0,
2838 0);
2839}
2840
2841
2842/**
2843 * Implements iret for real mode and V8086 mode.
2844 *
2845 * @param enmEffOpSize The effective operand size.
2846 */
2847IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2848{
2849 X86EFLAGS Efl;
2850 Efl.u = IEMMISC_GET_EFL(pVCpu);
2851 NOREF(cbInstr);
2852
2853 /*
2854 * iret throws an exception if VME isn't enabled.
2855 */
2856 if ( Efl.Bits.u1VM
2857 && Efl.Bits.u2IOPL != 3
2858 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
2859 return iemRaiseGeneralProtectionFault0(pVCpu);
2860
2861 /*
2862 * Do the stack bits, but don't commit RSP before everything checks
2863 * out right.
2864 */
2865 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2866 VBOXSTRICTRC rcStrict;
2867 RTCPTRUNION uFrame;
2868 uint16_t uNewCs;
2869 uint32_t uNewEip;
2870 uint32_t uNewFlags;
2871 uint64_t uNewRsp;
2872 if (enmEffOpSize == IEMMODE_32BIT)
2873 {
2874 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
2875 if (rcStrict != VINF_SUCCESS)
2876 return rcStrict;
2877 uNewEip = uFrame.pu32[0];
2878 if (uNewEip > UINT16_MAX)
2879 return iemRaiseGeneralProtectionFault0(pVCpu);
2880
2881 uNewCs = (uint16_t)uFrame.pu32[1];
2882 uNewFlags = uFrame.pu32[2];
2883 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2884 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
2885 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
2886 | X86_EFL_ID;
2887 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
2888 uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
2889 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
2890 }
2891 else
2892 {
2893 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
2894 if (rcStrict != VINF_SUCCESS)
2895 return rcStrict;
2896 uNewEip = uFrame.pu16[0];
2897 uNewCs = uFrame.pu16[1];
2898 uNewFlags = uFrame.pu16[2];
2899 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2900 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
2901 uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
2902 /** @todo The intel pseudo code does not indicate what happens to
2903 * reserved flags. We just ignore them. */
2904 /* Ancient CPU adjustments: See iemCImpl_popf. */
2905 if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
2906 uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
2907 }
2908 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
2909 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2910 { /* extremely likely */ }
2911 else
2912 return rcStrict;
2913
2914 /** @todo Check how this is supposed to work if sp=0xfffe. */
2915 Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
2916 uNewCs, uNewEip, uNewFlags, uNewRsp));
2917
2918 /*
2919 * Check the limit of the new EIP.
2920 */
2921 /** @todo Only the AMD pseudo code check the limit here, what's
2922 * right? */
2923 if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit)
2924 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2925
2926 /*
2927 * V8086 checks and flag adjustments
2928 */
2929 if (Efl.Bits.u1VM)
2930 {
2931 if (Efl.Bits.u2IOPL == 3)
2932 {
2933 /* Preserve IOPL and clear RF. */
2934 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
2935 uNewFlags |= Efl.u & (X86_EFL_IOPL);
2936 }
2937 else if ( enmEffOpSize == IEMMODE_16BIT
2938 && ( !(uNewFlags & X86_EFL_IF)
2939 || !Efl.Bits.u1VIP )
2940 && !(uNewFlags & X86_EFL_TF) )
2941 {
2942 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
2943 uNewFlags &= ~X86_EFL_VIF;
2944 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
2945 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
2946 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
2947 }
2948 else
2949 return iemRaiseGeneralProtectionFault0(pVCpu);
2950 Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
2951 }
2952
2953 /*
2954 * Commit the operation.
2955 */
2956#ifdef DBGFTRACE_ENABLED
2957 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
2958 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
2959#endif
2960 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2961 pVCpu->cpum.GstCtx.rip = uNewEip;
2962 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2963 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2964 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2965 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2966 /** @todo do we load attribs and limit as well? */
2967 Assert(uNewFlags & X86_EFL_1);
2968 IEMMISC_SET_EFL(pVCpu, uNewFlags);
2969
2970 /* Flush the prefetch buffer. */
2971#ifdef IEM_WITH_CODE_TLB
2972 pVCpu->iem.s.pbInstrBuf = NULL;
2973#else
2974 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2975#endif
2976
2977 return VINF_SUCCESS;
2978}
2979
2980
2981/**
2982 * Loads a segment register when entering V8086 mode.
2983 *
2984 * @param pSReg The segment register.
2985 * @param uSeg The segment to load.
2986 */
2987static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
2988{
2989 pSReg->Sel = uSeg;
2990 pSReg->ValidSel = uSeg;
2991 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
2992 pSReg->u64Base = (uint32_t)uSeg << 4;
2993 pSReg->u32Limit = 0xffff;
2994 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
2995 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
2996 * IRET'ing to V8086. */
2997}
2998
2999
3000/**
3001 * Implements iret for protected mode returning to V8086 mode.
3002 *
3003 * @param uNewEip The new EIP.
3004 * @param uNewCs The new CS.
3005 * @param uNewFlags The new EFLAGS.
3006 * @param uNewRsp The RSP after the initial IRET frame.
3007 *
3008 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
3009 */
3010IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp)
3011{
3012 RT_NOREF_PV(cbInstr);
3013 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
3014
3015 /*
3016 * Pop the V8086 specific frame bits off the stack.
3017 */
3018 VBOXSTRICTRC rcStrict;
3019 RTCPTRUNION uFrame;
3020 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp);
3021 if (rcStrict != VINF_SUCCESS)
3022 return rcStrict;
3023 uint32_t uNewEsp = uFrame.pu32[0];
3024 uint16_t uNewSs = uFrame.pu32[1];
3025 uint16_t uNewEs = uFrame.pu32[2];
3026 uint16_t uNewDs = uFrame.pu32[3];
3027 uint16_t uNewFs = uFrame.pu32[4];
3028 uint16_t uNewGs = uFrame.pu32[5];
3029 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3030 if (rcStrict != VINF_SUCCESS)
3031 return rcStrict;
3032
3033 /*
3034 * Commit the operation.
3035 */
3036 uNewFlags &= X86_EFL_LIVE_MASK;
3037 uNewFlags |= X86_EFL_RA1_MASK;
3038#ifdef DBGFTRACE_ENABLED
3039 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
3040 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
3041#endif
3042 Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
3043
3044 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3045 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs);
3046 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs);
3047 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs);
3048 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs);
3049 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs);
3050 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs);
3051 pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip;
3052 pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */
3053 pVCpu->iem.s.uCpl = 3;
3054
3055 /* Flush the prefetch buffer. */
3056#ifdef IEM_WITH_CODE_TLB
3057 pVCpu->iem.s.pbInstrBuf = NULL;
3058#else
3059 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3060#endif
3061
3062 return VINF_SUCCESS;
3063}
3064
3065
3066/**
3067 * Implements iret for protected mode returning via a nested task.
3068 *
3069 * @param enmEffOpSize The effective operand size.
3070 */
3071IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
3072{
3073 Log7(("iemCImpl_iret_prot_NestedTask:\n"));
3074#ifndef IEM_IMPLEMENTS_TASKSWITCH
3075 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
3076#else
3077 RT_NOREF_PV(enmEffOpSize);
3078
3079 /*
3080 * Read the segment selector in the link-field of the current TSS.
3081 */
3082 RTSEL uSelRet;
3083 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base);
3084 if (rcStrict != VINF_SUCCESS)
3085 return rcStrict;
3086
3087 /*
3088 * Fetch the returning task's TSS descriptor from the GDT.
3089 */
3090 if (uSelRet & X86_SEL_LDT)
3091 {
3092 Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
3093 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
3094 }
3095
3096 IEMSELDESC TssDesc;
3097 rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
3098 if (rcStrict != VINF_SUCCESS)
3099 return rcStrict;
3100
3101 if (TssDesc.Legacy.Gate.u1DescType)
3102 {
3103 Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
3104 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3105 }
3106
3107 if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
3108 && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
3109 {
3110 Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
3111 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3112 }
3113
3114 if (!TssDesc.Legacy.Gate.u1Present)
3115 {
3116 Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
3117 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3118 }
3119
3120 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
3121 return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
3122 0 /* uCr2 */, uSelRet, &TssDesc);
3123#endif
3124}
3125
3126
3127/**
3128 * Implements iret for protected mode
3129 *
3130 * @param enmEffOpSize The effective operand size.
3131 */
3132IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
3133{
3134 NOREF(cbInstr);
3135 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3136
3137 /*
3138 * Nested task return.
3139 */
3140 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3141 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
3142
3143 /*
3144 * Normal return.
3145 *
3146 * Do the stack bits, but don't commit RSP before everything checks
3147 * out right.
3148 */
3149 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3150 VBOXSTRICTRC rcStrict;
3151 RTCPTRUNION uFrame;
3152 uint16_t uNewCs;
3153 uint32_t uNewEip;
3154 uint32_t uNewFlags;
3155 uint64_t uNewRsp;
3156 if (enmEffOpSize == IEMMODE_32BIT)
3157 {
3158 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
3159 if (rcStrict != VINF_SUCCESS)
3160 return rcStrict;
3161 uNewEip = uFrame.pu32[0];
3162 uNewCs = (uint16_t)uFrame.pu32[1];
3163 uNewFlags = uFrame.pu32[2];
3164 }
3165 else
3166 {
3167 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
3168 if (rcStrict != VINF_SUCCESS)
3169 return rcStrict;
3170 uNewEip = uFrame.pu16[0];
3171 uNewCs = uFrame.pu16[1];
3172 uNewFlags = uFrame.pu16[2];
3173 }
3174 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3175 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3176 { /* extremely likely */ }
3177 else
3178 return rcStrict;
3179 Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
3180
3181 /*
3182 * We're hopefully not returning to V8086 mode...
3183 */
3184 if ( (uNewFlags & X86_EFL_VM)
3185 && pVCpu->iem.s.uCpl == 0)
3186 {
3187 Assert(enmEffOpSize == IEMMODE_32BIT);
3188 return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp);
3189 }
3190
3191 /*
3192 * Protected mode.
3193 */
3194 /* Read the CS descriptor. */
3195 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3196 {
3197 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
3198 return iemRaiseGeneralProtectionFault0(pVCpu);
3199 }
3200
3201 IEMSELDESC DescCS;
3202 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3203 if (rcStrict != VINF_SUCCESS)
3204 {
3205 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
3206 return rcStrict;
3207 }
3208
3209 /* Must be a code descriptor. */
3210 if (!DescCS.Legacy.Gen.u1DescType)
3211 {
3212 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3213 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3214 }
3215 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3216 {
3217 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3218 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3219 }
3220
3221 /* Privilege checks. */
3222 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3223 {
3224 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3225 {
3226 Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3227 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3228 }
3229 }
3230 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3231 {
3232 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3233 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3234 }
3235 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3236 {
3237 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
3238 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3239 }
3240
3241 /* Present? */
3242 if (!DescCS.Legacy.Gen.u1Present)
3243 {
3244 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
3245 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3246 }
3247
3248 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3249
3250 /*
3251 * Return to outer level?
3252 */
3253 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
3254 {
3255 uint16_t uNewSS;
3256 uint32_t uNewESP;
3257 if (enmEffOpSize == IEMMODE_32BIT)
3258 {
3259 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp);
3260 if (rcStrict != VINF_SUCCESS)
3261 return rcStrict;
3262/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
3263 * 16-bit or 32-bit are being loaded into SP depends on the D/B
3264 * bit of the popped SS selector it turns out. */
3265 uNewESP = uFrame.pu32[0];
3266 uNewSS = (uint16_t)uFrame.pu32[1];
3267 }
3268 else
3269 {
3270 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp);
3271 if (rcStrict != VINF_SUCCESS)
3272 return rcStrict;
3273 uNewESP = uFrame.pu16[0];
3274 uNewSS = uFrame.pu16[1];
3275 }
3276 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
3277 if (rcStrict != VINF_SUCCESS)
3278 return rcStrict;
3279 Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
3280
3281 /* Read the SS descriptor. */
3282 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
3283 {
3284 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
3285 return iemRaiseGeneralProtectionFault0(pVCpu);
3286 }
3287
3288 IEMSELDESC DescSS;
3289 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
3290 if (rcStrict != VINF_SUCCESS)
3291 {
3292 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
3293 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
3294 return rcStrict;
3295 }
3296
3297 /* Privilege checks. */
3298 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3299 {
3300 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
3301 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3302 }
3303 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3304 {
3305 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
3306 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
3307 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3308 }
3309
3310 /* Must be a writeable data segment descriptor. */
3311 if (!DescSS.Legacy.Gen.u1DescType)
3312 {
3313 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
3314 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3315 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3316 }
3317 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3318 {
3319 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
3320 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3321 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3322 }
3323
3324 /* Present? */
3325 if (!DescSS.Legacy.Gen.u1Present)
3326 {
3327 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
3328 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
3329 }
3330
3331 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3332
3333 /* Check EIP. */
3334 if (uNewEip > cbLimitCS)
3335 {
3336 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
3337 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
3338 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3339 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3340 }
3341
3342 /*
3343 * Commit the changes, marking CS and SS accessed first since
3344 * that may fail.
3345 */
3346 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3347 {
3348 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3349 if (rcStrict != VINF_SUCCESS)
3350 return rcStrict;
3351 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3352 }
3353 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3354 {
3355 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
3356 if (rcStrict != VINF_SUCCESS)
3357 return rcStrict;
3358 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3359 }
3360
3361 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3362 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3363 if (enmEffOpSize != IEMMODE_16BIT)
3364 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3365 if (pVCpu->iem.s.uCpl == 0)
3366 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3367 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3368 fEFlagsMask |= X86_EFL_IF;
3369 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3370 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3371 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3372 fEFlagsNew &= ~fEFlagsMask;
3373 fEFlagsNew |= uNewFlags & fEFlagsMask;
3374#ifdef DBGFTRACE_ENABLED
3375 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
3376 pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3377 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
3378#endif
3379
3380 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3381 pVCpu->cpum.GstCtx.rip = uNewEip;
3382 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3383 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3384 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3385 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3386 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3387 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3388 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3389
3390 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
3391 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
3392 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3393 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3394 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3395 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3396 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3397 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP;
3398 else
3399 pVCpu->cpum.GstCtx.rsp = uNewESP;
3400
3401 pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
3402 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
3403 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
3404 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
3405 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
3406
3407 /* Done! */
3408
3409 }
3410 /*
3411 * Return to the same level.
3412 */
3413 else
3414 {
3415 /* Check EIP. */
3416 if (uNewEip > cbLimitCS)
3417 {
3418 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
3419 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3420 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3421 }
3422
3423 /*
3424 * Commit the changes, marking CS first since it may fail.
3425 */
3426 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3427 {
3428 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3429 if (rcStrict != VINF_SUCCESS)
3430 return rcStrict;
3431 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3432 }
3433
3434 X86EFLAGS NewEfl;
3435 NewEfl.u = IEMMISC_GET_EFL(pVCpu);
3436 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3437 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3438 if (enmEffOpSize != IEMMODE_16BIT)
3439 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3440 if (pVCpu->iem.s.uCpl == 0)
3441 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3442 else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
3443 fEFlagsMask |= X86_EFL_IF;
3444 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3445 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3446 NewEfl.u &= ~fEFlagsMask;
3447 NewEfl.u |= fEFlagsMask & uNewFlags;
3448#ifdef DBGFTRACE_ENABLED
3449 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
3450 pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3451 uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp);
3452#endif
3453
3454 IEMMISC_SET_EFL(pVCpu, NewEfl.u);
3455 pVCpu->cpum.GstCtx.rip = uNewEip;
3456 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3457 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3458 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3459 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3460 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3461 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3462 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3463 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3464 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3465 else
3466 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3467 /* Done! */
3468 }
3469
3470 /* Flush the prefetch buffer. */
3471#ifdef IEM_WITH_CODE_TLB
3472 pVCpu->iem.s.pbInstrBuf = NULL;
3473#else
3474 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3475#endif
3476
3477 return VINF_SUCCESS;
3478}
3479
3480
3481/**
3482 * Implements iret for long mode
3483 *
3484 * @param enmEffOpSize The effective operand size.
3485 */
3486IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
3487{
3488 NOREF(cbInstr);
3489
3490 /*
3491 * Nested task return is not supported in long mode.
3492 */
3493 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3494 {
3495 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u));
3496 return iemRaiseGeneralProtectionFault0(pVCpu);
3497 }
3498
3499 /*
3500 * Normal return.
3501 *
3502 * Do the stack bits, but don't commit RSP before everything checks
3503 * out right.
3504 */
3505 VBOXSTRICTRC rcStrict;
3506 RTCPTRUNION uFrame;
3507 uint64_t uNewRip;
3508 uint16_t uNewCs;
3509 uint16_t uNewSs;
3510 uint32_t uNewFlags;
3511 uint64_t uNewRsp;
3512 if (enmEffOpSize == IEMMODE_64BIT)
3513 {
3514 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp);
3515 if (rcStrict != VINF_SUCCESS)
3516 return rcStrict;
3517 uNewRip = uFrame.pu64[0];
3518 uNewCs = (uint16_t)uFrame.pu64[1];
3519 uNewFlags = (uint32_t)uFrame.pu64[2];
3520 uNewRsp = uFrame.pu64[3];
3521 uNewSs = (uint16_t)uFrame.pu64[4];
3522 }
3523 else if (enmEffOpSize == IEMMODE_32BIT)
3524 {
3525 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp);
3526 if (rcStrict != VINF_SUCCESS)
3527 return rcStrict;
3528 uNewRip = uFrame.pu32[0];
3529 uNewCs = (uint16_t)uFrame.pu32[1];
3530 uNewFlags = uFrame.pu32[2];
3531 uNewRsp = uFrame.pu32[3];
3532 uNewSs = (uint16_t)uFrame.pu32[4];
3533 }
3534 else
3535 {
3536 Assert(enmEffOpSize == IEMMODE_16BIT);
3537 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp);
3538 if (rcStrict != VINF_SUCCESS)
3539 return rcStrict;
3540 uNewRip = uFrame.pu16[0];
3541 uNewCs = uFrame.pu16[1];
3542 uNewFlags = uFrame.pu16[2];
3543 uNewRsp = uFrame.pu16[3];
3544 uNewSs = uFrame.pu16[4];
3545 }
3546 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3547 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3548 { /* extremely like */ }
3549 else
3550 return rcStrict;
3551 Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
3552
3553 /*
3554 * Check stuff.
3555 */
3556 /* Read the CS descriptor. */
3557 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3558 {
3559 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3560 return iemRaiseGeneralProtectionFault0(pVCpu);
3561 }
3562
3563 IEMSELDESC DescCS;
3564 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3565 if (rcStrict != VINF_SUCCESS)
3566 {
3567 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
3568 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3569 return rcStrict;
3570 }
3571
3572 /* Must be a code descriptor. */
3573 if ( !DescCS.Legacy.Gen.u1DescType
3574 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3575 {
3576 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
3577 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
3578 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3579 }
3580
3581 /* Privilege checks. */
3582 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
3583 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3584 {
3585 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3586 {
3587 Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3588 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3589 }
3590 }
3591 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3592 {
3593 Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3594 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3595 }
3596 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3597 {
3598 Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
3599 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3600 }
3601
3602 /* Present? */
3603 if (!DescCS.Legacy.Gen.u1Present)
3604 {
3605 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3606 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3607 }
3608
3609 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3610
3611 /* Read the SS descriptor. */
3612 IEMSELDESC DescSS;
3613 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3614 {
3615 if ( !DescCS.Legacy.Gen.u1Long
3616 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
3617 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
3618 {
3619 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3620 return iemRaiseGeneralProtectionFault0(pVCpu);
3621 }
3622 DescSS.Legacy.u = 0;
3623 }
3624 else
3625 {
3626 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
3627 if (rcStrict != VINF_SUCCESS)
3628 {
3629 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
3630 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3631 return rcStrict;
3632 }
3633 }
3634
3635 /* Privilege checks. */
3636 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3637 {
3638 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3639 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3640 }
3641
3642 uint32_t cbLimitSs;
3643 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3644 cbLimitSs = UINT32_MAX;
3645 else
3646 {
3647 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3648 {
3649 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
3650 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
3651 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3652 }
3653
3654 /* Must be a writeable data segment descriptor. */
3655 if (!DescSS.Legacy.Gen.u1DescType)
3656 {
3657 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
3658 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3659 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3660 }
3661 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3662 {
3663 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
3664 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3665 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3666 }
3667
3668 /* Present? */
3669 if (!DescSS.Legacy.Gen.u1Present)
3670 {
3671 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3672 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
3673 }
3674 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3675 }
3676
3677 /* Check EIP. */
3678 if (DescCS.Legacy.Gen.u1Long)
3679 {
3680 if (!IEM_IS_CANONICAL(uNewRip))
3681 {
3682 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
3683 uNewCs, uNewRip, uNewSs, uNewRsp));
3684 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3685 }
3686 }
3687 else
3688 {
3689 if (uNewRip > cbLimitCS)
3690 {
3691 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
3692 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
3693 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3694 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3695 }
3696 }
3697
3698 /*
3699 * Commit the changes, marking CS and SS accessed first since
3700 * that may fail.
3701 */
3702 /** @todo where exactly are these actually marked accessed by a real CPU? */
3703 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3704 {
3705 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3706 if (rcStrict != VINF_SUCCESS)
3707 return rcStrict;
3708 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3709 }
3710 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3711 {
3712 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
3713 if (rcStrict != VINF_SUCCESS)
3714 return rcStrict;
3715 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3716 }
3717
3718 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3719 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3720 if (enmEffOpSize != IEMMODE_16BIT)
3721 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3722 if (pVCpu->iem.s.uCpl == 0)
3723 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
3724 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3725 fEFlagsMask |= X86_EFL_IF;
3726 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3727 fEFlagsNew &= ~fEFlagsMask;
3728 fEFlagsNew |= uNewFlags & fEFlagsMask;
3729#ifdef DBGFTRACE_ENABLED
3730 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
3731 pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
3732#endif
3733
3734 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3735 pVCpu->cpum.GstCtx.rip = uNewRip;
3736 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3737 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3738 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3739 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3740 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3741 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3742 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3743 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
3744 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3745 else
3746 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3747 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
3748 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
3749 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3750 {
3751 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3752 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
3753 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
3754 pVCpu->cpum.GstCtx.ss.u64Base = 0;
3755 Log2(("iretq new SS: NULL\n"));
3756 }
3757 else
3758 {
3759 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3760 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3761 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3762 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3763 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3764 }
3765
3766 if (pVCpu->iem.s.uCpl != uNewCpl)
3767 {
3768 pVCpu->iem.s.uCpl = uNewCpl;
3769 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds);
3770 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es);
3771 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs);
3772 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs);
3773 }
3774
3775 /* Flush the prefetch buffer. */
3776#ifdef IEM_WITH_CODE_TLB
3777 pVCpu->iem.s.pbInstrBuf = NULL;
3778#else
3779 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3780#endif
3781
3782 return VINF_SUCCESS;
3783}
3784
3785
3786/**
3787 * Implements iret.
3788 *
3789 * @param enmEffOpSize The effective operand size.
3790 */
3791IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
3792{
3793 bool fBlockingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3794
3795#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3796 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
3797 {
3798 /*
3799 * Record whether NMI (or virtual-NMI) blocking is in effect during the execution
3800 * of this IRET instruction. We need to provide this information as part of some
3801 * VM-exits.
3802 *
3803 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3804 */
3805 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_VIRT_NMI))
3806 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking;
3807 else
3808 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = fBlockingNmi;
3809
3810 /*
3811 * If "NMI exiting" is set, IRET does not affect blocking of NMIs.
3812 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3813 */
3814 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_NMI_EXIT))
3815 fBlockingNmi = false;
3816
3817 /* Clear virtual-NMI blocking, if any, before causing any further exceptions. */
3818 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
3819 }
3820#endif
3821
3822 /*
3823 * The SVM nested-guest intercept for IRET takes priority over all exceptions,
3824 * The NMI is still held pending (which I assume means blocking of further NMIs
3825 * is in effect).
3826 *
3827 * See AMD spec. 15.9 "Instruction Intercepts".
3828 * See AMD spec. 15.21.9 "NMI Support".
3829 */
3830 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
3831 {
3832 Log(("iret: Guest intercept -> #VMEXIT\n"));
3833 IEM_SVM_UPDATE_NRIP(pVCpu);
3834 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
3835 }
3836
3837 /*
3838 * Clear NMI blocking, if any, before causing any further exceptions.
3839 * See Intel spec. 6.7.1 "Handling Multiple NMIs".
3840 */
3841 if (fBlockingNmi)
3842 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
3843
3844 /*
3845 * Call a mode specific worker.
3846 */
3847 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
3848 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
3849 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
3850 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
3851 return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
3852 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
3853}
3854
3855
3856static void iemLoadallSetSelector(PVMCPUCC pVCpu, uint8_t iSegReg, uint16_t uSel)
3857{
3858 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3859
3860 pHid->Sel = uSel;
3861 pHid->ValidSel = uSel;
3862 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3863}
3864
3865
3866static void iemLoadall286SetDescCache(PVMCPUCC pVCpu, uint8_t iSegReg, uint8_t const *pbMem)
3867{
3868 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3869
3870 /* The base is in the first three bytes. */
3871 pHid->u64Base = pbMem[0] + (pbMem[1] << 8) + (pbMem[2] << 16);
3872 /* The attributes are in the fourth byte. */
3873 pHid->Attr.u = pbMem[3];
3874 /* The limit is in the last two bytes. */
3875 pHid->u32Limit = pbMem[4] + (pbMem[5] << 8);
3876}
3877
3878
3879/**
3880 * Implements 286 LOADALL (286 CPUs only).
3881 */
3882IEM_CIMPL_DEF_0(iemCImpl_loadall286)
3883{
3884 NOREF(cbInstr);
3885
3886 /* Data is loaded from a buffer at 800h. No checks are done on the
3887 * validity of loaded state.
3888 *
3889 * LOADALL only loads the internal CPU state, it does not access any
3890 * GDT, LDT, or similar tables.
3891 */
3892
3893 if (pVCpu->iem.s.uCpl != 0)
3894 {
3895 Log(("loadall286: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
3896 return iemRaiseGeneralProtectionFault0(pVCpu);
3897 }
3898
3899 uint8_t const *pbMem = NULL;
3900 uint16_t const *pa16Mem;
3901 uint8_t const *pa8Mem;
3902 RTGCPHYS GCPtrStart = 0x800; /* Fixed table location. */
3903 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pbMem, 0x66, UINT8_MAX, GCPtrStart, IEM_ACCESS_SYS_R);
3904 if (rcStrict != VINF_SUCCESS)
3905 return rcStrict;
3906
3907 /* The MSW is at offset 0x06. */
3908 pa16Mem = (uint16_t const *)(pbMem + 0x06);
3909 /* Even LOADALL can't clear the MSW.PE bit, though it can set it. */
3910 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3911 uNewCr0 |= *pa16Mem & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3912 uint64_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
3913
3914 CPUMSetGuestCR0(pVCpu, uNewCr0);
3915 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCr0);
3916
3917 /* Inform PGM if mode changed. */
3918 if ((uNewCr0 & X86_CR0_PE) != (uOldCr0 & X86_CR0_PE))
3919 {
3920 int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
3921 AssertRCReturn(rc, rc);
3922 /* ignore informational status codes */
3923 }
3924 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
3925 false /* fForce */);
3926
3927 /* TR selector is at offset 0x16. */
3928 pa16Mem = (uint16_t const *)(pbMem + 0x16);
3929 pVCpu->cpum.GstCtx.tr.Sel = pa16Mem[0];
3930 pVCpu->cpum.GstCtx.tr.ValidSel = pa16Mem[0];
3931 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3932
3933 /* Followed by FLAGS... */
3934 pVCpu->cpum.GstCtx.eflags.u = pa16Mem[1] | X86_EFL_1;
3935 pVCpu->cpum.GstCtx.ip = pa16Mem[2]; /* ...and IP. */
3936
3937 /* LDT is at offset 0x1C. */
3938 pa16Mem = (uint16_t const *)(pbMem + 0x1C);
3939 pVCpu->cpum.GstCtx.ldtr.Sel = pa16Mem[0];
3940 pVCpu->cpum.GstCtx.ldtr.ValidSel = pa16Mem[0];
3941 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3942
3943 /* Segment registers are at offset 0x1E. */
3944 pa16Mem = (uint16_t const *)(pbMem + 0x1E);
3945 iemLoadallSetSelector(pVCpu, X86_SREG_DS, pa16Mem[0]);
3946 iemLoadallSetSelector(pVCpu, X86_SREG_SS, pa16Mem[1]);
3947 iemLoadallSetSelector(pVCpu, X86_SREG_CS, pa16Mem[2]);
3948 iemLoadallSetSelector(pVCpu, X86_SREG_ES, pa16Mem[3]);
3949
3950 /* GPRs are at offset 0x26. */
3951 pa16Mem = (uint16_t const *)(pbMem + 0x26);
3952 pVCpu->cpum.GstCtx.di = pa16Mem[0];
3953 pVCpu->cpum.GstCtx.si = pa16Mem[1];
3954 pVCpu->cpum.GstCtx.bp = pa16Mem[2];
3955 pVCpu->cpum.GstCtx.sp = pa16Mem[3];
3956 pVCpu->cpum.GstCtx.bx = pa16Mem[4];
3957 pVCpu->cpum.GstCtx.dx = pa16Mem[5];
3958 pVCpu->cpum.GstCtx.cx = pa16Mem[6];
3959 pVCpu->cpum.GstCtx.ax = pa16Mem[7];
3960
3961 /* Descriptor caches are at offset 0x36, 6 bytes per entry. */
3962 iemLoadall286SetDescCache(pVCpu, X86_SREG_ES, pbMem + 0x36);
3963 iemLoadall286SetDescCache(pVCpu, X86_SREG_CS, pbMem + 0x3C);
3964 iemLoadall286SetDescCache(pVCpu, X86_SREG_SS, pbMem + 0x42);
3965 iemLoadall286SetDescCache(pVCpu, X86_SREG_DS, pbMem + 0x48);
3966
3967 /* GDTR contents are at offset 0x4E, 6 bytes. */
3968 RTGCPHYS GCPtrBase;
3969 uint16_t cbLimit;
3970 pa8Mem = pbMem + 0x4E;
3971 /* NB: Fourth byte "should be zero"; we are ignoring it. */
3972 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
3973 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
3974 CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
3975
3976 /* IDTR contents are at offset 0x5A, 6 bytes. */
3977 pa8Mem = pbMem + 0x5A;
3978 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
3979 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
3980 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
3981
3982 Log(("LOADALL: GDTR:%08RX64/%04X, IDTR:%08RX64/%04X\n", pVCpu->cpum.GstCtx.gdtr.pGdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.idtr.pIdt, pVCpu->cpum.GstCtx.idtr.cbIdt));
3983 Log(("LOADALL: CS:%04X, CS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.cs.u64Base, pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.Attr.u));
3984 Log(("LOADALL: DS:%04X, DS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.ds.u64Base, pVCpu->cpum.GstCtx.ds.u32Limit, pVCpu->cpum.GstCtx.ds.Attr.u));
3985 Log(("LOADALL: ES:%04X, ES base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.es.u64Base, pVCpu->cpum.GstCtx.es.u32Limit, pVCpu->cpum.GstCtx.es.Attr.u));
3986 Log(("LOADALL: SS:%04X, SS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3987 Log(("LOADALL: SI:%04X, DI:%04X, AX:%04X, BX:%04X, CX:%04X, DX:%04X\n", pVCpu->cpum.GstCtx.si, pVCpu->cpum.GstCtx.di, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.cx, pVCpu->cpum.GstCtx.dx));
3988
3989 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pbMem, IEM_ACCESS_SYS_R);
3990 if (rcStrict != VINF_SUCCESS)
3991 return rcStrict;
3992
3993 /* The CPL may change. It is taken from the "DPL fields of the SS and CS
3994 * descriptor caches" but there is no word as to what happens if those are
3995 * not identical (probably bad things).
3996 */
3997 pVCpu->iem.s.uCpl = pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl;
3998
3999 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS | CPUM_CHANGED_IDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_TR | CPUM_CHANGED_LDTR);
4000
4001 /* Flush the prefetch buffer. */
4002#ifdef IEM_WITH_CODE_TLB
4003 pVCpu->iem.s.pbInstrBuf = NULL;
4004#else
4005 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4006#endif
4007 return rcStrict;
4008}
4009
4010
4011/**
4012 * Implements SYSCALL (AMD and Intel64).
4013 *
4014 * @param enmEffOpSize The effective operand size.
4015 */
4016IEM_CIMPL_DEF_0(iemCImpl_syscall)
4017{
4018 /** @todo hack, LOADALL should be decoded as such on a 286. */
4019 if (RT_UNLIKELY(pVCpu->iem.s.uTargetCpu == IEMTARGETCPU_286))
4020 return iemCImpl_loadall286(pVCpu, cbInstr);
4021
4022 /*
4023 * Check preconditions.
4024 *
4025 * Note that CPUs described in the documentation may load a few odd values
4026 * into CS and SS than we allow here. This has yet to be checked on real
4027 * hardware.
4028 */
4029 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4030 {
4031 Log(("syscall: Not enabled in EFER -> #UD\n"));
4032 return iemRaiseUndefinedOpcode(pVCpu);
4033 }
4034 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4035 {
4036 Log(("syscall: Protected mode is required -> #GP(0)\n"));
4037 return iemRaiseGeneralProtectionFault0(pVCpu);
4038 }
4039 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4040 {
4041 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4042 return iemRaiseUndefinedOpcode(pVCpu);
4043 }
4044
4045 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4046
4047 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
4048 /** @todo what about LDT selectors? Shouldn't matter, really. */
4049 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4050 uint16_t uNewSs = uNewCs + 8;
4051 if (uNewCs == 0 || uNewSs == 0)
4052 {
4053 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4054 return iemRaiseGeneralProtectionFault0(pVCpu);
4055 }
4056
4057 /* Long mode and legacy mode differs. */
4058 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4059 {
4060 uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR;
4061
4062 /* This test isn't in the docs, but I'm not trusting the guys writing
4063 the MSRs to have validated the values as canonical like they should. */
4064 if (!IEM_IS_CANONICAL(uNewRip))
4065 {
4066 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4067 return iemRaiseUndefinedOpcode(pVCpu);
4068 }
4069
4070 /*
4071 * Commit it.
4072 */
4073 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip));
4074 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr;
4075 pVCpu->cpum.GstCtx.rip = uNewRip;
4076
4077 pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF;
4078 pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u;
4079 pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK;
4080 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4081
4082 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4083 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4084 }
4085 else
4086 {
4087 /*
4088 * Commit it.
4089 */
4090 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
4091 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
4092 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr;
4093 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
4094 pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
4095
4096 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4097 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4098 }
4099 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
4100 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
4101 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4102 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4103 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4104
4105 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
4106 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
4107 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4108 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4109 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4110
4111 /* Flush the prefetch buffer. */
4112#ifdef IEM_WITH_CODE_TLB
4113 pVCpu->iem.s.pbInstrBuf = NULL;
4114#else
4115 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4116#endif
4117
4118 return VINF_SUCCESS;
4119}
4120
4121
4122/**
4123 * Implements SYSRET (AMD and Intel64).
4124 */
4125IEM_CIMPL_DEF_0(iemCImpl_sysret)
4126
4127{
4128 RT_NOREF_PV(cbInstr);
4129
4130 /*
4131 * Check preconditions.
4132 *
4133 * Note that CPUs described in the documentation may load a few odd values
4134 * into CS and SS than we allow here. This has yet to be checked on real
4135 * hardware.
4136 */
4137 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4138 {
4139 Log(("sysret: Not enabled in EFER -> #UD\n"));
4140 return iemRaiseUndefinedOpcode(pVCpu);
4141 }
4142 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4143 {
4144 Log(("sysret: Only available in long mode on intel -> #UD\n"));
4145 return iemRaiseUndefinedOpcode(pVCpu);
4146 }
4147 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4148 {
4149 Log(("sysret: Protected mode is required -> #GP(0)\n"));
4150 return iemRaiseGeneralProtectionFault0(pVCpu);
4151 }
4152 if (pVCpu->iem.s.uCpl != 0)
4153 {
4154 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
4155 return iemRaiseGeneralProtectionFault0(pVCpu);
4156 }
4157
4158 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4159
4160 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
4161 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4162 uint16_t uNewSs = uNewCs + 8;
4163 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4164 uNewCs += 16;
4165 if (uNewCs == 0 || uNewSs == 0)
4166 {
4167 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4168 return iemRaiseGeneralProtectionFault0(pVCpu);
4169 }
4170
4171 /*
4172 * Commit it.
4173 */
4174 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4175 {
4176 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4177 {
4178 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
4179 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11));
4180 /* Note! We disregard intel manual regarding the RCX cananonical
4181 check, ask intel+xen why AMD doesn't do it. */
4182 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4183 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4184 | (3 << X86DESCATTR_DPL_SHIFT);
4185 }
4186 else
4187 {
4188 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
4189 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11));
4190 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx;
4191 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4192 | (3 << X86DESCATTR_DPL_SHIFT);
4193 }
4194 /** @todo testcase: See what kind of flags we can make SYSRET restore and
4195 * what it really ignores. RF and VM are hinted at being zero, by AMD. */
4196 pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
4197 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4198 }
4199 else
4200 {
4201 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx));
4202 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4203 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF;
4204 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4205 | (3 << X86DESCATTR_DPL_SHIFT);
4206 }
4207 pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3;
4208 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3;
4209 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4210 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4211 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4212
4213 pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3;
4214 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3;
4215 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4216 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
4217 pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
4218 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
4219 * on sysret. */
4220
4221 /* Flush the prefetch buffer. */
4222#ifdef IEM_WITH_CODE_TLB
4223 pVCpu->iem.s.pbInstrBuf = NULL;
4224#else
4225 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4226#endif
4227
4228 return VINF_SUCCESS;
4229}
4230
4231
4232/**
4233 * Implements SYSENTER (Intel, 32-bit AMD).
4234 */
4235IEM_CIMPL_DEF_0(iemCImpl_sysenter)
4236{
4237 RT_NOREF(cbInstr);
4238
4239 /*
4240 * Check preconditions.
4241 *
4242 * Note that CPUs described in the documentation may load a few odd values
4243 * into CS and SS than we allow here. This has yet to be checked on real
4244 * hardware.
4245 */
4246 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSysEnter)
4247 {
4248 Log(("sysenter: not supported -=> #UD\n"));
4249 return iemRaiseUndefinedOpcode(pVCpu);
4250 }
4251 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4252 {
4253 Log(("sysenter: Protected or long mode is required -> #GP(0)\n"));
4254 return iemRaiseGeneralProtectionFault0(pVCpu);
4255 }
4256 bool fIsLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
4257 if (IEM_IS_GUEST_CPU_AMD(pVCpu) && !fIsLongMode)
4258 {
4259 Log(("sysenter: Only available in protected mode on AMD -> #UD\n"));
4260 return iemRaiseUndefinedOpcode(pVCpu);
4261 }
4262 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4263 uint16_t uNewCs = pVCpu->cpum.GstCtx.SysEnter.cs;
4264 if ((uNewCs & X86_SEL_MASK_OFF_RPL) == 0)
4265 {
4266 Log(("sysenter: SYSENTER_CS = %#x -> #GP(0)\n", uNewCs));
4267 return iemRaiseGeneralProtectionFault0(pVCpu);
4268 }
4269
4270 /* This test isn't in the docs, it's just a safeguard against missing
4271 canonical checks when writing the registers. */
4272 if (RT_LIKELY( !fIsLongMode
4273 || ( IEM_IS_CANONICAL(pVCpu->cpum.GstCtx.SysEnter.eip)
4274 && IEM_IS_CANONICAL(pVCpu->cpum.GstCtx.SysEnter.esp))))
4275 { /* likely */ }
4276 else
4277 {
4278 Log(("sysenter: SYSENTER_EIP = %#RX64 or/and SYSENTER_ESP = %#RX64 not canonical -> #GP(0)\n",
4279 pVCpu->cpum.GstCtx.SysEnter.eip, pVCpu->cpum.GstCtx.SysEnter.esp));
4280 return iemRaiseUndefinedOpcode(pVCpu);
4281 }
4282
4283/** @todo Test: Sysenter from ring-0, ring-1 and ring-2. */
4284
4285 /*
4286 * Update registers and commit.
4287 */
4288 if (fIsLongMode)
4289 {
4290 Log(("sysenter: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4291 pVCpu->cpum.GstCtx.rflags.u, uNewCs & X86_SEL_MASK_OFF_RPL, pVCpu->cpum.GstCtx.SysEnter.eip));
4292 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.SysEnter.eip;
4293 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.SysEnter.esp;
4294 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_L | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4295 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC;
4296 }
4297 else
4298 {
4299 Log(("sysenter: %04x:%08RX32 [efl=%#llx] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, (uint32_t)pVCpu->cpum.GstCtx.rip,
4300 pVCpu->cpum.GstCtx.rflags.u, uNewCs & X86_SEL_MASK_OFF_RPL, (uint32_t)pVCpu->cpum.GstCtx.SysEnter.eip));
4301 pVCpu->cpum.GstCtx.rip = (uint32_t)pVCpu->cpum.GstCtx.SysEnter.eip;
4302 pVCpu->cpum.GstCtx.rsp = (uint32_t)pVCpu->cpum.GstCtx.SysEnter.esp;
4303 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4304 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC;
4305 }
4306 pVCpu->cpum.GstCtx.cs.Sel = uNewCs & X86_SEL_MASK_OFF_RPL;
4307 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs & X86_SEL_MASK_OFF_RPL;
4308 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4309 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4310 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4311
4312 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs & X86_SEL_MASK_OFF_RPL) + 8;
4313 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs & X86_SEL_MASK_OFF_RPL) + 8;
4314 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4315 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4316 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4317 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_RW_ACC;
4318 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4319
4320 pVCpu->cpum.GstCtx.rflags.Bits.u1IF = 0;
4321 pVCpu->cpum.GstCtx.rflags.Bits.u1VM = 0;
4322 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
4323
4324 pVCpu->iem.s.uCpl = 0;
4325
4326 /* Flush the prefetch buffer. */
4327#ifdef IEM_WITH_CODE_TLB
4328 pVCpu->iem.s.pbInstrBuf = NULL;
4329#else
4330 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4331#endif
4332
4333 return VINF_SUCCESS;
4334}
4335
4336
4337/**
4338 * Implements SYSEXIT (Intel, 32-bit AMD).
4339 *
4340 * @param enmEffOpSize The effective operand size.
4341 */
4342IEM_CIMPL_DEF_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize)
4343{
4344 RT_NOREF(cbInstr);
4345
4346 /*
4347 * Check preconditions.
4348 *
4349 * Note that CPUs described in the documentation may load a few odd values
4350 * into CS and SS than we allow here. This has yet to be checked on real
4351 * hardware.
4352 */
4353 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSysEnter)
4354 {
4355 Log(("sysexit: not supported -=> #UD\n"));
4356 return iemRaiseUndefinedOpcode(pVCpu);
4357 }
4358 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4359 {
4360 Log(("sysexit: Protected or long mode is required -> #GP(0)\n"));
4361 return iemRaiseGeneralProtectionFault0(pVCpu);
4362 }
4363 bool fIsLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
4364 if (IEM_IS_GUEST_CPU_AMD(pVCpu) && !fIsLongMode)
4365 {
4366 Log(("sysexit: Only available in protected mode on AMD -> #UD\n"));
4367 return iemRaiseUndefinedOpcode(pVCpu);
4368 }
4369 if (pVCpu->iem.s.uCpl != 0)
4370 {
4371 Log(("sysexit: CPL(=%u) != 0 -> #GP(0)\n", pVCpu->iem.s.uCpl));
4372 return iemRaiseGeneralProtectionFault0(pVCpu);
4373 }
4374 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4375 uint16_t uNewCs = pVCpu->cpum.GstCtx.SysEnter.cs;
4376 if ((uNewCs & X86_SEL_MASK_OFF_RPL) == 0)
4377 {
4378 Log(("sysexit: SYSENTER_CS = %#x -> #GP(0)\n", uNewCs));
4379 return iemRaiseGeneralProtectionFault0(pVCpu);
4380 }
4381
4382 /*
4383 * Update registers and commit.
4384 */
4385 if (enmEffOpSize == IEMMODE_64BIT)
4386 {
4387 Log(("sysexit: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4388 pVCpu->cpum.GstCtx.rflags.u, (uNewCs | 3) + 32, pVCpu->cpum.GstCtx.rcx));
4389 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rdx;
4390 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.rcx;
4391 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_L | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4392 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4393 pVCpu->cpum.GstCtx.cs.Sel = (uNewCs | 3) + 32;
4394 pVCpu->cpum.GstCtx.cs.ValidSel = (uNewCs | 3) + 32;
4395 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs | 3) + 40;
4396 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs | 3) + 40;
4397 }
4398 else
4399 {
4400 Log(("sysexit: %04x:%08RX64 [efl=%#llx] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4401 pVCpu->cpum.GstCtx.rflags.u, (uNewCs | 3) + 16, (uint32_t)pVCpu->cpum.GstCtx.edx));
4402 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.edx;
4403 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.ecx;
4404 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4405 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4406 pVCpu->cpum.GstCtx.cs.Sel = (uNewCs | 3) + 16;
4407 pVCpu->cpum.GstCtx.cs.ValidSel = (uNewCs | 3) + 16;
4408 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs | 3) + 24;
4409 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs | 3) + 24;
4410 }
4411 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4412 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4413 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4414
4415 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4416 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4417 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4418 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_RW_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4419 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4420 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
4421
4422 pVCpu->iem.s.uCpl = 3;
4423
4424 /* Flush the prefetch buffer. */
4425#ifdef IEM_WITH_CODE_TLB
4426 pVCpu->iem.s.pbInstrBuf = NULL;
4427#else
4428 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4429#endif
4430
4431 return VINF_SUCCESS;
4432}
4433
4434
4435/**
4436 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
4437 *
4438 * @param iSegReg The segment register number (valid).
4439 * @param uSel The new selector value.
4440 */
4441IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
4442{
4443 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
4444 uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
4445 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
4446
4447 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
4448
4449 /*
4450 * Real mode and V8086 mode are easy.
4451 */
4452 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4453 {
4454 *pSel = uSel;
4455 pHid->u64Base = (uint32_t)uSel << 4;
4456 pHid->ValidSel = uSel;
4457 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4458#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
4459 /** @todo Does the CPU actually load limits and attributes in the
4460 * real/V8086 mode segment load case? It doesn't for CS in far
4461 * jumps... Affects unreal mode. */
4462 pHid->u32Limit = 0xffff;
4463 pHid->Attr.u = 0;
4464 pHid->Attr.n.u1Present = 1;
4465 pHid->Attr.n.u1DescType = 1;
4466 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
4467 ? X86_SEL_TYPE_RW
4468 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
4469#endif
4470 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4471 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4472 return VINF_SUCCESS;
4473 }
4474
4475 /*
4476 * Protected mode.
4477 *
4478 * Check if it's a null segment selector value first, that's OK for DS, ES,
4479 * FS and GS. If not null, then we have to load and parse the descriptor.
4480 */
4481 if (!(uSel & X86_SEL_MASK_OFF_RPL))
4482 {
4483 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
4484 if (iSegReg == X86_SREG_SS)
4485 {
4486 /* In 64-bit kernel mode, the stack can be 0 because of the way
4487 interrupts are dispatched. AMD seems to have a slighly more
4488 relaxed relationship to SS.RPL than intel does. */
4489 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
4490 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4491 || pVCpu->iem.s.uCpl > 2
4492 || ( uSel != pVCpu->iem.s.uCpl
4493 && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
4494 {
4495 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
4496 return iemRaiseGeneralProtectionFault0(pVCpu);
4497 }
4498 }
4499
4500 *pSel = uSel; /* Not RPL, remember :-) */
4501 iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
4502 if (iSegReg == X86_SREG_SS)
4503 pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
4504
4505 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4506 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4507
4508 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4509 return VINF_SUCCESS;
4510 }
4511
4512 /* Fetch the descriptor. */
4513 IEMSELDESC Desc;
4514 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
4515 if (rcStrict != VINF_SUCCESS)
4516 return rcStrict;
4517
4518 /* Check GPs first. */
4519 if (!Desc.Legacy.Gen.u1DescType)
4520 {
4521 Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
4522 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4523 }
4524 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
4525 {
4526 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
4527 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
4528 {
4529 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
4530 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4531 }
4532 if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
4533 {
4534 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
4535 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4536 }
4537 if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
4538 {
4539 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
4540 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4541 }
4542 }
4543 else
4544 {
4545 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4546 {
4547 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
4548 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4549 }
4550 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4551 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4552 {
4553#if 0 /* this is what intel says. */
4554 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
4555 && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4556 {
4557 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
4558 iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4559 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4560 }
4561#else /* this is what makes more sense. */
4562 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4563 {
4564 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
4565 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
4566 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4567 }
4568 if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4569 {
4570 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
4571 iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4572 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4573 }
4574#endif
4575 }
4576 }
4577
4578 /* Is it there? */
4579 if (!Desc.Legacy.Gen.u1Present)
4580 {
4581 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
4582 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
4583 }
4584
4585 /* The base and limit. */
4586 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
4587 uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
4588
4589 /*
4590 * Ok, everything checked out fine. Now set the accessed bit before
4591 * committing the result into the registers.
4592 */
4593 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
4594 {
4595 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
4596 if (rcStrict != VINF_SUCCESS)
4597 return rcStrict;
4598 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
4599 }
4600
4601 /* commit */
4602 *pSel = uSel;
4603 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4604 pHid->u32Limit = cbLimit;
4605 pHid->u64Base = u64Base;
4606 pHid->ValidSel = uSel;
4607 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4608
4609 /** @todo check if the hidden bits are loaded correctly for 64-bit
4610 * mode. */
4611 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4612
4613 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4614 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4615 return VINF_SUCCESS;
4616}
4617
4618
4619/**
4620 * Implements 'mov SReg, r/m'.
4621 *
4622 * @param iSegReg The segment register number (valid).
4623 * @param uSel The new selector value.
4624 */
4625IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
4626{
4627 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4628 if (rcStrict == VINF_SUCCESS)
4629 {
4630 if (iSegReg == X86_SREG_SS)
4631 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4632 }
4633 return rcStrict;
4634}
4635
4636
4637/**
4638 * Implements 'pop SReg'.
4639 *
4640 * @param iSegReg The segment register number (valid).
4641 * @param enmEffOpSize The efficient operand size (valid).
4642 */
4643IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
4644{
4645 VBOXSTRICTRC rcStrict;
4646
4647 /*
4648 * Read the selector off the stack and join paths with mov ss, reg.
4649 */
4650 RTUINT64U TmpRsp;
4651 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
4652 switch (enmEffOpSize)
4653 {
4654 case IEMMODE_16BIT:
4655 {
4656 uint16_t uSel;
4657 rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
4658 if (rcStrict == VINF_SUCCESS)
4659 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4660 break;
4661 }
4662
4663 case IEMMODE_32BIT:
4664 {
4665 uint32_t u32Value;
4666 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
4667 if (rcStrict == VINF_SUCCESS)
4668 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
4669 break;
4670 }
4671
4672 case IEMMODE_64BIT:
4673 {
4674 uint64_t u64Value;
4675 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
4676 if (rcStrict == VINF_SUCCESS)
4677 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
4678 break;
4679 }
4680 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4681 }
4682
4683 /*
4684 * Commit the stack on success.
4685 */
4686 if (rcStrict == VINF_SUCCESS)
4687 {
4688 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
4689 if (iSegReg == X86_SREG_SS)
4690 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4691 }
4692 return rcStrict;
4693}
4694
4695
4696/**
4697 * Implements lgs, lfs, les, lds & lss.
4698 */
4699IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
4700 uint16_t, uSel,
4701 uint64_t, offSeg,
4702 uint8_t, iSegReg,
4703 uint8_t, iGReg,
4704 IEMMODE, enmEffOpSize)
4705{
4706 /*
4707 * Use iemCImpl_LoadSReg to do the tricky segment register loading.
4708 */
4709 /** @todo verify and test that mov, pop and lXs works the segment
4710 * register loading in the exact same way. */
4711 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4712 if (rcStrict == VINF_SUCCESS)
4713 {
4714 switch (enmEffOpSize)
4715 {
4716 case IEMMODE_16BIT:
4717 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4718 break;
4719 case IEMMODE_32BIT:
4720 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4721 break;
4722 case IEMMODE_64BIT:
4723 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4724 break;
4725 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4726 }
4727 }
4728
4729 return rcStrict;
4730}
4731
4732
4733/**
4734 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
4735 *
4736 * @retval VINF_SUCCESS on success.
4737 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
4738 * @retval iemMemFetchSysU64 return value.
4739 *
4740 * @param pVCpu The cross context virtual CPU structure of the calling thread.
4741 * @param uSel The selector value.
4742 * @param fAllowSysDesc Whether system descriptors are OK or not.
4743 * @param pDesc Where to return the descriptor on success.
4744 */
4745static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPUCC pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
4746{
4747 pDesc->Long.au64[0] = 0;
4748 pDesc->Long.au64[1] = 0;
4749
4750 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
4751 return VINF_IEM_SELECTOR_NOT_OK;
4752
4753 /* Within the table limits? */
4754 RTGCPTR GCPtrBase;
4755 if (uSel & X86_SEL_LDT)
4756 {
4757 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
4758 if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
4759 || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
4760 return VINF_IEM_SELECTOR_NOT_OK;
4761 GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
4762 }
4763 else
4764 {
4765 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4766 if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
4767 return VINF_IEM_SELECTOR_NOT_OK;
4768 GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
4769 }
4770
4771 /* Fetch the descriptor. */
4772 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
4773 if (rcStrict != VINF_SUCCESS)
4774 return rcStrict;
4775 if (!pDesc->Legacy.Gen.u1DescType)
4776 {
4777 if (!fAllowSysDesc)
4778 return VINF_IEM_SELECTOR_NOT_OK;
4779 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4780 {
4781 rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
4782 if (rcStrict != VINF_SUCCESS)
4783 return rcStrict;
4784 }
4785
4786 }
4787
4788 return VINF_SUCCESS;
4789}
4790
4791
4792/**
4793 * Implements verr (fWrite = false) and verw (fWrite = true).
4794 */
4795IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
4796{
4797 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4798
4799 /** @todo figure whether the accessed bit is set or not. */
4800
4801 bool fAccessible = true;
4802 IEMSELDESC Desc;
4803 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4804 if (rcStrict == VINF_SUCCESS)
4805 {
4806 /* Check the descriptor, order doesn't matter much here. */
4807 if ( !Desc.Legacy.Gen.u1DescType
4808 || !Desc.Legacy.Gen.u1Present)
4809 fAccessible = false;
4810 else
4811 {
4812 if ( fWrite
4813 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
4814 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4815 fAccessible = false;
4816
4817 /** @todo testcase for the conforming behavior. */
4818 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4819 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4820 {
4821 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4822 fAccessible = false;
4823 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4824 fAccessible = false;
4825 }
4826 }
4827
4828 }
4829 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4830 fAccessible = false;
4831 else
4832 return rcStrict;
4833
4834 /* commit */
4835 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible;
4836
4837 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4838 return VINF_SUCCESS;
4839}
4840
4841
4842/**
4843 * Implements LAR and LSL with 64-bit operand size.
4844 *
4845 * @returns VINF_SUCCESS.
4846 * @param pu16Dst Pointer to the destination register.
4847 * @param uSel The selector to load details for.
4848 * @param fIsLar true = LAR, false = LSL.
4849 */
4850IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
4851{
4852 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4853
4854 /** @todo figure whether the accessed bit is set or not. */
4855
4856 bool fDescOk = true;
4857 IEMSELDESC Desc;
4858 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, true /*fAllowSysDesc*/, &Desc);
4859 if (rcStrict == VINF_SUCCESS)
4860 {
4861 /*
4862 * Check the descriptor type.
4863 */
4864 if (!Desc.Legacy.Gen.u1DescType)
4865 {
4866 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4867 {
4868 if (Desc.Long.Gen.u5Zeros)
4869 fDescOk = false;
4870 else
4871 switch (Desc.Long.Gen.u4Type)
4872 {
4873 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
4874 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
4875 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
4876 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
4877 break;
4878 case AMD64_SEL_TYPE_SYS_CALL_GATE:
4879 fDescOk = fIsLar;
4880 break;
4881 default:
4882 fDescOk = false;
4883 break;
4884 }
4885 }
4886 else
4887 {
4888 switch (Desc.Long.Gen.u4Type)
4889 {
4890 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4891 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4892 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4893 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
4894 case X86_SEL_TYPE_SYS_LDT:
4895 break;
4896 case X86_SEL_TYPE_SYS_286_CALL_GATE:
4897 case X86_SEL_TYPE_SYS_TASK_GATE:
4898 case X86_SEL_TYPE_SYS_386_CALL_GATE:
4899 fDescOk = fIsLar;
4900 break;
4901 default:
4902 fDescOk = false;
4903 break;
4904 }
4905 }
4906 }
4907 if (fDescOk)
4908 {
4909 /*
4910 * Check the RPL/DPL/CPL interaction..
4911 */
4912 /** @todo testcase for the conforming behavior. */
4913 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
4914 || !Desc.Legacy.Gen.u1DescType)
4915 {
4916 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4917 fDescOk = false;
4918 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4919 fDescOk = false;
4920 }
4921 }
4922
4923 if (fDescOk)
4924 {
4925 /*
4926 * All fine, start committing the result.
4927 */
4928 if (fIsLar)
4929 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
4930 else
4931 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
4932 }
4933
4934 }
4935 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4936 fDescOk = false;
4937 else
4938 return rcStrict;
4939
4940 /* commit flags value and advance rip. */
4941 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk;
4942 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4943
4944 return VINF_SUCCESS;
4945}
4946
4947
4948/**
4949 * Implements LAR and LSL with 16-bit operand size.
4950 *
4951 * @returns VINF_SUCCESS.
4952 * @param pu16Dst Pointer to the destination register.
4953 * @param u16Sel The selector to load details for.
4954 * @param fIsLar true = LAR, false = LSL.
4955 */
4956IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
4957{
4958 uint64_t u64TmpDst = *pu16Dst;
4959 IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
4960 *pu16Dst = u64TmpDst;
4961 return VINF_SUCCESS;
4962}
4963
4964
4965/**
4966 * Implements lgdt.
4967 *
4968 * @param iEffSeg The segment of the new gdtr contents
4969 * @param GCPtrEffSrc The address of the new gdtr contents.
4970 * @param enmEffOpSize The effective operand size.
4971 */
4972IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4973{
4974 if (pVCpu->iem.s.uCpl != 0)
4975 return iemRaiseGeneralProtectionFault0(pVCpu);
4976 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4977
4978 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4979 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4980 {
4981 Log(("lgdt: Guest intercept -> VM-exit\n"));
4982 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_LGDT, cbInstr);
4983 }
4984
4985 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
4986 {
4987 Log(("lgdt: Guest intercept -> #VMEXIT\n"));
4988 IEM_SVM_UPDATE_NRIP(pVCpu);
4989 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4990 }
4991
4992 /*
4993 * Fetch the limit and base address.
4994 */
4995 uint16_t cbLimit;
4996 RTGCPTR GCPtrBase;
4997 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4998 if (rcStrict == VINF_SUCCESS)
4999 {
5000 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
5001 || X86_IS_CANONICAL(GCPtrBase))
5002 {
5003 rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
5004 if (rcStrict == VINF_SUCCESS)
5005 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5006 }
5007 else
5008 {
5009 Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
5010 return iemRaiseGeneralProtectionFault0(pVCpu);
5011 }
5012 }
5013 return rcStrict;
5014}
5015
5016
5017/**
5018 * Implements sgdt.
5019 *
5020 * @param iEffSeg The segment where to store the gdtr content.
5021 * @param GCPtrEffDst The address where to store the gdtr content.
5022 */
5023IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5024{
5025 /*
5026 * Join paths with sidt.
5027 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
5028 * you really must know.
5029 */
5030 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5031 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5032 {
5033 Log(("sgdt: Guest intercept -> VM-exit\n"));
5034 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_SGDT, cbInstr);
5035 }
5036
5037 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS))
5038 {
5039 Log(("sgdt: Guest intercept -> #VMEXIT\n"));
5040 IEM_SVM_UPDATE_NRIP(pVCpu);
5041 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5042 }
5043
5044 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
5045 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst);
5046 if (rcStrict == VINF_SUCCESS)
5047 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5048 return rcStrict;
5049}
5050
5051
5052/**
5053 * Implements lidt.
5054 *
5055 * @param iEffSeg The segment of the new idtr contents
5056 * @param GCPtrEffSrc The address of the new idtr contents.
5057 * @param enmEffOpSize The effective operand size.
5058 */
5059IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
5060{
5061 if (pVCpu->iem.s.uCpl != 0)
5062 return iemRaiseGeneralProtectionFault0(pVCpu);
5063 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5064
5065 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
5066 {
5067 Log(("lidt: Guest intercept -> #VMEXIT\n"));
5068 IEM_SVM_UPDATE_NRIP(pVCpu);
5069 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5070 }
5071
5072 /*
5073 * Fetch the limit and base address.
5074 */
5075 uint16_t cbLimit;
5076 RTGCPTR GCPtrBase;
5077 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
5078 if (rcStrict == VINF_SUCCESS)
5079 {
5080 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
5081 || X86_IS_CANONICAL(GCPtrBase))
5082 {
5083 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
5084 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5085 }
5086 else
5087 {
5088 Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
5089 return iemRaiseGeneralProtectionFault0(pVCpu);
5090 }
5091 }
5092 return rcStrict;
5093}
5094
5095
5096/**
5097 * Implements sidt.
5098 *
5099 * @param iEffSeg The segment where to store the idtr content.
5100 * @param GCPtrEffDst The address where to store the idtr content.
5101 */
5102IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5103{
5104 /*
5105 * Join paths with sgdt.
5106 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
5107 * you really must know.
5108 */
5109 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS))
5110 {
5111 Log(("sidt: Guest intercept -> #VMEXIT\n"));
5112 IEM_SVM_UPDATE_NRIP(pVCpu);
5113 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5114 }
5115
5116 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR);
5117 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst);
5118 if (rcStrict == VINF_SUCCESS)
5119 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5120 return rcStrict;
5121}
5122
5123
5124/**
5125 * Implements lldt.
5126 *
5127 * @param uNewLdt The new LDT selector value.
5128 */
5129IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
5130{
5131 /*
5132 * Check preconditions.
5133 */
5134 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5135 {
5136 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
5137 return iemRaiseUndefinedOpcode(pVCpu);
5138 }
5139 if (pVCpu->iem.s.uCpl != 0)
5140 {
5141 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
5142 return iemRaiseGeneralProtectionFault0(pVCpu);
5143 }
5144 /* Nested-guest VMX intercept. */
5145 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5146 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5147 {
5148 Log(("lldt: Guest intercept -> VM-exit\n"));
5149 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LLDT, cbInstr);
5150 }
5151 if (uNewLdt & X86_SEL_LDT)
5152 {
5153 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
5154 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
5155 }
5156
5157 /*
5158 * Now, loading a NULL selector is easy.
5159 */
5160 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
5161 {
5162 /* Nested-guest SVM intercept. */
5163 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5164 {
5165 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5166 IEM_SVM_UPDATE_NRIP(pVCpu);
5167 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5168 }
5169
5170 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
5171 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
5172 CPUMSetGuestLDTR(pVCpu, uNewLdt);
5173 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
5174 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5175 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
5176 {
5177 /* AMD-V seems to leave the base and limit alone. */
5178 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
5179 }
5180 else
5181 {
5182 /* VT-x (Intel 3960x) seems to be doing the following. */
5183 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
5184 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
5185 pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX;
5186 }
5187
5188 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5189 return VINF_SUCCESS;
5190 }
5191
5192 /*
5193 * Read the descriptor.
5194 */
5195 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR);
5196 IEMSELDESC Desc;
5197 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
5198 if (rcStrict != VINF_SUCCESS)
5199 return rcStrict;
5200
5201 /* Check GPs first. */
5202 if (Desc.Legacy.Gen.u1DescType)
5203 {
5204 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5205 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5206 }
5207 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
5208 {
5209 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5210 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5211 }
5212 uint64_t u64Base;
5213 if (!IEM_IS_LONG_MODE(pVCpu))
5214 u64Base = X86DESC_BASE(&Desc.Legacy);
5215 else
5216 {
5217 if (Desc.Long.Gen.u5Zeros)
5218 {
5219 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
5220 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5221 }
5222
5223 u64Base = X86DESC64_BASE(&Desc.Long);
5224 if (!IEM_IS_CANONICAL(u64Base))
5225 {
5226 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
5227 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5228 }
5229 }
5230
5231 /* NP */
5232 if (!Desc.Legacy.Gen.u1Present)
5233 {
5234 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
5235 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
5236 }
5237
5238 /* Nested-guest SVM intercept. */
5239 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5240 {
5241 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5242 IEM_SVM_UPDATE_NRIP(pVCpu);
5243 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5244 }
5245
5246 /*
5247 * It checks out alright, update the registers.
5248 */
5249/** @todo check if the actual value is loaded or if the RPL is dropped */
5250 CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5251 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
5252 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5253 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5254 pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5255 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
5256
5257 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5258 return VINF_SUCCESS;
5259}
5260
5261
5262/**
5263 * Implements sldt GReg
5264 *
5265 * @param iGReg The general register to store the CRx value in.
5266 * @param enmEffOpSize The operand size.
5267 */
5268IEM_CIMPL_DEF_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5269{
5270 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5271 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5272 {
5273 Log(("sldt: Guest intercept -> VM-exit\n"));
5274 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_SLDT, cbInstr);
5275 }
5276
5277 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5278
5279 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5280 switch (enmEffOpSize)
5281 {
5282 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5283 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5284 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5285 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5286 }
5287 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5288 return VINF_SUCCESS;
5289}
5290
5291
5292/**
5293 * Implements sldt mem.
5294 *
5295 * @param iGReg The general register to store the CRx value in.
5296 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5297 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5298 */
5299IEM_CIMPL_DEF_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5300{
5301 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5302
5303 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5304 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.ldtr.Sel);
5305 if (rcStrict == VINF_SUCCESS)
5306 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5307 return rcStrict;
5308}
5309
5310
5311/**
5312 * Implements ltr.
5313 *
5314 * @param uNewTr The new TSS selector value.
5315 */
5316IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
5317{
5318 /*
5319 * Check preconditions.
5320 */
5321 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5322 {
5323 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
5324 return iemRaiseUndefinedOpcode(pVCpu);
5325 }
5326 if (pVCpu->iem.s.uCpl != 0)
5327 {
5328 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
5329 return iemRaiseGeneralProtectionFault0(pVCpu);
5330 }
5331 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5332 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5333 {
5334 Log(("ltr: Guest intercept -> VM-exit\n"));
5335 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LTR, cbInstr);
5336 }
5337 if (uNewTr & X86_SEL_LDT)
5338 {
5339 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
5340 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
5341 }
5342 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
5343 {
5344 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
5345 return iemRaiseGeneralProtectionFault0(pVCpu);
5346 }
5347 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
5348 {
5349 Log(("ltr: Guest intercept -> #VMEXIT\n"));
5350 IEM_SVM_UPDATE_NRIP(pVCpu);
5351 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5352 }
5353
5354 /*
5355 * Read the descriptor.
5356 */
5357 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR);
5358 IEMSELDESC Desc;
5359 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
5360 if (rcStrict != VINF_SUCCESS)
5361 return rcStrict;
5362
5363 /* Check GPs first. */
5364 if (Desc.Legacy.Gen.u1DescType)
5365 {
5366 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5367 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5368 }
5369 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
5370 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
5371 || IEM_IS_LONG_MODE(pVCpu)) )
5372 {
5373 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5374 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5375 }
5376 uint64_t u64Base;
5377 if (!IEM_IS_LONG_MODE(pVCpu))
5378 u64Base = X86DESC_BASE(&Desc.Legacy);
5379 else
5380 {
5381 if (Desc.Long.Gen.u5Zeros)
5382 {
5383 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
5384 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5385 }
5386
5387 u64Base = X86DESC64_BASE(&Desc.Long);
5388 if (!IEM_IS_CANONICAL(u64Base))
5389 {
5390 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
5391 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5392 }
5393 }
5394
5395 /* NP */
5396 if (!Desc.Legacy.Gen.u1Present)
5397 {
5398 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
5399 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
5400 }
5401
5402 /*
5403 * Set it busy.
5404 * Note! Intel says this should lock down the whole descriptor, but we'll
5405 * restrict our selves to 32-bit for now due to lack of inline
5406 * assembly and such.
5407 */
5408 void *pvDesc;
5409 rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
5410 if (rcStrict != VINF_SUCCESS)
5411 return rcStrict;
5412 switch ((uintptr_t)pvDesc & 3)
5413 {
5414 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
5415 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
5416 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
5417 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
5418 }
5419 rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
5420 if (rcStrict != VINF_SUCCESS)
5421 return rcStrict;
5422 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
5423
5424 /*
5425 * It checks out alright, update the registers.
5426 */
5427/** @todo check if the actual value is loaded or if the RPL is dropped */
5428 CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5429 pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
5430 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
5431 pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5432 pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5433 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
5434
5435 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5436 return VINF_SUCCESS;
5437}
5438
5439
5440/**
5441 * Implements str GReg
5442 *
5443 * @param iGReg The general register to store the CRx value in.
5444 * @param enmEffOpSize The operand size.
5445 */
5446IEM_CIMPL_DEF_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5447{
5448 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5449 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5450 {
5451 Log(("str_reg: Guest intercept -> VM-exit\n"));
5452 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5453 }
5454
5455 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5456
5457 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5458 switch (enmEffOpSize)
5459 {
5460 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5461 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5462 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5463 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5464 }
5465 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5466 return VINF_SUCCESS;
5467}
5468
5469
5470/**
5471 * Implements str mem.
5472 *
5473 * @param iGReg The general register to store the CRx value in.
5474 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5475 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5476 */
5477IEM_CIMPL_DEF_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5478{
5479 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5480 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5481 {
5482 Log(("str_mem: Guest intercept -> VM-exit\n"));
5483 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5484 }
5485
5486 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5487
5488 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5489 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.tr.Sel);
5490 if (rcStrict == VINF_SUCCESS)
5491 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5492 return rcStrict;
5493}
5494
5495
5496/**
5497 * Implements mov GReg,CRx.
5498 *
5499 * @param iGReg The general register to store the CRx value in.
5500 * @param iCrReg The CRx register to read (valid).
5501 */
5502IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
5503{
5504 if (pVCpu->iem.s.uCpl != 0)
5505 return iemRaiseGeneralProtectionFault0(pVCpu);
5506 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5507
5508 if (IEM_SVM_IS_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
5509 {
5510 Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg));
5511 IEM_SVM_UPDATE_NRIP(pVCpu);
5512 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
5513 }
5514
5515 /* Read it. */
5516 uint64_t crX;
5517 switch (iCrReg)
5518 {
5519 case 0:
5520 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5521 crX = pVCpu->cpum.GstCtx.cr0;
5522 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
5523 crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
5524 break;
5525 case 2:
5526 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2);
5527 crX = pVCpu->cpum.GstCtx.cr2;
5528 break;
5529 case 3:
5530 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5531 crX = pVCpu->cpum.GstCtx.cr3;
5532 break;
5533 case 4:
5534 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5535 crX = pVCpu->cpum.GstCtx.cr4;
5536 break;
5537 case 8:
5538 {
5539 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5540#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5541 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5542 {
5543 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr8(pVCpu, iGReg, cbInstr);
5544 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5545 return rcStrict;
5546
5547 /*
5548 * If the Mov-from-CR8 doesn't cause a VM-exit, bits 7:4 of the VTPR is copied
5549 * to bits 0:3 of the destination operand. Bits 63:4 of the destination operand
5550 * are cleared.
5551 *
5552 * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5553 */
5554 if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5555 {
5556 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5557 crX = (uTpr >> 4) & 0xf;
5558 break;
5559 }
5560 }
5561#endif
5562#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5563 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5564 {
5565 PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl;
5566 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5567 {
5568 crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf;
5569 break;
5570 }
5571 }
5572#endif
5573 uint8_t uTpr;
5574 int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
5575 if (RT_SUCCESS(rc))
5576 crX = uTpr >> 4;
5577 else
5578 crX = 0;
5579 break;
5580 }
5581 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5582 }
5583
5584#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5585 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5586 {
5587 switch (iCrReg)
5588 {
5589 /* CR0/CR4 reads are subject to masking when in VMX non-root mode. */
5590 case 0: crX = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u); break;
5591 case 4: crX = CPUMGetGuestVmxMaskedCr4(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr4Mask.u); break;
5592
5593 case 3:
5594 {
5595 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr3(pVCpu, iGReg, cbInstr);
5596 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5597 return rcStrict;
5598 break;
5599 }
5600 }
5601 }
5602#endif
5603
5604 /* Store it. */
5605 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5606 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
5607 else
5608 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
5609
5610 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5611 return VINF_SUCCESS;
5612}
5613
5614
5615/**
5616 * Implements smsw GReg.
5617 *
5618 * @param iGReg The general register to store the CRx value in.
5619 * @param enmEffOpSize The operand size.
5620 */
5621IEM_CIMPL_DEF_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5622{
5623 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5624
5625#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5626 uint64_t u64MaskedCr0;
5627 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5628 u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
5629 else
5630 u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u);
5631 uint64_t const u64GuestCr0 = u64MaskedCr0;
5632#else
5633 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5634#endif
5635
5636 switch (enmEffOpSize)
5637 {
5638 case IEMMODE_16BIT:
5639 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5640 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0;
5641 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5642 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xffe0;
5643 else
5644 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xfff0;
5645 break;
5646
5647 case IEMMODE_32BIT:
5648 *(uint32_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)u64GuestCr0;
5649 break;
5650
5651 case IEMMODE_64BIT:
5652 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = u64GuestCr0;
5653 break;
5654
5655 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5656 }
5657
5658 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5659 return VINF_SUCCESS;
5660}
5661
5662
5663/**
5664 * Implements smsw mem.
5665 *
5666 * @param iGReg The general register to store the CR0 value in.
5667 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5668 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5669 */
5670IEM_CIMPL_DEF_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5671{
5672 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5673
5674#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5675 uint64_t u64MaskedCr0;
5676 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5677 u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
5678 else
5679 u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u);
5680 uint64_t const u64GuestCr0 = u64MaskedCr0;
5681#else
5682 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5683#endif
5684
5685 uint16_t u16Value;
5686 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5687 u16Value = (uint16_t)u64GuestCr0;
5688 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5689 u16Value = (uint16_t)u64GuestCr0 | 0xffe0;
5690 else
5691 u16Value = (uint16_t)u64GuestCr0 | 0xfff0;
5692
5693 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, u16Value);
5694 if (rcStrict == VINF_SUCCESS)
5695 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5696 return rcStrict;
5697}
5698
5699
5700/**
5701 * Helper for mapping CR3 and PAE PDPEs for 'mov CRx,GReg'.
5702 */
5703#define IEM_MAP_PAE_PDPES_AT_CR3_RET(a_pVCpu, a_iCrReg, a_uCr3) \
5704 do \
5705 { \
5706 int const rcX = PGMGstMapPaePdpesAtCr3(a_pVCpu, a_uCr3); \
5707 if (RT_SUCCESS(rcX)) \
5708 { /* likely */ } \
5709 else \
5710 { \
5711 /* Either invalid PDPTEs or CR3 second-level translation failed. Raise #GP(0) either way. */ \
5712 Log(("iemCImpl_load_Cr%#x: Trying to load invalid PAE PDPEs\n", a_iCrReg)); \
5713 return iemRaiseGeneralProtectionFault0(a_pVCpu); \
5714 } \
5715 } while (0)
5716
5717
5718/**
5719 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
5720 *
5721 * @param iCrReg The CRx register to write (valid).
5722 * @param uNewCrX The new value.
5723 * @param enmAccessCrx The instruction that caused the CrX load.
5724 * @param iGReg The general register in case of a 'mov CRx,GReg'
5725 * instruction.
5726 */
5727IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
5728{
5729 VBOXSTRICTRC rcStrict;
5730 int rc;
5731#ifndef VBOX_WITH_NESTED_HWVIRT_SVM
5732 RT_NOREF2(iGReg, enmAccessCrX);
5733#endif
5734
5735 /*
5736 * Try store it.
5737 * Unfortunately, CPUM only does a tiny bit of the work.
5738 */
5739 switch (iCrReg)
5740 {
5741 case 0:
5742 {
5743 /*
5744 * Perform checks.
5745 */
5746 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5747
5748 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0;
5749 uint32_t const fValid = CPUMGetGuestCR0ValidMask();
5750
5751 /* ET is hardcoded on 486 and later. */
5752 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
5753 uNewCrX |= X86_CR0_ET;
5754 /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
5755 else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
5756 {
5757 uNewCrX &= fValid;
5758 uNewCrX |= X86_CR0_ET;
5759 }
5760 else
5761 uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
5762
5763 /* Check for reserved bits. */
5764 if (uNewCrX & ~(uint64_t)fValid)
5765 {
5766 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5767 return iemRaiseGeneralProtectionFault0(pVCpu);
5768 }
5769
5770 /* Check for invalid combinations. */
5771 if ( (uNewCrX & X86_CR0_PG)
5772 && !(uNewCrX & X86_CR0_PE) )
5773 {
5774 Log(("Trying to set CR0.PG without CR0.PE\n"));
5775 return iemRaiseGeneralProtectionFault0(pVCpu);
5776 }
5777
5778 if ( !(uNewCrX & X86_CR0_CD)
5779 && (uNewCrX & X86_CR0_NW) )
5780 {
5781 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
5782 return iemRaiseGeneralProtectionFault0(pVCpu);
5783 }
5784
5785 if ( !(uNewCrX & X86_CR0_PG)
5786 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE))
5787 {
5788 Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n"));
5789 return iemRaiseGeneralProtectionFault0(pVCpu);
5790 }
5791
5792 /* Long mode consistency checks. */
5793 if ( (uNewCrX & X86_CR0_PG)
5794 && !(uOldCrX & X86_CR0_PG)
5795 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5796 {
5797 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE))
5798 {
5799 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
5800 return iemRaiseGeneralProtectionFault0(pVCpu);
5801 }
5802 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long)
5803 {
5804 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
5805 return iemRaiseGeneralProtectionFault0(pVCpu);
5806 }
5807 }
5808
5809 /* Check for bits that must remain set or cleared in VMX operation,
5810 see Intel spec. 23.8 "Restrictions on VMX operation". */
5811 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5812 {
5813 uint64_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
5814 if ((uNewCrX & uCr0Fixed0) != uCr0Fixed0)
5815 {
5816 Log(("Trying to clear reserved CR0 bits in VMX operation: NewCr0=%#llx MB1=%#llx\n", uNewCrX, uCr0Fixed0));
5817 return iemRaiseGeneralProtectionFault0(pVCpu);
5818 }
5819
5820 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5821 if (uNewCrX & ~uCr0Fixed1)
5822 {
5823 Log(("Trying to set reserved CR0 bits in VMX operation: NewCr0=%#llx MB0=%#llx\n", uNewCrX, uCr0Fixed1));
5824 return iemRaiseGeneralProtectionFault0(pVCpu);
5825 }
5826 }
5827
5828 /*
5829 * SVM nested-guest CR0 write intercepts.
5830 */
5831 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
5832 {
5833 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5834 IEM_SVM_UPDATE_NRIP(pVCpu);
5835 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
5836 }
5837 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5838 {
5839 /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
5840 if ( enmAccessCrX == IEMACCESSCRX_LMSW
5841 || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
5842 {
5843 Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
5844 Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg));
5845 IEM_SVM_UPDATE_NRIP(pVCpu);
5846 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg);
5847 }
5848 }
5849
5850 /*
5851 * Change EFER.LMA if entering or leaving long mode.
5852 */
5853 uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER;
5854 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
5855 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5856 {
5857 if (uNewCrX & X86_CR0_PG)
5858 NewEFER |= MSR_K6_EFER_LMA;
5859 else
5860 NewEFER &= ~MSR_K6_EFER_LMA;
5861
5862 CPUMSetGuestEFER(pVCpu, NewEFER);
5863 Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER);
5864 }
5865
5866 /*
5867 * Inform PGM.
5868 */
5869 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE | X86_CR0_CD | X86_CR0_NW))
5870 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE | X86_CR0_CD | X86_CR0_NW)) )
5871 {
5872 if ( enmAccessCrX != IEMACCESSCRX_MOV_CRX
5873 || !CPUMIsPaePagingEnabled(uNewCrX, pVCpu->cpum.GstCtx.cr4, NewEFER)
5874 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5875 { /* likely */ }
5876 else
5877 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, pVCpu->cpum.GstCtx.cr3);
5878 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5879 AssertRCReturn(rc, rc);
5880 /* ignore informational status codes */
5881 }
5882
5883 /*
5884 * Change CR0.
5885 */
5886 CPUMSetGuestCR0(pVCpu, uNewCrX);
5887 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX);
5888
5889 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
5890 false /* fForce */);
5891 break;
5892 }
5893
5894 /*
5895 * CR2 can be changed without any restrictions.
5896 */
5897 case 2:
5898 {
5899 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
5900 {
5901 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5902 IEM_SVM_UPDATE_NRIP(pVCpu);
5903 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
5904 }
5905 pVCpu->cpum.GstCtx.cr2 = uNewCrX;
5906 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2;
5907 rcStrict = VINF_SUCCESS;
5908 break;
5909 }
5910
5911 /*
5912 * CR3 is relatively simple, although AMD and Intel have different
5913 * accounts of how setting reserved bits are handled. We take intel's
5914 * word for the lower bits and AMD's for the high bits (63:52). The
5915 * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
5916 * on this.
5917 */
5918 /** @todo Testcase: Setting reserved bits in CR3, especially before
5919 * enabling paging. */
5920 case 3:
5921 {
5922 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5923
5924 /* Bit 63 being clear in the source operand with PCIDE indicates no invalidations are required. */
5925 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)
5926 && (uNewCrX & RT_BIT_64(63)))
5927 {
5928 /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10
5929 * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see
5930 * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and
5931 * Paging-Structure Caches". */
5932 uNewCrX &= ~RT_BIT_64(63);
5933 }
5934
5935 /* Check / mask the value. */
5936#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
5937 /* See Intel spec. 27.2.2 "EPT Translation Mechanism" footnote. */
5938 uint64_t const fInvPhysMask = !CPUMIsGuestVmxEptPagingEnabledEx(IEM_GET_CTX(pVCpu))
5939 ? (UINT64_MAX << IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
5940 : (~X86_CR3_EPT_PAGE_MASK & X86_PAGE_4K_BASE_MASK);
5941#else
5942 uint64_t const fInvPhysMask = UINT64_C(0xfff0000000000000);
5943#endif
5944 if (uNewCrX & fInvPhysMask)
5945 {
5946 /** @todo Should we raise this only for 64-bit mode like Intel claims? AMD is
5947 * very vague in this area. As mentioned above, need testcase on real
5948 * hardware... Sigh. */
5949 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
5950 return iemRaiseGeneralProtectionFault0(pVCpu);
5951 }
5952
5953 uint64_t fValid;
5954 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
5955 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME))
5956 {
5957 /** @todo Redundant? This value has already been validated above. */
5958 fValid = UINT64_C(0x000fffffffffffff);
5959 }
5960 else
5961 fValid = UINT64_C(0xffffffff);
5962 if (uNewCrX & ~fValid)
5963 {
5964 Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
5965 uNewCrX, uNewCrX & ~fValid));
5966 uNewCrX &= fValid;
5967 }
5968
5969 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
5970 {
5971 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5972 IEM_SVM_UPDATE_NRIP(pVCpu);
5973 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
5974 }
5975
5976 /* Inform PGM. */
5977 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
5978 {
5979 if ( !CPUMIsGuestInPAEModeEx(IEM_GET_CTX(pVCpu))
5980 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5981 { /* likely */ }
5982 else
5983 {
5984 Assert(enmAccessCrX == IEMACCESSCRX_MOV_CRX);
5985 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, uNewCrX);
5986 }
5987 rc = PGMFlushTLB(pVCpu, uNewCrX, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE));
5988 AssertRCReturn(rc, rc);
5989 /* ignore informational status codes */
5990 }
5991
5992 /* Make the change. */
5993 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
5994 AssertRCSuccessReturn(rc, rc);
5995
5996 rcStrict = VINF_SUCCESS;
5997 break;
5998 }
5999
6000 /*
6001 * CR4 is a bit more tedious as there are bits which cannot be cleared
6002 * under some circumstances and such.
6003 */
6004 case 4:
6005 {
6006 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6007 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4;
6008
6009 /* Reserved bits. */
6010 uint32_t const fValid = CPUMGetGuestCR4ValidMask(pVCpu->CTX_SUFF(pVM));
6011 if (uNewCrX & ~(uint64_t)fValid)
6012 {
6013 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
6014 return iemRaiseGeneralProtectionFault0(pVCpu);
6015 }
6016
6017 bool const fPcide = !(uOldCrX & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE);
6018 bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
6019
6020 /* PCIDE check. */
6021 if ( fPcide
6022 && ( !fLongMode
6023 || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))))
6024 {
6025 Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))));
6026 return iemRaiseGeneralProtectionFault0(pVCpu);
6027 }
6028
6029 /* PAE check. */
6030 if ( fLongMode
6031 && (uOldCrX & X86_CR4_PAE)
6032 && !(uNewCrX & X86_CR4_PAE))
6033 {
6034 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
6035 return iemRaiseGeneralProtectionFault0(pVCpu);
6036 }
6037
6038 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
6039 {
6040 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6041 IEM_SVM_UPDATE_NRIP(pVCpu);
6042 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
6043 }
6044
6045 /* Check for bits that must remain set or cleared in VMX operation,
6046 see Intel spec. 23.8 "Restrictions on VMX operation". */
6047 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
6048 {
6049 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
6050 if ((uNewCrX & uCr4Fixed0) != uCr4Fixed0)
6051 {
6052 Log(("Trying to clear reserved CR4 bits in VMX operation: NewCr4=%#llx MB1=%#llx\n", uNewCrX, uCr4Fixed0));
6053 return iemRaiseGeneralProtectionFault0(pVCpu);
6054 }
6055
6056 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
6057 if (uNewCrX & ~uCr4Fixed1)
6058 {
6059 Log(("Trying to set reserved CR4 bits in VMX operation: NewCr4=%#llx MB0=%#llx\n", uNewCrX, uCr4Fixed1));
6060 return iemRaiseGeneralProtectionFault0(pVCpu);
6061 }
6062 }
6063
6064 /*
6065 * Notify PGM.
6066 */
6067 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */))
6068 {
6069 if ( !CPUMIsPaePagingEnabled(pVCpu->cpum.GstCtx.cr0, uNewCrX, pVCpu->cpum.GstCtx.msrEFER)
6070 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6071 { /* likely */ }
6072 else
6073 {
6074 Assert(enmAccessCrX == IEMACCESSCRX_MOV_CRX);
6075 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, pVCpu->cpum.GstCtx.cr3);
6076 }
6077 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
6078 AssertRCReturn(rc, rc);
6079 /* ignore informational status codes */
6080 }
6081
6082 /*
6083 * Change it.
6084 */
6085 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
6086 AssertRCSuccessReturn(rc, rc);
6087 Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX);
6088
6089 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
6090 false /* fForce */);
6091 break;
6092 }
6093
6094 /*
6095 * CR8 maps to the APIC TPR.
6096 */
6097 case 8:
6098 {
6099 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
6100 if (uNewCrX & ~(uint64_t)0xf)
6101 {
6102 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
6103 return iemRaiseGeneralProtectionFault0(pVCpu);
6104 }
6105
6106#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6107 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6108 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
6109 {
6110 /*
6111 * If the Mov-to-CR8 doesn't cause a VM-exit, bits 0:3 of the source operand
6112 * is copied to bits 7:4 of the VTPR. Bits 0:3 and bits 31:8 of the VTPR are
6113 * cleared. Following this the processor performs TPR virtualization.
6114 *
6115 * However, we should not perform TPR virtualization immediately here but
6116 * after this instruction has completed.
6117 *
6118 * See Intel spec. 29.3 "Virtualizing CR8-based TPR Accesses"
6119 * See Intel spec. 27.1 "Architectural State Before A VM-exit"
6120 */
6121 uint32_t const uTpr = (uNewCrX & 0xf) << 4;
6122 Log(("iemCImpl_load_Cr%#x: Virtualizing TPR (%#x) write\n", iCrReg, uTpr));
6123 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
6124 iemVmxVirtApicSetPendingWrite(pVCpu, XAPIC_OFF_TPR);
6125 rcStrict = VINF_SUCCESS;
6126 break;
6127 }
6128#endif
6129
6130#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6131 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6132 {
6133 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
6134 {
6135 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6136 IEM_SVM_UPDATE_NRIP(pVCpu);
6137 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
6138 }
6139
6140 pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl.IntCtrl.n.u8VTPR = uNewCrX;
6141 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
6142 {
6143 rcStrict = VINF_SUCCESS;
6144 break;
6145 }
6146 }
6147#endif
6148 uint8_t const u8Tpr = (uint8_t)uNewCrX << 4;
6149 APICSetTpr(pVCpu, u8Tpr);
6150 rcStrict = VINF_SUCCESS;
6151 break;
6152 }
6153
6154 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6155 }
6156
6157 /*
6158 * Advance the RIP on success.
6159 */
6160 if (RT_SUCCESS(rcStrict))
6161 {
6162 if (rcStrict != VINF_SUCCESS)
6163 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
6164 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6165 }
6166
6167 return rcStrict;
6168}
6169
6170
6171/**
6172 * Implements mov CRx,GReg.
6173 *
6174 * @param iCrReg The CRx register to write (valid).
6175 * @param iGReg The general register to load the CRx value from.
6176 */
6177IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
6178{
6179 if (pVCpu->iem.s.uCpl != 0)
6180 return iemRaiseGeneralProtectionFault0(pVCpu);
6181 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6182
6183 /*
6184 * Read the new value from the source register and call common worker.
6185 */
6186 uint64_t uNewCrX;
6187 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6188 uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
6189 else
6190 uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
6191
6192#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6193 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6194 {
6195 VBOXSTRICTRC rcStrict = VINF_VMX_INTERCEPT_NOT_ACTIVE;
6196 switch (iCrReg)
6197 {
6198 case 0:
6199 case 4: rcStrict = iemVmxVmexitInstrMovToCr0Cr4(pVCpu, iCrReg, &uNewCrX, iGReg, cbInstr); break;
6200 case 3: rcStrict = iemVmxVmexitInstrMovToCr3(pVCpu, uNewCrX, iGReg, cbInstr); break;
6201 case 8: rcStrict = iemVmxVmexitInstrMovToCr8(pVCpu, iGReg, cbInstr); break;
6202 }
6203 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6204 return rcStrict;
6205 }
6206#endif
6207
6208 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
6209}
6210
6211
6212/**
6213 * Implements 'LMSW r/m16'
6214 *
6215 * @param u16NewMsw The new value.
6216 * @param GCPtrEffDst The guest-linear address of the source operand in case
6217 * of a memory operand. For register operand, pass
6218 * NIL_RTGCPTR.
6219 */
6220IEM_CIMPL_DEF_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst)
6221{
6222 if (pVCpu->iem.s.uCpl != 0)
6223 return iemRaiseGeneralProtectionFault0(pVCpu);
6224 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6225 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6226
6227#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6228 /* Check nested-guest VMX intercept and get updated MSW if there's no VM-exit. */
6229 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6230 {
6231 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrLmsw(pVCpu, pVCpu->cpum.GstCtx.cr0, &u16NewMsw, GCPtrEffDst, cbInstr);
6232 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6233 return rcStrict;
6234 }
6235#else
6236 RT_NOREF_PV(GCPtrEffDst);
6237#endif
6238
6239 /*
6240 * Compose the new CR0 value and call common worker.
6241 */
6242 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6243 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6244 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
6245}
6246
6247
6248/**
6249 * Implements 'CLTS'.
6250 */
6251IEM_CIMPL_DEF_0(iemCImpl_clts)
6252{
6253 if (pVCpu->iem.s.uCpl != 0)
6254 return iemRaiseGeneralProtectionFault0(pVCpu);
6255
6256 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6257 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0;
6258 uNewCr0 &= ~X86_CR0_TS;
6259
6260#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6261 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6262 {
6263 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrClts(pVCpu, cbInstr);
6264 if (rcStrict == VINF_VMX_MODIFIES_BEHAVIOR)
6265 uNewCr0 |= (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS);
6266 else if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6267 return rcStrict;
6268 }
6269#endif
6270
6271 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
6272}
6273
6274
6275/**
6276 * Implements mov GReg,DRx.
6277 *
6278 * @param iGReg The general register to store the DRx value in.
6279 * @param iDrReg The DRx register to read (0-7).
6280 */
6281IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
6282{
6283#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6284 /*
6285 * Check nested-guest VMX intercept.
6286 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6287 * over CPL and CR4.DE and even DR4/DR5 checks.
6288 *
6289 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6290 */
6291 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6292 {
6293 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_FROM_DRX, iDrReg, iGReg, cbInstr);
6294 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6295 return rcStrict;
6296 }
6297#endif
6298
6299 /*
6300 * Check preconditions.
6301 */
6302 /* Raise GPs. */
6303 if (pVCpu->iem.s.uCpl != 0)
6304 return iemRaiseGeneralProtectionFault0(pVCpu);
6305 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6306 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR0);
6307
6308 if ( (iDrReg == 4 || iDrReg == 5)
6309 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) )
6310 {
6311 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
6312 return iemRaiseGeneralProtectionFault0(pVCpu);
6313 }
6314
6315 /* Raise #DB if general access detect is enabled. */
6316 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6317 {
6318 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
6319 return iemRaiseDebugException(pVCpu);
6320 }
6321
6322 /*
6323 * Read the debug register and store it in the specified general register.
6324 */
6325 uint64_t drX;
6326 switch (iDrReg)
6327 {
6328 case 0:
6329 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6330 drX = pVCpu->cpum.GstCtx.dr[0];
6331 break;
6332 case 1:
6333 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6334 drX = pVCpu->cpum.GstCtx.dr[1];
6335 break;
6336 case 2:
6337 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6338 drX = pVCpu->cpum.GstCtx.dr[2];
6339 break;
6340 case 3:
6341 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6342 drX = pVCpu->cpum.GstCtx.dr[3];
6343 break;
6344 case 6:
6345 case 4:
6346 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6347 drX = pVCpu->cpum.GstCtx.dr[6];
6348 drX |= X86_DR6_RA1_MASK;
6349 drX &= ~X86_DR6_RAZ_MASK;
6350 break;
6351 case 7:
6352 case 5:
6353 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6354 drX = pVCpu->cpum.GstCtx.dr[7];
6355 drX |=X86_DR7_RA1_MASK;
6356 drX &= ~X86_DR7_RAZ_MASK;
6357 break;
6358 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6359 }
6360
6361 /** @todo SVM nested-guest intercept for DR8-DR15? */
6362 /*
6363 * Check for any SVM nested-guest intercepts for the DRx read.
6364 */
6365 if (IEM_SVM_IS_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
6366 {
6367 Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
6368 IEM_SVM_UPDATE_NRIP(pVCpu);
6369 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
6370 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6371 }
6372
6373 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6374 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
6375 else
6376 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
6377
6378 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6379 return VINF_SUCCESS;
6380}
6381
6382
6383/**
6384 * Implements mov DRx,GReg.
6385 *
6386 * @param iDrReg The DRx register to write (valid).
6387 * @param iGReg The general register to load the DRx value from.
6388 */
6389IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
6390{
6391#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6392 /*
6393 * Check nested-guest VMX intercept.
6394 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6395 * over CPL and CR4.DE and even DR4/DR5 checks.
6396 *
6397 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6398 */
6399 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6400 {
6401 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_TO_DRX, iDrReg, iGReg, cbInstr);
6402 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6403 return rcStrict;
6404 }
6405#endif
6406
6407 /*
6408 * Check preconditions.
6409 */
6410 if (pVCpu->iem.s.uCpl != 0)
6411 return iemRaiseGeneralProtectionFault0(pVCpu);
6412 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6413 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR4);
6414
6415 if (iDrReg == 4 || iDrReg == 5)
6416 {
6417 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
6418 {
6419 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
6420 return iemRaiseGeneralProtectionFault0(pVCpu);
6421 }
6422 iDrReg += 2;
6423 }
6424
6425 /* Raise #DB if general access detect is enabled. */
6426 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
6427 * \#GP? */
6428 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6429 {
6430 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
6431 return iemRaiseDebugException(pVCpu);
6432 }
6433
6434 /*
6435 * Read the new value from the source register.
6436 */
6437 uint64_t uNewDrX;
6438 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6439 uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
6440 else
6441 uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
6442
6443 /*
6444 * Adjust it.
6445 */
6446 switch (iDrReg)
6447 {
6448 case 0:
6449 case 1:
6450 case 2:
6451 case 3:
6452 /* nothing to adjust */
6453 break;
6454
6455 case 6:
6456 if (uNewDrX & X86_DR6_MBZ_MASK)
6457 {
6458 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6459 return iemRaiseGeneralProtectionFault0(pVCpu);
6460 }
6461 uNewDrX |= X86_DR6_RA1_MASK;
6462 uNewDrX &= ~X86_DR6_RAZ_MASK;
6463 break;
6464
6465 case 7:
6466 if (uNewDrX & X86_DR7_MBZ_MASK)
6467 {
6468 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6469 return iemRaiseGeneralProtectionFault0(pVCpu);
6470 }
6471 uNewDrX |= X86_DR7_RA1_MASK;
6472 uNewDrX &= ~X86_DR7_RAZ_MASK;
6473 break;
6474
6475 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6476 }
6477
6478 /** @todo SVM nested-guest intercept for DR8-DR15? */
6479 /*
6480 * Check for any SVM nested-guest intercepts for the DRx write.
6481 */
6482 if (IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
6483 {
6484 Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
6485 IEM_SVM_UPDATE_NRIP(pVCpu);
6486 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
6487 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6488 }
6489
6490 /*
6491 * Do the actual setting.
6492 */
6493 if (iDrReg < 4)
6494 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6495 else if (iDrReg == 6)
6496 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6497
6498 int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
6499 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
6500
6501 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6502 return VINF_SUCCESS;
6503}
6504
6505
6506/**
6507 * Implements mov GReg,TRx.
6508 *
6509 * @param iGReg The general register to store the
6510 * TRx value in.
6511 * @param iTrReg The TRx register to read (6/7).
6512 */
6513IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg)
6514{
6515 /*
6516 * Check preconditions. NB: This instruction is 386/486 only.
6517 */
6518
6519 /* Raise GPs. */
6520 if (pVCpu->iem.s.uCpl != 0)
6521 return iemRaiseGeneralProtectionFault0(pVCpu);
6522 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6523
6524 if (iTrReg < 6 || iTrReg > 7)
6525 {
6526 /** @todo Do Intel CPUs reject this or are the TRs aliased? */
6527 Log(("mov r%u,tr%u: invalid register -> #GP(0)\n", iGReg, iTrReg));
6528 return iemRaiseGeneralProtectionFault0(pVCpu);
6529 }
6530
6531 /*
6532 * Read the test register and store it in the specified general register.
6533 * This is currently a dummy implementation that only exists to satisfy
6534 * old debuggers like WDEB386 or OS/2 KDB which unconditionally read the
6535 * TR6/TR7 registers. Software which actually depends on the TR values
6536 * (different on 386/486) is exceedingly rare.
6537 */
6538 uint64_t trX;
6539 switch (iTrReg)
6540 {
6541 case 6:
6542 trX = 0; /* Currently a dummy. */
6543 break;
6544 case 7:
6545 trX = 0; /* Currently a dummy. */
6546 break;
6547 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6548 }
6549
6550 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)trX;
6551
6552 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6553 return VINF_SUCCESS;
6554}
6555
6556
6557/**
6558 * Implements mov TRx,GReg.
6559 *
6560 * @param iTrReg The TRx register to write (valid).
6561 * @param iGReg The general register to load the TRx
6562 * value from.
6563 */
6564IEM_CIMPL_DEF_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg)
6565{
6566 /*
6567 * Check preconditions. NB: This instruction is 386/486 only.
6568 */
6569
6570 /* Raise GPs. */
6571 if (pVCpu->iem.s.uCpl != 0)
6572 return iemRaiseGeneralProtectionFault0(pVCpu);
6573 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6574
6575 if (iTrReg < 6 || iTrReg > 7)
6576 {
6577 /** @todo Do Intel CPUs reject this or are the TRs aliased? */
6578 Log(("mov r%u,tr%u: invalid register -> #GP(0)\n", iGReg, iTrReg));
6579 return iemRaiseGeneralProtectionFault0(pVCpu);
6580 }
6581
6582 /*
6583 * Read the new value from the source register.
6584 */
6585 uint64_t uNewTrX;
6586 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6587 uNewTrX = iemGRegFetchU64(pVCpu, iGReg);
6588 else
6589 uNewTrX = iemGRegFetchU32(pVCpu, iGReg);
6590
6591 /*
6592 * Here we would do the actual setting if this weren't a dummy implementation.
6593 * This is currently a dummy implementation that only exists to prevent
6594 * old debuggers like WDEB386 or OS/2 KDB from crashing.
6595 */
6596 RT_NOREF(uNewTrX);
6597
6598 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6599 return VINF_SUCCESS;
6600}
6601
6602
6603/**
6604 * Implements 'INVLPG m'.
6605 *
6606 * @param GCPtrPage The effective address of the page to invalidate.
6607 * @remarks Updates the RIP.
6608 */
6609IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
6610{
6611 /* ring-0 only. */
6612 if (pVCpu->iem.s.uCpl != 0)
6613 return iemRaiseGeneralProtectionFault0(pVCpu);
6614 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6615 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6616
6617#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6618 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6619 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6620 {
6621 Log(("invlpg: Guest intercept (%RGp) -> VM-exit\n", GCPtrPage));
6622 return iemVmxVmexitInstrInvlpg(pVCpu, GCPtrPage, cbInstr);
6623 }
6624#endif
6625
6626 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
6627 {
6628 Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
6629 IEM_SVM_UPDATE_NRIP(pVCpu);
6630 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPG,
6631 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */);
6632 }
6633
6634 int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
6635 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6636
6637 if (rc == VINF_SUCCESS)
6638 return VINF_SUCCESS;
6639 if (rc == VINF_PGM_SYNC_CR3)
6640 return iemSetPassUpStatus(pVCpu, rc);
6641
6642 AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
6643 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
6644 return rc;
6645}
6646
6647
6648/**
6649 * Implements INVPCID.
6650 *
6651 * @param iEffSeg The segment of the invpcid descriptor.
6652 * @param GCPtrInvpcidDesc The address of invpcid descriptor.
6653 * @param uInvpcidType The invalidation type.
6654 * @remarks Updates the RIP.
6655 */
6656IEM_CIMPL_DEF_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType)
6657{
6658 /*
6659 * Check preconditions.
6660 */
6661 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid)
6662 return iemRaiseUndefinedOpcode(pVCpu);
6663
6664 /* When in VMX non-root mode and INVPCID is not enabled, it results in #UD. */
6665 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6666 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_INVPCID))
6667 {
6668 Log(("invpcid: Not enabled for nested-guest execution -> #UD\n"));
6669 return iemRaiseUndefinedOpcode(pVCpu);
6670 }
6671
6672 if (pVCpu->iem.s.uCpl != 0)
6673 {
6674 Log(("invpcid: CPL != 0 -> #GP(0)\n"));
6675 return iemRaiseGeneralProtectionFault0(pVCpu);
6676 }
6677
6678 if (IEM_IS_V86_MODE(pVCpu))
6679 {
6680 Log(("invpcid: v8086 mode -> #GP(0)\n"));
6681 return iemRaiseGeneralProtectionFault0(pVCpu);
6682 }
6683
6684 /*
6685 * Check nested-guest intercept.
6686 *
6687 * INVPCID causes a VM-exit if "enable INVPCID" and "INVLPG exiting" are
6688 * both set. We have already checked the former earlier in this function.
6689 *
6690 * CPL and virtual-8086 mode checks take priority over this VM-exit.
6691 * See Intel spec. "25.1.1 Relative Priority of Faults and VM Exits".
6692 */
6693 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6694 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6695 {
6696 Log(("invpcid: Guest intercept -> #VM-exit\n"));
6697 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_INVPCID, VMXINSTRID_NONE, cbInstr);
6698 }
6699
6700 if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID)
6701 {
6702 Log(("invpcid: invalid/unrecognized invpcid type %#RX64 -> #GP(0)\n", uInvpcidType));
6703 return iemRaiseGeneralProtectionFault0(pVCpu);
6704 }
6705 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6706
6707 /*
6708 * Fetch the invpcid descriptor from guest memory.
6709 */
6710 RTUINT128U uDesc;
6711 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvpcidDesc);
6712 if (rcStrict == VINF_SUCCESS)
6713 {
6714 /*
6715 * Validate the descriptor.
6716 */
6717 if (uDesc.s.Lo > 0xfff)
6718 {
6719 Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
6720 return iemRaiseGeneralProtectionFault0(pVCpu);
6721 }
6722
6723 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
6724 uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff);
6725 uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4;
6726 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
6727 switch (uInvpcidType)
6728 {
6729 case X86_INVPCID_TYPE_INDV_ADDR:
6730 {
6731 if (!IEM_IS_CANONICAL(GCPtrInvAddr))
6732 {
6733 Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr));
6734 return iemRaiseGeneralProtectionFault0(pVCpu);
6735 }
6736 if ( !(uCr4 & X86_CR4_PCIDE)
6737 && uPcid != 0)
6738 {
6739 Log(("invpcid: invalid pcid %#x\n", uPcid));
6740 return iemRaiseGeneralProtectionFault0(pVCpu);
6741 }
6742
6743 /* Invalidate mappings for the linear address tagged with PCID except global translations. */
6744 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6745 break;
6746 }
6747
6748 case X86_INVPCID_TYPE_SINGLE_CONTEXT:
6749 {
6750 if ( !(uCr4 & X86_CR4_PCIDE)
6751 && uPcid != 0)
6752 {
6753 Log(("invpcid: invalid pcid %#x\n", uPcid));
6754 return iemRaiseGeneralProtectionFault0(pVCpu);
6755 }
6756 /* Invalidate all mappings associated with PCID except global translations. */
6757 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6758 break;
6759 }
6760
6761 case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL:
6762 {
6763 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
6764 break;
6765 }
6766
6767 case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL:
6768 {
6769 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6770 break;
6771 }
6772 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6773 }
6774 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6775 }
6776 return rcStrict;
6777}
6778
6779
6780/**
6781 * Implements INVD.
6782 */
6783IEM_CIMPL_DEF_0(iemCImpl_invd)
6784{
6785 if (pVCpu->iem.s.uCpl != 0)
6786 {
6787 Log(("invd: CPL != 0 -> #GP(0)\n"));
6788 return iemRaiseGeneralProtectionFault0(pVCpu);
6789 }
6790
6791 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6792 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_INVD, cbInstr);
6793
6794 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_INVD, SVM_EXIT_INVD, 0, 0);
6795
6796 /* We currently take no action here. */
6797 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6798 return VINF_SUCCESS;
6799}
6800
6801
6802/**
6803 * Implements WBINVD.
6804 */
6805IEM_CIMPL_DEF_0(iemCImpl_wbinvd)
6806{
6807 if (pVCpu->iem.s.uCpl != 0)
6808 {
6809 Log(("wbinvd: CPL != 0 -> #GP(0)\n"));
6810 return iemRaiseGeneralProtectionFault0(pVCpu);
6811 }
6812
6813 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6814 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WBINVD, cbInstr);
6815
6816 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_WBINVD, SVM_EXIT_WBINVD, 0, 0);
6817
6818 /* We currently take no action here. */
6819 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6820 return VINF_SUCCESS;
6821}
6822
6823
6824/** Opcode 0x0f 0xaa. */
6825IEM_CIMPL_DEF_0(iemCImpl_rsm)
6826{
6827 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_RSM, SVM_EXIT_RSM, 0, 0);
6828 NOREF(cbInstr);
6829 return iemRaiseUndefinedOpcode(pVCpu);
6830}
6831
6832
6833/**
6834 * Implements RDTSC.
6835 */
6836IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
6837{
6838 /*
6839 * Check preconditions.
6840 */
6841 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
6842 return iemRaiseUndefinedOpcode(pVCpu);
6843
6844 if (pVCpu->iem.s.uCpl != 0)
6845 {
6846 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6847 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6848 {
6849 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6850 return iemRaiseGeneralProtectionFault0(pVCpu);
6851 }
6852 }
6853
6854 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6855 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6856 {
6857 Log(("rdtsc: Guest intercept -> VM-exit\n"));
6858 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSC, cbInstr);
6859 }
6860
6861 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
6862 {
6863 Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
6864 IEM_SVM_UPDATE_NRIP(pVCpu);
6865 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6866 }
6867
6868 /*
6869 * Do the job.
6870 */
6871 uint64_t uTicks = TMCpuTickGet(pVCpu);
6872#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
6873 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6874#endif
6875 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6876 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6877 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); /* For IEMExecDecodedRdtsc. */
6878 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6879 return VINF_SUCCESS;
6880}
6881
6882
6883/**
6884 * Implements RDTSC.
6885 */
6886IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
6887{
6888 /*
6889 * Check preconditions.
6890 */
6891 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
6892 return iemRaiseUndefinedOpcode(pVCpu);
6893
6894 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6895 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_RDTSCP))
6896 {
6897 Log(("rdtscp: Not enabled for VMX non-root mode -> #UD\n"));
6898 return iemRaiseUndefinedOpcode(pVCpu);
6899 }
6900
6901 if (pVCpu->iem.s.uCpl != 0)
6902 {
6903 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6904 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6905 {
6906 Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6907 return iemRaiseGeneralProtectionFault0(pVCpu);
6908 }
6909 }
6910
6911 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6912 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6913 {
6914 Log(("rdtscp: Guest intercept -> VM-exit\n"));
6915 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSCP, cbInstr);
6916 }
6917 else if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
6918 {
6919 Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
6920 IEM_SVM_UPDATE_NRIP(pVCpu);
6921 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6922 }
6923
6924 /*
6925 * Do the job.
6926 * Query the MSR first in case of trips to ring-3.
6927 */
6928 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
6929 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx);
6930 if (rcStrict == VINF_SUCCESS)
6931 {
6932 /* Low dword of the TSC_AUX msr only. */
6933 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
6934
6935 uint64_t uTicks = TMCpuTickGet(pVCpu);
6936#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
6937 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6938#endif
6939 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6940 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6941 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX); /* For IEMExecDecodedRdtscp. */
6942 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6943 }
6944 return rcStrict;
6945}
6946
6947
6948/**
6949 * Implements RDPMC.
6950 */
6951IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
6952{
6953 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6954
6955 if ( pVCpu->iem.s.uCpl != 0
6956 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE))
6957 return iemRaiseGeneralProtectionFault0(pVCpu);
6958
6959 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6960 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDPMC_EXIT))
6961 {
6962 Log(("rdpmc: Guest intercept -> VM-exit\n"));
6963 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDPMC, cbInstr);
6964 }
6965
6966 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
6967 {
6968 Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
6969 IEM_SVM_UPDATE_NRIP(pVCpu);
6970 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6971 }
6972
6973 /** @todo Emulate performance counters, for now just return 0. */
6974 pVCpu->cpum.GstCtx.rax = 0;
6975 pVCpu->cpum.GstCtx.rdx = 0;
6976 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
6977 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
6978 * ecx but see @bugref{3472}! */
6979
6980 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6981 return VINF_SUCCESS;
6982}
6983
6984
6985/**
6986 * Implements RDMSR.
6987 */
6988IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
6989{
6990 /*
6991 * Check preconditions.
6992 */
6993 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
6994 return iemRaiseUndefinedOpcode(pVCpu);
6995 if (pVCpu->iem.s.uCpl != 0)
6996 return iemRaiseGeneralProtectionFault0(pVCpu);
6997
6998 /*
6999 * Check nested-guest intercepts.
7000 */
7001#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7002 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7003 {
7004 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_RDMSR, pVCpu->cpum.GstCtx.ecx))
7005 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDMSR, cbInstr);
7006 }
7007#endif
7008
7009#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7010 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
7011 {
7012 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */);
7013 if (rcStrict == VINF_SVM_VMEXIT)
7014 return VINF_SUCCESS;
7015 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7016 {
7017 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
7018 return rcStrict;
7019 }
7020 }
7021#endif
7022
7023 /*
7024 * Do the job.
7025 */
7026 RTUINT64U uValue;
7027 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
7028 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
7029
7030 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u);
7031 if (rcStrict == VINF_SUCCESS)
7032 {
7033 pVCpu->cpum.GstCtx.rax = uValue.s.Lo;
7034 pVCpu->cpum.GstCtx.rdx = uValue.s.Hi;
7035 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
7036
7037 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7038 return VINF_SUCCESS;
7039 }
7040
7041#ifndef IN_RING3
7042 /* Deferred to ring-3. */
7043 if (rcStrict == VINF_CPUM_R3_MSR_READ)
7044 {
7045 Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
7046 return rcStrict;
7047 }
7048#endif
7049
7050 /* Often a unimplemented MSR or MSR bit, so worth logging. */
7051 if (pVCpu->iem.s.cLogRelRdMsr < 32)
7052 {
7053 pVCpu->iem.s.cLogRelRdMsr++;
7054 LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
7055 }
7056 else
7057 Log(( "IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
7058 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
7059 return iemRaiseGeneralProtectionFault0(pVCpu);
7060}
7061
7062
7063/**
7064 * Implements WRMSR.
7065 */
7066IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
7067{
7068 /*
7069 * Check preconditions.
7070 */
7071 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
7072 return iemRaiseUndefinedOpcode(pVCpu);
7073 if (pVCpu->iem.s.uCpl != 0)
7074 return iemRaiseGeneralProtectionFault0(pVCpu);
7075
7076 RTUINT64U uValue;
7077 uValue.s.Lo = pVCpu->cpum.GstCtx.eax;
7078 uValue.s.Hi = pVCpu->cpum.GstCtx.edx;
7079
7080 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
7081
7082 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
7083 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
7084
7085 /*
7086 * Check nested-guest intercepts.
7087 */
7088#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7089 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7090 {
7091 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_WRMSR, idMsr))
7092 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WRMSR, cbInstr);
7093 }
7094#endif
7095
7096#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7097 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
7098 {
7099 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, idMsr, true /* fWrite */);
7100 if (rcStrict == VINF_SVM_VMEXIT)
7101 return VINF_SUCCESS;
7102 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7103 {
7104 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", idMsr, VBOXSTRICTRC_VAL(rcStrict)));
7105 return rcStrict;
7106 }
7107 }
7108#endif
7109
7110 /*
7111 * Do the job.
7112 */
7113 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, idMsr, uValue.u);
7114 if (rcStrict == VINF_SUCCESS)
7115 {
7116 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7117 return VINF_SUCCESS;
7118 }
7119
7120#ifndef IN_RING3
7121 /* Deferred to ring-3. */
7122 if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
7123 {
7124 Log(("IEM: wrmsr(%#x) -> ring-3\n", idMsr));
7125 return rcStrict;
7126 }
7127#endif
7128
7129 /* Often a unimplemented MSR or MSR bit, so worth logging. */
7130 if (pVCpu->iem.s.cLogRelWrMsr < 32)
7131 {
7132 pVCpu->iem.s.cLogRelWrMsr++;
7133 LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
7134 }
7135 else
7136 Log(( "IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
7137 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
7138 return iemRaiseGeneralProtectionFault0(pVCpu);
7139}
7140
7141
7142/**
7143 * Implements 'IN eAX, port'.
7144 *
7145 * @param u16Port The source port.
7146 * @param fImm Whether the port was specified through an immediate operand
7147 * or the implicit DX register.
7148 * @param cbReg The register size.
7149 */
7150IEM_CIMPL_DEF_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
7151{
7152 /*
7153 * CPL check
7154 */
7155 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
7156 if (rcStrict != VINF_SUCCESS)
7157 return rcStrict;
7158
7159 /*
7160 * Check VMX nested-guest IO intercept.
7161 */
7162#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7163 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7164 {
7165 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_IN, u16Port, fImm, cbReg, cbInstr);
7166 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
7167 return rcStrict;
7168 }
7169#else
7170 RT_NOREF(fImm);
7171#endif
7172
7173 /*
7174 * Check SVM nested-guest IO intercept.
7175 */
7176#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7177 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7178 {
7179 uint8_t cAddrSizeBits;
7180 switch (pVCpu->iem.s.enmEffAddrMode)
7181 {
7182 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7183 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7184 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7185 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7186 }
7187 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7188 false /* fRep */, false /* fStrIo */, cbInstr);
7189 if (rcStrict == VINF_SVM_VMEXIT)
7190 return VINF_SUCCESS;
7191 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7192 {
7193 Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7194 VBOXSTRICTRC_VAL(rcStrict)));
7195 return rcStrict;
7196 }
7197 }
7198#endif
7199
7200 /*
7201 * Perform the I/O.
7202 */
7203 uint32_t u32Value = 0;
7204 rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg);
7205 if (IOM_SUCCESS(rcStrict))
7206 {
7207 switch (cbReg)
7208 {
7209 case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break;
7210 case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break;
7211 case 4: pVCpu->cpum.GstCtx.rax = u32Value; break;
7212 default: AssertFailedReturn(VERR_IEM_IPE_3);
7213 }
7214 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7215 pVCpu->iem.s.cPotentialExits++;
7216 if (rcStrict != VINF_SUCCESS)
7217 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7218 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
7219
7220 /*
7221 * Check for I/O breakpoints.
7222 */
7223 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7224 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7225 && X86_DR7_ANY_RW_IO(uDr7)
7226 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7227 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
7228 {
7229 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7230 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7231 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7232 rcStrict = iemRaiseDebugException(pVCpu);
7233 }
7234 }
7235
7236 return rcStrict;
7237}
7238
7239
7240/**
7241 * Implements 'IN eAX, DX'.
7242 *
7243 * @param cbReg The register size.
7244 */
7245IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
7246{
7247 return IEM_CIMPL_CALL_3(iemCImpl_in, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7248}
7249
7250
7251/**
7252 * Implements 'OUT port, eAX'.
7253 *
7254 * @param u16Port The destination port.
7255 * @param fImm Whether the port was specified through an immediate operand
7256 * or the implicit DX register.
7257 * @param cbReg The register size.
7258 */
7259IEM_CIMPL_DEF_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
7260{
7261 /*
7262 * CPL check
7263 */
7264 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
7265 if (rcStrict != VINF_SUCCESS)
7266 return rcStrict;
7267
7268 /*
7269 * Check VMX nested-guest I/O intercept.
7270 */
7271#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7272 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7273 {
7274 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_OUT, u16Port, fImm, cbReg, cbInstr);
7275 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
7276 return rcStrict;
7277 }
7278#else
7279 RT_NOREF(fImm);
7280#endif
7281
7282 /*
7283 * Check SVM nested-guest I/O intercept.
7284 */
7285#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7286 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7287 {
7288 uint8_t cAddrSizeBits;
7289 switch (pVCpu->iem.s.enmEffAddrMode)
7290 {
7291 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7292 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7293 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7294 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7295 }
7296 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7297 false /* fRep */, false /* fStrIo */, cbInstr);
7298 if (rcStrict == VINF_SVM_VMEXIT)
7299 return VINF_SUCCESS;
7300 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7301 {
7302 Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7303 VBOXSTRICTRC_VAL(rcStrict)));
7304 return rcStrict;
7305 }
7306 }
7307#endif
7308
7309 /*
7310 * Perform the I/O.
7311 */
7312 uint32_t u32Value;
7313 switch (cbReg)
7314 {
7315 case 1: u32Value = pVCpu->cpum.GstCtx.al; break;
7316 case 2: u32Value = pVCpu->cpum.GstCtx.ax; break;
7317 case 4: u32Value = pVCpu->cpum.GstCtx.eax; break;
7318 default: AssertFailedReturn(VERR_IEM_IPE_4);
7319 }
7320 rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg);
7321 if (IOM_SUCCESS(rcStrict))
7322 {
7323 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7324 pVCpu->iem.s.cPotentialExits++;
7325 if (rcStrict != VINF_SUCCESS)
7326 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7327 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
7328
7329 /*
7330 * Check for I/O breakpoints.
7331 */
7332 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7333 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7334 && X86_DR7_ANY_RW_IO(uDr7)
7335 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7336 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
7337 {
7338 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7339 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7340 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7341 rcStrict = iemRaiseDebugException(pVCpu);
7342 }
7343 }
7344 return rcStrict;
7345}
7346
7347
7348/**
7349 * Implements 'OUT DX, eAX'.
7350 *
7351 * @param cbReg The register size.
7352 */
7353IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
7354{
7355 return IEM_CIMPL_CALL_3(iemCImpl_out, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7356}
7357
7358
7359/**
7360 * Implements 'CLI'.
7361 */
7362IEM_CIMPL_DEF_0(iemCImpl_cli)
7363{
7364 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7365 uint32_t const fEflOld = fEfl;
7366
7367 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7368 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7369 {
7370 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7371 if (!(fEfl & X86_EFL_VM))
7372 {
7373 if (pVCpu->iem.s.uCpl <= uIopl)
7374 fEfl &= ~X86_EFL_IF;
7375 else if ( pVCpu->iem.s.uCpl == 3
7376 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) )
7377 fEfl &= ~X86_EFL_VIF;
7378 else
7379 return iemRaiseGeneralProtectionFault0(pVCpu);
7380 }
7381 /* V8086 */
7382 else if (uIopl == 3)
7383 fEfl &= ~X86_EFL_IF;
7384 else if ( uIopl < 3
7385 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
7386 fEfl &= ~X86_EFL_VIF;
7387 else
7388 return iemRaiseGeneralProtectionFault0(pVCpu);
7389 }
7390 /* real mode */
7391 else
7392 fEfl &= ~X86_EFL_IF;
7393
7394 /* Commit. */
7395 IEMMISC_SET_EFL(pVCpu, fEfl);
7396 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7397 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
7398 return VINF_SUCCESS;
7399}
7400
7401
7402/**
7403 * Implements 'STI'.
7404 */
7405IEM_CIMPL_DEF_0(iemCImpl_sti)
7406{
7407 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7408 uint32_t const fEflOld = fEfl;
7409
7410 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7411 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7412 {
7413 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7414 if (!(fEfl & X86_EFL_VM))
7415 {
7416 if (pVCpu->iem.s.uCpl <= uIopl)
7417 fEfl |= X86_EFL_IF;
7418 else if ( pVCpu->iem.s.uCpl == 3
7419 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI)
7420 && !(fEfl & X86_EFL_VIP) )
7421 fEfl |= X86_EFL_VIF;
7422 else
7423 return iemRaiseGeneralProtectionFault0(pVCpu);
7424 }
7425 /* V8086 */
7426 else if (uIopl == 3)
7427 fEfl |= X86_EFL_IF;
7428 else if ( uIopl < 3
7429 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)
7430 && !(fEfl & X86_EFL_VIP) )
7431 fEfl |= X86_EFL_VIF;
7432 else
7433 return iemRaiseGeneralProtectionFault0(pVCpu);
7434 }
7435 /* real mode */
7436 else
7437 fEfl |= X86_EFL_IF;
7438
7439 /* Commit. */
7440 IEMMISC_SET_EFL(pVCpu, fEfl);
7441 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7442 if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF))
7443 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7444 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
7445 return VINF_SUCCESS;
7446}
7447
7448
7449/**
7450 * Implements 'HLT'.
7451 */
7452IEM_CIMPL_DEF_0(iemCImpl_hlt)
7453{
7454 if (pVCpu->iem.s.uCpl != 0)
7455 return iemRaiseGeneralProtectionFault0(pVCpu);
7456
7457 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7458 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_HLT_EXIT))
7459 {
7460 Log2(("hlt: Guest intercept -> VM-exit\n"));
7461 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_HLT, cbInstr);
7462 }
7463
7464 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
7465 {
7466 Log2(("hlt: Guest intercept -> #VMEXIT\n"));
7467 IEM_SVM_UPDATE_NRIP(pVCpu);
7468 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7469 }
7470
7471 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7472 return VINF_EM_HALT;
7473}
7474
7475
7476/**
7477 * Implements 'MONITOR'.
7478 */
7479IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
7480{
7481 /*
7482 * Permission checks.
7483 */
7484 if (pVCpu->iem.s.uCpl != 0)
7485 {
7486 Log2(("monitor: CPL != 0\n"));
7487 return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
7488 }
7489 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7490 {
7491 Log2(("monitor: Not in CPUID\n"));
7492 return iemRaiseUndefinedOpcode(pVCpu);
7493 }
7494
7495 /*
7496 * Check VMX guest-intercept.
7497 * This should be considered a fault-like VM-exit.
7498 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
7499 */
7500 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7501 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MONITOR_EXIT))
7502 {
7503 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7504 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_MONITOR, cbInstr);
7505 }
7506
7507 /*
7508 * Gather the operands and validate them.
7509 */
7510 RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
7511 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7512 uint32_t uEdx = pVCpu->cpum.GstCtx.edx;
7513/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
7514 * \#GP first. */
7515 if (uEcx != 0)
7516 {
7517 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
7518 return iemRaiseGeneralProtectionFault0(pVCpu);
7519 }
7520
7521 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
7522 if (rcStrict != VINF_SUCCESS)
7523 return rcStrict;
7524
7525 RTGCPHYS GCPhysMem;
7526 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7527 if (rcStrict != VINF_SUCCESS)
7528 return rcStrict;
7529
7530#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7531 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7532 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
7533 {
7534 /*
7535 * MONITOR does not access the memory, just monitors the address. However,
7536 * if the address falls in the APIC-access page, the address monitored must
7537 * instead be the corresponding address in the virtual-APIC page.
7538 *
7539 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
7540 */
7541 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
7542 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
7543 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
7544 return rcStrict;
7545 }
7546#endif
7547
7548 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
7549 {
7550 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7551 IEM_SVM_UPDATE_NRIP(pVCpu);
7552 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7553 }
7554
7555 /*
7556 * Call EM to prepare the monitor/wait.
7557 */
7558 rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem);
7559 Assert(rcStrict == VINF_SUCCESS);
7560
7561 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7562 return rcStrict;
7563}
7564
7565
7566/**
7567 * Implements 'MWAIT'.
7568 */
7569IEM_CIMPL_DEF_0(iemCImpl_mwait)
7570{
7571 /*
7572 * Permission checks.
7573 */
7574 if (pVCpu->iem.s.uCpl != 0)
7575 {
7576 Log2(("mwait: CPL != 0\n"));
7577 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
7578 * EFLAGS.VM then.) */
7579 return iemRaiseUndefinedOpcode(pVCpu);
7580 }
7581 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7582 {
7583 Log2(("mwait: Not in CPUID\n"));
7584 return iemRaiseUndefinedOpcode(pVCpu);
7585 }
7586
7587 /* Check VMX nested-guest intercept. */
7588 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7589 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MWAIT_EXIT))
7590 IEM_VMX_VMEXIT_MWAIT_RET(pVCpu, EMMonitorIsArmed(pVCpu), cbInstr);
7591
7592 /*
7593 * Gather the operands and validate them.
7594 */
7595 uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
7596 uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
7597 if (uEcx != 0)
7598 {
7599 /* Only supported extension is break on IRQ when IF=0. */
7600 if (uEcx > 1)
7601 {
7602 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
7603 return iemRaiseGeneralProtectionFault0(pVCpu);
7604 }
7605 uint32_t fMWaitFeatures = 0;
7606 uint32_t uIgnore = 0;
7607 CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
7608 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7609 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7610 {
7611 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
7612 return iemRaiseGeneralProtectionFault0(pVCpu);
7613 }
7614
7615#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7616 /*
7617 * If the interrupt-window exiting control is set or a virtual-interrupt is pending
7618 * for delivery; and interrupts are disabled the processor does not enter its
7619 * mwait state but rather passes control to the next instruction.
7620 *
7621 * See Intel spec. 25.3 "Changes to Instruction Behavior In VMX Non-root Operation".
7622 */
7623 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7624 && !pVCpu->cpum.GstCtx.eflags.Bits.u1IF)
7625 {
7626 if ( IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INT_WINDOW_EXIT)
7627 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
7628 {
7629 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7630 return VINF_SUCCESS;
7631 }
7632 }
7633#endif
7634 }
7635
7636 /*
7637 * Check SVM nested-guest mwait intercepts.
7638 */
7639 if ( IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
7640 && EMMonitorIsArmed(pVCpu))
7641 {
7642 Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
7643 IEM_SVM_UPDATE_NRIP(pVCpu);
7644 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7645 }
7646 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
7647 {
7648 Log2(("mwait: Guest intercept -> #VMEXIT\n"));
7649 IEM_SVM_UPDATE_NRIP(pVCpu);
7650 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7651 }
7652
7653 /*
7654 * Call EM to prepare the monitor/wait.
7655 */
7656 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
7657
7658 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7659 return rcStrict;
7660}
7661
7662
7663/**
7664 * Implements 'SWAPGS'.
7665 */
7666IEM_CIMPL_DEF_0(iemCImpl_swapgs)
7667{
7668 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
7669
7670 /*
7671 * Permission checks.
7672 */
7673 if (pVCpu->iem.s.uCpl != 0)
7674 {
7675 Log2(("swapgs: CPL != 0\n"));
7676 return iemRaiseUndefinedOpcode(pVCpu);
7677 }
7678
7679 /*
7680 * Do the job.
7681 */
7682 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_GS);
7683 uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
7684 pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base;
7685 pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase;
7686
7687 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7688 return VINF_SUCCESS;
7689}
7690
7691
7692/**
7693 * Implements 'CPUID'.
7694 */
7695IEM_CIMPL_DEF_0(iemCImpl_cpuid)
7696{
7697 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7698 {
7699 Log2(("cpuid: Guest intercept -> VM-exit\n"));
7700 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_CPUID, cbInstr);
7701 }
7702
7703 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
7704 {
7705 Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
7706 IEM_SVM_UPDATE_NRIP(pVCpu);
7707 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7708 }
7709
7710 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
7711 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
7712 pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff);
7713 pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff);
7714 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
7715 pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff);
7716 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
7717
7718 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7719 pVCpu->iem.s.cPotentialExits++;
7720 return VINF_SUCCESS;
7721}
7722
7723
7724/**
7725 * Implements 'AAD'.
7726 *
7727 * @param bImm The immediate operand.
7728 */
7729IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
7730{
7731 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7732 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
7733 pVCpu->cpum.GstCtx.ax = al;
7734 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7735 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7736 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7737
7738 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7739 return VINF_SUCCESS;
7740}
7741
7742
7743/**
7744 * Implements 'AAM'.
7745 *
7746 * @param bImm The immediate operand. Cannot be 0.
7747 */
7748IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
7749{
7750 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
7751
7752 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7753 uint8_t const al = (uint8_t)ax % bImm;
7754 uint8_t const ah = (uint8_t)ax / bImm;
7755 pVCpu->cpum.GstCtx.ax = (ah << 8) + al;
7756 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7757 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7758 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7759
7760 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7761 return VINF_SUCCESS;
7762}
7763
7764
7765/**
7766 * Implements 'DAA'.
7767 */
7768IEM_CIMPL_DEF_0(iemCImpl_daa)
7769{
7770 uint8_t const al = pVCpu->cpum.GstCtx.al;
7771 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7772
7773 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7774 || (al & 0xf) >= 10)
7775 {
7776 pVCpu->cpum.GstCtx.al = al + 6;
7777 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7778 }
7779 else
7780 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7781
7782 if (al >= 0x9a || fCarry)
7783 {
7784 pVCpu->cpum.GstCtx.al += 0x60;
7785 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7786 }
7787 else
7788 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7789
7790 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7791 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7792 return VINF_SUCCESS;
7793}
7794
7795
7796/**
7797 * Implements 'DAS'.
7798 */
7799IEM_CIMPL_DEF_0(iemCImpl_das)
7800{
7801 uint8_t const uInputAL = pVCpu->cpum.GstCtx.al;
7802 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7803
7804 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7805 || (uInputAL & 0xf) >= 10)
7806 {
7807 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7808 if (uInputAL < 6)
7809 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7810 pVCpu->cpum.GstCtx.al = uInputAL - 6;
7811 }
7812 else
7813 {
7814 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7815 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7816 }
7817
7818 if (uInputAL >= 0x9a || fCarry)
7819 {
7820 pVCpu->cpum.GstCtx.al -= 0x60;
7821 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7822 }
7823
7824 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7825 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7826 return VINF_SUCCESS;
7827}
7828
7829
7830/**
7831 * Implements 'AAA'.
7832 */
7833IEM_CIMPL_DEF_0(iemCImpl_aaa)
7834{
7835 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7836 {
7837 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7838 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7839 {
7840 iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7841 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7842 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7843 }
7844 else
7845 {
7846 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7847 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7848 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7849 }
7850 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7851 }
7852 else
7853 {
7854 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7855 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7856 {
7857 pVCpu->cpum.GstCtx.ax += UINT16_C(0x106);
7858 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7859 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7860 }
7861 else
7862 {
7863 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7864 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7865 }
7866 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7867 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7868 }
7869
7870 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7871 return VINF_SUCCESS;
7872}
7873
7874
7875/**
7876 * Implements 'AAS'.
7877 */
7878IEM_CIMPL_DEF_0(iemCImpl_aas)
7879{
7880 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7881 {
7882 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7883 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7884 {
7885 iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7886 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7887 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7888 }
7889 else
7890 {
7891 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7892 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7893 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7894 }
7895 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7896 }
7897 else
7898 {
7899 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7900 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7901 {
7902 pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106);
7903 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7904 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7905 }
7906 else
7907 {
7908 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7909 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7910 }
7911 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7912 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7913 }
7914
7915 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7916 return VINF_SUCCESS;
7917}
7918
7919
7920/**
7921 * Implements the 16-bit version of 'BOUND'.
7922 *
7923 * @note We have separate 16-bit and 32-bit variants of this function due to
7924 * the decoder using unsigned parameters, whereas we want signed one to
7925 * do the job. This is significant for a recompiler.
7926 */
7927IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
7928{
7929 /*
7930 * Check if the index is inside the bounds, otherwise raise #BR.
7931 */
7932 if ( idxArray >= idxLowerBound
7933 && idxArray <= idxUpperBound)
7934 {
7935 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7936 return VINF_SUCCESS;
7937 }
7938
7939 return iemRaiseBoundRangeExceeded(pVCpu);
7940}
7941
7942
7943/**
7944 * Implements the 32-bit version of 'BOUND'.
7945 */
7946IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
7947{
7948 /*
7949 * Check if the index is inside the bounds, otherwise raise #BR.
7950 */
7951 if ( idxArray >= idxLowerBound
7952 && idxArray <= idxUpperBound)
7953 {
7954 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7955 return VINF_SUCCESS;
7956 }
7957
7958 return iemRaiseBoundRangeExceeded(pVCpu);
7959}
7960
7961
7962
7963/*
7964 * Instantiate the various string operation combinations.
7965 */
7966#define OP_SIZE 8
7967#define ADDR_SIZE 16
7968#include "IEMAllCImplStrInstr.cpp.h"
7969#define OP_SIZE 8
7970#define ADDR_SIZE 32
7971#include "IEMAllCImplStrInstr.cpp.h"
7972#define OP_SIZE 8
7973#define ADDR_SIZE 64
7974#include "IEMAllCImplStrInstr.cpp.h"
7975
7976#define OP_SIZE 16
7977#define ADDR_SIZE 16
7978#include "IEMAllCImplStrInstr.cpp.h"
7979#define OP_SIZE 16
7980#define ADDR_SIZE 32
7981#include "IEMAllCImplStrInstr.cpp.h"
7982#define OP_SIZE 16
7983#define ADDR_SIZE 64
7984#include "IEMAllCImplStrInstr.cpp.h"
7985
7986#define OP_SIZE 32
7987#define ADDR_SIZE 16
7988#include "IEMAllCImplStrInstr.cpp.h"
7989#define OP_SIZE 32
7990#define ADDR_SIZE 32
7991#include "IEMAllCImplStrInstr.cpp.h"
7992#define OP_SIZE 32
7993#define ADDR_SIZE 64
7994#include "IEMAllCImplStrInstr.cpp.h"
7995
7996#define OP_SIZE 64
7997#define ADDR_SIZE 32
7998#include "IEMAllCImplStrInstr.cpp.h"
7999#define OP_SIZE 64
8000#define ADDR_SIZE 64
8001#include "IEMAllCImplStrInstr.cpp.h"
8002
8003
8004/**
8005 * Implements 'XGETBV'.
8006 */
8007IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
8008{
8009 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
8010 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
8011 {
8012 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
8013 switch (uEcx)
8014 {
8015 case 0:
8016 break;
8017
8018 case 1: /** @todo Implement XCR1 support. */
8019 default:
8020 Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
8021 return iemRaiseGeneralProtectionFault0(pVCpu);
8022
8023 }
8024 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
8025 pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
8026 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
8027
8028 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8029 return VINF_SUCCESS;
8030 }
8031 Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
8032 return iemRaiseUndefinedOpcode(pVCpu);
8033}
8034
8035
8036/**
8037 * Implements 'XSETBV'.
8038 */
8039IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
8040{
8041 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
8042 {
8043 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
8044 {
8045 Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
8046 IEM_SVM_UPDATE_NRIP(pVCpu);
8047 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
8048 }
8049
8050 if (pVCpu->iem.s.uCpl == 0)
8051 {
8052 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
8053
8054 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8055 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_XSETBV, cbInstr);
8056
8057 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
8058 uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx);
8059 switch (uEcx)
8060 {
8061 case 0:
8062 {
8063 int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
8064 if (rc == VINF_SUCCESS)
8065 break;
8066 Assert(rc == VERR_CPUM_RAISE_GP_0);
8067 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
8068 return iemRaiseGeneralProtectionFault0(pVCpu);
8069 }
8070
8071 case 1: /** @todo Implement XCR1 support. */
8072 default:
8073 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
8074 return iemRaiseGeneralProtectionFault0(pVCpu);
8075
8076 }
8077
8078 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8079 return VINF_SUCCESS;
8080 }
8081
8082 Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
8083 return iemRaiseGeneralProtectionFault0(pVCpu);
8084 }
8085 Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
8086 return iemRaiseUndefinedOpcode(pVCpu);
8087}
8088
8089#ifdef IN_RING3
8090
8091/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
8092struct IEMCIMPLCX16ARGS
8093{
8094 PRTUINT128U pu128Dst;
8095 PRTUINT128U pu128RaxRdx;
8096 PRTUINT128U pu128RbxRcx;
8097 uint32_t *pEFlags;
8098# ifdef VBOX_STRICT
8099 uint32_t cCalls;
8100# endif
8101};
8102
8103/**
8104 * @callback_method_impl{FNVMMEMTRENDEZVOUS,
8105 * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
8106 */
8107static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPUCC pVCpu, void *pvUser)
8108{
8109 RT_NOREF(pVM, pVCpu);
8110 struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
8111# ifdef VBOX_STRICT
8112 Assert(pArgs->cCalls == 0);
8113 pArgs->cCalls++;
8114# endif
8115
8116 iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
8117 return VINF_SUCCESS;
8118}
8119
8120#endif /* IN_RING3 */
8121
8122/**
8123 * Implements 'CMPXCHG16B' fallback using rendezvous.
8124 */
8125IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
8126 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
8127{
8128#ifdef IN_RING3
8129 struct IEMCIMPLCX16ARGS Args;
8130 Args.pu128Dst = pu128Dst;
8131 Args.pu128RaxRdx = pu128RaxRdx;
8132 Args.pu128RbxRcx = pu128RbxRcx;
8133 Args.pEFlags = pEFlags;
8134# ifdef VBOX_STRICT
8135 Args.cCalls = 0;
8136# endif
8137 VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
8138 iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
8139 Assert(Args.cCalls == 1);
8140 if (rcStrict == VINF_SUCCESS)
8141 {
8142 /* Duplicated tail code. */
8143 rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
8144 if (rcStrict == VINF_SUCCESS)
8145 {
8146 pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
8147 if (!(*pEFlags & X86_EFL_ZF))
8148 {
8149 pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo;
8150 pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi;
8151 }
8152 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8153 }
8154 }
8155 return rcStrict;
8156#else
8157 RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
8158 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
8159#endif
8160}
8161
8162
8163/**
8164 * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
8165 *
8166 * This is implemented in C because it triggers a load like behaviour without
8167 * actually reading anything. Since that's not so common, it's implemented
8168 * here.
8169 *
8170 * @param iEffSeg The effective segment.
8171 * @param GCPtrEff The address of the image.
8172 */
8173IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8174{
8175 /*
8176 * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
8177 */
8178 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
8179 if (rcStrict == VINF_SUCCESS)
8180 {
8181 RTGCPHYS GCPhysMem;
8182 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
8183 if (rcStrict == VINF_SUCCESS)
8184 {
8185#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8186 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8187 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
8188 {
8189 /*
8190 * CLFLUSH/CLFLUSHOPT does not access the memory, but flushes the cache-line
8191 * that contains the address. However, if the address falls in the APIC-access
8192 * page, the address flushed must instead be the corresponding address in the
8193 * virtual-APIC page.
8194 *
8195 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
8196 */
8197 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
8198 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
8199 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
8200 return rcStrict;
8201 }
8202#endif
8203 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8204 return VINF_SUCCESS;
8205 }
8206 }
8207
8208 return rcStrict;
8209}
8210
8211
8212/**
8213 * Implements 'FINIT' and 'FNINIT'.
8214 *
8215 * @param fCheckXcpts Whether to check for umasked pending exceptions or
8216 * not.
8217 */
8218IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
8219{
8220 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
8221 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
8222 return iemRaiseDeviceNotAvailable(pVCpu);
8223
8224 iemFpuActualizeStateForChange(pVCpu);
8225 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_X87);
8226
8227 NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
8228 if (fCheckXcpts && TODO )
8229 return iemRaiseMathFault(pVCpu);
8230 */
8231
8232 PX86XSAVEAREA pXState = &pVCpu->cpum.GstCtx.XState;
8233 pXState->x87.FCW = 0x37f;
8234 pXState->x87.FSW = 0;
8235 pXState->x87.FTW = 0x00; /* 0 - empty. */
8236 pXState->x87.FPUDP = 0;
8237 pXState->x87.DS = 0; //??
8238 pXState->x87.Rsrvd2= 0;
8239 pXState->x87.FPUIP = 0;
8240 pXState->x87.CS = 0; //??
8241 pXState->x87.Rsrvd1= 0;
8242 pXState->x87.FOP = 0;
8243
8244 iemHlpUsedFpu(pVCpu);
8245 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8246 return VINF_SUCCESS;
8247}
8248
8249
8250/**
8251 * Implements 'FXSAVE'.
8252 *
8253 * @param iEffSeg The effective segment.
8254 * @param GCPtrEff The address of the image.
8255 * @param enmEffOpSize The operand size (only REX.W really matters).
8256 */
8257IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8258{
8259 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8260
8261 /*
8262 * Raise exceptions.
8263 */
8264 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8265 return iemRaiseUndefinedOpcode(pVCpu);
8266 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8267 return iemRaiseDeviceNotAvailable(pVCpu);
8268 if (GCPtrEff & 15)
8269 {
8270 /** @todo CPU/VM detection possible! \#AC might not be signal for
8271 * all/any misalignment sizes, intel says its an implementation detail. */
8272 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8273 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8274 && pVCpu->iem.s.uCpl == 3)
8275 return iemRaiseAlignmentCheckException(pVCpu);
8276 return iemRaiseGeneralProtectionFault0(pVCpu);
8277 }
8278
8279 /*
8280 * Access the memory.
8281 */
8282 void *pvMem512;
8283 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8284 if (rcStrict != VINF_SUCCESS)
8285 return rcStrict;
8286 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8287 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.XState.x87;
8288
8289 /*
8290 * Store the registers.
8291 */
8292 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8293 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
8294
8295 /* common for all formats */
8296 pDst->FCW = pSrc->FCW;
8297 pDst->FSW = pSrc->FSW;
8298 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8299 pDst->FOP = pSrc->FOP;
8300 pDst->MXCSR = pSrc->MXCSR;
8301 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8302 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8303 {
8304 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8305 * them for now... */
8306 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8307 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8308 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8309 pDst->aRegs[i].au32[3] = 0;
8310 }
8311
8312 /* FPU IP, CS, DP and DS. */
8313 pDst->FPUIP = pSrc->FPUIP;
8314 pDst->CS = pSrc->CS;
8315 pDst->FPUDP = pSrc->FPUDP;
8316 pDst->DS = pSrc->DS;
8317 if (enmEffOpSize == IEMMODE_64BIT)
8318 {
8319 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8320 pDst->Rsrvd1 = pSrc->Rsrvd1;
8321 pDst->Rsrvd2 = pSrc->Rsrvd2;
8322 pDst->au32RsrvdForSoftware[0] = 0;
8323 }
8324 else
8325 {
8326 pDst->Rsrvd1 = 0;
8327 pDst->Rsrvd2 = 0;
8328 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8329 }
8330
8331 /* XMM registers. */
8332 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8333 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8334 || pVCpu->iem.s.uCpl != 0)
8335 {
8336 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8337 for (uint32_t i = 0; i < cXmmRegs; i++)
8338 pDst->aXMM[i] = pSrc->aXMM[i];
8339 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8340 * right? */
8341 }
8342
8343 /*
8344 * Commit the memory.
8345 */
8346 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8347 if (rcStrict != VINF_SUCCESS)
8348 return rcStrict;
8349
8350 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8351 return VINF_SUCCESS;
8352}
8353
8354
8355/**
8356 * Implements 'FXRSTOR'.
8357 *
8358 * @param GCPtrEff The address of the image.
8359 * @param enmEffOpSize The operand size (only REX.W really matters).
8360 */
8361IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8362{
8363 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8364
8365 /*
8366 * Raise exceptions.
8367 */
8368 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8369 return iemRaiseUndefinedOpcode(pVCpu);
8370 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8371 return iemRaiseDeviceNotAvailable(pVCpu);
8372 if (GCPtrEff & 15)
8373 {
8374 /** @todo CPU/VM detection possible! \#AC might not be signal for
8375 * all/any misalignment sizes, intel says its an implementation detail. */
8376 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8377 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8378 && pVCpu->iem.s.uCpl == 3)
8379 return iemRaiseAlignmentCheckException(pVCpu);
8380 return iemRaiseGeneralProtectionFault0(pVCpu);
8381 }
8382
8383 /*
8384 * Access the memory.
8385 */
8386 void *pvMem512;
8387 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8388 if (rcStrict != VINF_SUCCESS)
8389 return rcStrict;
8390 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8391 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.XState.x87;
8392
8393 /*
8394 * Check the state for stuff which will #GP(0).
8395 */
8396 uint32_t const fMXCSR = pSrc->MXCSR;
8397 uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8398 if (fMXCSR & ~fMXCSR_MASK)
8399 {
8400 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
8401 return iemRaiseGeneralProtectionFault0(pVCpu);
8402 }
8403
8404 /*
8405 * Load the registers.
8406 */
8407 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8408 * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
8409
8410 /* common for all formats */
8411 pDst->FCW = pSrc->FCW;
8412 pDst->FSW = pSrc->FSW;
8413 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8414 pDst->FOP = pSrc->FOP;
8415 pDst->MXCSR = fMXCSR;
8416 /* (MXCSR_MASK is read-only) */
8417 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8418 {
8419 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8420 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8421 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8422 pDst->aRegs[i].au32[3] = 0;
8423 }
8424
8425 /* FPU IP, CS, DP and DS. */
8426 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8427 {
8428 pDst->FPUIP = pSrc->FPUIP;
8429 pDst->CS = pSrc->CS;
8430 pDst->Rsrvd1 = pSrc->Rsrvd1;
8431 pDst->FPUDP = pSrc->FPUDP;
8432 pDst->DS = pSrc->DS;
8433 pDst->Rsrvd2 = pSrc->Rsrvd2;
8434 }
8435 else
8436 {
8437 pDst->FPUIP = pSrc->FPUIP;
8438 pDst->CS = pSrc->CS;
8439 pDst->Rsrvd1 = 0;
8440 pDst->FPUDP = pSrc->FPUDP;
8441 pDst->DS = pSrc->DS;
8442 pDst->Rsrvd2 = 0;
8443 }
8444
8445 /* XMM registers. */
8446 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8447 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8448 || pVCpu->iem.s.uCpl != 0)
8449 {
8450 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8451 for (uint32_t i = 0; i < cXmmRegs; i++)
8452 pDst->aXMM[i] = pSrc->aXMM[i];
8453 }
8454
8455 /*
8456 * Commit the memory.
8457 */
8458 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8459 if (rcStrict != VINF_SUCCESS)
8460 return rcStrict;
8461
8462 iemHlpUsedFpu(pVCpu);
8463 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8464 return VINF_SUCCESS;
8465}
8466
8467
8468/**
8469 * Implements 'XSAVE'.
8470 *
8471 * @param iEffSeg The effective segment.
8472 * @param GCPtrEff The address of the image.
8473 * @param enmEffOpSize The operand size (only REX.W really matters).
8474 */
8475IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8476{
8477 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8478
8479 /*
8480 * Raise exceptions.
8481 */
8482 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8483 return iemRaiseUndefinedOpcode(pVCpu);
8484 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8485 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8486 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8487 {
8488 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8489 return iemRaiseUndefinedOpcode(pVCpu);
8490 }
8491 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8492 return iemRaiseDeviceNotAvailable(pVCpu);
8493 if (GCPtrEff & 63)
8494 {
8495 /** @todo CPU/VM detection possible! \#AC might not be signal for
8496 * all/any misalignment sizes, intel says its an implementation detail. */
8497 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8498 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8499 && pVCpu->iem.s.uCpl == 3)
8500 return iemRaiseAlignmentCheckException(pVCpu);
8501 return iemRaiseGeneralProtectionFault0(pVCpu);
8502 }
8503
8504 /*
8505 * Calc the requested mask.
8506 */
8507 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8508 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8509 uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8510
8511/** @todo figure out the exact protocol for the memory access. Currently we
8512 * just need this crap to work halfways to make it possible to test
8513 * AVX instructions. */
8514/** @todo figure out the XINUSE and XMODIFIED */
8515
8516 /*
8517 * Access the x87 memory state.
8518 */
8519 /* The x87+SSE state. */
8520 void *pvMem512;
8521 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8522 if (rcStrict != VINF_SUCCESS)
8523 return rcStrict;
8524 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8525 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.XState.x87;
8526
8527 /* The header. */
8528 PX86XSAVEHDR pHdr;
8529 rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW);
8530 if (rcStrict != VINF_SUCCESS)
8531 return rcStrict;
8532
8533 /*
8534 * Store the X87 state.
8535 */
8536 if (fReqComponents & XSAVE_C_X87)
8537 {
8538 /* common for all formats */
8539 pDst->FCW = pSrc->FCW;
8540 pDst->FSW = pSrc->FSW;
8541 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8542 pDst->FOP = pSrc->FOP;
8543 pDst->FPUIP = pSrc->FPUIP;
8544 pDst->CS = pSrc->CS;
8545 pDst->FPUDP = pSrc->FPUDP;
8546 pDst->DS = pSrc->DS;
8547 if (enmEffOpSize == IEMMODE_64BIT)
8548 {
8549 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8550 pDst->Rsrvd1 = pSrc->Rsrvd1;
8551 pDst->Rsrvd2 = pSrc->Rsrvd2;
8552 pDst->au32RsrvdForSoftware[0] = 0;
8553 }
8554 else
8555 {
8556 pDst->Rsrvd1 = 0;
8557 pDst->Rsrvd2 = 0;
8558 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8559 }
8560 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8561 {
8562 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8563 * them for now... */
8564 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8565 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8566 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8567 pDst->aRegs[i].au32[3] = 0;
8568 }
8569
8570 }
8571
8572 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8573 {
8574 pDst->MXCSR = pSrc->MXCSR;
8575 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8576 }
8577
8578 if (fReqComponents & XSAVE_C_SSE)
8579 {
8580 /* XMM registers. */
8581 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8582 for (uint32_t i = 0; i < cXmmRegs; i++)
8583 pDst->aXMM[i] = pSrc->aXMM[i];
8584 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8585 * right? */
8586 }
8587
8588 /* Commit the x87 state bits. (probably wrong) */
8589 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8590 if (rcStrict != VINF_SUCCESS)
8591 return rcStrict;
8592
8593 /*
8594 * Store AVX state.
8595 */
8596 if (fReqComponents & XSAVE_C_YMM)
8597 {
8598 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8599 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8600 PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
8601 PX86XSAVEYMMHI pCompDst;
8602 rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
8603 IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8604 if (rcStrict != VINF_SUCCESS)
8605 return rcStrict;
8606
8607 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8608 for (uint32_t i = 0; i < cXmmRegs; i++)
8609 pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
8610
8611 rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8612 if (rcStrict != VINF_SUCCESS)
8613 return rcStrict;
8614 }
8615
8616 /*
8617 * Update the header.
8618 */
8619 pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
8620 | (fReqComponents & fXInUse);
8621
8622 rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
8623 if (rcStrict != VINF_SUCCESS)
8624 return rcStrict;
8625
8626 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8627 return VINF_SUCCESS;
8628}
8629
8630
8631/**
8632 * Implements 'XRSTOR'.
8633 *
8634 * @param iEffSeg The effective segment.
8635 * @param GCPtrEff The address of the image.
8636 * @param enmEffOpSize The operand size (only REX.W really matters).
8637 */
8638IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8639{
8640 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8641
8642 /*
8643 * Raise exceptions.
8644 */
8645 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8646 return iemRaiseUndefinedOpcode(pVCpu);
8647 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8648 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8649 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8650 {
8651 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8652 return iemRaiseUndefinedOpcode(pVCpu);
8653 }
8654 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8655 return iemRaiseDeviceNotAvailable(pVCpu);
8656 if (GCPtrEff & 63)
8657 {
8658 /** @todo CPU/VM detection possible! \#AC might not be signal for
8659 * all/any misalignment sizes, intel says its an implementation detail. */
8660 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8661 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8662 && pVCpu->iem.s.uCpl == 3)
8663 return iemRaiseAlignmentCheckException(pVCpu);
8664 return iemRaiseGeneralProtectionFault0(pVCpu);
8665 }
8666
8667/** @todo figure out the exact protocol for the memory access. Currently we
8668 * just need this crap to work halfways to make it possible to test
8669 * AVX instructions. */
8670/** @todo figure out the XINUSE and XMODIFIED */
8671
8672 /*
8673 * Access the x87 memory state.
8674 */
8675 /* The x87+SSE state. */
8676 void *pvMem512;
8677 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8678 if (rcStrict != VINF_SUCCESS)
8679 return rcStrict;
8680 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8681 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.XState.x87;
8682
8683 /*
8684 * Calc the requested mask
8685 */
8686 PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.XState.Hdr;
8687 PCX86XSAVEHDR pHdrSrc;
8688 rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R);
8689 if (rcStrict != VINF_SUCCESS)
8690 return rcStrict;
8691
8692 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8693 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8694 //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8695 uint64_t const fRstorMask = pHdrSrc->bmXState;
8696 uint64_t const fCompMask = pHdrSrc->bmXComp;
8697
8698 AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8699
8700 uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8701
8702 /* We won't need this any longer. */
8703 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
8704 if (rcStrict != VINF_SUCCESS)
8705 return rcStrict;
8706
8707 /*
8708 * Store the X87 state.
8709 */
8710 if (fReqComponents & XSAVE_C_X87)
8711 {
8712 if (fRstorMask & XSAVE_C_X87)
8713 {
8714 pDst->FCW = pSrc->FCW;
8715 pDst->FSW = pSrc->FSW;
8716 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8717 pDst->FOP = pSrc->FOP;
8718 pDst->FPUIP = pSrc->FPUIP;
8719 pDst->CS = pSrc->CS;
8720 pDst->FPUDP = pSrc->FPUDP;
8721 pDst->DS = pSrc->DS;
8722 if (enmEffOpSize == IEMMODE_64BIT)
8723 {
8724 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8725 pDst->Rsrvd1 = pSrc->Rsrvd1;
8726 pDst->Rsrvd2 = pSrc->Rsrvd2;
8727 }
8728 else
8729 {
8730 pDst->Rsrvd1 = 0;
8731 pDst->Rsrvd2 = 0;
8732 }
8733 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8734 {
8735 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8736 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8737 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8738 pDst->aRegs[i].au32[3] = 0;
8739 }
8740 }
8741 else
8742 {
8743 pDst->FCW = 0x37f;
8744 pDst->FSW = 0;
8745 pDst->FTW = 0x00; /* 0 - empty. */
8746 pDst->FPUDP = 0;
8747 pDst->DS = 0; //??
8748 pDst->Rsrvd2= 0;
8749 pDst->FPUIP = 0;
8750 pDst->CS = 0; //??
8751 pDst->Rsrvd1= 0;
8752 pDst->FOP = 0;
8753 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8754 {
8755 pDst->aRegs[i].au32[0] = 0;
8756 pDst->aRegs[i].au32[1] = 0;
8757 pDst->aRegs[i].au32[2] = 0;
8758 pDst->aRegs[i].au32[3] = 0;
8759 }
8760 }
8761 pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
8762 }
8763
8764 /* MXCSR */
8765 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8766 {
8767 if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
8768 pDst->MXCSR = pSrc->MXCSR;
8769 else
8770 pDst->MXCSR = 0x1f80;
8771 }
8772
8773 /* XMM registers. */
8774 if (fReqComponents & XSAVE_C_SSE)
8775 {
8776 if (fRstorMask & XSAVE_C_SSE)
8777 {
8778 for (uint32_t i = 0; i < cXmmRegs; i++)
8779 pDst->aXMM[i] = pSrc->aXMM[i];
8780 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8781 * right? */
8782 }
8783 else
8784 {
8785 for (uint32_t i = 0; i < cXmmRegs; i++)
8786 {
8787 pDst->aXMM[i].au64[0] = 0;
8788 pDst->aXMM[i].au64[1] = 0;
8789 }
8790 }
8791 pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
8792 }
8793
8794 /* Unmap the x87 state bits (so we've don't run out of mapping). */
8795 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8796 if (rcStrict != VINF_SUCCESS)
8797 return rcStrict;
8798
8799 /*
8800 * Restore AVX state.
8801 */
8802 if (fReqComponents & XSAVE_C_YMM)
8803 {
8804 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8805 PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
8806
8807 if (fRstorMask & XSAVE_C_YMM)
8808 {
8809 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8810 PCX86XSAVEYMMHI pCompSrc;
8811 rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
8812 iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R);
8813 if (rcStrict != VINF_SUCCESS)
8814 return rcStrict;
8815
8816 for (uint32_t i = 0; i < cXmmRegs; i++)
8817 {
8818 pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
8819 pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
8820 }
8821
8822 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
8823 if (rcStrict != VINF_SUCCESS)
8824 return rcStrict;
8825 }
8826 else
8827 {
8828 for (uint32_t i = 0; i < cXmmRegs; i++)
8829 {
8830 pCompDst->aYmmHi[i].au64[0] = 0;
8831 pCompDst->aYmmHi[i].au64[1] = 0;
8832 }
8833 }
8834 pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
8835 }
8836
8837 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8838 return VINF_SUCCESS;
8839}
8840
8841
8842
8843
8844/**
8845 * Implements 'STMXCSR'.
8846 *
8847 * @param GCPtrEff The address of the image.
8848 */
8849IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8850{
8851 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8852
8853 /*
8854 * Raise exceptions.
8855 */
8856 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8857 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8858 {
8859 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8860 {
8861 /*
8862 * Do the job.
8863 */
8864 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.XState.x87.MXCSR);
8865 if (rcStrict == VINF_SUCCESS)
8866 {
8867 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8868 return VINF_SUCCESS;
8869 }
8870 return rcStrict;
8871 }
8872 return iemRaiseDeviceNotAvailable(pVCpu);
8873 }
8874 return iemRaiseUndefinedOpcode(pVCpu);
8875}
8876
8877
8878/**
8879 * Implements 'VSTMXCSR'.
8880 *
8881 * @param GCPtrEff The address of the image.
8882 */
8883IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8884{
8885 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx);
8886
8887 /*
8888 * Raise exceptions.
8889 */
8890 if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
8891 ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
8892 : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
8893 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8894 {
8895 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8896 {
8897 /*
8898 * Do the job.
8899 */
8900 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.XState.x87.MXCSR);
8901 if (rcStrict == VINF_SUCCESS)
8902 {
8903 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8904 return VINF_SUCCESS;
8905 }
8906 return rcStrict;
8907 }
8908 return iemRaiseDeviceNotAvailable(pVCpu);
8909 }
8910 return iemRaiseUndefinedOpcode(pVCpu);
8911}
8912
8913
8914/**
8915 * Implements 'LDMXCSR'.
8916 *
8917 * @param GCPtrEff The address of the image.
8918 */
8919IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8920{
8921 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8922
8923 /*
8924 * Raise exceptions.
8925 */
8926 /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
8927 * happen after or before \#UD and \#EM? */
8928 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8929 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8930 {
8931 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8932 {
8933 /*
8934 * Do the job.
8935 */
8936 uint32_t fNewMxCsr;
8937 VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
8938 if (rcStrict == VINF_SUCCESS)
8939 {
8940 uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8941 if (!(fNewMxCsr & ~fMxCsrMask))
8942 {
8943 pVCpu->cpum.GstCtx.XState.x87.MXCSR = fNewMxCsr;
8944 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8945 return VINF_SUCCESS;
8946 }
8947 Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
8948 fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
8949 return iemRaiseGeneralProtectionFault0(pVCpu);
8950 }
8951 return rcStrict;
8952 }
8953 return iemRaiseDeviceNotAvailable(pVCpu);
8954 }
8955 return iemRaiseUndefinedOpcode(pVCpu);
8956}
8957
8958
8959/**
8960 * Commmon routine for fnstenv and fnsave.
8961 *
8962 * @param pVCpu The cross context virtual CPU structure of the calling thread.
8963 * @param enmEffOpSize The effective operand size.
8964 * @param uPtr Where to store the state.
8965 */
8966static void iemCImplCommonFpuStoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr)
8967{
8968 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8969 PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.XState.x87;
8970 if (enmEffOpSize == IEMMODE_16BIT)
8971 {
8972 uPtr.pu16[0] = pSrcX87->FCW;
8973 uPtr.pu16[1] = pSrcX87->FSW;
8974 uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
8975 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8976 {
8977 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
8978 * protected mode or long mode and we save it in real mode? And vice
8979 * versa? And with 32-bit operand size? I think CPU is storing the
8980 * effective address ((CS << 4) + IP) in the offset register and not
8981 * doing any address calculations here. */
8982 uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
8983 uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
8984 uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
8985 uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
8986 }
8987 else
8988 {
8989 uPtr.pu16[3] = pSrcX87->FPUIP;
8990 uPtr.pu16[4] = pSrcX87->CS;
8991 uPtr.pu16[5] = pSrcX87->FPUDP;
8992 uPtr.pu16[6] = pSrcX87->DS;
8993 }
8994 }
8995 else
8996 {
8997 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
8998 uPtr.pu16[0*2] = pSrcX87->FCW;
8999 uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
9000 uPtr.pu16[1*2] = pSrcX87->FSW;
9001 uPtr.pu16[1*2+1] = 0xffff;
9002 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
9003 uPtr.pu16[2*2+1] = 0xffff;
9004 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9005 {
9006 uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
9007 uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
9008 uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
9009 uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
9010 }
9011 else
9012 {
9013 uPtr.pu32[3] = pSrcX87->FPUIP;
9014 uPtr.pu16[4*2] = pSrcX87->CS;
9015 uPtr.pu16[4*2+1] = pSrcX87->FOP;
9016 uPtr.pu32[5] = pSrcX87->FPUDP;
9017 uPtr.pu16[6*2] = pSrcX87->DS;
9018 uPtr.pu16[6*2+1] = 0xffff;
9019 }
9020 }
9021}
9022
9023
9024/**
9025 * Commmon routine for fldenv and frstor
9026 *
9027 * @param pVCpu The cross context virtual CPU structure of the calling thread.
9028 * @param enmEffOpSize The effective operand size.
9029 * @param uPtr Where to store the state.
9030 */
9031static void iemCImplCommonFpuRestoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr)
9032{
9033 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9034 PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.XState.x87;
9035 if (enmEffOpSize == IEMMODE_16BIT)
9036 {
9037 pDstX87->FCW = uPtr.pu16[0];
9038 pDstX87->FSW = uPtr.pu16[1];
9039 pDstX87->FTW = uPtr.pu16[2];
9040 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9041 {
9042 pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
9043 pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
9044 pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
9045 pDstX87->CS = 0;
9046 pDstX87->Rsrvd1= 0;
9047 pDstX87->DS = 0;
9048 pDstX87->Rsrvd2= 0;
9049 }
9050 else
9051 {
9052 pDstX87->FPUIP = uPtr.pu16[3];
9053 pDstX87->CS = uPtr.pu16[4];
9054 pDstX87->Rsrvd1= 0;
9055 pDstX87->FPUDP = uPtr.pu16[5];
9056 pDstX87->DS = uPtr.pu16[6];
9057 pDstX87->Rsrvd2= 0;
9058 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
9059 }
9060 }
9061 else
9062 {
9063 pDstX87->FCW = uPtr.pu16[0*2];
9064 pDstX87->FSW = uPtr.pu16[1*2];
9065 pDstX87->FTW = uPtr.pu16[2*2];
9066 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9067 {
9068 pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
9069 pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
9070 pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
9071 pDstX87->CS = 0;
9072 pDstX87->Rsrvd1= 0;
9073 pDstX87->DS = 0;
9074 pDstX87->Rsrvd2= 0;
9075 }
9076 else
9077 {
9078 pDstX87->FPUIP = uPtr.pu32[3];
9079 pDstX87->CS = uPtr.pu16[4*2];
9080 pDstX87->Rsrvd1= 0;
9081 pDstX87->FOP = uPtr.pu16[4*2+1];
9082 pDstX87->FPUDP = uPtr.pu32[5];
9083 pDstX87->DS = uPtr.pu16[6*2];
9084 pDstX87->Rsrvd2= 0;
9085 }
9086 }
9087
9088 /* Make adjustments. */
9089 pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
9090 pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
9091 iemFpuRecalcExceptionStatus(pDstX87);
9092 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
9093 * exceptions are pending after loading the saved state? */
9094}
9095
9096
9097/**
9098 * Implements 'FNSTENV'.
9099 *
9100 * @param enmEffOpSize The operand size (only REX.W really matters).
9101 * @param iEffSeg The effective segment register for @a GCPtrEff.
9102 * @param GCPtrEffDst The address of the image.
9103 */
9104IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
9105{
9106 RTPTRUNION uPtr;
9107 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
9108 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9109 if (rcStrict != VINF_SUCCESS)
9110 return rcStrict;
9111
9112 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
9113
9114 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9115 if (rcStrict != VINF_SUCCESS)
9116 return rcStrict;
9117
9118 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
9119 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9120 return VINF_SUCCESS;
9121}
9122
9123
9124/**
9125 * Implements 'FNSAVE'.
9126 *
9127 * @param GCPtrEffDst The address of the image.
9128 * @param enmEffOpSize The operand size.
9129 */
9130IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
9131{
9132 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9133
9134 RTPTRUNION uPtr;
9135 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
9136 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9137 if (rcStrict != VINF_SUCCESS)
9138 return rcStrict;
9139
9140 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9141 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
9142 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
9143 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
9144 {
9145 paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
9146 paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
9147 paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
9148 }
9149
9150 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9151 if (rcStrict != VINF_SUCCESS)
9152 return rcStrict;
9153
9154 /*
9155 * Re-initialize the FPU context.
9156 */
9157 pFpuCtx->FCW = 0x37f;
9158 pFpuCtx->FSW = 0;
9159 pFpuCtx->FTW = 0x00; /* 0 - empty */
9160 pFpuCtx->FPUDP = 0;
9161 pFpuCtx->DS = 0;
9162 pFpuCtx->Rsrvd2= 0;
9163 pFpuCtx->FPUIP = 0;
9164 pFpuCtx->CS = 0;
9165 pFpuCtx->Rsrvd1= 0;
9166 pFpuCtx->FOP = 0;
9167
9168 iemHlpUsedFpu(pVCpu);
9169 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9170 return VINF_SUCCESS;
9171}
9172
9173
9174
9175/**
9176 * Implements 'FLDENV'.
9177 *
9178 * @param enmEffOpSize The operand size (only REX.W really matters).
9179 * @param iEffSeg The effective segment register for @a GCPtrEff.
9180 * @param GCPtrEffSrc The address of the image.
9181 */
9182IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
9183{
9184 RTCPTRUNION uPtr;
9185 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
9186 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
9187 if (rcStrict != VINF_SUCCESS)
9188 return rcStrict;
9189
9190 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
9191
9192 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
9193 if (rcStrict != VINF_SUCCESS)
9194 return rcStrict;
9195
9196 iemHlpUsedFpu(pVCpu);
9197 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9198 return VINF_SUCCESS;
9199}
9200
9201
9202/**
9203 * Implements 'FRSTOR'.
9204 *
9205 * @param GCPtrEffSrc The address of the image.
9206 * @param enmEffOpSize The operand size.
9207 */
9208IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
9209{
9210 RTCPTRUNION uPtr;
9211 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
9212 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
9213 if (rcStrict != VINF_SUCCESS)
9214 return rcStrict;
9215
9216 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9217 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
9218 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
9219 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
9220 {
9221 pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
9222 pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
9223 pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
9224 pFpuCtx->aRegs[i].au32[3] = 0;
9225 }
9226
9227 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
9228 if (rcStrict != VINF_SUCCESS)
9229 return rcStrict;
9230
9231 iemHlpUsedFpu(pVCpu);
9232 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9233 return VINF_SUCCESS;
9234}
9235
9236
9237/**
9238 * Implements 'FLDCW'.
9239 *
9240 * @param u16Fcw The new FCW.
9241 */
9242IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
9243{
9244 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9245
9246 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
9247 /** @todo Testcase: Try see what happens when trying to set undefined bits
9248 * (other than 6 and 7). Currently ignoring them. */
9249 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
9250 * according to FSW. (This is was is currently implemented.) */
9251 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9252 pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
9253 iemFpuRecalcExceptionStatus(pFpuCtx);
9254
9255 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
9256 iemHlpUsedFpu(pVCpu);
9257 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9258 return VINF_SUCCESS;
9259}
9260
9261
9262
9263/**
9264 * Implements the underflow case of fxch.
9265 *
9266 * @param iStReg The other stack register.
9267 */
9268IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
9269{
9270 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9271
9272 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9273 unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
9274 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9275 Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
9276
9277 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
9278 * registers are read as QNaN and then exchanged. This could be
9279 * wrong... */
9280 if (pFpuCtx->FCW & X86_FCW_IM)
9281 {
9282 if (RT_BIT(iReg1) & pFpuCtx->FTW)
9283 {
9284 if (RT_BIT(iReg2) & pFpuCtx->FTW)
9285 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9286 else
9287 pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
9288 iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
9289 }
9290 else
9291 {
9292 pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
9293 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9294 }
9295 pFpuCtx->FSW &= ~X86_FSW_C_MASK;
9296 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
9297 }
9298 else
9299 {
9300 /* raise underflow exception, don't change anything. */
9301 pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
9302 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9303 }
9304
9305 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9306 iemHlpUsedFpu(pVCpu);
9307 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9308 return VINF_SUCCESS;
9309}
9310
9311
9312/**
9313 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
9314 *
9315 * @param cToAdd 1 or 7.
9316 */
9317IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
9318{
9319 Assert(iStReg < 8);
9320 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9321
9322 /*
9323 * Raise exceptions.
9324 */
9325 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
9326 return iemRaiseDeviceNotAvailable(pVCpu);
9327
9328 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9329 uint16_t u16Fsw = pFpuCtx->FSW;
9330 if (u16Fsw & X86_FSW_ES)
9331 return iemRaiseMathFault(pVCpu);
9332
9333 /*
9334 * Check if any of the register accesses causes #SF + #IA.
9335 */
9336 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
9337 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9338 if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
9339 {
9340 uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
9341 NOREF(u32Eflags);
9342
9343 pFpuCtx->FSW &= ~X86_FSW_C1;
9344 pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
9345 if ( !(u16Fsw & X86_FSW_IE)
9346 || (pFpuCtx->FCW & X86_FCW_IM) )
9347 {
9348 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9349 pVCpu->cpum.GstCtx.eflags.u |= pVCpu->cpum.GstCtx.eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9350 }
9351 }
9352 else if (pFpuCtx->FCW & X86_FCW_IM)
9353 {
9354 /* Masked underflow. */
9355 pFpuCtx->FSW &= ~X86_FSW_C1;
9356 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
9357 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9358 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
9359 }
9360 else
9361 {
9362 /* Raise underflow - don't touch EFLAGS or TOP. */
9363 pFpuCtx->FSW &= ~X86_FSW_C1;
9364 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9365 fPop = false;
9366 }
9367
9368 /*
9369 * Pop if necessary.
9370 */
9371 if (fPop)
9372 {
9373 pFpuCtx->FTW &= ~RT_BIT(iReg1);
9374 pFpuCtx->FSW &= X86_FSW_TOP_MASK;
9375 pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
9376 }
9377
9378 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9379 iemHlpUsedFpu(pVCpu);
9380 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9381 return VINF_SUCCESS;
9382}
9383
9384/** @} */
9385
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette