/* $Id: IEMAllCImpl.cpp.h 70612 2018-01-17 18:12:23Z vboxsync $ */ /** @file * IEM - Instruction Implementation in C/C++ (code include). */ /* * Copyright (C) 2011-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ #ifdef VBOX_WITH_NESTED_HWVIRT # include "IEMAllCImplSvmInstr.cpp.h" #endif /** @name Misc Helpers * @{ */ /** * Worker function for iemHlpCheckPortIOPermission, don't call directly. * * @returns Strict VBox status code. * * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param pCtx The register context. * @param u16Port The port number. * @param cbOperand The operand size. */ static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPU pVCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand) { /* The TSS bits we're interested in are the same on 386 and AMD64. */ AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY); AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL); AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap); AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64)); /* * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap. */ Assert(!pCtx->tr.Attr.n.u1DescType); if (RT_UNLIKELY( pCtx->tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY && pCtx->tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL)) { Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n", u16Port, cbOperand, pCtx->tr.Attr.n.u4Type, pCtx->tr.Attr.u)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* * Read the bitmap offset (may #PF). */ uint16_t offBitmap; VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX, pCtx->tr.u64Base + RT_OFFSETOF(X86TSS64, offIoBitmap)); if (rcStrict != VINF_SUCCESS) { Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* * The bit range from u16Port to (u16Port + cbOperand - 1), however intel * describes the CPU actually reading two bytes regardless of whether the * bit range crosses a byte boundrary. Thus the + 1 in the test below. */ uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap; /** @todo check if real CPUs ensures that offBitmap has a minimum value of * for instance sizeof(X86TSS32). */ if (offFirstBit + 1 > pCtx->tr.u32Limit) /* the limit is inclusive */ { Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n", offFirstBit, pCtx->tr.u32Limit)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* * Read the necessary bits. */ /** @todo Test the assertion in the intel manual that the CPU reads two * bytes. The question is how this works wrt to #PF and #GP on the * 2nd byte when it's not required. */ uint16_t bmBytes = UINT16_MAX; rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pCtx->tr.u64Base + offFirstBit); if (rcStrict != VINF_SUCCESS) { Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* * Perform the check. */ uint16_t fPortMask = (1 << cbOperand) - 1; bmBytes >>= (u16Port & 7); if (bmBytes & fPortMask) { Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n", u16Port, cbOperand, bmBytes, fPortMask)); return iemRaiseGeneralProtectionFault0(pVCpu); } return VINF_SUCCESS; } /** * Checks if we are allowed to access the given I/O port, raising the * appropriate exceptions if we aren't (or if the I/O bitmap is not * accessible). * * @returns Strict VBox status code. * * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param pCtx The register context. * @param u16Port The port number. * @param cbOperand The operand size. */ DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPU pVCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand) { X86EFLAGS Efl; Efl.u = IEMMISC_GET_EFL(pVCpu, pCtx); if ( (pCtx->cr0 & X86_CR0_PE) && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL || Efl.Bits.u1VM) ) return iemHlpCheckPortIOPermissionBitmap(pVCpu, pCtx, u16Port, cbOperand); return VINF_SUCCESS; } #if 0 /** * Calculates the parity bit. * * @returns true if the bit is set, false if not. * @param u8Result The least significant byte of the result. */ static bool iemHlpCalcParityFlag(uint8_t u8Result) { /* * Parity is set if the number of bits in the least significant byte of * the result is even. */ uint8_t cBits; cBits = u8Result & 1; /* 0 */ u8Result >>= 1; cBits += u8Result & 1; u8Result >>= 1; cBits += u8Result & 1; u8Result >>= 1; cBits += u8Result & 1; u8Result >>= 1; cBits += u8Result & 1; /* 4 */ u8Result >>= 1; cBits += u8Result & 1; u8Result >>= 1; cBits += u8Result & 1; u8Result >>= 1; cBits += u8Result & 1; return !(cBits & 1); } #endif /* not used */ /** * Updates the specified flags according to a 8-bit result. * * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param u8Result The result to set the flags according to. * @param fToUpdate The flags to update. * @param fUndefined The flags that are specified as undefined. */ static void iemHlpUpdateArithEFlagsU8(PVMCPU pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint32_t fEFlags = pCtx->eflags.u; iemAImpl_test_u8(&u8Result, u8Result, &fEFlags); pCtx->eflags.u &= ~(fToUpdate | fUndefined); pCtx->eflags.u |= (fToUpdate | fUndefined) & fEFlags; #ifdef IEM_VERIFICATION_MODE_FULL pVCpu->iem.s.fUndefinedEFlags |= fUndefined; #endif } /** * Updates the specified flags according to a 16-bit result. * * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param u16Result The result to set the flags according to. * @param fToUpdate The flags to update. * @param fUndefined The flags that are specified as undefined. */ static void iemHlpUpdateArithEFlagsU16(PVMCPU pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint32_t fEFlags = pCtx->eflags.u; iemAImpl_test_u16(&u16Result, u16Result, &fEFlags); pCtx->eflags.u &= ~(fToUpdate | fUndefined); pCtx->eflags.u |= (fToUpdate | fUndefined) & fEFlags; #ifdef IEM_VERIFICATION_MODE_FULL pVCpu->iem.s.fUndefinedEFlags |= fUndefined; #endif } /** * Helper used by iret. * * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param uCpl The new CPL. * @param pSReg Pointer to the segment register. */ static void iemHlpAdjustSelectorForNewCpl(PVMCPU pVCpu, uint8_t uCpl, PCPUMSELREG pSReg) { #ifdef VBOX_WITH_RAW_MODE_NOT_R0 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg)) CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg); #else Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg)); #endif if ( uCpl > pSReg->Attr.n.u2Dpl && pSReg->Attr.n.u1DescType /* code or data, not system */ && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */ iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0); } /** * Indicates that we have modified the FPU state. * * @param pVCpu The cross context virtual CPU structure of the calling thread. */ DECLINLINE(void) iemHlpUsedFpu(PVMCPU pVCpu) { CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM); } /** @} */ /** @name C Implementations * @{ */ /** * Implements a 16-bit popa. */ IEM_CIMPL_DEF_0(iemCImpl_popa_16) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu, pCtx); RTGCPTR GCPtrLast = GCPtrStart + 15; VBOXSTRICTRC rcStrict; /* * The docs are a bit hard to comprehend here, but it looks like we wrap * around in real mode as long as none of the individual "popa" crosses the * end of the stack segment. In protected mode we check the whole access * in one go. For efficiency, only do the word-by-word thing if we're in * danger of wrapping around. */ /** @todo do popa boundary / wrap-around checks. */ if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu) && (pCtx->cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */ { /* word-by-word */ RTUINT64U TmpRsp; TmpRsp.u = pCtx->rsp; rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->di, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->si, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->bp, &TmpRsp); if (rcStrict == VINF_SUCCESS) { iemRegAddToRspEx(pVCpu, pCtx, &TmpRsp, 2); /* sp */ rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->bx, &TmpRsp); } if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->dx, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->cx, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->ax, &TmpRsp); if (rcStrict == VINF_SUCCESS) { pCtx->rsp = TmpRsp.u; iemRegAddToRipAndClearRF(pVCpu, cbInstr); } } else { uint16_t const *pa16Mem = NULL; rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R); if (rcStrict == VINF_SUCCESS) { pCtx->di = pa16Mem[7 - X86_GREG_xDI]; pCtx->si = pa16Mem[7 - X86_GREG_xSI]; pCtx->bp = pa16Mem[7 - X86_GREG_xBP]; /* skip sp */ pCtx->bx = pa16Mem[7 - X86_GREG_xBX]; pCtx->dx = pa16Mem[7 - X86_GREG_xDX]; pCtx->cx = pa16Mem[7 - X86_GREG_xCX]; pCtx->ax = pa16Mem[7 - X86_GREG_xAX]; rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R); if (rcStrict == VINF_SUCCESS) { iemRegAddToRsp(pVCpu, pCtx, 16); iemRegAddToRipAndClearRF(pVCpu, cbInstr); } } } return rcStrict; } /** * Implements a 32-bit popa. */ IEM_CIMPL_DEF_0(iemCImpl_popa_32) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu, pCtx); RTGCPTR GCPtrLast = GCPtrStart + 31; VBOXSTRICTRC rcStrict; /* * The docs are a bit hard to comprehend here, but it looks like we wrap * around in real mode as long as none of the individual "popa" crosses the * end of the stack segment. In protected mode we check the whole access * in one go. For efficiency, only do the word-by-word thing if we're in * danger of wrapping around. */ /** @todo do popa boundary / wrap-around checks. */ if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu) && (pCtx->cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */ { /* word-by-word */ RTUINT64U TmpRsp; TmpRsp.u = pCtx->rsp; rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->edi, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->esi, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->ebp, &TmpRsp); if (rcStrict == VINF_SUCCESS) { iemRegAddToRspEx(pVCpu, pCtx, &TmpRsp, 2); /* sp */ rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->ebx, &TmpRsp); } if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->edx, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->ecx, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->eax, &TmpRsp); if (rcStrict == VINF_SUCCESS) { #if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */ pCtx->rdi &= UINT32_MAX; pCtx->rsi &= UINT32_MAX; pCtx->rbp &= UINT32_MAX; pCtx->rbx &= UINT32_MAX; pCtx->rdx &= UINT32_MAX; pCtx->rcx &= UINT32_MAX; pCtx->rax &= UINT32_MAX; #endif pCtx->rsp = TmpRsp.u; iemRegAddToRipAndClearRF(pVCpu, cbInstr); } } else { uint32_t const *pa32Mem; rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R); if (rcStrict == VINF_SUCCESS) { pCtx->rdi = pa32Mem[7 - X86_GREG_xDI]; pCtx->rsi = pa32Mem[7 - X86_GREG_xSI]; pCtx->rbp = pa32Mem[7 - X86_GREG_xBP]; /* skip esp */ pCtx->rbx = pa32Mem[7 - X86_GREG_xBX]; pCtx->rdx = pa32Mem[7 - X86_GREG_xDX]; pCtx->rcx = pa32Mem[7 - X86_GREG_xCX]; pCtx->rax = pa32Mem[7 - X86_GREG_xAX]; rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R); if (rcStrict == VINF_SUCCESS) { iemRegAddToRsp(pVCpu, pCtx, 32); iemRegAddToRipAndClearRF(pVCpu, cbInstr); } } } return rcStrict; } /** * Implements a 16-bit pusha. */ IEM_CIMPL_DEF_0(iemCImpl_pusha_16) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu, pCtx); RTGCPTR GCPtrBottom = GCPtrTop - 15; VBOXSTRICTRC rcStrict; /* * The docs are a bit hard to comprehend here, but it looks like we wrap * around in real mode as long as none of the individual "pushd" crosses the * end of the stack segment. In protected mode we check the whole access * in one go. For efficiency, only do the word-by-word thing if we're in * danger of wrapping around. */ /** @todo do pusha boundary / wrap-around checks. */ if (RT_UNLIKELY( GCPtrBottom > GCPtrTop && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) ) { /* word-by-word */ RTUINT64U TmpRsp; TmpRsp.u = pCtx->rsp; rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->ax, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->cx, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->dx, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->bx, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->sp, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->bp, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->si, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->di, &TmpRsp); if (rcStrict == VINF_SUCCESS) { pCtx->rsp = TmpRsp.u; iemRegAddToRipAndClearRF(pVCpu, cbInstr); } } else { GCPtrBottom--; uint16_t *pa16Mem = NULL; rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W); if (rcStrict == VINF_SUCCESS) { pa16Mem[7 - X86_GREG_xDI] = pCtx->di; pa16Mem[7 - X86_GREG_xSI] = pCtx->si; pa16Mem[7 - X86_GREG_xBP] = pCtx->bp; pa16Mem[7 - X86_GREG_xSP] = pCtx->sp; pa16Mem[7 - X86_GREG_xBX] = pCtx->bx; pa16Mem[7 - X86_GREG_xDX] = pCtx->dx; pa16Mem[7 - X86_GREG_xCX] = pCtx->cx; pa16Mem[7 - X86_GREG_xAX] = pCtx->ax; rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W); if (rcStrict == VINF_SUCCESS) { iemRegSubFromRsp(pVCpu, pCtx, 16); iemRegAddToRipAndClearRF(pVCpu, cbInstr); } } } return rcStrict; } /** * Implements a 32-bit pusha. */ IEM_CIMPL_DEF_0(iemCImpl_pusha_32) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu, pCtx); RTGCPTR GCPtrBottom = GCPtrTop - 31; VBOXSTRICTRC rcStrict; /* * The docs are a bit hard to comprehend here, but it looks like we wrap * around in real mode as long as none of the individual "pusha" crosses the * end of the stack segment. In protected mode we check the whole access * in one go. For efficiency, only do the word-by-word thing if we're in * danger of wrapping around. */ /** @todo do pusha boundary / wrap-around checks. */ if (RT_UNLIKELY( GCPtrBottom > GCPtrTop && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) ) { /* word-by-word */ RTUINT64U TmpRsp; TmpRsp.u = pCtx->rsp; rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->eax, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->ecx, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->edx, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->ebx, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->esp, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->ebp, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->esi, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->edi, &TmpRsp); if (rcStrict == VINF_SUCCESS) { pCtx->rsp = TmpRsp.u; iemRegAddToRipAndClearRF(pVCpu, cbInstr); } } else { GCPtrBottom--; uint32_t *pa32Mem; rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W); if (rcStrict == VINF_SUCCESS) { pa32Mem[7 - X86_GREG_xDI] = pCtx->edi; pa32Mem[7 - X86_GREG_xSI] = pCtx->esi; pa32Mem[7 - X86_GREG_xBP] = pCtx->ebp; pa32Mem[7 - X86_GREG_xSP] = pCtx->esp; pa32Mem[7 - X86_GREG_xBX] = pCtx->ebx; pa32Mem[7 - X86_GREG_xDX] = pCtx->edx; pa32Mem[7 - X86_GREG_xCX] = pCtx->ecx; pa32Mem[7 - X86_GREG_xAX] = pCtx->eax; rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W); if (rcStrict == VINF_SUCCESS) { iemRegSubFromRsp(pVCpu, pCtx, 32); iemRegAddToRipAndClearRF(pVCpu, cbInstr); } } } return rcStrict; } /** * Implements pushf. * * * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); VBOXSTRICTRC rcStrict; if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF)) { Log2(("pushf: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * If we're in V8086 mode some care is required (which is why we're in * doing this in a C implementation). */ uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx); if ( (fEfl & X86_EFL_VM) && X86_EFL_GET_IOPL(fEfl) != 3 ) { Assert(pCtx->cr0 & X86_CR0_PE); if ( enmEffOpSize != IEMMODE_16BIT || !(pCtx->cr4 & X86_CR4_VME)) return iemRaiseGeneralProtectionFault0(pVCpu); fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */ fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9); rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl); } else { /* * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags. */ fEfl &= ~(X86_EFL_RF | X86_EFL_VM); switch (enmEffOpSize) { case IEMMODE_16BIT: AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186); if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186) fEfl |= UINT16_C(0xf000); rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl); break; case IEMMODE_32BIT: rcStrict = iemMemStackPushU32(pVCpu, fEfl); break; case IEMMODE_64BIT: rcStrict = iemMemStackPushU64(pVCpu, fEfl); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } if (rcStrict != VINF_SUCCESS) return rcStrict; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements popf. * * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu, pCtx); VBOXSTRICTRC rcStrict; uint32_t fEflNew; if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF)) { Log2(("popf: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * V8086 is special as usual. */ if (fEflOld & X86_EFL_VM) { /* * Almost anything goes if IOPL is 3. */ if (X86_EFL_GET_IOPL(fEflOld) == 3) { switch (enmEffOpSize) { case IEMMODE_16BIT: { uint16_t u16Value; rcStrict = iemMemStackPopU16(pVCpu, &u16Value); if (rcStrict != VINF_SUCCESS) return rcStrict; fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000)); break; } case IEMMODE_32BIT: rcStrict = iemMemStackPopU32(pVCpu, &fEflNew); if (rcStrict != VINF_SUCCESS) return rcStrict; break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386; fEflNew &= fPopfBits & ~(X86_EFL_IOPL); fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld; } /* * Interrupt flag virtualization with CR4.VME=1. */ else if ( enmEffOpSize == IEMMODE_16BIT && (pCtx->cr4 & X86_CR4_VME) ) { uint16_t u16Value; RTUINT64U TmpRsp; TmpRsp.u = pCtx->rsp; rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP * or before? */ if ( ( (u16Value & X86_EFL_IF) && (fEflOld & X86_EFL_VIP)) || (u16Value & X86_EFL_TF) ) return iemRaiseGeneralProtectionFault0(pVCpu); fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF); fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9); fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF); fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld; pCtx->rsp = TmpRsp.u; } else return iemRaiseGeneralProtectionFault0(pVCpu); } /* * Not in V8086 mode. */ else { /* Pop the flags. */ switch (enmEffOpSize) { case IEMMODE_16BIT: { uint16_t u16Value; rcStrict = iemMemStackPopU16(pVCpu, &u16Value); if (rcStrict != VINF_SUCCESS) return rcStrict; fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000)); /* * Ancient CPU adjustments: * - 8086, 80186, V20/30: * Fixed bits 15:12 bits are not kept correctly internally, mostly for * practical reasons (masking below). We add them when pushing flags. * - 80286: * The NT and IOPL flags cannot be popped from real mode and are * therefore always zero (since a 286 can never exit from PM and * their initial value is zero). This changed on a 386 and can * therefore be used to detect 286 or 386 CPU in real mode. */ if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286 && !(pCtx->cr0 & X86_CR0_PE) ) fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL); break; } case IEMMODE_32BIT: rcStrict = iemMemStackPopU32(pVCpu, &fEflNew); if (rcStrict != VINF_SUCCESS) return rcStrict; break; case IEMMODE_64BIT: { uint64_t u64Value; rcStrict = iemMemStackPopU64(pVCpu, &u64Value); if (rcStrict != VINF_SUCCESS) return rcStrict; fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */ break; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } /* Merge them with the current flags. */ const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386; if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF)) || pVCpu->iem.s.uCpl == 0) { fEflNew &= fPopfBits; fEflNew |= ~fPopfBits & fEflOld; } else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld)) { fEflNew &= fPopfBits & ~(X86_EFL_IOPL); fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld; } else { fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF); fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld; } } /* * Commit the flags. */ Assert(fEflNew & RT_BIT_32(1)); IEMMISC_SET_EFL(pVCpu, pCtx, fEflNew); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements an indirect call. * * @param uNewPC The new program counter (RIP) value (loaded from the * operand). * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint16_t uOldPC = pCtx->ip + cbInstr; if (uNewPC > pCtx->cs.u32Limit) return iemRaiseGeneralProtectionFault0(pVCpu); VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC); if (rcStrict != VINF_SUCCESS) return rcStrict; pCtx->rip = uNewPC; pCtx->eflags.Bits.u1RF = 0; #ifndef IEM_WITH_CODE_TLB /* Flush the prefetch buffer. */ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements a 16-bit relative call. * * @param offDisp The displacment offset. */ IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint16_t uOldPC = pCtx->ip + cbInstr; uint16_t uNewPC = uOldPC + offDisp; if (uNewPC > pCtx->cs.u32Limit) return iemRaiseGeneralProtectionFault0(pVCpu); VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC); if (rcStrict != VINF_SUCCESS) return rcStrict; pCtx->rip = uNewPC; pCtx->eflags.Bits.u1RF = 0; #ifndef IEM_WITH_CODE_TLB /* Flush the prefetch buffer. */ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements a 32-bit indirect call. * * @param uNewPC The new program counter (RIP) value (loaded from the * operand). * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint32_t uOldPC = pCtx->eip + cbInstr; if (uNewPC > pCtx->cs.u32Limit) return iemRaiseGeneralProtectionFault0(pVCpu); VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC); if (rcStrict != VINF_SUCCESS) return rcStrict; #if defined(IN_RING3) && defined(VBOX_WITH_RAW_MODE) && defined(VBOX_WITH_CALL_RECORD) /* * CASM hook for recording interesting indirect calls. */ if ( !pCtx->eflags.Bits.u1IF && (pCtx->cr0 & X86_CR0_PG) && !CSAMIsEnabled(pVCpu->CTX_SUFF(pVM)) && pVCpu->iem.s.uCpl == 0) { EMSTATE enmState = EMGetState(pVCpu); if ( enmState == EMSTATE_IEM_THEN_REM || enmState == EMSTATE_IEM || enmState == EMSTATE_REM) CSAMR3RecordCallAddress(pVCpu->CTX_SUFF(pVM), pCtx->eip); } #endif pCtx->rip = uNewPC; pCtx->eflags.Bits.u1RF = 0; #ifndef IEM_WITH_CODE_TLB /* Flush the prefetch buffer. */ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements a 32-bit relative call. * * @param offDisp The displacment offset. */ IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint32_t uOldPC = pCtx->eip + cbInstr; uint32_t uNewPC = uOldPC + offDisp; if (uNewPC > pCtx->cs.u32Limit) return iemRaiseGeneralProtectionFault0(pVCpu); VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC); if (rcStrict != VINF_SUCCESS) return rcStrict; pCtx->rip = uNewPC; pCtx->eflags.Bits.u1RF = 0; #ifndef IEM_WITH_CODE_TLB /* Flush the prefetch buffer. */ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements a 64-bit indirect call. * * @param uNewPC The new program counter (RIP) value (loaded from the * operand). * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint64_t uOldPC = pCtx->rip + cbInstr; if (!IEM_IS_CANONICAL(uNewPC)) return iemRaiseGeneralProtectionFault0(pVCpu); VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC); if (rcStrict != VINF_SUCCESS) return rcStrict; pCtx->rip = uNewPC; pCtx->eflags.Bits.u1RF = 0; #ifndef IEM_WITH_CODE_TLB /* Flush the prefetch buffer. */ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements a 64-bit relative call. * * @param offDisp The displacment offset. */ IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint64_t uOldPC = pCtx->rip + cbInstr; uint64_t uNewPC = uOldPC + offDisp; if (!IEM_IS_CANONICAL(uNewPC)) return iemRaiseNotCanonical(pVCpu); VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC); if (rcStrict != VINF_SUCCESS) return rcStrict; pCtx->rip = uNewPC; pCtx->eflags.Bits.u1RF = 0; #ifndef IEM_WITH_CODE_TLB /* Flush the prefetch buffer. */ pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements far jumps and calls thru task segments (TSS). * * @param uSel The selector. * @param enmBranch The kind of branching we're performing. * @param enmEffOpSize The effective operand size. * @param pDesc The descriptor corresponding to @a uSel. The type is * task gate. */ IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc) { #ifndef IEM_IMPLEMENTS_TASKSWITCH IEM_RETURN_ASPECT_NOT_IMPLEMENTED(); #else Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL); Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL); RT_NOREF_PV(enmEffOpSize); if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL)) { Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl, pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL))); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); } /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not * far calls (see iemCImpl_callf). Most likely in both cases it should be * checked here, need testcases. */ if (!pDesc->Legacy.Gen.u1Present) { Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); } PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint32_t uNextEip = pCtx->eip + cbInstr; return iemTaskSwitch(pVCpu, pCtx, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL, uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc); #endif } /** * Implements far jumps and calls thru task gates. * * @param uSel The selector. * @param enmBranch The kind of branching we're performing. * @param enmEffOpSize The effective operand size. * @param pDesc The descriptor corresponding to @a uSel. The type is * task gate. */ IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc) { #ifndef IEM_IMPLEMENTS_TASKSWITCH IEM_RETURN_ASPECT_NOT_IMPLEMENTED(); #else Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL); RT_NOREF_PV(enmEffOpSize); if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL)) { Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl, pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL))); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); } /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not * far calls (see iemCImpl_callf). Most likely in both cases it should be * checked here, need testcases. */ if (!pDesc->Legacy.Gen.u1Present) { Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); } /* * Fetch the new TSS descriptor from the GDT. */ RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel; if (uSelTss & X86_SEL_LDT) { Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); } IEMSELDESC TssDesc; VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP); if (rcStrict != VINF_SUCCESS) return rcStrict; if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK) { Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss, TssDesc.Legacy.Gate.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL); } if (!TssDesc.Legacy.Gate.u1Present) { Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL); } PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint32_t uNextEip = pCtx->eip + cbInstr; return iemTaskSwitch(pVCpu, pCtx, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL, uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc); #endif } /** * Implements far jumps and calls thru call gates. * * @param uSel The selector. * @param enmBranch The kind of branching we're performing. * @param enmEffOpSize The effective operand size. * @param pDesc The descriptor corresponding to @a uSel. The type is * call gate. */ IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc) { #define IEM_IMPLEMENTS_CALLGATE #ifndef IEM_IMPLEMENTS_CALLGATE IEM_RETURN_ASPECT_NOT_IMPLEMENTED(); #else RT_NOREF_PV(enmEffOpSize); /* NB: Far jumps can only do intra-privilege transfers. Far calls support * inter-privilege calls and are much more complex. * * NB: 64-bit call gate has the same type as a 32-bit call gate! If * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate * must be 16-bit or 32-bit. */ /** @todo: effective operand size is probably irrelevant here, only the * call gate bitness matters?? */ VBOXSTRICTRC rcStrict; RTPTRUNION uPtrRet; uint64_t uNewRsp; uint64_t uNewRip; uint64_t u64Base; uint32_t cbLimit; RTSEL uNewCS; IEMSELDESC DescCS; AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE); Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL); Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE); /* Determine the new instruction pointer from the gate descriptor. */ uNewRip = pDesc->Legacy.Gate.u16OffsetLow | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16) | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32); /* Perform DPL checks on the gate descriptor. */ if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL)) { Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl, pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL))); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } /** @todo does this catch NULL selectors, too? */ if (!pDesc->Legacy.Gen.u1Present) { Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel); } /* * Fetch the target CS descriptor from the GDT or LDT. */ uNewCS = pDesc->Legacy.Gate.u16Sel; rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP); if (rcStrict != VINF_SUCCESS) return rcStrict; /* Target CS must be a code selector. */ if ( !DescCS.Legacy.Gen.u1DescType || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) ) { Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n", uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS); } /* Privilege checks on target CS. */ if (enmBranch == IEMBRANCH_JUMP) { if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) { if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl) { Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n", uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS); } } else { if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl) { Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n", uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS); } } } else { Assert(enmBranch == IEMBRANCH_CALL); if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl) { Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n", uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL); } } /* Additional long mode checks. */ if (IEM_IS_LONG_MODE(pVCpu)) { if (!DescCS.Legacy.Gen.u1Long) { Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS); } /* L vs D. */ if ( DescCS.Legacy.Gen.u1Long && DescCS.Legacy.Gen.u1DefBig) { Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS); } } if (!DescCS.Legacy.Gate.u1Present) { Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS); } PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); if (enmBranch == IEMBRANCH_JUMP) { /** @todo: This is very similar to regular far jumps; merge! */ /* Jumps are fairly simple... */ /* Chop the high bits off if 16-bit gate (Intel says so). */ if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE) uNewRip = (uint16_t)uNewRip; /* Limit check for non-long segments. */ cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy); if (DescCS.Legacy.Gen.u1Long) u64Base = 0; else { if (uNewRip > cbLimit) { Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0); } u64Base = X86DESC_BASE(&DescCS.Legacy); } /* Canonical address check. */ if (!IEM_IS_CANONICAL(uNewRip)) { Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip)); return iemRaiseNotCanonical(pVCpu); } /* * Ok, everything checked out fine. Now set the accessed bit before * committing the result into CS, CSHID and RIP. */ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS); if (rcStrict != VINF_SUCCESS) return rcStrict; /** @todo check what VT-x and AMD-V does. */ DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } /* commit */ pCtx->rip = uNewRip; pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL; pCtx->cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */ pCtx->cs.ValidSel = pCtx->cs.Sel; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); pCtx->cs.u32Limit = cbLimit; pCtx->cs.u64Base = u64Base; pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx); } else { Assert(enmBranch == IEMBRANCH_CALL); /* Calls are much more complicated. */ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl)) { uint16_t offNewStack; /* Offset of new stack in TSS. */ uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */ uint8_t uNewCSDpl; uint8_t cbWords; RTSEL uNewSS; RTSEL uOldSS; uint64_t uOldRsp; IEMSELDESC DescSS; RTPTRUNION uPtrTSS; RTGCPTR GCPtrTSS; RTPTRUNION uPtrParmWds; RTGCPTR GCPtrParmWds; /* More privilege. This is the fun part. */ Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */ /* * Determine new SS:rSP from the TSS. */ Assert(!pCtx->tr.Attr.n.u1DescType); /* Figure out where the new stack pointer is stored in the TSS. */ uNewCSDpl = DescCS.Legacy.Gen.u2Dpl; if (!IEM_IS_LONG_MODE(pVCpu)) { if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY) { offNewStack = RT_OFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8; cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0); } else { Assert(pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY); offNewStack = RT_OFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4; cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0); } } else { Assert(pCtx->tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY); offNewStack = RT_OFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0); cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0); } /* Check against TSS limit. */ if ((uint16_t)(offNewStack + cbNewStack - 1) > pCtx->tr.u32Limit) { Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pCtx->tr.u32Limit)); return iemRaiseTaskSwitchFaultBySelector(pVCpu, pCtx->tr.Sel); } GCPtrTSS = pCtx->tr.u64Base + offNewStack; rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R); if (rcStrict != VINF_SUCCESS) { Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } if (!IEM_IS_LONG_MODE(pVCpu)) { if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY) { uNewRsp = uPtrTSS.pu32[0]; uNewSS = uPtrTSS.pu16[2]; } else { Assert(pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY); uNewRsp = uPtrTSS.pu16[0]; uNewSS = uPtrTSS.pu16[1]; } } else { Assert(pCtx->tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY); /* SS will be a NULL selector, but that's valid. */ uNewRsp = uPtrTSS.pu64[0]; uNewSS = uNewCSDpl; } /* Done with the TSS now. */ rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R); if (rcStrict != VINF_SUCCESS) { Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* Only used outside of long mode. */ cbWords = pDesc->Legacy.Gate.u5ParmCount; /* If EFER.LMA is 0, there's extra work to do. */ if (!IEM_IS_LONG_MODE(pVCpu)) { if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0) { Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n")); return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS); } /* Grab the new SS descriptor. */ rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS); if (rcStrict != VINF_SUCCESS) return rcStrict; /* Ensure that CS.DPL == SS.RPL == SS.DPL. */ if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL)) || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl)) { Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n", uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl)); return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS); } /* Ensure new SS is a writable data segment. */ if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE) { Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type)); return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS); } if (!DescSS.Legacy.Gen.u1Present) { Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS)); return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS); } if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE) cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords); else cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords); } else { /* Just grab the new (NULL) SS descriptor. */ /** @todo testcase: Check whether the zero GDT entry is actually loaded here * like we do... */ rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS); if (rcStrict != VINF_SUCCESS) return rcStrict; cbNewStack = sizeof(uint64_t) * 4; } /** @todo: According to Intel, new stack is checked for enough space first, * then switched. According to AMD, the stack is switched first and * then pushes might fault! * NB: OS/2 Warp 3/4 actively relies on the fact that possible * incoming stack #PF happens before actual stack switch. AMD is * either lying or implicitly assumes that new state is committed * only if and when an instruction doesn't fault. */ /** @todo: According to AMD, CS is loaded first, then SS. * According to Intel, it's the other way around!? */ /** @todo: Intel and AMD disagree on when exactly the CPL changes! */ /* Set the accessed bit before committing new SS. */ if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS); if (rcStrict != VINF_SUCCESS) return rcStrict; DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } /* Remember the old SS:rSP and their linear address. */ uOldSS = pCtx->ss.Sel; uOldRsp = pCtx->ss.Attr.n.u1DefBig ? pCtx->rsp : pCtx->sp; GCPtrParmWds = pCtx->ss.u64Base + uOldRsp; /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS) or #PF, the former is not implemented in this workaround. */ /** @todo Proper fix callgate target stack exceptions. */ /** @todo testcase: Cover callgates with partially or fully inaccessible * target stacks. */ void *pvNewFrame; RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack; rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW); if (rcStrict != VINF_SUCCESS) { Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW); if (rcStrict != VINF_SUCCESS) { Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* Commit new SS:rSP. */ pCtx->ss.Sel = uNewSS; pCtx->ss.ValidSel = uNewSS; pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy); pCtx->ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy); pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy); pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->rsp = uNewRsp; pVCpu->iem.s.uCpl = uNewCSDpl; Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss)); CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS); /* At this point the stack access must not fail because new state was already committed. */ /** @todo this can still fail due to SS.LIMIT not check. */ rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack, &uPtrRet.pv, &uNewRsp); AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_INTERNAL_ERROR_5); if (!IEM_IS_LONG_MODE(pVCpu)) { if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE) { /* Push the old CS:rIP. */ uPtrRet.pu32[0] = pCtx->eip + cbInstr; uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */ if (cbWords) { /* Map the relevant chunk of the old stack. */ rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) { Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* Copy the parameter (d)words. */ for (int i = 0; i < cbWords; ++i) uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i]; /* Unmap the old stack. */ rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) { Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } } /* Push the old SS:rSP. */ uPtrRet.pu32[2 + cbWords + 0] = uOldRsp; uPtrRet.pu32[2 + cbWords + 1] = uOldSS; } else { Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE); /* Push the old CS:rIP. */ uPtrRet.pu16[0] = pCtx->ip + cbInstr; uPtrRet.pu16[1] = pCtx->cs.Sel; if (cbWords) { /* Map the relevant chunk of the old stack. */ rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) { Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* Copy the parameter words. */ for (int i = 0; i < cbWords; ++i) uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i]; /* Unmap the old stack. */ rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) { Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } } /* Push the old SS:rSP. */ uPtrRet.pu16[2 + cbWords + 0] = uOldRsp; uPtrRet.pu16[2 + cbWords + 1] = uOldSS; } } else { Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE); /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */ uPtrRet.pu64[0] = pCtx->rip + cbInstr; uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */ uPtrRet.pu64[2] = uOldRsp; uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */ } rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp); if (rcStrict != VINF_SUCCESS) { Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* Chop the high bits off if 16-bit gate (Intel says so). */ if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE) uNewRip = (uint16_t)uNewRip; /* Limit / canonical check. */ cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy); if (!IEM_IS_LONG_MODE(pVCpu)) { if (uNewRip > cbLimit) { Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0); } u64Base = X86DESC_BASE(&DescCS.Legacy); } else { Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE); if (!IEM_IS_CANONICAL(uNewRip)) { Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip)); return iemRaiseNotCanonical(pVCpu); } u64Base = 0; } /* * Now set the accessed bit before * writing the return address to the stack and committing the result into * CS, CSHID and RIP. */ /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS); if (rcStrict != VINF_SUCCESS) return rcStrict; /** @todo check what VT-x and AMD-V does. */ DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } /* Commit new CS:rIP. */ pCtx->rip = uNewRip; pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL; pCtx->cs.Sel |= pVCpu->iem.s.uCpl; pCtx->cs.ValidSel = pCtx->cs.Sel; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); pCtx->cs.u32Limit = cbLimit; pCtx->cs.u64Base = u64Base; pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx); } else { /* Same privilege. */ /** @todo: This is very similar to regular far calls; merge! */ /* Check stack first - may #SS(0). */ /** @todo check how gate size affects pushing of CS! Does callf 16:32 in * 16-bit code cause a two or four byte CS to be pushed? */ rcStrict = iemMemStackPushBeginSpecial(pVCpu, IEM_IS_LONG_MODE(pVCpu) ? 8+8 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2, &uPtrRet.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; /* Chop the high bits off if 16-bit gate (Intel says so). */ if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE) uNewRip = (uint16_t)uNewRip; /* Limit / canonical check. */ cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy); if (!IEM_IS_LONG_MODE(pVCpu)) { if (uNewRip > cbLimit) { Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0); } u64Base = X86DESC_BASE(&DescCS.Legacy); } else { if (!IEM_IS_CANONICAL(uNewRip)) { Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip)); return iemRaiseNotCanonical(pVCpu); } u64Base = 0; } /* * Now set the accessed bit before * writing the return address to the stack and committing the result into * CS, CSHID and RIP. */ /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS); if (rcStrict != VINF_SUCCESS) return rcStrict; /** @todo check what VT-x and AMD-V does. */ DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } /* stack */ if (!IEM_IS_LONG_MODE(pVCpu)) { if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE) { uPtrRet.pu32[0] = pCtx->eip + cbInstr; uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */ } else { Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE); uPtrRet.pu16[0] = pCtx->ip + cbInstr; uPtrRet.pu16[1] = pCtx->cs.Sel; } } else { Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE); uPtrRet.pu64[0] = pCtx->rip + cbInstr; uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */ } rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; /* commit */ pCtx->rip = uNewRip; pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL; pCtx->cs.Sel |= pVCpu->iem.s.uCpl; pCtx->cs.ValidSel = pCtx->cs.Sel; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); pCtx->cs.u32Limit = cbLimit; pCtx->cs.u64Base = u64Base; pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx); } } pCtx->eflags.Bits.u1RF = 0; /* Flush the prefetch buffer. */ # ifdef IEM_WITH_CODE_TLB pVCpu->iem.s.pbInstrBuf = NULL; # else pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; # endif return VINF_SUCCESS; #endif } /** * Implements far jumps and calls thru system selectors. * * @param uSel The selector. * @param enmBranch The kind of branching we're performing. * @param enmEffOpSize The effective operand size. * @param pDesc The descriptor corresponding to @a uSel. */ IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc) { Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL); Assert((uSel & X86_SEL_MASK_OFF_RPL)); if (IEM_IS_LONG_MODE(pVCpu)) switch (pDesc->Legacy.Gen.u4Type) { case AMD64_SEL_TYPE_SYS_CALL_GATE: return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc); default: case AMD64_SEL_TYPE_SYS_LDT: case AMD64_SEL_TYPE_SYS_TSS_BUSY: case AMD64_SEL_TYPE_SYS_TSS_AVAIL: case AMD64_SEL_TYPE_SYS_TRAP_GATE: case AMD64_SEL_TYPE_SYS_INT_GATE: Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } switch (pDesc->Legacy.Gen.u4Type) { case X86_SEL_TYPE_SYS_286_CALL_GATE: case X86_SEL_TYPE_SYS_386_CALL_GATE: return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc); case X86_SEL_TYPE_SYS_TASK_GATE: return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc); case X86_SEL_TYPE_SYS_286_TSS_AVAIL: case X86_SEL_TYPE_SYS_386_TSS_AVAIL: return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc); case X86_SEL_TYPE_SYS_286_TSS_BUSY: Log(("branch %04x -> busy 286 TSS\n", uSel)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); case X86_SEL_TYPE_SYS_386_TSS_BUSY: Log(("branch %04x -> busy 386 TSS\n", uSel)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); default: case X86_SEL_TYPE_SYS_LDT: case X86_SEL_TYPE_SYS_286_INT_GATE: case X86_SEL_TYPE_SYS_286_TRAP_GATE: case X86_SEL_TYPE_SYS_386_INT_GATE: case X86_SEL_TYPE_SYS_386_TRAP_GATE: Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } } /** * Implements far jumps. * * @param uSel The selector. * @param offSeg The segment offset. * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); NOREF(cbInstr); Assert(offSeg <= UINT32_MAX); /* * Real mode and V8086 mode are easy. The only snag seems to be that * CS.limit doesn't change and the limit check is done against the current * limit. */ if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT && IEM_IS_REAL_OR_V86_MODE(pVCpu)) { if (offSeg > pCtx->cs.u32Limit) { Log(("iemCImpl_FarJmp: 16-bit limit\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */ pCtx->rip = offSeg; else pCtx->rip = offSeg & UINT16_MAX; pCtx->cs.Sel = uSel; pCtx->cs.ValidSel = uSel; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.u64Base = (uint32_t)uSel << 4; pCtx->eflags.Bits.u1RF = 0; return VINF_SUCCESS; } /* * Protected mode. Need to parse the specified descriptor... */ if (!(uSel & X86_SEL_MASK_OFF_RPL)) { Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* Fetch the descriptor. */ IEMSELDESC Desc; VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); if (rcStrict != VINF_SUCCESS) return rcStrict; /* Is it there? */ if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */ { Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel); } /* * Deal with it according to its type. We do the standard code selectors * here and dispatch the system selectors to worker functions. */ if (!Desc.Legacy.Gen.u1DescType) return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc); /* Only code segments. */ if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)) { Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } /* L vs D. */ if ( Desc.Legacy.Gen.u1Long && Desc.Legacy.Gen.u1DefBig && IEM_IS_LONG_MODE(pVCpu)) { Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } /* DPL/RPL/CPL check, where conforming segments makes a difference. */ if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) { if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl) { Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } } else { if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl) { Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl) { Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } } /* Chop the high bits if 16-bit (Intel says so). */ if (enmEffOpSize == IEMMODE_16BIT) offSeg &= UINT16_MAX; /* Limit check. (Should alternatively check for non-canonical addresses here, but that is ruled out by offSeg being 32-bit, right?) */ uint64_t u64Base; uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy); if (Desc.Legacy.Gen.u1Long) u64Base = 0; else { if (offSeg > cbLimit) { Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit)); /** @todo: Intel says this is #GP(0)! */ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } u64Base = X86DESC_BASE(&Desc.Legacy); } /* * Ok, everything checked out fine. Now set the accessed bit before * committing the result into CS, CSHID and RIP. */ if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel); if (rcStrict != VINF_SUCCESS) return rcStrict; /** @todo check what VT-x and AMD-V does. */ Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } /* commit */ pCtx->rip = offSeg; pCtx->cs.Sel = uSel & X86_SEL_MASK_OFF_RPL; pCtx->cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */ pCtx->cs.ValidSel = pCtx->cs.Sel; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy); pCtx->cs.u32Limit = cbLimit; pCtx->cs.u64Base = u64Base; pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx); pCtx->eflags.Bits.u1RF = 0; /** @todo check if the hidden bits are loaded correctly for 64-bit * mode. */ /* Flush the prefetch buffer. */ #ifdef IEM_WITH_CODE_TLB pVCpu->iem.s.pbInstrBuf = NULL; #else pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements far calls. * * This very similar to iemCImpl_FarJmp. * * @param uSel The selector. * @param offSeg The segment offset. * @param enmEffOpSize The operand size (in case we need it). */ IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); VBOXSTRICTRC rcStrict; uint64_t uNewRsp; RTPTRUNION uPtrRet; /* * Real mode and V8086 mode are easy. The only snag seems to be that * CS.limit doesn't change and the limit check is done against the current * limit. */ if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT && IEM_IS_REAL_OR_V86_MODE(pVCpu)) { Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT); /* Check stack first - may #SS(0). */ rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 6 : 4, &uPtrRet.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; /* Check the target address range. */ if (offSeg > UINT32_MAX) return iemRaiseGeneralProtectionFault0(pVCpu); /* Everything is fine, push the return address. */ if (enmEffOpSize == IEMMODE_16BIT) { uPtrRet.pu16[0] = pCtx->ip + cbInstr; uPtrRet.pu16[1] = pCtx->cs.Sel; } else { uPtrRet.pu32[0] = pCtx->eip + cbInstr; uPtrRet.pu16[3] = pCtx->cs.Sel; } rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; /* Branch. */ pCtx->rip = offSeg; pCtx->cs.Sel = uSel; pCtx->cs.ValidSel = uSel; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.u64Base = (uint32_t)uSel << 4; pCtx->eflags.Bits.u1RF = 0; return VINF_SUCCESS; } /* * Protected mode. Need to parse the specified descriptor... */ if (!(uSel & X86_SEL_MASK_OFF_RPL)) { Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* Fetch the descriptor. */ IEMSELDESC Desc; rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); if (rcStrict != VINF_SUCCESS) return rcStrict; /* * Deal with it according to its type. We do the standard code selectors * here and dispatch the system selectors to worker functions. */ if (!Desc.Legacy.Gen.u1DescType) return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc); /* Only code segments. */ if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)) { Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } /* L vs D. */ if ( Desc.Legacy.Gen.u1Long && Desc.Legacy.Gen.u1DefBig && IEM_IS_LONG_MODE(pVCpu)) { Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } /* DPL/RPL/CPL check, where conforming segments makes a difference. */ if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) { if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl) { Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } } else { if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl) { Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl) { Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } } /* Is it there? */ if (!Desc.Legacy.Gen.u1Present) { Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel); } /* Check stack first - may #SS(0). */ /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in * 16-bit code cause a two or four byte CS to be pushed? */ rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_64BIT ? 8+8 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2, &uPtrRet.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; /* Chop the high bits if 16-bit (Intel says so). */ if (enmEffOpSize == IEMMODE_16BIT) offSeg &= UINT16_MAX; /* Limit / canonical check. */ uint64_t u64Base; uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy); if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { if (!IEM_IS_CANONICAL(offSeg)) { Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg)); return iemRaiseNotCanonical(pVCpu); } u64Base = 0; } else { if (offSeg > cbLimit) { Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit)); /** @todo: Intel says this is #GP(0)! */ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } u64Base = X86DESC_BASE(&Desc.Legacy); } /* * Now set the accessed bit before * writing the return address to the stack and committing the result into * CS, CSHID and RIP. */ /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */ if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel); if (rcStrict != VINF_SUCCESS) return rcStrict; /** @todo check what VT-x and AMD-V does. */ Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } /* stack */ if (enmEffOpSize == IEMMODE_16BIT) { uPtrRet.pu16[0] = pCtx->ip + cbInstr; uPtrRet.pu16[1] = pCtx->cs.Sel; } else if (enmEffOpSize == IEMMODE_32BIT) { uPtrRet.pu32[0] = pCtx->eip + cbInstr; uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */ } else { uPtrRet.pu64[0] = pCtx->rip + cbInstr; uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */ } rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; /* commit */ pCtx->rip = offSeg; pCtx->cs.Sel = uSel & X86_SEL_MASK_OFF_RPL; pCtx->cs.Sel |= pVCpu->iem.s.uCpl; pCtx->cs.ValidSel = pCtx->cs.Sel; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy); pCtx->cs.u32Limit = cbLimit; pCtx->cs.u64Base = u64Base; pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx); pCtx->eflags.Bits.u1RF = 0; /** @todo check if the hidden bits are loaded correctly for 64-bit * mode. */ /* Flush the prefetch buffer. */ #ifdef IEM_WITH_CODE_TLB pVCpu->iem.s.pbInstrBuf = NULL; #else pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements retf. * * @param enmEffOpSize The effective operand size. * @param cbPop The amount of arguments to pop from the stack * (bytes). */ IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); VBOXSTRICTRC rcStrict; RTCPTRUNION uPtrFrame; uint64_t uNewRsp; uint64_t uNewRip; uint16_t uNewCs; NOREF(cbInstr); /* * Read the stack values first. */ uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8; rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; if (enmEffOpSize == IEMMODE_16BIT) { uNewRip = uPtrFrame.pu16[0]; uNewCs = uPtrFrame.pu16[1]; } else if (enmEffOpSize == IEMMODE_32BIT) { uNewRip = uPtrFrame.pu32[0]; uNewCs = uPtrFrame.pu16[2]; } else { uNewRip = uPtrFrame.pu64[0]; uNewCs = uPtrFrame.pu16[4]; } rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv); if (RT_LIKELY(rcStrict == VINF_SUCCESS)) { /* extremely likely */ } else return rcStrict; /* * Real mode and V8086 mode are easy. */ if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT && IEM_IS_REAL_OR_V86_MODE(pVCpu)) { Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT); /** @todo check how this is supposed to work if sp=0xfffe. */ /* Check the limit of the new EIP. */ /** @todo Intel pseudo code only does the limit check for 16-bit * operands, AMD does not make any distinction. What is right? */ if (uNewRip > pCtx->cs.u32Limit) return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION); /* commit the operation. */ pCtx->rsp = uNewRsp; pCtx->rip = uNewRip; pCtx->cs.Sel = uNewCs; pCtx->cs.ValidSel = uNewCs; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.u64Base = (uint32_t)uNewCs << 4; pCtx->eflags.Bits.u1RF = 0; /** @todo do we load attribs and limit as well? */ if (cbPop) iemRegAddToRsp(pVCpu, pCtx, cbPop); return VINF_SUCCESS; } /* * Protected mode is complicated, of course. */ if (!(uNewCs & X86_SEL_MASK_OFF_RPL)) { Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* Fetch the descriptor. */ IEMSELDESC DescCs; rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP); if (rcStrict != VINF_SUCCESS) return rcStrict; /* Can only return to a code selector. */ if ( !DescCs.Legacy.Gen.u1DescType || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) ) { Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n", uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } /* L vs D. */ if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */ && DescCs.Legacy.Gen.u1DefBig && IEM_IS_LONG_MODE(pVCpu)) { Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } /* DPL/RPL/CPL checks. */ if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl) { Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) { if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl) { Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n", uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL))); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } } else { if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl) { Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n", uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL))); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } } /* Is it there? */ if (!DescCs.Legacy.Gen.u1Present) { Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs); } /* * Return to outer privilege? (We'll typically have entered via a call gate.) */ if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl) { /* Read the outer stack pointer stored *after* the parameters. */ rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; uPtrFrame.pu8 += cbPop; /* Skip the parameters. */ uint16_t uNewOuterSs; uint64_t uNewOuterRsp; if (enmEffOpSize == IEMMODE_16BIT) { uNewOuterRsp = uPtrFrame.pu16[0]; uNewOuterSs = uPtrFrame.pu16[1]; } else if (enmEffOpSize == IEMMODE_32BIT) { uNewOuterRsp = uPtrFrame.pu32[0]; uNewOuterSs = uPtrFrame.pu16[2]; } else { uNewOuterRsp = uPtrFrame.pu64[0]; uNewOuterSs = uPtrFrame.pu16[4]; } uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */ rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv); if (RT_LIKELY(rcStrict == VINF_SUCCESS)) { /* extremely likely */ } else return rcStrict; /* Check for NULL stack selector (invalid in ring-3 and non-long mode) and read the selector. */ IEMSELDESC DescSs; if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL)) { if ( !DescCs.Legacy.Gen.u1Long || (uNewOuterSs & X86_SEL_RPL) == 3) { Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp)); return iemRaiseGeneralProtectionFault0(pVCpu); } /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */ iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL)); } else { /* Fetch the descriptor for the new stack segment. */ rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP); if (rcStrict != VINF_SUCCESS) return rcStrict; } /* Check that RPL of stack and code selectors match. */ if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL)) { Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs); } /* Must be a writable data segment. */ if ( !DescSs.Legacy.Gen.u1DescType || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) ) { Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs); } /* L vs D. (Not mentioned by intel.) */ if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */ && DescSs.Legacy.Gen.u1DefBig && IEM_IS_LONG_MODE(pVCpu)) { Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs); } /* DPL/RPL/CPL checks. */ if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL)) { Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs); } /* Is it there? */ if (!DescSs.Legacy.Gen.u1Present) { Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs); } /* Calc SS limit.*/ uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy); /* Is RIP canonical or within CS.limit? */ uint64_t u64Base; uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy); /** @todo Testcase: Is this correct? */ if ( DescCs.Legacy.Gen.u1Long && IEM_IS_LONG_MODE(pVCpu) ) { if (!IEM_IS_CANONICAL(uNewRip)) { Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp)); return iemRaiseNotCanonical(pVCpu); } u64Base = 0; } else { if (uNewRip > cbLimitCs) { Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs)); /** @todo: Intel says this is #GP(0)! */ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } u64Base = X86DESC_BASE(&DescCs.Legacy); } /* * Now set the accessed bit before * writing the return address to the stack and committing the result into * CS, CSHID and RIP. */ /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */ if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs); if (rcStrict != VINF_SUCCESS) return rcStrict; /** @todo check what VT-x and AMD-V does. */ DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */ if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs); if (rcStrict != VINF_SUCCESS) return rcStrict; /** @todo check what VT-x and AMD-V does. */ DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } /* commit */ if (enmEffOpSize == IEMMODE_16BIT) pCtx->rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */ else pCtx->rip = uNewRip; pCtx->cs.Sel = uNewCs; pCtx->cs.ValidSel = uNewCs; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy); pCtx->cs.u32Limit = cbLimitCs; pCtx->cs.u64Base = u64Base; pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx); pCtx->ss.Sel = uNewOuterSs; pCtx->ss.ValidSel = uNewOuterSs; pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy); pCtx->ss.u32Limit = cbLimitSs; if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) pCtx->ss.u64Base = 0; else pCtx->ss.u64Base = X86DESC_BASE(&DescSs.Legacy); if (!pCtx->ss.Attr.n.u1DefBig) pCtx->sp = (uint16_t)uNewOuterRsp; else pCtx->rsp = uNewOuterRsp; pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL); iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->ds); iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->es); iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->fs); iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->gs); /** @todo check if the hidden bits are loaded correctly for 64-bit * mode. */ if (cbPop) iemRegAddToRsp(pVCpu, pCtx, cbPop); pCtx->eflags.Bits.u1RF = 0; /* Done! */ } /* * Return to the same privilege level */ else { /* Limit / canonical check. */ uint64_t u64Base; uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy); /** @todo Testcase: Is this correct? */ if ( DescCs.Legacy.Gen.u1Long && IEM_IS_LONG_MODE(pVCpu) ) { if (!IEM_IS_CANONICAL(uNewRip)) { Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip)); return iemRaiseNotCanonical(pVCpu); } u64Base = 0; } else { if (uNewRip > cbLimitCs) { Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs)); /** @todo: Intel says this is #GP(0)! */ return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } u64Base = X86DESC_BASE(&DescCs.Legacy); } /* * Now set the accessed bit before * writing the return address to the stack and committing the result into * CS, CSHID and RIP. */ /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */ if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs); if (rcStrict != VINF_SUCCESS) return rcStrict; /** @todo check what VT-x and AMD-V does. */ DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } /* commit */ if (!pCtx->ss.Attr.n.u1DefBig) pCtx->sp = (uint16_t)uNewRsp; else pCtx->rsp = uNewRsp; if (enmEffOpSize == IEMMODE_16BIT) pCtx->rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */ else pCtx->rip = uNewRip; pCtx->cs.Sel = uNewCs; pCtx->cs.ValidSel = uNewCs; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy); pCtx->cs.u32Limit = cbLimitCs; pCtx->cs.u64Base = u64Base; /** @todo check if the hidden bits are loaded correctly for 64-bit * mode. */ pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx); if (cbPop) iemRegAddToRsp(pVCpu, pCtx, cbPop); pCtx->eflags.Bits.u1RF = 0; } /* Flush the prefetch buffer. */ #ifdef IEM_WITH_CODE_TLB pVCpu->iem.s.pbInstrBuf = NULL; #else pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements retn. * * We're doing this in C because of the \#GP that might be raised if the popped * program counter is out of bounds. * * @param enmEffOpSize The effective operand size. * @param cbPop The amount of arguments to pop from the stack * (bytes). */ IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); NOREF(cbInstr); /* Fetch the RSP from the stack. */ VBOXSTRICTRC rcStrict; RTUINT64U NewRip; RTUINT64U NewRsp; NewRsp.u = pCtx->rsp; switch (enmEffOpSize) { case IEMMODE_16BIT: NewRip.u = 0; rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp); break; case IEMMODE_32BIT: NewRip.u = 0; rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp); break; case IEMMODE_64BIT: rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } if (rcStrict != VINF_SUCCESS) return rcStrict; /* Check the new RSP before loading it. */ /** @todo Should test this as the intel+amd pseudo code doesn't mention half * of it. The canonical test is performed here and for call. */ if (enmEffOpSize != IEMMODE_64BIT) { if (NewRip.DWords.dw0 > pCtx->cs.u32Limit) { Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pCtx->cs.u32Limit)); return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION); } } else { if (!IEM_IS_CANONICAL(NewRip.u)) { Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u)); return iemRaiseNotCanonical(pVCpu); } } /* Apply cbPop */ if (cbPop) iemRegAddToRspEx(pVCpu, pCtx, &NewRsp, cbPop); /* Commit it. */ pCtx->rip = NewRip.u; pCtx->rsp = NewRsp.u; pCtx->eflags.Bits.u1RF = 0; /* Flush the prefetch buffer. */ #ifndef IEM_WITH_CODE_TLB pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements enter. * * We're doing this in C because the instruction is insane, even for the * u8NestingLevel=0 case dealing with the stack is tedious. * * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* Push RBP, saving the old value in TmpRbp. */ RTUINT64U NewRsp; NewRsp.u = pCtx->rsp; RTUINT64U TmpRbp; TmpRbp.u = pCtx->rbp; RTUINT64U NewRbp; VBOXSTRICTRC rcStrict; if (enmEffOpSize == IEMMODE_64BIT) { rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp); NewRbp = NewRsp; } else if (enmEffOpSize == IEMMODE_32BIT) { rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp); NewRbp = NewRsp; } else { rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp); NewRbp = TmpRbp; NewRbp.Words.w0 = NewRsp.Words.w0; } if (rcStrict != VINF_SUCCESS) return rcStrict; /* Copy the parameters (aka nesting levels by Intel). */ cParameters &= 0x1f; if (cParameters > 0) { switch (enmEffOpSize) { case IEMMODE_16BIT: if (pCtx->ss.Attr.n.u1DefBig) TmpRbp.DWords.dw0 -= 2; else TmpRbp.Words.w0 -= 2; do { uint16_t u16Tmp; rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp); if (rcStrict != VINF_SUCCESS) break; rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp); } while (--cParameters > 0 && rcStrict == VINF_SUCCESS); break; case IEMMODE_32BIT: if (pCtx->ss.Attr.n.u1DefBig) TmpRbp.DWords.dw0 -= 4; else TmpRbp.Words.w0 -= 4; do { uint32_t u32Tmp; rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp); if (rcStrict != VINF_SUCCESS) break; rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp); } while (--cParameters > 0 && rcStrict == VINF_SUCCESS); break; case IEMMODE_64BIT: TmpRbp.u -= 8; do { uint64_t u64Tmp; rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp); if (rcStrict != VINF_SUCCESS) break; rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp); } while (--cParameters > 0 && rcStrict == VINF_SUCCESS); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } if (rcStrict != VINF_SUCCESS) return VINF_SUCCESS; /* Push the new RBP */ if (enmEffOpSize == IEMMODE_64BIT) rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp); else if (enmEffOpSize == IEMMODE_32BIT) rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp); else rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; } /* Recalc RSP. */ iemRegSubFromRspEx(pVCpu, pCtx, &NewRsp, cbFrame); /** @todo Should probe write access at the new RSP according to AMD. */ /* Commit it. */ pCtx->rbp = NewRbp.u; pCtx->rsp = NewRsp.u; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements leave. * * We're doing this in C because messing with the stack registers is annoying * since they depends on SS attributes. * * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* Calculate the intermediate RSP from RBP and the stack attributes. */ RTUINT64U NewRsp; if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) NewRsp.u = pCtx->rbp; else if (pCtx->ss.Attr.n.u1DefBig) NewRsp.u = pCtx->ebp; else { /** @todo Check that LEAVE actually preserve the high EBP bits. */ NewRsp.u = pCtx->rsp; NewRsp.Words.w0 = pCtx->bp; } /* Pop RBP according to the operand size. */ VBOXSTRICTRC rcStrict; RTUINT64U NewRbp; switch (enmEffOpSize) { case IEMMODE_16BIT: NewRbp.u = pCtx->rbp; rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp); break; case IEMMODE_32BIT: NewRbp.u = 0; rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp); break; case IEMMODE_64BIT: rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp); break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } if (rcStrict != VINF_SUCCESS) return rcStrict; /* Commit it. */ pCtx->rbp = NewRbp.u; pCtx->rsp = NewRsp.u; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements int3 and int XX. * * @param u8Int The interrupt vector number. * @param enmInt The int instruction type. */ IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt) { Assert(pVCpu->iem.s.cXcptRecursions == 0); return iemRaiseXcptOrInt(pVCpu, cbInstr, u8Int, IEM_XCPT_FLAGS_T_SOFT_INT | enmInt, 0, 0); } /** * Implements iret for real mode and V8086 mode. * * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); X86EFLAGS Efl; Efl.u = IEMMISC_GET_EFL(pVCpu, pCtx); NOREF(cbInstr); /* * iret throws an exception if VME isn't enabled. */ if ( Efl.Bits.u1VM && Efl.Bits.u2IOPL != 3 && !(pCtx->cr4 & X86_CR4_VME)) return iemRaiseGeneralProtectionFault0(pVCpu); /* * Do the stack bits, but don't commit RSP before everything checks * out right. */ Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT); VBOXSTRICTRC rcStrict; RTCPTRUNION uFrame; uint16_t uNewCs; uint32_t uNewEip; uint32_t uNewFlags; uint64_t uNewRsp; if (enmEffOpSize == IEMMODE_32BIT) { rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; uNewEip = uFrame.pu32[0]; if (uNewEip > UINT16_MAX) return iemRaiseGeneralProtectionFault0(pVCpu); uNewCs = (uint16_t)uFrame.pu32[1]; uNewFlags = uFrame.pu32[2]; uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/ | X86_EFL_ID; if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386) uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP); uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1); } else { rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; uNewEip = uFrame.pu16[0]; uNewCs = uFrame.pu16[1]; uNewFlags = uFrame.pu16[2]; uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT; uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF); /** @todo The intel pseudo code does not indicate what happens to * reserved flags. We just ignore them. */ /* Ancient CPU adjustments: See iemCImpl_popf. */ if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286) uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL); } rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv); if (RT_LIKELY(rcStrict == VINF_SUCCESS)) { /* extremely likely */ } else return rcStrict; /** @todo Check how this is supposed to work if sp=0xfffe. */ Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n", uNewCs, uNewEip, uNewFlags, uNewRsp)); /* * Check the limit of the new EIP. */ /** @todo Only the AMD pseudo code check the limit here, what's * right? */ if (uNewEip > pCtx->cs.u32Limit) return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION); /* * V8086 checks and flag adjustments */ if (Efl.Bits.u1VM) { if (Efl.Bits.u2IOPL == 3) { /* Preserve IOPL and clear RF. */ uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF); uNewFlags |= Efl.u & (X86_EFL_IOPL); } else if ( enmEffOpSize == IEMMODE_16BIT && ( !(uNewFlags & X86_EFL_IF) || !Efl.Bits.u1VIP ) && !(uNewFlags & X86_EFL_TF) ) { /* Move IF to VIF, clear RF and preserve IF and IOPL.*/ uNewFlags &= ~X86_EFL_VIF; uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9); uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF); uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL); } else return iemRaiseGeneralProtectionFault0(pVCpu); Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags)); } /* * Commit the operation. */ #ifdef DBGFTRACE_ENABLED RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx", pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewRsp); #endif pCtx->rsp = uNewRsp; pCtx->rip = uNewEip; pCtx->cs.Sel = uNewCs; pCtx->cs.ValidSel = uNewCs; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.u64Base = (uint32_t)uNewCs << 4; /** @todo do we load attribs and limit as well? */ Assert(uNewFlags & X86_EFL_1); IEMMISC_SET_EFL(pVCpu, pCtx, uNewFlags); /* Flush the prefetch buffer. */ #ifdef IEM_WITH_CODE_TLB pVCpu->iem.s.pbInstrBuf = NULL; #else pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Loads a segment register when entering V8086 mode. * * @param pSReg The segment register. * @param uSeg The segment to load. */ static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg) { pSReg->Sel = uSeg; pSReg->ValidSel = uSeg; pSReg->fFlags = CPUMSELREG_FLAGS_VALID; pSReg->u64Base = (uint32_t)uSeg << 4; pSReg->u32Limit = 0xffff; pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */ /** @todo Testcase: Check if VT-x really needs this and what it does itself when * IRET'ing to V8086. */ } /** * Implements iret for protected mode returning to V8086 mode. * * @param pCtx Pointer to the CPU context. * @param uNewEip The new EIP. * @param uNewCs The new CS. * @param uNewFlags The new EFLAGS. * @param uNewRsp The RSP after the initial IRET frame. * * @note This can only be a 32-bit iret du to the X86_EFL_VM position. */ IEM_CIMPL_DEF_5(iemCImpl_iret_prot_v8086, PCPUMCTX, pCtx, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp) { RT_NOREF_PV(cbInstr); /* * Pop the V8086 specific frame bits off the stack. */ VBOXSTRICTRC rcStrict; RTCPTRUNION uFrame; rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; uint32_t uNewEsp = uFrame.pu32[0]; uint16_t uNewSs = uFrame.pu32[1]; uint16_t uNewEs = uFrame.pu32[2]; uint16_t uNewDs = uFrame.pu32[3]; uint16_t uNewFs = uFrame.pu32[4]; uint16_t uNewGs = uFrame.pu32[5]; rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */ if (rcStrict != VINF_SUCCESS) return rcStrict; /* * Commit the operation. */ uNewFlags &= X86_EFL_LIVE_MASK; uNewFlags |= X86_EFL_RA1_MASK; #ifdef DBGFTRACE_ENABLED RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x", pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp); #endif Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp)); IEMMISC_SET_EFL(pVCpu, pCtx, uNewFlags); iemCImplCommonV8086LoadSeg(&pCtx->cs, uNewCs); iemCImplCommonV8086LoadSeg(&pCtx->ss, uNewSs); iemCImplCommonV8086LoadSeg(&pCtx->es, uNewEs); iemCImplCommonV8086LoadSeg(&pCtx->ds, uNewDs); iemCImplCommonV8086LoadSeg(&pCtx->fs, uNewFs); iemCImplCommonV8086LoadSeg(&pCtx->gs, uNewGs); pCtx->rip = (uint16_t)uNewEip; pCtx->rsp = uNewEsp; /** @todo check this out! */ pVCpu->iem.s.uCpl = 3; /* Flush the prefetch buffer. */ #ifdef IEM_WITH_CODE_TLB pVCpu->iem.s.pbInstrBuf = NULL; #else pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements iret for protected mode returning via a nested task. * * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize) { Log7(("iemCImpl_iret_prot_NestedTask:\n")); #ifndef IEM_IMPLEMENTS_TASKSWITCH IEM_RETURN_ASPECT_NOT_IMPLEMENTED(); #else RT_NOREF_PV(enmEffOpSize); /* * Read the segment selector in the link-field of the current TSS. */ RTSEL uSelRet; PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pCtx->tr.u64Base); if (rcStrict != VINF_SUCCESS) return rcStrict; /* * Fetch the returning task's TSS descriptor from the GDT. */ if (uSelRet & X86_SEL_LDT) { Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet)); return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet); } IEMSELDESC TssDesc; rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP); if (rcStrict != VINF_SUCCESS) return rcStrict; if (TssDesc.Legacy.Gate.u1DescType) { Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet)); return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL); } if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY) { Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type)); return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL); } if (!TssDesc.Legacy.Gate.u1Present) { Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL); } uint32_t uNextEip = pCtx->eip + cbInstr; return iemTaskSwitch(pVCpu, pCtx, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelRet, &TssDesc); #endif } /** * Implements iret for protected mode * * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); NOREF(cbInstr); Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT); /* * Nested task return. */ if (pCtx->eflags.Bits.u1NT) return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize); /* * Normal return. * * Do the stack bits, but don't commit RSP before everything checks * out right. */ Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT); VBOXSTRICTRC rcStrict; RTCPTRUNION uFrame; uint16_t uNewCs; uint32_t uNewEip; uint32_t uNewFlags; uint64_t uNewRsp; if (enmEffOpSize == IEMMODE_32BIT) { rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; uNewEip = uFrame.pu32[0]; uNewCs = (uint16_t)uFrame.pu32[1]; uNewFlags = uFrame.pu32[2]; } else { rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; uNewEip = uFrame.pu16[0]; uNewCs = uFrame.pu16[1]; uNewFlags = uFrame.pu16[2]; } rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */ if (RT_LIKELY(rcStrict == VINF_SUCCESS)) { /* extremely likely */ } else return rcStrict; Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl)); /* * We're hopefully not returning to V8086 mode... */ if ( (uNewFlags & X86_EFL_VM) && pVCpu->iem.s.uCpl == 0) { Assert(enmEffOpSize == IEMMODE_32BIT); return IEM_CIMPL_CALL_5(iemCImpl_iret_prot_v8086, pCtx, uNewEip, uNewCs, uNewFlags, uNewRsp); } /* * Protected mode. */ /* Read the CS descriptor. */ if (!(uNewCs & X86_SEL_MASK_OFF_RPL)) { Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip)); return iemRaiseGeneralProtectionFault0(pVCpu); } IEMSELDESC DescCS; rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP); if (rcStrict != VINF_SUCCESS) { Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* Must be a code descriptor. */ if (!DescCS.Legacy.Gen.u1DescType) { Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)) { Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } #ifdef VBOX_WITH_RAW_MODE_NOT_R0 /* Raw ring-0 and ring-1 compression adjustments for PATM performance tricks and other CS leaks. */ PVM pVM = pVCpu->CTX_SUFF(pVM); if (EMIsRawRing0Enabled(pVM) && !HMIsEnabled(pVM)) { if ((uNewCs & X86_SEL_RPL) == 1) { if ( pVCpu->iem.s.uCpl == 0 && ( !EMIsRawRing1Enabled(pVM) || pCtx->cs.Sel == (uNewCs & X86_SEL_MASK_OFF_RPL)) ) { Log(("iret: Ring-0 compression fix: uNewCS=%#x -> %#x\n", uNewCs, uNewCs & X86_SEL_MASK_OFF_RPL)); uNewCs &= X86_SEL_MASK_OFF_RPL; } # ifdef LOG_ENABLED else if (pVCpu->iem.s.uCpl <= 1 && EMIsRawRing1Enabled(pVM)) Log(("iret: uNewCs=%#x genuine return to ring-1.\n", uNewCs)); # endif } else if ( (uNewCs & X86_SEL_RPL) == 2 && EMIsRawRing1Enabled(pVM) && pVCpu->iem.s.uCpl <= 1) { Log(("iret: Ring-1 compression fix: uNewCS=%#x -> %#x\n", uNewCs, (uNewCs & X86_SEL_MASK_OFF_RPL) | 1)); uNewCs = (uNewCs & X86_SEL_MASK_OFF_RPL) | 2; } } #endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ /* Privilege checks. */ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)) { if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl) { Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } } else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl) { Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl) { Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } /* Present? */ if (!DescCS.Legacy.Gen.u1Present) { Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs); } uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy); /* * Return to outer level? */ if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl) { uint16_t uNewSS; uint32_t uNewESP; if (enmEffOpSize == IEMMODE_32BIT) { rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; /** @todo We might be popping a 32-bit ESP from the IRET frame, but whether * 16-bit or 32-bit are being loaded into SP depends on the D/B * bit of the popped SS selector it turns out. */ uNewESP = uFrame.pu32[0]; uNewSS = (uint16_t)uFrame.pu32[1]; } else { rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; uNewESP = uFrame.pu16[0]; uNewSS = uFrame.pu16[1]; } rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); if (rcStrict != VINF_SUCCESS) return rcStrict; Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP)); /* Read the SS descriptor. */ if (!(uNewSS & X86_SEL_MASK_OFF_RPL)) { Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP)); return iemRaiseGeneralProtectionFault0(pVCpu); } IEMSELDESC DescSS; rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */ if (rcStrict != VINF_SUCCESS) { Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n", uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* Privilege checks. */ if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL)) { Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS); } if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL)) { Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS); } /* Must be a writeable data segment descriptor. */ if (!DescSS.Legacy.Gen.u1DescType) { Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS); } if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE) { Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS); } /* Present? */ if (!DescSS.Legacy.Gen.u1Present) { Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP)); return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS); } uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy); /* Check EIP. */ if (uNewEip > cbLimitCS) { Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS)); /** @todo: Which is it, #GP(0) or #GP(sel)? */ return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs); } /* * Commit the changes, marking CS and SS accessed first since * that may fail. */ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs); if (rcStrict != VINF_SUCCESS) return rcStrict; DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS); if (rcStrict != VINF_SUCCESS) return rcStrict; DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT; if (enmEffOpSize != IEMMODE_16BIT) fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID; if (pVCpu->iem.s.uCpl == 0) fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */ else if (pVCpu->iem.s.uCpl <= pCtx->eflags.Bits.u2IOPL) fEFlagsMask |= X86_EFL_IF; if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386) fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP); uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu, pCtx); fEFlagsNew &= ~fEFlagsMask; fEFlagsNew |= uNewFlags & fEFlagsMask; #ifdef DBGFTRACE_ENABLED RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x", pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP); #endif IEMMISC_SET_EFL(pVCpu, pCtx, fEFlagsNew); pCtx->rip = uNewEip; pCtx->cs.Sel = uNewCs; pCtx->cs.ValidSel = uNewCs; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); pCtx->cs.u32Limit = cbLimitCS; pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy); pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx); pCtx->ss.Sel = uNewSS; pCtx->ss.ValidSel = uNewSS; pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy); pCtx->ss.u32Limit = cbLimitSs; pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy); if (!pCtx->ss.Attr.n.u1DefBig) pCtx->sp = (uint16_t)uNewESP; else pCtx->rsp = uNewESP; pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL; iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->ds); iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->es); iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->fs); iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->gs); /* Done! */ } /* * Return to the same level. */ else { /* Check EIP. */ if (uNewEip > cbLimitCS) { Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS)); /** @todo: Which is it, #GP(0) or #GP(sel)? */ return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs); } /* * Commit the changes, marking CS first since it may fail. */ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs); if (rcStrict != VINF_SUCCESS) return rcStrict; DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } X86EFLAGS NewEfl; NewEfl.u = IEMMISC_GET_EFL(pVCpu, pCtx); uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT; if (enmEffOpSize != IEMMODE_16BIT) fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID; if (pVCpu->iem.s.uCpl == 0) fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */ else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL) fEFlagsMask |= X86_EFL_IF; if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386) fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP); NewEfl.u &= ~fEFlagsMask; NewEfl.u |= fEFlagsMask & uNewFlags; #ifdef DBGFTRACE_ENABLED RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx", pVCpu->iem.s.uCpl, pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, pCtx->ss.Sel, uNewRsp); #endif IEMMISC_SET_EFL(pVCpu, pCtx, NewEfl.u); pCtx->rip = uNewEip; pCtx->cs.Sel = uNewCs; pCtx->cs.ValidSel = uNewCs; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); pCtx->cs.u32Limit = cbLimitCS; pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy); pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx); if (!pCtx->ss.Attr.n.u1DefBig) pCtx->sp = (uint16_t)uNewRsp; else pCtx->rsp = uNewRsp; /* Done! */ } /* Flush the prefetch buffer. */ #ifdef IEM_WITH_CODE_TLB pVCpu->iem.s.pbInstrBuf = NULL; #else pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements iret for long mode * * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); NOREF(cbInstr); /* * Nested task return is not supported in long mode. */ if (pCtx->eflags.Bits.u1NT) { Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pCtx->eflags.u)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* * Normal return. * * Do the stack bits, but don't commit RSP before everything checks * out right. */ VBOXSTRICTRC rcStrict; RTCPTRUNION uFrame; uint64_t uNewRip; uint16_t uNewCs; uint16_t uNewSs; uint32_t uNewFlags; uint64_t uNewRsp; if (enmEffOpSize == IEMMODE_64BIT) { rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; uNewRip = uFrame.pu64[0]; uNewCs = (uint16_t)uFrame.pu64[1]; uNewFlags = (uint32_t)uFrame.pu64[2]; uNewRsp = uFrame.pu64[3]; uNewSs = (uint16_t)uFrame.pu64[4]; } else if (enmEffOpSize == IEMMODE_32BIT) { rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; uNewRip = uFrame.pu32[0]; uNewCs = (uint16_t)uFrame.pu32[1]; uNewFlags = uFrame.pu32[2]; uNewRsp = uFrame.pu32[3]; uNewSs = (uint16_t)uFrame.pu32[4]; } else { Assert(enmEffOpSize == IEMMODE_16BIT); rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp); if (rcStrict != VINF_SUCCESS) return rcStrict; uNewRip = uFrame.pu16[0]; uNewCs = uFrame.pu16[1]; uNewFlags = uFrame.pu16[2]; uNewRsp = uFrame.pu16[3]; uNewSs = uFrame.pu16[4]; } rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */ if (RT_LIKELY(rcStrict == VINF_SUCCESS)) { /* extremely like */ } else return rcStrict; Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp)); /* * Check stuff. */ /* Read the CS descriptor. */ if (!(uNewCs & X86_SEL_MASK_OFF_RPL)) { Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp)); return iemRaiseGeneralProtectionFault0(pVCpu); } IEMSELDESC DescCS; rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP); if (rcStrict != VINF_SUCCESS) { Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* Must be a code descriptor. */ if ( !DescCS.Legacy.Gen.u1DescType || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)) { Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } /* Privilege checks. */ uint8_t const uNewCpl = uNewCs & X86_SEL_RPL; if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)) { if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl) { Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } } else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl) { Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl) { Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs); } /* Present? */ if (!DescCS.Legacy.Gen.u1Present) { Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs); } uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy); /* Read the SS descriptor. */ IEMSELDESC DescSS; if (!(uNewSs & X86_SEL_MASK_OFF_RPL)) { if ( !DescCS.Legacy.Gen.u1Long || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */ || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */ { Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp)); return iemRaiseGeneralProtectionFault0(pVCpu); } DescSS.Legacy.u = 0; } else { rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */ if (rcStrict != VINF_SUCCESS) { Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n", uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } } /* Privilege checks. */ if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL)) { Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs); } uint32_t cbLimitSs; if (!(uNewSs & X86_SEL_MASK_OFF_RPL)) cbLimitSs = UINT32_MAX; else { if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL)) { Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs); } /* Must be a writeable data segment descriptor. */ if (!DescSS.Legacy.Gen.u1DescType) { Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs); } if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE) { Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs); } /* Present? */ if (!DescSS.Legacy.Gen.u1Present) { Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp)); return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs); } cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy); } /* Check EIP. */ if (DescCS.Legacy.Gen.u1Long) { if (!IEM_IS_CANONICAL(uNewRip)) { Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp)); return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs); } } else { if (uNewRip > cbLimitCS) { Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS)); /** @todo: Which is it, #GP(0) or #GP(sel)? */ return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs); } } /* * Commit the changes, marking CS and SS accessed first since * that may fail. */ /** @todo where exactly are these actually marked accessed by a real CPU? */ if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs); if (rcStrict != VINF_SUCCESS) return rcStrict; DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs); if (rcStrict != VINF_SUCCESS) return rcStrict; DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT; if (enmEffOpSize != IEMMODE_16BIT) fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID; if (pVCpu->iem.s.uCpl == 0) fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */ else if (pVCpu->iem.s.uCpl <= pCtx->eflags.Bits.u2IOPL) fEFlagsMask |= X86_EFL_IF; uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu, pCtx); fEFlagsNew &= ~fEFlagsMask; fEFlagsNew |= uNewFlags & fEFlagsMask; #ifdef DBGFTRACE_ENABLED RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx", pVCpu->iem.s.uCpl, uNewCpl, pCtx->rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp); #endif IEMMISC_SET_EFL(pVCpu, pCtx, fEFlagsNew); pCtx->rip = uNewRip; pCtx->cs.Sel = uNewCs; pCtx->cs.ValidSel = uNewCs; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy); pCtx->cs.u32Limit = cbLimitCS; pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy); pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx); if (pCtx->cs.Attr.n.u1Long || pCtx->cs.Attr.n.u1DefBig) pCtx->rsp = uNewRsp; else pCtx->sp = (uint16_t)uNewRsp; pCtx->ss.Sel = uNewSs; pCtx->ss.ValidSel = uNewSs; if (!(uNewSs & X86_SEL_MASK_OFF_RPL)) { pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT); pCtx->ss.u32Limit = UINT32_MAX; pCtx->ss.u64Base = 0; Log2(("iretq new SS: NULL\n")); } else { pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy); pCtx->ss.u32Limit = cbLimitSs; pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy); Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u)); } if (pVCpu->iem.s.uCpl != uNewCpl) { pVCpu->iem.s.uCpl = uNewCpl; iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->ds); iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->es); iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->fs); iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->gs); } /* Flush the prefetch buffer. */ #ifdef IEM_WITH_CODE_TLB pVCpu->iem.s.pbInstrBuf = NULL; #else pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements iret. * * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize) { /* * First, clear NMI blocking, if any, before causing any exceptions. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS); /* * The SVM nested-guest intercept for iret takes priority over all exceptions, * see AMD spec. "15.9 Instruction Intercepts". */ if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET)) { Log(("iret: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Call a mode specific worker. */ if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize); if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize); return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize); } /** * Implements SYSCALL (AMD and Intel64). * * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_0(iemCImpl_syscall) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Check preconditions. * * Note that CPUs described in the documentation may load a few odd values * into CS and SS than we allow here. This has yet to be checked on real * hardware. */ if (!(pCtx->msrEFER & MSR_K6_EFER_SCE)) { Log(("syscall: Not enabled in EFER -> #UD\n")); return iemRaiseUndefinedOpcode(pVCpu); } if (!(pCtx->cr0 & X86_CR0_PE)) { Log(("syscall: Protected mode is required -> #GP(0)\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(pCtx)) { Log(("syscall: Only available in long mode on intel -> #UD\n")); return iemRaiseUndefinedOpcode(pVCpu); } /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */ /** @todo what about LDT selectors? Shouldn't matter, really. */ uint16_t uNewCs = (pCtx->msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL; uint16_t uNewSs = uNewCs + 8; if (uNewCs == 0 || uNewSs == 0) { Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } /* Long mode and legacy mode differs. */ if (CPUMIsGuestInLongModeEx(pCtx)) { uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->msrLSTAR : pCtx-> msrCSTAR; /* This test isn't in the docs, but I'm not trusting the guys writing the MSRs to have validated the values as canonical like they should. */ if (!IEM_IS_CANONICAL(uNewRip)) { Log(("syscall: Only available in long mode on intel -> #UD\n")); return iemRaiseUndefinedOpcode(pVCpu); } /* * Commit it. */ Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, uNewRip)); pCtx->rcx = pCtx->rip + cbInstr; pCtx->rip = uNewRip; pCtx->rflags.u &= ~X86_EFL_RF; pCtx->r11 = pCtx->rflags.u; pCtx->rflags.u &= ~pCtx->msrSFMASK; pCtx->rflags.u |= X86_EFL_1; pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC; pCtx->ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC; } else { /* * Commit it. */ Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pCtx->cs, pCtx->eip, pCtx->eflags.u, uNewCs, (uint32_t)(pCtx->msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK))); pCtx->rcx = pCtx->eip + cbInstr; pCtx->rip = pCtx->msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK; pCtx->rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF); pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC; pCtx->ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC; } pCtx->cs.Sel = uNewCs; pCtx->cs.ValidSel = uNewCs; pCtx->cs.u64Base = 0; pCtx->cs.u32Limit = UINT32_MAX; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->ss.Sel = uNewSs; pCtx->ss.ValidSel = uNewSs; pCtx->ss.u64Base = 0; pCtx->ss.u32Limit = UINT32_MAX; pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID; /* Flush the prefetch buffer. */ #ifdef IEM_WITH_CODE_TLB pVCpu->iem.s.pbInstrBuf = NULL; #else pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Implements SYSRET (AMD and Intel64). */ IEM_CIMPL_DEF_0(iemCImpl_sysret) { RT_NOREF_PV(cbInstr); PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Check preconditions. * * Note that CPUs described in the documentation may load a few odd values * into CS and SS than we allow here. This has yet to be checked on real * hardware. */ if (!(pCtx->msrEFER & MSR_K6_EFER_SCE)) { Log(("sysret: Not enabled in EFER -> #UD\n")); return iemRaiseUndefinedOpcode(pVCpu); } if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(pCtx)) { Log(("sysret: Only available in long mode on intel -> #UD\n")); return iemRaiseUndefinedOpcode(pVCpu); } if (!(pCtx->cr0 & X86_CR0_PE)) { Log(("sysret: Protected mode is required -> #GP(0)\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } if (pVCpu->iem.s.uCpl != 0) { Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFault0(pVCpu); } /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */ uint16_t uNewCs = (pCtx->msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL; uint16_t uNewSs = uNewCs + 8; if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT) uNewCs += 16; if (uNewCs == 0 || uNewSs == 0) { Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } /* * Commit it. */ if (CPUMIsGuestInLongModeEx(pCtx)) { if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT) { Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n", pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, pCtx->rcx, pCtx->r11)); /* Note! We disregard intel manual regarding the RCX cananonical check, ask intel+xen why AMD doesn't do it. */ pCtx->rip = pCtx->rcx; pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT); } else { Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n", pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, pCtx->ecx, pCtx->r11)); pCtx->rip = pCtx->ecx; pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT); } /** @todo testcase: See what kind of flags we can make SYSRET restore and * what it really ignores. RF and VM are hinted at being zero, by AMD. */ pCtx->rflags.u = pCtx->r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP); pCtx->rflags.u |= X86_EFL_1; } else { Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pCtx->cs, pCtx->eip, pCtx->eflags.u, uNewCs, pCtx->ecx)); pCtx->rip = pCtx->rcx; pCtx->rflags.u |= X86_EFL_IF; pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT); } pCtx->cs.Sel = uNewCs | 3; pCtx->cs.ValidSel = uNewCs | 3; pCtx->cs.u64Base = 0; pCtx->cs.u32Limit = UINT32_MAX; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->ss.Sel = uNewSs | 3; pCtx->ss.ValidSel = uNewSs | 3; pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID; /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */ pCtx->ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT); /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged * on sysret. */ /* Flush the prefetch buffer. */ #ifdef IEM_WITH_CODE_TLB pVCpu->iem.s.pbInstrBuf = NULL; #else pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode; #endif return VINF_SUCCESS; } /** * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'. * * @param iSegReg The segment register number (valid). * @param uSel The new selector value. */ IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel) { /*PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);*/ uint16_t *pSel = iemSRegRef(pVCpu, iSegReg); PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg); Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS); /* * Real mode and V8086 mode are easy. */ if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT && IEM_IS_REAL_OR_V86_MODE(pVCpu)) { *pSel = uSel; pHid->u64Base = (uint32_t)uSel << 4; pHid->ValidSel = uSel; pHid->fFlags = CPUMSELREG_FLAGS_VALID; #if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */ /** @todo Does the CPU actually load limits and attributes in the * real/V8086 mode segment load case? It doesn't for CS in far * jumps... Affects unreal mode. */ pHid->u32Limit = 0xffff; pHid->Attr.u = 0; pHid->Attr.n.u1Present = 1; pHid->Attr.n.u1DescType = 1; pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS ? X86_SEL_TYPE_RW : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE; #endif CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /* * Protected mode. * * Check if it's a null segment selector value first, that's OK for DS, ES, * FS and GS. If not null, then we have to load and parse the descriptor. */ if (!(uSel & X86_SEL_MASK_OFF_RPL)) { Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */ if (iSegReg == X86_SREG_SS) { /* In 64-bit kernel mode, the stack can be 0 because of the way interrupts are dispatched. AMD seems to have a slighly more relaxed relationship to SS.RPL than intel does. */ /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */ if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT || pVCpu->iem.s.uCpl > 2 || ( uSel != pVCpu->iem.s.uCpl && !IEM_IS_GUEST_CPU_AMD(pVCpu)) ) { Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel)); return iemRaiseGeneralProtectionFault0(pVCpu); } } *pSel = uSel; /* Not RPL, remember :-) */ iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel); if (iSegReg == X86_SREG_SS) pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT; Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid)); CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /* Fetch the descriptor. */ IEMSELDESC Desc; VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */ if (rcStrict != VINF_SUCCESS) return rcStrict; /* Check GPs first. */ if (!Desc.Legacy.Gen.u1DescType) { Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } if (iSegReg == X86_SREG_SS) /* SS gets different treatment */ { if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) ) { Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl) { Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl) { Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } } else { if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE) { Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) { #if 0 /* this is what intel says. */ if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl) { Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n", iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } #else /* this is what makes more sense. */ if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl) { Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n", iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl) { Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n", iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel); } #endif } } /* Is it there? */ if (!Desc.Legacy.Gen.u1Present) { Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel); } /* The base and limit. */ uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy); uint64_t u64Base = X86DESC_BASE(&Desc.Legacy); /* * Ok, everything checked out fine. Now set the accessed bit before * committing the result into the registers. */ if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED)) { rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel); if (rcStrict != VINF_SUCCESS) return rcStrict; Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED; } /* commit */ *pSel = uSel; pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy); pHid->u32Limit = cbLimit; pHid->u64Base = u64Base; pHid->ValidSel = uSel; pHid->fFlags = CPUMSELREG_FLAGS_VALID; /** @todo check if the hidden bits are loaded correctly for 64-bit * mode. */ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid)); CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'mov SReg, r/m'. * * @param iSegReg The segment register number (valid). * @param uSel The new selector value. */ IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel) { VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel); if (rcStrict == VINF_SUCCESS) { if (iSegReg == X86_SREG_SS) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); EMSetInhibitInterruptsPC(pVCpu, pCtx->rip); } } return rcStrict; } /** * Implements 'pop SReg'. * * @param iSegReg The segment register number (valid). * @param enmEffOpSize The efficient operand size (valid). */ IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); VBOXSTRICTRC rcStrict; /* * Read the selector off the stack and join paths with mov ss, reg. */ RTUINT64U TmpRsp; TmpRsp.u = pCtx->rsp; switch (enmEffOpSize) { case IEMMODE_16BIT: { uint16_t uSel; rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel); break; } case IEMMODE_32BIT: { uint32_t u32Value; rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value); break; } case IEMMODE_64BIT: { uint64_t u64Value; rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp); if (rcStrict == VINF_SUCCESS) rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value); break; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } /* * Commit the stack on success. */ if (rcStrict == VINF_SUCCESS) { pCtx->rsp = TmpRsp.u; if (iSegReg == X86_SREG_SS) EMSetInhibitInterruptsPC(pVCpu, pCtx->rip); } return rcStrict; } /** * Implements lgs, lfs, les, lds & lss. */ IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize) { /*PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);*/ VBOXSTRICTRC rcStrict; /* * Use iemCImpl_LoadSReg to do the tricky segment register loading. */ /** @todo verify and test that mov, pop and lXs works the segment * register loading in the exact same way. */ rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel); if (rcStrict == VINF_SUCCESS) { switch (enmEffOpSize) { case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg; break; case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg; break; case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg; break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } } return rcStrict; } /** * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory. * * @retval VINF_SUCCESS on success. * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok. * @retval iemMemFetchSysU64 return value. * * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param uSel The selector value. * @param fAllowSysDesc Whether system descriptors are OK or not. * @param pDesc Where to return the descriptor on success. */ static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPU pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc) { pDesc->Long.au64[0] = 0; pDesc->Long.au64[1] = 0; if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */ return VINF_IEM_SELECTOR_NOT_OK; /* Within the table limits? */ PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); RTGCPTR GCPtrBase; if (uSel & X86_SEL_LDT) { if ( !pCtx->ldtr.Attr.n.u1Present || (uSel | X86_SEL_RPL_LDT) > pCtx->ldtr.u32Limit ) return VINF_IEM_SELECTOR_NOT_OK; GCPtrBase = pCtx->ldtr.u64Base; } else { if ((uSel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt) return VINF_IEM_SELECTOR_NOT_OK; GCPtrBase = pCtx->gdtr.pGdt; } /* Fetch the descriptor. */ VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK)); if (rcStrict != VINF_SUCCESS) return rcStrict; if (!pDesc->Legacy.Gen.u1DescType) { if (!fAllowSysDesc) return VINF_IEM_SELECTOR_NOT_OK; if (CPUMIsGuestInLongModeEx(pCtx)) { rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8); if (rcStrict != VINF_SUCCESS) return rcStrict; } } return VINF_SUCCESS; } /** * Implements verr (fWrite = false) and verw (fWrite = true). */ IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite) { Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu)); /** @todo figure whether the accessed bit is set or not. */ bool fAccessible = true; IEMSELDESC Desc; VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc); if (rcStrict == VINF_SUCCESS) { /* Check the descriptor, order doesn't matter much here. */ if ( !Desc.Legacy.Gen.u1DescType || !Desc.Legacy.Gen.u1Present) fAccessible = false; else { if ( fWrite ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE) fAccessible = false; /** @todo testcase for the conforming behavior. */ if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) { if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl) fAccessible = false; else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl) fAccessible = false; } } } else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK) fAccessible = false; else return rcStrict; /* commit */ IEM_GET_CTX(pVCpu)->eflags.Bits.u1ZF = fAccessible; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements LAR and LSL with 64-bit operand size. * * @returns VINF_SUCCESS. * @param pu16Dst Pointer to the destination register. * @param uSel The selector to load details for. * @param fIsLar true = LAR, false = LSL. */ IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar) { Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu)); /** @todo figure whether the accessed bit is set or not. */ bool fDescOk = true; IEMSELDESC Desc; VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc); if (rcStrict == VINF_SUCCESS) { /* * Check the descriptor type. */ if (!Desc.Legacy.Gen.u1DescType) { if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu))) { if (Desc.Long.Gen.u5Zeros) fDescOk = false; else switch (Desc.Long.Gen.u4Type) { /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */ case AMD64_SEL_TYPE_SYS_TSS_AVAIL: case AMD64_SEL_TYPE_SYS_TSS_BUSY: case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */ break; case AMD64_SEL_TYPE_SYS_CALL_GATE: fDescOk = fIsLar; break; default: fDescOk = false; break; } } else { switch (Desc.Long.Gen.u4Type) { case X86_SEL_TYPE_SYS_286_TSS_AVAIL: case X86_SEL_TYPE_SYS_286_TSS_BUSY: case X86_SEL_TYPE_SYS_386_TSS_AVAIL: case X86_SEL_TYPE_SYS_386_TSS_BUSY: case X86_SEL_TYPE_SYS_LDT: break; case X86_SEL_TYPE_SYS_286_CALL_GATE: case X86_SEL_TYPE_SYS_TASK_GATE: case X86_SEL_TYPE_SYS_386_CALL_GATE: fDescOk = fIsLar; break; default: fDescOk = false; break; } } } if (fDescOk) { /* * Check the RPL/DPL/CPL interaction.. */ /** @todo testcase for the conforming behavior. */ if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF) || !Desc.Legacy.Gen.u1DescType) { if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl) fDescOk = false; else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl) fDescOk = false; } } if (fDescOk) { /* * All fine, start committing the result. */ if (fIsLar) *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00); else *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy); } } else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK) fDescOk = false; else return rcStrict; /* commit flags value and advance rip. */ IEM_GET_CTX(pVCpu)->eflags.Bits.u1ZF = fDescOk; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements LAR and LSL with 16-bit operand size. * * @returns VINF_SUCCESS. * @param pu16Dst Pointer to the destination register. * @param u16Sel The selector to load details for. * @param fIsLar true = LAR, false = LSL. */ IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar) { uint64_t u64TmpDst = *pu16Dst; IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar); *pu16Dst = u64TmpDst; return VINF_SUCCESS; } /** * Implements lgdt. * * @param iEffSeg The segment of the new gdtr contents * @param GCPtrEffSrc The address of the new gdtr contents. * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize) { if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM); if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES)) { Log(("lgdt: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Fetch the limit and base address. */ uint16_t cbLimit; RTGCPTR GCPtrBase; VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize); if (rcStrict == VINF_SUCCESS) { if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT || X86_IS_CANONICAL(GCPtrBase)) { if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit); else { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); pCtx->gdtr.cbGdt = cbLimit; pCtx->gdtr.pGdt = GCPtrBase; } if (rcStrict == VINF_SUCCESS) iemRegAddToRipAndClearRF(pVCpu, cbInstr); } else { Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase)); return iemRaiseGeneralProtectionFault0(pVCpu); } } return rcStrict; } /** * Implements sgdt. * * @param iEffSeg The segment where to store the gdtr content. * @param GCPtrEffDst The address where to store the gdtr content. */ IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst) { /* * Join paths with sidt. * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if * you really must know. */ PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pCtx->gdtr.cbGdt, pCtx->gdtr.pGdt, iEffSeg, GCPtrEffDst); if (rcStrict == VINF_SUCCESS) iemRegAddToRipAndClearRF(pVCpu, cbInstr); return rcStrict; } /** * Implements lidt. * * @param iEffSeg The segment of the new idtr contents * @param GCPtrEffSrc The address of the new idtr contents. * @param enmEffOpSize The effective operand size. */ IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize) { if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM); if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES)) { Log(("lidt: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Fetch the limit and base address. */ uint16_t cbLimit; RTGCPTR GCPtrBase; VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize); if (rcStrict == VINF_SUCCESS) { if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT || X86_IS_CANONICAL(GCPtrBase)) { if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit); else { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); pCtx->idtr.cbIdt = cbLimit; pCtx->idtr.pIdt = GCPtrBase; } iemRegAddToRipAndClearRF(pVCpu, cbInstr); } else { Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase)); return iemRaiseGeneralProtectionFault0(pVCpu); } } return rcStrict; } /** * Implements sidt. * * @param iEffSeg The segment where to store the idtr content. * @param GCPtrEffDst The address where to store the idtr content. */ IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst) { /* * Join paths with sgdt. * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if * you really must know. */ PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pCtx->idtr.cbIdt, pCtx->idtr.pIdt, iEffSeg, GCPtrEffDst); if (rcStrict == VINF_SUCCESS) iemRegAddToRipAndClearRF(pVCpu, cbInstr); return rcStrict; } /** * Implements lldt. * * @param uNewLdt The new LDT selector value. */ IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Check preconditions. */ if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) { Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt)); return iemRaiseUndefinedOpcode(pVCpu); } if (pVCpu->iem.s.uCpl != 0) { Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFault0(pVCpu); } if (uNewLdt & X86_SEL_LDT) { Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt); } /* * Now, loading a NULL selector is easy. */ if (!(uNewLdt & X86_SEL_MASK_OFF_RPL)) { /* Nested-guest SVM intercept. */ if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES)) { Log(("lldt: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } Log(("lldt %04x: Loading NULL selector.\n", uNewLdt)); if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) CPUMSetGuestLDTR(pVCpu, uNewLdt); else pCtx->ldtr.Sel = uNewLdt; pCtx->ldtr.ValidSel = uNewLdt; pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID; if (IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu)) { pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE; pCtx->ldtr.u64Base = pCtx->ldtr.u32Limit = 0; /* For verfication against REM. */ } else if (IEM_IS_GUEST_CPU_AMD(pVCpu)) { /* AMD-V seems to leave the base and limit alone. */ pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE; } else if (!IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu)) { /* VT-x (Intel 3960x) seems to be doing the following. */ pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D; pCtx->ldtr.u64Base = 0; pCtx->ldtr.u32Limit = UINT32_MAX; } iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /* * Read the descriptor. */ IEMSELDESC Desc; VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */ if (rcStrict != VINF_SUCCESS) return rcStrict; /* Check GPs first. */ if (Desc.Legacy.Gen.u1DescType) { Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL); } if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT) { Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL); } uint64_t u64Base; if (!IEM_IS_LONG_MODE(pVCpu)) u64Base = X86DESC_BASE(&Desc.Legacy); else { if (Desc.Long.Gen.u5Zeros) { Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros)); return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL); } u64Base = X86DESC64_BASE(&Desc.Long); if (!IEM_IS_CANONICAL(u64Base)) { Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base)); return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL); } } /* NP */ if (!Desc.Legacy.Gen.u1Present) { Log(("lldt %#x - segment not present -> #NP\n", uNewLdt)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt); } /* Nested-guest SVM intercept. */ if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES)) { Log(("lldt: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * It checks out alright, update the registers. */ /** @todo check if the actual value is loaded or if the RPL is dropped */ if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL); else pCtx->ldtr.Sel = uNewLdt & X86_SEL_MASK_OFF_RPL; pCtx->ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL; pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy); pCtx->ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy); pCtx->ldtr.u64Base = u64Base; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements lldt. * * @param uNewLdt The new LDT selector value. */ IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Check preconditions. */ if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) { Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr)); return iemRaiseUndefinedOpcode(pVCpu); } if (pVCpu->iem.s.uCpl != 0) { Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFault0(pVCpu); } if (uNewTr & X86_SEL_LDT) { Log(("ltr %04x - LDT selector -> #GP\n", uNewTr)); return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr); } if (!(uNewTr & X86_SEL_MASK_OFF_RPL)) { Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr)); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES)) { Log(("ltr: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Read the descriptor. */ IEMSELDESC Desc; VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */ if (rcStrict != VINF_SUCCESS) return rcStrict; /* Check GPs first. */ if (Desc.Legacy.Gen.u1DescType) { Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL); } if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */ && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL || IEM_IS_LONG_MODE(pVCpu)) ) { Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type)); return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL); } uint64_t u64Base; if (!IEM_IS_LONG_MODE(pVCpu)) u64Base = X86DESC_BASE(&Desc.Legacy); else { if (Desc.Long.Gen.u5Zeros) { Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros)); return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL); } u64Base = X86DESC64_BASE(&Desc.Long); if (!IEM_IS_CANONICAL(u64Base)) { Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base)); return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL); } } /* NP */ if (!Desc.Legacy.Gen.u1Present) { Log(("ltr %#x - segment not present -> #NP\n", uNewTr)); return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr); } /* * Set it busy. * Note! Intel says this should lock down the whole descriptor, but we'll * restrict our selves to 32-bit for now due to lack of inline * assembly and such. */ void *pvDesc; rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pCtx->gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW); if (rcStrict != VINF_SUCCESS) return rcStrict; switch ((uintptr_t)pvDesc & 3) { case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break; case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break; case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break; case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break; } rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW); if (rcStrict != VINF_SUCCESS) return rcStrict; Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK; /* * It checks out alright, update the registers. */ /** @todo check if the actual value is loaded or if the RPL is dropped */ if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL); else pCtx->tr.Sel = uNewTr & X86_SEL_MASK_OFF_RPL; pCtx->tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL; pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy); pCtx->tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy); pCtx->tr.u64Base = u64Base; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements mov GReg,CRx. * * @param iGReg The general register to store the CRx value in. * @param iCrReg The CRx register to read (valid). */ IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); Assert(!pCtx->eflags.Bits.u1VM); if (IEM_IS_SVM_READ_CR_INTERCEPT_SET(pVCpu, iCrReg)) { Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg)); IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg); } /* read it */ uint64_t crX; switch (iCrReg) { case 0: crX = pCtx->cr0; if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386) crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */ break; case 2: crX = pCtx->cr2; break; case 3: crX = pCtx->cr3; break; case 4: crX = pCtx->cr4; break; case 8: { #ifdef VBOX_WITH_NESTED_HWVIRT PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl; if (pVmcbCtrl->IntCtrl.n.u1VIntrMasking) { crX = pVmcbCtrl->IntCtrl.n.u8VTPR; break; } #endif uint8_t uTpr; int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL); if (RT_SUCCESS(rc)) crX = uTpr >> 4; else crX = 0; break; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */ } /* store it */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX; else *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'. * * @param iCrReg The CRx register to write (valid). * @param uNewCrX The new value. * @param enmAccessCrx The instruction that caused the CrX load. * @param iGReg The general register in case of a 'mov CRx,GReg' * instruction. */ IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); VBOXSTRICTRC rcStrict; int rc; #ifndef VBOX_WITH_NESTED_HWVIRT RT_NOREF2(iGReg, enmAccessCrX); #endif /* * Try store it. * Unfortunately, CPUM only does a tiny bit of the work. */ switch (iCrReg) { case 0: { /* * Perform checks. */ uint64_t const uOldCrX = pCtx->cr0; uint32_t const fValid = X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG; /* ET is hardcoded on 486 and later. */ if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486) uNewCrX |= X86_CR0_ET; /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */ else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486) { uNewCrX &= fValid; uNewCrX |= X86_CR0_ET; } else uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET; /* Check for reserved bits. */ if (uNewCrX & ~(uint64_t)fValid) { Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* Check for invalid combinations. */ if ( (uNewCrX & X86_CR0_PG) && !(uNewCrX & X86_CR0_PE) ) { Log(("Trying to set CR0.PG without CR0.PE\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } if ( !(uNewCrX & X86_CR0_CD) && (uNewCrX & X86_CR0_NW) ) { Log(("Trying to clear CR0.CD while leaving CR0.NW set\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } if ( !(uNewCrX & X86_CR0_PG) && (pCtx->cr4 & X86_CR4_PCIDE)) { Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } /* Long mode consistency checks. */ if ( (uNewCrX & X86_CR0_PG) && !(uOldCrX & X86_CR0_PG) && (pCtx->msrEFER & MSR_K6_EFER_LME) ) { if (!(pCtx->cr4 & X86_CR4_PAE)) { Log(("Trying to enabled long mode paging without CR4.PAE set\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } if (pCtx->cs.Attr.n.u1Long) { Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } } /** @todo check reserved PDPTR bits as AMD states. */ /* * SVM nested-guest CR0 write intercepts. */ if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg)) { Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg)); IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg); } if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITES)) { /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */ if ( enmAccessCrX == IEMACCESSCRX_LMSW || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP))) { Assert(enmAccessCrX != IEMACCESSCRX_CLTS); Log(("iemCImpl_load_Cr%#x: TS/MP bit changed or lmsw instr: Guest intercept -> #VMEXIT\n", iCrReg)); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_CR0_SEL_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } } /* * Change CR0. */ if (!IEM_VERIFICATION_ENABLED(pVCpu)) CPUMSetGuestCR0(pVCpu, uNewCrX); else pCtx->cr0 = uNewCrX; Assert(pCtx->cr0 == uNewCrX); /* * Change EFER.LMA if entering or leaving long mode. */ if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG) && (pCtx->msrEFER & MSR_K6_EFER_LME) ) { uint64_t NewEFER = pCtx->msrEFER; if (uNewCrX & X86_CR0_PG) NewEFER |= MSR_K6_EFER_LMA; else NewEFER &= ~MSR_K6_EFER_LMA; if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) CPUMSetGuestEFER(pVCpu, NewEFER); else pCtx->msrEFER = NewEFER; Assert(pCtx->msrEFER == NewEFER); } /* * Inform PGM. */ if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) { if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) ) { rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */); AssertRCReturn(rc, rc); /* ignore informational status codes */ } rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER); } else rcStrict = VINF_SUCCESS; #ifdef IN_RC /* Return to ring-3 for rescheduling if WP or AM changes. */ if ( rcStrict == VINF_SUCCESS && ( (uNewCrX & (X86_CR0_WP | X86_CR0_AM)) != (uOldCrX & (X86_CR0_WP | X86_CR0_AM))) ) rcStrict = VINF_EM_RESCHEDULE; #endif break; } /* * CR2 can be changed without any restrictions. */ case 2: { if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2)) { Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg)); IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg); } pCtx->cr2 = uNewCrX; rcStrict = VINF_SUCCESS; break; } /* * CR3 is relatively simple, although AMD and Intel have different * accounts of how setting reserved bits are handled. We take intel's * word for the lower bits and AMD's for the high bits (63:52). The * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies * on this. */ /** @todo Testcase: Setting reserved bits in CR3, especially before * enabling paging. */ case 3: { /* clear bit 63 from the source operand and indicate no invalidations are required. */ if ( (pCtx->cr4 & X86_CR4_PCIDE) && (uNewCrX & RT_BIT_64(63))) { /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10 * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and * Paging-Structure Caches". */ uNewCrX &= ~RT_BIT_64(63); } /* check / mask the value. */ if (uNewCrX & UINT64_C(0xfff0000000000000)) { Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX)); return iemRaiseGeneralProtectionFault0(pVCpu); } uint64_t fValid; if ( (pCtx->cr4 & X86_CR4_PAE) && (pCtx->msrEFER & MSR_K6_EFER_LME)) fValid = UINT64_C(0x000fffffffffffff); else fValid = UINT64_C(0xffffffff); if (uNewCrX & ~fValid) { Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n", uNewCrX, uNewCrX & ~fValid)); uNewCrX &= fValid; } if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3)) { Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg)); IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg); } /** @todo If we're in PAE mode we should check the PDPTRs for * invalid bits. */ /* Make the change. */ if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) { rc = CPUMSetGuestCR3(pVCpu, uNewCrX); AssertRCSuccessReturn(rc, rc); } else pCtx->cr3 = uNewCrX; /* Inform PGM. */ if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) { if (pCtx->cr0 & X86_CR0_PG) { rc = PGMFlushTLB(pVCpu, pCtx->cr3, !(pCtx->cr4 & X86_CR4_PGE)); AssertRCReturn(rc, rc); /* ignore informational status codes */ } } rcStrict = VINF_SUCCESS; break; } /* * CR4 is a bit more tedious as there are bits which cannot be cleared * under some circumstances and such. */ case 4: { uint64_t const uOldCrX = pCtx->cr4; /** @todo Shouldn't this look at the guest CPUID bits to determine * valid bits? e.g. if guest CPUID doesn't allow X86_CR4_OSXMMEEXCPT, we * should #GP(0). */ /* reserved bits */ uint32_t fValid = X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_OSXMMEEXCPT; //if (xxx) // fValid |= X86_CR4_VMXE; if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fXSaveRstor) fValid |= X86_CR4_OSXSAVE; if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fPcid) fValid |= X86_CR4_PCIDE; if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fFsGsBase) fValid |= X86_CR4_FSGSBASE; if (uNewCrX & ~(uint64_t)fValid) { Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid)); return iemRaiseGeneralProtectionFault0(pVCpu); } bool const fPcide = ((uNewCrX ^ uOldCrX) & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE); bool const fLongMode = CPUMIsGuestInLongModeEx(pCtx); /* PCIDE check. */ if ( fPcide && ( !fLongMode || (pCtx->cr3 & UINT64_C(0xfff)))) { Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pCtx->cr3 & UINT64_C(0xfff)))); return iemRaiseGeneralProtectionFault0(pVCpu); } /* PAE check. */ if ( fLongMode && (uOldCrX & X86_CR4_PAE) && !(uNewCrX & X86_CR4_PAE)) { Log(("Trying to set clear CR4.PAE while long mode is active\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4)) { Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg)); IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg); } /* * Change it. */ if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) { rc = CPUMSetGuestCR4(pVCpu, uNewCrX); AssertRCSuccessReturn(rc, rc); } else pCtx->cr4 = uNewCrX; Assert(pCtx->cr4 == uNewCrX); /* * Notify SELM and PGM. */ if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) { /* SELM - VME may change things wrt to the TSS shadowing. */ if ((uNewCrX ^ uOldCrX) & X86_CR4_VME) { Log(("iemCImpl_load_CrX: VME %d -> %d => Setting VMCPU_FF_SELM_SYNC_TSS\n", RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) )); #ifdef VBOX_WITH_RAW_MODE if (!HMIsEnabled(pVCpu->CTX_SUFF(pVM))) VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS); #endif } /* PGM - flushing and mode. */ if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */)) { rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */); AssertRCReturn(rc, rc); /* ignore informational status codes */ } rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER); } else rcStrict = VINF_SUCCESS; break; } /* * CR8 maps to the APIC TPR. */ case 8: { if (uNewCrX & ~(uint64_t)0xf) { Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX)); return iemRaiseGeneralProtectionFault0(pVCpu); } uint8_t const u8Tpr = (uint8_t)uNewCrX << 4; #ifdef VBOX_WITH_NESTED_HWVIRT if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) { if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8)) { Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg)); IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg); } PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl; pVmcbCtrl->IntCtrl.n.u8VTPR = u8Tpr; if (pVmcbCtrl->IntCtrl.n.u1VIntrMasking) { rcStrict = VINF_SUCCESS; break; } } #endif if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu)) APICSetTpr(pVCpu, u8Tpr); rcStrict = VINF_SUCCESS; break; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */ } /* * Advance the RIP on success. */ if (RT_SUCCESS(rcStrict)) { if (rcStrict != VINF_SUCCESS) rcStrict = iemSetPassUpStatus(pVCpu, rcStrict); iemRegAddToRipAndClearRF(pVCpu, cbInstr); } return rcStrict; } /** * Implements mov CRx,GReg. * * @param iCrReg The CRx register to write (valid). * @param iGReg The general register to load the DRx value from. */ IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg) { if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM); /* * Read the new value from the source register and call common worker. */ uint64_t uNewCrX; if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) uNewCrX = iemGRegFetchU64(pVCpu, iGReg); else uNewCrX = iemGRegFetchU32(pVCpu, iGReg); return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg); } /** * Implements 'LMSW r/m16' * * @param u16NewMsw The new value. */ IEM_CIMPL_DEF_1(iemCImpl_lmsw, uint16_t, u16NewMsw) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); Assert(!pCtx->eflags.Bits.u1VM); /* * Compose the new CR0 value and call common worker. */ uint64_t uNewCr0 = pCtx->cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS); uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS); return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */); } /** * Implements 'CLTS'. */ IEM_CIMPL_DEF_0(iemCImpl_clts) { if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint64_t uNewCr0 = pCtx->cr0; uNewCr0 &= ~X86_CR0_TS; return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */); } /** * Implements mov GReg,DRx. * * @param iGReg The general register to store the DRx value in. * @param iDrReg The DRx register to read (0-7). */ IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Check preconditions. */ /* Raise GPs. */ if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); Assert(!pCtx->eflags.Bits.u1VM); if ( (iDrReg == 4 || iDrReg == 5) && (pCtx->cr4 & X86_CR4_DE) ) { Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* Raise #DB if general access detect is enabled. */ if (pCtx->dr[7] & X86_DR7_GD) { Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg)); return iemRaiseDebugException(pVCpu); } /* * Read the debug register and store it in the specified general register. */ uint64_t drX; switch (iDrReg) { case 0: drX = pCtx->dr[0]; break; case 1: drX = pCtx->dr[1]; break; case 2: drX = pCtx->dr[2]; break; case 3: drX = pCtx->dr[3]; break; case 6: case 4: drX = pCtx->dr[6]; drX |= X86_DR6_RA1_MASK; drX &= ~X86_DR6_RAZ_MASK; break; case 7: case 5: drX = pCtx->dr[7]; drX |=X86_DR7_RA1_MASK; drX &= ~X86_DR7_RAZ_MASK; break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */ } /** @todo SVM nested-guest intercept for DR8-DR15? */ /* * Check for any SVM nested-guest intercepts for the DRx read. */ if (IEM_IS_SVM_READ_DR_INTERCEPT_SET(pVCpu, iDrReg)) { Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg)); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf), IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */); } if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX; else *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements mov DRx,GReg. * * @param iDrReg The DRx register to write (valid). * @param iGReg The general register to load the DRx value from. */ IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Check preconditions. */ if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); Assert(!pCtx->eflags.Bits.u1VM); if (iDrReg == 4 || iDrReg == 5) { if (pCtx->cr4 & X86_CR4_DE) { Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg)); return iemRaiseGeneralProtectionFault0(pVCpu); } iDrReg += 2; } /* Raise #DB if general access detect is enabled. */ /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6 * \#GP? */ if (pCtx->dr[7] & X86_DR7_GD) { Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg)); return iemRaiseDebugException(pVCpu); } /* * Read the new value from the source register. */ uint64_t uNewDrX; if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) uNewDrX = iemGRegFetchU64(pVCpu, iGReg); else uNewDrX = iemGRegFetchU32(pVCpu, iGReg); /* * Adjust it. */ switch (iDrReg) { case 0: case 1: case 2: case 3: /* nothing to adjust */ break; case 6: if (uNewDrX & X86_DR6_MBZ_MASK) { Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX)); return iemRaiseGeneralProtectionFault0(pVCpu); } uNewDrX |= X86_DR6_RA1_MASK; uNewDrX &= ~X86_DR6_RAZ_MASK; break; case 7: if (uNewDrX & X86_DR7_MBZ_MASK) { Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX)); return iemRaiseGeneralProtectionFault0(pVCpu); } uNewDrX |= X86_DR7_RA1_MASK; uNewDrX &= ~X86_DR7_RAZ_MASK; break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } /** @todo SVM nested-guest intercept for DR8-DR15? */ /* * Check for any SVM nested-guest intercepts for the DRx write. */ if (IEM_IS_SVM_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg)) { Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg)); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf), IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */); } /* * Do the actual setting. */ if (!IEM_VERIFICATION_ENABLED(pVCpu)) { int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX); AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc); } else pCtx->dr[iDrReg] = uNewDrX; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'INVLPG m'. * * @param GCPtrPage The effective address of the page to invalidate. * @remarks Updates the RIP. */ IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage) { /* ring-0 only. */ if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM); if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG)) { Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage)); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_INVLPG, IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */); } int rc = PGMInvalidatePage(pVCpu, GCPtrPage); iemRegAddToRipAndClearRF(pVCpu, cbInstr); if (rc == VINF_SUCCESS) return VINF_SUCCESS; if (rc == VINF_PGM_SYNC_CR3) return iemSetPassUpStatus(pVCpu, rc); AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc)); Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc)); return rc; } /** * Implements INVPCID. * * @param uInvpcidType The invalidation type. * @param GCPtrInvpcidDesc The effective address of invpcid descriptor. * @remarks Updates the RIP. */ IEM_CIMPL_DEF_2(iemCImpl_invpcid, uint64_t, uInvpcidType, RTGCPTR, GCPtrInvpcidDesc) { /* * Check preconditions. */ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid) return iemRaiseUndefinedOpcode(pVCpu); if (pVCpu->iem.s.uCpl != 0) { Log(("invpcid: CPL != 0 -> #GP(0)\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_IS_V86_MODE(pVCpu)) { Log(("invpcid: v8086 mode -> #GP(0)\n")); return iemRaiseGeneralProtectionFault0(pVCpu); } if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID) { Log(("invpcid: invalid/unrecognized invpcid type %#x -> #GP(0)\n", uInvpcidType)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* * Fetch the invpcid descriptor from guest memory. */ RTUINT128U uDesc; VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, pVCpu->iem.s.iEffSeg, GCPtrInvpcidDesc); if (rcStrict == VINF_SUCCESS) { /* * Validate the descriptor. */ if (uDesc.s.Lo > 0xfff) { Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo)); return iemRaiseGeneralProtectionFault0(pVCpu); } RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi; uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff); uint32_t const uCr4 = IEM_GET_CTX(pVCpu)->cr4; uint64_t const uCr3 = IEM_GET_CTX(pVCpu)->cr3; switch (uInvpcidType) { case X86_INVPCID_TYPE_INDV_ADDR: { if (!IEM_IS_CANONICAL(GCPtrInvAddr)) { Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr)); return iemRaiseGeneralProtectionFault0(pVCpu); } if ( !(uCr4 & X86_CR4_PCIDE) && uPcid != 0) { Log(("invpcid: invalid pcid %#x\n", uPcid)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* Invalidate mappings for the linear address tagged with PCID except global translations. */ PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */); break; } case X86_INVPCID_TYPE_SINGLE_CONTEXT: { if ( !(uCr4 & X86_CR4_PCIDE) && uPcid != 0) { Log(("invpcid: invalid pcid %#x\n", uPcid)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* Invalidate all mappings associated with PCID except global translations. */ PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */); break; } case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL: { PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */); break; } case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL: { PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */); break; } IEM_NOT_REACHED_DEFAULT_CASE_RET(); } iemRegAddToRipAndClearRF(pVCpu, cbInstr); } return rcStrict; } /** * Implements RDTSC. */ IEM_CIMPL_DEF_0(iemCImpl_rdtsc) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Check preconditions. */ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc) return iemRaiseUndefinedOpcode(pVCpu); if ( (pCtx->cr4 & X86_CR4_TSD) && pVCpu->iem.s.uCpl != 0) { Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC)) { Log(("rdtsc: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Do the job. */ uint64_t uTicks = TMCpuTickGet(pVCpu); #ifdef VBOX_WITH_NESTED_HWVIRT uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks); #endif pCtx->rax = RT_LO_U32(uTicks); pCtx->rdx = RT_HI_U32(uTicks); #ifdef IEM_VERIFICATION_MODE_FULL pVCpu->iem.s.fIgnoreRaxRdx = true; #endif iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements RDTSC. */ IEM_CIMPL_DEF_0(iemCImpl_rdtscp) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Check preconditions. */ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP) return iemRaiseUndefinedOpcode(pVCpu); if ( (pCtx->cr4 & X86_CR4_TSD) && pVCpu->iem.s.uCpl != 0) { Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP)) { Log(("rdtscp: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Do the job. * Query the MSR first in case of trips to ring-3. */ VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pCtx->rcx); if (rcStrict == VINF_SUCCESS) { /* Low dword of the TSC_AUX msr only. */ pCtx->rcx &= UINT32_C(0xffffffff); uint64_t uTicks = TMCpuTickGet(pVCpu); #ifdef VBOX_WITH_NESTED_HWVIRT uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks); #endif pCtx->rax = RT_LO_U32(uTicks); pCtx->rdx = RT_HI_U32(uTicks); #ifdef IEM_VERIFICATION_MODE_FULL pVCpu->iem.s.fIgnoreRaxRdx = true; #endif iemRegAddToRipAndClearRF(pVCpu, cbInstr); } return rcStrict; } /** * Implements RDPMC. */ IEM_CIMPL_DEF_0(iemCImpl_rdpmc) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); if ( pVCpu->iem.s.uCpl != 0 && !(pCtx->cr4 & X86_CR4_PCE)) return iemRaiseGeneralProtectionFault0(pVCpu); if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC)) { Log(("rdpmc: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /** @todo Implement RDPMC for the regular guest execution case (the above only * handles nested-guest intercepts). */ RT_NOREF(cbInstr); return VERR_IEM_INSTR_NOT_IMPLEMENTED; } /** * Implements RDMSR. */ IEM_CIMPL_DEF_0(iemCImpl_rdmsr) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Check preconditions. */ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr) return iemRaiseUndefinedOpcode(pVCpu); if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); /* * Do the job. */ RTUINT64U uValue; VBOXSTRICTRC rcStrict; #ifdef VBOX_WITH_NESTED_HWVIRT if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT)) { rcStrict = iemSvmHandleMsrIntercept(pVCpu, pCtx, pCtx->ecx, false /* fWrite */); if (rcStrict == VINF_SVM_VMEXIT) return VINF_SUCCESS; if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE) { Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pCtx->ecx, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } } #endif rcStrict = CPUMQueryGuestMsr(pVCpu, pCtx->ecx, &uValue.u); if (rcStrict == VINF_SUCCESS) { pCtx->rax = uValue.s.Lo; pCtx->rdx = uValue.s.Hi; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } #ifndef IN_RING3 /* Deferred to ring-3. */ if (rcStrict == VINF_CPUM_R3_MSR_READ) { Log(("IEM: rdmsr(%#x) -> ring-3\n", pCtx->ecx)); return rcStrict; } #else /* IN_RING3 */ /* Often a unimplemented MSR or MSR bit, so worth logging. */ static uint32_t s_cTimes = 0; if (s_cTimes++ < 10) LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pCtx->ecx)); else #endif Log(("IEM: rdmsr(%#x) -> #GP(0)\n", pCtx->ecx)); AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS); return iemRaiseGeneralProtectionFault0(pVCpu); } /** * Implements WRMSR. */ IEM_CIMPL_DEF_0(iemCImpl_wrmsr) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Check preconditions. */ if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr) return iemRaiseUndefinedOpcode(pVCpu); if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); /* * Do the job. */ RTUINT64U uValue; uValue.s.Lo = pCtx->eax; uValue.s.Hi = pCtx->edx; VBOXSTRICTRC rcStrict; #ifdef VBOX_WITH_NESTED_HWVIRT if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT)) { rcStrict = iemSvmHandleMsrIntercept(pVCpu, pCtx, pCtx->ecx, true /* fWrite */); if (rcStrict == VINF_SVM_VMEXIT) return VINF_SUCCESS; if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE) { Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pCtx->ecx, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } } #endif if (!IEM_VERIFICATION_ENABLED(pVCpu)) rcStrict = CPUMSetGuestMsr(pVCpu, pCtx->ecx, uValue.u); else { #ifdef IN_RING3 CPUMCTX CtxTmp = *pCtx; rcStrict = CPUMSetGuestMsr(pVCpu, pCtx->ecx, uValue.u); PCPUMCTX pCtx2 = CPUMQueryGuestCtxPtr(pVCpu); *pCtx = *pCtx2; *pCtx2 = CtxTmp; #else AssertReleaseFailedReturn(VERR_IEM_IPE_2); #endif } if (rcStrict == VINF_SUCCESS) { iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } #ifndef IN_RING3 /* Deferred to ring-3. */ if (rcStrict == VINF_CPUM_R3_MSR_WRITE) { Log(("IEM: wrmsr(%#x) -> ring-3\n", pCtx->ecx)); return rcStrict; } #else /* IN_RING3 */ /* Often a unimplemented MSR or MSR bit, so worth logging. */ static uint32_t s_cTimes = 0; if (s_cTimes++ < 10) LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pCtx->ecx, uValue.s.Hi, uValue.s.Lo)); else #endif Log(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pCtx->ecx, uValue.s.Hi, uValue.s.Lo)); AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS); return iemRaiseGeneralProtectionFault0(pVCpu); } /** * Implements 'IN eAX, port'. * * @param u16Port The source port. * @param cbReg The register size. */ IEM_CIMPL_DEF_2(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * CPL check */ VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, pCtx, u16Port, cbReg); if (rcStrict != VINF_SUCCESS) return rcStrict; /* * Check SVM nested-guest IO intercept. */ #ifdef VBOX_WITH_NESTED_HWVIRT if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT)) { uint8_t cAddrSizeBits; switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: cAddrSizeBits = 16; break; case IEMMODE_32BIT: cAddrSizeBits = 32; break; case IEMMODE_64BIT: cAddrSizeBits = 64; break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */, false /* fRep */, false /* fStrIo */, cbInstr); if (rcStrict == VINF_SVM_VMEXIT) return VINF_SUCCESS; if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE) { Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } } #endif /* * Perform the I/O. */ uint32_t u32Value; if (!IEM_VERIFICATION_ENABLED(pVCpu)) rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg); else rcStrict = iemVerifyFakeIOPortRead(pVCpu, u16Port, &u32Value, cbReg); if (IOM_SUCCESS(rcStrict)) { switch (cbReg) { case 1: pCtx->al = (uint8_t)u32Value; break; case 2: pCtx->ax = (uint16_t)u32Value; break; case 4: pCtx->rax = u32Value; break; default: AssertFailedReturn(VERR_IEM_IPE_3); } iemRegAddToRipAndClearRF(pVCpu, cbInstr); pVCpu->iem.s.cPotentialExits++; if (rcStrict != VINF_SUCCESS) rcStrict = iemSetPassUpStatus(pVCpu, rcStrict); Assert(rcStrict == VINF_SUCCESS); /* assumed below */ /* * Check for I/O breakpoints. */ uint32_t const uDr7 = pCtx->dr[7]; if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK) && X86_DR7_ANY_RW_IO(uDr7) && (pCtx->cr4 & X86_CR4_DE)) || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM)))) { rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx, u16Port, cbReg); if (rcStrict == VINF_EM_RAW_GUEST_TRAP) rcStrict = iemRaiseDebugException(pVCpu); } } return rcStrict; } /** * Implements 'IN eAX, DX'. * * @param cbReg The register size. */ IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg) { return IEM_CIMPL_CALL_2(iemCImpl_in, IEM_GET_CTX(pVCpu)->dx, cbReg); } /** * Implements 'OUT port, eAX'. * * @param u16Port The destination port. * @param cbReg The register size. */ IEM_CIMPL_DEF_2(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * CPL check */ VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, pCtx, u16Port, cbReg); if (rcStrict != VINF_SUCCESS) return rcStrict; /* * Check SVM nested-guest IO intercept. */ #ifdef VBOX_WITH_NESTED_HWVIRT if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT)) { uint8_t cAddrSizeBits; switch (pVCpu->iem.s.enmEffAddrMode) { case IEMMODE_16BIT: cAddrSizeBits = 16; break; case IEMMODE_32BIT: cAddrSizeBits = 32; break; case IEMMODE_64BIT: cAddrSizeBits = 64; break; IEM_NOT_REACHED_DEFAULT_CASE_RET(); } rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */, false /* fRep */, false /* fStrIo */, cbInstr); if (rcStrict == VINF_SVM_VMEXIT) return VINF_SUCCESS; if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE) { Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } } #endif /* * Perform the I/O. */ uint32_t u32Value; switch (cbReg) { case 1: u32Value = pCtx->al; break; case 2: u32Value = pCtx->ax; break; case 4: u32Value = pCtx->eax; break; default: AssertFailedReturn(VERR_IEM_IPE_4); } if (!IEM_VERIFICATION_ENABLED(pVCpu)) rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg); else rcStrict = iemVerifyFakeIOPortWrite(pVCpu, u16Port, u32Value, cbReg); if (IOM_SUCCESS(rcStrict)) { iemRegAddToRipAndClearRF(pVCpu, cbInstr); pVCpu->iem.s.cPotentialExits++; if (rcStrict != VINF_SUCCESS) rcStrict = iemSetPassUpStatus(pVCpu, rcStrict); Assert(rcStrict == VINF_SUCCESS); /* assumed below */ /* * Check for I/O breakpoints. */ uint32_t const uDr7 = pCtx->dr[7]; if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK) && X86_DR7_ANY_RW_IO(uDr7) && (pCtx->cr4 & X86_CR4_DE)) || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM)))) { rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx, u16Port, cbReg); if (rcStrict == VINF_EM_RAW_GUEST_TRAP) rcStrict = iemRaiseDebugException(pVCpu); } } return rcStrict; } /** * Implements 'OUT DX, eAX'. * * @param cbReg The register size. */ IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg) { return IEM_CIMPL_CALL_2(iemCImpl_out, IEM_GET_CTX(pVCpu)->dx, cbReg); } /** * Implements 'CLI'. */ IEM_CIMPL_DEF_0(iemCImpl_cli) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx); uint32_t const fEflOld = fEfl; if (pCtx->cr0 & X86_CR0_PE) { uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl); if (!(fEfl & X86_EFL_VM)) { if (pVCpu->iem.s.uCpl <= uIopl) fEfl &= ~X86_EFL_IF; else if ( pVCpu->iem.s.uCpl == 3 && (pCtx->cr4 & X86_CR4_PVI) ) fEfl &= ~X86_EFL_VIF; else return iemRaiseGeneralProtectionFault0(pVCpu); } /* V8086 */ else if (uIopl == 3) fEfl &= ~X86_EFL_IF; else if ( uIopl < 3 && (pCtx->cr4 & X86_CR4_VME) ) fEfl &= ~X86_EFL_VIF; else return iemRaiseGeneralProtectionFault0(pVCpu); } /* real mode */ else fEfl &= ~X86_EFL_IF; /* Commit. */ IEMMISC_SET_EFL(pVCpu, pCtx, fEfl); iemRegAddToRipAndClearRF(pVCpu, cbInstr); Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld); return VINF_SUCCESS; } /** * Implements 'STI'. */ IEM_CIMPL_DEF_0(iemCImpl_sti) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx); uint32_t const fEflOld = fEfl; if (pCtx->cr0 & X86_CR0_PE) { uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl); if (!(fEfl & X86_EFL_VM)) { if (pVCpu->iem.s.uCpl <= uIopl) fEfl |= X86_EFL_IF; else if ( pVCpu->iem.s.uCpl == 3 && (pCtx->cr4 & X86_CR4_PVI) && !(fEfl & X86_EFL_VIP) ) fEfl |= X86_EFL_VIF; else return iemRaiseGeneralProtectionFault0(pVCpu); } /* V8086 */ else if (uIopl == 3) fEfl |= X86_EFL_IF; else if ( uIopl < 3 && (pCtx->cr4 & X86_CR4_VME) && !(fEfl & X86_EFL_VIP) ) fEfl |= X86_EFL_VIF; else return iemRaiseGeneralProtectionFault0(pVCpu); } /* real mode */ else fEfl |= X86_EFL_IF; /* Commit. */ IEMMISC_SET_EFL(pVCpu, pCtx, fEfl); iemRegAddToRipAndClearRF(pVCpu, cbInstr); if ((!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF)) || IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu)) EMSetInhibitInterruptsPC(pVCpu, pCtx->rip); Log2(("STI: %#x -> %#x\n", fEflOld, fEfl)); return VINF_SUCCESS; } /** * Implements 'HLT'. */ IEM_CIMPL_DEF_0(iemCImpl_hlt) { if (pVCpu->iem.s.uCpl != 0) return iemRaiseGeneralProtectionFault0(pVCpu); if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT)) { Log2(("hlt: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_EM_HALT; } /** * Implements 'MONITOR'. */ IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg) { /* * Permission checks. */ if (pVCpu->iem.s.uCpl != 0) { Log2(("monitor: CPL != 0\n")); return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */ } if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait) { Log2(("monitor: Not in CPUID\n")); return iemRaiseUndefinedOpcode(pVCpu); } /* * Gather the operands and validate them. */ PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax; uint32_t uEcx = pCtx->ecx; uint32_t uEdx = pCtx->edx; /** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or * \#GP first. */ if (uEcx != 0) { Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx); return iemRaiseGeneralProtectionFault0(pVCpu); } VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem); if (rcStrict != VINF_SUCCESS) return rcStrict; RTGCPHYS GCPhysMem; rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem); if (rcStrict != VINF_SUCCESS) return rcStrict; if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR)) { Log2(("monitor: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Call EM to prepare the monitor/wait. */ rcStrict = EMMonitorWaitPrepare(pVCpu, pCtx->rax, pCtx->rcx, pCtx->rdx, GCPhysMem); Assert(rcStrict == VINF_SUCCESS); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return rcStrict; } /** * Implements 'MWAIT'. */ IEM_CIMPL_DEF_0(iemCImpl_mwait) { /* * Permission checks. */ if (pVCpu->iem.s.uCpl != 0) { Log2(("mwait: CPL != 0\n")); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check * EFLAGS.VM then.) */ return iemRaiseUndefinedOpcode(pVCpu); } if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait) { Log2(("mwait: Not in CPUID\n")); return iemRaiseUndefinedOpcode(pVCpu); } /* * Gather the operands and validate them. */ PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint32_t uEax = pCtx->eax; uint32_t uEcx = pCtx->ecx; if (uEcx != 0) { /* Only supported extension is break on IRQ when IF=0. */ if (uEcx > 1) { Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx)); return iemRaiseGeneralProtectionFault0(pVCpu); } uint32_t fMWaitFeatures = 0; uint32_t uIgnore = 0; CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore); if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0)) != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0)) { Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx)); return iemRaiseGeneralProtectionFault0(pVCpu); } } /* * Check SVM nested-guest mwait intercepts. */ if ( IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED) && EMMonitorIsArmed(pVCpu)) { Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT)) { Log2(("mwait: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Call EM to prepare the monitor/wait. */ VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return rcStrict; } /** * Implements 'SWAPGS'. */ IEM_CIMPL_DEF_0(iemCImpl_swapgs) { Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */ /* * Permission checks. */ if (pVCpu->iem.s.uCpl != 0) { Log2(("swapgs: CPL != 0\n")); return iemRaiseUndefinedOpcode(pVCpu); } /* * Do the job. */ PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint64_t uOtherGsBase = pCtx->msrKERNELGSBASE; pCtx->msrKERNELGSBASE = pCtx->gs.u64Base; pCtx->gs.u64Base = uOtherGsBase; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'CPUID'. */ IEM_CIMPL_DEF_0(iemCImpl_cpuid) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID)) { Log2(("cpuid: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } CPUMGetGuestCpuId(pVCpu, pCtx->eax, pCtx->ecx, &pCtx->eax, &pCtx->ebx, &pCtx->ecx, &pCtx->edx); pCtx->rax &= UINT32_C(0xffffffff); pCtx->rbx &= UINT32_C(0xffffffff); pCtx->rcx &= UINT32_C(0xffffffff); pCtx->rdx &= UINT32_C(0xffffffff); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'AAD'. * * @param bImm The immediate operand. */ IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint16_t const ax = pCtx->ax; uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm; pCtx->ax = al; iemHlpUpdateArithEFlagsU8(pVCpu, al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF | X86_EFL_AF | X86_EFL_CF); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'AAM'. * * @param bImm The immediate operand. Cannot be 0. */ IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */ uint16_t const ax = pCtx->ax; uint8_t const al = (uint8_t)ax % bImm; uint8_t const ah = (uint8_t)ax / bImm; pCtx->ax = (ah << 8) + al; iemHlpUpdateArithEFlagsU8(pVCpu, al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF | X86_EFL_AF | X86_EFL_CF); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'DAA'. */ IEM_CIMPL_DEF_0(iemCImpl_daa) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint8_t const al = pCtx->al; bool const fCarry = pCtx->eflags.Bits.u1CF; if ( pCtx->eflags.Bits.u1AF || (al & 0xf) >= 10) { pCtx->al = al + 6; pCtx->eflags.Bits.u1AF = 1; } else pCtx->eflags.Bits.u1AF = 0; if (al >= 0x9a || fCarry) { pCtx->al += 0x60; pCtx->eflags.Bits.u1CF = 1; } else pCtx->eflags.Bits.u1CF = 0; iemHlpUpdateArithEFlagsU8(pVCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'DAS'. */ IEM_CIMPL_DEF_0(iemCImpl_das) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); uint8_t const uInputAL = pCtx->al; bool const fCarry = pCtx->eflags.Bits.u1CF; if ( pCtx->eflags.Bits.u1AF || (uInputAL & 0xf) >= 10) { pCtx->eflags.Bits.u1AF = 1; if (uInputAL < 6) pCtx->eflags.Bits.u1CF = 1; pCtx->al = uInputAL - 6; } else { pCtx->eflags.Bits.u1AF = 0; pCtx->eflags.Bits.u1CF = 0; } if (uInputAL >= 0x9a || fCarry) { pCtx->al -= 0x60; pCtx->eflags.Bits.u1CF = 1; } iemHlpUpdateArithEFlagsU8(pVCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'AAA'. */ IEM_CIMPL_DEF_0(iemCImpl_aaa) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); if (IEM_IS_GUEST_CPU_AMD(pVCpu)) { if ( pCtx->eflags.Bits.u1AF || (pCtx->ax & 0xf) >= 10) { iemAImpl_add_u16(&pCtx->ax, 0x106, &pCtx->eflags.u32); pCtx->eflags.Bits.u1AF = 1; pCtx->eflags.Bits.u1CF = 1; #ifdef IEM_VERIFICATION_MODE_FULL pVCpu->iem.s.fUndefinedEFlags |= X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF; #endif } else { iemHlpUpdateArithEFlagsU16(pVCpu, pCtx->ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); pCtx->eflags.Bits.u1AF = 0; pCtx->eflags.Bits.u1CF = 0; } pCtx->ax &= UINT16_C(0xff0f); } else { if ( pCtx->eflags.Bits.u1AF || (pCtx->ax & 0xf) >= 10) { pCtx->ax += UINT16_C(0x106); pCtx->eflags.Bits.u1AF = 1; pCtx->eflags.Bits.u1CF = 1; } else { pCtx->eflags.Bits.u1AF = 0; pCtx->eflags.Bits.u1CF = 0; } pCtx->ax &= UINT16_C(0xff0f); iemHlpUpdateArithEFlagsU8(pVCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); } iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'AAS'. */ IEM_CIMPL_DEF_0(iemCImpl_aas) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); if (IEM_IS_GUEST_CPU_AMD(pVCpu)) { if ( pCtx->eflags.Bits.u1AF || (pCtx->ax & 0xf) >= 10) { iemAImpl_sub_u16(&pCtx->ax, 0x106, &pCtx->eflags.u32); pCtx->eflags.Bits.u1AF = 1; pCtx->eflags.Bits.u1CF = 1; #ifdef IEM_VERIFICATION_MODE_FULL pVCpu->iem.s.fUndefinedEFlags |= X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF; #endif } else { iemHlpUpdateArithEFlagsU16(pVCpu, pCtx->ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); pCtx->eflags.Bits.u1AF = 0; pCtx->eflags.Bits.u1CF = 0; } pCtx->ax &= UINT16_C(0xff0f); } else { if ( pCtx->eflags.Bits.u1AF || (pCtx->ax & 0xf) >= 10) { pCtx->ax -= UINT16_C(0x106); pCtx->eflags.Bits.u1AF = 1; pCtx->eflags.Bits.u1CF = 1; } else { pCtx->eflags.Bits.u1AF = 0; pCtx->eflags.Bits.u1CF = 0; } pCtx->ax &= UINT16_C(0xff0f); iemHlpUpdateArithEFlagsU8(pVCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF); } iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements the 16-bit version of 'BOUND'. * * @note We have separate 16-bit and 32-bit variants of this function due to * the decoder using unsigned parameters, whereas we want signed one to * do the job. This is significant for a recompiler. */ IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound) { /* * Check if the index is inside the bounds, otherwise raise #BR. */ if ( idxArray >= idxLowerBound && idxArray <= idxUpperBound) { iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } return iemRaiseBoundRangeExceeded(pVCpu); } /** * Implements the 32-bit version of 'BOUND'. */ IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound) { /* * Check if the index is inside the bounds, otherwise raise #BR. */ if ( idxArray >= idxLowerBound && idxArray <= idxUpperBound) { iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } return iemRaiseBoundRangeExceeded(pVCpu); } /* * Instantiate the various string operation combinations. */ #define OP_SIZE 8 #define ADDR_SIZE 16 #include "IEMAllCImplStrInstr.cpp.h" #define OP_SIZE 8 #define ADDR_SIZE 32 #include "IEMAllCImplStrInstr.cpp.h" #define OP_SIZE 8 #define ADDR_SIZE 64 #include "IEMAllCImplStrInstr.cpp.h" #define OP_SIZE 16 #define ADDR_SIZE 16 #include "IEMAllCImplStrInstr.cpp.h" #define OP_SIZE 16 #define ADDR_SIZE 32 #include "IEMAllCImplStrInstr.cpp.h" #define OP_SIZE 16 #define ADDR_SIZE 64 #include "IEMAllCImplStrInstr.cpp.h" #define OP_SIZE 32 #define ADDR_SIZE 16 #include "IEMAllCImplStrInstr.cpp.h" #define OP_SIZE 32 #define ADDR_SIZE 32 #include "IEMAllCImplStrInstr.cpp.h" #define OP_SIZE 32 #define ADDR_SIZE 64 #include "IEMAllCImplStrInstr.cpp.h" #define OP_SIZE 64 #define ADDR_SIZE 32 #include "IEMAllCImplStrInstr.cpp.h" #define OP_SIZE 64 #define ADDR_SIZE 64 #include "IEMAllCImplStrInstr.cpp.h" /** * Implements 'XGETBV'. */ IEM_CIMPL_DEF_0(iemCImpl_xgetbv) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); if (pCtx->cr4 & X86_CR4_OSXSAVE) { uint32_t uEcx = pCtx->ecx; switch (uEcx) { case 0: break; case 1: /** @todo Implement XCR1 support. */ default: Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx)); return iemRaiseGeneralProtectionFault0(pVCpu); } pCtx->rax = RT_LO_U32(pCtx->aXcr[uEcx]); pCtx->rdx = RT_HI_U32(pCtx->aXcr[uEcx]); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } Log(("xgetbv CR4.OSXSAVE=0 -> UD\n")); return iemRaiseUndefinedOpcode(pVCpu); } /** * Implements 'XSETBV'. */ IEM_CIMPL_DEF_0(iemCImpl_xsetbv) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); if (pCtx->cr4 & X86_CR4_OSXSAVE) { if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV)) { Log2(("xsetbv: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } if (pVCpu->iem.s.uCpl == 0) { uint32_t uEcx = pCtx->ecx; uint64_t uNewValue = RT_MAKE_U64(pCtx->eax, pCtx->edx); switch (uEcx) { case 0: { int rc = CPUMSetGuestXcr0(pVCpu, uNewValue); if (rc == VINF_SUCCESS) break; Assert(rc == VERR_CPUM_RAISE_GP_0); Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue)); return iemRaiseGeneralProtectionFault0(pVCpu); } case 1: /** @todo Implement XCR1 support. */ default: Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue)); return iemRaiseGeneralProtectionFault0(pVCpu); } iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl)); return iemRaiseGeneralProtectionFault0(pVCpu); } Log(("xsetbv CR4.OSXSAVE=0 -> UD\n")); return iemRaiseUndefinedOpcode(pVCpu); } #ifdef IN_RING3 /** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */ struct IEMCIMPLCX16ARGS { PRTUINT128U pu128Dst; PRTUINT128U pu128RaxRdx; PRTUINT128U pu128RbxRcx; uint32_t *pEFlags; # ifdef VBOX_STRICT uint32_t cCalls; # endif }; /** * @callback_method_impl{FNVMMEMTRENDEZVOUS, * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous} */ static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPU pVCpu, void *pvUser) { RT_NOREF(pVM, pVCpu); struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser; # ifdef VBOX_STRICT Assert(pArgs->cCalls == 0); pArgs->cCalls++; # endif iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags); return VINF_SUCCESS; } #endif /* IN_RING3 */ /** * Implements 'CMPXCHG16B' fallback using rendezvous. */ IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx, PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags) { #ifdef IN_RING3 struct IEMCIMPLCX16ARGS Args; Args.pu128Dst = pu128Dst; Args.pu128RaxRdx = pu128RaxRdx; Args.pu128RbxRcx = pu128RbxRcx; Args.pEFlags = pEFlags; # ifdef VBOX_STRICT Args.cCalls = 0; # endif VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args); Assert(Args.cCalls == 1); if (rcStrict == VINF_SUCCESS) { /* Duplicated tail code. */ rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW); if (rcStrict == VINF_SUCCESS) { PCPUMCTX pCtx = pVCpu->iem.s.CTX_SUFF(pCtx); pCtx->eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */ if (!(*pEFlags & X86_EFL_ZF)) { pCtx->rax = pu128RaxRdx->s.Lo; pCtx->rdx = pu128RaxRdx->s.Hi; } iemRegAddToRipAndClearRF(pVCpu, cbInstr); } } return rcStrict; #else RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags); return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */ #endif } /** * Implements 'CLFLUSH' and 'CLFLUSHOPT'. * * This is implemented in C because it triggers a load like behviour without * actually reading anything. Since that's not so common, it's implemented * here. * * @param iEffSeg The effective segment. * @param GCPtrEff The address of the image. */ IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff) { /* * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap). */ VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff); if (rcStrict == VINF_SUCCESS) { RTGCPHYS GCPhysMem; rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem); if (rcStrict == VINF_SUCCESS) { iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } } return rcStrict; } /** * Implements 'FINIT' and 'FNINIT'. * * @param fCheckXcpts Whether to check for umasked pending exceptions or * not. */ IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); if (pCtx->cr0 & (X86_CR0_EM | X86_CR0_TS)) return iemRaiseDeviceNotAvailable(pVCpu); NOREF(fCheckXcpts); /** @todo trigger pending exceptions: if (fCheckXcpts && TODO ) return iemRaiseMathFault(pVCpu); */ PX86XSAVEAREA pXState = pCtx->CTX_SUFF(pXState); pXState->x87.FCW = 0x37f; pXState->x87.FSW = 0; pXState->x87.FTW = 0x00; /* 0 - empty. */ pXState->x87.FPUDP = 0; pXState->x87.DS = 0; //?? pXState->x87.Rsrvd2= 0; pXState->x87.FPUIP = 0; pXState->x87.CS = 0; //?? pXState->x87.Rsrvd1= 0; pXState->x87.FOP = 0; iemHlpUsedFpu(pVCpu); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'FXSAVE'. * * @param iEffSeg The effective segment. * @param GCPtrEff The address of the image. * @param enmEffOpSize The operand size (only REX.W really matters). */ IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Raise exceptions. */ if (pCtx->cr0 & X86_CR0_EM) return iemRaiseUndefinedOpcode(pVCpu); if (pCtx->cr0 & (X86_CR0_TS | X86_CR0_EM)) return iemRaiseDeviceNotAvailable(pVCpu); if (GCPtrEff & 15) { /** @todo CPU/VM detection possible! \#AC might not be signal for * all/any misalignment sizes, intel says its an implementation detail. */ if ( (pCtx->cr0 & X86_CR0_AM) && pCtx->eflags.Bits.u1AC && pVCpu->iem.s.uCpl == 3) return iemRaiseAlignmentCheckException(pVCpu); return iemRaiseGeneralProtectionFault0(pVCpu); } /* * Access the memory. */ void *pvMem512; VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); if (rcStrict != VINF_SUCCESS) return rcStrict; PX86FXSTATE pDst = (PX86FXSTATE)pvMem512; PCX86FXSTATE pSrc = &pCtx->CTX_SUFF(pXState)->x87; /* * Store the registers. */ /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's * implementation specific whether MXCSR and XMM0-XMM7 are saved. */ /* common for all formats */ pDst->FCW = pSrc->FCW; pDst->FSW = pSrc->FSW; pDst->FTW = pSrc->FTW & UINT16_C(0xff); pDst->FOP = pSrc->FOP; pDst->MXCSR = pSrc->MXCSR; pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM)); for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++) { /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing * them for now... */ pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0]; pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1]; pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff); pDst->aRegs[i].au32[3] = 0; } /* FPU IP, CS, DP and DS. */ pDst->FPUIP = pSrc->FPUIP; pDst->CS = pSrc->CS; pDst->FPUDP = pSrc->FPUDP; pDst->DS = pSrc->DS; if (enmEffOpSize == IEMMODE_64BIT) { /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */ pDst->Rsrvd1 = pSrc->Rsrvd1; pDst->Rsrvd2 = pSrc->Rsrvd2; pDst->au32RsrvdForSoftware[0] = 0; } else { pDst->Rsrvd1 = 0; pDst->Rsrvd2 = 0; pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC; } /* XMM registers. */ if ( !(pCtx->msrEFER & MSR_K6_EFER_FFXSR) || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT || pVCpu->iem.s.uCpl != 0) { uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8; for (uint32_t i = 0; i < cXmmRegs; i++) pDst->aXMM[i] = pSrc->aXMM[i]; /** @todo Testcase: What happens to the reserved XMM registers? Untouched, * right? */ } /* * Commit the memory. */ rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); if (rcStrict != VINF_SUCCESS) return rcStrict; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'FXRSTOR'. * * @param GCPtrEff The address of the image. * @param enmEffOpSize The operand size (only REX.W really matters). */ IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Raise exceptions. */ if (pCtx->cr0 & X86_CR0_EM) return iemRaiseUndefinedOpcode(pVCpu); if (pCtx->cr0 & (X86_CR0_TS | X86_CR0_EM)) return iemRaiseDeviceNotAvailable(pVCpu); if (GCPtrEff & 15) { /** @todo CPU/VM detection possible! \#AC might not be signal for * all/any misalignment sizes, intel says its an implementation detail. */ if ( (pCtx->cr0 & X86_CR0_AM) && pCtx->eflags.Bits.u1AC && pVCpu->iem.s.uCpl == 3) return iemRaiseAlignmentCheckException(pVCpu); return iemRaiseGeneralProtectionFault0(pVCpu); } /* * Access the memory. */ void *pvMem512; VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512; PX86FXSTATE pDst = &pCtx->CTX_SUFF(pXState)->x87; /* * Check the state for stuff which will #GP(0). */ uint32_t const fMXCSR = pSrc->MXCSR; uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM)); if (fMXCSR & ~fMXCSR_MASK) { Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK)); return iemRaiseGeneralProtectionFault0(pVCpu); } /* * Load the registers. */ /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's * implementation specific whether MXCSR and XMM0-XMM7 are restored. */ /* common for all formats */ pDst->FCW = pSrc->FCW; pDst->FSW = pSrc->FSW; pDst->FTW = pSrc->FTW & UINT16_C(0xff); pDst->FOP = pSrc->FOP; pDst->MXCSR = fMXCSR; /* (MXCSR_MASK is read-only) */ for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++) { pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0]; pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1]; pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff); pDst->aRegs[i].au32[3] = 0; } /* FPU IP, CS, DP and DS. */ if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT) { pDst->FPUIP = pSrc->FPUIP; pDst->CS = pSrc->CS; pDst->Rsrvd1 = pSrc->Rsrvd1; pDst->FPUDP = pSrc->FPUDP; pDst->DS = pSrc->DS; pDst->Rsrvd2 = pSrc->Rsrvd2; } else { pDst->FPUIP = pSrc->FPUIP; pDst->CS = pSrc->CS; pDst->Rsrvd1 = 0; pDst->FPUDP = pSrc->FPUDP; pDst->DS = pSrc->DS; pDst->Rsrvd2 = 0; } /* XMM registers. */ if ( !(pCtx->msrEFER & MSR_K6_EFER_FFXSR) || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT || pVCpu->iem.s.uCpl != 0) { uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8; for (uint32_t i = 0; i < cXmmRegs; i++) pDst->aXMM[i] = pSrc->aXMM[i]; } /* * Commit the memory. */ rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; iemHlpUsedFpu(pVCpu); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'XSAVE'. * * @param iEffSeg The effective segment. * @param GCPtrEff The address of the image. * @param enmEffOpSize The operand size (only REX.W really matters). */ IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Raise exceptions. */ if (!(pCtx->cr4 & X86_CR4_OSXSAVE)) return iemRaiseUndefinedOpcode(pVCpu); if (pCtx->cr0 & X86_CR0_TS) return iemRaiseDeviceNotAvailable(pVCpu); if (GCPtrEff & 63) { /** @todo CPU/VM detection possible! \#AC might not be signal for * all/any misalignment sizes, intel says its an implementation detail. */ if ( (pCtx->cr0 & X86_CR0_AM) && pCtx->eflags.Bits.u1AC && pVCpu->iem.s.uCpl == 3) return iemRaiseAlignmentCheckException(pVCpu); return iemRaiseGeneralProtectionFault0(pVCpu); } /* * Calc the requested mask */ uint64_t const fReqComponents = RT_MAKE_U64(pCtx->eax, pCtx->edx) & pCtx->aXcr[0]; AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED); uint64_t const fXInUse = pCtx->aXcr[0]; /** @todo figure out the exact protocol for the memory access. Currently we * just need this crap to work halfways to make it possible to test * AVX instructions. */ /** @todo figure out the XINUSE and XMODIFIED */ /* * Access the x87 memory state. */ /* The x87+SSE state. */ void *pvMem512; VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); if (rcStrict != VINF_SUCCESS) return rcStrict; PX86FXSTATE pDst = (PX86FXSTATE)pvMem512; PCX86FXSTATE pSrc = &pCtx->CTX_SUFF(pXState)->x87; /* The header. */ PX86XSAVEHDR pHdr; rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW); if (rcStrict != VINF_SUCCESS) return rcStrict; /* * Store the X87 state. */ if (fReqComponents & XSAVE_C_X87) { /* common for all formats */ pDst->FCW = pSrc->FCW; pDst->FSW = pSrc->FSW; pDst->FTW = pSrc->FTW & UINT16_C(0xff); pDst->FOP = pSrc->FOP; pDst->FPUIP = pSrc->FPUIP; pDst->CS = pSrc->CS; pDst->FPUDP = pSrc->FPUDP; pDst->DS = pSrc->DS; if (enmEffOpSize == IEMMODE_64BIT) { /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */ pDst->Rsrvd1 = pSrc->Rsrvd1; pDst->Rsrvd2 = pSrc->Rsrvd2; pDst->au32RsrvdForSoftware[0] = 0; } else { pDst->Rsrvd1 = 0; pDst->Rsrvd2 = 0; pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC; } for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++) { /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing * them for now... */ pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0]; pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1]; pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff); pDst->aRegs[i].au32[3] = 0; } } if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM)) { pDst->MXCSR = pSrc->MXCSR; pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM)); } if (fReqComponents & XSAVE_C_SSE) { /* XMM registers. */ uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8; for (uint32_t i = 0; i < cXmmRegs; i++) pDst->aXMM[i] = pSrc->aXMM[i]; /** @todo Testcase: What happens to the reserved XMM registers? Untouched, * right? */ } /* Commit the x87 state bits. (probably wrong) */ rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); if (rcStrict != VINF_SUCCESS) return rcStrict; /* * Store AVX state. */ if (fReqComponents & XSAVE_C_YMM) { /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */ AssertLogRelReturn(pCtx->aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9); PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI); PX86XSAVEYMMHI pCompDst; rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pCtx->aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); if (rcStrict != VINF_SUCCESS) return rcStrict; uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8; for (uint32_t i = 0; i < cXmmRegs; i++) pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i]; rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); if (rcStrict != VINF_SUCCESS) return rcStrict; } /* * Update the header. */ pHdr->bmXState = (pHdr->bmXState & ~fReqComponents) | (fReqComponents & fXInUse); rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW); if (rcStrict != VINF_SUCCESS) return rcStrict; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'XRSTOR'. * * @param iEffSeg The effective segment. * @param GCPtrEff The address of the image. * @param enmEffOpSize The operand size (only REX.W really matters). */ IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Raise exceptions. */ if (!(pCtx->cr4 & X86_CR4_OSXSAVE)) return iemRaiseUndefinedOpcode(pVCpu); if (pCtx->cr0 & X86_CR0_TS) return iemRaiseDeviceNotAvailable(pVCpu); if (GCPtrEff & 63) { /** @todo CPU/VM detection possible! \#AC might not be signal for * all/any misalignment sizes, intel says its an implementation detail. */ if ( (pCtx->cr0 & X86_CR0_AM) && pCtx->eflags.Bits.u1AC && pVCpu->iem.s.uCpl == 3) return iemRaiseAlignmentCheckException(pVCpu); return iemRaiseGeneralProtectionFault0(pVCpu); } /** @todo figure out the exact protocol for the memory access. Currently we * just need this crap to work halfways to make it possible to test * AVX instructions. */ /** @todo figure out the XINUSE and XMODIFIED */ /* * Access the x87 memory state. */ /* The x87+SSE state. */ void *pvMem512; VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512; PX86FXSTATE pDst = &pCtx->CTX_SUFF(pXState)->x87; /* * Calc the requested mask */ PX86XSAVEHDR pHdrDst = &pCtx->CTX_SUFF(pXState)->Hdr; PCX86XSAVEHDR pHdrSrc; rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; uint64_t const fReqComponents = RT_MAKE_U64(pCtx->eax, pCtx->edx) & pCtx->aXcr[0]; AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED); //uint64_t const fXInUse = pCtx->aXcr[0]; uint64_t const fRstorMask = pHdrSrc->bmXState; uint64_t const fCompMask = pHdrSrc->bmXComp; AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED); uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8; /* We won't need this any longer. */ rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; /* * Store the X87 state. */ if (fReqComponents & XSAVE_C_X87) { if (fRstorMask & XSAVE_C_X87) { pDst->FCW = pSrc->FCW; pDst->FSW = pSrc->FSW; pDst->FTW = pSrc->FTW & UINT16_C(0xff); pDst->FOP = pSrc->FOP; pDst->FPUIP = pSrc->FPUIP; pDst->CS = pSrc->CS; pDst->FPUDP = pSrc->FPUDP; pDst->DS = pSrc->DS; if (enmEffOpSize == IEMMODE_64BIT) { /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */ pDst->Rsrvd1 = pSrc->Rsrvd1; pDst->Rsrvd2 = pSrc->Rsrvd2; } else { pDst->Rsrvd1 = 0; pDst->Rsrvd2 = 0; } for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++) { pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0]; pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1]; pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff); pDst->aRegs[i].au32[3] = 0; } } else { pDst->FCW = 0x37f; pDst->FSW = 0; pDst->FTW = 0x00; /* 0 - empty. */ pDst->FPUDP = 0; pDst->DS = 0; //?? pDst->Rsrvd2= 0; pDst->FPUIP = 0; pDst->CS = 0; //?? pDst->Rsrvd1= 0; pDst->FOP = 0; for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++) { pDst->aRegs[i].au32[0] = 0; pDst->aRegs[i].au32[1] = 0; pDst->aRegs[i].au32[2] = 0; pDst->aRegs[i].au32[3] = 0; } } pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */ } /* MXCSR */ if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM)) { if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM)) pDst->MXCSR = pSrc->MXCSR; else pDst->MXCSR = 0x1f80; } /* XMM registers. */ if (fReqComponents & XSAVE_C_SSE) { if (fRstorMask & XSAVE_C_SSE) { for (uint32_t i = 0; i < cXmmRegs; i++) pDst->aXMM[i] = pSrc->aXMM[i]; /** @todo Testcase: What happens to the reserved XMM registers? Untouched, * right? */ } else { for (uint32_t i = 0; i < cXmmRegs; i++) { pDst->aXMM[i].au64[0] = 0; pDst->aXMM[i].au64[1] = 0; } } pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */ } /* Unmap the x87 state bits (so we've don't run out of mapping). */ rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; /* * Restore AVX state. */ if (fReqComponents & XSAVE_C_YMM) { AssertLogRelReturn(pCtx->aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9); PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI); if (fRstorMask & XSAVE_C_YMM) { /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */ PCX86XSAVEYMMHI pCompSrc; rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst), iEffSeg, GCPtrEff + pCtx->aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; for (uint32_t i = 0; i < cXmmRegs; i++) { pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0]; pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1]; } rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; } else { for (uint32_t i = 0; i < cXmmRegs; i++) { pCompDst->aYmmHi[i].au64[0] = 0; pCompDst->aYmmHi[i].au64[1] = 0; } } pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */ } iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'STMXCSR'. * * @param GCPtrEff The address of the image. */ IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Raise exceptions. */ if ( !(pCtx->cr0 & X86_CR0_EM) && (pCtx->cr4 & X86_CR4_OSFXSR)) { if (!(pCtx->cr0 & X86_CR0_TS)) { /* * Do the job. */ VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pCtx->CTX_SUFF(pXState)->x87.MXCSR); if (rcStrict == VINF_SUCCESS) { iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } return rcStrict; } return iemRaiseDeviceNotAvailable(pVCpu); } return iemRaiseUndefinedOpcode(pVCpu); } /** * Implements 'VSTMXCSR'. * * @param GCPtrEff The address of the image. */ IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Raise exceptions. */ if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu) ? (pCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM) : !(pCtx->cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */ && (pCtx->cr4 & X86_CR4_OSXSAVE)) { if (!(pCtx->cr0 & X86_CR0_TS)) { /* * Do the job. */ VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pCtx->CTX_SUFF(pXState)->x87.MXCSR); if (rcStrict == VINF_SUCCESS) { iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } return rcStrict; } return iemRaiseDeviceNotAvailable(pVCpu); } return iemRaiseUndefinedOpcode(pVCpu); } /** * Implements 'LDMXCSR'. * * @param GCPtrEff The address of the image. */ IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Raise exceptions. */ /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS * happen after or before \#UD and \#EM? */ if ( !(pCtx->cr0 & X86_CR0_EM) && (pCtx->cr4 & X86_CR4_OSFXSR)) { if (!(pCtx->cr0 & X86_CR0_TS)) { /* * Do the job. */ uint32_t fNewMxCsr; VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff); if (rcStrict == VINF_SUCCESS) { uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM)); if (!(fNewMxCsr & ~fMxCsrMask)) { pCtx->CTX_SUFF(pXState)->x87.MXCSR = fNewMxCsr; iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n", fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask)); return iemRaiseGeneralProtectionFault0(pVCpu); } return rcStrict; } return iemRaiseDeviceNotAvailable(pVCpu); } return iemRaiseUndefinedOpcode(pVCpu); } /** * Commmon routine for fnstenv and fnsave. * * @param uPtr Where to store the state. * @param pCtx The CPU context. */ static void iemCImplCommonFpuStoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr, PCCPUMCTX pCtx) { PCX86FXSTATE pSrcX87 = &pCtx->CTX_SUFF(pXState)->x87; if (enmEffOpSize == IEMMODE_16BIT) { uPtr.pu16[0] = pSrcX87->FCW; uPtr.pu16[1] = pSrcX87->FSW; uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87); if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) { /** @todo Testcase: How does this work when the FPUIP/CS was saved in * protected mode or long mode and we save it in real mode? And vice * versa? And with 32-bit operand size? I think CPU is storing the * effective address ((CS << 4) + IP) in the offset register and not * doing any address calculations here. */ uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP; uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP; uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP; uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000); } else { uPtr.pu16[3] = pSrcX87->FPUIP; uPtr.pu16[4] = pSrcX87->CS; uPtr.pu16[5] = pSrcX87->FPUDP; uPtr.pu16[6] = pSrcX87->DS; } } else { /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */ uPtr.pu16[0*2] = pSrcX87->FCW; uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */ uPtr.pu16[1*2] = pSrcX87->FSW; uPtr.pu16[1*2+1] = 0xffff; uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87); uPtr.pu16[2*2+1] = 0xffff; if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) { uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP; uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP; uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP; uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4; } else { uPtr.pu32[3] = pSrcX87->FPUIP; uPtr.pu16[4*2] = pSrcX87->CS; uPtr.pu16[4*2+1] = pSrcX87->FOP; uPtr.pu32[5] = pSrcX87->FPUDP; uPtr.pu16[6*2] = pSrcX87->DS; uPtr.pu16[6*2+1] = 0xffff; } } } /** * Commmon routine for fldenv and frstor * * @param uPtr Where to store the state. * @param pCtx The CPU context. */ static void iemCImplCommonFpuRestoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr, PCPUMCTX pCtx) { PX86FXSTATE pDstX87 = &pCtx->CTX_SUFF(pXState)->x87; if (enmEffOpSize == IEMMODE_16BIT) { pDstX87->FCW = uPtr.pu16[0]; pDstX87->FSW = uPtr.pu16[1]; pDstX87->FTW = uPtr.pu16[2]; if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) { pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4); pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4); pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff); pDstX87->CS = 0; pDstX87->Rsrvd1= 0; pDstX87->DS = 0; pDstX87->Rsrvd2= 0; } else { pDstX87->FPUIP = uPtr.pu16[3]; pDstX87->CS = uPtr.pu16[4]; pDstX87->Rsrvd1= 0; pDstX87->FPUDP = uPtr.pu16[5]; pDstX87->DS = uPtr.pu16[6]; pDstX87->Rsrvd2= 0; /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */ } } else { pDstX87->FCW = uPtr.pu16[0*2]; pDstX87->FSW = uPtr.pu16[1*2]; pDstX87->FTW = uPtr.pu16[2*2]; if (IEM_IS_REAL_OR_V86_MODE(pVCpu)) { pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4); pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff); pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4); pDstX87->CS = 0; pDstX87->Rsrvd1= 0; pDstX87->DS = 0; pDstX87->Rsrvd2= 0; } else { pDstX87->FPUIP = uPtr.pu32[3]; pDstX87->CS = uPtr.pu16[4*2]; pDstX87->Rsrvd1= 0; pDstX87->FOP = uPtr.pu16[4*2+1]; pDstX87->FPUDP = uPtr.pu32[5]; pDstX87->DS = uPtr.pu16[6*2]; pDstX87->Rsrvd2= 0; } } /* Make adjustments. */ pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW); pDstX87->FCW &= ~X86_FCW_ZERO_MASK; iemFpuRecalcExceptionStatus(pDstX87); /** @todo Testcase: Check if ES and/or B are automatically cleared if no * exceptions are pending after loading the saved state? */ } /** * Implements 'FNSTENV'. * * @param enmEffOpSize The operand size (only REX.W really matters). * @param iEffSeg The effective segment register for @a GCPtrEff. * @param GCPtrEffDst The address of the image. */ IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); RTPTRUNION uPtr; VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28, iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); if (rcStrict != VINF_SUCCESS) return rcStrict; iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx); rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); if (rcStrict != VINF_SUCCESS) return rcStrict; /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */ iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'FNSAVE'. * * @param GCPtrEffDst The address of the image. * @param enmEffOpSize The operand size. */ IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); RTPTRUNION uPtr; VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108, iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); if (rcStrict != VINF_SUCCESS) return rcStrict; PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87; iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx); PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28)); for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++) { paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0]; paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1]; paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4]; } rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE); if (rcStrict != VINF_SUCCESS) return rcStrict; /* * Re-initialize the FPU context. */ pFpuCtx->FCW = 0x37f; pFpuCtx->FSW = 0; pFpuCtx->FTW = 0x00; /* 0 - empty */ pFpuCtx->FPUDP = 0; pFpuCtx->DS = 0; pFpuCtx->Rsrvd2= 0; pFpuCtx->FPUIP = 0; pFpuCtx->CS = 0; pFpuCtx->Rsrvd1= 0; pFpuCtx->FOP = 0; iemHlpUsedFpu(pVCpu); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'FLDENV'. * * @param enmEffOpSize The operand size (only REX.W really matters). * @param iEffSeg The effective segment register for @a GCPtrEff. * @param GCPtrEffSrc The address of the image. */ IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); RTCPTRUNION uPtr; VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28, iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx); rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; iemHlpUsedFpu(pVCpu); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'FRSTOR'. * * @param GCPtrEffSrc The address of the image. * @param enmEffOpSize The operand size. */ IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); RTCPTRUNION uPtr; VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108, iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87; iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx); PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28)); for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++) { pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0]; pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1]; pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4]; pFpuCtx->aRegs[i].au32[3] = 0; } rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R); if (rcStrict != VINF_SUCCESS) return rcStrict; iemHlpUsedFpu(pVCpu); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'FLDCW'. * * @param u16Fcw The new FCW. */ IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */ /** @todo Testcase: Try see what happens when trying to set undefined bits * (other than 6 and 7). Currently ignoring them. */ /** @todo Testcase: Test that it raises and loweres the FPU exception bits * according to FSW. (This is was is currently implemented.) */ PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87; pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK; iemFpuRecalcExceptionStatus(pFpuCtx); /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */ iemHlpUsedFpu(pVCpu); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements the underflow case of fxch. * * @param iStReg The other stack register. */ IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87; unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW); unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK; Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW)); /** @todo Testcase: fxch underflow. Making assumptions that underflowed * registers are read as QNaN and then exchanged. This could be * wrong... */ if (pFpuCtx->FCW & X86_FCW_IM) { if (RT_BIT(iReg1) & pFpuCtx->FTW) { if (RT_BIT(iReg2) & pFpuCtx->FTW) iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80); else pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80; iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80); } else { pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80; iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80); } pFpuCtx->FSW &= ~X86_FSW_C_MASK; pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF; } else { /* raise underflow exception, don't change anything. */ pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK); pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B; } iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx); iemHlpUsedFpu(pVCpu); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'. * * @param cToAdd 1 or 7. */ IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); Assert(iStReg < 8); /* * Raise exceptions. */ if (pCtx->cr0 & (X86_CR0_EM | X86_CR0_TS)) return iemRaiseDeviceNotAvailable(pVCpu); PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87; uint16_t u16Fsw = pFpuCtx->FSW; if (u16Fsw & X86_FSW_ES) return iemRaiseMathFault(pVCpu); /* * Check if any of the register accesses causes #SF + #IA. */ unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw); unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK; if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2))) { uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80); NOREF(u32Eflags); pFpuCtx->FSW &= ~X86_FSW_C1; pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK; if ( !(u16Fsw & X86_FSW_IE) || (pFpuCtx->FCW & X86_FCW_IM) ) { pCtx->eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF); pCtx->eflags.u |= pCtx->eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF); } } else if (pFpuCtx->FCW & X86_FCW_IM) { /* Masked underflow. */ pFpuCtx->FSW &= ~X86_FSW_C1; pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF; pCtx->eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF); pCtx->eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF; } else { /* Raise underflow - don't touch EFLAGS or TOP. */ pFpuCtx->FSW &= ~X86_FSW_C1; pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B; fPop = false; } /* * Pop if necessary. */ if (fPop) { pFpuCtx->FTW &= ~RT_BIT(iReg1); pFpuCtx->FSW &= X86_FSW_TOP_MASK; pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT; } iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx); iemHlpUsedFpu(pVCpu); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** @} */