1 | /* $Id: IEMAllCImpl.cpp.h 36838 2011-04-25 14:17:54Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Instruction Implementation in C/C++ (code include).
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /** @name Misc Helpers
|
---|
20 | * @{
|
---|
21 | */
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Checks if we are allowed to access the given I/O port, raising the
|
---|
25 | * appropriate exceptions if we aren't (or if the I/O bitmap is not
|
---|
26 | * accessible).
|
---|
27 | *
|
---|
28 | * @returns Strict VBox status code.
|
---|
29 | *
|
---|
30 | * @param pIemCpu The IEM per CPU data.
|
---|
31 | * @param pCtx The register context.
|
---|
32 | * @param u16Port The port number.
|
---|
33 | * @param cbOperand The operand size.
|
---|
34 | */
|
---|
35 | DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PIEMCPU pIemCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand)
|
---|
36 | {
|
---|
37 | if ( (pCtx->cr0 & X86_CR0_PE)
|
---|
38 | && ( pIemCpu->uCpl > pCtx->eflags.Bits.u2IOPL
|
---|
39 | || pCtx->eflags.Bits.u1VM) )
|
---|
40 | {
|
---|
41 | /** @todo I/O port permission bitmap check */
|
---|
42 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
43 | }
|
---|
44 | return VINF_SUCCESS;
|
---|
45 | }
|
---|
46 |
|
---|
47 | /** @} */
|
---|
48 |
|
---|
49 | /** @name C Implementations
|
---|
50 | * @{
|
---|
51 | */
|
---|
52 |
|
---|
53 | /**
|
---|
54 | * Implements a 16-bit popa.
|
---|
55 | */
|
---|
56 | IEM_CIMPL_DEF_0(iemCImpl_popa_16)
|
---|
57 | {
|
---|
58 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
59 | RTGCPTR GCPtrStart = iemRegGetEffRsp(pCtx);
|
---|
60 | RTGCPTR GCPtrLast = GCPtrStart + 15;
|
---|
61 | VBOXSTRICTRC rcStrict;
|
---|
62 |
|
---|
63 | /*
|
---|
64 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
65 | * around in real mode as long as none of the individual "popa" crosses the
|
---|
66 | * end of the stack segment. In protected mode we check the whole access
|
---|
67 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
68 | * danger of wrapping around.
|
---|
69 | */
|
---|
70 | /** @todo do popa boundary / wrap-around checks. */
|
---|
71 | if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pIemCpu)
|
---|
72 | && (pCtx->csHid.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
|
---|
73 | {
|
---|
74 | /* word-by-word */
|
---|
75 | RTUINT64U TmpRsp;
|
---|
76 | TmpRsp.u = pCtx->rsp;
|
---|
77 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->di, &TmpRsp);
|
---|
78 | if (rcStrict == VINF_SUCCESS)
|
---|
79 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->si, &TmpRsp);
|
---|
80 | if (rcStrict == VINF_SUCCESS)
|
---|
81 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->bp, &TmpRsp);
|
---|
82 | if (rcStrict == VINF_SUCCESS)
|
---|
83 | {
|
---|
84 | iemRegAddToRspEx(&TmpRsp, 2, pCtx); /* sp */
|
---|
85 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->bx, &TmpRsp);
|
---|
86 | }
|
---|
87 | if (rcStrict == VINF_SUCCESS)
|
---|
88 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->dx, &TmpRsp);
|
---|
89 | if (rcStrict == VINF_SUCCESS)
|
---|
90 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->cx, &TmpRsp);
|
---|
91 | if (rcStrict == VINF_SUCCESS)
|
---|
92 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->ax, &TmpRsp);
|
---|
93 | if (rcStrict == VINF_SUCCESS)
|
---|
94 | {
|
---|
95 | pCtx->rsp = TmpRsp.u;
|
---|
96 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
97 | }
|
---|
98 | }
|
---|
99 | else
|
---|
100 | {
|
---|
101 | uint16_t const *pa16Mem = NULL;
|
---|
102 | rcStrict = iemMemMap(pIemCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
|
---|
103 | if (rcStrict == VINF_SUCCESS)
|
---|
104 | {
|
---|
105 | pCtx->di = pa16Mem[7 - X86_GREG_xDI];
|
---|
106 | pCtx->si = pa16Mem[7 - X86_GREG_xSI];
|
---|
107 | pCtx->bp = pa16Mem[7 - X86_GREG_xBP];
|
---|
108 | /* skip sp */
|
---|
109 | pCtx->bx = pa16Mem[7 - X86_GREG_xBX];
|
---|
110 | pCtx->dx = pa16Mem[7 - X86_GREG_xDX];
|
---|
111 | pCtx->cx = pa16Mem[7 - X86_GREG_xCX];
|
---|
112 | pCtx->ax = pa16Mem[7 - X86_GREG_xAX];
|
---|
113 | rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
|
---|
114 | if (rcStrict == VINF_SUCCESS)
|
---|
115 | {
|
---|
116 | iemRegAddToRsp(pCtx, 16);
|
---|
117 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
118 | }
|
---|
119 | }
|
---|
120 | }
|
---|
121 | return rcStrict;
|
---|
122 | }
|
---|
123 |
|
---|
124 |
|
---|
125 | /**
|
---|
126 | * Implements a 32-bit popa.
|
---|
127 | */
|
---|
128 | IEM_CIMPL_DEF_0(iemCImpl_popa_32)
|
---|
129 | {
|
---|
130 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
131 | RTGCPTR GCPtrStart = iemRegGetEffRsp(pCtx);
|
---|
132 | RTGCPTR GCPtrLast = GCPtrStart + 31;
|
---|
133 | VBOXSTRICTRC rcStrict;
|
---|
134 |
|
---|
135 | /*
|
---|
136 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
137 | * around in real mode as long as none of the individual "popa" crosses the
|
---|
138 | * end of the stack segment. In protected mode we check the whole access
|
---|
139 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
140 | * danger of wrapping around.
|
---|
141 | */
|
---|
142 | /** @todo do popa boundary / wrap-around checks. */
|
---|
143 | if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pIemCpu)
|
---|
144 | && (pCtx->csHid.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
|
---|
145 | {
|
---|
146 | /* word-by-word */
|
---|
147 | RTUINT64U TmpRsp;
|
---|
148 | TmpRsp.u = pCtx->rsp;
|
---|
149 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->edi, &TmpRsp);
|
---|
150 | if (rcStrict == VINF_SUCCESS)
|
---|
151 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->esi, &TmpRsp);
|
---|
152 | if (rcStrict == VINF_SUCCESS)
|
---|
153 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ebp, &TmpRsp);
|
---|
154 | if (rcStrict == VINF_SUCCESS)
|
---|
155 | {
|
---|
156 | iemRegAddToRspEx(&TmpRsp, 2, pCtx); /* sp */
|
---|
157 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ebx, &TmpRsp);
|
---|
158 | }
|
---|
159 | if (rcStrict == VINF_SUCCESS)
|
---|
160 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->edx, &TmpRsp);
|
---|
161 | if (rcStrict == VINF_SUCCESS)
|
---|
162 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ecx, &TmpRsp);
|
---|
163 | if (rcStrict == VINF_SUCCESS)
|
---|
164 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->eax, &TmpRsp);
|
---|
165 | if (rcStrict == VINF_SUCCESS)
|
---|
166 | {
|
---|
167 | #if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
|
---|
168 | pCtx->rdi &= UINT32_MAX;
|
---|
169 | pCtx->rsi &= UINT32_MAX;
|
---|
170 | pCtx->rbp &= UINT32_MAX;
|
---|
171 | pCtx->rbx &= UINT32_MAX;
|
---|
172 | pCtx->rdx &= UINT32_MAX;
|
---|
173 | pCtx->rcx &= UINT32_MAX;
|
---|
174 | pCtx->rax &= UINT32_MAX;
|
---|
175 | #endif
|
---|
176 | pCtx->rsp = TmpRsp.u;
|
---|
177 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
178 | }
|
---|
179 | }
|
---|
180 | else
|
---|
181 | {
|
---|
182 | uint32_t const *pa32Mem;
|
---|
183 | rcStrict = iemMemMap(pIemCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
|
---|
184 | if (rcStrict == VINF_SUCCESS)
|
---|
185 | {
|
---|
186 | pCtx->rdi = pa32Mem[7 - X86_GREG_xDI];
|
---|
187 | pCtx->rsi = pa32Mem[7 - X86_GREG_xSI];
|
---|
188 | pCtx->rbp = pa32Mem[7 - X86_GREG_xBP];
|
---|
189 | /* skip esp */
|
---|
190 | pCtx->rbx = pa32Mem[7 - X86_GREG_xBX];
|
---|
191 | pCtx->rdx = pa32Mem[7 - X86_GREG_xDX];
|
---|
192 | pCtx->rcx = pa32Mem[7 - X86_GREG_xCX];
|
---|
193 | pCtx->rax = pa32Mem[7 - X86_GREG_xAX];
|
---|
194 | rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
|
---|
195 | if (rcStrict == VINF_SUCCESS)
|
---|
196 | {
|
---|
197 | iemRegAddToRsp(pCtx, 32);
|
---|
198 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
199 | }
|
---|
200 | }
|
---|
201 | }
|
---|
202 | return rcStrict;
|
---|
203 | }
|
---|
204 |
|
---|
205 |
|
---|
206 | /**
|
---|
207 | * Implements a 16-bit pusha.
|
---|
208 | */
|
---|
209 | IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
|
---|
210 | {
|
---|
211 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
212 | RTGCPTR GCPtrTop = iemRegGetEffRsp(pCtx);
|
---|
213 | RTGCPTR GCPtrBottom = GCPtrTop - 15;
|
---|
214 | VBOXSTRICTRC rcStrict;
|
---|
215 |
|
---|
216 | /*
|
---|
217 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
218 | * around in real mode as long as none of the individual "pushd" crosses the
|
---|
219 | * end of the stack segment. In protected mode we check the whole access
|
---|
220 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
221 | * danger of wrapping around.
|
---|
222 | */
|
---|
223 | /** @todo do pusha boundary / wrap-around checks. */
|
---|
224 | if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
|
---|
225 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu) ) )
|
---|
226 | {
|
---|
227 | /* word-by-word */
|
---|
228 | RTUINT64U TmpRsp;
|
---|
229 | TmpRsp.u = pCtx->rsp;
|
---|
230 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->ax, &TmpRsp);
|
---|
231 | if (rcStrict == VINF_SUCCESS)
|
---|
232 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->cx, &TmpRsp);
|
---|
233 | if (rcStrict == VINF_SUCCESS)
|
---|
234 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->dx, &TmpRsp);
|
---|
235 | if (rcStrict == VINF_SUCCESS)
|
---|
236 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->bx, &TmpRsp);
|
---|
237 | if (rcStrict == VINF_SUCCESS)
|
---|
238 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->sp, &TmpRsp);
|
---|
239 | if (rcStrict == VINF_SUCCESS)
|
---|
240 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->bp, &TmpRsp);
|
---|
241 | if (rcStrict == VINF_SUCCESS)
|
---|
242 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->si, &TmpRsp);
|
---|
243 | if (rcStrict == VINF_SUCCESS)
|
---|
244 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->di, &TmpRsp);
|
---|
245 | if (rcStrict == VINF_SUCCESS)
|
---|
246 | {
|
---|
247 | pCtx->rsp = TmpRsp.u;
|
---|
248 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
249 | }
|
---|
250 | }
|
---|
251 | else
|
---|
252 | {
|
---|
253 | GCPtrBottom--;
|
---|
254 | uint16_t *pa16Mem = NULL;
|
---|
255 | rcStrict = iemMemMap(pIemCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
|
---|
256 | if (rcStrict == VINF_SUCCESS)
|
---|
257 | {
|
---|
258 | pa16Mem[7 - X86_GREG_xDI] = pCtx->di;
|
---|
259 | pa16Mem[7 - X86_GREG_xSI] = pCtx->si;
|
---|
260 | pa16Mem[7 - X86_GREG_xBP] = pCtx->bp;
|
---|
261 | pa16Mem[7 - X86_GREG_xSP] = pCtx->sp;
|
---|
262 | pa16Mem[7 - X86_GREG_xBX] = pCtx->bx;
|
---|
263 | pa16Mem[7 - X86_GREG_xDX] = pCtx->dx;
|
---|
264 | pa16Mem[7 - X86_GREG_xCX] = pCtx->cx;
|
---|
265 | pa16Mem[7 - X86_GREG_xAX] = pCtx->ax;
|
---|
266 | rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
|
---|
267 | if (rcStrict == VINF_SUCCESS)
|
---|
268 | {
|
---|
269 | iemRegSubFromRsp(pCtx, 16);
|
---|
270 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
271 | }
|
---|
272 | }
|
---|
273 | }
|
---|
274 | return rcStrict;
|
---|
275 | }
|
---|
276 |
|
---|
277 |
|
---|
278 | /**
|
---|
279 | * Implements a 32-bit pusha.
|
---|
280 | */
|
---|
281 | IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
|
---|
282 | {
|
---|
283 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
284 | RTGCPTR GCPtrTop = iemRegGetEffRsp(pCtx);
|
---|
285 | RTGCPTR GCPtrBottom = GCPtrTop - 31;
|
---|
286 | VBOXSTRICTRC rcStrict;
|
---|
287 |
|
---|
288 | /*
|
---|
289 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
290 | * around in real mode as long as none of the individual "pusha" crosses the
|
---|
291 | * end of the stack segment. In protected mode we check the whole access
|
---|
292 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
293 | * danger of wrapping around.
|
---|
294 | */
|
---|
295 | /** @todo do pusha boundary / wrap-around checks. */
|
---|
296 | if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
|
---|
297 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu) ) )
|
---|
298 | {
|
---|
299 | /* word-by-word */
|
---|
300 | RTUINT64U TmpRsp;
|
---|
301 | TmpRsp.u = pCtx->rsp;
|
---|
302 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->eax, &TmpRsp);
|
---|
303 | if (rcStrict == VINF_SUCCESS)
|
---|
304 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ecx, &TmpRsp);
|
---|
305 | if (rcStrict == VINF_SUCCESS)
|
---|
306 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->edx, &TmpRsp);
|
---|
307 | if (rcStrict == VINF_SUCCESS)
|
---|
308 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ebx, &TmpRsp);
|
---|
309 | if (rcStrict == VINF_SUCCESS)
|
---|
310 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->esp, &TmpRsp);
|
---|
311 | if (rcStrict == VINF_SUCCESS)
|
---|
312 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ebp, &TmpRsp);
|
---|
313 | if (rcStrict == VINF_SUCCESS)
|
---|
314 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->esi, &TmpRsp);
|
---|
315 | if (rcStrict == VINF_SUCCESS)
|
---|
316 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->edi, &TmpRsp);
|
---|
317 | if (rcStrict == VINF_SUCCESS)
|
---|
318 | {
|
---|
319 | pCtx->rsp = TmpRsp.u;
|
---|
320 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
321 | }
|
---|
322 | }
|
---|
323 | else
|
---|
324 | {
|
---|
325 | GCPtrBottom--;
|
---|
326 | uint32_t *pa32Mem;
|
---|
327 | rcStrict = iemMemMap(pIemCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
|
---|
328 | if (rcStrict == VINF_SUCCESS)
|
---|
329 | {
|
---|
330 | pa32Mem[7 - X86_GREG_xDI] = pCtx->edi;
|
---|
331 | pa32Mem[7 - X86_GREG_xSI] = pCtx->esi;
|
---|
332 | pa32Mem[7 - X86_GREG_xBP] = pCtx->ebp;
|
---|
333 | pa32Mem[7 - X86_GREG_xSP] = pCtx->esp;
|
---|
334 | pa32Mem[7 - X86_GREG_xBX] = pCtx->ebx;
|
---|
335 | pa32Mem[7 - X86_GREG_xDX] = pCtx->edx;
|
---|
336 | pa32Mem[7 - X86_GREG_xCX] = pCtx->ecx;
|
---|
337 | pa32Mem[7 - X86_GREG_xAX] = pCtx->eax;
|
---|
338 | rcStrict = iemMemCommitAndUnmap(pIemCpu, pa32Mem, IEM_ACCESS_STACK_W);
|
---|
339 | if (rcStrict == VINF_SUCCESS)
|
---|
340 | {
|
---|
341 | iemRegSubFromRsp(pCtx, 32);
|
---|
342 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
343 | }
|
---|
344 | }
|
---|
345 | }
|
---|
346 | return rcStrict;
|
---|
347 | }
|
---|
348 |
|
---|
349 |
|
---|
350 | /**
|
---|
351 | * Implements pushf.
|
---|
352 | *
|
---|
353 | *
|
---|
354 | * @param enmEffOpSize The effective operand size.
|
---|
355 | */
|
---|
356 | IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
|
---|
357 | {
|
---|
358 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
359 |
|
---|
360 | /*
|
---|
361 | * If we're in V8086 mode some care is required (which is why we're in
|
---|
362 | * doing this in a C implementation).
|
---|
363 | */
|
---|
364 | uint32_t fEfl = pCtx->eflags.u;
|
---|
365 | if ( (fEfl & X86_EFL_VM)
|
---|
366 | && X86_EFL_GET_IOPL(fEfl) != 3 )
|
---|
367 | {
|
---|
368 | Assert(pCtx->cr0 & X86_CR0_PE);
|
---|
369 | if ( enmEffOpSize != IEMMODE_16BIT
|
---|
370 | || !(pCtx->cr4 & X86_CR4_VME))
|
---|
371 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
372 | fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
|
---|
373 | fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
|
---|
374 | return iemMemStackPushU16(pIemCpu, (uint16_t)fEfl);
|
---|
375 | }
|
---|
376 |
|
---|
377 | /*
|
---|
378 | * Ok, clear RF and VM and push the flags.
|
---|
379 | */
|
---|
380 | fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
|
---|
381 |
|
---|
382 | VBOXSTRICTRC rcStrict;
|
---|
383 | switch (enmEffOpSize)
|
---|
384 | {
|
---|
385 | case IEMMODE_16BIT:
|
---|
386 | rcStrict = iemMemStackPushU16(pIemCpu, (uint16_t)fEfl);
|
---|
387 | break;
|
---|
388 | case IEMMODE_32BIT:
|
---|
389 | rcStrict = iemMemStackPushU32(pIemCpu, fEfl);
|
---|
390 | break;
|
---|
391 | case IEMMODE_64BIT:
|
---|
392 | rcStrict = iemMemStackPushU64(pIemCpu, fEfl);
|
---|
393 | break;
|
---|
394 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
395 | }
|
---|
396 | if (rcStrict != VINF_SUCCESS)
|
---|
397 | return rcStrict;
|
---|
398 |
|
---|
399 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
400 | return VINF_SUCCESS;
|
---|
401 | }
|
---|
402 |
|
---|
403 |
|
---|
404 | /**
|
---|
405 | * Implements popf.
|
---|
406 | *
|
---|
407 | * @param enmEffOpSize The effective operand size.
|
---|
408 | */
|
---|
409 | IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
|
---|
410 | {
|
---|
411 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
412 | uint32_t const fEflOld = pCtx->eflags.u;
|
---|
413 | VBOXSTRICTRC rcStrict;
|
---|
414 | uint32_t fEflNew;
|
---|
415 |
|
---|
416 | /*
|
---|
417 | * V8086 is special as usual.
|
---|
418 | */
|
---|
419 | if (fEflOld & X86_EFL_VM)
|
---|
420 | {
|
---|
421 | /*
|
---|
422 | * Almost anything goes if IOPL is 3.
|
---|
423 | */
|
---|
424 | if (X86_EFL_GET_IOPL(fEflOld) == 3)
|
---|
425 | {
|
---|
426 | switch (enmEffOpSize)
|
---|
427 | {
|
---|
428 | case IEMMODE_16BIT:
|
---|
429 | {
|
---|
430 | uint16_t u16Value;
|
---|
431 | rcStrict = iemMemStackPopU16(pIemCpu, &u16Value);
|
---|
432 | if (rcStrict != VINF_SUCCESS)
|
---|
433 | return rcStrict;
|
---|
434 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
|
---|
435 | break;
|
---|
436 | }
|
---|
437 | case IEMMODE_32BIT:
|
---|
438 | rcStrict = iemMemStackPopU32(pIemCpu, &fEflNew);
|
---|
439 | if (rcStrict != VINF_SUCCESS)
|
---|
440 | return rcStrict;
|
---|
441 | break;
|
---|
442 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
443 | }
|
---|
444 |
|
---|
445 | fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL);
|
---|
446 | fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL)) & fEflOld;
|
---|
447 | }
|
---|
448 | /*
|
---|
449 | * Interrupt flag virtualization with CR4.VME=1.
|
---|
450 | */
|
---|
451 | else if ( enmEffOpSize == IEMMODE_16BIT
|
---|
452 | && (pCtx->cr4 & X86_CR4_VME) )
|
---|
453 | {
|
---|
454 | uint16_t u16Value;
|
---|
455 | RTUINT64U TmpRsp;
|
---|
456 | TmpRsp.u = pCtx->rsp;
|
---|
457 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &u16Value, &TmpRsp);
|
---|
458 | if (rcStrict != VINF_SUCCESS)
|
---|
459 | return rcStrict;
|
---|
460 |
|
---|
461 | /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
|
---|
462 | * or before? */
|
---|
463 | if ( ( (u16Value & X86_EFL_IF)
|
---|
464 | && (fEflOld & X86_EFL_VIP))
|
---|
465 | || (u16Value & X86_EFL_TF) )
|
---|
466 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
467 |
|
---|
468 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
|
---|
469 | fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
|
---|
470 | fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
|
---|
471 | fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
|
---|
472 |
|
---|
473 | pCtx->rsp = TmpRsp.u;
|
---|
474 | }
|
---|
475 | else
|
---|
476 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
477 |
|
---|
478 | }
|
---|
479 | /*
|
---|
480 | * Not in V8086 mode.
|
---|
481 | */
|
---|
482 | else
|
---|
483 | {
|
---|
484 | /* Pop the flags. */
|
---|
485 | switch (enmEffOpSize)
|
---|
486 | {
|
---|
487 | case IEMMODE_16BIT:
|
---|
488 | {
|
---|
489 | uint16_t u16Value;
|
---|
490 | rcStrict = iemMemStackPopU16(pIemCpu, &u16Value);
|
---|
491 | if (rcStrict != VINF_SUCCESS)
|
---|
492 | return rcStrict;
|
---|
493 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
|
---|
494 | break;
|
---|
495 | }
|
---|
496 | case IEMMODE_32BIT:
|
---|
497 | case IEMMODE_64BIT:
|
---|
498 | rcStrict = iemMemStackPopU32(pIemCpu, &fEflNew);
|
---|
499 | if (rcStrict != VINF_SUCCESS)
|
---|
500 | return rcStrict;
|
---|
501 | break;
|
---|
502 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
503 | }
|
---|
504 |
|
---|
505 | /* Merge them with the current flags. */
|
---|
506 | if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
|
---|
507 | || pIemCpu->uCpl == 0)
|
---|
508 | {
|
---|
509 | fEflNew &= X86_EFL_POPF_BITS;
|
---|
510 | fEflNew |= ~X86_EFL_POPF_BITS & fEflOld;
|
---|
511 | }
|
---|
512 | else if (pIemCpu->uCpl <= X86_EFL_GET_IOPL(fEflOld))
|
---|
513 | {
|
---|
514 | fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL);
|
---|
515 | fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL)) & fEflOld;
|
---|
516 | }
|
---|
517 | else
|
---|
518 | {
|
---|
519 | fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
|
---|
520 | fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
|
---|
521 | }
|
---|
522 | }
|
---|
523 |
|
---|
524 | /*
|
---|
525 | * Commit the flags.
|
---|
526 | */
|
---|
527 | Assert(fEflNew & RT_BIT_32(1));
|
---|
528 | pCtx->eflags.u = fEflNew;
|
---|
529 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
530 |
|
---|
531 | return VINF_SUCCESS;
|
---|
532 | }
|
---|
533 |
|
---|
534 |
|
---|
535 | /**
|
---|
536 | * Implements an indirect call.
|
---|
537 | *
|
---|
538 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
539 | * operand).
|
---|
540 | * @param enmEffOpSize The effective operand size.
|
---|
541 | */
|
---|
542 | IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
|
---|
543 | {
|
---|
544 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
545 | uint16_t uOldPC = pCtx->ip + cbInstr;
|
---|
546 | if (uNewPC > pCtx->csHid.u32Limit)
|
---|
547 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
548 |
|
---|
549 | VBOXSTRICTRC rcStrict = iemMemStackPushU16(pIemCpu, uOldPC);
|
---|
550 | if (rcStrict != VINF_SUCCESS)
|
---|
551 | return rcStrict;
|
---|
552 |
|
---|
553 | pCtx->rip = uNewPC;
|
---|
554 | return VINF_SUCCESS;
|
---|
555 |
|
---|
556 | }
|
---|
557 |
|
---|
558 |
|
---|
559 | /**
|
---|
560 | * Implements a 16-bit relative call.
|
---|
561 | *
|
---|
562 | * @param offDisp The displacment offset.
|
---|
563 | */
|
---|
564 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
|
---|
565 | {
|
---|
566 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
567 | uint16_t uOldPC = pCtx->ip + cbInstr;
|
---|
568 | uint16_t uNewPC = uOldPC + offDisp;
|
---|
569 | if (uNewPC > pCtx->csHid.u32Limit)
|
---|
570 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
571 |
|
---|
572 | VBOXSTRICTRC rcStrict = iemMemStackPushU16(pIemCpu, uOldPC);
|
---|
573 | if (rcStrict != VINF_SUCCESS)
|
---|
574 | return rcStrict;
|
---|
575 |
|
---|
576 | pCtx->rip = uNewPC;
|
---|
577 | return VINF_SUCCESS;
|
---|
578 | }
|
---|
579 |
|
---|
580 |
|
---|
581 | /**
|
---|
582 | * Implements a 32-bit indirect call.
|
---|
583 | *
|
---|
584 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
585 | * operand).
|
---|
586 | * @param enmEffOpSize The effective operand size.
|
---|
587 | */
|
---|
588 | IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
|
---|
589 | {
|
---|
590 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
591 | uint32_t uOldPC = pCtx->eip + cbInstr;
|
---|
592 | if (uNewPC > pCtx->csHid.u32Limit)
|
---|
593 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
594 |
|
---|
595 | VBOXSTRICTRC rcStrict = iemMemStackPushU32(pIemCpu, uOldPC);
|
---|
596 | if (rcStrict != VINF_SUCCESS)
|
---|
597 | return rcStrict;
|
---|
598 |
|
---|
599 | pCtx->rip = uNewPC;
|
---|
600 | return VINF_SUCCESS;
|
---|
601 |
|
---|
602 | }
|
---|
603 |
|
---|
604 |
|
---|
605 | /**
|
---|
606 | * Implements a 32-bit relative call.
|
---|
607 | *
|
---|
608 | * @param offDisp The displacment offset.
|
---|
609 | */
|
---|
610 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
|
---|
611 | {
|
---|
612 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
613 | uint32_t uOldPC = pCtx->eip + cbInstr;
|
---|
614 | uint32_t uNewPC = uOldPC + offDisp;
|
---|
615 | if (uNewPC > pCtx->csHid.u32Limit)
|
---|
616 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
617 |
|
---|
618 | VBOXSTRICTRC rcStrict = iemMemStackPushU32(pIemCpu, uOldPC);
|
---|
619 | if (rcStrict != VINF_SUCCESS)
|
---|
620 | return rcStrict;
|
---|
621 |
|
---|
622 | pCtx->rip = uNewPC;
|
---|
623 | return VINF_SUCCESS;
|
---|
624 | }
|
---|
625 |
|
---|
626 |
|
---|
627 | /**
|
---|
628 | * Implements a 64-bit indirect call.
|
---|
629 | *
|
---|
630 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
631 | * operand).
|
---|
632 | * @param enmEffOpSize The effective operand size.
|
---|
633 | */
|
---|
634 | IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
|
---|
635 | {
|
---|
636 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
637 | uint64_t uOldPC = pCtx->rip + cbInstr;
|
---|
638 | if (!IEM_IS_CANONICAL(uNewPC))
|
---|
639 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
640 |
|
---|
641 | VBOXSTRICTRC rcStrict = iemMemStackPushU64(pIemCpu, uOldPC);
|
---|
642 | if (rcStrict != VINF_SUCCESS)
|
---|
643 | return rcStrict;
|
---|
644 |
|
---|
645 | pCtx->rip = uNewPC;
|
---|
646 | return VINF_SUCCESS;
|
---|
647 |
|
---|
648 | }
|
---|
649 |
|
---|
650 |
|
---|
651 | /**
|
---|
652 | * Implements a 64-bit relative call.
|
---|
653 | *
|
---|
654 | * @param offDisp The displacment offset.
|
---|
655 | */
|
---|
656 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
|
---|
657 | {
|
---|
658 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
659 | uint64_t uOldPC = pCtx->rip + cbInstr;
|
---|
660 | uint64_t uNewPC = uOldPC + offDisp;
|
---|
661 | if (!IEM_IS_CANONICAL(uNewPC))
|
---|
662 | return iemRaiseNotCanonical(pIemCpu);
|
---|
663 |
|
---|
664 | VBOXSTRICTRC rcStrict = iemMemStackPushU64(pIemCpu, uOldPC);
|
---|
665 | if (rcStrict != VINF_SUCCESS)
|
---|
666 | return rcStrict;
|
---|
667 |
|
---|
668 | pCtx->rip = uNewPC;
|
---|
669 | return VINF_SUCCESS;
|
---|
670 | }
|
---|
671 |
|
---|
672 |
|
---|
673 | /**
|
---|
674 | * Implements far jumps.
|
---|
675 | *
|
---|
676 | * @param uSel The selector.
|
---|
677 | * @param offSeg The segment offset.
|
---|
678 | */
|
---|
679 | IEM_CIMPL_DEF_2(iemCImpl_FarJmp, uint16_t, uSel, uint32_t, offSeg)
|
---|
680 | {
|
---|
681 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
682 |
|
---|
683 | /*
|
---|
684 | * Real mode and V8086 mode are easy. The only snag seems to be that
|
---|
685 | * CS.limit doesn't change and the limit check is done against the current
|
---|
686 | * limit.
|
---|
687 | */
|
---|
688 | if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
|
---|
689 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
690 | {
|
---|
691 | if (offSeg > pCtx->csHid.u32Limit)
|
---|
692 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
693 |
|
---|
694 | if (pIemCpu->enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
|
---|
695 | pCtx->rip = offSeg;
|
---|
696 | else
|
---|
697 | pCtx->rip = offSeg & UINT16_MAX;
|
---|
698 | pCtx->cs = uSel;
|
---|
699 | pCtx->csHid.u64Base = (uint32_t)uSel << 4;
|
---|
700 | /** @todo REM reset the accessed bit (see on jmp far16 after disabling
|
---|
701 | * PE. Check with VT-x and AMD-V. */
|
---|
702 | #ifdef IEM_VERIFICATION_MODE
|
---|
703 | pCtx->csHid.Attr.u &= ~X86_SEL_TYPE_ACCESSED;
|
---|
704 | #endif
|
---|
705 | return VINF_SUCCESS;
|
---|
706 | }
|
---|
707 |
|
---|
708 | /*
|
---|
709 | * Protected mode. Need to parse the specified descriptor...
|
---|
710 | */
|
---|
711 | if (!(uSel & (X86_SEL_MASK | X86_SEL_LDT)))
|
---|
712 | {
|
---|
713 | Log(("jmpf %04x:%08x -> invalid selector, #GP(0)\n", uSel, offSeg));
|
---|
714 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
715 | }
|
---|
716 |
|
---|
717 | /* Fetch the descriptor. */
|
---|
718 | IEMSELDESC Desc;
|
---|
719 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uSel);
|
---|
720 | if (rcStrict != VINF_SUCCESS)
|
---|
721 | return rcStrict;
|
---|
722 |
|
---|
723 | /* Is it there? */
|
---|
724 | if (!Desc.Legacy.Gen.u1Present)
|
---|
725 | {
|
---|
726 | Log(("jmpf %04x:%08x -> segment not present\n", uSel, offSeg));
|
---|
727 | return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel);
|
---|
728 | }
|
---|
729 |
|
---|
730 | /*
|
---|
731 | * Deal with it according to its type.
|
---|
732 | */
|
---|
733 | if (Desc.Legacy.Gen.u1DescType)
|
---|
734 | {
|
---|
735 | /* Only code segments. */
|
---|
736 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
737 | {
|
---|
738 | Log(("jmpf %04x:%08x -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
|
---|
739 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
740 | }
|
---|
741 |
|
---|
742 | /* L vs D. */
|
---|
743 | if ( Desc.Legacy.Gen.u1Long
|
---|
744 | && Desc.Legacy.Gen.u1DefBig
|
---|
745 | && IEM_IS_LONG_MODE(pIemCpu))
|
---|
746 | {
|
---|
747 | Log(("jmpf %04x:%08x -> both L and D are set.\n", uSel, offSeg));
|
---|
748 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
749 | }
|
---|
750 |
|
---|
751 | /* DPL/RPL/CPL check, where conforming segments makes a difference. */
|
---|
752 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
|
---|
753 | {
|
---|
754 | if (Desc.Legacy.Gen.u2Dpl > pIemCpu->uCpl)
|
---|
755 | {
|
---|
756 | Log(("jmpf %04x:%08x -> DPL violation (conforming); DPL=%d CPL=%u\n",
|
---|
757 | uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
|
---|
758 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
759 | }
|
---|
760 | }
|
---|
761 | else
|
---|
762 | {
|
---|
763 | if (Desc.Legacy.Gen.u2Dpl != pIemCpu->uCpl)
|
---|
764 | {
|
---|
765 | Log(("jmpf %04x:%08x -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
|
---|
766 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
767 | }
|
---|
768 | if ((uSel & X86_SEL_RPL) > pIemCpu->uCpl)
|
---|
769 | {
|
---|
770 | Log(("jmpf %04x:%08x -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pIemCpu->uCpl));
|
---|
771 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
772 | }
|
---|
773 | }
|
---|
774 |
|
---|
775 | /* Limit check. (Should alternatively check for non-canonical addresses
|
---|
776 | here, but that is ruled out by offSeg being 32-bit, right?) */
|
---|
777 | uint64_t u64Base;
|
---|
778 | uint32_t cbLimit = X86DESC_LIMIT(Desc.Legacy);
|
---|
779 | if (Desc.Legacy.Gen.u1Granularity)
|
---|
780 | cbLimit = (cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
|
---|
781 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
782 | u64Base = 0;
|
---|
783 | else
|
---|
784 | {
|
---|
785 | if (offSeg > cbLimit)
|
---|
786 | {
|
---|
787 | Log(("jmpf %04x:%08x -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
|
---|
788 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
789 | }
|
---|
790 | u64Base = X86DESC_BASE(Desc.Legacy);
|
---|
791 | }
|
---|
792 |
|
---|
793 | /*
|
---|
794 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
795 | * committing the result into CS, CSHID and RIP.
|
---|
796 | */
|
---|
797 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
798 | {
|
---|
799 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uSel);
|
---|
800 | if (rcStrict != VINF_SUCCESS)
|
---|
801 | return rcStrict;
|
---|
802 | #ifdef IEM_VERIFICATION_MODE /** @todo check what VT-x and AMD-V does. */
|
---|
803 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
804 | #endif
|
---|
805 | }
|
---|
806 |
|
---|
807 | /* commit */
|
---|
808 | pCtx->rip = offSeg;
|
---|
809 | pCtx->cs = uSel & (X86_SEL_MASK | X86_SEL_LDT);
|
---|
810 | pCtx->cs |= pIemCpu->uCpl; /** @todo is this right for conforming segs? or in general? */
|
---|
811 | pCtx->csHid.Attr.u = (Desc.Legacy.u >> (16+16+8)) & UINT32_C(0xf0ff);
|
---|
812 | pCtx->csHid.u32Limit = cbLimit;
|
---|
813 | pCtx->csHid.u64Base = u64Base;
|
---|
814 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
815 | * mode. */
|
---|
816 | return VINF_SUCCESS;
|
---|
817 | }
|
---|
818 |
|
---|
819 | /*
|
---|
820 | * System selector.
|
---|
821 | */
|
---|
822 | if (IEM_IS_LONG_MODE(pIemCpu))
|
---|
823 | switch (Desc.Legacy.Gen.u4Type)
|
---|
824 | {
|
---|
825 | case AMD64_SEL_TYPE_SYS_LDT:
|
---|
826 | case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
|
---|
827 | case AMD64_SEL_TYPE_SYS_TSS_BUSY:
|
---|
828 | case AMD64_SEL_TYPE_SYS_CALL_GATE:
|
---|
829 | case AMD64_SEL_TYPE_SYS_INT_GATE:
|
---|
830 | case AMD64_SEL_TYPE_SYS_TRAP_GATE:
|
---|
831 | /* Call various functions to do the work. */
|
---|
832 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
833 | default:
|
---|
834 | Log(("jmpf %04x:%08x -> wrong sys selector (64-bit): %d\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
|
---|
835 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
836 |
|
---|
837 | }
|
---|
838 | switch (Desc.Legacy.Gen.u4Type)
|
---|
839 | {
|
---|
840 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
841 | case X86_SEL_TYPE_SYS_LDT:
|
---|
842 | case X86_SEL_TYPE_SYS_286_CALL_GATE:
|
---|
843 | case X86_SEL_TYPE_SYS_TASK_GATE:
|
---|
844 | case X86_SEL_TYPE_SYS_286_INT_GATE:
|
---|
845 | case X86_SEL_TYPE_SYS_286_TRAP_GATE:
|
---|
846 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
847 | case X86_SEL_TYPE_SYS_386_CALL_GATE:
|
---|
848 | case X86_SEL_TYPE_SYS_386_INT_GATE:
|
---|
849 | case X86_SEL_TYPE_SYS_386_TRAP_GATE:
|
---|
850 | /* Call various functions to do the work. */
|
---|
851 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
852 |
|
---|
853 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
854 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
855 | /* Call various functions to do the work. */
|
---|
856 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
857 |
|
---|
858 | default:
|
---|
859 | Log(("jmpf %04x:%08x -> wrong sys selector (32-bit): %d\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
|
---|
860 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
861 | }
|
---|
862 | }
|
---|
863 |
|
---|
864 |
|
---|
865 | /**
|
---|
866 | * Implements far calls.
|
---|
867 | *
|
---|
868 | * @param uSel The selector.
|
---|
869 | * @param offSeg The segment offset.
|
---|
870 | * @param enmOpSize The operand size (in case we need it).
|
---|
871 | */
|
---|
872 | IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmOpSize)
|
---|
873 | {
|
---|
874 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
875 | VBOXSTRICTRC rcStrict;
|
---|
876 | uint64_t uNewRsp;
|
---|
877 | void *pvRet;
|
---|
878 |
|
---|
879 | /*
|
---|
880 | * Real mode and V8086 mode are easy. The only snag seems to be that
|
---|
881 | * CS.limit doesn't change and the limit check is done against the current
|
---|
882 | * limit.
|
---|
883 | */
|
---|
884 | if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
|
---|
885 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
886 | {
|
---|
887 | Assert(enmOpSize == IEMMODE_16BIT || enmOpSize == IEMMODE_32BIT);
|
---|
888 |
|
---|
889 | /* Check stack first - may #SS(0). */
|
---|
890 | rcStrict = iemMemStackPushBeginSpecial(pIemCpu, enmOpSize == IEMMODE_32BIT ? 6 : 4,
|
---|
891 | &pvRet, &uNewRsp);
|
---|
892 | if (rcStrict != VINF_SUCCESS)
|
---|
893 | return rcStrict;
|
---|
894 |
|
---|
895 | /* Check the target address range. */
|
---|
896 | if (offSeg > UINT32_MAX)
|
---|
897 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
898 |
|
---|
899 | /* Everything is fine, push the return address. */
|
---|
900 | if (enmOpSize == IEMMODE_16BIT)
|
---|
901 | {
|
---|
902 | ((uint16_t *)pvRet)[0] = pCtx->ip + cbInstr;
|
---|
903 | ((uint16_t *)pvRet)[1] = pCtx->cs;
|
---|
904 | }
|
---|
905 | else
|
---|
906 | {
|
---|
907 | ((uint32_t *)pvRet)[0] = pCtx->eip + cbInstr;
|
---|
908 | ((uint16_t *)pvRet)[3] = pCtx->cs;
|
---|
909 | }
|
---|
910 | rcStrict = iemMemStackPushCommitSpecial(pIemCpu, pvRet, uNewRsp);
|
---|
911 | if (rcStrict != VINF_SUCCESS)
|
---|
912 | return rcStrict;
|
---|
913 |
|
---|
914 | /* Branch. */
|
---|
915 | pCtx->rip = offSeg;
|
---|
916 | pCtx->cs = uSel;
|
---|
917 | pCtx->csHid.u64Base = (uint32_t)uSel << 4;
|
---|
918 | /** @todo Does REM reset the accessed bit here to? (See on jmp far16
|
---|
919 | * after disabling PE.) Check with VT-x and AMD-V. */
|
---|
920 | #ifdef IEM_VERIFICATION_MODE
|
---|
921 | pCtx->csHid.Attr.u &= ~X86_SEL_TYPE_ACCESSED;
|
---|
922 | #endif
|
---|
923 | return VINF_SUCCESS;
|
---|
924 | }
|
---|
925 |
|
---|
926 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
927 | }
|
---|
928 |
|
---|
929 |
|
---|
930 | /**
|
---|
931 | * Implements retf.
|
---|
932 | *
|
---|
933 | * @param enmEffOpSize The effective operand size.
|
---|
934 | * @param cbPop The amount of arguments to pop from the stack
|
---|
935 | * (bytes).
|
---|
936 | */
|
---|
937 | IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
|
---|
938 | {
|
---|
939 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
940 | VBOXSTRICTRC rcStrict;
|
---|
941 | uint64_t uNewRsp;
|
---|
942 |
|
---|
943 | /*
|
---|
944 | * Real mode and V8086 mode are easy.
|
---|
945 | */
|
---|
946 | if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
|
---|
947 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
948 | {
|
---|
949 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
950 | uint16_t const *pu16Frame;
|
---|
951 | rcStrict = iemMemStackPopBeginSpecial(pIemCpu, enmEffOpSize == IEMMODE_32BIT ? 8 : 4,
|
---|
952 | (void const **)&pu16Frame, &uNewRsp);
|
---|
953 | if (rcStrict != VINF_SUCCESS)
|
---|
954 | return rcStrict;
|
---|
955 | uint32_t uNewEip;
|
---|
956 | uint16_t uNewCs;
|
---|
957 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
958 | {
|
---|
959 | uNewCs = pu16Frame[2];
|
---|
960 | uNewEip = RT_MAKE_U32(pu16Frame[0], pu16Frame[1]);
|
---|
961 | }
|
---|
962 | else
|
---|
963 | {
|
---|
964 | uNewCs = pu16Frame[1];
|
---|
965 | uNewEip = pu16Frame[0];
|
---|
966 | }
|
---|
967 | /** @todo check how this is supposed to work if sp=0xfffe. */
|
---|
968 |
|
---|
969 | /* Check the limit of the new EIP. */
|
---|
970 | /** @todo Intel pseudo code only does the limit check for 16-bit
|
---|
971 | * operands, AMD does not make any distinction. What is right? */
|
---|
972 | if (uNewEip > pCtx->csHid.u32Limit)
|
---|
973 | return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
974 |
|
---|
975 | /* commit the operation. */
|
---|
976 | rcStrict = iemMemStackPopCommitSpecial(pIemCpu, pu16Frame, uNewRsp);
|
---|
977 | if (rcStrict != VINF_SUCCESS)
|
---|
978 | return rcStrict;
|
---|
979 | pCtx->rip = uNewEip;
|
---|
980 | pCtx->cs = uNewCs;
|
---|
981 | pCtx->csHid.u64Base = (uint32_t)uNewCs << 4;
|
---|
982 | /** @todo do we load attribs and limit as well? */
|
---|
983 | if (cbPop)
|
---|
984 | iemRegAddToRsp(pCtx, cbPop);
|
---|
985 | return VINF_SUCCESS;
|
---|
986 | }
|
---|
987 |
|
---|
988 | AssertFailed();
|
---|
989 | return VERR_NOT_IMPLEMENTED;
|
---|
990 | }
|
---|
991 |
|
---|
992 |
|
---|
993 | /**
|
---|
994 | * Implements retn.
|
---|
995 | *
|
---|
996 | * We're doing this in C because of the \#GP that might be raised if the popped
|
---|
997 | * program counter is out of bounds.
|
---|
998 | *
|
---|
999 | * @param enmEffOpSize The effective operand size.
|
---|
1000 | * @param cbPop The amount of arguments to pop from the stack
|
---|
1001 | * (bytes).
|
---|
1002 | */
|
---|
1003 | IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
|
---|
1004 | {
|
---|
1005 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1006 |
|
---|
1007 | /* Fetch the RSP from the stack. */
|
---|
1008 | VBOXSTRICTRC rcStrict;
|
---|
1009 | RTUINT64U NewRip;
|
---|
1010 | RTUINT64U NewRsp;
|
---|
1011 | NewRsp.u = pCtx->rsp;
|
---|
1012 | switch (enmEffOpSize)
|
---|
1013 | {
|
---|
1014 | case IEMMODE_16BIT:
|
---|
1015 | NewRip.u = 0;
|
---|
1016 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &NewRip.Words.w0, &NewRsp);
|
---|
1017 | break;
|
---|
1018 | case IEMMODE_32BIT:
|
---|
1019 | NewRip.u = 0;
|
---|
1020 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &NewRip.DWords.dw0, &NewRsp);
|
---|
1021 | break;
|
---|
1022 | case IEMMODE_64BIT:
|
---|
1023 | rcStrict = iemMemStackPopU64Ex(pIemCpu, &NewRip.u, &NewRsp);
|
---|
1024 | break;
|
---|
1025 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
1026 | }
|
---|
1027 | if (rcStrict != VINF_SUCCESS)
|
---|
1028 | return rcStrict;
|
---|
1029 |
|
---|
1030 | /* Check the new RSP before loading it. */
|
---|
1031 | /** @todo Should test this as the intel+amd pseudo code doesn't mention half
|
---|
1032 | * of it. The canonical test is performed here and for call. */
|
---|
1033 | if (enmEffOpSize != IEMMODE_64BIT)
|
---|
1034 | {
|
---|
1035 | if (NewRip.DWords.dw0 > pCtx->csHid.u32Limit)
|
---|
1036 | {
|
---|
1037 | Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pCtx->csHid.u32Limit));
|
---|
1038 | return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1039 | }
|
---|
1040 | }
|
---|
1041 | else
|
---|
1042 | {
|
---|
1043 | if (!IEM_IS_CANONICAL(NewRip.u))
|
---|
1044 | {
|
---|
1045 | Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
|
---|
1046 | return iemRaiseNotCanonical(pIemCpu);
|
---|
1047 | }
|
---|
1048 | }
|
---|
1049 |
|
---|
1050 | /* Commit it. */
|
---|
1051 | pCtx->rip = NewRip.u;
|
---|
1052 | pCtx->rsp = NewRsp.u;
|
---|
1053 | if (cbPop)
|
---|
1054 | iemRegAddToRsp(pCtx, cbPop);
|
---|
1055 |
|
---|
1056 | return VINF_SUCCESS;
|
---|
1057 | }
|
---|
1058 |
|
---|
1059 |
|
---|
1060 | /**
|
---|
1061 | * Implements int3 and int XX.
|
---|
1062 | *
|
---|
1063 | * @param u8Int The interrupt vector number.
|
---|
1064 | * @param fIsBpInstr Is it the breakpoint instruction.
|
---|
1065 | */
|
---|
1066 | IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, bool, fIsBpInstr)
|
---|
1067 | {
|
---|
1068 | /** @todo we should call TRPM to do this job. */
|
---|
1069 | VBOXSTRICTRC rcStrict;
|
---|
1070 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1071 |
|
---|
1072 | /*
|
---|
1073 | * Real mode is easy.
|
---|
1074 | */
|
---|
1075 | if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
|
---|
1076 | && IEM_IS_REAL_MODE(pIemCpu))
|
---|
1077 | {
|
---|
1078 | /* read the IDT entry. */
|
---|
1079 | if (pCtx->idtr.cbIdt < UINT32_C(4) * u8Int + 3)
|
---|
1080 | return iemRaiseGeneralProtectionFault(pIemCpu, X86_TRAP_ERR_IDT | ((uint16_t)u8Int << X86_TRAP_ERR_SEL_SHIFT));
|
---|
1081 | RTFAR16 Idte;
|
---|
1082 | rcStrict = iemMemFetchDataU32(pIemCpu, (uint32_t *)&Idte, UINT8_MAX, pCtx->idtr.pIdt + UINT32_C(4) * u8Int);
|
---|
1083 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
1084 | return rcStrict;
|
---|
1085 |
|
---|
1086 | /* push the stack frame. */
|
---|
1087 | uint16_t *pu16Frame;
|
---|
1088 | uint64_t uNewRsp;
|
---|
1089 | rcStrict = iemMemStackPushBeginSpecial(pIemCpu, 6, (void **)&pu16Frame, &uNewRsp);
|
---|
1090 | if (rcStrict != VINF_SUCCESS)
|
---|
1091 | return rcStrict;
|
---|
1092 |
|
---|
1093 | pu16Frame[2] = (uint16_t)pCtx->eflags.u;
|
---|
1094 | pu16Frame[1] = (uint16_t)pCtx->cs;
|
---|
1095 | pu16Frame[0] = pCtx->ip + cbInstr;
|
---|
1096 | rcStrict = iemMemStackPushCommitSpecial(pIemCpu, pu16Frame, uNewRsp);
|
---|
1097 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
1098 | return rcStrict;
|
---|
1099 |
|
---|
1100 | /* load the vector address into cs:ip. */
|
---|
1101 | pCtx->cs = Idte.sel;
|
---|
1102 | pCtx->csHid.u64Base = (uint32_t)Idte.sel << 4;
|
---|
1103 | /** @todo do we load attribs and limit as well? Should we check against limit like far jump? */
|
---|
1104 | pCtx->rip = Idte.off;
|
---|
1105 | pCtx->eflags.Bits.u1IF = 0;
|
---|
1106 | return VINF_SUCCESS;
|
---|
1107 | }
|
---|
1108 |
|
---|
1109 | AssertFailed();
|
---|
1110 | return VERR_NOT_IMPLEMENTED;
|
---|
1111 | }
|
---|
1112 |
|
---|
1113 |
|
---|
1114 | /**
|
---|
1115 | * Implements iret.
|
---|
1116 | *
|
---|
1117 | * @param enmEffOpSize The effective operand size.
|
---|
1118 | */
|
---|
1119 | IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
|
---|
1120 | {
|
---|
1121 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1122 | VBOXSTRICTRC rcStrict;
|
---|
1123 | uint64_t uNewRsp;
|
---|
1124 |
|
---|
1125 | /*
|
---|
1126 | * Real mode is easy, V8086 mode is relative similar.
|
---|
1127 | */
|
---|
1128 | if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
|
---|
1129 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
1130 | {
|
---|
1131 | /* iret throws an exception if VME isn't enabled. */
|
---|
1132 | if ( pCtx->eflags.Bits.u1VM
|
---|
1133 | && !(pCtx->cr4 & X86_CR4_VME))
|
---|
1134 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1135 |
|
---|
1136 | /* Do the stack bits, but don't commit RSP before everything checks
|
---|
1137 | out right. */
|
---|
1138 | union
|
---|
1139 | {
|
---|
1140 | uint32_t const *pu32;
|
---|
1141 | uint16_t const *pu16;
|
---|
1142 | void const *pv;
|
---|
1143 | } uFrame;
|
---|
1144 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
1145 | uint16_t uNewCs;
|
---|
1146 | uint32_t uNewEip;
|
---|
1147 | uint32_t uNewFlags;
|
---|
1148 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
1149 | {
|
---|
1150 | rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 12, &uFrame.pv, &uNewRsp);
|
---|
1151 | if (rcStrict != VINF_SUCCESS)
|
---|
1152 | return rcStrict;
|
---|
1153 | uNewEip = uFrame.pu32[0];
|
---|
1154 | uNewCs = (uint16_t)uFrame.pu32[1];
|
---|
1155 | uNewFlags = uFrame.pu32[2];
|
---|
1156 | uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
1157 | | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
|
---|
1158 | | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
|
---|
1159 | | X86_EFL_ID;
|
---|
1160 | uNewFlags |= pCtx->eflags.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
|
---|
1161 | }
|
---|
1162 | else
|
---|
1163 | {
|
---|
1164 | rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 6, &uFrame.pv, &uNewRsp);
|
---|
1165 | if (rcStrict != VINF_SUCCESS)
|
---|
1166 | return rcStrict;
|
---|
1167 | uNewEip = uFrame.pu16[0];
|
---|
1168 | uNewCs = uFrame.pu16[1];
|
---|
1169 | uNewFlags = uFrame.pu16[2];
|
---|
1170 | uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
1171 | | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
|
---|
1172 | uNewFlags |= pCtx->eflags.u & (UINT16_C(0xffff0000) | X86_EFL_1);
|
---|
1173 | /** @todo The intel pseudo code does not indicate what happens to
|
---|
1174 | * reserved flags. We just ignore them. */
|
---|
1175 | }
|
---|
1176 | /** @todo Check how this is supposed to work if sp=0xfffe. */
|
---|
1177 |
|
---|
1178 | /* Check the limit of the new EIP. */
|
---|
1179 | /** @todo Only the AMD pseudo code check the limit here, what's
|
---|
1180 | * right? */
|
---|
1181 | if (uNewEip > pCtx->csHid.u32Limit)
|
---|
1182 | return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1183 |
|
---|
1184 | /* V8086 checks and flag adjustments */
|
---|
1185 | if (pCtx->eflags.Bits.u1VM)
|
---|
1186 | {
|
---|
1187 | if (pCtx->eflags.Bits.u2IOPL == 3)
|
---|
1188 | {
|
---|
1189 | /* Preserve IOPL and clear RF. */
|
---|
1190 | uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
|
---|
1191 | uNewFlags |= pCtx->eflags.u & (X86_EFL_IOPL);
|
---|
1192 | }
|
---|
1193 | else if ( enmEffOpSize == IEMMODE_16BIT
|
---|
1194 | && ( !(uNewFlags & X86_EFL_IF)
|
---|
1195 | || !pCtx->eflags.Bits.u1VIP )
|
---|
1196 | && !(uNewFlags & X86_EFL_TF) )
|
---|
1197 | {
|
---|
1198 | /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
|
---|
1199 | uNewFlags &= ~X86_EFL_VIF;
|
---|
1200 | uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
|
---|
1201 | uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
|
---|
1202 | uNewFlags |= pCtx->eflags.u & (X86_EFL_IF | X86_EFL_IOPL);
|
---|
1203 | }
|
---|
1204 | else
|
---|
1205 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1206 | }
|
---|
1207 |
|
---|
1208 | /* commit the operation. */
|
---|
1209 | rcStrict = iemMemStackPopCommitSpecial(pIemCpu, uFrame.pv, uNewRsp);
|
---|
1210 | if (rcStrict != VINF_SUCCESS)
|
---|
1211 | return rcStrict;
|
---|
1212 | pCtx->rip = uNewEip;
|
---|
1213 | pCtx->cs = uNewCs;
|
---|
1214 | pCtx->csHid.u64Base = (uint32_t)uNewCs << 4;
|
---|
1215 | /** @todo do we load attribs and limit as well? */
|
---|
1216 | Assert(uNewFlags & X86_EFL_1);
|
---|
1217 | pCtx->eflags.u = uNewFlags;
|
---|
1218 |
|
---|
1219 | return VINF_SUCCESS;
|
---|
1220 | }
|
---|
1221 |
|
---|
1222 |
|
---|
1223 | AssertFailed();
|
---|
1224 | return VERR_NOT_IMPLEMENTED;
|
---|
1225 | }
|
---|
1226 |
|
---|
1227 |
|
---|
1228 | /**
|
---|
1229 | * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
|
---|
1230 | *
|
---|
1231 | * @param iSegReg The segment register number (valid).
|
---|
1232 | * @param uSel The new selector value.
|
---|
1233 | */
|
---|
1234 | IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
|
---|
1235 | {
|
---|
1236 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1237 | uint16_t *pSel = iemSRegRef(pIemCpu, iSegReg);
|
---|
1238 | PCPUMSELREGHID pHid = iemSRegGetHid(pIemCpu, iSegReg);
|
---|
1239 |
|
---|
1240 | Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
|
---|
1241 |
|
---|
1242 | /*
|
---|
1243 | * Real mode and V8086 mode are easy.
|
---|
1244 | */
|
---|
1245 | if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
|
---|
1246 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
1247 | {
|
---|
1248 | *pSel = uSel;
|
---|
1249 | pHid->u64Base = (uint32_t)uSel << 4;
|
---|
1250 | /** @todo Does the CPU actually load limits and attributes in the
|
---|
1251 | * real/V8086 mode segment load case? It doesn't for CS in far
|
---|
1252 | * jumps... Affects unreal mode. */
|
---|
1253 | pHid->u32Limit = 0xffff;
|
---|
1254 | pHid->Attr.u = 0;
|
---|
1255 | pHid->Attr.n.u1Present = 1;
|
---|
1256 | pHid->Attr.n.u1DescType = 1;
|
---|
1257 | pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
|
---|
1258 | ? X86_SEL_TYPE_RW
|
---|
1259 | : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
|
---|
1260 |
|
---|
1261 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1262 | return VINF_SUCCESS;
|
---|
1263 | }
|
---|
1264 |
|
---|
1265 | /*
|
---|
1266 | * Protected mode.
|
---|
1267 | *
|
---|
1268 | * Check if it's a null segment selector value first, that's OK for DS, ES,
|
---|
1269 | * FS and GS. If not null, then we have to load and parse the descriptor.
|
---|
1270 | */
|
---|
1271 | if (!(uSel & (X86_SEL_MASK | X86_SEL_LDT)))
|
---|
1272 | {
|
---|
1273 | if (iSegReg == X86_SREG_SS)
|
---|
1274 | {
|
---|
1275 | if ( pIemCpu->enmCpuMode != IEMMODE_64BIT
|
---|
1276 | || pIemCpu->uCpl != 0
|
---|
1277 | || uSel != 0) /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? */
|
---|
1278 | {
|
---|
1279 | Log(("load sreg -> invalid stack selector, #GP(0)\n", uSel));
|
---|
1280 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1281 | }
|
---|
1282 |
|
---|
1283 | /* In 64-bit kernel mode, the stack can be 0 because of the way
|
---|
1284 | interrupts are dispatched when in kernel ctx. Just load the
|
---|
1285 | selector value into the register and leave the hidden bits
|
---|
1286 | as is. */
|
---|
1287 | *pSel = uSel;
|
---|
1288 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1289 | return VINF_SUCCESS;
|
---|
1290 | }
|
---|
1291 |
|
---|
1292 | *pSel = uSel; /* Not RPL, remember :-) */
|
---|
1293 | if ( pIemCpu->enmCpuMode == IEMMODE_64BIT
|
---|
1294 | && iSegReg != X86_SREG_FS
|
---|
1295 | && iSegReg != X86_SREG_GS)
|
---|
1296 | {
|
---|
1297 | /** @todo figure out what this actually does, it works. Needs
|
---|
1298 | * testcase! */
|
---|
1299 | pHid->Attr.u = 0;
|
---|
1300 | pHid->Attr.n.u1Present = 1;
|
---|
1301 | pHid->Attr.n.u1Long = 1;
|
---|
1302 | pHid->Attr.n.u4Type = X86_SEL_TYPE_RW;
|
---|
1303 | pHid->Attr.n.u2Dpl = 3;
|
---|
1304 | pHid->u32Limit = 0;
|
---|
1305 | pHid->u64Base = 0;
|
---|
1306 | }
|
---|
1307 | else
|
---|
1308 | {
|
---|
1309 | pHid->Attr.u = 0;
|
---|
1310 | pHid->u32Limit = 0;
|
---|
1311 | pHid->u64Base = 0;
|
---|
1312 | }
|
---|
1313 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1314 | return VINF_SUCCESS;
|
---|
1315 | }
|
---|
1316 |
|
---|
1317 | /* Fetch the descriptor. */
|
---|
1318 | IEMSELDESC Desc;
|
---|
1319 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uSel);
|
---|
1320 | if (rcStrict != VINF_SUCCESS)
|
---|
1321 | return rcStrict;
|
---|
1322 |
|
---|
1323 | /* Check GPs first. */
|
---|
1324 | if (!Desc.Legacy.Gen.u1DescType)
|
---|
1325 | {
|
---|
1326 | Log(("load sreg %d - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
|
---|
1327 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
1328 | }
|
---|
1329 | if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
|
---|
1330 | {
|
---|
1331 | if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
1332 | || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
1333 | {
|
---|
1334 | Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
|
---|
1335 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
1336 | }
|
---|
1337 | if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
1338 | || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
1339 | {
|
---|
1340 | Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
|
---|
1341 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
1342 | }
|
---|
1343 | if ((uSel & X86_SEL_RPL) != pIemCpu->uCpl)
|
---|
1344 | {
|
---|
1345 | Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pIemCpu->uCpl));
|
---|
1346 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
1347 | }
|
---|
1348 | if (Desc.Legacy.Gen.u2Dpl != pIemCpu->uCpl)
|
---|
1349 | {
|
---|
1350 | Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
|
---|
1351 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
1352 | }
|
---|
1353 | }
|
---|
1354 | else
|
---|
1355 | {
|
---|
1356 | if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
1357 | {
|
---|
1358 | Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
|
---|
1359 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
1360 | }
|
---|
1361 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
1362 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
1363 | {
|
---|
1364 | #if 0 /* this is what intel says. */
|
---|
1365 | if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
|
---|
1366 | && pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
1367 | {
|
---|
1368 | Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
|
---|
1369 | iSegReg, uSel, (uSel & X86_SEL_RPL), pIemCpu->uCpl, Desc.Legacy.Gen.u2Dpl));
|
---|
1370 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
1371 | }
|
---|
1372 | #else /* this is what makes more sense. */
|
---|
1373 | if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
|
---|
1374 | {
|
---|
1375 | Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
|
---|
1376 | iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
|
---|
1377 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
1378 | }
|
---|
1379 | if (pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
1380 | {
|
---|
1381 | Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
|
---|
1382 | iSegReg, uSel, pIemCpu->uCpl, Desc.Legacy.Gen.u2Dpl));
|
---|
1383 | return iemRaiseGeneralProtectionFault(pIemCpu, uSel & (X86_SEL_MASK | X86_SEL_LDT));
|
---|
1384 | }
|
---|
1385 | #endif
|
---|
1386 | }
|
---|
1387 | }
|
---|
1388 |
|
---|
1389 | /* Is it there? */
|
---|
1390 | if (!Desc.Legacy.Gen.u1Present)
|
---|
1391 | {
|
---|
1392 | Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
|
---|
1393 | return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel);
|
---|
1394 | }
|
---|
1395 |
|
---|
1396 | /* The the base and limit. */
|
---|
1397 | uint64_t u64Base;
|
---|
1398 | uint32_t cbLimit = X86DESC_LIMIT(Desc.Legacy);
|
---|
1399 | if (Desc.Legacy.Gen.u1Granularity)
|
---|
1400 | cbLimit = (cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
|
---|
1401 |
|
---|
1402 | if ( pIemCpu->enmCpuMode == IEMMODE_64BIT
|
---|
1403 | && iSegReg < X86_SREG_FS)
|
---|
1404 | u64Base = 0;
|
---|
1405 | else
|
---|
1406 | u64Base = X86DESC_BASE(Desc.Legacy);
|
---|
1407 |
|
---|
1408 | /*
|
---|
1409 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
1410 | * committing the result into the registers.
|
---|
1411 | */
|
---|
1412 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1413 | {
|
---|
1414 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uSel);
|
---|
1415 | if (rcStrict != VINF_SUCCESS)
|
---|
1416 | return rcStrict;
|
---|
1417 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1418 | }
|
---|
1419 |
|
---|
1420 | /* commit */
|
---|
1421 | *pSel = uSel;
|
---|
1422 | pHid->Attr.u = (Desc.Legacy.u >> (16+16+8)) & UINT32_C(0xf0ff); /** @todo do we have a define for 0xf0ff? */
|
---|
1423 | pHid->u32Limit = cbLimit;
|
---|
1424 | pHid->u64Base = u64Base;
|
---|
1425 |
|
---|
1426 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
1427 | * mode. */
|
---|
1428 |
|
---|
1429 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1430 | return VINF_SUCCESS;
|
---|
1431 | }
|
---|
1432 |
|
---|
1433 |
|
---|
1434 | /**
|
---|
1435 | * Implements 'mov SReg, r/m'.
|
---|
1436 | *
|
---|
1437 | * @param iSegReg The segment register number (valid).
|
---|
1438 | * @param uSel The new selector value.
|
---|
1439 | */
|
---|
1440 | IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
|
---|
1441 | {
|
---|
1442 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
1443 | if (rcStrict == VINF_SUCCESS)
|
---|
1444 | {
|
---|
1445 | if (iSegReg == X86_SREG_SS)
|
---|
1446 | {
|
---|
1447 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1448 | EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
|
---|
1449 | }
|
---|
1450 | }
|
---|
1451 | return rcStrict;
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 |
|
---|
1455 | /**
|
---|
1456 | * Implements 'pop SReg'.
|
---|
1457 | *
|
---|
1458 | * @param iSegReg The segment register number (valid).
|
---|
1459 | * @param enmEffOpSize The efficient operand size (valid).
|
---|
1460 | */
|
---|
1461 | IEM_CIMPL_DEF_2(iemOpCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
|
---|
1462 | {
|
---|
1463 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1464 | VBOXSTRICTRC rcStrict;
|
---|
1465 |
|
---|
1466 | /*
|
---|
1467 | * Read the selector off the stack and join paths with mov ss, reg.
|
---|
1468 | */
|
---|
1469 | RTUINT64U TmpRsp;
|
---|
1470 | TmpRsp.u = pCtx->rsp;
|
---|
1471 | switch (enmEffOpSize)
|
---|
1472 | {
|
---|
1473 | case IEMMODE_16BIT:
|
---|
1474 | {
|
---|
1475 | uint16_t uSel;
|
---|
1476 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &uSel, &TmpRsp);
|
---|
1477 | if (rcStrict == VINF_SUCCESS)
|
---|
1478 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
1479 | break;
|
---|
1480 | }
|
---|
1481 |
|
---|
1482 | case IEMMODE_32BIT:
|
---|
1483 | {
|
---|
1484 | uint32_t u32Value;
|
---|
1485 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &u32Value, &TmpRsp);
|
---|
1486 | if (rcStrict == VINF_SUCCESS)
|
---|
1487 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
|
---|
1488 | break;
|
---|
1489 | }
|
---|
1490 |
|
---|
1491 | case IEMMODE_64BIT:
|
---|
1492 | {
|
---|
1493 | uint64_t u64Value;
|
---|
1494 | rcStrict = iemMemStackPopU64Ex(pIemCpu, &u64Value, &TmpRsp);
|
---|
1495 | if (rcStrict == VINF_SUCCESS)
|
---|
1496 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
|
---|
1497 | break;
|
---|
1498 | }
|
---|
1499 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
1500 | }
|
---|
1501 |
|
---|
1502 | /*
|
---|
1503 | * Commit the stack on success.
|
---|
1504 | */
|
---|
1505 | if (rcStrict == VINF_SUCCESS)
|
---|
1506 | {
|
---|
1507 | pCtx->rsp = TmpRsp.u;
|
---|
1508 | if (iSegReg == X86_SREG_SS)
|
---|
1509 | EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
|
---|
1510 | }
|
---|
1511 | return rcStrict;
|
---|
1512 | }
|
---|
1513 |
|
---|
1514 |
|
---|
1515 | /**
|
---|
1516 | * Implements lgs, lfs, les, lds & lss.
|
---|
1517 | */
|
---|
1518 | IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
|
---|
1519 | uint16_t, uSel,
|
---|
1520 | uint64_t, offSeg,
|
---|
1521 | uint8_t, iSegReg,
|
---|
1522 | uint8_t, iGReg,
|
---|
1523 | IEMMODE, enmEffOpSize)
|
---|
1524 | {
|
---|
1525 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1526 | VBOXSTRICTRC rcStrict;
|
---|
1527 |
|
---|
1528 | /*
|
---|
1529 | * Use iemCImpl_LoadSReg to do the tricky segment register loading.
|
---|
1530 | */
|
---|
1531 | /** @todo verify and test that mov, pop and lXs works the segment
|
---|
1532 | * register loading in the exact same way. */
|
---|
1533 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
1534 | if (rcStrict == VINF_SUCCESS)
|
---|
1535 | {
|
---|
1536 | switch (enmEffOpSize)
|
---|
1537 | {
|
---|
1538 | case IEMMODE_16BIT:
|
---|
1539 | *(uint16_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
|
---|
1540 | break;
|
---|
1541 | case IEMMODE_32BIT:
|
---|
1542 | *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
|
---|
1543 | break;
|
---|
1544 | case IEMMODE_64BIT:
|
---|
1545 | *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
|
---|
1546 | break;
|
---|
1547 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
1548 | }
|
---|
1549 | }
|
---|
1550 |
|
---|
1551 | return rcStrict;
|
---|
1552 | }
|
---|
1553 |
|
---|
1554 |
|
---|
1555 | /**
|
---|
1556 | * Implements lgdt.
|
---|
1557 | *
|
---|
1558 | * @param iEffSeg The segment of the new ldtr contents
|
---|
1559 | * @param GCPtrEffSrc The address of the new ldtr contents.
|
---|
1560 | * @param enmEffOpSize The effective operand size.
|
---|
1561 | */
|
---|
1562 | IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
|
---|
1563 | {
|
---|
1564 | if (pIemCpu->uCpl != 0)
|
---|
1565 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1566 | Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
|
---|
1567 |
|
---|
1568 | /*
|
---|
1569 | * Fetch the limit and base address.
|
---|
1570 | */
|
---|
1571 | uint16_t cbLimit;
|
---|
1572 | RTGCPTR GCPtrBase;
|
---|
1573 | VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pIemCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
|
---|
1574 | if (rcStrict == VINF_SUCCESS)
|
---|
1575 | {
|
---|
1576 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1577 | rcStrict = CPUMSetGuestGDTR(IEMCPU_TO_VMCPU(pIemCpu), GCPtrBase, cbLimit);
|
---|
1578 | else
|
---|
1579 | {
|
---|
1580 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1581 | pCtx->gdtr.cbGdt = cbLimit;
|
---|
1582 | pCtx->gdtr.pGdt = GCPtrBase;
|
---|
1583 | }
|
---|
1584 | if (rcStrict == VINF_SUCCESS)
|
---|
1585 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1586 | }
|
---|
1587 | return rcStrict;
|
---|
1588 | }
|
---|
1589 |
|
---|
1590 |
|
---|
1591 | /**
|
---|
1592 | * Implements lidt.
|
---|
1593 | *
|
---|
1594 | * @param iEffSeg The segment of the new ldtr contents
|
---|
1595 | * @param GCPtrEffSrc The address of the new ldtr contents.
|
---|
1596 | * @param enmEffOpSize The effective operand size.
|
---|
1597 | */
|
---|
1598 | IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
|
---|
1599 | {
|
---|
1600 | if (pIemCpu->uCpl != 0)
|
---|
1601 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1602 | Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
|
---|
1603 |
|
---|
1604 | /*
|
---|
1605 | * Fetch the limit and base address.
|
---|
1606 | */
|
---|
1607 | uint16_t cbLimit;
|
---|
1608 | RTGCPTR GCPtrBase;
|
---|
1609 | VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pIemCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
|
---|
1610 | if (rcStrict == VINF_SUCCESS)
|
---|
1611 | {
|
---|
1612 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1613 | rcStrict = CPUMSetGuestIDTR(IEMCPU_TO_VMCPU(pIemCpu), GCPtrBase, cbLimit);
|
---|
1614 | else
|
---|
1615 | {
|
---|
1616 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1617 | pCtx->idtr.cbIdt = cbLimit;
|
---|
1618 | pCtx->idtr.pIdt = GCPtrBase;
|
---|
1619 | }
|
---|
1620 | if (rcStrict == VINF_SUCCESS)
|
---|
1621 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1622 | }
|
---|
1623 | return rcStrict;
|
---|
1624 | }
|
---|
1625 |
|
---|
1626 |
|
---|
1627 | /**
|
---|
1628 | * Implements mov GReg,CRx.
|
---|
1629 | *
|
---|
1630 | * @param iGReg The general register to store the CRx value in.
|
---|
1631 | * @param iCrReg The CRx register to read (valid).
|
---|
1632 | */
|
---|
1633 | IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
|
---|
1634 | {
|
---|
1635 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1636 | if (pIemCpu->uCpl != 0)
|
---|
1637 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1638 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
1639 |
|
---|
1640 | /* read it */
|
---|
1641 | uint64_t crX;
|
---|
1642 | switch (iCrReg)
|
---|
1643 | {
|
---|
1644 | case 0: crX = pCtx->cr0; break;
|
---|
1645 | case 2: crX = pCtx->cr2; break;
|
---|
1646 | case 3: crX = pCtx->cr3; break;
|
---|
1647 | case 4: crX = pCtx->cr4; break;
|
---|
1648 | case 8:
|
---|
1649 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1650 | AssertFailedReturn(VERR_NOT_IMPLEMENTED); /** @todo implement CR8 reading and writing. */
|
---|
1651 | else
|
---|
1652 | crX = 0xff;
|
---|
1653 | break;
|
---|
1654 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
|
---|
1655 | }
|
---|
1656 |
|
---|
1657 | /* store it */
|
---|
1658 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
1659 | *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = crX;
|
---|
1660 | else
|
---|
1661 | *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = (uint32_t)crX;
|
---|
1662 |
|
---|
1663 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1664 | return VINF_SUCCESS;
|
---|
1665 | }
|
---|
1666 |
|
---|
1667 |
|
---|
1668 | /**
|
---|
1669 | * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
|
---|
1670 | *
|
---|
1671 | * @param iCrReg The CRx register to write (valid).
|
---|
1672 | * @param uNewCrX The new value.
|
---|
1673 | */
|
---|
1674 | IEM_CIMPL_DEF_2(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX)
|
---|
1675 | {
|
---|
1676 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1677 | PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
|
---|
1678 | VBOXSTRICTRC rcStrict;
|
---|
1679 | int rc;
|
---|
1680 |
|
---|
1681 | /*
|
---|
1682 | * Try store it.
|
---|
1683 | * Unfortunately, CPUM only does a tiny bit of the work.
|
---|
1684 | */
|
---|
1685 | switch (iCrReg)
|
---|
1686 | {
|
---|
1687 | case 0:
|
---|
1688 | {
|
---|
1689 | /*
|
---|
1690 | * Perform checks.
|
---|
1691 | */
|
---|
1692 | uint64_t const uOldCrX = pCtx->cr0;
|
---|
1693 | uNewCrX |= X86_CR0_ET; /* hardcoded */
|
---|
1694 |
|
---|
1695 | /* Check for reserved bits. */
|
---|
1696 | uint32_t const fValid = X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS
|
---|
1697 | | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM
|
---|
1698 | | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG;
|
---|
1699 | if (uNewCrX & ~(uint64_t)fValid)
|
---|
1700 | {
|
---|
1701 | Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
|
---|
1702 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1703 | }
|
---|
1704 |
|
---|
1705 | /* Check for invalid combinations. */
|
---|
1706 | if ( (uNewCrX & X86_CR0_PG)
|
---|
1707 | && !(uNewCrX & X86_CR0_PE) )
|
---|
1708 | {
|
---|
1709 | Log(("Trying to set CR0.PG without CR0.PE\n"));
|
---|
1710 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1711 | }
|
---|
1712 |
|
---|
1713 | if ( !(uNewCrX & X86_CR0_CD)
|
---|
1714 | && (uNewCrX & X86_CR0_NW) )
|
---|
1715 | {
|
---|
1716 | Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
|
---|
1717 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1718 | }
|
---|
1719 |
|
---|
1720 | /* Long mode consistency checks. */
|
---|
1721 | if ( (uNewCrX & X86_CR0_PG)
|
---|
1722 | && !(uOldCrX & X86_CR0_PG)
|
---|
1723 | && (pCtx->msrEFER & MSR_K6_EFER_LME) )
|
---|
1724 | {
|
---|
1725 | if (!(pCtx->cr4 & X86_CR4_PAE))
|
---|
1726 | {
|
---|
1727 | Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
|
---|
1728 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1729 | }
|
---|
1730 | if (pCtx->csHid.Attr.n.u1Long)
|
---|
1731 | {
|
---|
1732 | Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
|
---|
1733 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1734 | }
|
---|
1735 | }
|
---|
1736 |
|
---|
1737 | /** @todo check reserved PDPTR bits as AMD states. */
|
---|
1738 |
|
---|
1739 | /*
|
---|
1740 | * Change CR0.
|
---|
1741 | */
|
---|
1742 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1743 | {
|
---|
1744 | rc = CPUMSetGuestCR0(pVCpu, uNewCrX);
|
---|
1745 | AssertRCSuccessReturn(rc, RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_3);
|
---|
1746 | }
|
---|
1747 | else
|
---|
1748 | pCtx->cr0 = uNewCrX;
|
---|
1749 | Assert(pCtx->cr0 == uNewCrX);
|
---|
1750 |
|
---|
1751 | /*
|
---|
1752 | * Change EFER.LMA if entering or leaving long mode.
|
---|
1753 | */
|
---|
1754 | if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
|
---|
1755 | && (pCtx->msrEFER & MSR_K6_EFER_LME) )
|
---|
1756 | {
|
---|
1757 | uint64_t NewEFER = pCtx->msrEFER;
|
---|
1758 | if (uNewCrX & X86_CR0_PG)
|
---|
1759 | NewEFER |= MSR_K6_EFER_LME;
|
---|
1760 | else
|
---|
1761 | NewEFER &= ~MSR_K6_EFER_LME;
|
---|
1762 |
|
---|
1763 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1764 | CPUMSetGuestEFER(pVCpu, NewEFER);
|
---|
1765 | else
|
---|
1766 | pCtx->msrEFER = NewEFER;
|
---|
1767 | Assert(pCtx->msrEFER == NewEFER);
|
---|
1768 | }
|
---|
1769 |
|
---|
1770 | /*
|
---|
1771 | * Inform PGM.
|
---|
1772 | */
|
---|
1773 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1774 | {
|
---|
1775 | if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
|
---|
1776 | != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
|
---|
1777 | {
|
---|
1778 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
|
---|
1779 | AssertRCReturn(rc, rc);
|
---|
1780 | /* ignore informational status codes */
|
---|
1781 | }
|
---|
1782 | rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
1783 | /** @todo Status code management. */
|
---|
1784 | }
|
---|
1785 | else
|
---|
1786 | rcStrict = VINF_SUCCESS;
|
---|
1787 | break;
|
---|
1788 | }
|
---|
1789 |
|
---|
1790 | /*
|
---|
1791 | * CR2 can be changed without any restrictions.
|
---|
1792 | */
|
---|
1793 | case 2:
|
---|
1794 | pCtx->cr2 = uNewCrX;
|
---|
1795 | rcStrict = VINF_SUCCESS;
|
---|
1796 | break;
|
---|
1797 |
|
---|
1798 | /*
|
---|
1799 | * CR3 is relatively simple, although AMD and Intel have different
|
---|
1800 | * accounts of how setting reserved bits are handled. We take intel's
|
---|
1801 | * word for the lower bits and AMD's for the high bits (63:52).
|
---|
1802 | */
|
---|
1803 | /** @todo Testcase: Setting reserved bits in CR3, especially before
|
---|
1804 | * enabling paging. */
|
---|
1805 | case 3:
|
---|
1806 | {
|
---|
1807 | /* check / mask the value. */
|
---|
1808 | if (uNewCrX & UINT64_C(0xfff0000000000000))
|
---|
1809 | {
|
---|
1810 | Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
|
---|
1811 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1812 | }
|
---|
1813 |
|
---|
1814 | uint64_t fValid;
|
---|
1815 | if ( (pCtx->cr4 & X86_CR4_PAE)
|
---|
1816 | && (pCtx->msrEFER & MSR_K6_EFER_LME))
|
---|
1817 | fValid = UINT64_C(0x000ffffffffff014);
|
---|
1818 | else if (pCtx->cr4 & X86_CR4_PAE)
|
---|
1819 | fValid = UINT64_C(0xfffffff4);
|
---|
1820 | else
|
---|
1821 | fValid = UINT64_C(0xfffff014);
|
---|
1822 | if (uNewCrX & ~fValid)
|
---|
1823 | {
|
---|
1824 | Log(("Automatically clearing reserved bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
|
---|
1825 | uNewCrX, uNewCrX & ~fValid));
|
---|
1826 | uNewCrX &= fValid;
|
---|
1827 | }
|
---|
1828 |
|
---|
1829 | /** @todo If we're in PAE mode we should check the PDPTRs for
|
---|
1830 | * invalid bits. */
|
---|
1831 |
|
---|
1832 | /* Make the change. */
|
---|
1833 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1834 | {
|
---|
1835 | rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
|
---|
1836 | AssertRCSuccessReturn(rc, rc);
|
---|
1837 | }
|
---|
1838 | else
|
---|
1839 | pCtx->cr3 = uNewCrX;
|
---|
1840 |
|
---|
1841 | /* Inform PGM. */
|
---|
1842 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1843 | {
|
---|
1844 | if (pCtx->cr0 & X86_CR0_PG)
|
---|
1845 | {
|
---|
1846 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, !(pCtx->cr3 & X86_CR4_PGE));
|
---|
1847 | AssertRCReturn(rc, rc);
|
---|
1848 | /* ignore informational status codes */
|
---|
1849 | /** @todo status code management */
|
---|
1850 | }
|
---|
1851 | }
|
---|
1852 | rcStrict = VINF_SUCCESS;
|
---|
1853 | break;
|
---|
1854 | }
|
---|
1855 |
|
---|
1856 | /*
|
---|
1857 | * CR4 is a bit more tedious as there are bits which cannot be cleared
|
---|
1858 | * under some circumstances and such.
|
---|
1859 | */
|
---|
1860 | case 4:
|
---|
1861 | {
|
---|
1862 | uint64_t const uOldCrX = pCtx->cr0;
|
---|
1863 |
|
---|
1864 | /* reserved bits */
|
---|
1865 | uint32_t fValid = X86_CR4_VME | X86_CR4_PVI
|
---|
1866 | | X86_CR4_TSD | X86_CR4_DE
|
---|
1867 | | X86_CR4_PSE | X86_CR4_PAE
|
---|
1868 | | X86_CR4_MCE | X86_CR4_PGE
|
---|
1869 | | X86_CR4_PCE | X86_CR4_OSFSXR
|
---|
1870 | | X86_CR4_OSXMMEEXCPT;
|
---|
1871 | //if (xxx)
|
---|
1872 | // fValid |= X86_CR4_VMXE;
|
---|
1873 | //if (xxx)
|
---|
1874 | // fValid |= X86_CR4_OSXSAVE;
|
---|
1875 | if (uNewCrX & ~(uint64_t)fValid)
|
---|
1876 | {
|
---|
1877 | Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
|
---|
1878 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1879 | }
|
---|
1880 |
|
---|
1881 | /* long mode checks. */
|
---|
1882 | if ( (uOldCrX & X86_CR4_PAE)
|
---|
1883 | && !(uNewCrX & X86_CR4_PAE)
|
---|
1884 | && (pCtx->msrEFER & MSR_K6_EFER_LMA) )
|
---|
1885 | {
|
---|
1886 | Log(("Trying to set clear CR4.PAE while long mode is active\n"));
|
---|
1887 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1888 | }
|
---|
1889 |
|
---|
1890 |
|
---|
1891 | /*
|
---|
1892 | * Change it.
|
---|
1893 | */
|
---|
1894 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1895 | {
|
---|
1896 | rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
|
---|
1897 | AssertRCSuccessReturn(rc, rc);
|
---|
1898 | }
|
---|
1899 | else
|
---|
1900 | pCtx->cr4 = uNewCrX;
|
---|
1901 | Assert(pCtx->cr4 == uNewCrX);
|
---|
1902 |
|
---|
1903 | /*
|
---|
1904 | * Notify SELM and PGM.
|
---|
1905 | */
|
---|
1906 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1907 | {
|
---|
1908 | /* SELM - VME may change things wrt to the TSS shadowing. */
|
---|
1909 | if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
|
---|
1910 | VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
|
---|
1911 |
|
---|
1912 | /* PGM - flushing and mode. */
|
---|
1913 | if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
|
---|
1914 | != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
|
---|
1915 | {
|
---|
1916 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
|
---|
1917 | AssertRCReturn(rc, rc);
|
---|
1918 | /* ignore informational status codes */
|
---|
1919 | }
|
---|
1920 | rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
1921 | /** @todo Status code management. */
|
---|
1922 | }
|
---|
1923 | else
|
---|
1924 | rcStrict = VINF_SUCCESS;
|
---|
1925 | break;
|
---|
1926 | }
|
---|
1927 |
|
---|
1928 | /*
|
---|
1929 | * CR8 maps to the APIC TPR.
|
---|
1930 | */
|
---|
1931 | case 8:
|
---|
1932 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1933 | AssertFailedReturn(VERR_NOT_IMPLEMENTED); /** @todo implement CR8 reading and writing. */
|
---|
1934 | else
|
---|
1935 | rcStrict = VINF_SUCCESS;
|
---|
1936 | break;
|
---|
1937 |
|
---|
1938 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
|
---|
1939 | }
|
---|
1940 |
|
---|
1941 | /*
|
---|
1942 | * Advance the RIP on success.
|
---|
1943 | */
|
---|
1944 | /** @todo Status code management. */
|
---|
1945 | if (rcStrict == VINF_SUCCESS)
|
---|
1946 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1947 | return rcStrict;
|
---|
1948 |
|
---|
1949 | }
|
---|
1950 |
|
---|
1951 |
|
---|
1952 | /**
|
---|
1953 | * Implements mov CRx,GReg.
|
---|
1954 | *
|
---|
1955 | * @param iCrReg The CRx register to write (valid).
|
---|
1956 | * @param iGReg The general register to store the CRx value in.
|
---|
1957 | */
|
---|
1958 | IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
|
---|
1959 | {
|
---|
1960 | if (pIemCpu->uCpl != 0)
|
---|
1961 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1962 | Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
|
---|
1963 |
|
---|
1964 | /*
|
---|
1965 | * Read the new value from the source register and call common worker.
|
---|
1966 | */
|
---|
1967 | uint64_t uNewCrX;
|
---|
1968 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
1969 | uNewCrX = iemGRegFetchU64(pIemCpu, iGReg);
|
---|
1970 | else
|
---|
1971 | uNewCrX = iemGRegFetchU32(pIemCpu, iGReg);
|
---|
1972 | return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, iCrReg, uNewCrX);
|
---|
1973 | }
|
---|
1974 |
|
---|
1975 |
|
---|
1976 | /**
|
---|
1977 | * Implements 'LMSW r/m16'
|
---|
1978 | *
|
---|
1979 | * @param u16NewMsw The new value.
|
---|
1980 | */
|
---|
1981 | IEM_CIMPL_DEF_1(iemCImpl_lmsw, uint16_t, u16NewMsw)
|
---|
1982 | {
|
---|
1983 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1984 |
|
---|
1985 | if (pIemCpu->uCpl != 0)
|
---|
1986 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1987 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
1988 |
|
---|
1989 | /*
|
---|
1990 | * Compose the new CR0 value and call common worker.
|
---|
1991 | */
|
---|
1992 | uint64_t uNewCr0 = pCtx->cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
|
---|
1993 | uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
|
---|
1994 | return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, 0, uNewCr0);
|
---|
1995 | }
|
---|
1996 |
|
---|
1997 |
|
---|
1998 | /**
|
---|
1999 | * Implements 'IN eAX, port'.
|
---|
2000 | *
|
---|
2001 | * @param u16Port The source port.
|
---|
2002 | * @param cbReg The register size.
|
---|
2003 | */
|
---|
2004 | IEM_CIMPL_DEF_2(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg)
|
---|
2005 | {
|
---|
2006 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2007 |
|
---|
2008 | /*
|
---|
2009 | * CPL check
|
---|
2010 | */
|
---|
2011 | VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pIemCpu, pCtx, u16Port, cbReg);
|
---|
2012 | if (rcStrict != VINF_SUCCESS)
|
---|
2013 | return rcStrict;
|
---|
2014 |
|
---|
2015 | /*
|
---|
2016 | * Perform the I/O.
|
---|
2017 | */
|
---|
2018 | uint32_t u32Value;
|
---|
2019 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2020 | rcStrict = IOMIOPortRead(IEMCPU_TO_VM(pIemCpu), u16Port, &u32Value, cbReg);
|
---|
2021 | else
|
---|
2022 | rcStrict = iemVerifyFakeIOPortRead(pIemCpu, u16Port, &u32Value, cbReg);
|
---|
2023 | if (IOM_SUCCESS(rcStrict))
|
---|
2024 | {
|
---|
2025 | switch (cbReg)
|
---|
2026 | {
|
---|
2027 | case 1: pCtx->al = (uint8_t)u32Value; break;
|
---|
2028 | case 2: pCtx->ax = (uint16_t)u32Value; break;
|
---|
2029 | case 4: pCtx->rax = u32Value; break;
|
---|
2030 | default: AssertFailedReturn(VERR_INTERNAL_ERROR_3);
|
---|
2031 | }
|
---|
2032 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2033 | pIemCpu->cPotentialExits++;
|
---|
2034 | }
|
---|
2035 | /** @todo massage rcStrict. */
|
---|
2036 | return rcStrict;
|
---|
2037 | }
|
---|
2038 |
|
---|
2039 |
|
---|
2040 | /**
|
---|
2041 | * Implements 'IN eAX, DX'.
|
---|
2042 | *
|
---|
2043 | * @param cbReg The register size.
|
---|
2044 | */
|
---|
2045 | IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
|
---|
2046 | {
|
---|
2047 | return IEM_CIMPL_CALL_2(iemCImpl_in, pIemCpu->CTX_SUFF(pCtx)->dx, cbReg);
|
---|
2048 | }
|
---|
2049 |
|
---|
2050 |
|
---|
2051 | /**
|
---|
2052 | * Implements 'OUT port, eAX'.
|
---|
2053 | *
|
---|
2054 | * @param u16Port The destination port.
|
---|
2055 | * @param cbReg The register size.
|
---|
2056 | */
|
---|
2057 | IEM_CIMPL_DEF_2(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg)
|
---|
2058 | {
|
---|
2059 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2060 |
|
---|
2061 | /*
|
---|
2062 | * CPL check
|
---|
2063 | */
|
---|
2064 | if ( (pCtx->cr0 & X86_CR0_PE)
|
---|
2065 | && ( pIemCpu->uCpl > pCtx->eflags.Bits.u2IOPL
|
---|
2066 | || pCtx->eflags.Bits.u1VM) )
|
---|
2067 | {
|
---|
2068 | /** @todo I/O port permission bitmap check */
|
---|
2069 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
2070 | }
|
---|
2071 |
|
---|
2072 | /*
|
---|
2073 | * Perform the I/O.
|
---|
2074 | */
|
---|
2075 | uint32_t u32Value;
|
---|
2076 | switch (cbReg)
|
---|
2077 | {
|
---|
2078 | case 1: u32Value = pCtx->al; break;
|
---|
2079 | case 2: u32Value = pCtx->ax; break;
|
---|
2080 | case 4: u32Value = pCtx->eax; break;
|
---|
2081 | default: AssertFailedReturn(VERR_INTERNAL_ERROR_3);
|
---|
2082 | }
|
---|
2083 | VBOXSTRICTRC rc;
|
---|
2084 | if (IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2085 | rc = IOMIOPortWrite(IEMCPU_TO_VM(pIemCpu), u16Port, u32Value, cbReg);
|
---|
2086 | else
|
---|
2087 | rc = iemVerifyFakeIOPortWrite(pIemCpu, u16Port, u32Value, cbReg);
|
---|
2088 | if (IOM_SUCCESS(rc))
|
---|
2089 | {
|
---|
2090 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2091 | pIemCpu->cPotentialExits++;
|
---|
2092 | /** @todo massage rc. */
|
---|
2093 | }
|
---|
2094 | return rc;
|
---|
2095 | }
|
---|
2096 |
|
---|
2097 |
|
---|
2098 | /**
|
---|
2099 | * Implements 'OUT DX, eAX'.
|
---|
2100 | *
|
---|
2101 | * @param cbReg The register size.
|
---|
2102 | */
|
---|
2103 | IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
|
---|
2104 | {
|
---|
2105 | return IEM_CIMPL_CALL_2(iemCImpl_out, pIemCpu->CTX_SUFF(pCtx)->dx, cbReg);
|
---|
2106 | }
|
---|
2107 |
|
---|
2108 |
|
---|
2109 | /**
|
---|
2110 | * Implements 'CLI'.
|
---|
2111 | */
|
---|
2112 | IEM_CIMPL_DEF_0(iemCImpl_cli)
|
---|
2113 | {
|
---|
2114 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2115 |
|
---|
2116 | if (pCtx->cr0 & X86_CR0_PE)
|
---|
2117 | {
|
---|
2118 | uint8_t const uIopl = pCtx->eflags.Bits.u2IOPL;
|
---|
2119 | if (!pCtx->eflags.Bits.u1VM)
|
---|
2120 | {
|
---|
2121 | if (pIemCpu->uCpl <= uIopl)
|
---|
2122 | pCtx->eflags.Bits.u1IF = 0;
|
---|
2123 | else if ( pIemCpu->uCpl == 3
|
---|
2124 | && (pCtx->cr4 & X86_CR4_PVI) )
|
---|
2125 | pCtx->eflags.Bits.u1VIF = 0;
|
---|
2126 | else
|
---|
2127 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2128 | }
|
---|
2129 | /* V8086 */
|
---|
2130 | else if (uIopl == 3)
|
---|
2131 | pCtx->eflags.Bits.u1IF = 0;
|
---|
2132 | else if ( uIopl < 3
|
---|
2133 | && (pCtx->cr4 & X86_CR4_VME) )
|
---|
2134 | pCtx->eflags.Bits.u1VIF = 0;
|
---|
2135 | else
|
---|
2136 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2137 | }
|
---|
2138 | /* real mode */
|
---|
2139 | else
|
---|
2140 | pCtx->eflags.Bits.u1IF = 0;
|
---|
2141 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2142 | return VINF_SUCCESS;
|
---|
2143 | }
|
---|
2144 |
|
---|
2145 |
|
---|
2146 | /**
|
---|
2147 | * Implements 'STI'.
|
---|
2148 | */
|
---|
2149 | IEM_CIMPL_DEF_0(iemCImpl_sti)
|
---|
2150 | {
|
---|
2151 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2152 |
|
---|
2153 | if (pCtx->cr0 & X86_CR0_PE)
|
---|
2154 | {
|
---|
2155 | uint8_t const uIopl = pCtx->eflags.Bits.u2IOPL;
|
---|
2156 | if (!pCtx->eflags.Bits.u1VM)
|
---|
2157 | {
|
---|
2158 | if (pIemCpu->uCpl <= uIopl)
|
---|
2159 | pCtx->eflags.Bits.u1IF = 1;
|
---|
2160 | else if ( pIemCpu->uCpl == 3
|
---|
2161 | && (pCtx->cr4 & X86_CR4_PVI)
|
---|
2162 | && !pCtx->eflags.Bits.u1VIP )
|
---|
2163 | pCtx->eflags.Bits.u1VIF = 1;
|
---|
2164 | else
|
---|
2165 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2166 | }
|
---|
2167 | /* V8086 */
|
---|
2168 | else if (uIopl == 3)
|
---|
2169 | pCtx->eflags.Bits.u1IF = 1;
|
---|
2170 | else if ( uIopl < 3
|
---|
2171 | && (pCtx->cr4 & X86_CR4_VME)
|
---|
2172 | && !pCtx->eflags.Bits.u1VIP )
|
---|
2173 | pCtx->eflags.Bits.u1VIF = 1;
|
---|
2174 | else
|
---|
2175 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2176 | }
|
---|
2177 | /* real mode */
|
---|
2178 | else
|
---|
2179 | pCtx->eflags.Bits.u1IF = 1;
|
---|
2180 |
|
---|
2181 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2182 | EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
|
---|
2183 | return VINF_SUCCESS;
|
---|
2184 | }
|
---|
2185 |
|
---|
2186 |
|
---|
2187 | /**
|
---|
2188 | * Implements 'HLT'.
|
---|
2189 | */
|
---|
2190 | IEM_CIMPL_DEF_0(iemCImpl_hlt)
|
---|
2191 | {
|
---|
2192 | if (pIemCpu->uCpl != 0)
|
---|
2193 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2194 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2195 | return VINF_EM_HALT;
|
---|
2196 | }
|
---|
2197 |
|
---|
2198 |
|
---|
2199 | /*
|
---|
2200 | * Instantiate the various string operation combinations.
|
---|
2201 | */
|
---|
2202 | #define OP_SIZE 8
|
---|
2203 | #define ADDR_SIZE 16
|
---|
2204 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2205 | #define OP_SIZE 8
|
---|
2206 | #define ADDR_SIZE 32
|
---|
2207 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2208 | #define OP_SIZE 8
|
---|
2209 | #define ADDR_SIZE 64
|
---|
2210 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2211 |
|
---|
2212 | #define OP_SIZE 16
|
---|
2213 | #define ADDR_SIZE 16
|
---|
2214 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2215 | #define OP_SIZE 16
|
---|
2216 | #define ADDR_SIZE 32
|
---|
2217 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2218 | #define OP_SIZE 16
|
---|
2219 | #define ADDR_SIZE 64
|
---|
2220 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2221 |
|
---|
2222 | #define OP_SIZE 32
|
---|
2223 | #define ADDR_SIZE 16
|
---|
2224 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2225 | #define OP_SIZE 32
|
---|
2226 | #define ADDR_SIZE 32
|
---|
2227 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2228 | #define OP_SIZE 32
|
---|
2229 | #define ADDR_SIZE 64
|
---|
2230 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2231 |
|
---|
2232 | #define OP_SIZE 64
|
---|
2233 | #define ADDR_SIZE 32
|
---|
2234 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2235 | #define OP_SIZE 64
|
---|
2236 | #define ADDR_SIZE 64
|
---|
2237 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2238 |
|
---|
2239 |
|
---|
2240 | /** @} */
|
---|
2241 |
|
---|