1 | /* $Id: IEMAllCImpl.cpp.h 39125 2011-10-27 10:40:17Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Instruction Implementation in C/C++ (code include).
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /** @name Misc Helpers
|
---|
20 | * @{
|
---|
21 | */
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Checks if we are allowed to access the given I/O port, raising the
|
---|
25 | * appropriate exceptions if we aren't (or if the I/O bitmap is not
|
---|
26 | * accessible).
|
---|
27 | *
|
---|
28 | * @returns Strict VBox status code.
|
---|
29 | *
|
---|
30 | * @param pIemCpu The IEM per CPU data.
|
---|
31 | * @param pCtx The register context.
|
---|
32 | * @param u16Port The port number.
|
---|
33 | * @param cbOperand The operand size.
|
---|
34 | */
|
---|
35 | DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PIEMCPU pIemCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand)
|
---|
36 | {
|
---|
37 | if ( (pCtx->cr0 & X86_CR0_PE)
|
---|
38 | && ( pIemCpu->uCpl > pCtx->eflags.Bits.u2IOPL
|
---|
39 | || pCtx->eflags.Bits.u1VM) )
|
---|
40 | {
|
---|
41 | NOREF(u16Port); NOREF(cbOperand); /** @todo I/O port permission bitmap check */
|
---|
42 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
43 | }
|
---|
44 | return VINF_SUCCESS;
|
---|
45 | }
|
---|
46 |
|
---|
47 |
|
---|
48 | #if 0
|
---|
49 | /**
|
---|
50 | * Calculates the parity bit.
|
---|
51 | *
|
---|
52 | * @returns true if the bit is set, false if not.
|
---|
53 | * @param u8Result The least significant byte of the result.
|
---|
54 | */
|
---|
55 | static bool iemHlpCalcParityFlag(uint8_t u8Result)
|
---|
56 | {
|
---|
57 | /*
|
---|
58 | * Parity is set if the number of bits in the least significant byte of
|
---|
59 | * the result is even.
|
---|
60 | */
|
---|
61 | uint8_t cBits;
|
---|
62 | cBits = u8Result & 1; /* 0 */
|
---|
63 | u8Result >>= 1;
|
---|
64 | cBits += u8Result & 1;
|
---|
65 | u8Result >>= 1;
|
---|
66 | cBits += u8Result & 1;
|
---|
67 | u8Result >>= 1;
|
---|
68 | cBits += u8Result & 1;
|
---|
69 | u8Result >>= 1;
|
---|
70 | cBits += u8Result & 1; /* 4 */
|
---|
71 | u8Result >>= 1;
|
---|
72 | cBits += u8Result & 1;
|
---|
73 | u8Result >>= 1;
|
---|
74 | cBits += u8Result & 1;
|
---|
75 | u8Result >>= 1;
|
---|
76 | cBits += u8Result & 1;
|
---|
77 | return !(cBits & 1);
|
---|
78 | }
|
---|
79 | #endif /* not used */
|
---|
80 |
|
---|
81 |
|
---|
82 | /**
|
---|
83 | * Updates the specified flags according to a 8-bit result.
|
---|
84 | *
|
---|
85 | * @param pIemCpu The.
|
---|
86 | * @param u8Result The result to set the flags according to.
|
---|
87 | * @param fToUpdate The flags to update.
|
---|
88 | * @param fUndefined The flags that are specified as undefined.
|
---|
89 | */
|
---|
90 | static void iemHlpUpdateArithEFlagsU8(PIEMCPU pIemCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
|
---|
91 | {
|
---|
92 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
93 |
|
---|
94 | uint32_t fEFlags = pCtx->eflags.u;
|
---|
95 | iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
|
---|
96 | pCtx->eflags.u &= ~(fToUpdate | fUndefined);
|
---|
97 | pCtx->eflags.u |= (fToUpdate | fUndefined) & fEFlags;
|
---|
98 | }
|
---|
99 |
|
---|
100 |
|
---|
101 | /** @} */
|
---|
102 |
|
---|
103 | /** @name C Implementations
|
---|
104 | * @{
|
---|
105 | */
|
---|
106 |
|
---|
107 | /**
|
---|
108 | * Implements a 16-bit popa.
|
---|
109 | */
|
---|
110 | IEM_CIMPL_DEF_0(iemCImpl_popa_16)
|
---|
111 | {
|
---|
112 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
113 | RTGCPTR GCPtrStart = iemRegGetEffRsp(pCtx);
|
---|
114 | RTGCPTR GCPtrLast = GCPtrStart + 15;
|
---|
115 | VBOXSTRICTRC rcStrict;
|
---|
116 |
|
---|
117 | /*
|
---|
118 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
119 | * around in real mode as long as none of the individual "popa" crosses the
|
---|
120 | * end of the stack segment. In protected mode we check the whole access
|
---|
121 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
122 | * danger of wrapping around.
|
---|
123 | */
|
---|
124 | /** @todo do popa boundary / wrap-around checks. */
|
---|
125 | if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pIemCpu)
|
---|
126 | && (pCtx->csHid.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
|
---|
127 | {
|
---|
128 | /* word-by-word */
|
---|
129 | RTUINT64U TmpRsp;
|
---|
130 | TmpRsp.u = pCtx->rsp;
|
---|
131 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->di, &TmpRsp);
|
---|
132 | if (rcStrict == VINF_SUCCESS)
|
---|
133 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->si, &TmpRsp);
|
---|
134 | if (rcStrict == VINF_SUCCESS)
|
---|
135 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->bp, &TmpRsp);
|
---|
136 | if (rcStrict == VINF_SUCCESS)
|
---|
137 | {
|
---|
138 | iemRegAddToRspEx(&TmpRsp, 2, pCtx); /* sp */
|
---|
139 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->bx, &TmpRsp);
|
---|
140 | }
|
---|
141 | if (rcStrict == VINF_SUCCESS)
|
---|
142 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->dx, &TmpRsp);
|
---|
143 | if (rcStrict == VINF_SUCCESS)
|
---|
144 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->cx, &TmpRsp);
|
---|
145 | if (rcStrict == VINF_SUCCESS)
|
---|
146 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->ax, &TmpRsp);
|
---|
147 | if (rcStrict == VINF_SUCCESS)
|
---|
148 | {
|
---|
149 | pCtx->rsp = TmpRsp.u;
|
---|
150 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
151 | }
|
---|
152 | }
|
---|
153 | else
|
---|
154 | {
|
---|
155 | uint16_t const *pa16Mem = NULL;
|
---|
156 | rcStrict = iemMemMap(pIemCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
|
---|
157 | if (rcStrict == VINF_SUCCESS)
|
---|
158 | {
|
---|
159 | pCtx->di = pa16Mem[7 - X86_GREG_xDI];
|
---|
160 | pCtx->si = pa16Mem[7 - X86_GREG_xSI];
|
---|
161 | pCtx->bp = pa16Mem[7 - X86_GREG_xBP];
|
---|
162 | /* skip sp */
|
---|
163 | pCtx->bx = pa16Mem[7 - X86_GREG_xBX];
|
---|
164 | pCtx->dx = pa16Mem[7 - X86_GREG_xDX];
|
---|
165 | pCtx->cx = pa16Mem[7 - X86_GREG_xCX];
|
---|
166 | pCtx->ax = pa16Mem[7 - X86_GREG_xAX];
|
---|
167 | rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
|
---|
168 | if (rcStrict == VINF_SUCCESS)
|
---|
169 | {
|
---|
170 | iemRegAddToRsp(pCtx, 16);
|
---|
171 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
172 | }
|
---|
173 | }
|
---|
174 | }
|
---|
175 | return rcStrict;
|
---|
176 | }
|
---|
177 |
|
---|
178 |
|
---|
179 | /**
|
---|
180 | * Implements a 32-bit popa.
|
---|
181 | */
|
---|
182 | IEM_CIMPL_DEF_0(iemCImpl_popa_32)
|
---|
183 | {
|
---|
184 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
185 | RTGCPTR GCPtrStart = iemRegGetEffRsp(pCtx);
|
---|
186 | RTGCPTR GCPtrLast = GCPtrStart + 31;
|
---|
187 | VBOXSTRICTRC rcStrict;
|
---|
188 |
|
---|
189 | /*
|
---|
190 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
191 | * around in real mode as long as none of the individual "popa" crosses the
|
---|
192 | * end of the stack segment. In protected mode we check the whole access
|
---|
193 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
194 | * danger of wrapping around.
|
---|
195 | */
|
---|
196 | /** @todo do popa boundary / wrap-around checks. */
|
---|
197 | if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pIemCpu)
|
---|
198 | && (pCtx->csHid.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
|
---|
199 | {
|
---|
200 | /* word-by-word */
|
---|
201 | RTUINT64U TmpRsp;
|
---|
202 | TmpRsp.u = pCtx->rsp;
|
---|
203 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->edi, &TmpRsp);
|
---|
204 | if (rcStrict == VINF_SUCCESS)
|
---|
205 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->esi, &TmpRsp);
|
---|
206 | if (rcStrict == VINF_SUCCESS)
|
---|
207 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ebp, &TmpRsp);
|
---|
208 | if (rcStrict == VINF_SUCCESS)
|
---|
209 | {
|
---|
210 | iemRegAddToRspEx(&TmpRsp, 2, pCtx); /* sp */
|
---|
211 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ebx, &TmpRsp);
|
---|
212 | }
|
---|
213 | if (rcStrict == VINF_SUCCESS)
|
---|
214 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->edx, &TmpRsp);
|
---|
215 | if (rcStrict == VINF_SUCCESS)
|
---|
216 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ecx, &TmpRsp);
|
---|
217 | if (rcStrict == VINF_SUCCESS)
|
---|
218 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->eax, &TmpRsp);
|
---|
219 | if (rcStrict == VINF_SUCCESS)
|
---|
220 | {
|
---|
221 | #if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
|
---|
222 | pCtx->rdi &= UINT32_MAX;
|
---|
223 | pCtx->rsi &= UINT32_MAX;
|
---|
224 | pCtx->rbp &= UINT32_MAX;
|
---|
225 | pCtx->rbx &= UINT32_MAX;
|
---|
226 | pCtx->rdx &= UINT32_MAX;
|
---|
227 | pCtx->rcx &= UINT32_MAX;
|
---|
228 | pCtx->rax &= UINT32_MAX;
|
---|
229 | #endif
|
---|
230 | pCtx->rsp = TmpRsp.u;
|
---|
231 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
232 | }
|
---|
233 | }
|
---|
234 | else
|
---|
235 | {
|
---|
236 | uint32_t const *pa32Mem;
|
---|
237 | rcStrict = iemMemMap(pIemCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
|
---|
238 | if (rcStrict == VINF_SUCCESS)
|
---|
239 | {
|
---|
240 | pCtx->rdi = pa32Mem[7 - X86_GREG_xDI];
|
---|
241 | pCtx->rsi = pa32Mem[7 - X86_GREG_xSI];
|
---|
242 | pCtx->rbp = pa32Mem[7 - X86_GREG_xBP];
|
---|
243 | /* skip esp */
|
---|
244 | pCtx->rbx = pa32Mem[7 - X86_GREG_xBX];
|
---|
245 | pCtx->rdx = pa32Mem[7 - X86_GREG_xDX];
|
---|
246 | pCtx->rcx = pa32Mem[7 - X86_GREG_xCX];
|
---|
247 | pCtx->rax = pa32Mem[7 - X86_GREG_xAX];
|
---|
248 | rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
|
---|
249 | if (rcStrict == VINF_SUCCESS)
|
---|
250 | {
|
---|
251 | iemRegAddToRsp(pCtx, 32);
|
---|
252 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
253 | }
|
---|
254 | }
|
---|
255 | }
|
---|
256 | return rcStrict;
|
---|
257 | }
|
---|
258 |
|
---|
259 |
|
---|
260 | /**
|
---|
261 | * Implements a 16-bit pusha.
|
---|
262 | */
|
---|
263 | IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
|
---|
264 | {
|
---|
265 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
266 | RTGCPTR GCPtrTop = iemRegGetEffRsp(pCtx);
|
---|
267 | RTGCPTR GCPtrBottom = GCPtrTop - 15;
|
---|
268 | VBOXSTRICTRC rcStrict;
|
---|
269 |
|
---|
270 | /*
|
---|
271 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
272 | * around in real mode as long as none of the individual "pushd" crosses the
|
---|
273 | * end of the stack segment. In protected mode we check the whole access
|
---|
274 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
275 | * danger of wrapping around.
|
---|
276 | */
|
---|
277 | /** @todo do pusha boundary / wrap-around checks. */
|
---|
278 | if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
|
---|
279 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu) ) )
|
---|
280 | {
|
---|
281 | /* word-by-word */
|
---|
282 | RTUINT64U TmpRsp;
|
---|
283 | TmpRsp.u = pCtx->rsp;
|
---|
284 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->ax, &TmpRsp);
|
---|
285 | if (rcStrict == VINF_SUCCESS)
|
---|
286 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->cx, &TmpRsp);
|
---|
287 | if (rcStrict == VINF_SUCCESS)
|
---|
288 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->dx, &TmpRsp);
|
---|
289 | if (rcStrict == VINF_SUCCESS)
|
---|
290 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->bx, &TmpRsp);
|
---|
291 | if (rcStrict == VINF_SUCCESS)
|
---|
292 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->sp, &TmpRsp);
|
---|
293 | if (rcStrict == VINF_SUCCESS)
|
---|
294 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->bp, &TmpRsp);
|
---|
295 | if (rcStrict == VINF_SUCCESS)
|
---|
296 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->si, &TmpRsp);
|
---|
297 | if (rcStrict == VINF_SUCCESS)
|
---|
298 | rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->di, &TmpRsp);
|
---|
299 | if (rcStrict == VINF_SUCCESS)
|
---|
300 | {
|
---|
301 | pCtx->rsp = TmpRsp.u;
|
---|
302 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
303 | }
|
---|
304 | }
|
---|
305 | else
|
---|
306 | {
|
---|
307 | GCPtrBottom--;
|
---|
308 | uint16_t *pa16Mem = NULL;
|
---|
309 | rcStrict = iemMemMap(pIemCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
|
---|
310 | if (rcStrict == VINF_SUCCESS)
|
---|
311 | {
|
---|
312 | pa16Mem[7 - X86_GREG_xDI] = pCtx->di;
|
---|
313 | pa16Mem[7 - X86_GREG_xSI] = pCtx->si;
|
---|
314 | pa16Mem[7 - X86_GREG_xBP] = pCtx->bp;
|
---|
315 | pa16Mem[7 - X86_GREG_xSP] = pCtx->sp;
|
---|
316 | pa16Mem[7 - X86_GREG_xBX] = pCtx->bx;
|
---|
317 | pa16Mem[7 - X86_GREG_xDX] = pCtx->dx;
|
---|
318 | pa16Mem[7 - X86_GREG_xCX] = pCtx->cx;
|
---|
319 | pa16Mem[7 - X86_GREG_xAX] = pCtx->ax;
|
---|
320 | rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
|
---|
321 | if (rcStrict == VINF_SUCCESS)
|
---|
322 | {
|
---|
323 | iemRegSubFromRsp(pCtx, 16);
|
---|
324 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
325 | }
|
---|
326 | }
|
---|
327 | }
|
---|
328 | return rcStrict;
|
---|
329 | }
|
---|
330 |
|
---|
331 |
|
---|
332 | /**
|
---|
333 | * Implements a 32-bit pusha.
|
---|
334 | */
|
---|
335 | IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
|
---|
336 | {
|
---|
337 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
338 | RTGCPTR GCPtrTop = iemRegGetEffRsp(pCtx);
|
---|
339 | RTGCPTR GCPtrBottom = GCPtrTop - 31;
|
---|
340 | VBOXSTRICTRC rcStrict;
|
---|
341 |
|
---|
342 | /*
|
---|
343 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
344 | * around in real mode as long as none of the individual "pusha" crosses the
|
---|
345 | * end of the stack segment. In protected mode we check the whole access
|
---|
346 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
347 | * danger of wrapping around.
|
---|
348 | */
|
---|
349 | /** @todo do pusha boundary / wrap-around checks. */
|
---|
350 | if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
|
---|
351 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu) ) )
|
---|
352 | {
|
---|
353 | /* word-by-word */
|
---|
354 | RTUINT64U TmpRsp;
|
---|
355 | TmpRsp.u = pCtx->rsp;
|
---|
356 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->eax, &TmpRsp);
|
---|
357 | if (rcStrict == VINF_SUCCESS)
|
---|
358 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ecx, &TmpRsp);
|
---|
359 | if (rcStrict == VINF_SUCCESS)
|
---|
360 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->edx, &TmpRsp);
|
---|
361 | if (rcStrict == VINF_SUCCESS)
|
---|
362 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ebx, &TmpRsp);
|
---|
363 | if (rcStrict == VINF_SUCCESS)
|
---|
364 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->esp, &TmpRsp);
|
---|
365 | if (rcStrict == VINF_SUCCESS)
|
---|
366 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ebp, &TmpRsp);
|
---|
367 | if (rcStrict == VINF_SUCCESS)
|
---|
368 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->esi, &TmpRsp);
|
---|
369 | if (rcStrict == VINF_SUCCESS)
|
---|
370 | rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->edi, &TmpRsp);
|
---|
371 | if (rcStrict == VINF_SUCCESS)
|
---|
372 | {
|
---|
373 | pCtx->rsp = TmpRsp.u;
|
---|
374 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
375 | }
|
---|
376 | }
|
---|
377 | else
|
---|
378 | {
|
---|
379 | GCPtrBottom--;
|
---|
380 | uint32_t *pa32Mem;
|
---|
381 | rcStrict = iemMemMap(pIemCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
|
---|
382 | if (rcStrict == VINF_SUCCESS)
|
---|
383 | {
|
---|
384 | pa32Mem[7 - X86_GREG_xDI] = pCtx->edi;
|
---|
385 | pa32Mem[7 - X86_GREG_xSI] = pCtx->esi;
|
---|
386 | pa32Mem[7 - X86_GREG_xBP] = pCtx->ebp;
|
---|
387 | pa32Mem[7 - X86_GREG_xSP] = pCtx->esp;
|
---|
388 | pa32Mem[7 - X86_GREG_xBX] = pCtx->ebx;
|
---|
389 | pa32Mem[7 - X86_GREG_xDX] = pCtx->edx;
|
---|
390 | pa32Mem[7 - X86_GREG_xCX] = pCtx->ecx;
|
---|
391 | pa32Mem[7 - X86_GREG_xAX] = pCtx->eax;
|
---|
392 | rcStrict = iemMemCommitAndUnmap(pIemCpu, pa32Mem, IEM_ACCESS_STACK_W);
|
---|
393 | if (rcStrict == VINF_SUCCESS)
|
---|
394 | {
|
---|
395 | iemRegSubFromRsp(pCtx, 32);
|
---|
396 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
397 | }
|
---|
398 | }
|
---|
399 | }
|
---|
400 | return rcStrict;
|
---|
401 | }
|
---|
402 |
|
---|
403 |
|
---|
404 | /**
|
---|
405 | * Implements pushf.
|
---|
406 | *
|
---|
407 | *
|
---|
408 | * @param enmEffOpSize The effective operand size.
|
---|
409 | */
|
---|
410 | IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
|
---|
411 | {
|
---|
412 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
413 |
|
---|
414 | /*
|
---|
415 | * If we're in V8086 mode some care is required (which is why we're in
|
---|
416 | * doing this in a C implementation).
|
---|
417 | */
|
---|
418 | uint32_t fEfl = pCtx->eflags.u;
|
---|
419 | if ( (fEfl & X86_EFL_VM)
|
---|
420 | && X86_EFL_GET_IOPL(fEfl) != 3 )
|
---|
421 | {
|
---|
422 | Assert(pCtx->cr0 & X86_CR0_PE);
|
---|
423 | if ( enmEffOpSize != IEMMODE_16BIT
|
---|
424 | || !(pCtx->cr4 & X86_CR4_VME))
|
---|
425 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
426 | fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
|
---|
427 | fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
|
---|
428 | return iemMemStackPushU16(pIemCpu, (uint16_t)fEfl);
|
---|
429 | }
|
---|
430 |
|
---|
431 | /*
|
---|
432 | * Ok, clear RF and VM and push the flags.
|
---|
433 | */
|
---|
434 | fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
|
---|
435 |
|
---|
436 | VBOXSTRICTRC rcStrict;
|
---|
437 | switch (enmEffOpSize)
|
---|
438 | {
|
---|
439 | case IEMMODE_16BIT:
|
---|
440 | rcStrict = iemMemStackPushU16(pIemCpu, (uint16_t)fEfl);
|
---|
441 | break;
|
---|
442 | case IEMMODE_32BIT:
|
---|
443 | rcStrict = iemMemStackPushU32(pIemCpu, fEfl);
|
---|
444 | break;
|
---|
445 | case IEMMODE_64BIT:
|
---|
446 | rcStrict = iemMemStackPushU64(pIemCpu, fEfl);
|
---|
447 | break;
|
---|
448 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
449 | }
|
---|
450 | if (rcStrict != VINF_SUCCESS)
|
---|
451 | return rcStrict;
|
---|
452 |
|
---|
453 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
454 | return VINF_SUCCESS;
|
---|
455 | }
|
---|
456 |
|
---|
457 |
|
---|
458 | /**
|
---|
459 | * Implements popf.
|
---|
460 | *
|
---|
461 | * @param enmEffOpSize The effective operand size.
|
---|
462 | */
|
---|
463 | IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
|
---|
464 | {
|
---|
465 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
466 | uint32_t const fEflOld = pCtx->eflags.u;
|
---|
467 | VBOXSTRICTRC rcStrict;
|
---|
468 | uint32_t fEflNew;
|
---|
469 |
|
---|
470 | /*
|
---|
471 | * V8086 is special as usual.
|
---|
472 | */
|
---|
473 | if (fEflOld & X86_EFL_VM)
|
---|
474 | {
|
---|
475 | /*
|
---|
476 | * Almost anything goes if IOPL is 3.
|
---|
477 | */
|
---|
478 | if (X86_EFL_GET_IOPL(fEflOld) == 3)
|
---|
479 | {
|
---|
480 | switch (enmEffOpSize)
|
---|
481 | {
|
---|
482 | case IEMMODE_16BIT:
|
---|
483 | {
|
---|
484 | uint16_t u16Value;
|
---|
485 | rcStrict = iemMemStackPopU16(pIemCpu, &u16Value);
|
---|
486 | if (rcStrict != VINF_SUCCESS)
|
---|
487 | return rcStrict;
|
---|
488 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
|
---|
489 | break;
|
---|
490 | }
|
---|
491 | case IEMMODE_32BIT:
|
---|
492 | rcStrict = iemMemStackPopU32(pIemCpu, &fEflNew);
|
---|
493 | if (rcStrict != VINF_SUCCESS)
|
---|
494 | return rcStrict;
|
---|
495 | break;
|
---|
496 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
497 | }
|
---|
498 |
|
---|
499 | fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL);
|
---|
500 | fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL)) & fEflOld;
|
---|
501 | }
|
---|
502 | /*
|
---|
503 | * Interrupt flag virtualization with CR4.VME=1.
|
---|
504 | */
|
---|
505 | else if ( enmEffOpSize == IEMMODE_16BIT
|
---|
506 | && (pCtx->cr4 & X86_CR4_VME) )
|
---|
507 | {
|
---|
508 | uint16_t u16Value;
|
---|
509 | RTUINT64U TmpRsp;
|
---|
510 | TmpRsp.u = pCtx->rsp;
|
---|
511 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &u16Value, &TmpRsp);
|
---|
512 | if (rcStrict != VINF_SUCCESS)
|
---|
513 | return rcStrict;
|
---|
514 |
|
---|
515 | /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
|
---|
516 | * or before? */
|
---|
517 | if ( ( (u16Value & X86_EFL_IF)
|
---|
518 | && (fEflOld & X86_EFL_VIP))
|
---|
519 | || (u16Value & X86_EFL_TF) )
|
---|
520 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
521 |
|
---|
522 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
|
---|
523 | fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
|
---|
524 | fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
|
---|
525 | fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
|
---|
526 |
|
---|
527 | pCtx->rsp = TmpRsp.u;
|
---|
528 | }
|
---|
529 | else
|
---|
530 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
531 |
|
---|
532 | }
|
---|
533 | /*
|
---|
534 | * Not in V8086 mode.
|
---|
535 | */
|
---|
536 | else
|
---|
537 | {
|
---|
538 | /* Pop the flags. */
|
---|
539 | switch (enmEffOpSize)
|
---|
540 | {
|
---|
541 | case IEMMODE_16BIT:
|
---|
542 | {
|
---|
543 | uint16_t u16Value;
|
---|
544 | rcStrict = iemMemStackPopU16(pIemCpu, &u16Value);
|
---|
545 | if (rcStrict != VINF_SUCCESS)
|
---|
546 | return rcStrict;
|
---|
547 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
|
---|
548 | break;
|
---|
549 | }
|
---|
550 | case IEMMODE_32BIT:
|
---|
551 | case IEMMODE_64BIT:
|
---|
552 | rcStrict = iemMemStackPopU32(pIemCpu, &fEflNew);
|
---|
553 | if (rcStrict != VINF_SUCCESS)
|
---|
554 | return rcStrict;
|
---|
555 | break;
|
---|
556 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
557 | }
|
---|
558 |
|
---|
559 | /* Merge them with the current flags. */
|
---|
560 | if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
|
---|
561 | || pIemCpu->uCpl == 0)
|
---|
562 | {
|
---|
563 | fEflNew &= X86_EFL_POPF_BITS;
|
---|
564 | fEflNew |= ~X86_EFL_POPF_BITS & fEflOld;
|
---|
565 | }
|
---|
566 | else if (pIemCpu->uCpl <= X86_EFL_GET_IOPL(fEflOld))
|
---|
567 | {
|
---|
568 | fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL);
|
---|
569 | fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL)) & fEflOld;
|
---|
570 | }
|
---|
571 | else
|
---|
572 | {
|
---|
573 | fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
|
---|
574 | fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
|
---|
575 | }
|
---|
576 | }
|
---|
577 |
|
---|
578 | /*
|
---|
579 | * Commit the flags.
|
---|
580 | */
|
---|
581 | Assert(fEflNew & RT_BIT_32(1));
|
---|
582 | pCtx->eflags.u = fEflNew;
|
---|
583 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
584 |
|
---|
585 | return VINF_SUCCESS;
|
---|
586 | }
|
---|
587 |
|
---|
588 |
|
---|
589 | /**
|
---|
590 | * Implements an indirect call.
|
---|
591 | *
|
---|
592 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
593 | * operand).
|
---|
594 | * @param enmEffOpSize The effective operand size.
|
---|
595 | */
|
---|
596 | IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
|
---|
597 | {
|
---|
598 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
599 | uint16_t uOldPC = pCtx->ip + cbInstr;
|
---|
600 | if (uNewPC > pCtx->csHid.u32Limit)
|
---|
601 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
602 |
|
---|
603 | VBOXSTRICTRC rcStrict = iemMemStackPushU16(pIemCpu, uOldPC);
|
---|
604 | if (rcStrict != VINF_SUCCESS)
|
---|
605 | return rcStrict;
|
---|
606 |
|
---|
607 | pCtx->rip = uNewPC;
|
---|
608 | return VINF_SUCCESS;
|
---|
609 |
|
---|
610 | }
|
---|
611 |
|
---|
612 |
|
---|
613 | /**
|
---|
614 | * Implements a 16-bit relative call.
|
---|
615 | *
|
---|
616 | * @param offDisp The displacment offset.
|
---|
617 | */
|
---|
618 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
|
---|
619 | {
|
---|
620 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
621 | uint16_t uOldPC = pCtx->ip + cbInstr;
|
---|
622 | uint16_t uNewPC = uOldPC + offDisp;
|
---|
623 | if (uNewPC > pCtx->csHid.u32Limit)
|
---|
624 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
625 |
|
---|
626 | VBOXSTRICTRC rcStrict = iemMemStackPushU16(pIemCpu, uOldPC);
|
---|
627 | if (rcStrict != VINF_SUCCESS)
|
---|
628 | return rcStrict;
|
---|
629 |
|
---|
630 | pCtx->rip = uNewPC;
|
---|
631 | return VINF_SUCCESS;
|
---|
632 | }
|
---|
633 |
|
---|
634 |
|
---|
635 | /**
|
---|
636 | * Implements a 32-bit indirect call.
|
---|
637 | *
|
---|
638 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
639 | * operand).
|
---|
640 | * @param enmEffOpSize The effective operand size.
|
---|
641 | */
|
---|
642 | IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
|
---|
643 | {
|
---|
644 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
645 | uint32_t uOldPC = pCtx->eip + cbInstr;
|
---|
646 | if (uNewPC > pCtx->csHid.u32Limit)
|
---|
647 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
648 |
|
---|
649 | VBOXSTRICTRC rcStrict = iemMemStackPushU32(pIemCpu, uOldPC);
|
---|
650 | if (rcStrict != VINF_SUCCESS)
|
---|
651 | return rcStrict;
|
---|
652 |
|
---|
653 | pCtx->rip = uNewPC;
|
---|
654 | return VINF_SUCCESS;
|
---|
655 |
|
---|
656 | }
|
---|
657 |
|
---|
658 |
|
---|
659 | /**
|
---|
660 | * Implements a 32-bit relative call.
|
---|
661 | *
|
---|
662 | * @param offDisp The displacment offset.
|
---|
663 | */
|
---|
664 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
|
---|
665 | {
|
---|
666 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
667 | uint32_t uOldPC = pCtx->eip + cbInstr;
|
---|
668 | uint32_t uNewPC = uOldPC + offDisp;
|
---|
669 | if (uNewPC > pCtx->csHid.u32Limit)
|
---|
670 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
671 |
|
---|
672 | VBOXSTRICTRC rcStrict = iemMemStackPushU32(pIemCpu, uOldPC);
|
---|
673 | if (rcStrict != VINF_SUCCESS)
|
---|
674 | return rcStrict;
|
---|
675 |
|
---|
676 | pCtx->rip = uNewPC;
|
---|
677 | return VINF_SUCCESS;
|
---|
678 | }
|
---|
679 |
|
---|
680 |
|
---|
681 | /**
|
---|
682 | * Implements a 64-bit indirect call.
|
---|
683 | *
|
---|
684 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
685 | * operand).
|
---|
686 | * @param enmEffOpSize The effective operand size.
|
---|
687 | */
|
---|
688 | IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
|
---|
689 | {
|
---|
690 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
691 | uint64_t uOldPC = pCtx->rip + cbInstr;
|
---|
692 | if (!IEM_IS_CANONICAL(uNewPC))
|
---|
693 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
694 |
|
---|
695 | VBOXSTRICTRC rcStrict = iemMemStackPushU64(pIemCpu, uOldPC);
|
---|
696 | if (rcStrict != VINF_SUCCESS)
|
---|
697 | return rcStrict;
|
---|
698 |
|
---|
699 | pCtx->rip = uNewPC;
|
---|
700 | return VINF_SUCCESS;
|
---|
701 |
|
---|
702 | }
|
---|
703 |
|
---|
704 |
|
---|
705 | /**
|
---|
706 | * Implements a 64-bit relative call.
|
---|
707 | *
|
---|
708 | * @param offDisp The displacment offset.
|
---|
709 | */
|
---|
710 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
|
---|
711 | {
|
---|
712 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
713 | uint64_t uOldPC = pCtx->rip + cbInstr;
|
---|
714 | uint64_t uNewPC = uOldPC + offDisp;
|
---|
715 | if (!IEM_IS_CANONICAL(uNewPC))
|
---|
716 | return iemRaiseNotCanonical(pIemCpu);
|
---|
717 |
|
---|
718 | VBOXSTRICTRC rcStrict = iemMemStackPushU64(pIemCpu, uOldPC);
|
---|
719 | if (rcStrict != VINF_SUCCESS)
|
---|
720 | return rcStrict;
|
---|
721 |
|
---|
722 | pCtx->rip = uNewPC;
|
---|
723 | return VINF_SUCCESS;
|
---|
724 | }
|
---|
725 |
|
---|
726 |
|
---|
727 | /**
|
---|
728 | * Implements far jumps.
|
---|
729 | *
|
---|
730 | * @param uSel The selector.
|
---|
731 | * @param offSeg The segment offset.
|
---|
732 | * @param enmEffOpSize The effective operand size.
|
---|
733 | */
|
---|
734 | IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint32_t, offSeg, IEMMODE, enmEffOpSize)
|
---|
735 | {
|
---|
736 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
737 | NOREF(cbInstr);
|
---|
738 |
|
---|
739 | /*
|
---|
740 | * Real mode and V8086 mode are easy. The only snag seems to be that
|
---|
741 | * CS.limit doesn't change and the limit check is done against the current
|
---|
742 | * limit.
|
---|
743 | */
|
---|
744 | if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
|
---|
745 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
746 | {
|
---|
747 | if (offSeg > pCtx->csHid.u32Limit)
|
---|
748 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
749 |
|
---|
750 | if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
|
---|
751 | pCtx->rip = offSeg;
|
---|
752 | else
|
---|
753 | pCtx->rip = offSeg & UINT16_MAX;
|
---|
754 | pCtx->cs = uSel;
|
---|
755 | pCtx->csHid.u64Base = (uint32_t)uSel << 4;
|
---|
756 | /** @todo REM reset the accessed bit (see on jmp far16 after disabling
|
---|
757 | * PE. Check with VT-x and AMD-V. */
|
---|
758 | #ifdef IEM_VERIFICATION_MODE
|
---|
759 | pCtx->csHid.Attr.u &= ~X86_SEL_TYPE_ACCESSED;
|
---|
760 | #endif
|
---|
761 | return VINF_SUCCESS;
|
---|
762 | }
|
---|
763 |
|
---|
764 | /*
|
---|
765 | * Protected mode. Need to parse the specified descriptor...
|
---|
766 | */
|
---|
767 | if (!(uSel & (X86_SEL_MASK | X86_SEL_LDT)))
|
---|
768 | {
|
---|
769 | Log(("jmpf %04x:%08x -> invalid selector, #GP(0)\n", uSel, offSeg));
|
---|
770 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
771 | }
|
---|
772 |
|
---|
773 | /* Fetch the descriptor. */
|
---|
774 | IEMSELDESC Desc;
|
---|
775 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uSel);
|
---|
776 | if (rcStrict != VINF_SUCCESS)
|
---|
777 | return rcStrict;
|
---|
778 |
|
---|
779 | /* Is it there? */
|
---|
780 | if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
|
---|
781 | {
|
---|
782 | Log(("jmpf %04x:%08x -> segment not present\n", uSel, offSeg));
|
---|
783 | return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel);
|
---|
784 | }
|
---|
785 |
|
---|
786 | /*
|
---|
787 | * Deal with it according to its type.
|
---|
788 | */
|
---|
789 | if (Desc.Legacy.Gen.u1DescType)
|
---|
790 | {
|
---|
791 | /* Only code segments. */
|
---|
792 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
793 | {
|
---|
794 | Log(("jmpf %04x:%08x -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
|
---|
795 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
796 | }
|
---|
797 |
|
---|
798 | /* L vs D. */
|
---|
799 | if ( Desc.Legacy.Gen.u1Long
|
---|
800 | && Desc.Legacy.Gen.u1DefBig
|
---|
801 | && IEM_IS_LONG_MODE(pIemCpu))
|
---|
802 | {
|
---|
803 | Log(("jmpf %04x:%08x -> both L and D are set.\n", uSel, offSeg));
|
---|
804 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
805 | }
|
---|
806 |
|
---|
807 | /* DPL/RPL/CPL check, where conforming segments makes a difference. */
|
---|
808 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
|
---|
809 | {
|
---|
810 | if (Desc.Legacy.Gen.u2Dpl > pIemCpu->uCpl)
|
---|
811 | {
|
---|
812 | Log(("jmpf %04x:%08x -> DPL violation (conforming); DPL=%d CPL=%u\n",
|
---|
813 | uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
|
---|
814 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
815 | }
|
---|
816 | }
|
---|
817 | else
|
---|
818 | {
|
---|
819 | if (Desc.Legacy.Gen.u2Dpl != pIemCpu->uCpl)
|
---|
820 | {
|
---|
821 | Log(("jmpf %04x:%08x -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
|
---|
822 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
823 | }
|
---|
824 | if ((uSel & X86_SEL_RPL) > pIemCpu->uCpl)
|
---|
825 | {
|
---|
826 | Log(("jmpf %04x:%08x -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pIemCpu->uCpl));
|
---|
827 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
828 | }
|
---|
829 | }
|
---|
830 |
|
---|
831 | /* Limit check. (Should alternatively check for non-canonical addresses
|
---|
832 | here, but that is ruled out by offSeg being 32-bit, right?) */
|
---|
833 | uint64_t u64Base;
|
---|
834 | uint32_t cbLimit = X86DESC_LIMIT(Desc.Legacy);
|
---|
835 | if (Desc.Legacy.Gen.u1Granularity)
|
---|
836 | cbLimit = (cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
|
---|
837 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
838 | u64Base = 0;
|
---|
839 | else
|
---|
840 | {
|
---|
841 | if (offSeg > cbLimit)
|
---|
842 | {
|
---|
843 | Log(("jmpf %04x:%08x -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
|
---|
844 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
845 | }
|
---|
846 | u64Base = X86DESC_BASE(Desc.Legacy);
|
---|
847 | }
|
---|
848 |
|
---|
849 | /*
|
---|
850 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
851 | * committing the result into CS, CSHID and RIP.
|
---|
852 | */
|
---|
853 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
854 | {
|
---|
855 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uSel);
|
---|
856 | if (rcStrict != VINF_SUCCESS)
|
---|
857 | return rcStrict;
|
---|
858 | #ifdef IEM_VERIFICATION_MODE /** @todo check what VT-x and AMD-V does. */
|
---|
859 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
860 | #endif
|
---|
861 | }
|
---|
862 |
|
---|
863 | /* commit */
|
---|
864 | pCtx->rip = offSeg;
|
---|
865 | pCtx->cs = uSel & (X86_SEL_MASK | X86_SEL_LDT);
|
---|
866 | pCtx->cs |= pIemCpu->uCpl; /** @todo is this right for conforming segs? or in general? */
|
---|
867 | pCtx->csHid.Attr.u = (Desc.Legacy.u >> (16+16+8)) & UINT32_C(0xf0ff);
|
---|
868 | pCtx->csHid.u32Limit = cbLimit;
|
---|
869 | pCtx->csHid.u64Base = u64Base;
|
---|
870 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
871 | * mode. */
|
---|
872 | return VINF_SUCCESS;
|
---|
873 | }
|
---|
874 |
|
---|
875 | /*
|
---|
876 | * System selector.
|
---|
877 | */
|
---|
878 | if (IEM_IS_LONG_MODE(pIemCpu))
|
---|
879 | switch (Desc.Legacy.Gen.u4Type)
|
---|
880 | {
|
---|
881 | case AMD64_SEL_TYPE_SYS_LDT:
|
---|
882 | case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
|
---|
883 | case AMD64_SEL_TYPE_SYS_TSS_BUSY:
|
---|
884 | case AMD64_SEL_TYPE_SYS_CALL_GATE:
|
---|
885 | case AMD64_SEL_TYPE_SYS_INT_GATE:
|
---|
886 | case AMD64_SEL_TYPE_SYS_TRAP_GATE:
|
---|
887 | /* Call various functions to do the work. */
|
---|
888 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
889 | default:
|
---|
890 | Log(("jmpf %04x:%08x -> wrong sys selector (64-bit): %d\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
|
---|
891 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
892 |
|
---|
893 | }
|
---|
894 | switch (Desc.Legacy.Gen.u4Type)
|
---|
895 | {
|
---|
896 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
897 | case X86_SEL_TYPE_SYS_LDT:
|
---|
898 | case X86_SEL_TYPE_SYS_286_CALL_GATE:
|
---|
899 | case X86_SEL_TYPE_SYS_TASK_GATE:
|
---|
900 | case X86_SEL_TYPE_SYS_286_INT_GATE:
|
---|
901 | case X86_SEL_TYPE_SYS_286_TRAP_GATE:
|
---|
902 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
903 | case X86_SEL_TYPE_SYS_386_CALL_GATE:
|
---|
904 | case X86_SEL_TYPE_SYS_386_INT_GATE:
|
---|
905 | case X86_SEL_TYPE_SYS_386_TRAP_GATE:
|
---|
906 | /* Call various functions to do the work. */
|
---|
907 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
908 |
|
---|
909 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
910 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
911 | /* Call various functions to do the work. */
|
---|
912 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
913 |
|
---|
914 | default:
|
---|
915 | Log(("jmpf %04x:%08x -> wrong sys selector (32-bit): %d\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
|
---|
916 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
917 | }
|
---|
918 | }
|
---|
919 |
|
---|
920 |
|
---|
921 | /**
|
---|
922 | * Implements far calls.
|
---|
923 | *
|
---|
924 | * @param uSel The selector.
|
---|
925 | * @param offSeg The segment offset.
|
---|
926 | * @param enmOpSize The operand size (in case we need it).
|
---|
927 | */
|
---|
928 | IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmOpSize)
|
---|
929 | {
|
---|
930 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
931 | VBOXSTRICTRC rcStrict;
|
---|
932 | uint64_t uNewRsp;
|
---|
933 | void *pvRet;
|
---|
934 |
|
---|
935 | /*
|
---|
936 | * Real mode and V8086 mode are easy. The only snag seems to be that
|
---|
937 | * CS.limit doesn't change and the limit check is done against the current
|
---|
938 | * limit.
|
---|
939 | */
|
---|
940 | if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
|
---|
941 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
942 | {
|
---|
943 | Assert(enmOpSize == IEMMODE_16BIT || enmOpSize == IEMMODE_32BIT);
|
---|
944 |
|
---|
945 | /* Check stack first - may #SS(0). */
|
---|
946 | rcStrict = iemMemStackPushBeginSpecial(pIemCpu, enmOpSize == IEMMODE_32BIT ? 6 : 4,
|
---|
947 | &pvRet, &uNewRsp);
|
---|
948 | if (rcStrict != VINF_SUCCESS)
|
---|
949 | return rcStrict;
|
---|
950 |
|
---|
951 | /* Check the target address range. */
|
---|
952 | if (offSeg > UINT32_MAX)
|
---|
953 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
954 |
|
---|
955 | /* Everything is fine, push the return address. */
|
---|
956 | if (enmOpSize == IEMMODE_16BIT)
|
---|
957 | {
|
---|
958 | ((uint16_t *)pvRet)[0] = pCtx->ip + cbInstr;
|
---|
959 | ((uint16_t *)pvRet)[1] = pCtx->cs;
|
---|
960 | }
|
---|
961 | else
|
---|
962 | {
|
---|
963 | ((uint32_t *)pvRet)[0] = pCtx->eip + cbInstr;
|
---|
964 | ((uint16_t *)pvRet)[3] = pCtx->cs;
|
---|
965 | }
|
---|
966 | rcStrict = iemMemStackPushCommitSpecial(pIemCpu, pvRet, uNewRsp);
|
---|
967 | if (rcStrict != VINF_SUCCESS)
|
---|
968 | return rcStrict;
|
---|
969 |
|
---|
970 | /* Branch. */
|
---|
971 | pCtx->rip = offSeg;
|
---|
972 | pCtx->cs = uSel;
|
---|
973 | pCtx->csHid.u64Base = (uint32_t)uSel << 4;
|
---|
974 | /** @todo Does REM reset the accessed bit here to? (See on jmp far16
|
---|
975 | * after disabling PE.) Check with VT-x and AMD-V. */
|
---|
976 | #ifdef IEM_VERIFICATION_MODE
|
---|
977 | pCtx->csHid.Attr.u &= ~X86_SEL_TYPE_ACCESSED;
|
---|
978 | #endif
|
---|
979 | return VINF_SUCCESS;
|
---|
980 | }
|
---|
981 |
|
---|
982 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
983 | }
|
---|
984 |
|
---|
985 |
|
---|
986 | /**
|
---|
987 | * Implements retf.
|
---|
988 | *
|
---|
989 | * @param enmEffOpSize The effective operand size.
|
---|
990 | * @param cbPop The amount of arguments to pop from the stack
|
---|
991 | * (bytes).
|
---|
992 | */
|
---|
993 | IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
|
---|
994 | {
|
---|
995 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
996 | VBOXSTRICTRC rcStrict;
|
---|
997 | uint64_t uNewRsp;
|
---|
998 | NOREF(cbInstr);
|
---|
999 |
|
---|
1000 | /*
|
---|
1001 | * Real mode and V8086 mode are easy.
|
---|
1002 | */
|
---|
1003 | if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
|
---|
1004 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
1005 | {
|
---|
1006 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
1007 | uint16_t const *pu16Frame;
|
---|
1008 | rcStrict = iemMemStackPopBeginSpecial(pIemCpu, enmEffOpSize == IEMMODE_32BIT ? 8 : 4,
|
---|
1009 | (void const **)&pu16Frame, &uNewRsp);
|
---|
1010 | if (rcStrict != VINF_SUCCESS)
|
---|
1011 | return rcStrict;
|
---|
1012 | uint32_t uNewEip;
|
---|
1013 | uint16_t uNewCS;
|
---|
1014 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
1015 | {
|
---|
1016 | uNewCS = pu16Frame[2];
|
---|
1017 | uNewEip = RT_MAKE_U32(pu16Frame[0], pu16Frame[1]);
|
---|
1018 | }
|
---|
1019 | else
|
---|
1020 | {
|
---|
1021 | uNewCS = pu16Frame[1];
|
---|
1022 | uNewEip = pu16Frame[0];
|
---|
1023 | }
|
---|
1024 | /** @todo check how this is supposed to work if sp=0xfffe. */
|
---|
1025 |
|
---|
1026 | /* Check the limit of the new EIP. */
|
---|
1027 | /** @todo Intel pseudo code only does the limit check for 16-bit
|
---|
1028 | * operands, AMD does not make any distinction. What is right? */
|
---|
1029 | if (uNewEip > pCtx->csHid.u32Limit)
|
---|
1030 | return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1031 |
|
---|
1032 | /* commit the operation. */
|
---|
1033 | rcStrict = iemMemStackPopCommitSpecial(pIemCpu, pu16Frame, uNewRsp);
|
---|
1034 | if (rcStrict != VINF_SUCCESS)
|
---|
1035 | return rcStrict;
|
---|
1036 | pCtx->rip = uNewEip;
|
---|
1037 | pCtx->cs = uNewCS;
|
---|
1038 | pCtx->csHid.u64Base = (uint32_t)uNewCS << 4;
|
---|
1039 | /** @todo do we load attribs and limit as well? */
|
---|
1040 | if (cbPop)
|
---|
1041 | iemRegAddToRsp(pCtx, cbPop);
|
---|
1042 | return VINF_SUCCESS;
|
---|
1043 | }
|
---|
1044 |
|
---|
1045 | AssertFailed();
|
---|
1046 | return VERR_NOT_IMPLEMENTED;
|
---|
1047 | }
|
---|
1048 |
|
---|
1049 |
|
---|
1050 | /**
|
---|
1051 | * Implements retn.
|
---|
1052 | *
|
---|
1053 | * We're doing this in C because of the \#GP that might be raised if the popped
|
---|
1054 | * program counter is out of bounds.
|
---|
1055 | *
|
---|
1056 | * @param enmEffOpSize The effective operand size.
|
---|
1057 | * @param cbPop The amount of arguments to pop from the stack
|
---|
1058 | * (bytes).
|
---|
1059 | */
|
---|
1060 | IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
|
---|
1061 | {
|
---|
1062 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1063 | NOREF(cbInstr);
|
---|
1064 |
|
---|
1065 | /* Fetch the RSP from the stack. */
|
---|
1066 | VBOXSTRICTRC rcStrict;
|
---|
1067 | RTUINT64U NewRip;
|
---|
1068 | RTUINT64U NewRsp;
|
---|
1069 | NewRsp.u = pCtx->rsp;
|
---|
1070 | switch (enmEffOpSize)
|
---|
1071 | {
|
---|
1072 | case IEMMODE_16BIT:
|
---|
1073 | NewRip.u = 0;
|
---|
1074 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &NewRip.Words.w0, &NewRsp);
|
---|
1075 | break;
|
---|
1076 | case IEMMODE_32BIT:
|
---|
1077 | NewRip.u = 0;
|
---|
1078 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &NewRip.DWords.dw0, &NewRsp);
|
---|
1079 | break;
|
---|
1080 | case IEMMODE_64BIT:
|
---|
1081 | rcStrict = iemMemStackPopU64Ex(pIemCpu, &NewRip.u, &NewRsp);
|
---|
1082 | break;
|
---|
1083 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
1084 | }
|
---|
1085 | if (rcStrict != VINF_SUCCESS)
|
---|
1086 | return rcStrict;
|
---|
1087 |
|
---|
1088 | /* Check the new RSP before loading it. */
|
---|
1089 | /** @todo Should test this as the intel+amd pseudo code doesn't mention half
|
---|
1090 | * of it. The canonical test is performed here and for call. */
|
---|
1091 | if (enmEffOpSize != IEMMODE_64BIT)
|
---|
1092 | {
|
---|
1093 | if (NewRip.DWords.dw0 > pCtx->csHid.u32Limit)
|
---|
1094 | {
|
---|
1095 | Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pCtx->csHid.u32Limit));
|
---|
1096 | return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1097 | }
|
---|
1098 | }
|
---|
1099 | else
|
---|
1100 | {
|
---|
1101 | if (!IEM_IS_CANONICAL(NewRip.u))
|
---|
1102 | {
|
---|
1103 | Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
|
---|
1104 | return iemRaiseNotCanonical(pIemCpu);
|
---|
1105 | }
|
---|
1106 | }
|
---|
1107 |
|
---|
1108 | /* Commit it. */
|
---|
1109 | pCtx->rip = NewRip.u;
|
---|
1110 | pCtx->rsp = NewRsp.u;
|
---|
1111 | if (cbPop)
|
---|
1112 | iemRegAddToRsp(pCtx, cbPop);
|
---|
1113 |
|
---|
1114 | return VINF_SUCCESS;
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 |
|
---|
1118 | /**
|
---|
1119 | * Implements leave.
|
---|
1120 | *
|
---|
1121 | * We're doing this in C because messing with the stack registers is annoying
|
---|
1122 | * since they depends on SS attributes.
|
---|
1123 | *
|
---|
1124 | * @param enmEffOpSize The effective operand size.
|
---|
1125 | */
|
---|
1126 | IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
|
---|
1127 | {
|
---|
1128 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1129 |
|
---|
1130 | /* Calculate the intermediate RSP from RBP and the stack attributes. */
|
---|
1131 | RTUINT64U NewRsp;
|
---|
1132 | if (pCtx->ssHid.Attr.n.u1Long)
|
---|
1133 | {
|
---|
1134 | /** @todo Check that LEAVE actually preserve the high EBP bits. */
|
---|
1135 | NewRsp.u = pCtx->rsp;
|
---|
1136 | NewRsp.Words.w0 = pCtx->bp;
|
---|
1137 | }
|
---|
1138 | else if (pCtx->ssHid.Attr.n.u1DefBig)
|
---|
1139 | NewRsp.u = pCtx->ebp;
|
---|
1140 | else
|
---|
1141 | NewRsp.u = pCtx->rbp;
|
---|
1142 |
|
---|
1143 | /* Pop RBP according to the operand size. */
|
---|
1144 | VBOXSTRICTRC rcStrict;
|
---|
1145 | RTUINT64U NewRbp;
|
---|
1146 | switch (enmEffOpSize)
|
---|
1147 | {
|
---|
1148 | case IEMMODE_16BIT:
|
---|
1149 | NewRbp.u = pCtx->rbp;
|
---|
1150 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &NewRbp.Words.w0, &NewRsp);
|
---|
1151 | break;
|
---|
1152 | case IEMMODE_32BIT:
|
---|
1153 | NewRbp.u = 0;
|
---|
1154 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &NewRbp.DWords.dw0, &NewRsp);
|
---|
1155 | break;
|
---|
1156 | case IEMMODE_64BIT:
|
---|
1157 | rcStrict = iemMemStackPopU64Ex(pIemCpu, &NewRbp.u, &NewRsp);
|
---|
1158 | break;
|
---|
1159 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
1160 | }
|
---|
1161 | if (rcStrict != VINF_SUCCESS)
|
---|
1162 | return rcStrict;
|
---|
1163 |
|
---|
1164 |
|
---|
1165 | /* Commit it. */
|
---|
1166 | pCtx->rbp = NewRbp.u;
|
---|
1167 | pCtx->rsp = NewRsp.u;
|
---|
1168 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1169 |
|
---|
1170 | return VINF_SUCCESS;
|
---|
1171 | }
|
---|
1172 |
|
---|
1173 |
|
---|
1174 | /**
|
---|
1175 | * Implements int3 and int XX.
|
---|
1176 | *
|
---|
1177 | * @param u8Int The interrupt vector number.
|
---|
1178 | * @param fIsBpInstr Is it the breakpoint instruction.
|
---|
1179 | */
|
---|
1180 | IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, bool, fIsBpInstr)
|
---|
1181 | {
|
---|
1182 | Assert(pIemCpu->cXcptRecursions == 0);
|
---|
1183 | return iemRaiseXcptOrInt(pIemCpu,
|
---|
1184 | cbInstr,
|
---|
1185 | u8Int,
|
---|
1186 | (fIsBpInstr ? IEM_XCPT_FLAGS_BP_INSTR : 0) | IEM_XCPT_FLAGS_T_SOFT_INT,
|
---|
1187 | 0,
|
---|
1188 | 0);
|
---|
1189 | }
|
---|
1190 |
|
---|
1191 |
|
---|
1192 | /**
|
---|
1193 | * Implements iret for real mode and V8086 mode.
|
---|
1194 | *
|
---|
1195 | * @param enmEffOpSize The effective operand size.
|
---|
1196 | */
|
---|
1197 | IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
|
---|
1198 | {
|
---|
1199 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1200 | NOREF(cbInstr);
|
---|
1201 |
|
---|
1202 | /*
|
---|
1203 | * iret throws an exception if VME isn't enabled.
|
---|
1204 | */
|
---|
1205 | if ( pCtx->eflags.Bits.u1VM
|
---|
1206 | && !(pCtx->cr4 & X86_CR4_VME))
|
---|
1207 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1208 |
|
---|
1209 | /*
|
---|
1210 | * Do the stack bits, but don't commit RSP before everything checks
|
---|
1211 | * out right.
|
---|
1212 | */
|
---|
1213 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
1214 | VBOXSTRICTRC rcStrict;
|
---|
1215 | RTCPTRUNION uFrame;
|
---|
1216 | uint16_t uNewCS;
|
---|
1217 | uint32_t uNewEip;
|
---|
1218 | uint32_t uNewFlags;
|
---|
1219 | uint64_t uNewRsp;
|
---|
1220 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
1221 | {
|
---|
1222 | rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 12, &uFrame.pv, &uNewRsp);
|
---|
1223 | if (rcStrict != VINF_SUCCESS)
|
---|
1224 | return rcStrict;
|
---|
1225 | uNewEip = uFrame.pu32[0];
|
---|
1226 | uNewCS = (uint16_t)uFrame.pu32[1];
|
---|
1227 | uNewFlags = uFrame.pu32[2];
|
---|
1228 | uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
1229 | | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
|
---|
1230 | | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
|
---|
1231 | | X86_EFL_ID;
|
---|
1232 | uNewFlags |= pCtx->eflags.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
|
---|
1233 | }
|
---|
1234 | else
|
---|
1235 | {
|
---|
1236 | rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 6, &uFrame.pv, &uNewRsp);
|
---|
1237 | if (rcStrict != VINF_SUCCESS)
|
---|
1238 | return rcStrict;
|
---|
1239 | uNewEip = uFrame.pu16[0];
|
---|
1240 | uNewCS = uFrame.pu16[1];
|
---|
1241 | uNewFlags = uFrame.pu16[2];
|
---|
1242 | uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
1243 | | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
|
---|
1244 | uNewFlags |= pCtx->eflags.u & (UINT32_C(0xffff0000) | X86_EFL_1);
|
---|
1245 | /** @todo The intel pseudo code does not indicate what happens to
|
---|
1246 | * reserved flags. We just ignore them. */
|
---|
1247 | }
|
---|
1248 | /** @todo Check how this is supposed to work if sp=0xfffe. */
|
---|
1249 |
|
---|
1250 | /*
|
---|
1251 | * Check the limit of the new EIP.
|
---|
1252 | */
|
---|
1253 | /** @todo Only the AMD pseudo code check the limit here, what's
|
---|
1254 | * right? */
|
---|
1255 | if (uNewEip > pCtx->csHid.u32Limit)
|
---|
1256 | return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
1257 |
|
---|
1258 | /*
|
---|
1259 | * V8086 checks and flag adjustments
|
---|
1260 | */
|
---|
1261 | if (pCtx->eflags.Bits.u1VM)
|
---|
1262 | {
|
---|
1263 | if (pCtx->eflags.Bits.u2IOPL == 3)
|
---|
1264 | {
|
---|
1265 | /* Preserve IOPL and clear RF. */
|
---|
1266 | uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
|
---|
1267 | uNewFlags |= pCtx->eflags.u & (X86_EFL_IOPL);
|
---|
1268 | }
|
---|
1269 | else if ( enmEffOpSize == IEMMODE_16BIT
|
---|
1270 | && ( !(uNewFlags & X86_EFL_IF)
|
---|
1271 | || !pCtx->eflags.Bits.u1VIP )
|
---|
1272 | && !(uNewFlags & X86_EFL_TF) )
|
---|
1273 | {
|
---|
1274 | /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
|
---|
1275 | uNewFlags &= ~X86_EFL_VIF;
|
---|
1276 | uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
|
---|
1277 | uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
|
---|
1278 | uNewFlags |= pCtx->eflags.u & (X86_EFL_IF | X86_EFL_IOPL);
|
---|
1279 | }
|
---|
1280 | else
|
---|
1281 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1282 | }
|
---|
1283 |
|
---|
1284 | /*
|
---|
1285 | * Commit the operation.
|
---|
1286 | */
|
---|
1287 | rcStrict = iemMemStackPopCommitSpecial(pIemCpu, uFrame.pv, uNewRsp);
|
---|
1288 | if (rcStrict != VINF_SUCCESS)
|
---|
1289 | return rcStrict;
|
---|
1290 | pCtx->rip = uNewEip;
|
---|
1291 | pCtx->cs = uNewCS;
|
---|
1292 | pCtx->csHid.u64Base = (uint32_t)uNewCS << 4;
|
---|
1293 | /** @todo do we load attribs and limit as well? */
|
---|
1294 | Assert(uNewFlags & X86_EFL_1);
|
---|
1295 | pCtx->eflags.u = uNewFlags;
|
---|
1296 |
|
---|
1297 | return VINF_SUCCESS;
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 |
|
---|
1301 | /**
|
---|
1302 | * Implements iret for protected mode
|
---|
1303 | *
|
---|
1304 | * @param enmEffOpSize The effective operand size.
|
---|
1305 | */
|
---|
1306 | IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
|
---|
1307 | {
|
---|
1308 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1309 | NOREF(cbInstr);
|
---|
1310 |
|
---|
1311 | /*
|
---|
1312 | * Nested task return.
|
---|
1313 | */
|
---|
1314 | if (pCtx->eflags.Bits.u1NT)
|
---|
1315 | {
|
---|
1316 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
1317 | }
|
---|
1318 | /*
|
---|
1319 | * Normal return.
|
---|
1320 | */
|
---|
1321 | else
|
---|
1322 | {
|
---|
1323 | /*
|
---|
1324 | * Do the stack bits, but don't commit RSP before everything checks
|
---|
1325 | * out right.
|
---|
1326 | */
|
---|
1327 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
1328 | VBOXSTRICTRC rcStrict;
|
---|
1329 | RTCPTRUNION uFrame;
|
---|
1330 | uint16_t uNewCS;
|
---|
1331 | uint32_t uNewEip;
|
---|
1332 | uint32_t uNewFlags;
|
---|
1333 | uint64_t uNewRsp;
|
---|
1334 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
1335 | {
|
---|
1336 | rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 12, &uFrame.pv, &uNewRsp);
|
---|
1337 | if (rcStrict != VINF_SUCCESS)
|
---|
1338 | return rcStrict;
|
---|
1339 | uNewEip = uFrame.pu32[0];
|
---|
1340 | uNewCS = (uint16_t)uFrame.pu32[1];
|
---|
1341 | uNewFlags = uFrame.pu32[2];
|
---|
1342 | }
|
---|
1343 | else
|
---|
1344 | {
|
---|
1345 | rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 6, &uFrame.pv, &uNewRsp);
|
---|
1346 | if (rcStrict != VINF_SUCCESS)
|
---|
1347 | return rcStrict;
|
---|
1348 | uNewEip = uFrame.pu16[0];
|
---|
1349 | uNewCS = uFrame.pu16[1];
|
---|
1350 | uNewFlags = uFrame.pu16[2];
|
---|
1351 | }
|
---|
1352 | rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
|
---|
1353 | if (rcStrict != VINF_SUCCESS)
|
---|
1354 | return rcStrict;
|
---|
1355 |
|
---|
1356 | /*
|
---|
1357 | * What are we returning to?
|
---|
1358 | */
|
---|
1359 | if ( (uNewFlags & X86_EFL_VM)
|
---|
1360 | && pIemCpu->uCpl == 0)
|
---|
1361 | {
|
---|
1362 | /* V8086 mode! */
|
---|
1363 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
1364 | }
|
---|
1365 | else
|
---|
1366 | {
|
---|
1367 | /*
|
---|
1368 | * Protected mode.
|
---|
1369 | */
|
---|
1370 | /* Read the CS descriptor. */
|
---|
1371 | if (!(uNewCS & (X86_SEL_MASK | X86_SEL_LDT)))
|
---|
1372 | {
|
---|
1373 | Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCS, uNewEip));
|
---|
1374 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1375 | }
|
---|
1376 |
|
---|
1377 | IEMSELDESC DescCS;
|
---|
1378 | rcStrict = iemMemFetchSelDesc(pIemCpu, &DescCS, uNewCS);
|
---|
1379 | if (rcStrict != VINF_SUCCESS)
|
---|
1380 | return rcStrict;
|
---|
1381 |
|
---|
1382 | /* Must be a code descriptor. */
|
---|
1383 | if (!DescCS.Legacy.Gen.u1DescType)
|
---|
1384 | {
|
---|
1385 | Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCS, uNewEip, DescCS.Legacy.Gen.u4Type));
|
---|
1386 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCS);
|
---|
1387 | }
|
---|
1388 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
1389 | {
|
---|
1390 | Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCS, uNewEip, DescCS.Legacy.Gen.u4Type));
|
---|
1391 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCS);
|
---|
1392 | }
|
---|
1393 |
|
---|
1394 | /* Privilege checks. */
|
---|
1395 | if ((uNewCS & X86_SEL_RPL) < pIemCpu->uCpl)
|
---|
1396 | {
|
---|
1397 | Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCS, uNewEip, pIemCpu->uCpl));
|
---|
1398 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCS);
|
---|
1399 | }
|
---|
1400 | if ( (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
1401 | && (uNewCS & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
|
---|
1402 | {
|
---|
1403 | Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCS, uNewEip, DescCS.Legacy.Gen.u2Dpl));
|
---|
1404 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCS);
|
---|
1405 | }
|
---|
1406 |
|
---|
1407 | /* Present? */
|
---|
1408 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
1409 | {
|
---|
1410 | Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCS, uNewEip));
|
---|
1411 | return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewCS);
|
---|
1412 | }
|
---|
1413 |
|
---|
1414 | uint32_t cbLimitCS = X86DESC_LIMIT(DescCS.Legacy);
|
---|
1415 | if (DescCS.Legacy.Gen.u1Granularity)
|
---|
1416 | cbLimitCS = (cbLimitCS << PAGE_SHIFT) | PAGE_OFFSET_MASK;
|
---|
1417 |
|
---|
1418 | /*
|
---|
1419 | * Different level?
|
---|
1420 | */
|
---|
1421 | if ((uNewCS & X86_SEL_RPL) != pIemCpu->uCpl)
|
---|
1422 | {
|
---|
1423 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
1424 | }
|
---|
1425 | /*
|
---|
1426 | * Same level.
|
---|
1427 | */
|
---|
1428 | else
|
---|
1429 | {
|
---|
1430 | /* Check EIP. */
|
---|
1431 | if (uNewEip > cbLimitCS)
|
---|
1432 | {
|
---|
1433 | Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewEip, cbLimitCS));
|
---|
1434 | return iemRaiseSelectorBoundsBySelector(pIemCpu, uNewCS);
|
---|
1435 | }
|
---|
1436 |
|
---|
1437 | /*
|
---|
1438 | * Commit the changes, marking CS first since it may fail.
|
---|
1439 | */
|
---|
1440 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1441 | {
|
---|
1442 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCS);
|
---|
1443 | if (rcStrict != VINF_SUCCESS)
|
---|
1444 | return rcStrict;
|
---|
1445 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1446 | }
|
---|
1447 |
|
---|
1448 | pCtx->rip = uNewEip;
|
---|
1449 | pCtx->cs = uNewCS;
|
---|
1450 | pCtx->csHid.Attr.u = X86DESC_GET_HID_ATTR(DescCS.Legacy);
|
---|
1451 | pCtx->csHid.u32Limit = cbLimitCS;
|
---|
1452 | pCtx->csHid.u64Base = X86DESC_BASE(DescCS.Legacy);
|
---|
1453 | pCtx->rsp = uNewRsp;
|
---|
1454 |
|
---|
1455 | uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
1456 | | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
|
---|
1457 | if (enmEffOpSize != IEMMODE_16BIT)
|
---|
1458 | fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
|
---|
1459 | if (pIemCpu->uCpl == 0)
|
---|
1460 | fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
|
---|
1461 | else if (pIemCpu->uCpl <= pCtx->eflags.Bits.u2IOPL)
|
---|
1462 | fEFlagsMask |= X86_EFL_IF;
|
---|
1463 | pCtx->eflags.u &= ~fEFlagsMask;
|
---|
1464 | pCtx->eflags.u |= fEFlagsMask & uNewFlags;
|
---|
1465 | /* Done! */
|
---|
1466 | }
|
---|
1467 | }
|
---|
1468 | }
|
---|
1469 |
|
---|
1470 | return VINF_SUCCESS;
|
---|
1471 | }
|
---|
1472 |
|
---|
1473 |
|
---|
1474 | /**
|
---|
1475 | * Implements iret for long mode
|
---|
1476 | *
|
---|
1477 | * @param enmEffOpSize The effective operand size.
|
---|
1478 | */
|
---|
1479 | IEM_CIMPL_DEF_1(iemCImpl_iret_long, IEMMODE, enmEffOpSize)
|
---|
1480 | {
|
---|
1481 | //PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1482 | //VBOXSTRICTRC rcStrict;
|
---|
1483 | //uint64_t uNewRsp;
|
---|
1484 |
|
---|
1485 | NOREF(pIemCpu); NOREF(cbInstr); NOREF(enmEffOpSize);
|
---|
1486 | return VERR_NOT_IMPLEMENTED;
|
---|
1487 | }
|
---|
1488 |
|
---|
1489 |
|
---|
1490 | /**
|
---|
1491 | * Implements iret.
|
---|
1492 | *
|
---|
1493 | * @param enmEffOpSize The effective operand size.
|
---|
1494 | */
|
---|
1495 | IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
|
---|
1496 | {
|
---|
1497 | /*
|
---|
1498 | * Call a mode specific worker.
|
---|
1499 | */
|
---|
1500 | if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
|
---|
1501 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
1502 | return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
|
---|
1503 | if (IEM_IS_LONG_MODE(pIemCpu))
|
---|
1504 | return IEM_CIMPL_CALL_1(iemCImpl_iret_long, enmEffOpSize);
|
---|
1505 |
|
---|
1506 | return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
|
---|
1507 | }
|
---|
1508 |
|
---|
1509 |
|
---|
1510 | /**
|
---|
1511 | * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
|
---|
1512 | *
|
---|
1513 | * @param iSegReg The segment register number (valid).
|
---|
1514 | * @param uSel The new selector value.
|
---|
1515 | */
|
---|
1516 | IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
|
---|
1517 | {
|
---|
1518 | /*PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);*/
|
---|
1519 | uint16_t *pSel = iemSRegRef(pIemCpu, iSegReg);
|
---|
1520 | PCPUMSELREGHID pHid = iemSRegGetHid(pIemCpu, iSegReg);
|
---|
1521 |
|
---|
1522 | Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
|
---|
1523 |
|
---|
1524 | /*
|
---|
1525 | * Real mode and V8086 mode are easy.
|
---|
1526 | */
|
---|
1527 | if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
|
---|
1528 | && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
1529 | {
|
---|
1530 | *pSel = uSel;
|
---|
1531 | pHid->u64Base = (uint32_t)uSel << 4;
|
---|
1532 | /** @todo Does the CPU actually load limits and attributes in the
|
---|
1533 | * real/V8086 mode segment load case? It doesn't for CS in far
|
---|
1534 | * jumps... Affects unreal mode. */
|
---|
1535 | pHid->u32Limit = 0xffff;
|
---|
1536 | pHid->Attr.u = 0;
|
---|
1537 | pHid->Attr.n.u1Present = 1;
|
---|
1538 | pHid->Attr.n.u1DescType = 1;
|
---|
1539 | pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
|
---|
1540 | ? X86_SEL_TYPE_RW
|
---|
1541 | : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
|
---|
1542 |
|
---|
1543 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1544 | return VINF_SUCCESS;
|
---|
1545 | }
|
---|
1546 |
|
---|
1547 | /*
|
---|
1548 | * Protected mode.
|
---|
1549 | *
|
---|
1550 | * Check if it's a null segment selector value first, that's OK for DS, ES,
|
---|
1551 | * FS and GS. If not null, then we have to load and parse the descriptor.
|
---|
1552 | */
|
---|
1553 | if (!(uSel & (X86_SEL_MASK | X86_SEL_LDT)))
|
---|
1554 | {
|
---|
1555 | if (iSegReg == X86_SREG_SS)
|
---|
1556 | {
|
---|
1557 | if ( pIemCpu->enmCpuMode != IEMMODE_64BIT
|
---|
1558 | || pIemCpu->uCpl != 0
|
---|
1559 | || uSel != 0) /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? */
|
---|
1560 | {
|
---|
1561 | Log(("load sreg -> invalid stack selector, #GP(0)\n", uSel));
|
---|
1562 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1563 | }
|
---|
1564 |
|
---|
1565 | /* In 64-bit kernel mode, the stack can be 0 because of the way
|
---|
1566 | interrupts are dispatched when in kernel ctx. Just load the
|
---|
1567 | selector value into the register and leave the hidden bits
|
---|
1568 | as is. */
|
---|
1569 | *pSel = uSel;
|
---|
1570 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1571 | return VINF_SUCCESS;
|
---|
1572 | }
|
---|
1573 |
|
---|
1574 | *pSel = uSel; /* Not RPL, remember :-) */
|
---|
1575 | if ( pIemCpu->enmCpuMode == IEMMODE_64BIT
|
---|
1576 | && iSegReg != X86_SREG_FS
|
---|
1577 | && iSegReg != X86_SREG_GS)
|
---|
1578 | {
|
---|
1579 | /** @todo figure out what this actually does, it works. Needs
|
---|
1580 | * testcase! */
|
---|
1581 | pHid->Attr.u = 0;
|
---|
1582 | pHid->Attr.n.u1Present = 1;
|
---|
1583 | pHid->Attr.n.u1Long = 1;
|
---|
1584 | pHid->Attr.n.u4Type = X86_SEL_TYPE_RW;
|
---|
1585 | pHid->Attr.n.u2Dpl = 3;
|
---|
1586 | pHid->u32Limit = 0;
|
---|
1587 | pHid->u64Base = 0;
|
---|
1588 | }
|
---|
1589 | else
|
---|
1590 | {
|
---|
1591 | pHid->Attr.u = 0;
|
---|
1592 | pHid->u32Limit = 0;
|
---|
1593 | pHid->u64Base = 0;
|
---|
1594 | }
|
---|
1595 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1596 | return VINF_SUCCESS;
|
---|
1597 | }
|
---|
1598 |
|
---|
1599 | /* Fetch the descriptor. */
|
---|
1600 | IEMSELDESC Desc;
|
---|
1601 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uSel);
|
---|
1602 | if (rcStrict != VINF_SUCCESS)
|
---|
1603 | return rcStrict;
|
---|
1604 |
|
---|
1605 | /* Check GPs first. */
|
---|
1606 | if (!Desc.Legacy.Gen.u1DescType)
|
---|
1607 | {
|
---|
1608 | Log(("load sreg %d - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
|
---|
1609 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
1610 | }
|
---|
1611 | if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
|
---|
1612 | {
|
---|
1613 | if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
1614 | || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
1615 | {
|
---|
1616 | Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
|
---|
1617 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
1618 | }
|
---|
1619 | if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
1620 | || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
1621 | {
|
---|
1622 | Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
|
---|
1623 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
1624 | }
|
---|
1625 | if ((uSel & X86_SEL_RPL) != pIemCpu->uCpl)
|
---|
1626 | {
|
---|
1627 | Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pIemCpu->uCpl));
|
---|
1628 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
1629 | }
|
---|
1630 | if (Desc.Legacy.Gen.u2Dpl != pIemCpu->uCpl)
|
---|
1631 | {
|
---|
1632 | Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
|
---|
1633 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
1634 | }
|
---|
1635 | }
|
---|
1636 | else
|
---|
1637 | {
|
---|
1638 | if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
1639 | {
|
---|
1640 | Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
|
---|
1641 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
1642 | }
|
---|
1643 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
1644 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
1645 | {
|
---|
1646 | #if 0 /* this is what intel says. */
|
---|
1647 | if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
|
---|
1648 | && pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
1649 | {
|
---|
1650 | Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
|
---|
1651 | iSegReg, uSel, (uSel & X86_SEL_RPL), pIemCpu->uCpl, Desc.Legacy.Gen.u2Dpl));
|
---|
1652 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
1653 | }
|
---|
1654 | #else /* this is what makes more sense. */
|
---|
1655 | if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
|
---|
1656 | {
|
---|
1657 | Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
|
---|
1658 | iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
|
---|
1659 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
1660 | }
|
---|
1661 | if (pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
1662 | {
|
---|
1663 | Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
|
---|
1664 | iSegReg, uSel, pIemCpu->uCpl, Desc.Legacy.Gen.u2Dpl));
|
---|
1665 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
|
---|
1666 | }
|
---|
1667 | #endif
|
---|
1668 | }
|
---|
1669 | }
|
---|
1670 |
|
---|
1671 | /* Is it there? */
|
---|
1672 | if (!Desc.Legacy.Gen.u1Present)
|
---|
1673 | {
|
---|
1674 | Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
|
---|
1675 | return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel);
|
---|
1676 | }
|
---|
1677 |
|
---|
1678 | /* The the base and limit. */
|
---|
1679 | uint64_t u64Base;
|
---|
1680 | uint32_t cbLimit = X86DESC_LIMIT(Desc.Legacy);
|
---|
1681 | if (Desc.Legacy.Gen.u1Granularity)
|
---|
1682 | cbLimit = (cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
|
---|
1683 |
|
---|
1684 | if ( pIemCpu->enmCpuMode == IEMMODE_64BIT
|
---|
1685 | && iSegReg < X86_SREG_FS)
|
---|
1686 | u64Base = 0;
|
---|
1687 | else
|
---|
1688 | u64Base = X86DESC_BASE(Desc.Legacy);
|
---|
1689 |
|
---|
1690 | /*
|
---|
1691 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
1692 | * committing the result into the registers.
|
---|
1693 | */
|
---|
1694 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1695 | {
|
---|
1696 | rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uSel);
|
---|
1697 | if (rcStrict != VINF_SUCCESS)
|
---|
1698 | return rcStrict;
|
---|
1699 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1700 | }
|
---|
1701 |
|
---|
1702 | /* commit */
|
---|
1703 | *pSel = uSel;
|
---|
1704 | pHid->Attr.u = (Desc.Legacy.u >> (16+16+8)) & UINT32_C(0xf0ff); /** @todo do we have a define for 0xf0ff? */
|
---|
1705 | pHid->u32Limit = cbLimit;
|
---|
1706 | pHid->u64Base = u64Base;
|
---|
1707 |
|
---|
1708 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
1709 | * mode. */
|
---|
1710 |
|
---|
1711 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1712 | return VINF_SUCCESS;
|
---|
1713 | }
|
---|
1714 |
|
---|
1715 |
|
---|
1716 | /**
|
---|
1717 | * Implements 'mov SReg, r/m'.
|
---|
1718 | *
|
---|
1719 | * @param iSegReg The segment register number (valid).
|
---|
1720 | * @param uSel The new selector value.
|
---|
1721 | */
|
---|
1722 | IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
|
---|
1723 | {
|
---|
1724 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
1725 | if (rcStrict == VINF_SUCCESS)
|
---|
1726 | {
|
---|
1727 | if (iSegReg == X86_SREG_SS)
|
---|
1728 | {
|
---|
1729 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1730 | EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
|
---|
1731 | }
|
---|
1732 | }
|
---|
1733 | return rcStrict;
|
---|
1734 | }
|
---|
1735 |
|
---|
1736 |
|
---|
1737 | /**
|
---|
1738 | * Implements 'pop SReg'.
|
---|
1739 | *
|
---|
1740 | * @param iSegReg The segment register number (valid).
|
---|
1741 | * @param enmEffOpSize The efficient operand size (valid).
|
---|
1742 | */
|
---|
1743 | IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
|
---|
1744 | {
|
---|
1745 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1746 | VBOXSTRICTRC rcStrict;
|
---|
1747 |
|
---|
1748 | /*
|
---|
1749 | * Read the selector off the stack and join paths with mov ss, reg.
|
---|
1750 | */
|
---|
1751 | RTUINT64U TmpRsp;
|
---|
1752 | TmpRsp.u = pCtx->rsp;
|
---|
1753 | switch (enmEffOpSize)
|
---|
1754 | {
|
---|
1755 | case IEMMODE_16BIT:
|
---|
1756 | {
|
---|
1757 | uint16_t uSel;
|
---|
1758 | rcStrict = iemMemStackPopU16Ex(pIemCpu, &uSel, &TmpRsp);
|
---|
1759 | if (rcStrict == VINF_SUCCESS)
|
---|
1760 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
1761 | break;
|
---|
1762 | }
|
---|
1763 |
|
---|
1764 | case IEMMODE_32BIT:
|
---|
1765 | {
|
---|
1766 | uint32_t u32Value;
|
---|
1767 | rcStrict = iemMemStackPopU32Ex(pIemCpu, &u32Value, &TmpRsp);
|
---|
1768 | if (rcStrict == VINF_SUCCESS)
|
---|
1769 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
|
---|
1770 | break;
|
---|
1771 | }
|
---|
1772 |
|
---|
1773 | case IEMMODE_64BIT:
|
---|
1774 | {
|
---|
1775 | uint64_t u64Value;
|
---|
1776 | rcStrict = iemMemStackPopU64Ex(pIemCpu, &u64Value, &TmpRsp);
|
---|
1777 | if (rcStrict == VINF_SUCCESS)
|
---|
1778 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
|
---|
1779 | break;
|
---|
1780 | }
|
---|
1781 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
1782 | }
|
---|
1783 |
|
---|
1784 | /*
|
---|
1785 | * Commit the stack on success.
|
---|
1786 | */
|
---|
1787 | if (rcStrict == VINF_SUCCESS)
|
---|
1788 | {
|
---|
1789 | pCtx->rsp = TmpRsp.u;
|
---|
1790 | if (iSegReg == X86_SREG_SS)
|
---|
1791 | EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
|
---|
1792 | }
|
---|
1793 | return rcStrict;
|
---|
1794 | }
|
---|
1795 |
|
---|
1796 |
|
---|
1797 | /**
|
---|
1798 | * Implements lgs, lfs, les, lds & lss.
|
---|
1799 | */
|
---|
1800 | IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
|
---|
1801 | uint16_t, uSel,
|
---|
1802 | uint64_t, offSeg,
|
---|
1803 | uint8_t, iSegReg,
|
---|
1804 | uint8_t, iGReg,
|
---|
1805 | IEMMODE, enmEffOpSize)
|
---|
1806 | {
|
---|
1807 | /*PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);*/
|
---|
1808 | VBOXSTRICTRC rcStrict;
|
---|
1809 |
|
---|
1810 | /*
|
---|
1811 | * Use iemCImpl_LoadSReg to do the tricky segment register loading.
|
---|
1812 | */
|
---|
1813 | /** @todo verify and test that mov, pop and lXs works the segment
|
---|
1814 | * register loading in the exact same way. */
|
---|
1815 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
1816 | if (rcStrict == VINF_SUCCESS)
|
---|
1817 | {
|
---|
1818 | switch (enmEffOpSize)
|
---|
1819 | {
|
---|
1820 | case IEMMODE_16BIT:
|
---|
1821 | *(uint16_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
|
---|
1822 | break;
|
---|
1823 | case IEMMODE_32BIT:
|
---|
1824 | *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
|
---|
1825 | break;
|
---|
1826 | case IEMMODE_64BIT:
|
---|
1827 | *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
|
---|
1828 | break;
|
---|
1829 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
1830 | }
|
---|
1831 | }
|
---|
1832 |
|
---|
1833 | return rcStrict;
|
---|
1834 | }
|
---|
1835 |
|
---|
1836 |
|
---|
1837 | /**
|
---|
1838 | * Implements lgdt.
|
---|
1839 | *
|
---|
1840 | * @param iEffSeg The segment of the new ldtr contents
|
---|
1841 | * @param GCPtrEffSrc The address of the new ldtr contents.
|
---|
1842 | * @param enmEffOpSize The effective operand size.
|
---|
1843 | */
|
---|
1844 | IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
|
---|
1845 | {
|
---|
1846 | if (pIemCpu->uCpl != 0)
|
---|
1847 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1848 | Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
|
---|
1849 |
|
---|
1850 | /*
|
---|
1851 | * Fetch the limit and base address.
|
---|
1852 | */
|
---|
1853 | uint16_t cbLimit;
|
---|
1854 | RTGCPTR GCPtrBase;
|
---|
1855 | VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pIemCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
|
---|
1856 | if (rcStrict == VINF_SUCCESS)
|
---|
1857 | {
|
---|
1858 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1859 | rcStrict = CPUMSetGuestGDTR(IEMCPU_TO_VMCPU(pIemCpu), GCPtrBase, cbLimit);
|
---|
1860 | else
|
---|
1861 | {
|
---|
1862 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1863 | pCtx->gdtr.cbGdt = cbLimit;
|
---|
1864 | pCtx->gdtr.pGdt = GCPtrBase;
|
---|
1865 | }
|
---|
1866 | if (rcStrict == VINF_SUCCESS)
|
---|
1867 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1868 | }
|
---|
1869 | return rcStrict;
|
---|
1870 | }
|
---|
1871 |
|
---|
1872 |
|
---|
1873 | /**
|
---|
1874 | * Implements lidt.
|
---|
1875 | *
|
---|
1876 | * @param iEffSeg The segment of the new ldtr contents
|
---|
1877 | * @param GCPtrEffSrc The address of the new ldtr contents.
|
---|
1878 | * @param enmEffOpSize The effective operand size.
|
---|
1879 | */
|
---|
1880 | IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
|
---|
1881 | {
|
---|
1882 | if (pIemCpu->uCpl != 0)
|
---|
1883 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1884 | Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
|
---|
1885 |
|
---|
1886 | /*
|
---|
1887 | * Fetch the limit and base address.
|
---|
1888 | */
|
---|
1889 | uint16_t cbLimit;
|
---|
1890 | RTGCPTR GCPtrBase;
|
---|
1891 | VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pIemCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
|
---|
1892 | if (rcStrict == VINF_SUCCESS)
|
---|
1893 | {
|
---|
1894 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1895 | rcStrict = CPUMSetGuestIDTR(IEMCPU_TO_VMCPU(pIemCpu), GCPtrBase, cbLimit);
|
---|
1896 | else
|
---|
1897 | {
|
---|
1898 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1899 | pCtx->idtr.cbIdt = cbLimit;
|
---|
1900 | pCtx->idtr.pIdt = GCPtrBase;
|
---|
1901 | }
|
---|
1902 | if (rcStrict == VINF_SUCCESS)
|
---|
1903 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1904 | }
|
---|
1905 | return rcStrict;
|
---|
1906 | }
|
---|
1907 |
|
---|
1908 |
|
---|
1909 | /**
|
---|
1910 | * Implements lldt.
|
---|
1911 | *
|
---|
1912 | * @param uNewLdt The new LDT selector value.
|
---|
1913 | */
|
---|
1914 | IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
|
---|
1915 | {
|
---|
1916 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1917 |
|
---|
1918 | /*
|
---|
1919 | * Check preconditions.
|
---|
1920 | */
|
---|
1921 | if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
1922 | {
|
---|
1923 | Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
|
---|
1924 | return iemRaiseUndefinedOpcode(pIemCpu);
|
---|
1925 | }
|
---|
1926 | if (pIemCpu->uCpl != 0)
|
---|
1927 | {
|
---|
1928 | Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pIemCpu->uCpl));
|
---|
1929 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
1930 | }
|
---|
1931 | if (uNewLdt & X86_SEL_LDT)
|
---|
1932 | {
|
---|
1933 | Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
|
---|
1934 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewLdt);
|
---|
1935 | }
|
---|
1936 |
|
---|
1937 | /*
|
---|
1938 | * Now, loading a NULL selector is easy.
|
---|
1939 | */
|
---|
1940 | if ((uNewLdt & X86_SEL_MASK) == 0)
|
---|
1941 | {
|
---|
1942 | Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
|
---|
1943 | /** @todo check if the actual value is loaded or if it's always 0. */
|
---|
1944 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1945 | CPUMSetGuestLDTR(IEMCPU_TO_VMCPU(pIemCpu), 0);
|
---|
1946 | else
|
---|
1947 | pCtx->ldtr = 0;
|
---|
1948 | pCtx->ldtrHid.Attr.u = 0;
|
---|
1949 | pCtx->ldtrHid.u64Base = 0;
|
---|
1950 | pCtx->ldtrHid.u32Limit = 0;
|
---|
1951 |
|
---|
1952 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
1953 | return VINF_SUCCESS;
|
---|
1954 | }
|
---|
1955 |
|
---|
1956 | /*
|
---|
1957 | * Read the descriptor.
|
---|
1958 | */
|
---|
1959 | IEMSELDESC Desc;
|
---|
1960 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uNewLdt);
|
---|
1961 | if (rcStrict != VINF_SUCCESS)
|
---|
1962 | return rcStrict;
|
---|
1963 |
|
---|
1964 | /* Check GPs first. */
|
---|
1965 | if (Desc.Legacy.Gen.u1DescType)
|
---|
1966 | {
|
---|
1967 | Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
|
---|
1968 | return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK);
|
---|
1969 | }
|
---|
1970 | if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
|
---|
1971 | {
|
---|
1972 | Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
|
---|
1973 | return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK);
|
---|
1974 | }
|
---|
1975 | uint64_t u64Base;
|
---|
1976 | if (!IEM_IS_LONG_MODE(pIemCpu))
|
---|
1977 | u64Base = X86DESC_BASE(Desc.Legacy);
|
---|
1978 | else
|
---|
1979 | {
|
---|
1980 | if (Desc.Long.Gen.u5Zeros)
|
---|
1981 | {
|
---|
1982 | Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
|
---|
1983 | return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK);
|
---|
1984 | }
|
---|
1985 |
|
---|
1986 | u64Base = X86DESC64_BASE(Desc.Long);
|
---|
1987 | if (!IEM_IS_CANONICAL(u64Base))
|
---|
1988 | {
|
---|
1989 | Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
|
---|
1990 | return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK);
|
---|
1991 | }
|
---|
1992 | }
|
---|
1993 |
|
---|
1994 | /* NP */
|
---|
1995 | if (!Desc.Legacy.Gen.u1Present)
|
---|
1996 | {
|
---|
1997 | Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
|
---|
1998 | return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewLdt);
|
---|
1999 | }
|
---|
2000 |
|
---|
2001 | /*
|
---|
2002 | * It checks out alright, update the registers.
|
---|
2003 | */
|
---|
2004 | /** @todo check if the actual value is loaded or if the RPL is dropped */
|
---|
2005 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2006 | CPUMSetGuestLDTR(IEMCPU_TO_VMCPU(pIemCpu), uNewLdt & X86_SEL_MASK);
|
---|
2007 | else
|
---|
2008 | pCtx->ldtr = uNewLdt & X86_SEL_MASK;
|
---|
2009 | pCtx->ldtrHid.Attr.u = X86DESC_GET_HID_ATTR(Desc.Legacy);
|
---|
2010 | pCtx->ldtrHid.u32Limit = X86DESC_LIMIT(Desc.Legacy);
|
---|
2011 | pCtx->ldtrHid.u64Base = u64Base;
|
---|
2012 |
|
---|
2013 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2014 | return VINF_SUCCESS;
|
---|
2015 | }
|
---|
2016 |
|
---|
2017 |
|
---|
2018 | /**
|
---|
2019 | * Implements lldt.
|
---|
2020 | *
|
---|
2021 | * @param uNewLdt The new LDT selector value.
|
---|
2022 | */
|
---|
2023 | IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
|
---|
2024 | {
|
---|
2025 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2026 |
|
---|
2027 | /*
|
---|
2028 | * Check preconditions.
|
---|
2029 | */
|
---|
2030 | if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
|
---|
2031 | {
|
---|
2032 | Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
|
---|
2033 | return iemRaiseUndefinedOpcode(pIemCpu);
|
---|
2034 | }
|
---|
2035 | if (pIemCpu->uCpl != 0)
|
---|
2036 | {
|
---|
2037 | Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pIemCpu->uCpl));
|
---|
2038 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2039 | }
|
---|
2040 | if (uNewTr & X86_SEL_LDT)
|
---|
2041 | {
|
---|
2042 | Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
|
---|
2043 | return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewTr);
|
---|
2044 | }
|
---|
2045 | if ((uNewTr & X86_SEL_MASK) == 0)
|
---|
2046 | {
|
---|
2047 | Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
|
---|
2048 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2049 | }
|
---|
2050 |
|
---|
2051 | /*
|
---|
2052 | * Read the descriptor.
|
---|
2053 | */
|
---|
2054 | IEMSELDESC Desc;
|
---|
2055 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uNewTr);
|
---|
2056 | if (rcStrict != VINF_SUCCESS)
|
---|
2057 | return rcStrict;
|
---|
2058 |
|
---|
2059 | /* Check GPs first. */
|
---|
2060 | if (Desc.Legacy.Gen.u1DescType)
|
---|
2061 | {
|
---|
2062 | Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
|
---|
2063 | return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK);
|
---|
2064 | }
|
---|
2065 | if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
|
---|
2066 | && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
2067 | || IEM_IS_LONG_MODE(pIemCpu)) )
|
---|
2068 | {
|
---|
2069 | Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
|
---|
2070 | return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK);
|
---|
2071 | }
|
---|
2072 | uint64_t u64Base;
|
---|
2073 | if (!IEM_IS_LONG_MODE(pIemCpu))
|
---|
2074 | u64Base = X86DESC_BASE(Desc.Legacy);
|
---|
2075 | else
|
---|
2076 | {
|
---|
2077 | if (Desc.Long.Gen.u5Zeros)
|
---|
2078 | {
|
---|
2079 | Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
|
---|
2080 | return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK);
|
---|
2081 | }
|
---|
2082 |
|
---|
2083 | u64Base = X86DESC64_BASE(Desc.Long);
|
---|
2084 | if (!IEM_IS_CANONICAL(u64Base))
|
---|
2085 | {
|
---|
2086 | Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
|
---|
2087 | return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK);
|
---|
2088 | }
|
---|
2089 | }
|
---|
2090 |
|
---|
2091 | /* NP */
|
---|
2092 | if (!Desc.Legacy.Gen.u1Present)
|
---|
2093 | {
|
---|
2094 | Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
|
---|
2095 | return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewTr);
|
---|
2096 | }
|
---|
2097 |
|
---|
2098 | /*
|
---|
2099 | * Set it busy.
|
---|
2100 | * Note! Intel says this should lock down the whole descriptor, but we'll
|
---|
2101 | * restrict our selves to 32-bit for now due to lack of inline
|
---|
2102 | * assembly and such.
|
---|
2103 | */
|
---|
2104 | void *pvDesc;
|
---|
2105 | rcStrict = iemMemMap(pIemCpu, &pvDesc, 8, UINT8_MAX, pCtx->gdtr.pGdt, IEM_ACCESS_DATA_RW);
|
---|
2106 | if (rcStrict != VINF_SUCCESS)
|
---|
2107 | return rcStrict;
|
---|
2108 | switch ((uintptr_t)pvDesc & 3)
|
---|
2109 | {
|
---|
2110 | case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
|
---|
2111 | case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
|
---|
2112 | case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 16); break;
|
---|
2113 | case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 8); break;
|
---|
2114 | }
|
---|
2115 | rcStrict = iemMemMap(pIemCpu, &pvDesc, 8, UINT8_MAX, pCtx->gdtr.pGdt, IEM_ACCESS_DATA_RW);
|
---|
2116 | if (rcStrict != VINF_SUCCESS)
|
---|
2117 | return rcStrict;
|
---|
2118 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
2119 |
|
---|
2120 | /*
|
---|
2121 | * It checks out alright, update the registers.
|
---|
2122 | */
|
---|
2123 | /** @todo check if the actual value is loaded or if the RPL is dropped */
|
---|
2124 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2125 | CPUMSetGuestTR(IEMCPU_TO_VMCPU(pIemCpu), uNewTr & X86_SEL_MASK);
|
---|
2126 | else
|
---|
2127 | pCtx->tr = uNewTr & X86_SEL_MASK;
|
---|
2128 | pCtx->trHid.Attr.u = X86DESC_GET_HID_ATTR(Desc.Legacy);
|
---|
2129 | pCtx->trHid.u32Limit = X86DESC_LIMIT(Desc.Legacy);
|
---|
2130 | pCtx->trHid.u64Base = u64Base;
|
---|
2131 |
|
---|
2132 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2133 | return VINF_SUCCESS;
|
---|
2134 | }
|
---|
2135 |
|
---|
2136 |
|
---|
2137 | /**
|
---|
2138 | * Implements mov GReg,CRx.
|
---|
2139 | *
|
---|
2140 | * @param iGReg The general register to store the CRx value in.
|
---|
2141 | * @param iCrReg The CRx register to read (valid).
|
---|
2142 | */
|
---|
2143 | IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
|
---|
2144 | {
|
---|
2145 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2146 | if (pIemCpu->uCpl != 0)
|
---|
2147 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2148 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
2149 |
|
---|
2150 | /* read it */
|
---|
2151 | uint64_t crX;
|
---|
2152 | switch (iCrReg)
|
---|
2153 | {
|
---|
2154 | case 0: crX = pCtx->cr0; break;
|
---|
2155 | case 2: crX = pCtx->cr2; break;
|
---|
2156 | case 3: crX = pCtx->cr3; break;
|
---|
2157 | case 4: crX = pCtx->cr4; break;
|
---|
2158 | case 8:
|
---|
2159 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2160 | AssertFailedReturn(VERR_NOT_IMPLEMENTED); /** @todo implement CR8 reading and writing. */
|
---|
2161 | else
|
---|
2162 | crX = 0xff;
|
---|
2163 | break;
|
---|
2164 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
|
---|
2165 | }
|
---|
2166 |
|
---|
2167 | /* store it */
|
---|
2168 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
2169 | *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = crX;
|
---|
2170 | else
|
---|
2171 | *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = (uint32_t)crX;
|
---|
2172 |
|
---|
2173 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2174 | return VINF_SUCCESS;
|
---|
2175 | }
|
---|
2176 |
|
---|
2177 |
|
---|
2178 | /**
|
---|
2179 | * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
|
---|
2180 | *
|
---|
2181 | * @param iCrReg The CRx register to write (valid).
|
---|
2182 | * @param uNewCrX The new value.
|
---|
2183 | */
|
---|
2184 | IEM_CIMPL_DEF_2(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX)
|
---|
2185 | {
|
---|
2186 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2187 | PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
|
---|
2188 | VBOXSTRICTRC rcStrict;
|
---|
2189 | int rc;
|
---|
2190 |
|
---|
2191 | /*
|
---|
2192 | * Try store it.
|
---|
2193 | * Unfortunately, CPUM only does a tiny bit of the work.
|
---|
2194 | */
|
---|
2195 | switch (iCrReg)
|
---|
2196 | {
|
---|
2197 | case 0:
|
---|
2198 | {
|
---|
2199 | /*
|
---|
2200 | * Perform checks.
|
---|
2201 | */
|
---|
2202 | uint64_t const uOldCrX = pCtx->cr0;
|
---|
2203 | uNewCrX |= X86_CR0_ET; /* hardcoded */
|
---|
2204 |
|
---|
2205 | /* Check for reserved bits. */
|
---|
2206 | uint32_t const fValid = X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS
|
---|
2207 | | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM
|
---|
2208 | | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG;
|
---|
2209 | if (uNewCrX & ~(uint64_t)fValid)
|
---|
2210 | {
|
---|
2211 | Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
|
---|
2212 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2213 | }
|
---|
2214 |
|
---|
2215 | /* Check for invalid combinations. */
|
---|
2216 | if ( (uNewCrX & X86_CR0_PG)
|
---|
2217 | && !(uNewCrX & X86_CR0_PE) )
|
---|
2218 | {
|
---|
2219 | Log(("Trying to set CR0.PG without CR0.PE\n"));
|
---|
2220 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2221 | }
|
---|
2222 |
|
---|
2223 | if ( !(uNewCrX & X86_CR0_CD)
|
---|
2224 | && (uNewCrX & X86_CR0_NW) )
|
---|
2225 | {
|
---|
2226 | Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
|
---|
2227 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2228 | }
|
---|
2229 |
|
---|
2230 | /* Long mode consistency checks. */
|
---|
2231 | if ( (uNewCrX & X86_CR0_PG)
|
---|
2232 | && !(uOldCrX & X86_CR0_PG)
|
---|
2233 | && (pCtx->msrEFER & MSR_K6_EFER_LME) )
|
---|
2234 | {
|
---|
2235 | if (!(pCtx->cr4 & X86_CR4_PAE))
|
---|
2236 | {
|
---|
2237 | Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
|
---|
2238 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2239 | }
|
---|
2240 | if (pCtx->csHid.Attr.n.u1Long)
|
---|
2241 | {
|
---|
2242 | Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
|
---|
2243 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2244 | }
|
---|
2245 | }
|
---|
2246 |
|
---|
2247 | /** @todo check reserved PDPTR bits as AMD states. */
|
---|
2248 |
|
---|
2249 | /*
|
---|
2250 | * Change CR0.
|
---|
2251 | */
|
---|
2252 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2253 | {
|
---|
2254 | rc = CPUMSetGuestCR0(pVCpu, uNewCrX);
|
---|
2255 | AssertRCSuccessReturn(rc, RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_3);
|
---|
2256 | }
|
---|
2257 | else
|
---|
2258 | pCtx->cr0 = uNewCrX;
|
---|
2259 | Assert(pCtx->cr0 == uNewCrX);
|
---|
2260 |
|
---|
2261 | /*
|
---|
2262 | * Change EFER.LMA if entering or leaving long mode.
|
---|
2263 | */
|
---|
2264 | if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
|
---|
2265 | && (pCtx->msrEFER & MSR_K6_EFER_LME) )
|
---|
2266 | {
|
---|
2267 | uint64_t NewEFER = pCtx->msrEFER;
|
---|
2268 | if (uNewCrX & X86_CR0_PG)
|
---|
2269 | NewEFER |= MSR_K6_EFER_LME;
|
---|
2270 | else
|
---|
2271 | NewEFER &= ~MSR_K6_EFER_LME;
|
---|
2272 |
|
---|
2273 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2274 | CPUMSetGuestEFER(pVCpu, NewEFER);
|
---|
2275 | else
|
---|
2276 | pCtx->msrEFER = NewEFER;
|
---|
2277 | Assert(pCtx->msrEFER == NewEFER);
|
---|
2278 | }
|
---|
2279 |
|
---|
2280 | /*
|
---|
2281 | * Inform PGM.
|
---|
2282 | */
|
---|
2283 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2284 | {
|
---|
2285 | if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
|
---|
2286 | != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
|
---|
2287 | {
|
---|
2288 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
|
---|
2289 | AssertRCReturn(rc, rc);
|
---|
2290 | /* ignore informational status codes */
|
---|
2291 | }
|
---|
2292 | rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
2293 | /** @todo Status code management. */
|
---|
2294 | }
|
---|
2295 | else
|
---|
2296 | rcStrict = VINF_SUCCESS;
|
---|
2297 | break;
|
---|
2298 | }
|
---|
2299 |
|
---|
2300 | /*
|
---|
2301 | * CR2 can be changed without any restrictions.
|
---|
2302 | */
|
---|
2303 | case 2:
|
---|
2304 | pCtx->cr2 = uNewCrX;
|
---|
2305 | rcStrict = VINF_SUCCESS;
|
---|
2306 | break;
|
---|
2307 |
|
---|
2308 | /*
|
---|
2309 | * CR3 is relatively simple, although AMD and Intel have different
|
---|
2310 | * accounts of how setting reserved bits are handled. We take intel's
|
---|
2311 | * word for the lower bits and AMD's for the high bits (63:52).
|
---|
2312 | */
|
---|
2313 | /** @todo Testcase: Setting reserved bits in CR3, especially before
|
---|
2314 | * enabling paging. */
|
---|
2315 | case 3:
|
---|
2316 | {
|
---|
2317 | /* check / mask the value. */
|
---|
2318 | if (uNewCrX & UINT64_C(0xfff0000000000000))
|
---|
2319 | {
|
---|
2320 | Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
|
---|
2321 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2322 | }
|
---|
2323 |
|
---|
2324 | uint64_t fValid;
|
---|
2325 | if ( (pCtx->cr4 & X86_CR4_PAE)
|
---|
2326 | && (pCtx->msrEFER & MSR_K6_EFER_LME))
|
---|
2327 | fValid = UINT64_C(0x000ffffffffff014);
|
---|
2328 | else if (pCtx->cr4 & X86_CR4_PAE)
|
---|
2329 | fValid = UINT64_C(0xfffffff4);
|
---|
2330 | else
|
---|
2331 | fValid = UINT64_C(0xfffff014);
|
---|
2332 | if (uNewCrX & ~fValid)
|
---|
2333 | {
|
---|
2334 | Log(("Automatically clearing reserved bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
|
---|
2335 | uNewCrX, uNewCrX & ~fValid));
|
---|
2336 | uNewCrX &= fValid;
|
---|
2337 | }
|
---|
2338 |
|
---|
2339 | /** @todo If we're in PAE mode we should check the PDPTRs for
|
---|
2340 | * invalid bits. */
|
---|
2341 |
|
---|
2342 | /* Make the change. */
|
---|
2343 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2344 | {
|
---|
2345 | rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
|
---|
2346 | AssertRCSuccessReturn(rc, rc);
|
---|
2347 | }
|
---|
2348 | else
|
---|
2349 | pCtx->cr3 = uNewCrX;
|
---|
2350 |
|
---|
2351 | /* Inform PGM. */
|
---|
2352 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2353 | {
|
---|
2354 | if (pCtx->cr0 & X86_CR0_PG)
|
---|
2355 | {
|
---|
2356 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, !(pCtx->cr3 & X86_CR4_PGE));
|
---|
2357 | AssertRCReturn(rc, rc);
|
---|
2358 | /* ignore informational status codes */
|
---|
2359 | /** @todo status code management */
|
---|
2360 | }
|
---|
2361 | }
|
---|
2362 | rcStrict = VINF_SUCCESS;
|
---|
2363 | break;
|
---|
2364 | }
|
---|
2365 |
|
---|
2366 | /*
|
---|
2367 | * CR4 is a bit more tedious as there are bits which cannot be cleared
|
---|
2368 | * under some circumstances and such.
|
---|
2369 | */
|
---|
2370 | case 4:
|
---|
2371 | {
|
---|
2372 | uint64_t const uOldCrX = pCtx->cr0;
|
---|
2373 |
|
---|
2374 | /* reserved bits */
|
---|
2375 | uint32_t fValid = X86_CR4_VME | X86_CR4_PVI
|
---|
2376 | | X86_CR4_TSD | X86_CR4_DE
|
---|
2377 | | X86_CR4_PSE | X86_CR4_PAE
|
---|
2378 | | X86_CR4_MCE | X86_CR4_PGE
|
---|
2379 | | X86_CR4_PCE | X86_CR4_OSFSXR
|
---|
2380 | | X86_CR4_OSXMMEEXCPT;
|
---|
2381 | //if (xxx)
|
---|
2382 | // fValid |= X86_CR4_VMXE;
|
---|
2383 | //if (xxx)
|
---|
2384 | // fValid |= X86_CR4_OSXSAVE;
|
---|
2385 | if (uNewCrX & ~(uint64_t)fValid)
|
---|
2386 | {
|
---|
2387 | Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
|
---|
2388 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2389 | }
|
---|
2390 |
|
---|
2391 | /* long mode checks. */
|
---|
2392 | if ( (uOldCrX & X86_CR4_PAE)
|
---|
2393 | && !(uNewCrX & X86_CR4_PAE)
|
---|
2394 | && (pCtx->msrEFER & MSR_K6_EFER_LMA) )
|
---|
2395 | {
|
---|
2396 | Log(("Trying to set clear CR4.PAE while long mode is active\n"));
|
---|
2397 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2398 | }
|
---|
2399 |
|
---|
2400 |
|
---|
2401 | /*
|
---|
2402 | * Change it.
|
---|
2403 | */
|
---|
2404 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2405 | {
|
---|
2406 | rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
|
---|
2407 | AssertRCSuccessReturn(rc, rc);
|
---|
2408 | }
|
---|
2409 | else
|
---|
2410 | pCtx->cr4 = uNewCrX;
|
---|
2411 | Assert(pCtx->cr4 == uNewCrX);
|
---|
2412 |
|
---|
2413 | /*
|
---|
2414 | * Notify SELM and PGM.
|
---|
2415 | */
|
---|
2416 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2417 | {
|
---|
2418 | /* SELM - VME may change things wrt to the TSS shadowing. */
|
---|
2419 | if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
|
---|
2420 | VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
|
---|
2421 |
|
---|
2422 | /* PGM - flushing and mode. */
|
---|
2423 | if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
|
---|
2424 | != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
|
---|
2425 | {
|
---|
2426 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
|
---|
2427 | AssertRCReturn(rc, rc);
|
---|
2428 | /* ignore informational status codes */
|
---|
2429 | }
|
---|
2430 | rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
2431 | /** @todo Status code management. */
|
---|
2432 | }
|
---|
2433 | else
|
---|
2434 | rcStrict = VINF_SUCCESS;
|
---|
2435 | break;
|
---|
2436 | }
|
---|
2437 |
|
---|
2438 | /*
|
---|
2439 | * CR8 maps to the APIC TPR.
|
---|
2440 | */
|
---|
2441 | case 8:
|
---|
2442 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2443 | AssertFailedReturn(VERR_NOT_IMPLEMENTED); /** @todo implement CR8 reading and writing. */
|
---|
2444 | else
|
---|
2445 | rcStrict = VINF_SUCCESS;
|
---|
2446 | break;
|
---|
2447 |
|
---|
2448 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
|
---|
2449 | }
|
---|
2450 |
|
---|
2451 | /*
|
---|
2452 | * Advance the RIP on success.
|
---|
2453 | */
|
---|
2454 | /** @todo Status code management. */
|
---|
2455 | if (rcStrict == VINF_SUCCESS)
|
---|
2456 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2457 | return rcStrict;
|
---|
2458 |
|
---|
2459 | }
|
---|
2460 |
|
---|
2461 |
|
---|
2462 | /**
|
---|
2463 | * Implements mov CRx,GReg.
|
---|
2464 | *
|
---|
2465 | * @param iCrReg The CRx register to write (valid).
|
---|
2466 | * @param iGReg The general register to load the DRx value from.
|
---|
2467 | */
|
---|
2468 | IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
|
---|
2469 | {
|
---|
2470 | if (pIemCpu->uCpl != 0)
|
---|
2471 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2472 | Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
|
---|
2473 |
|
---|
2474 | /*
|
---|
2475 | * Read the new value from the source register and call common worker.
|
---|
2476 | */
|
---|
2477 | uint64_t uNewCrX;
|
---|
2478 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
2479 | uNewCrX = iemGRegFetchU64(pIemCpu, iGReg);
|
---|
2480 | else
|
---|
2481 | uNewCrX = iemGRegFetchU32(pIemCpu, iGReg);
|
---|
2482 | return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, iCrReg, uNewCrX);
|
---|
2483 | }
|
---|
2484 |
|
---|
2485 |
|
---|
2486 | /**
|
---|
2487 | * Implements 'LMSW r/m16'
|
---|
2488 | *
|
---|
2489 | * @param u16NewMsw The new value.
|
---|
2490 | */
|
---|
2491 | IEM_CIMPL_DEF_1(iemCImpl_lmsw, uint16_t, u16NewMsw)
|
---|
2492 | {
|
---|
2493 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2494 |
|
---|
2495 | if (pIemCpu->uCpl != 0)
|
---|
2496 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2497 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
2498 |
|
---|
2499 | /*
|
---|
2500 | * Compose the new CR0 value and call common worker.
|
---|
2501 | */
|
---|
2502 | uint64_t uNewCr0 = pCtx->cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
|
---|
2503 | uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
|
---|
2504 | return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0);
|
---|
2505 | }
|
---|
2506 |
|
---|
2507 |
|
---|
2508 | /**
|
---|
2509 | * Implements 'CLTS'.
|
---|
2510 | */
|
---|
2511 | IEM_CIMPL_DEF_0(iemCImpl_clts)
|
---|
2512 | {
|
---|
2513 | if (pIemCpu->uCpl != 0)
|
---|
2514 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2515 |
|
---|
2516 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2517 | uint64_t uNewCr0 = pCtx->cr0;
|
---|
2518 | uNewCr0 &= ~X86_CR0_TS;
|
---|
2519 | return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0);
|
---|
2520 | }
|
---|
2521 |
|
---|
2522 |
|
---|
2523 | /**
|
---|
2524 | * Implements mov GReg,DRx.
|
---|
2525 | *
|
---|
2526 | * @param iGReg The general register to store the DRx value in.
|
---|
2527 | * @param iDrReg The DRx register to read (0-7).
|
---|
2528 | */
|
---|
2529 | IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
|
---|
2530 | {
|
---|
2531 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2532 |
|
---|
2533 | /*
|
---|
2534 | * Check preconditions.
|
---|
2535 | */
|
---|
2536 |
|
---|
2537 | /* Raise GPs. */
|
---|
2538 | if (pIemCpu->uCpl != 0)
|
---|
2539 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2540 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
2541 |
|
---|
2542 | if ( (iDrReg == 4 || iDrReg == 5)
|
---|
2543 | && (pCtx->cr4 & X86_CR4_DE) )
|
---|
2544 | {
|
---|
2545 | Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
|
---|
2546 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2547 | }
|
---|
2548 |
|
---|
2549 | /* Raise #DB if general access detect is enabled. */
|
---|
2550 | if (pCtx->dr[7] & X86_DR7_GD)
|
---|
2551 | {
|
---|
2552 | Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
|
---|
2553 | return iemRaiseDebugException(pIemCpu);
|
---|
2554 | }
|
---|
2555 |
|
---|
2556 | /*
|
---|
2557 | * Read the debug register and store it in the specified general register.
|
---|
2558 | */
|
---|
2559 | uint64_t drX;
|
---|
2560 | switch (iDrReg)
|
---|
2561 | {
|
---|
2562 | case 0: drX = pCtx->dr[0]; break;
|
---|
2563 | case 1: drX = pCtx->dr[1]; break;
|
---|
2564 | case 2: drX = pCtx->dr[2]; break;
|
---|
2565 | case 3: drX = pCtx->dr[3]; break;
|
---|
2566 | case 6:
|
---|
2567 | case 4:
|
---|
2568 | drX = pCtx->dr[6];
|
---|
2569 | drX &= ~RT_BIT_32(12);
|
---|
2570 | drX |= UINT32_C(0xffff0ff0);
|
---|
2571 | break;
|
---|
2572 | case 7:
|
---|
2573 | case 5:
|
---|
2574 | drX = pCtx->dr[7];
|
---|
2575 | drX &= ~(RT_BIT_32(11) | RT_BIT_32(12) | RT_BIT_32(14) | RT_BIT_32(15));
|
---|
2576 | drX |= RT_BIT_32(10);
|
---|
2577 | break;
|
---|
2578 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
|
---|
2579 | }
|
---|
2580 |
|
---|
2581 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
2582 | *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = drX;
|
---|
2583 | else
|
---|
2584 | *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = (uint32_t)drX;
|
---|
2585 |
|
---|
2586 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2587 | return VINF_SUCCESS;
|
---|
2588 | }
|
---|
2589 |
|
---|
2590 |
|
---|
2591 | /**
|
---|
2592 | * Implements mov DRx,GReg.
|
---|
2593 | *
|
---|
2594 | * @param iDrReg The DRx register to write (valid).
|
---|
2595 | * @param iGReg The general register to load the DRx value from.
|
---|
2596 | */
|
---|
2597 | IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
|
---|
2598 | {
|
---|
2599 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2600 |
|
---|
2601 | /*
|
---|
2602 | * Check preconditions.
|
---|
2603 | */
|
---|
2604 | if (pIemCpu->uCpl != 0)
|
---|
2605 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2606 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
2607 |
|
---|
2608 | if ( (iDrReg == 4 || iDrReg == 5)
|
---|
2609 | && (pCtx->cr4 & X86_CR4_DE) )
|
---|
2610 | {
|
---|
2611 | Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
|
---|
2612 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2613 | }
|
---|
2614 |
|
---|
2615 | /* Raise #DB if general access detect is enabled. */
|
---|
2616 | /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
|
---|
2617 | * \#GP? */
|
---|
2618 | if (pCtx->dr[7] & X86_DR7_GD)
|
---|
2619 | {
|
---|
2620 | Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
|
---|
2621 | return iemRaiseDebugException(pIemCpu);
|
---|
2622 | }
|
---|
2623 |
|
---|
2624 | /*
|
---|
2625 | * Read the new value from the source register.
|
---|
2626 | */
|
---|
2627 | uint64_t uNewDrX;
|
---|
2628 | if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
|
---|
2629 | uNewDrX = iemGRegFetchU64(pIemCpu, iGReg);
|
---|
2630 | else
|
---|
2631 | uNewDrX = iemGRegFetchU32(pIemCpu, iGReg);
|
---|
2632 |
|
---|
2633 | /*
|
---|
2634 | * Adjust it.
|
---|
2635 | */
|
---|
2636 | switch (iDrReg)
|
---|
2637 | {
|
---|
2638 | case 0:
|
---|
2639 | case 1:
|
---|
2640 | case 2:
|
---|
2641 | case 3:
|
---|
2642 | /* nothing to adjust */
|
---|
2643 | break;
|
---|
2644 |
|
---|
2645 | case 6:
|
---|
2646 | case 4:
|
---|
2647 | if (uNewDrX & UINT64_C(0xffffffff00000000))
|
---|
2648 | {
|
---|
2649 | Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
|
---|
2650 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2651 | }
|
---|
2652 | uNewDrX &= ~RT_BIT_32(12);
|
---|
2653 | uNewDrX |= UINT32_C(0xffff0ff0);
|
---|
2654 | break;
|
---|
2655 |
|
---|
2656 | case 7:
|
---|
2657 | case 5:
|
---|
2658 | if (uNewDrX & UINT64_C(0xffffffff00000000))
|
---|
2659 | {
|
---|
2660 | Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
|
---|
2661 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2662 | }
|
---|
2663 | uNewDrX &= ~(RT_BIT_32(11) | RT_BIT_32(12) | RT_BIT_32(14) | RT_BIT_32(15));
|
---|
2664 | uNewDrX |= RT_BIT_32(10);
|
---|
2665 | break;
|
---|
2666 |
|
---|
2667 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2668 | }
|
---|
2669 |
|
---|
2670 | /*
|
---|
2671 | * Do the actual setting.
|
---|
2672 | */
|
---|
2673 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2674 | {
|
---|
2675 | int rc = CPUMSetGuestDRx(IEMCPU_TO_VMCPU(pIemCpu), iDrReg, uNewDrX);
|
---|
2676 | AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_INTERNAL_ERROR : rc);
|
---|
2677 | }
|
---|
2678 | else
|
---|
2679 | pCtx->dr[iDrReg] = uNewDrX;
|
---|
2680 |
|
---|
2681 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2682 | return VINF_SUCCESS;
|
---|
2683 | }
|
---|
2684 |
|
---|
2685 |
|
---|
2686 | /**
|
---|
2687 | * Implements RDTSC.
|
---|
2688 | */
|
---|
2689 | IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
|
---|
2690 | {
|
---|
2691 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2692 |
|
---|
2693 | /*
|
---|
2694 | * Check preconditions.
|
---|
2695 | */
|
---|
2696 | if (!IEM_IS_INTEL_CPUID_FEATURE_PRESENT_EDX(X86_CPUID_FEATURE_EDX_TSC))
|
---|
2697 | return iemRaiseUndefinedOpcode(pIemCpu);
|
---|
2698 |
|
---|
2699 | if ( (pCtx->cr4 & X86_CR4_TSD)
|
---|
2700 | && pIemCpu->uCpl != 0)
|
---|
2701 | {
|
---|
2702 | Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pIemCpu->uCpl));
|
---|
2703 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2704 | }
|
---|
2705 |
|
---|
2706 | /*
|
---|
2707 | * Do the job.
|
---|
2708 | */
|
---|
2709 | uint64_t uTicks = TMCpuTickGet(IEMCPU_TO_VMCPU(pIemCpu));
|
---|
2710 | pCtx->rax = (uint32_t)uTicks;
|
---|
2711 | pCtx->rdx = uTicks >> 32;
|
---|
2712 | #ifdef IEM_VERIFICATION_MODE
|
---|
2713 | pIemCpu->fIgnoreRaxRdx = true;
|
---|
2714 | #endif
|
---|
2715 |
|
---|
2716 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2717 | return VINF_SUCCESS;
|
---|
2718 | }
|
---|
2719 |
|
---|
2720 |
|
---|
2721 | /**
|
---|
2722 | * Implements 'IN eAX, port'.
|
---|
2723 | *
|
---|
2724 | * @param u16Port The source port.
|
---|
2725 | * @param cbReg The register size.
|
---|
2726 | */
|
---|
2727 | IEM_CIMPL_DEF_2(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg)
|
---|
2728 | {
|
---|
2729 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2730 |
|
---|
2731 | /*
|
---|
2732 | * CPL check
|
---|
2733 | */
|
---|
2734 | VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pIemCpu, pCtx, u16Port, cbReg);
|
---|
2735 | if (rcStrict != VINF_SUCCESS)
|
---|
2736 | return rcStrict;
|
---|
2737 |
|
---|
2738 | /*
|
---|
2739 | * Perform the I/O.
|
---|
2740 | */
|
---|
2741 | uint32_t u32Value;
|
---|
2742 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2743 | rcStrict = IOMIOPortRead(IEMCPU_TO_VM(pIemCpu), u16Port, &u32Value, cbReg);
|
---|
2744 | else
|
---|
2745 | rcStrict = iemVerifyFakeIOPortRead(pIemCpu, u16Port, &u32Value, cbReg);
|
---|
2746 | if (IOM_SUCCESS(rcStrict))
|
---|
2747 | {
|
---|
2748 | switch (cbReg)
|
---|
2749 | {
|
---|
2750 | case 1: pCtx->al = (uint8_t)u32Value; break;
|
---|
2751 | case 2: pCtx->ax = (uint16_t)u32Value; break;
|
---|
2752 | case 4: pCtx->rax = u32Value; break;
|
---|
2753 | default: AssertFailedReturn(VERR_INTERNAL_ERROR_3);
|
---|
2754 | }
|
---|
2755 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2756 | pIemCpu->cPotentialExits++;
|
---|
2757 | }
|
---|
2758 | /** @todo massage rcStrict. */
|
---|
2759 | return rcStrict;
|
---|
2760 | }
|
---|
2761 |
|
---|
2762 |
|
---|
2763 | /**
|
---|
2764 | * Implements 'IN eAX, DX'.
|
---|
2765 | *
|
---|
2766 | * @param cbReg The register size.
|
---|
2767 | */
|
---|
2768 | IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
|
---|
2769 | {
|
---|
2770 | return IEM_CIMPL_CALL_2(iemCImpl_in, pIemCpu->CTX_SUFF(pCtx)->dx, cbReg);
|
---|
2771 | }
|
---|
2772 |
|
---|
2773 |
|
---|
2774 | /**
|
---|
2775 | * Implements 'OUT port, eAX'.
|
---|
2776 | *
|
---|
2777 | * @param u16Port The destination port.
|
---|
2778 | * @param cbReg The register size.
|
---|
2779 | */
|
---|
2780 | IEM_CIMPL_DEF_2(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg)
|
---|
2781 | {
|
---|
2782 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2783 |
|
---|
2784 | /*
|
---|
2785 | * CPL check
|
---|
2786 | */
|
---|
2787 | if ( (pCtx->cr0 & X86_CR0_PE)
|
---|
2788 | && ( pIemCpu->uCpl > pCtx->eflags.Bits.u2IOPL
|
---|
2789 | || pCtx->eflags.Bits.u1VM) )
|
---|
2790 | {
|
---|
2791 | /** @todo I/O port permission bitmap check */
|
---|
2792 | AssertFailedReturn(VERR_NOT_IMPLEMENTED);
|
---|
2793 | }
|
---|
2794 |
|
---|
2795 | /*
|
---|
2796 | * Perform the I/O.
|
---|
2797 | */
|
---|
2798 | uint32_t u32Value;
|
---|
2799 | switch (cbReg)
|
---|
2800 | {
|
---|
2801 | case 1: u32Value = pCtx->al; break;
|
---|
2802 | case 2: u32Value = pCtx->ax; break;
|
---|
2803 | case 4: u32Value = pCtx->eax; break;
|
---|
2804 | default: AssertFailedReturn(VERR_INTERNAL_ERROR_3);
|
---|
2805 | }
|
---|
2806 | VBOXSTRICTRC rc;
|
---|
2807 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
2808 | rc = IOMIOPortWrite(IEMCPU_TO_VM(pIemCpu), u16Port, u32Value, cbReg);
|
---|
2809 | else
|
---|
2810 | rc = iemVerifyFakeIOPortWrite(pIemCpu, u16Port, u32Value, cbReg);
|
---|
2811 | if (IOM_SUCCESS(rc))
|
---|
2812 | {
|
---|
2813 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2814 | pIemCpu->cPotentialExits++;
|
---|
2815 | /** @todo massage rc. */
|
---|
2816 | }
|
---|
2817 | return rc;
|
---|
2818 | }
|
---|
2819 |
|
---|
2820 |
|
---|
2821 | /**
|
---|
2822 | * Implements 'OUT DX, eAX'.
|
---|
2823 | *
|
---|
2824 | * @param cbReg The register size.
|
---|
2825 | */
|
---|
2826 | IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
|
---|
2827 | {
|
---|
2828 | return IEM_CIMPL_CALL_2(iemCImpl_out, pIemCpu->CTX_SUFF(pCtx)->dx, cbReg);
|
---|
2829 | }
|
---|
2830 |
|
---|
2831 |
|
---|
2832 | /**
|
---|
2833 | * Implements 'CLI'.
|
---|
2834 | */
|
---|
2835 | IEM_CIMPL_DEF_0(iemCImpl_cli)
|
---|
2836 | {
|
---|
2837 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2838 |
|
---|
2839 | if (pCtx->cr0 & X86_CR0_PE)
|
---|
2840 | {
|
---|
2841 | uint8_t const uIopl = pCtx->eflags.Bits.u2IOPL;
|
---|
2842 | if (!pCtx->eflags.Bits.u1VM)
|
---|
2843 | {
|
---|
2844 | if (pIemCpu->uCpl <= uIopl)
|
---|
2845 | pCtx->eflags.Bits.u1IF = 0;
|
---|
2846 | else if ( pIemCpu->uCpl == 3
|
---|
2847 | && (pCtx->cr4 & X86_CR4_PVI) )
|
---|
2848 | pCtx->eflags.Bits.u1VIF = 0;
|
---|
2849 | else
|
---|
2850 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2851 | }
|
---|
2852 | /* V8086 */
|
---|
2853 | else if (uIopl == 3)
|
---|
2854 | pCtx->eflags.Bits.u1IF = 0;
|
---|
2855 | else if ( uIopl < 3
|
---|
2856 | && (pCtx->cr4 & X86_CR4_VME) )
|
---|
2857 | pCtx->eflags.Bits.u1VIF = 0;
|
---|
2858 | else
|
---|
2859 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2860 | }
|
---|
2861 | /* real mode */
|
---|
2862 | else
|
---|
2863 | pCtx->eflags.Bits.u1IF = 0;
|
---|
2864 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2865 | return VINF_SUCCESS;
|
---|
2866 | }
|
---|
2867 |
|
---|
2868 |
|
---|
2869 | /**
|
---|
2870 | * Implements 'STI'.
|
---|
2871 | */
|
---|
2872 | IEM_CIMPL_DEF_0(iemCImpl_sti)
|
---|
2873 | {
|
---|
2874 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2875 |
|
---|
2876 | if (pCtx->cr0 & X86_CR0_PE)
|
---|
2877 | {
|
---|
2878 | uint8_t const uIopl = pCtx->eflags.Bits.u2IOPL;
|
---|
2879 | if (!pCtx->eflags.Bits.u1VM)
|
---|
2880 | {
|
---|
2881 | if (pIemCpu->uCpl <= uIopl)
|
---|
2882 | pCtx->eflags.Bits.u1IF = 1;
|
---|
2883 | else if ( pIemCpu->uCpl == 3
|
---|
2884 | && (pCtx->cr4 & X86_CR4_PVI)
|
---|
2885 | && !pCtx->eflags.Bits.u1VIP )
|
---|
2886 | pCtx->eflags.Bits.u1VIF = 1;
|
---|
2887 | else
|
---|
2888 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2889 | }
|
---|
2890 | /* V8086 */
|
---|
2891 | else if (uIopl == 3)
|
---|
2892 | pCtx->eflags.Bits.u1IF = 1;
|
---|
2893 | else if ( uIopl < 3
|
---|
2894 | && (pCtx->cr4 & X86_CR4_VME)
|
---|
2895 | && !pCtx->eflags.Bits.u1VIP )
|
---|
2896 | pCtx->eflags.Bits.u1VIF = 1;
|
---|
2897 | else
|
---|
2898 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2899 | }
|
---|
2900 | /* real mode */
|
---|
2901 | else
|
---|
2902 | pCtx->eflags.Bits.u1IF = 1;
|
---|
2903 |
|
---|
2904 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2905 | EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
|
---|
2906 | return VINF_SUCCESS;
|
---|
2907 | }
|
---|
2908 |
|
---|
2909 |
|
---|
2910 | /**
|
---|
2911 | * Implements 'HLT'.
|
---|
2912 | */
|
---|
2913 | IEM_CIMPL_DEF_0(iemCImpl_hlt)
|
---|
2914 | {
|
---|
2915 | if (pIemCpu->uCpl != 0)
|
---|
2916 | return iemRaiseGeneralProtectionFault0(pIemCpu);
|
---|
2917 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2918 | return VINF_EM_HALT;
|
---|
2919 | }
|
---|
2920 |
|
---|
2921 |
|
---|
2922 | /**
|
---|
2923 | * Implements 'CPUID'.
|
---|
2924 | */
|
---|
2925 | IEM_CIMPL_DEF_0(iemCImpl_cpuid)
|
---|
2926 | {
|
---|
2927 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2928 |
|
---|
2929 | CPUMGetGuestCpuId(IEMCPU_TO_VMCPU(pIemCpu), pCtx->eax, &pCtx->eax, &pCtx->ebx, &pCtx->ecx, &pCtx->edx);
|
---|
2930 | pCtx->rax &= UINT32_C(0xffffffff);
|
---|
2931 | pCtx->rbx &= UINT32_C(0xffffffff);
|
---|
2932 | pCtx->rcx &= UINT32_C(0xffffffff);
|
---|
2933 | pCtx->rdx &= UINT32_C(0xffffffff);
|
---|
2934 |
|
---|
2935 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2936 | return VINF_SUCCESS;
|
---|
2937 | }
|
---|
2938 |
|
---|
2939 |
|
---|
2940 | /**
|
---|
2941 | * Implements 'AAD'.
|
---|
2942 | *
|
---|
2943 | * @param enmEffOpSize The effective operand size.
|
---|
2944 | */
|
---|
2945 | IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
|
---|
2946 | {
|
---|
2947 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2948 |
|
---|
2949 | uint16_t const ax = pCtx->ax;
|
---|
2950 | uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
|
---|
2951 | pCtx->ax = al;
|
---|
2952 | iemHlpUpdateArithEFlagsU8(pIemCpu, al,
|
---|
2953 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
|
---|
2954 | X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
|
---|
2955 |
|
---|
2956 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2957 | return VINF_SUCCESS;
|
---|
2958 | }
|
---|
2959 |
|
---|
2960 |
|
---|
2961 | /**
|
---|
2962 | * Implements 'AAM'.
|
---|
2963 | *
|
---|
2964 | * @param bImm The immediate operand. Cannot be 0.
|
---|
2965 | */
|
---|
2966 | IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
|
---|
2967 | {
|
---|
2968 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
2969 | Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
|
---|
2970 |
|
---|
2971 | uint16_t const ax = pCtx->ax;
|
---|
2972 | uint8_t const al = (uint8_t)ax % bImm;
|
---|
2973 | uint8_t const ah = (uint8_t)ax / bImm;
|
---|
2974 | pCtx->ax = (ah << 8) + al;
|
---|
2975 | iemHlpUpdateArithEFlagsU8(pIemCpu, al,
|
---|
2976 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
|
---|
2977 | X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
|
---|
2978 |
|
---|
2979 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
2980 | return VINF_SUCCESS;
|
---|
2981 | }
|
---|
2982 |
|
---|
2983 |
|
---|
2984 |
|
---|
2985 |
|
---|
2986 | /*
|
---|
2987 | * Instantiate the various string operation combinations.
|
---|
2988 | */
|
---|
2989 | #define OP_SIZE 8
|
---|
2990 | #define ADDR_SIZE 16
|
---|
2991 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2992 | #define OP_SIZE 8
|
---|
2993 | #define ADDR_SIZE 32
|
---|
2994 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2995 | #define OP_SIZE 8
|
---|
2996 | #define ADDR_SIZE 64
|
---|
2997 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
2998 |
|
---|
2999 | #define OP_SIZE 16
|
---|
3000 | #define ADDR_SIZE 16
|
---|
3001 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
3002 | #define OP_SIZE 16
|
---|
3003 | #define ADDR_SIZE 32
|
---|
3004 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
3005 | #define OP_SIZE 16
|
---|
3006 | #define ADDR_SIZE 64
|
---|
3007 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
3008 |
|
---|
3009 | #define OP_SIZE 32
|
---|
3010 | #define ADDR_SIZE 16
|
---|
3011 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
3012 | #define OP_SIZE 32
|
---|
3013 | #define ADDR_SIZE 32
|
---|
3014 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
3015 | #define OP_SIZE 32
|
---|
3016 | #define ADDR_SIZE 64
|
---|
3017 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
3018 |
|
---|
3019 | #define OP_SIZE 64
|
---|
3020 | #define ADDR_SIZE 32
|
---|
3021 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
3022 | #define OP_SIZE 64
|
---|
3023 | #define ADDR_SIZE 64
|
---|
3024 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
3025 |
|
---|
3026 |
|
---|
3027 | /**
|
---|
3028 | * Implements 'FINIT' and 'FNINIT'.
|
---|
3029 | *
|
---|
3030 | * @param fCheckXcpts Whether to check for umasked pending exceptions or
|
---|
3031 | * not.
|
---|
3032 | */
|
---|
3033 | IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
|
---|
3034 | {
|
---|
3035 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
3036 |
|
---|
3037 | if (pCtx->cr0 & (X86_CR0_EM | X86_CR0_TS))
|
---|
3038 | return iemRaiseDeviceNotAvailable(pIemCpu);
|
---|
3039 |
|
---|
3040 | NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
|
---|
3041 | if (fCheckXcpts && TODO )
|
---|
3042 | return iemRaiseMathFault(pIemCpu);
|
---|
3043 | */
|
---|
3044 |
|
---|
3045 | if (iemFRegIsFxSaveFormat(pIemCpu))
|
---|
3046 | {
|
---|
3047 | pCtx->fpu.FCW = 0x37f;
|
---|
3048 | pCtx->fpu.FSW = 0;
|
---|
3049 | pCtx->fpu.FTW = 0x00; /* 0 - empty. */
|
---|
3050 | pCtx->fpu.FPUDP = 0;
|
---|
3051 | pCtx->fpu.DS = 0; //??
|
---|
3052 | pCtx->fpu.FPUIP = 0;
|
---|
3053 | pCtx->fpu.CS = 0; //??
|
---|
3054 | pCtx->fpu.FOP = 0;
|
---|
3055 | }
|
---|
3056 | else
|
---|
3057 | {
|
---|
3058 | PX86FPUSTATE pFpu = (PX86FPUSTATE)&pCtx->fpu;
|
---|
3059 | pFpu->FCW = 0x37f;
|
---|
3060 | pFpu->FSW = 0;
|
---|
3061 | pFpu->FTW = 0xffff; /* 11 - empty */
|
---|
3062 | pFpu->FPUOO = 0; //??
|
---|
3063 | pFpu->FPUOS = 0; //??
|
---|
3064 | pFpu->FPUIP = 0;
|
---|
3065 | pFpu->CS = 0; //??
|
---|
3066 | pFpu->FOP = 0;
|
---|
3067 | }
|
---|
3068 |
|
---|
3069 | iemRegAddToRip(pIemCpu, cbInstr);
|
---|
3070 | return VINF_SUCCESS;
|
---|
3071 | }
|
---|
3072 |
|
---|
3073 |
|
---|
3074 | /** @} */
|
---|
3075 |
|
---|