VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h@ 47681

Last change on this file since 47681 was 47598, checked in by vboxsync, 11 years ago

IEM: Fixed sp/esp handling in IRET.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 192.3 KB
Line 
1/* $Id: IEMAllCImpl.cpp.h 47598 2013-08-07 16:59:58Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @name Misc Helpers
20 * @{
21 */
22
23
24/**
25 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
26 *
27 * @returns Strict VBox status code.
28 *
29 * @param pIemCpu The IEM per CPU data.
30 * @param pCtx The register context.
31 * @param u16Port The port number.
32 * @param cbOperand The operand size.
33 */
34static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PIEMCPU pIemCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand)
35{
36 /* The TSS bits we're interested in are the same on 386 and AMD64. */
37 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
38 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
39 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
40 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
41
42 /*
43 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
44 */
45 Assert(!pCtx->tr.Attr.n.u1DescType);
46 if (RT_UNLIKELY( pCtx->tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
47 && pCtx->tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
48 {
49 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
50 u16Port, cbOperand, pCtx->tr.Attr.n.u4Type, pCtx->tr.Attr.u));
51 return iemRaiseGeneralProtectionFault0(pIemCpu);
52 }
53
54 /*
55 * Read the bitmap offset (may #PF).
56 */
57 uint16_t offBitmap;
58 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pIemCpu, &offBitmap, UINT8_MAX,
59 pCtx->tr.u64Base + RT_OFFSETOF(X86TSS64, offIoBitmap));
60 if (rcStrict != VINF_SUCCESS)
61 {
62 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
63 return rcStrict;
64 }
65
66 /*
67 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
68 * describes the CPU actually reading two bytes regardless of whether the
69 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
70 */
71 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
72 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
73 * for instance sizeof(X86TSS32). */
74 if (offFirstBit + 1 > pCtx->tr.u32Limit) /* the limit is inclusive */
75 {
76 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
77 offFirstBit, pCtx->tr.u32Limit));
78 return iemRaiseGeneralProtectionFault0(pIemCpu);
79 }
80
81 /*
82 * Read the necessary bits.
83 */
84 /** @todo Test the assertion in the intel manual that the CPU reads two
85 * bytes. The question is how this works wrt to #PF and #GP on the
86 * 2nd byte when it's not required. */
87 uint16_t bmBytes = UINT16_MAX;
88 rcStrict = iemMemFetchSysU16(pIemCpu, &bmBytes, UINT8_MAX, pCtx->tr.u64Base + offFirstBit);
89 if (rcStrict != VINF_SUCCESS)
90 {
91 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
92 return rcStrict;
93 }
94
95 /*
96 * Perform the check.
97 */
98 uint16_t fPortMask = (1 << cbOperand) - 1;
99 bmBytes >>= (u16Port & 7);
100 if (bmBytes & fPortMask)
101 {
102 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
103 u16Port, cbOperand, bmBytes, fPortMask));
104 return iemRaiseGeneralProtectionFault0(pIemCpu);
105 }
106
107 return VINF_SUCCESS;
108}
109
110
111/**
112 * Checks if we are allowed to access the given I/O port, raising the
113 * appropriate exceptions if we aren't (or if the I/O bitmap is not
114 * accessible).
115 *
116 * @returns Strict VBox status code.
117 *
118 * @param pIemCpu The IEM per CPU data.
119 * @param pCtx The register context.
120 * @param u16Port The port number.
121 * @param cbOperand The operand size.
122 */
123DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PIEMCPU pIemCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand)
124{
125 X86EFLAGS Efl;
126 Efl.u = IEMMISC_GET_EFL(pIemCpu, pCtx);
127 if ( (pCtx->cr0 & X86_CR0_PE)
128 && ( pIemCpu->uCpl > Efl.Bits.u2IOPL
129 || Efl.Bits.u1VM) )
130 return iemHlpCheckPortIOPermissionBitmap(pIemCpu, pCtx, u16Port, cbOperand);
131 return VINF_SUCCESS;
132}
133
134
135#if 0
136/**
137 * Calculates the parity bit.
138 *
139 * @returns true if the bit is set, false if not.
140 * @param u8Result The least significant byte of the result.
141 */
142static bool iemHlpCalcParityFlag(uint8_t u8Result)
143{
144 /*
145 * Parity is set if the number of bits in the least significant byte of
146 * the result is even.
147 */
148 uint8_t cBits;
149 cBits = u8Result & 1; /* 0 */
150 u8Result >>= 1;
151 cBits += u8Result & 1;
152 u8Result >>= 1;
153 cBits += u8Result & 1;
154 u8Result >>= 1;
155 cBits += u8Result & 1;
156 u8Result >>= 1;
157 cBits += u8Result & 1; /* 4 */
158 u8Result >>= 1;
159 cBits += u8Result & 1;
160 u8Result >>= 1;
161 cBits += u8Result & 1;
162 u8Result >>= 1;
163 cBits += u8Result & 1;
164 return !(cBits & 1);
165}
166#endif /* not used */
167
168
169/**
170 * Updates the specified flags according to a 8-bit result.
171 *
172 * @param pIemCpu The IEM state of the calling EMT.
173 * @param u8Result The result to set the flags according to.
174 * @param fToUpdate The flags to update.
175 * @param fUndefined The flags that are specified as undefined.
176 */
177static void iemHlpUpdateArithEFlagsU8(PIEMCPU pIemCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
178{
179 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
180
181 uint32_t fEFlags = pCtx->eflags.u;
182 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
183 pCtx->eflags.u &= ~(fToUpdate | fUndefined);
184 pCtx->eflags.u |= (fToUpdate | fUndefined) & fEFlags;
185}
186
187
188/**
189 * Loads a NULL data selector into a selector register, both the hidden and
190 * visible parts, in protected mode.
191 *
192 * @param pSReg Pointer to the segment register.
193 * @param uRpl The RPL.
194 */
195static void iemHlpLoadNullDataSelectorProt(PCPUMSELREG pSReg, RTSEL uRpl)
196{
197 /** @todo Testcase: write a testcase checking what happends when loading a NULL
198 * data selector in protected mode. */
199 pSReg->Sel = uRpl;
200 pSReg->ValidSel = uRpl;
201 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
202 pSReg->u64Base = 0;
203 pSReg->u32Limit = 0;
204 pSReg->Attr.u = X86DESCATTR_UNUSABLE;
205}
206
207
208/**
209 * Helper used by iret.
210 *
211 * @param uCpl The new CPL.
212 * @param pSReg Pointer to the segment register.
213 */
214static void iemHlpAdjustSelectorForNewCpl(PIEMCPU pIemCpu, uint8_t uCpl, PCPUMSELREG pSReg)
215{
216#ifdef VBOX_WITH_RAW_MODE_NOT_R0
217 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pSReg))
218 CPUMGuestLazyLoadHiddenSelectorReg(IEMCPU_TO_VMCPU(pIemCpu), pSReg);
219#else
220 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pSReg));
221#endif
222
223 if ( uCpl > pSReg->Attr.n.u2Dpl
224 && pSReg->Attr.n.u1DescType /* code or data, not system */
225 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
226 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
227 iemHlpLoadNullDataSelectorProt(pSReg, 0);
228}
229
230
231/**
232 * Indicates that we have modified the FPU state.
233 *
234 * @param pIemCpu The IEM state of the calling EMT.
235 */
236DECLINLINE(void) iemHlpUsedFpu(PIEMCPU pIemCpu)
237{
238 CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_FPU_REM);
239}
240
241/** @} */
242
243/** @name C Implementations
244 * @{
245 */
246
247/**
248 * Implements a 16-bit popa.
249 */
250IEM_CIMPL_DEF_0(iemCImpl_popa_16)
251{
252 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
253 RTGCPTR GCPtrStart = iemRegGetEffRsp(pIemCpu, pCtx);
254 RTGCPTR GCPtrLast = GCPtrStart + 15;
255 VBOXSTRICTRC rcStrict;
256
257 /*
258 * The docs are a bit hard to comprehend here, but it looks like we wrap
259 * around in real mode as long as none of the individual "popa" crosses the
260 * end of the stack segment. In protected mode we check the whole access
261 * in one go. For efficiency, only do the word-by-word thing if we're in
262 * danger of wrapping around.
263 */
264 /** @todo do popa boundary / wrap-around checks. */
265 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pIemCpu)
266 && (pCtx->cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
267 {
268 /* word-by-word */
269 RTUINT64U TmpRsp;
270 TmpRsp.u = pCtx->rsp;
271 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->di, &TmpRsp);
272 if (rcStrict == VINF_SUCCESS)
273 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->si, &TmpRsp);
274 if (rcStrict == VINF_SUCCESS)
275 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->bp, &TmpRsp);
276 if (rcStrict == VINF_SUCCESS)
277 {
278 iemRegAddToRspEx(pIemCpu, pCtx, &TmpRsp, 2); /* sp */
279 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->bx, &TmpRsp);
280 }
281 if (rcStrict == VINF_SUCCESS)
282 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->dx, &TmpRsp);
283 if (rcStrict == VINF_SUCCESS)
284 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->cx, &TmpRsp);
285 if (rcStrict == VINF_SUCCESS)
286 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->ax, &TmpRsp);
287 if (rcStrict == VINF_SUCCESS)
288 {
289 pCtx->rsp = TmpRsp.u;
290 iemRegAddToRip(pIemCpu, cbInstr);
291 }
292 }
293 else
294 {
295 uint16_t const *pa16Mem = NULL;
296 rcStrict = iemMemMap(pIemCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
297 if (rcStrict == VINF_SUCCESS)
298 {
299 pCtx->di = pa16Mem[7 - X86_GREG_xDI];
300 pCtx->si = pa16Mem[7 - X86_GREG_xSI];
301 pCtx->bp = pa16Mem[7 - X86_GREG_xBP];
302 /* skip sp */
303 pCtx->bx = pa16Mem[7 - X86_GREG_xBX];
304 pCtx->dx = pa16Mem[7 - X86_GREG_xDX];
305 pCtx->cx = pa16Mem[7 - X86_GREG_xCX];
306 pCtx->ax = pa16Mem[7 - X86_GREG_xAX];
307 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
308 if (rcStrict == VINF_SUCCESS)
309 {
310 iemRegAddToRsp(pIemCpu, pCtx, 16);
311 iemRegAddToRip(pIemCpu, cbInstr);
312 }
313 }
314 }
315 return rcStrict;
316}
317
318
319/**
320 * Implements a 32-bit popa.
321 */
322IEM_CIMPL_DEF_0(iemCImpl_popa_32)
323{
324 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
325 RTGCPTR GCPtrStart = iemRegGetEffRsp(pIemCpu, pCtx);
326 RTGCPTR GCPtrLast = GCPtrStart + 31;
327 VBOXSTRICTRC rcStrict;
328
329 /*
330 * The docs are a bit hard to comprehend here, but it looks like we wrap
331 * around in real mode as long as none of the individual "popa" crosses the
332 * end of the stack segment. In protected mode we check the whole access
333 * in one go. For efficiency, only do the word-by-word thing if we're in
334 * danger of wrapping around.
335 */
336 /** @todo do popa boundary / wrap-around checks. */
337 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pIemCpu)
338 && (pCtx->cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
339 {
340 /* word-by-word */
341 RTUINT64U TmpRsp;
342 TmpRsp.u = pCtx->rsp;
343 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->edi, &TmpRsp);
344 if (rcStrict == VINF_SUCCESS)
345 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->esi, &TmpRsp);
346 if (rcStrict == VINF_SUCCESS)
347 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ebp, &TmpRsp);
348 if (rcStrict == VINF_SUCCESS)
349 {
350 iemRegAddToRspEx(pIemCpu, pCtx, &TmpRsp, 2); /* sp */
351 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ebx, &TmpRsp);
352 }
353 if (rcStrict == VINF_SUCCESS)
354 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->edx, &TmpRsp);
355 if (rcStrict == VINF_SUCCESS)
356 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ecx, &TmpRsp);
357 if (rcStrict == VINF_SUCCESS)
358 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->eax, &TmpRsp);
359 if (rcStrict == VINF_SUCCESS)
360 {
361#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
362 pCtx->rdi &= UINT32_MAX;
363 pCtx->rsi &= UINT32_MAX;
364 pCtx->rbp &= UINT32_MAX;
365 pCtx->rbx &= UINT32_MAX;
366 pCtx->rdx &= UINT32_MAX;
367 pCtx->rcx &= UINT32_MAX;
368 pCtx->rax &= UINT32_MAX;
369#endif
370 pCtx->rsp = TmpRsp.u;
371 iemRegAddToRip(pIemCpu, cbInstr);
372 }
373 }
374 else
375 {
376 uint32_t const *pa32Mem;
377 rcStrict = iemMemMap(pIemCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
378 if (rcStrict == VINF_SUCCESS)
379 {
380 pCtx->rdi = pa32Mem[7 - X86_GREG_xDI];
381 pCtx->rsi = pa32Mem[7 - X86_GREG_xSI];
382 pCtx->rbp = pa32Mem[7 - X86_GREG_xBP];
383 /* skip esp */
384 pCtx->rbx = pa32Mem[7 - X86_GREG_xBX];
385 pCtx->rdx = pa32Mem[7 - X86_GREG_xDX];
386 pCtx->rcx = pa32Mem[7 - X86_GREG_xCX];
387 pCtx->rax = pa32Mem[7 - X86_GREG_xAX];
388 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
389 if (rcStrict == VINF_SUCCESS)
390 {
391 iemRegAddToRsp(pIemCpu, pCtx, 32);
392 iemRegAddToRip(pIemCpu, cbInstr);
393 }
394 }
395 }
396 return rcStrict;
397}
398
399
400/**
401 * Implements a 16-bit pusha.
402 */
403IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
404{
405 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
406 RTGCPTR GCPtrTop = iemRegGetEffRsp(pIemCpu, pCtx);
407 RTGCPTR GCPtrBottom = GCPtrTop - 15;
408 VBOXSTRICTRC rcStrict;
409
410 /*
411 * The docs are a bit hard to comprehend here, but it looks like we wrap
412 * around in real mode as long as none of the individual "pushd" crosses the
413 * end of the stack segment. In protected mode we check the whole access
414 * in one go. For efficiency, only do the word-by-word thing if we're in
415 * danger of wrapping around.
416 */
417 /** @todo do pusha boundary / wrap-around checks. */
418 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
419 && IEM_IS_REAL_OR_V86_MODE(pIemCpu) ) )
420 {
421 /* word-by-word */
422 RTUINT64U TmpRsp;
423 TmpRsp.u = pCtx->rsp;
424 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->ax, &TmpRsp);
425 if (rcStrict == VINF_SUCCESS)
426 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->cx, &TmpRsp);
427 if (rcStrict == VINF_SUCCESS)
428 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->dx, &TmpRsp);
429 if (rcStrict == VINF_SUCCESS)
430 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->bx, &TmpRsp);
431 if (rcStrict == VINF_SUCCESS)
432 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->sp, &TmpRsp);
433 if (rcStrict == VINF_SUCCESS)
434 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->bp, &TmpRsp);
435 if (rcStrict == VINF_SUCCESS)
436 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->si, &TmpRsp);
437 if (rcStrict == VINF_SUCCESS)
438 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->di, &TmpRsp);
439 if (rcStrict == VINF_SUCCESS)
440 {
441 pCtx->rsp = TmpRsp.u;
442 iemRegAddToRip(pIemCpu, cbInstr);
443 }
444 }
445 else
446 {
447 GCPtrBottom--;
448 uint16_t *pa16Mem = NULL;
449 rcStrict = iemMemMap(pIemCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
450 if (rcStrict == VINF_SUCCESS)
451 {
452 pa16Mem[7 - X86_GREG_xDI] = pCtx->di;
453 pa16Mem[7 - X86_GREG_xSI] = pCtx->si;
454 pa16Mem[7 - X86_GREG_xBP] = pCtx->bp;
455 pa16Mem[7 - X86_GREG_xSP] = pCtx->sp;
456 pa16Mem[7 - X86_GREG_xBX] = pCtx->bx;
457 pa16Mem[7 - X86_GREG_xDX] = pCtx->dx;
458 pa16Mem[7 - X86_GREG_xCX] = pCtx->cx;
459 pa16Mem[7 - X86_GREG_xAX] = pCtx->ax;
460 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
461 if (rcStrict == VINF_SUCCESS)
462 {
463 iemRegSubFromRsp(pIemCpu, pCtx, 16);
464 iemRegAddToRip(pIemCpu, cbInstr);
465 }
466 }
467 }
468 return rcStrict;
469}
470
471
472/**
473 * Implements a 32-bit pusha.
474 */
475IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
476{
477 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
478 RTGCPTR GCPtrTop = iemRegGetEffRsp(pIemCpu, pCtx);
479 RTGCPTR GCPtrBottom = GCPtrTop - 31;
480 VBOXSTRICTRC rcStrict;
481
482 /*
483 * The docs are a bit hard to comprehend here, but it looks like we wrap
484 * around in real mode as long as none of the individual "pusha" crosses the
485 * end of the stack segment. In protected mode we check the whole access
486 * in one go. For efficiency, only do the word-by-word thing if we're in
487 * danger of wrapping around.
488 */
489 /** @todo do pusha boundary / wrap-around checks. */
490 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
491 && IEM_IS_REAL_OR_V86_MODE(pIemCpu) ) )
492 {
493 /* word-by-word */
494 RTUINT64U TmpRsp;
495 TmpRsp.u = pCtx->rsp;
496 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->eax, &TmpRsp);
497 if (rcStrict == VINF_SUCCESS)
498 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ecx, &TmpRsp);
499 if (rcStrict == VINF_SUCCESS)
500 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->edx, &TmpRsp);
501 if (rcStrict == VINF_SUCCESS)
502 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ebx, &TmpRsp);
503 if (rcStrict == VINF_SUCCESS)
504 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->esp, &TmpRsp);
505 if (rcStrict == VINF_SUCCESS)
506 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ebp, &TmpRsp);
507 if (rcStrict == VINF_SUCCESS)
508 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->esi, &TmpRsp);
509 if (rcStrict == VINF_SUCCESS)
510 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->edi, &TmpRsp);
511 if (rcStrict == VINF_SUCCESS)
512 {
513 pCtx->rsp = TmpRsp.u;
514 iemRegAddToRip(pIemCpu, cbInstr);
515 }
516 }
517 else
518 {
519 GCPtrBottom--;
520 uint32_t *pa32Mem;
521 rcStrict = iemMemMap(pIemCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
522 if (rcStrict == VINF_SUCCESS)
523 {
524 pa32Mem[7 - X86_GREG_xDI] = pCtx->edi;
525 pa32Mem[7 - X86_GREG_xSI] = pCtx->esi;
526 pa32Mem[7 - X86_GREG_xBP] = pCtx->ebp;
527 pa32Mem[7 - X86_GREG_xSP] = pCtx->esp;
528 pa32Mem[7 - X86_GREG_xBX] = pCtx->ebx;
529 pa32Mem[7 - X86_GREG_xDX] = pCtx->edx;
530 pa32Mem[7 - X86_GREG_xCX] = pCtx->ecx;
531 pa32Mem[7 - X86_GREG_xAX] = pCtx->eax;
532 rcStrict = iemMemCommitAndUnmap(pIemCpu, pa32Mem, IEM_ACCESS_STACK_W);
533 if (rcStrict == VINF_SUCCESS)
534 {
535 iemRegSubFromRsp(pIemCpu, pCtx, 32);
536 iemRegAddToRip(pIemCpu, cbInstr);
537 }
538 }
539 }
540 return rcStrict;
541}
542
543
544/**
545 * Implements pushf.
546 *
547 *
548 * @param enmEffOpSize The effective operand size.
549 */
550IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
551{
552 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
553
554 /*
555 * If we're in V8086 mode some care is required (which is why we're in
556 * doing this in a C implementation).
557 */
558 uint32_t fEfl = IEMMISC_GET_EFL(pIemCpu, pCtx);
559 if ( (fEfl & X86_EFL_VM)
560 && X86_EFL_GET_IOPL(fEfl) != 3 )
561 {
562 Assert(pCtx->cr0 & X86_CR0_PE);
563 if ( enmEffOpSize != IEMMODE_16BIT
564 || !(pCtx->cr4 & X86_CR4_VME))
565 return iemRaiseGeneralProtectionFault0(pIemCpu);
566 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
567 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
568 return iemMemStackPushU16(pIemCpu, (uint16_t)fEfl);
569 }
570
571 /*
572 * Ok, clear RF and VM and push the flags.
573 */
574 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
575
576 VBOXSTRICTRC rcStrict;
577 switch (enmEffOpSize)
578 {
579 case IEMMODE_16BIT:
580 rcStrict = iemMemStackPushU16(pIemCpu, (uint16_t)fEfl);
581 break;
582 case IEMMODE_32BIT:
583 rcStrict = iemMemStackPushU32(pIemCpu, fEfl);
584 break;
585 case IEMMODE_64BIT:
586 rcStrict = iemMemStackPushU64(pIemCpu, fEfl);
587 break;
588 IEM_NOT_REACHED_DEFAULT_CASE_RET();
589 }
590 if (rcStrict != VINF_SUCCESS)
591 return rcStrict;
592
593 iemRegAddToRip(pIemCpu, cbInstr);
594 return VINF_SUCCESS;
595}
596
597
598/**
599 * Implements popf.
600 *
601 * @param enmEffOpSize The effective operand size.
602 */
603IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
604{
605 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
606 PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
607 uint32_t const fEflOld = IEMMISC_GET_EFL(pIemCpu, pCtx);
608 VBOXSTRICTRC rcStrict;
609 uint32_t fEflNew;
610
611 /*
612 * V8086 is special as usual.
613 */
614 if (fEflOld & X86_EFL_VM)
615 {
616 /*
617 * Almost anything goes if IOPL is 3.
618 */
619 if (X86_EFL_GET_IOPL(fEflOld) == 3)
620 {
621 switch (enmEffOpSize)
622 {
623 case IEMMODE_16BIT:
624 {
625 uint16_t u16Value;
626 rcStrict = iemMemStackPopU16(pIemCpu, &u16Value);
627 if (rcStrict != VINF_SUCCESS)
628 return rcStrict;
629 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
630 break;
631 }
632 case IEMMODE_32BIT:
633 rcStrict = iemMemStackPopU32(pIemCpu, &fEflNew);
634 if (rcStrict != VINF_SUCCESS)
635 return rcStrict;
636 break;
637 IEM_NOT_REACHED_DEFAULT_CASE_RET();
638 }
639
640 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL);
641 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL)) & fEflOld;
642 }
643 /*
644 * Interrupt flag virtualization with CR4.VME=1.
645 */
646 else if ( enmEffOpSize == IEMMODE_16BIT
647 && (pCtx->cr4 & X86_CR4_VME) )
648 {
649 uint16_t u16Value;
650 RTUINT64U TmpRsp;
651 TmpRsp.u = pCtx->rsp;
652 rcStrict = iemMemStackPopU16Ex(pIemCpu, &u16Value, &TmpRsp);
653 if (rcStrict != VINF_SUCCESS)
654 return rcStrict;
655
656 /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
657 * or before? */
658 if ( ( (u16Value & X86_EFL_IF)
659 && (fEflOld & X86_EFL_VIP))
660 || (u16Value & X86_EFL_TF) )
661 return iemRaiseGeneralProtectionFault0(pIemCpu);
662
663 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
664 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
665 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
666 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
667
668 pCtx->rsp = TmpRsp.u;
669 }
670 else
671 return iemRaiseGeneralProtectionFault0(pIemCpu);
672
673 }
674 /*
675 * Not in V8086 mode.
676 */
677 else
678 {
679 /* Pop the flags. */
680 switch (enmEffOpSize)
681 {
682 case IEMMODE_16BIT:
683 {
684 uint16_t u16Value;
685 rcStrict = iemMemStackPopU16(pIemCpu, &u16Value);
686 if (rcStrict != VINF_SUCCESS)
687 return rcStrict;
688 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
689 break;
690 }
691 case IEMMODE_32BIT:
692 rcStrict = iemMemStackPopU32(pIemCpu, &fEflNew);
693 if (rcStrict != VINF_SUCCESS)
694 return rcStrict;
695 break;
696 case IEMMODE_64BIT:
697 {
698 uint64_t u64Value;
699 rcStrict = iemMemStackPopU64(pIemCpu, &u64Value);
700 if (rcStrict != VINF_SUCCESS)
701 return rcStrict;
702 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
703 break;
704 }
705 IEM_NOT_REACHED_DEFAULT_CASE_RET();
706 }
707
708 /* Merge them with the current flags. */
709 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
710 || pIemCpu->uCpl == 0)
711 {
712 fEflNew &= X86_EFL_POPF_BITS;
713 fEflNew |= ~X86_EFL_POPF_BITS & fEflOld;
714 }
715 else if (pIemCpu->uCpl <= X86_EFL_GET_IOPL(fEflOld))
716 {
717 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL);
718 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL)) & fEflOld;
719 }
720 else
721 {
722 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
723 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
724 }
725 }
726
727 /*
728 * Commit the flags.
729 */
730 Assert(fEflNew & RT_BIT_32(1));
731 IEMMISC_SET_EFL(pIemCpu, pCtx, fEflNew);
732 iemRegAddToRip(pIemCpu, cbInstr);
733
734 return VINF_SUCCESS;
735}
736
737
738/**
739 * Implements an indirect call.
740 *
741 * @param uNewPC The new program counter (RIP) value (loaded from the
742 * operand).
743 * @param enmEffOpSize The effective operand size.
744 */
745IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
746{
747 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
748 uint16_t uOldPC = pCtx->ip + cbInstr;
749 if (uNewPC > pCtx->cs.u32Limit)
750 return iemRaiseGeneralProtectionFault0(pIemCpu);
751
752 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pIemCpu, uOldPC);
753 if (rcStrict != VINF_SUCCESS)
754 return rcStrict;
755
756 pCtx->rip = uNewPC;
757 return VINF_SUCCESS;
758
759}
760
761
762/**
763 * Implements a 16-bit relative call.
764 *
765 * @param offDisp The displacment offset.
766 */
767IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
768{
769 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
770 uint16_t uOldPC = pCtx->ip + cbInstr;
771 uint16_t uNewPC = uOldPC + offDisp;
772 if (uNewPC > pCtx->cs.u32Limit)
773 return iemRaiseGeneralProtectionFault0(pIemCpu);
774
775 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pIemCpu, uOldPC);
776 if (rcStrict != VINF_SUCCESS)
777 return rcStrict;
778
779 pCtx->rip = uNewPC;
780 return VINF_SUCCESS;
781}
782
783
784/**
785 * Implements a 32-bit indirect call.
786 *
787 * @param uNewPC The new program counter (RIP) value (loaded from the
788 * operand).
789 * @param enmEffOpSize The effective operand size.
790 */
791IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
792{
793 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
794 uint32_t uOldPC = pCtx->eip + cbInstr;
795 if (uNewPC > pCtx->cs.u32Limit)
796 return iemRaiseGeneralProtectionFault0(pIemCpu);
797
798 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pIemCpu, uOldPC);
799 if (rcStrict != VINF_SUCCESS)
800 return rcStrict;
801
802 pCtx->rip = uNewPC;
803 return VINF_SUCCESS;
804
805}
806
807
808/**
809 * Implements a 32-bit relative call.
810 *
811 * @param offDisp The displacment offset.
812 */
813IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
814{
815 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
816 uint32_t uOldPC = pCtx->eip + cbInstr;
817 uint32_t uNewPC = uOldPC + offDisp;
818 if (uNewPC > pCtx->cs.u32Limit)
819 return iemRaiseGeneralProtectionFault0(pIemCpu);
820
821 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pIemCpu, uOldPC);
822 if (rcStrict != VINF_SUCCESS)
823 return rcStrict;
824
825 pCtx->rip = uNewPC;
826 return VINF_SUCCESS;
827}
828
829
830/**
831 * Implements a 64-bit indirect call.
832 *
833 * @param uNewPC The new program counter (RIP) value (loaded from the
834 * operand).
835 * @param enmEffOpSize The effective operand size.
836 */
837IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
838{
839 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
840 uint64_t uOldPC = pCtx->rip + cbInstr;
841 if (!IEM_IS_CANONICAL(uNewPC))
842 return iemRaiseGeneralProtectionFault0(pIemCpu);
843
844 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pIemCpu, uOldPC);
845 if (rcStrict != VINF_SUCCESS)
846 return rcStrict;
847
848 pCtx->rip = uNewPC;
849 return VINF_SUCCESS;
850
851}
852
853
854/**
855 * Implements a 64-bit relative call.
856 *
857 * @param offDisp The displacment offset.
858 */
859IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
860{
861 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
862 uint64_t uOldPC = pCtx->rip + cbInstr;
863 uint64_t uNewPC = uOldPC + offDisp;
864 if (!IEM_IS_CANONICAL(uNewPC))
865 return iemRaiseNotCanonical(pIemCpu);
866
867 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pIemCpu, uOldPC);
868 if (rcStrict != VINF_SUCCESS)
869 return rcStrict;
870
871 pCtx->rip = uNewPC;
872 return VINF_SUCCESS;
873}
874
875
876/**
877 * Implements far jumps and calls thru task segments (TSS).
878 *
879 * @param uSel The selector.
880 * @param enmBranch The kind of branching we're performing.
881 * @param enmEffOpSize The effective operand size.
882 * @param pDesc The descriptor corrsponding to @a uSel. The type is
883 * call gate.
884 */
885IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
886{
887 /* Call various functions to do the work. */
888 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
889}
890
891
892/**
893 * Implements far jumps and calls thru task gates.
894 *
895 * @param uSel The selector.
896 * @param enmBranch The kind of branching we're performing.
897 * @param enmEffOpSize The effective operand size.
898 * @param pDesc The descriptor corrsponding to @a uSel. The type is
899 * call gate.
900 */
901IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
902{
903 /* Call various functions to do the work. */
904 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
905}
906
907
908/**
909 * Implements far jumps and calls thru call gates.
910 *
911 * @param uSel The selector.
912 * @param enmBranch The kind of branching we're performing.
913 * @param enmEffOpSize The effective operand size.
914 * @param pDesc The descriptor corrsponding to @a uSel. The type is
915 * call gate.
916 */
917IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
918{
919 /* Call various functions to do the work. */
920 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
921}
922
923
924/**
925 * Implements far jumps and calls thru system selectors.
926 *
927 * @param uSel The selector.
928 * @param enmBranch The kind of branching we're performing.
929 * @param enmEffOpSize The effective operand size.
930 * @param pDesc The descriptor corrsponding to @a uSel.
931 */
932IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
933{
934 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
935 Assert((uSel & X86_SEL_MASK_OFF_RPL));
936
937 if (IEM_IS_LONG_MODE(pIemCpu))
938 switch (pDesc->Legacy.Gen.u4Type)
939 {
940 case AMD64_SEL_TYPE_SYS_CALL_GATE:
941 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
942
943 default:
944 case AMD64_SEL_TYPE_SYS_LDT:
945 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
946 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
947 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
948 case AMD64_SEL_TYPE_SYS_INT_GATE:
949 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
950 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
951
952 }
953
954 switch (pDesc->Legacy.Gen.u4Type)
955 {
956 case X86_SEL_TYPE_SYS_286_CALL_GATE:
957 case X86_SEL_TYPE_SYS_386_CALL_GATE:
958 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
959
960 case X86_SEL_TYPE_SYS_TASK_GATE:
961 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
962
963 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
964 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
965 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
966
967 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
968 Log(("branch %04x -> busy 286 TSS\n", uSel));
969 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
970
971 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
972 Log(("branch %04x -> busy 386 TSS\n", uSel));
973 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
974
975 default:
976 case X86_SEL_TYPE_SYS_LDT:
977 case X86_SEL_TYPE_SYS_286_INT_GATE:
978 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
979 case X86_SEL_TYPE_SYS_386_INT_GATE:
980 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
981 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
982 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
983 }
984}
985
986
987/**
988 * Implements far jumps.
989 *
990 * @param uSel The selector.
991 * @param offSeg The segment offset.
992 * @param enmEffOpSize The effective operand size.
993 */
994IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
995{
996 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
997 NOREF(cbInstr);
998 Assert(offSeg <= UINT32_MAX);
999
1000 /*
1001 * Real mode and V8086 mode are easy. The only snag seems to be that
1002 * CS.limit doesn't change and the limit check is done against the current
1003 * limit.
1004 */
1005 if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
1006 && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
1007 {
1008 if (offSeg > pCtx->cs.u32Limit)
1009 return iemRaiseGeneralProtectionFault0(pIemCpu);
1010
1011 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1012 pCtx->rip = offSeg;
1013 else
1014 pCtx->rip = offSeg & UINT16_MAX;
1015 pCtx->cs.Sel = uSel;
1016 pCtx->cs.ValidSel = uSel;
1017 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1018 pCtx->cs.u64Base = (uint32_t)uSel << 4;
1019 return VINF_SUCCESS;
1020 }
1021
1022 /*
1023 * Protected mode. Need to parse the specified descriptor...
1024 */
1025 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1026 {
1027 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1028 return iemRaiseGeneralProtectionFault0(pIemCpu);
1029 }
1030
1031 /* Fetch the descriptor. */
1032 IEMSELDESC Desc;
1033 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uSel, X86_XCPT_GP);
1034 if (rcStrict != VINF_SUCCESS)
1035 return rcStrict;
1036
1037 /* Is it there? */
1038 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1039 {
1040 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1041 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel);
1042 }
1043
1044 /*
1045 * Deal with it according to its type. We do the standard code selectors
1046 * here and dispatch the system selectors to worker functions.
1047 */
1048 if (!Desc.Legacy.Gen.u1DescType)
1049 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1050
1051 /* Only code segments. */
1052 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1053 {
1054 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1055 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1056 }
1057
1058 /* L vs D. */
1059 if ( Desc.Legacy.Gen.u1Long
1060 && Desc.Legacy.Gen.u1DefBig
1061 && IEM_IS_LONG_MODE(pIemCpu))
1062 {
1063 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1064 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1065 }
1066
1067 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1068 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1069 {
1070 if (pIemCpu->uCpl < Desc.Legacy.Gen.u2Dpl)
1071 {
1072 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1073 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
1074 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1075 }
1076 }
1077 else
1078 {
1079 if (pIemCpu->uCpl != Desc.Legacy.Gen.u2Dpl)
1080 {
1081 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
1082 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1083 }
1084 if ((uSel & X86_SEL_RPL) > pIemCpu->uCpl)
1085 {
1086 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pIemCpu->uCpl));
1087 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1088 }
1089 }
1090
1091 /* Chop the high bits if 16-bit (Intel says so). */
1092 if (enmEffOpSize == IEMMODE_16BIT)
1093 offSeg &= UINT16_MAX;
1094
1095 /* Limit check. (Should alternatively check for non-canonical addresses
1096 here, but that is ruled out by offSeg being 32-bit, right?) */
1097 uint64_t u64Base;
1098 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1099 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
1100 u64Base = 0;
1101 else
1102 {
1103 if (offSeg > cbLimit)
1104 {
1105 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1106 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1107 }
1108 u64Base = X86DESC_BASE(&Desc.Legacy);
1109 }
1110
1111 /*
1112 * Ok, everything checked out fine. Now set the accessed bit before
1113 * committing the result into CS, CSHID and RIP.
1114 */
1115 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1116 {
1117 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uSel);
1118 if (rcStrict != VINF_SUCCESS)
1119 return rcStrict;
1120 /** @todo check what VT-x and AMD-V does. */
1121 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1122 }
1123
1124 /* commit */
1125 pCtx->rip = offSeg;
1126 pCtx->cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1127 pCtx->cs.Sel |= pIemCpu->uCpl; /** @todo is this right for conforming segs? or in general? */
1128 pCtx->cs.ValidSel = pCtx->cs.Sel;
1129 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1130 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1131 pCtx->cs.u32Limit = cbLimit;
1132 pCtx->cs.u64Base = u64Base;
1133 /** @todo check if the hidden bits are loaded correctly for 64-bit
1134 * mode. */
1135 return VINF_SUCCESS;
1136}
1137
1138
1139/**
1140 * Implements far calls.
1141 *
1142 * This very similar to iemCImpl_FarJmp.
1143 *
1144 * @param uSel The selector.
1145 * @param offSeg The segment offset.
1146 * @param enmEffOpSize The operand size (in case we need it).
1147 */
1148IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1149{
1150 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
1151 VBOXSTRICTRC rcStrict;
1152 uint64_t uNewRsp;
1153 RTPTRUNION uPtrRet;
1154
1155 /*
1156 * Real mode and V8086 mode are easy. The only snag seems to be that
1157 * CS.limit doesn't change and the limit check is done against the current
1158 * limit.
1159 */
1160 if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
1161 && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
1162 {
1163 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1164
1165 /* Check stack first - may #SS(0). */
1166 rcStrict = iemMemStackPushBeginSpecial(pIemCpu, enmEffOpSize == IEMMODE_32BIT ? 6 : 4,
1167 &uPtrRet.pv, &uNewRsp);
1168 if (rcStrict != VINF_SUCCESS)
1169 return rcStrict;
1170
1171 /* Check the target address range. */
1172 if (offSeg > UINT32_MAX)
1173 return iemRaiseGeneralProtectionFault0(pIemCpu);
1174
1175 /* Everything is fine, push the return address. */
1176 if (enmEffOpSize == IEMMODE_16BIT)
1177 {
1178 uPtrRet.pu16[0] = pCtx->ip + cbInstr;
1179 uPtrRet.pu16[1] = pCtx->cs.Sel;
1180 }
1181 else
1182 {
1183 uPtrRet.pu32[0] = pCtx->eip + cbInstr;
1184 uPtrRet.pu16[3] = pCtx->cs.Sel;
1185 }
1186 rcStrict = iemMemStackPushCommitSpecial(pIemCpu, uPtrRet.pv, uNewRsp);
1187 if (rcStrict != VINF_SUCCESS)
1188 return rcStrict;
1189
1190 /* Branch. */
1191 pCtx->rip = offSeg;
1192 pCtx->cs.Sel = uSel;
1193 pCtx->cs.ValidSel = uSel;
1194 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1195 pCtx->cs.u64Base = (uint32_t)uSel << 4;
1196 return VINF_SUCCESS;
1197 }
1198
1199 /*
1200 * Protected mode. Need to parse the specified descriptor...
1201 */
1202 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1203 {
1204 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1205 return iemRaiseGeneralProtectionFault0(pIemCpu);
1206 }
1207
1208 /* Fetch the descriptor. */
1209 IEMSELDESC Desc;
1210 rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uSel, X86_XCPT_GP);
1211 if (rcStrict != VINF_SUCCESS)
1212 return rcStrict;
1213
1214 /*
1215 * Deal with it according to its type. We do the standard code selectors
1216 * here and dispatch the system selectors to worker functions.
1217 */
1218 if (!Desc.Legacy.Gen.u1DescType)
1219 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
1220
1221 /* Only code segments. */
1222 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1223 {
1224 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1225 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1226 }
1227
1228 /* L vs D. */
1229 if ( Desc.Legacy.Gen.u1Long
1230 && Desc.Legacy.Gen.u1DefBig
1231 && IEM_IS_LONG_MODE(pIemCpu))
1232 {
1233 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1234 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1235 }
1236
1237 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1238 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1239 {
1240 if (pIemCpu->uCpl < Desc.Legacy.Gen.u2Dpl)
1241 {
1242 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1243 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
1244 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1245 }
1246 }
1247 else
1248 {
1249 if (pIemCpu->uCpl != Desc.Legacy.Gen.u2Dpl)
1250 {
1251 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
1252 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1253 }
1254 if ((uSel & X86_SEL_RPL) > pIemCpu->uCpl)
1255 {
1256 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pIemCpu->uCpl));
1257 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1258 }
1259 }
1260
1261 /* Is it there? */
1262 if (!Desc.Legacy.Gen.u1Present)
1263 {
1264 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1265 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel);
1266 }
1267
1268 /* Check stack first - may #SS(0). */
1269 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
1270 * 16-bit code cause a two or four byte CS to be pushed? */
1271 rcStrict = iemMemStackPushBeginSpecial(pIemCpu,
1272 enmEffOpSize == IEMMODE_64BIT ? 8+8
1273 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
1274 &uPtrRet.pv, &uNewRsp);
1275 if (rcStrict != VINF_SUCCESS)
1276 return rcStrict;
1277
1278 /* Chop the high bits if 16-bit (Intel says so). */
1279 if (enmEffOpSize == IEMMODE_16BIT)
1280 offSeg &= UINT16_MAX;
1281
1282 /* Limit / canonical check. */
1283 uint64_t u64Base;
1284 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1285 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
1286 {
1287 if (!IEM_IS_CANONICAL(offSeg))
1288 {
1289 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
1290 return iemRaiseNotCanonical(pIemCpu);
1291 }
1292 u64Base = 0;
1293 }
1294 else
1295 {
1296 if (offSeg > cbLimit)
1297 {
1298 Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1299 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1300 }
1301 u64Base = X86DESC_BASE(&Desc.Legacy);
1302 }
1303
1304 /*
1305 * Now set the accessed bit before
1306 * writing the return address to the stack and committing the result into
1307 * CS, CSHID and RIP.
1308 */
1309 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1310 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1311 {
1312 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uSel);
1313 if (rcStrict != VINF_SUCCESS)
1314 return rcStrict;
1315 /** @todo check what VT-x and AMD-V does. */
1316 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1317 }
1318
1319 /* stack */
1320 if (enmEffOpSize == IEMMODE_16BIT)
1321 {
1322 uPtrRet.pu16[0] = pCtx->ip + cbInstr;
1323 uPtrRet.pu16[1] = pCtx->cs.Sel;
1324 }
1325 else if (enmEffOpSize == IEMMODE_32BIT)
1326 {
1327 uPtrRet.pu32[0] = pCtx->eip + cbInstr;
1328 uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
1329 }
1330 else
1331 {
1332 uPtrRet.pu64[0] = pCtx->rip + cbInstr;
1333 uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
1334 }
1335 rcStrict = iemMemStackPushCommitSpecial(pIemCpu, uPtrRet.pv, uNewRsp);
1336 if (rcStrict != VINF_SUCCESS)
1337 return rcStrict;
1338
1339 /* commit */
1340 pCtx->rip = offSeg;
1341 pCtx->cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1342 pCtx->cs.Sel |= pIemCpu->uCpl;
1343 pCtx->cs.ValidSel = pCtx->cs.Sel;
1344 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1345 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1346 pCtx->cs.u32Limit = cbLimit;
1347 pCtx->cs.u64Base = u64Base;
1348 /** @todo check if the hidden bits are loaded correctly for 64-bit
1349 * mode. */
1350 return VINF_SUCCESS;
1351}
1352
1353
1354/**
1355 * Implements retf.
1356 *
1357 * @param enmEffOpSize The effective operand size.
1358 * @param cbPop The amount of arguments to pop from the stack
1359 * (bytes).
1360 */
1361IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
1362{
1363 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
1364 VBOXSTRICTRC rcStrict;
1365 RTCPTRUNION uPtrFrame;
1366 uint64_t uNewRsp;
1367 uint64_t uNewRip;
1368 uint16_t uNewCs;
1369 NOREF(cbInstr);
1370
1371 /*
1372 * Read the stack values first.
1373 */
1374 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
1375 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
1376 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
1377 if (rcStrict != VINF_SUCCESS)
1378 return rcStrict;
1379 if (enmEffOpSize == IEMMODE_16BIT)
1380 {
1381 uNewRip = uPtrFrame.pu16[0];
1382 uNewCs = uPtrFrame.pu16[1];
1383 }
1384 else if (enmEffOpSize == IEMMODE_32BIT)
1385 {
1386 uNewRip = uPtrFrame.pu32[0];
1387 uNewCs = uPtrFrame.pu16[2];
1388 }
1389 else
1390 {
1391 uNewRip = uPtrFrame.pu64[0];
1392 uNewCs = uPtrFrame.pu16[4];
1393 }
1394
1395 /*
1396 * Real mode and V8086 mode are easy.
1397 */
1398 if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
1399 && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
1400 {
1401 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
1402 /** @todo check how this is supposed to work if sp=0xfffe. */
1403
1404 /* Check the limit of the new EIP. */
1405 /** @todo Intel pseudo code only does the limit check for 16-bit
1406 * operands, AMD does not make any distinction. What is right? */
1407 if (uNewRip > pCtx->cs.u32Limit)
1408 return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
1409
1410 /* commit the operation. */
1411 rcStrict = iemMemStackPopCommitSpecial(pIemCpu, uPtrFrame.pv, uNewRsp);
1412 if (rcStrict != VINF_SUCCESS)
1413 return rcStrict;
1414 pCtx->rip = uNewRip;
1415 pCtx->cs.Sel = uNewCs;
1416 pCtx->cs.ValidSel = uNewCs;
1417 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1418 pCtx->cs.u64Base = (uint32_t)uNewCs << 4;
1419 /** @todo do we load attribs and limit as well? */
1420 if (cbPop)
1421 iemRegAddToRsp(pIemCpu, pCtx, cbPop);
1422 return VINF_SUCCESS;
1423 }
1424
1425 /*
1426 * Protected mode is complicated, of course.
1427 */
1428 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
1429 {
1430 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
1431 return iemRaiseGeneralProtectionFault0(pIemCpu);
1432 }
1433
1434 /* Fetch the descriptor. */
1435 IEMSELDESC DescCs;
1436 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescCs, uNewCs, X86_XCPT_GP);
1437 if (rcStrict != VINF_SUCCESS)
1438 return rcStrict;
1439
1440 /* Can only return to a code selector. */
1441 if ( !DescCs.Legacy.Gen.u1DescType
1442 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1443 {
1444 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1445 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
1446 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
1447 }
1448
1449 /* L vs D. */
1450 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
1451 && DescCs.Legacy.Gen.u1DefBig
1452 && IEM_IS_LONG_MODE(pIemCpu))
1453 {
1454 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
1455 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
1456 }
1457
1458 /* DPL/RPL/CPL checks. */
1459 if ((uNewCs & X86_SEL_RPL) < pIemCpu->uCpl)
1460 {
1461 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pIemCpu->uCpl));
1462 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
1463 }
1464
1465 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1466 {
1467 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
1468 {
1469 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
1470 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
1471 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
1472 }
1473 }
1474 else
1475 {
1476 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
1477 {
1478 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
1479 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
1480 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
1481 }
1482 }
1483
1484 /* Is it there? */
1485 if (!DescCs.Legacy.Gen.u1Present)
1486 {
1487 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
1488 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewCs);
1489 }
1490
1491 /*
1492 * Return to outer privilege? (We'll typically have entered via a call gate.)
1493 */
1494 if ((uNewCs & X86_SEL_RPL) != pIemCpu->uCpl)
1495 {
1496 /* Read the return pointer, it comes before the parameters. */
1497 RTCPTRUNION uPtrStack;
1498 rcStrict = iemMemStackPopContinueSpecial(pIemCpu, cbPop + cbRetPtr, &uPtrStack.pv, &uNewRsp);
1499 if (rcStrict != VINF_SUCCESS)
1500 return rcStrict;
1501 uint16_t uNewOuterSs;
1502 uint64_t uNewOuterRsp;
1503 if (enmEffOpSize == IEMMODE_16BIT)
1504 {
1505 uNewOuterRsp = uPtrFrame.pu16[0];
1506 uNewOuterSs = uPtrFrame.pu16[1];
1507 }
1508 else if (enmEffOpSize == IEMMODE_32BIT)
1509 {
1510 uNewOuterRsp = uPtrFrame.pu32[0];
1511 uNewOuterSs = uPtrFrame.pu16[2];
1512 }
1513 else
1514 {
1515 uNewOuterRsp = uPtrFrame.pu64[0];
1516 uNewOuterSs = uPtrFrame.pu16[4];
1517 }
1518
1519 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
1520 and read the selector. */
1521 IEMSELDESC DescSs;
1522 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
1523 {
1524 if ( !DescCs.Legacy.Gen.u1Long
1525 || (uNewOuterSs & X86_SEL_RPL) == 3)
1526 {
1527 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
1528 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
1529 return iemRaiseGeneralProtectionFault0(pIemCpu);
1530 }
1531 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
1532 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
1533 }
1534 else
1535 {
1536 /* Fetch the descriptor for the new stack segment. */
1537 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
1538 if (rcStrict != VINF_SUCCESS)
1539 return rcStrict;
1540 }
1541
1542 /* Check that RPL of stack and code selectors match. */
1543 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
1544 {
1545 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
1546 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewOuterSs);
1547 }
1548
1549 /* Must be a writable data segment. */
1550 if ( !DescSs.Legacy.Gen.u1DescType
1551 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
1552 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
1553 {
1554 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
1555 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
1556 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewOuterSs);
1557 }
1558
1559 /* L vs D. (Not mentioned by intel.) */
1560 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
1561 && DescSs.Legacy.Gen.u1DefBig
1562 && IEM_IS_LONG_MODE(pIemCpu))
1563 {
1564 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
1565 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
1566 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewOuterSs);
1567 }
1568
1569 /* DPL/RPL/CPL checks. */
1570 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
1571 {
1572 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
1573 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
1574 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewOuterSs);
1575 }
1576
1577 /* Is it there? */
1578 if (!DescSs.Legacy.Gen.u1Present)
1579 {
1580 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
1581 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewCs);
1582 }
1583
1584 /* Calc SS limit.*/
1585 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
1586
1587 /* Is RIP canonical or within CS.limit? */
1588 uint64_t u64Base;
1589 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
1590
1591 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
1592 {
1593 if (!IEM_IS_CANONICAL(uNewRip))
1594 {
1595 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
1596 return iemRaiseNotCanonical(pIemCpu);
1597 }
1598 u64Base = 0;
1599 }
1600 else
1601 {
1602 if (uNewRip > cbLimitCs)
1603 {
1604 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
1605 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
1606 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
1607 }
1608 u64Base = X86DESC_BASE(&DescCs.Legacy);
1609 }
1610
1611 /*
1612 * Now set the accessed bit before
1613 * writing the return address to the stack and committing the result into
1614 * CS, CSHID and RIP.
1615 */
1616 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
1617 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1618 {
1619 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCs);
1620 if (rcStrict != VINF_SUCCESS)
1621 return rcStrict;
1622 /** @todo check what VT-x and AMD-V does. */
1623 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1624 }
1625 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
1626 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1627 {
1628 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewOuterSs);
1629 if (rcStrict != VINF_SUCCESS)
1630 return rcStrict;
1631 /** @todo check what VT-x and AMD-V does. */
1632 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1633 }
1634
1635 /* commit */
1636 rcStrict = iemMemStackPopCommitSpecial(pIemCpu, uPtrFrame.pv, uNewRsp);
1637 if (rcStrict != VINF_SUCCESS)
1638 return rcStrict;
1639 if (enmEffOpSize == IEMMODE_16BIT)
1640 pCtx->rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
1641 else
1642 pCtx->rip = uNewRip;
1643 pCtx->cs.Sel = uNewCs;
1644 pCtx->cs.ValidSel = uNewCs;
1645 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1646 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
1647 pCtx->cs.u32Limit = cbLimitCs;
1648 pCtx->cs.u64Base = u64Base;
1649 pCtx->rsp = uNewRsp;
1650 pCtx->ss.Sel = uNewOuterSs;
1651 pCtx->ss.ValidSel = uNewOuterSs;
1652 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1653 pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
1654 pCtx->ss.u32Limit = cbLimitSs;
1655 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
1656 pCtx->ss.u64Base = 0;
1657 else
1658 pCtx->ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
1659
1660 pIemCpu->uCpl = (uNewCs & X86_SEL_RPL);
1661 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->ds);
1662 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->es);
1663 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->fs);
1664 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->gs);
1665
1666 /** @todo check if the hidden bits are loaded correctly for 64-bit
1667 * mode. */
1668
1669 if (cbPop)
1670 iemRegAddToRsp(pIemCpu, pCtx, cbPop);
1671
1672 /* Done! */
1673 }
1674 /*
1675 * Return to the same privilege level
1676 */
1677 else
1678 {
1679 /* Limit / canonical check. */
1680 uint64_t u64Base;
1681 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
1682
1683 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
1684 {
1685 if (!IEM_IS_CANONICAL(uNewRip))
1686 {
1687 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
1688 return iemRaiseNotCanonical(pIemCpu);
1689 }
1690 u64Base = 0;
1691 }
1692 else
1693 {
1694 if (uNewRip > cbLimitCs)
1695 {
1696 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
1697 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
1698 }
1699 u64Base = X86DESC_BASE(&DescCs.Legacy);
1700 }
1701
1702 /*
1703 * Now set the accessed bit before
1704 * writing the return address to the stack and committing the result into
1705 * CS, CSHID and RIP.
1706 */
1707 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1708 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1709 {
1710 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCs);
1711 if (rcStrict != VINF_SUCCESS)
1712 return rcStrict;
1713 /** @todo check what VT-x and AMD-V does. */
1714 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1715 }
1716
1717 /* commit */
1718 rcStrict = iemMemStackPopCommitSpecial(pIemCpu, uPtrFrame.pv, uNewRsp);
1719 if (rcStrict != VINF_SUCCESS)
1720 return rcStrict;
1721 if (enmEffOpSize == IEMMODE_16BIT)
1722 pCtx->rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
1723 else
1724 pCtx->rip = uNewRip;
1725 pCtx->cs.Sel = uNewCs;
1726 pCtx->cs.ValidSel = uNewCs;
1727 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1728 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
1729 pCtx->cs.u32Limit = cbLimitCs;
1730 pCtx->cs.u64Base = u64Base;
1731 /** @todo check if the hidden bits are loaded correctly for 64-bit
1732 * mode. */
1733 if (cbPop)
1734 iemRegAddToRsp(pIemCpu, pCtx, cbPop);
1735 }
1736 return VINF_SUCCESS;
1737}
1738
1739
1740/**
1741 * Implements retn.
1742 *
1743 * We're doing this in C because of the \#GP that might be raised if the popped
1744 * program counter is out of bounds.
1745 *
1746 * @param enmEffOpSize The effective operand size.
1747 * @param cbPop The amount of arguments to pop from the stack
1748 * (bytes).
1749 */
1750IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
1751{
1752 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
1753 NOREF(cbInstr);
1754
1755 /* Fetch the RSP from the stack. */
1756 VBOXSTRICTRC rcStrict;
1757 RTUINT64U NewRip;
1758 RTUINT64U NewRsp;
1759 NewRsp.u = pCtx->rsp;
1760 switch (enmEffOpSize)
1761 {
1762 case IEMMODE_16BIT:
1763 NewRip.u = 0;
1764 rcStrict = iemMemStackPopU16Ex(pIemCpu, &NewRip.Words.w0, &NewRsp);
1765 break;
1766 case IEMMODE_32BIT:
1767 NewRip.u = 0;
1768 rcStrict = iemMemStackPopU32Ex(pIemCpu, &NewRip.DWords.dw0, &NewRsp);
1769 break;
1770 case IEMMODE_64BIT:
1771 rcStrict = iemMemStackPopU64Ex(pIemCpu, &NewRip.u, &NewRsp);
1772 break;
1773 IEM_NOT_REACHED_DEFAULT_CASE_RET();
1774 }
1775 if (rcStrict != VINF_SUCCESS)
1776 return rcStrict;
1777
1778 /* Check the new RSP before loading it. */
1779 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
1780 * of it. The canonical test is performed here and for call. */
1781 if (enmEffOpSize != IEMMODE_64BIT)
1782 {
1783 if (NewRip.DWords.dw0 > pCtx->cs.u32Limit)
1784 {
1785 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pCtx->cs.u32Limit));
1786 return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
1787 }
1788 }
1789 else
1790 {
1791 if (!IEM_IS_CANONICAL(NewRip.u))
1792 {
1793 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
1794 return iemRaiseNotCanonical(pIemCpu);
1795 }
1796 }
1797
1798 /* Commit it. */
1799 pCtx->rip = NewRip.u;
1800 pCtx->rsp = NewRsp.u;
1801 if (cbPop)
1802 iemRegAddToRsp(pIemCpu, pCtx, cbPop);
1803
1804 return VINF_SUCCESS;
1805}
1806
1807
1808/**
1809 * Implements enter.
1810 *
1811 * We're doing this in C because the instruction is insane, even for the
1812 * u8NestingLevel=0 case dealing with the stack is tedious.
1813 *
1814 * @param enmEffOpSize The effective operand size.
1815 */
1816IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
1817{
1818 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
1819
1820 /* Push RBP, saving the old value in TmpRbp. */
1821 RTUINT64U NewRsp; NewRsp.u = pCtx->rsp;
1822 RTUINT64U TmpRbp; TmpRbp.u = pCtx->rbp;
1823 RTUINT64U NewRbp;
1824 VBOXSTRICTRC rcStrict;
1825 if (enmEffOpSize == IEMMODE_64BIT)
1826 {
1827 rcStrict = iemMemStackPushU64Ex(pIemCpu, TmpRbp.u, &NewRsp);
1828 NewRbp = NewRsp;
1829 }
1830 else if (pCtx->ss.Attr.n.u1DefBig)
1831 {
1832 rcStrict = iemMemStackPushU32Ex(pIemCpu, TmpRbp.DWords.dw0, &NewRsp);
1833 NewRbp = NewRsp;
1834 }
1835 else
1836 {
1837 rcStrict = iemMemStackPushU16Ex(pIemCpu, TmpRbp.Words.w0, &NewRsp);
1838 NewRbp = TmpRbp;
1839 NewRbp.Words.w0 = NewRsp.Words.w0;
1840 }
1841 if (rcStrict != VINF_SUCCESS)
1842 return rcStrict;
1843
1844 /* Copy the parameters (aka nesting levels by Intel). */
1845 cParameters &= 0x1f;
1846 if (cParameters > 0)
1847 {
1848 switch (enmEffOpSize)
1849 {
1850 case IEMMODE_16BIT:
1851 if (pCtx->ss.Attr.n.u1DefBig)
1852 TmpRbp.DWords.dw0 -= 2;
1853 else
1854 TmpRbp.Words.w0 -= 2;
1855 do
1856 {
1857 uint16_t u16Tmp;
1858 rcStrict = iemMemStackPopU16Ex(pIemCpu, &u16Tmp, &TmpRbp);
1859 if (rcStrict != VINF_SUCCESS)
1860 break;
1861 rcStrict = iemMemStackPushU16Ex(pIemCpu, u16Tmp, &NewRsp);
1862 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
1863 break;
1864
1865 case IEMMODE_32BIT:
1866 if (pCtx->ss.Attr.n.u1DefBig)
1867 TmpRbp.DWords.dw0 -= 4;
1868 else
1869 TmpRbp.Words.w0 -= 4;
1870 do
1871 {
1872 uint32_t u32Tmp;
1873 rcStrict = iemMemStackPopU32Ex(pIemCpu, &u32Tmp, &TmpRbp);
1874 if (rcStrict != VINF_SUCCESS)
1875 break;
1876 rcStrict = iemMemStackPushU32Ex(pIemCpu, u32Tmp, &NewRsp);
1877 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
1878 break;
1879
1880 case IEMMODE_64BIT:
1881 TmpRbp.u -= 8;
1882 do
1883 {
1884 uint64_t u64Tmp;
1885 rcStrict = iemMemStackPopU64Ex(pIemCpu, &u64Tmp, &TmpRbp);
1886 if (rcStrict != VINF_SUCCESS)
1887 break;
1888 rcStrict = iemMemStackPushU64Ex(pIemCpu, u64Tmp, &NewRsp);
1889 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
1890 break;
1891
1892 IEM_NOT_REACHED_DEFAULT_CASE_RET();
1893 }
1894 if (rcStrict != VINF_SUCCESS)
1895 return VINF_SUCCESS;
1896
1897 /* Push the new RBP */
1898 if (enmEffOpSize == IEMMODE_64BIT)
1899 rcStrict = iemMemStackPushU64Ex(pIemCpu, NewRbp.u, &NewRsp);
1900 else if (pCtx->ss.Attr.n.u1DefBig)
1901 rcStrict = iemMemStackPushU32Ex(pIemCpu, NewRbp.DWords.dw0, &NewRsp);
1902 else
1903 rcStrict = iemMemStackPushU16Ex(pIemCpu, NewRbp.Words.w0, &NewRsp);
1904 if (rcStrict != VINF_SUCCESS)
1905 return rcStrict;
1906
1907 }
1908
1909 /* Recalc RSP. */
1910 iemRegSubFromRspEx(pIemCpu, pCtx, &NewRsp, cbFrame);
1911
1912 /** @todo Should probe write access at the new RSP according to AMD. */
1913
1914 /* Commit it. */
1915 pCtx->rbp = NewRbp.u;
1916 pCtx->rsp = NewRsp.u;
1917 iemRegAddToRip(pIemCpu, cbInstr);
1918
1919 return VINF_SUCCESS;
1920}
1921
1922
1923
1924/**
1925 * Implements leave.
1926 *
1927 * We're doing this in C because messing with the stack registers is annoying
1928 * since they depends on SS attributes.
1929 *
1930 * @param enmEffOpSize The effective operand size.
1931 */
1932IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
1933{
1934 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
1935
1936 /* Calculate the intermediate RSP from RBP and the stack attributes. */
1937 RTUINT64U NewRsp;
1938 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
1939 NewRsp.u = pCtx->rbp;
1940 else if (pCtx->ss.Attr.n.u1DefBig)
1941 NewRsp.u = pCtx->ebp;
1942 else
1943 {
1944 /** @todo Check that LEAVE actually preserve the high EBP bits. */
1945 NewRsp.u = pCtx->rsp;
1946 NewRsp.Words.w0 = pCtx->bp;
1947 }
1948
1949 /* Pop RBP according to the operand size. */
1950 VBOXSTRICTRC rcStrict;
1951 RTUINT64U NewRbp;
1952 switch (enmEffOpSize)
1953 {
1954 case IEMMODE_16BIT:
1955 NewRbp.u = pCtx->rbp;
1956 rcStrict = iemMemStackPopU16Ex(pIemCpu, &NewRbp.Words.w0, &NewRsp);
1957 break;
1958 case IEMMODE_32BIT:
1959 NewRbp.u = 0;
1960 rcStrict = iemMemStackPopU32Ex(pIemCpu, &NewRbp.DWords.dw0, &NewRsp);
1961 break;
1962 case IEMMODE_64BIT:
1963 rcStrict = iemMemStackPopU64Ex(pIemCpu, &NewRbp.u, &NewRsp);
1964 break;
1965 IEM_NOT_REACHED_DEFAULT_CASE_RET();
1966 }
1967 if (rcStrict != VINF_SUCCESS)
1968 return rcStrict;
1969
1970
1971 /* Commit it. */
1972 pCtx->rbp = NewRbp.u;
1973 pCtx->rsp = NewRsp.u;
1974 iemRegAddToRip(pIemCpu, cbInstr);
1975
1976 return VINF_SUCCESS;
1977}
1978
1979
1980/**
1981 * Implements int3 and int XX.
1982 *
1983 * @param u8Int The interrupt vector number.
1984 * @param fIsBpInstr Is it the breakpoint instruction.
1985 */
1986IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, bool, fIsBpInstr)
1987{
1988 Assert(pIemCpu->cXcptRecursions == 0);
1989 return iemRaiseXcptOrInt(pIemCpu,
1990 cbInstr,
1991 u8Int,
1992 (fIsBpInstr ? IEM_XCPT_FLAGS_BP_INSTR : 0) | IEM_XCPT_FLAGS_T_SOFT_INT,
1993 0,
1994 0);
1995}
1996
1997
1998/**
1999 * Implements iret for real mode and V8086 mode.
2000 *
2001 * @param enmEffOpSize The effective operand size.
2002 */
2003IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2004{
2005 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2006 PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
2007 X86EFLAGS Efl;
2008 Efl.u = IEMMISC_GET_EFL(pIemCpu, pCtx);
2009 NOREF(cbInstr);
2010
2011 /*
2012 * iret throws an exception if VME isn't enabled.
2013 */
2014 if ( Efl.Bits.u1VM
2015 && Efl.Bits.u2IOPL != 3
2016 && !(pCtx->cr4 & X86_CR4_VME))
2017 return iemRaiseGeneralProtectionFault0(pIemCpu);
2018
2019 /*
2020 * Do the stack bits, but don't commit RSP before everything checks
2021 * out right.
2022 */
2023 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2024 VBOXSTRICTRC rcStrict;
2025 RTCPTRUNION uFrame;
2026 uint16_t uNewCs;
2027 uint32_t uNewEip;
2028 uint32_t uNewFlags;
2029 uint64_t uNewRsp;
2030 if (enmEffOpSize == IEMMODE_32BIT)
2031 {
2032 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 12, &uFrame.pv, &uNewRsp);
2033 if (rcStrict != VINF_SUCCESS)
2034 return rcStrict;
2035 uNewEip = uFrame.pu32[0];
2036 if (uNewEip > UINT16_MAX)
2037 return iemRaiseGeneralProtectionFault0(pIemCpu);
2038
2039 uNewCs = (uint16_t)uFrame.pu32[1];
2040 uNewFlags = uFrame.pu32[2];
2041 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2042 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
2043 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
2044 | X86_EFL_ID;
2045 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
2046 }
2047 else
2048 {
2049 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 6, &uFrame.pv, &uNewRsp);
2050 if (rcStrict != VINF_SUCCESS)
2051 return rcStrict;
2052 uNewEip = uFrame.pu16[0];
2053 uNewCs = uFrame.pu16[1];
2054 uNewFlags = uFrame.pu16[2];
2055 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2056 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
2057 uNewFlags |= Efl.u & (UINT32_C(0xffff0000) | X86_EFL_1);
2058 /** @todo The intel pseudo code does not indicate what happens to
2059 * reserved flags. We just ignore them. */
2060 }
2061 /** @todo Check how this is supposed to work if sp=0xfffe. */
2062
2063 /*
2064 * Check the limit of the new EIP.
2065 */
2066 /** @todo Only the AMD pseudo code check the limit here, what's
2067 * right? */
2068 if (uNewEip > pCtx->cs.u32Limit)
2069 return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2070
2071 /*
2072 * V8086 checks and flag adjustments
2073 */
2074 if (Efl.Bits.u1VM)
2075 {
2076 if (Efl.Bits.u2IOPL == 3)
2077 {
2078 /* Preserve IOPL and clear RF. */
2079 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
2080 uNewFlags |= Efl.u & (X86_EFL_IOPL);
2081 }
2082 else if ( enmEffOpSize == IEMMODE_16BIT
2083 && ( !(uNewFlags & X86_EFL_IF)
2084 || !Efl.Bits.u1VIP )
2085 && !(uNewFlags & X86_EFL_TF) )
2086 {
2087 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
2088 uNewFlags &= ~X86_EFL_VIF;
2089 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
2090 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
2091 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
2092 }
2093 else
2094 return iemRaiseGeneralProtectionFault0(pIemCpu);
2095 }
2096
2097 /*
2098 * Commit the operation.
2099 */
2100 rcStrict = iemMemStackPopCommitSpecial(pIemCpu, uFrame.pv, uNewRsp);
2101 if (rcStrict != VINF_SUCCESS)
2102 return rcStrict;
2103#ifdef DBGFTRACE_ENABLED
2104 RTTraceBufAddMsgF(IEMCPU_TO_VM(pIemCpu)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
2105 pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
2106#endif
2107
2108 pCtx->rip = uNewEip;
2109 pCtx->cs.Sel = uNewCs;
2110 pCtx->cs.ValidSel = uNewCs;
2111 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2112 pCtx->cs.u64Base = (uint32_t)uNewCs << 4;
2113 /** @todo do we load attribs and limit as well? */
2114 Assert(uNewFlags & X86_EFL_1);
2115 IEMMISC_SET_EFL(pIemCpu, pCtx, uNewFlags);
2116
2117 return VINF_SUCCESS;
2118}
2119
2120
2121/**
2122 * Loads a segment register when entering V8086 mode.
2123 *
2124 * @param pSReg The segment register.
2125 * @param uSeg The segment to load.
2126 */
2127static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
2128{
2129 pSReg->Sel = uSeg;
2130 pSReg->ValidSel = uSeg;
2131 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
2132 pSReg->u64Base = (uint32_t)uSeg << 4;
2133 pSReg->u32Limit = 0xffff;
2134 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
2135 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
2136 * IRET'ing to V8086. */
2137}
2138
2139
2140/**
2141 * Implements iret for protected mode returning to V8086 mode.
2142 *
2143 * @param pCtx Pointer to the CPU context.
2144 * @param uNewEip The new EIP.
2145 * @param uNewCs The new CS.
2146 * @param uNewFlags The new EFLAGS.
2147 * @param uNewRsp The RSP after the initial IRET frame.
2148 *
2149 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
2150 */
2151IEM_CIMPL_DEF_5(iemCImpl_iret_prot_v8086, PCPUMCTX, pCtx, uint32_t, uNewEip, uint16_t, uNewCs,
2152 uint32_t, uNewFlags, uint64_t, uNewRsp)
2153{
2154#if 0
2155 if (!LogIs6Enabled())
2156 {
2157 RTLogGroupSettings(NULL, "iem.eo.l6.l2");
2158 RTLogFlags(NULL, "enabled");
2159 return VERR_IEM_RESTART_INSTRUCTION;
2160 }
2161#endif
2162
2163 /*
2164 * Pop the V8086 specific frame bits off the stack.
2165 */
2166 VBOXSTRICTRC rcStrict;
2167 RTCPTRUNION uFrame;
2168 rcStrict = iemMemStackPopContinueSpecial(pIemCpu, 24, &uFrame.pv, &uNewRsp);
2169 if (rcStrict != VINF_SUCCESS)
2170 return rcStrict;
2171 uint32_t uNewEsp = uFrame.pu32[0];
2172 uint16_t uNewSs = uFrame.pu32[1];
2173 uint16_t uNewEs = uFrame.pu32[2];
2174 uint16_t uNewDs = uFrame.pu32[3];
2175 uint16_t uNewFs = uFrame.pu32[4];
2176 uint16_t uNewGs = uFrame.pu32[5];
2177 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
2178 if (rcStrict != VINF_SUCCESS)
2179 return rcStrict;
2180
2181 /*
2182 * Commit the operation.
2183 */
2184 uNewFlags &= X86_EFL_LIVE_MASK;
2185 uNewFlags |= X86_EFL_RA1_MASK;
2186#ifdef DBGFTRACE_ENABLED
2187 RTTraceBufAddMsgF(IEMCPU_TO_VM(pIemCpu)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
2188 pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
2189#endif
2190
2191 IEMMISC_SET_EFL(pIemCpu, pCtx, uNewFlags);
2192 iemCImplCommonV8086LoadSeg(&pCtx->cs, uNewCs);
2193 iemCImplCommonV8086LoadSeg(&pCtx->ss, uNewSs);
2194 iemCImplCommonV8086LoadSeg(&pCtx->es, uNewEs);
2195 iemCImplCommonV8086LoadSeg(&pCtx->ds, uNewDs);
2196 iemCImplCommonV8086LoadSeg(&pCtx->fs, uNewFs);
2197 iemCImplCommonV8086LoadSeg(&pCtx->gs, uNewGs);
2198 pCtx->rip = uNewEip;
2199 pCtx->rsp = uNewEsp;
2200 pIemCpu->uCpl = 3;
2201
2202 return VINF_SUCCESS;
2203}
2204
2205
2206/**
2207 * Implements iret for protected mode returning via a nested task.
2208 *
2209 * @param enmEffOpSize The effective operand size.
2210 */
2211IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
2212{
2213 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
2214}
2215
2216
2217/**
2218 * Implements iret for protected mode
2219 *
2220 * @param enmEffOpSize The effective operand size.
2221 */
2222IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
2223{
2224 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2225 NOREF(cbInstr);
2226
2227 /*
2228 * Nested task return.
2229 */
2230 if (pCtx->eflags.Bits.u1NT)
2231 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
2232
2233 /*
2234 * Normal return.
2235 *
2236 * Do the stack bits, but don't commit RSP before everything checks
2237 * out right.
2238 */
2239 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2240 VBOXSTRICTRC rcStrict;
2241 RTCPTRUNION uFrame;
2242 uint16_t uNewCs;
2243 uint32_t uNewEip;
2244 uint32_t uNewFlags;
2245 uint64_t uNewRsp;
2246 if (enmEffOpSize == IEMMODE_32BIT)
2247 {
2248 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 12, &uFrame.pv, &uNewRsp);
2249 if (rcStrict != VINF_SUCCESS)
2250 return rcStrict;
2251 uNewEip = uFrame.pu32[0];
2252 uNewCs = (uint16_t)uFrame.pu32[1];
2253 uNewFlags = uFrame.pu32[2];
2254 }
2255 else
2256 {
2257 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 6, &uFrame.pv, &uNewRsp);
2258 if (rcStrict != VINF_SUCCESS)
2259 return rcStrict;
2260 uNewEip = uFrame.pu16[0];
2261 uNewCs = uFrame.pu16[1];
2262 uNewFlags = uFrame.pu16[2];
2263 }
2264 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
2265 if (rcStrict != VINF_SUCCESS)
2266 return rcStrict;
2267
2268 /*
2269 * We're hopefully not returning to V8086 mode...
2270 */
2271 if ( (uNewFlags & X86_EFL_VM)
2272 && pIemCpu->uCpl == 0)
2273 {
2274 Assert(enmEffOpSize == IEMMODE_32BIT);
2275 return IEM_CIMPL_CALL_5(iemCImpl_iret_prot_v8086, pCtx, uNewEip, uNewCs, uNewFlags, uNewRsp);
2276 }
2277
2278 /*
2279 * Protected mode.
2280 */
2281 /* Read the CS descriptor. */
2282 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2283 {
2284 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
2285 return iemRaiseGeneralProtectionFault0(pIemCpu);
2286 }
2287
2288 IEMSELDESC DescCS;
2289 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescCS, uNewCs, X86_XCPT_GP);
2290 if (rcStrict != VINF_SUCCESS)
2291 {
2292 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
2293 return rcStrict;
2294 }
2295
2296 /* Must be a code descriptor. */
2297 if (!DescCS.Legacy.Gen.u1DescType)
2298 {
2299 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
2300 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2301 }
2302 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2303 {
2304 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
2305 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2306 }
2307
2308 /* Privilege checks. */
2309 if ((uNewCs & X86_SEL_RPL) < pIemCpu->uCpl)
2310 {
2311 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pIemCpu->uCpl));
2312 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2313 }
2314 if ( (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2315 && (uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
2316 {
2317 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
2318 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2319 }
2320
2321 /* Present? */
2322 if (!DescCS.Legacy.Gen.u1Present)
2323 {
2324 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
2325 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewCs);
2326 }
2327
2328 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
2329
2330 /*
2331 * Return to outer level?
2332 */
2333 if ((uNewCs & X86_SEL_RPL) != pIemCpu->uCpl)
2334 {
2335 uint16_t uNewSS;
2336 uint32_t uNewESP;
2337 if (enmEffOpSize == IEMMODE_32BIT)
2338 {
2339 rcStrict = iemMemStackPopContinueSpecial(pIemCpu, 8, &uFrame.pv, &uNewRsp);
2340 if (rcStrict != VINF_SUCCESS)
2341 return rcStrict;
2342 uNewESP = uFrame.pu32[0];
2343 uNewSS = (uint16_t)uFrame.pu32[1];
2344 }
2345 else
2346 {
2347 rcStrict = iemMemStackPopContinueSpecial(pIemCpu, 8, &uFrame.pv, &uNewRsp);
2348 if (rcStrict != VINF_SUCCESS)
2349 return rcStrict;
2350 uNewESP = uFrame.pu16[0];
2351 uNewSS = uFrame.pu16[1];
2352 }
2353 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
2354 if (rcStrict != VINF_SUCCESS)
2355 return rcStrict;
2356
2357 /* Read the SS descriptor. */
2358 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
2359 {
2360 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
2361 return iemRaiseGeneralProtectionFault0(pIemCpu);
2362 }
2363
2364 IEMSELDESC DescSS;
2365 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
2366 if (rcStrict != VINF_SUCCESS)
2367 {
2368 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
2369 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
2370 return rcStrict;
2371 }
2372
2373 /* Privilege checks. */
2374 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
2375 {
2376 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
2377 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSS);
2378 }
2379 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2380 {
2381 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
2382 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
2383 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSS);
2384 }
2385
2386 /* Must be a writeable data segment descriptor. */
2387 if (!DescSS.Legacy.Gen.u1DescType)
2388 {
2389 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
2390 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
2391 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSS);
2392 }
2393 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
2394 {
2395 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
2396 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
2397 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSS);
2398 }
2399
2400 /* Present? */
2401 if (!DescSS.Legacy.Gen.u1Present)
2402 {
2403 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
2404 return iemRaiseStackSelectorNotPresentBySelector(pIemCpu, uNewSS);
2405 }
2406
2407 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
2408
2409 /* Check EIP. */
2410 if (uNewEip > cbLimitCS)
2411 {
2412 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
2413 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
2414 return iemRaiseSelectorBoundsBySelector(pIemCpu, uNewCs);
2415 }
2416
2417 /*
2418 * Commit the changes, marking CS and SS accessed first since
2419 * that may fail.
2420 */
2421 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2422 {
2423 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCs);
2424 if (rcStrict != VINF_SUCCESS)
2425 return rcStrict;
2426 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2427 }
2428 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2429 {
2430 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewSS);
2431 if (rcStrict != VINF_SUCCESS)
2432 return rcStrict;
2433 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2434 }
2435
2436 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2437 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
2438 if (enmEffOpSize != IEMMODE_16BIT)
2439 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
2440 if (pIemCpu->uCpl == 0)
2441 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
2442 else if (pIemCpu->uCpl <= pCtx->eflags.Bits.u2IOPL)
2443 fEFlagsMask |= X86_EFL_IF;
2444 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pIemCpu, pCtx);
2445 fEFlagsNew &= ~fEFlagsMask;
2446 fEFlagsNew |= uNewFlags & fEFlagsMask;
2447#ifdef DBGFTRACE_ENABLED
2448 RTTraceBufAddMsgF(IEMCPU_TO_VM(pIemCpu)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
2449 pIemCpu->uCpl, uNewCs & X86_SEL_RPL, pCtx->cs.Sel, pCtx->eip,
2450 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
2451#endif
2452
2453 IEMMISC_SET_EFL(pIemCpu, pCtx, fEFlagsNew);
2454 pCtx->rip = uNewEip;
2455 pCtx->cs.Sel = uNewCs;
2456 pCtx->cs.ValidSel = uNewCs;
2457 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2458 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
2459 pCtx->cs.u32Limit = cbLimitCS;
2460 pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
2461 if (!pCtx->cs.Attr.n.u1DefBig)
2462 pCtx->sp = (uint16_t)uNewESP;
2463 else
2464 pCtx->rsp = uNewESP;
2465 pCtx->ss.Sel = uNewSS;
2466 pCtx->ss.ValidSel = uNewSS;
2467 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2468 pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
2469 pCtx->ss.u32Limit = cbLimitSs;
2470 pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
2471
2472 pIemCpu->uCpl = uNewCs & X86_SEL_RPL;
2473 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->ds);
2474 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->es);
2475 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->fs);
2476 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->gs);
2477
2478 /* Done! */
2479
2480 }
2481 /*
2482 * Return to the same level.
2483 */
2484 else
2485 {
2486 /* Check EIP. */
2487 if (uNewEip > cbLimitCS)
2488 {
2489 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
2490 return iemRaiseSelectorBoundsBySelector(pIemCpu, uNewCs);
2491 }
2492
2493 /*
2494 * Commit the changes, marking CS first since it may fail.
2495 */
2496 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2497 {
2498 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCs);
2499 if (rcStrict != VINF_SUCCESS)
2500 return rcStrict;
2501 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2502 }
2503
2504 X86EFLAGS NewEfl;
2505 NewEfl.u = IEMMISC_GET_EFL(pIemCpu, pCtx);
2506 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2507 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
2508 if (enmEffOpSize != IEMMODE_16BIT)
2509 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
2510 if (pIemCpu->uCpl == 0)
2511 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
2512 else if (pIemCpu->uCpl <= NewEfl.Bits.u2IOPL)
2513 fEFlagsMask |= X86_EFL_IF;
2514 NewEfl.u &= ~fEFlagsMask;
2515 NewEfl.u |= fEFlagsMask & uNewFlags;
2516#ifdef DBGFTRACE_ENABLED
2517 RTTraceBufAddMsgF(IEMCPU_TO_VM(pIemCpu)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
2518 pIemCpu->uCpl, pCtx->cs.Sel, pCtx->eip,
2519 uNewCs, uNewEip, uNewFlags, pCtx->ss.Sel, uNewRsp);
2520#endif
2521
2522 IEMMISC_SET_EFL(pIemCpu, pCtx, NewEfl.u);
2523 pCtx->rip = uNewEip;
2524 pCtx->cs.Sel = uNewCs;
2525 pCtx->cs.ValidSel = uNewCs;
2526 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2527 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
2528 pCtx->cs.u32Limit = cbLimitCS;
2529 pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
2530 pCtx->rsp = uNewRsp;
2531 /* Done! */
2532 }
2533 return VINF_SUCCESS;
2534}
2535
2536
2537/**
2538 * Implements iret for long mode
2539 *
2540 * @param enmEffOpSize The effective operand size.
2541 */
2542IEM_CIMPL_DEF_1(iemCImpl_iret_long, IEMMODE, enmEffOpSize)
2543{
2544 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2545 NOREF(cbInstr);
2546
2547 /*
2548 * Nested task return is not supported in long mode.
2549 */
2550 if (pCtx->eflags.Bits.u1NT)
2551 {
2552 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pCtx->eflags.u));
2553 return iemRaiseGeneralProtectionFault0(pIemCpu);
2554 }
2555
2556 /*
2557 * Normal return.
2558 *
2559 * Do the stack bits, but don't commit RSP before everything checks
2560 * out right.
2561 */
2562 VBOXSTRICTRC rcStrict;
2563 RTCPTRUNION uFrame;
2564 uint64_t uNewRip;
2565 uint16_t uNewCs;
2566 uint16_t uNewSs;
2567 uint32_t uNewFlags;
2568 uint64_t uNewRsp;
2569 if (enmEffOpSize == IEMMODE_64BIT)
2570 {
2571 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 5*8, &uFrame.pv, &uNewRsp);
2572 if (rcStrict != VINF_SUCCESS)
2573 return rcStrict;
2574 uNewRip = uFrame.pu64[0];
2575 uNewCs = (uint16_t)uFrame.pu64[1];
2576 uNewFlags = (uint32_t)uFrame.pu64[2];
2577 uNewRsp = uFrame.pu64[3];
2578 uNewSs = (uint16_t)uFrame.pu64[4];
2579 }
2580 else if (enmEffOpSize == IEMMODE_32BIT)
2581 {
2582 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 5*4, &uFrame.pv, &uNewRsp);
2583 if (rcStrict != VINF_SUCCESS)
2584 return rcStrict;
2585 uNewRip = uFrame.pu32[0];
2586 uNewCs = (uint16_t)uFrame.pu32[1];
2587 uNewFlags = uFrame.pu32[2];
2588 uNewRsp = uFrame.pu32[3];
2589 uNewSs = (uint16_t)uFrame.pu32[4];
2590 }
2591 else
2592 {
2593 Assert(enmEffOpSize == IEMMODE_16BIT);
2594 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 5*2, &uFrame.pv, &uNewRsp);
2595 if (rcStrict != VINF_SUCCESS)
2596 return rcStrict;
2597 uNewRip = uFrame.pu16[0];
2598 uNewCs = uFrame.pu16[1];
2599 uNewFlags = uFrame.pu16[2];
2600 uNewRsp = uFrame.pu16[3];
2601 uNewSs = uFrame.pu16[4];
2602 }
2603 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
2604 if (rcStrict != VINF_SUCCESS)
2605 return rcStrict;
2606 Log2(("iretq stack: cs:rip=%04x:%016RX16 rflags=%016RX16 ss:rsp=%04x:%016RX16\n",
2607 uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
2608
2609 /*
2610 * Check stuff.
2611 */
2612 /* Read the CS descriptor. */
2613 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2614 {
2615 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
2616 return iemRaiseGeneralProtectionFault0(pIemCpu);
2617 }
2618
2619 IEMSELDESC DescCS;
2620 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescCS, uNewCs, X86_XCPT_GP);
2621 if (rcStrict != VINF_SUCCESS)
2622 {
2623 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
2624 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
2625 return rcStrict;
2626 }
2627
2628 /* Must be a code descriptor. */
2629 if ( !DescCS.Legacy.Gen.u1DescType
2630 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2631 {
2632 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
2633 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
2634 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2635 }
2636
2637 /* Privilege checks. */
2638 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
2639 if ((uNewCs & X86_SEL_RPL) < pIemCpu->uCpl)
2640 {
2641 Log(("iret %04x:%016RX64/%04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp, pIemCpu->uCpl));
2642 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2643 }
2644 if ( (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2645 && (uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
2646 {
2647 Log(("iret %04x:%016RX64/%04x:%016RX64 - RPL < DPL (%d) -> #GP\n",
2648 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u2Dpl));
2649 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2650 }
2651
2652 /* Present? */
2653 if (!DescCS.Legacy.Gen.u1Present)
2654 {
2655 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
2656 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewCs);
2657 }
2658
2659 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
2660
2661 /* Read the SS descriptor. */
2662 IEMSELDESC DescSS;
2663 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
2664 {
2665 if ( !DescCS.Legacy.Gen.u1Long
2666 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
2667 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
2668 {
2669 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
2670 return iemRaiseGeneralProtectionFault0(pIemCpu);
2671 }
2672 DescSS.Legacy.u = 0;
2673 }
2674 else
2675 {
2676 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
2677 if (rcStrict != VINF_SUCCESS)
2678 {
2679 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
2680 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
2681 return rcStrict;
2682 }
2683 }
2684
2685 /* Privilege checks. */
2686 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
2687 {
2688 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
2689 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSs);
2690 }
2691
2692 uint32_t cbLimitSs;
2693 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
2694 cbLimitSs = UINT32_MAX;
2695 else
2696 {
2697 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2698 {
2699 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
2700 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
2701 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSs);
2702 }
2703
2704 /* Must be a writeable data segment descriptor. */
2705 if (!DescSS.Legacy.Gen.u1DescType)
2706 {
2707 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
2708 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
2709 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSs);
2710 }
2711 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
2712 {
2713 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
2714 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
2715 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSs);
2716 }
2717
2718 /* Present? */
2719 if (!DescSS.Legacy.Gen.u1Present)
2720 {
2721 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
2722 return iemRaiseStackSelectorNotPresentBySelector(pIemCpu, uNewSs);
2723 }
2724 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
2725 }
2726
2727 /* Check EIP. */
2728 if (DescCS.Legacy.Gen.u1Long)
2729 {
2730 if (!IEM_IS_CANONICAL(uNewRip))
2731 {
2732 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
2733 uNewCs, uNewRip, uNewSs, uNewRsp));
2734 return iemRaiseSelectorBoundsBySelector(pIemCpu, uNewCs);
2735 }
2736 }
2737 else
2738 {
2739 if (uNewRip > cbLimitCS)
2740 {
2741 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
2742 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
2743 return iemRaiseSelectorBoundsBySelector(pIemCpu, uNewCs);
2744 }
2745 }
2746
2747 /*
2748 * Commit the changes, marking CS and SS accessed first since
2749 * that may fail.
2750 */
2751 /** @todo where exactly are these actually marked accessed by a real CPU? */
2752 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2753 {
2754 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCs);
2755 if (rcStrict != VINF_SUCCESS)
2756 return rcStrict;
2757 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2758 }
2759 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2760 {
2761 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewSs);
2762 if (rcStrict != VINF_SUCCESS)
2763 return rcStrict;
2764 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2765 }
2766
2767 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2768 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
2769 if (enmEffOpSize != IEMMODE_16BIT)
2770 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
2771 if (pIemCpu->uCpl == 0)
2772 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
2773 else if (pIemCpu->uCpl <= pCtx->eflags.Bits.u2IOPL)
2774 fEFlagsMask |= X86_EFL_IF;
2775 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pIemCpu, pCtx);
2776 fEFlagsNew &= ~fEFlagsMask;
2777 fEFlagsNew |= uNewFlags & fEFlagsMask;
2778#ifdef DBGFTRACE_ENABLED
2779 RTTraceBufAddMsgF(IEMCPU_TO_VM(pIemCpu)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
2780 pIemCpu->uCpl, uNewCpl, pCtx->rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
2781#endif
2782
2783 IEMMISC_SET_EFL(pIemCpu, pCtx, fEFlagsNew);
2784 pCtx->rip = uNewRip;
2785 pCtx->cs.Sel = uNewCs;
2786 pCtx->cs.ValidSel = uNewCs;
2787 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2788 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
2789 pCtx->cs.u32Limit = cbLimitCS;
2790 pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
2791 if (pCtx->cs.Attr.n.u1Long || pCtx->cs.Attr.n.u1DefBig)
2792 pCtx->rsp = uNewRsp;
2793 else
2794 pCtx->sp = (uint16_t)uNewRsp;
2795 pCtx->ss.Sel = uNewSs;
2796 pCtx->ss.ValidSel = uNewSs;
2797 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
2798 {
2799 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2800 pCtx->ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
2801 pCtx->ss.u32Limit = UINT32_MAX;
2802 pCtx->ss.u64Base = 0;
2803 Log2(("iretq new SS: NULL\n"));
2804 }
2805 else
2806 {
2807 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2808 pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
2809 pCtx->ss.u32Limit = cbLimitSs;
2810 pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
2811 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u));
2812 }
2813
2814 if (pIemCpu->uCpl != uNewCpl)
2815 {
2816 pIemCpu->uCpl = uNewCpl;
2817 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCpl, &pCtx->ds);
2818 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCpl, &pCtx->es);
2819 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCpl, &pCtx->fs);
2820 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCpl, &pCtx->gs);
2821 }
2822
2823 return VINF_SUCCESS;
2824}
2825
2826
2827/**
2828 * Implements iret.
2829 *
2830 * @param enmEffOpSize The effective operand size.
2831 */
2832IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
2833{
2834 /*
2835 * Call a mode specific worker.
2836 */
2837 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
2838 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
2839 if (IEM_IS_LONG_MODE(pIemCpu))
2840 return IEM_CIMPL_CALL_1(iemCImpl_iret_long, enmEffOpSize);
2841
2842 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
2843}
2844
2845
2846/**
2847 * Implements SYSCALL (AMD and Intel64).
2848 *
2849 * @param enmEffOpSize The effective operand size.
2850 */
2851IEM_CIMPL_DEF_0(iemCImpl_syscall)
2852{
2853 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2854
2855 /*
2856 * Check preconditions.
2857 *
2858 * Note that CPUs described in the documentation may load a few odd values
2859 * into CS and SS than we allow here. This has yet to be checked on real
2860 * hardware.
2861 */
2862 if (!(pCtx->msrEFER & MSR_K6_EFER_SCE))
2863 {
2864 Log(("syscall: Not enabled in EFER -> #UD\n"));
2865 return iemRaiseUndefinedOpcode(pIemCpu);
2866 }
2867 if (!(pCtx->cr0 & X86_CR0_PE))
2868 {
2869 Log(("syscall: Protected mode is required -> #GP(0)\n"));
2870 return iemRaiseGeneralProtectionFault0(pIemCpu);
2871 }
2872 if (IEM_IS_GUEST_CPU_INTEL(pIemCpu) && !CPUMIsGuestInLongModeEx(pCtx))
2873 {
2874 Log(("syscall: Only available in long mode on intel -> #UD\n"));
2875 return iemRaiseUndefinedOpcode(pIemCpu);
2876 }
2877
2878 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
2879 /** @todo what about LDT selectors? Shouldn't matter, really. */
2880 uint16_t uNewCs = (pCtx->msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
2881 uint16_t uNewSs = uNewCs + 8;
2882 if (uNewCs == 0 || uNewSs == 0)
2883 {
2884 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
2885 return iemRaiseGeneralProtectionFault0(pIemCpu);
2886 }
2887
2888 /* Long mode and legacy mode differs. */
2889 if (CPUMIsGuestInLongModeEx(pCtx))
2890 {
2891 uint64_t uNewRip = pIemCpu->enmCpuMode == IEMMODE_64BIT ? pCtx->msrLSTAR : pCtx-> msrCSTAR;
2892
2893 /* This test isn't in the docs, but I'm not trusting the guys writing
2894 the MSRs to have validated the values as canonical like they should. */
2895 if (!IEM_IS_CANONICAL(uNewRip))
2896 {
2897 Log(("syscall: Only available in long mode on intel -> #UD\n"));
2898 return iemRaiseUndefinedOpcode(pIemCpu);
2899 }
2900
2901 /*
2902 * Commit it.
2903 */
2904 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, uNewRip));
2905 pCtx->rcx = pCtx->rip + cbInstr;
2906 pCtx->rip = uNewRip;
2907
2908 pCtx->rflags.u &= ~X86_EFL_RF;
2909 pCtx->r11 = pCtx->rflags.u;
2910 pCtx->rflags.u &= ~pCtx->msrSFMASK;
2911 pCtx->rflags.u |= X86_EFL_1;
2912
2913 pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
2914 pCtx->ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
2915 }
2916 else
2917 {
2918 /*
2919 * Commit it.
2920 */
2921 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
2922 pCtx->cs, pCtx->eip, pCtx->eflags.u, uNewCs, (uint32_t)(pCtx->msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
2923 pCtx->rcx = pCtx->eip + cbInstr;
2924 pCtx->rip = pCtx->msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
2925 pCtx->rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
2926
2927 pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
2928 pCtx->ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
2929 }
2930 pCtx->cs.Sel = uNewCs;
2931 pCtx->cs.ValidSel = uNewCs;
2932 pCtx->cs.u64Base = 0;
2933 pCtx->cs.u32Limit = UINT32_MAX;
2934 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2935
2936 pCtx->ss.Sel = uNewSs;
2937 pCtx->ss.ValidSel = uNewSs;
2938 pCtx->ss.u64Base = 0;
2939 pCtx->ss.u32Limit = UINT32_MAX;
2940 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2941
2942 return VINF_SUCCESS;
2943}
2944
2945
2946/**
2947 * Implements SYSRET (AMD and Intel64).
2948 */
2949IEM_CIMPL_DEF_0(iemCImpl_sysret)
2950
2951{
2952 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2953
2954 /*
2955 * Check preconditions.
2956 *
2957 * Note that CPUs described in the documentation may load a few odd values
2958 * into CS and SS than we allow here. This has yet to be checked on real
2959 * hardware.
2960 */
2961 if (!(pCtx->msrEFER & MSR_K6_EFER_SCE))
2962 {
2963 Log(("sysret: Not enabled in EFER -> #UD\n"));
2964 return iemRaiseUndefinedOpcode(pIemCpu);
2965 }
2966 if (IEM_IS_GUEST_CPU_INTEL(pIemCpu) && !CPUMIsGuestInLongModeEx(pCtx))
2967 {
2968 Log(("sysret: Only available in long mode on intel -> #UD\n"));
2969 return iemRaiseUndefinedOpcode(pIemCpu);
2970 }
2971 if (!(pCtx->cr0 & X86_CR0_PE))
2972 {
2973 Log(("sysret: Protected mode is required -> #GP(0)\n"));
2974 return iemRaiseGeneralProtectionFault0(pIemCpu);
2975 }
2976 if (pIemCpu->uCpl != 0)
2977 {
2978 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pIemCpu->uCpl));
2979 return iemRaiseGeneralProtectionFault0(pIemCpu);
2980 }
2981
2982 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
2983 uint16_t uNewCs = (pCtx->msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
2984 uint16_t uNewSs = uNewCs + 8;
2985 if (pIemCpu->enmEffOpSize == IEMMODE_64BIT)
2986 uNewCs += 16;
2987 if (uNewCs == 0 || uNewSs == 0)
2988 {
2989 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
2990 return iemRaiseGeneralProtectionFault0(pIemCpu);
2991 }
2992
2993 /*
2994 * Commit it.
2995 */
2996 if (CPUMIsGuestInLongModeEx(pCtx))
2997 {
2998 if (pIemCpu->enmEffOpSize == IEMMODE_64BIT)
2999 {
3000 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
3001 pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, pCtx->rcx, pCtx->r11));
3002 /* Note! We disregard intel manual regarding the RCX cananonical
3003 check, ask intel+xen why AMD doesn't do it. */
3004 pCtx->rip = pCtx->rcx;
3005 pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
3006 | (3 << X86DESCATTR_DPL_SHIFT);
3007 }
3008 else
3009 {
3010 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
3011 pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, pCtx->ecx, pCtx->r11));
3012 pCtx->rip = pCtx->ecx;
3013 pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
3014 | (3 << X86DESCATTR_DPL_SHIFT);
3015 }
3016 /** @todo testcase: See what kind of flags we can make SYSRET restore and
3017 * what it really ignores. RF and VM are hinted at being zero, by AMD. */
3018 pCtx->rflags.u = pCtx->r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
3019 pCtx->rflags.u |= X86_EFL_1;
3020 }
3021 else
3022 {
3023 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pCtx->cs, pCtx->eip, pCtx->eflags.u, uNewCs, pCtx->ecx));
3024 pCtx->rip = pCtx->rcx;
3025 pCtx->rflags.u |= X86_EFL_IF;
3026 pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
3027 | (3 << X86DESCATTR_DPL_SHIFT);
3028 }
3029 pCtx->cs.Sel = uNewCs | 3;
3030 pCtx->cs.ValidSel = uNewCs | 3;
3031 pCtx->cs.u64Base = 0;
3032 pCtx->cs.u32Limit = UINT32_MAX;
3033 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
3034
3035 pCtx->ss.Sel = uNewSs | 3;
3036 pCtx->ss.ValidSel = uNewSs | 3;
3037 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
3038 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
3039 pCtx->ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
3040 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
3041 * on sysret. */
3042
3043 return VINF_SUCCESS;
3044}
3045
3046
3047/**
3048 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
3049 *
3050 * @param iSegReg The segment register number (valid).
3051 * @param uSel The new selector value.
3052 */
3053IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
3054{
3055 /*PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);*/
3056 uint16_t *pSel = iemSRegRef(pIemCpu, iSegReg);
3057 PCPUMSELREGHID pHid = iemSRegGetHid(pIemCpu, iSegReg);
3058
3059 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
3060
3061 /*
3062 * Real mode and V8086 mode are easy.
3063 */
3064 if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
3065 && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
3066 {
3067 *pSel = uSel;
3068 pHid->u64Base = (uint32_t)uSel << 4;
3069 pHid->ValidSel = uSel;
3070 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3071#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
3072 /** @todo Does the CPU actually load limits and attributes in the
3073 * real/V8086 mode segment load case? It doesn't for CS in far
3074 * jumps... Affects unreal mode. */
3075 pHid->u32Limit = 0xffff;
3076 pHid->Attr.u = 0;
3077 pHid->Attr.n.u1Present = 1;
3078 pHid->Attr.n.u1DescType = 1;
3079 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
3080 ? X86_SEL_TYPE_RW
3081 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
3082#endif
3083 CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_HIDDEN_SEL_REGS);
3084 iemRegAddToRip(pIemCpu, cbInstr);
3085 return VINF_SUCCESS;
3086 }
3087
3088 /*
3089 * Protected mode.
3090 *
3091 * Check if it's a null segment selector value first, that's OK for DS, ES,
3092 * FS and GS. If not null, then we have to load and parse the descriptor.
3093 */
3094 if (!(uSel & X86_SEL_MASK_OFF_RPL))
3095 {
3096 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
3097 if (iSegReg == X86_SREG_SS)
3098 {
3099 /* In 64-bit kernel mode, the stack can be 0 because of the way
3100 interrupts are dispatched. AMD seems to have a slighly more
3101 relaxed relationship to SS.RPL than intel does. */
3102 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
3103 if ( pIemCpu->enmCpuMode != IEMMODE_64BIT
3104 || pIemCpu->uCpl > 2
3105 || ( uSel != pIemCpu->uCpl
3106 && !IEM_IS_GUEST_CPU_AMD(pIemCpu)) )
3107 {
3108 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
3109 return iemRaiseGeneralProtectionFault0(pIemCpu);
3110 }
3111 }
3112
3113 *pSel = uSel; /* Not RPL, remember :-) */
3114 iemHlpLoadNullDataSelectorProt(pHid, uSel);
3115 if (iSegReg == X86_SREG_SS)
3116 pHid->Attr.u |= pIemCpu->uCpl << X86DESCATTR_DPL_SHIFT;
3117
3118 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pHid));
3119 CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_HIDDEN_SEL_REGS);
3120
3121 iemRegAddToRip(pIemCpu, cbInstr);
3122 return VINF_SUCCESS;
3123 }
3124
3125 /* Fetch the descriptor. */
3126 IEMSELDESC Desc;
3127 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
3128 if (rcStrict != VINF_SUCCESS)
3129 return rcStrict;
3130
3131 /* Check GPs first. */
3132 if (!Desc.Legacy.Gen.u1DescType)
3133 {
3134 Log(("load sreg %d - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
3135 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3136 }
3137 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
3138 {
3139 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
3140 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
3141 {
3142 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
3143 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3144 }
3145 if ((uSel & X86_SEL_RPL) != pIemCpu->uCpl)
3146 {
3147 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pIemCpu->uCpl));
3148 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3149 }
3150 if (Desc.Legacy.Gen.u2Dpl != pIemCpu->uCpl)
3151 {
3152 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
3153 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3154 }
3155 }
3156 else
3157 {
3158 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
3159 {
3160 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
3161 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3162 }
3163 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
3164 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
3165 {
3166#if 0 /* this is what intel says. */
3167 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
3168 && pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
3169 {
3170 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
3171 iSegReg, uSel, (uSel & X86_SEL_RPL), pIemCpu->uCpl, Desc.Legacy.Gen.u2Dpl));
3172 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3173 }
3174#else /* this is what makes more sense. */
3175 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
3176 {
3177 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
3178 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
3179 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3180 }
3181 if (pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
3182 {
3183 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
3184 iSegReg, uSel, pIemCpu->uCpl, Desc.Legacy.Gen.u2Dpl));
3185 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3186 }
3187#endif
3188 }
3189 }
3190
3191 /* Is it there? */
3192 if (!Desc.Legacy.Gen.u1Present)
3193 {
3194 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
3195 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel);
3196 }
3197
3198 /* The base and limit. */
3199 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
3200 uint64_t u64Base;
3201 if ( pIemCpu->enmCpuMode == IEMMODE_64BIT
3202 && iSegReg < X86_SREG_FS)
3203 u64Base = 0;
3204 else
3205 u64Base = X86DESC_BASE(&Desc.Legacy);
3206
3207 /*
3208 * Ok, everything checked out fine. Now set the accessed bit before
3209 * committing the result into the registers.
3210 */
3211 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3212 {
3213 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uSel);
3214 if (rcStrict != VINF_SUCCESS)
3215 return rcStrict;
3216 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3217 }
3218
3219 /* commit */
3220 *pSel = uSel;
3221 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
3222 pHid->u32Limit = cbLimit;
3223 pHid->u64Base = u64Base;
3224 pHid->ValidSel = uSel;
3225 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3226
3227 /** @todo check if the hidden bits are loaded correctly for 64-bit
3228 * mode. */
3229 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pHid));
3230
3231 CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_HIDDEN_SEL_REGS);
3232 iemRegAddToRip(pIemCpu, cbInstr);
3233 return VINF_SUCCESS;
3234}
3235
3236
3237/**
3238 * Implements 'mov SReg, r/m'.
3239 *
3240 * @param iSegReg The segment register number (valid).
3241 * @param uSel The new selector value.
3242 */
3243IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
3244{
3245 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
3246 if (rcStrict == VINF_SUCCESS)
3247 {
3248 if (iSegReg == X86_SREG_SS)
3249 {
3250 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3251 EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
3252 }
3253 }
3254 return rcStrict;
3255}
3256
3257
3258/**
3259 * Implements 'pop SReg'.
3260 *
3261 * @param iSegReg The segment register number (valid).
3262 * @param enmEffOpSize The efficient operand size (valid).
3263 */
3264IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
3265{
3266 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3267 VBOXSTRICTRC rcStrict;
3268
3269 /*
3270 * Read the selector off the stack and join paths with mov ss, reg.
3271 */
3272 RTUINT64U TmpRsp;
3273 TmpRsp.u = pCtx->rsp;
3274 switch (enmEffOpSize)
3275 {
3276 case IEMMODE_16BIT:
3277 {
3278 uint16_t uSel;
3279 rcStrict = iemMemStackPopU16Ex(pIemCpu, &uSel, &TmpRsp);
3280 if (rcStrict == VINF_SUCCESS)
3281 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
3282 break;
3283 }
3284
3285 case IEMMODE_32BIT:
3286 {
3287 uint32_t u32Value;
3288 rcStrict = iemMemStackPopU32Ex(pIemCpu, &u32Value, &TmpRsp);
3289 if (rcStrict == VINF_SUCCESS)
3290 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
3291 break;
3292 }
3293
3294 case IEMMODE_64BIT:
3295 {
3296 uint64_t u64Value;
3297 rcStrict = iemMemStackPopU64Ex(pIemCpu, &u64Value, &TmpRsp);
3298 if (rcStrict == VINF_SUCCESS)
3299 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
3300 break;
3301 }
3302 IEM_NOT_REACHED_DEFAULT_CASE_RET();
3303 }
3304
3305 /*
3306 * Commit the stack on success.
3307 */
3308 if (rcStrict == VINF_SUCCESS)
3309 {
3310 pCtx->rsp = TmpRsp.u;
3311 if (iSegReg == X86_SREG_SS)
3312 EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
3313 }
3314 return rcStrict;
3315}
3316
3317
3318/**
3319 * Implements lgs, lfs, les, lds & lss.
3320 */
3321IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
3322 uint16_t, uSel,
3323 uint64_t, offSeg,
3324 uint8_t, iSegReg,
3325 uint8_t, iGReg,
3326 IEMMODE, enmEffOpSize)
3327{
3328 /*PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);*/
3329 VBOXSTRICTRC rcStrict;
3330
3331 /*
3332 * Use iemCImpl_LoadSReg to do the tricky segment register loading.
3333 */
3334 /** @todo verify and test that mov, pop and lXs works the segment
3335 * register loading in the exact same way. */
3336 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
3337 if (rcStrict == VINF_SUCCESS)
3338 {
3339 switch (enmEffOpSize)
3340 {
3341 case IEMMODE_16BIT:
3342 *(uint16_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
3343 break;
3344 case IEMMODE_32BIT:
3345 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
3346 break;
3347 case IEMMODE_64BIT:
3348 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
3349 break;
3350 IEM_NOT_REACHED_DEFAULT_CASE_RET();
3351 }
3352 }
3353
3354 return rcStrict;
3355}
3356
3357
3358/**
3359 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
3360 *
3361 * @retval VINF_SUCCESS on success.
3362 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
3363 * @retval iemMemFetchSysU64 return value.
3364 *
3365 * @param pIemCpu The IEM state of the calling EMT.
3366 * @param uSel The selector value.
3367 * @param fAllowSysDesc Whether system descriptors are OK or not.
3368 * @param pDesc Where to return the descriptor on success.
3369 */
3370static VBOXSTRICTRC iemCImpl_LoadDescHelper(PIEMCPU pIemCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
3371{
3372 pDesc->Long.au64[0] = 0;
3373 pDesc->Long.au64[1] = 0;
3374
3375 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
3376 return VINF_IEM_SELECTOR_NOT_OK;
3377
3378 /* Within the table limits? */
3379 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3380 RTGCPTR GCPtrBase;
3381 if (uSel & X86_SEL_LDT)
3382 {
3383 if ( !pCtx->ldtr.Attr.n.u1Present
3384 || (uSel | X86_SEL_RPL_LDT) > pCtx->ldtr.u32Limit )
3385 return VINF_IEM_SELECTOR_NOT_OK;
3386 GCPtrBase = pCtx->ldtr.u64Base;
3387 }
3388 else
3389 {
3390 if ((uSel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
3391 return VINF_IEM_SELECTOR_NOT_OK;
3392 GCPtrBase = pCtx->gdtr.pGdt;
3393 }
3394
3395 /* Fetch the descriptor. */
3396 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pIemCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
3397 if (rcStrict != VINF_SUCCESS)
3398 return rcStrict;
3399 if (!pDesc->Legacy.Gen.u1DescType)
3400 {
3401 if (!fAllowSysDesc)
3402 return VINF_IEM_SELECTOR_NOT_OK;
3403 if (CPUMIsGuestInLongModeEx(pCtx))
3404 {
3405 rcStrict = iemMemFetchSysU64(pIemCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
3406 if (rcStrict != VINF_SUCCESS)
3407 return rcStrict;
3408 }
3409
3410 }
3411
3412 return VINF_SUCCESS;
3413}
3414
3415
3416/**
3417 * Implements verr (fWrite = false) and verw (fWrite = true).
3418 */
3419IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
3420{
3421 Assert(!IEM_IS_REAL_OR_V86_MODE(pIemCpu));
3422
3423 /** @todo figure whether the accessed bit is set or not. */
3424
3425 bool fAccessible = true;
3426 IEMSELDESC Desc;
3427 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pIemCpu, uSel, false /*fAllowSysDesc*/, &Desc);
3428 if (rcStrict == VINF_SUCCESS)
3429 {
3430 /* Check the descriptor, order doesn't matter much here. */
3431 if ( !Desc.Legacy.Gen.u1DescType
3432 || !Desc.Legacy.Gen.u1Present)
3433 fAccessible = false;
3434 else
3435 {
3436 if ( fWrite
3437 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
3438 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
3439 fAccessible = false;
3440
3441 /** @todo testcase for the conforming behavior. */
3442 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
3443 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
3444 {
3445 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
3446 fAccessible = false;
3447 else if (pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
3448 fAccessible = false;
3449 }
3450 }
3451
3452 }
3453 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
3454 fAccessible = false;
3455 else
3456 return rcStrict;
3457
3458 /* commit */
3459 pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1ZF = fAccessible;
3460
3461 iemRegAddToRip(pIemCpu, cbInstr);
3462 return VINF_SUCCESS;
3463}
3464
3465
3466/**
3467 * Implements LAR and LSL with 64-bit operand size.
3468 *
3469 * @returns VINF_SUCCESS.
3470 * @param pu16Dst Pointer to the destination register.
3471 * @param uSel The selector to load details for.
3472 * @param pEFlags Pointer to the eflags register.
3473 * @param fIsLar true = LAR, false = LSL.
3474 */
3475IEM_CIMPL_DEF_4(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, uint32_t *, pEFlags, bool, fIsLar)
3476{
3477 Assert(!IEM_IS_REAL_OR_V86_MODE(pIemCpu));
3478
3479 /** @todo figure whether the accessed bit is set or not. */
3480
3481 bool fDescOk = true;
3482 IEMSELDESC Desc;
3483 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pIemCpu, uSel, false /*fAllowSysDesc*/, &Desc);
3484 if (rcStrict == VINF_SUCCESS)
3485 {
3486 /*
3487 * Check the descriptor type.
3488 */
3489 if (!Desc.Legacy.Gen.u1DescType)
3490 {
3491 if (CPUMIsGuestInLongModeEx(pIemCpu->CTX_SUFF(pCtx)))
3492 {
3493 if (Desc.Long.Gen.u5Zeros)
3494 fDescOk = false;
3495 else
3496 switch (Desc.Long.Gen.u4Type)
3497 {
3498 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
3499 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
3500 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
3501 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
3502 break;
3503 case AMD64_SEL_TYPE_SYS_CALL_GATE:
3504 fDescOk = fIsLar;
3505 break;
3506 default:
3507 fDescOk = false;
3508 break;
3509 }
3510 }
3511 else
3512 {
3513 switch (Desc.Long.Gen.u4Type)
3514 {
3515 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
3516 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
3517 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
3518 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
3519 case X86_SEL_TYPE_SYS_LDT:
3520 break;
3521 case X86_SEL_TYPE_SYS_286_CALL_GATE:
3522 case X86_SEL_TYPE_SYS_TASK_GATE:
3523 case X86_SEL_TYPE_SYS_386_CALL_GATE:
3524 fDescOk = fIsLar;
3525 break;
3526 default:
3527 fDescOk = false;
3528 break;
3529 }
3530 }
3531 }
3532 if (fDescOk)
3533 {
3534 /*
3535 * Check the RPL/DPL/CPL interaction..
3536 */
3537 /** @todo testcase for the conforming behavior. */
3538 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
3539 || !Desc.Legacy.Gen.u1DescType)
3540 {
3541 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
3542 fDescOk = false;
3543 else if (pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
3544 fDescOk = false;
3545 }
3546 }
3547
3548 if (fDescOk)
3549 {
3550 /*
3551 * All fine, start committing the result.
3552 */
3553 if (fIsLar)
3554 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
3555 else
3556 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
3557 }
3558
3559 }
3560 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
3561 fDescOk = false;
3562 else
3563 return rcStrict;
3564
3565 /* commit flags value and advance rip. */
3566 pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1ZF = fDescOk;
3567 iemRegAddToRip(pIemCpu, cbInstr);
3568
3569 return VINF_SUCCESS;
3570}
3571
3572
3573/**
3574 * Implements LAR and LSL with 16-bit operand size.
3575 *
3576 * @returns VINF_SUCCESS.
3577 * @param pu16Dst Pointer to the destination register.
3578 * @param u16Sel The selector to load details for.
3579 * @param pEFlags Pointer to the eflags register.
3580 * @param fIsLar true = LAR, false = LSL.
3581 */
3582IEM_CIMPL_DEF_4(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, uint32_t *, pEFlags, bool, fIsLar)
3583{
3584 uint64_t u64TmpDst = *pu16Dst;
3585 IEM_CIMPL_CALL_4(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, pEFlags, fIsLar);
3586 *pu16Dst = (uint16_t)u64TmpDst;
3587 return VINF_SUCCESS;
3588}
3589
3590
3591/**
3592 * Implements lgdt.
3593 *
3594 * @param iEffSeg The segment of the new gdtr contents
3595 * @param GCPtrEffSrc The address of the new gdtr contents.
3596 * @param enmEffOpSize The effective operand size.
3597 */
3598IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
3599{
3600 if (pIemCpu->uCpl != 0)
3601 return iemRaiseGeneralProtectionFault0(pIemCpu);
3602 Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
3603
3604 /*
3605 * Fetch the limit and base address.
3606 */
3607 uint16_t cbLimit;
3608 RTGCPTR GCPtrBase;
3609 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pIemCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
3610 if (rcStrict == VINF_SUCCESS)
3611 {
3612 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
3613 rcStrict = CPUMSetGuestGDTR(IEMCPU_TO_VMCPU(pIemCpu), GCPtrBase, cbLimit);
3614 else
3615 {
3616 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3617 pCtx->gdtr.cbGdt = cbLimit;
3618 pCtx->gdtr.pGdt = GCPtrBase;
3619 }
3620 if (rcStrict == VINF_SUCCESS)
3621 iemRegAddToRip(pIemCpu, cbInstr);
3622 }
3623 return rcStrict;
3624}
3625
3626
3627/**
3628 * Implements sgdt.
3629 *
3630 * @param iEffSeg The segment where to store the gdtr content.
3631 * @param GCPtrEffDst The address where to store the gdtr content.
3632 * @param enmEffOpSize The effective operand size.
3633 */
3634IEM_CIMPL_DEF_3(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, IEMMODE, enmEffOpSize)
3635{
3636 /*
3637 * Join paths with sidt.
3638 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
3639 * you really must know.
3640 */
3641 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3642 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pIemCpu, pCtx->gdtr.cbGdt, pCtx->gdtr.pGdt, iEffSeg, GCPtrEffDst, enmEffOpSize);
3643 if (rcStrict == VINF_SUCCESS)
3644 iemRegAddToRip(pIemCpu, cbInstr);
3645 return rcStrict;
3646}
3647
3648
3649/**
3650 * Implements lidt.
3651 *
3652 * @param iEffSeg The segment of the new idtr contents
3653 * @param GCPtrEffSrc The address of the new idtr contents.
3654 * @param enmEffOpSize The effective operand size.
3655 */
3656IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
3657{
3658 if (pIemCpu->uCpl != 0)
3659 return iemRaiseGeneralProtectionFault0(pIemCpu);
3660 Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
3661
3662 /*
3663 * Fetch the limit and base address.
3664 */
3665 uint16_t cbLimit;
3666 RTGCPTR GCPtrBase;
3667 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pIemCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
3668 if (rcStrict == VINF_SUCCESS)
3669 {
3670 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
3671 CPUMSetGuestIDTR(IEMCPU_TO_VMCPU(pIemCpu), GCPtrBase, cbLimit);
3672 else
3673 {
3674 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3675 pCtx->idtr.cbIdt = cbLimit;
3676 pCtx->idtr.pIdt = GCPtrBase;
3677 }
3678 iemRegAddToRip(pIemCpu, cbInstr);
3679 }
3680 return rcStrict;
3681}
3682
3683
3684/**
3685 * Implements sidt.
3686 *
3687 * @param iEffSeg The segment where to store the idtr content.
3688 * @param GCPtrEffDst The address where to store the idtr content.
3689 * @param enmEffOpSize The effective operand size.
3690 */
3691IEM_CIMPL_DEF_3(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, IEMMODE, enmEffOpSize)
3692{
3693 /*
3694 * Join paths with sgdt.
3695 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
3696 * you really must know.
3697 */
3698 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3699 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pIemCpu, pCtx->idtr.cbIdt, pCtx->idtr.pIdt, iEffSeg, GCPtrEffDst, enmEffOpSize);
3700 if (rcStrict == VINF_SUCCESS)
3701 iemRegAddToRip(pIemCpu, cbInstr);
3702 return rcStrict;
3703}
3704
3705
3706/**
3707 * Implements lldt.
3708 *
3709 * @param uNewLdt The new LDT selector value.
3710 */
3711IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
3712{
3713 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3714
3715 /*
3716 * Check preconditions.
3717 */
3718 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
3719 {
3720 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
3721 return iemRaiseUndefinedOpcode(pIemCpu);
3722 }
3723 if (pIemCpu->uCpl != 0)
3724 {
3725 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pIemCpu->uCpl));
3726 return iemRaiseGeneralProtectionFault0(pIemCpu);
3727 }
3728 if (uNewLdt & X86_SEL_LDT)
3729 {
3730 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
3731 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewLdt);
3732 }
3733
3734 /*
3735 * Now, loading a NULL selector is easy.
3736 */
3737 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
3738 {
3739 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
3740 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
3741 CPUMSetGuestLDTR(IEMCPU_TO_VMCPU(pIemCpu), uNewLdt);
3742 else
3743 pCtx->ldtr.Sel = uNewLdt;
3744 pCtx->ldtr.ValidSel = uNewLdt;
3745 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3746 pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE;
3747 if (!IEM_IS_GUEST_CPU_AMD(pIemCpu) || !IEM_VERIFICATION_ENABLED(pIemCpu)) /* See bs-cpu-hidden-regs-1 on AMD. */
3748 {
3749 pCtx->ldtr.u64Base = 0;
3750 pCtx->ldtr.u32Limit = 0;
3751 }
3752
3753 iemRegAddToRip(pIemCpu, cbInstr);
3754 return VINF_SUCCESS;
3755 }
3756
3757 /*
3758 * Read the descriptor.
3759 */
3760 IEMSELDESC Desc;
3761 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
3762 if (rcStrict != VINF_SUCCESS)
3763 return rcStrict;
3764
3765 /* Check GPs first. */
3766 if (Desc.Legacy.Gen.u1DescType)
3767 {
3768 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
3769 return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
3770 }
3771 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
3772 {
3773 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
3774 return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
3775 }
3776 uint64_t u64Base;
3777 if (!IEM_IS_LONG_MODE(pIemCpu))
3778 u64Base = X86DESC_BASE(&Desc.Legacy);
3779 else
3780 {
3781 if (Desc.Long.Gen.u5Zeros)
3782 {
3783 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
3784 return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
3785 }
3786
3787 u64Base = X86DESC64_BASE(&Desc.Long);
3788 if (!IEM_IS_CANONICAL(u64Base))
3789 {
3790 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
3791 return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
3792 }
3793 }
3794
3795 /* NP */
3796 if (!Desc.Legacy.Gen.u1Present)
3797 {
3798 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
3799 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewLdt);
3800 }
3801
3802 /*
3803 * It checks out alright, update the registers.
3804 */
3805/** @todo check if the actual value is loaded or if the RPL is dropped */
3806 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
3807 CPUMSetGuestLDTR(IEMCPU_TO_VMCPU(pIemCpu), uNewLdt & X86_SEL_MASK_OFF_RPL);
3808 else
3809 pCtx->ldtr.Sel = uNewLdt & X86_SEL_MASK_OFF_RPL;
3810 pCtx->ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
3811 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3812 pCtx->ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
3813 pCtx->ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
3814 pCtx->ldtr.u64Base = u64Base;
3815
3816 iemRegAddToRip(pIemCpu, cbInstr);
3817 return VINF_SUCCESS;
3818}
3819
3820
3821/**
3822 * Implements lldt.
3823 *
3824 * @param uNewLdt The new LDT selector value.
3825 */
3826IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
3827{
3828 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3829
3830 /*
3831 * Check preconditions.
3832 */
3833 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
3834 {
3835 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
3836 return iemRaiseUndefinedOpcode(pIemCpu);
3837 }
3838 if (pIemCpu->uCpl != 0)
3839 {
3840 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pIemCpu->uCpl));
3841 return iemRaiseGeneralProtectionFault0(pIemCpu);
3842 }
3843 if (uNewTr & X86_SEL_LDT)
3844 {
3845 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
3846 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewTr);
3847 }
3848 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
3849 {
3850 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
3851 return iemRaiseGeneralProtectionFault0(pIemCpu);
3852 }
3853
3854 /*
3855 * Read the descriptor.
3856 */
3857 IEMSELDESC Desc;
3858 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
3859 if (rcStrict != VINF_SUCCESS)
3860 return rcStrict;
3861
3862 /* Check GPs first. */
3863 if (Desc.Legacy.Gen.u1DescType)
3864 {
3865 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
3866 return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
3867 }
3868 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
3869 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
3870 || IEM_IS_LONG_MODE(pIemCpu)) )
3871 {
3872 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
3873 return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
3874 }
3875 uint64_t u64Base;
3876 if (!IEM_IS_LONG_MODE(pIemCpu))
3877 u64Base = X86DESC_BASE(&Desc.Legacy);
3878 else
3879 {
3880 if (Desc.Long.Gen.u5Zeros)
3881 {
3882 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
3883 return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
3884 }
3885
3886 u64Base = X86DESC64_BASE(&Desc.Long);
3887 if (!IEM_IS_CANONICAL(u64Base))
3888 {
3889 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
3890 return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
3891 }
3892 }
3893
3894 /* NP */
3895 if (!Desc.Legacy.Gen.u1Present)
3896 {
3897 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
3898 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewTr);
3899 }
3900
3901 /*
3902 * Set it busy.
3903 * Note! Intel says this should lock down the whole descriptor, but we'll
3904 * restrict our selves to 32-bit for now due to lack of inline
3905 * assembly and such.
3906 */
3907 void *pvDesc;
3908 rcStrict = iemMemMap(pIemCpu, &pvDesc, 8, UINT8_MAX, pCtx->gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
3909 if (rcStrict != VINF_SUCCESS)
3910 return rcStrict;
3911 switch ((uintptr_t)pvDesc & 3)
3912 {
3913 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
3914 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
3915 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
3916 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
3917 }
3918 rcStrict = iemMemCommitAndUnmap(pIemCpu, pvDesc, IEM_ACCESS_DATA_RW);
3919 if (rcStrict != VINF_SUCCESS)
3920 return rcStrict;
3921 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
3922
3923 /*
3924 * It checks out alright, update the registers.
3925 */
3926/** @todo check if the actual value is loaded or if the RPL is dropped */
3927 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
3928 CPUMSetGuestTR(IEMCPU_TO_VMCPU(pIemCpu), uNewTr & X86_SEL_MASK_OFF_RPL);
3929 else
3930 pCtx->tr.Sel = uNewTr & X86_SEL_MASK_OFF_RPL;
3931 pCtx->tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
3932 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
3933 pCtx->tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
3934 pCtx->tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
3935 pCtx->tr.u64Base = u64Base;
3936
3937 iemRegAddToRip(pIemCpu, cbInstr);
3938 return VINF_SUCCESS;
3939}
3940
3941
3942/**
3943 * Implements mov GReg,CRx.
3944 *
3945 * @param iGReg The general register to store the CRx value in.
3946 * @param iCrReg The CRx register to read (valid).
3947 */
3948IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
3949{
3950 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3951 if (pIemCpu->uCpl != 0)
3952 return iemRaiseGeneralProtectionFault0(pIemCpu);
3953 Assert(!pCtx->eflags.Bits.u1VM);
3954
3955 /* read it */
3956 uint64_t crX;
3957 switch (iCrReg)
3958 {
3959 case 0: crX = pCtx->cr0; break;
3960 case 2: crX = pCtx->cr2; break;
3961 case 3: crX = pCtx->cr3; break;
3962 case 4: crX = pCtx->cr4; break;
3963 case 8:
3964 {
3965 uint8_t uTpr;
3966 int rc = PDMApicGetTPR(IEMCPU_TO_VMCPU(pIemCpu), &uTpr, NULL, NULL);
3967 if (RT_SUCCESS(rc))
3968 crX = uTpr >> 4;
3969 else
3970 crX = 0;
3971 break;
3972 }
3973 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
3974 }
3975
3976 /* store it */
3977 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
3978 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = crX;
3979 else
3980 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = (uint32_t)crX;
3981
3982 iemRegAddToRip(pIemCpu, cbInstr);
3983 return VINF_SUCCESS;
3984}
3985
3986
3987/**
3988 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
3989 *
3990 * @param iCrReg The CRx register to write (valid).
3991 * @param uNewCrX The new value.
3992 */
3993IEM_CIMPL_DEF_2(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX)
3994{
3995 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3996 PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
3997 VBOXSTRICTRC rcStrict;
3998 int rc;
3999
4000 /*
4001 * Try store it.
4002 * Unfortunately, CPUM only does a tiny bit of the work.
4003 */
4004 switch (iCrReg)
4005 {
4006 case 0:
4007 {
4008 /*
4009 * Perform checks.
4010 */
4011 uint64_t const uOldCrX = pCtx->cr0;
4012 uNewCrX |= X86_CR0_ET; /* hardcoded */
4013
4014 /* Check for reserved bits. */
4015 uint32_t const fValid = X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS
4016 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM
4017 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG;
4018 if (uNewCrX & ~(uint64_t)fValid)
4019 {
4020 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
4021 return iemRaiseGeneralProtectionFault0(pIemCpu);
4022 }
4023
4024 /* Check for invalid combinations. */
4025 if ( (uNewCrX & X86_CR0_PG)
4026 && !(uNewCrX & X86_CR0_PE) )
4027 {
4028 Log(("Trying to set CR0.PG without CR0.PE\n"));
4029 return iemRaiseGeneralProtectionFault0(pIemCpu);
4030 }
4031
4032 if ( !(uNewCrX & X86_CR0_CD)
4033 && (uNewCrX & X86_CR0_NW) )
4034 {
4035 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
4036 return iemRaiseGeneralProtectionFault0(pIemCpu);
4037 }
4038
4039 /* Long mode consistency checks. */
4040 if ( (uNewCrX & X86_CR0_PG)
4041 && !(uOldCrX & X86_CR0_PG)
4042 && (pCtx->msrEFER & MSR_K6_EFER_LME) )
4043 {
4044 if (!(pCtx->cr4 & X86_CR4_PAE))
4045 {
4046 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
4047 return iemRaiseGeneralProtectionFault0(pIemCpu);
4048 }
4049 if (pCtx->cs.Attr.n.u1Long)
4050 {
4051 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
4052 return iemRaiseGeneralProtectionFault0(pIemCpu);
4053 }
4054 }
4055
4056 /** @todo check reserved PDPTR bits as AMD states. */
4057
4058 /*
4059 * Change CR0.
4060 */
4061 if (!IEM_VERIFICATION_ENABLED(pIemCpu))
4062 CPUMSetGuestCR0(pVCpu, uNewCrX);
4063 else
4064 pCtx->cr0 = uNewCrX;
4065 Assert(pCtx->cr0 == uNewCrX);
4066
4067 /*
4068 * Change EFER.LMA if entering or leaving long mode.
4069 */
4070 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
4071 && (pCtx->msrEFER & MSR_K6_EFER_LME) )
4072 {
4073 uint64_t NewEFER = pCtx->msrEFER;
4074 if (uNewCrX & X86_CR0_PG)
4075 NewEFER |= MSR_K6_EFER_LMA;
4076 else
4077 NewEFER &= ~MSR_K6_EFER_LMA;
4078
4079 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4080 CPUMSetGuestEFER(pVCpu, NewEFER);
4081 else
4082 pCtx->msrEFER = NewEFER;
4083 Assert(pCtx->msrEFER == NewEFER);
4084 }
4085
4086 /*
4087 * Inform PGM.
4088 */
4089 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4090 {
4091 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
4092 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
4093 {
4094 rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
4095 AssertRCReturn(rc, rc);
4096 /* ignore informational status codes */
4097 }
4098 rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
4099 }
4100 else
4101 rcStrict = VINF_SUCCESS;
4102
4103#ifdef IN_RC
4104 /* Return to ring-3 for rescheduling if WP or AM changes. */
4105 if ( rcStrict == VINF_SUCCESS
4106 && ( (uNewCrX & (X86_CR0_WP | X86_CR0_AM))
4107 != (uOldCrX & (X86_CR0_WP | X86_CR0_AM))) )
4108 rcStrict = VINF_EM_RESCHEDULE;
4109#endif
4110 break;
4111 }
4112
4113 /*
4114 * CR2 can be changed without any restrictions.
4115 */
4116 case 2:
4117 pCtx->cr2 = uNewCrX;
4118 rcStrict = VINF_SUCCESS;
4119 break;
4120
4121 /*
4122 * CR3 is relatively simple, although AMD and Intel have different
4123 * accounts of how setting reserved bits are handled. We take intel's
4124 * word for the lower bits and AMD's for the high bits (63:52).
4125 */
4126 /** @todo Testcase: Setting reserved bits in CR3, especially before
4127 * enabling paging. */
4128 case 3:
4129 {
4130 /* check / mask the value. */
4131 if (uNewCrX & UINT64_C(0xfff0000000000000))
4132 {
4133 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
4134 return iemRaiseGeneralProtectionFault0(pIemCpu);
4135 }
4136
4137 uint64_t fValid;
4138 if ( (pCtx->cr4 & X86_CR4_PAE)
4139 && (pCtx->msrEFER & MSR_K6_EFER_LME))
4140 fValid = UINT64_C(0x000ffffffffff014);
4141 else if (pCtx->cr4 & X86_CR4_PAE)
4142 fValid = UINT64_C(0xfffffff4);
4143 else
4144 fValid = UINT64_C(0xfffff014);
4145 if (uNewCrX & ~fValid)
4146 {
4147 Log(("Automatically clearing reserved bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
4148 uNewCrX, uNewCrX & ~fValid));
4149 uNewCrX &= fValid;
4150 }
4151
4152 /** @todo If we're in PAE mode we should check the PDPTRs for
4153 * invalid bits. */
4154
4155 /* Make the change. */
4156 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4157 {
4158 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
4159 AssertRCSuccessReturn(rc, rc);
4160 }
4161 else
4162 pCtx->cr3 = uNewCrX;
4163
4164 /* Inform PGM. */
4165 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4166 {
4167 if (pCtx->cr0 & X86_CR0_PG)
4168 {
4169 rc = PGMFlushTLB(pVCpu, pCtx->cr3, !(pCtx->cr4 & X86_CR4_PGE));
4170 AssertRCReturn(rc, rc);
4171 /* ignore informational status codes */
4172 }
4173 }
4174 rcStrict = VINF_SUCCESS;
4175 break;
4176 }
4177
4178 /*
4179 * CR4 is a bit more tedious as there are bits which cannot be cleared
4180 * under some circumstances and such.
4181 */
4182 case 4:
4183 {
4184 uint64_t const uOldCrX = pCtx->cr4;
4185
4186 /* reserved bits */
4187 uint32_t fValid = X86_CR4_VME | X86_CR4_PVI
4188 | X86_CR4_TSD | X86_CR4_DE
4189 | X86_CR4_PSE | X86_CR4_PAE
4190 | X86_CR4_MCE | X86_CR4_PGE
4191 | X86_CR4_PCE | X86_CR4_OSFSXR
4192 | X86_CR4_OSXMMEEXCPT;
4193 //if (xxx)
4194 // fValid |= X86_CR4_VMXE;
4195 //if (xxx)
4196 // fValid |= X86_CR4_OSXSAVE;
4197 if (uNewCrX & ~(uint64_t)fValid)
4198 {
4199 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
4200 return iemRaiseGeneralProtectionFault0(pIemCpu);
4201 }
4202
4203 /* long mode checks. */
4204 if ( (uOldCrX & X86_CR4_PAE)
4205 && !(uNewCrX & X86_CR4_PAE)
4206 && CPUMIsGuestInLongModeEx(pCtx) )
4207 {
4208 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
4209 return iemRaiseGeneralProtectionFault0(pIemCpu);
4210 }
4211
4212
4213 /*
4214 * Change it.
4215 */
4216 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4217 {
4218 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
4219 AssertRCSuccessReturn(rc, rc);
4220 }
4221 else
4222 pCtx->cr4 = uNewCrX;
4223 Assert(pCtx->cr4 == uNewCrX);
4224
4225 /*
4226 * Notify SELM and PGM.
4227 */
4228 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4229 {
4230 /* SELM - VME may change things wrt to the TSS shadowing. */
4231 if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
4232 {
4233 Log(("iemCImpl_load_CrX: VME %d -> %d => Setting VMCPU_FF_SELM_SYNC_TSS\n",
4234 RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) ));
4235#ifdef VBOX_WITH_RAW_MODE
4236 if (!HMIsEnabled(IEMCPU_TO_VM(pIemCpu)))
4237 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
4238#endif
4239 }
4240
4241 /* PGM - flushing and mode. */
4242 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE))
4243 {
4244 rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
4245 AssertRCReturn(rc, rc);
4246 /* ignore informational status codes */
4247 }
4248 rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
4249 }
4250 else
4251 rcStrict = VINF_SUCCESS;
4252 break;
4253 }
4254
4255 /*
4256 * CR8 maps to the APIC TPR.
4257 */
4258 case 8:
4259 if (uNewCrX & ~(uint64_t)0xf)
4260 {
4261 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
4262 return iemRaiseGeneralProtectionFault0(pIemCpu);
4263 }
4264
4265 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4266 PDMApicSetTPR(IEMCPU_TO_VMCPU(pIemCpu), (uint8_t)uNewCrX << 4);
4267 rcStrict = VINF_SUCCESS;
4268 break;
4269
4270 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
4271 }
4272
4273 /*
4274 * Advance the RIP on success.
4275 */
4276 if (RT_SUCCESS(rcStrict))
4277 {
4278 if (rcStrict != VINF_SUCCESS)
4279 rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
4280 iemRegAddToRip(pIemCpu, cbInstr);
4281 }
4282
4283 return rcStrict;
4284}
4285
4286
4287/**
4288 * Implements mov CRx,GReg.
4289 *
4290 * @param iCrReg The CRx register to write (valid).
4291 * @param iGReg The general register to load the DRx value from.
4292 */
4293IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
4294{
4295 if (pIemCpu->uCpl != 0)
4296 return iemRaiseGeneralProtectionFault0(pIemCpu);
4297 Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
4298
4299 /*
4300 * Read the new value from the source register and call common worker.
4301 */
4302 uint64_t uNewCrX;
4303 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
4304 uNewCrX = iemGRegFetchU64(pIemCpu, iGReg);
4305 else
4306 uNewCrX = iemGRegFetchU32(pIemCpu, iGReg);
4307 return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, iCrReg, uNewCrX);
4308}
4309
4310
4311/**
4312 * Implements 'LMSW r/m16'
4313 *
4314 * @param u16NewMsw The new value.
4315 */
4316IEM_CIMPL_DEF_1(iemCImpl_lmsw, uint16_t, u16NewMsw)
4317{
4318 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4319
4320 if (pIemCpu->uCpl != 0)
4321 return iemRaiseGeneralProtectionFault0(pIemCpu);
4322 Assert(!pCtx->eflags.Bits.u1VM);
4323
4324 /*
4325 * Compose the new CR0 value and call common worker.
4326 */
4327 uint64_t uNewCr0 = pCtx->cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
4328 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
4329 return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0);
4330}
4331
4332
4333/**
4334 * Implements 'CLTS'.
4335 */
4336IEM_CIMPL_DEF_0(iemCImpl_clts)
4337{
4338 if (pIemCpu->uCpl != 0)
4339 return iemRaiseGeneralProtectionFault0(pIemCpu);
4340
4341 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4342 uint64_t uNewCr0 = pCtx->cr0;
4343 uNewCr0 &= ~X86_CR0_TS;
4344 return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0);
4345}
4346
4347
4348/**
4349 * Implements mov GReg,DRx.
4350 *
4351 * @param iGReg The general register to store the DRx value in.
4352 * @param iDrReg The DRx register to read (0-7).
4353 */
4354IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
4355{
4356 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4357
4358 /*
4359 * Check preconditions.
4360 */
4361
4362 /* Raise GPs. */
4363 if (pIemCpu->uCpl != 0)
4364 return iemRaiseGeneralProtectionFault0(pIemCpu);
4365 Assert(!pCtx->eflags.Bits.u1VM);
4366
4367 if ( (iDrReg == 4 || iDrReg == 5)
4368 && (pCtx->cr4 & X86_CR4_DE) )
4369 {
4370 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
4371 return iemRaiseGeneralProtectionFault0(pIemCpu);
4372 }
4373
4374 /* Raise #DB if general access detect is enabled. */
4375 if (pCtx->dr[7] & X86_DR7_GD)
4376 {
4377 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
4378 return iemRaiseDebugException(pIemCpu);
4379 }
4380
4381 /*
4382 * Read the debug register and store it in the specified general register.
4383 */
4384 uint64_t drX;
4385 switch (iDrReg)
4386 {
4387 case 0: drX = pCtx->dr[0]; break;
4388 case 1: drX = pCtx->dr[1]; break;
4389 case 2: drX = pCtx->dr[2]; break;
4390 case 3: drX = pCtx->dr[3]; break;
4391 case 6:
4392 case 4:
4393 drX = pCtx->dr[6];
4394 drX |= X86_DR6_RA1_MASK;
4395 drX &= ~X86_DR6_RAZ_MASK;
4396 break;
4397 case 7:
4398 case 5:
4399 drX = pCtx->dr[7];
4400 drX |=X86_DR7_RA1_MASK;
4401 drX &= ~X86_DR7_RAZ_MASK;
4402 break;
4403 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
4404 }
4405
4406 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
4407 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = drX;
4408 else
4409 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = (uint32_t)drX;
4410
4411 iemRegAddToRip(pIemCpu, cbInstr);
4412 return VINF_SUCCESS;
4413}
4414
4415
4416/**
4417 * Implements mov DRx,GReg.
4418 *
4419 * @param iDrReg The DRx register to write (valid).
4420 * @param iGReg The general register to load the DRx value from.
4421 */
4422IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
4423{
4424 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4425
4426 /*
4427 * Check preconditions.
4428 */
4429 if (pIemCpu->uCpl != 0)
4430 return iemRaiseGeneralProtectionFault0(pIemCpu);
4431 Assert(!pCtx->eflags.Bits.u1VM);
4432
4433 if (iDrReg == 4 || iDrReg == 5)
4434 {
4435 if (pCtx->cr4 & X86_CR4_DE)
4436 {
4437 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
4438 return iemRaiseGeneralProtectionFault0(pIemCpu);
4439 }
4440 iDrReg += 2;
4441 }
4442
4443 /* Raise #DB if general access detect is enabled. */
4444 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
4445 * \#GP? */
4446 if (pCtx->dr[7] & X86_DR7_GD)
4447 {
4448 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
4449 return iemRaiseDebugException(pIemCpu);
4450 }
4451
4452 /*
4453 * Read the new value from the source register.
4454 */
4455 uint64_t uNewDrX;
4456 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
4457 uNewDrX = iemGRegFetchU64(pIemCpu, iGReg);
4458 else
4459 uNewDrX = iemGRegFetchU32(pIemCpu, iGReg);
4460
4461 /*
4462 * Adjust it.
4463 */
4464 switch (iDrReg)
4465 {
4466 case 0:
4467 case 1:
4468 case 2:
4469 case 3:
4470 /* nothing to adjust */
4471 break;
4472
4473 case 6:
4474 if (uNewDrX & X86_DR6_MBZ_MASK)
4475 {
4476 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
4477 return iemRaiseGeneralProtectionFault0(pIemCpu);
4478 }
4479 uNewDrX |= X86_DR6_RA1_MASK;
4480 uNewDrX &= ~X86_DR6_RAZ_MASK;
4481 break;
4482
4483 case 7:
4484 if (uNewDrX & X86_DR7_MBZ_MASK)
4485 {
4486 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
4487 return iemRaiseGeneralProtectionFault0(pIemCpu);
4488 }
4489 uNewDrX |= X86_DR7_RA1_MASK;
4490 uNewDrX &= ~X86_DR7_RAZ_MASK;
4491 break;
4492
4493 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4494 }
4495
4496 /*
4497 * Do the actual setting.
4498 */
4499 if (!IEM_VERIFICATION_ENABLED(pIemCpu))
4500 {
4501 int rc = CPUMSetGuestDRx(IEMCPU_TO_VMCPU(pIemCpu), iDrReg, uNewDrX);
4502 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_INTERNAL_ERROR : rc);
4503 }
4504 else
4505 pCtx->dr[iDrReg] = uNewDrX;
4506
4507 iemRegAddToRip(pIemCpu, cbInstr);
4508 return VINF_SUCCESS;
4509}
4510
4511
4512/**
4513 * Implements 'INVLPG m'.
4514 *
4515 * @param GCPtrPage The effective address of the page to invalidate.
4516 * @remarks Updates the RIP.
4517 */
4518IEM_CIMPL_DEF_1(iemCImpl_invlpg, uint8_t, GCPtrPage)
4519{
4520 /* ring-0 only. */
4521 if (pIemCpu->uCpl != 0)
4522 return iemRaiseGeneralProtectionFault0(pIemCpu);
4523 Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
4524
4525 int rc = PGMInvalidatePage(IEMCPU_TO_VMCPU(pIemCpu), GCPtrPage);
4526 iemRegAddToRip(pIemCpu, cbInstr);
4527
4528 if (rc == VINF_SUCCESS)
4529 return VINF_SUCCESS;
4530 if (rc == VINF_PGM_SYNC_CR3)
4531 return iemSetPassUpStatus(pIemCpu, rc);
4532
4533 AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
4534 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", rc));
4535 return rc;
4536}
4537
4538
4539/**
4540 * Implements RDTSC.
4541 */
4542IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
4543{
4544 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4545
4546 /*
4547 * Check preconditions.
4548 */
4549 if (!IEM_IS_INTEL_CPUID_FEATURE_PRESENT_EDX(X86_CPUID_FEATURE_EDX_TSC))
4550 return iemRaiseUndefinedOpcode(pIemCpu);
4551
4552 if ( (pCtx->cr4 & X86_CR4_TSD)
4553 && pIemCpu->uCpl != 0)
4554 {
4555 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pIemCpu->uCpl));
4556 return iemRaiseGeneralProtectionFault0(pIemCpu);
4557 }
4558
4559 /*
4560 * Do the job.
4561 */
4562 uint64_t uTicks = TMCpuTickGet(IEMCPU_TO_VMCPU(pIemCpu));
4563 pCtx->rax = (uint32_t)uTicks;
4564 pCtx->rdx = uTicks >> 32;
4565#ifdef IEM_VERIFICATION_MODE_FULL
4566 pIemCpu->fIgnoreRaxRdx = true;
4567#endif
4568
4569 iemRegAddToRip(pIemCpu, cbInstr);
4570 return VINF_SUCCESS;
4571}
4572
4573
4574/**
4575 * Implements RDMSR.
4576 */
4577IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
4578{
4579 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4580
4581 /*
4582 * Check preconditions.
4583 */
4584 if (!IEM_IS_INTEL_CPUID_FEATURE_PRESENT_EDX(X86_CPUID_FEATURE_EDX_MSR))
4585 return iemRaiseUndefinedOpcode(pIemCpu);
4586 if (pIemCpu->uCpl != 0)
4587 return iemRaiseGeneralProtectionFault0(pIemCpu);
4588
4589 /*
4590 * Do the job.
4591 */
4592 RTUINT64U uValue;
4593 int rc = CPUMQueryGuestMsr(IEMCPU_TO_VMCPU(pIemCpu), pCtx->ecx, &uValue.u);
4594 if (rc != VINF_SUCCESS)
4595 {
4596 Log(("IEM: rdmsr(%#x) -> GP(0)\n", pCtx->ecx));
4597 AssertMsgReturn(rc == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", rc), VERR_IPE_UNEXPECTED_STATUS);
4598 return iemRaiseGeneralProtectionFault0(pIemCpu);
4599 }
4600
4601 pCtx->rax = uValue.s.Lo;
4602 pCtx->rdx = uValue.s.Hi;
4603
4604 iemRegAddToRip(pIemCpu, cbInstr);
4605 return VINF_SUCCESS;
4606}
4607
4608
4609/**
4610 * Implements WRMSR.
4611 */
4612IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
4613{
4614 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4615
4616 /*
4617 * Check preconditions.
4618 */
4619 if (!IEM_IS_INTEL_CPUID_FEATURE_PRESENT_EDX(X86_CPUID_FEATURE_EDX_MSR))
4620 return iemRaiseUndefinedOpcode(pIemCpu);
4621 if (pIemCpu->uCpl != 0)
4622 return iemRaiseGeneralProtectionFault0(pIemCpu);
4623
4624 /*
4625 * Do the job.
4626 */
4627 RTUINT64U uValue;
4628 uValue.s.Lo = pCtx->eax;
4629 uValue.s.Hi = pCtx->edx;
4630
4631 int rc;
4632 if (!IEM_VERIFICATION_ENABLED(pIemCpu))
4633 rc = CPUMSetGuestMsr(IEMCPU_TO_VMCPU(pIemCpu), pCtx->ecx, uValue.u);
4634 else
4635 {
4636 CPUMCTX CtxTmp = *pCtx;
4637 rc = CPUMSetGuestMsr(IEMCPU_TO_VMCPU(pIemCpu), pCtx->ecx, uValue.u);
4638 PCPUMCTX pCtx2 = CPUMQueryGuestCtxPtr(IEMCPU_TO_VMCPU(pIemCpu));
4639 *pCtx = *pCtx2;
4640 *pCtx2 = CtxTmp;
4641 }
4642 if (rc != VINF_SUCCESS)
4643 {
4644 Log(("IEM: wrmsr(%#x,%#x`%08x) -> GP(0)\n", pCtx->ecx, uValue.s.Hi, uValue.s.Lo));
4645 AssertMsgReturn(rc == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", rc), VERR_IPE_UNEXPECTED_STATUS);
4646 return iemRaiseGeneralProtectionFault0(pIemCpu);
4647 }
4648
4649 iemRegAddToRip(pIemCpu, cbInstr);
4650 return VINF_SUCCESS;
4651}
4652
4653
4654/**
4655 * Implements 'IN eAX, port'.
4656 *
4657 * @param u16Port The source port.
4658 * @param cbReg The register size.
4659 */
4660IEM_CIMPL_DEF_2(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg)
4661{
4662 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4663
4664 /*
4665 * CPL check
4666 */
4667 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pIemCpu, pCtx, u16Port, cbReg);
4668 if (rcStrict != VINF_SUCCESS)
4669 return rcStrict;
4670
4671 /*
4672 * Perform the I/O.
4673 */
4674 uint32_t u32Value;
4675 if (!IEM_VERIFICATION_ENABLED(pIemCpu))
4676 rcStrict = IOMIOPortRead(IEMCPU_TO_VM(pIemCpu), IEMCPU_TO_VMCPU(pIemCpu), u16Port, &u32Value, cbReg);
4677 else
4678 rcStrict = iemVerifyFakeIOPortRead(pIemCpu, u16Port, &u32Value, cbReg);
4679 if (IOM_SUCCESS(rcStrict))
4680 {
4681 switch (cbReg)
4682 {
4683 case 1: pCtx->al = (uint8_t)u32Value; break;
4684 case 2: pCtx->ax = (uint16_t)u32Value; break;
4685 case 4: pCtx->rax = u32Value; break;
4686 default: AssertFailedReturn(VERR_INTERNAL_ERROR_3);
4687 }
4688 iemRegAddToRip(pIemCpu, cbInstr);
4689 pIemCpu->cPotentialExits++;
4690 if (rcStrict != VINF_SUCCESS)
4691 rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
4692 }
4693
4694 return rcStrict;
4695}
4696
4697
4698/**
4699 * Implements 'IN eAX, DX'.
4700 *
4701 * @param cbReg The register size.
4702 */
4703IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
4704{
4705 return IEM_CIMPL_CALL_2(iemCImpl_in, pIemCpu->CTX_SUFF(pCtx)->dx, cbReg);
4706}
4707
4708
4709/**
4710 * Implements 'OUT port, eAX'.
4711 *
4712 * @param u16Port The destination port.
4713 * @param cbReg The register size.
4714 */
4715IEM_CIMPL_DEF_2(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg)
4716{
4717 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4718
4719 /*
4720 * CPL check
4721 */
4722 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pIemCpu, pCtx, u16Port, cbReg);
4723 if (rcStrict != VINF_SUCCESS)
4724 return rcStrict;
4725
4726 /*
4727 * Perform the I/O.
4728 */
4729 uint32_t u32Value;
4730 switch (cbReg)
4731 {
4732 case 1: u32Value = pCtx->al; break;
4733 case 2: u32Value = pCtx->ax; break;
4734 case 4: u32Value = pCtx->eax; break;
4735 default: AssertFailedReturn(VERR_INTERNAL_ERROR_3);
4736 }
4737 if (!IEM_VERIFICATION_ENABLED(pIemCpu))
4738 rcStrict = IOMIOPortWrite(IEMCPU_TO_VM(pIemCpu), IEMCPU_TO_VMCPU(pIemCpu), u16Port, u32Value, cbReg);
4739 else
4740 rcStrict = iemVerifyFakeIOPortWrite(pIemCpu, u16Port, u32Value, cbReg);
4741 if (IOM_SUCCESS(rcStrict))
4742 {
4743 iemRegAddToRip(pIemCpu, cbInstr);
4744 pIemCpu->cPotentialExits++;
4745 if (rcStrict != VINF_SUCCESS)
4746 rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
4747 }
4748 return rcStrict;
4749}
4750
4751
4752/**
4753 * Implements 'OUT DX, eAX'.
4754 *
4755 * @param cbReg The register size.
4756 */
4757IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
4758{
4759 return IEM_CIMPL_CALL_2(iemCImpl_out, pIemCpu->CTX_SUFF(pCtx)->dx, cbReg);
4760}
4761
4762
4763/**
4764 * Implements 'CLI'.
4765 */
4766IEM_CIMPL_DEF_0(iemCImpl_cli)
4767{
4768 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4769 PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
4770 uint32_t fEfl = IEMMISC_GET_EFL(pIemCpu, pCtx);
4771 uint32_t const fEflOld = fEfl;
4772 if (pCtx->cr0 & X86_CR0_PE)
4773 {
4774 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
4775 if (!(fEfl & X86_EFL_VM))
4776 {
4777 if (pIemCpu->uCpl <= uIopl)
4778 fEfl &= ~X86_EFL_IF;
4779 else if ( pIemCpu->uCpl == 3
4780 && (pCtx->cr4 & X86_CR4_PVI) )
4781 fEfl &= ~X86_EFL_VIF;
4782 else
4783 return iemRaiseGeneralProtectionFault0(pIemCpu);
4784 }
4785 /* V8086 */
4786 else if (uIopl == 3)
4787 fEfl &= ~X86_EFL_IF;
4788 else if ( uIopl < 3
4789 && (pCtx->cr4 & X86_CR4_VME) )
4790 fEfl &= ~X86_EFL_VIF;
4791 else
4792 return iemRaiseGeneralProtectionFault0(pIemCpu);
4793 }
4794 /* real mode */
4795 else
4796 fEfl &= ~X86_EFL_IF;
4797
4798 /* Commit. */
4799 IEMMISC_SET_EFL(pIemCpu, pCtx, fEfl);
4800 iemRegAddToRip(pIemCpu, cbInstr);
4801 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
4802 return VINF_SUCCESS;
4803}
4804
4805
4806/**
4807 * Implements 'STI'.
4808 */
4809IEM_CIMPL_DEF_0(iemCImpl_sti)
4810{
4811 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4812 PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
4813 uint32_t fEfl = IEMMISC_GET_EFL(pIemCpu, pCtx);
4814 uint32_t const fEflOld = fEfl;
4815
4816 if (pCtx->cr0 & X86_CR0_PE)
4817 {
4818 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
4819 if (!(fEfl & X86_EFL_VM))
4820 {
4821 if (pIemCpu->uCpl <= uIopl)
4822 fEfl |= X86_EFL_IF;
4823 else if ( pIemCpu->uCpl == 3
4824 && (pCtx->cr4 & X86_CR4_PVI)
4825 && !(fEfl & X86_EFL_VIP) )
4826 fEfl |= X86_EFL_VIF;
4827 else
4828 return iemRaiseGeneralProtectionFault0(pIemCpu);
4829 }
4830 /* V8086 */
4831 else if (uIopl == 3)
4832 fEfl |= X86_EFL_IF;
4833 else if ( uIopl < 3
4834 && (pCtx->cr4 & X86_CR4_VME)
4835 && !(fEfl & X86_EFL_VIP) )
4836 fEfl |= X86_EFL_VIF;
4837 else
4838 return iemRaiseGeneralProtectionFault0(pIemCpu);
4839 }
4840 /* real mode */
4841 else
4842 fEfl |= X86_EFL_IF;
4843
4844 /* Commit. */
4845 IEMMISC_SET_EFL(pIemCpu, pCtx, fEfl);
4846 iemRegAddToRip(pIemCpu, cbInstr);
4847 if ((!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF)) || IEM_VERIFICATION_ENABLED(pIemCpu))
4848 EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
4849 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
4850 return VINF_SUCCESS;
4851}
4852
4853
4854/**
4855 * Implements 'HLT'.
4856 */
4857IEM_CIMPL_DEF_0(iemCImpl_hlt)
4858{
4859 if (pIemCpu->uCpl != 0)
4860 return iemRaiseGeneralProtectionFault0(pIemCpu);
4861 iemRegAddToRip(pIemCpu, cbInstr);
4862 return VINF_EM_HALT;
4863}
4864
4865
4866/**
4867 * Implements 'MONITOR'.
4868 */
4869IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
4870{
4871 /*
4872 * Permission checks.
4873 */
4874 if (pIemCpu->uCpl != 0)
4875 {
4876 Log2(("monitor: CPL != 0\n"));
4877 return iemRaiseUndefinedOpcode(pIemCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
4878 }
4879 if (!IEM_IS_INTEL_CPUID_FEATURE_PRESENT_ECX(X86_CPUID_FEATURE_ECX_MONITOR))
4880 {
4881 Log2(("monitor: Not in CPUID\n"));
4882 return iemRaiseUndefinedOpcode(pIemCpu);
4883 }
4884
4885 /*
4886 * Gather the operands and validate them.
4887 */
4888 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4889 RTGCPTR GCPtrMem = pIemCpu->enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
4890 uint32_t uEcx = pCtx->ecx;
4891 uint32_t uEdx = pCtx->edx;
4892/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
4893 * \#GP first. */
4894 if (uEcx != 0)
4895 {
4896 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx));
4897 return iemRaiseGeneralProtectionFault0(pIemCpu);
4898 }
4899
4900 VBOXSTRICTRC rcStrict = iemMemApplySegment(pIemCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
4901 if (rcStrict != VINF_SUCCESS)
4902 return rcStrict;
4903
4904 RTGCPHYS GCPhysMem;
4905 rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
4906 if (rcStrict != VINF_SUCCESS)
4907 return rcStrict;
4908
4909 /*
4910 * Call EM to prepare the monitor/wait.
4911 */
4912 rcStrict = EMMonitorWaitPrepare(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rax, pCtx->rcx, pCtx->rdx, GCPhysMem);
4913 Assert(rcStrict == VINF_SUCCESS);
4914
4915 iemRegAddToRip(pIemCpu, cbInstr);
4916 return rcStrict;
4917}
4918
4919
4920/**
4921 * Implements 'MWAIT'.
4922 */
4923IEM_CIMPL_DEF_0(iemCImpl_mwait)
4924{
4925 /*
4926 * Permission checks.
4927 */
4928 if (pIemCpu->uCpl != 0)
4929 {
4930 Log2(("mwait: CPL != 0\n"));
4931 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
4932 * EFLAGS.VM then.) */
4933 return iemRaiseUndefinedOpcode(pIemCpu);
4934 }
4935 if (!IEM_IS_INTEL_CPUID_FEATURE_PRESENT_ECX(X86_CPUID_FEATURE_ECX_MONITOR))
4936 {
4937 Log2(("mwait: Not in CPUID\n"));
4938 return iemRaiseUndefinedOpcode(pIemCpu);
4939 }
4940
4941 /*
4942 * Gather the operands and validate them.
4943 */
4944 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4945 uint32_t uEax = pCtx->eax;
4946 uint32_t uEcx = pCtx->ecx;
4947 if (uEcx != 0)
4948 {
4949 /* Only supported extension is break on IRQ when IF=0. */
4950 if (uEcx > 1)
4951 {
4952 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
4953 return iemRaiseGeneralProtectionFault0(pIemCpu);
4954 }
4955 uint32_t fMWaitFeatures = 0;
4956 uint32_t uIgnore = 0;
4957 CPUMGetGuestCpuId(IEMCPU_TO_VMCPU(pIemCpu), 5, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
4958 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
4959 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
4960 {
4961 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
4962 return iemRaiseGeneralProtectionFault0(pIemCpu);
4963 }
4964 }
4965
4966 /*
4967 * Call EM to prepare the monitor/wait.
4968 */
4969 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(IEMCPU_TO_VMCPU(pIemCpu), uEax, uEcx);
4970
4971 iemRegAddToRip(pIemCpu, cbInstr);
4972 return rcStrict;
4973}
4974
4975
4976/**
4977 * Implements 'SWAPGS'.
4978 */
4979IEM_CIMPL_DEF_0(iemCImpl_swapgs)
4980{
4981 Assert(pIemCpu->enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
4982
4983 /*
4984 * Permission checks.
4985 */
4986 if (pIemCpu->uCpl != 0)
4987 {
4988 Log2(("swapgs: CPL != 0\n"));
4989 return iemRaiseUndefinedOpcode(pIemCpu);
4990 }
4991
4992 /*
4993 * Do the job.
4994 */
4995 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4996 uint64_t uOtherGsBase = pCtx->msrKERNELGSBASE;
4997 pCtx->msrKERNELGSBASE = pCtx->gs.u64Base;
4998 pCtx->gs.u64Base = uOtherGsBase;
4999
5000 iemRegAddToRip(pIemCpu, cbInstr);
5001 return VINF_SUCCESS;
5002}
5003
5004
5005/**
5006 * Implements 'CPUID'.
5007 */
5008IEM_CIMPL_DEF_0(iemCImpl_cpuid)
5009{
5010 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5011
5012 CPUMGetGuestCpuId(IEMCPU_TO_VMCPU(pIemCpu), pCtx->eax, &pCtx->eax, &pCtx->ebx, &pCtx->ecx, &pCtx->edx);
5013 pCtx->rax &= UINT32_C(0xffffffff);
5014 pCtx->rbx &= UINT32_C(0xffffffff);
5015 pCtx->rcx &= UINT32_C(0xffffffff);
5016 pCtx->rdx &= UINT32_C(0xffffffff);
5017
5018 iemRegAddToRip(pIemCpu, cbInstr);
5019 return VINF_SUCCESS;
5020}
5021
5022
5023/**
5024 * Implements 'AAD'.
5025 *
5026 * @param enmEffOpSize The effective operand size.
5027 */
5028IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
5029{
5030 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5031
5032 uint16_t const ax = pCtx->ax;
5033 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
5034 pCtx->ax = al;
5035 iemHlpUpdateArithEFlagsU8(pIemCpu, al,
5036 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
5037 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
5038
5039 iemRegAddToRip(pIemCpu, cbInstr);
5040 return VINF_SUCCESS;
5041}
5042
5043
5044/**
5045 * Implements 'AAM'.
5046 *
5047 * @param bImm The immediate operand. Cannot be 0.
5048 */
5049IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
5050{
5051 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5052 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
5053
5054 uint16_t const ax = pCtx->ax;
5055 uint8_t const al = (uint8_t)ax % bImm;
5056 uint8_t const ah = (uint8_t)ax / bImm;
5057 pCtx->ax = (ah << 8) + al;
5058 iemHlpUpdateArithEFlagsU8(pIemCpu, al,
5059 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
5060 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
5061
5062 iemRegAddToRip(pIemCpu, cbInstr);
5063 return VINF_SUCCESS;
5064}
5065
5066
5067
5068
5069/*
5070 * Instantiate the various string operation combinations.
5071 */
5072#define OP_SIZE 8
5073#define ADDR_SIZE 16
5074#include "IEMAllCImplStrInstr.cpp.h"
5075#define OP_SIZE 8
5076#define ADDR_SIZE 32
5077#include "IEMAllCImplStrInstr.cpp.h"
5078#define OP_SIZE 8
5079#define ADDR_SIZE 64
5080#include "IEMAllCImplStrInstr.cpp.h"
5081
5082#define OP_SIZE 16
5083#define ADDR_SIZE 16
5084#include "IEMAllCImplStrInstr.cpp.h"
5085#define OP_SIZE 16
5086#define ADDR_SIZE 32
5087#include "IEMAllCImplStrInstr.cpp.h"
5088#define OP_SIZE 16
5089#define ADDR_SIZE 64
5090#include "IEMAllCImplStrInstr.cpp.h"
5091
5092#define OP_SIZE 32
5093#define ADDR_SIZE 16
5094#include "IEMAllCImplStrInstr.cpp.h"
5095#define OP_SIZE 32
5096#define ADDR_SIZE 32
5097#include "IEMAllCImplStrInstr.cpp.h"
5098#define OP_SIZE 32
5099#define ADDR_SIZE 64
5100#include "IEMAllCImplStrInstr.cpp.h"
5101
5102#define OP_SIZE 64
5103#define ADDR_SIZE 32
5104#include "IEMAllCImplStrInstr.cpp.h"
5105#define OP_SIZE 64
5106#define ADDR_SIZE 64
5107#include "IEMAllCImplStrInstr.cpp.h"
5108
5109
5110/**
5111 * Implements 'FINIT' and 'FNINIT'.
5112 *
5113 * @param fCheckXcpts Whether to check for umasked pending exceptions or
5114 * not.
5115 */
5116IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
5117{
5118 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5119
5120 if (pCtx->cr0 & (X86_CR0_EM | X86_CR0_TS))
5121 return iemRaiseDeviceNotAvailable(pIemCpu);
5122
5123 NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
5124 if (fCheckXcpts && TODO )
5125 return iemRaiseMathFault(pIemCpu);
5126 */
5127
5128 if (iemFRegIsFxSaveFormat(pIemCpu))
5129 {
5130 pCtx->fpu.FCW = 0x37f;
5131 pCtx->fpu.FSW = 0;
5132 pCtx->fpu.FTW = 0x00; /* 0 - empty. */
5133 pCtx->fpu.FPUDP = 0;
5134 pCtx->fpu.DS = 0; //??
5135 pCtx->fpu.Rsrvd2= 0;
5136 pCtx->fpu.FPUIP = 0;
5137 pCtx->fpu.CS = 0; //??
5138 pCtx->fpu.Rsrvd1= 0;
5139 pCtx->fpu.FOP = 0;
5140 }
5141 else
5142 {
5143 PX86FPUSTATE pFpu = (PX86FPUSTATE)&pCtx->fpu;
5144 pFpu->FCW = 0x37f;
5145 pFpu->FSW = 0;
5146 pFpu->FTW = 0xffff; /* 11 - empty */
5147 pFpu->FPUOO = 0; //??
5148 pFpu->FPUOS = 0; //??
5149 pFpu->FPUIP = 0;
5150 pFpu->CS = 0; //??
5151 pFpu->FOP = 0;
5152 }
5153
5154 iemHlpUsedFpu(pIemCpu);
5155 iemRegAddToRip(pIemCpu, cbInstr);
5156 return VINF_SUCCESS;
5157}
5158
5159
5160/**
5161 * Implements 'FXSAVE'.
5162 *
5163 * @param iEffSeg The effective segment.
5164 * @param GCPtrEff The address of the image.
5165 * @param enmEffOpSize The operand size (only REX.W really matters).
5166 */
5167IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
5168{
5169 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5170
5171 /*
5172 * Raise exceptions.
5173 */
5174 if (pCtx->cr0 & X86_CR0_EM)
5175 return iemRaiseUndefinedOpcode(pIemCpu);
5176 if (pCtx->cr0 & (X86_CR0_TS | X86_CR0_EM))
5177 return iemRaiseDeviceNotAvailable(pIemCpu);
5178 if (GCPtrEff & 15)
5179 {
5180 /** @todo CPU/VM detection possible! \#AC might not be signal for
5181 * all/any misalignment sizes, intel says its an implementation detail. */
5182 if ( (pCtx->cr0 & X86_CR0_AM)
5183 && pCtx->eflags.Bits.u1AC
5184 && pIemCpu->uCpl == 3)
5185 return iemRaiseAlignmentCheckException(pIemCpu);
5186 return iemRaiseGeneralProtectionFault0(pIemCpu);
5187 }
5188 AssertReturn(iemFRegIsFxSaveFormat(pIemCpu), VERR_IEM_IPE_2);
5189
5190 /*
5191 * Access the memory.
5192 */
5193 void *pvMem512;
5194 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
5195 if (rcStrict != VINF_SUCCESS)
5196 return rcStrict;
5197 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
5198
5199 /*
5200 * Store the registers.
5201 */
5202 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
5203 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
5204
5205 /* common for all formats */
5206 pDst->FCW = pCtx->fpu.FCW;
5207 pDst->FSW = pCtx->fpu.FSW;
5208 pDst->FTW = pCtx->fpu.FTW & UINT16_C(0xff);
5209 pDst->FOP = pCtx->fpu.FOP;
5210 pDst->MXCSR = pCtx->fpu.MXCSR;
5211 pDst->MXCSR_MASK = pCtx->fpu.MXCSR_MASK;
5212 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
5213 {
5214 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
5215 * them for now... */
5216 pDst->aRegs[i].au32[0] = pCtx->fpu.aRegs[i].au32[0];
5217 pDst->aRegs[i].au32[1] = pCtx->fpu.aRegs[i].au32[1];
5218 pDst->aRegs[i].au32[2] = pCtx->fpu.aRegs[i].au32[2] & UINT32_C(0xffff);
5219 pDst->aRegs[i].au32[3] = 0;
5220 }
5221
5222 /* FPU IP, CS, DP and DS. */
5223 /** @todo FPU IP, CS, DP and DS cannot be implemented correctly without extra
5224 * state information. :-/
5225 * Storing zeros now to prevent any potential leakage of host info. */
5226 pDst->FPUIP = 0;
5227 pDst->CS = 0;
5228 pDst->Rsrvd1 = 0;
5229 pDst->FPUDP = 0;
5230 pDst->DS = 0;
5231 pDst->Rsrvd2 = 0;
5232
5233 /* XMM registers. */
5234 if ( !(pCtx->msrEFER & MSR_K6_EFER_FFXSR)
5235 || pIemCpu->enmCpuMode != IEMMODE_64BIT
5236 || pIemCpu->uCpl != 0)
5237 {
5238 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
5239 for (uint32_t i = 0; i < cXmmRegs; i++)
5240 pDst->aXMM[i] = pCtx->fpu.aXMM[i];
5241 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
5242 * right? */
5243 }
5244
5245 /*
5246 * Commit the memory.
5247 */
5248 rcStrict = iemMemCommitAndUnmap(pIemCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
5249 if (rcStrict != VINF_SUCCESS)
5250 return rcStrict;
5251
5252 iemRegAddToRip(pIemCpu, cbInstr);
5253 return VINF_SUCCESS;
5254}
5255
5256
5257/**
5258 * Implements 'FXRSTOR'.
5259 *
5260 * @param GCPtrEff The address of the image.
5261 * @param enmEffOpSize The operand size (only REX.W really matters).
5262 */
5263IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
5264{
5265 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5266
5267 /*
5268 * Raise exceptions.
5269 */
5270 if (pCtx->cr0 & X86_CR0_EM)
5271 return iemRaiseUndefinedOpcode(pIemCpu);
5272 if (pCtx->cr0 & (X86_CR0_TS | X86_CR0_EM))
5273 return iemRaiseDeviceNotAvailable(pIemCpu);
5274 if (GCPtrEff & 15)
5275 {
5276 /** @todo CPU/VM detection possible! \#AC might not be signal for
5277 * all/any misalignment sizes, intel says its an implementation detail. */
5278 if ( (pCtx->cr0 & X86_CR0_AM)
5279 && pCtx->eflags.Bits.u1AC
5280 && pIemCpu->uCpl == 3)
5281 return iemRaiseAlignmentCheckException(pIemCpu);
5282 return iemRaiseGeneralProtectionFault0(pIemCpu);
5283 }
5284 AssertReturn(iemFRegIsFxSaveFormat(pIemCpu), VERR_IEM_IPE_2);
5285
5286 /*
5287 * Access the memory.
5288 */
5289 void *pvMem512;
5290 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
5291 if (rcStrict != VINF_SUCCESS)
5292 return rcStrict;
5293 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
5294
5295 /*
5296 * Check the state for stuff which will GP(0).
5297 */
5298 uint32_t const fMXCSR = pSrc->MXCSR;
5299 uint32_t const fMXCSR_MASK = pCtx->fpu.MXCSR_MASK ? pCtx->fpu.MXCSR_MASK : UINT32_C(0xffbf);
5300 if (fMXCSR & ~fMXCSR_MASK)
5301 {
5302 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
5303 return iemRaiseGeneralProtectionFault0(pIemCpu);
5304 }
5305
5306 /*
5307 * Load the registers.
5308 */
5309 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
5310 * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
5311
5312 /* common for all formats */
5313 pCtx->fpu.FCW = pSrc->FCW;
5314 pCtx->fpu.FSW = pSrc->FSW;
5315 pCtx->fpu.FTW = pSrc->FTW & UINT16_C(0xff);
5316 pCtx->fpu.FOP = pSrc->FOP;
5317 pCtx->fpu.MXCSR = fMXCSR;
5318 /* (MXCSR_MASK is read-only) */
5319 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
5320 {
5321 pCtx->fpu.aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
5322 pCtx->fpu.aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
5323 pCtx->fpu.aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
5324 pCtx->fpu.aRegs[i].au32[3] = 0;
5325 }
5326
5327 /* FPU IP, CS, DP and DS. */
5328 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
5329 {
5330 pCtx->fpu.FPUIP = pSrc->FPUIP;
5331 pCtx->fpu.CS = pSrc->CS;
5332 pCtx->fpu.Rsrvd1 = pSrc->Rsrvd1;
5333 pCtx->fpu.FPUDP = pSrc->FPUDP;
5334 pCtx->fpu.DS = pSrc->DS;
5335 pCtx->fpu.Rsrvd2 = pSrc->Rsrvd2;
5336 }
5337 else
5338 {
5339 pCtx->fpu.FPUIP = pSrc->FPUIP;
5340 pCtx->fpu.CS = pSrc->CS;
5341 pCtx->fpu.Rsrvd1 = 0;
5342 pCtx->fpu.FPUDP = pSrc->FPUDP;
5343 pCtx->fpu.DS = pSrc->DS;
5344 pCtx->fpu.Rsrvd2 = 0;
5345 }
5346
5347 /* XMM registers. */
5348 if ( !(pCtx->msrEFER & MSR_K6_EFER_FFXSR)
5349 || pIemCpu->enmCpuMode != IEMMODE_64BIT
5350 || pIemCpu->uCpl != 0)
5351 {
5352 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
5353 for (uint32_t i = 0; i < cXmmRegs; i++)
5354 pCtx->fpu.aXMM[i] = pSrc->aXMM[i];
5355 }
5356
5357 /*
5358 * Commit the memory.
5359 */
5360 rcStrict = iemMemCommitAndUnmap(pIemCpu, pvMem512, IEM_ACCESS_DATA_R);
5361 if (rcStrict != VINF_SUCCESS)
5362 return rcStrict;
5363
5364 iemHlpUsedFpu(pIemCpu);
5365 iemRegAddToRip(pIemCpu, cbInstr);
5366 return VINF_SUCCESS;
5367}
5368
5369
5370/**
5371 * Commmon routine for fnstenv and fnsave.
5372 *
5373 * @param uPtr Where to store the state.
5374 * @param pCtx The CPU context.
5375 */
5376static void iemCImplCommonFpuStoreEnv(PIEMCPU pIemCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr, PCCPUMCTX pCtx)
5377{
5378 if (enmEffOpSize == IEMMODE_16BIT)
5379 {
5380 uPtr.pu16[0] = pCtx->fpu.FCW;
5381 uPtr.pu16[1] = pCtx->fpu.FSW;
5382 uPtr.pu16[2] = iemFpuCalcFullFtw(pCtx);
5383 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
5384 {
5385 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
5386 * protected mode or long mode and we save it in real mode? And vice
5387 * versa? And with 32-bit operand size? I think CPU is storing the
5388 * effective address ((CS << 4) + IP) in the offset register and not
5389 * doing any address calculations here. */
5390 uPtr.pu16[3] = (uint16_t)pCtx->fpu.FPUIP;
5391 uPtr.pu16[4] = ((pCtx->fpu.FPUIP >> 4) & UINT16_C(0xf000)) | pCtx->fpu.FOP;
5392 uPtr.pu16[5] = (uint16_t)pCtx->fpu.FPUDP;
5393 uPtr.pu16[6] = (pCtx->fpu.FPUDP >> 4) & UINT16_C(0xf000);
5394 }
5395 else
5396 {
5397 uPtr.pu16[3] = pCtx->fpu.FPUIP;
5398 uPtr.pu16[4] = pCtx->fpu.CS;
5399 uPtr.pu16[5] = pCtx->fpu.FPUDP;
5400 uPtr.pu16[6] = pCtx->fpu.DS;
5401 }
5402 }
5403 else
5404 {
5405 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
5406 uPtr.pu16[0*2] = pCtx->fpu.FCW;
5407 uPtr.pu16[1*2] = pCtx->fpu.FSW;
5408 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pCtx);
5409 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
5410 {
5411 uPtr.pu16[3*2] = (uint16_t)pCtx->fpu.FPUIP;
5412 uPtr.pu32[4] = ((pCtx->fpu.FPUIP & UINT32_C(0xffff0000)) >> 4) | pCtx->fpu.FOP;
5413 uPtr.pu16[5*2] = (uint16_t)pCtx->fpu.FPUDP;
5414 uPtr.pu32[6] = (pCtx->fpu.FPUDP & UINT32_C(0xffff0000)) >> 4;
5415 }
5416 else
5417 {
5418 uPtr.pu32[3] = pCtx->fpu.FPUIP;
5419 uPtr.pu16[4*2] = pCtx->fpu.CS;
5420 uPtr.pu16[4*2+1]= pCtx->fpu.FOP;
5421 uPtr.pu32[5] = pCtx->fpu.FPUDP;
5422 uPtr.pu16[6*2] = pCtx->fpu.DS;
5423 }
5424 }
5425}
5426
5427
5428/**
5429 * Commmon routine for fldenv and frstor
5430 *
5431 * @param uPtr Where to store the state.
5432 * @param pCtx The CPU context.
5433 */
5434static void iemCImplCommonFpuRestoreEnv(PIEMCPU pIemCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr, PCPUMCTX pCtx)
5435{
5436 if (enmEffOpSize == IEMMODE_16BIT)
5437 {
5438 pCtx->fpu.FCW = uPtr.pu16[0];
5439 pCtx->fpu.FSW = uPtr.pu16[1];
5440 pCtx->fpu.FTW = uPtr.pu16[2];
5441 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
5442 {
5443 pCtx->fpu.FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
5444 pCtx->fpu.FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
5445 pCtx->fpu.FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
5446 pCtx->fpu.CS = 0;
5447 pCtx->fpu.Rsrvd1= 0;
5448 pCtx->fpu.DS = 0;
5449 pCtx->fpu.Rsrvd2= 0;
5450 }
5451 else
5452 {
5453 pCtx->fpu.FPUIP = uPtr.pu16[3];
5454 pCtx->fpu.CS = uPtr.pu16[4];
5455 pCtx->fpu.Rsrvd1= 0;
5456 pCtx->fpu.FPUDP = uPtr.pu16[5];
5457 pCtx->fpu.DS = uPtr.pu16[6];
5458 pCtx->fpu.Rsrvd2= 0;
5459 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
5460 }
5461 }
5462 else
5463 {
5464 pCtx->fpu.FCW = uPtr.pu16[0*2];
5465 pCtx->fpu.FSW = uPtr.pu16[1*2];
5466 pCtx->fpu.FTW = uPtr.pu16[2*2];
5467 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
5468 {
5469 pCtx->fpu.FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
5470 pCtx->fpu.FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
5471 pCtx->fpu.FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
5472 pCtx->fpu.CS = 0;
5473 pCtx->fpu.Rsrvd1= 0;
5474 pCtx->fpu.DS = 0;
5475 pCtx->fpu.Rsrvd2= 0;
5476 }
5477 else
5478 {
5479 pCtx->fpu.FPUIP = uPtr.pu32[3];
5480 pCtx->fpu.CS = uPtr.pu16[4*2];
5481 pCtx->fpu.Rsrvd1= 0;
5482 pCtx->fpu.FOP = uPtr.pu16[4*2+1];
5483 pCtx->fpu.FPUDP = uPtr.pu32[5];
5484 pCtx->fpu.DS = uPtr.pu16[6*2];
5485 pCtx->fpu.Rsrvd2= 0;
5486 }
5487 }
5488
5489 /* Make adjustments. */
5490 pCtx->fpu.FTW = iemFpuCompressFtw(pCtx->fpu.FTW);
5491 pCtx->fpu.FCW &= ~X86_FCW_ZERO_MASK;
5492 iemFpuRecalcExceptionStatus(pCtx);
5493 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
5494 * exceptions are pending after loading the saved state? */
5495}
5496
5497
5498/**
5499 * Implements 'FNSTENV'.
5500 *
5501 * @param enmEffOpSize The operand size (only REX.W really matters).
5502 * @param iEffSeg The effective segment register for @a GCPtrEff.
5503 * @param GCPtrEffDst The address of the image.
5504 */
5505IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5506{
5507 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5508 RTPTRUNION uPtr;
5509 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
5510 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
5511 if (rcStrict != VINF_SUCCESS)
5512 return rcStrict;
5513
5514 iemCImplCommonFpuStoreEnv(pIemCpu, enmEffOpSize, uPtr, pCtx);
5515
5516 rcStrict = iemMemCommitAndUnmap(pIemCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
5517 if (rcStrict != VINF_SUCCESS)
5518 return rcStrict;
5519
5520 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
5521 iemRegAddToRip(pIemCpu, cbInstr);
5522 return VINF_SUCCESS;
5523}
5524
5525
5526/**
5527 * Implements 'FNSAVE'.
5528 *
5529 * @param GCPtrEffDst The address of the image.
5530 * @param enmEffOpSize The operand size.
5531 */
5532IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5533{
5534 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5535 RTPTRUNION uPtr;
5536 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
5537 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
5538 if (rcStrict != VINF_SUCCESS)
5539 return rcStrict;
5540
5541 iemCImplCommonFpuStoreEnv(pIemCpu, enmEffOpSize, uPtr, pCtx);
5542 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
5543 for (uint32_t i = 0; i < RT_ELEMENTS(pCtx->fpu.aRegs); i++)
5544 {
5545 paRegs[i].au32[0] = pCtx->fpu.aRegs[i].au32[0];
5546 paRegs[i].au32[1] = pCtx->fpu.aRegs[i].au32[1];
5547 paRegs[i].au16[4] = pCtx->fpu.aRegs[i].au16[4];
5548 }
5549
5550 rcStrict = iemMemCommitAndUnmap(pIemCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
5551 if (rcStrict != VINF_SUCCESS)
5552 return rcStrict;
5553
5554 /*
5555 * Re-initialize the FPU.
5556 */
5557 pCtx->fpu.FCW = 0x37f;
5558 pCtx->fpu.FSW = 0;
5559 pCtx->fpu.FTW = 0x00; /* 0 - empty */
5560 pCtx->fpu.FPUDP = 0;
5561 pCtx->fpu.DS = 0;
5562 pCtx->fpu.Rsrvd2= 0;
5563 pCtx->fpu.FPUIP = 0;
5564 pCtx->fpu.CS = 0;
5565 pCtx->fpu.Rsrvd1= 0;
5566 pCtx->fpu.FOP = 0;
5567
5568 iemHlpUsedFpu(pIemCpu);
5569 iemRegAddToRip(pIemCpu, cbInstr);
5570 return VINF_SUCCESS;
5571}
5572
5573
5574
5575/**
5576 * Implements 'FLDENV'.
5577 *
5578 * @param enmEffOpSize The operand size (only REX.W really matters).
5579 * @param iEffSeg The effective segment register for @a GCPtrEff.
5580 * @param GCPtrEffSrc The address of the image.
5581 */
5582IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
5583{
5584 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5585 RTCPTRUNION uPtr;
5586 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
5587 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
5588 if (rcStrict != VINF_SUCCESS)
5589 return rcStrict;
5590
5591 iemCImplCommonFpuRestoreEnv(pIemCpu, enmEffOpSize, uPtr, pCtx);
5592
5593 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
5594 if (rcStrict != VINF_SUCCESS)
5595 return rcStrict;
5596
5597 iemHlpUsedFpu(pIemCpu);
5598 iemRegAddToRip(pIemCpu, cbInstr);
5599 return VINF_SUCCESS;
5600}
5601
5602
5603/**
5604 * Implements 'FRSTOR'.
5605 *
5606 * @param GCPtrEffSrc The address of the image.
5607 * @param enmEffOpSize The operand size.
5608 */
5609IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
5610{
5611 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5612 RTCPTRUNION uPtr;
5613 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
5614 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
5615 if (rcStrict != VINF_SUCCESS)
5616 return rcStrict;
5617
5618 iemCImplCommonFpuRestoreEnv(pIemCpu, enmEffOpSize, uPtr, pCtx);
5619 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
5620 for (uint32_t i = 0; i < RT_ELEMENTS(pCtx->fpu.aRegs); i++)
5621 {
5622 pCtx->fpu.aRegs[i].au32[0] = paRegs[i].au32[0];
5623 pCtx->fpu.aRegs[i].au32[1] = paRegs[i].au32[1];
5624 pCtx->fpu.aRegs[i].au32[2] = paRegs[i].au16[4];
5625 pCtx->fpu.aRegs[i].au32[3] = 0;
5626 }
5627
5628 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
5629 if (rcStrict != VINF_SUCCESS)
5630 return rcStrict;
5631
5632 iemHlpUsedFpu(pIemCpu);
5633 iemRegAddToRip(pIemCpu, cbInstr);
5634 return VINF_SUCCESS;
5635}
5636
5637
5638/**
5639 * Implements 'FLDCW'.
5640 *
5641 * @param u16Fcw The new FCW.
5642 */
5643IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
5644{
5645 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5646
5647 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
5648 /** @todo Testcase: Try see what happens when trying to set undefined bits
5649 * (other than 6 and 7). Currently ignoring them. */
5650 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
5651 * according to FSW. (This is was is currently implemented.) */
5652 pCtx->fpu.FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
5653 iemFpuRecalcExceptionStatus(pCtx);
5654
5655 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
5656 iemHlpUsedFpu(pIemCpu);
5657 iemRegAddToRip(pIemCpu, cbInstr);
5658 return VINF_SUCCESS;
5659}
5660
5661
5662
5663/**
5664 * Implements the underflow case of fxch.
5665 *
5666 * @param iStReg The other stack register.
5667 */
5668IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
5669{
5670 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5671
5672 unsigned const iReg1 = X86_FSW_TOP_GET(pCtx->fpu.FSW);
5673 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
5674 Assert(!(RT_BIT(iReg1) & pCtx->fpu.FTW) || !(RT_BIT(iReg2) & pCtx->fpu.FTW));
5675
5676 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
5677 * registers are read as QNaN and then exchanged. This could be
5678 * wrong... */
5679 if (pCtx->fpu.FCW & X86_FCW_IM)
5680 {
5681 if (RT_BIT(iReg1) & pCtx->fpu.FTW)
5682 {
5683 if (RT_BIT(iReg2) & pCtx->fpu.FTW)
5684 iemFpuStoreQNan(&pCtx->fpu.aRegs[0].r80);
5685 else
5686 pCtx->fpu.aRegs[0].r80 = pCtx->fpu.aRegs[iStReg].r80;
5687 iemFpuStoreQNan(&pCtx->fpu.aRegs[iStReg].r80);
5688 }
5689 else
5690 {
5691 pCtx->fpu.aRegs[iStReg].r80 = pCtx->fpu.aRegs[0].r80;
5692 iemFpuStoreQNan(&pCtx->fpu.aRegs[0].r80);
5693 }
5694 pCtx->fpu.FSW &= ~X86_FSW_C_MASK;
5695 pCtx->fpu.FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
5696 }
5697 else
5698 {
5699 /* raise underflow exception, don't change anything. */
5700 pCtx->fpu.FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
5701 pCtx->fpu.FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
5702 }
5703
5704 iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx);
5705 iemHlpUsedFpu(pIemCpu);
5706 iemRegAddToRip(pIemCpu, cbInstr);
5707 return VINF_SUCCESS;
5708}
5709
5710
5711/**
5712 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
5713 *
5714 * @param cToAdd 1 or 7.
5715 */
5716IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
5717{
5718 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5719 Assert(iStReg < 8);
5720
5721 /*
5722 * Raise exceptions.
5723 */
5724 if (pCtx->cr0 & (X86_CR0_EM | X86_CR0_TS))
5725 return iemRaiseDeviceNotAvailable(pIemCpu);
5726 uint16_t u16Fsw = pCtx->fpu.FSW;
5727 if (u16Fsw & X86_FSW_ES)
5728 return iemRaiseMathFault(pIemCpu);
5729
5730 /*
5731 * Check if any of the register accesses causes #SF + #IA.
5732 */
5733 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
5734 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
5735 if ((pCtx->fpu.FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
5736 {
5737 uint32_t u32Eflags = pfnAImpl(&pCtx->fpu, &u16Fsw, &pCtx->fpu.aRegs[0].r80, &pCtx->fpu.aRegs[iStReg].r80);
5738 pCtx->fpu.FSW &= ~X86_FSW_C1;
5739 pCtx->fpu.FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
5740 if ( !(u16Fsw & X86_FSW_IE)
5741 || (pCtx->fpu.FCW & X86_FCW_IM) )
5742 {
5743 pCtx->eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
5744 pCtx->eflags.u |= pCtx->eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
5745 }
5746 }
5747 else if (pCtx->fpu.FCW & X86_FCW_IM)
5748 {
5749 /* Masked underflow. */
5750 pCtx->fpu.FSW &= ~X86_FSW_C1;
5751 pCtx->fpu.FSW |= X86_FSW_IE | X86_FSW_SF;
5752 pCtx->eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
5753 pCtx->eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
5754 }
5755 else
5756 {
5757 /* Raise underflow - don't touch EFLAGS or TOP. */
5758 pCtx->fpu.FSW &= ~X86_FSW_C1;
5759 pCtx->fpu.FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
5760 fPop = false;
5761 }
5762
5763 /*
5764 * Pop if necessary.
5765 */
5766 if (fPop)
5767 {
5768 pCtx->fpu.FTW &= ~RT_BIT(iReg1);
5769 pCtx->fpu.FSW &= X86_FSW_TOP_MASK;
5770 pCtx->fpu.FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
5771 }
5772
5773 iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx);
5774 iemHlpUsedFpu(pIemCpu);
5775 iemRegAddToRip(pIemCpu, cbInstr);
5776 return VINF_SUCCESS;
5777}
5778
5779/** @} */
5780
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette