VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h@ 56971

Last change on this file since 56971 was 56629, checked in by vboxsync, 10 years ago

IEM: More internal error status codes (9).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 231.7 KB
Line 
1/* $Id: IEMAllCImpl.cpp.h 56629 2015-06-24 23:26:52Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @name Misc Helpers
20 * @{
21 */
22
23
24/**
25 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
26 *
27 * @returns Strict VBox status code.
28 *
29 * @param pIemCpu The IEM per CPU data.
30 * @param pCtx The register context.
31 * @param u16Port The port number.
32 * @param cbOperand The operand size.
33 */
34static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PIEMCPU pIemCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand)
35{
36 /* The TSS bits we're interested in are the same on 386 and AMD64. */
37 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
38 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
39 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
40 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
41
42 /*
43 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
44 */
45 Assert(!pCtx->tr.Attr.n.u1DescType);
46 if (RT_UNLIKELY( pCtx->tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
47 && pCtx->tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
48 {
49 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
50 u16Port, cbOperand, pCtx->tr.Attr.n.u4Type, pCtx->tr.Attr.u));
51 return iemRaiseGeneralProtectionFault0(pIemCpu);
52 }
53
54 /*
55 * Read the bitmap offset (may #PF).
56 */
57 uint16_t offBitmap;
58 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pIemCpu, &offBitmap, UINT8_MAX,
59 pCtx->tr.u64Base + RT_OFFSETOF(X86TSS64, offIoBitmap));
60 if (rcStrict != VINF_SUCCESS)
61 {
62 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
63 return rcStrict;
64 }
65
66 /*
67 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
68 * describes the CPU actually reading two bytes regardless of whether the
69 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
70 */
71 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
72 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
73 * for instance sizeof(X86TSS32). */
74 if (offFirstBit + 1 > pCtx->tr.u32Limit) /* the limit is inclusive */
75 {
76 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
77 offFirstBit, pCtx->tr.u32Limit));
78 return iemRaiseGeneralProtectionFault0(pIemCpu);
79 }
80
81 /*
82 * Read the necessary bits.
83 */
84 /** @todo Test the assertion in the intel manual that the CPU reads two
85 * bytes. The question is how this works wrt to #PF and #GP on the
86 * 2nd byte when it's not required. */
87 uint16_t bmBytes = UINT16_MAX;
88 rcStrict = iemMemFetchSysU16(pIemCpu, &bmBytes, UINT8_MAX, pCtx->tr.u64Base + offFirstBit);
89 if (rcStrict != VINF_SUCCESS)
90 {
91 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
92 return rcStrict;
93 }
94
95 /*
96 * Perform the check.
97 */
98 uint16_t fPortMask = (1 << cbOperand) - 1;
99 bmBytes >>= (u16Port & 7);
100 if (bmBytes & fPortMask)
101 {
102 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
103 u16Port, cbOperand, bmBytes, fPortMask));
104 return iemRaiseGeneralProtectionFault0(pIemCpu);
105 }
106
107 return VINF_SUCCESS;
108}
109
110
111/**
112 * Checks if we are allowed to access the given I/O port, raising the
113 * appropriate exceptions if we aren't (or if the I/O bitmap is not
114 * accessible).
115 *
116 * @returns Strict VBox status code.
117 *
118 * @param pIemCpu The IEM per CPU data.
119 * @param pCtx The register context.
120 * @param u16Port The port number.
121 * @param cbOperand The operand size.
122 */
123DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PIEMCPU pIemCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand)
124{
125 X86EFLAGS Efl;
126 Efl.u = IEMMISC_GET_EFL(pIemCpu, pCtx);
127 if ( (pCtx->cr0 & X86_CR0_PE)
128 && ( pIemCpu->uCpl > Efl.Bits.u2IOPL
129 || Efl.Bits.u1VM) )
130 return iemHlpCheckPortIOPermissionBitmap(pIemCpu, pCtx, u16Port, cbOperand);
131 return VINF_SUCCESS;
132}
133
134
135#if 0
136/**
137 * Calculates the parity bit.
138 *
139 * @returns true if the bit is set, false if not.
140 * @param u8Result The least significant byte of the result.
141 */
142static bool iemHlpCalcParityFlag(uint8_t u8Result)
143{
144 /*
145 * Parity is set if the number of bits in the least significant byte of
146 * the result is even.
147 */
148 uint8_t cBits;
149 cBits = u8Result & 1; /* 0 */
150 u8Result >>= 1;
151 cBits += u8Result & 1;
152 u8Result >>= 1;
153 cBits += u8Result & 1;
154 u8Result >>= 1;
155 cBits += u8Result & 1;
156 u8Result >>= 1;
157 cBits += u8Result & 1; /* 4 */
158 u8Result >>= 1;
159 cBits += u8Result & 1;
160 u8Result >>= 1;
161 cBits += u8Result & 1;
162 u8Result >>= 1;
163 cBits += u8Result & 1;
164 return !(cBits & 1);
165}
166#endif /* not used */
167
168
169/**
170 * Updates the specified flags according to a 8-bit result.
171 *
172 * @param pIemCpu The IEM state of the calling EMT.
173 * @param u8Result The result to set the flags according to.
174 * @param fToUpdate The flags to update.
175 * @param fUndefined The flags that are specified as undefined.
176 */
177static void iemHlpUpdateArithEFlagsU8(PIEMCPU pIemCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
178{
179 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
180
181 uint32_t fEFlags = pCtx->eflags.u;
182 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
183 pCtx->eflags.u &= ~(fToUpdate | fUndefined);
184 pCtx->eflags.u |= (fToUpdate | fUndefined) & fEFlags;
185#ifdef IEM_VERIFICATION_MODE_FULL
186 pIemCpu->fUndefinedEFlags |= fUndefined;
187#endif
188}
189
190
191/**
192 * Helper used by iret.
193 *
194 * @param uCpl The new CPL.
195 * @param pSReg Pointer to the segment register.
196 */
197static void iemHlpAdjustSelectorForNewCpl(PIEMCPU pIemCpu, uint8_t uCpl, PCPUMSELREG pSReg)
198{
199#ifdef VBOX_WITH_RAW_MODE_NOT_R0
200 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pSReg))
201 CPUMGuestLazyLoadHiddenSelectorReg(IEMCPU_TO_VMCPU(pIemCpu), pSReg);
202#else
203 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pSReg));
204#endif
205
206 if ( uCpl > pSReg->Attr.n.u2Dpl
207 && pSReg->Attr.n.u1DescType /* code or data, not system */
208 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
209 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
210 iemHlpLoadNullDataSelectorProt(pIemCpu, pSReg, 0);
211}
212
213
214/**
215 * Indicates that we have modified the FPU state.
216 *
217 * @param pIemCpu The IEM state of the calling EMT.
218 */
219DECLINLINE(void) iemHlpUsedFpu(PIEMCPU pIemCpu)
220{
221 CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_FPU_REM);
222}
223
224/** @} */
225
226/** @name C Implementations
227 * @{
228 */
229
230/**
231 * Implements a 16-bit popa.
232 */
233IEM_CIMPL_DEF_0(iemCImpl_popa_16)
234{
235 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
236 RTGCPTR GCPtrStart = iemRegGetEffRsp(pIemCpu, pCtx);
237 RTGCPTR GCPtrLast = GCPtrStart + 15;
238 VBOXSTRICTRC rcStrict;
239
240 /*
241 * The docs are a bit hard to comprehend here, but it looks like we wrap
242 * around in real mode as long as none of the individual "popa" crosses the
243 * end of the stack segment. In protected mode we check the whole access
244 * in one go. For efficiency, only do the word-by-word thing if we're in
245 * danger of wrapping around.
246 */
247 /** @todo do popa boundary / wrap-around checks. */
248 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pIemCpu)
249 && (pCtx->cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
250 {
251 /* word-by-word */
252 RTUINT64U TmpRsp;
253 TmpRsp.u = pCtx->rsp;
254 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->di, &TmpRsp);
255 if (rcStrict == VINF_SUCCESS)
256 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->si, &TmpRsp);
257 if (rcStrict == VINF_SUCCESS)
258 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->bp, &TmpRsp);
259 if (rcStrict == VINF_SUCCESS)
260 {
261 iemRegAddToRspEx(pIemCpu, pCtx, &TmpRsp, 2); /* sp */
262 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->bx, &TmpRsp);
263 }
264 if (rcStrict == VINF_SUCCESS)
265 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->dx, &TmpRsp);
266 if (rcStrict == VINF_SUCCESS)
267 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->cx, &TmpRsp);
268 if (rcStrict == VINF_SUCCESS)
269 rcStrict = iemMemStackPopU16Ex(pIemCpu, &pCtx->ax, &TmpRsp);
270 if (rcStrict == VINF_SUCCESS)
271 {
272 pCtx->rsp = TmpRsp.u;
273 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
274 }
275 }
276 else
277 {
278 uint16_t const *pa16Mem = NULL;
279 rcStrict = iemMemMap(pIemCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
280 if (rcStrict == VINF_SUCCESS)
281 {
282 pCtx->di = pa16Mem[7 - X86_GREG_xDI];
283 pCtx->si = pa16Mem[7 - X86_GREG_xSI];
284 pCtx->bp = pa16Mem[7 - X86_GREG_xBP];
285 /* skip sp */
286 pCtx->bx = pa16Mem[7 - X86_GREG_xBX];
287 pCtx->dx = pa16Mem[7 - X86_GREG_xDX];
288 pCtx->cx = pa16Mem[7 - X86_GREG_xCX];
289 pCtx->ax = pa16Mem[7 - X86_GREG_xAX];
290 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
291 if (rcStrict == VINF_SUCCESS)
292 {
293 iemRegAddToRsp(pIemCpu, pCtx, 16);
294 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
295 }
296 }
297 }
298 return rcStrict;
299}
300
301
302/**
303 * Implements a 32-bit popa.
304 */
305IEM_CIMPL_DEF_0(iemCImpl_popa_32)
306{
307 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
308 RTGCPTR GCPtrStart = iemRegGetEffRsp(pIemCpu, pCtx);
309 RTGCPTR GCPtrLast = GCPtrStart + 31;
310 VBOXSTRICTRC rcStrict;
311
312 /*
313 * The docs are a bit hard to comprehend here, but it looks like we wrap
314 * around in real mode as long as none of the individual "popa" crosses the
315 * end of the stack segment. In protected mode we check the whole access
316 * in one go. For efficiency, only do the word-by-word thing if we're in
317 * danger of wrapping around.
318 */
319 /** @todo do popa boundary / wrap-around checks. */
320 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pIemCpu)
321 && (pCtx->cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
322 {
323 /* word-by-word */
324 RTUINT64U TmpRsp;
325 TmpRsp.u = pCtx->rsp;
326 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->edi, &TmpRsp);
327 if (rcStrict == VINF_SUCCESS)
328 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->esi, &TmpRsp);
329 if (rcStrict == VINF_SUCCESS)
330 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ebp, &TmpRsp);
331 if (rcStrict == VINF_SUCCESS)
332 {
333 iemRegAddToRspEx(pIemCpu, pCtx, &TmpRsp, 2); /* sp */
334 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ebx, &TmpRsp);
335 }
336 if (rcStrict == VINF_SUCCESS)
337 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->edx, &TmpRsp);
338 if (rcStrict == VINF_SUCCESS)
339 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->ecx, &TmpRsp);
340 if (rcStrict == VINF_SUCCESS)
341 rcStrict = iemMemStackPopU32Ex(pIemCpu, &pCtx->eax, &TmpRsp);
342 if (rcStrict == VINF_SUCCESS)
343 {
344#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
345 pCtx->rdi &= UINT32_MAX;
346 pCtx->rsi &= UINT32_MAX;
347 pCtx->rbp &= UINT32_MAX;
348 pCtx->rbx &= UINT32_MAX;
349 pCtx->rdx &= UINT32_MAX;
350 pCtx->rcx &= UINT32_MAX;
351 pCtx->rax &= UINT32_MAX;
352#endif
353 pCtx->rsp = TmpRsp.u;
354 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
355 }
356 }
357 else
358 {
359 uint32_t const *pa32Mem;
360 rcStrict = iemMemMap(pIemCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
361 if (rcStrict == VINF_SUCCESS)
362 {
363 pCtx->rdi = pa32Mem[7 - X86_GREG_xDI];
364 pCtx->rsi = pa32Mem[7 - X86_GREG_xSI];
365 pCtx->rbp = pa32Mem[7 - X86_GREG_xBP];
366 /* skip esp */
367 pCtx->rbx = pa32Mem[7 - X86_GREG_xBX];
368 pCtx->rdx = pa32Mem[7 - X86_GREG_xDX];
369 pCtx->rcx = pa32Mem[7 - X86_GREG_xCX];
370 pCtx->rax = pa32Mem[7 - X86_GREG_xAX];
371 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
372 if (rcStrict == VINF_SUCCESS)
373 {
374 iemRegAddToRsp(pIemCpu, pCtx, 32);
375 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
376 }
377 }
378 }
379 return rcStrict;
380}
381
382
383/**
384 * Implements a 16-bit pusha.
385 */
386IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
387{
388 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
389 RTGCPTR GCPtrTop = iemRegGetEffRsp(pIemCpu, pCtx);
390 RTGCPTR GCPtrBottom = GCPtrTop - 15;
391 VBOXSTRICTRC rcStrict;
392
393 /*
394 * The docs are a bit hard to comprehend here, but it looks like we wrap
395 * around in real mode as long as none of the individual "pushd" crosses the
396 * end of the stack segment. In protected mode we check the whole access
397 * in one go. For efficiency, only do the word-by-word thing if we're in
398 * danger of wrapping around.
399 */
400 /** @todo do pusha boundary / wrap-around checks. */
401 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
402 && IEM_IS_REAL_OR_V86_MODE(pIemCpu) ) )
403 {
404 /* word-by-word */
405 RTUINT64U TmpRsp;
406 TmpRsp.u = pCtx->rsp;
407 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->ax, &TmpRsp);
408 if (rcStrict == VINF_SUCCESS)
409 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->cx, &TmpRsp);
410 if (rcStrict == VINF_SUCCESS)
411 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->dx, &TmpRsp);
412 if (rcStrict == VINF_SUCCESS)
413 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->bx, &TmpRsp);
414 if (rcStrict == VINF_SUCCESS)
415 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->sp, &TmpRsp);
416 if (rcStrict == VINF_SUCCESS)
417 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->bp, &TmpRsp);
418 if (rcStrict == VINF_SUCCESS)
419 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->si, &TmpRsp);
420 if (rcStrict == VINF_SUCCESS)
421 rcStrict = iemMemStackPushU16Ex(pIemCpu, pCtx->di, &TmpRsp);
422 if (rcStrict == VINF_SUCCESS)
423 {
424 pCtx->rsp = TmpRsp.u;
425 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
426 }
427 }
428 else
429 {
430 GCPtrBottom--;
431 uint16_t *pa16Mem = NULL;
432 rcStrict = iemMemMap(pIemCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
433 if (rcStrict == VINF_SUCCESS)
434 {
435 pa16Mem[7 - X86_GREG_xDI] = pCtx->di;
436 pa16Mem[7 - X86_GREG_xSI] = pCtx->si;
437 pa16Mem[7 - X86_GREG_xBP] = pCtx->bp;
438 pa16Mem[7 - X86_GREG_xSP] = pCtx->sp;
439 pa16Mem[7 - X86_GREG_xBX] = pCtx->bx;
440 pa16Mem[7 - X86_GREG_xDX] = pCtx->dx;
441 pa16Mem[7 - X86_GREG_xCX] = pCtx->cx;
442 pa16Mem[7 - X86_GREG_xAX] = pCtx->ax;
443 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
444 if (rcStrict == VINF_SUCCESS)
445 {
446 iemRegSubFromRsp(pIemCpu, pCtx, 16);
447 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
448 }
449 }
450 }
451 return rcStrict;
452}
453
454
455/**
456 * Implements a 32-bit pusha.
457 */
458IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
459{
460 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
461 RTGCPTR GCPtrTop = iemRegGetEffRsp(pIemCpu, pCtx);
462 RTGCPTR GCPtrBottom = GCPtrTop - 31;
463 VBOXSTRICTRC rcStrict;
464
465 /*
466 * The docs are a bit hard to comprehend here, but it looks like we wrap
467 * around in real mode as long as none of the individual "pusha" crosses the
468 * end of the stack segment. In protected mode we check the whole access
469 * in one go. For efficiency, only do the word-by-word thing if we're in
470 * danger of wrapping around.
471 */
472 /** @todo do pusha boundary / wrap-around checks. */
473 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
474 && IEM_IS_REAL_OR_V86_MODE(pIemCpu) ) )
475 {
476 /* word-by-word */
477 RTUINT64U TmpRsp;
478 TmpRsp.u = pCtx->rsp;
479 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->eax, &TmpRsp);
480 if (rcStrict == VINF_SUCCESS)
481 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ecx, &TmpRsp);
482 if (rcStrict == VINF_SUCCESS)
483 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->edx, &TmpRsp);
484 if (rcStrict == VINF_SUCCESS)
485 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ebx, &TmpRsp);
486 if (rcStrict == VINF_SUCCESS)
487 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->esp, &TmpRsp);
488 if (rcStrict == VINF_SUCCESS)
489 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->ebp, &TmpRsp);
490 if (rcStrict == VINF_SUCCESS)
491 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->esi, &TmpRsp);
492 if (rcStrict == VINF_SUCCESS)
493 rcStrict = iemMemStackPushU32Ex(pIemCpu, pCtx->edi, &TmpRsp);
494 if (rcStrict == VINF_SUCCESS)
495 {
496 pCtx->rsp = TmpRsp.u;
497 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
498 }
499 }
500 else
501 {
502 GCPtrBottom--;
503 uint32_t *pa32Mem;
504 rcStrict = iemMemMap(pIemCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
505 if (rcStrict == VINF_SUCCESS)
506 {
507 pa32Mem[7 - X86_GREG_xDI] = pCtx->edi;
508 pa32Mem[7 - X86_GREG_xSI] = pCtx->esi;
509 pa32Mem[7 - X86_GREG_xBP] = pCtx->ebp;
510 pa32Mem[7 - X86_GREG_xSP] = pCtx->esp;
511 pa32Mem[7 - X86_GREG_xBX] = pCtx->ebx;
512 pa32Mem[7 - X86_GREG_xDX] = pCtx->edx;
513 pa32Mem[7 - X86_GREG_xCX] = pCtx->ecx;
514 pa32Mem[7 - X86_GREG_xAX] = pCtx->eax;
515 rcStrict = iemMemCommitAndUnmap(pIemCpu, pa32Mem, IEM_ACCESS_STACK_W);
516 if (rcStrict == VINF_SUCCESS)
517 {
518 iemRegSubFromRsp(pIemCpu, pCtx, 32);
519 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
520 }
521 }
522 }
523 return rcStrict;
524}
525
526
527/**
528 * Implements pushf.
529 *
530 *
531 * @param enmEffOpSize The effective operand size.
532 */
533IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
534{
535 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
536
537 /*
538 * If we're in V8086 mode some care is required (which is why we're in
539 * doing this in a C implementation).
540 */
541 uint32_t fEfl = IEMMISC_GET_EFL(pIemCpu, pCtx);
542 if ( (fEfl & X86_EFL_VM)
543 && X86_EFL_GET_IOPL(fEfl) != 3 )
544 {
545 Assert(pCtx->cr0 & X86_CR0_PE);
546 if ( enmEffOpSize != IEMMODE_16BIT
547 || !(pCtx->cr4 & X86_CR4_VME))
548 return iemRaiseGeneralProtectionFault0(pIemCpu);
549 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
550 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
551 return iemMemStackPushU16(pIemCpu, (uint16_t)fEfl);
552 }
553
554 /*
555 * Ok, clear RF and VM and push the flags.
556 */
557 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
558
559 VBOXSTRICTRC rcStrict;
560 switch (enmEffOpSize)
561 {
562 case IEMMODE_16BIT:
563 rcStrict = iemMemStackPushU16(pIemCpu, (uint16_t)fEfl);
564 break;
565 case IEMMODE_32BIT:
566 rcStrict = iemMemStackPushU32(pIemCpu, fEfl);
567 break;
568 case IEMMODE_64BIT:
569 rcStrict = iemMemStackPushU64(pIemCpu, fEfl);
570 break;
571 IEM_NOT_REACHED_DEFAULT_CASE_RET();
572 }
573 if (rcStrict != VINF_SUCCESS)
574 return rcStrict;
575
576 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
577 return VINF_SUCCESS;
578}
579
580
581/**
582 * Implements popf.
583 *
584 * @param enmEffOpSize The effective operand size.
585 */
586IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
587{
588 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
589 uint32_t const fEflOld = IEMMISC_GET_EFL(pIemCpu, pCtx);
590 VBOXSTRICTRC rcStrict;
591 uint32_t fEflNew;
592
593 /*
594 * V8086 is special as usual.
595 */
596 if (fEflOld & X86_EFL_VM)
597 {
598 /*
599 * Almost anything goes if IOPL is 3.
600 */
601 if (X86_EFL_GET_IOPL(fEflOld) == 3)
602 {
603 switch (enmEffOpSize)
604 {
605 case IEMMODE_16BIT:
606 {
607 uint16_t u16Value;
608 rcStrict = iemMemStackPopU16(pIemCpu, &u16Value);
609 if (rcStrict != VINF_SUCCESS)
610 return rcStrict;
611 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
612 break;
613 }
614 case IEMMODE_32BIT:
615 rcStrict = iemMemStackPopU32(pIemCpu, &fEflNew);
616 if (rcStrict != VINF_SUCCESS)
617 return rcStrict;
618 break;
619 IEM_NOT_REACHED_DEFAULT_CASE_RET();
620 }
621
622 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL);
623 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL)) & fEflOld;
624 }
625 /*
626 * Interrupt flag virtualization with CR4.VME=1.
627 */
628 else if ( enmEffOpSize == IEMMODE_16BIT
629 && (pCtx->cr4 & X86_CR4_VME) )
630 {
631 uint16_t u16Value;
632 RTUINT64U TmpRsp;
633 TmpRsp.u = pCtx->rsp;
634 rcStrict = iemMemStackPopU16Ex(pIemCpu, &u16Value, &TmpRsp);
635 if (rcStrict != VINF_SUCCESS)
636 return rcStrict;
637
638 /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
639 * or before? */
640 if ( ( (u16Value & X86_EFL_IF)
641 && (fEflOld & X86_EFL_VIP))
642 || (u16Value & X86_EFL_TF) )
643 return iemRaiseGeneralProtectionFault0(pIemCpu);
644
645 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
646 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
647 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
648 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
649
650 pCtx->rsp = TmpRsp.u;
651 }
652 else
653 return iemRaiseGeneralProtectionFault0(pIemCpu);
654
655 }
656 /*
657 * Not in V8086 mode.
658 */
659 else
660 {
661 /* Pop the flags. */
662 switch (enmEffOpSize)
663 {
664 case IEMMODE_16BIT:
665 {
666 uint16_t u16Value;
667 rcStrict = iemMemStackPopU16(pIemCpu, &u16Value);
668 if (rcStrict != VINF_SUCCESS)
669 return rcStrict;
670 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
671 break;
672 }
673 case IEMMODE_32BIT:
674 rcStrict = iemMemStackPopU32(pIemCpu, &fEflNew);
675 if (rcStrict != VINF_SUCCESS)
676 return rcStrict;
677 break;
678 case IEMMODE_64BIT:
679 {
680 uint64_t u64Value;
681 rcStrict = iemMemStackPopU64(pIemCpu, &u64Value);
682 if (rcStrict != VINF_SUCCESS)
683 return rcStrict;
684 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
685 break;
686 }
687 IEM_NOT_REACHED_DEFAULT_CASE_RET();
688 }
689
690 /* Merge them with the current flags. */
691 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
692 || pIemCpu->uCpl == 0)
693 {
694 fEflNew &= X86_EFL_POPF_BITS;
695 fEflNew |= ~X86_EFL_POPF_BITS & fEflOld;
696 }
697 else if (pIemCpu->uCpl <= X86_EFL_GET_IOPL(fEflOld))
698 {
699 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL);
700 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL)) & fEflOld;
701 }
702 else
703 {
704 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
705 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
706 }
707 }
708
709 /*
710 * Commit the flags.
711 */
712 Assert(fEflNew & RT_BIT_32(1));
713 IEMMISC_SET_EFL(pIemCpu, pCtx, fEflNew);
714 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
715
716 return VINF_SUCCESS;
717}
718
719
720/**
721 * Implements an indirect call.
722 *
723 * @param uNewPC The new program counter (RIP) value (loaded from the
724 * operand).
725 * @param enmEffOpSize The effective operand size.
726 */
727IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
728{
729 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
730 uint16_t uOldPC = pCtx->ip + cbInstr;
731 if (uNewPC > pCtx->cs.u32Limit)
732 return iemRaiseGeneralProtectionFault0(pIemCpu);
733
734 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pIemCpu, uOldPC);
735 if (rcStrict != VINF_SUCCESS)
736 return rcStrict;
737
738 pCtx->rip = uNewPC;
739 pCtx->eflags.Bits.u1RF = 0;
740 return VINF_SUCCESS;
741}
742
743
744/**
745 * Implements a 16-bit relative call.
746 *
747 * @param offDisp The displacment offset.
748 */
749IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
750{
751 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
752 uint16_t uOldPC = pCtx->ip + cbInstr;
753 uint16_t uNewPC = uOldPC + offDisp;
754 if (uNewPC > pCtx->cs.u32Limit)
755 return iemRaiseGeneralProtectionFault0(pIemCpu);
756
757 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pIemCpu, uOldPC);
758 if (rcStrict != VINF_SUCCESS)
759 return rcStrict;
760
761 pCtx->rip = uNewPC;
762 pCtx->eflags.Bits.u1RF = 0;
763 return VINF_SUCCESS;
764}
765
766
767/**
768 * Implements a 32-bit indirect call.
769 *
770 * @param uNewPC The new program counter (RIP) value (loaded from the
771 * operand).
772 * @param enmEffOpSize The effective operand size.
773 */
774IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
775{
776 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
777 uint32_t uOldPC = pCtx->eip + cbInstr;
778 if (uNewPC > pCtx->cs.u32Limit)
779 return iemRaiseGeneralProtectionFault0(pIemCpu);
780
781 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pIemCpu, uOldPC);
782 if (rcStrict != VINF_SUCCESS)
783 return rcStrict;
784
785#if defined(IN_RING3) && defined(VBOX_WITH_RAW_MODE) && defined(VBOX_WITH_CALL_RECORD)
786 /*
787 * CASM hook for recording interesting indirect calls.
788 */
789 if ( !pCtx->eflags.Bits.u1IF
790 && (pCtx->cr0 & X86_CR0_PG)
791 && !CSAMIsEnabled(IEMCPU_TO_VM(pIemCpu))
792 && pIemCpu->uCpl == 0)
793 {
794 EMSTATE enmState = EMGetState(IEMCPU_TO_VMCPU(pIemCpu));
795 if ( enmState == EMSTATE_IEM_THEN_REM
796 || enmState == EMSTATE_IEM
797 || enmState == EMSTATE_REM)
798 CSAMR3RecordCallAddress(IEMCPU_TO_VM(pIemCpu), pCtx->eip);
799 }
800#endif
801
802 pCtx->rip = uNewPC;
803 pCtx->eflags.Bits.u1RF = 0;
804 return VINF_SUCCESS;
805}
806
807
808/**
809 * Implements a 32-bit relative call.
810 *
811 * @param offDisp The displacment offset.
812 */
813IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
814{
815 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
816 uint32_t uOldPC = pCtx->eip + cbInstr;
817 uint32_t uNewPC = uOldPC + offDisp;
818 if (uNewPC > pCtx->cs.u32Limit)
819 return iemRaiseGeneralProtectionFault0(pIemCpu);
820
821 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pIemCpu, uOldPC);
822 if (rcStrict != VINF_SUCCESS)
823 return rcStrict;
824
825 pCtx->rip = uNewPC;
826 pCtx->eflags.Bits.u1RF = 0;
827 return VINF_SUCCESS;
828}
829
830
831/**
832 * Implements a 64-bit indirect call.
833 *
834 * @param uNewPC The new program counter (RIP) value (loaded from the
835 * operand).
836 * @param enmEffOpSize The effective operand size.
837 */
838IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
839{
840 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
841 uint64_t uOldPC = pCtx->rip + cbInstr;
842 if (!IEM_IS_CANONICAL(uNewPC))
843 return iemRaiseGeneralProtectionFault0(pIemCpu);
844
845 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pIemCpu, uOldPC);
846 if (rcStrict != VINF_SUCCESS)
847 return rcStrict;
848
849 pCtx->rip = uNewPC;
850 pCtx->eflags.Bits.u1RF = 0;
851 return VINF_SUCCESS;
852}
853
854
855/**
856 * Implements a 64-bit relative call.
857 *
858 * @param offDisp The displacment offset.
859 */
860IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
861{
862 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
863 uint64_t uOldPC = pCtx->rip + cbInstr;
864 uint64_t uNewPC = uOldPC + offDisp;
865 if (!IEM_IS_CANONICAL(uNewPC))
866 return iemRaiseNotCanonical(pIemCpu);
867
868 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pIemCpu, uOldPC);
869 if (rcStrict != VINF_SUCCESS)
870 return rcStrict;
871
872 pCtx->rip = uNewPC;
873 pCtx->eflags.Bits.u1RF = 0;
874 return VINF_SUCCESS;
875}
876
877
878/**
879 * Implements far jumps and calls thru task segments (TSS).
880 *
881 * @param uSel The selector.
882 * @param enmBranch The kind of branching we're performing.
883 * @param enmEffOpSize The effective operand size.
884 * @param pDesc The descriptor corresponding to @a uSel. The type is
885 * task gate.
886 */
887IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
888{
889#ifndef IEM_IMPLEMENTS_TASKSWITCH
890 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
891#else
892 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
893 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
894 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
895
896 if ( pDesc->Legacy.Gate.u2Dpl < pIemCpu->uCpl
897 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
898 {
899 Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
900 pIemCpu->uCpl, (uSel & X86_SEL_RPL)));
901 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel & X86_SEL_MASK_OFF_RPL);
902 }
903
904 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
905 * far calls (see iemCImpl_callf). Most likely in both cases it should be
906 * checked here, need testcases. */
907 if (!pDesc->Legacy.Gen.u1Present)
908 {
909 Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
910 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel & X86_SEL_MASK_OFF_RPL);
911 }
912
913 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
914 uint32_t uNextEip = pCtx->eip + cbInstr;
915 return iemTaskSwitch(pIemCpu, pIemCpu->CTX_SUFF(pCtx), enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
916 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
917#endif
918}
919
920
921/**
922 * Implements far jumps and calls thru task gates.
923 *
924 * @param uSel The selector.
925 * @param enmBranch The kind of branching we're performing.
926 * @param enmEffOpSize The effective operand size.
927 * @param pDesc The descriptor corresponding to @a uSel. The type is
928 * task gate.
929 */
930IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
931{
932#ifndef IEM_IMPLEMENTS_TASKSWITCH
933 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
934#else
935 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
936
937 if ( pDesc->Legacy.Gate.u2Dpl < pIemCpu->uCpl
938 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
939 {
940 Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
941 pIemCpu->uCpl, (uSel & X86_SEL_RPL)));
942 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel & X86_SEL_MASK_OFF_RPL);
943 }
944
945 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
946 * far calls (see iemCImpl_callf). Most likely in both cases it should be
947 * checked here, need testcases. */
948 if (!pDesc->Legacy.Gen.u1Present)
949 {
950 Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
951 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel & X86_SEL_MASK_OFF_RPL);
952 }
953
954 /*
955 * Fetch the new TSS descriptor from the GDT.
956 */
957 RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
958 if (uSelTss & X86_SEL_LDT)
959 {
960 Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
961 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel & X86_SEL_MASK_OFF_RPL);
962 }
963
964 IEMSELDESC TssDesc;
965 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &TssDesc, uSelTss, X86_XCPT_GP);
966 if (rcStrict != VINF_SUCCESS)
967 return rcStrict;
968
969 if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
970 {
971 Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
972 TssDesc.Legacy.Gate.u4Type));
973 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel & X86_SEL_MASK_OFF_RPL);
974 }
975
976 if (!TssDesc.Legacy.Gate.u1Present)
977 {
978 Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
979 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
980 }
981
982 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
983 uint32_t uNextEip = pCtx->eip + cbInstr;
984 return iemTaskSwitch(pIemCpu, pIemCpu->CTX_SUFF(pCtx), enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
985 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
986#endif
987}
988
989
990/**
991 * Implements far jumps and calls thru call gates.
992 *
993 * @param uSel The selector.
994 * @param enmBranch The kind of branching we're performing.
995 * @param enmEffOpSize The effective operand size.
996 * @param pDesc The descriptor corresponding to @a uSel. The type is
997 * call gate.
998 */
999IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1000{
1001#ifndef IEM_IMPLEMENTS_CALLGATE
1002 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1003#else
1004 /* NB: Far jumps can only do intra-privilege transfers. Far calls support
1005 * inter-privilege calls and are much more complex.
1006 *
1007 * NB: 64-bit call gate has the same type as a 32-bit call gate! If
1008 * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
1009 * must be 16-bit or 32-bit.
1010 */
1011 /** @todo: effective operand size is probably irrelevant here, only the
1012 * call gate bitness matters??
1013 */
1014 VBOXSTRICTRC rcStrict;
1015 RTPTRUNION uPtrRet;
1016 uint64_t uNewRsp;
1017 uint64_t uNewRip;
1018 uint64_t u64Base;
1019 uint32_t cbLimit;
1020 RTSEL uNewCS;
1021 IEMSELDESC DescCS;
1022 PCPUMCTX pCtx;
1023
1024 AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
1025 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1026 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
1027 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
1028
1029 /* Determine the new instruction pointer from the gate descriptor. */
1030 uNewRip = pDesc->Legacy.Gate.u16OffsetLow
1031 | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
1032 | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
1033
1034 /* Perform DPL checks on the gate descriptor. */
1035 if ( pDesc->Legacy.Gate.u2Dpl < pIemCpu->uCpl
1036 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1037 {
1038 Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1039 pIemCpu->uCpl, (uSel & X86_SEL_RPL)));
1040 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1041 }
1042
1043 /** @todo does this catch NULL selectors, too? */
1044 if (!pDesc->Legacy.Gen.u1Present)
1045 {
1046 Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
1047 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel);
1048 }
1049
1050 /*
1051 * Fetch the target CS descriptor from the GDT or LDT.
1052 */
1053 uNewCS = pDesc->Legacy.Gate.u16Sel;
1054 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescCS, uNewCS, X86_XCPT_GP);
1055 if (rcStrict != VINF_SUCCESS)
1056 return rcStrict;
1057
1058 /* Target CS must be a code selector. */
1059 if ( !DescCS.Legacy.Gen.u1DescType
1060 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1061 {
1062 Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1063 uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
1064 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCS);
1065 }
1066
1067 /* Privilege checks on target CS. */
1068 if (enmBranch == IEMBRANCH_JUMP)
1069 {
1070 if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1071 {
1072 if (DescCS.Legacy.Gen.u2Dpl > pIemCpu->uCpl)
1073 {
1074 Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1075 uNewCS, DescCS.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
1076 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCS);
1077 }
1078 }
1079 else
1080 {
1081 if (DescCS.Legacy.Gen.u2Dpl != pIemCpu->uCpl)
1082 {
1083 Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1084 uNewCS, DescCS.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
1085 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCS);
1086 }
1087 }
1088 }
1089 else
1090 {
1091 Assert(enmBranch == IEMBRANCH_CALL);
1092 if (DescCS.Legacy.Gen.u2Dpl > pIemCpu->uCpl)
1093 {
1094 Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1095 uNewCS, DescCS.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
1096 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
1097 }
1098 }
1099
1100 /* Additional long mode checks. */
1101 if (IEM_IS_LONG_MODE(pIemCpu))
1102 {
1103 if (!DescCS.Legacy.Gen.u1Long)
1104 {
1105 Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
1106 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCS);
1107 }
1108
1109 /* L vs D. */
1110 if ( DescCS.Legacy.Gen.u1Long
1111 && DescCS.Legacy.Gen.u1DefBig)
1112 {
1113 Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
1114 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCS);
1115 }
1116 }
1117
1118 if (!DescCS.Legacy.Gate.u1Present)
1119 {
1120 Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
1121 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewCS);
1122 }
1123
1124 pCtx = pIemCpu->CTX_SUFF(pCtx);
1125
1126 if (enmBranch == IEMBRANCH_JUMP)
1127 {
1128 /** @todo: This is very similar to regular far jumps; merge! */
1129 /* Jumps are fairly simple... */
1130
1131 /* Chop the high bits off if 16-bit gate (Intel says so). */
1132 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1133 uNewRip = (uint16_t)uNewRip;
1134
1135 /* Limit check for non-long segments. */
1136 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1137 if (DescCS.Legacy.Gen.u1Long)
1138 u64Base = 0;
1139 else
1140 {
1141 if (uNewRip > cbLimit)
1142 {
1143 Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
1144 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, 0);
1145 }
1146 u64Base = X86DESC_BASE(&DescCS.Legacy);
1147 }
1148
1149 /* Canonical address check. */
1150 if (!IEM_IS_CANONICAL(uNewRip))
1151 {
1152 Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1153 return iemRaiseNotCanonical(pIemCpu);
1154 }
1155
1156 /*
1157 * Ok, everything checked out fine. Now set the accessed bit before
1158 * committing the result into CS, CSHID and RIP.
1159 */
1160 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1161 {
1162 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCS);
1163 if (rcStrict != VINF_SUCCESS)
1164 return rcStrict;
1165 /** @todo check what VT-x and AMD-V does. */
1166 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1167 }
1168
1169 /* commit */
1170 pCtx->rip = uNewRip;
1171 pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1172 pCtx->cs.Sel |= pIemCpu->uCpl; /** @todo is this right for conforming segs? or in general? */
1173 pCtx->cs.ValidSel = pCtx->cs.Sel;
1174 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1175 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1176 pCtx->cs.u32Limit = cbLimit;
1177 pCtx->cs.u64Base = u64Base;
1178 }
1179 else
1180 {
1181 Assert(enmBranch == IEMBRANCH_CALL);
1182 /* Calls are much more complicated. */
1183
1184 if (DescCS.Legacy.Gen.u2Dpl < pIemCpu->uCpl)
1185 {
1186 uint16_t offNewStack; /* Offset of new stack in TSS. */
1187 uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
1188 uint8_t uNewCSDpl;
1189 uint8_t cbWords;
1190 RTSEL uNewSS;
1191 RTSEL uOldSS;
1192 uint64_t uOldRsp;
1193 IEMSELDESC DescSS;
1194 RTPTRUNION uPtrTSS;
1195 RTGCPTR GCPtrTSS;
1196 RTPTRUNION uPtrParmWds;
1197 RTGCPTR GCPtrParmWds;
1198
1199 /* More privilege. This is the fun part. */
1200 Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
1201
1202 /*
1203 * Determine new SS:rSP from the TSS.
1204 */
1205 Assert(!pCtx->tr.Attr.n.u1DescType);
1206
1207 /* Figure out where the new stack pointer is stored in the TSS. */
1208 uNewCSDpl = uNewCS & X86_SEL_RPL;
1209 if (!IEM_IS_LONG_MODE(pIemCpu))
1210 {
1211 if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1212 {
1213 offNewStack = RT_OFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
1214 cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
1215 }
1216 else
1217 {
1218 Assert(pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1219 offNewStack = RT_OFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
1220 cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
1221 }
1222 }
1223 else
1224 {
1225 Assert(pCtx->tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1226 offNewStack = RT_OFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
1227 cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
1228 }
1229
1230 /* Check against TSS limit. */
1231 if ((uint16_t)(offNewStack + cbNewStack - 1) > pCtx->tr.u32Limit)
1232 {
1233 Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pCtx->tr.u32Limit));
1234 return iemRaiseTaskSwitchFaultBySelector(pIemCpu, pCtx->tr.Sel);
1235 }
1236
1237 GCPtrTSS = pCtx->tr.u64Base + offNewStack;
1238 rcStrict = iemMemMap(pIemCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
1239 if (rcStrict != VINF_SUCCESS)
1240 {
1241 Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1242 return rcStrict;
1243 }
1244
1245 if (!IEM_IS_LONG_MODE(pIemCpu))
1246 {
1247 if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1248 {
1249 uNewRsp = uPtrTSS.pu32[0];
1250 uNewSS = uPtrTSS.pu16[2];
1251 }
1252 else
1253 {
1254 Assert(pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1255 uNewRsp = uPtrTSS.pu16[0];
1256 uNewSS = uPtrTSS.pu16[1];
1257 }
1258 }
1259 else
1260 {
1261 Assert(pCtx->tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1262 /* SS will be a NULL selector, but that's valid. */
1263 uNewRsp = uPtrTSS.pu64[0];
1264 uNewSS = uNewCSDpl;
1265 }
1266
1267 /* Done with the TSS now. */
1268 rcStrict = iemMemCommitAndUnmap(pIemCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
1269 if (rcStrict != VINF_SUCCESS)
1270 {
1271 Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1272 return rcStrict;
1273 }
1274
1275 /* Only used outside of long mode. */
1276 cbWords = pDesc->Legacy.Gate.u4ParmCount;
1277
1278 /* If EFER.LMA is 0, there's extra work to do. */
1279 if (!IEM_IS_LONG_MODE(pIemCpu))
1280 {
1281 if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
1282 {
1283 Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
1284 return iemRaiseTaskSwitchFaultBySelector(pIemCpu, uNewSS);
1285 }
1286
1287 /* Grab the new SS descriptor. */
1288 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescSS, uNewSS, X86_XCPT_SS);
1289 if (rcStrict != VINF_SUCCESS)
1290 return rcStrict;
1291
1292 /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
1293 if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
1294 || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
1295 {
1296 Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
1297 uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
1298 return iemRaiseTaskSwitchFaultBySelector(pIemCpu, uNewSS);
1299 }
1300
1301 /* Ensure new SS is a writable data segment. */
1302 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
1303 {
1304 Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
1305 return iemRaiseTaskSwitchFaultBySelector(pIemCpu, uNewSS);
1306 }
1307
1308 if (!DescSS.Legacy.Gen.u1Present)
1309 {
1310 Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
1311 return iemRaiseStackSelectorNotPresentBySelector(pIemCpu, uNewSS);
1312 }
1313 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1314 cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
1315 else
1316 cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
1317 }
1318 else
1319 {
1320 /* Just grab the new (NULL) SS descriptor. */
1321 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescSS, uNewSS, X86_XCPT_SS);
1322 if (rcStrict != VINF_SUCCESS)
1323 return rcStrict;
1324
1325 cbNewStack = sizeof(uint64_t) * 4;
1326 }
1327
1328 /** @todo: According to Intel, new stack is checked for enough space first,
1329 * then switched. According to AMD, the stack is switched first and
1330 * then pushes might fault!
1331 */
1332
1333 /** @todo: According to AMD, CS is loaded first, then SS.
1334 * According to Intel, it's the other way around!?
1335 */
1336
1337 /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
1338
1339 /* Set the accessed bit before committing new SS. */
1340 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1341 {
1342 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewSS);
1343 if (rcStrict != VINF_SUCCESS)
1344 return rcStrict;
1345 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1346 }
1347
1348 /* Remember the old SS:rSP and their linear address. */
1349 uOldSS = pCtx->ss.Sel;
1350 uOldRsp = pCtx->rsp;
1351
1352 GCPtrParmWds = pCtx->ss.u64Base + pCtx->rsp;
1353
1354 /* Commit new SS:rSP. */
1355 pCtx->ss.Sel = uNewSS;
1356 pCtx->ss.ValidSel = uNewSS;
1357 pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
1358 pCtx->ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
1359 pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
1360 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1361 pCtx->rsp = uNewRsp;
1362 pIemCpu->uCpl = uNewCSDpl;
1363 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), &pCtx->ss));
1364 CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_HIDDEN_SEL_REGS);
1365
1366 /* Check new stack - may #SS(NewSS). */
1367 rcStrict = iemMemStackPushBeginSpecial(pIemCpu, cbNewStack,
1368 &uPtrRet.pv, &uNewRsp);
1369 if (rcStrict != VINF_SUCCESS)
1370 {
1371 Log(("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1372 return rcStrict;
1373 }
1374
1375 if (!IEM_IS_LONG_MODE(pIemCpu))
1376 {
1377 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1378 {
1379 /* Push the old CS:rIP. */
1380 uPtrRet.pu32[0] = pCtx->eip + cbInstr;
1381 uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1382
1383 /* Map the relevant chunk of the old stack. */
1384 rcStrict = iemMemMap(pIemCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1385 if (rcStrict != VINF_SUCCESS)
1386 {
1387 Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1388 return rcStrict;
1389 }
1390
1391 /* Copy the parameter (d)words. */
1392 for (int i = 0; i < cbWords; ++i)
1393 uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
1394
1395 /* Unmap the old stack. */
1396 rcStrict = iemMemCommitAndUnmap(pIemCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1397 if (rcStrict != VINF_SUCCESS)
1398 {
1399 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1400 return rcStrict;
1401 }
1402
1403 /* Push the old SS:rSP. */
1404 uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
1405 uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
1406 }
1407 else
1408 {
1409 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1410
1411 /* Push the old CS:rIP. */
1412 uPtrRet.pu16[0] = pCtx->ip + cbInstr;
1413 uPtrRet.pu16[1] = pCtx->cs.Sel;
1414
1415 /* Map the relevant chunk of the old stack. */
1416 rcStrict = iemMemMap(pIemCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1417 if (rcStrict != VINF_SUCCESS)
1418 {
1419 Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1420 return rcStrict;
1421 }
1422
1423 /* Copy the parameter words. */
1424 for (int i = 0; i < cbWords; ++i)
1425 uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
1426
1427 /* Unmap the old stack. */
1428 rcStrict = iemMemCommitAndUnmap(pIemCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1429 if (rcStrict != VINF_SUCCESS)
1430 {
1431 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1432 return rcStrict;
1433 }
1434
1435 /* Push the old SS:rSP. */
1436 uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
1437 uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
1438 }
1439 }
1440 else
1441 {
1442 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1443
1444 /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
1445 uPtrRet.pu64[0] = pCtx->rip + cbInstr;
1446 uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1447 uPtrRet.pu64[2] = uOldRsp;
1448 uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
1449 }
1450
1451 rcStrict = iemMemStackPushCommitSpecial(pIemCpu, uPtrRet.pv, uNewRsp);
1452 if (rcStrict != VINF_SUCCESS)
1453 {
1454 Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1455 return rcStrict;
1456 }
1457
1458 /* Chop the high bits off if 16-bit gate (Intel says so). */
1459 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1460 uNewRip = (uint16_t)uNewRip;
1461
1462 /* Limit / canonical check. */
1463 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1464 if (!IEM_IS_LONG_MODE(pIemCpu))
1465 {
1466 if (uNewRip > cbLimit)
1467 {
1468 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1469 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, 0);
1470 }
1471 u64Base = X86DESC_BASE(&DescCS.Legacy);
1472 }
1473 else
1474 {
1475 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1476 if (!IEM_IS_CANONICAL(uNewRip))
1477 {
1478 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1479 return iemRaiseNotCanonical(pIemCpu);
1480 }
1481 u64Base = 0;
1482 }
1483
1484 /*
1485 * Now set the accessed bit before
1486 * writing the return address to the stack and committing the result into
1487 * CS, CSHID and RIP.
1488 */
1489 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1490 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1491 {
1492 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCS);
1493 if (rcStrict != VINF_SUCCESS)
1494 return rcStrict;
1495 /** @todo check what VT-x and AMD-V does. */
1496 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1497 }
1498
1499 /* Commit new CS:rIP. */
1500 pCtx->rip = uNewRip;
1501 pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1502 pCtx->cs.Sel |= pIemCpu->uCpl;
1503 pCtx->cs.ValidSel = pCtx->cs.Sel;
1504 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1505 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1506 pCtx->cs.u32Limit = cbLimit;
1507 pCtx->cs.u64Base = u64Base;
1508 }
1509 else
1510 {
1511 /* Same privilege. */
1512 /** @todo: This is very similar to regular far calls; merge! */
1513
1514 /* Check stack first - may #SS(0). */
1515 /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
1516 * 16-bit code cause a two or four byte CS to be pushed? */
1517 rcStrict = iemMemStackPushBeginSpecial(pIemCpu,
1518 IEM_IS_LONG_MODE(pIemCpu) ? 8+8
1519 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
1520 &uPtrRet.pv, &uNewRsp);
1521 if (rcStrict != VINF_SUCCESS)
1522 return rcStrict;
1523
1524 /* Chop the high bits off if 16-bit gate (Intel says so). */
1525 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1526 uNewRip = (uint16_t)uNewRip;
1527
1528 /* Limit / canonical check. */
1529 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1530 if (!IEM_IS_LONG_MODE(pIemCpu))
1531 {
1532 if (uNewRip > cbLimit)
1533 {
1534 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1535 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, 0);
1536 }
1537 u64Base = X86DESC_BASE(&DescCS.Legacy);
1538 }
1539 else
1540 {
1541 if (!IEM_IS_CANONICAL(uNewRip))
1542 {
1543 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1544 return iemRaiseNotCanonical(pIemCpu);
1545 }
1546 u64Base = 0;
1547 }
1548
1549 /*
1550 * Now set the accessed bit before
1551 * writing the return address to the stack and committing the result into
1552 * CS, CSHID and RIP.
1553 */
1554 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1555 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1556 {
1557 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCS);
1558 if (rcStrict != VINF_SUCCESS)
1559 return rcStrict;
1560 /** @todo check what VT-x and AMD-V does. */
1561 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1562 }
1563
1564 /* stack */
1565 if (!IEM_IS_LONG_MODE(pIemCpu))
1566 {
1567 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1568 {
1569 uPtrRet.pu32[0] = pCtx->eip + cbInstr;
1570 uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1571 }
1572 else
1573 {
1574 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1575 uPtrRet.pu16[0] = pCtx->ip + cbInstr;
1576 uPtrRet.pu16[1] = pCtx->cs.Sel;
1577 }
1578 }
1579 else
1580 {
1581 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1582 uPtrRet.pu64[0] = pCtx->rip + cbInstr;
1583 uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1584 }
1585
1586 rcStrict = iemMemStackPushCommitSpecial(pIemCpu, uPtrRet.pv, uNewRsp);
1587 if (rcStrict != VINF_SUCCESS)
1588 return rcStrict;
1589
1590 /* commit */
1591 pCtx->rip = uNewRip;
1592 pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1593 pCtx->cs.Sel |= pIemCpu->uCpl;
1594 pCtx->cs.ValidSel = pCtx->cs.Sel;
1595 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1596 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1597 pCtx->cs.u32Limit = cbLimit;
1598 pCtx->cs.u64Base = u64Base;
1599 }
1600 }
1601 pCtx->eflags.Bits.u1RF = 0;
1602 return VINF_SUCCESS;
1603#endif
1604}
1605
1606
1607/**
1608 * Implements far jumps and calls thru system selectors.
1609 *
1610 * @param uSel The selector.
1611 * @param enmBranch The kind of branching we're performing.
1612 * @param enmEffOpSize The effective operand size.
1613 * @param pDesc The descriptor corresponding to @a uSel.
1614 */
1615IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1616{
1617 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1618 Assert((uSel & X86_SEL_MASK_OFF_RPL));
1619
1620 if (IEM_IS_LONG_MODE(pIemCpu))
1621 switch (pDesc->Legacy.Gen.u4Type)
1622 {
1623 case AMD64_SEL_TYPE_SYS_CALL_GATE:
1624 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1625
1626 default:
1627 case AMD64_SEL_TYPE_SYS_LDT:
1628 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
1629 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
1630 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
1631 case AMD64_SEL_TYPE_SYS_INT_GATE:
1632 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1633 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1634 }
1635
1636 switch (pDesc->Legacy.Gen.u4Type)
1637 {
1638 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1639 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1640 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1641
1642 case X86_SEL_TYPE_SYS_TASK_GATE:
1643 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
1644
1645 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1646 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1647 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
1648
1649 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1650 Log(("branch %04x -> busy 286 TSS\n", uSel));
1651 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1652
1653 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1654 Log(("branch %04x -> busy 386 TSS\n", uSel));
1655 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1656
1657 default:
1658 case X86_SEL_TYPE_SYS_LDT:
1659 case X86_SEL_TYPE_SYS_286_INT_GATE:
1660 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1661 case X86_SEL_TYPE_SYS_386_INT_GATE:
1662 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1663 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1664 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1665 }
1666}
1667
1668
1669/**
1670 * Implements far jumps.
1671 *
1672 * @param uSel The selector.
1673 * @param offSeg The segment offset.
1674 * @param enmEffOpSize The effective operand size.
1675 */
1676IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1677{
1678 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
1679 NOREF(cbInstr);
1680 Assert(offSeg <= UINT32_MAX);
1681
1682 /*
1683 * Real mode and V8086 mode are easy. The only snag seems to be that
1684 * CS.limit doesn't change and the limit check is done against the current
1685 * limit.
1686 */
1687 if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
1688 && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
1689 {
1690 if (offSeg > pCtx->cs.u32Limit)
1691 return iemRaiseGeneralProtectionFault0(pIemCpu);
1692
1693 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1694 pCtx->rip = offSeg;
1695 else
1696 pCtx->rip = offSeg & UINT16_MAX;
1697 pCtx->cs.Sel = uSel;
1698 pCtx->cs.ValidSel = uSel;
1699 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1700 pCtx->cs.u64Base = (uint32_t)uSel << 4;
1701 pCtx->eflags.Bits.u1RF = 0;
1702 return VINF_SUCCESS;
1703 }
1704
1705 /*
1706 * Protected mode. Need to parse the specified descriptor...
1707 */
1708 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1709 {
1710 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1711 return iemRaiseGeneralProtectionFault0(pIemCpu);
1712 }
1713
1714 /* Fetch the descriptor. */
1715 IEMSELDESC Desc;
1716 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uSel, X86_XCPT_GP);
1717 if (rcStrict != VINF_SUCCESS)
1718 return rcStrict;
1719
1720 /* Is it there? */
1721 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1722 {
1723 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1724 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel);
1725 }
1726
1727 /*
1728 * Deal with it according to its type. We do the standard code selectors
1729 * here and dispatch the system selectors to worker functions.
1730 */
1731 if (!Desc.Legacy.Gen.u1DescType)
1732 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1733
1734 /* Only code segments. */
1735 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1736 {
1737 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1738 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1739 }
1740
1741 /* L vs D. */
1742 if ( Desc.Legacy.Gen.u1Long
1743 && Desc.Legacy.Gen.u1DefBig
1744 && IEM_IS_LONG_MODE(pIemCpu))
1745 {
1746 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1747 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1748 }
1749
1750 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1751 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1752 {
1753 if (pIemCpu->uCpl < Desc.Legacy.Gen.u2Dpl)
1754 {
1755 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1756 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
1757 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1758 }
1759 }
1760 else
1761 {
1762 if (pIemCpu->uCpl != Desc.Legacy.Gen.u2Dpl)
1763 {
1764 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
1765 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1766 }
1767 if ((uSel & X86_SEL_RPL) > pIemCpu->uCpl)
1768 {
1769 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pIemCpu->uCpl));
1770 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1771 }
1772 }
1773
1774 /* Chop the high bits if 16-bit (Intel says so). */
1775 if (enmEffOpSize == IEMMODE_16BIT)
1776 offSeg &= UINT16_MAX;
1777
1778 /* Limit check. (Should alternatively check for non-canonical addresses
1779 here, but that is ruled out by offSeg being 32-bit, right?) */
1780 uint64_t u64Base;
1781 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1782 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
1783 u64Base = 0;
1784 else
1785 {
1786 if (offSeg > cbLimit)
1787 {
1788 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1789 /** @todo: Intel says this is #GP(0)! */
1790 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1791 }
1792 u64Base = X86DESC_BASE(&Desc.Legacy);
1793 }
1794
1795 /*
1796 * Ok, everything checked out fine. Now set the accessed bit before
1797 * committing the result into CS, CSHID and RIP.
1798 */
1799 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1800 {
1801 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uSel);
1802 if (rcStrict != VINF_SUCCESS)
1803 return rcStrict;
1804 /** @todo check what VT-x and AMD-V does. */
1805 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1806 }
1807
1808 /* commit */
1809 pCtx->rip = offSeg;
1810 pCtx->cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1811 pCtx->cs.Sel |= pIemCpu->uCpl; /** @todo is this right for conforming segs? or in general? */
1812 pCtx->cs.ValidSel = pCtx->cs.Sel;
1813 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1814 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1815 pCtx->cs.u32Limit = cbLimit;
1816 pCtx->cs.u64Base = u64Base;
1817 pCtx->eflags.Bits.u1RF = 0;
1818 /** @todo check if the hidden bits are loaded correctly for 64-bit
1819 * mode. */
1820 return VINF_SUCCESS;
1821}
1822
1823
1824/**
1825 * Implements far calls.
1826 *
1827 * This very similar to iemCImpl_FarJmp.
1828 *
1829 * @param uSel The selector.
1830 * @param offSeg The segment offset.
1831 * @param enmEffOpSize The operand size (in case we need it).
1832 */
1833IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1834{
1835 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
1836 VBOXSTRICTRC rcStrict;
1837 uint64_t uNewRsp;
1838 RTPTRUNION uPtrRet;
1839
1840 /*
1841 * Real mode and V8086 mode are easy. The only snag seems to be that
1842 * CS.limit doesn't change and the limit check is done against the current
1843 * limit.
1844 */
1845 if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
1846 && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
1847 {
1848 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1849
1850 /* Check stack first - may #SS(0). */
1851 rcStrict = iemMemStackPushBeginSpecial(pIemCpu, enmEffOpSize == IEMMODE_32BIT ? 6 : 4,
1852 &uPtrRet.pv, &uNewRsp);
1853 if (rcStrict != VINF_SUCCESS)
1854 return rcStrict;
1855
1856 /* Check the target address range. */
1857 if (offSeg > UINT32_MAX)
1858 return iemRaiseGeneralProtectionFault0(pIemCpu);
1859
1860 /* Everything is fine, push the return address. */
1861 if (enmEffOpSize == IEMMODE_16BIT)
1862 {
1863 uPtrRet.pu16[0] = pCtx->ip + cbInstr;
1864 uPtrRet.pu16[1] = pCtx->cs.Sel;
1865 }
1866 else
1867 {
1868 uPtrRet.pu32[0] = pCtx->eip + cbInstr;
1869 uPtrRet.pu16[3] = pCtx->cs.Sel;
1870 }
1871 rcStrict = iemMemStackPushCommitSpecial(pIemCpu, uPtrRet.pv, uNewRsp);
1872 if (rcStrict != VINF_SUCCESS)
1873 return rcStrict;
1874
1875 /* Branch. */
1876 pCtx->rip = offSeg;
1877 pCtx->cs.Sel = uSel;
1878 pCtx->cs.ValidSel = uSel;
1879 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1880 pCtx->cs.u64Base = (uint32_t)uSel << 4;
1881 pCtx->eflags.Bits.u1RF = 0;
1882 return VINF_SUCCESS;
1883 }
1884
1885 /*
1886 * Protected mode. Need to parse the specified descriptor...
1887 */
1888 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1889 {
1890 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1891 return iemRaiseGeneralProtectionFault0(pIemCpu);
1892 }
1893
1894 /* Fetch the descriptor. */
1895 IEMSELDESC Desc;
1896 rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uSel, X86_XCPT_GP);
1897 if (rcStrict != VINF_SUCCESS)
1898 return rcStrict;
1899
1900 /*
1901 * Deal with it according to its type. We do the standard code selectors
1902 * here and dispatch the system selectors to worker functions.
1903 */
1904 if (!Desc.Legacy.Gen.u1DescType)
1905 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
1906
1907 /* Only code segments. */
1908 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1909 {
1910 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1911 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1912 }
1913
1914 /* L vs D. */
1915 if ( Desc.Legacy.Gen.u1Long
1916 && Desc.Legacy.Gen.u1DefBig
1917 && IEM_IS_LONG_MODE(pIemCpu))
1918 {
1919 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1920 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1921 }
1922
1923 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1924 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1925 {
1926 if (pIemCpu->uCpl < Desc.Legacy.Gen.u2Dpl)
1927 {
1928 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1929 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
1930 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1931 }
1932 }
1933 else
1934 {
1935 if (pIemCpu->uCpl != Desc.Legacy.Gen.u2Dpl)
1936 {
1937 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
1938 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1939 }
1940 if ((uSel & X86_SEL_RPL) > pIemCpu->uCpl)
1941 {
1942 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pIemCpu->uCpl));
1943 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1944 }
1945 }
1946
1947 /* Is it there? */
1948 if (!Desc.Legacy.Gen.u1Present)
1949 {
1950 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1951 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel);
1952 }
1953
1954 /* Check stack first - may #SS(0). */
1955 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
1956 * 16-bit code cause a two or four byte CS to be pushed? */
1957 rcStrict = iemMemStackPushBeginSpecial(pIemCpu,
1958 enmEffOpSize == IEMMODE_64BIT ? 8+8
1959 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
1960 &uPtrRet.pv, &uNewRsp);
1961 if (rcStrict != VINF_SUCCESS)
1962 return rcStrict;
1963
1964 /* Chop the high bits if 16-bit (Intel says so). */
1965 if (enmEffOpSize == IEMMODE_16BIT)
1966 offSeg &= UINT16_MAX;
1967
1968 /* Limit / canonical check. */
1969 uint64_t u64Base;
1970 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1971 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
1972 {
1973 if (!IEM_IS_CANONICAL(offSeg))
1974 {
1975 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
1976 return iemRaiseNotCanonical(pIemCpu);
1977 }
1978 u64Base = 0;
1979 }
1980 else
1981 {
1982 if (offSeg > cbLimit)
1983 {
1984 Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1985 /** @todo: Intel says this is #GP(0)! */
1986 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
1987 }
1988 u64Base = X86DESC_BASE(&Desc.Legacy);
1989 }
1990
1991 /*
1992 * Now set the accessed bit before
1993 * writing the return address to the stack and committing the result into
1994 * CS, CSHID and RIP.
1995 */
1996 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1997 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1998 {
1999 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uSel);
2000 if (rcStrict != VINF_SUCCESS)
2001 return rcStrict;
2002 /** @todo check what VT-x and AMD-V does. */
2003 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2004 }
2005
2006 /* stack */
2007 if (enmEffOpSize == IEMMODE_16BIT)
2008 {
2009 uPtrRet.pu16[0] = pCtx->ip + cbInstr;
2010 uPtrRet.pu16[1] = pCtx->cs.Sel;
2011 }
2012 else if (enmEffOpSize == IEMMODE_32BIT)
2013 {
2014 uPtrRet.pu32[0] = pCtx->eip + cbInstr;
2015 uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
2016 }
2017 else
2018 {
2019 uPtrRet.pu64[0] = pCtx->rip + cbInstr;
2020 uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
2021 }
2022 rcStrict = iemMemStackPushCommitSpecial(pIemCpu, uPtrRet.pv, uNewRsp);
2023 if (rcStrict != VINF_SUCCESS)
2024 return rcStrict;
2025
2026 /* commit */
2027 pCtx->rip = offSeg;
2028 pCtx->cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
2029 pCtx->cs.Sel |= pIemCpu->uCpl;
2030 pCtx->cs.ValidSel = pCtx->cs.Sel;
2031 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2032 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
2033 pCtx->cs.u32Limit = cbLimit;
2034 pCtx->cs.u64Base = u64Base;
2035 pCtx->eflags.Bits.u1RF = 0;
2036 /** @todo check if the hidden bits are loaded correctly for 64-bit
2037 * mode. */
2038 return VINF_SUCCESS;
2039}
2040
2041
2042/**
2043 * Implements retf.
2044 *
2045 * @param enmEffOpSize The effective operand size.
2046 * @param cbPop The amount of arguments to pop from the stack
2047 * (bytes).
2048 */
2049IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2050{
2051 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2052 VBOXSTRICTRC rcStrict;
2053 RTCPTRUNION uPtrFrame;
2054 uint64_t uNewRsp;
2055 uint64_t uNewRip;
2056 uint16_t uNewCs;
2057 NOREF(cbInstr);
2058
2059 /*
2060 * Read the stack values first.
2061 */
2062 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
2063 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
2064 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2065 if (rcStrict != VINF_SUCCESS)
2066 return rcStrict;
2067 if (enmEffOpSize == IEMMODE_16BIT)
2068 {
2069 uNewRip = uPtrFrame.pu16[0];
2070 uNewCs = uPtrFrame.pu16[1];
2071 }
2072 else if (enmEffOpSize == IEMMODE_32BIT)
2073 {
2074 uNewRip = uPtrFrame.pu32[0];
2075 uNewCs = uPtrFrame.pu16[2];
2076 }
2077 else
2078 {
2079 uNewRip = uPtrFrame.pu64[0];
2080 uNewCs = uPtrFrame.pu16[4];
2081 }
2082
2083 /*
2084 * Real mode and V8086 mode are easy.
2085 */
2086 if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
2087 && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
2088 {
2089 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2090 /** @todo check how this is supposed to work if sp=0xfffe. */
2091
2092 /* Check the limit of the new EIP. */
2093 /** @todo Intel pseudo code only does the limit check for 16-bit
2094 * operands, AMD does not make any distinction. What is right? */
2095 if (uNewRip > pCtx->cs.u32Limit)
2096 return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2097
2098 /* commit the operation. */
2099 rcStrict = iemMemStackPopCommitSpecial(pIemCpu, uPtrFrame.pv, uNewRsp);
2100 if (rcStrict != VINF_SUCCESS)
2101 return rcStrict;
2102 pCtx->rip = uNewRip;
2103 pCtx->cs.Sel = uNewCs;
2104 pCtx->cs.ValidSel = uNewCs;
2105 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2106 pCtx->cs.u64Base = (uint32_t)uNewCs << 4;
2107 pCtx->eflags.Bits.u1RF = 0;
2108 /** @todo do we load attribs and limit as well? */
2109 if (cbPop)
2110 iemRegAddToRsp(pIemCpu, pCtx, cbPop);
2111 return VINF_SUCCESS;
2112 }
2113
2114 /*
2115 * Protected mode is complicated, of course.
2116 */
2117 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2118 {
2119 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
2120 return iemRaiseGeneralProtectionFault0(pIemCpu);
2121 }
2122
2123 /* Fetch the descriptor. */
2124 IEMSELDESC DescCs;
2125 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescCs, uNewCs, X86_XCPT_GP);
2126 if (rcStrict != VINF_SUCCESS)
2127 return rcStrict;
2128
2129 /* Can only return to a code selector. */
2130 if ( !DescCs.Legacy.Gen.u1DescType
2131 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
2132 {
2133 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
2134 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
2135 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2136 }
2137
2138 /* L vs D. */
2139 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
2140 && DescCs.Legacy.Gen.u1DefBig
2141 && IEM_IS_LONG_MODE(pIemCpu))
2142 {
2143 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
2144 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2145 }
2146
2147 /* DPL/RPL/CPL checks. */
2148 if ((uNewCs & X86_SEL_RPL) < pIemCpu->uCpl)
2149 {
2150 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pIemCpu->uCpl));
2151 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2152 }
2153
2154 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2155 {
2156 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
2157 {
2158 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
2159 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2160 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2161 }
2162 }
2163 else
2164 {
2165 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
2166 {
2167 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
2168 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2169 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2170 }
2171 }
2172
2173 /* Is it there? */
2174 if (!DescCs.Legacy.Gen.u1Present)
2175 {
2176 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
2177 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewCs);
2178 }
2179
2180 /*
2181 * Return to outer privilege? (We'll typically have entered via a call gate.)
2182 */
2183 if ((uNewCs & X86_SEL_RPL) != pIemCpu->uCpl)
2184 {
2185 /* Read the outer stack pointer stored *after* the parameters. */
2186 RTCPTRUNION uPtrStack;
2187 rcStrict = iemMemStackPopContinueSpecial(pIemCpu, cbPop + cbRetPtr, &uPtrStack.pv, &uNewRsp);
2188 if (rcStrict != VINF_SUCCESS)
2189 return rcStrict;
2190
2191 uPtrStack.pu8 += cbPop; /* Skip the parameters. */
2192
2193 uint16_t uNewOuterSs;
2194 uint64_t uNewOuterRsp;
2195 if (enmEffOpSize == IEMMODE_16BIT)
2196 {
2197 uNewOuterRsp = uPtrStack.pu16[0];
2198 uNewOuterSs = uPtrStack.pu16[1];
2199 }
2200 else if (enmEffOpSize == IEMMODE_32BIT)
2201 {
2202 uNewOuterRsp = uPtrStack.pu32[0];
2203 uNewOuterSs = uPtrStack.pu16[2];
2204 }
2205 else
2206 {
2207 uNewOuterRsp = uPtrStack.pu64[0];
2208 uNewOuterSs = uPtrStack.pu16[4];
2209 }
2210
2211 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
2212 and read the selector. */
2213 IEMSELDESC DescSs;
2214 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
2215 {
2216 if ( !DescCs.Legacy.Gen.u1Long
2217 || (uNewOuterSs & X86_SEL_RPL) == 3)
2218 {
2219 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
2220 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2221 return iemRaiseGeneralProtectionFault0(pIemCpu);
2222 }
2223 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
2224 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
2225 }
2226 else
2227 {
2228 /* Fetch the descriptor for the new stack segment. */
2229 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
2230 if (rcStrict != VINF_SUCCESS)
2231 return rcStrict;
2232 }
2233
2234 /* Check that RPL of stack and code selectors match. */
2235 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
2236 {
2237 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2238 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewOuterSs);
2239 }
2240
2241 /* Must be a writable data segment. */
2242 if ( !DescSs.Legacy.Gen.u1DescType
2243 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
2244 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
2245 {
2246 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
2247 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2248 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewOuterSs);
2249 }
2250
2251 /* L vs D. (Not mentioned by intel.) */
2252 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
2253 && DescSs.Legacy.Gen.u1DefBig
2254 && IEM_IS_LONG_MODE(pIemCpu))
2255 {
2256 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
2257 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2258 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewOuterSs);
2259 }
2260
2261 /* DPL/RPL/CPL checks. */
2262 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2263 {
2264 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
2265 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
2266 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewOuterSs);
2267 }
2268
2269 /* Is it there? */
2270 if (!DescSs.Legacy.Gen.u1Present)
2271 {
2272 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2273 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewCs);
2274 }
2275
2276 /* Calc SS limit.*/
2277 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
2278
2279 /* Is RIP canonical or within CS.limit? */
2280 uint64_t u64Base;
2281 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2282
2283 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
2284 {
2285 if (!IEM_IS_CANONICAL(uNewRip))
2286 {
2287 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2288 return iemRaiseNotCanonical(pIemCpu);
2289 }
2290 u64Base = 0;
2291 }
2292 else
2293 {
2294 if (uNewRip > cbLimitCs)
2295 {
2296 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
2297 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
2298 /** @todo: Intel says this is #GP(0)! */
2299 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2300 }
2301 u64Base = X86DESC_BASE(&DescCs.Legacy);
2302 }
2303
2304 /*
2305 * Now set the accessed bit before
2306 * writing the return address to the stack and committing the result into
2307 * CS, CSHID and RIP.
2308 */
2309 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
2310 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2311 {
2312 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCs);
2313 if (rcStrict != VINF_SUCCESS)
2314 return rcStrict;
2315 /** @todo check what VT-x and AMD-V does. */
2316 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2317 }
2318 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
2319 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2320 {
2321 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewOuterSs);
2322 if (rcStrict != VINF_SUCCESS)
2323 return rcStrict;
2324 /** @todo check what VT-x and AMD-V does. */
2325 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2326 }
2327
2328 /* commit */
2329 rcStrict = iemMemStackPopCommitSpecial(pIemCpu, uPtrFrame.pv, uNewRsp);
2330 if (rcStrict != VINF_SUCCESS)
2331 return rcStrict;
2332 if (enmEffOpSize == IEMMODE_16BIT)
2333 pCtx->rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2334 else
2335 pCtx->rip = uNewRip;
2336 pCtx->cs.Sel = uNewCs;
2337 pCtx->cs.ValidSel = uNewCs;
2338 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2339 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2340 pCtx->cs.u32Limit = cbLimitCs;
2341 pCtx->cs.u64Base = u64Base;
2342 pCtx->rsp = uNewOuterRsp;
2343 pCtx->ss.Sel = uNewOuterSs;
2344 pCtx->ss.ValidSel = uNewOuterSs;
2345 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2346 pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
2347 pCtx->ss.u32Limit = cbLimitSs;
2348 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
2349 pCtx->ss.u64Base = 0;
2350 else
2351 pCtx->ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
2352
2353 pIemCpu->uCpl = (uNewCs & X86_SEL_RPL);
2354 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->ds);
2355 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->es);
2356 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->fs);
2357 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->gs);
2358
2359 /** @todo check if the hidden bits are loaded correctly for 64-bit
2360 * mode. */
2361
2362 if (cbPop)
2363 iemRegAddToRsp(pIemCpu, pCtx, cbPop);
2364 pCtx->eflags.Bits.u1RF = 0;
2365
2366 /* Done! */
2367 }
2368 /*
2369 * Return to the same privilege level
2370 */
2371 else
2372 {
2373 /* Limit / canonical check. */
2374 uint64_t u64Base;
2375 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2376
2377 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
2378 {
2379 if (!IEM_IS_CANONICAL(uNewRip))
2380 {
2381 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
2382 return iemRaiseNotCanonical(pIemCpu);
2383 }
2384 u64Base = 0;
2385 }
2386 else
2387 {
2388 if (uNewRip > cbLimitCs)
2389 {
2390 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
2391 /** @todo: Intel says this is #GP(0)! */
2392 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
2393 }
2394 u64Base = X86DESC_BASE(&DescCs.Legacy);
2395 }
2396
2397 /*
2398 * Now set the accessed bit before
2399 * writing the return address to the stack and committing the result into
2400 * CS, CSHID and RIP.
2401 */
2402 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2403 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2404 {
2405 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCs);
2406 if (rcStrict != VINF_SUCCESS)
2407 return rcStrict;
2408 /** @todo check what VT-x and AMD-V does. */
2409 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2410 }
2411
2412 /* commit */
2413 rcStrict = iemMemStackPopCommitSpecial(pIemCpu, uPtrFrame.pv, uNewRsp);
2414 if (rcStrict != VINF_SUCCESS)
2415 return rcStrict;
2416 if (enmEffOpSize == IEMMODE_16BIT)
2417 pCtx->rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2418 else
2419 pCtx->rip = uNewRip;
2420 pCtx->cs.Sel = uNewCs;
2421 pCtx->cs.ValidSel = uNewCs;
2422 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2423 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2424 pCtx->cs.u32Limit = cbLimitCs;
2425 pCtx->cs.u64Base = u64Base;
2426 /** @todo check if the hidden bits are loaded correctly for 64-bit
2427 * mode. */
2428 if (cbPop)
2429 iemRegAddToRsp(pIemCpu, pCtx, cbPop);
2430 pCtx->eflags.Bits.u1RF = 0;
2431 }
2432 return VINF_SUCCESS;
2433}
2434
2435
2436/**
2437 * Implements retn.
2438 *
2439 * We're doing this in C because of the \#GP that might be raised if the popped
2440 * program counter is out of bounds.
2441 *
2442 * @param enmEffOpSize The effective operand size.
2443 * @param cbPop The amount of arguments to pop from the stack
2444 * (bytes).
2445 */
2446IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2447{
2448 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2449 NOREF(cbInstr);
2450
2451 /* Fetch the RSP from the stack. */
2452 VBOXSTRICTRC rcStrict;
2453 RTUINT64U NewRip;
2454 RTUINT64U NewRsp;
2455 NewRsp.u = pCtx->rsp;
2456 switch (enmEffOpSize)
2457 {
2458 case IEMMODE_16BIT:
2459 NewRip.u = 0;
2460 rcStrict = iemMemStackPopU16Ex(pIemCpu, &NewRip.Words.w0, &NewRsp);
2461 break;
2462 case IEMMODE_32BIT:
2463 NewRip.u = 0;
2464 rcStrict = iemMemStackPopU32Ex(pIemCpu, &NewRip.DWords.dw0, &NewRsp);
2465 break;
2466 case IEMMODE_64BIT:
2467 rcStrict = iemMemStackPopU64Ex(pIemCpu, &NewRip.u, &NewRsp);
2468 break;
2469 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2470 }
2471 if (rcStrict != VINF_SUCCESS)
2472 return rcStrict;
2473
2474 /* Check the new RSP before loading it. */
2475 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
2476 * of it. The canonical test is performed here and for call. */
2477 if (enmEffOpSize != IEMMODE_64BIT)
2478 {
2479 if (NewRip.DWords.dw0 > pCtx->cs.u32Limit)
2480 {
2481 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pCtx->cs.u32Limit));
2482 return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2483 }
2484 }
2485 else
2486 {
2487 if (!IEM_IS_CANONICAL(NewRip.u))
2488 {
2489 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
2490 return iemRaiseNotCanonical(pIemCpu);
2491 }
2492 }
2493
2494 /* Commit it. */
2495 pCtx->rip = NewRip.u;
2496 pCtx->rsp = NewRsp.u;
2497 if (cbPop)
2498 iemRegAddToRsp(pIemCpu, pCtx, cbPop);
2499 pCtx->eflags.Bits.u1RF = 0;
2500
2501 return VINF_SUCCESS;
2502}
2503
2504
2505/**
2506 * Implements enter.
2507 *
2508 * We're doing this in C because the instruction is insane, even for the
2509 * u8NestingLevel=0 case dealing with the stack is tedious.
2510 *
2511 * @param enmEffOpSize The effective operand size.
2512 */
2513IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
2514{
2515 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2516
2517 /* Push RBP, saving the old value in TmpRbp. */
2518 RTUINT64U NewRsp; NewRsp.u = pCtx->rsp;
2519 RTUINT64U TmpRbp; TmpRbp.u = pCtx->rbp;
2520 RTUINT64U NewRbp;
2521 VBOXSTRICTRC rcStrict;
2522 if (enmEffOpSize == IEMMODE_64BIT)
2523 {
2524 rcStrict = iemMemStackPushU64Ex(pIemCpu, TmpRbp.u, &NewRsp);
2525 NewRbp = NewRsp;
2526 }
2527 else if (enmEffOpSize == IEMMODE_32BIT)
2528 {
2529 rcStrict = iemMemStackPushU32Ex(pIemCpu, TmpRbp.DWords.dw0, &NewRsp);
2530 NewRbp = NewRsp;
2531 }
2532 else
2533 {
2534 rcStrict = iemMemStackPushU16Ex(pIemCpu, TmpRbp.Words.w0, &NewRsp);
2535 NewRbp = TmpRbp;
2536 NewRbp.Words.w0 = NewRsp.Words.w0;
2537 }
2538 if (rcStrict != VINF_SUCCESS)
2539 return rcStrict;
2540
2541 /* Copy the parameters (aka nesting levels by Intel). */
2542 cParameters &= 0x1f;
2543 if (cParameters > 0)
2544 {
2545 switch (enmEffOpSize)
2546 {
2547 case IEMMODE_16BIT:
2548 if (pCtx->ss.Attr.n.u1DefBig)
2549 TmpRbp.DWords.dw0 -= 2;
2550 else
2551 TmpRbp.Words.w0 -= 2;
2552 do
2553 {
2554 uint16_t u16Tmp;
2555 rcStrict = iemMemStackPopU16Ex(pIemCpu, &u16Tmp, &TmpRbp);
2556 if (rcStrict != VINF_SUCCESS)
2557 break;
2558 rcStrict = iemMemStackPushU16Ex(pIemCpu, u16Tmp, &NewRsp);
2559 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2560 break;
2561
2562 case IEMMODE_32BIT:
2563 if (pCtx->ss.Attr.n.u1DefBig)
2564 TmpRbp.DWords.dw0 -= 4;
2565 else
2566 TmpRbp.Words.w0 -= 4;
2567 do
2568 {
2569 uint32_t u32Tmp;
2570 rcStrict = iemMemStackPopU32Ex(pIemCpu, &u32Tmp, &TmpRbp);
2571 if (rcStrict != VINF_SUCCESS)
2572 break;
2573 rcStrict = iemMemStackPushU32Ex(pIemCpu, u32Tmp, &NewRsp);
2574 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2575 break;
2576
2577 case IEMMODE_64BIT:
2578 TmpRbp.u -= 8;
2579 do
2580 {
2581 uint64_t u64Tmp;
2582 rcStrict = iemMemStackPopU64Ex(pIemCpu, &u64Tmp, &TmpRbp);
2583 if (rcStrict != VINF_SUCCESS)
2584 break;
2585 rcStrict = iemMemStackPushU64Ex(pIemCpu, u64Tmp, &NewRsp);
2586 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2587 break;
2588
2589 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2590 }
2591 if (rcStrict != VINF_SUCCESS)
2592 return VINF_SUCCESS;
2593
2594 /* Push the new RBP */
2595 if (enmEffOpSize == IEMMODE_64BIT)
2596 rcStrict = iemMemStackPushU64Ex(pIemCpu, NewRbp.u, &NewRsp);
2597 else if (enmEffOpSize == IEMMODE_32BIT)
2598 rcStrict = iemMemStackPushU32Ex(pIemCpu, NewRbp.DWords.dw0, &NewRsp);
2599 else
2600 rcStrict = iemMemStackPushU16Ex(pIemCpu, NewRbp.Words.w0, &NewRsp);
2601 if (rcStrict != VINF_SUCCESS)
2602 return rcStrict;
2603
2604 }
2605
2606 /* Recalc RSP. */
2607 iemRegSubFromRspEx(pIemCpu, pCtx, &NewRsp, cbFrame);
2608
2609 /** @todo Should probe write access at the new RSP according to AMD. */
2610
2611 /* Commit it. */
2612 pCtx->rbp = NewRbp.u;
2613 pCtx->rsp = NewRsp.u;
2614 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
2615
2616 return VINF_SUCCESS;
2617}
2618
2619
2620
2621/**
2622 * Implements leave.
2623 *
2624 * We're doing this in C because messing with the stack registers is annoying
2625 * since they depends on SS attributes.
2626 *
2627 * @param enmEffOpSize The effective operand size.
2628 */
2629IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
2630{
2631 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2632
2633 /* Calculate the intermediate RSP from RBP and the stack attributes. */
2634 RTUINT64U NewRsp;
2635 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
2636 NewRsp.u = pCtx->rbp;
2637 else if (pCtx->ss.Attr.n.u1DefBig)
2638 NewRsp.u = pCtx->ebp;
2639 else
2640 {
2641 /** @todo Check that LEAVE actually preserve the high EBP bits. */
2642 NewRsp.u = pCtx->rsp;
2643 NewRsp.Words.w0 = pCtx->bp;
2644 }
2645
2646 /* Pop RBP according to the operand size. */
2647 VBOXSTRICTRC rcStrict;
2648 RTUINT64U NewRbp;
2649 switch (enmEffOpSize)
2650 {
2651 case IEMMODE_16BIT:
2652 NewRbp.u = pCtx->rbp;
2653 rcStrict = iemMemStackPopU16Ex(pIemCpu, &NewRbp.Words.w0, &NewRsp);
2654 break;
2655 case IEMMODE_32BIT:
2656 NewRbp.u = 0;
2657 rcStrict = iemMemStackPopU32Ex(pIemCpu, &NewRbp.DWords.dw0, &NewRsp);
2658 break;
2659 case IEMMODE_64BIT:
2660 rcStrict = iemMemStackPopU64Ex(pIemCpu, &NewRbp.u, &NewRsp);
2661 break;
2662 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2663 }
2664 if (rcStrict != VINF_SUCCESS)
2665 return rcStrict;
2666
2667
2668 /* Commit it. */
2669 pCtx->rbp = NewRbp.u;
2670 pCtx->rsp = NewRsp.u;
2671 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
2672
2673 return VINF_SUCCESS;
2674}
2675
2676
2677/**
2678 * Implements int3 and int XX.
2679 *
2680 * @param u8Int The interrupt vector number.
2681 * @param fIsBpInstr Is it the breakpoint instruction.
2682 */
2683IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, bool, fIsBpInstr)
2684{
2685 Assert(pIemCpu->cXcptRecursions == 0);
2686 return iemRaiseXcptOrInt(pIemCpu,
2687 cbInstr,
2688 u8Int,
2689 (fIsBpInstr ? IEM_XCPT_FLAGS_BP_INSTR : 0) | IEM_XCPT_FLAGS_T_SOFT_INT,
2690 0,
2691 0);
2692}
2693
2694
2695/**
2696 * Implements iret for real mode and V8086 mode.
2697 *
2698 * @param enmEffOpSize The effective operand size.
2699 */
2700IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2701{
2702 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2703 X86EFLAGS Efl;
2704 Efl.u = IEMMISC_GET_EFL(pIemCpu, pCtx);
2705 NOREF(cbInstr);
2706
2707 /*
2708 * iret throws an exception if VME isn't enabled.
2709 */
2710 if ( Efl.Bits.u1VM
2711 && Efl.Bits.u2IOPL != 3
2712 && !(pCtx->cr4 & X86_CR4_VME))
2713 return iemRaiseGeneralProtectionFault0(pIemCpu);
2714
2715 /*
2716 * Do the stack bits, but don't commit RSP before everything checks
2717 * out right.
2718 */
2719 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2720 VBOXSTRICTRC rcStrict;
2721 RTCPTRUNION uFrame;
2722 uint16_t uNewCs;
2723 uint32_t uNewEip;
2724 uint32_t uNewFlags;
2725 uint64_t uNewRsp;
2726 if (enmEffOpSize == IEMMODE_32BIT)
2727 {
2728 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 12, &uFrame.pv, &uNewRsp);
2729 if (rcStrict != VINF_SUCCESS)
2730 return rcStrict;
2731 uNewEip = uFrame.pu32[0];
2732 if (uNewEip > UINT16_MAX)
2733 return iemRaiseGeneralProtectionFault0(pIemCpu);
2734
2735 uNewCs = (uint16_t)uFrame.pu32[1];
2736 uNewFlags = uFrame.pu32[2];
2737 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2738 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
2739 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
2740 | X86_EFL_ID;
2741 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
2742 }
2743 else
2744 {
2745 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 6, &uFrame.pv, &uNewRsp);
2746 if (rcStrict != VINF_SUCCESS)
2747 return rcStrict;
2748 uNewEip = uFrame.pu16[0];
2749 uNewCs = uFrame.pu16[1];
2750 uNewFlags = uFrame.pu16[2];
2751 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2752 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
2753 uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
2754 /** @todo The intel pseudo code does not indicate what happens to
2755 * reserved flags. We just ignore them. */
2756 }
2757 /** @todo Check how this is supposed to work if sp=0xfffe. */
2758
2759 /*
2760 * Check the limit of the new EIP.
2761 */
2762 /** @todo Only the AMD pseudo code check the limit here, what's
2763 * right? */
2764 if (uNewEip > pCtx->cs.u32Limit)
2765 return iemRaiseSelectorBounds(pIemCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2766
2767 /*
2768 * V8086 checks and flag adjustments
2769 */
2770 if (Efl.Bits.u1VM)
2771 {
2772 if (Efl.Bits.u2IOPL == 3)
2773 {
2774 /* Preserve IOPL and clear RF. */
2775 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
2776 uNewFlags |= Efl.u & (X86_EFL_IOPL);
2777 }
2778 else if ( enmEffOpSize == IEMMODE_16BIT
2779 && ( !(uNewFlags & X86_EFL_IF)
2780 || !Efl.Bits.u1VIP )
2781 && !(uNewFlags & X86_EFL_TF) )
2782 {
2783 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
2784 uNewFlags &= ~X86_EFL_VIF;
2785 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
2786 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
2787 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
2788 }
2789 else
2790 return iemRaiseGeneralProtectionFault0(pIemCpu);
2791 }
2792
2793 /*
2794 * Commit the operation.
2795 */
2796 rcStrict = iemMemStackPopCommitSpecial(pIemCpu, uFrame.pv, uNewRsp);
2797 if (rcStrict != VINF_SUCCESS)
2798 return rcStrict;
2799#ifdef DBGFTRACE_ENABLED
2800 RTTraceBufAddMsgF(IEMCPU_TO_VM(pIemCpu)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
2801 pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
2802#endif
2803
2804 pCtx->rip = uNewEip;
2805 pCtx->cs.Sel = uNewCs;
2806 pCtx->cs.ValidSel = uNewCs;
2807 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2808 pCtx->cs.u64Base = (uint32_t)uNewCs << 4;
2809 /** @todo do we load attribs and limit as well? */
2810 Assert(uNewFlags & X86_EFL_1);
2811 IEMMISC_SET_EFL(pIemCpu, pCtx, uNewFlags);
2812
2813 return VINF_SUCCESS;
2814}
2815
2816
2817/**
2818 * Loads a segment register when entering V8086 mode.
2819 *
2820 * @param pSReg The segment register.
2821 * @param uSeg The segment to load.
2822 */
2823static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
2824{
2825 pSReg->Sel = uSeg;
2826 pSReg->ValidSel = uSeg;
2827 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
2828 pSReg->u64Base = (uint32_t)uSeg << 4;
2829 pSReg->u32Limit = 0xffff;
2830 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
2831 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
2832 * IRET'ing to V8086. */
2833}
2834
2835
2836/**
2837 * Implements iret for protected mode returning to V8086 mode.
2838 *
2839 * @param pCtx Pointer to the CPU context.
2840 * @param uNewEip The new EIP.
2841 * @param uNewCs The new CS.
2842 * @param uNewFlags The new EFLAGS.
2843 * @param uNewRsp The RSP after the initial IRET frame.
2844 *
2845 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
2846 */
2847IEM_CIMPL_DEF_5(iemCImpl_iret_prot_v8086, PCPUMCTX, pCtx, uint32_t, uNewEip, uint16_t, uNewCs,
2848 uint32_t, uNewFlags, uint64_t, uNewRsp)
2849{
2850 /*
2851 * Pop the V8086 specific frame bits off the stack.
2852 */
2853 VBOXSTRICTRC rcStrict;
2854 RTCPTRUNION uFrame;
2855 rcStrict = iemMemStackPopContinueSpecial(pIemCpu, 24, &uFrame.pv, &uNewRsp);
2856 if (rcStrict != VINF_SUCCESS)
2857 return rcStrict;
2858 uint32_t uNewEsp = uFrame.pu32[0];
2859 uint16_t uNewSs = uFrame.pu32[1];
2860 uint16_t uNewEs = uFrame.pu32[2];
2861 uint16_t uNewDs = uFrame.pu32[3];
2862 uint16_t uNewFs = uFrame.pu32[4];
2863 uint16_t uNewGs = uFrame.pu32[5];
2864 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
2865 if (rcStrict != VINF_SUCCESS)
2866 return rcStrict;
2867
2868 /*
2869 * Commit the operation.
2870 */
2871 uNewFlags &= X86_EFL_LIVE_MASK;
2872 uNewFlags |= X86_EFL_RA1_MASK;
2873#ifdef DBGFTRACE_ENABLED
2874 RTTraceBufAddMsgF(IEMCPU_TO_VM(pIemCpu)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
2875 pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
2876#endif
2877
2878 IEMMISC_SET_EFL(pIemCpu, pCtx, uNewFlags);
2879 iemCImplCommonV8086LoadSeg(&pCtx->cs, uNewCs);
2880 iemCImplCommonV8086LoadSeg(&pCtx->ss, uNewSs);
2881 iemCImplCommonV8086LoadSeg(&pCtx->es, uNewEs);
2882 iemCImplCommonV8086LoadSeg(&pCtx->ds, uNewDs);
2883 iemCImplCommonV8086LoadSeg(&pCtx->fs, uNewFs);
2884 iemCImplCommonV8086LoadSeg(&pCtx->gs, uNewGs);
2885 pCtx->rip = uNewEip;
2886 pCtx->rsp = uNewEsp;
2887 pIemCpu->uCpl = 3;
2888
2889 return VINF_SUCCESS;
2890}
2891
2892
2893/**
2894 * Implements iret for protected mode returning via a nested task.
2895 *
2896 * @param enmEffOpSize The effective operand size.
2897 */
2898IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
2899{
2900#ifndef IEM_IMPLEMENTS_TASKSWITCH
2901 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
2902#else
2903 /*
2904 * Read the segment selector in the link-field of the current TSS.
2905 */
2906 RTSEL uSelRet;
2907 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2908 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pIemCpu, &uSelRet, UINT8_MAX, pCtx->tr.u64Base);
2909 if (rcStrict != VINF_SUCCESS)
2910 return rcStrict;
2911
2912 /*
2913 * Fetch the returning task's TSS descriptor from the GDT.
2914 */
2915 if (uSelRet & X86_SEL_LDT)
2916 {
2917 Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
2918 return iemRaiseTaskSwitchFaultBySelector(pIemCpu, uSelRet);
2919 }
2920
2921 IEMSELDESC TssDesc;
2922 rcStrict = iemMemFetchSelDesc(pIemCpu, &TssDesc, uSelRet, X86_XCPT_GP);
2923 if (rcStrict != VINF_SUCCESS)
2924 return rcStrict;
2925
2926 if (TssDesc.Legacy.Gate.u1DescType)
2927 {
2928 Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
2929 return iemRaiseTaskSwitchFaultBySelector(pIemCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
2930 }
2931
2932 if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
2933 && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2934 {
2935 Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
2936 return iemRaiseTaskSwitchFaultBySelector(pIemCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
2937 }
2938
2939 if (!TssDesc.Legacy.Gate.u1Present)
2940 {
2941 Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
2942 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
2943 }
2944
2945 uint32_t uNextEip = pCtx->eip + cbInstr;
2946 return iemTaskSwitch(pIemCpu, pIemCpu->CTX_SUFF(pCtx), IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
2947 0 /* uCr2 */, uSelRet, &TssDesc);
2948#endif
2949}
2950
2951
2952/**
2953 * Implements iret for protected mode
2954 *
2955 * @param enmEffOpSize The effective operand size.
2956 */
2957IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
2958{
2959 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
2960 NOREF(cbInstr);
2961
2962 /*
2963 * Nested task return.
2964 */
2965 if (pCtx->eflags.Bits.u1NT)
2966 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
2967
2968 /*
2969 * Normal return.
2970 *
2971 * Do the stack bits, but don't commit RSP before everything checks
2972 * out right.
2973 */
2974 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2975 VBOXSTRICTRC rcStrict;
2976 RTCPTRUNION uFrame;
2977 uint16_t uNewCs;
2978 uint32_t uNewEip;
2979 uint32_t uNewFlags;
2980 uint64_t uNewRsp;
2981 if (enmEffOpSize == IEMMODE_32BIT)
2982 {
2983 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 12, &uFrame.pv, &uNewRsp);
2984 if (rcStrict != VINF_SUCCESS)
2985 return rcStrict;
2986 uNewEip = uFrame.pu32[0];
2987 uNewCs = (uint16_t)uFrame.pu32[1];
2988 uNewFlags = uFrame.pu32[2];
2989 }
2990 else
2991 {
2992 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 6, &uFrame.pv, &uNewRsp);
2993 if (rcStrict != VINF_SUCCESS)
2994 return rcStrict;
2995 uNewEip = uFrame.pu16[0];
2996 uNewCs = uFrame.pu16[1];
2997 uNewFlags = uFrame.pu16[2];
2998 }
2999 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3000 if (rcStrict != VINF_SUCCESS)
3001 return rcStrict;
3002
3003 /*
3004 * We're hopefully not returning to V8086 mode...
3005 */
3006 if ( (uNewFlags & X86_EFL_VM)
3007 && pIemCpu->uCpl == 0)
3008 {
3009 Assert(enmEffOpSize == IEMMODE_32BIT);
3010 return IEM_CIMPL_CALL_5(iemCImpl_iret_prot_v8086, pCtx, uNewEip, uNewCs, uNewFlags, uNewRsp);
3011 }
3012
3013 /*
3014 * Protected mode.
3015 */
3016 /* Read the CS descriptor. */
3017 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3018 {
3019 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
3020 return iemRaiseGeneralProtectionFault0(pIemCpu);
3021 }
3022
3023 IEMSELDESC DescCS;
3024 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescCS, uNewCs, X86_XCPT_GP);
3025 if (rcStrict != VINF_SUCCESS)
3026 {
3027 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
3028 return rcStrict;
3029 }
3030
3031 /* Must be a code descriptor. */
3032 if (!DescCS.Legacy.Gen.u1DescType)
3033 {
3034 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3035 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
3036 }
3037 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3038 {
3039 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3040 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
3041 }
3042
3043#ifdef VBOX_WITH_RAW_MODE_NOT_R0
3044 /* Raw ring-0 and ring-1 compression adjustments for PATM performance tricks and other CS leaks. */
3045 PVM pVM = IEMCPU_TO_VM(pIemCpu);
3046 if (EMIsRawRing0Enabled(pVM) && !HMIsEnabled(pVM))
3047 {
3048 if ((uNewCs & X86_SEL_RPL) == 1)
3049 {
3050 if ( pIemCpu->uCpl == 0
3051 && ( !EMIsRawRing1Enabled(pVM)
3052 || pCtx->cs.Sel == (uNewCs & X86_SEL_MASK_OFF_RPL)) )
3053 {
3054 Log(("iret: Ring-0 compression fix: uNewCS=%#x -> %#x\n", uNewCs, uNewCs & X86_SEL_MASK_OFF_RPL));
3055 uNewCs &= X86_SEL_MASK_OFF_RPL;
3056 }
3057# ifdef LOG_ENABLED
3058 else if (pIemCpu->uCpl <= 1 && EMIsRawRing1Enabled(pVM))
3059 Log(("iret: uNewCs=%#x genuine return to ring-1.\n", uNewCs));
3060# endif
3061 }
3062 else if ( (uNewCs & X86_SEL_RPL) == 2
3063 && EMIsRawRing1Enabled(pVM)
3064 && pIemCpu->uCpl <= 1)
3065 {
3066 Log(("iret: Ring-1 compression fix: uNewCS=%#x -> %#x\n", uNewCs, (uNewCs & X86_SEL_MASK_OFF_RPL) | 1));
3067 uNewCs = (uNewCs & X86_SEL_MASK_OFF_RPL) | 2;
3068 }
3069 }
3070#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
3071
3072
3073 /* Privilege checks. */
3074 if ((uNewCs & X86_SEL_RPL) < pIemCpu->uCpl)
3075 {
3076 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pIemCpu->uCpl));
3077 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
3078 }
3079 if ( (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
3080 && (uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3081 {
3082 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3083 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
3084 }
3085
3086 /* Present? */
3087 if (!DescCS.Legacy.Gen.u1Present)
3088 {
3089 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
3090 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewCs);
3091 }
3092
3093 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3094
3095 /*
3096 * Return to outer level?
3097 */
3098 if ((uNewCs & X86_SEL_RPL) != pIemCpu->uCpl)
3099 {
3100 uint16_t uNewSS;
3101 uint32_t uNewESP;
3102 if (enmEffOpSize == IEMMODE_32BIT)
3103 {
3104 rcStrict = iemMemStackPopContinueSpecial(pIemCpu, 8, &uFrame.pv, &uNewRsp);
3105 if (rcStrict != VINF_SUCCESS)
3106 return rcStrict;
3107 uNewESP = uFrame.pu32[0];
3108 uNewSS = (uint16_t)uFrame.pu32[1];
3109 }
3110 else
3111 {
3112 rcStrict = iemMemStackPopContinueSpecial(pIemCpu, 4, &uFrame.pv, &uNewRsp);
3113 if (rcStrict != VINF_SUCCESS)
3114 return rcStrict;
3115 uNewESP = uFrame.pu16[0];
3116 uNewSS = uFrame.pu16[1];
3117 }
3118 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
3119 if (rcStrict != VINF_SUCCESS)
3120 return rcStrict;
3121
3122 /* Read the SS descriptor. */
3123 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
3124 {
3125 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
3126 return iemRaiseGeneralProtectionFault0(pIemCpu);
3127 }
3128
3129 IEMSELDESC DescSS;
3130 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
3131 if (rcStrict != VINF_SUCCESS)
3132 {
3133 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
3134 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
3135 return rcStrict;
3136 }
3137
3138 /* Privilege checks. */
3139 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3140 {
3141 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
3142 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSS);
3143 }
3144 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3145 {
3146 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
3147 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
3148 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSS);
3149 }
3150
3151 /* Must be a writeable data segment descriptor. */
3152 if (!DescSS.Legacy.Gen.u1DescType)
3153 {
3154 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
3155 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3156 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSS);
3157 }
3158 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3159 {
3160 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
3161 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3162 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSS);
3163 }
3164
3165 /* Present? */
3166 if (!DescSS.Legacy.Gen.u1Present)
3167 {
3168 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
3169 return iemRaiseStackSelectorNotPresentBySelector(pIemCpu, uNewSS);
3170 }
3171
3172 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3173
3174 /* Check EIP. */
3175 if (uNewEip > cbLimitCS)
3176 {
3177 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
3178 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
3179 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3180 return iemRaiseSelectorBoundsBySelector(pIemCpu, uNewCs);
3181 }
3182
3183 /*
3184 * Commit the changes, marking CS and SS accessed first since
3185 * that may fail.
3186 */
3187 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3188 {
3189 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCs);
3190 if (rcStrict != VINF_SUCCESS)
3191 return rcStrict;
3192 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3193 }
3194 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3195 {
3196 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewSS);
3197 if (rcStrict != VINF_SUCCESS)
3198 return rcStrict;
3199 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3200 }
3201
3202 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3203 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3204 if (enmEffOpSize != IEMMODE_16BIT)
3205 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3206 if (pIemCpu->uCpl == 0)
3207 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3208 else if (pIemCpu->uCpl <= pCtx->eflags.Bits.u2IOPL)
3209 fEFlagsMask |= X86_EFL_IF;
3210 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pIemCpu, pCtx);
3211 fEFlagsNew &= ~fEFlagsMask;
3212 fEFlagsNew |= uNewFlags & fEFlagsMask;
3213#ifdef DBGFTRACE_ENABLED
3214 RTTraceBufAddMsgF(IEMCPU_TO_VM(pIemCpu)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
3215 pIemCpu->uCpl, uNewCs & X86_SEL_RPL, pCtx->cs.Sel, pCtx->eip,
3216 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
3217#endif
3218
3219 IEMMISC_SET_EFL(pIemCpu, pCtx, fEFlagsNew);
3220 pCtx->rip = uNewEip;
3221 pCtx->cs.Sel = uNewCs;
3222 pCtx->cs.ValidSel = uNewCs;
3223 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
3224 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3225 pCtx->cs.u32Limit = cbLimitCS;
3226 pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3227 if (!pCtx->ss.Attr.n.u1DefBig)
3228 pCtx->sp = (uint16_t)uNewESP;
3229 else
3230 pCtx->rsp = uNewESP;
3231 pCtx->ss.Sel = uNewSS;
3232 pCtx->ss.ValidSel = uNewSS;
3233 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
3234 pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3235 pCtx->ss.u32Limit = cbLimitSs;
3236 pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3237
3238 pIemCpu->uCpl = uNewCs & X86_SEL_RPL;
3239 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->ds);
3240 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->es);
3241 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->fs);
3242 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCs & X86_SEL_RPL, &pCtx->gs);
3243
3244 /* Done! */
3245
3246 }
3247 /*
3248 * Return to the same level.
3249 */
3250 else
3251 {
3252 /* Check EIP. */
3253 if (uNewEip > cbLimitCS)
3254 {
3255 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
3256 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3257 return iemRaiseSelectorBoundsBySelector(pIemCpu, uNewCs);
3258 }
3259
3260 /*
3261 * Commit the changes, marking CS first since it may fail.
3262 */
3263 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3264 {
3265 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCs);
3266 if (rcStrict != VINF_SUCCESS)
3267 return rcStrict;
3268 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3269 }
3270
3271 X86EFLAGS NewEfl;
3272 NewEfl.u = IEMMISC_GET_EFL(pIemCpu, pCtx);
3273 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3274 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3275 if (enmEffOpSize != IEMMODE_16BIT)
3276 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3277 if (pIemCpu->uCpl == 0)
3278 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3279 else if (pIemCpu->uCpl <= NewEfl.Bits.u2IOPL)
3280 fEFlagsMask |= X86_EFL_IF;
3281 NewEfl.u &= ~fEFlagsMask;
3282 NewEfl.u |= fEFlagsMask & uNewFlags;
3283#ifdef DBGFTRACE_ENABLED
3284 RTTraceBufAddMsgF(IEMCPU_TO_VM(pIemCpu)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
3285 pIemCpu->uCpl, pCtx->cs.Sel, pCtx->eip,
3286 uNewCs, uNewEip, uNewFlags, pCtx->ss.Sel, uNewRsp);
3287#endif
3288
3289 IEMMISC_SET_EFL(pIemCpu, pCtx, NewEfl.u);
3290 pCtx->rip = uNewEip;
3291 pCtx->cs.Sel = uNewCs;
3292 pCtx->cs.ValidSel = uNewCs;
3293 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
3294 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3295 pCtx->cs.u32Limit = cbLimitCS;
3296 pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3297 pCtx->rsp = uNewRsp;
3298 /* Done! */
3299 }
3300 return VINF_SUCCESS;
3301}
3302
3303
3304/**
3305 * Implements iret for long mode
3306 *
3307 * @param enmEffOpSize The effective operand size.
3308 */
3309IEM_CIMPL_DEF_1(iemCImpl_iret_long, IEMMODE, enmEffOpSize)
3310{
3311 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3312 NOREF(cbInstr);
3313
3314 /*
3315 * Nested task return is not supported in long mode.
3316 */
3317 if (pCtx->eflags.Bits.u1NT)
3318 {
3319 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pCtx->eflags.u));
3320 return iemRaiseGeneralProtectionFault0(pIemCpu);
3321 }
3322
3323 /*
3324 * Normal return.
3325 *
3326 * Do the stack bits, but don't commit RSP before everything checks
3327 * out right.
3328 */
3329 VBOXSTRICTRC rcStrict;
3330 RTCPTRUNION uFrame;
3331 uint64_t uNewRip;
3332 uint16_t uNewCs;
3333 uint16_t uNewSs;
3334 uint32_t uNewFlags;
3335 uint64_t uNewRsp;
3336 if (enmEffOpSize == IEMMODE_64BIT)
3337 {
3338 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 5*8, &uFrame.pv, &uNewRsp);
3339 if (rcStrict != VINF_SUCCESS)
3340 return rcStrict;
3341 uNewRip = uFrame.pu64[0];
3342 uNewCs = (uint16_t)uFrame.pu64[1];
3343 uNewFlags = (uint32_t)uFrame.pu64[2];
3344 uNewRsp = uFrame.pu64[3];
3345 uNewSs = (uint16_t)uFrame.pu64[4];
3346 }
3347 else if (enmEffOpSize == IEMMODE_32BIT)
3348 {
3349 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 5*4, &uFrame.pv, &uNewRsp);
3350 if (rcStrict != VINF_SUCCESS)
3351 return rcStrict;
3352 uNewRip = uFrame.pu32[0];
3353 uNewCs = (uint16_t)uFrame.pu32[1];
3354 uNewFlags = uFrame.pu32[2];
3355 uNewRsp = uFrame.pu32[3];
3356 uNewSs = (uint16_t)uFrame.pu32[4];
3357 }
3358 else
3359 {
3360 Assert(enmEffOpSize == IEMMODE_16BIT);
3361 rcStrict = iemMemStackPopBeginSpecial(pIemCpu, 5*2, &uFrame.pv, &uNewRsp);
3362 if (rcStrict != VINF_SUCCESS)
3363 return rcStrict;
3364 uNewRip = uFrame.pu16[0];
3365 uNewCs = uFrame.pu16[1];
3366 uNewFlags = uFrame.pu16[2];
3367 uNewRsp = uFrame.pu16[3];
3368 uNewSs = uFrame.pu16[4];
3369 }
3370 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3371 if (rcStrict != VINF_SUCCESS)
3372 return rcStrict;
3373 Log2(("iretq stack: cs:rip=%04x:%016RX16 rflags=%016RX16 ss:rsp=%04x:%016RX16\n",
3374 uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
3375
3376 /*
3377 * Check stuff.
3378 */
3379 /* Read the CS descriptor. */
3380 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3381 {
3382 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3383 return iemRaiseGeneralProtectionFault0(pIemCpu);
3384 }
3385
3386 IEMSELDESC DescCS;
3387 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescCS, uNewCs, X86_XCPT_GP);
3388 if (rcStrict != VINF_SUCCESS)
3389 {
3390 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
3391 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3392 return rcStrict;
3393 }
3394
3395 /* Must be a code descriptor. */
3396 if ( !DescCS.Legacy.Gen.u1DescType
3397 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3398 {
3399 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
3400 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
3401 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
3402 }
3403
3404 /* Privilege checks. */
3405 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
3406 if ((uNewCs & X86_SEL_RPL) < pIemCpu->uCpl)
3407 {
3408 Log(("iret %04x:%016RX64/%04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp, pIemCpu->uCpl));
3409 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
3410 }
3411 if ( (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
3412 && (uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3413 {
3414 Log(("iret %04x:%016RX64/%04x:%016RX64 - RPL < DPL (%d) -> #GP\n",
3415 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u2Dpl));
3416 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewCs);
3417 }
3418
3419 /* Present? */
3420 if (!DescCS.Legacy.Gen.u1Present)
3421 {
3422 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3423 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewCs);
3424 }
3425
3426 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3427
3428 /* Read the SS descriptor. */
3429 IEMSELDESC DescSS;
3430 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3431 {
3432 if ( !DescCS.Legacy.Gen.u1Long
3433 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
3434 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
3435 {
3436 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3437 return iemRaiseGeneralProtectionFault0(pIemCpu);
3438 }
3439 DescSS.Legacy.u = 0;
3440 }
3441 else
3442 {
3443 rcStrict = iemMemFetchSelDesc(pIemCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
3444 if (rcStrict != VINF_SUCCESS)
3445 {
3446 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
3447 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3448 return rcStrict;
3449 }
3450 }
3451
3452 /* Privilege checks. */
3453 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3454 {
3455 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3456 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSs);
3457 }
3458
3459 uint32_t cbLimitSs;
3460 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3461 cbLimitSs = UINT32_MAX;
3462 else
3463 {
3464 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3465 {
3466 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
3467 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
3468 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSs);
3469 }
3470
3471 /* Must be a writeable data segment descriptor. */
3472 if (!DescSS.Legacy.Gen.u1DescType)
3473 {
3474 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
3475 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3476 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSs);
3477 }
3478 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3479 {
3480 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
3481 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3482 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewSs);
3483 }
3484
3485 /* Present? */
3486 if (!DescSS.Legacy.Gen.u1Present)
3487 {
3488 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3489 return iemRaiseStackSelectorNotPresentBySelector(pIemCpu, uNewSs);
3490 }
3491 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3492 }
3493
3494 /* Check EIP. */
3495 if (DescCS.Legacy.Gen.u1Long)
3496 {
3497 if (!IEM_IS_CANONICAL(uNewRip))
3498 {
3499 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
3500 uNewCs, uNewRip, uNewSs, uNewRsp));
3501 return iemRaiseSelectorBoundsBySelector(pIemCpu, uNewCs);
3502 }
3503 }
3504 else
3505 {
3506 if (uNewRip > cbLimitCS)
3507 {
3508 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
3509 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
3510 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3511 return iemRaiseSelectorBoundsBySelector(pIemCpu, uNewCs);
3512 }
3513 }
3514
3515 /*
3516 * Commit the changes, marking CS and SS accessed first since
3517 * that may fail.
3518 */
3519 /** @todo where exactly are these actually marked accessed by a real CPU? */
3520 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3521 {
3522 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewCs);
3523 if (rcStrict != VINF_SUCCESS)
3524 return rcStrict;
3525 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3526 }
3527 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3528 {
3529 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uNewSs);
3530 if (rcStrict != VINF_SUCCESS)
3531 return rcStrict;
3532 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3533 }
3534
3535 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3536 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3537 if (enmEffOpSize != IEMMODE_16BIT)
3538 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3539 if (pIemCpu->uCpl == 0)
3540 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
3541 else if (pIemCpu->uCpl <= pCtx->eflags.Bits.u2IOPL)
3542 fEFlagsMask |= X86_EFL_IF;
3543 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pIemCpu, pCtx);
3544 fEFlagsNew &= ~fEFlagsMask;
3545 fEFlagsNew |= uNewFlags & fEFlagsMask;
3546#ifdef DBGFTRACE_ENABLED
3547 RTTraceBufAddMsgF(IEMCPU_TO_VM(pIemCpu)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
3548 pIemCpu->uCpl, uNewCpl, pCtx->rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
3549#endif
3550
3551 IEMMISC_SET_EFL(pIemCpu, pCtx, fEFlagsNew);
3552 pCtx->rip = uNewRip;
3553 pCtx->cs.Sel = uNewCs;
3554 pCtx->cs.ValidSel = uNewCs;
3555 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
3556 pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3557 pCtx->cs.u32Limit = cbLimitCS;
3558 pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3559 if (pCtx->cs.Attr.n.u1Long || pCtx->cs.Attr.n.u1DefBig)
3560 pCtx->rsp = uNewRsp;
3561 else
3562 pCtx->sp = (uint16_t)uNewRsp;
3563 pCtx->ss.Sel = uNewSs;
3564 pCtx->ss.ValidSel = uNewSs;
3565 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3566 {
3567 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
3568 pCtx->ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
3569 pCtx->ss.u32Limit = UINT32_MAX;
3570 pCtx->ss.u64Base = 0;
3571 Log2(("iretq new SS: NULL\n"));
3572 }
3573 else
3574 {
3575 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
3576 pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3577 pCtx->ss.u32Limit = cbLimitSs;
3578 pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3579 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u));
3580 }
3581
3582 if (pIemCpu->uCpl != uNewCpl)
3583 {
3584 pIemCpu->uCpl = uNewCpl;
3585 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCpl, &pCtx->ds);
3586 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCpl, &pCtx->es);
3587 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCpl, &pCtx->fs);
3588 iemHlpAdjustSelectorForNewCpl(pIemCpu, uNewCpl, &pCtx->gs);
3589 }
3590
3591 return VINF_SUCCESS;
3592}
3593
3594
3595/**
3596 * Implements iret.
3597 *
3598 * @param enmEffOpSize The effective operand size.
3599 */
3600IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
3601{
3602 /*
3603 * First, clear NMI blocking, if any, before causing any exceptions.
3604 */
3605 PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
3606 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
3607
3608 /*
3609 * Call a mode specific worker.
3610 */
3611 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
3612 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
3613 if (IEM_IS_LONG_MODE(pIemCpu))
3614 return IEM_CIMPL_CALL_1(iemCImpl_iret_long, enmEffOpSize);
3615
3616 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
3617}
3618
3619
3620/**
3621 * Implements SYSCALL (AMD and Intel64).
3622 *
3623 * @param enmEffOpSize The effective operand size.
3624 */
3625IEM_CIMPL_DEF_0(iemCImpl_syscall)
3626{
3627 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3628
3629 /*
3630 * Check preconditions.
3631 *
3632 * Note that CPUs described in the documentation may load a few odd values
3633 * into CS and SS than we allow here. This has yet to be checked on real
3634 * hardware.
3635 */
3636 if (!(pCtx->msrEFER & MSR_K6_EFER_SCE))
3637 {
3638 Log(("syscall: Not enabled in EFER -> #UD\n"));
3639 return iemRaiseUndefinedOpcode(pIemCpu);
3640 }
3641 if (!(pCtx->cr0 & X86_CR0_PE))
3642 {
3643 Log(("syscall: Protected mode is required -> #GP(0)\n"));
3644 return iemRaiseGeneralProtectionFault0(pIemCpu);
3645 }
3646 if (IEM_IS_GUEST_CPU_INTEL(pIemCpu) && !CPUMIsGuestInLongModeEx(pCtx))
3647 {
3648 Log(("syscall: Only available in long mode on intel -> #UD\n"));
3649 return iemRaiseUndefinedOpcode(pIemCpu);
3650 }
3651
3652 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
3653 /** @todo what about LDT selectors? Shouldn't matter, really. */
3654 uint16_t uNewCs = (pCtx->msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
3655 uint16_t uNewSs = uNewCs + 8;
3656 if (uNewCs == 0 || uNewSs == 0)
3657 {
3658 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
3659 return iemRaiseGeneralProtectionFault0(pIemCpu);
3660 }
3661
3662 /* Long mode and legacy mode differs. */
3663 if (CPUMIsGuestInLongModeEx(pCtx))
3664 {
3665 uint64_t uNewRip = pIemCpu->enmCpuMode == IEMMODE_64BIT ? pCtx->msrLSTAR : pCtx-> msrCSTAR;
3666
3667 /* This test isn't in the docs, but I'm not trusting the guys writing
3668 the MSRs to have validated the values as canonical like they should. */
3669 if (!IEM_IS_CANONICAL(uNewRip))
3670 {
3671 Log(("syscall: Only available in long mode on intel -> #UD\n"));
3672 return iemRaiseUndefinedOpcode(pIemCpu);
3673 }
3674
3675 /*
3676 * Commit it.
3677 */
3678 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, uNewRip));
3679 pCtx->rcx = pCtx->rip + cbInstr;
3680 pCtx->rip = uNewRip;
3681
3682 pCtx->rflags.u &= ~X86_EFL_RF;
3683 pCtx->r11 = pCtx->rflags.u;
3684 pCtx->rflags.u &= ~pCtx->msrSFMASK;
3685 pCtx->rflags.u |= X86_EFL_1;
3686
3687 pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
3688 pCtx->ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
3689 }
3690 else
3691 {
3692 /*
3693 * Commit it.
3694 */
3695 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
3696 pCtx->cs, pCtx->eip, pCtx->eflags.u, uNewCs, (uint32_t)(pCtx->msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
3697 pCtx->rcx = pCtx->eip + cbInstr;
3698 pCtx->rip = pCtx->msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
3699 pCtx->rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
3700
3701 pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
3702 pCtx->ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
3703 }
3704 pCtx->cs.Sel = uNewCs;
3705 pCtx->cs.ValidSel = uNewCs;
3706 pCtx->cs.u64Base = 0;
3707 pCtx->cs.u32Limit = UINT32_MAX;
3708 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
3709
3710 pCtx->ss.Sel = uNewSs;
3711 pCtx->ss.ValidSel = uNewSs;
3712 pCtx->ss.u64Base = 0;
3713 pCtx->ss.u32Limit = UINT32_MAX;
3714 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
3715
3716 return VINF_SUCCESS;
3717}
3718
3719
3720/**
3721 * Implements SYSRET (AMD and Intel64).
3722 */
3723IEM_CIMPL_DEF_0(iemCImpl_sysret)
3724
3725{
3726 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
3727
3728 /*
3729 * Check preconditions.
3730 *
3731 * Note that CPUs described in the documentation may load a few odd values
3732 * into CS and SS than we allow here. This has yet to be checked on real
3733 * hardware.
3734 */
3735 if (!(pCtx->msrEFER & MSR_K6_EFER_SCE))
3736 {
3737 Log(("sysret: Not enabled in EFER -> #UD\n"));
3738 return iemRaiseUndefinedOpcode(pIemCpu);
3739 }
3740 if (IEM_IS_GUEST_CPU_INTEL(pIemCpu) && !CPUMIsGuestInLongModeEx(pCtx))
3741 {
3742 Log(("sysret: Only available in long mode on intel -> #UD\n"));
3743 return iemRaiseUndefinedOpcode(pIemCpu);
3744 }
3745 if (!(pCtx->cr0 & X86_CR0_PE))
3746 {
3747 Log(("sysret: Protected mode is required -> #GP(0)\n"));
3748 return iemRaiseGeneralProtectionFault0(pIemCpu);
3749 }
3750 if (pIemCpu->uCpl != 0)
3751 {
3752 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pIemCpu->uCpl));
3753 return iemRaiseGeneralProtectionFault0(pIemCpu);
3754 }
3755
3756 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
3757 uint16_t uNewCs = (pCtx->msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
3758 uint16_t uNewSs = uNewCs + 8;
3759 if (pIemCpu->enmEffOpSize == IEMMODE_64BIT)
3760 uNewCs += 16;
3761 if (uNewCs == 0 || uNewSs == 0)
3762 {
3763 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
3764 return iemRaiseGeneralProtectionFault0(pIemCpu);
3765 }
3766
3767 /*
3768 * Commit it.
3769 */
3770 if (CPUMIsGuestInLongModeEx(pCtx))
3771 {
3772 if (pIemCpu->enmEffOpSize == IEMMODE_64BIT)
3773 {
3774 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
3775 pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, pCtx->rcx, pCtx->r11));
3776 /* Note! We disregard intel manual regarding the RCX cananonical
3777 check, ask intel+xen why AMD doesn't do it. */
3778 pCtx->rip = pCtx->rcx;
3779 pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
3780 | (3 << X86DESCATTR_DPL_SHIFT);
3781 }
3782 else
3783 {
3784 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
3785 pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, pCtx->ecx, pCtx->r11));
3786 pCtx->rip = pCtx->ecx;
3787 pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
3788 | (3 << X86DESCATTR_DPL_SHIFT);
3789 }
3790 /** @todo testcase: See what kind of flags we can make SYSRET restore and
3791 * what it really ignores. RF and VM are hinted at being zero, by AMD. */
3792 pCtx->rflags.u = pCtx->r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
3793 pCtx->rflags.u |= X86_EFL_1;
3794 }
3795 else
3796 {
3797 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pCtx->cs, pCtx->eip, pCtx->eflags.u, uNewCs, pCtx->ecx));
3798 pCtx->rip = pCtx->rcx;
3799 pCtx->rflags.u |= X86_EFL_IF;
3800 pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
3801 | (3 << X86DESCATTR_DPL_SHIFT);
3802 }
3803 pCtx->cs.Sel = uNewCs | 3;
3804 pCtx->cs.ValidSel = uNewCs | 3;
3805 pCtx->cs.u64Base = 0;
3806 pCtx->cs.u32Limit = UINT32_MAX;
3807 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
3808
3809 pCtx->ss.Sel = uNewSs | 3;
3810 pCtx->ss.ValidSel = uNewSs | 3;
3811 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
3812 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
3813 pCtx->ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
3814 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
3815 * on sysret. */
3816
3817 return VINF_SUCCESS;
3818}
3819
3820
3821/**
3822 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
3823 *
3824 * @param iSegReg The segment register number (valid).
3825 * @param uSel The new selector value.
3826 */
3827IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
3828{
3829 /*PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);*/
3830 uint16_t *pSel = iemSRegRef(pIemCpu, iSegReg);
3831 PCPUMSELREGHID pHid = iemSRegGetHid(pIemCpu, iSegReg);
3832
3833 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
3834
3835 /*
3836 * Real mode and V8086 mode are easy.
3837 */
3838 if ( pIemCpu->enmCpuMode == IEMMODE_16BIT
3839 && IEM_IS_REAL_OR_V86_MODE(pIemCpu))
3840 {
3841 *pSel = uSel;
3842 pHid->u64Base = (uint32_t)uSel << 4;
3843 pHid->ValidSel = uSel;
3844 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3845#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
3846 /** @todo Does the CPU actually load limits and attributes in the
3847 * real/V8086 mode segment load case? It doesn't for CS in far
3848 * jumps... Affects unreal mode. */
3849 pHid->u32Limit = 0xffff;
3850 pHid->Attr.u = 0;
3851 pHid->Attr.n.u1Present = 1;
3852 pHid->Attr.n.u1DescType = 1;
3853 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
3854 ? X86_SEL_TYPE_RW
3855 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
3856#endif
3857 CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_HIDDEN_SEL_REGS);
3858 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
3859 return VINF_SUCCESS;
3860 }
3861
3862 /*
3863 * Protected mode.
3864 *
3865 * Check if it's a null segment selector value first, that's OK for DS, ES,
3866 * FS and GS. If not null, then we have to load and parse the descriptor.
3867 */
3868 if (!(uSel & X86_SEL_MASK_OFF_RPL))
3869 {
3870 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
3871 if (iSegReg == X86_SREG_SS)
3872 {
3873 /* In 64-bit kernel mode, the stack can be 0 because of the way
3874 interrupts are dispatched. AMD seems to have a slighly more
3875 relaxed relationship to SS.RPL than intel does. */
3876 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
3877 if ( pIemCpu->enmCpuMode != IEMMODE_64BIT
3878 || pIemCpu->uCpl > 2
3879 || ( uSel != pIemCpu->uCpl
3880 && !IEM_IS_GUEST_CPU_AMD(pIemCpu)) )
3881 {
3882 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
3883 return iemRaiseGeneralProtectionFault0(pIemCpu);
3884 }
3885 }
3886
3887 *pSel = uSel; /* Not RPL, remember :-) */
3888 iemHlpLoadNullDataSelectorProt(pIemCpu, pHid, uSel);
3889 if (iSegReg == X86_SREG_SS)
3890 pHid->Attr.u |= pIemCpu->uCpl << X86DESCATTR_DPL_SHIFT;
3891
3892 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pHid));
3893 CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_HIDDEN_SEL_REGS);
3894
3895 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
3896 return VINF_SUCCESS;
3897 }
3898
3899 /* Fetch the descriptor. */
3900 IEMSELDESC Desc;
3901 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
3902 if (rcStrict != VINF_SUCCESS)
3903 return rcStrict;
3904
3905 /* Check GPs first. */
3906 if (!Desc.Legacy.Gen.u1DescType)
3907 {
3908 Log(("load sreg %d - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
3909 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3910 }
3911 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
3912 {
3913 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
3914 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
3915 {
3916 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
3917 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3918 }
3919 if ((uSel & X86_SEL_RPL) != pIemCpu->uCpl)
3920 {
3921 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pIemCpu->uCpl));
3922 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3923 }
3924 if (Desc.Legacy.Gen.u2Dpl != pIemCpu->uCpl)
3925 {
3926 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pIemCpu->uCpl));
3927 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3928 }
3929 }
3930 else
3931 {
3932 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
3933 {
3934 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
3935 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3936 }
3937 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
3938 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
3939 {
3940#if 0 /* this is what intel says. */
3941 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
3942 && pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
3943 {
3944 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
3945 iSegReg, uSel, (uSel & X86_SEL_RPL), pIemCpu->uCpl, Desc.Legacy.Gen.u2Dpl));
3946 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3947 }
3948#else /* this is what makes more sense. */
3949 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
3950 {
3951 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
3952 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
3953 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3954 }
3955 if (pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
3956 {
3957 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
3958 iSegReg, uSel, pIemCpu->uCpl, Desc.Legacy.Gen.u2Dpl));
3959 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uSel);
3960 }
3961#endif
3962 }
3963 }
3964
3965 /* Is it there? */
3966 if (!Desc.Legacy.Gen.u1Present)
3967 {
3968 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
3969 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uSel);
3970 }
3971
3972 /* The base and limit. */
3973 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
3974 uint64_t u64Base;
3975 if ( pIemCpu->enmCpuMode == IEMMODE_64BIT
3976 && iSegReg < X86_SREG_FS)
3977 u64Base = 0;
3978 else
3979 u64Base = X86DESC_BASE(&Desc.Legacy);
3980
3981 /*
3982 * Ok, everything checked out fine. Now set the accessed bit before
3983 * committing the result into the registers.
3984 */
3985 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3986 {
3987 rcStrict = iemMemMarkSelDescAccessed(pIemCpu, uSel);
3988 if (rcStrict != VINF_SUCCESS)
3989 return rcStrict;
3990 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3991 }
3992
3993 /* commit */
3994 *pSel = uSel;
3995 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
3996 pHid->u32Limit = cbLimit;
3997 pHid->u64Base = u64Base;
3998 pHid->ValidSel = uSel;
3999 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4000
4001 /** @todo check if the hidden bits are loaded correctly for 64-bit
4002 * mode. */
4003 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(IEMCPU_TO_VMCPU(pIemCpu), pHid));
4004
4005 CPUMSetChangedFlags(IEMCPU_TO_VMCPU(pIemCpu), CPUM_CHANGED_HIDDEN_SEL_REGS);
4006 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
4007 return VINF_SUCCESS;
4008}
4009
4010
4011/**
4012 * Implements 'mov SReg, r/m'.
4013 *
4014 * @param iSegReg The segment register number (valid).
4015 * @param uSel The new selector value.
4016 */
4017IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
4018{
4019 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4020 if (rcStrict == VINF_SUCCESS)
4021 {
4022 if (iSegReg == X86_SREG_SS)
4023 {
4024 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4025 EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
4026 }
4027 }
4028 return rcStrict;
4029}
4030
4031
4032/**
4033 * Implements 'pop SReg'.
4034 *
4035 * @param iSegReg The segment register number (valid).
4036 * @param enmEffOpSize The efficient operand size (valid).
4037 */
4038IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
4039{
4040 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4041 VBOXSTRICTRC rcStrict;
4042
4043 /*
4044 * Read the selector off the stack and join paths with mov ss, reg.
4045 */
4046 RTUINT64U TmpRsp;
4047 TmpRsp.u = pCtx->rsp;
4048 switch (enmEffOpSize)
4049 {
4050 case IEMMODE_16BIT:
4051 {
4052 uint16_t uSel;
4053 rcStrict = iemMemStackPopU16Ex(pIemCpu, &uSel, &TmpRsp);
4054 if (rcStrict == VINF_SUCCESS)
4055 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4056 break;
4057 }
4058
4059 case IEMMODE_32BIT:
4060 {
4061 uint32_t u32Value;
4062 rcStrict = iemMemStackPopU32Ex(pIemCpu, &u32Value, &TmpRsp);
4063 if (rcStrict == VINF_SUCCESS)
4064 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
4065 break;
4066 }
4067
4068 case IEMMODE_64BIT:
4069 {
4070 uint64_t u64Value;
4071 rcStrict = iemMemStackPopU64Ex(pIemCpu, &u64Value, &TmpRsp);
4072 if (rcStrict == VINF_SUCCESS)
4073 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
4074 break;
4075 }
4076 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4077 }
4078
4079 /*
4080 * Commit the stack on success.
4081 */
4082 if (rcStrict == VINF_SUCCESS)
4083 {
4084 pCtx->rsp = TmpRsp.u;
4085 if (iSegReg == X86_SREG_SS)
4086 EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
4087 }
4088 return rcStrict;
4089}
4090
4091
4092/**
4093 * Implements lgs, lfs, les, lds & lss.
4094 */
4095IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
4096 uint16_t, uSel,
4097 uint64_t, offSeg,
4098 uint8_t, iSegReg,
4099 uint8_t, iGReg,
4100 IEMMODE, enmEffOpSize)
4101{
4102 /*PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);*/
4103 VBOXSTRICTRC rcStrict;
4104
4105 /*
4106 * Use iemCImpl_LoadSReg to do the tricky segment register loading.
4107 */
4108 /** @todo verify and test that mov, pop and lXs works the segment
4109 * register loading in the exact same way. */
4110 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4111 if (rcStrict == VINF_SUCCESS)
4112 {
4113 switch (enmEffOpSize)
4114 {
4115 case IEMMODE_16BIT:
4116 *(uint16_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
4117 break;
4118 case IEMMODE_32BIT:
4119 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
4120 break;
4121 case IEMMODE_64BIT:
4122 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = offSeg;
4123 break;
4124 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4125 }
4126 }
4127
4128 return rcStrict;
4129}
4130
4131
4132/**
4133 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
4134 *
4135 * @retval VINF_SUCCESS on success.
4136 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
4137 * @retval iemMemFetchSysU64 return value.
4138 *
4139 * @param pIemCpu The IEM state of the calling EMT.
4140 * @param uSel The selector value.
4141 * @param fAllowSysDesc Whether system descriptors are OK or not.
4142 * @param pDesc Where to return the descriptor on success.
4143 */
4144static VBOXSTRICTRC iemCImpl_LoadDescHelper(PIEMCPU pIemCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
4145{
4146 pDesc->Long.au64[0] = 0;
4147 pDesc->Long.au64[1] = 0;
4148
4149 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
4150 return VINF_IEM_SELECTOR_NOT_OK;
4151
4152 /* Within the table limits? */
4153 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4154 RTGCPTR GCPtrBase;
4155 if (uSel & X86_SEL_LDT)
4156 {
4157 if ( !pCtx->ldtr.Attr.n.u1Present
4158 || (uSel | X86_SEL_RPL_LDT) > pCtx->ldtr.u32Limit )
4159 return VINF_IEM_SELECTOR_NOT_OK;
4160 GCPtrBase = pCtx->ldtr.u64Base;
4161 }
4162 else
4163 {
4164 if ((uSel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
4165 return VINF_IEM_SELECTOR_NOT_OK;
4166 GCPtrBase = pCtx->gdtr.pGdt;
4167 }
4168
4169 /* Fetch the descriptor. */
4170 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pIemCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
4171 if (rcStrict != VINF_SUCCESS)
4172 return rcStrict;
4173 if (!pDesc->Legacy.Gen.u1DescType)
4174 {
4175 if (!fAllowSysDesc)
4176 return VINF_IEM_SELECTOR_NOT_OK;
4177 if (CPUMIsGuestInLongModeEx(pCtx))
4178 {
4179 rcStrict = iemMemFetchSysU64(pIemCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
4180 if (rcStrict != VINF_SUCCESS)
4181 return rcStrict;
4182 }
4183
4184 }
4185
4186 return VINF_SUCCESS;
4187}
4188
4189
4190/**
4191 * Implements verr (fWrite = false) and verw (fWrite = true).
4192 */
4193IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
4194{
4195 Assert(!IEM_IS_REAL_OR_V86_MODE(pIemCpu));
4196
4197 /** @todo figure whether the accessed bit is set or not. */
4198
4199 bool fAccessible = true;
4200 IEMSELDESC Desc;
4201 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pIemCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4202 if (rcStrict == VINF_SUCCESS)
4203 {
4204 /* Check the descriptor, order doesn't matter much here. */
4205 if ( !Desc.Legacy.Gen.u1DescType
4206 || !Desc.Legacy.Gen.u1Present)
4207 fAccessible = false;
4208 else
4209 {
4210 if ( fWrite
4211 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
4212 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4213 fAccessible = false;
4214
4215 /** @todo testcase for the conforming behavior. */
4216 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4217 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4218 {
4219 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4220 fAccessible = false;
4221 else if (pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
4222 fAccessible = false;
4223 }
4224 }
4225
4226 }
4227 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4228 fAccessible = false;
4229 else
4230 return rcStrict;
4231
4232 /* commit */
4233 pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1ZF = fAccessible;
4234
4235 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
4236 return VINF_SUCCESS;
4237}
4238
4239
4240/**
4241 * Implements LAR and LSL with 64-bit operand size.
4242 *
4243 * @returns VINF_SUCCESS.
4244 * @param pu16Dst Pointer to the destination register.
4245 * @param uSel The selector to load details for.
4246 * @param pEFlags Pointer to the eflags register.
4247 * @param fIsLar true = LAR, false = LSL.
4248 */
4249IEM_CIMPL_DEF_4(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, uint32_t *, pEFlags, bool, fIsLar)
4250{
4251 Assert(!IEM_IS_REAL_OR_V86_MODE(pIemCpu));
4252
4253 /** @todo figure whether the accessed bit is set or not. */
4254
4255 bool fDescOk = true;
4256 IEMSELDESC Desc;
4257 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pIemCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4258 if (rcStrict == VINF_SUCCESS)
4259 {
4260 /*
4261 * Check the descriptor type.
4262 */
4263 if (!Desc.Legacy.Gen.u1DescType)
4264 {
4265 if (CPUMIsGuestInLongModeEx(pIemCpu->CTX_SUFF(pCtx)))
4266 {
4267 if (Desc.Long.Gen.u5Zeros)
4268 fDescOk = false;
4269 else
4270 switch (Desc.Long.Gen.u4Type)
4271 {
4272 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
4273 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
4274 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
4275 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
4276 break;
4277 case AMD64_SEL_TYPE_SYS_CALL_GATE:
4278 fDescOk = fIsLar;
4279 break;
4280 default:
4281 fDescOk = false;
4282 break;
4283 }
4284 }
4285 else
4286 {
4287 switch (Desc.Long.Gen.u4Type)
4288 {
4289 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4290 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4291 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4292 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
4293 case X86_SEL_TYPE_SYS_LDT:
4294 break;
4295 case X86_SEL_TYPE_SYS_286_CALL_GATE:
4296 case X86_SEL_TYPE_SYS_TASK_GATE:
4297 case X86_SEL_TYPE_SYS_386_CALL_GATE:
4298 fDescOk = fIsLar;
4299 break;
4300 default:
4301 fDescOk = false;
4302 break;
4303 }
4304 }
4305 }
4306 if (fDescOk)
4307 {
4308 /*
4309 * Check the RPL/DPL/CPL interaction..
4310 */
4311 /** @todo testcase for the conforming behavior. */
4312 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
4313 || !Desc.Legacy.Gen.u1DescType)
4314 {
4315 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4316 fDescOk = false;
4317 else if (pIemCpu->uCpl > Desc.Legacy.Gen.u2Dpl)
4318 fDescOk = false;
4319 }
4320 }
4321
4322 if (fDescOk)
4323 {
4324 /*
4325 * All fine, start committing the result.
4326 */
4327 if (fIsLar)
4328 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
4329 else
4330 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
4331 }
4332
4333 }
4334 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4335 fDescOk = false;
4336 else
4337 return rcStrict;
4338
4339 /* commit flags value and advance rip. */
4340 pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1ZF = fDescOk;
4341 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
4342
4343 return VINF_SUCCESS;
4344}
4345
4346
4347/**
4348 * Implements LAR and LSL with 16-bit operand size.
4349 *
4350 * @returns VINF_SUCCESS.
4351 * @param pu16Dst Pointer to the destination register.
4352 * @param u16Sel The selector to load details for.
4353 * @param pEFlags Pointer to the eflags register.
4354 * @param fIsLar true = LAR, false = LSL.
4355 */
4356IEM_CIMPL_DEF_4(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, uint32_t *, pEFlags, bool, fIsLar)
4357{
4358 uint64_t u64TmpDst = *pu16Dst;
4359 IEM_CIMPL_CALL_4(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, pEFlags, fIsLar);
4360 *pu16Dst = (uint16_t)u64TmpDst;
4361 return VINF_SUCCESS;
4362}
4363
4364
4365/**
4366 * Implements lgdt.
4367 *
4368 * @param iEffSeg The segment of the new gdtr contents
4369 * @param GCPtrEffSrc The address of the new gdtr contents.
4370 * @param enmEffOpSize The effective operand size.
4371 */
4372IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4373{
4374 if (pIemCpu->uCpl != 0)
4375 return iemRaiseGeneralProtectionFault0(pIemCpu);
4376 Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
4377
4378 /*
4379 * Fetch the limit and base address.
4380 */
4381 uint16_t cbLimit;
4382 RTGCPTR GCPtrBase;
4383 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pIemCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4384 if (rcStrict == VINF_SUCCESS)
4385 {
4386 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4387 rcStrict = CPUMSetGuestGDTR(IEMCPU_TO_VMCPU(pIemCpu), GCPtrBase, cbLimit);
4388 else
4389 {
4390 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4391 pCtx->gdtr.cbGdt = cbLimit;
4392 pCtx->gdtr.pGdt = GCPtrBase;
4393 }
4394 if (rcStrict == VINF_SUCCESS)
4395 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
4396 }
4397 return rcStrict;
4398}
4399
4400
4401/**
4402 * Implements sgdt.
4403 *
4404 * @param iEffSeg The segment where to store the gdtr content.
4405 * @param GCPtrEffDst The address where to store the gdtr content.
4406 * @param enmEffOpSize The effective operand size.
4407 */
4408IEM_CIMPL_DEF_3(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, IEMMODE, enmEffOpSize)
4409{
4410 /*
4411 * Join paths with sidt.
4412 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4413 * you really must know.
4414 */
4415 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4416 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pIemCpu, pCtx->gdtr.cbGdt, pCtx->gdtr.pGdt, iEffSeg, GCPtrEffDst, enmEffOpSize);
4417 if (rcStrict == VINF_SUCCESS)
4418 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
4419 return rcStrict;
4420}
4421
4422
4423/**
4424 * Implements lidt.
4425 *
4426 * @param iEffSeg The segment of the new idtr contents
4427 * @param GCPtrEffSrc The address of the new idtr contents.
4428 * @param enmEffOpSize The effective operand size.
4429 */
4430IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4431{
4432 if (pIemCpu->uCpl != 0)
4433 return iemRaiseGeneralProtectionFault0(pIemCpu);
4434 Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
4435
4436 /*
4437 * Fetch the limit and base address.
4438 */
4439 uint16_t cbLimit;
4440 RTGCPTR GCPtrBase;
4441 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pIemCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4442 if (rcStrict == VINF_SUCCESS)
4443 {
4444 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4445 CPUMSetGuestIDTR(IEMCPU_TO_VMCPU(pIemCpu), GCPtrBase, cbLimit);
4446 else
4447 {
4448 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4449 pCtx->idtr.cbIdt = cbLimit;
4450 pCtx->idtr.pIdt = GCPtrBase;
4451 }
4452 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
4453 }
4454 return rcStrict;
4455}
4456
4457
4458/**
4459 * Implements sidt.
4460 *
4461 * @param iEffSeg The segment where to store the idtr content.
4462 * @param GCPtrEffDst The address where to store the idtr content.
4463 * @param enmEffOpSize The effective operand size.
4464 */
4465IEM_CIMPL_DEF_3(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, IEMMODE, enmEffOpSize)
4466{
4467 /*
4468 * Join paths with sgdt.
4469 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4470 * you really must know.
4471 */
4472 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4473 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pIemCpu, pCtx->idtr.cbIdt, pCtx->idtr.pIdt, iEffSeg, GCPtrEffDst, enmEffOpSize);
4474 if (rcStrict == VINF_SUCCESS)
4475 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
4476 return rcStrict;
4477}
4478
4479
4480/**
4481 * Implements lldt.
4482 *
4483 * @param uNewLdt The new LDT selector value.
4484 */
4485IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
4486{
4487 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4488
4489 /*
4490 * Check preconditions.
4491 */
4492 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
4493 {
4494 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
4495 return iemRaiseUndefinedOpcode(pIemCpu);
4496 }
4497 if (pIemCpu->uCpl != 0)
4498 {
4499 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pIemCpu->uCpl));
4500 return iemRaiseGeneralProtectionFault0(pIemCpu);
4501 }
4502 if (uNewLdt & X86_SEL_LDT)
4503 {
4504 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
4505 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewLdt);
4506 }
4507
4508 /*
4509 * Now, loading a NULL selector is easy.
4510 */
4511 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
4512 {
4513 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
4514 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4515 CPUMSetGuestLDTR(IEMCPU_TO_VMCPU(pIemCpu), uNewLdt);
4516 else
4517 pCtx->ldtr.Sel = uNewLdt;
4518 pCtx->ldtr.ValidSel = uNewLdt;
4519 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
4520 if (IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu))
4521 {
4522 pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE;
4523 pCtx->ldtr.u64Base = pCtx->ldtr.u32Limit = 0; /* For verfication against REM. */
4524 }
4525 else if (IEM_IS_GUEST_CPU_AMD(pIemCpu))
4526 {
4527 /* AMD-V seems to leave the base and limit alone. */
4528 pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE;
4529 }
4530 else if (!IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu))
4531 {
4532 /* VT-x (Intel 3960x) seems to be doing the following. */
4533 pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
4534 pCtx->ldtr.u64Base = 0;
4535 pCtx->ldtr.u32Limit = UINT32_MAX;
4536 }
4537
4538 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
4539 return VINF_SUCCESS;
4540 }
4541
4542 /*
4543 * Read the descriptor.
4544 */
4545 IEMSELDESC Desc;
4546 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
4547 if (rcStrict != VINF_SUCCESS)
4548 return rcStrict;
4549
4550 /* Check GPs first. */
4551 if (Desc.Legacy.Gen.u1DescType)
4552 {
4553 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
4554 return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
4555 }
4556 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
4557 {
4558 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
4559 return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
4560 }
4561 uint64_t u64Base;
4562 if (!IEM_IS_LONG_MODE(pIemCpu))
4563 u64Base = X86DESC_BASE(&Desc.Legacy);
4564 else
4565 {
4566 if (Desc.Long.Gen.u5Zeros)
4567 {
4568 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
4569 return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
4570 }
4571
4572 u64Base = X86DESC64_BASE(&Desc.Long);
4573 if (!IEM_IS_CANONICAL(u64Base))
4574 {
4575 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
4576 return iemRaiseGeneralProtectionFault(pIemCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
4577 }
4578 }
4579
4580 /* NP */
4581 if (!Desc.Legacy.Gen.u1Present)
4582 {
4583 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
4584 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewLdt);
4585 }
4586
4587 /*
4588 * It checks out alright, update the registers.
4589 */
4590/** @todo check if the actual value is loaded or if the RPL is dropped */
4591 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4592 CPUMSetGuestLDTR(IEMCPU_TO_VMCPU(pIemCpu), uNewLdt & X86_SEL_MASK_OFF_RPL);
4593 else
4594 pCtx->ldtr.Sel = uNewLdt & X86_SEL_MASK_OFF_RPL;
4595 pCtx->ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
4596 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
4597 pCtx->ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4598 pCtx->ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
4599 pCtx->ldtr.u64Base = u64Base;
4600
4601 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
4602 return VINF_SUCCESS;
4603}
4604
4605
4606/**
4607 * Implements lldt.
4608 *
4609 * @param uNewLdt The new LDT selector value.
4610 */
4611IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
4612{
4613 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4614
4615 /*
4616 * Check preconditions.
4617 */
4618 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
4619 {
4620 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
4621 return iemRaiseUndefinedOpcode(pIemCpu);
4622 }
4623 if (pIemCpu->uCpl != 0)
4624 {
4625 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pIemCpu->uCpl));
4626 return iemRaiseGeneralProtectionFault0(pIemCpu);
4627 }
4628 if (uNewTr & X86_SEL_LDT)
4629 {
4630 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
4631 return iemRaiseGeneralProtectionFaultBySelector(pIemCpu, uNewTr);
4632 }
4633 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
4634 {
4635 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
4636 return iemRaiseGeneralProtectionFault0(pIemCpu);
4637 }
4638
4639 /*
4640 * Read the descriptor.
4641 */
4642 IEMSELDESC Desc;
4643 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pIemCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
4644 if (rcStrict != VINF_SUCCESS)
4645 return rcStrict;
4646
4647 /* Check GPs first. */
4648 if (Desc.Legacy.Gen.u1DescType)
4649 {
4650 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
4651 return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
4652 }
4653 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
4654 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
4655 || IEM_IS_LONG_MODE(pIemCpu)) )
4656 {
4657 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
4658 return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
4659 }
4660 uint64_t u64Base;
4661 if (!IEM_IS_LONG_MODE(pIemCpu))
4662 u64Base = X86DESC_BASE(&Desc.Legacy);
4663 else
4664 {
4665 if (Desc.Long.Gen.u5Zeros)
4666 {
4667 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
4668 return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
4669 }
4670
4671 u64Base = X86DESC64_BASE(&Desc.Long);
4672 if (!IEM_IS_CANONICAL(u64Base))
4673 {
4674 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
4675 return iemRaiseGeneralProtectionFault(pIemCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
4676 }
4677 }
4678
4679 /* NP */
4680 if (!Desc.Legacy.Gen.u1Present)
4681 {
4682 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
4683 return iemRaiseSelectorNotPresentBySelector(pIemCpu, uNewTr);
4684 }
4685
4686 /*
4687 * Set it busy.
4688 * Note! Intel says this should lock down the whole descriptor, but we'll
4689 * restrict our selves to 32-bit for now due to lack of inline
4690 * assembly and such.
4691 */
4692 void *pvDesc;
4693 rcStrict = iemMemMap(pIemCpu, &pvDesc, 8, UINT8_MAX, pCtx->gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
4694 if (rcStrict != VINF_SUCCESS)
4695 return rcStrict;
4696 switch ((uintptr_t)pvDesc & 3)
4697 {
4698 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
4699 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
4700 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
4701 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
4702 }
4703 rcStrict = iemMemCommitAndUnmap(pIemCpu, pvDesc, IEM_ACCESS_DATA_RW);
4704 if (rcStrict != VINF_SUCCESS)
4705 return rcStrict;
4706 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
4707
4708 /*
4709 * It checks out alright, update the registers.
4710 */
4711/** @todo check if the actual value is loaded or if the RPL is dropped */
4712 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4713 CPUMSetGuestTR(IEMCPU_TO_VMCPU(pIemCpu), uNewTr & X86_SEL_MASK_OFF_RPL);
4714 else
4715 pCtx->tr.Sel = uNewTr & X86_SEL_MASK_OFF_RPL;
4716 pCtx->tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
4717 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
4718 pCtx->tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4719 pCtx->tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
4720 pCtx->tr.u64Base = u64Base;
4721
4722 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
4723 return VINF_SUCCESS;
4724}
4725
4726
4727/**
4728 * Implements mov GReg,CRx.
4729 *
4730 * @param iGReg The general register to store the CRx value in.
4731 * @param iCrReg The CRx register to read (valid).
4732 */
4733IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
4734{
4735 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4736 if (pIemCpu->uCpl != 0)
4737 return iemRaiseGeneralProtectionFault0(pIemCpu);
4738 Assert(!pCtx->eflags.Bits.u1VM);
4739
4740 /* read it */
4741 uint64_t crX;
4742 switch (iCrReg)
4743 {
4744 case 0: crX = pCtx->cr0; break;
4745 case 2: crX = pCtx->cr2; break;
4746 case 3: crX = pCtx->cr3; break;
4747 case 4: crX = pCtx->cr4; break;
4748 case 8:
4749 {
4750 uint8_t uTpr;
4751 int rc = PDMApicGetTPR(IEMCPU_TO_VMCPU(pIemCpu), &uTpr, NULL, NULL);
4752 if (RT_SUCCESS(rc))
4753 crX = uTpr >> 4;
4754 else
4755 crX = 0;
4756 break;
4757 }
4758 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
4759 }
4760
4761 /* store it */
4762 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
4763 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = crX;
4764 else
4765 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = (uint32_t)crX;
4766
4767 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
4768 return VINF_SUCCESS;
4769}
4770
4771
4772/**
4773 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
4774 *
4775 * @param iCrReg The CRx register to write (valid).
4776 * @param uNewCrX The new value.
4777 */
4778IEM_CIMPL_DEF_2(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX)
4779{
4780 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
4781 PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
4782 VBOXSTRICTRC rcStrict;
4783 int rc;
4784
4785 /*
4786 * Try store it.
4787 * Unfortunately, CPUM only does a tiny bit of the work.
4788 */
4789 switch (iCrReg)
4790 {
4791 case 0:
4792 {
4793 /*
4794 * Perform checks.
4795 */
4796 uint64_t const uOldCrX = pCtx->cr0;
4797 uNewCrX |= X86_CR0_ET; /* hardcoded */
4798
4799 /* Check for reserved bits. */
4800 uint32_t const fValid = X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS
4801 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM
4802 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG;
4803 if (uNewCrX & ~(uint64_t)fValid)
4804 {
4805 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
4806 return iemRaiseGeneralProtectionFault0(pIemCpu);
4807 }
4808
4809 /* Check for invalid combinations. */
4810 if ( (uNewCrX & X86_CR0_PG)
4811 && !(uNewCrX & X86_CR0_PE) )
4812 {
4813 Log(("Trying to set CR0.PG without CR0.PE\n"));
4814 return iemRaiseGeneralProtectionFault0(pIemCpu);
4815 }
4816
4817 if ( !(uNewCrX & X86_CR0_CD)
4818 && (uNewCrX & X86_CR0_NW) )
4819 {
4820 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
4821 return iemRaiseGeneralProtectionFault0(pIemCpu);
4822 }
4823
4824 /* Long mode consistency checks. */
4825 if ( (uNewCrX & X86_CR0_PG)
4826 && !(uOldCrX & X86_CR0_PG)
4827 && (pCtx->msrEFER & MSR_K6_EFER_LME) )
4828 {
4829 if (!(pCtx->cr4 & X86_CR4_PAE))
4830 {
4831 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
4832 return iemRaiseGeneralProtectionFault0(pIemCpu);
4833 }
4834 if (pCtx->cs.Attr.n.u1Long)
4835 {
4836 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
4837 return iemRaiseGeneralProtectionFault0(pIemCpu);
4838 }
4839 }
4840
4841 /** @todo check reserved PDPTR bits as AMD states. */
4842
4843 /*
4844 * Change CR0.
4845 */
4846 if (!IEM_VERIFICATION_ENABLED(pIemCpu))
4847 CPUMSetGuestCR0(pVCpu, uNewCrX);
4848 else
4849 pCtx->cr0 = uNewCrX;
4850 Assert(pCtx->cr0 == uNewCrX);
4851
4852 /*
4853 * Change EFER.LMA if entering or leaving long mode.
4854 */
4855 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
4856 && (pCtx->msrEFER & MSR_K6_EFER_LME) )
4857 {
4858 uint64_t NewEFER = pCtx->msrEFER;
4859 if (uNewCrX & X86_CR0_PG)
4860 NewEFER |= MSR_K6_EFER_LMA;
4861 else
4862 NewEFER &= ~MSR_K6_EFER_LMA;
4863
4864 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4865 CPUMSetGuestEFER(pVCpu, NewEFER);
4866 else
4867 pCtx->msrEFER = NewEFER;
4868 Assert(pCtx->msrEFER == NewEFER);
4869 }
4870
4871 /*
4872 * Inform PGM.
4873 */
4874 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4875 {
4876 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
4877 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
4878 {
4879 rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
4880 AssertRCReturn(rc, rc);
4881 /* ignore informational status codes */
4882 }
4883 rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
4884 }
4885 else
4886 rcStrict = VINF_SUCCESS;
4887
4888#ifdef IN_RC
4889 /* Return to ring-3 for rescheduling if WP or AM changes. */
4890 if ( rcStrict == VINF_SUCCESS
4891 && ( (uNewCrX & (X86_CR0_WP | X86_CR0_AM))
4892 != (uOldCrX & (X86_CR0_WP | X86_CR0_AM))) )
4893 rcStrict = VINF_EM_RESCHEDULE;
4894#endif
4895 break;
4896 }
4897
4898 /*
4899 * CR2 can be changed without any restrictions.
4900 */
4901 case 2:
4902 pCtx->cr2 = uNewCrX;
4903 rcStrict = VINF_SUCCESS;
4904 break;
4905
4906 /*
4907 * CR3 is relatively simple, although AMD and Intel have different
4908 * accounts of how setting reserved bits are handled. We take intel's
4909 * word for the lower bits and AMD's for the high bits (63:52).
4910 */
4911 /** @todo Testcase: Setting reserved bits in CR3, especially before
4912 * enabling paging. */
4913 case 3:
4914 {
4915 /* check / mask the value. */
4916 if (uNewCrX & UINT64_C(0xfff0000000000000))
4917 {
4918 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
4919 return iemRaiseGeneralProtectionFault0(pIemCpu);
4920 }
4921
4922 uint64_t fValid;
4923 if ( (pCtx->cr4 & X86_CR4_PAE)
4924 && (pCtx->msrEFER & MSR_K6_EFER_LME))
4925 fValid = UINT64_C(0x000ffffffffff014);
4926 else if (pCtx->cr4 & X86_CR4_PAE)
4927 fValid = UINT64_C(0xfffffff4);
4928 else
4929 fValid = UINT64_C(0xfffff014);
4930 if (uNewCrX & ~fValid)
4931 {
4932 Log(("Automatically clearing reserved bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
4933 uNewCrX, uNewCrX & ~fValid));
4934 uNewCrX &= fValid;
4935 }
4936
4937 /** @todo If we're in PAE mode we should check the PDPTRs for
4938 * invalid bits. */
4939
4940 /* Make the change. */
4941 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4942 {
4943 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
4944 AssertRCSuccessReturn(rc, rc);
4945 }
4946 else
4947 pCtx->cr3 = uNewCrX;
4948
4949 /* Inform PGM. */
4950 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
4951 {
4952 if (pCtx->cr0 & X86_CR0_PG)
4953 {
4954 rc = PGMFlushTLB(pVCpu, pCtx->cr3, !(pCtx->cr4 & X86_CR4_PGE));
4955 AssertRCReturn(rc, rc);
4956 /* ignore informational status codes */
4957 }
4958 }
4959 rcStrict = VINF_SUCCESS;
4960 break;
4961 }
4962
4963 /*
4964 * CR4 is a bit more tedious as there are bits which cannot be cleared
4965 * under some circumstances and such.
4966 */
4967 case 4:
4968 {
4969 uint64_t const uOldCrX = pCtx->cr4;
4970
4971 /** @todo Shouldn't this look at the guest CPUID bits to determine
4972 * valid bits? e.g. if guest CPUID doesn't allow X86_CR4_OSXMMEEXCPT, we
4973 * should #GP(0). */
4974 /* reserved bits */
4975 uint32_t fValid = X86_CR4_VME | X86_CR4_PVI
4976 | X86_CR4_TSD | X86_CR4_DE
4977 | X86_CR4_PSE | X86_CR4_PAE
4978 | X86_CR4_MCE | X86_CR4_PGE
4979 | X86_CR4_PCE | X86_CR4_OSFXSR
4980 | X86_CR4_OSXMMEEXCPT;
4981 //if (xxx)
4982 // fValid |= X86_CR4_VMXE;
4983 if (IEM_GET_GUEST_CPU_FEATURES(pIemCpu)->fXSaveRstor)
4984 fValid |= X86_CR4_OSXSAVE;
4985 if (uNewCrX & ~(uint64_t)fValid)
4986 {
4987 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
4988 return iemRaiseGeneralProtectionFault0(pIemCpu);
4989 }
4990
4991 /* long mode checks. */
4992 if ( (uOldCrX & X86_CR4_PAE)
4993 && !(uNewCrX & X86_CR4_PAE)
4994 && CPUMIsGuestInLongModeEx(pCtx) )
4995 {
4996 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
4997 return iemRaiseGeneralProtectionFault0(pIemCpu);
4998 }
4999
5000
5001 /*
5002 * Change it.
5003 */
5004 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
5005 {
5006 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
5007 AssertRCSuccessReturn(rc, rc);
5008 }
5009 else
5010 pCtx->cr4 = uNewCrX;
5011 Assert(pCtx->cr4 == uNewCrX);
5012
5013 /*
5014 * Notify SELM and PGM.
5015 */
5016 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
5017 {
5018 /* SELM - VME may change things wrt to the TSS shadowing. */
5019 if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
5020 {
5021 Log(("iemCImpl_load_CrX: VME %d -> %d => Setting VMCPU_FF_SELM_SYNC_TSS\n",
5022 RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) ));
5023#ifdef VBOX_WITH_RAW_MODE
5024 if (!HMIsEnabled(IEMCPU_TO_VM(pIemCpu)))
5025 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
5026#endif
5027 }
5028
5029 /* PGM - flushing and mode. */
5030 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE))
5031 {
5032 rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
5033 AssertRCReturn(rc, rc);
5034 /* ignore informational status codes */
5035 }
5036 rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
5037 }
5038 else
5039 rcStrict = VINF_SUCCESS;
5040 break;
5041 }
5042
5043 /*
5044 * CR8 maps to the APIC TPR.
5045 */
5046 case 8:
5047 if (uNewCrX & ~(uint64_t)0xf)
5048 {
5049 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
5050 return iemRaiseGeneralProtectionFault0(pIemCpu);
5051 }
5052
5053 if (!IEM_FULL_VERIFICATION_ENABLED(pIemCpu))
5054 PDMApicSetTPR(IEMCPU_TO_VMCPU(pIemCpu), (uint8_t)uNewCrX << 4);
5055 rcStrict = VINF_SUCCESS;
5056 break;
5057
5058 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5059 }
5060
5061 /*
5062 * Advance the RIP on success.
5063 */
5064 if (RT_SUCCESS(rcStrict))
5065 {
5066 if (rcStrict != VINF_SUCCESS)
5067 rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
5068 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5069 }
5070
5071 return rcStrict;
5072}
5073
5074
5075/**
5076 * Implements mov CRx,GReg.
5077 *
5078 * @param iCrReg The CRx register to write (valid).
5079 * @param iGReg The general register to load the DRx value from.
5080 */
5081IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
5082{
5083 if (pIemCpu->uCpl != 0)
5084 return iemRaiseGeneralProtectionFault0(pIemCpu);
5085 Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
5086
5087 /*
5088 * Read the new value from the source register and call common worker.
5089 */
5090 uint64_t uNewCrX;
5091 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
5092 uNewCrX = iemGRegFetchU64(pIemCpu, iGReg);
5093 else
5094 uNewCrX = iemGRegFetchU32(pIemCpu, iGReg);
5095 return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, iCrReg, uNewCrX);
5096}
5097
5098
5099/**
5100 * Implements 'LMSW r/m16'
5101 *
5102 * @param u16NewMsw The new value.
5103 */
5104IEM_CIMPL_DEF_1(iemCImpl_lmsw, uint16_t, u16NewMsw)
5105{
5106 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5107
5108 if (pIemCpu->uCpl != 0)
5109 return iemRaiseGeneralProtectionFault0(pIemCpu);
5110 Assert(!pCtx->eflags.Bits.u1VM);
5111
5112 /*
5113 * Compose the new CR0 value and call common worker.
5114 */
5115 uint64_t uNewCr0 = pCtx->cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
5116 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
5117 return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0);
5118}
5119
5120
5121/**
5122 * Implements 'CLTS'.
5123 */
5124IEM_CIMPL_DEF_0(iemCImpl_clts)
5125{
5126 if (pIemCpu->uCpl != 0)
5127 return iemRaiseGeneralProtectionFault0(pIemCpu);
5128
5129 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5130 uint64_t uNewCr0 = pCtx->cr0;
5131 uNewCr0 &= ~X86_CR0_TS;
5132 return IEM_CIMPL_CALL_2(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0);
5133}
5134
5135
5136/**
5137 * Implements mov GReg,DRx.
5138 *
5139 * @param iGReg The general register to store the DRx value in.
5140 * @param iDrReg The DRx register to read (0-7).
5141 */
5142IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
5143{
5144 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5145
5146 /*
5147 * Check preconditions.
5148 */
5149
5150 /* Raise GPs. */
5151 if (pIemCpu->uCpl != 0)
5152 return iemRaiseGeneralProtectionFault0(pIemCpu);
5153 Assert(!pCtx->eflags.Bits.u1VM);
5154
5155 if ( (iDrReg == 4 || iDrReg == 5)
5156 && (pCtx->cr4 & X86_CR4_DE) )
5157 {
5158 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
5159 return iemRaiseGeneralProtectionFault0(pIemCpu);
5160 }
5161
5162 /* Raise #DB if general access detect is enabled. */
5163 if (pCtx->dr[7] & X86_DR7_GD)
5164 {
5165 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
5166 return iemRaiseDebugException(pIemCpu);
5167 }
5168
5169 /*
5170 * Read the debug register and store it in the specified general register.
5171 */
5172 uint64_t drX;
5173 switch (iDrReg)
5174 {
5175 case 0: drX = pCtx->dr[0]; break;
5176 case 1: drX = pCtx->dr[1]; break;
5177 case 2: drX = pCtx->dr[2]; break;
5178 case 3: drX = pCtx->dr[3]; break;
5179 case 6:
5180 case 4:
5181 drX = pCtx->dr[6];
5182 drX |= X86_DR6_RA1_MASK;
5183 drX &= ~X86_DR6_RAZ_MASK;
5184 break;
5185 case 7:
5186 case 5:
5187 drX = pCtx->dr[7];
5188 drX |=X86_DR7_RA1_MASK;
5189 drX &= ~X86_DR7_RAZ_MASK;
5190 break;
5191 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5192 }
5193
5194 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
5195 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = drX;
5196 else
5197 *(uint64_t *)iemGRegRef(pIemCpu, iGReg) = (uint32_t)drX;
5198
5199 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5200 return VINF_SUCCESS;
5201}
5202
5203
5204/**
5205 * Implements mov DRx,GReg.
5206 *
5207 * @param iDrReg The DRx register to write (valid).
5208 * @param iGReg The general register to load the DRx value from.
5209 */
5210IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
5211{
5212 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5213
5214 /*
5215 * Check preconditions.
5216 */
5217 if (pIemCpu->uCpl != 0)
5218 return iemRaiseGeneralProtectionFault0(pIemCpu);
5219 Assert(!pCtx->eflags.Bits.u1VM);
5220
5221 if (iDrReg == 4 || iDrReg == 5)
5222 {
5223 if (pCtx->cr4 & X86_CR4_DE)
5224 {
5225 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
5226 return iemRaiseGeneralProtectionFault0(pIemCpu);
5227 }
5228 iDrReg += 2;
5229 }
5230
5231 /* Raise #DB if general access detect is enabled. */
5232 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
5233 * \#GP? */
5234 if (pCtx->dr[7] & X86_DR7_GD)
5235 {
5236 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
5237 return iemRaiseDebugException(pIemCpu);
5238 }
5239
5240 /*
5241 * Read the new value from the source register.
5242 */
5243 uint64_t uNewDrX;
5244 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
5245 uNewDrX = iemGRegFetchU64(pIemCpu, iGReg);
5246 else
5247 uNewDrX = iemGRegFetchU32(pIemCpu, iGReg);
5248
5249 /*
5250 * Adjust it.
5251 */
5252 switch (iDrReg)
5253 {
5254 case 0:
5255 case 1:
5256 case 2:
5257 case 3:
5258 /* nothing to adjust */
5259 break;
5260
5261 case 6:
5262 if (uNewDrX & X86_DR6_MBZ_MASK)
5263 {
5264 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
5265 return iemRaiseGeneralProtectionFault0(pIemCpu);
5266 }
5267 uNewDrX |= X86_DR6_RA1_MASK;
5268 uNewDrX &= ~X86_DR6_RAZ_MASK;
5269 break;
5270
5271 case 7:
5272 if (uNewDrX & X86_DR7_MBZ_MASK)
5273 {
5274 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
5275 return iemRaiseGeneralProtectionFault0(pIemCpu);
5276 }
5277 uNewDrX |= X86_DR7_RA1_MASK;
5278 uNewDrX &= ~X86_DR7_RAZ_MASK;
5279 break;
5280
5281 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5282 }
5283
5284 /*
5285 * Do the actual setting.
5286 */
5287 if (!IEM_VERIFICATION_ENABLED(pIemCpu))
5288 {
5289 int rc = CPUMSetGuestDRx(IEMCPU_TO_VMCPU(pIemCpu), iDrReg, uNewDrX);
5290 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
5291 }
5292 else
5293 pCtx->dr[iDrReg] = uNewDrX;
5294
5295 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5296 return VINF_SUCCESS;
5297}
5298
5299
5300/**
5301 * Implements 'INVLPG m'.
5302 *
5303 * @param GCPtrPage The effective address of the page to invalidate.
5304 * @remarks Updates the RIP.
5305 */
5306IEM_CIMPL_DEF_1(iemCImpl_invlpg, uint8_t, GCPtrPage)
5307{
5308 /* ring-0 only. */
5309 if (pIemCpu->uCpl != 0)
5310 return iemRaiseGeneralProtectionFault0(pIemCpu);
5311 Assert(!pIemCpu->CTX_SUFF(pCtx)->eflags.Bits.u1VM);
5312
5313 int rc = PGMInvalidatePage(IEMCPU_TO_VMCPU(pIemCpu), GCPtrPage);
5314 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5315
5316 if (rc == VINF_SUCCESS)
5317 return VINF_SUCCESS;
5318 if (rc == VINF_PGM_SYNC_CR3)
5319 return iemSetPassUpStatus(pIemCpu, rc);
5320
5321 AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
5322 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", rc));
5323 return rc;
5324}
5325
5326
5327/**
5328 * Implements RDTSC.
5329 */
5330IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
5331{
5332 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5333
5334 /*
5335 * Check preconditions.
5336 */
5337 if (!IEM_GET_GUEST_CPU_FEATURES(pIemCpu)->fTsc)
5338 return iemRaiseUndefinedOpcode(pIemCpu);
5339
5340 if ( (pCtx->cr4 & X86_CR4_TSD)
5341 && pIemCpu->uCpl != 0)
5342 {
5343 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pIemCpu->uCpl));
5344 return iemRaiseGeneralProtectionFault0(pIemCpu);
5345 }
5346
5347 /*
5348 * Do the job.
5349 */
5350 uint64_t uTicks = TMCpuTickGet(IEMCPU_TO_VMCPU(pIemCpu));
5351 pCtx->rax = (uint32_t)uTicks;
5352 pCtx->rdx = uTicks >> 32;
5353#ifdef IEM_VERIFICATION_MODE_FULL
5354 pIemCpu->fIgnoreRaxRdx = true;
5355#endif
5356
5357 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5358 return VINF_SUCCESS;
5359}
5360
5361
5362/**
5363 * Implements RDMSR.
5364 */
5365IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
5366{
5367 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5368
5369 /*
5370 * Check preconditions.
5371 */
5372 if (!IEM_GET_GUEST_CPU_FEATURES(pIemCpu)->fMsr)
5373 return iemRaiseUndefinedOpcode(pIemCpu);
5374 if (pIemCpu->uCpl != 0)
5375 return iemRaiseGeneralProtectionFault0(pIemCpu);
5376
5377 /*
5378 * Do the job.
5379 */
5380 RTUINT64U uValue;
5381 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(IEMCPU_TO_VMCPU(pIemCpu), pCtx->ecx, &uValue.u);
5382 if (rcStrict == VINF_SUCCESS)
5383 {
5384 pCtx->rax = uValue.s.Lo;
5385 pCtx->rdx = uValue.s.Hi;
5386
5387 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5388 return VINF_SUCCESS;
5389 }
5390
5391#ifndef IN_RING3
5392 /* Deferred to ring-3. */
5393 if (rcStrict == VINF_CPUM_R3_MSR_READ)
5394 {
5395 Log(("IEM: rdmsr(%#x) -> ring-3\n", pCtx->ecx));
5396 return rcStrict;
5397 }
5398#else /* IN_RING3 */
5399 /* Often a unimplemented MSR or MSR bit, so worth logging. */
5400 static uint32_t s_cTimes = 0;
5401 if (s_cTimes++ < 10)
5402 LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pCtx->ecx));
5403 else
5404#endif
5405 Log(("IEM: rdmsr(%#x) -> #GP(0)\n", pCtx->ecx));
5406 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
5407 return iemRaiseGeneralProtectionFault0(pIemCpu);
5408}
5409
5410
5411/**
5412 * Implements WRMSR.
5413 */
5414IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
5415{
5416 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5417
5418 /*
5419 * Check preconditions.
5420 */
5421 if (!IEM_GET_GUEST_CPU_FEATURES(pIemCpu)->fMsr)
5422 return iemRaiseUndefinedOpcode(pIemCpu);
5423 if (pIemCpu->uCpl != 0)
5424 return iemRaiseGeneralProtectionFault0(pIemCpu);
5425
5426 /*
5427 * Do the job.
5428 */
5429 RTUINT64U uValue;
5430 uValue.s.Lo = pCtx->eax;
5431 uValue.s.Hi = pCtx->edx;
5432
5433 VBOXSTRICTRC rcStrict;
5434 if (!IEM_VERIFICATION_ENABLED(pIemCpu))
5435 rcStrict = CPUMSetGuestMsr(IEMCPU_TO_VMCPU(pIemCpu), pCtx->ecx, uValue.u);
5436 else
5437 {
5438#ifdef IN_RING3
5439 CPUMCTX CtxTmp = *pCtx;
5440 rcStrict = CPUMSetGuestMsr(IEMCPU_TO_VMCPU(pIemCpu), pCtx->ecx, uValue.u);
5441 PCPUMCTX pCtx2 = CPUMQueryGuestCtxPtr(IEMCPU_TO_VMCPU(pIemCpu));
5442 *pCtx = *pCtx2;
5443 *pCtx2 = CtxTmp;
5444#else
5445 AssertReleaseFailedReturn(VERR_IEM_IPE_2);
5446#endif
5447 }
5448 if (rcStrict == VINF_SUCCESS)
5449 {
5450 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5451 return VINF_SUCCESS;
5452 }
5453
5454#ifndef IN_RING3
5455 /* Deferred to ring-3. */
5456 if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
5457 {
5458 Log(("IEM: rdmsr(%#x) -> ring-3\n", pCtx->ecx));
5459 return rcStrict;
5460 }
5461#else /* IN_RING3 */
5462 /* Often a unimplemented MSR or MSR bit, so worth logging. */
5463 static uint32_t s_cTimes = 0;
5464 if (s_cTimes++ < 10)
5465 LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pCtx->ecx, uValue.s.Hi, uValue.s.Lo));
5466 else
5467#endif
5468 Log(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pCtx->ecx, uValue.s.Hi, uValue.s.Lo));
5469 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
5470 return iemRaiseGeneralProtectionFault0(pIemCpu);
5471}
5472
5473
5474/**
5475 * Implements 'IN eAX, port'.
5476 *
5477 * @param u16Port The source port.
5478 * @param cbReg The register size.
5479 */
5480IEM_CIMPL_DEF_2(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg)
5481{
5482 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5483
5484 /*
5485 * CPL check
5486 */
5487 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pIemCpu, pCtx, u16Port, cbReg);
5488 if (rcStrict != VINF_SUCCESS)
5489 return rcStrict;
5490
5491 /*
5492 * Perform the I/O.
5493 */
5494 uint32_t u32Value;
5495 if (!IEM_VERIFICATION_ENABLED(pIemCpu))
5496 rcStrict = IOMIOPortRead(IEMCPU_TO_VM(pIemCpu), IEMCPU_TO_VMCPU(pIemCpu), u16Port, &u32Value, cbReg);
5497 else
5498 rcStrict = iemVerifyFakeIOPortRead(pIemCpu, u16Port, &u32Value, cbReg);
5499 if (IOM_SUCCESS(rcStrict))
5500 {
5501 switch (cbReg)
5502 {
5503 case 1: pCtx->al = (uint8_t)u32Value; break;
5504 case 2: pCtx->ax = (uint16_t)u32Value; break;
5505 case 4: pCtx->rax = u32Value; break;
5506 default: AssertFailedReturn(VERR_IEM_IPE_3);
5507 }
5508 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5509 pIemCpu->cPotentialExits++;
5510 if (rcStrict != VINF_SUCCESS)
5511 rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
5512 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
5513
5514 /*
5515 * Check for I/O breakpoints.
5516 */
5517 uint32_t const uDr7 = pCtx->dr[7];
5518 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
5519 && X86_DR7_ANY_RW_IO(uDr7)
5520 && (pCtx->cr4 & X86_CR4_DE))
5521 || DBGFBpIsHwIoArmed(IEMCPU_TO_VM(pIemCpu))))
5522 {
5523 rcStrict = DBGFBpCheckIo(IEMCPU_TO_VM(pIemCpu), IEMCPU_TO_VMCPU(pIemCpu), pCtx, u16Port, cbReg);
5524 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
5525 rcStrict = iemRaiseDebugException(pIemCpu);
5526 }
5527 }
5528
5529 return rcStrict;
5530}
5531
5532
5533/**
5534 * Implements 'IN eAX, DX'.
5535 *
5536 * @param cbReg The register size.
5537 */
5538IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
5539{
5540 return IEM_CIMPL_CALL_2(iemCImpl_in, pIemCpu->CTX_SUFF(pCtx)->dx, cbReg);
5541}
5542
5543
5544/**
5545 * Implements 'OUT port, eAX'.
5546 *
5547 * @param u16Port The destination port.
5548 * @param cbReg The register size.
5549 */
5550IEM_CIMPL_DEF_2(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg)
5551{
5552 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5553
5554 /*
5555 * CPL check
5556 */
5557 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pIemCpu, pCtx, u16Port, cbReg);
5558 if (rcStrict != VINF_SUCCESS)
5559 return rcStrict;
5560
5561 /*
5562 * Perform the I/O.
5563 */
5564 uint32_t u32Value;
5565 switch (cbReg)
5566 {
5567 case 1: u32Value = pCtx->al; break;
5568 case 2: u32Value = pCtx->ax; break;
5569 case 4: u32Value = pCtx->eax; break;
5570 default: AssertFailedReturn(VERR_IEM_IPE_4);
5571 }
5572 if (!IEM_VERIFICATION_ENABLED(pIemCpu))
5573 rcStrict = IOMIOPortWrite(IEMCPU_TO_VM(pIemCpu), IEMCPU_TO_VMCPU(pIemCpu), u16Port, u32Value, cbReg);
5574 else
5575 rcStrict = iemVerifyFakeIOPortWrite(pIemCpu, u16Port, u32Value, cbReg);
5576 if (IOM_SUCCESS(rcStrict))
5577 {
5578 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5579 pIemCpu->cPotentialExits++;
5580 if (rcStrict != VINF_SUCCESS)
5581 rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
5582 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
5583
5584 /*
5585 * Check for I/O breakpoints.
5586 */
5587 uint32_t const uDr7 = pCtx->dr[7];
5588 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
5589 && X86_DR7_ANY_RW_IO(uDr7)
5590 && (pCtx->cr4 & X86_CR4_DE))
5591 || DBGFBpIsHwIoArmed(IEMCPU_TO_VM(pIemCpu))))
5592 {
5593 rcStrict = DBGFBpCheckIo(IEMCPU_TO_VM(pIemCpu), IEMCPU_TO_VMCPU(pIemCpu), pCtx, u16Port, cbReg);
5594 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
5595 rcStrict = iemRaiseDebugException(pIemCpu);
5596 }
5597 }
5598 return rcStrict;
5599}
5600
5601
5602/**
5603 * Implements 'OUT DX, eAX'.
5604 *
5605 * @param cbReg The register size.
5606 */
5607IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
5608{
5609 return IEM_CIMPL_CALL_2(iemCImpl_out, pIemCpu->CTX_SUFF(pCtx)->dx, cbReg);
5610}
5611
5612
5613/**
5614 * Implements 'CLI'.
5615 */
5616IEM_CIMPL_DEF_0(iemCImpl_cli)
5617{
5618 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5619 uint32_t fEfl = IEMMISC_GET_EFL(pIemCpu, pCtx);
5620 uint32_t const fEflOld = fEfl;
5621 if (pCtx->cr0 & X86_CR0_PE)
5622 {
5623 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
5624 if (!(fEfl & X86_EFL_VM))
5625 {
5626 if (pIemCpu->uCpl <= uIopl)
5627 fEfl &= ~X86_EFL_IF;
5628 else if ( pIemCpu->uCpl == 3
5629 && (pCtx->cr4 & X86_CR4_PVI) )
5630 fEfl &= ~X86_EFL_VIF;
5631 else
5632 return iemRaiseGeneralProtectionFault0(pIemCpu);
5633 }
5634 /* V8086 */
5635 else if (uIopl == 3)
5636 fEfl &= ~X86_EFL_IF;
5637 else if ( uIopl < 3
5638 && (pCtx->cr4 & X86_CR4_VME) )
5639 fEfl &= ~X86_EFL_VIF;
5640 else
5641 return iemRaiseGeneralProtectionFault0(pIemCpu);
5642 }
5643 /* real mode */
5644 else
5645 fEfl &= ~X86_EFL_IF;
5646
5647 /* Commit. */
5648 IEMMISC_SET_EFL(pIemCpu, pCtx, fEfl);
5649 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5650 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
5651 return VINF_SUCCESS;
5652}
5653
5654
5655/**
5656 * Implements 'STI'.
5657 */
5658IEM_CIMPL_DEF_0(iemCImpl_sti)
5659{
5660 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5661 uint32_t fEfl = IEMMISC_GET_EFL(pIemCpu, pCtx);
5662 uint32_t const fEflOld = fEfl;
5663
5664 if (pCtx->cr0 & X86_CR0_PE)
5665 {
5666 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
5667 if (!(fEfl & X86_EFL_VM))
5668 {
5669 if (pIemCpu->uCpl <= uIopl)
5670 fEfl |= X86_EFL_IF;
5671 else if ( pIemCpu->uCpl == 3
5672 && (pCtx->cr4 & X86_CR4_PVI)
5673 && !(fEfl & X86_EFL_VIP) )
5674 fEfl |= X86_EFL_VIF;
5675 else
5676 return iemRaiseGeneralProtectionFault0(pIemCpu);
5677 }
5678 /* V8086 */
5679 else if (uIopl == 3)
5680 fEfl |= X86_EFL_IF;
5681 else if ( uIopl < 3
5682 && (pCtx->cr4 & X86_CR4_VME)
5683 && !(fEfl & X86_EFL_VIP) )
5684 fEfl |= X86_EFL_VIF;
5685 else
5686 return iemRaiseGeneralProtectionFault0(pIemCpu);
5687 }
5688 /* real mode */
5689 else
5690 fEfl |= X86_EFL_IF;
5691
5692 /* Commit. */
5693 IEMMISC_SET_EFL(pIemCpu, pCtx, fEfl);
5694 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5695 if ((!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF)) || IEM_FULL_VERIFICATION_REM_ENABLED(pIemCpu))
5696 EMSetInhibitInterruptsPC(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rip);
5697 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
5698 return VINF_SUCCESS;
5699}
5700
5701
5702/**
5703 * Implements 'HLT'.
5704 */
5705IEM_CIMPL_DEF_0(iemCImpl_hlt)
5706{
5707 if (pIemCpu->uCpl != 0)
5708 return iemRaiseGeneralProtectionFault0(pIemCpu);
5709 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5710 return VINF_EM_HALT;
5711}
5712
5713
5714/**
5715 * Implements 'MONITOR'.
5716 */
5717IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
5718{
5719 /*
5720 * Permission checks.
5721 */
5722 if (pIemCpu->uCpl != 0)
5723 {
5724 Log2(("monitor: CPL != 0\n"));
5725 return iemRaiseUndefinedOpcode(pIemCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
5726 }
5727 if (!IEM_GET_GUEST_CPU_FEATURES(pIemCpu)->fMonitorMWait)
5728 {
5729 Log2(("monitor: Not in CPUID\n"));
5730 return iemRaiseUndefinedOpcode(pIemCpu);
5731 }
5732
5733 /*
5734 * Gather the operands and validate them.
5735 */
5736 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5737 RTGCPTR GCPtrMem = pIemCpu->enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
5738 uint32_t uEcx = pCtx->ecx;
5739 uint32_t uEdx = pCtx->edx;
5740/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
5741 * \#GP first. */
5742 if (uEcx != 0)
5743 {
5744 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx));
5745 return iemRaiseGeneralProtectionFault0(pIemCpu);
5746 }
5747
5748 VBOXSTRICTRC rcStrict = iemMemApplySegment(pIemCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
5749 if (rcStrict != VINF_SUCCESS)
5750 return rcStrict;
5751
5752 RTGCPHYS GCPhysMem;
5753 rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
5754 if (rcStrict != VINF_SUCCESS)
5755 return rcStrict;
5756
5757 /*
5758 * Call EM to prepare the monitor/wait.
5759 */
5760 rcStrict = EMMonitorWaitPrepare(IEMCPU_TO_VMCPU(pIemCpu), pCtx->rax, pCtx->rcx, pCtx->rdx, GCPhysMem);
5761 Assert(rcStrict == VINF_SUCCESS);
5762
5763 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5764 return rcStrict;
5765}
5766
5767
5768/**
5769 * Implements 'MWAIT'.
5770 */
5771IEM_CIMPL_DEF_0(iemCImpl_mwait)
5772{
5773 /*
5774 * Permission checks.
5775 */
5776 if (pIemCpu->uCpl != 0)
5777 {
5778 Log2(("mwait: CPL != 0\n"));
5779 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
5780 * EFLAGS.VM then.) */
5781 return iemRaiseUndefinedOpcode(pIemCpu);
5782 }
5783 if (!IEM_GET_GUEST_CPU_FEATURES(pIemCpu)->fMonitorMWait)
5784 {
5785 Log2(("mwait: Not in CPUID\n"));
5786 return iemRaiseUndefinedOpcode(pIemCpu);
5787 }
5788
5789 /*
5790 * Gather the operands and validate them.
5791 */
5792 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5793 uint32_t uEax = pCtx->eax;
5794 uint32_t uEcx = pCtx->ecx;
5795 if (uEcx != 0)
5796 {
5797 /* Only supported extension is break on IRQ when IF=0. */
5798 if (uEcx > 1)
5799 {
5800 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
5801 return iemRaiseGeneralProtectionFault0(pIemCpu);
5802 }
5803 uint32_t fMWaitFeatures = 0;
5804 uint32_t uIgnore = 0;
5805 CPUMGetGuestCpuId(IEMCPU_TO_VMCPU(pIemCpu), 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
5806 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
5807 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
5808 {
5809 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
5810 return iemRaiseGeneralProtectionFault0(pIemCpu);
5811 }
5812 }
5813
5814 /*
5815 * Call EM to prepare the monitor/wait.
5816 */
5817 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(IEMCPU_TO_VMCPU(pIemCpu), uEax, uEcx);
5818
5819 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5820 return rcStrict;
5821}
5822
5823
5824/**
5825 * Implements 'SWAPGS'.
5826 */
5827IEM_CIMPL_DEF_0(iemCImpl_swapgs)
5828{
5829 Assert(pIemCpu->enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
5830
5831 /*
5832 * Permission checks.
5833 */
5834 if (pIemCpu->uCpl != 0)
5835 {
5836 Log2(("swapgs: CPL != 0\n"));
5837 return iemRaiseUndefinedOpcode(pIemCpu);
5838 }
5839
5840 /*
5841 * Do the job.
5842 */
5843 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5844 uint64_t uOtherGsBase = pCtx->msrKERNELGSBASE;
5845 pCtx->msrKERNELGSBASE = pCtx->gs.u64Base;
5846 pCtx->gs.u64Base = uOtherGsBase;
5847
5848 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5849 return VINF_SUCCESS;
5850}
5851
5852
5853/**
5854 * Implements 'CPUID'.
5855 */
5856IEM_CIMPL_DEF_0(iemCImpl_cpuid)
5857{
5858 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5859
5860 CPUMGetGuestCpuId(IEMCPU_TO_VMCPU(pIemCpu), pCtx->eax, pCtx->ecx, &pCtx->eax, &pCtx->ebx, &pCtx->ecx, &pCtx->edx);
5861 pCtx->rax &= UINT32_C(0xffffffff);
5862 pCtx->rbx &= UINT32_C(0xffffffff);
5863 pCtx->rcx &= UINT32_C(0xffffffff);
5864 pCtx->rdx &= UINT32_C(0xffffffff);
5865
5866 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5867 return VINF_SUCCESS;
5868}
5869
5870
5871/**
5872 * Implements 'AAD'.
5873 *
5874 * @param bImm The immediate operand.
5875 */
5876IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
5877{
5878 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5879
5880 uint16_t const ax = pCtx->ax;
5881 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
5882 pCtx->ax = al;
5883 iemHlpUpdateArithEFlagsU8(pIemCpu, al,
5884 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
5885 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
5886
5887 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5888 return VINF_SUCCESS;
5889}
5890
5891
5892/**
5893 * Implements 'AAM'.
5894 *
5895 * @param bImm The immediate operand. Cannot be 0.
5896 */
5897IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
5898{
5899 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5900 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
5901
5902 uint16_t const ax = pCtx->ax;
5903 uint8_t const al = (uint8_t)ax % bImm;
5904 uint8_t const ah = (uint8_t)ax / bImm;
5905 pCtx->ax = (ah << 8) + al;
5906 iemHlpUpdateArithEFlagsU8(pIemCpu, al,
5907 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
5908 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
5909
5910 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5911 return VINF_SUCCESS;
5912}
5913
5914
5915/**
5916 * Implements 'DAA'.
5917 */
5918IEM_CIMPL_DEF_0(iemCImpl_daa)
5919{
5920 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5921
5922 uint8_t const al = pCtx->al;
5923 bool const fCarry = pCtx->eflags.Bits.u1CF;
5924
5925 if ( pCtx->eflags.Bits.u1AF
5926 || (al & 0xf) >= 10)
5927 {
5928 pCtx->al = al + 6;
5929 pCtx->eflags.Bits.u1AF = 1;
5930 }
5931 else
5932 pCtx->eflags.Bits.u1AF = 0;
5933
5934 if (al >= 0x9a || fCarry)
5935 {
5936 pCtx->al += 0x60;
5937 pCtx->eflags.Bits.u1CF = 1;
5938 }
5939 else
5940 pCtx->eflags.Bits.u1CF = 0;
5941
5942 iemHlpUpdateArithEFlagsU8(pIemCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
5943 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5944 return VINF_SUCCESS;
5945}
5946
5947
5948/**
5949 * Implements 'DAS'.
5950 */
5951IEM_CIMPL_DEF_0(iemCImpl_das)
5952{
5953 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
5954
5955 uint8_t const uInputAL = pCtx->al;
5956 bool const fCarry = pCtx->eflags.Bits.u1CF;
5957
5958 if ( pCtx->eflags.Bits.u1AF
5959 || (uInputAL & 0xf) >= 10)
5960 {
5961 pCtx->eflags.Bits.u1AF = 1;
5962 if (uInputAL < 6)
5963 pCtx->eflags.Bits.u1CF = 1;
5964 pCtx->al = uInputAL - 6;
5965 }
5966 else
5967 {
5968 pCtx->eflags.Bits.u1AF = 0;
5969 pCtx->eflags.Bits.u1CF = 0;
5970 }
5971
5972 if (uInputAL >= 0x9a || fCarry)
5973 {
5974 pCtx->al -= 0x60;
5975 pCtx->eflags.Bits.u1CF = 1;
5976 }
5977
5978 iemHlpUpdateArithEFlagsU8(pIemCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
5979 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
5980 return VINF_SUCCESS;
5981}
5982
5983
5984
5985
5986/*
5987 * Instantiate the various string operation combinations.
5988 */
5989#define OP_SIZE 8
5990#define ADDR_SIZE 16
5991#include "IEMAllCImplStrInstr.cpp.h"
5992#define OP_SIZE 8
5993#define ADDR_SIZE 32
5994#include "IEMAllCImplStrInstr.cpp.h"
5995#define OP_SIZE 8
5996#define ADDR_SIZE 64
5997#include "IEMAllCImplStrInstr.cpp.h"
5998
5999#define OP_SIZE 16
6000#define ADDR_SIZE 16
6001#include "IEMAllCImplStrInstr.cpp.h"
6002#define OP_SIZE 16
6003#define ADDR_SIZE 32
6004#include "IEMAllCImplStrInstr.cpp.h"
6005#define OP_SIZE 16
6006#define ADDR_SIZE 64
6007#include "IEMAllCImplStrInstr.cpp.h"
6008
6009#define OP_SIZE 32
6010#define ADDR_SIZE 16
6011#include "IEMAllCImplStrInstr.cpp.h"
6012#define OP_SIZE 32
6013#define ADDR_SIZE 32
6014#include "IEMAllCImplStrInstr.cpp.h"
6015#define OP_SIZE 32
6016#define ADDR_SIZE 64
6017#include "IEMAllCImplStrInstr.cpp.h"
6018
6019#define OP_SIZE 64
6020#define ADDR_SIZE 32
6021#include "IEMAllCImplStrInstr.cpp.h"
6022#define OP_SIZE 64
6023#define ADDR_SIZE 64
6024#include "IEMAllCImplStrInstr.cpp.h"
6025
6026
6027/**
6028 * Implements 'XGETBV'.
6029 */
6030IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
6031{
6032 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6033 if (pCtx->cr4 & X86_CR4_OSXSAVE)
6034 {
6035 uint32_t uEcx = pCtx->ecx;
6036 switch (uEcx)
6037 {
6038 case 0:
6039 break;
6040
6041 case 1: /** @todo Implement XCR1 support. */
6042 default:
6043 Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
6044 return iemRaiseGeneralProtectionFault0(pIemCpu);
6045
6046 }
6047 pCtx->rax = RT_LO_U32(pCtx->aXcr[uEcx]);
6048 pCtx->rdx = RT_HI_U32(pCtx->aXcr[uEcx]);
6049
6050 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6051 return VINF_SUCCESS;
6052 }
6053 Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
6054 return iemRaiseUndefinedOpcode(pIemCpu);
6055}
6056
6057
6058/**
6059 * Implements 'XSETBV'.
6060 */
6061IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
6062{
6063 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6064 if (pCtx->cr4 & X86_CR4_OSXSAVE)
6065 {
6066 if (pIemCpu->uCpl == 0)
6067 {
6068 uint32_t uEcx = pCtx->ecx;
6069 uint64_t uNewValue = RT_MAKE_U64(pCtx->eax, pCtx->edx);
6070 switch (uEcx)
6071 {
6072 case 0:
6073 {
6074 int rc = CPUMSetGuestXcr0(IEMCPU_TO_VMCPU(pIemCpu), uNewValue);
6075 if (rc == VINF_SUCCESS)
6076 break;
6077 Assert(rc == VERR_CPUM_RAISE_GP_0);
6078 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
6079 return iemRaiseGeneralProtectionFault0(pIemCpu);
6080 }
6081
6082 case 1: /** @todo Implement XCR1 support. */
6083 default:
6084 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
6085 return iemRaiseGeneralProtectionFault0(pIemCpu);
6086
6087 }
6088
6089 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6090 return VINF_SUCCESS;
6091 }
6092
6093 Log(("xsetbv cpl=%u -> GP(0)\n", pIemCpu->uCpl));
6094 return iemRaiseGeneralProtectionFault0(pIemCpu);
6095 }
6096 Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
6097 return iemRaiseUndefinedOpcode(pIemCpu);
6098}
6099
6100
6101
6102/**
6103 * Implements 'FINIT' and 'FNINIT'.
6104 *
6105 * @param fCheckXcpts Whether to check for umasked pending exceptions or
6106 * not.
6107 */
6108IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
6109{
6110 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6111
6112 if (pCtx->cr0 & (X86_CR0_EM | X86_CR0_TS))
6113 return iemRaiseDeviceNotAvailable(pIemCpu);
6114
6115 NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
6116 if (fCheckXcpts && TODO )
6117 return iemRaiseMathFault(pIemCpu);
6118 */
6119
6120 PX86XSAVEAREA pXState = pCtx->CTX_SUFF(pXState);
6121 pXState->x87.FCW = 0x37f;
6122 pXState->x87.FSW = 0;
6123 pXState->x87.FTW = 0x00; /* 0 - empty. */
6124 pXState->x87.FPUDP = 0;
6125 pXState->x87.DS = 0; //??
6126 pXState->x87.Rsrvd2= 0;
6127 pXState->x87.FPUIP = 0;
6128 pXState->x87.CS = 0; //??
6129 pXState->x87.Rsrvd1= 0;
6130 pXState->x87.FOP = 0;
6131
6132 iemHlpUsedFpu(pIemCpu);
6133 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6134 return VINF_SUCCESS;
6135}
6136
6137
6138/**
6139 * Implements 'FXSAVE'.
6140 *
6141 * @param iEffSeg The effective segment.
6142 * @param GCPtrEff The address of the image.
6143 * @param enmEffOpSize The operand size (only REX.W really matters).
6144 */
6145IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
6146{
6147 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6148
6149 /*
6150 * Raise exceptions.
6151 */
6152 if (pCtx->cr0 & X86_CR0_EM)
6153 return iemRaiseUndefinedOpcode(pIemCpu);
6154 if (pCtx->cr0 & (X86_CR0_TS | X86_CR0_EM))
6155 return iemRaiseDeviceNotAvailable(pIemCpu);
6156 if (GCPtrEff & 15)
6157 {
6158 /** @todo CPU/VM detection possible! \#AC might not be signal for
6159 * all/any misalignment sizes, intel says its an implementation detail. */
6160 if ( (pCtx->cr0 & X86_CR0_AM)
6161 && pCtx->eflags.Bits.u1AC
6162 && pIemCpu->uCpl == 3)
6163 return iemRaiseAlignmentCheckException(pIemCpu);
6164 return iemRaiseGeneralProtectionFault0(pIemCpu);
6165 }
6166
6167 /*
6168 * Access the memory.
6169 */
6170 void *pvMem512;
6171 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
6172 if (rcStrict != VINF_SUCCESS)
6173 return rcStrict;
6174 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
6175 PCX86FXSTATE pSrc = &pCtx->CTX_SUFF(pXState)->x87;
6176
6177 /*
6178 * Store the registers.
6179 */
6180 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
6181 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
6182
6183 /* common for all formats */
6184 pDst->FCW = pSrc->FCW;
6185 pDst->FSW = pSrc->FSW;
6186 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
6187 pDst->FOP = pSrc->FOP;
6188 pDst->MXCSR = pSrc->MXCSR;
6189 pDst->MXCSR_MASK = pSrc->MXCSR_MASK;
6190 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
6191 {
6192 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
6193 * them for now... */
6194 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
6195 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
6196 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
6197 pDst->aRegs[i].au32[3] = 0;
6198 }
6199
6200 /* FPU IP, CS, DP and DS. */
6201 pDst->FPUIP = pSrc->FPUIP;
6202 pDst->CS = pSrc->CS;
6203 pDst->FPUDP = pSrc->FPUDP;
6204 pDst->DS = pSrc->DS;
6205 if (enmEffOpSize == IEMMODE_64BIT)
6206 {
6207 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
6208 pDst->Rsrvd1 = pSrc->Rsrvd1;
6209 pDst->Rsrvd2 = pSrc->Rsrvd2;
6210 pDst->au32RsrvdForSoftware[0] = 0;
6211 }
6212 else
6213 {
6214 pDst->Rsrvd1 = 0;
6215 pDst->Rsrvd2 = 0;
6216 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
6217 }
6218
6219 /* XMM registers. */
6220 if ( !(pCtx->msrEFER & MSR_K6_EFER_FFXSR)
6221 || pIemCpu->enmCpuMode != IEMMODE_64BIT
6222 || pIemCpu->uCpl != 0)
6223 {
6224 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
6225 for (uint32_t i = 0; i < cXmmRegs; i++)
6226 pDst->aXMM[i] = pSrc->aXMM[i];
6227 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
6228 * right? */
6229 }
6230
6231 /*
6232 * Commit the memory.
6233 */
6234 rcStrict = iemMemCommitAndUnmap(pIemCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
6235 if (rcStrict != VINF_SUCCESS)
6236 return rcStrict;
6237
6238 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6239 return VINF_SUCCESS;
6240}
6241
6242
6243/**
6244 * Implements 'FXRSTOR'.
6245 *
6246 * @param GCPtrEff The address of the image.
6247 * @param enmEffOpSize The operand size (only REX.W really matters).
6248 */
6249IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
6250{
6251 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6252
6253 /*
6254 * Raise exceptions.
6255 */
6256 if (pCtx->cr0 & X86_CR0_EM)
6257 return iemRaiseUndefinedOpcode(pIemCpu);
6258 if (pCtx->cr0 & (X86_CR0_TS | X86_CR0_EM))
6259 return iemRaiseDeviceNotAvailable(pIemCpu);
6260 if (GCPtrEff & 15)
6261 {
6262 /** @todo CPU/VM detection possible! \#AC might not be signal for
6263 * all/any misalignment sizes, intel says its an implementation detail. */
6264 if ( (pCtx->cr0 & X86_CR0_AM)
6265 && pCtx->eflags.Bits.u1AC
6266 && pIemCpu->uCpl == 3)
6267 return iemRaiseAlignmentCheckException(pIemCpu);
6268 return iemRaiseGeneralProtectionFault0(pIemCpu);
6269 }
6270
6271 /*
6272 * Access the memory.
6273 */
6274 void *pvMem512;
6275 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
6276 if (rcStrict != VINF_SUCCESS)
6277 return rcStrict;
6278 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
6279 PX86FXSTATE pDst = &pCtx->CTX_SUFF(pXState)->x87;
6280
6281 /*
6282 * Check the state for stuff which will #GP(0).
6283 */
6284 uint32_t const fMXCSR = pSrc->MXCSR;
6285 uint32_t const fMXCSR_MASK = pDst->MXCSR_MASK ? pDst->MXCSR_MASK : UINT32_C(0xffbf);
6286 if (fMXCSR & ~fMXCSR_MASK)
6287 {
6288 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
6289 return iemRaiseGeneralProtectionFault0(pIemCpu);
6290 }
6291
6292 /*
6293 * Load the registers.
6294 */
6295 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
6296 * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
6297
6298 /* common for all formats */
6299 pDst->FCW = pSrc->FCW;
6300 pDst->FSW = pSrc->FSW;
6301 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
6302 pDst->FOP = pSrc->FOP;
6303 pDst->MXCSR = fMXCSR;
6304 /* (MXCSR_MASK is read-only) */
6305 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
6306 {
6307 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
6308 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
6309 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
6310 pDst->aRegs[i].au32[3] = 0;
6311 }
6312
6313 /* FPU IP, CS, DP and DS. */
6314 if (pIemCpu->enmCpuMode == IEMMODE_64BIT)
6315 {
6316 pDst->FPUIP = pSrc->FPUIP;
6317 pDst->CS = pSrc->CS;
6318 pDst->Rsrvd1 = pSrc->Rsrvd1;
6319 pDst->FPUDP = pSrc->FPUDP;
6320 pDst->DS = pSrc->DS;
6321 pDst->Rsrvd2 = pSrc->Rsrvd2;
6322 }
6323 else
6324 {
6325 pDst->FPUIP = pSrc->FPUIP;
6326 pDst->CS = pSrc->CS;
6327 pDst->Rsrvd1 = 0;
6328 pDst->FPUDP = pSrc->FPUDP;
6329 pDst->DS = pSrc->DS;
6330 pDst->Rsrvd2 = 0;
6331 }
6332
6333 /* XMM registers. */
6334 if ( !(pCtx->msrEFER & MSR_K6_EFER_FFXSR)
6335 || pIemCpu->enmCpuMode != IEMMODE_64BIT
6336 || pIemCpu->uCpl != 0)
6337 {
6338 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
6339 for (uint32_t i = 0; i < cXmmRegs; i++)
6340 pDst->aXMM[i] = pSrc->aXMM[i];
6341 }
6342
6343 /*
6344 * Commit the memory.
6345 */
6346 rcStrict = iemMemCommitAndUnmap(pIemCpu, pvMem512, IEM_ACCESS_DATA_R);
6347 if (rcStrict != VINF_SUCCESS)
6348 return rcStrict;
6349
6350 iemHlpUsedFpu(pIemCpu);
6351 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6352 return VINF_SUCCESS;
6353}
6354
6355
6356/**
6357 * Commmon routine for fnstenv and fnsave.
6358 *
6359 * @param uPtr Where to store the state.
6360 * @param pCtx The CPU context.
6361 */
6362static void iemCImplCommonFpuStoreEnv(PIEMCPU pIemCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr, PCCPUMCTX pCtx)
6363{
6364 PCX86FXSTATE pSrcX87 = &pCtx->CTX_SUFF(pXState)->x87;
6365 if (enmEffOpSize == IEMMODE_16BIT)
6366 {
6367 uPtr.pu16[0] = pSrcX87->FCW;
6368 uPtr.pu16[1] = pSrcX87->FSW;
6369 uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
6370 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
6371 {
6372 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
6373 * protected mode or long mode and we save it in real mode? And vice
6374 * versa? And with 32-bit operand size? I think CPU is storing the
6375 * effective address ((CS << 4) + IP) in the offset register and not
6376 * doing any address calculations here. */
6377 uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
6378 uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
6379 uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
6380 uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
6381 }
6382 else
6383 {
6384 uPtr.pu16[3] = pSrcX87->FPUIP;
6385 uPtr.pu16[4] = pSrcX87->CS;
6386 uPtr.pu16[5] = pSrcX87->FPUDP;
6387 uPtr.pu16[6] = pSrcX87->DS;
6388 }
6389 }
6390 else
6391 {
6392 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
6393 uPtr.pu16[0*2] = pSrcX87->FCW;
6394 uPtr.pu16[1*2] = pSrcX87->FSW;
6395 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
6396 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
6397 {
6398 uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
6399 uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
6400 uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
6401 uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
6402 }
6403 else
6404 {
6405 uPtr.pu32[3] = pSrcX87->FPUIP;
6406 uPtr.pu16[4*2] = pSrcX87->CS;
6407 uPtr.pu16[4*2+1]= pSrcX87->FOP;
6408 uPtr.pu32[5] = pSrcX87->FPUDP;
6409 uPtr.pu16[6*2] = pSrcX87->DS;
6410 }
6411 }
6412}
6413
6414
6415/**
6416 * Commmon routine for fldenv and frstor
6417 *
6418 * @param uPtr Where to store the state.
6419 * @param pCtx The CPU context.
6420 */
6421static void iemCImplCommonFpuRestoreEnv(PIEMCPU pIemCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr, PCPUMCTX pCtx)
6422{
6423 PX86FXSTATE pDstX87 = &pCtx->CTX_SUFF(pXState)->x87;
6424 if (enmEffOpSize == IEMMODE_16BIT)
6425 {
6426 pDstX87->FCW = uPtr.pu16[0];
6427 pDstX87->FSW = uPtr.pu16[1];
6428 pDstX87->FTW = uPtr.pu16[2];
6429 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
6430 {
6431 pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
6432 pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
6433 pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
6434 pDstX87->CS = 0;
6435 pDstX87->Rsrvd1= 0;
6436 pDstX87->DS = 0;
6437 pDstX87->Rsrvd2= 0;
6438 }
6439 else
6440 {
6441 pDstX87->FPUIP = uPtr.pu16[3];
6442 pDstX87->CS = uPtr.pu16[4];
6443 pDstX87->Rsrvd1= 0;
6444 pDstX87->FPUDP = uPtr.pu16[5];
6445 pDstX87->DS = uPtr.pu16[6];
6446 pDstX87->Rsrvd2= 0;
6447 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
6448 }
6449 }
6450 else
6451 {
6452 pDstX87->FCW = uPtr.pu16[0*2];
6453 pDstX87->FSW = uPtr.pu16[1*2];
6454 pDstX87->FTW = uPtr.pu16[2*2];
6455 if (IEM_IS_REAL_OR_V86_MODE(pIemCpu))
6456 {
6457 pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
6458 pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
6459 pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
6460 pDstX87->CS = 0;
6461 pDstX87->Rsrvd1= 0;
6462 pDstX87->DS = 0;
6463 pDstX87->Rsrvd2= 0;
6464 }
6465 else
6466 {
6467 pDstX87->FPUIP = uPtr.pu32[3];
6468 pDstX87->CS = uPtr.pu16[4*2];
6469 pDstX87->Rsrvd1= 0;
6470 pDstX87->FOP = uPtr.pu16[4*2+1];
6471 pDstX87->FPUDP = uPtr.pu32[5];
6472 pDstX87->DS = uPtr.pu16[6*2];
6473 pDstX87->Rsrvd2= 0;
6474 }
6475 }
6476
6477 /* Make adjustments. */
6478 pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
6479 pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
6480 iemFpuRecalcExceptionStatus(pDstX87);
6481 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
6482 * exceptions are pending after loading the saved state? */
6483}
6484
6485
6486/**
6487 * Implements 'FNSTENV'.
6488 *
6489 * @param enmEffOpSize The operand size (only REX.W really matters).
6490 * @param iEffSeg The effective segment register for @a GCPtrEff.
6491 * @param GCPtrEffDst The address of the image.
6492 */
6493IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
6494{
6495 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6496 RTPTRUNION uPtr;
6497 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
6498 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
6499 if (rcStrict != VINF_SUCCESS)
6500 return rcStrict;
6501
6502 iemCImplCommonFpuStoreEnv(pIemCpu, enmEffOpSize, uPtr, pCtx);
6503
6504 rcStrict = iemMemCommitAndUnmap(pIemCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
6505 if (rcStrict != VINF_SUCCESS)
6506 return rcStrict;
6507
6508 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
6509 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6510 return VINF_SUCCESS;
6511}
6512
6513
6514/**
6515 * Implements 'FNSAVE'.
6516 *
6517 * @param GCPtrEffDst The address of the image.
6518 * @param enmEffOpSize The operand size.
6519 */
6520IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
6521{
6522 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6523 RTPTRUNION uPtr;
6524 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
6525 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
6526 if (rcStrict != VINF_SUCCESS)
6527 return rcStrict;
6528
6529 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
6530 iemCImplCommonFpuStoreEnv(pIemCpu, enmEffOpSize, uPtr, pCtx);
6531 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
6532 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
6533 {
6534 paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
6535 paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
6536 paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
6537 }
6538
6539 rcStrict = iemMemCommitAndUnmap(pIemCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
6540 if (rcStrict != VINF_SUCCESS)
6541 return rcStrict;
6542
6543 /*
6544 * Re-initialize the FPU context.
6545 */
6546 pFpuCtx->FCW = 0x37f;
6547 pFpuCtx->FSW = 0;
6548 pFpuCtx->FTW = 0x00; /* 0 - empty */
6549 pFpuCtx->FPUDP = 0;
6550 pFpuCtx->DS = 0;
6551 pFpuCtx->Rsrvd2= 0;
6552 pFpuCtx->FPUIP = 0;
6553 pFpuCtx->CS = 0;
6554 pFpuCtx->Rsrvd1= 0;
6555 pFpuCtx->FOP = 0;
6556
6557 iemHlpUsedFpu(pIemCpu);
6558 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6559 return VINF_SUCCESS;
6560}
6561
6562
6563
6564/**
6565 * Implements 'FLDENV'.
6566 *
6567 * @param enmEffOpSize The operand size (only REX.W really matters).
6568 * @param iEffSeg The effective segment register for @a GCPtrEff.
6569 * @param GCPtrEffSrc The address of the image.
6570 */
6571IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
6572{
6573 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6574 RTCPTRUNION uPtr;
6575 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
6576 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
6577 if (rcStrict != VINF_SUCCESS)
6578 return rcStrict;
6579
6580 iemCImplCommonFpuRestoreEnv(pIemCpu, enmEffOpSize, uPtr, pCtx);
6581
6582 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
6583 if (rcStrict != VINF_SUCCESS)
6584 return rcStrict;
6585
6586 iemHlpUsedFpu(pIemCpu);
6587 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6588 return VINF_SUCCESS;
6589}
6590
6591
6592/**
6593 * Implements 'FRSTOR'.
6594 *
6595 * @param GCPtrEffSrc The address of the image.
6596 * @param enmEffOpSize The operand size.
6597 */
6598IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
6599{
6600 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6601 RTCPTRUNION uPtr;
6602 VBOXSTRICTRC rcStrict = iemMemMap(pIemCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
6603 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
6604 if (rcStrict != VINF_SUCCESS)
6605 return rcStrict;
6606
6607 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
6608 iemCImplCommonFpuRestoreEnv(pIemCpu, enmEffOpSize, uPtr, pCtx);
6609 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
6610 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
6611 {
6612 pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
6613 pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
6614 pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
6615 pFpuCtx->aRegs[i].au32[3] = 0;
6616 }
6617
6618 rcStrict = iemMemCommitAndUnmap(pIemCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
6619 if (rcStrict != VINF_SUCCESS)
6620 return rcStrict;
6621
6622 iemHlpUsedFpu(pIemCpu);
6623 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6624 return VINF_SUCCESS;
6625}
6626
6627
6628/**
6629 * Implements 'FLDCW'.
6630 *
6631 * @param u16Fcw The new FCW.
6632 */
6633IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
6634{
6635 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6636
6637 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
6638 /** @todo Testcase: Try see what happens when trying to set undefined bits
6639 * (other than 6 and 7). Currently ignoring them. */
6640 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
6641 * according to FSW. (This is was is currently implemented.) */
6642 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
6643 pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
6644 iemFpuRecalcExceptionStatus(pFpuCtx);
6645
6646 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
6647 iemHlpUsedFpu(pIemCpu);
6648 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6649 return VINF_SUCCESS;
6650}
6651
6652
6653
6654/**
6655 * Implements the underflow case of fxch.
6656 *
6657 * @param iStReg The other stack register.
6658 */
6659IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
6660{
6661 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6662
6663 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
6664 unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
6665 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
6666 Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
6667
6668 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
6669 * registers are read as QNaN and then exchanged. This could be
6670 * wrong... */
6671 if (pFpuCtx->FCW & X86_FCW_IM)
6672 {
6673 if (RT_BIT(iReg1) & pFpuCtx->FTW)
6674 {
6675 if (RT_BIT(iReg2) & pFpuCtx->FTW)
6676 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
6677 else
6678 pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
6679 iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
6680 }
6681 else
6682 {
6683 pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
6684 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
6685 }
6686 pFpuCtx->FSW &= ~X86_FSW_C_MASK;
6687 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
6688 }
6689 else
6690 {
6691 /* raise underflow exception, don't change anything. */
6692 pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
6693 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
6694 }
6695
6696 iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
6697 iemHlpUsedFpu(pIemCpu);
6698 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6699 return VINF_SUCCESS;
6700}
6701
6702
6703/**
6704 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
6705 *
6706 * @param cToAdd 1 or 7.
6707 */
6708IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
6709{
6710 PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
6711 Assert(iStReg < 8);
6712
6713 /*
6714 * Raise exceptions.
6715 */
6716 if (pCtx->cr0 & (X86_CR0_EM | X86_CR0_TS))
6717 return iemRaiseDeviceNotAvailable(pIemCpu);
6718
6719 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
6720 uint16_t u16Fsw = pFpuCtx->FSW;
6721 if (u16Fsw & X86_FSW_ES)
6722 return iemRaiseMathFault(pIemCpu);
6723
6724 /*
6725 * Check if any of the register accesses causes #SF + #IA.
6726 */
6727 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
6728 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
6729 if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
6730 {
6731 uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
6732 NOREF(u32Eflags);
6733
6734 pFpuCtx->FSW &= ~X86_FSW_C1;
6735 pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
6736 if ( !(u16Fsw & X86_FSW_IE)
6737 || (pFpuCtx->FCW & X86_FCW_IM) )
6738 {
6739 pCtx->eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
6740 pCtx->eflags.u |= pCtx->eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
6741 }
6742 }
6743 else if (pFpuCtx->FCW & X86_FCW_IM)
6744 {
6745 /* Masked underflow. */
6746 pFpuCtx->FSW &= ~X86_FSW_C1;
6747 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
6748 pCtx->eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
6749 pCtx->eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
6750 }
6751 else
6752 {
6753 /* Raise underflow - don't touch EFLAGS or TOP. */
6754 pFpuCtx->FSW &= ~X86_FSW_C1;
6755 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
6756 fPop = false;
6757 }
6758
6759 /*
6760 * Pop if necessary.
6761 */
6762 if (fPop)
6763 {
6764 pFpuCtx->FTW &= ~RT_BIT(iReg1);
6765 pFpuCtx->FSW &= X86_FSW_TOP_MASK;
6766 pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
6767 }
6768
6769 iemFpuUpdateOpcodeAndIpWorker(pIemCpu, pCtx, pFpuCtx);
6770 iemHlpUsedFpu(pIemCpu);
6771 iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
6772 return VINF_SUCCESS;
6773}
6774
6775/** @} */
6776
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette