1 | /* $Id: IEMAllCImpl.cpp.h 66848 2017-05-09 13:04:57Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Instruction Implementation in C/C++ (code include).
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2016 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 | /** @name Misc Helpers
|
---|
19 | * @{
|
---|
20 | */
|
---|
21 |
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Worker function for iemHlpCheckPortIOPermission, don't call directly.
|
---|
25 | *
|
---|
26 | * @returns Strict VBox status code.
|
---|
27 | *
|
---|
28 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
29 | * @param pCtx The register context.
|
---|
30 | * @param u16Port The port number.
|
---|
31 | * @param cbOperand The operand size.
|
---|
32 | */
|
---|
33 | static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPU pVCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand)
|
---|
34 | {
|
---|
35 | /* The TSS bits we're interested in are the same on 386 and AMD64. */
|
---|
36 | AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
|
---|
37 | AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
|
---|
38 | AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
|
---|
39 | AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
|
---|
40 |
|
---|
41 | /*
|
---|
42 | * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
|
---|
43 | */
|
---|
44 | Assert(!pCtx->tr.Attr.n.u1DescType);
|
---|
45 | if (RT_UNLIKELY( pCtx->tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
|
---|
46 | && pCtx->tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
|
---|
47 | {
|
---|
48 | Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
|
---|
49 | u16Port, cbOperand, pCtx->tr.Attr.n.u4Type, pCtx->tr.Attr.u));
|
---|
50 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
51 | }
|
---|
52 |
|
---|
53 | /*
|
---|
54 | * Read the bitmap offset (may #PF).
|
---|
55 | */
|
---|
56 | uint16_t offBitmap;
|
---|
57 | VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
|
---|
58 | pCtx->tr.u64Base + RT_OFFSETOF(X86TSS64, offIoBitmap));
|
---|
59 | if (rcStrict != VINF_SUCCESS)
|
---|
60 | {
|
---|
61 | Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
62 | return rcStrict;
|
---|
63 | }
|
---|
64 |
|
---|
65 | /*
|
---|
66 | * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
|
---|
67 | * describes the CPU actually reading two bytes regardless of whether the
|
---|
68 | * bit range crosses a byte boundrary. Thus the + 1 in the test below.
|
---|
69 | */
|
---|
70 | uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
|
---|
71 | /** @todo check if real CPUs ensures that offBitmap has a minimum value of
|
---|
72 | * for instance sizeof(X86TSS32). */
|
---|
73 | if (offFirstBit + 1 > pCtx->tr.u32Limit) /* the limit is inclusive */
|
---|
74 | {
|
---|
75 | Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
|
---|
76 | offFirstBit, pCtx->tr.u32Limit));
|
---|
77 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
78 | }
|
---|
79 |
|
---|
80 | /*
|
---|
81 | * Read the necessary bits.
|
---|
82 | */
|
---|
83 | /** @todo Test the assertion in the intel manual that the CPU reads two
|
---|
84 | * bytes. The question is how this works wrt to #PF and #GP on the
|
---|
85 | * 2nd byte when it's not required. */
|
---|
86 | uint16_t bmBytes = UINT16_MAX;
|
---|
87 | rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pCtx->tr.u64Base + offFirstBit);
|
---|
88 | if (rcStrict != VINF_SUCCESS)
|
---|
89 | {
|
---|
90 | Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
91 | return rcStrict;
|
---|
92 | }
|
---|
93 |
|
---|
94 | /*
|
---|
95 | * Perform the check.
|
---|
96 | */
|
---|
97 | uint16_t fPortMask = (1 << cbOperand) - 1;
|
---|
98 | bmBytes >>= (u16Port & 7);
|
---|
99 | if (bmBytes & fPortMask)
|
---|
100 | {
|
---|
101 | Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
|
---|
102 | u16Port, cbOperand, bmBytes, fPortMask));
|
---|
103 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
104 | }
|
---|
105 |
|
---|
106 | return VINF_SUCCESS;
|
---|
107 | }
|
---|
108 |
|
---|
109 |
|
---|
110 | /**
|
---|
111 | * Checks if we are allowed to access the given I/O port, raising the
|
---|
112 | * appropriate exceptions if we aren't (or if the I/O bitmap is not
|
---|
113 | * accessible).
|
---|
114 | *
|
---|
115 | * @returns Strict VBox status code.
|
---|
116 | *
|
---|
117 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
118 | * @param pCtx The register context.
|
---|
119 | * @param u16Port The port number.
|
---|
120 | * @param cbOperand The operand size.
|
---|
121 | */
|
---|
122 | DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPU pVCpu, PCCPUMCTX pCtx, uint16_t u16Port, uint8_t cbOperand)
|
---|
123 | {
|
---|
124 | X86EFLAGS Efl;
|
---|
125 | Efl.u = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
126 | if ( (pCtx->cr0 & X86_CR0_PE)
|
---|
127 | && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
|
---|
128 | || Efl.Bits.u1VM) )
|
---|
129 | return iemHlpCheckPortIOPermissionBitmap(pVCpu, pCtx, u16Port, cbOperand);
|
---|
130 | return VINF_SUCCESS;
|
---|
131 | }
|
---|
132 |
|
---|
133 |
|
---|
134 | #if 0
|
---|
135 | /**
|
---|
136 | * Calculates the parity bit.
|
---|
137 | *
|
---|
138 | * @returns true if the bit is set, false if not.
|
---|
139 | * @param u8Result The least significant byte of the result.
|
---|
140 | */
|
---|
141 | static bool iemHlpCalcParityFlag(uint8_t u8Result)
|
---|
142 | {
|
---|
143 | /*
|
---|
144 | * Parity is set if the number of bits in the least significant byte of
|
---|
145 | * the result is even.
|
---|
146 | */
|
---|
147 | uint8_t cBits;
|
---|
148 | cBits = u8Result & 1; /* 0 */
|
---|
149 | u8Result >>= 1;
|
---|
150 | cBits += u8Result & 1;
|
---|
151 | u8Result >>= 1;
|
---|
152 | cBits += u8Result & 1;
|
---|
153 | u8Result >>= 1;
|
---|
154 | cBits += u8Result & 1;
|
---|
155 | u8Result >>= 1;
|
---|
156 | cBits += u8Result & 1; /* 4 */
|
---|
157 | u8Result >>= 1;
|
---|
158 | cBits += u8Result & 1;
|
---|
159 | u8Result >>= 1;
|
---|
160 | cBits += u8Result & 1;
|
---|
161 | u8Result >>= 1;
|
---|
162 | cBits += u8Result & 1;
|
---|
163 | return !(cBits & 1);
|
---|
164 | }
|
---|
165 | #endif /* not used */
|
---|
166 |
|
---|
167 |
|
---|
168 | /**
|
---|
169 | * Updates the specified flags according to a 8-bit result.
|
---|
170 | *
|
---|
171 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
172 | * @param u8Result The result to set the flags according to.
|
---|
173 | * @param fToUpdate The flags to update.
|
---|
174 | * @param fUndefined The flags that are specified as undefined.
|
---|
175 | */
|
---|
176 | static void iemHlpUpdateArithEFlagsU8(PVMCPU pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
|
---|
177 | {
|
---|
178 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
179 |
|
---|
180 | uint32_t fEFlags = pCtx->eflags.u;
|
---|
181 | iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
|
---|
182 | pCtx->eflags.u &= ~(fToUpdate | fUndefined);
|
---|
183 | pCtx->eflags.u |= (fToUpdate | fUndefined) & fEFlags;
|
---|
184 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
185 | pVCpu->iem.s.fUndefinedEFlags |= fUndefined;
|
---|
186 | #endif
|
---|
187 | }
|
---|
188 |
|
---|
189 |
|
---|
190 | /**
|
---|
191 | * Updates the specified flags according to a 16-bit result.
|
---|
192 | *
|
---|
193 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
194 | * @param u16Result The result to set the flags according to.
|
---|
195 | * @param fToUpdate The flags to update.
|
---|
196 | * @param fUndefined The flags that are specified as undefined.
|
---|
197 | */
|
---|
198 | static void iemHlpUpdateArithEFlagsU16(PVMCPU pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
|
---|
199 | {
|
---|
200 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
201 |
|
---|
202 | uint32_t fEFlags = pCtx->eflags.u;
|
---|
203 | iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
|
---|
204 | pCtx->eflags.u &= ~(fToUpdate | fUndefined);
|
---|
205 | pCtx->eflags.u |= (fToUpdate | fUndefined) & fEFlags;
|
---|
206 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
207 | pVCpu->iem.s.fUndefinedEFlags |= fUndefined;
|
---|
208 | #endif
|
---|
209 | }
|
---|
210 |
|
---|
211 |
|
---|
212 | /**
|
---|
213 | * Helper used by iret.
|
---|
214 | *
|
---|
215 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
216 | * @param uCpl The new CPL.
|
---|
217 | * @param pSReg Pointer to the segment register.
|
---|
218 | */
|
---|
219 | static void iemHlpAdjustSelectorForNewCpl(PVMCPU pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
|
---|
220 | {
|
---|
221 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
222 | if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
|
---|
223 | CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg);
|
---|
224 | #else
|
---|
225 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
226 | #endif
|
---|
227 |
|
---|
228 | if ( uCpl > pSReg->Attr.n.u2Dpl
|
---|
229 | && pSReg->Attr.n.u1DescType /* code or data, not system */
|
---|
230 | && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
231 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
|
---|
232 | iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
|
---|
233 | }
|
---|
234 |
|
---|
235 |
|
---|
236 | /**
|
---|
237 | * Indicates that we have modified the FPU state.
|
---|
238 | *
|
---|
239 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
240 | */
|
---|
241 | DECLINLINE(void) iemHlpUsedFpu(PVMCPU pVCpu)
|
---|
242 | {
|
---|
243 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
244 | }
|
---|
245 |
|
---|
246 | /** @} */
|
---|
247 |
|
---|
248 | /** @name C Implementations
|
---|
249 | * @{
|
---|
250 | */
|
---|
251 |
|
---|
252 | /**
|
---|
253 | * Implements a 16-bit popa.
|
---|
254 | */
|
---|
255 | IEM_CIMPL_DEF_0(iemCImpl_popa_16)
|
---|
256 | {
|
---|
257 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
258 | RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu, pCtx);
|
---|
259 | RTGCPTR GCPtrLast = GCPtrStart + 15;
|
---|
260 | VBOXSTRICTRC rcStrict;
|
---|
261 |
|
---|
262 | /*
|
---|
263 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
264 | * around in real mode as long as none of the individual "popa" crosses the
|
---|
265 | * end of the stack segment. In protected mode we check the whole access
|
---|
266 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
267 | * danger of wrapping around.
|
---|
268 | */
|
---|
269 | /** @todo do popa boundary / wrap-around checks. */
|
---|
270 | if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
|
---|
271 | && (pCtx->cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
|
---|
272 | {
|
---|
273 | /* word-by-word */
|
---|
274 | RTUINT64U TmpRsp;
|
---|
275 | TmpRsp.u = pCtx->rsp;
|
---|
276 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->di, &TmpRsp);
|
---|
277 | if (rcStrict == VINF_SUCCESS)
|
---|
278 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->si, &TmpRsp);
|
---|
279 | if (rcStrict == VINF_SUCCESS)
|
---|
280 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->bp, &TmpRsp);
|
---|
281 | if (rcStrict == VINF_SUCCESS)
|
---|
282 | {
|
---|
283 | iemRegAddToRspEx(pVCpu, pCtx, &TmpRsp, 2); /* sp */
|
---|
284 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->bx, &TmpRsp);
|
---|
285 | }
|
---|
286 | if (rcStrict == VINF_SUCCESS)
|
---|
287 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->dx, &TmpRsp);
|
---|
288 | if (rcStrict == VINF_SUCCESS)
|
---|
289 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->cx, &TmpRsp);
|
---|
290 | if (rcStrict == VINF_SUCCESS)
|
---|
291 | rcStrict = iemMemStackPopU16Ex(pVCpu, &pCtx->ax, &TmpRsp);
|
---|
292 | if (rcStrict == VINF_SUCCESS)
|
---|
293 | {
|
---|
294 | pCtx->rsp = TmpRsp.u;
|
---|
295 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
296 | }
|
---|
297 | }
|
---|
298 | else
|
---|
299 | {
|
---|
300 | uint16_t const *pa16Mem = NULL;
|
---|
301 | rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
|
---|
302 | if (rcStrict == VINF_SUCCESS)
|
---|
303 | {
|
---|
304 | pCtx->di = pa16Mem[7 - X86_GREG_xDI];
|
---|
305 | pCtx->si = pa16Mem[7 - X86_GREG_xSI];
|
---|
306 | pCtx->bp = pa16Mem[7 - X86_GREG_xBP];
|
---|
307 | /* skip sp */
|
---|
308 | pCtx->bx = pa16Mem[7 - X86_GREG_xBX];
|
---|
309 | pCtx->dx = pa16Mem[7 - X86_GREG_xDX];
|
---|
310 | pCtx->cx = pa16Mem[7 - X86_GREG_xCX];
|
---|
311 | pCtx->ax = pa16Mem[7 - X86_GREG_xAX];
|
---|
312 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
|
---|
313 | if (rcStrict == VINF_SUCCESS)
|
---|
314 | {
|
---|
315 | iemRegAddToRsp(pVCpu, pCtx, 16);
|
---|
316 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
317 | }
|
---|
318 | }
|
---|
319 | }
|
---|
320 | return rcStrict;
|
---|
321 | }
|
---|
322 |
|
---|
323 |
|
---|
324 | /**
|
---|
325 | * Implements a 32-bit popa.
|
---|
326 | */
|
---|
327 | IEM_CIMPL_DEF_0(iemCImpl_popa_32)
|
---|
328 | {
|
---|
329 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
330 | RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu, pCtx);
|
---|
331 | RTGCPTR GCPtrLast = GCPtrStart + 31;
|
---|
332 | VBOXSTRICTRC rcStrict;
|
---|
333 |
|
---|
334 | /*
|
---|
335 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
336 | * around in real mode as long as none of the individual "popa" crosses the
|
---|
337 | * end of the stack segment. In protected mode we check the whole access
|
---|
338 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
339 | * danger of wrapping around.
|
---|
340 | */
|
---|
341 | /** @todo do popa boundary / wrap-around checks. */
|
---|
342 | if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
|
---|
343 | && (pCtx->cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
|
---|
344 | {
|
---|
345 | /* word-by-word */
|
---|
346 | RTUINT64U TmpRsp;
|
---|
347 | TmpRsp.u = pCtx->rsp;
|
---|
348 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->edi, &TmpRsp);
|
---|
349 | if (rcStrict == VINF_SUCCESS)
|
---|
350 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->esi, &TmpRsp);
|
---|
351 | if (rcStrict == VINF_SUCCESS)
|
---|
352 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->ebp, &TmpRsp);
|
---|
353 | if (rcStrict == VINF_SUCCESS)
|
---|
354 | {
|
---|
355 | iemRegAddToRspEx(pVCpu, pCtx, &TmpRsp, 2); /* sp */
|
---|
356 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->ebx, &TmpRsp);
|
---|
357 | }
|
---|
358 | if (rcStrict == VINF_SUCCESS)
|
---|
359 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->edx, &TmpRsp);
|
---|
360 | if (rcStrict == VINF_SUCCESS)
|
---|
361 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->ecx, &TmpRsp);
|
---|
362 | if (rcStrict == VINF_SUCCESS)
|
---|
363 | rcStrict = iemMemStackPopU32Ex(pVCpu, &pCtx->eax, &TmpRsp);
|
---|
364 | if (rcStrict == VINF_SUCCESS)
|
---|
365 | {
|
---|
366 | #if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
|
---|
367 | pCtx->rdi &= UINT32_MAX;
|
---|
368 | pCtx->rsi &= UINT32_MAX;
|
---|
369 | pCtx->rbp &= UINT32_MAX;
|
---|
370 | pCtx->rbx &= UINT32_MAX;
|
---|
371 | pCtx->rdx &= UINT32_MAX;
|
---|
372 | pCtx->rcx &= UINT32_MAX;
|
---|
373 | pCtx->rax &= UINT32_MAX;
|
---|
374 | #endif
|
---|
375 | pCtx->rsp = TmpRsp.u;
|
---|
376 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
377 | }
|
---|
378 | }
|
---|
379 | else
|
---|
380 | {
|
---|
381 | uint32_t const *pa32Mem;
|
---|
382 | rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
|
---|
383 | if (rcStrict == VINF_SUCCESS)
|
---|
384 | {
|
---|
385 | pCtx->rdi = pa32Mem[7 - X86_GREG_xDI];
|
---|
386 | pCtx->rsi = pa32Mem[7 - X86_GREG_xSI];
|
---|
387 | pCtx->rbp = pa32Mem[7 - X86_GREG_xBP];
|
---|
388 | /* skip esp */
|
---|
389 | pCtx->rbx = pa32Mem[7 - X86_GREG_xBX];
|
---|
390 | pCtx->rdx = pa32Mem[7 - X86_GREG_xDX];
|
---|
391 | pCtx->rcx = pa32Mem[7 - X86_GREG_xCX];
|
---|
392 | pCtx->rax = pa32Mem[7 - X86_GREG_xAX];
|
---|
393 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
|
---|
394 | if (rcStrict == VINF_SUCCESS)
|
---|
395 | {
|
---|
396 | iemRegAddToRsp(pVCpu, pCtx, 32);
|
---|
397 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
398 | }
|
---|
399 | }
|
---|
400 | }
|
---|
401 | return rcStrict;
|
---|
402 | }
|
---|
403 |
|
---|
404 |
|
---|
405 | /**
|
---|
406 | * Implements a 16-bit pusha.
|
---|
407 | */
|
---|
408 | IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
|
---|
409 | {
|
---|
410 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
411 | RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu, pCtx);
|
---|
412 | RTGCPTR GCPtrBottom = GCPtrTop - 15;
|
---|
413 | VBOXSTRICTRC rcStrict;
|
---|
414 |
|
---|
415 | /*
|
---|
416 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
417 | * around in real mode as long as none of the individual "pushd" crosses the
|
---|
418 | * end of the stack segment. In protected mode we check the whole access
|
---|
419 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
420 | * danger of wrapping around.
|
---|
421 | */
|
---|
422 | /** @todo do pusha boundary / wrap-around checks. */
|
---|
423 | if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
|
---|
424 | && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
|
---|
425 | {
|
---|
426 | /* word-by-word */
|
---|
427 | RTUINT64U TmpRsp;
|
---|
428 | TmpRsp.u = pCtx->rsp;
|
---|
429 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->ax, &TmpRsp);
|
---|
430 | if (rcStrict == VINF_SUCCESS)
|
---|
431 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->cx, &TmpRsp);
|
---|
432 | if (rcStrict == VINF_SUCCESS)
|
---|
433 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->dx, &TmpRsp);
|
---|
434 | if (rcStrict == VINF_SUCCESS)
|
---|
435 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->bx, &TmpRsp);
|
---|
436 | if (rcStrict == VINF_SUCCESS)
|
---|
437 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->sp, &TmpRsp);
|
---|
438 | if (rcStrict == VINF_SUCCESS)
|
---|
439 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->bp, &TmpRsp);
|
---|
440 | if (rcStrict == VINF_SUCCESS)
|
---|
441 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->si, &TmpRsp);
|
---|
442 | if (rcStrict == VINF_SUCCESS)
|
---|
443 | rcStrict = iemMemStackPushU16Ex(pVCpu, pCtx->di, &TmpRsp);
|
---|
444 | if (rcStrict == VINF_SUCCESS)
|
---|
445 | {
|
---|
446 | pCtx->rsp = TmpRsp.u;
|
---|
447 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
448 | }
|
---|
449 | }
|
---|
450 | else
|
---|
451 | {
|
---|
452 | GCPtrBottom--;
|
---|
453 | uint16_t *pa16Mem = NULL;
|
---|
454 | rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
|
---|
455 | if (rcStrict == VINF_SUCCESS)
|
---|
456 | {
|
---|
457 | pa16Mem[7 - X86_GREG_xDI] = pCtx->di;
|
---|
458 | pa16Mem[7 - X86_GREG_xSI] = pCtx->si;
|
---|
459 | pa16Mem[7 - X86_GREG_xBP] = pCtx->bp;
|
---|
460 | pa16Mem[7 - X86_GREG_xSP] = pCtx->sp;
|
---|
461 | pa16Mem[7 - X86_GREG_xBX] = pCtx->bx;
|
---|
462 | pa16Mem[7 - X86_GREG_xDX] = pCtx->dx;
|
---|
463 | pa16Mem[7 - X86_GREG_xCX] = pCtx->cx;
|
---|
464 | pa16Mem[7 - X86_GREG_xAX] = pCtx->ax;
|
---|
465 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
|
---|
466 | if (rcStrict == VINF_SUCCESS)
|
---|
467 | {
|
---|
468 | iemRegSubFromRsp(pVCpu, pCtx, 16);
|
---|
469 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
470 | }
|
---|
471 | }
|
---|
472 | }
|
---|
473 | return rcStrict;
|
---|
474 | }
|
---|
475 |
|
---|
476 |
|
---|
477 | /**
|
---|
478 | * Implements a 32-bit pusha.
|
---|
479 | */
|
---|
480 | IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
|
---|
481 | {
|
---|
482 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
483 | RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu, pCtx);
|
---|
484 | RTGCPTR GCPtrBottom = GCPtrTop - 31;
|
---|
485 | VBOXSTRICTRC rcStrict;
|
---|
486 |
|
---|
487 | /*
|
---|
488 | * The docs are a bit hard to comprehend here, but it looks like we wrap
|
---|
489 | * around in real mode as long as none of the individual "pusha" crosses the
|
---|
490 | * end of the stack segment. In protected mode we check the whole access
|
---|
491 | * in one go. For efficiency, only do the word-by-word thing if we're in
|
---|
492 | * danger of wrapping around.
|
---|
493 | */
|
---|
494 | /** @todo do pusha boundary / wrap-around checks. */
|
---|
495 | if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
|
---|
496 | && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
|
---|
497 | {
|
---|
498 | /* word-by-word */
|
---|
499 | RTUINT64U TmpRsp;
|
---|
500 | TmpRsp.u = pCtx->rsp;
|
---|
501 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->eax, &TmpRsp);
|
---|
502 | if (rcStrict == VINF_SUCCESS)
|
---|
503 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->ecx, &TmpRsp);
|
---|
504 | if (rcStrict == VINF_SUCCESS)
|
---|
505 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->edx, &TmpRsp);
|
---|
506 | if (rcStrict == VINF_SUCCESS)
|
---|
507 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->ebx, &TmpRsp);
|
---|
508 | if (rcStrict == VINF_SUCCESS)
|
---|
509 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->esp, &TmpRsp);
|
---|
510 | if (rcStrict == VINF_SUCCESS)
|
---|
511 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->ebp, &TmpRsp);
|
---|
512 | if (rcStrict == VINF_SUCCESS)
|
---|
513 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->esi, &TmpRsp);
|
---|
514 | if (rcStrict == VINF_SUCCESS)
|
---|
515 | rcStrict = iemMemStackPushU32Ex(pVCpu, pCtx->edi, &TmpRsp);
|
---|
516 | if (rcStrict == VINF_SUCCESS)
|
---|
517 | {
|
---|
518 | pCtx->rsp = TmpRsp.u;
|
---|
519 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
520 | }
|
---|
521 | }
|
---|
522 | else
|
---|
523 | {
|
---|
524 | GCPtrBottom--;
|
---|
525 | uint32_t *pa32Mem;
|
---|
526 | rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
|
---|
527 | if (rcStrict == VINF_SUCCESS)
|
---|
528 | {
|
---|
529 | pa32Mem[7 - X86_GREG_xDI] = pCtx->edi;
|
---|
530 | pa32Mem[7 - X86_GREG_xSI] = pCtx->esi;
|
---|
531 | pa32Mem[7 - X86_GREG_xBP] = pCtx->ebp;
|
---|
532 | pa32Mem[7 - X86_GREG_xSP] = pCtx->esp;
|
---|
533 | pa32Mem[7 - X86_GREG_xBX] = pCtx->ebx;
|
---|
534 | pa32Mem[7 - X86_GREG_xDX] = pCtx->edx;
|
---|
535 | pa32Mem[7 - X86_GREG_xCX] = pCtx->ecx;
|
---|
536 | pa32Mem[7 - X86_GREG_xAX] = pCtx->eax;
|
---|
537 | rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
|
---|
538 | if (rcStrict == VINF_SUCCESS)
|
---|
539 | {
|
---|
540 | iemRegSubFromRsp(pVCpu, pCtx, 32);
|
---|
541 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
542 | }
|
---|
543 | }
|
---|
544 | }
|
---|
545 | return rcStrict;
|
---|
546 | }
|
---|
547 |
|
---|
548 |
|
---|
549 | /**
|
---|
550 | * Implements pushf.
|
---|
551 | *
|
---|
552 | *
|
---|
553 | * @param enmEffOpSize The effective operand size.
|
---|
554 | */
|
---|
555 | IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
|
---|
556 | {
|
---|
557 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
558 | VBOXSTRICTRC rcStrict;
|
---|
559 |
|
---|
560 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
|
---|
561 | {
|
---|
562 | Log2(("pushf: Guest intercept -> #VMEXIT\n"));
|
---|
563 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
564 | }
|
---|
565 |
|
---|
566 | /*
|
---|
567 | * If we're in V8086 mode some care is required (which is why we're in
|
---|
568 | * doing this in a C implementation).
|
---|
569 | */
|
---|
570 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
571 | if ( (fEfl & X86_EFL_VM)
|
---|
572 | && X86_EFL_GET_IOPL(fEfl) != 3 )
|
---|
573 | {
|
---|
574 | Assert(pCtx->cr0 & X86_CR0_PE);
|
---|
575 | if ( enmEffOpSize != IEMMODE_16BIT
|
---|
576 | || !(pCtx->cr4 & X86_CR4_VME))
|
---|
577 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
578 | fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
|
---|
579 | fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
|
---|
580 | rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
|
---|
581 | }
|
---|
582 | else
|
---|
583 | {
|
---|
584 |
|
---|
585 | /*
|
---|
586 | * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
|
---|
587 | */
|
---|
588 | fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
|
---|
589 |
|
---|
590 | switch (enmEffOpSize)
|
---|
591 | {
|
---|
592 | case IEMMODE_16BIT:
|
---|
593 | AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
|
---|
594 | if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
|
---|
595 | fEfl |= UINT16_C(0xf000);
|
---|
596 | rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
|
---|
597 | break;
|
---|
598 | case IEMMODE_32BIT:
|
---|
599 | rcStrict = iemMemStackPushU32(pVCpu, fEfl);
|
---|
600 | break;
|
---|
601 | case IEMMODE_64BIT:
|
---|
602 | rcStrict = iemMemStackPushU64(pVCpu, fEfl);
|
---|
603 | break;
|
---|
604 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
605 | }
|
---|
606 | }
|
---|
607 | if (rcStrict != VINF_SUCCESS)
|
---|
608 | return rcStrict;
|
---|
609 |
|
---|
610 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
611 | return VINF_SUCCESS;
|
---|
612 | }
|
---|
613 |
|
---|
614 |
|
---|
615 | /**
|
---|
616 | * Implements popf.
|
---|
617 | *
|
---|
618 | * @param enmEffOpSize The effective operand size.
|
---|
619 | */
|
---|
620 | IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
|
---|
621 | {
|
---|
622 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
623 | uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
624 | VBOXSTRICTRC rcStrict;
|
---|
625 | uint32_t fEflNew;
|
---|
626 |
|
---|
627 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
|
---|
628 | {
|
---|
629 | Log2(("popf: Guest intercept -> #VMEXIT\n"));
|
---|
630 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
631 | }
|
---|
632 |
|
---|
633 | /*
|
---|
634 | * V8086 is special as usual.
|
---|
635 | */
|
---|
636 | if (fEflOld & X86_EFL_VM)
|
---|
637 | {
|
---|
638 | /*
|
---|
639 | * Almost anything goes if IOPL is 3.
|
---|
640 | */
|
---|
641 | if (X86_EFL_GET_IOPL(fEflOld) == 3)
|
---|
642 | {
|
---|
643 | switch (enmEffOpSize)
|
---|
644 | {
|
---|
645 | case IEMMODE_16BIT:
|
---|
646 | {
|
---|
647 | uint16_t u16Value;
|
---|
648 | rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
|
---|
649 | if (rcStrict != VINF_SUCCESS)
|
---|
650 | return rcStrict;
|
---|
651 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
|
---|
652 | break;
|
---|
653 | }
|
---|
654 | case IEMMODE_32BIT:
|
---|
655 | rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
|
---|
656 | if (rcStrict != VINF_SUCCESS)
|
---|
657 | return rcStrict;
|
---|
658 | break;
|
---|
659 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
660 | }
|
---|
661 |
|
---|
662 | const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
|
---|
663 | ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
|
---|
664 | fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
|
---|
665 | fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
|
---|
666 | }
|
---|
667 | /*
|
---|
668 | * Interrupt flag virtualization with CR4.VME=1.
|
---|
669 | */
|
---|
670 | else if ( enmEffOpSize == IEMMODE_16BIT
|
---|
671 | && (pCtx->cr4 & X86_CR4_VME) )
|
---|
672 | {
|
---|
673 | uint16_t u16Value;
|
---|
674 | RTUINT64U TmpRsp;
|
---|
675 | TmpRsp.u = pCtx->rsp;
|
---|
676 | rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
|
---|
677 | if (rcStrict != VINF_SUCCESS)
|
---|
678 | return rcStrict;
|
---|
679 |
|
---|
680 | /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
|
---|
681 | * or before? */
|
---|
682 | if ( ( (u16Value & X86_EFL_IF)
|
---|
683 | && (fEflOld & X86_EFL_VIP))
|
---|
684 | || (u16Value & X86_EFL_TF) )
|
---|
685 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
686 |
|
---|
687 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
|
---|
688 | fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
|
---|
689 | fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
|
---|
690 | fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
|
---|
691 |
|
---|
692 | pCtx->rsp = TmpRsp.u;
|
---|
693 | }
|
---|
694 | else
|
---|
695 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
696 |
|
---|
697 | }
|
---|
698 | /*
|
---|
699 | * Not in V8086 mode.
|
---|
700 | */
|
---|
701 | else
|
---|
702 | {
|
---|
703 | /* Pop the flags. */
|
---|
704 | switch (enmEffOpSize)
|
---|
705 | {
|
---|
706 | case IEMMODE_16BIT:
|
---|
707 | {
|
---|
708 | uint16_t u16Value;
|
---|
709 | rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
|
---|
710 | if (rcStrict != VINF_SUCCESS)
|
---|
711 | return rcStrict;
|
---|
712 | fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
|
---|
713 |
|
---|
714 | /*
|
---|
715 | * Ancient CPU adjustments:
|
---|
716 | * - 8086, 80186, V20/30:
|
---|
717 | * Fixed bits 15:12 bits are not kept correctly internally, mostly for
|
---|
718 | * practical reasons (masking below). We add them when pushing flags.
|
---|
719 | * - 80286:
|
---|
720 | * The NT and IOPL flags cannot be popped from real mode and are
|
---|
721 | * therefore always zero (since a 286 can never exit from PM and
|
---|
722 | * their initial value is zero). This changed on a 386 and can
|
---|
723 | * therefore be used to detect 286 or 386 CPU in real mode.
|
---|
724 | */
|
---|
725 | if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
|
---|
726 | && !(pCtx->cr0 & X86_CR0_PE) )
|
---|
727 | fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
|
---|
728 | break;
|
---|
729 | }
|
---|
730 | case IEMMODE_32BIT:
|
---|
731 | rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
|
---|
732 | if (rcStrict != VINF_SUCCESS)
|
---|
733 | return rcStrict;
|
---|
734 | break;
|
---|
735 | case IEMMODE_64BIT:
|
---|
736 | {
|
---|
737 | uint64_t u64Value;
|
---|
738 | rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
|
---|
739 | if (rcStrict != VINF_SUCCESS)
|
---|
740 | return rcStrict;
|
---|
741 | fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
|
---|
742 | break;
|
---|
743 | }
|
---|
744 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
745 | }
|
---|
746 |
|
---|
747 | /* Merge them with the current flags. */
|
---|
748 | const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
|
---|
749 | ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
|
---|
750 | if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
|
---|
751 | || pVCpu->iem.s.uCpl == 0)
|
---|
752 | {
|
---|
753 | fEflNew &= fPopfBits;
|
---|
754 | fEflNew |= ~fPopfBits & fEflOld;
|
---|
755 | }
|
---|
756 | else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
|
---|
757 | {
|
---|
758 | fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
|
---|
759 | fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
|
---|
760 | }
|
---|
761 | else
|
---|
762 | {
|
---|
763 | fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
|
---|
764 | fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
|
---|
765 | }
|
---|
766 | }
|
---|
767 |
|
---|
768 | /*
|
---|
769 | * Commit the flags.
|
---|
770 | */
|
---|
771 | Assert(fEflNew & RT_BIT_32(1));
|
---|
772 | IEMMISC_SET_EFL(pVCpu, pCtx, fEflNew);
|
---|
773 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
774 |
|
---|
775 | return VINF_SUCCESS;
|
---|
776 | }
|
---|
777 |
|
---|
778 |
|
---|
779 | /**
|
---|
780 | * Implements an indirect call.
|
---|
781 | *
|
---|
782 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
783 | * operand).
|
---|
784 | * @param enmEffOpSize The effective operand size.
|
---|
785 | */
|
---|
786 | IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
|
---|
787 | {
|
---|
788 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
789 | uint16_t uOldPC = pCtx->ip + cbInstr;
|
---|
790 | if (uNewPC > pCtx->cs.u32Limit)
|
---|
791 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
792 |
|
---|
793 | VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
|
---|
794 | if (rcStrict != VINF_SUCCESS)
|
---|
795 | return rcStrict;
|
---|
796 |
|
---|
797 | pCtx->rip = uNewPC;
|
---|
798 | pCtx->eflags.Bits.u1RF = 0;
|
---|
799 |
|
---|
800 | #ifndef IEM_WITH_CODE_TLB
|
---|
801 | /* Flush the prefetch buffer. */
|
---|
802 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
803 | #endif
|
---|
804 | return VINF_SUCCESS;
|
---|
805 | }
|
---|
806 |
|
---|
807 |
|
---|
808 | /**
|
---|
809 | * Implements a 16-bit relative call.
|
---|
810 | *
|
---|
811 | * @param offDisp The displacment offset.
|
---|
812 | */
|
---|
813 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
|
---|
814 | {
|
---|
815 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
816 | uint16_t uOldPC = pCtx->ip + cbInstr;
|
---|
817 | uint16_t uNewPC = uOldPC + offDisp;
|
---|
818 | if (uNewPC > pCtx->cs.u32Limit)
|
---|
819 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
820 |
|
---|
821 | VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
|
---|
822 | if (rcStrict != VINF_SUCCESS)
|
---|
823 | return rcStrict;
|
---|
824 |
|
---|
825 | pCtx->rip = uNewPC;
|
---|
826 | pCtx->eflags.Bits.u1RF = 0;
|
---|
827 |
|
---|
828 | #ifndef IEM_WITH_CODE_TLB
|
---|
829 | /* Flush the prefetch buffer. */
|
---|
830 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
831 | #endif
|
---|
832 | return VINF_SUCCESS;
|
---|
833 | }
|
---|
834 |
|
---|
835 |
|
---|
836 | /**
|
---|
837 | * Implements a 32-bit indirect call.
|
---|
838 | *
|
---|
839 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
840 | * operand).
|
---|
841 | * @param enmEffOpSize The effective operand size.
|
---|
842 | */
|
---|
843 | IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
|
---|
844 | {
|
---|
845 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
846 | uint32_t uOldPC = pCtx->eip + cbInstr;
|
---|
847 | if (uNewPC > pCtx->cs.u32Limit)
|
---|
848 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
849 |
|
---|
850 | VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
|
---|
851 | if (rcStrict != VINF_SUCCESS)
|
---|
852 | return rcStrict;
|
---|
853 |
|
---|
854 | #if defined(IN_RING3) && defined(VBOX_WITH_RAW_MODE) && defined(VBOX_WITH_CALL_RECORD)
|
---|
855 | /*
|
---|
856 | * CASM hook for recording interesting indirect calls.
|
---|
857 | */
|
---|
858 | if ( !pCtx->eflags.Bits.u1IF
|
---|
859 | && (pCtx->cr0 & X86_CR0_PG)
|
---|
860 | && !CSAMIsEnabled(pVCpu->CTX_SUFF(pVM))
|
---|
861 | && pVCpu->iem.s.uCpl == 0)
|
---|
862 | {
|
---|
863 | EMSTATE enmState = EMGetState(pVCpu);
|
---|
864 | if ( enmState == EMSTATE_IEM_THEN_REM
|
---|
865 | || enmState == EMSTATE_IEM
|
---|
866 | || enmState == EMSTATE_REM)
|
---|
867 | CSAMR3RecordCallAddress(pVCpu->CTX_SUFF(pVM), pCtx->eip);
|
---|
868 | }
|
---|
869 | #endif
|
---|
870 |
|
---|
871 | pCtx->rip = uNewPC;
|
---|
872 | pCtx->eflags.Bits.u1RF = 0;
|
---|
873 |
|
---|
874 | #ifndef IEM_WITH_CODE_TLB
|
---|
875 | /* Flush the prefetch buffer. */
|
---|
876 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
877 | #endif
|
---|
878 | return VINF_SUCCESS;
|
---|
879 | }
|
---|
880 |
|
---|
881 |
|
---|
882 | /**
|
---|
883 | * Implements a 32-bit relative call.
|
---|
884 | *
|
---|
885 | * @param offDisp The displacment offset.
|
---|
886 | */
|
---|
887 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
|
---|
888 | {
|
---|
889 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
890 | uint32_t uOldPC = pCtx->eip + cbInstr;
|
---|
891 | uint32_t uNewPC = uOldPC + offDisp;
|
---|
892 | if (uNewPC > pCtx->cs.u32Limit)
|
---|
893 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
894 |
|
---|
895 | VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
|
---|
896 | if (rcStrict != VINF_SUCCESS)
|
---|
897 | return rcStrict;
|
---|
898 |
|
---|
899 | pCtx->rip = uNewPC;
|
---|
900 | pCtx->eflags.Bits.u1RF = 0;
|
---|
901 |
|
---|
902 | #ifndef IEM_WITH_CODE_TLB
|
---|
903 | /* Flush the prefetch buffer. */
|
---|
904 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
905 | #endif
|
---|
906 | return VINF_SUCCESS;
|
---|
907 | }
|
---|
908 |
|
---|
909 |
|
---|
910 | /**
|
---|
911 | * Implements a 64-bit indirect call.
|
---|
912 | *
|
---|
913 | * @param uNewPC The new program counter (RIP) value (loaded from the
|
---|
914 | * operand).
|
---|
915 | * @param enmEffOpSize The effective operand size.
|
---|
916 | */
|
---|
917 | IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
|
---|
918 | {
|
---|
919 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
920 | uint64_t uOldPC = pCtx->rip + cbInstr;
|
---|
921 | if (!IEM_IS_CANONICAL(uNewPC))
|
---|
922 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
923 |
|
---|
924 | VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
|
---|
925 | if (rcStrict != VINF_SUCCESS)
|
---|
926 | return rcStrict;
|
---|
927 |
|
---|
928 | pCtx->rip = uNewPC;
|
---|
929 | pCtx->eflags.Bits.u1RF = 0;
|
---|
930 |
|
---|
931 | #ifndef IEM_WITH_CODE_TLB
|
---|
932 | /* Flush the prefetch buffer. */
|
---|
933 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
934 | #endif
|
---|
935 | return VINF_SUCCESS;
|
---|
936 | }
|
---|
937 |
|
---|
938 |
|
---|
939 | /**
|
---|
940 | * Implements a 64-bit relative call.
|
---|
941 | *
|
---|
942 | * @param offDisp The displacment offset.
|
---|
943 | */
|
---|
944 | IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
|
---|
945 | {
|
---|
946 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
947 | uint64_t uOldPC = pCtx->rip + cbInstr;
|
---|
948 | uint64_t uNewPC = uOldPC + offDisp;
|
---|
949 | if (!IEM_IS_CANONICAL(uNewPC))
|
---|
950 | return iemRaiseNotCanonical(pVCpu);
|
---|
951 |
|
---|
952 | VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
|
---|
953 | if (rcStrict != VINF_SUCCESS)
|
---|
954 | return rcStrict;
|
---|
955 |
|
---|
956 | pCtx->rip = uNewPC;
|
---|
957 | pCtx->eflags.Bits.u1RF = 0;
|
---|
958 |
|
---|
959 | #ifndef IEM_WITH_CODE_TLB
|
---|
960 | /* Flush the prefetch buffer. */
|
---|
961 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
962 | #endif
|
---|
963 |
|
---|
964 | return VINF_SUCCESS;
|
---|
965 | }
|
---|
966 |
|
---|
967 |
|
---|
968 | /**
|
---|
969 | * Implements far jumps and calls thru task segments (TSS).
|
---|
970 | *
|
---|
971 | * @param uSel The selector.
|
---|
972 | * @param enmBranch The kind of branching we're performing.
|
---|
973 | * @param enmEffOpSize The effective operand size.
|
---|
974 | * @param pDesc The descriptor corresponding to @a uSel. The type is
|
---|
975 | * task gate.
|
---|
976 | */
|
---|
977 | IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
|
---|
978 | {
|
---|
979 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
980 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
|
---|
981 | #else
|
---|
982 | Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
|
---|
983 | Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
984 | || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
|
---|
985 | RT_NOREF_PV(enmEffOpSize);
|
---|
986 |
|
---|
987 | if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
|
---|
988 | || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
|
---|
989 | {
|
---|
990 | Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
|
---|
991 | pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
|
---|
992 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
993 | }
|
---|
994 |
|
---|
995 | /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
|
---|
996 | * far calls (see iemCImpl_callf). Most likely in both cases it should be
|
---|
997 | * checked here, need testcases. */
|
---|
998 | if (!pDesc->Legacy.Gen.u1Present)
|
---|
999 | {
|
---|
1000 | Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
|
---|
1001 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
1002 | }
|
---|
1003 |
|
---|
1004 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1005 | uint32_t uNextEip = pCtx->eip + cbInstr;
|
---|
1006 | return iemTaskSwitch(pVCpu, pCtx, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
|
---|
1007 | uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
|
---|
1008 | #endif
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 |
|
---|
1012 | /**
|
---|
1013 | * Implements far jumps and calls thru task gates.
|
---|
1014 | *
|
---|
1015 | * @param uSel The selector.
|
---|
1016 | * @param enmBranch The kind of branching we're performing.
|
---|
1017 | * @param enmEffOpSize The effective operand size.
|
---|
1018 | * @param pDesc The descriptor corresponding to @a uSel. The type is
|
---|
1019 | * task gate.
|
---|
1020 | */
|
---|
1021 | IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
|
---|
1022 | {
|
---|
1023 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
1024 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
|
---|
1025 | #else
|
---|
1026 | Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
|
---|
1027 | RT_NOREF_PV(enmEffOpSize);
|
---|
1028 |
|
---|
1029 | if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
|
---|
1030 | || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
|
---|
1031 | {
|
---|
1032 | Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
|
---|
1033 | pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
|
---|
1034 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 | /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
|
---|
1038 | * far calls (see iemCImpl_callf). Most likely in both cases it should be
|
---|
1039 | * checked here, need testcases. */
|
---|
1040 | if (!pDesc->Legacy.Gen.u1Present)
|
---|
1041 | {
|
---|
1042 | Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
|
---|
1043 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
1044 | }
|
---|
1045 |
|
---|
1046 | /*
|
---|
1047 | * Fetch the new TSS descriptor from the GDT.
|
---|
1048 | */
|
---|
1049 | RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
|
---|
1050 | if (uSelTss & X86_SEL_LDT)
|
---|
1051 | {
|
---|
1052 | Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
|
---|
1053 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
1054 | }
|
---|
1055 |
|
---|
1056 | IEMSELDESC TssDesc;
|
---|
1057 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
|
---|
1058 | if (rcStrict != VINF_SUCCESS)
|
---|
1059 | return rcStrict;
|
---|
1060 |
|
---|
1061 | if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
|
---|
1062 | {
|
---|
1063 | Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
|
---|
1064 | TssDesc.Legacy.Gate.u4Type));
|
---|
1065 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | if (!TssDesc.Legacy.Gate.u1Present)
|
---|
1069 | {
|
---|
1070 | Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
|
---|
1071 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1075 | uint32_t uNextEip = pCtx->eip + cbInstr;
|
---|
1076 | return iemTaskSwitch(pVCpu, pCtx, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
|
---|
1077 | uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
|
---|
1078 | #endif
|
---|
1079 | }
|
---|
1080 |
|
---|
1081 |
|
---|
1082 | /**
|
---|
1083 | * Implements far jumps and calls thru call gates.
|
---|
1084 | *
|
---|
1085 | * @param uSel The selector.
|
---|
1086 | * @param enmBranch The kind of branching we're performing.
|
---|
1087 | * @param enmEffOpSize The effective operand size.
|
---|
1088 | * @param pDesc The descriptor corresponding to @a uSel. The type is
|
---|
1089 | * call gate.
|
---|
1090 | */
|
---|
1091 | IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
|
---|
1092 | {
|
---|
1093 | #define IEM_IMPLEMENTS_CALLGATE
|
---|
1094 | #ifndef IEM_IMPLEMENTS_CALLGATE
|
---|
1095 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
|
---|
1096 | #else
|
---|
1097 | RT_NOREF_PV(enmEffOpSize);
|
---|
1098 |
|
---|
1099 | /* NB: Far jumps can only do intra-privilege transfers. Far calls support
|
---|
1100 | * inter-privilege calls and are much more complex.
|
---|
1101 | *
|
---|
1102 | * NB: 64-bit call gate has the same type as a 32-bit call gate! If
|
---|
1103 | * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
|
---|
1104 | * must be 16-bit or 32-bit.
|
---|
1105 | */
|
---|
1106 | /** @todo: effective operand size is probably irrelevant here, only the
|
---|
1107 | * call gate bitness matters??
|
---|
1108 | */
|
---|
1109 | VBOXSTRICTRC rcStrict;
|
---|
1110 | RTPTRUNION uPtrRet;
|
---|
1111 | uint64_t uNewRsp;
|
---|
1112 | uint64_t uNewRip;
|
---|
1113 | uint64_t u64Base;
|
---|
1114 | uint32_t cbLimit;
|
---|
1115 | RTSEL uNewCS;
|
---|
1116 | IEMSELDESC DescCS;
|
---|
1117 |
|
---|
1118 | AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
|
---|
1119 | Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
|
---|
1120 | Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
|
---|
1121 | || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
|
---|
1122 |
|
---|
1123 | /* Determine the new instruction pointer from the gate descriptor. */
|
---|
1124 | uNewRip = pDesc->Legacy.Gate.u16OffsetLow
|
---|
1125 | | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
|
---|
1126 | | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
|
---|
1127 |
|
---|
1128 | /* Perform DPL checks on the gate descriptor. */
|
---|
1129 | if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
|
---|
1130 | || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
|
---|
1131 | {
|
---|
1132 | Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
|
---|
1133 | pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
|
---|
1134 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1135 | }
|
---|
1136 |
|
---|
1137 | /** @todo does this catch NULL selectors, too? */
|
---|
1138 | if (!pDesc->Legacy.Gen.u1Present)
|
---|
1139 | {
|
---|
1140 | Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
|
---|
1141 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
|
---|
1142 | }
|
---|
1143 |
|
---|
1144 | /*
|
---|
1145 | * Fetch the target CS descriptor from the GDT or LDT.
|
---|
1146 | */
|
---|
1147 | uNewCS = pDesc->Legacy.Gate.u16Sel;
|
---|
1148 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
|
---|
1149 | if (rcStrict != VINF_SUCCESS)
|
---|
1150 | return rcStrict;
|
---|
1151 |
|
---|
1152 | /* Target CS must be a code selector. */
|
---|
1153 | if ( !DescCS.Legacy.Gen.u1DescType
|
---|
1154 | || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
|
---|
1155 | {
|
---|
1156 | Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
|
---|
1157 | uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
|
---|
1158 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
|
---|
1159 | }
|
---|
1160 |
|
---|
1161 | /* Privilege checks on target CS. */
|
---|
1162 | if (enmBranch == IEMBRANCH_JUMP)
|
---|
1163 | {
|
---|
1164 | if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
1165 | {
|
---|
1166 | if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
|
---|
1167 | {
|
---|
1168 | Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
|
---|
1169 | uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
1170 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
|
---|
1171 | }
|
---|
1172 | }
|
---|
1173 | else
|
---|
1174 | {
|
---|
1175 | if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
|
---|
1176 | {
|
---|
1177 | Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
|
---|
1178 | uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
1179 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
|
---|
1180 | }
|
---|
1181 | }
|
---|
1182 | }
|
---|
1183 | else
|
---|
1184 | {
|
---|
1185 | Assert(enmBranch == IEMBRANCH_CALL);
|
---|
1186 | if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
|
---|
1187 | {
|
---|
1188 | Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
|
---|
1189 | uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
1190 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
|
---|
1191 | }
|
---|
1192 | }
|
---|
1193 |
|
---|
1194 | /* Additional long mode checks. */
|
---|
1195 | if (IEM_IS_LONG_MODE(pVCpu))
|
---|
1196 | {
|
---|
1197 | if (!DescCS.Legacy.Gen.u1Long)
|
---|
1198 | {
|
---|
1199 | Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
|
---|
1200 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
|
---|
1201 | }
|
---|
1202 |
|
---|
1203 | /* L vs D. */
|
---|
1204 | if ( DescCS.Legacy.Gen.u1Long
|
---|
1205 | && DescCS.Legacy.Gen.u1DefBig)
|
---|
1206 | {
|
---|
1207 | Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
|
---|
1208 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
|
---|
1209 | }
|
---|
1210 | }
|
---|
1211 |
|
---|
1212 | if (!DescCS.Legacy.Gate.u1Present)
|
---|
1213 | {
|
---|
1214 | Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
|
---|
1215 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1219 |
|
---|
1220 | if (enmBranch == IEMBRANCH_JUMP)
|
---|
1221 | {
|
---|
1222 | /** @todo: This is very similar to regular far jumps; merge! */
|
---|
1223 | /* Jumps are fairly simple... */
|
---|
1224 |
|
---|
1225 | /* Chop the high bits off if 16-bit gate (Intel says so). */
|
---|
1226 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
|
---|
1227 | uNewRip = (uint16_t)uNewRip;
|
---|
1228 |
|
---|
1229 | /* Limit check for non-long segments. */
|
---|
1230 | cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
1231 | if (DescCS.Legacy.Gen.u1Long)
|
---|
1232 | u64Base = 0;
|
---|
1233 | else
|
---|
1234 | {
|
---|
1235 | if (uNewRip > cbLimit)
|
---|
1236 | {
|
---|
1237 | Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
|
---|
1238 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
|
---|
1239 | }
|
---|
1240 | u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
1241 | }
|
---|
1242 |
|
---|
1243 | /* Canonical address check. */
|
---|
1244 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
1245 | {
|
---|
1246 | Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
|
---|
1247 | return iemRaiseNotCanonical(pVCpu);
|
---|
1248 | }
|
---|
1249 |
|
---|
1250 | /*
|
---|
1251 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
1252 | * committing the result into CS, CSHID and RIP.
|
---|
1253 | */
|
---|
1254 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1255 | {
|
---|
1256 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
|
---|
1257 | if (rcStrict != VINF_SUCCESS)
|
---|
1258 | return rcStrict;
|
---|
1259 | /** @todo check what VT-x and AMD-V does. */
|
---|
1260 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1261 | }
|
---|
1262 |
|
---|
1263 | /* commit */
|
---|
1264 | pCtx->rip = uNewRip;
|
---|
1265 | pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
|
---|
1266 | pCtx->cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
|
---|
1267 | pCtx->cs.ValidSel = pCtx->cs.Sel;
|
---|
1268 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1269 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
1270 | pCtx->cs.u32Limit = cbLimit;
|
---|
1271 | pCtx->cs.u64Base = u64Base;
|
---|
1272 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
1273 | }
|
---|
1274 | else
|
---|
1275 | {
|
---|
1276 | Assert(enmBranch == IEMBRANCH_CALL);
|
---|
1277 | /* Calls are much more complicated. */
|
---|
1278 |
|
---|
1279 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
|
---|
1280 | {
|
---|
1281 | uint16_t offNewStack; /* Offset of new stack in TSS. */
|
---|
1282 | uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
|
---|
1283 | uint8_t uNewCSDpl;
|
---|
1284 | uint8_t cbWords;
|
---|
1285 | RTSEL uNewSS;
|
---|
1286 | RTSEL uOldSS;
|
---|
1287 | uint64_t uOldRsp;
|
---|
1288 | IEMSELDESC DescSS;
|
---|
1289 | RTPTRUNION uPtrTSS;
|
---|
1290 | RTGCPTR GCPtrTSS;
|
---|
1291 | RTPTRUNION uPtrParmWds;
|
---|
1292 | RTGCPTR GCPtrParmWds;
|
---|
1293 |
|
---|
1294 | /* More privilege. This is the fun part. */
|
---|
1295 | Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
|
---|
1296 |
|
---|
1297 | /*
|
---|
1298 | * Determine new SS:rSP from the TSS.
|
---|
1299 | */
|
---|
1300 | Assert(!pCtx->tr.Attr.n.u1DescType);
|
---|
1301 |
|
---|
1302 | /* Figure out where the new stack pointer is stored in the TSS. */
|
---|
1303 | uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
|
---|
1304 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1305 | {
|
---|
1306 | if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
|
---|
1307 | {
|
---|
1308 | offNewStack = RT_OFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
|
---|
1309 | cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
|
---|
1310 | }
|
---|
1311 | else
|
---|
1312 | {
|
---|
1313 | Assert(pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
|
---|
1314 | offNewStack = RT_OFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
|
---|
1315 | cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
|
---|
1316 | }
|
---|
1317 | }
|
---|
1318 | else
|
---|
1319 | {
|
---|
1320 | Assert(pCtx->tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
|
---|
1321 | offNewStack = RT_OFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
|
---|
1322 | cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
|
---|
1323 | }
|
---|
1324 |
|
---|
1325 | /* Check against TSS limit. */
|
---|
1326 | if ((uint16_t)(offNewStack + cbNewStack - 1) > pCtx->tr.u32Limit)
|
---|
1327 | {
|
---|
1328 | Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pCtx->tr.u32Limit));
|
---|
1329 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, pCtx->tr.Sel);
|
---|
1330 | }
|
---|
1331 |
|
---|
1332 | GCPtrTSS = pCtx->tr.u64Base + offNewStack;
|
---|
1333 | rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
|
---|
1334 | if (rcStrict != VINF_SUCCESS)
|
---|
1335 | {
|
---|
1336 | Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1337 | return rcStrict;
|
---|
1338 | }
|
---|
1339 |
|
---|
1340 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1341 | {
|
---|
1342 | if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
|
---|
1343 | {
|
---|
1344 | uNewRsp = uPtrTSS.pu32[0];
|
---|
1345 | uNewSS = uPtrTSS.pu16[2];
|
---|
1346 | }
|
---|
1347 | else
|
---|
1348 | {
|
---|
1349 | Assert(pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
|
---|
1350 | uNewRsp = uPtrTSS.pu16[0];
|
---|
1351 | uNewSS = uPtrTSS.pu16[1];
|
---|
1352 | }
|
---|
1353 | }
|
---|
1354 | else
|
---|
1355 | {
|
---|
1356 | Assert(pCtx->tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
|
---|
1357 | /* SS will be a NULL selector, but that's valid. */
|
---|
1358 | uNewRsp = uPtrTSS.pu64[0];
|
---|
1359 | uNewSS = uNewCSDpl;
|
---|
1360 | }
|
---|
1361 |
|
---|
1362 | /* Done with the TSS now. */
|
---|
1363 | rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
|
---|
1364 | if (rcStrict != VINF_SUCCESS)
|
---|
1365 | {
|
---|
1366 | Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1367 | return rcStrict;
|
---|
1368 | }
|
---|
1369 |
|
---|
1370 | /* Only used outside of long mode. */
|
---|
1371 | cbWords = pDesc->Legacy.Gate.u5ParmCount;
|
---|
1372 |
|
---|
1373 | /* If EFER.LMA is 0, there's extra work to do. */
|
---|
1374 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1375 | {
|
---|
1376 | if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
|
---|
1377 | {
|
---|
1378 | Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
|
---|
1379 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
|
---|
1380 | }
|
---|
1381 |
|
---|
1382 | /* Grab the new SS descriptor. */
|
---|
1383 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
|
---|
1384 | if (rcStrict != VINF_SUCCESS)
|
---|
1385 | return rcStrict;
|
---|
1386 |
|
---|
1387 | /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
|
---|
1388 | if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
|
---|
1389 | || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
|
---|
1390 | {
|
---|
1391 | Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
|
---|
1392 | uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
|
---|
1393 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
|
---|
1394 | }
|
---|
1395 |
|
---|
1396 | /* Ensure new SS is a writable data segment. */
|
---|
1397 | if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
|
---|
1398 | {
|
---|
1399 | Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
|
---|
1400 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
|
---|
1401 | }
|
---|
1402 |
|
---|
1403 | if (!DescSS.Legacy.Gen.u1Present)
|
---|
1404 | {
|
---|
1405 | Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
|
---|
1406 | return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
|
---|
1407 | }
|
---|
1408 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
|
---|
1409 | cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
|
---|
1410 | else
|
---|
1411 | cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
|
---|
1412 | }
|
---|
1413 | else
|
---|
1414 | {
|
---|
1415 | /* Just grab the new (NULL) SS descriptor. */
|
---|
1416 | /** @todo testcase: Check whether the zero GDT entry is actually loaded here
|
---|
1417 | * like we do... */
|
---|
1418 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
|
---|
1419 | if (rcStrict != VINF_SUCCESS)
|
---|
1420 | return rcStrict;
|
---|
1421 |
|
---|
1422 | cbNewStack = sizeof(uint64_t) * 4;
|
---|
1423 | }
|
---|
1424 |
|
---|
1425 | /** @todo: According to Intel, new stack is checked for enough space first,
|
---|
1426 | * then switched. According to AMD, the stack is switched first and
|
---|
1427 | * then pushes might fault!
|
---|
1428 | * NB: OS/2 Warp 3/4 actively relies on the fact that possible
|
---|
1429 | * incoming stack #PF happens before actual stack switch. AMD is
|
---|
1430 | * either lying or implicitly assumes that new state is committed
|
---|
1431 | * only if and when an instruction doesn't fault.
|
---|
1432 | */
|
---|
1433 |
|
---|
1434 | /** @todo: According to AMD, CS is loaded first, then SS.
|
---|
1435 | * According to Intel, it's the other way around!?
|
---|
1436 | */
|
---|
1437 |
|
---|
1438 | /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
|
---|
1439 |
|
---|
1440 | /* Set the accessed bit before committing new SS. */
|
---|
1441 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1442 | {
|
---|
1443 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
|
---|
1444 | if (rcStrict != VINF_SUCCESS)
|
---|
1445 | return rcStrict;
|
---|
1446 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1447 | }
|
---|
1448 |
|
---|
1449 | /* Remember the old SS:rSP and their linear address. */
|
---|
1450 | uOldSS = pCtx->ss.Sel;
|
---|
1451 | uOldRsp = pCtx->ss.Attr.n.u1DefBig ? pCtx->rsp : pCtx->sp;
|
---|
1452 |
|
---|
1453 | GCPtrParmWds = pCtx->ss.u64Base + uOldRsp;
|
---|
1454 |
|
---|
1455 | /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
|
---|
1456 | or #PF, the former is not implemented in this workaround. */
|
---|
1457 | /** @todo Proper fix callgate target stack exceptions. */
|
---|
1458 | /** @todo testcase: Cover callgates with partially or fully inaccessible
|
---|
1459 | * target stacks. */
|
---|
1460 | void *pvNewFrame;
|
---|
1461 | RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
|
---|
1462 | rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW);
|
---|
1463 | if (rcStrict != VINF_SUCCESS)
|
---|
1464 | {
|
---|
1465 | Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1466 | return rcStrict;
|
---|
1467 | }
|
---|
1468 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
|
---|
1469 | if (rcStrict != VINF_SUCCESS)
|
---|
1470 | {
|
---|
1471 | Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1472 | return rcStrict;
|
---|
1473 | }
|
---|
1474 |
|
---|
1475 | /* Commit new SS:rSP. */
|
---|
1476 | pCtx->ss.Sel = uNewSS;
|
---|
1477 | pCtx->ss.ValidSel = uNewSS;
|
---|
1478 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
1479 | pCtx->ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
1480 | pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
1481 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1482 | pCtx->rsp = uNewRsp;
|
---|
1483 | pVCpu->iem.s.uCpl = uNewCSDpl;
|
---|
1484 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
|
---|
1485 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
1486 |
|
---|
1487 | /* At this point the stack access must not fail because new state was already committed. */
|
---|
1488 | /** @todo this can still fail due to SS.LIMIT not check. */
|
---|
1489 | rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
|
---|
1490 | &uPtrRet.pv, &uNewRsp);
|
---|
1491 | AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
|
---|
1492 | VERR_INTERNAL_ERROR_5);
|
---|
1493 |
|
---|
1494 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1495 | {
|
---|
1496 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
|
---|
1497 | {
|
---|
1498 | /* Push the old CS:rIP. */
|
---|
1499 | uPtrRet.pu32[0] = pCtx->eip + cbInstr;
|
---|
1500 | uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
|
---|
1501 |
|
---|
1502 | if (cbWords)
|
---|
1503 | {
|
---|
1504 | /* Map the relevant chunk of the old stack. */
|
---|
1505 | rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
|
---|
1506 | if (rcStrict != VINF_SUCCESS)
|
---|
1507 | {
|
---|
1508 | Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1509 | return rcStrict;
|
---|
1510 | }
|
---|
1511 |
|
---|
1512 | /* Copy the parameter (d)words. */
|
---|
1513 | for (int i = 0; i < cbWords; ++i)
|
---|
1514 | uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
|
---|
1515 |
|
---|
1516 | /* Unmap the old stack. */
|
---|
1517 | rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
|
---|
1518 | if (rcStrict != VINF_SUCCESS)
|
---|
1519 | {
|
---|
1520 | Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1521 | return rcStrict;
|
---|
1522 | }
|
---|
1523 | }
|
---|
1524 |
|
---|
1525 | /* Push the old SS:rSP. */
|
---|
1526 | uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
|
---|
1527 | uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
|
---|
1528 | }
|
---|
1529 | else
|
---|
1530 | {
|
---|
1531 | Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
|
---|
1532 |
|
---|
1533 | /* Push the old CS:rIP. */
|
---|
1534 | uPtrRet.pu16[0] = pCtx->ip + cbInstr;
|
---|
1535 | uPtrRet.pu16[1] = pCtx->cs.Sel;
|
---|
1536 |
|
---|
1537 | if (cbWords)
|
---|
1538 | {
|
---|
1539 | /* Map the relevant chunk of the old stack. */
|
---|
1540 | rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
|
---|
1541 | if (rcStrict != VINF_SUCCESS)
|
---|
1542 | {
|
---|
1543 | Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1544 | return rcStrict;
|
---|
1545 | }
|
---|
1546 |
|
---|
1547 | /* Copy the parameter words. */
|
---|
1548 | for (int i = 0; i < cbWords; ++i)
|
---|
1549 | uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
|
---|
1550 |
|
---|
1551 | /* Unmap the old stack. */
|
---|
1552 | rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
|
---|
1553 | if (rcStrict != VINF_SUCCESS)
|
---|
1554 | {
|
---|
1555 | Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1556 | return rcStrict;
|
---|
1557 | }
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 | /* Push the old SS:rSP. */
|
---|
1561 | uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
|
---|
1562 | uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
|
---|
1563 | }
|
---|
1564 | }
|
---|
1565 | else
|
---|
1566 | {
|
---|
1567 | Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
|
---|
1568 |
|
---|
1569 | /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
|
---|
1570 | uPtrRet.pu64[0] = pCtx->rip + cbInstr;
|
---|
1571 | uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
|
---|
1572 | uPtrRet.pu64[2] = uOldRsp;
|
---|
1573 | uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
|
---|
1574 | }
|
---|
1575 |
|
---|
1576 | rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
|
---|
1577 | if (rcStrict != VINF_SUCCESS)
|
---|
1578 | {
|
---|
1579 | Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1580 | return rcStrict;
|
---|
1581 | }
|
---|
1582 |
|
---|
1583 | /* Chop the high bits off if 16-bit gate (Intel says so). */
|
---|
1584 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
|
---|
1585 | uNewRip = (uint16_t)uNewRip;
|
---|
1586 |
|
---|
1587 | /* Limit / canonical check. */
|
---|
1588 | cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
1589 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1590 | {
|
---|
1591 | if (uNewRip > cbLimit)
|
---|
1592 | {
|
---|
1593 | Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
|
---|
1594 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
|
---|
1595 | }
|
---|
1596 | u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
1597 | }
|
---|
1598 | else
|
---|
1599 | {
|
---|
1600 | Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
|
---|
1601 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
1602 | {
|
---|
1603 | Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
|
---|
1604 | return iemRaiseNotCanonical(pVCpu);
|
---|
1605 | }
|
---|
1606 | u64Base = 0;
|
---|
1607 | }
|
---|
1608 |
|
---|
1609 | /*
|
---|
1610 | * Now set the accessed bit before
|
---|
1611 | * writing the return address to the stack and committing the result into
|
---|
1612 | * CS, CSHID and RIP.
|
---|
1613 | */
|
---|
1614 | /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
|
---|
1615 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1616 | {
|
---|
1617 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
|
---|
1618 | if (rcStrict != VINF_SUCCESS)
|
---|
1619 | return rcStrict;
|
---|
1620 | /** @todo check what VT-x and AMD-V does. */
|
---|
1621 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1622 | }
|
---|
1623 |
|
---|
1624 | /* Commit new CS:rIP. */
|
---|
1625 | pCtx->rip = uNewRip;
|
---|
1626 | pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
|
---|
1627 | pCtx->cs.Sel |= pVCpu->iem.s.uCpl;
|
---|
1628 | pCtx->cs.ValidSel = pCtx->cs.Sel;
|
---|
1629 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1630 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
1631 | pCtx->cs.u32Limit = cbLimit;
|
---|
1632 | pCtx->cs.u64Base = u64Base;
|
---|
1633 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
1634 | }
|
---|
1635 | else
|
---|
1636 | {
|
---|
1637 | /* Same privilege. */
|
---|
1638 | /** @todo: This is very similar to regular far calls; merge! */
|
---|
1639 |
|
---|
1640 | /* Check stack first - may #SS(0). */
|
---|
1641 | /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
|
---|
1642 | * 16-bit code cause a two or four byte CS to be pushed? */
|
---|
1643 | rcStrict = iemMemStackPushBeginSpecial(pVCpu,
|
---|
1644 | IEM_IS_LONG_MODE(pVCpu) ? 8+8
|
---|
1645 | : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
|
---|
1646 | &uPtrRet.pv, &uNewRsp);
|
---|
1647 | if (rcStrict != VINF_SUCCESS)
|
---|
1648 | return rcStrict;
|
---|
1649 |
|
---|
1650 | /* Chop the high bits off if 16-bit gate (Intel says so). */
|
---|
1651 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
|
---|
1652 | uNewRip = (uint16_t)uNewRip;
|
---|
1653 |
|
---|
1654 | /* Limit / canonical check. */
|
---|
1655 | cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
1656 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1657 | {
|
---|
1658 | if (uNewRip > cbLimit)
|
---|
1659 | {
|
---|
1660 | Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
|
---|
1661 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
|
---|
1662 | }
|
---|
1663 | u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
1664 | }
|
---|
1665 | else
|
---|
1666 | {
|
---|
1667 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
1668 | {
|
---|
1669 | Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
|
---|
1670 | return iemRaiseNotCanonical(pVCpu);
|
---|
1671 | }
|
---|
1672 | u64Base = 0;
|
---|
1673 | }
|
---|
1674 |
|
---|
1675 | /*
|
---|
1676 | * Now set the accessed bit before
|
---|
1677 | * writing the return address to the stack and committing the result into
|
---|
1678 | * CS, CSHID and RIP.
|
---|
1679 | */
|
---|
1680 | /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
|
---|
1681 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1682 | {
|
---|
1683 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
|
---|
1684 | if (rcStrict != VINF_SUCCESS)
|
---|
1685 | return rcStrict;
|
---|
1686 | /** @todo check what VT-x and AMD-V does. */
|
---|
1687 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1688 | }
|
---|
1689 |
|
---|
1690 | /* stack */
|
---|
1691 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
1692 | {
|
---|
1693 | if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
|
---|
1694 | {
|
---|
1695 | uPtrRet.pu32[0] = pCtx->eip + cbInstr;
|
---|
1696 | uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
|
---|
1697 | }
|
---|
1698 | else
|
---|
1699 | {
|
---|
1700 | Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
|
---|
1701 | uPtrRet.pu16[0] = pCtx->ip + cbInstr;
|
---|
1702 | uPtrRet.pu16[1] = pCtx->cs.Sel;
|
---|
1703 | }
|
---|
1704 | }
|
---|
1705 | else
|
---|
1706 | {
|
---|
1707 | Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
|
---|
1708 | uPtrRet.pu64[0] = pCtx->rip + cbInstr;
|
---|
1709 | uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
|
---|
1710 | }
|
---|
1711 |
|
---|
1712 | rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
|
---|
1713 | if (rcStrict != VINF_SUCCESS)
|
---|
1714 | return rcStrict;
|
---|
1715 |
|
---|
1716 | /* commit */
|
---|
1717 | pCtx->rip = uNewRip;
|
---|
1718 | pCtx->cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
|
---|
1719 | pCtx->cs.Sel |= pVCpu->iem.s.uCpl;
|
---|
1720 | pCtx->cs.ValidSel = pCtx->cs.Sel;
|
---|
1721 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1722 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
1723 | pCtx->cs.u32Limit = cbLimit;
|
---|
1724 | pCtx->cs.u64Base = u64Base;
|
---|
1725 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
1726 | }
|
---|
1727 | }
|
---|
1728 | pCtx->eflags.Bits.u1RF = 0;
|
---|
1729 |
|
---|
1730 | /* Flush the prefetch buffer. */
|
---|
1731 | # ifdef IEM_WITH_CODE_TLB
|
---|
1732 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1733 | # else
|
---|
1734 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
1735 | # endif
|
---|
1736 | return VINF_SUCCESS;
|
---|
1737 | #endif
|
---|
1738 | }
|
---|
1739 |
|
---|
1740 |
|
---|
1741 | /**
|
---|
1742 | * Implements far jumps and calls thru system selectors.
|
---|
1743 | *
|
---|
1744 | * @param uSel The selector.
|
---|
1745 | * @param enmBranch The kind of branching we're performing.
|
---|
1746 | * @param enmEffOpSize The effective operand size.
|
---|
1747 | * @param pDesc The descriptor corresponding to @a uSel.
|
---|
1748 | */
|
---|
1749 | IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
|
---|
1750 | {
|
---|
1751 | Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
|
---|
1752 | Assert((uSel & X86_SEL_MASK_OFF_RPL));
|
---|
1753 |
|
---|
1754 | if (IEM_IS_LONG_MODE(pVCpu))
|
---|
1755 | switch (pDesc->Legacy.Gen.u4Type)
|
---|
1756 | {
|
---|
1757 | case AMD64_SEL_TYPE_SYS_CALL_GATE:
|
---|
1758 | return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
|
---|
1759 |
|
---|
1760 | default:
|
---|
1761 | case AMD64_SEL_TYPE_SYS_LDT:
|
---|
1762 | case AMD64_SEL_TYPE_SYS_TSS_BUSY:
|
---|
1763 | case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
|
---|
1764 | case AMD64_SEL_TYPE_SYS_TRAP_GATE:
|
---|
1765 | case AMD64_SEL_TYPE_SYS_INT_GATE:
|
---|
1766 | Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
|
---|
1767 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1768 | }
|
---|
1769 |
|
---|
1770 | switch (pDesc->Legacy.Gen.u4Type)
|
---|
1771 | {
|
---|
1772 | case X86_SEL_TYPE_SYS_286_CALL_GATE:
|
---|
1773 | case X86_SEL_TYPE_SYS_386_CALL_GATE:
|
---|
1774 | return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
|
---|
1775 |
|
---|
1776 | case X86_SEL_TYPE_SYS_TASK_GATE:
|
---|
1777 | return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
|
---|
1778 |
|
---|
1779 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
1780 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
1781 | return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
|
---|
1782 |
|
---|
1783 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
1784 | Log(("branch %04x -> busy 286 TSS\n", uSel));
|
---|
1785 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1786 |
|
---|
1787 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
1788 | Log(("branch %04x -> busy 386 TSS\n", uSel));
|
---|
1789 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1790 |
|
---|
1791 | default:
|
---|
1792 | case X86_SEL_TYPE_SYS_LDT:
|
---|
1793 | case X86_SEL_TYPE_SYS_286_INT_GATE:
|
---|
1794 | case X86_SEL_TYPE_SYS_286_TRAP_GATE:
|
---|
1795 | case X86_SEL_TYPE_SYS_386_INT_GATE:
|
---|
1796 | case X86_SEL_TYPE_SYS_386_TRAP_GATE:
|
---|
1797 | Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
|
---|
1798 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1799 | }
|
---|
1800 | }
|
---|
1801 |
|
---|
1802 |
|
---|
1803 | /**
|
---|
1804 | * Implements far jumps.
|
---|
1805 | *
|
---|
1806 | * @param uSel The selector.
|
---|
1807 | * @param offSeg The segment offset.
|
---|
1808 | * @param enmEffOpSize The effective operand size.
|
---|
1809 | */
|
---|
1810 | IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
|
---|
1811 | {
|
---|
1812 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1813 | NOREF(cbInstr);
|
---|
1814 | Assert(offSeg <= UINT32_MAX);
|
---|
1815 |
|
---|
1816 | /*
|
---|
1817 | * Real mode and V8086 mode are easy. The only snag seems to be that
|
---|
1818 | * CS.limit doesn't change and the limit check is done against the current
|
---|
1819 | * limit.
|
---|
1820 | */
|
---|
1821 | if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT
|
---|
1822 | && IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
1823 | {
|
---|
1824 | if (offSeg > pCtx->cs.u32Limit)
|
---|
1825 | {
|
---|
1826 | Log(("iemCImpl_FarJmp: 16-bit limit\n"));
|
---|
1827 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1828 | }
|
---|
1829 |
|
---|
1830 | if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
|
---|
1831 | pCtx->rip = offSeg;
|
---|
1832 | else
|
---|
1833 | pCtx->rip = offSeg & UINT16_MAX;
|
---|
1834 | pCtx->cs.Sel = uSel;
|
---|
1835 | pCtx->cs.ValidSel = uSel;
|
---|
1836 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1837 | pCtx->cs.u64Base = (uint32_t)uSel << 4;
|
---|
1838 | pCtx->eflags.Bits.u1RF = 0;
|
---|
1839 | return VINF_SUCCESS;
|
---|
1840 | }
|
---|
1841 |
|
---|
1842 | /*
|
---|
1843 | * Protected mode. Need to parse the specified descriptor...
|
---|
1844 | */
|
---|
1845 | if (!(uSel & X86_SEL_MASK_OFF_RPL))
|
---|
1846 | {
|
---|
1847 | Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
|
---|
1848 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1849 | }
|
---|
1850 |
|
---|
1851 | /* Fetch the descriptor. */
|
---|
1852 | IEMSELDESC Desc;
|
---|
1853 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
|
---|
1854 | if (rcStrict != VINF_SUCCESS)
|
---|
1855 | return rcStrict;
|
---|
1856 |
|
---|
1857 | /* Is it there? */
|
---|
1858 | if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
|
---|
1859 | {
|
---|
1860 | Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
|
---|
1861 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
|
---|
1862 | }
|
---|
1863 |
|
---|
1864 | /*
|
---|
1865 | * Deal with it according to its type. We do the standard code selectors
|
---|
1866 | * here and dispatch the system selectors to worker functions.
|
---|
1867 | */
|
---|
1868 | if (!Desc.Legacy.Gen.u1DescType)
|
---|
1869 | return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
|
---|
1870 |
|
---|
1871 | /* Only code segments. */
|
---|
1872 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
1873 | {
|
---|
1874 | Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
|
---|
1875 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1876 | }
|
---|
1877 |
|
---|
1878 | /* L vs D. */
|
---|
1879 | if ( Desc.Legacy.Gen.u1Long
|
---|
1880 | && Desc.Legacy.Gen.u1DefBig
|
---|
1881 | && IEM_IS_LONG_MODE(pVCpu))
|
---|
1882 | {
|
---|
1883 | Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
|
---|
1884 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1885 | }
|
---|
1886 |
|
---|
1887 | /* DPL/RPL/CPL check, where conforming segments makes a difference. */
|
---|
1888 | if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
1889 | {
|
---|
1890 | if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
|
---|
1891 | {
|
---|
1892 | Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
|
---|
1893 | uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
1894 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1895 | }
|
---|
1896 | }
|
---|
1897 | else
|
---|
1898 | {
|
---|
1899 | if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
|
---|
1900 | {
|
---|
1901 | Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
1902 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1903 | }
|
---|
1904 | if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
|
---|
1905 | {
|
---|
1906 | Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
|
---|
1907 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1908 | }
|
---|
1909 | }
|
---|
1910 |
|
---|
1911 | /* Chop the high bits if 16-bit (Intel says so). */
|
---|
1912 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
1913 | offSeg &= UINT16_MAX;
|
---|
1914 |
|
---|
1915 | /* Limit check. (Should alternatively check for non-canonical addresses
|
---|
1916 | here, but that is ruled out by offSeg being 32-bit, right?) */
|
---|
1917 | uint64_t u64Base;
|
---|
1918 | uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
1919 | if (Desc.Legacy.Gen.u1Long)
|
---|
1920 | u64Base = 0;
|
---|
1921 | else
|
---|
1922 | {
|
---|
1923 | if (offSeg > cbLimit)
|
---|
1924 | {
|
---|
1925 | Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
|
---|
1926 | /** @todo: Intel says this is #GP(0)! */
|
---|
1927 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
1928 | }
|
---|
1929 | u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
1930 | }
|
---|
1931 |
|
---|
1932 | /*
|
---|
1933 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
1934 | * committing the result into CS, CSHID and RIP.
|
---|
1935 | */
|
---|
1936 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
1937 | {
|
---|
1938 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
|
---|
1939 | if (rcStrict != VINF_SUCCESS)
|
---|
1940 | return rcStrict;
|
---|
1941 | /** @todo check what VT-x and AMD-V does. */
|
---|
1942 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
1943 | }
|
---|
1944 |
|
---|
1945 | /* commit */
|
---|
1946 | pCtx->rip = offSeg;
|
---|
1947 | pCtx->cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
|
---|
1948 | pCtx->cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
|
---|
1949 | pCtx->cs.ValidSel = pCtx->cs.Sel;
|
---|
1950 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1951 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
1952 | pCtx->cs.u32Limit = cbLimit;
|
---|
1953 | pCtx->cs.u64Base = u64Base;
|
---|
1954 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
1955 | pCtx->eflags.Bits.u1RF = 0;
|
---|
1956 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
1957 | * mode. */
|
---|
1958 |
|
---|
1959 | /* Flush the prefetch buffer. */
|
---|
1960 | #ifdef IEM_WITH_CODE_TLB
|
---|
1961 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1962 | #else
|
---|
1963 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
1964 | #endif
|
---|
1965 |
|
---|
1966 | return VINF_SUCCESS;
|
---|
1967 | }
|
---|
1968 |
|
---|
1969 |
|
---|
1970 | /**
|
---|
1971 | * Implements far calls.
|
---|
1972 | *
|
---|
1973 | * This very similar to iemCImpl_FarJmp.
|
---|
1974 | *
|
---|
1975 | * @param uSel The selector.
|
---|
1976 | * @param offSeg The segment offset.
|
---|
1977 | * @param enmEffOpSize The operand size (in case we need it).
|
---|
1978 | */
|
---|
1979 | IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
|
---|
1980 | {
|
---|
1981 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
1982 | VBOXSTRICTRC rcStrict;
|
---|
1983 | uint64_t uNewRsp;
|
---|
1984 | RTPTRUNION uPtrRet;
|
---|
1985 |
|
---|
1986 | /*
|
---|
1987 | * Real mode and V8086 mode are easy. The only snag seems to be that
|
---|
1988 | * CS.limit doesn't change and the limit check is done against the current
|
---|
1989 | * limit.
|
---|
1990 | */
|
---|
1991 | if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT
|
---|
1992 | && IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
1993 | {
|
---|
1994 | Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
|
---|
1995 |
|
---|
1996 | /* Check stack first - may #SS(0). */
|
---|
1997 | rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 6 : 4,
|
---|
1998 | &uPtrRet.pv, &uNewRsp);
|
---|
1999 | if (rcStrict != VINF_SUCCESS)
|
---|
2000 | return rcStrict;
|
---|
2001 |
|
---|
2002 | /* Check the target address range. */
|
---|
2003 | if (offSeg > UINT32_MAX)
|
---|
2004 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2005 |
|
---|
2006 | /* Everything is fine, push the return address. */
|
---|
2007 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2008 | {
|
---|
2009 | uPtrRet.pu16[0] = pCtx->ip + cbInstr;
|
---|
2010 | uPtrRet.pu16[1] = pCtx->cs.Sel;
|
---|
2011 | }
|
---|
2012 | else
|
---|
2013 | {
|
---|
2014 | uPtrRet.pu32[0] = pCtx->eip + cbInstr;
|
---|
2015 | uPtrRet.pu16[3] = pCtx->cs.Sel;
|
---|
2016 | }
|
---|
2017 | rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
|
---|
2018 | if (rcStrict != VINF_SUCCESS)
|
---|
2019 | return rcStrict;
|
---|
2020 |
|
---|
2021 | /* Branch. */
|
---|
2022 | pCtx->rip = offSeg;
|
---|
2023 | pCtx->cs.Sel = uSel;
|
---|
2024 | pCtx->cs.ValidSel = uSel;
|
---|
2025 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2026 | pCtx->cs.u64Base = (uint32_t)uSel << 4;
|
---|
2027 | pCtx->eflags.Bits.u1RF = 0;
|
---|
2028 | return VINF_SUCCESS;
|
---|
2029 | }
|
---|
2030 |
|
---|
2031 | /*
|
---|
2032 | * Protected mode. Need to parse the specified descriptor...
|
---|
2033 | */
|
---|
2034 | if (!(uSel & X86_SEL_MASK_OFF_RPL))
|
---|
2035 | {
|
---|
2036 | Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
|
---|
2037 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2038 | }
|
---|
2039 |
|
---|
2040 | /* Fetch the descriptor. */
|
---|
2041 | IEMSELDESC Desc;
|
---|
2042 | rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
|
---|
2043 | if (rcStrict != VINF_SUCCESS)
|
---|
2044 | return rcStrict;
|
---|
2045 |
|
---|
2046 | /*
|
---|
2047 | * Deal with it according to its type. We do the standard code selectors
|
---|
2048 | * here and dispatch the system selectors to worker functions.
|
---|
2049 | */
|
---|
2050 | if (!Desc.Legacy.Gen.u1DescType)
|
---|
2051 | return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
|
---|
2052 |
|
---|
2053 | /* Only code segments. */
|
---|
2054 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
2055 | {
|
---|
2056 | Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
|
---|
2057 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
2058 | }
|
---|
2059 |
|
---|
2060 | /* L vs D. */
|
---|
2061 | if ( Desc.Legacy.Gen.u1Long
|
---|
2062 | && Desc.Legacy.Gen.u1DefBig
|
---|
2063 | && IEM_IS_LONG_MODE(pVCpu))
|
---|
2064 | {
|
---|
2065 | Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
|
---|
2066 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
2067 | }
|
---|
2068 |
|
---|
2069 | /* DPL/RPL/CPL check, where conforming segments makes a difference. */
|
---|
2070 | if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
2071 | {
|
---|
2072 | if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
|
---|
2073 | {
|
---|
2074 | Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
|
---|
2075 | uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
2076 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
2077 | }
|
---|
2078 | }
|
---|
2079 | else
|
---|
2080 | {
|
---|
2081 | if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
|
---|
2082 | {
|
---|
2083 | Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
2084 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
2085 | }
|
---|
2086 | if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
|
---|
2087 | {
|
---|
2088 | Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
|
---|
2089 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
2090 | }
|
---|
2091 | }
|
---|
2092 |
|
---|
2093 | /* Is it there? */
|
---|
2094 | if (!Desc.Legacy.Gen.u1Present)
|
---|
2095 | {
|
---|
2096 | Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
|
---|
2097 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
|
---|
2098 | }
|
---|
2099 |
|
---|
2100 | /* Check stack first - may #SS(0). */
|
---|
2101 | /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
|
---|
2102 | * 16-bit code cause a two or four byte CS to be pushed? */
|
---|
2103 | rcStrict = iemMemStackPushBeginSpecial(pVCpu,
|
---|
2104 | enmEffOpSize == IEMMODE_64BIT ? 8+8
|
---|
2105 | : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
|
---|
2106 | &uPtrRet.pv, &uNewRsp);
|
---|
2107 | if (rcStrict != VINF_SUCCESS)
|
---|
2108 | return rcStrict;
|
---|
2109 |
|
---|
2110 | /* Chop the high bits if 16-bit (Intel says so). */
|
---|
2111 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2112 | offSeg &= UINT16_MAX;
|
---|
2113 |
|
---|
2114 | /* Limit / canonical check. */
|
---|
2115 | uint64_t u64Base;
|
---|
2116 | uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
2117 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2118 | {
|
---|
2119 | if (!IEM_IS_CANONICAL(offSeg))
|
---|
2120 | {
|
---|
2121 | Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
|
---|
2122 | return iemRaiseNotCanonical(pVCpu);
|
---|
2123 | }
|
---|
2124 | u64Base = 0;
|
---|
2125 | }
|
---|
2126 | else
|
---|
2127 | {
|
---|
2128 | if (offSeg > cbLimit)
|
---|
2129 | {
|
---|
2130 | Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
|
---|
2131 | /** @todo: Intel says this is #GP(0)! */
|
---|
2132 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
2133 | }
|
---|
2134 | u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
2135 | }
|
---|
2136 |
|
---|
2137 | /*
|
---|
2138 | * Now set the accessed bit before
|
---|
2139 | * writing the return address to the stack and committing the result into
|
---|
2140 | * CS, CSHID and RIP.
|
---|
2141 | */
|
---|
2142 | /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
|
---|
2143 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2144 | {
|
---|
2145 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
|
---|
2146 | if (rcStrict != VINF_SUCCESS)
|
---|
2147 | return rcStrict;
|
---|
2148 | /** @todo check what VT-x and AMD-V does. */
|
---|
2149 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2150 | }
|
---|
2151 |
|
---|
2152 | /* stack */
|
---|
2153 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2154 | {
|
---|
2155 | uPtrRet.pu16[0] = pCtx->ip + cbInstr;
|
---|
2156 | uPtrRet.pu16[1] = pCtx->cs.Sel;
|
---|
2157 | }
|
---|
2158 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2159 | {
|
---|
2160 | uPtrRet.pu32[0] = pCtx->eip + cbInstr;
|
---|
2161 | uPtrRet.pu32[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
|
---|
2162 | }
|
---|
2163 | else
|
---|
2164 | {
|
---|
2165 | uPtrRet.pu64[0] = pCtx->rip + cbInstr;
|
---|
2166 | uPtrRet.pu64[1] = pCtx->cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
|
---|
2167 | }
|
---|
2168 | rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
|
---|
2169 | if (rcStrict != VINF_SUCCESS)
|
---|
2170 | return rcStrict;
|
---|
2171 |
|
---|
2172 | /* commit */
|
---|
2173 | pCtx->rip = offSeg;
|
---|
2174 | pCtx->cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
|
---|
2175 | pCtx->cs.Sel |= pVCpu->iem.s.uCpl;
|
---|
2176 | pCtx->cs.ValidSel = pCtx->cs.Sel;
|
---|
2177 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2178 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
2179 | pCtx->cs.u32Limit = cbLimit;
|
---|
2180 | pCtx->cs.u64Base = u64Base;
|
---|
2181 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
2182 | pCtx->eflags.Bits.u1RF = 0;
|
---|
2183 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
2184 | * mode. */
|
---|
2185 |
|
---|
2186 | /* Flush the prefetch buffer. */
|
---|
2187 | #ifdef IEM_WITH_CODE_TLB
|
---|
2188 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
2189 | #else
|
---|
2190 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
2191 | #endif
|
---|
2192 | return VINF_SUCCESS;
|
---|
2193 | }
|
---|
2194 |
|
---|
2195 |
|
---|
2196 | /**
|
---|
2197 | * Implements retf.
|
---|
2198 | *
|
---|
2199 | * @param enmEffOpSize The effective operand size.
|
---|
2200 | * @param cbPop The amount of arguments to pop from the stack
|
---|
2201 | * (bytes).
|
---|
2202 | */
|
---|
2203 | IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
|
---|
2204 | {
|
---|
2205 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
2206 | VBOXSTRICTRC rcStrict;
|
---|
2207 | RTCPTRUNION uPtrFrame;
|
---|
2208 | uint64_t uNewRsp;
|
---|
2209 | uint64_t uNewRip;
|
---|
2210 | uint16_t uNewCs;
|
---|
2211 | NOREF(cbInstr);
|
---|
2212 |
|
---|
2213 | /*
|
---|
2214 | * Read the stack values first.
|
---|
2215 | */
|
---|
2216 | uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
|
---|
2217 | : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
|
---|
2218 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
|
---|
2219 | if (rcStrict != VINF_SUCCESS)
|
---|
2220 | return rcStrict;
|
---|
2221 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2222 | {
|
---|
2223 | uNewRip = uPtrFrame.pu16[0];
|
---|
2224 | uNewCs = uPtrFrame.pu16[1];
|
---|
2225 | }
|
---|
2226 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2227 | {
|
---|
2228 | uNewRip = uPtrFrame.pu32[0];
|
---|
2229 | uNewCs = uPtrFrame.pu16[2];
|
---|
2230 | }
|
---|
2231 | else
|
---|
2232 | {
|
---|
2233 | uNewRip = uPtrFrame.pu64[0];
|
---|
2234 | uNewCs = uPtrFrame.pu16[4];
|
---|
2235 | }
|
---|
2236 | rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
|
---|
2237 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
2238 | { /* extremely likely */ }
|
---|
2239 | else
|
---|
2240 | return rcStrict;
|
---|
2241 |
|
---|
2242 | /*
|
---|
2243 | * Real mode and V8086 mode are easy.
|
---|
2244 | */
|
---|
2245 | if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT
|
---|
2246 | && IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
2247 | {
|
---|
2248 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
2249 | /** @todo check how this is supposed to work if sp=0xfffe. */
|
---|
2250 |
|
---|
2251 | /* Check the limit of the new EIP. */
|
---|
2252 | /** @todo Intel pseudo code only does the limit check for 16-bit
|
---|
2253 | * operands, AMD does not make any distinction. What is right? */
|
---|
2254 | if (uNewRip > pCtx->cs.u32Limit)
|
---|
2255 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
2256 |
|
---|
2257 | /* commit the operation. */
|
---|
2258 | pCtx->rsp = uNewRsp;
|
---|
2259 | pCtx->rip = uNewRip;
|
---|
2260 | pCtx->cs.Sel = uNewCs;
|
---|
2261 | pCtx->cs.ValidSel = uNewCs;
|
---|
2262 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2263 | pCtx->cs.u64Base = (uint32_t)uNewCs << 4;
|
---|
2264 | pCtx->eflags.Bits.u1RF = 0;
|
---|
2265 | /** @todo do we load attribs and limit as well? */
|
---|
2266 | if (cbPop)
|
---|
2267 | iemRegAddToRsp(pVCpu, pCtx, cbPop);
|
---|
2268 | return VINF_SUCCESS;
|
---|
2269 | }
|
---|
2270 |
|
---|
2271 | /*
|
---|
2272 | * Protected mode is complicated, of course.
|
---|
2273 | */
|
---|
2274 | if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
|
---|
2275 | {
|
---|
2276 | Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
|
---|
2277 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2278 | }
|
---|
2279 |
|
---|
2280 | /* Fetch the descriptor. */
|
---|
2281 | IEMSELDESC DescCs;
|
---|
2282 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
|
---|
2283 | if (rcStrict != VINF_SUCCESS)
|
---|
2284 | return rcStrict;
|
---|
2285 |
|
---|
2286 | /* Can only return to a code selector. */
|
---|
2287 | if ( !DescCs.Legacy.Gen.u1DescType
|
---|
2288 | || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
|
---|
2289 | {
|
---|
2290 | Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
|
---|
2291 | uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
|
---|
2292 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2293 | }
|
---|
2294 |
|
---|
2295 | /* L vs D. */
|
---|
2296 | if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
|
---|
2297 | && DescCs.Legacy.Gen.u1DefBig
|
---|
2298 | && IEM_IS_LONG_MODE(pVCpu))
|
---|
2299 | {
|
---|
2300 | Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
|
---|
2301 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2302 | }
|
---|
2303 |
|
---|
2304 | /* DPL/RPL/CPL checks. */
|
---|
2305 | if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
|
---|
2306 | {
|
---|
2307 | Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
|
---|
2308 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2309 | }
|
---|
2310 |
|
---|
2311 | if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
|
---|
2312 | {
|
---|
2313 | if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
|
---|
2314 | {
|
---|
2315 | Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
|
---|
2316 | uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
|
---|
2317 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2318 | }
|
---|
2319 | }
|
---|
2320 | else
|
---|
2321 | {
|
---|
2322 | if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
|
---|
2323 | {
|
---|
2324 | Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
|
---|
2325 | uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
|
---|
2326 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2327 | }
|
---|
2328 | }
|
---|
2329 |
|
---|
2330 | /* Is it there? */
|
---|
2331 | if (!DescCs.Legacy.Gen.u1Present)
|
---|
2332 | {
|
---|
2333 | Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
|
---|
2334 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
|
---|
2335 | }
|
---|
2336 |
|
---|
2337 | /*
|
---|
2338 | * Return to outer privilege? (We'll typically have entered via a call gate.)
|
---|
2339 | */
|
---|
2340 | if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
|
---|
2341 | {
|
---|
2342 | /* Read the outer stack pointer stored *after* the parameters. */
|
---|
2343 | rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp);
|
---|
2344 | if (rcStrict != VINF_SUCCESS)
|
---|
2345 | return rcStrict;
|
---|
2346 |
|
---|
2347 | uPtrFrame.pu8 += cbPop; /* Skip the parameters. */
|
---|
2348 |
|
---|
2349 | uint16_t uNewOuterSs;
|
---|
2350 | uint64_t uNewOuterRsp;
|
---|
2351 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2352 | {
|
---|
2353 | uNewOuterRsp = uPtrFrame.pu16[0];
|
---|
2354 | uNewOuterSs = uPtrFrame.pu16[1];
|
---|
2355 | }
|
---|
2356 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2357 | {
|
---|
2358 | uNewOuterRsp = uPtrFrame.pu32[0];
|
---|
2359 | uNewOuterSs = uPtrFrame.pu16[2];
|
---|
2360 | }
|
---|
2361 | else
|
---|
2362 | {
|
---|
2363 | uNewOuterRsp = uPtrFrame.pu64[0];
|
---|
2364 | uNewOuterSs = uPtrFrame.pu16[4];
|
---|
2365 | }
|
---|
2366 | uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */
|
---|
2367 | rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
|
---|
2368 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
2369 | { /* extremely likely */ }
|
---|
2370 | else
|
---|
2371 | return rcStrict;
|
---|
2372 |
|
---|
2373 | /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
|
---|
2374 | and read the selector. */
|
---|
2375 | IEMSELDESC DescSs;
|
---|
2376 | if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
|
---|
2377 | {
|
---|
2378 | if ( !DescCs.Legacy.Gen.u1Long
|
---|
2379 | || (uNewOuterSs & X86_SEL_RPL) == 3)
|
---|
2380 | {
|
---|
2381 | Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
|
---|
2382 | uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
|
---|
2383 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2384 | }
|
---|
2385 | /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
|
---|
2386 | iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
|
---|
2387 | }
|
---|
2388 | else
|
---|
2389 | {
|
---|
2390 | /* Fetch the descriptor for the new stack segment. */
|
---|
2391 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
|
---|
2392 | if (rcStrict != VINF_SUCCESS)
|
---|
2393 | return rcStrict;
|
---|
2394 | }
|
---|
2395 |
|
---|
2396 | /* Check that RPL of stack and code selectors match. */
|
---|
2397 | if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
|
---|
2398 | {
|
---|
2399 | Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
|
---|
2400 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
|
---|
2401 | }
|
---|
2402 |
|
---|
2403 | /* Must be a writable data segment. */
|
---|
2404 | if ( !DescSs.Legacy.Gen.u1DescType
|
---|
2405 | || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
2406 | || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
2407 | {
|
---|
2408 | Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
|
---|
2409 | uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
|
---|
2410 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
|
---|
2411 | }
|
---|
2412 |
|
---|
2413 | /* L vs D. (Not mentioned by intel.) */
|
---|
2414 | if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
|
---|
2415 | && DescSs.Legacy.Gen.u1DefBig
|
---|
2416 | && IEM_IS_LONG_MODE(pVCpu))
|
---|
2417 | {
|
---|
2418 | Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
|
---|
2419 | uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
|
---|
2420 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
|
---|
2421 | }
|
---|
2422 |
|
---|
2423 | /* DPL/RPL/CPL checks. */
|
---|
2424 | if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
|
---|
2425 | {
|
---|
2426 | Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
|
---|
2427 | uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
|
---|
2428 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
|
---|
2429 | }
|
---|
2430 |
|
---|
2431 | /* Is it there? */
|
---|
2432 | if (!DescSs.Legacy.Gen.u1Present)
|
---|
2433 | {
|
---|
2434 | Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
|
---|
2435 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
|
---|
2436 | }
|
---|
2437 |
|
---|
2438 | /* Calc SS limit.*/
|
---|
2439 | uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
|
---|
2440 |
|
---|
2441 | /* Is RIP canonical or within CS.limit? */
|
---|
2442 | uint64_t u64Base;
|
---|
2443 | uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
|
---|
2444 |
|
---|
2445 | /** @todo Testcase: Is this correct? */
|
---|
2446 | if ( DescCs.Legacy.Gen.u1Long
|
---|
2447 | && IEM_IS_LONG_MODE(pVCpu) )
|
---|
2448 | {
|
---|
2449 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
2450 | {
|
---|
2451 | Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
|
---|
2452 | return iemRaiseNotCanonical(pVCpu);
|
---|
2453 | }
|
---|
2454 | u64Base = 0;
|
---|
2455 | }
|
---|
2456 | else
|
---|
2457 | {
|
---|
2458 | if (uNewRip > cbLimitCs)
|
---|
2459 | {
|
---|
2460 | Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
|
---|
2461 | uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
|
---|
2462 | /** @todo: Intel says this is #GP(0)! */
|
---|
2463 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2464 | }
|
---|
2465 | u64Base = X86DESC_BASE(&DescCs.Legacy);
|
---|
2466 | }
|
---|
2467 |
|
---|
2468 | /*
|
---|
2469 | * Now set the accessed bit before
|
---|
2470 | * writing the return address to the stack and committing the result into
|
---|
2471 | * CS, CSHID and RIP.
|
---|
2472 | */
|
---|
2473 | /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
|
---|
2474 | if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2475 | {
|
---|
2476 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
|
---|
2477 | if (rcStrict != VINF_SUCCESS)
|
---|
2478 | return rcStrict;
|
---|
2479 | /** @todo check what VT-x and AMD-V does. */
|
---|
2480 | DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2481 | }
|
---|
2482 | /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
|
---|
2483 | if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2484 | {
|
---|
2485 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
|
---|
2486 | if (rcStrict != VINF_SUCCESS)
|
---|
2487 | return rcStrict;
|
---|
2488 | /** @todo check what VT-x and AMD-V does. */
|
---|
2489 | DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2490 | }
|
---|
2491 |
|
---|
2492 | /* commit */
|
---|
2493 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2494 | pCtx->rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
|
---|
2495 | else
|
---|
2496 | pCtx->rip = uNewRip;
|
---|
2497 | pCtx->cs.Sel = uNewCs;
|
---|
2498 | pCtx->cs.ValidSel = uNewCs;
|
---|
2499 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2500 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
|
---|
2501 | pCtx->cs.u32Limit = cbLimitCs;
|
---|
2502 | pCtx->cs.u64Base = u64Base;
|
---|
2503 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
2504 | pCtx->ss.Sel = uNewOuterSs;
|
---|
2505 | pCtx->ss.ValidSel = uNewOuterSs;
|
---|
2506 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2507 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
|
---|
2508 | pCtx->ss.u32Limit = cbLimitSs;
|
---|
2509 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2510 | pCtx->ss.u64Base = 0;
|
---|
2511 | else
|
---|
2512 | pCtx->ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
|
---|
2513 | if (!pCtx->ss.Attr.n.u1DefBig)
|
---|
2514 | pCtx->sp = (uint16_t)uNewOuterRsp;
|
---|
2515 | else
|
---|
2516 | pCtx->rsp = uNewOuterRsp;
|
---|
2517 |
|
---|
2518 | pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
|
---|
2519 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->ds);
|
---|
2520 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->es);
|
---|
2521 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->fs);
|
---|
2522 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->gs);
|
---|
2523 |
|
---|
2524 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
2525 | * mode. */
|
---|
2526 |
|
---|
2527 | if (cbPop)
|
---|
2528 | iemRegAddToRsp(pVCpu, pCtx, cbPop);
|
---|
2529 | pCtx->eflags.Bits.u1RF = 0;
|
---|
2530 |
|
---|
2531 | /* Done! */
|
---|
2532 | }
|
---|
2533 | /*
|
---|
2534 | * Return to the same privilege level
|
---|
2535 | */
|
---|
2536 | else
|
---|
2537 | {
|
---|
2538 | /* Limit / canonical check. */
|
---|
2539 | uint64_t u64Base;
|
---|
2540 | uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
|
---|
2541 |
|
---|
2542 | /** @todo Testcase: Is this correct? */
|
---|
2543 | if ( DescCs.Legacy.Gen.u1Long
|
---|
2544 | && IEM_IS_LONG_MODE(pVCpu) )
|
---|
2545 | {
|
---|
2546 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
2547 | {
|
---|
2548 | Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
|
---|
2549 | return iemRaiseNotCanonical(pVCpu);
|
---|
2550 | }
|
---|
2551 | u64Base = 0;
|
---|
2552 | }
|
---|
2553 | else
|
---|
2554 | {
|
---|
2555 | if (uNewRip > cbLimitCs)
|
---|
2556 | {
|
---|
2557 | Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
|
---|
2558 | /** @todo: Intel says this is #GP(0)! */
|
---|
2559 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
2560 | }
|
---|
2561 | u64Base = X86DESC_BASE(&DescCs.Legacy);
|
---|
2562 | }
|
---|
2563 |
|
---|
2564 | /*
|
---|
2565 | * Now set the accessed bit before
|
---|
2566 | * writing the return address to the stack and committing the result into
|
---|
2567 | * CS, CSHID and RIP.
|
---|
2568 | */
|
---|
2569 | /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
|
---|
2570 | if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
2571 | {
|
---|
2572 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
|
---|
2573 | if (rcStrict != VINF_SUCCESS)
|
---|
2574 | return rcStrict;
|
---|
2575 | /** @todo check what VT-x and AMD-V does. */
|
---|
2576 | DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
2577 | }
|
---|
2578 |
|
---|
2579 | /* commit */
|
---|
2580 | if (!pCtx->ss.Attr.n.u1DefBig)
|
---|
2581 | pCtx->sp = (uint16_t)uNewRsp;
|
---|
2582 | else
|
---|
2583 | pCtx->rsp = uNewRsp;
|
---|
2584 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
2585 | pCtx->rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
|
---|
2586 | else
|
---|
2587 | pCtx->rip = uNewRip;
|
---|
2588 | pCtx->cs.Sel = uNewCs;
|
---|
2589 | pCtx->cs.ValidSel = uNewCs;
|
---|
2590 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2591 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
|
---|
2592 | pCtx->cs.u32Limit = cbLimitCs;
|
---|
2593 | pCtx->cs.u64Base = u64Base;
|
---|
2594 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
2595 | * mode. */
|
---|
2596 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
2597 | if (cbPop)
|
---|
2598 | iemRegAddToRsp(pVCpu, pCtx, cbPop);
|
---|
2599 | pCtx->eflags.Bits.u1RF = 0;
|
---|
2600 | }
|
---|
2601 |
|
---|
2602 | /* Flush the prefetch buffer. */
|
---|
2603 | #ifdef IEM_WITH_CODE_TLB
|
---|
2604 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
2605 | #else
|
---|
2606 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
2607 | #endif
|
---|
2608 | return VINF_SUCCESS;
|
---|
2609 | }
|
---|
2610 |
|
---|
2611 |
|
---|
2612 | /**
|
---|
2613 | * Implements retn.
|
---|
2614 | *
|
---|
2615 | * We're doing this in C because of the \#GP that might be raised if the popped
|
---|
2616 | * program counter is out of bounds.
|
---|
2617 | *
|
---|
2618 | * @param enmEffOpSize The effective operand size.
|
---|
2619 | * @param cbPop The amount of arguments to pop from the stack
|
---|
2620 | * (bytes).
|
---|
2621 | */
|
---|
2622 | IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
|
---|
2623 | {
|
---|
2624 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
2625 | NOREF(cbInstr);
|
---|
2626 |
|
---|
2627 | /* Fetch the RSP from the stack. */
|
---|
2628 | VBOXSTRICTRC rcStrict;
|
---|
2629 | RTUINT64U NewRip;
|
---|
2630 | RTUINT64U NewRsp;
|
---|
2631 | NewRsp.u = pCtx->rsp;
|
---|
2632 | switch (enmEffOpSize)
|
---|
2633 | {
|
---|
2634 | case IEMMODE_16BIT:
|
---|
2635 | NewRip.u = 0;
|
---|
2636 | rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
|
---|
2637 | break;
|
---|
2638 | case IEMMODE_32BIT:
|
---|
2639 | NewRip.u = 0;
|
---|
2640 | rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
|
---|
2641 | break;
|
---|
2642 | case IEMMODE_64BIT:
|
---|
2643 | rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
|
---|
2644 | break;
|
---|
2645 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2646 | }
|
---|
2647 | if (rcStrict != VINF_SUCCESS)
|
---|
2648 | return rcStrict;
|
---|
2649 |
|
---|
2650 | /* Check the new RSP before loading it. */
|
---|
2651 | /** @todo Should test this as the intel+amd pseudo code doesn't mention half
|
---|
2652 | * of it. The canonical test is performed here and for call. */
|
---|
2653 | if (enmEffOpSize != IEMMODE_64BIT)
|
---|
2654 | {
|
---|
2655 | if (NewRip.DWords.dw0 > pCtx->cs.u32Limit)
|
---|
2656 | {
|
---|
2657 | Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pCtx->cs.u32Limit));
|
---|
2658 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
2659 | }
|
---|
2660 | }
|
---|
2661 | else
|
---|
2662 | {
|
---|
2663 | if (!IEM_IS_CANONICAL(NewRip.u))
|
---|
2664 | {
|
---|
2665 | Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
|
---|
2666 | return iemRaiseNotCanonical(pVCpu);
|
---|
2667 | }
|
---|
2668 | }
|
---|
2669 |
|
---|
2670 | /* Apply cbPop */
|
---|
2671 | if (cbPop)
|
---|
2672 | iemRegAddToRspEx(pVCpu, pCtx, &NewRsp, cbPop);
|
---|
2673 |
|
---|
2674 | /* Commit it. */
|
---|
2675 | pCtx->rip = NewRip.u;
|
---|
2676 | pCtx->rsp = NewRsp.u;
|
---|
2677 | pCtx->eflags.Bits.u1RF = 0;
|
---|
2678 |
|
---|
2679 | /* Flush the prefetch buffer. */
|
---|
2680 | #ifndef IEM_WITH_CODE_TLB
|
---|
2681 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
2682 | #endif
|
---|
2683 |
|
---|
2684 | return VINF_SUCCESS;
|
---|
2685 | }
|
---|
2686 |
|
---|
2687 |
|
---|
2688 | /**
|
---|
2689 | * Implements enter.
|
---|
2690 | *
|
---|
2691 | * We're doing this in C because the instruction is insane, even for the
|
---|
2692 | * u8NestingLevel=0 case dealing with the stack is tedious.
|
---|
2693 | *
|
---|
2694 | * @param enmEffOpSize The effective operand size.
|
---|
2695 | */
|
---|
2696 | IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
|
---|
2697 | {
|
---|
2698 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
2699 |
|
---|
2700 | /* Push RBP, saving the old value in TmpRbp. */
|
---|
2701 | RTUINT64U NewRsp; NewRsp.u = pCtx->rsp;
|
---|
2702 | RTUINT64U TmpRbp; TmpRbp.u = pCtx->rbp;
|
---|
2703 | RTUINT64U NewRbp;
|
---|
2704 | VBOXSTRICTRC rcStrict;
|
---|
2705 | if (enmEffOpSize == IEMMODE_64BIT)
|
---|
2706 | {
|
---|
2707 | rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
|
---|
2708 | NewRbp = NewRsp;
|
---|
2709 | }
|
---|
2710 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2711 | {
|
---|
2712 | rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
|
---|
2713 | NewRbp = NewRsp;
|
---|
2714 | }
|
---|
2715 | else
|
---|
2716 | {
|
---|
2717 | rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
|
---|
2718 | NewRbp = TmpRbp;
|
---|
2719 | NewRbp.Words.w0 = NewRsp.Words.w0;
|
---|
2720 | }
|
---|
2721 | if (rcStrict != VINF_SUCCESS)
|
---|
2722 | return rcStrict;
|
---|
2723 |
|
---|
2724 | /* Copy the parameters (aka nesting levels by Intel). */
|
---|
2725 | cParameters &= 0x1f;
|
---|
2726 | if (cParameters > 0)
|
---|
2727 | {
|
---|
2728 | switch (enmEffOpSize)
|
---|
2729 | {
|
---|
2730 | case IEMMODE_16BIT:
|
---|
2731 | if (pCtx->ss.Attr.n.u1DefBig)
|
---|
2732 | TmpRbp.DWords.dw0 -= 2;
|
---|
2733 | else
|
---|
2734 | TmpRbp.Words.w0 -= 2;
|
---|
2735 | do
|
---|
2736 | {
|
---|
2737 | uint16_t u16Tmp;
|
---|
2738 | rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
|
---|
2739 | if (rcStrict != VINF_SUCCESS)
|
---|
2740 | break;
|
---|
2741 | rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
|
---|
2742 | } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
|
---|
2743 | break;
|
---|
2744 |
|
---|
2745 | case IEMMODE_32BIT:
|
---|
2746 | if (pCtx->ss.Attr.n.u1DefBig)
|
---|
2747 | TmpRbp.DWords.dw0 -= 4;
|
---|
2748 | else
|
---|
2749 | TmpRbp.Words.w0 -= 4;
|
---|
2750 | do
|
---|
2751 | {
|
---|
2752 | uint32_t u32Tmp;
|
---|
2753 | rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
|
---|
2754 | if (rcStrict != VINF_SUCCESS)
|
---|
2755 | break;
|
---|
2756 | rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
|
---|
2757 | } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
|
---|
2758 | break;
|
---|
2759 |
|
---|
2760 | case IEMMODE_64BIT:
|
---|
2761 | TmpRbp.u -= 8;
|
---|
2762 | do
|
---|
2763 | {
|
---|
2764 | uint64_t u64Tmp;
|
---|
2765 | rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
|
---|
2766 | if (rcStrict != VINF_SUCCESS)
|
---|
2767 | break;
|
---|
2768 | rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
|
---|
2769 | } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
|
---|
2770 | break;
|
---|
2771 |
|
---|
2772 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2773 | }
|
---|
2774 | if (rcStrict != VINF_SUCCESS)
|
---|
2775 | return VINF_SUCCESS;
|
---|
2776 |
|
---|
2777 | /* Push the new RBP */
|
---|
2778 | if (enmEffOpSize == IEMMODE_64BIT)
|
---|
2779 | rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
|
---|
2780 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2781 | rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
|
---|
2782 | else
|
---|
2783 | rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
|
---|
2784 | if (rcStrict != VINF_SUCCESS)
|
---|
2785 | return rcStrict;
|
---|
2786 |
|
---|
2787 | }
|
---|
2788 |
|
---|
2789 | /* Recalc RSP. */
|
---|
2790 | iemRegSubFromRspEx(pVCpu, pCtx, &NewRsp, cbFrame);
|
---|
2791 |
|
---|
2792 | /** @todo Should probe write access at the new RSP according to AMD. */
|
---|
2793 |
|
---|
2794 | /* Commit it. */
|
---|
2795 | pCtx->rbp = NewRbp.u;
|
---|
2796 | pCtx->rsp = NewRsp.u;
|
---|
2797 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2798 |
|
---|
2799 | return VINF_SUCCESS;
|
---|
2800 | }
|
---|
2801 |
|
---|
2802 |
|
---|
2803 |
|
---|
2804 | /**
|
---|
2805 | * Implements leave.
|
---|
2806 | *
|
---|
2807 | * We're doing this in C because messing with the stack registers is annoying
|
---|
2808 | * since they depends on SS attributes.
|
---|
2809 | *
|
---|
2810 | * @param enmEffOpSize The effective operand size.
|
---|
2811 | */
|
---|
2812 | IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
|
---|
2813 | {
|
---|
2814 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
2815 |
|
---|
2816 | /* Calculate the intermediate RSP from RBP and the stack attributes. */
|
---|
2817 | RTUINT64U NewRsp;
|
---|
2818 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2819 | NewRsp.u = pCtx->rbp;
|
---|
2820 | else if (pCtx->ss.Attr.n.u1DefBig)
|
---|
2821 | NewRsp.u = pCtx->ebp;
|
---|
2822 | else
|
---|
2823 | {
|
---|
2824 | /** @todo Check that LEAVE actually preserve the high EBP bits. */
|
---|
2825 | NewRsp.u = pCtx->rsp;
|
---|
2826 | NewRsp.Words.w0 = pCtx->bp;
|
---|
2827 | }
|
---|
2828 |
|
---|
2829 | /* Pop RBP according to the operand size. */
|
---|
2830 | VBOXSTRICTRC rcStrict;
|
---|
2831 | RTUINT64U NewRbp;
|
---|
2832 | switch (enmEffOpSize)
|
---|
2833 | {
|
---|
2834 | case IEMMODE_16BIT:
|
---|
2835 | NewRbp.u = pCtx->rbp;
|
---|
2836 | rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
|
---|
2837 | break;
|
---|
2838 | case IEMMODE_32BIT:
|
---|
2839 | NewRbp.u = 0;
|
---|
2840 | rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
|
---|
2841 | break;
|
---|
2842 | case IEMMODE_64BIT:
|
---|
2843 | rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
|
---|
2844 | break;
|
---|
2845 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
2846 | }
|
---|
2847 | if (rcStrict != VINF_SUCCESS)
|
---|
2848 | return rcStrict;
|
---|
2849 |
|
---|
2850 |
|
---|
2851 | /* Commit it. */
|
---|
2852 | pCtx->rbp = NewRbp.u;
|
---|
2853 | pCtx->rsp = NewRsp.u;
|
---|
2854 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2855 |
|
---|
2856 | return VINF_SUCCESS;
|
---|
2857 | }
|
---|
2858 |
|
---|
2859 |
|
---|
2860 | /**
|
---|
2861 | * Implements int3 and int XX.
|
---|
2862 | *
|
---|
2863 | * @param u8Int The interrupt vector number.
|
---|
2864 | * @param enmInt The int instruction type.
|
---|
2865 | */
|
---|
2866 | IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
|
---|
2867 | {
|
---|
2868 | Assert(pVCpu->iem.s.cXcptRecursions == 0);
|
---|
2869 | return iemRaiseXcptOrInt(pVCpu,
|
---|
2870 | cbInstr,
|
---|
2871 | u8Int,
|
---|
2872 | IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
|
---|
2873 | 0,
|
---|
2874 | 0);
|
---|
2875 | }
|
---|
2876 |
|
---|
2877 |
|
---|
2878 | /**
|
---|
2879 | * Implements iret for real mode and V8086 mode.
|
---|
2880 | *
|
---|
2881 | * @param enmEffOpSize The effective operand size.
|
---|
2882 | */
|
---|
2883 | IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
|
---|
2884 | {
|
---|
2885 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
2886 | X86EFLAGS Efl;
|
---|
2887 | Efl.u = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
2888 | NOREF(cbInstr);
|
---|
2889 |
|
---|
2890 | /*
|
---|
2891 | * iret throws an exception if VME isn't enabled.
|
---|
2892 | */
|
---|
2893 | if ( Efl.Bits.u1VM
|
---|
2894 | && Efl.Bits.u2IOPL != 3
|
---|
2895 | && !(pCtx->cr4 & X86_CR4_VME))
|
---|
2896 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2897 |
|
---|
2898 | /*
|
---|
2899 | * Do the stack bits, but don't commit RSP before everything checks
|
---|
2900 | * out right.
|
---|
2901 | */
|
---|
2902 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
2903 | VBOXSTRICTRC rcStrict;
|
---|
2904 | RTCPTRUNION uFrame;
|
---|
2905 | uint16_t uNewCs;
|
---|
2906 | uint32_t uNewEip;
|
---|
2907 | uint32_t uNewFlags;
|
---|
2908 | uint64_t uNewRsp;
|
---|
2909 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
2910 | {
|
---|
2911 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
|
---|
2912 | if (rcStrict != VINF_SUCCESS)
|
---|
2913 | return rcStrict;
|
---|
2914 | uNewEip = uFrame.pu32[0];
|
---|
2915 | if (uNewEip > UINT16_MAX)
|
---|
2916 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2917 |
|
---|
2918 | uNewCs = (uint16_t)uFrame.pu32[1];
|
---|
2919 | uNewFlags = uFrame.pu32[2];
|
---|
2920 | uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
2921 | | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
|
---|
2922 | | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
|
---|
2923 | | X86_EFL_ID;
|
---|
2924 | if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
|
---|
2925 | uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
|
---|
2926 | uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
|
---|
2927 | }
|
---|
2928 | else
|
---|
2929 | {
|
---|
2930 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
|
---|
2931 | if (rcStrict != VINF_SUCCESS)
|
---|
2932 | return rcStrict;
|
---|
2933 | uNewEip = uFrame.pu16[0];
|
---|
2934 | uNewCs = uFrame.pu16[1];
|
---|
2935 | uNewFlags = uFrame.pu16[2];
|
---|
2936 | uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
2937 | | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
|
---|
2938 | uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
|
---|
2939 | /** @todo The intel pseudo code does not indicate what happens to
|
---|
2940 | * reserved flags. We just ignore them. */
|
---|
2941 | /* Ancient CPU adjustments: See iemCImpl_popf. */
|
---|
2942 | if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
|
---|
2943 | uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
|
---|
2944 | }
|
---|
2945 | rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
|
---|
2946 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
2947 | { /* extremely likely */ }
|
---|
2948 | else
|
---|
2949 | return rcStrict;
|
---|
2950 |
|
---|
2951 | /** @todo Check how this is supposed to work if sp=0xfffe. */
|
---|
2952 | Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
|
---|
2953 | uNewCs, uNewEip, uNewFlags, uNewRsp));
|
---|
2954 |
|
---|
2955 | /*
|
---|
2956 | * Check the limit of the new EIP.
|
---|
2957 | */
|
---|
2958 | /** @todo Only the AMD pseudo code check the limit here, what's
|
---|
2959 | * right? */
|
---|
2960 | if (uNewEip > pCtx->cs.u32Limit)
|
---|
2961 | return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
|
---|
2962 |
|
---|
2963 | /*
|
---|
2964 | * V8086 checks and flag adjustments
|
---|
2965 | */
|
---|
2966 | if (Efl.Bits.u1VM)
|
---|
2967 | {
|
---|
2968 | if (Efl.Bits.u2IOPL == 3)
|
---|
2969 | {
|
---|
2970 | /* Preserve IOPL and clear RF. */
|
---|
2971 | uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
|
---|
2972 | uNewFlags |= Efl.u & (X86_EFL_IOPL);
|
---|
2973 | }
|
---|
2974 | else if ( enmEffOpSize == IEMMODE_16BIT
|
---|
2975 | && ( !(uNewFlags & X86_EFL_IF)
|
---|
2976 | || !Efl.Bits.u1VIP )
|
---|
2977 | && !(uNewFlags & X86_EFL_TF) )
|
---|
2978 | {
|
---|
2979 | /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
|
---|
2980 | uNewFlags &= ~X86_EFL_VIF;
|
---|
2981 | uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
|
---|
2982 | uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
|
---|
2983 | uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
|
---|
2984 | }
|
---|
2985 | else
|
---|
2986 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2987 | Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
|
---|
2988 | }
|
---|
2989 |
|
---|
2990 | /*
|
---|
2991 | * Commit the operation.
|
---|
2992 | */
|
---|
2993 | #ifdef DBGFTRACE_ENABLED
|
---|
2994 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
|
---|
2995 | pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
|
---|
2996 | #endif
|
---|
2997 | pCtx->rsp = uNewRsp;
|
---|
2998 | pCtx->rip = uNewEip;
|
---|
2999 | pCtx->cs.Sel = uNewCs;
|
---|
3000 | pCtx->cs.ValidSel = uNewCs;
|
---|
3001 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3002 | pCtx->cs.u64Base = (uint32_t)uNewCs << 4;
|
---|
3003 | /** @todo do we load attribs and limit as well? */
|
---|
3004 | Assert(uNewFlags & X86_EFL_1);
|
---|
3005 | IEMMISC_SET_EFL(pVCpu, pCtx, uNewFlags);
|
---|
3006 |
|
---|
3007 | /* Flush the prefetch buffer. */
|
---|
3008 | #ifdef IEM_WITH_CODE_TLB
|
---|
3009 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
3010 | #else
|
---|
3011 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
3012 | #endif
|
---|
3013 |
|
---|
3014 | return VINF_SUCCESS;
|
---|
3015 | }
|
---|
3016 |
|
---|
3017 |
|
---|
3018 | /**
|
---|
3019 | * Loads a segment register when entering V8086 mode.
|
---|
3020 | *
|
---|
3021 | * @param pSReg The segment register.
|
---|
3022 | * @param uSeg The segment to load.
|
---|
3023 | */
|
---|
3024 | static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
|
---|
3025 | {
|
---|
3026 | pSReg->Sel = uSeg;
|
---|
3027 | pSReg->ValidSel = uSeg;
|
---|
3028 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3029 | pSReg->u64Base = (uint32_t)uSeg << 4;
|
---|
3030 | pSReg->u32Limit = 0xffff;
|
---|
3031 | pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
|
---|
3032 | /** @todo Testcase: Check if VT-x really needs this and what it does itself when
|
---|
3033 | * IRET'ing to V8086. */
|
---|
3034 | }
|
---|
3035 |
|
---|
3036 |
|
---|
3037 | /**
|
---|
3038 | * Implements iret for protected mode returning to V8086 mode.
|
---|
3039 | *
|
---|
3040 | * @param pCtx Pointer to the CPU context.
|
---|
3041 | * @param uNewEip The new EIP.
|
---|
3042 | * @param uNewCs The new CS.
|
---|
3043 | * @param uNewFlags The new EFLAGS.
|
---|
3044 | * @param uNewRsp The RSP after the initial IRET frame.
|
---|
3045 | *
|
---|
3046 | * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
|
---|
3047 | */
|
---|
3048 | IEM_CIMPL_DEF_5(iemCImpl_iret_prot_v8086, PCPUMCTX, pCtx, uint32_t, uNewEip, uint16_t, uNewCs,
|
---|
3049 | uint32_t, uNewFlags, uint64_t, uNewRsp)
|
---|
3050 | {
|
---|
3051 | RT_NOREF_PV(cbInstr);
|
---|
3052 |
|
---|
3053 | /*
|
---|
3054 | * Pop the V8086 specific frame bits off the stack.
|
---|
3055 | */
|
---|
3056 | VBOXSTRICTRC rcStrict;
|
---|
3057 | RTCPTRUNION uFrame;
|
---|
3058 | rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp);
|
---|
3059 | if (rcStrict != VINF_SUCCESS)
|
---|
3060 | return rcStrict;
|
---|
3061 | uint32_t uNewEsp = uFrame.pu32[0];
|
---|
3062 | uint16_t uNewSs = uFrame.pu32[1];
|
---|
3063 | uint16_t uNewEs = uFrame.pu32[2];
|
---|
3064 | uint16_t uNewDs = uFrame.pu32[3];
|
---|
3065 | uint16_t uNewFs = uFrame.pu32[4];
|
---|
3066 | uint16_t uNewGs = uFrame.pu32[5];
|
---|
3067 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
|
---|
3068 | if (rcStrict != VINF_SUCCESS)
|
---|
3069 | return rcStrict;
|
---|
3070 |
|
---|
3071 | /*
|
---|
3072 | * Commit the operation.
|
---|
3073 | */
|
---|
3074 | uNewFlags &= X86_EFL_LIVE_MASK;
|
---|
3075 | uNewFlags |= X86_EFL_RA1_MASK;
|
---|
3076 | #ifdef DBGFTRACE_ENABLED
|
---|
3077 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
|
---|
3078 | pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
|
---|
3079 | #endif
|
---|
3080 | Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pCtx->cs.Sel, pCtx->eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
|
---|
3081 |
|
---|
3082 | IEMMISC_SET_EFL(pVCpu, pCtx, uNewFlags);
|
---|
3083 | iemCImplCommonV8086LoadSeg(&pCtx->cs, uNewCs);
|
---|
3084 | iemCImplCommonV8086LoadSeg(&pCtx->ss, uNewSs);
|
---|
3085 | iemCImplCommonV8086LoadSeg(&pCtx->es, uNewEs);
|
---|
3086 | iemCImplCommonV8086LoadSeg(&pCtx->ds, uNewDs);
|
---|
3087 | iemCImplCommonV8086LoadSeg(&pCtx->fs, uNewFs);
|
---|
3088 | iemCImplCommonV8086LoadSeg(&pCtx->gs, uNewGs);
|
---|
3089 | pCtx->rip = (uint16_t)uNewEip;
|
---|
3090 | pCtx->rsp = uNewEsp; /** @todo check this out! */
|
---|
3091 | pVCpu->iem.s.uCpl = 3;
|
---|
3092 |
|
---|
3093 | /* Flush the prefetch buffer. */
|
---|
3094 | #ifdef IEM_WITH_CODE_TLB
|
---|
3095 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
3096 | #else
|
---|
3097 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
3098 | #endif
|
---|
3099 |
|
---|
3100 | return VINF_SUCCESS;
|
---|
3101 | }
|
---|
3102 |
|
---|
3103 |
|
---|
3104 | /**
|
---|
3105 | * Implements iret for protected mode returning via a nested task.
|
---|
3106 | *
|
---|
3107 | * @param enmEffOpSize The effective operand size.
|
---|
3108 | */
|
---|
3109 | IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
|
---|
3110 | {
|
---|
3111 | Log7(("iemCImpl_iret_prot_NestedTask:\n"));
|
---|
3112 | #ifndef IEM_IMPLEMENTS_TASKSWITCH
|
---|
3113 | IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
|
---|
3114 | #else
|
---|
3115 | RT_NOREF_PV(enmEffOpSize);
|
---|
3116 |
|
---|
3117 | /*
|
---|
3118 | * Read the segment selector in the link-field of the current TSS.
|
---|
3119 | */
|
---|
3120 | RTSEL uSelRet;
|
---|
3121 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
3122 | VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pCtx->tr.u64Base);
|
---|
3123 | if (rcStrict != VINF_SUCCESS)
|
---|
3124 | return rcStrict;
|
---|
3125 |
|
---|
3126 | /*
|
---|
3127 | * Fetch the returning task's TSS descriptor from the GDT.
|
---|
3128 | */
|
---|
3129 | if (uSelRet & X86_SEL_LDT)
|
---|
3130 | {
|
---|
3131 | Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
|
---|
3132 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
|
---|
3133 | }
|
---|
3134 |
|
---|
3135 | IEMSELDESC TssDesc;
|
---|
3136 | rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
|
---|
3137 | if (rcStrict != VINF_SUCCESS)
|
---|
3138 | return rcStrict;
|
---|
3139 |
|
---|
3140 | if (TssDesc.Legacy.Gate.u1DescType)
|
---|
3141 | {
|
---|
3142 | Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
|
---|
3143 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
|
---|
3144 | }
|
---|
3145 |
|
---|
3146 | if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
|
---|
3147 | && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
|
---|
3148 | {
|
---|
3149 | Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
|
---|
3150 | return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
|
---|
3151 | }
|
---|
3152 |
|
---|
3153 | if (!TssDesc.Legacy.Gate.u1Present)
|
---|
3154 | {
|
---|
3155 | Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
|
---|
3156 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
|
---|
3157 | }
|
---|
3158 |
|
---|
3159 | uint32_t uNextEip = pCtx->eip + cbInstr;
|
---|
3160 | return iemTaskSwitch(pVCpu, pCtx, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
|
---|
3161 | 0 /* uCr2 */, uSelRet, &TssDesc);
|
---|
3162 | #endif
|
---|
3163 | }
|
---|
3164 |
|
---|
3165 |
|
---|
3166 | /**
|
---|
3167 | * Implements iret for protected mode
|
---|
3168 | *
|
---|
3169 | * @param enmEffOpSize The effective operand size.
|
---|
3170 | */
|
---|
3171 | IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
|
---|
3172 | {
|
---|
3173 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
3174 | NOREF(cbInstr);
|
---|
3175 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
3176 |
|
---|
3177 | /*
|
---|
3178 | * Nested task return.
|
---|
3179 | */
|
---|
3180 | if (pCtx->eflags.Bits.u1NT)
|
---|
3181 | return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
|
---|
3182 |
|
---|
3183 | /*
|
---|
3184 | * Normal return.
|
---|
3185 | *
|
---|
3186 | * Do the stack bits, but don't commit RSP before everything checks
|
---|
3187 | * out right.
|
---|
3188 | */
|
---|
3189 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
3190 | VBOXSTRICTRC rcStrict;
|
---|
3191 | RTCPTRUNION uFrame;
|
---|
3192 | uint16_t uNewCs;
|
---|
3193 | uint32_t uNewEip;
|
---|
3194 | uint32_t uNewFlags;
|
---|
3195 | uint64_t uNewRsp;
|
---|
3196 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
3197 | {
|
---|
3198 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
|
---|
3199 | if (rcStrict != VINF_SUCCESS)
|
---|
3200 | return rcStrict;
|
---|
3201 | uNewEip = uFrame.pu32[0];
|
---|
3202 | uNewCs = (uint16_t)uFrame.pu32[1];
|
---|
3203 | uNewFlags = uFrame.pu32[2];
|
---|
3204 | }
|
---|
3205 | else
|
---|
3206 | {
|
---|
3207 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
|
---|
3208 | if (rcStrict != VINF_SUCCESS)
|
---|
3209 | return rcStrict;
|
---|
3210 | uNewEip = uFrame.pu16[0];
|
---|
3211 | uNewCs = uFrame.pu16[1];
|
---|
3212 | uNewFlags = uFrame.pu16[2];
|
---|
3213 | }
|
---|
3214 | rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
|
---|
3215 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
3216 | { /* extremely likely */ }
|
---|
3217 | else
|
---|
3218 | return rcStrict;
|
---|
3219 | Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
|
---|
3220 |
|
---|
3221 | /*
|
---|
3222 | * We're hopefully not returning to V8086 mode...
|
---|
3223 | */
|
---|
3224 | if ( (uNewFlags & X86_EFL_VM)
|
---|
3225 | && pVCpu->iem.s.uCpl == 0)
|
---|
3226 | {
|
---|
3227 | Assert(enmEffOpSize == IEMMODE_32BIT);
|
---|
3228 | return IEM_CIMPL_CALL_5(iemCImpl_iret_prot_v8086, pCtx, uNewEip, uNewCs, uNewFlags, uNewRsp);
|
---|
3229 | }
|
---|
3230 |
|
---|
3231 | /*
|
---|
3232 | * Protected mode.
|
---|
3233 | */
|
---|
3234 | /* Read the CS descriptor. */
|
---|
3235 | if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
|
---|
3236 | {
|
---|
3237 | Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
|
---|
3238 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3239 | }
|
---|
3240 |
|
---|
3241 | IEMSELDESC DescCS;
|
---|
3242 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
|
---|
3243 | if (rcStrict != VINF_SUCCESS)
|
---|
3244 | {
|
---|
3245 | Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3246 | return rcStrict;
|
---|
3247 | }
|
---|
3248 |
|
---|
3249 | /* Must be a code descriptor. */
|
---|
3250 | if (!DescCS.Legacy.Gen.u1DescType)
|
---|
3251 | {
|
---|
3252 | Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
|
---|
3253 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3254 | }
|
---|
3255 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
3256 | {
|
---|
3257 | Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
|
---|
3258 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3259 | }
|
---|
3260 |
|
---|
3261 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
3262 | /* Raw ring-0 and ring-1 compression adjustments for PATM performance tricks and other CS leaks. */
|
---|
3263 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3264 | if (EMIsRawRing0Enabled(pVM) && !HMIsEnabled(pVM))
|
---|
3265 | {
|
---|
3266 | if ((uNewCs & X86_SEL_RPL) == 1)
|
---|
3267 | {
|
---|
3268 | if ( pVCpu->iem.s.uCpl == 0
|
---|
3269 | && ( !EMIsRawRing1Enabled(pVM)
|
---|
3270 | || pCtx->cs.Sel == (uNewCs & X86_SEL_MASK_OFF_RPL)) )
|
---|
3271 | {
|
---|
3272 | Log(("iret: Ring-0 compression fix: uNewCS=%#x -> %#x\n", uNewCs, uNewCs & X86_SEL_MASK_OFF_RPL));
|
---|
3273 | uNewCs &= X86_SEL_MASK_OFF_RPL;
|
---|
3274 | }
|
---|
3275 | # ifdef LOG_ENABLED
|
---|
3276 | else if (pVCpu->iem.s.uCpl <= 1 && EMIsRawRing1Enabled(pVM))
|
---|
3277 | Log(("iret: uNewCs=%#x genuine return to ring-1.\n", uNewCs));
|
---|
3278 | # endif
|
---|
3279 | }
|
---|
3280 | else if ( (uNewCs & X86_SEL_RPL) == 2
|
---|
3281 | && EMIsRawRing1Enabled(pVM)
|
---|
3282 | && pVCpu->iem.s.uCpl <= 1)
|
---|
3283 | {
|
---|
3284 | Log(("iret: Ring-1 compression fix: uNewCS=%#x -> %#x\n", uNewCs, (uNewCs & X86_SEL_MASK_OFF_RPL) | 1));
|
---|
3285 | uNewCs = (uNewCs & X86_SEL_MASK_OFF_RPL) | 2;
|
---|
3286 | }
|
---|
3287 | }
|
---|
3288 | #endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
|
---|
3289 |
|
---|
3290 |
|
---|
3291 | /* Privilege checks. */
|
---|
3292 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
|
---|
3293 | {
|
---|
3294 | if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
|
---|
3295 | {
|
---|
3296 | Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
|
---|
3297 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3298 | }
|
---|
3299 | }
|
---|
3300 | else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
|
---|
3301 | {
|
---|
3302 | Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
|
---|
3303 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3304 | }
|
---|
3305 | if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
|
---|
3306 | {
|
---|
3307 | Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
|
---|
3308 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3309 | }
|
---|
3310 |
|
---|
3311 | /* Present? */
|
---|
3312 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3313 | {
|
---|
3314 | Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
|
---|
3315 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
|
---|
3316 | }
|
---|
3317 |
|
---|
3318 | uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3319 |
|
---|
3320 | /*
|
---|
3321 | * Return to outer level?
|
---|
3322 | */
|
---|
3323 | if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
|
---|
3324 | {
|
---|
3325 | uint16_t uNewSS;
|
---|
3326 | uint32_t uNewESP;
|
---|
3327 | if (enmEffOpSize == IEMMODE_32BIT)
|
---|
3328 | {
|
---|
3329 | rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp);
|
---|
3330 | if (rcStrict != VINF_SUCCESS)
|
---|
3331 | return rcStrict;
|
---|
3332 | /** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
|
---|
3333 | * 16-bit or 32-bit are being loaded into SP depends on the D/B
|
---|
3334 | * bit of the popped SS selector it turns out. */
|
---|
3335 | uNewESP = uFrame.pu32[0];
|
---|
3336 | uNewSS = (uint16_t)uFrame.pu32[1];
|
---|
3337 | }
|
---|
3338 | else
|
---|
3339 | {
|
---|
3340 | rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp);
|
---|
3341 | if (rcStrict != VINF_SUCCESS)
|
---|
3342 | return rcStrict;
|
---|
3343 | uNewESP = uFrame.pu16[0];
|
---|
3344 | uNewSS = uFrame.pu16[1];
|
---|
3345 | }
|
---|
3346 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
|
---|
3347 | if (rcStrict != VINF_SUCCESS)
|
---|
3348 | return rcStrict;
|
---|
3349 | Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
|
---|
3350 |
|
---|
3351 | /* Read the SS descriptor. */
|
---|
3352 | if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
|
---|
3353 | {
|
---|
3354 | Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
|
---|
3355 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3356 | }
|
---|
3357 |
|
---|
3358 | IEMSELDESC DescSS;
|
---|
3359 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
|
---|
3360 | if (rcStrict != VINF_SUCCESS)
|
---|
3361 | {
|
---|
3362 | Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
|
---|
3363 | uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3364 | return rcStrict;
|
---|
3365 | }
|
---|
3366 |
|
---|
3367 | /* Privilege checks. */
|
---|
3368 | if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
|
---|
3369 | {
|
---|
3370 | Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
|
---|
3371 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
|
---|
3372 | }
|
---|
3373 | if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
|
---|
3374 | {
|
---|
3375 | Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
|
---|
3376 | uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
|
---|
3377 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
|
---|
3378 | }
|
---|
3379 |
|
---|
3380 | /* Must be a writeable data segment descriptor. */
|
---|
3381 | if (!DescSS.Legacy.Gen.u1DescType)
|
---|
3382 | {
|
---|
3383 | Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
|
---|
3384 | uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
|
---|
3385 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
|
---|
3386 | }
|
---|
3387 | if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
|
---|
3388 | {
|
---|
3389 | Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
|
---|
3390 | uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
|
---|
3391 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
|
---|
3392 | }
|
---|
3393 |
|
---|
3394 | /* Present? */
|
---|
3395 | if (!DescSS.Legacy.Gen.u1Present)
|
---|
3396 | {
|
---|
3397 | Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
|
---|
3398 | return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
|
---|
3399 | }
|
---|
3400 |
|
---|
3401 | uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3402 |
|
---|
3403 | /* Check EIP. */
|
---|
3404 | if (uNewEip > cbLimitCS)
|
---|
3405 | {
|
---|
3406 | Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
|
---|
3407 | uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
|
---|
3408 | /** @todo: Which is it, #GP(0) or #GP(sel)? */
|
---|
3409 | return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
|
---|
3410 | }
|
---|
3411 |
|
---|
3412 | /*
|
---|
3413 | * Commit the changes, marking CS and SS accessed first since
|
---|
3414 | * that may fail.
|
---|
3415 | */
|
---|
3416 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3417 | {
|
---|
3418 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
|
---|
3419 | if (rcStrict != VINF_SUCCESS)
|
---|
3420 | return rcStrict;
|
---|
3421 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3422 | }
|
---|
3423 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3424 | {
|
---|
3425 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
|
---|
3426 | if (rcStrict != VINF_SUCCESS)
|
---|
3427 | return rcStrict;
|
---|
3428 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3429 | }
|
---|
3430 |
|
---|
3431 | uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
3432 | | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
|
---|
3433 | if (enmEffOpSize != IEMMODE_16BIT)
|
---|
3434 | fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
|
---|
3435 | if (pVCpu->iem.s.uCpl == 0)
|
---|
3436 | fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
|
---|
3437 | else if (pVCpu->iem.s.uCpl <= pCtx->eflags.Bits.u2IOPL)
|
---|
3438 | fEFlagsMask |= X86_EFL_IF;
|
---|
3439 | if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
|
---|
3440 | fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
|
---|
3441 | uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
3442 | fEFlagsNew &= ~fEFlagsMask;
|
---|
3443 | fEFlagsNew |= uNewFlags & fEFlagsMask;
|
---|
3444 | #ifdef DBGFTRACE_ENABLED
|
---|
3445 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
|
---|
3446 | pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pCtx->cs.Sel, pCtx->eip,
|
---|
3447 | uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
|
---|
3448 | #endif
|
---|
3449 |
|
---|
3450 | IEMMISC_SET_EFL(pVCpu, pCtx, fEFlagsNew);
|
---|
3451 | pCtx->rip = uNewEip;
|
---|
3452 | pCtx->cs.Sel = uNewCs;
|
---|
3453 | pCtx->cs.ValidSel = uNewCs;
|
---|
3454 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3455 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3456 | pCtx->cs.u32Limit = cbLimitCS;
|
---|
3457 | pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3458 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
3459 |
|
---|
3460 | pCtx->ss.Sel = uNewSS;
|
---|
3461 | pCtx->ss.ValidSel = uNewSS;
|
---|
3462 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3463 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
3464 | pCtx->ss.u32Limit = cbLimitSs;
|
---|
3465 | pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
3466 | if (!pCtx->ss.Attr.n.u1DefBig)
|
---|
3467 | pCtx->sp = (uint16_t)uNewESP;
|
---|
3468 | else
|
---|
3469 | pCtx->rsp = uNewESP;
|
---|
3470 |
|
---|
3471 | pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
|
---|
3472 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->ds);
|
---|
3473 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->es);
|
---|
3474 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->fs);
|
---|
3475 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pCtx->gs);
|
---|
3476 |
|
---|
3477 | /* Done! */
|
---|
3478 |
|
---|
3479 | }
|
---|
3480 | /*
|
---|
3481 | * Return to the same level.
|
---|
3482 | */
|
---|
3483 | else
|
---|
3484 | {
|
---|
3485 | /* Check EIP. */
|
---|
3486 | if (uNewEip > cbLimitCS)
|
---|
3487 | {
|
---|
3488 | Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
|
---|
3489 | /** @todo: Which is it, #GP(0) or #GP(sel)? */
|
---|
3490 | return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
|
---|
3491 | }
|
---|
3492 |
|
---|
3493 | /*
|
---|
3494 | * Commit the changes, marking CS first since it may fail.
|
---|
3495 | */
|
---|
3496 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3497 | {
|
---|
3498 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
|
---|
3499 | if (rcStrict != VINF_SUCCESS)
|
---|
3500 | return rcStrict;
|
---|
3501 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3502 | }
|
---|
3503 |
|
---|
3504 | X86EFLAGS NewEfl;
|
---|
3505 | NewEfl.u = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
3506 | uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
3507 | | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
|
---|
3508 | if (enmEffOpSize != IEMMODE_16BIT)
|
---|
3509 | fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
|
---|
3510 | if (pVCpu->iem.s.uCpl == 0)
|
---|
3511 | fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
|
---|
3512 | else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
|
---|
3513 | fEFlagsMask |= X86_EFL_IF;
|
---|
3514 | if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
|
---|
3515 | fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
|
---|
3516 | NewEfl.u &= ~fEFlagsMask;
|
---|
3517 | NewEfl.u |= fEFlagsMask & uNewFlags;
|
---|
3518 | #ifdef DBGFTRACE_ENABLED
|
---|
3519 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
|
---|
3520 | pVCpu->iem.s.uCpl, pCtx->cs.Sel, pCtx->eip,
|
---|
3521 | uNewCs, uNewEip, uNewFlags, pCtx->ss.Sel, uNewRsp);
|
---|
3522 | #endif
|
---|
3523 |
|
---|
3524 | IEMMISC_SET_EFL(pVCpu, pCtx, NewEfl.u);
|
---|
3525 | pCtx->rip = uNewEip;
|
---|
3526 | pCtx->cs.Sel = uNewCs;
|
---|
3527 | pCtx->cs.ValidSel = uNewCs;
|
---|
3528 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3529 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3530 | pCtx->cs.u32Limit = cbLimitCS;
|
---|
3531 | pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3532 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
3533 | if (!pCtx->ss.Attr.n.u1DefBig)
|
---|
3534 | pCtx->sp = (uint16_t)uNewRsp;
|
---|
3535 | else
|
---|
3536 | pCtx->rsp = uNewRsp;
|
---|
3537 | /* Done! */
|
---|
3538 | }
|
---|
3539 |
|
---|
3540 | /* Flush the prefetch buffer. */
|
---|
3541 | #ifdef IEM_WITH_CODE_TLB
|
---|
3542 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
3543 | #else
|
---|
3544 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
3545 | #endif
|
---|
3546 |
|
---|
3547 | return VINF_SUCCESS;
|
---|
3548 | }
|
---|
3549 |
|
---|
3550 |
|
---|
3551 | /**
|
---|
3552 | * Implements iret for long mode
|
---|
3553 | *
|
---|
3554 | * @param enmEffOpSize The effective operand size.
|
---|
3555 | */
|
---|
3556 | IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
|
---|
3557 | {
|
---|
3558 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
3559 | NOREF(cbInstr);
|
---|
3560 |
|
---|
3561 | /*
|
---|
3562 | * Nested task return is not supported in long mode.
|
---|
3563 | */
|
---|
3564 | if (pCtx->eflags.Bits.u1NT)
|
---|
3565 | {
|
---|
3566 | Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pCtx->eflags.u));
|
---|
3567 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3568 | }
|
---|
3569 |
|
---|
3570 | /*
|
---|
3571 | * Normal return.
|
---|
3572 | *
|
---|
3573 | * Do the stack bits, but don't commit RSP before everything checks
|
---|
3574 | * out right.
|
---|
3575 | */
|
---|
3576 | VBOXSTRICTRC rcStrict;
|
---|
3577 | RTCPTRUNION uFrame;
|
---|
3578 | uint64_t uNewRip;
|
---|
3579 | uint16_t uNewCs;
|
---|
3580 | uint16_t uNewSs;
|
---|
3581 | uint32_t uNewFlags;
|
---|
3582 | uint64_t uNewRsp;
|
---|
3583 | if (enmEffOpSize == IEMMODE_64BIT)
|
---|
3584 | {
|
---|
3585 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp);
|
---|
3586 | if (rcStrict != VINF_SUCCESS)
|
---|
3587 | return rcStrict;
|
---|
3588 | uNewRip = uFrame.pu64[0];
|
---|
3589 | uNewCs = (uint16_t)uFrame.pu64[1];
|
---|
3590 | uNewFlags = (uint32_t)uFrame.pu64[2];
|
---|
3591 | uNewRsp = uFrame.pu64[3];
|
---|
3592 | uNewSs = (uint16_t)uFrame.pu64[4];
|
---|
3593 | }
|
---|
3594 | else if (enmEffOpSize == IEMMODE_32BIT)
|
---|
3595 | {
|
---|
3596 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp);
|
---|
3597 | if (rcStrict != VINF_SUCCESS)
|
---|
3598 | return rcStrict;
|
---|
3599 | uNewRip = uFrame.pu32[0];
|
---|
3600 | uNewCs = (uint16_t)uFrame.pu32[1];
|
---|
3601 | uNewFlags = uFrame.pu32[2];
|
---|
3602 | uNewRsp = uFrame.pu32[3];
|
---|
3603 | uNewSs = (uint16_t)uFrame.pu32[4];
|
---|
3604 | }
|
---|
3605 | else
|
---|
3606 | {
|
---|
3607 | Assert(enmEffOpSize == IEMMODE_16BIT);
|
---|
3608 | rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp);
|
---|
3609 | if (rcStrict != VINF_SUCCESS)
|
---|
3610 | return rcStrict;
|
---|
3611 | uNewRip = uFrame.pu16[0];
|
---|
3612 | uNewCs = uFrame.pu16[1];
|
---|
3613 | uNewFlags = uFrame.pu16[2];
|
---|
3614 | uNewRsp = uFrame.pu16[3];
|
---|
3615 | uNewSs = uFrame.pu16[4];
|
---|
3616 | }
|
---|
3617 | rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
|
---|
3618 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
3619 | { /* extremely like */ }
|
---|
3620 | else
|
---|
3621 | return rcStrict;
|
---|
3622 | Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
|
---|
3623 |
|
---|
3624 | /*
|
---|
3625 | * Check stuff.
|
---|
3626 | */
|
---|
3627 | /* Read the CS descriptor. */
|
---|
3628 | if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
|
---|
3629 | {
|
---|
3630 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3631 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3632 | }
|
---|
3633 |
|
---|
3634 | IEMSELDESC DescCS;
|
---|
3635 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
|
---|
3636 | if (rcStrict != VINF_SUCCESS)
|
---|
3637 | {
|
---|
3638 | Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
|
---|
3639 | uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3640 | return rcStrict;
|
---|
3641 | }
|
---|
3642 |
|
---|
3643 | /* Must be a code descriptor. */
|
---|
3644 | if ( !DescCS.Legacy.Gen.u1DescType
|
---|
3645 | || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
|
---|
3646 | {
|
---|
3647 | Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
|
---|
3648 | uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
|
---|
3649 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3650 | }
|
---|
3651 |
|
---|
3652 | /* Privilege checks. */
|
---|
3653 | uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
|
---|
3654 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
|
---|
3655 | {
|
---|
3656 | if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
|
---|
3657 | {
|
---|
3658 | Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
|
---|
3659 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3660 | }
|
---|
3661 | }
|
---|
3662 | else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
|
---|
3663 | {
|
---|
3664 | Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
|
---|
3665 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3666 | }
|
---|
3667 | if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
|
---|
3668 | {
|
---|
3669 | Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
|
---|
3670 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
|
---|
3671 | }
|
---|
3672 |
|
---|
3673 | /* Present? */
|
---|
3674 | if (!DescCS.Legacy.Gen.u1Present)
|
---|
3675 | {
|
---|
3676 | Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3677 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
|
---|
3678 | }
|
---|
3679 |
|
---|
3680 | uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
|
---|
3681 |
|
---|
3682 | /* Read the SS descriptor. */
|
---|
3683 | IEMSELDESC DescSS;
|
---|
3684 | if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
|
---|
3685 | {
|
---|
3686 | if ( !DescCS.Legacy.Gen.u1Long
|
---|
3687 | || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
|
---|
3688 | || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
|
---|
3689 | {
|
---|
3690 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3691 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3692 | }
|
---|
3693 | DescSS.Legacy.u = 0;
|
---|
3694 | }
|
---|
3695 | else
|
---|
3696 | {
|
---|
3697 | rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
|
---|
3698 | if (rcStrict != VINF_SUCCESS)
|
---|
3699 | {
|
---|
3700 | Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
|
---|
3701 | uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3702 | return rcStrict;
|
---|
3703 | }
|
---|
3704 | }
|
---|
3705 |
|
---|
3706 | /* Privilege checks. */
|
---|
3707 | if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
|
---|
3708 | {
|
---|
3709 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3710 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
|
---|
3711 | }
|
---|
3712 |
|
---|
3713 | uint32_t cbLimitSs;
|
---|
3714 | if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
|
---|
3715 | cbLimitSs = UINT32_MAX;
|
---|
3716 | else
|
---|
3717 | {
|
---|
3718 | if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
|
---|
3719 | {
|
---|
3720 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
|
---|
3721 | uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
|
---|
3722 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
|
---|
3723 | }
|
---|
3724 |
|
---|
3725 | /* Must be a writeable data segment descriptor. */
|
---|
3726 | if (!DescSS.Legacy.Gen.u1DescType)
|
---|
3727 | {
|
---|
3728 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
|
---|
3729 | uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
|
---|
3730 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
|
---|
3731 | }
|
---|
3732 | if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
|
---|
3733 | {
|
---|
3734 | Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
|
---|
3735 | uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
|
---|
3736 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
|
---|
3737 | }
|
---|
3738 |
|
---|
3739 | /* Present? */
|
---|
3740 | if (!DescSS.Legacy.Gen.u1Present)
|
---|
3741 | {
|
---|
3742 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3743 | return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
|
---|
3744 | }
|
---|
3745 | cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
|
---|
3746 | }
|
---|
3747 |
|
---|
3748 | /* Check EIP. */
|
---|
3749 | if (DescCS.Legacy.Gen.u1Long)
|
---|
3750 | {
|
---|
3751 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
3752 | {
|
---|
3753 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
|
---|
3754 | uNewCs, uNewRip, uNewSs, uNewRsp));
|
---|
3755 | return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
|
---|
3756 | }
|
---|
3757 | }
|
---|
3758 | else
|
---|
3759 | {
|
---|
3760 | if (uNewRip > cbLimitCS)
|
---|
3761 | {
|
---|
3762 | Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
|
---|
3763 | uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
|
---|
3764 | /** @todo: Which is it, #GP(0) or #GP(sel)? */
|
---|
3765 | return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
|
---|
3766 | }
|
---|
3767 | }
|
---|
3768 |
|
---|
3769 | /*
|
---|
3770 | * Commit the changes, marking CS and SS accessed first since
|
---|
3771 | * that may fail.
|
---|
3772 | */
|
---|
3773 | /** @todo where exactly are these actually marked accessed by a real CPU? */
|
---|
3774 | if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3775 | {
|
---|
3776 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
|
---|
3777 | if (rcStrict != VINF_SUCCESS)
|
---|
3778 | return rcStrict;
|
---|
3779 | DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3780 | }
|
---|
3781 | if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
3782 | {
|
---|
3783 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
|
---|
3784 | if (rcStrict != VINF_SUCCESS)
|
---|
3785 | return rcStrict;
|
---|
3786 | DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
3787 | }
|
---|
3788 |
|
---|
3789 | uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
|
---|
3790 | | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
|
---|
3791 | if (enmEffOpSize != IEMMODE_16BIT)
|
---|
3792 | fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
|
---|
3793 | if (pVCpu->iem.s.uCpl == 0)
|
---|
3794 | fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
|
---|
3795 | else if (pVCpu->iem.s.uCpl <= pCtx->eflags.Bits.u2IOPL)
|
---|
3796 | fEFlagsMask |= X86_EFL_IF;
|
---|
3797 | uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
3798 | fEFlagsNew &= ~fEFlagsMask;
|
---|
3799 | fEFlagsNew |= uNewFlags & fEFlagsMask;
|
---|
3800 | #ifdef DBGFTRACE_ENABLED
|
---|
3801 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
|
---|
3802 | pVCpu->iem.s.uCpl, uNewCpl, pCtx->rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
|
---|
3803 | #endif
|
---|
3804 |
|
---|
3805 | IEMMISC_SET_EFL(pVCpu, pCtx, fEFlagsNew);
|
---|
3806 | pCtx->rip = uNewRip;
|
---|
3807 | pCtx->cs.Sel = uNewCs;
|
---|
3808 | pCtx->cs.ValidSel = uNewCs;
|
---|
3809 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3810 | pCtx->cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
|
---|
3811 | pCtx->cs.u32Limit = cbLimitCS;
|
---|
3812 | pCtx->cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
|
---|
3813 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pCtx);
|
---|
3814 | if (pCtx->cs.Attr.n.u1Long || pCtx->cs.Attr.n.u1DefBig)
|
---|
3815 | pCtx->rsp = uNewRsp;
|
---|
3816 | else
|
---|
3817 | pCtx->sp = (uint16_t)uNewRsp;
|
---|
3818 | pCtx->ss.Sel = uNewSs;
|
---|
3819 | pCtx->ss.ValidSel = uNewSs;
|
---|
3820 | if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
|
---|
3821 | {
|
---|
3822 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3823 | pCtx->ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
|
---|
3824 | pCtx->ss.u32Limit = UINT32_MAX;
|
---|
3825 | pCtx->ss.u64Base = 0;
|
---|
3826 | Log2(("iretq new SS: NULL\n"));
|
---|
3827 | }
|
---|
3828 | else
|
---|
3829 | {
|
---|
3830 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3831 | pCtx->ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
|
---|
3832 | pCtx->ss.u32Limit = cbLimitSs;
|
---|
3833 | pCtx->ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
|
---|
3834 | Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u));
|
---|
3835 | }
|
---|
3836 |
|
---|
3837 | if (pVCpu->iem.s.uCpl != uNewCpl)
|
---|
3838 | {
|
---|
3839 | pVCpu->iem.s.uCpl = uNewCpl;
|
---|
3840 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->ds);
|
---|
3841 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->es);
|
---|
3842 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->fs);
|
---|
3843 | iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pCtx->gs);
|
---|
3844 | }
|
---|
3845 |
|
---|
3846 | /* Flush the prefetch buffer. */
|
---|
3847 | #ifdef IEM_WITH_CODE_TLB
|
---|
3848 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
3849 | #else
|
---|
3850 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
3851 | #endif
|
---|
3852 |
|
---|
3853 | return VINF_SUCCESS;
|
---|
3854 | }
|
---|
3855 |
|
---|
3856 |
|
---|
3857 | /**
|
---|
3858 | * Implements iret.
|
---|
3859 | *
|
---|
3860 | * @param enmEffOpSize The effective operand size.
|
---|
3861 | */
|
---|
3862 | IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
|
---|
3863 | {
|
---|
3864 | /*
|
---|
3865 | * First, clear NMI blocking, if any, before causing any exceptions.
|
---|
3866 | */
|
---|
3867 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
3868 |
|
---|
3869 | /*
|
---|
3870 | * The SVM nested-guest intercept for iret takes priority over all exceptions,
|
---|
3871 | * see AMD spec. "15.9 Instruction Intercepts".
|
---|
3872 | */
|
---|
3873 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
|
---|
3874 | {
|
---|
3875 | Log(("iret: Guest intercept -> #VMEXIT\n"));
|
---|
3876 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
3877 | }
|
---|
3878 |
|
---|
3879 | /*
|
---|
3880 | * Call a mode specific worker.
|
---|
3881 | */
|
---|
3882 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
3883 | return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
|
---|
3884 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
3885 | return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
|
---|
3886 | return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
|
---|
3887 | }
|
---|
3888 |
|
---|
3889 |
|
---|
3890 | /**
|
---|
3891 | * Implements SYSCALL (AMD and Intel64).
|
---|
3892 | *
|
---|
3893 | * @param enmEffOpSize The effective operand size.
|
---|
3894 | */
|
---|
3895 | IEM_CIMPL_DEF_0(iemCImpl_syscall)
|
---|
3896 | {
|
---|
3897 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
3898 |
|
---|
3899 | /*
|
---|
3900 | * Check preconditions.
|
---|
3901 | *
|
---|
3902 | * Note that CPUs described in the documentation may load a few odd values
|
---|
3903 | * into CS and SS than we allow here. This has yet to be checked on real
|
---|
3904 | * hardware.
|
---|
3905 | */
|
---|
3906 | if (!(pCtx->msrEFER & MSR_K6_EFER_SCE))
|
---|
3907 | {
|
---|
3908 | Log(("syscall: Not enabled in EFER -> #UD\n"));
|
---|
3909 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
3910 | }
|
---|
3911 | if (!(pCtx->cr0 & X86_CR0_PE))
|
---|
3912 | {
|
---|
3913 | Log(("syscall: Protected mode is required -> #GP(0)\n"));
|
---|
3914 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3915 | }
|
---|
3916 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(pCtx))
|
---|
3917 | {
|
---|
3918 | Log(("syscall: Only available in long mode on intel -> #UD\n"));
|
---|
3919 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
3920 | }
|
---|
3921 |
|
---|
3922 | /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
|
---|
3923 | /** @todo what about LDT selectors? Shouldn't matter, really. */
|
---|
3924 | uint16_t uNewCs = (pCtx->msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
|
---|
3925 | uint16_t uNewSs = uNewCs + 8;
|
---|
3926 | if (uNewCs == 0 || uNewSs == 0)
|
---|
3927 | {
|
---|
3928 | Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
|
---|
3929 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
3930 | }
|
---|
3931 |
|
---|
3932 | /* Long mode and legacy mode differs. */
|
---|
3933 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
3934 | {
|
---|
3935 | uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->msrLSTAR : pCtx-> msrCSTAR;
|
---|
3936 |
|
---|
3937 | /* This test isn't in the docs, but I'm not trusting the guys writing
|
---|
3938 | the MSRs to have validated the values as canonical like they should. */
|
---|
3939 | if (!IEM_IS_CANONICAL(uNewRip))
|
---|
3940 | {
|
---|
3941 | Log(("syscall: Only available in long mode on intel -> #UD\n"));
|
---|
3942 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
3943 | }
|
---|
3944 |
|
---|
3945 | /*
|
---|
3946 | * Commit it.
|
---|
3947 | */
|
---|
3948 | Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, uNewRip));
|
---|
3949 | pCtx->rcx = pCtx->rip + cbInstr;
|
---|
3950 | pCtx->rip = uNewRip;
|
---|
3951 |
|
---|
3952 | pCtx->rflags.u &= ~X86_EFL_RF;
|
---|
3953 | pCtx->r11 = pCtx->rflags.u;
|
---|
3954 | pCtx->rflags.u &= ~pCtx->msrSFMASK;
|
---|
3955 | pCtx->rflags.u |= X86_EFL_1;
|
---|
3956 |
|
---|
3957 | pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
|
---|
3958 | pCtx->ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
|
---|
3959 | }
|
---|
3960 | else
|
---|
3961 | {
|
---|
3962 | /*
|
---|
3963 | * Commit it.
|
---|
3964 | */
|
---|
3965 | Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
|
---|
3966 | pCtx->cs, pCtx->eip, pCtx->eflags.u, uNewCs, (uint32_t)(pCtx->msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
|
---|
3967 | pCtx->rcx = pCtx->eip + cbInstr;
|
---|
3968 | pCtx->rip = pCtx->msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
|
---|
3969 | pCtx->rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
|
---|
3970 |
|
---|
3971 | pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
|
---|
3972 | pCtx->ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
|
---|
3973 | }
|
---|
3974 | pCtx->cs.Sel = uNewCs;
|
---|
3975 | pCtx->cs.ValidSel = uNewCs;
|
---|
3976 | pCtx->cs.u64Base = 0;
|
---|
3977 | pCtx->cs.u32Limit = UINT32_MAX;
|
---|
3978 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3979 |
|
---|
3980 | pCtx->ss.Sel = uNewSs;
|
---|
3981 | pCtx->ss.ValidSel = uNewSs;
|
---|
3982 | pCtx->ss.u64Base = 0;
|
---|
3983 | pCtx->ss.u32Limit = UINT32_MAX;
|
---|
3984 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3985 |
|
---|
3986 | /* Flush the prefetch buffer. */
|
---|
3987 | #ifdef IEM_WITH_CODE_TLB
|
---|
3988 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
3989 | #else
|
---|
3990 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
3991 | #endif
|
---|
3992 |
|
---|
3993 | return VINF_SUCCESS;
|
---|
3994 | }
|
---|
3995 |
|
---|
3996 |
|
---|
3997 | /**
|
---|
3998 | * Implements SYSRET (AMD and Intel64).
|
---|
3999 | */
|
---|
4000 | IEM_CIMPL_DEF_0(iemCImpl_sysret)
|
---|
4001 |
|
---|
4002 | {
|
---|
4003 | RT_NOREF_PV(cbInstr);
|
---|
4004 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4005 |
|
---|
4006 | /*
|
---|
4007 | * Check preconditions.
|
---|
4008 | *
|
---|
4009 | * Note that CPUs described in the documentation may load a few odd values
|
---|
4010 | * into CS and SS than we allow here. This has yet to be checked on real
|
---|
4011 | * hardware.
|
---|
4012 | */
|
---|
4013 | if (!(pCtx->msrEFER & MSR_K6_EFER_SCE))
|
---|
4014 | {
|
---|
4015 | Log(("sysret: Not enabled in EFER -> #UD\n"));
|
---|
4016 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
4017 | }
|
---|
4018 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(pCtx))
|
---|
4019 | {
|
---|
4020 | Log(("sysret: Only available in long mode on intel -> #UD\n"));
|
---|
4021 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
4022 | }
|
---|
4023 | if (!(pCtx->cr0 & X86_CR0_PE))
|
---|
4024 | {
|
---|
4025 | Log(("sysret: Protected mode is required -> #GP(0)\n"));
|
---|
4026 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4027 | }
|
---|
4028 | if (pVCpu->iem.s.uCpl != 0)
|
---|
4029 | {
|
---|
4030 | Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
4031 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4032 | }
|
---|
4033 |
|
---|
4034 | /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
|
---|
4035 | uint16_t uNewCs = (pCtx->msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
|
---|
4036 | uint16_t uNewSs = uNewCs + 8;
|
---|
4037 | if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
|
---|
4038 | uNewCs += 16;
|
---|
4039 | if (uNewCs == 0 || uNewSs == 0)
|
---|
4040 | {
|
---|
4041 | Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
|
---|
4042 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4043 | }
|
---|
4044 |
|
---|
4045 | /*
|
---|
4046 | * Commit it.
|
---|
4047 | */
|
---|
4048 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
4049 | {
|
---|
4050 | if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
|
---|
4051 | {
|
---|
4052 | Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
|
---|
4053 | pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, pCtx->rcx, pCtx->r11));
|
---|
4054 | /* Note! We disregard intel manual regarding the RCX cananonical
|
---|
4055 | check, ask intel+xen why AMD doesn't do it. */
|
---|
4056 | pCtx->rip = pCtx->rcx;
|
---|
4057 | pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
|
---|
4058 | | (3 << X86DESCATTR_DPL_SHIFT);
|
---|
4059 | }
|
---|
4060 | else
|
---|
4061 | {
|
---|
4062 | Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
|
---|
4063 | pCtx->cs, pCtx->rip, pCtx->rflags.u, uNewCs, pCtx->ecx, pCtx->r11));
|
---|
4064 | pCtx->rip = pCtx->ecx;
|
---|
4065 | pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
|
---|
4066 | | (3 << X86DESCATTR_DPL_SHIFT);
|
---|
4067 | }
|
---|
4068 | /** @todo testcase: See what kind of flags we can make SYSRET restore and
|
---|
4069 | * what it really ignores. RF and VM are hinted at being zero, by AMD. */
|
---|
4070 | pCtx->rflags.u = pCtx->r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
|
---|
4071 | pCtx->rflags.u |= X86_EFL_1;
|
---|
4072 | }
|
---|
4073 | else
|
---|
4074 | {
|
---|
4075 | Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pCtx->cs, pCtx->eip, pCtx->eflags.u, uNewCs, pCtx->ecx));
|
---|
4076 | pCtx->rip = pCtx->rcx;
|
---|
4077 | pCtx->rflags.u |= X86_EFL_IF;
|
---|
4078 | pCtx->cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
|
---|
4079 | | (3 << X86DESCATTR_DPL_SHIFT);
|
---|
4080 | }
|
---|
4081 | pCtx->cs.Sel = uNewCs | 3;
|
---|
4082 | pCtx->cs.ValidSel = uNewCs | 3;
|
---|
4083 | pCtx->cs.u64Base = 0;
|
---|
4084 | pCtx->cs.u32Limit = UINT32_MAX;
|
---|
4085 | pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4086 |
|
---|
4087 | pCtx->ss.Sel = uNewSs | 3;
|
---|
4088 | pCtx->ss.ValidSel = uNewSs | 3;
|
---|
4089 | pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4090 | /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
|
---|
4091 | pCtx->ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
|
---|
4092 | /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
|
---|
4093 | * on sysret. */
|
---|
4094 |
|
---|
4095 | /* Flush the prefetch buffer. */
|
---|
4096 | #ifdef IEM_WITH_CODE_TLB
|
---|
4097 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
4098 | #else
|
---|
4099 | pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
|
---|
4100 | #endif
|
---|
4101 |
|
---|
4102 | return VINF_SUCCESS;
|
---|
4103 | }
|
---|
4104 |
|
---|
4105 |
|
---|
4106 | /**
|
---|
4107 | * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
|
---|
4108 | *
|
---|
4109 | * @param iSegReg The segment register number (valid).
|
---|
4110 | * @param uSel The new selector value.
|
---|
4111 | */
|
---|
4112 | IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
|
---|
4113 | {
|
---|
4114 | /*PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);*/
|
---|
4115 | uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
|
---|
4116 | PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
|
---|
4117 |
|
---|
4118 | Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
|
---|
4119 |
|
---|
4120 | /*
|
---|
4121 | * Real mode and V8086 mode are easy.
|
---|
4122 | */
|
---|
4123 | if ( pVCpu->iem.s.enmCpuMode == IEMMODE_16BIT
|
---|
4124 | && IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
4125 | {
|
---|
4126 | *pSel = uSel;
|
---|
4127 | pHid->u64Base = (uint32_t)uSel << 4;
|
---|
4128 | pHid->ValidSel = uSel;
|
---|
4129 | pHid->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4130 | #if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
|
---|
4131 | /** @todo Does the CPU actually load limits and attributes in the
|
---|
4132 | * real/V8086 mode segment load case? It doesn't for CS in far
|
---|
4133 | * jumps... Affects unreal mode. */
|
---|
4134 | pHid->u32Limit = 0xffff;
|
---|
4135 | pHid->Attr.u = 0;
|
---|
4136 | pHid->Attr.n.u1Present = 1;
|
---|
4137 | pHid->Attr.n.u1DescType = 1;
|
---|
4138 | pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
|
---|
4139 | ? X86_SEL_TYPE_RW
|
---|
4140 | : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
|
---|
4141 | #endif
|
---|
4142 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
4143 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4144 | return VINF_SUCCESS;
|
---|
4145 | }
|
---|
4146 |
|
---|
4147 | /*
|
---|
4148 | * Protected mode.
|
---|
4149 | *
|
---|
4150 | * Check if it's a null segment selector value first, that's OK for DS, ES,
|
---|
4151 | * FS and GS. If not null, then we have to load and parse the descriptor.
|
---|
4152 | */
|
---|
4153 | if (!(uSel & X86_SEL_MASK_OFF_RPL))
|
---|
4154 | {
|
---|
4155 | Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
|
---|
4156 | if (iSegReg == X86_SREG_SS)
|
---|
4157 | {
|
---|
4158 | /* In 64-bit kernel mode, the stack can be 0 because of the way
|
---|
4159 | interrupts are dispatched. AMD seems to have a slighly more
|
---|
4160 | relaxed relationship to SS.RPL than intel does. */
|
---|
4161 | /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
|
---|
4162 | if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
|
---|
4163 | || pVCpu->iem.s.uCpl > 2
|
---|
4164 | || ( uSel != pVCpu->iem.s.uCpl
|
---|
4165 | && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
|
---|
4166 | {
|
---|
4167 | Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
|
---|
4168 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4169 | }
|
---|
4170 | }
|
---|
4171 |
|
---|
4172 | *pSel = uSel; /* Not RPL, remember :-) */
|
---|
4173 | iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
|
---|
4174 | if (iSegReg == X86_SREG_SS)
|
---|
4175 | pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
|
---|
4176 |
|
---|
4177 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
|
---|
4178 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
4179 |
|
---|
4180 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4181 | return VINF_SUCCESS;
|
---|
4182 | }
|
---|
4183 |
|
---|
4184 | /* Fetch the descriptor. */
|
---|
4185 | IEMSELDESC Desc;
|
---|
4186 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
|
---|
4187 | if (rcStrict != VINF_SUCCESS)
|
---|
4188 | return rcStrict;
|
---|
4189 |
|
---|
4190 | /* Check GPs first. */
|
---|
4191 | if (!Desc.Legacy.Gen.u1DescType)
|
---|
4192 | {
|
---|
4193 | Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
|
---|
4194 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4195 | }
|
---|
4196 | if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
|
---|
4197 | {
|
---|
4198 | if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
|
---|
4199 | || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
4200 | {
|
---|
4201 | Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
|
---|
4202 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4203 | }
|
---|
4204 | if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
|
---|
4205 | {
|
---|
4206 | Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
|
---|
4207 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4208 | }
|
---|
4209 | if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
|
---|
4210 | {
|
---|
4211 | Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
|
---|
4212 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4213 | }
|
---|
4214 | }
|
---|
4215 | else
|
---|
4216 | {
|
---|
4217 | if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
4218 | {
|
---|
4219 | Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
|
---|
4220 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4221 | }
|
---|
4222 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
4223 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
4224 | {
|
---|
4225 | #if 0 /* this is what intel says. */
|
---|
4226 | if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
|
---|
4227 | && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
4228 | {
|
---|
4229 | Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
|
---|
4230 | iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
|
---|
4231 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4232 | }
|
---|
4233 | #else /* this is what makes more sense. */
|
---|
4234 | if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
|
---|
4235 | {
|
---|
4236 | Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
|
---|
4237 | iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
|
---|
4238 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4239 | }
|
---|
4240 | if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
4241 | {
|
---|
4242 | Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
|
---|
4243 | iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
|
---|
4244 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
|
---|
4245 | }
|
---|
4246 | #endif
|
---|
4247 | }
|
---|
4248 | }
|
---|
4249 |
|
---|
4250 | /* Is it there? */
|
---|
4251 | if (!Desc.Legacy.Gen.u1Present)
|
---|
4252 | {
|
---|
4253 | Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
|
---|
4254 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
|
---|
4255 | }
|
---|
4256 |
|
---|
4257 | /* The base and limit. */
|
---|
4258 | uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
4259 | uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
4260 |
|
---|
4261 | /*
|
---|
4262 | * Ok, everything checked out fine. Now set the accessed bit before
|
---|
4263 | * committing the result into the registers.
|
---|
4264 | */
|
---|
4265 | if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
|
---|
4266 | {
|
---|
4267 | rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
|
---|
4268 | if (rcStrict != VINF_SUCCESS)
|
---|
4269 | return rcStrict;
|
---|
4270 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
|
---|
4271 | }
|
---|
4272 |
|
---|
4273 | /* commit */
|
---|
4274 | *pSel = uSel;
|
---|
4275 | pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
4276 | pHid->u32Limit = cbLimit;
|
---|
4277 | pHid->u64Base = u64Base;
|
---|
4278 | pHid->ValidSel = uSel;
|
---|
4279 | pHid->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4280 |
|
---|
4281 | /** @todo check if the hidden bits are loaded correctly for 64-bit
|
---|
4282 | * mode. */
|
---|
4283 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
|
---|
4284 |
|
---|
4285 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
4286 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4287 | return VINF_SUCCESS;
|
---|
4288 | }
|
---|
4289 |
|
---|
4290 |
|
---|
4291 | /**
|
---|
4292 | * Implements 'mov SReg, r/m'.
|
---|
4293 | *
|
---|
4294 | * @param iSegReg The segment register number (valid).
|
---|
4295 | * @param uSel The new selector value.
|
---|
4296 | */
|
---|
4297 | IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
|
---|
4298 | {
|
---|
4299 | VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
4300 | if (rcStrict == VINF_SUCCESS)
|
---|
4301 | {
|
---|
4302 | if (iSegReg == X86_SREG_SS)
|
---|
4303 | {
|
---|
4304 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4305 | EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
|
---|
4306 | }
|
---|
4307 | }
|
---|
4308 | return rcStrict;
|
---|
4309 | }
|
---|
4310 |
|
---|
4311 |
|
---|
4312 | /**
|
---|
4313 | * Implements 'pop SReg'.
|
---|
4314 | *
|
---|
4315 | * @param iSegReg The segment register number (valid).
|
---|
4316 | * @param enmEffOpSize The efficient operand size (valid).
|
---|
4317 | */
|
---|
4318 | IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
|
---|
4319 | {
|
---|
4320 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4321 | VBOXSTRICTRC rcStrict;
|
---|
4322 |
|
---|
4323 | /*
|
---|
4324 | * Read the selector off the stack and join paths with mov ss, reg.
|
---|
4325 | */
|
---|
4326 | RTUINT64U TmpRsp;
|
---|
4327 | TmpRsp.u = pCtx->rsp;
|
---|
4328 | switch (enmEffOpSize)
|
---|
4329 | {
|
---|
4330 | case IEMMODE_16BIT:
|
---|
4331 | {
|
---|
4332 | uint16_t uSel;
|
---|
4333 | rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
|
---|
4334 | if (rcStrict == VINF_SUCCESS)
|
---|
4335 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
4336 | break;
|
---|
4337 | }
|
---|
4338 |
|
---|
4339 | case IEMMODE_32BIT:
|
---|
4340 | {
|
---|
4341 | uint32_t u32Value;
|
---|
4342 | rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
|
---|
4343 | if (rcStrict == VINF_SUCCESS)
|
---|
4344 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
|
---|
4345 | break;
|
---|
4346 | }
|
---|
4347 |
|
---|
4348 | case IEMMODE_64BIT:
|
---|
4349 | {
|
---|
4350 | uint64_t u64Value;
|
---|
4351 | rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
|
---|
4352 | if (rcStrict == VINF_SUCCESS)
|
---|
4353 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
|
---|
4354 | break;
|
---|
4355 | }
|
---|
4356 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
4357 | }
|
---|
4358 |
|
---|
4359 | /*
|
---|
4360 | * Commit the stack on success.
|
---|
4361 | */
|
---|
4362 | if (rcStrict == VINF_SUCCESS)
|
---|
4363 | {
|
---|
4364 | pCtx->rsp = TmpRsp.u;
|
---|
4365 | if (iSegReg == X86_SREG_SS)
|
---|
4366 | EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
|
---|
4367 | }
|
---|
4368 | return rcStrict;
|
---|
4369 | }
|
---|
4370 |
|
---|
4371 |
|
---|
4372 | /**
|
---|
4373 | * Implements lgs, lfs, les, lds & lss.
|
---|
4374 | */
|
---|
4375 | IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
|
---|
4376 | uint16_t, uSel,
|
---|
4377 | uint64_t, offSeg,
|
---|
4378 | uint8_t, iSegReg,
|
---|
4379 | uint8_t, iGReg,
|
---|
4380 | IEMMODE, enmEffOpSize)
|
---|
4381 | {
|
---|
4382 | /*PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);*/
|
---|
4383 | VBOXSTRICTRC rcStrict;
|
---|
4384 |
|
---|
4385 | /*
|
---|
4386 | * Use iemCImpl_LoadSReg to do the tricky segment register loading.
|
---|
4387 | */
|
---|
4388 | /** @todo verify and test that mov, pop and lXs works the segment
|
---|
4389 | * register loading in the exact same way. */
|
---|
4390 | rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
|
---|
4391 | if (rcStrict == VINF_SUCCESS)
|
---|
4392 | {
|
---|
4393 | switch (enmEffOpSize)
|
---|
4394 | {
|
---|
4395 | case IEMMODE_16BIT:
|
---|
4396 | *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
|
---|
4397 | break;
|
---|
4398 | case IEMMODE_32BIT:
|
---|
4399 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
|
---|
4400 | break;
|
---|
4401 | case IEMMODE_64BIT:
|
---|
4402 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
|
---|
4403 | break;
|
---|
4404 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
4405 | }
|
---|
4406 | }
|
---|
4407 |
|
---|
4408 | return rcStrict;
|
---|
4409 | }
|
---|
4410 |
|
---|
4411 |
|
---|
4412 | /**
|
---|
4413 | * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
|
---|
4414 | *
|
---|
4415 | * @retval VINF_SUCCESS on success.
|
---|
4416 | * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
|
---|
4417 | * @retval iemMemFetchSysU64 return value.
|
---|
4418 | *
|
---|
4419 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
4420 | * @param uSel The selector value.
|
---|
4421 | * @param fAllowSysDesc Whether system descriptors are OK or not.
|
---|
4422 | * @param pDesc Where to return the descriptor on success.
|
---|
4423 | */
|
---|
4424 | static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPU pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
|
---|
4425 | {
|
---|
4426 | pDesc->Long.au64[0] = 0;
|
---|
4427 | pDesc->Long.au64[1] = 0;
|
---|
4428 |
|
---|
4429 | if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
|
---|
4430 | return VINF_IEM_SELECTOR_NOT_OK;
|
---|
4431 |
|
---|
4432 | /* Within the table limits? */
|
---|
4433 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4434 | RTGCPTR GCPtrBase;
|
---|
4435 | if (uSel & X86_SEL_LDT)
|
---|
4436 | {
|
---|
4437 | if ( !pCtx->ldtr.Attr.n.u1Present
|
---|
4438 | || (uSel | X86_SEL_RPL_LDT) > pCtx->ldtr.u32Limit )
|
---|
4439 | return VINF_IEM_SELECTOR_NOT_OK;
|
---|
4440 | GCPtrBase = pCtx->ldtr.u64Base;
|
---|
4441 | }
|
---|
4442 | else
|
---|
4443 | {
|
---|
4444 | if ((uSel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
|
---|
4445 | return VINF_IEM_SELECTOR_NOT_OK;
|
---|
4446 | GCPtrBase = pCtx->gdtr.pGdt;
|
---|
4447 | }
|
---|
4448 |
|
---|
4449 | /* Fetch the descriptor. */
|
---|
4450 | VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
|
---|
4451 | if (rcStrict != VINF_SUCCESS)
|
---|
4452 | return rcStrict;
|
---|
4453 | if (!pDesc->Legacy.Gen.u1DescType)
|
---|
4454 | {
|
---|
4455 | if (!fAllowSysDesc)
|
---|
4456 | return VINF_IEM_SELECTOR_NOT_OK;
|
---|
4457 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
4458 | {
|
---|
4459 | rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
|
---|
4460 | if (rcStrict != VINF_SUCCESS)
|
---|
4461 | return rcStrict;
|
---|
4462 | }
|
---|
4463 |
|
---|
4464 | }
|
---|
4465 |
|
---|
4466 | return VINF_SUCCESS;
|
---|
4467 | }
|
---|
4468 |
|
---|
4469 |
|
---|
4470 | /**
|
---|
4471 | * Implements verr (fWrite = false) and verw (fWrite = true).
|
---|
4472 | */
|
---|
4473 | IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
|
---|
4474 | {
|
---|
4475 | Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
|
---|
4476 |
|
---|
4477 | /** @todo figure whether the accessed bit is set or not. */
|
---|
4478 |
|
---|
4479 | bool fAccessible = true;
|
---|
4480 | IEMSELDESC Desc;
|
---|
4481 | VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
|
---|
4482 | if (rcStrict == VINF_SUCCESS)
|
---|
4483 | {
|
---|
4484 | /* Check the descriptor, order doesn't matter much here. */
|
---|
4485 | if ( !Desc.Legacy.Gen.u1DescType
|
---|
4486 | || !Desc.Legacy.Gen.u1Present)
|
---|
4487 | fAccessible = false;
|
---|
4488 | else
|
---|
4489 | {
|
---|
4490 | if ( fWrite
|
---|
4491 | ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
|
---|
4492 | : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
4493 | fAccessible = false;
|
---|
4494 |
|
---|
4495 | /** @todo testcase for the conforming behavior. */
|
---|
4496 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
4497 | != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
|
---|
4498 | {
|
---|
4499 | if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
|
---|
4500 | fAccessible = false;
|
---|
4501 | else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
4502 | fAccessible = false;
|
---|
4503 | }
|
---|
4504 | }
|
---|
4505 |
|
---|
4506 | }
|
---|
4507 | else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
|
---|
4508 | fAccessible = false;
|
---|
4509 | else
|
---|
4510 | return rcStrict;
|
---|
4511 |
|
---|
4512 | /* commit */
|
---|
4513 | IEM_GET_CTX(pVCpu)->eflags.Bits.u1ZF = fAccessible;
|
---|
4514 |
|
---|
4515 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4516 | return VINF_SUCCESS;
|
---|
4517 | }
|
---|
4518 |
|
---|
4519 |
|
---|
4520 | /**
|
---|
4521 | * Implements LAR and LSL with 64-bit operand size.
|
---|
4522 | *
|
---|
4523 | * @returns VINF_SUCCESS.
|
---|
4524 | * @param pu16Dst Pointer to the destination register.
|
---|
4525 | * @param uSel The selector to load details for.
|
---|
4526 | * @param fIsLar true = LAR, false = LSL.
|
---|
4527 | */
|
---|
4528 | IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
|
---|
4529 | {
|
---|
4530 | Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
|
---|
4531 |
|
---|
4532 | /** @todo figure whether the accessed bit is set or not. */
|
---|
4533 |
|
---|
4534 | bool fDescOk = true;
|
---|
4535 | IEMSELDESC Desc;
|
---|
4536 | VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
|
---|
4537 | if (rcStrict == VINF_SUCCESS)
|
---|
4538 | {
|
---|
4539 | /*
|
---|
4540 | * Check the descriptor type.
|
---|
4541 | */
|
---|
4542 | if (!Desc.Legacy.Gen.u1DescType)
|
---|
4543 | {
|
---|
4544 | if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
|
---|
4545 | {
|
---|
4546 | if (Desc.Long.Gen.u5Zeros)
|
---|
4547 | fDescOk = false;
|
---|
4548 | else
|
---|
4549 | switch (Desc.Long.Gen.u4Type)
|
---|
4550 | {
|
---|
4551 | /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
|
---|
4552 | case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
|
---|
4553 | case AMD64_SEL_TYPE_SYS_TSS_BUSY:
|
---|
4554 | case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
|
---|
4555 | break;
|
---|
4556 | case AMD64_SEL_TYPE_SYS_CALL_GATE:
|
---|
4557 | fDescOk = fIsLar;
|
---|
4558 | break;
|
---|
4559 | default:
|
---|
4560 | fDescOk = false;
|
---|
4561 | break;
|
---|
4562 | }
|
---|
4563 | }
|
---|
4564 | else
|
---|
4565 | {
|
---|
4566 | switch (Desc.Long.Gen.u4Type)
|
---|
4567 | {
|
---|
4568 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
4569 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
4570 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
4571 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
4572 | case X86_SEL_TYPE_SYS_LDT:
|
---|
4573 | break;
|
---|
4574 | case X86_SEL_TYPE_SYS_286_CALL_GATE:
|
---|
4575 | case X86_SEL_TYPE_SYS_TASK_GATE:
|
---|
4576 | case X86_SEL_TYPE_SYS_386_CALL_GATE:
|
---|
4577 | fDescOk = fIsLar;
|
---|
4578 | break;
|
---|
4579 | default:
|
---|
4580 | fDescOk = false;
|
---|
4581 | break;
|
---|
4582 | }
|
---|
4583 | }
|
---|
4584 | }
|
---|
4585 | if (fDescOk)
|
---|
4586 | {
|
---|
4587 | /*
|
---|
4588 | * Check the RPL/DPL/CPL interaction..
|
---|
4589 | */
|
---|
4590 | /** @todo testcase for the conforming behavior. */
|
---|
4591 | if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
|
---|
4592 | || !Desc.Legacy.Gen.u1DescType)
|
---|
4593 | {
|
---|
4594 | if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
|
---|
4595 | fDescOk = false;
|
---|
4596 | else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
|
---|
4597 | fDescOk = false;
|
---|
4598 | }
|
---|
4599 | }
|
---|
4600 |
|
---|
4601 | if (fDescOk)
|
---|
4602 | {
|
---|
4603 | /*
|
---|
4604 | * All fine, start committing the result.
|
---|
4605 | */
|
---|
4606 | if (fIsLar)
|
---|
4607 | *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
|
---|
4608 | else
|
---|
4609 | *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
4610 | }
|
---|
4611 |
|
---|
4612 | }
|
---|
4613 | else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
|
---|
4614 | fDescOk = false;
|
---|
4615 | else
|
---|
4616 | return rcStrict;
|
---|
4617 |
|
---|
4618 | /* commit flags value and advance rip. */
|
---|
4619 | IEM_GET_CTX(pVCpu)->eflags.Bits.u1ZF = fDescOk;
|
---|
4620 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4621 |
|
---|
4622 | return VINF_SUCCESS;
|
---|
4623 | }
|
---|
4624 |
|
---|
4625 |
|
---|
4626 | /**
|
---|
4627 | * Implements LAR and LSL with 16-bit operand size.
|
---|
4628 | *
|
---|
4629 | * @returns VINF_SUCCESS.
|
---|
4630 | * @param pu16Dst Pointer to the destination register.
|
---|
4631 | * @param u16Sel The selector to load details for.
|
---|
4632 | * @param fIsLar true = LAR, false = LSL.
|
---|
4633 | */
|
---|
4634 | IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
|
---|
4635 | {
|
---|
4636 | uint64_t u64TmpDst = *pu16Dst;
|
---|
4637 | IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
|
---|
4638 | *pu16Dst = u64TmpDst;
|
---|
4639 | return VINF_SUCCESS;
|
---|
4640 | }
|
---|
4641 |
|
---|
4642 |
|
---|
4643 | /**
|
---|
4644 | * Implements lgdt.
|
---|
4645 | *
|
---|
4646 | * @param iEffSeg The segment of the new gdtr contents
|
---|
4647 | * @param GCPtrEffSrc The address of the new gdtr contents.
|
---|
4648 | * @param enmEffOpSize The effective operand size.
|
---|
4649 | */
|
---|
4650 | IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
|
---|
4651 | {
|
---|
4652 | if (pVCpu->iem.s.uCpl != 0)
|
---|
4653 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4654 | Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM);
|
---|
4655 |
|
---|
4656 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
|
---|
4657 | {
|
---|
4658 | Log(("lgdt: Guest intercept -> #VMEXIT\n"));
|
---|
4659 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
4660 | }
|
---|
4661 |
|
---|
4662 | /*
|
---|
4663 | * Fetch the limit and base address.
|
---|
4664 | */
|
---|
4665 | uint16_t cbLimit;
|
---|
4666 | RTGCPTR GCPtrBase;
|
---|
4667 | VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
|
---|
4668 | if (rcStrict == VINF_SUCCESS)
|
---|
4669 | {
|
---|
4670 | if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
|
---|
4671 | || X86_IS_CANONICAL(GCPtrBase))
|
---|
4672 | {
|
---|
4673 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
4674 | rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
|
---|
4675 | else
|
---|
4676 | {
|
---|
4677 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4678 | pCtx->gdtr.cbGdt = cbLimit;
|
---|
4679 | pCtx->gdtr.pGdt = GCPtrBase;
|
---|
4680 | }
|
---|
4681 | if (rcStrict == VINF_SUCCESS)
|
---|
4682 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4683 | }
|
---|
4684 | else
|
---|
4685 | {
|
---|
4686 | Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
|
---|
4687 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4688 | }
|
---|
4689 | }
|
---|
4690 | return rcStrict;
|
---|
4691 | }
|
---|
4692 |
|
---|
4693 |
|
---|
4694 | /**
|
---|
4695 | * Implements sgdt.
|
---|
4696 | *
|
---|
4697 | * @param iEffSeg The segment where to store the gdtr content.
|
---|
4698 | * @param GCPtrEffDst The address where to store the gdtr content.
|
---|
4699 | */
|
---|
4700 | IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
|
---|
4701 | {
|
---|
4702 | /*
|
---|
4703 | * Join paths with sidt.
|
---|
4704 | * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
|
---|
4705 | * you really must know.
|
---|
4706 | */
|
---|
4707 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4708 | VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pCtx->gdtr.cbGdt, pCtx->gdtr.pGdt, iEffSeg, GCPtrEffDst);
|
---|
4709 | if (rcStrict == VINF_SUCCESS)
|
---|
4710 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4711 | return rcStrict;
|
---|
4712 | }
|
---|
4713 |
|
---|
4714 |
|
---|
4715 | /**
|
---|
4716 | * Implements lidt.
|
---|
4717 | *
|
---|
4718 | * @param iEffSeg The segment of the new idtr contents
|
---|
4719 | * @param GCPtrEffSrc The address of the new idtr contents.
|
---|
4720 | * @param enmEffOpSize The effective operand size.
|
---|
4721 | */
|
---|
4722 | IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
|
---|
4723 | {
|
---|
4724 | if (pVCpu->iem.s.uCpl != 0)
|
---|
4725 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4726 | Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM);
|
---|
4727 |
|
---|
4728 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
|
---|
4729 | {
|
---|
4730 | Log(("lidt: Guest intercept -> #VMEXIT\n"));
|
---|
4731 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
4732 | }
|
---|
4733 |
|
---|
4734 | /*
|
---|
4735 | * Fetch the limit and base address.
|
---|
4736 | */
|
---|
4737 | uint16_t cbLimit;
|
---|
4738 | RTGCPTR GCPtrBase;
|
---|
4739 | VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
|
---|
4740 | if (rcStrict == VINF_SUCCESS)
|
---|
4741 | {
|
---|
4742 | if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
|
---|
4743 | || X86_IS_CANONICAL(GCPtrBase))
|
---|
4744 | {
|
---|
4745 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
4746 | CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
|
---|
4747 | else
|
---|
4748 | {
|
---|
4749 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4750 | pCtx->idtr.cbIdt = cbLimit;
|
---|
4751 | pCtx->idtr.pIdt = GCPtrBase;
|
---|
4752 | }
|
---|
4753 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4754 | }
|
---|
4755 | else
|
---|
4756 | {
|
---|
4757 | Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
|
---|
4758 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4759 | }
|
---|
4760 | }
|
---|
4761 | return rcStrict;
|
---|
4762 | }
|
---|
4763 |
|
---|
4764 |
|
---|
4765 | /**
|
---|
4766 | * Implements sidt.
|
---|
4767 | *
|
---|
4768 | * @param iEffSeg The segment where to store the idtr content.
|
---|
4769 | * @param GCPtrEffDst The address where to store the idtr content.
|
---|
4770 | */
|
---|
4771 | IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
|
---|
4772 | {
|
---|
4773 | /*
|
---|
4774 | * Join paths with sgdt.
|
---|
4775 | * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
|
---|
4776 | * you really must know.
|
---|
4777 | */
|
---|
4778 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4779 | VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pCtx->idtr.cbIdt, pCtx->idtr.pIdt, iEffSeg, GCPtrEffDst);
|
---|
4780 | if (rcStrict == VINF_SUCCESS)
|
---|
4781 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4782 | return rcStrict;
|
---|
4783 | }
|
---|
4784 |
|
---|
4785 |
|
---|
4786 | /**
|
---|
4787 | * Implements lldt.
|
---|
4788 | *
|
---|
4789 | * @param uNewLdt The new LDT selector value.
|
---|
4790 | */
|
---|
4791 | IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
|
---|
4792 | {
|
---|
4793 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4794 |
|
---|
4795 | /*
|
---|
4796 | * Check preconditions.
|
---|
4797 | */
|
---|
4798 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
4799 | {
|
---|
4800 | Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
|
---|
4801 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
4802 | }
|
---|
4803 | if (pVCpu->iem.s.uCpl != 0)
|
---|
4804 | {
|
---|
4805 | Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
|
---|
4806 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4807 | }
|
---|
4808 | if (uNewLdt & X86_SEL_LDT)
|
---|
4809 | {
|
---|
4810 | Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
|
---|
4811 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
|
---|
4812 | }
|
---|
4813 |
|
---|
4814 | /*
|
---|
4815 | * Now, loading a NULL selector is easy.
|
---|
4816 | */
|
---|
4817 | if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
|
---|
4818 | {
|
---|
4819 | /* Nested-guest SVM intercept. */
|
---|
4820 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
|
---|
4821 | {
|
---|
4822 | Log(("lldt: Guest intercept -> #VMEXIT\n"));
|
---|
4823 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
4824 | }
|
---|
4825 |
|
---|
4826 | Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
|
---|
4827 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
4828 | CPUMSetGuestLDTR(pVCpu, uNewLdt);
|
---|
4829 | else
|
---|
4830 | pCtx->ldtr.Sel = uNewLdt;
|
---|
4831 | pCtx->ldtr.ValidSel = uNewLdt;
|
---|
4832 | pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4833 | if (IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
4834 | {
|
---|
4835 | pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE;
|
---|
4836 | pCtx->ldtr.u64Base = pCtx->ldtr.u32Limit = 0; /* For verfication against REM. */
|
---|
4837 | }
|
---|
4838 | else if (IEM_IS_GUEST_CPU_AMD(pVCpu))
|
---|
4839 | {
|
---|
4840 | /* AMD-V seems to leave the base and limit alone. */
|
---|
4841 | pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE;
|
---|
4842 | }
|
---|
4843 | else if (!IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
4844 | {
|
---|
4845 | /* VT-x (Intel 3960x) seems to be doing the following. */
|
---|
4846 | pCtx->ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
|
---|
4847 | pCtx->ldtr.u64Base = 0;
|
---|
4848 | pCtx->ldtr.u32Limit = UINT32_MAX;
|
---|
4849 | }
|
---|
4850 |
|
---|
4851 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4852 | return VINF_SUCCESS;
|
---|
4853 | }
|
---|
4854 |
|
---|
4855 | /*
|
---|
4856 | * Read the descriptor.
|
---|
4857 | */
|
---|
4858 | IEMSELDESC Desc;
|
---|
4859 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
|
---|
4860 | if (rcStrict != VINF_SUCCESS)
|
---|
4861 | return rcStrict;
|
---|
4862 |
|
---|
4863 | /* Check GPs first. */
|
---|
4864 | if (Desc.Legacy.Gen.u1DescType)
|
---|
4865 | {
|
---|
4866 | Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
|
---|
4867 | return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
4868 | }
|
---|
4869 | if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
|
---|
4870 | {
|
---|
4871 | Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
|
---|
4872 | return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
4873 | }
|
---|
4874 | uint64_t u64Base;
|
---|
4875 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
4876 | u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
4877 | else
|
---|
4878 | {
|
---|
4879 | if (Desc.Long.Gen.u5Zeros)
|
---|
4880 | {
|
---|
4881 | Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
|
---|
4882 | return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
4883 | }
|
---|
4884 |
|
---|
4885 | u64Base = X86DESC64_BASE(&Desc.Long);
|
---|
4886 | if (!IEM_IS_CANONICAL(u64Base))
|
---|
4887 | {
|
---|
4888 | Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
|
---|
4889 | return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
4890 | }
|
---|
4891 | }
|
---|
4892 |
|
---|
4893 | /* NP */
|
---|
4894 | if (!Desc.Legacy.Gen.u1Present)
|
---|
4895 | {
|
---|
4896 | Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
|
---|
4897 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
|
---|
4898 | }
|
---|
4899 |
|
---|
4900 | /* Nested-guest SVM intercept. */
|
---|
4901 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
|
---|
4902 | {
|
---|
4903 | Log(("lldt: Guest intercept -> #VMEXIT\n"));
|
---|
4904 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
4905 | }
|
---|
4906 |
|
---|
4907 | /*
|
---|
4908 | * It checks out alright, update the registers.
|
---|
4909 | */
|
---|
4910 | /** @todo check if the actual value is loaded or if the RPL is dropped */
|
---|
4911 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
4912 | CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
|
---|
4913 | else
|
---|
4914 | pCtx->ldtr.Sel = uNewLdt & X86_SEL_MASK_OFF_RPL;
|
---|
4915 | pCtx->ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
|
---|
4916 | pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4917 | pCtx->ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
4918 | pCtx->ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
4919 | pCtx->ldtr.u64Base = u64Base;
|
---|
4920 |
|
---|
4921 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4922 | return VINF_SUCCESS;
|
---|
4923 | }
|
---|
4924 |
|
---|
4925 |
|
---|
4926 | /**
|
---|
4927 | * Implements lldt.
|
---|
4928 | *
|
---|
4929 | * @param uNewLdt The new LDT selector value.
|
---|
4930 | */
|
---|
4931 | IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
|
---|
4932 | {
|
---|
4933 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
4934 |
|
---|
4935 | /*
|
---|
4936 | * Check preconditions.
|
---|
4937 | */
|
---|
4938 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
4939 | {
|
---|
4940 | Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
|
---|
4941 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
4942 | }
|
---|
4943 | if (pVCpu->iem.s.uCpl != 0)
|
---|
4944 | {
|
---|
4945 | Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
|
---|
4946 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4947 | }
|
---|
4948 | if (uNewTr & X86_SEL_LDT)
|
---|
4949 | {
|
---|
4950 | Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
|
---|
4951 | return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
|
---|
4952 | }
|
---|
4953 | if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
|
---|
4954 | {
|
---|
4955 | Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
|
---|
4956 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4957 | }
|
---|
4958 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
|
---|
4959 | {
|
---|
4960 | Log(("ltr: Guest intercept -> #VMEXIT\n"));
|
---|
4961 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
4962 | }
|
---|
4963 |
|
---|
4964 | /*
|
---|
4965 | * Read the descriptor.
|
---|
4966 | */
|
---|
4967 | IEMSELDESC Desc;
|
---|
4968 | VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
|
---|
4969 | if (rcStrict != VINF_SUCCESS)
|
---|
4970 | return rcStrict;
|
---|
4971 |
|
---|
4972 | /* Check GPs first. */
|
---|
4973 | if (Desc.Legacy.Gen.u1DescType)
|
---|
4974 | {
|
---|
4975 | Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
|
---|
4976 | return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
|
---|
4977 | }
|
---|
4978 | if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
|
---|
4979 | && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
|
---|
4980 | || IEM_IS_LONG_MODE(pVCpu)) )
|
---|
4981 | {
|
---|
4982 | Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
|
---|
4983 | return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
|
---|
4984 | }
|
---|
4985 | uint64_t u64Base;
|
---|
4986 | if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
4987 | u64Base = X86DESC_BASE(&Desc.Legacy);
|
---|
4988 | else
|
---|
4989 | {
|
---|
4990 | if (Desc.Long.Gen.u5Zeros)
|
---|
4991 | {
|
---|
4992 | Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
|
---|
4993 | return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
|
---|
4994 | }
|
---|
4995 |
|
---|
4996 | u64Base = X86DESC64_BASE(&Desc.Long);
|
---|
4997 | if (!IEM_IS_CANONICAL(u64Base))
|
---|
4998 | {
|
---|
4999 | Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
|
---|
5000 | return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
|
---|
5001 | }
|
---|
5002 | }
|
---|
5003 |
|
---|
5004 | /* NP */
|
---|
5005 | if (!Desc.Legacy.Gen.u1Present)
|
---|
5006 | {
|
---|
5007 | Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
|
---|
5008 | return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
|
---|
5009 | }
|
---|
5010 |
|
---|
5011 | /*
|
---|
5012 | * Set it busy.
|
---|
5013 | * Note! Intel says this should lock down the whole descriptor, but we'll
|
---|
5014 | * restrict our selves to 32-bit for now due to lack of inline
|
---|
5015 | * assembly and such.
|
---|
5016 | */
|
---|
5017 | void *pvDesc;
|
---|
5018 | rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pCtx->gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
|
---|
5019 | if (rcStrict != VINF_SUCCESS)
|
---|
5020 | return rcStrict;
|
---|
5021 | switch ((uintptr_t)pvDesc & 3)
|
---|
5022 | {
|
---|
5023 | case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
|
---|
5024 | case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
|
---|
5025 | case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
|
---|
5026 | case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
|
---|
5027 | }
|
---|
5028 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
|
---|
5029 | if (rcStrict != VINF_SUCCESS)
|
---|
5030 | return rcStrict;
|
---|
5031 | Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
|
---|
5032 |
|
---|
5033 | /*
|
---|
5034 | * It checks out alright, update the registers.
|
---|
5035 | */
|
---|
5036 | /** @todo check if the actual value is loaded or if the RPL is dropped */
|
---|
5037 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5038 | CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
|
---|
5039 | else
|
---|
5040 | pCtx->tr.Sel = uNewTr & X86_SEL_MASK_OFF_RPL;
|
---|
5041 | pCtx->tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
|
---|
5042 | pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
5043 | pCtx->tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
|
---|
5044 | pCtx->tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
|
---|
5045 | pCtx->tr.u64Base = u64Base;
|
---|
5046 |
|
---|
5047 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5048 | return VINF_SUCCESS;
|
---|
5049 | }
|
---|
5050 |
|
---|
5051 |
|
---|
5052 | /**
|
---|
5053 | * Implements mov GReg,CRx.
|
---|
5054 | *
|
---|
5055 | * @param iGReg The general register to store the CRx value in.
|
---|
5056 | * @param iCrReg The CRx register to read (valid).
|
---|
5057 | */
|
---|
5058 | IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
|
---|
5059 | {
|
---|
5060 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5061 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5062 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5063 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
5064 |
|
---|
5065 | if (IEM_IS_SVM_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
|
---|
5066 | {
|
---|
5067 | Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
|
---|
5068 | IEM_RETURN_SVM_NST_GST_CRX_VMEXIT(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
|
---|
5069 | }
|
---|
5070 |
|
---|
5071 | /* read it */
|
---|
5072 | uint64_t crX;
|
---|
5073 | switch (iCrReg)
|
---|
5074 | {
|
---|
5075 | case 0:
|
---|
5076 | crX = pCtx->cr0;
|
---|
5077 | if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
|
---|
5078 | crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
|
---|
5079 | break;
|
---|
5080 | case 2: crX = pCtx->cr2; break;
|
---|
5081 | case 3: crX = pCtx->cr3; break;
|
---|
5082 | case 4: crX = pCtx->cr4; break;
|
---|
5083 | case 8:
|
---|
5084 | {
|
---|
5085 | uint8_t uTpr;
|
---|
5086 | int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
|
---|
5087 | if (RT_SUCCESS(rc))
|
---|
5088 | crX = uTpr >> 4;
|
---|
5089 | else
|
---|
5090 | crX = 0;
|
---|
5091 | break;
|
---|
5092 | }
|
---|
5093 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
|
---|
5094 | }
|
---|
5095 |
|
---|
5096 | /* store it */
|
---|
5097 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5098 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
|
---|
5099 | else
|
---|
5100 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
|
---|
5101 |
|
---|
5102 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5103 | return VINF_SUCCESS;
|
---|
5104 | }
|
---|
5105 |
|
---|
5106 |
|
---|
5107 | /**
|
---|
5108 | * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
|
---|
5109 | *
|
---|
5110 | * @param iCrReg The CRx register to write (valid).
|
---|
5111 | * @param uNewCrX The new value.
|
---|
5112 | * @param enmAccessCrx The instruction that caused the CrX load.
|
---|
5113 | * @param iGReg The general register in case of a 'mov CRx,GReg'
|
---|
5114 | * instruction.
|
---|
5115 | */
|
---|
5116 | IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
|
---|
5117 | {
|
---|
5118 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5119 | VBOXSTRICTRC rcStrict;
|
---|
5120 | int rc;
|
---|
5121 | #ifndef VBOX_WITH_NESTED_HWVIRT
|
---|
5122 | RT_NOREF2(iGReg, enmAccessCrX);
|
---|
5123 | #endif
|
---|
5124 |
|
---|
5125 | /*
|
---|
5126 | * Try store it.
|
---|
5127 | * Unfortunately, CPUM only does a tiny bit of the work.
|
---|
5128 | */
|
---|
5129 | switch (iCrReg)
|
---|
5130 | {
|
---|
5131 | case 0:
|
---|
5132 | {
|
---|
5133 | /*
|
---|
5134 | * Perform checks.
|
---|
5135 | */
|
---|
5136 | uint64_t const uOldCrX = pCtx->cr0;
|
---|
5137 | uint32_t const fValid = X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS
|
---|
5138 | | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM
|
---|
5139 | | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG;
|
---|
5140 |
|
---|
5141 | /* ET is hardcoded on 486 and later. */
|
---|
5142 | if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
|
---|
5143 | uNewCrX |= X86_CR0_ET;
|
---|
5144 | /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
|
---|
5145 | else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
|
---|
5146 | {
|
---|
5147 | uNewCrX &= fValid;
|
---|
5148 | uNewCrX |= X86_CR0_ET;
|
---|
5149 | }
|
---|
5150 | else
|
---|
5151 | uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
|
---|
5152 |
|
---|
5153 | /* Check for reserved bits. */
|
---|
5154 | if (uNewCrX & ~(uint64_t)fValid)
|
---|
5155 | {
|
---|
5156 | Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
|
---|
5157 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5158 | }
|
---|
5159 |
|
---|
5160 | /* Check for invalid combinations. */
|
---|
5161 | if ( (uNewCrX & X86_CR0_PG)
|
---|
5162 | && !(uNewCrX & X86_CR0_PE) )
|
---|
5163 | {
|
---|
5164 | Log(("Trying to set CR0.PG without CR0.PE\n"));
|
---|
5165 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5166 | }
|
---|
5167 |
|
---|
5168 | if ( !(uNewCrX & X86_CR0_CD)
|
---|
5169 | && (uNewCrX & X86_CR0_NW) )
|
---|
5170 | {
|
---|
5171 | Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
|
---|
5172 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5173 | }
|
---|
5174 |
|
---|
5175 | /* Long mode consistency checks. */
|
---|
5176 | if ( (uNewCrX & X86_CR0_PG)
|
---|
5177 | && !(uOldCrX & X86_CR0_PG)
|
---|
5178 | && (pCtx->msrEFER & MSR_K6_EFER_LME) )
|
---|
5179 | {
|
---|
5180 | if (!(pCtx->cr4 & X86_CR4_PAE))
|
---|
5181 | {
|
---|
5182 | Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
|
---|
5183 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5184 | }
|
---|
5185 | if (pCtx->cs.Attr.n.u1Long)
|
---|
5186 | {
|
---|
5187 | Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
|
---|
5188 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5189 | }
|
---|
5190 | }
|
---|
5191 |
|
---|
5192 | /** @todo check reserved PDPTR bits as AMD states. */
|
---|
5193 |
|
---|
5194 | /*
|
---|
5195 | * SVM nested-guest CR0 write intercepts.
|
---|
5196 | */
|
---|
5197 | if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
|
---|
5198 | {
|
---|
5199 | Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
|
---|
5200 | IEM_RETURN_SVM_NST_GST_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
|
---|
5201 | }
|
---|
5202 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITES))
|
---|
5203 | {
|
---|
5204 | /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
|
---|
5205 | if ( enmAccessCrX == IEMACCESSCRX_LMSW
|
---|
5206 | || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
|
---|
5207 | {
|
---|
5208 | Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
|
---|
5209 | Log(("iemCImpl_load_Cr%#x: TS/MP bit changed or lmsw instr: Guest intercept -> #VMEXIT\n", iCrReg));
|
---|
5210 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_CR0_SEL_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
5211 | }
|
---|
5212 | }
|
---|
5213 |
|
---|
5214 | /*
|
---|
5215 | * Change CR0.
|
---|
5216 | */
|
---|
5217 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
5218 | CPUMSetGuestCR0(pVCpu, uNewCrX);
|
---|
5219 | else
|
---|
5220 | pCtx->cr0 = uNewCrX;
|
---|
5221 | Assert(pCtx->cr0 == uNewCrX);
|
---|
5222 |
|
---|
5223 | /*
|
---|
5224 | * Change EFER.LMA if entering or leaving long mode.
|
---|
5225 | */
|
---|
5226 | if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
|
---|
5227 | && (pCtx->msrEFER & MSR_K6_EFER_LME) )
|
---|
5228 | {
|
---|
5229 | uint64_t NewEFER = pCtx->msrEFER;
|
---|
5230 | if (uNewCrX & X86_CR0_PG)
|
---|
5231 | NewEFER |= MSR_K6_EFER_LMA;
|
---|
5232 | else
|
---|
5233 | NewEFER &= ~MSR_K6_EFER_LMA;
|
---|
5234 |
|
---|
5235 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5236 | CPUMSetGuestEFER(pVCpu, NewEFER);
|
---|
5237 | else
|
---|
5238 | pCtx->msrEFER = NewEFER;
|
---|
5239 | Assert(pCtx->msrEFER == NewEFER);
|
---|
5240 | }
|
---|
5241 |
|
---|
5242 | /*
|
---|
5243 | * Inform PGM.
|
---|
5244 | */
|
---|
5245 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5246 | {
|
---|
5247 | if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
|
---|
5248 | != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
|
---|
5249 | {
|
---|
5250 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
|
---|
5251 | AssertRCReturn(rc, rc);
|
---|
5252 | /* ignore informational status codes */
|
---|
5253 | }
|
---|
5254 | rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
5255 | }
|
---|
5256 | else
|
---|
5257 | rcStrict = VINF_SUCCESS;
|
---|
5258 |
|
---|
5259 | #ifdef IN_RC
|
---|
5260 | /* Return to ring-3 for rescheduling if WP or AM changes. */
|
---|
5261 | if ( rcStrict == VINF_SUCCESS
|
---|
5262 | && ( (uNewCrX & (X86_CR0_WP | X86_CR0_AM))
|
---|
5263 | != (uOldCrX & (X86_CR0_WP | X86_CR0_AM))) )
|
---|
5264 | rcStrict = VINF_EM_RESCHEDULE;
|
---|
5265 | #endif
|
---|
5266 | break;
|
---|
5267 | }
|
---|
5268 |
|
---|
5269 | /*
|
---|
5270 | * CR2 can be changed without any restrictions.
|
---|
5271 | */
|
---|
5272 | case 2:
|
---|
5273 | {
|
---|
5274 | if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
|
---|
5275 | {
|
---|
5276 | Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
|
---|
5277 | IEM_RETURN_SVM_NST_GST_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
|
---|
5278 | }
|
---|
5279 | pCtx->cr2 = uNewCrX;
|
---|
5280 | rcStrict = VINF_SUCCESS;
|
---|
5281 | break;
|
---|
5282 | }
|
---|
5283 |
|
---|
5284 | /*
|
---|
5285 | * CR3 is relatively simple, although AMD and Intel have different
|
---|
5286 | * accounts of how setting reserved bits are handled. We take intel's
|
---|
5287 | * word for the lower bits and AMD's for the high bits (63:52). The
|
---|
5288 | * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
|
---|
5289 | * on this.
|
---|
5290 | */
|
---|
5291 | /** @todo Testcase: Setting reserved bits in CR3, especially before
|
---|
5292 | * enabling paging. */
|
---|
5293 | case 3:
|
---|
5294 | {
|
---|
5295 | /* check / mask the value. */
|
---|
5296 | if (uNewCrX & UINT64_C(0xfff0000000000000))
|
---|
5297 | {
|
---|
5298 | Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
|
---|
5299 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5300 | }
|
---|
5301 |
|
---|
5302 | uint64_t fValid;
|
---|
5303 | if ( (pCtx->cr4 & X86_CR4_PAE)
|
---|
5304 | && (pCtx->msrEFER & MSR_K6_EFER_LME))
|
---|
5305 | fValid = UINT64_C(0x000fffffffffffff);
|
---|
5306 | else
|
---|
5307 | fValid = UINT64_C(0xffffffff);
|
---|
5308 | if (uNewCrX & ~fValid)
|
---|
5309 | {
|
---|
5310 | Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
|
---|
5311 | uNewCrX, uNewCrX & ~fValid));
|
---|
5312 | uNewCrX &= fValid;
|
---|
5313 | }
|
---|
5314 |
|
---|
5315 | if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
|
---|
5316 | {
|
---|
5317 | Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
|
---|
5318 | IEM_RETURN_SVM_NST_GST_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
|
---|
5319 | }
|
---|
5320 |
|
---|
5321 | /** @todo If we're in PAE mode we should check the PDPTRs for
|
---|
5322 | * invalid bits. */
|
---|
5323 |
|
---|
5324 | /* Make the change. */
|
---|
5325 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5326 | {
|
---|
5327 | rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
|
---|
5328 | AssertRCSuccessReturn(rc, rc);
|
---|
5329 | }
|
---|
5330 | else
|
---|
5331 | pCtx->cr3 = uNewCrX;
|
---|
5332 |
|
---|
5333 | /* Inform PGM. */
|
---|
5334 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5335 | {
|
---|
5336 | if (pCtx->cr0 & X86_CR0_PG)
|
---|
5337 | {
|
---|
5338 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, !(pCtx->cr4 & X86_CR4_PGE));
|
---|
5339 | AssertRCReturn(rc, rc);
|
---|
5340 | /* ignore informational status codes */
|
---|
5341 | }
|
---|
5342 | }
|
---|
5343 | rcStrict = VINF_SUCCESS;
|
---|
5344 | break;
|
---|
5345 | }
|
---|
5346 |
|
---|
5347 | /*
|
---|
5348 | * CR4 is a bit more tedious as there are bits which cannot be cleared
|
---|
5349 | * under some circumstances and such.
|
---|
5350 | */
|
---|
5351 | case 4:
|
---|
5352 | {
|
---|
5353 | uint64_t const uOldCrX = pCtx->cr4;
|
---|
5354 |
|
---|
5355 | /** @todo Shouldn't this look at the guest CPUID bits to determine
|
---|
5356 | * valid bits? e.g. if guest CPUID doesn't allow X86_CR4_OSXMMEEXCPT, we
|
---|
5357 | * should #GP(0). */
|
---|
5358 | /* reserved bits */
|
---|
5359 | uint32_t fValid = X86_CR4_VME | X86_CR4_PVI
|
---|
5360 | | X86_CR4_TSD | X86_CR4_DE
|
---|
5361 | | X86_CR4_PSE | X86_CR4_PAE
|
---|
5362 | | X86_CR4_MCE | X86_CR4_PGE
|
---|
5363 | | X86_CR4_PCE | X86_CR4_OSFXSR
|
---|
5364 | | X86_CR4_OSXMMEEXCPT;
|
---|
5365 | //if (xxx)
|
---|
5366 | // fValid |= X86_CR4_VMXE;
|
---|
5367 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fXSaveRstor)
|
---|
5368 | fValid |= X86_CR4_OSXSAVE;
|
---|
5369 | if (uNewCrX & ~(uint64_t)fValid)
|
---|
5370 | {
|
---|
5371 | Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
|
---|
5372 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5373 | }
|
---|
5374 |
|
---|
5375 | /* long mode checks. */
|
---|
5376 | if ( (uOldCrX & X86_CR4_PAE)
|
---|
5377 | && !(uNewCrX & X86_CR4_PAE)
|
---|
5378 | && CPUMIsGuestInLongModeEx(pCtx) )
|
---|
5379 | {
|
---|
5380 | Log(("Trying to set clear CR4.PAE while long mode is active\n"));
|
---|
5381 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5382 | }
|
---|
5383 |
|
---|
5384 | if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
|
---|
5385 | {
|
---|
5386 | Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
|
---|
5387 | IEM_RETURN_SVM_NST_GST_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
|
---|
5388 | }
|
---|
5389 |
|
---|
5390 | /*
|
---|
5391 | * Change it.
|
---|
5392 | */
|
---|
5393 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5394 | {
|
---|
5395 | rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
|
---|
5396 | AssertRCSuccessReturn(rc, rc);
|
---|
5397 | }
|
---|
5398 | else
|
---|
5399 | pCtx->cr4 = uNewCrX;
|
---|
5400 | Assert(pCtx->cr4 == uNewCrX);
|
---|
5401 |
|
---|
5402 | /*
|
---|
5403 | * Notify SELM and PGM.
|
---|
5404 | */
|
---|
5405 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5406 | {
|
---|
5407 | /* SELM - VME may change things wrt to the TSS shadowing. */
|
---|
5408 | if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
|
---|
5409 | {
|
---|
5410 | Log(("iemCImpl_load_CrX: VME %d -> %d => Setting VMCPU_FF_SELM_SYNC_TSS\n",
|
---|
5411 | RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) ));
|
---|
5412 | #ifdef VBOX_WITH_RAW_MODE
|
---|
5413 | if (!HMIsEnabled(pVCpu->CTX_SUFF(pVM)))
|
---|
5414 | VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
|
---|
5415 | #endif
|
---|
5416 | }
|
---|
5417 |
|
---|
5418 | /* PGM - flushing and mode. */
|
---|
5419 | if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE))
|
---|
5420 | {
|
---|
5421 | rc = PGMFlushTLB(pVCpu, pCtx->cr3, true /* global */);
|
---|
5422 | AssertRCReturn(rc, rc);
|
---|
5423 | /* ignore informational status codes */
|
---|
5424 | }
|
---|
5425 | rcStrict = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
5426 | }
|
---|
5427 | else
|
---|
5428 | rcStrict = VINF_SUCCESS;
|
---|
5429 | break;
|
---|
5430 | }
|
---|
5431 |
|
---|
5432 | /*
|
---|
5433 | * CR8 maps to the APIC TPR.
|
---|
5434 | */
|
---|
5435 | case 8:
|
---|
5436 | if (uNewCrX & ~(uint64_t)0xf)
|
---|
5437 | {
|
---|
5438 | Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
|
---|
5439 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5440 | }
|
---|
5441 |
|
---|
5442 | if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
|
---|
5443 | {
|
---|
5444 | Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
|
---|
5445 | IEM_RETURN_SVM_NST_GST_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
|
---|
5446 | }
|
---|
5447 |
|
---|
5448 | if (!IEM_FULL_VERIFICATION_ENABLED(pVCpu))
|
---|
5449 | APICSetTpr(pVCpu, (uint8_t)uNewCrX << 4);
|
---|
5450 | rcStrict = VINF_SUCCESS;
|
---|
5451 | break;
|
---|
5452 |
|
---|
5453 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
|
---|
5454 | }
|
---|
5455 |
|
---|
5456 | /*
|
---|
5457 | * Advance the RIP on success.
|
---|
5458 | */
|
---|
5459 | if (RT_SUCCESS(rcStrict))
|
---|
5460 | {
|
---|
5461 | if (rcStrict != VINF_SUCCESS)
|
---|
5462 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
5463 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5464 | }
|
---|
5465 |
|
---|
5466 | return rcStrict;
|
---|
5467 | }
|
---|
5468 |
|
---|
5469 |
|
---|
5470 | /**
|
---|
5471 | * Implements mov CRx,GReg.
|
---|
5472 | *
|
---|
5473 | * @param iCrReg The CRx register to write (valid).
|
---|
5474 | * @param iGReg The general register to load the DRx value from.
|
---|
5475 | */
|
---|
5476 | IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
|
---|
5477 | {
|
---|
5478 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5479 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5480 | Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM);
|
---|
5481 |
|
---|
5482 | /*
|
---|
5483 | * Read the new value from the source register and call common worker.
|
---|
5484 | */
|
---|
5485 | uint64_t uNewCrX;
|
---|
5486 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5487 | uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
|
---|
5488 | else
|
---|
5489 | uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
|
---|
5490 | return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
|
---|
5491 | }
|
---|
5492 |
|
---|
5493 |
|
---|
5494 | /**
|
---|
5495 | * Implements 'LMSW r/m16'
|
---|
5496 | *
|
---|
5497 | * @param u16NewMsw The new value.
|
---|
5498 | */
|
---|
5499 | IEM_CIMPL_DEF_1(iemCImpl_lmsw, uint16_t, u16NewMsw)
|
---|
5500 | {
|
---|
5501 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5502 |
|
---|
5503 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5504 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5505 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
5506 |
|
---|
5507 | /*
|
---|
5508 | * Compose the new CR0 value and call common worker.
|
---|
5509 | */
|
---|
5510 | uint64_t uNewCr0 = pCtx->cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
|
---|
5511 | uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
|
---|
5512 | return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
|
---|
5513 | }
|
---|
5514 |
|
---|
5515 |
|
---|
5516 | /**
|
---|
5517 | * Implements 'CLTS'.
|
---|
5518 | */
|
---|
5519 | IEM_CIMPL_DEF_0(iemCImpl_clts)
|
---|
5520 | {
|
---|
5521 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5522 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5523 |
|
---|
5524 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5525 | uint64_t uNewCr0 = pCtx->cr0;
|
---|
5526 | uNewCr0 &= ~X86_CR0_TS;
|
---|
5527 | return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
|
---|
5528 | }
|
---|
5529 |
|
---|
5530 |
|
---|
5531 | /**
|
---|
5532 | * Implements mov GReg,DRx.
|
---|
5533 | *
|
---|
5534 | * @param iGReg The general register to store the DRx value in.
|
---|
5535 | * @param iDrReg The DRx register to read (0-7).
|
---|
5536 | */
|
---|
5537 | IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
|
---|
5538 | {
|
---|
5539 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5540 |
|
---|
5541 | /*
|
---|
5542 | * Check preconditions.
|
---|
5543 | */
|
---|
5544 |
|
---|
5545 | /* Raise GPs. */
|
---|
5546 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5547 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5548 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
5549 |
|
---|
5550 | if ( (iDrReg == 4 || iDrReg == 5)
|
---|
5551 | && (pCtx->cr4 & X86_CR4_DE) )
|
---|
5552 | {
|
---|
5553 | Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
|
---|
5554 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5555 | }
|
---|
5556 |
|
---|
5557 | /* Raise #DB if general access detect is enabled. */
|
---|
5558 | if (pCtx->dr[7] & X86_DR7_GD)
|
---|
5559 | {
|
---|
5560 | Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
|
---|
5561 | return iemRaiseDebugException(pVCpu);
|
---|
5562 | }
|
---|
5563 |
|
---|
5564 | /*
|
---|
5565 | * Read the debug register and store it in the specified general register.
|
---|
5566 | */
|
---|
5567 | uint64_t drX;
|
---|
5568 | switch (iDrReg)
|
---|
5569 | {
|
---|
5570 | case 0: drX = pCtx->dr[0]; break;
|
---|
5571 | case 1: drX = pCtx->dr[1]; break;
|
---|
5572 | case 2: drX = pCtx->dr[2]; break;
|
---|
5573 | case 3: drX = pCtx->dr[3]; break;
|
---|
5574 | case 6:
|
---|
5575 | case 4:
|
---|
5576 | drX = pCtx->dr[6];
|
---|
5577 | drX |= X86_DR6_RA1_MASK;
|
---|
5578 | drX &= ~X86_DR6_RAZ_MASK;
|
---|
5579 | break;
|
---|
5580 | case 7:
|
---|
5581 | case 5:
|
---|
5582 | drX = pCtx->dr[7];
|
---|
5583 | drX |=X86_DR7_RA1_MASK;
|
---|
5584 | drX &= ~X86_DR7_RAZ_MASK;
|
---|
5585 | break;
|
---|
5586 | IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
|
---|
5587 | }
|
---|
5588 |
|
---|
5589 | /** @todo SVM nested-guest intercept for DR8-DR15? */
|
---|
5590 | /*
|
---|
5591 | * Check for any SVM nested-guest intercepts for the DRx read.
|
---|
5592 | */
|
---|
5593 | if (IEM_IS_SVM_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
|
---|
5594 | {
|
---|
5595 | Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
|
---|
5596 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
|
---|
5597 | IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssist ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
|
---|
5598 | }
|
---|
5599 |
|
---|
5600 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5601 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
|
---|
5602 | else
|
---|
5603 | *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
|
---|
5604 |
|
---|
5605 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5606 | return VINF_SUCCESS;
|
---|
5607 | }
|
---|
5608 |
|
---|
5609 |
|
---|
5610 | /**
|
---|
5611 | * Implements mov DRx,GReg.
|
---|
5612 | *
|
---|
5613 | * @param iDrReg The DRx register to write (valid).
|
---|
5614 | * @param iGReg The general register to load the DRx value from.
|
---|
5615 | */
|
---|
5616 | IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
|
---|
5617 | {
|
---|
5618 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5619 |
|
---|
5620 | /*
|
---|
5621 | * Check preconditions.
|
---|
5622 | */
|
---|
5623 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5624 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5625 | Assert(!pCtx->eflags.Bits.u1VM);
|
---|
5626 |
|
---|
5627 | if (iDrReg == 4 || iDrReg == 5)
|
---|
5628 | {
|
---|
5629 | if (pCtx->cr4 & X86_CR4_DE)
|
---|
5630 | {
|
---|
5631 | Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
|
---|
5632 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5633 | }
|
---|
5634 | iDrReg += 2;
|
---|
5635 | }
|
---|
5636 |
|
---|
5637 | /* Raise #DB if general access detect is enabled. */
|
---|
5638 | /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
|
---|
5639 | * \#GP? */
|
---|
5640 | if (pCtx->dr[7] & X86_DR7_GD)
|
---|
5641 | {
|
---|
5642 | Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
|
---|
5643 | return iemRaiseDebugException(pVCpu);
|
---|
5644 | }
|
---|
5645 |
|
---|
5646 | /*
|
---|
5647 | * Read the new value from the source register.
|
---|
5648 | */
|
---|
5649 | uint64_t uNewDrX;
|
---|
5650 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5651 | uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
|
---|
5652 | else
|
---|
5653 | uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
|
---|
5654 |
|
---|
5655 | /*
|
---|
5656 | * Adjust it.
|
---|
5657 | */
|
---|
5658 | switch (iDrReg)
|
---|
5659 | {
|
---|
5660 | case 0:
|
---|
5661 | case 1:
|
---|
5662 | case 2:
|
---|
5663 | case 3:
|
---|
5664 | /* nothing to adjust */
|
---|
5665 | break;
|
---|
5666 |
|
---|
5667 | case 6:
|
---|
5668 | if (uNewDrX & X86_DR6_MBZ_MASK)
|
---|
5669 | {
|
---|
5670 | Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
|
---|
5671 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5672 | }
|
---|
5673 | uNewDrX |= X86_DR6_RA1_MASK;
|
---|
5674 | uNewDrX &= ~X86_DR6_RAZ_MASK;
|
---|
5675 | break;
|
---|
5676 |
|
---|
5677 | case 7:
|
---|
5678 | if (uNewDrX & X86_DR7_MBZ_MASK)
|
---|
5679 | {
|
---|
5680 | Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
|
---|
5681 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5682 | }
|
---|
5683 | uNewDrX |= X86_DR7_RA1_MASK;
|
---|
5684 | uNewDrX &= ~X86_DR7_RAZ_MASK;
|
---|
5685 | break;
|
---|
5686 |
|
---|
5687 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
5688 | }
|
---|
5689 |
|
---|
5690 | /** @todo SVM nested-guest intercept for DR8-DR15? */
|
---|
5691 | /*
|
---|
5692 | * Check for any SVM nested-guest intercepts for the DRx write.
|
---|
5693 | */
|
---|
5694 | if (IEM_IS_SVM_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
|
---|
5695 | {
|
---|
5696 | Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
|
---|
5697 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
|
---|
5698 | IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssist ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
|
---|
5699 | }
|
---|
5700 |
|
---|
5701 | /*
|
---|
5702 | * Do the actual setting.
|
---|
5703 | */
|
---|
5704 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
5705 | {
|
---|
5706 | int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
|
---|
5707 | AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
|
---|
5708 | }
|
---|
5709 | else
|
---|
5710 | pCtx->dr[iDrReg] = uNewDrX;
|
---|
5711 |
|
---|
5712 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5713 | return VINF_SUCCESS;
|
---|
5714 | }
|
---|
5715 |
|
---|
5716 |
|
---|
5717 | /**
|
---|
5718 | * Implements 'INVLPG m'.
|
---|
5719 | *
|
---|
5720 | * @param GCPtrPage The effective address of the page to invalidate.
|
---|
5721 | * @remarks Updates the RIP.
|
---|
5722 | */
|
---|
5723 | IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
|
---|
5724 | {
|
---|
5725 | /* ring-0 only. */
|
---|
5726 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5727 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5728 | Assert(!IEM_GET_CTX(pVCpu)->eflags.Bits.u1VM);
|
---|
5729 |
|
---|
5730 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
|
---|
5731 | {
|
---|
5732 | Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
|
---|
5733 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_INVLPG,
|
---|
5734 | IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssist ? GCPtrPage : 0, 0 /* uExitInfo2 */);
|
---|
5735 | }
|
---|
5736 |
|
---|
5737 | int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
|
---|
5738 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5739 |
|
---|
5740 | if (rc == VINF_SUCCESS)
|
---|
5741 | return VINF_SUCCESS;
|
---|
5742 | if (rc == VINF_PGM_SYNC_CR3)
|
---|
5743 | return iemSetPassUpStatus(pVCpu, rc);
|
---|
5744 |
|
---|
5745 | AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
|
---|
5746 | Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
|
---|
5747 | return rc;
|
---|
5748 | }
|
---|
5749 |
|
---|
5750 |
|
---|
5751 | /**
|
---|
5752 | * Implements RDTSC.
|
---|
5753 | */
|
---|
5754 | IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
|
---|
5755 | {
|
---|
5756 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5757 |
|
---|
5758 | /*
|
---|
5759 | * Check preconditions.
|
---|
5760 | */
|
---|
5761 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
|
---|
5762 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
5763 |
|
---|
5764 | if ( (pCtx->cr4 & X86_CR4_TSD)
|
---|
5765 | && pVCpu->iem.s.uCpl != 0)
|
---|
5766 | {
|
---|
5767 | Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
5768 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5769 | }
|
---|
5770 |
|
---|
5771 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
|
---|
5772 | {
|
---|
5773 | Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
|
---|
5774 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
5775 | }
|
---|
5776 |
|
---|
5777 | /*
|
---|
5778 | * Do the job.
|
---|
5779 | */
|
---|
5780 | uint64_t uTicks = TMCpuTickGet(pVCpu);
|
---|
5781 | pCtx->rax = RT_LO_U32(uTicks);
|
---|
5782 | pCtx->rdx = RT_HI_U32(uTicks);
|
---|
5783 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
5784 | pVCpu->iem.s.fIgnoreRaxRdx = true;
|
---|
5785 | #endif
|
---|
5786 |
|
---|
5787 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5788 | return VINF_SUCCESS;
|
---|
5789 | }
|
---|
5790 |
|
---|
5791 |
|
---|
5792 | /**
|
---|
5793 | * Implements RDTSC.
|
---|
5794 | */
|
---|
5795 | IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
|
---|
5796 | {
|
---|
5797 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5798 |
|
---|
5799 | /*
|
---|
5800 | * Check preconditions.
|
---|
5801 | */
|
---|
5802 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
|
---|
5803 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
5804 |
|
---|
5805 | if ( (pCtx->cr4 & X86_CR4_TSD)
|
---|
5806 | && pVCpu->iem.s.uCpl != 0)
|
---|
5807 | {
|
---|
5808 | Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
5809 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5810 | }
|
---|
5811 |
|
---|
5812 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
|
---|
5813 | {
|
---|
5814 | Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
|
---|
5815 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
5816 | }
|
---|
5817 |
|
---|
5818 | /*
|
---|
5819 | * Do the job.
|
---|
5820 | * Query the MSR first in case of trips to ring-3.
|
---|
5821 | */
|
---|
5822 | VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pCtx->rcx);
|
---|
5823 | if (rcStrict == VINF_SUCCESS)
|
---|
5824 | {
|
---|
5825 | /* Low dword of the TSC_AUX msr only. */
|
---|
5826 | pCtx->rcx &= UINT32_C(0xffffffff);
|
---|
5827 |
|
---|
5828 | uint64_t uTicks = TMCpuTickGet(pVCpu);
|
---|
5829 | pCtx->rax = RT_LO_U32(uTicks);
|
---|
5830 | pCtx->rdx = RT_HI_U32(uTicks);
|
---|
5831 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
5832 | pVCpu->iem.s.fIgnoreRaxRdx = true;
|
---|
5833 | #endif
|
---|
5834 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5835 | }
|
---|
5836 | return rcStrict;
|
---|
5837 | }
|
---|
5838 |
|
---|
5839 |
|
---|
5840 | /**
|
---|
5841 | * Implements RDPMC.
|
---|
5842 | */
|
---|
5843 | IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
|
---|
5844 | {
|
---|
5845 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5846 | if ( pVCpu->iem.s.uCpl != 0
|
---|
5847 | && !(pCtx->cr4 & X86_CR4_PCE))
|
---|
5848 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5849 |
|
---|
5850 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
|
---|
5851 | {
|
---|
5852 | Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
|
---|
5853 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
5854 | }
|
---|
5855 |
|
---|
5856 | /** @todo Implement RDPMC for the regular guest execution case (the above only
|
---|
5857 | * handles nested-guest intercepts). */
|
---|
5858 | RT_NOREF(cbInstr);
|
---|
5859 | return VERR_IEM_INSTR_NOT_IMPLEMENTED;
|
---|
5860 | }
|
---|
5861 |
|
---|
5862 |
|
---|
5863 | /**
|
---|
5864 | * Implements RDMSR.
|
---|
5865 | */
|
---|
5866 | IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
|
---|
5867 | {
|
---|
5868 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5869 |
|
---|
5870 | /*
|
---|
5871 | * Check preconditions.
|
---|
5872 | */
|
---|
5873 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
|
---|
5874 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
5875 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5876 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5877 |
|
---|
5878 | /*
|
---|
5879 | * Do the job.
|
---|
5880 | */
|
---|
5881 | RTUINT64U uValue;
|
---|
5882 | VBOXSTRICTRC rcStrict;
|
---|
5883 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
|
---|
5884 | {
|
---|
5885 | rcStrict = IEM_SVM_NST_GST_MSR_INTERCEPT(pVCpu, pCtx->ecx, false /* fWrite */);
|
---|
5886 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
5887 | return VINF_SUCCESS;
|
---|
5888 | if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE)
|
---|
5889 | {
|
---|
5890 | Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pCtx->ecx, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5891 | return rcStrict;
|
---|
5892 | }
|
---|
5893 | }
|
---|
5894 |
|
---|
5895 | rcStrict = CPUMQueryGuestMsr(pVCpu, pCtx->ecx, &uValue.u);
|
---|
5896 | if (rcStrict == VINF_SUCCESS)
|
---|
5897 | {
|
---|
5898 | pCtx->rax = uValue.s.Lo;
|
---|
5899 | pCtx->rdx = uValue.s.Hi;
|
---|
5900 |
|
---|
5901 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5902 | return VINF_SUCCESS;
|
---|
5903 | }
|
---|
5904 |
|
---|
5905 | #ifndef IN_RING3
|
---|
5906 | /* Deferred to ring-3. */
|
---|
5907 | if (rcStrict == VINF_CPUM_R3_MSR_READ)
|
---|
5908 | {
|
---|
5909 | Log(("IEM: rdmsr(%#x) -> ring-3\n", pCtx->ecx));
|
---|
5910 | return rcStrict;
|
---|
5911 | }
|
---|
5912 | #else /* IN_RING3 */
|
---|
5913 | /* Often a unimplemented MSR or MSR bit, so worth logging. */
|
---|
5914 | static uint32_t s_cTimes = 0;
|
---|
5915 | if (s_cTimes++ < 10)
|
---|
5916 | LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pCtx->ecx));
|
---|
5917 | else
|
---|
5918 | #endif
|
---|
5919 | Log(("IEM: rdmsr(%#x) -> #GP(0)\n", pCtx->ecx));
|
---|
5920 | AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
|
---|
5921 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5922 | }
|
---|
5923 |
|
---|
5924 |
|
---|
5925 | /**
|
---|
5926 | * Implements WRMSR.
|
---|
5927 | */
|
---|
5928 | IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
|
---|
5929 | {
|
---|
5930 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
5931 |
|
---|
5932 | /*
|
---|
5933 | * Check preconditions.
|
---|
5934 | */
|
---|
5935 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
|
---|
5936 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
5937 | if (pVCpu->iem.s.uCpl != 0)
|
---|
5938 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5939 |
|
---|
5940 | /*
|
---|
5941 | * Do the job.
|
---|
5942 | */
|
---|
5943 | RTUINT64U uValue;
|
---|
5944 | uValue.s.Lo = pCtx->eax;
|
---|
5945 | uValue.s.Hi = pCtx->edx;
|
---|
5946 |
|
---|
5947 | VBOXSTRICTRC rcStrict;
|
---|
5948 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
|
---|
5949 | {
|
---|
5950 | rcStrict = IEM_SVM_NST_GST_MSR_INTERCEPT(pVCpu, pCtx->ecx, true /* fWrite */);
|
---|
5951 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
5952 | return VINF_SUCCESS;
|
---|
5953 | if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE)
|
---|
5954 | {
|
---|
5955 | Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pCtx->ecx, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5956 | return rcStrict;
|
---|
5957 | }
|
---|
5958 | }
|
---|
5959 |
|
---|
5960 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
5961 | rcStrict = CPUMSetGuestMsr(pVCpu, pCtx->ecx, uValue.u);
|
---|
5962 | else
|
---|
5963 | {
|
---|
5964 | #ifdef IN_RING3
|
---|
5965 | CPUMCTX CtxTmp = *pCtx;
|
---|
5966 | rcStrict = CPUMSetGuestMsr(pVCpu, pCtx->ecx, uValue.u);
|
---|
5967 | PCPUMCTX pCtx2 = CPUMQueryGuestCtxPtr(pVCpu);
|
---|
5968 | *pCtx = *pCtx2;
|
---|
5969 | *pCtx2 = CtxTmp;
|
---|
5970 | #else
|
---|
5971 | AssertReleaseFailedReturn(VERR_IEM_IPE_2);
|
---|
5972 | #endif
|
---|
5973 | }
|
---|
5974 | if (rcStrict == VINF_SUCCESS)
|
---|
5975 | {
|
---|
5976 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5977 | return VINF_SUCCESS;
|
---|
5978 | }
|
---|
5979 |
|
---|
5980 | #ifndef IN_RING3
|
---|
5981 | /* Deferred to ring-3. */
|
---|
5982 | if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
|
---|
5983 | {
|
---|
5984 | Log(("IEM: wrmsr(%#x) -> ring-3\n", pCtx->ecx));
|
---|
5985 | return rcStrict;
|
---|
5986 | }
|
---|
5987 | #else /* IN_RING3 */
|
---|
5988 | /* Often a unimplemented MSR or MSR bit, so worth logging. */
|
---|
5989 | static uint32_t s_cTimes = 0;
|
---|
5990 | if (s_cTimes++ < 10)
|
---|
5991 | LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pCtx->ecx, uValue.s.Hi, uValue.s.Lo));
|
---|
5992 | else
|
---|
5993 | #endif
|
---|
5994 | Log(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pCtx->ecx, uValue.s.Hi, uValue.s.Lo));
|
---|
5995 | AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
|
---|
5996 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5997 | }
|
---|
5998 |
|
---|
5999 |
|
---|
6000 | /**
|
---|
6001 | * Implements 'IN eAX, port'.
|
---|
6002 | *
|
---|
6003 | * @param u16Port The source port.
|
---|
6004 | * @param cbReg The register size.
|
---|
6005 | */
|
---|
6006 | IEM_CIMPL_DEF_2(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg)
|
---|
6007 | {
|
---|
6008 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6009 |
|
---|
6010 | /*
|
---|
6011 | * CPL check
|
---|
6012 | */
|
---|
6013 | VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, pCtx, u16Port, cbReg);
|
---|
6014 | if (rcStrict != VINF_SUCCESS)
|
---|
6015 | return rcStrict;
|
---|
6016 |
|
---|
6017 | /*
|
---|
6018 | * Check SVM nested-guest IO intercept.
|
---|
6019 | */
|
---|
6020 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
6021 | {
|
---|
6022 | rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, 0 /* N/A - cAddrSizeBits */,
|
---|
6023 | 0 /* N/A - iEffSeg */, false /* fRep */, false /* fStrIo */, cbInstr);
|
---|
6024 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
6025 | return VINF_SUCCESS;
|
---|
6026 | if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE)
|
---|
6027 | {
|
---|
6028 | Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
|
---|
6029 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6030 | return rcStrict;
|
---|
6031 | }
|
---|
6032 | }
|
---|
6033 |
|
---|
6034 | /*
|
---|
6035 | * Perform the I/O.
|
---|
6036 | */
|
---|
6037 | uint32_t u32Value;
|
---|
6038 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
6039 | rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg);
|
---|
6040 | else
|
---|
6041 | rcStrict = iemVerifyFakeIOPortRead(pVCpu, u16Port, &u32Value, cbReg);
|
---|
6042 | if (IOM_SUCCESS(rcStrict))
|
---|
6043 | {
|
---|
6044 | switch (cbReg)
|
---|
6045 | {
|
---|
6046 | case 1: pCtx->al = (uint8_t)u32Value; break;
|
---|
6047 | case 2: pCtx->ax = (uint16_t)u32Value; break;
|
---|
6048 | case 4: pCtx->rax = u32Value; break;
|
---|
6049 | default: AssertFailedReturn(VERR_IEM_IPE_3);
|
---|
6050 | }
|
---|
6051 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6052 | pVCpu->iem.s.cPotentialExits++;
|
---|
6053 | if (rcStrict != VINF_SUCCESS)
|
---|
6054 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6055 | Assert(rcStrict == VINF_SUCCESS); /* assumed below */
|
---|
6056 |
|
---|
6057 | /*
|
---|
6058 | * Check for I/O breakpoints.
|
---|
6059 | */
|
---|
6060 | uint32_t const uDr7 = pCtx->dr[7];
|
---|
6061 | if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
|
---|
6062 | && X86_DR7_ANY_RW_IO(uDr7)
|
---|
6063 | && (pCtx->cr4 & X86_CR4_DE))
|
---|
6064 | || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
|
---|
6065 | {
|
---|
6066 | rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx, u16Port, cbReg);
|
---|
6067 | if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
|
---|
6068 | rcStrict = iemRaiseDebugException(pVCpu);
|
---|
6069 | }
|
---|
6070 | }
|
---|
6071 |
|
---|
6072 | return rcStrict;
|
---|
6073 | }
|
---|
6074 |
|
---|
6075 |
|
---|
6076 | /**
|
---|
6077 | * Implements 'IN eAX, DX'.
|
---|
6078 | *
|
---|
6079 | * @param cbReg The register size.
|
---|
6080 | */
|
---|
6081 | IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
|
---|
6082 | {
|
---|
6083 | return IEM_CIMPL_CALL_2(iemCImpl_in, IEM_GET_CTX(pVCpu)->dx, cbReg);
|
---|
6084 | }
|
---|
6085 |
|
---|
6086 |
|
---|
6087 | /**
|
---|
6088 | * Implements 'OUT port, eAX'.
|
---|
6089 | *
|
---|
6090 | * @param u16Port The destination port.
|
---|
6091 | * @param cbReg The register size.
|
---|
6092 | */
|
---|
6093 | IEM_CIMPL_DEF_2(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg)
|
---|
6094 | {
|
---|
6095 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6096 |
|
---|
6097 | /*
|
---|
6098 | * CPL check
|
---|
6099 | */
|
---|
6100 | VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, pCtx, u16Port, cbReg);
|
---|
6101 | if (rcStrict != VINF_SUCCESS)
|
---|
6102 | return rcStrict;
|
---|
6103 |
|
---|
6104 | /*
|
---|
6105 | * Check SVM nested-guest IO intercept.
|
---|
6106 | */
|
---|
6107 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
6108 | {
|
---|
6109 | rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, 0 /* N/A - cAddrSizeBits */,
|
---|
6110 | 0 /* N/A - iEffSeg */, false /* fRep */, false /* fStrIo */, cbInstr);
|
---|
6111 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
6112 | return VINF_SUCCESS;
|
---|
6113 | if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE)
|
---|
6114 | {
|
---|
6115 | Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
|
---|
6116 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6117 | return rcStrict;
|
---|
6118 | }
|
---|
6119 | }
|
---|
6120 |
|
---|
6121 | /*
|
---|
6122 | * Perform the I/O.
|
---|
6123 | */
|
---|
6124 | uint32_t u32Value;
|
---|
6125 | switch (cbReg)
|
---|
6126 | {
|
---|
6127 | case 1: u32Value = pCtx->al; break;
|
---|
6128 | case 2: u32Value = pCtx->ax; break;
|
---|
6129 | case 4: u32Value = pCtx->eax; break;
|
---|
6130 | default: AssertFailedReturn(VERR_IEM_IPE_4);
|
---|
6131 | }
|
---|
6132 | if (!IEM_VERIFICATION_ENABLED(pVCpu))
|
---|
6133 | rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg);
|
---|
6134 | else
|
---|
6135 | rcStrict = iemVerifyFakeIOPortWrite(pVCpu, u16Port, u32Value, cbReg);
|
---|
6136 | if (IOM_SUCCESS(rcStrict))
|
---|
6137 | {
|
---|
6138 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6139 | pVCpu->iem.s.cPotentialExits++;
|
---|
6140 | if (rcStrict != VINF_SUCCESS)
|
---|
6141 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
6142 | Assert(rcStrict == VINF_SUCCESS); /* assumed below */
|
---|
6143 |
|
---|
6144 | /*
|
---|
6145 | * Check for I/O breakpoints.
|
---|
6146 | */
|
---|
6147 | uint32_t const uDr7 = pCtx->dr[7];
|
---|
6148 | if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
|
---|
6149 | && X86_DR7_ANY_RW_IO(uDr7)
|
---|
6150 | && (pCtx->cr4 & X86_CR4_DE))
|
---|
6151 | || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
|
---|
6152 | {
|
---|
6153 | rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx, u16Port, cbReg);
|
---|
6154 | if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
|
---|
6155 | rcStrict = iemRaiseDebugException(pVCpu);
|
---|
6156 | }
|
---|
6157 | }
|
---|
6158 | return rcStrict;
|
---|
6159 | }
|
---|
6160 |
|
---|
6161 |
|
---|
6162 | /**
|
---|
6163 | * Implements 'OUT DX, eAX'.
|
---|
6164 | *
|
---|
6165 | * @param cbReg The register size.
|
---|
6166 | */
|
---|
6167 | IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
|
---|
6168 | {
|
---|
6169 | return IEM_CIMPL_CALL_2(iemCImpl_out, IEM_GET_CTX(pVCpu)->dx, cbReg);
|
---|
6170 | }
|
---|
6171 |
|
---|
6172 |
|
---|
6173 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
6174 | /**
|
---|
6175 | * Implements 'VMRUN'.
|
---|
6176 | */
|
---|
6177 | IEM_CIMPL_DEF_0(iemCImpl_vmrun)
|
---|
6178 | {
|
---|
6179 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6180 | IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload);
|
---|
6181 |
|
---|
6182 | RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
|
---|
6183 | if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
|
---|
6184 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
|
---|
6185 | {
|
---|
6186 | Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
|
---|
6187 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6188 | }
|
---|
6189 |
|
---|
6190 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
|
---|
6191 | {
|
---|
6192 | Log(("vmrun: Guest intercept -> #VMEXIT\n"));
|
---|
6193 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6194 | }
|
---|
6195 |
|
---|
6196 | VBOXSTRICTRC rcStrict = HMSvmVmrun(pVCpu, pCtx, GCPhysVmcb);
|
---|
6197 | /* If VMRUN execution causes a #VMEXIT, we continue executing the instruction following the VMRUN. */
|
---|
6198 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
6199 | {
|
---|
6200 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6201 | rcStrict = VINF_SUCCESS;
|
---|
6202 | }
|
---|
6203 | else if (rcStrict == VERR_SVM_VMEXIT_FAILED)
|
---|
6204 | rcStrict = iemInitiateCpuShutdown(pVCpu);
|
---|
6205 | return rcStrict;
|
---|
6206 | }
|
---|
6207 |
|
---|
6208 |
|
---|
6209 | /**
|
---|
6210 | * Implements 'VMMCALL'.
|
---|
6211 | */
|
---|
6212 | IEM_CIMPL_DEF_0(iemCImpl_vmmcall)
|
---|
6213 | {
|
---|
6214 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6215 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
|
---|
6216 | {
|
---|
6217 | Log(("vmmcall: Guest intercept -> #VMEXIT\n"));
|
---|
6218 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6219 | }
|
---|
6220 |
|
---|
6221 | bool fUpdatedRipAndRF;
|
---|
6222 | VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fUpdatedRipAndRF);
|
---|
6223 | if (RT_SUCCESS(rcStrict))
|
---|
6224 | {
|
---|
6225 | if (!fUpdatedRipAndRF)
|
---|
6226 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6227 | return rcStrict;
|
---|
6228 | }
|
---|
6229 |
|
---|
6230 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6231 | }
|
---|
6232 |
|
---|
6233 |
|
---|
6234 | /**
|
---|
6235 | * Implements 'VMLOAD'.
|
---|
6236 | */
|
---|
6237 | IEM_CIMPL_DEF_0(iemCImpl_vmload)
|
---|
6238 | {
|
---|
6239 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6240 | IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload);
|
---|
6241 |
|
---|
6242 | RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
|
---|
6243 | if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
|
---|
6244 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
|
---|
6245 | {
|
---|
6246 | Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
|
---|
6247 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6248 | }
|
---|
6249 |
|
---|
6250 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
|
---|
6251 | {
|
---|
6252 | Log(("vmload: Guest intercept -> #VMEXIT\n"));
|
---|
6253 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6254 | }
|
---|
6255 |
|
---|
6256 | void *pvVmcb;
|
---|
6257 | PGMPAGEMAPLOCK PgLockVmcb;
|
---|
6258 | VBOXSTRICTRC rcStrict = iemMemPageMap(pVCpu, GCPhysVmcb, IEM_ACCESS_DATA_R, &pvVmcb, &PgLockVmcb);
|
---|
6259 | if (rcStrict == VINF_SUCCESS)
|
---|
6260 | {
|
---|
6261 | PCSVMVMCB pVmcb = (PCSVMVMCB)pvVmcb;
|
---|
6262 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &pVmcb->guest, FS, fs);
|
---|
6263 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &pVmcb->guest, GS, gs);
|
---|
6264 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &pVmcb->guest, TR, tr);
|
---|
6265 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
|
---|
6266 |
|
---|
6267 | pCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase;
|
---|
6268 | pCtx->msrSTAR = pVmcb->guest.u64STAR;
|
---|
6269 | pCtx->msrLSTAR = pVmcb->guest.u64LSTAR;
|
---|
6270 | pCtx->msrCSTAR = pVmcb->guest.u64CSTAR;
|
---|
6271 | pCtx->msrSFMASK = pVmcb->guest.u64SFMASK;
|
---|
6272 |
|
---|
6273 | pCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
|
---|
6274 | pCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
|
---|
6275 | pCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
|
---|
6276 |
|
---|
6277 | iemMemPageUnmap(pVCpu, GCPhysVmcb, IEM_ACCESS_DATA_R, pvVmcb, &PgLockVmcb);
|
---|
6278 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6279 | }
|
---|
6280 | return rcStrict;
|
---|
6281 | }
|
---|
6282 |
|
---|
6283 |
|
---|
6284 | /**
|
---|
6285 | * Implements 'VMSAVE'.
|
---|
6286 | */
|
---|
6287 | IEM_CIMPL_DEF_0(iemCImpl_vmsave)
|
---|
6288 | {
|
---|
6289 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6290 | IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave);
|
---|
6291 |
|
---|
6292 | RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
|
---|
6293 | if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
|
---|
6294 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
|
---|
6295 | {
|
---|
6296 | Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
|
---|
6297 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6298 | }
|
---|
6299 |
|
---|
6300 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
|
---|
6301 | {
|
---|
6302 | Log(("vmsave: Guest intercept -> #VMEXIT\n"));
|
---|
6303 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6304 | }
|
---|
6305 |
|
---|
6306 | void *pvVmcb;
|
---|
6307 | PGMPAGEMAPLOCK PgLockVmcb;
|
---|
6308 | VBOXSTRICTRC rcStrict = iemMemPageMap(pVCpu, GCPhysVmcb, IEM_ACCESS_DATA_RW, &pvVmcb, &PgLockVmcb);
|
---|
6309 | if (rcStrict == VINF_SUCCESS)
|
---|
6310 | {
|
---|
6311 | PSVMVMCB pVmcb = (PSVMVMCB)pvVmcb;
|
---|
6312 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
|
---|
6313 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
|
---|
6314 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
|
---|
6315 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
|
---|
6316 |
|
---|
6317 | pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
|
---|
6318 | pVmcb->guest.u64STAR = pCtx->msrSTAR;
|
---|
6319 | pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
|
---|
6320 | pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
|
---|
6321 | pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
|
---|
6322 |
|
---|
6323 | pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
|
---|
6324 | pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
|
---|
6325 | pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
|
---|
6326 |
|
---|
6327 | iemMemPageUnmap(pVCpu, GCPhysVmcb, IEM_ACCESS_DATA_R, pvVmcb, &PgLockVmcb);
|
---|
6328 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6329 | }
|
---|
6330 | return rcStrict;
|
---|
6331 | }
|
---|
6332 |
|
---|
6333 |
|
---|
6334 | /**
|
---|
6335 | * Implements 'CLGI'.
|
---|
6336 | */
|
---|
6337 | IEM_CIMPL_DEF_0(iemCImpl_clgi)
|
---|
6338 | {
|
---|
6339 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6340 | IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi);
|
---|
6341 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
|
---|
6342 | {
|
---|
6343 | Log(("clgi: Guest intercept -> #VMEXIT\n"));
|
---|
6344 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6345 | }
|
---|
6346 |
|
---|
6347 | pCtx->hwvirt.svm.fGif = 0;
|
---|
6348 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6349 | return VINF_SUCCESS;
|
---|
6350 | }
|
---|
6351 |
|
---|
6352 |
|
---|
6353 | /**
|
---|
6354 | * Implements 'STGI'.
|
---|
6355 | */
|
---|
6356 | IEM_CIMPL_DEF_0(iemCImpl_stgi)
|
---|
6357 | {
|
---|
6358 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6359 | IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi);
|
---|
6360 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI))
|
---|
6361 | {
|
---|
6362 | Log2(("stgi: Guest intercept -> #VMEXIT\n"));
|
---|
6363 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6364 | }
|
---|
6365 |
|
---|
6366 | pCtx->hwvirt.svm.fGif = 1;
|
---|
6367 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6368 | return VINF_SUCCESS;
|
---|
6369 | }
|
---|
6370 |
|
---|
6371 |
|
---|
6372 | /**
|
---|
6373 | * Implements 'INVLPGA'.
|
---|
6374 | */
|
---|
6375 | IEM_CIMPL_DEF_0(iemCImpl_invlpga)
|
---|
6376 | {
|
---|
6377 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6378 | RTGCPTR const GCPtrPage = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
|
---|
6379 | /** @todo PGM needs virtual ASID support. */
|
---|
6380 | #if 0
|
---|
6381 | uint32_t const uAsid = pCtx->ecx;
|
---|
6382 | #endif
|
---|
6383 |
|
---|
6384 | IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
|
---|
6385 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
|
---|
6386 | {
|
---|
6387 | Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
|
---|
6388 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6389 | }
|
---|
6390 |
|
---|
6391 | PGMInvalidatePage(pVCpu, GCPtrPage);
|
---|
6392 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6393 | return VINF_SUCCESS;
|
---|
6394 | }
|
---|
6395 |
|
---|
6396 |
|
---|
6397 | /**
|
---|
6398 | * Implements 'SKINIT'.
|
---|
6399 | */
|
---|
6400 | IEM_CIMPL_DEF_0(iemCImpl_skinit)
|
---|
6401 | {
|
---|
6402 | IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
|
---|
6403 |
|
---|
6404 | uint32_t uIgnore;
|
---|
6405 | uint32_t fFeaturesECX;
|
---|
6406 | CPUMGetGuestCpuId(pVCpu, 0x80000001, 0, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore);
|
---|
6407 | if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT))
|
---|
6408 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6409 |
|
---|
6410 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
|
---|
6411 | {
|
---|
6412 | Log2(("skinit: Guest intercept -> #VMEXIT\n"));
|
---|
6413 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6414 | }
|
---|
6415 |
|
---|
6416 | RT_NOREF(cbInstr);
|
---|
6417 | return VERR_IEM_INSTR_NOT_IMPLEMENTED;
|
---|
6418 | }
|
---|
6419 | #endif /* VBOX_WITH_NESTED_HWVIRT */
|
---|
6420 |
|
---|
6421 | /**
|
---|
6422 | * Implements 'CLI'.
|
---|
6423 | */
|
---|
6424 | IEM_CIMPL_DEF_0(iemCImpl_cli)
|
---|
6425 | {
|
---|
6426 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6427 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
6428 | uint32_t const fEflOld = fEfl;
|
---|
6429 | if (pCtx->cr0 & X86_CR0_PE)
|
---|
6430 | {
|
---|
6431 | uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
|
---|
6432 | if (!(fEfl & X86_EFL_VM))
|
---|
6433 | {
|
---|
6434 | if (pVCpu->iem.s.uCpl <= uIopl)
|
---|
6435 | fEfl &= ~X86_EFL_IF;
|
---|
6436 | else if ( pVCpu->iem.s.uCpl == 3
|
---|
6437 | && (pCtx->cr4 & X86_CR4_PVI) )
|
---|
6438 | fEfl &= ~X86_EFL_VIF;
|
---|
6439 | else
|
---|
6440 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6441 | }
|
---|
6442 | /* V8086 */
|
---|
6443 | else if (uIopl == 3)
|
---|
6444 | fEfl &= ~X86_EFL_IF;
|
---|
6445 | else if ( uIopl < 3
|
---|
6446 | && (pCtx->cr4 & X86_CR4_VME) )
|
---|
6447 | fEfl &= ~X86_EFL_VIF;
|
---|
6448 | else
|
---|
6449 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6450 | }
|
---|
6451 | /* real mode */
|
---|
6452 | else
|
---|
6453 | fEfl &= ~X86_EFL_IF;
|
---|
6454 |
|
---|
6455 | /* Commit. */
|
---|
6456 | IEMMISC_SET_EFL(pVCpu, pCtx, fEfl);
|
---|
6457 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6458 | Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
|
---|
6459 | return VINF_SUCCESS;
|
---|
6460 | }
|
---|
6461 |
|
---|
6462 |
|
---|
6463 | /**
|
---|
6464 | * Implements 'STI'.
|
---|
6465 | */
|
---|
6466 | IEM_CIMPL_DEF_0(iemCImpl_sti)
|
---|
6467 | {
|
---|
6468 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6469 | uint32_t fEfl = IEMMISC_GET_EFL(pVCpu, pCtx);
|
---|
6470 | uint32_t const fEflOld = fEfl;
|
---|
6471 |
|
---|
6472 | if (pCtx->cr0 & X86_CR0_PE)
|
---|
6473 | {
|
---|
6474 | uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
|
---|
6475 | if (!(fEfl & X86_EFL_VM))
|
---|
6476 | {
|
---|
6477 | if (pVCpu->iem.s.uCpl <= uIopl)
|
---|
6478 | fEfl |= X86_EFL_IF;
|
---|
6479 | else if ( pVCpu->iem.s.uCpl == 3
|
---|
6480 | && (pCtx->cr4 & X86_CR4_PVI)
|
---|
6481 | && !(fEfl & X86_EFL_VIP) )
|
---|
6482 | fEfl |= X86_EFL_VIF;
|
---|
6483 | else
|
---|
6484 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6485 | }
|
---|
6486 | /* V8086 */
|
---|
6487 | else if (uIopl == 3)
|
---|
6488 | fEfl |= X86_EFL_IF;
|
---|
6489 | else if ( uIopl < 3
|
---|
6490 | && (pCtx->cr4 & X86_CR4_VME)
|
---|
6491 | && !(fEfl & X86_EFL_VIP) )
|
---|
6492 | fEfl |= X86_EFL_VIF;
|
---|
6493 | else
|
---|
6494 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6495 | }
|
---|
6496 | /* real mode */
|
---|
6497 | else
|
---|
6498 | fEfl |= X86_EFL_IF;
|
---|
6499 |
|
---|
6500 | /* Commit. */
|
---|
6501 | IEMMISC_SET_EFL(pVCpu, pCtx, fEfl);
|
---|
6502 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6503 | if ((!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF)) || IEM_FULL_VERIFICATION_REM_ENABLED(pVCpu))
|
---|
6504 | EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
|
---|
6505 | Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
|
---|
6506 | return VINF_SUCCESS;
|
---|
6507 | }
|
---|
6508 |
|
---|
6509 |
|
---|
6510 | /**
|
---|
6511 | * Implements 'HLT'.
|
---|
6512 | */
|
---|
6513 | IEM_CIMPL_DEF_0(iemCImpl_hlt)
|
---|
6514 | {
|
---|
6515 | if (pVCpu->iem.s.uCpl != 0)
|
---|
6516 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6517 |
|
---|
6518 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
|
---|
6519 | {
|
---|
6520 | Log2(("hlt: Guest intercept -> #VMEXIT\n"));
|
---|
6521 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6522 | }
|
---|
6523 |
|
---|
6524 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6525 | return VINF_EM_HALT;
|
---|
6526 | }
|
---|
6527 |
|
---|
6528 |
|
---|
6529 | /**
|
---|
6530 | * Implements 'MONITOR'.
|
---|
6531 | */
|
---|
6532 | IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
|
---|
6533 | {
|
---|
6534 | /*
|
---|
6535 | * Permission checks.
|
---|
6536 | */
|
---|
6537 | if (pVCpu->iem.s.uCpl != 0)
|
---|
6538 | {
|
---|
6539 | Log2(("monitor: CPL != 0\n"));
|
---|
6540 | return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
|
---|
6541 | }
|
---|
6542 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
|
---|
6543 | {
|
---|
6544 | Log2(("monitor: Not in CPUID\n"));
|
---|
6545 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6546 | }
|
---|
6547 |
|
---|
6548 | /*
|
---|
6549 | * Gather the operands and validate them.
|
---|
6550 | */
|
---|
6551 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6552 | RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
|
---|
6553 | uint32_t uEcx = pCtx->ecx;
|
---|
6554 | uint32_t uEdx = pCtx->edx;
|
---|
6555 | /** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
|
---|
6556 | * \#GP first. */
|
---|
6557 | if (uEcx != 0)
|
---|
6558 | {
|
---|
6559 | Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
|
---|
6560 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6561 | }
|
---|
6562 |
|
---|
6563 | VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
|
---|
6564 | if (rcStrict != VINF_SUCCESS)
|
---|
6565 | return rcStrict;
|
---|
6566 |
|
---|
6567 | RTGCPHYS GCPhysMem;
|
---|
6568 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
|
---|
6569 | if (rcStrict != VINF_SUCCESS)
|
---|
6570 | return rcStrict;
|
---|
6571 |
|
---|
6572 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
|
---|
6573 | {
|
---|
6574 | Log2(("monitor: Guest intercept -> #VMEXIT\n"));
|
---|
6575 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6576 | }
|
---|
6577 |
|
---|
6578 | /*
|
---|
6579 | * Call EM to prepare the monitor/wait.
|
---|
6580 | */
|
---|
6581 | rcStrict = EMMonitorWaitPrepare(pVCpu, pCtx->rax, pCtx->rcx, pCtx->rdx, GCPhysMem);
|
---|
6582 | Assert(rcStrict == VINF_SUCCESS);
|
---|
6583 |
|
---|
6584 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6585 | return rcStrict;
|
---|
6586 | }
|
---|
6587 |
|
---|
6588 |
|
---|
6589 | /**
|
---|
6590 | * Implements 'MWAIT'.
|
---|
6591 | */
|
---|
6592 | IEM_CIMPL_DEF_0(iemCImpl_mwait)
|
---|
6593 | {
|
---|
6594 | /*
|
---|
6595 | * Permission checks.
|
---|
6596 | */
|
---|
6597 | if (pVCpu->iem.s.uCpl != 0)
|
---|
6598 | {
|
---|
6599 | Log2(("mwait: CPL != 0\n"));
|
---|
6600 | /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
|
---|
6601 | * EFLAGS.VM then.) */
|
---|
6602 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6603 | }
|
---|
6604 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
|
---|
6605 | {
|
---|
6606 | Log2(("mwait: Not in CPUID\n"));
|
---|
6607 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6608 | }
|
---|
6609 |
|
---|
6610 | /*
|
---|
6611 | * Gather the operands and validate them.
|
---|
6612 | */
|
---|
6613 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6614 | uint32_t uEax = pCtx->eax;
|
---|
6615 | uint32_t uEcx = pCtx->ecx;
|
---|
6616 | if (uEcx != 0)
|
---|
6617 | {
|
---|
6618 | /* Only supported extension is break on IRQ when IF=0. */
|
---|
6619 | if (uEcx > 1)
|
---|
6620 | {
|
---|
6621 | Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
|
---|
6622 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6623 | }
|
---|
6624 | uint32_t fMWaitFeatures = 0;
|
---|
6625 | uint32_t uIgnore = 0;
|
---|
6626 | CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
|
---|
6627 | if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
|
---|
6628 | != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
|
---|
6629 | {
|
---|
6630 | Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
|
---|
6631 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
6632 | }
|
---|
6633 | }
|
---|
6634 |
|
---|
6635 | /*
|
---|
6636 | * Check SVM nested-guest mwait intercepts.
|
---|
6637 | */
|
---|
6638 | if ( IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
|
---|
6639 | && EMMonitorIsArmed(pVCpu))
|
---|
6640 | {
|
---|
6641 | Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
|
---|
6642 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6643 | }
|
---|
6644 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
|
---|
6645 | {
|
---|
6646 | Log2(("mwait: Guest intercept -> #VMEXIT\n"));
|
---|
6647 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6648 | }
|
---|
6649 |
|
---|
6650 | /*
|
---|
6651 | * Call EM to prepare the monitor/wait.
|
---|
6652 | */
|
---|
6653 | VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
|
---|
6654 |
|
---|
6655 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6656 | return rcStrict;
|
---|
6657 | }
|
---|
6658 |
|
---|
6659 |
|
---|
6660 | /**
|
---|
6661 | * Implements 'SWAPGS'.
|
---|
6662 | */
|
---|
6663 | IEM_CIMPL_DEF_0(iemCImpl_swapgs)
|
---|
6664 | {
|
---|
6665 | Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
|
---|
6666 |
|
---|
6667 | /*
|
---|
6668 | * Permission checks.
|
---|
6669 | */
|
---|
6670 | if (pVCpu->iem.s.uCpl != 0)
|
---|
6671 | {
|
---|
6672 | Log2(("swapgs: CPL != 0\n"));
|
---|
6673 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
6674 | }
|
---|
6675 |
|
---|
6676 | /*
|
---|
6677 | * Do the job.
|
---|
6678 | */
|
---|
6679 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6680 | uint64_t uOtherGsBase = pCtx->msrKERNELGSBASE;
|
---|
6681 | pCtx->msrKERNELGSBASE = pCtx->gs.u64Base;
|
---|
6682 | pCtx->gs.u64Base = uOtherGsBase;
|
---|
6683 |
|
---|
6684 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6685 | return VINF_SUCCESS;
|
---|
6686 | }
|
---|
6687 |
|
---|
6688 |
|
---|
6689 | /**
|
---|
6690 | * Implements 'CPUID'.
|
---|
6691 | */
|
---|
6692 | IEM_CIMPL_DEF_0(iemCImpl_cpuid)
|
---|
6693 | {
|
---|
6694 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6695 |
|
---|
6696 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
|
---|
6697 | {
|
---|
6698 | Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
|
---|
6699 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
6700 | }
|
---|
6701 |
|
---|
6702 | CPUMGetGuestCpuId(pVCpu, pCtx->eax, pCtx->ecx, &pCtx->eax, &pCtx->ebx, &pCtx->ecx, &pCtx->edx);
|
---|
6703 | pCtx->rax &= UINT32_C(0xffffffff);
|
---|
6704 | pCtx->rbx &= UINT32_C(0xffffffff);
|
---|
6705 | pCtx->rcx &= UINT32_C(0xffffffff);
|
---|
6706 | pCtx->rdx &= UINT32_C(0xffffffff);
|
---|
6707 |
|
---|
6708 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6709 | return VINF_SUCCESS;
|
---|
6710 | }
|
---|
6711 |
|
---|
6712 |
|
---|
6713 | /**
|
---|
6714 | * Implements 'AAD'.
|
---|
6715 | *
|
---|
6716 | * @param bImm The immediate operand.
|
---|
6717 | */
|
---|
6718 | IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
|
---|
6719 | {
|
---|
6720 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6721 |
|
---|
6722 | uint16_t const ax = pCtx->ax;
|
---|
6723 | uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
|
---|
6724 | pCtx->ax = al;
|
---|
6725 | iemHlpUpdateArithEFlagsU8(pVCpu, al,
|
---|
6726 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
|
---|
6727 | X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
|
---|
6728 |
|
---|
6729 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6730 | return VINF_SUCCESS;
|
---|
6731 | }
|
---|
6732 |
|
---|
6733 |
|
---|
6734 | /**
|
---|
6735 | * Implements 'AAM'.
|
---|
6736 | *
|
---|
6737 | * @param bImm The immediate operand. Cannot be 0.
|
---|
6738 | */
|
---|
6739 | IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
|
---|
6740 | {
|
---|
6741 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6742 | Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
|
---|
6743 |
|
---|
6744 | uint16_t const ax = pCtx->ax;
|
---|
6745 | uint8_t const al = (uint8_t)ax % bImm;
|
---|
6746 | uint8_t const ah = (uint8_t)ax / bImm;
|
---|
6747 | pCtx->ax = (ah << 8) + al;
|
---|
6748 | iemHlpUpdateArithEFlagsU8(pVCpu, al,
|
---|
6749 | X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
|
---|
6750 | X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
|
---|
6751 |
|
---|
6752 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6753 | return VINF_SUCCESS;
|
---|
6754 | }
|
---|
6755 |
|
---|
6756 |
|
---|
6757 | /**
|
---|
6758 | * Implements 'DAA'.
|
---|
6759 | */
|
---|
6760 | IEM_CIMPL_DEF_0(iemCImpl_daa)
|
---|
6761 | {
|
---|
6762 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6763 |
|
---|
6764 | uint8_t const al = pCtx->al;
|
---|
6765 | bool const fCarry = pCtx->eflags.Bits.u1CF;
|
---|
6766 |
|
---|
6767 | if ( pCtx->eflags.Bits.u1AF
|
---|
6768 | || (al & 0xf) >= 10)
|
---|
6769 | {
|
---|
6770 | pCtx->al = al + 6;
|
---|
6771 | pCtx->eflags.Bits.u1AF = 1;
|
---|
6772 | }
|
---|
6773 | else
|
---|
6774 | pCtx->eflags.Bits.u1AF = 0;
|
---|
6775 |
|
---|
6776 | if (al >= 0x9a || fCarry)
|
---|
6777 | {
|
---|
6778 | pCtx->al += 0x60;
|
---|
6779 | pCtx->eflags.Bits.u1CF = 1;
|
---|
6780 | }
|
---|
6781 | else
|
---|
6782 | pCtx->eflags.Bits.u1CF = 0;
|
---|
6783 |
|
---|
6784 | iemHlpUpdateArithEFlagsU8(pVCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
|
---|
6785 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6786 | return VINF_SUCCESS;
|
---|
6787 | }
|
---|
6788 |
|
---|
6789 |
|
---|
6790 | /**
|
---|
6791 | * Implements 'DAS'.
|
---|
6792 | */
|
---|
6793 | IEM_CIMPL_DEF_0(iemCImpl_das)
|
---|
6794 | {
|
---|
6795 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6796 |
|
---|
6797 | uint8_t const uInputAL = pCtx->al;
|
---|
6798 | bool const fCarry = pCtx->eflags.Bits.u1CF;
|
---|
6799 |
|
---|
6800 | if ( pCtx->eflags.Bits.u1AF
|
---|
6801 | || (uInputAL & 0xf) >= 10)
|
---|
6802 | {
|
---|
6803 | pCtx->eflags.Bits.u1AF = 1;
|
---|
6804 | if (uInputAL < 6)
|
---|
6805 | pCtx->eflags.Bits.u1CF = 1;
|
---|
6806 | pCtx->al = uInputAL - 6;
|
---|
6807 | }
|
---|
6808 | else
|
---|
6809 | {
|
---|
6810 | pCtx->eflags.Bits.u1AF = 0;
|
---|
6811 | pCtx->eflags.Bits.u1CF = 0;
|
---|
6812 | }
|
---|
6813 |
|
---|
6814 | if (uInputAL >= 0x9a || fCarry)
|
---|
6815 | {
|
---|
6816 | pCtx->al -= 0x60;
|
---|
6817 | pCtx->eflags.Bits.u1CF = 1;
|
---|
6818 | }
|
---|
6819 |
|
---|
6820 | iemHlpUpdateArithEFlagsU8(pVCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
|
---|
6821 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6822 | return VINF_SUCCESS;
|
---|
6823 | }
|
---|
6824 |
|
---|
6825 |
|
---|
6826 | /**
|
---|
6827 | * Implements 'AAA'.
|
---|
6828 | */
|
---|
6829 | IEM_CIMPL_DEF_0(iemCImpl_aaa)
|
---|
6830 | {
|
---|
6831 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6832 |
|
---|
6833 | if (IEM_IS_GUEST_CPU_AMD(pVCpu))
|
---|
6834 | {
|
---|
6835 | if ( pCtx->eflags.Bits.u1AF
|
---|
6836 | || (pCtx->ax & 0xf) >= 10)
|
---|
6837 | {
|
---|
6838 | iemAImpl_add_u16(&pCtx->ax, 0x106, &pCtx->eflags.u32);
|
---|
6839 | pCtx->eflags.Bits.u1AF = 1;
|
---|
6840 | pCtx->eflags.Bits.u1CF = 1;
|
---|
6841 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
6842 | pVCpu->iem.s.fUndefinedEFlags |= X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF;
|
---|
6843 | #endif
|
---|
6844 | }
|
---|
6845 | else
|
---|
6846 | {
|
---|
6847 | iemHlpUpdateArithEFlagsU16(pVCpu, pCtx->ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
|
---|
6848 | pCtx->eflags.Bits.u1AF = 0;
|
---|
6849 | pCtx->eflags.Bits.u1CF = 0;
|
---|
6850 | }
|
---|
6851 | pCtx->ax &= UINT16_C(0xff0f);
|
---|
6852 | }
|
---|
6853 | else
|
---|
6854 | {
|
---|
6855 | if ( pCtx->eflags.Bits.u1AF
|
---|
6856 | || (pCtx->ax & 0xf) >= 10)
|
---|
6857 | {
|
---|
6858 | pCtx->ax += UINT16_C(0x106);
|
---|
6859 | pCtx->eflags.Bits.u1AF = 1;
|
---|
6860 | pCtx->eflags.Bits.u1CF = 1;
|
---|
6861 | }
|
---|
6862 | else
|
---|
6863 | {
|
---|
6864 | pCtx->eflags.Bits.u1AF = 0;
|
---|
6865 | pCtx->eflags.Bits.u1CF = 0;
|
---|
6866 | }
|
---|
6867 | pCtx->ax &= UINT16_C(0xff0f);
|
---|
6868 | iemHlpUpdateArithEFlagsU8(pVCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
|
---|
6869 | }
|
---|
6870 |
|
---|
6871 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6872 | return VINF_SUCCESS;
|
---|
6873 | }
|
---|
6874 |
|
---|
6875 |
|
---|
6876 | /**
|
---|
6877 | * Implements 'AAS'.
|
---|
6878 | */
|
---|
6879 | IEM_CIMPL_DEF_0(iemCImpl_aas)
|
---|
6880 | {
|
---|
6881 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
6882 |
|
---|
6883 | if (IEM_IS_GUEST_CPU_AMD(pVCpu))
|
---|
6884 | {
|
---|
6885 | if ( pCtx->eflags.Bits.u1AF
|
---|
6886 | || (pCtx->ax & 0xf) >= 10)
|
---|
6887 | {
|
---|
6888 | iemAImpl_sub_u16(&pCtx->ax, 0x106, &pCtx->eflags.u32);
|
---|
6889 | pCtx->eflags.Bits.u1AF = 1;
|
---|
6890 | pCtx->eflags.Bits.u1CF = 1;
|
---|
6891 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
6892 | pVCpu->iem.s.fUndefinedEFlags |= X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF;
|
---|
6893 | #endif
|
---|
6894 | }
|
---|
6895 | else
|
---|
6896 | {
|
---|
6897 | iemHlpUpdateArithEFlagsU16(pVCpu, pCtx->ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
|
---|
6898 | pCtx->eflags.Bits.u1AF = 0;
|
---|
6899 | pCtx->eflags.Bits.u1CF = 0;
|
---|
6900 | }
|
---|
6901 | pCtx->ax &= UINT16_C(0xff0f);
|
---|
6902 | }
|
---|
6903 | else
|
---|
6904 | {
|
---|
6905 | if ( pCtx->eflags.Bits.u1AF
|
---|
6906 | || (pCtx->ax & 0xf) >= 10)
|
---|
6907 | {
|
---|
6908 | pCtx->ax -= UINT16_C(0x106);
|
---|
6909 | pCtx->eflags.Bits.u1AF = 1;
|
---|
6910 | pCtx->eflags.Bits.u1CF = 1;
|
---|
6911 | }
|
---|
6912 | else
|
---|
6913 | {
|
---|
6914 | pCtx->eflags.Bits.u1AF = 0;
|
---|
6915 | pCtx->eflags.Bits.u1CF = 0;
|
---|
6916 | }
|
---|
6917 | pCtx->ax &= UINT16_C(0xff0f);
|
---|
6918 | iemHlpUpdateArithEFlagsU8(pVCpu, pCtx->al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
|
---|
6919 | }
|
---|
6920 |
|
---|
6921 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6922 | return VINF_SUCCESS;
|
---|
6923 | }
|
---|
6924 |
|
---|
6925 |
|
---|
6926 | /**
|
---|
6927 | * Implements the 16-bit version of 'BOUND'.
|
---|
6928 | *
|
---|
6929 | * @note We have separate 16-bit and 32-bit variants of this function due to
|
---|
6930 | * the decoder using unsigned parameters, whereas we want signed one to
|
---|
6931 | * do the job. This is significant for a recompiler.
|
---|
6932 | */
|
---|
6933 | IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
|
---|
6934 | {
|
---|
6935 | /*
|
---|
6936 | * Check if the index is inside the bounds, otherwise raise #BR.
|
---|
6937 | */
|
---|
6938 | if ( idxArray >= idxLowerBound
|
---|
6939 | && idxArray <= idxUpperBound)
|
---|
6940 | {
|
---|
6941 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6942 | return VINF_SUCCESS;
|
---|
6943 | }
|
---|
6944 |
|
---|
6945 | return iemRaiseBoundRangeExceeded(pVCpu);
|
---|
6946 | }
|
---|
6947 |
|
---|
6948 |
|
---|
6949 | /**
|
---|
6950 | * Implements the 32-bit version of 'BOUND'.
|
---|
6951 | */
|
---|
6952 | IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
|
---|
6953 | {
|
---|
6954 | /*
|
---|
6955 | * Check if the index is inside the bounds, otherwise raise #BR.
|
---|
6956 | */
|
---|
6957 | if ( idxArray >= idxLowerBound
|
---|
6958 | && idxArray <= idxUpperBound)
|
---|
6959 | {
|
---|
6960 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
6961 | return VINF_SUCCESS;
|
---|
6962 | }
|
---|
6963 |
|
---|
6964 | return iemRaiseBoundRangeExceeded(pVCpu);
|
---|
6965 | }
|
---|
6966 |
|
---|
6967 |
|
---|
6968 |
|
---|
6969 | /*
|
---|
6970 | * Instantiate the various string operation combinations.
|
---|
6971 | */
|
---|
6972 | #define OP_SIZE 8
|
---|
6973 | #define ADDR_SIZE 16
|
---|
6974 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6975 | #define OP_SIZE 8
|
---|
6976 | #define ADDR_SIZE 32
|
---|
6977 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6978 | #define OP_SIZE 8
|
---|
6979 | #define ADDR_SIZE 64
|
---|
6980 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6981 |
|
---|
6982 | #define OP_SIZE 16
|
---|
6983 | #define ADDR_SIZE 16
|
---|
6984 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6985 | #define OP_SIZE 16
|
---|
6986 | #define ADDR_SIZE 32
|
---|
6987 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6988 | #define OP_SIZE 16
|
---|
6989 | #define ADDR_SIZE 64
|
---|
6990 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6991 |
|
---|
6992 | #define OP_SIZE 32
|
---|
6993 | #define ADDR_SIZE 16
|
---|
6994 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6995 | #define OP_SIZE 32
|
---|
6996 | #define ADDR_SIZE 32
|
---|
6997 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
6998 | #define OP_SIZE 32
|
---|
6999 | #define ADDR_SIZE 64
|
---|
7000 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
7001 |
|
---|
7002 | #define OP_SIZE 64
|
---|
7003 | #define ADDR_SIZE 32
|
---|
7004 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
7005 | #define OP_SIZE 64
|
---|
7006 | #define ADDR_SIZE 64
|
---|
7007 | #include "IEMAllCImplStrInstr.cpp.h"
|
---|
7008 |
|
---|
7009 |
|
---|
7010 | /**
|
---|
7011 | * Implements 'XGETBV'.
|
---|
7012 | */
|
---|
7013 | IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
|
---|
7014 | {
|
---|
7015 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
7016 | if (pCtx->cr4 & X86_CR4_OSXSAVE)
|
---|
7017 | {
|
---|
7018 | uint32_t uEcx = pCtx->ecx;
|
---|
7019 | switch (uEcx)
|
---|
7020 | {
|
---|
7021 | case 0:
|
---|
7022 | break;
|
---|
7023 |
|
---|
7024 | case 1: /** @todo Implement XCR1 support. */
|
---|
7025 | default:
|
---|
7026 | Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
|
---|
7027 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7028 |
|
---|
7029 | }
|
---|
7030 | pCtx->rax = RT_LO_U32(pCtx->aXcr[uEcx]);
|
---|
7031 | pCtx->rdx = RT_HI_U32(pCtx->aXcr[uEcx]);
|
---|
7032 |
|
---|
7033 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7034 | return VINF_SUCCESS;
|
---|
7035 | }
|
---|
7036 | Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
|
---|
7037 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
7038 | }
|
---|
7039 |
|
---|
7040 |
|
---|
7041 | /**
|
---|
7042 | * Implements 'XSETBV'.
|
---|
7043 | */
|
---|
7044 | IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
|
---|
7045 | {
|
---|
7046 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
7047 | if (pCtx->cr4 & X86_CR4_OSXSAVE)
|
---|
7048 | {
|
---|
7049 | if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
|
---|
7050 | {
|
---|
7051 | Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
|
---|
7052 | IEM_RETURN_SVM_NST_GST_VMEXIT(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
|
---|
7053 | }
|
---|
7054 |
|
---|
7055 | if (pVCpu->iem.s.uCpl == 0)
|
---|
7056 | {
|
---|
7057 | uint32_t uEcx = pCtx->ecx;
|
---|
7058 | uint64_t uNewValue = RT_MAKE_U64(pCtx->eax, pCtx->edx);
|
---|
7059 | switch (uEcx)
|
---|
7060 | {
|
---|
7061 | case 0:
|
---|
7062 | {
|
---|
7063 | int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
|
---|
7064 | if (rc == VINF_SUCCESS)
|
---|
7065 | break;
|
---|
7066 | Assert(rc == VERR_CPUM_RAISE_GP_0);
|
---|
7067 | Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
|
---|
7068 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7069 | }
|
---|
7070 |
|
---|
7071 | case 1: /** @todo Implement XCR1 support. */
|
---|
7072 | default:
|
---|
7073 | Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
|
---|
7074 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7075 |
|
---|
7076 | }
|
---|
7077 |
|
---|
7078 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7079 | return VINF_SUCCESS;
|
---|
7080 | }
|
---|
7081 |
|
---|
7082 | Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
7083 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7084 | }
|
---|
7085 | Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
|
---|
7086 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
7087 | }
|
---|
7088 |
|
---|
7089 | #ifdef IN_RING3
|
---|
7090 |
|
---|
7091 | /** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
|
---|
7092 | struct IEMCIMPLCX16ARGS
|
---|
7093 | {
|
---|
7094 | PRTUINT128U pu128Dst;
|
---|
7095 | PRTUINT128U pu128RaxRdx;
|
---|
7096 | PRTUINT128U pu128RbxRcx;
|
---|
7097 | uint32_t *pEFlags;
|
---|
7098 | # ifdef VBOX_STRICT
|
---|
7099 | uint32_t cCalls;
|
---|
7100 | # endif
|
---|
7101 | };
|
---|
7102 |
|
---|
7103 | /**
|
---|
7104 | * @callback_method_impl{FNVMMEMTRENDEZVOUS,
|
---|
7105 | * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
|
---|
7106 | */
|
---|
7107 | static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPU pVCpu, void *pvUser)
|
---|
7108 | {
|
---|
7109 | RT_NOREF(pVM, pVCpu);
|
---|
7110 | struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
|
---|
7111 | # ifdef VBOX_STRICT
|
---|
7112 | Assert(pArgs->cCalls == 0);
|
---|
7113 | pArgs->cCalls++;
|
---|
7114 | # endif
|
---|
7115 |
|
---|
7116 | iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
|
---|
7117 | return VINF_SUCCESS;
|
---|
7118 | }
|
---|
7119 |
|
---|
7120 | #endif /* IN_RING3 */
|
---|
7121 |
|
---|
7122 | /**
|
---|
7123 | * Implements 'CMPXCHG16B' fallback using rendezvous.
|
---|
7124 | */
|
---|
7125 | IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
|
---|
7126 | PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
|
---|
7127 | {
|
---|
7128 | #ifdef IN_RING3
|
---|
7129 | struct IEMCIMPLCX16ARGS Args;
|
---|
7130 | Args.pu128Dst = pu128Dst;
|
---|
7131 | Args.pu128RaxRdx = pu128RaxRdx;
|
---|
7132 | Args.pu128RbxRcx = pu128RbxRcx;
|
---|
7133 | Args.pEFlags = pEFlags;
|
---|
7134 | # ifdef VBOX_STRICT
|
---|
7135 | Args.cCalls = 0;
|
---|
7136 | # endif
|
---|
7137 | VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
|
---|
7138 | iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
|
---|
7139 | Assert(Args.cCalls == 1);
|
---|
7140 | if (rcStrict == VINF_SUCCESS)
|
---|
7141 | {
|
---|
7142 | /* Duplicated tail code. */
|
---|
7143 | rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
|
---|
7144 | if (rcStrict == VINF_SUCCESS)
|
---|
7145 | {
|
---|
7146 | PCPUMCTX pCtx = pVCpu->iem.s.CTX_SUFF(pCtx);
|
---|
7147 | pCtx->eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
|
---|
7148 | if (!(*pEFlags & X86_EFL_ZF))
|
---|
7149 | {
|
---|
7150 | pCtx->rax = pu128RaxRdx->s.Lo;
|
---|
7151 | pCtx->rdx = pu128RaxRdx->s.Hi;
|
---|
7152 | }
|
---|
7153 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7154 | }
|
---|
7155 | }
|
---|
7156 | return rcStrict;
|
---|
7157 | #else
|
---|
7158 | RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
|
---|
7159 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
|
---|
7160 | #endif
|
---|
7161 | }
|
---|
7162 |
|
---|
7163 |
|
---|
7164 | /**
|
---|
7165 | * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
|
---|
7166 | *
|
---|
7167 | * This is implemented in C because it triggers a load like behviour without
|
---|
7168 | * actually reading anything. Since that's not so common, it's implemented
|
---|
7169 | * here.
|
---|
7170 | *
|
---|
7171 | * @param iEffSeg The effective segment.
|
---|
7172 | * @param GCPtrEff The address of the image.
|
---|
7173 | */
|
---|
7174 | IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
|
---|
7175 | {
|
---|
7176 | /*
|
---|
7177 | * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
|
---|
7178 | */
|
---|
7179 | VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
|
---|
7180 | if (rcStrict == VINF_SUCCESS)
|
---|
7181 | {
|
---|
7182 | RTGCPHYS GCPhysMem;
|
---|
7183 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
|
---|
7184 | if (rcStrict == VINF_SUCCESS)
|
---|
7185 | {
|
---|
7186 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7187 | return VINF_SUCCESS;
|
---|
7188 | }
|
---|
7189 | }
|
---|
7190 |
|
---|
7191 | return rcStrict;
|
---|
7192 | }
|
---|
7193 |
|
---|
7194 |
|
---|
7195 | /**
|
---|
7196 | * Implements 'FINIT' and 'FNINIT'.
|
---|
7197 | *
|
---|
7198 | * @param fCheckXcpts Whether to check for umasked pending exceptions or
|
---|
7199 | * not.
|
---|
7200 | */
|
---|
7201 | IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
|
---|
7202 | {
|
---|
7203 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
7204 |
|
---|
7205 | if (pCtx->cr0 & (X86_CR0_EM | X86_CR0_TS))
|
---|
7206 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
7207 |
|
---|
7208 | NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
|
---|
7209 | if (fCheckXcpts && TODO )
|
---|
7210 | return iemRaiseMathFault(pVCpu);
|
---|
7211 | */
|
---|
7212 |
|
---|
7213 | PX86XSAVEAREA pXState = pCtx->CTX_SUFF(pXState);
|
---|
7214 | pXState->x87.FCW = 0x37f;
|
---|
7215 | pXState->x87.FSW = 0;
|
---|
7216 | pXState->x87.FTW = 0x00; /* 0 - empty. */
|
---|
7217 | pXState->x87.FPUDP = 0;
|
---|
7218 | pXState->x87.DS = 0; //??
|
---|
7219 | pXState->x87.Rsrvd2= 0;
|
---|
7220 | pXState->x87.FPUIP = 0;
|
---|
7221 | pXState->x87.CS = 0; //??
|
---|
7222 | pXState->x87.Rsrvd1= 0;
|
---|
7223 | pXState->x87.FOP = 0;
|
---|
7224 |
|
---|
7225 | iemHlpUsedFpu(pVCpu);
|
---|
7226 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7227 | return VINF_SUCCESS;
|
---|
7228 | }
|
---|
7229 |
|
---|
7230 |
|
---|
7231 | /**
|
---|
7232 | * Implements 'FXSAVE'.
|
---|
7233 | *
|
---|
7234 | * @param iEffSeg The effective segment.
|
---|
7235 | * @param GCPtrEff The address of the image.
|
---|
7236 | * @param enmEffOpSize The operand size (only REX.W really matters).
|
---|
7237 | */
|
---|
7238 | IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
|
---|
7239 | {
|
---|
7240 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
7241 |
|
---|
7242 | /*
|
---|
7243 | * Raise exceptions.
|
---|
7244 | */
|
---|
7245 | if (pCtx->cr0 & X86_CR0_EM)
|
---|
7246 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
7247 | if (pCtx->cr0 & (X86_CR0_TS | X86_CR0_EM))
|
---|
7248 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
7249 | if (GCPtrEff & 15)
|
---|
7250 | {
|
---|
7251 | /** @todo CPU/VM detection possible! \#AC might not be signal for
|
---|
7252 | * all/any misalignment sizes, intel says its an implementation detail. */
|
---|
7253 | if ( (pCtx->cr0 & X86_CR0_AM)
|
---|
7254 | && pCtx->eflags.Bits.u1AC
|
---|
7255 | && pVCpu->iem.s.uCpl == 3)
|
---|
7256 | return iemRaiseAlignmentCheckException(pVCpu);
|
---|
7257 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7258 | }
|
---|
7259 |
|
---|
7260 | /*
|
---|
7261 | * Access the memory.
|
---|
7262 | */
|
---|
7263 | void *pvMem512;
|
---|
7264 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
7265 | if (rcStrict != VINF_SUCCESS)
|
---|
7266 | return rcStrict;
|
---|
7267 | PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
|
---|
7268 | PCX86FXSTATE pSrc = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
7269 |
|
---|
7270 | /*
|
---|
7271 | * Store the registers.
|
---|
7272 | */
|
---|
7273 | /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
|
---|
7274 | * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
|
---|
7275 |
|
---|
7276 | /* common for all formats */
|
---|
7277 | pDst->FCW = pSrc->FCW;
|
---|
7278 | pDst->FSW = pSrc->FSW;
|
---|
7279 | pDst->FTW = pSrc->FTW & UINT16_C(0xff);
|
---|
7280 | pDst->FOP = pSrc->FOP;
|
---|
7281 | pDst->MXCSR = pSrc->MXCSR;
|
---|
7282 | pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
|
---|
7283 | for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
|
---|
7284 | {
|
---|
7285 | /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
|
---|
7286 | * them for now... */
|
---|
7287 | pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
|
---|
7288 | pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
|
---|
7289 | pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
|
---|
7290 | pDst->aRegs[i].au32[3] = 0;
|
---|
7291 | }
|
---|
7292 |
|
---|
7293 | /* FPU IP, CS, DP and DS. */
|
---|
7294 | pDst->FPUIP = pSrc->FPUIP;
|
---|
7295 | pDst->CS = pSrc->CS;
|
---|
7296 | pDst->FPUDP = pSrc->FPUDP;
|
---|
7297 | pDst->DS = pSrc->DS;
|
---|
7298 | if (enmEffOpSize == IEMMODE_64BIT)
|
---|
7299 | {
|
---|
7300 | /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
|
---|
7301 | pDst->Rsrvd1 = pSrc->Rsrvd1;
|
---|
7302 | pDst->Rsrvd2 = pSrc->Rsrvd2;
|
---|
7303 | pDst->au32RsrvdForSoftware[0] = 0;
|
---|
7304 | }
|
---|
7305 | else
|
---|
7306 | {
|
---|
7307 | pDst->Rsrvd1 = 0;
|
---|
7308 | pDst->Rsrvd2 = 0;
|
---|
7309 | pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
|
---|
7310 | }
|
---|
7311 |
|
---|
7312 | /* XMM registers. */
|
---|
7313 | if ( !(pCtx->msrEFER & MSR_K6_EFER_FFXSR)
|
---|
7314 | || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
|
---|
7315 | || pVCpu->iem.s.uCpl != 0)
|
---|
7316 | {
|
---|
7317 | uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
|
---|
7318 | for (uint32_t i = 0; i < cXmmRegs; i++)
|
---|
7319 | pDst->aXMM[i] = pSrc->aXMM[i];
|
---|
7320 | /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
|
---|
7321 | * right? */
|
---|
7322 | }
|
---|
7323 |
|
---|
7324 | /*
|
---|
7325 | * Commit the memory.
|
---|
7326 | */
|
---|
7327 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
7328 | if (rcStrict != VINF_SUCCESS)
|
---|
7329 | return rcStrict;
|
---|
7330 |
|
---|
7331 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7332 | return VINF_SUCCESS;
|
---|
7333 | }
|
---|
7334 |
|
---|
7335 |
|
---|
7336 | /**
|
---|
7337 | * Implements 'FXRSTOR'.
|
---|
7338 | *
|
---|
7339 | * @param GCPtrEff The address of the image.
|
---|
7340 | * @param enmEffOpSize The operand size (only REX.W really matters).
|
---|
7341 | */
|
---|
7342 | IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
|
---|
7343 | {
|
---|
7344 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
7345 |
|
---|
7346 | /*
|
---|
7347 | * Raise exceptions.
|
---|
7348 | */
|
---|
7349 | if (pCtx->cr0 & X86_CR0_EM)
|
---|
7350 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
7351 | if (pCtx->cr0 & (X86_CR0_TS | X86_CR0_EM))
|
---|
7352 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
7353 | if (GCPtrEff & 15)
|
---|
7354 | {
|
---|
7355 | /** @todo CPU/VM detection possible! \#AC might not be signal for
|
---|
7356 | * all/any misalignment sizes, intel says its an implementation detail. */
|
---|
7357 | if ( (pCtx->cr0 & X86_CR0_AM)
|
---|
7358 | && pCtx->eflags.Bits.u1AC
|
---|
7359 | && pVCpu->iem.s.uCpl == 3)
|
---|
7360 | return iemRaiseAlignmentCheckException(pVCpu);
|
---|
7361 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7362 | }
|
---|
7363 |
|
---|
7364 | /*
|
---|
7365 | * Access the memory.
|
---|
7366 | */
|
---|
7367 | void *pvMem512;
|
---|
7368 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
|
---|
7369 | if (rcStrict != VINF_SUCCESS)
|
---|
7370 | return rcStrict;
|
---|
7371 | PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
|
---|
7372 | PX86FXSTATE pDst = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
7373 |
|
---|
7374 | /*
|
---|
7375 | * Check the state for stuff which will #GP(0).
|
---|
7376 | */
|
---|
7377 | uint32_t const fMXCSR = pSrc->MXCSR;
|
---|
7378 | uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
|
---|
7379 | if (fMXCSR & ~fMXCSR_MASK)
|
---|
7380 | {
|
---|
7381 | Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
|
---|
7382 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7383 | }
|
---|
7384 |
|
---|
7385 | /*
|
---|
7386 | * Load the registers.
|
---|
7387 | */
|
---|
7388 | /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
|
---|
7389 | * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
|
---|
7390 |
|
---|
7391 | /* common for all formats */
|
---|
7392 | pDst->FCW = pSrc->FCW;
|
---|
7393 | pDst->FSW = pSrc->FSW;
|
---|
7394 | pDst->FTW = pSrc->FTW & UINT16_C(0xff);
|
---|
7395 | pDst->FOP = pSrc->FOP;
|
---|
7396 | pDst->MXCSR = fMXCSR;
|
---|
7397 | /* (MXCSR_MASK is read-only) */
|
---|
7398 | for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
|
---|
7399 | {
|
---|
7400 | pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
|
---|
7401 | pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
|
---|
7402 | pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
|
---|
7403 | pDst->aRegs[i].au32[3] = 0;
|
---|
7404 | }
|
---|
7405 |
|
---|
7406 | /* FPU IP, CS, DP and DS. */
|
---|
7407 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
7408 | {
|
---|
7409 | pDst->FPUIP = pSrc->FPUIP;
|
---|
7410 | pDst->CS = pSrc->CS;
|
---|
7411 | pDst->Rsrvd1 = pSrc->Rsrvd1;
|
---|
7412 | pDst->FPUDP = pSrc->FPUDP;
|
---|
7413 | pDst->DS = pSrc->DS;
|
---|
7414 | pDst->Rsrvd2 = pSrc->Rsrvd2;
|
---|
7415 | }
|
---|
7416 | else
|
---|
7417 | {
|
---|
7418 | pDst->FPUIP = pSrc->FPUIP;
|
---|
7419 | pDst->CS = pSrc->CS;
|
---|
7420 | pDst->Rsrvd1 = 0;
|
---|
7421 | pDst->FPUDP = pSrc->FPUDP;
|
---|
7422 | pDst->DS = pSrc->DS;
|
---|
7423 | pDst->Rsrvd2 = 0;
|
---|
7424 | }
|
---|
7425 |
|
---|
7426 | /* XMM registers. */
|
---|
7427 | if ( !(pCtx->msrEFER & MSR_K6_EFER_FFXSR)
|
---|
7428 | || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
|
---|
7429 | || pVCpu->iem.s.uCpl != 0)
|
---|
7430 | {
|
---|
7431 | uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
|
---|
7432 | for (uint32_t i = 0; i < cXmmRegs; i++)
|
---|
7433 | pDst->aXMM[i] = pSrc->aXMM[i];
|
---|
7434 | }
|
---|
7435 |
|
---|
7436 | /*
|
---|
7437 | * Commit the memory.
|
---|
7438 | */
|
---|
7439 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
|
---|
7440 | if (rcStrict != VINF_SUCCESS)
|
---|
7441 | return rcStrict;
|
---|
7442 |
|
---|
7443 | iemHlpUsedFpu(pVCpu);
|
---|
7444 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7445 | return VINF_SUCCESS;
|
---|
7446 | }
|
---|
7447 |
|
---|
7448 |
|
---|
7449 | /**
|
---|
7450 | * Implements 'XSAVE'.
|
---|
7451 | *
|
---|
7452 | * @param iEffSeg The effective segment.
|
---|
7453 | * @param GCPtrEff The address of the image.
|
---|
7454 | * @param enmEffOpSize The operand size (only REX.W really matters).
|
---|
7455 | */
|
---|
7456 | IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
|
---|
7457 | {
|
---|
7458 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
7459 |
|
---|
7460 | /*
|
---|
7461 | * Raise exceptions.
|
---|
7462 | */
|
---|
7463 | if (!(pCtx->cr4 & X86_CR4_OSXSAVE))
|
---|
7464 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
7465 | if (pCtx->cr0 & X86_CR0_TS)
|
---|
7466 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
7467 | if (GCPtrEff & 63)
|
---|
7468 | {
|
---|
7469 | /** @todo CPU/VM detection possible! \#AC might not be signal for
|
---|
7470 | * all/any misalignment sizes, intel says its an implementation detail. */
|
---|
7471 | if ( (pCtx->cr0 & X86_CR0_AM)
|
---|
7472 | && pCtx->eflags.Bits.u1AC
|
---|
7473 | && pVCpu->iem.s.uCpl == 3)
|
---|
7474 | return iemRaiseAlignmentCheckException(pVCpu);
|
---|
7475 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7476 | }
|
---|
7477 |
|
---|
7478 | /*
|
---|
7479 | * Calc the requested mask
|
---|
7480 | */
|
---|
7481 | uint64_t const fReqComponents = RT_MAKE_U64(pCtx->eax, pCtx->edx) & pCtx->aXcr[0];
|
---|
7482 | AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
|
---|
7483 | uint64_t const fXInUse = pCtx->aXcr[0];
|
---|
7484 |
|
---|
7485 | /** @todo figure out the exact protocol for the memory access. Currently we
|
---|
7486 | * just need this crap to work halfways to make it possible to test
|
---|
7487 | * AVX instructions. */
|
---|
7488 | /** @todo figure out the XINUSE and XMODIFIED */
|
---|
7489 |
|
---|
7490 | /*
|
---|
7491 | * Access the x87 memory state.
|
---|
7492 | */
|
---|
7493 | /* The x87+SSE state. */
|
---|
7494 | void *pvMem512;
|
---|
7495 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
7496 | if (rcStrict != VINF_SUCCESS)
|
---|
7497 | return rcStrict;
|
---|
7498 | PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
|
---|
7499 | PCX86FXSTATE pSrc = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
7500 |
|
---|
7501 | /* The header. */
|
---|
7502 | PX86XSAVEHDR pHdr;
|
---|
7503 | rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW);
|
---|
7504 | if (rcStrict != VINF_SUCCESS)
|
---|
7505 | return rcStrict;
|
---|
7506 |
|
---|
7507 | /*
|
---|
7508 | * Store the X87 state.
|
---|
7509 | */
|
---|
7510 | if (fReqComponents & XSAVE_C_X87)
|
---|
7511 | {
|
---|
7512 | /* common for all formats */
|
---|
7513 | pDst->FCW = pSrc->FCW;
|
---|
7514 | pDst->FSW = pSrc->FSW;
|
---|
7515 | pDst->FTW = pSrc->FTW & UINT16_C(0xff);
|
---|
7516 | pDst->FOP = pSrc->FOP;
|
---|
7517 | pDst->FPUIP = pSrc->FPUIP;
|
---|
7518 | pDst->CS = pSrc->CS;
|
---|
7519 | pDst->FPUDP = pSrc->FPUDP;
|
---|
7520 | pDst->DS = pSrc->DS;
|
---|
7521 | if (enmEffOpSize == IEMMODE_64BIT)
|
---|
7522 | {
|
---|
7523 | /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
|
---|
7524 | pDst->Rsrvd1 = pSrc->Rsrvd1;
|
---|
7525 | pDst->Rsrvd2 = pSrc->Rsrvd2;
|
---|
7526 | pDst->au32RsrvdForSoftware[0] = 0;
|
---|
7527 | }
|
---|
7528 | else
|
---|
7529 | {
|
---|
7530 | pDst->Rsrvd1 = 0;
|
---|
7531 | pDst->Rsrvd2 = 0;
|
---|
7532 | pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
|
---|
7533 | }
|
---|
7534 | for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
|
---|
7535 | {
|
---|
7536 | /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
|
---|
7537 | * them for now... */
|
---|
7538 | pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
|
---|
7539 | pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
|
---|
7540 | pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
|
---|
7541 | pDst->aRegs[i].au32[3] = 0;
|
---|
7542 | }
|
---|
7543 |
|
---|
7544 | }
|
---|
7545 |
|
---|
7546 | if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
|
---|
7547 | {
|
---|
7548 | pDst->MXCSR = pSrc->MXCSR;
|
---|
7549 | pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
|
---|
7550 | }
|
---|
7551 |
|
---|
7552 | if (fReqComponents & XSAVE_C_SSE)
|
---|
7553 | {
|
---|
7554 | /* XMM registers. */
|
---|
7555 | uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
|
---|
7556 | for (uint32_t i = 0; i < cXmmRegs; i++)
|
---|
7557 | pDst->aXMM[i] = pSrc->aXMM[i];
|
---|
7558 | /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
|
---|
7559 | * right? */
|
---|
7560 | }
|
---|
7561 |
|
---|
7562 | /* Commit the x87 state bits. (probably wrong) */
|
---|
7563 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
7564 | if (rcStrict != VINF_SUCCESS)
|
---|
7565 | return rcStrict;
|
---|
7566 |
|
---|
7567 | /*
|
---|
7568 | * Store AVX state.
|
---|
7569 | */
|
---|
7570 | if (fReqComponents & XSAVE_C_YMM)
|
---|
7571 | {
|
---|
7572 | /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
|
---|
7573 | AssertLogRelReturn(pCtx->aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
|
---|
7574 | PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
|
---|
7575 | PX86XSAVEYMMHI pCompDst;
|
---|
7576 | rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pCtx->aoffXState[XSAVE_C_YMM_BIT],
|
---|
7577 | IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
7578 | if (rcStrict != VINF_SUCCESS)
|
---|
7579 | return rcStrict;
|
---|
7580 |
|
---|
7581 | uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
|
---|
7582 | for (uint32_t i = 0; i < cXmmRegs; i++)
|
---|
7583 | pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
|
---|
7584 |
|
---|
7585 | rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
7586 | if (rcStrict != VINF_SUCCESS)
|
---|
7587 | return rcStrict;
|
---|
7588 | }
|
---|
7589 |
|
---|
7590 | /*
|
---|
7591 | * Update the header.
|
---|
7592 | */
|
---|
7593 | pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
|
---|
7594 | | (fReqComponents & fXInUse);
|
---|
7595 |
|
---|
7596 | rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
|
---|
7597 | if (rcStrict != VINF_SUCCESS)
|
---|
7598 | return rcStrict;
|
---|
7599 |
|
---|
7600 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7601 | return VINF_SUCCESS;
|
---|
7602 | }
|
---|
7603 |
|
---|
7604 |
|
---|
7605 | /**
|
---|
7606 | * Implements 'XRSTOR'.
|
---|
7607 | *
|
---|
7608 | * @param iEffSeg The effective segment.
|
---|
7609 | * @param GCPtrEff The address of the image.
|
---|
7610 | * @param enmEffOpSize The operand size (only REX.W really matters).
|
---|
7611 | */
|
---|
7612 | IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
|
---|
7613 | {
|
---|
7614 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
7615 |
|
---|
7616 | /*
|
---|
7617 | * Raise exceptions.
|
---|
7618 | */
|
---|
7619 | if (!(pCtx->cr4 & X86_CR4_OSXSAVE))
|
---|
7620 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
7621 | if (pCtx->cr0 & X86_CR0_TS)
|
---|
7622 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
7623 | if (GCPtrEff & 63)
|
---|
7624 | {
|
---|
7625 | /** @todo CPU/VM detection possible! \#AC might not be signal for
|
---|
7626 | * all/any misalignment sizes, intel says its an implementation detail. */
|
---|
7627 | if ( (pCtx->cr0 & X86_CR0_AM)
|
---|
7628 | && pCtx->eflags.Bits.u1AC
|
---|
7629 | && pVCpu->iem.s.uCpl == 3)
|
---|
7630 | return iemRaiseAlignmentCheckException(pVCpu);
|
---|
7631 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7632 | }
|
---|
7633 |
|
---|
7634 | /** @todo figure out the exact protocol for the memory access. Currently we
|
---|
7635 | * just need this crap to work halfways to make it possible to test
|
---|
7636 | * AVX instructions. */
|
---|
7637 | /** @todo figure out the XINUSE and XMODIFIED */
|
---|
7638 |
|
---|
7639 | /*
|
---|
7640 | * Access the x87 memory state.
|
---|
7641 | */
|
---|
7642 | /* The x87+SSE state. */
|
---|
7643 | void *pvMem512;
|
---|
7644 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
|
---|
7645 | if (rcStrict != VINF_SUCCESS)
|
---|
7646 | return rcStrict;
|
---|
7647 | PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
|
---|
7648 | PX86FXSTATE pDst = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
7649 |
|
---|
7650 | /*
|
---|
7651 | * Calc the requested mask
|
---|
7652 | */
|
---|
7653 | PX86XSAVEHDR pHdrDst = &pCtx->CTX_SUFF(pXState)->Hdr;
|
---|
7654 | PCX86XSAVEHDR pHdrSrc;
|
---|
7655 | rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R);
|
---|
7656 | if (rcStrict != VINF_SUCCESS)
|
---|
7657 | return rcStrict;
|
---|
7658 |
|
---|
7659 | uint64_t const fReqComponents = RT_MAKE_U64(pCtx->eax, pCtx->edx) & pCtx->aXcr[0];
|
---|
7660 | AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
|
---|
7661 | //uint64_t const fXInUse = pCtx->aXcr[0];
|
---|
7662 | uint64_t const fRstorMask = pHdrSrc->bmXState;
|
---|
7663 | uint64_t const fCompMask = pHdrSrc->bmXComp;
|
---|
7664 |
|
---|
7665 | AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
|
---|
7666 |
|
---|
7667 | uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
|
---|
7668 |
|
---|
7669 | /* We won't need this any longer. */
|
---|
7670 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
|
---|
7671 | if (rcStrict != VINF_SUCCESS)
|
---|
7672 | return rcStrict;
|
---|
7673 |
|
---|
7674 | /*
|
---|
7675 | * Store the X87 state.
|
---|
7676 | */
|
---|
7677 | if (fReqComponents & XSAVE_C_X87)
|
---|
7678 | {
|
---|
7679 | if (fRstorMask & XSAVE_C_X87)
|
---|
7680 | {
|
---|
7681 | pDst->FCW = pSrc->FCW;
|
---|
7682 | pDst->FSW = pSrc->FSW;
|
---|
7683 | pDst->FTW = pSrc->FTW & UINT16_C(0xff);
|
---|
7684 | pDst->FOP = pSrc->FOP;
|
---|
7685 | pDst->FPUIP = pSrc->FPUIP;
|
---|
7686 | pDst->CS = pSrc->CS;
|
---|
7687 | pDst->FPUDP = pSrc->FPUDP;
|
---|
7688 | pDst->DS = pSrc->DS;
|
---|
7689 | if (enmEffOpSize == IEMMODE_64BIT)
|
---|
7690 | {
|
---|
7691 | /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
|
---|
7692 | pDst->Rsrvd1 = pSrc->Rsrvd1;
|
---|
7693 | pDst->Rsrvd2 = pSrc->Rsrvd2;
|
---|
7694 | }
|
---|
7695 | else
|
---|
7696 | {
|
---|
7697 | pDst->Rsrvd1 = 0;
|
---|
7698 | pDst->Rsrvd2 = 0;
|
---|
7699 | }
|
---|
7700 | for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
|
---|
7701 | {
|
---|
7702 | pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
|
---|
7703 | pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
|
---|
7704 | pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
|
---|
7705 | pDst->aRegs[i].au32[3] = 0;
|
---|
7706 | }
|
---|
7707 | }
|
---|
7708 | else
|
---|
7709 | {
|
---|
7710 | pDst->FCW = 0x37f;
|
---|
7711 | pDst->FSW = 0;
|
---|
7712 | pDst->FTW = 0x00; /* 0 - empty. */
|
---|
7713 | pDst->FPUDP = 0;
|
---|
7714 | pDst->DS = 0; //??
|
---|
7715 | pDst->Rsrvd2= 0;
|
---|
7716 | pDst->FPUIP = 0;
|
---|
7717 | pDst->CS = 0; //??
|
---|
7718 | pDst->Rsrvd1= 0;
|
---|
7719 | pDst->FOP = 0;
|
---|
7720 | for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
|
---|
7721 | {
|
---|
7722 | pDst->aRegs[i].au32[0] = 0;
|
---|
7723 | pDst->aRegs[i].au32[1] = 0;
|
---|
7724 | pDst->aRegs[i].au32[2] = 0;
|
---|
7725 | pDst->aRegs[i].au32[3] = 0;
|
---|
7726 | }
|
---|
7727 | }
|
---|
7728 | pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
|
---|
7729 | }
|
---|
7730 |
|
---|
7731 | /* MXCSR */
|
---|
7732 | if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
|
---|
7733 | {
|
---|
7734 | if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
|
---|
7735 | pDst->MXCSR = pSrc->MXCSR;
|
---|
7736 | else
|
---|
7737 | pDst->MXCSR = 0x1f80;
|
---|
7738 | }
|
---|
7739 |
|
---|
7740 | /* XMM registers. */
|
---|
7741 | if (fReqComponents & XSAVE_C_SSE)
|
---|
7742 | {
|
---|
7743 | if (fRstorMask & XSAVE_C_SSE)
|
---|
7744 | {
|
---|
7745 | for (uint32_t i = 0; i < cXmmRegs; i++)
|
---|
7746 | pDst->aXMM[i] = pSrc->aXMM[i];
|
---|
7747 | /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
|
---|
7748 | * right? */
|
---|
7749 | }
|
---|
7750 | else
|
---|
7751 | {
|
---|
7752 | for (uint32_t i = 0; i < cXmmRegs; i++)
|
---|
7753 | {
|
---|
7754 | pDst->aXMM[i].au64[0] = 0;
|
---|
7755 | pDst->aXMM[i].au64[1] = 0;
|
---|
7756 | }
|
---|
7757 | }
|
---|
7758 | pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
|
---|
7759 | }
|
---|
7760 |
|
---|
7761 | /* Unmap the x87 state bits (so we've don't run out of mapping). */
|
---|
7762 | rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
|
---|
7763 | if (rcStrict != VINF_SUCCESS)
|
---|
7764 | return rcStrict;
|
---|
7765 |
|
---|
7766 | /*
|
---|
7767 | * Restore AVX state.
|
---|
7768 | */
|
---|
7769 | if (fReqComponents & XSAVE_C_YMM)
|
---|
7770 | {
|
---|
7771 | AssertLogRelReturn(pCtx->aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
|
---|
7772 | PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
|
---|
7773 |
|
---|
7774 | if (fRstorMask & XSAVE_C_YMM)
|
---|
7775 | {
|
---|
7776 | /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
|
---|
7777 | PCX86XSAVEYMMHI pCompSrc;
|
---|
7778 | rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
|
---|
7779 | iEffSeg, GCPtrEff + pCtx->aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R);
|
---|
7780 | if (rcStrict != VINF_SUCCESS)
|
---|
7781 | return rcStrict;
|
---|
7782 |
|
---|
7783 | for (uint32_t i = 0; i < cXmmRegs; i++)
|
---|
7784 | {
|
---|
7785 | pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
|
---|
7786 | pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
|
---|
7787 | }
|
---|
7788 |
|
---|
7789 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
|
---|
7790 | if (rcStrict != VINF_SUCCESS)
|
---|
7791 | return rcStrict;
|
---|
7792 | }
|
---|
7793 | else
|
---|
7794 | {
|
---|
7795 | for (uint32_t i = 0; i < cXmmRegs; i++)
|
---|
7796 | {
|
---|
7797 | pCompDst->aYmmHi[i].au64[0] = 0;
|
---|
7798 | pCompDst->aYmmHi[i].au64[1] = 0;
|
---|
7799 | }
|
---|
7800 | }
|
---|
7801 | pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
|
---|
7802 | }
|
---|
7803 |
|
---|
7804 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7805 | return VINF_SUCCESS;
|
---|
7806 | }
|
---|
7807 |
|
---|
7808 |
|
---|
7809 |
|
---|
7810 |
|
---|
7811 | /**
|
---|
7812 | * Implements 'STMXCSR'.
|
---|
7813 | *
|
---|
7814 | * @param GCPtrEff The address of the image.
|
---|
7815 | */
|
---|
7816 | IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
|
---|
7817 | {
|
---|
7818 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
7819 |
|
---|
7820 | /*
|
---|
7821 | * Raise exceptions.
|
---|
7822 | */
|
---|
7823 | if ( !(pCtx->cr0 & X86_CR0_EM)
|
---|
7824 | && (pCtx->cr4 & X86_CR4_OSFXSR))
|
---|
7825 | {
|
---|
7826 | if (!(pCtx->cr0 & X86_CR0_TS))
|
---|
7827 | {
|
---|
7828 | /*
|
---|
7829 | * Do the job.
|
---|
7830 | */
|
---|
7831 | VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pCtx->CTX_SUFF(pXState)->x87.MXCSR);
|
---|
7832 | if (rcStrict == VINF_SUCCESS)
|
---|
7833 | {
|
---|
7834 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7835 | return VINF_SUCCESS;
|
---|
7836 | }
|
---|
7837 | return rcStrict;
|
---|
7838 | }
|
---|
7839 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
7840 | }
|
---|
7841 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
7842 | }
|
---|
7843 |
|
---|
7844 |
|
---|
7845 | /**
|
---|
7846 | * Implements 'VSTMXCSR'.
|
---|
7847 | *
|
---|
7848 | * @param GCPtrEff The address of the image.
|
---|
7849 | */
|
---|
7850 | IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
|
---|
7851 | {
|
---|
7852 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
7853 |
|
---|
7854 | /*
|
---|
7855 | * Raise exceptions.
|
---|
7856 | */
|
---|
7857 | if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
|
---|
7858 | ? (pCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
|
---|
7859 | : !(pCtx->cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
|
---|
7860 | && (pCtx->cr4 & X86_CR4_OSXSAVE))
|
---|
7861 | {
|
---|
7862 | if (!(pCtx->cr0 & X86_CR0_TS))
|
---|
7863 | {
|
---|
7864 | /*
|
---|
7865 | * Do the job.
|
---|
7866 | */
|
---|
7867 | VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pCtx->CTX_SUFF(pXState)->x87.MXCSR);
|
---|
7868 | if (rcStrict == VINF_SUCCESS)
|
---|
7869 | {
|
---|
7870 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7871 | return VINF_SUCCESS;
|
---|
7872 | }
|
---|
7873 | return rcStrict;
|
---|
7874 | }
|
---|
7875 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
7876 | }
|
---|
7877 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
7878 | }
|
---|
7879 |
|
---|
7880 |
|
---|
7881 | /**
|
---|
7882 | * Implements 'LDMXCSR'.
|
---|
7883 | *
|
---|
7884 | * @param GCPtrEff The address of the image.
|
---|
7885 | */
|
---|
7886 | IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
|
---|
7887 | {
|
---|
7888 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
7889 |
|
---|
7890 | /*
|
---|
7891 | * Raise exceptions.
|
---|
7892 | */
|
---|
7893 | /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
|
---|
7894 | * happen after or before \#UD and \#EM? */
|
---|
7895 | if ( !(pCtx->cr0 & X86_CR0_EM)
|
---|
7896 | && (pCtx->cr4 & X86_CR4_OSFXSR))
|
---|
7897 | {
|
---|
7898 | if (!(pCtx->cr0 & X86_CR0_TS))
|
---|
7899 | {
|
---|
7900 | /*
|
---|
7901 | * Do the job.
|
---|
7902 | */
|
---|
7903 | uint32_t fNewMxCsr;
|
---|
7904 | VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
|
---|
7905 | if (rcStrict == VINF_SUCCESS)
|
---|
7906 | {
|
---|
7907 | uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
|
---|
7908 | if (!(fNewMxCsr & ~fMxCsrMask))
|
---|
7909 | {
|
---|
7910 | pCtx->CTX_SUFF(pXState)->x87.MXCSR = fNewMxCsr;
|
---|
7911 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7912 | return VINF_SUCCESS;
|
---|
7913 | }
|
---|
7914 | Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
|
---|
7915 | fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
|
---|
7916 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7917 | }
|
---|
7918 | return rcStrict;
|
---|
7919 | }
|
---|
7920 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
7921 | }
|
---|
7922 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
7923 | }
|
---|
7924 |
|
---|
7925 |
|
---|
7926 | /**
|
---|
7927 | * Commmon routine for fnstenv and fnsave.
|
---|
7928 | *
|
---|
7929 | * @param uPtr Where to store the state.
|
---|
7930 | * @param pCtx The CPU context.
|
---|
7931 | */
|
---|
7932 | static void iemCImplCommonFpuStoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr, PCCPUMCTX pCtx)
|
---|
7933 | {
|
---|
7934 | PCX86FXSTATE pSrcX87 = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
7935 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
7936 | {
|
---|
7937 | uPtr.pu16[0] = pSrcX87->FCW;
|
---|
7938 | uPtr.pu16[1] = pSrcX87->FSW;
|
---|
7939 | uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
|
---|
7940 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
7941 | {
|
---|
7942 | /** @todo Testcase: How does this work when the FPUIP/CS was saved in
|
---|
7943 | * protected mode or long mode and we save it in real mode? And vice
|
---|
7944 | * versa? And with 32-bit operand size? I think CPU is storing the
|
---|
7945 | * effective address ((CS << 4) + IP) in the offset register and not
|
---|
7946 | * doing any address calculations here. */
|
---|
7947 | uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
|
---|
7948 | uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
|
---|
7949 | uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
|
---|
7950 | uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
|
---|
7951 | }
|
---|
7952 | else
|
---|
7953 | {
|
---|
7954 | uPtr.pu16[3] = pSrcX87->FPUIP;
|
---|
7955 | uPtr.pu16[4] = pSrcX87->CS;
|
---|
7956 | uPtr.pu16[5] = pSrcX87->FPUDP;
|
---|
7957 | uPtr.pu16[6] = pSrcX87->DS;
|
---|
7958 | }
|
---|
7959 | }
|
---|
7960 | else
|
---|
7961 | {
|
---|
7962 | /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
|
---|
7963 | uPtr.pu16[0*2] = pSrcX87->FCW;
|
---|
7964 | uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
|
---|
7965 | uPtr.pu16[1*2] = pSrcX87->FSW;
|
---|
7966 | uPtr.pu16[1*2+1] = 0xffff;
|
---|
7967 | uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
|
---|
7968 | uPtr.pu16[2*2+1] = 0xffff;
|
---|
7969 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
7970 | {
|
---|
7971 | uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
|
---|
7972 | uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
|
---|
7973 | uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
|
---|
7974 | uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
|
---|
7975 | }
|
---|
7976 | else
|
---|
7977 | {
|
---|
7978 | uPtr.pu32[3] = pSrcX87->FPUIP;
|
---|
7979 | uPtr.pu16[4*2] = pSrcX87->CS;
|
---|
7980 | uPtr.pu16[4*2+1] = pSrcX87->FOP;
|
---|
7981 | uPtr.pu32[5] = pSrcX87->FPUDP;
|
---|
7982 | uPtr.pu16[6*2] = pSrcX87->DS;
|
---|
7983 | uPtr.pu16[6*2+1] = 0xffff;
|
---|
7984 | }
|
---|
7985 | }
|
---|
7986 | }
|
---|
7987 |
|
---|
7988 |
|
---|
7989 | /**
|
---|
7990 | * Commmon routine for fldenv and frstor
|
---|
7991 | *
|
---|
7992 | * @param uPtr Where to store the state.
|
---|
7993 | * @param pCtx The CPU context.
|
---|
7994 | */
|
---|
7995 | static void iemCImplCommonFpuRestoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr, PCPUMCTX pCtx)
|
---|
7996 | {
|
---|
7997 | PX86FXSTATE pDstX87 = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
7998 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
7999 | {
|
---|
8000 | pDstX87->FCW = uPtr.pu16[0];
|
---|
8001 | pDstX87->FSW = uPtr.pu16[1];
|
---|
8002 | pDstX87->FTW = uPtr.pu16[2];
|
---|
8003 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
8004 | {
|
---|
8005 | pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
|
---|
8006 | pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
|
---|
8007 | pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
|
---|
8008 | pDstX87->CS = 0;
|
---|
8009 | pDstX87->Rsrvd1= 0;
|
---|
8010 | pDstX87->DS = 0;
|
---|
8011 | pDstX87->Rsrvd2= 0;
|
---|
8012 | }
|
---|
8013 | else
|
---|
8014 | {
|
---|
8015 | pDstX87->FPUIP = uPtr.pu16[3];
|
---|
8016 | pDstX87->CS = uPtr.pu16[4];
|
---|
8017 | pDstX87->Rsrvd1= 0;
|
---|
8018 | pDstX87->FPUDP = uPtr.pu16[5];
|
---|
8019 | pDstX87->DS = uPtr.pu16[6];
|
---|
8020 | pDstX87->Rsrvd2= 0;
|
---|
8021 | /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
|
---|
8022 | }
|
---|
8023 | }
|
---|
8024 | else
|
---|
8025 | {
|
---|
8026 | pDstX87->FCW = uPtr.pu16[0*2];
|
---|
8027 | pDstX87->FSW = uPtr.pu16[1*2];
|
---|
8028 | pDstX87->FTW = uPtr.pu16[2*2];
|
---|
8029 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
8030 | {
|
---|
8031 | pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
|
---|
8032 | pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
|
---|
8033 | pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
|
---|
8034 | pDstX87->CS = 0;
|
---|
8035 | pDstX87->Rsrvd1= 0;
|
---|
8036 | pDstX87->DS = 0;
|
---|
8037 | pDstX87->Rsrvd2= 0;
|
---|
8038 | }
|
---|
8039 | else
|
---|
8040 | {
|
---|
8041 | pDstX87->FPUIP = uPtr.pu32[3];
|
---|
8042 | pDstX87->CS = uPtr.pu16[4*2];
|
---|
8043 | pDstX87->Rsrvd1= 0;
|
---|
8044 | pDstX87->FOP = uPtr.pu16[4*2+1];
|
---|
8045 | pDstX87->FPUDP = uPtr.pu32[5];
|
---|
8046 | pDstX87->DS = uPtr.pu16[6*2];
|
---|
8047 | pDstX87->Rsrvd2= 0;
|
---|
8048 | }
|
---|
8049 | }
|
---|
8050 |
|
---|
8051 | /* Make adjustments. */
|
---|
8052 | pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
|
---|
8053 | pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
|
---|
8054 | iemFpuRecalcExceptionStatus(pDstX87);
|
---|
8055 | /** @todo Testcase: Check if ES and/or B are automatically cleared if no
|
---|
8056 | * exceptions are pending after loading the saved state? */
|
---|
8057 | }
|
---|
8058 |
|
---|
8059 |
|
---|
8060 | /**
|
---|
8061 | * Implements 'FNSTENV'.
|
---|
8062 | *
|
---|
8063 | * @param enmEffOpSize The operand size (only REX.W really matters).
|
---|
8064 | * @param iEffSeg The effective segment register for @a GCPtrEff.
|
---|
8065 | * @param GCPtrEffDst The address of the image.
|
---|
8066 | */
|
---|
8067 | IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
|
---|
8068 | {
|
---|
8069 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
8070 | RTPTRUNION uPtr;
|
---|
8071 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
|
---|
8072 | iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
8073 | if (rcStrict != VINF_SUCCESS)
|
---|
8074 | return rcStrict;
|
---|
8075 |
|
---|
8076 | iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx);
|
---|
8077 |
|
---|
8078 | rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
8079 | if (rcStrict != VINF_SUCCESS)
|
---|
8080 | return rcStrict;
|
---|
8081 |
|
---|
8082 | /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
|
---|
8083 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8084 | return VINF_SUCCESS;
|
---|
8085 | }
|
---|
8086 |
|
---|
8087 |
|
---|
8088 | /**
|
---|
8089 | * Implements 'FNSAVE'.
|
---|
8090 | *
|
---|
8091 | * @param GCPtrEffDst The address of the image.
|
---|
8092 | * @param enmEffOpSize The operand size.
|
---|
8093 | */
|
---|
8094 | IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
|
---|
8095 | {
|
---|
8096 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
8097 | RTPTRUNION uPtr;
|
---|
8098 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
|
---|
8099 | iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
8100 | if (rcStrict != VINF_SUCCESS)
|
---|
8101 | return rcStrict;
|
---|
8102 |
|
---|
8103 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
8104 | iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx);
|
---|
8105 | PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
|
---|
8106 | for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
|
---|
8107 | {
|
---|
8108 | paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
|
---|
8109 | paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
|
---|
8110 | paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
|
---|
8111 | }
|
---|
8112 |
|
---|
8113 | rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
|
---|
8114 | if (rcStrict != VINF_SUCCESS)
|
---|
8115 | return rcStrict;
|
---|
8116 |
|
---|
8117 | /*
|
---|
8118 | * Re-initialize the FPU context.
|
---|
8119 | */
|
---|
8120 | pFpuCtx->FCW = 0x37f;
|
---|
8121 | pFpuCtx->FSW = 0;
|
---|
8122 | pFpuCtx->FTW = 0x00; /* 0 - empty */
|
---|
8123 | pFpuCtx->FPUDP = 0;
|
---|
8124 | pFpuCtx->DS = 0;
|
---|
8125 | pFpuCtx->Rsrvd2= 0;
|
---|
8126 | pFpuCtx->FPUIP = 0;
|
---|
8127 | pFpuCtx->CS = 0;
|
---|
8128 | pFpuCtx->Rsrvd1= 0;
|
---|
8129 | pFpuCtx->FOP = 0;
|
---|
8130 |
|
---|
8131 | iemHlpUsedFpu(pVCpu);
|
---|
8132 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8133 | return VINF_SUCCESS;
|
---|
8134 | }
|
---|
8135 |
|
---|
8136 |
|
---|
8137 |
|
---|
8138 | /**
|
---|
8139 | * Implements 'FLDENV'.
|
---|
8140 | *
|
---|
8141 | * @param enmEffOpSize The operand size (only REX.W really matters).
|
---|
8142 | * @param iEffSeg The effective segment register for @a GCPtrEff.
|
---|
8143 | * @param GCPtrEffSrc The address of the image.
|
---|
8144 | */
|
---|
8145 | IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
|
---|
8146 | {
|
---|
8147 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
8148 | RTCPTRUNION uPtr;
|
---|
8149 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
|
---|
8150 | iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
|
---|
8151 | if (rcStrict != VINF_SUCCESS)
|
---|
8152 | return rcStrict;
|
---|
8153 |
|
---|
8154 | iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx);
|
---|
8155 |
|
---|
8156 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
|
---|
8157 | if (rcStrict != VINF_SUCCESS)
|
---|
8158 | return rcStrict;
|
---|
8159 |
|
---|
8160 | iemHlpUsedFpu(pVCpu);
|
---|
8161 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8162 | return VINF_SUCCESS;
|
---|
8163 | }
|
---|
8164 |
|
---|
8165 |
|
---|
8166 | /**
|
---|
8167 | * Implements 'FRSTOR'.
|
---|
8168 | *
|
---|
8169 | * @param GCPtrEffSrc The address of the image.
|
---|
8170 | * @param enmEffOpSize The operand size.
|
---|
8171 | */
|
---|
8172 | IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
|
---|
8173 | {
|
---|
8174 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
8175 | RTCPTRUNION uPtr;
|
---|
8176 | VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
|
---|
8177 | iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
|
---|
8178 | if (rcStrict != VINF_SUCCESS)
|
---|
8179 | return rcStrict;
|
---|
8180 |
|
---|
8181 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
8182 | iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr, pCtx);
|
---|
8183 | PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
|
---|
8184 | for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
|
---|
8185 | {
|
---|
8186 | pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
|
---|
8187 | pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
|
---|
8188 | pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
|
---|
8189 | pFpuCtx->aRegs[i].au32[3] = 0;
|
---|
8190 | }
|
---|
8191 |
|
---|
8192 | rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
|
---|
8193 | if (rcStrict != VINF_SUCCESS)
|
---|
8194 | return rcStrict;
|
---|
8195 |
|
---|
8196 | iemHlpUsedFpu(pVCpu);
|
---|
8197 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8198 | return VINF_SUCCESS;
|
---|
8199 | }
|
---|
8200 |
|
---|
8201 |
|
---|
8202 | /**
|
---|
8203 | * Implements 'FLDCW'.
|
---|
8204 | *
|
---|
8205 | * @param u16Fcw The new FCW.
|
---|
8206 | */
|
---|
8207 | IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
|
---|
8208 | {
|
---|
8209 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
8210 |
|
---|
8211 | /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
|
---|
8212 | /** @todo Testcase: Try see what happens when trying to set undefined bits
|
---|
8213 | * (other than 6 and 7). Currently ignoring them. */
|
---|
8214 | /** @todo Testcase: Test that it raises and loweres the FPU exception bits
|
---|
8215 | * according to FSW. (This is was is currently implemented.) */
|
---|
8216 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
8217 | pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
|
---|
8218 | iemFpuRecalcExceptionStatus(pFpuCtx);
|
---|
8219 |
|
---|
8220 | /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
|
---|
8221 | iemHlpUsedFpu(pVCpu);
|
---|
8222 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8223 | return VINF_SUCCESS;
|
---|
8224 | }
|
---|
8225 |
|
---|
8226 |
|
---|
8227 |
|
---|
8228 | /**
|
---|
8229 | * Implements the underflow case of fxch.
|
---|
8230 | *
|
---|
8231 | * @param iStReg The other stack register.
|
---|
8232 | */
|
---|
8233 | IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
|
---|
8234 | {
|
---|
8235 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
8236 |
|
---|
8237 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
8238 | unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
8239 | unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
|
---|
8240 | Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
|
---|
8241 |
|
---|
8242 | /** @todo Testcase: fxch underflow. Making assumptions that underflowed
|
---|
8243 | * registers are read as QNaN and then exchanged. This could be
|
---|
8244 | * wrong... */
|
---|
8245 | if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
8246 | {
|
---|
8247 | if (RT_BIT(iReg1) & pFpuCtx->FTW)
|
---|
8248 | {
|
---|
8249 | if (RT_BIT(iReg2) & pFpuCtx->FTW)
|
---|
8250 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
8251 | else
|
---|
8252 | pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
|
---|
8253 | iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
|
---|
8254 | }
|
---|
8255 | else
|
---|
8256 | {
|
---|
8257 | pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
|
---|
8258 | iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
|
---|
8259 | }
|
---|
8260 | pFpuCtx->FSW &= ~X86_FSW_C_MASK;
|
---|
8261 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
|
---|
8262 | }
|
---|
8263 | else
|
---|
8264 | {
|
---|
8265 | /* raise underflow exception, don't change anything. */
|
---|
8266 | pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
|
---|
8267 | pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
8268 | }
|
---|
8269 |
|
---|
8270 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
8271 | iemHlpUsedFpu(pVCpu);
|
---|
8272 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8273 | return VINF_SUCCESS;
|
---|
8274 | }
|
---|
8275 |
|
---|
8276 |
|
---|
8277 | /**
|
---|
8278 | * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
|
---|
8279 | *
|
---|
8280 | * @param cToAdd 1 or 7.
|
---|
8281 | */
|
---|
8282 | IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
|
---|
8283 | {
|
---|
8284 | PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
|
---|
8285 | Assert(iStReg < 8);
|
---|
8286 |
|
---|
8287 | /*
|
---|
8288 | * Raise exceptions.
|
---|
8289 | */
|
---|
8290 | if (pCtx->cr0 & (X86_CR0_EM | X86_CR0_TS))
|
---|
8291 | return iemRaiseDeviceNotAvailable(pVCpu);
|
---|
8292 |
|
---|
8293 | PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
|
---|
8294 | uint16_t u16Fsw = pFpuCtx->FSW;
|
---|
8295 | if (u16Fsw & X86_FSW_ES)
|
---|
8296 | return iemRaiseMathFault(pVCpu);
|
---|
8297 |
|
---|
8298 | /*
|
---|
8299 | * Check if any of the register accesses causes #SF + #IA.
|
---|
8300 | */
|
---|
8301 | unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
|
---|
8302 | unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
|
---|
8303 | if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
|
---|
8304 | {
|
---|
8305 | uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
|
---|
8306 | NOREF(u32Eflags);
|
---|
8307 |
|
---|
8308 | pFpuCtx->FSW &= ~X86_FSW_C1;
|
---|
8309 | pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
|
---|
8310 | if ( !(u16Fsw & X86_FSW_IE)
|
---|
8311 | || (pFpuCtx->FCW & X86_FCW_IM) )
|
---|
8312 | {
|
---|
8313 | pCtx->eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
|
---|
8314 | pCtx->eflags.u |= pCtx->eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
|
---|
8315 | }
|
---|
8316 | }
|
---|
8317 | else if (pFpuCtx->FCW & X86_FCW_IM)
|
---|
8318 | {
|
---|
8319 | /* Masked underflow. */
|
---|
8320 | pFpuCtx->FSW &= ~X86_FSW_C1;
|
---|
8321 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
|
---|
8322 | pCtx->eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
|
---|
8323 | pCtx->eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
|
---|
8324 | }
|
---|
8325 | else
|
---|
8326 | {
|
---|
8327 | /* Raise underflow - don't touch EFLAGS or TOP. */
|
---|
8328 | pFpuCtx->FSW &= ~X86_FSW_C1;
|
---|
8329 | pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
|
---|
8330 | fPop = false;
|
---|
8331 | }
|
---|
8332 |
|
---|
8333 | /*
|
---|
8334 | * Pop if necessary.
|
---|
8335 | */
|
---|
8336 | if (fPop)
|
---|
8337 | {
|
---|
8338 | pFpuCtx->FTW &= ~RT_BIT(iReg1);
|
---|
8339 | pFpuCtx->FSW &= X86_FSW_TOP_MASK;
|
---|
8340 | pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
|
---|
8341 | }
|
---|
8342 |
|
---|
8343 | iemFpuUpdateOpcodeAndIpWorker(pVCpu, pCtx, pFpuCtx);
|
---|
8344 | iemHlpUsedFpu(pVCpu);
|
---|
8345 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8346 | return VINF_SUCCESS;
|
---|
8347 | }
|
---|
8348 |
|
---|
8349 | /** @} */
|
---|
8350 |
|
---|