VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h@ 72504

Last change on this file since 72504 was 72497, checked in by vboxsync, 7 years ago

IEM: Use pVCpu->cpum.s.GstCtx, avoid passing pCtx as a parameter or having it as a local variable.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 292.5 KB
Line 
1/* $Id: IEMAllCImpl.cpp.h 72497 2018-06-10 17:33:31Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#include "IEMAllCImplSvmInstr.cpp.h"
19#include "IEMAllCImplVmxInstr.cpp.h"
20
21
22/** @name Misc Helpers
23 * @{
24 */
25
26
27/**
28 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
29 *
30 * @returns Strict VBox status code.
31 *
32 * @param pVCpu The cross context virtual CPU structure of the calling thread.
33 * @param u16Port The port number.
34 * @param cbOperand The operand size.
35 */
36static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbOperand)
37{
38 /* The TSS bits we're interested in are the same on 386 and AMD64. */
39 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
40 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
41 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
42 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
43
44 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
45
46 /*
47 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
48 */
49 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
50 if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
51 && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
52 {
53 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
54 u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u));
55 return iemRaiseGeneralProtectionFault0(pVCpu);
56 }
57
58 /*
59 * Read the bitmap offset (may #PF).
60 */
61 uint16_t offBitmap;
62 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
63 pVCpu->cpum.GstCtx.tr.u64Base + RT_OFFSETOF(X86TSS64, offIoBitmap));
64 if (rcStrict != VINF_SUCCESS)
65 {
66 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
67 return rcStrict;
68 }
69
70 /*
71 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
72 * describes the CPU actually reading two bytes regardless of whether the
73 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
74 */
75 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
76 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
77 * for instance sizeof(X86TSS32). */
78 if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */
79 {
80 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
81 offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit));
82 return iemRaiseGeneralProtectionFault0(pVCpu);
83 }
84
85 /*
86 * Read the necessary bits.
87 */
88 /** @todo Test the assertion in the intel manual that the CPU reads two
89 * bytes. The question is how this works wrt to #PF and #GP on the
90 * 2nd byte when it's not required. */
91 uint16_t bmBytes = UINT16_MAX;
92 rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit);
93 if (rcStrict != VINF_SUCCESS)
94 {
95 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
96 return rcStrict;
97 }
98
99 /*
100 * Perform the check.
101 */
102 uint16_t fPortMask = (1 << cbOperand) - 1;
103 bmBytes >>= (u16Port & 7);
104 if (bmBytes & fPortMask)
105 {
106 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
107 u16Port, cbOperand, bmBytes, fPortMask));
108 return iemRaiseGeneralProtectionFault0(pVCpu);
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115/**
116 * Checks if we are allowed to access the given I/O port, raising the
117 * appropriate exceptions if we aren't (or if the I/O bitmap is not
118 * accessible).
119 *
120 * @returns Strict VBox status code.
121 *
122 * @param pVCpu The cross context virtual CPU structure of the calling thread.
123 * @param u16Port The port number.
124 * @param cbOperand The operand size.
125 */
126DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbOperand)
127{
128 X86EFLAGS Efl;
129 Efl.u = IEMMISC_GET_EFL(pVCpu);
130 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
131 && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
132 || Efl.Bits.u1VM) )
133 return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand);
134 return VINF_SUCCESS;
135}
136
137
138#if 0
139/**
140 * Calculates the parity bit.
141 *
142 * @returns true if the bit is set, false if not.
143 * @param u8Result The least significant byte of the result.
144 */
145static bool iemHlpCalcParityFlag(uint8_t u8Result)
146{
147 /*
148 * Parity is set if the number of bits in the least significant byte of
149 * the result is even.
150 */
151 uint8_t cBits;
152 cBits = u8Result & 1; /* 0 */
153 u8Result >>= 1;
154 cBits += u8Result & 1;
155 u8Result >>= 1;
156 cBits += u8Result & 1;
157 u8Result >>= 1;
158 cBits += u8Result & 1;
159 u8Result >>= 1;
160 cBits += u8Result & 1; /* 4 */
161 u8Result >>= 1;
162 cBits += u8Result & 1;
163 u8Result >>= 1;
164 cBits += u8Result & 1;
165 u8Result >>= 1;
166 cBits += u8Result & 1;
167 return !(cBits & 1);
168}
169#endif /* not used */
170
171
172/**
173 * Updates the specified flags according to a 8-bit result.
174 *
175 * @param pVCpu The cross context virtual CPU structure of the calling thread.
176 * @param u8Result The result to set the flags according to.
177 * @param fToUpdate The flags to update.
178 * @param fUndefined The flags that are specified as undefined.
179 */
180static void iemHlpUpdateArithEFlagsU8(PVMCPU pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
181{
182 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
183 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
184 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
185 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
186}
187
188
189/**
190 * Updates the specified flags according to a 16-bit result.
191 *
192 * @param pVCpu The cross context virtual CPU structure of the calling thread.
193 * @param u16Result The result to set the flags according to.
194 * @param fToUpdate The flags to update.
195 * @param fUndefined The flags that are specified as undefined.
196 */
197static void iemHlpUpdateArithEFlagsU16(PVMCPU pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
198{
199 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
200 iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
201 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
202 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
203}
204
205
206/**
207 * Helper used by iret.
208 *
209 * @param pVCpu The cross context virtual CPU structure of the calling thread.
210 * @param uCpl The new CPL.
211 * @param pSReg Pointer to the segment register.
212 */
213static void iemHlpAdjustSelectorForNewCpl(PVMCPU pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
214{
215#ifdef VBOX_WITH_RAW_MODE_NOT_R0
216 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
217 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg);
218#else
219 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
220#endif
221 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
222
223 if ( uCpl > pSReg->Attr.n.u2Dpl
224 && pSReg->Attr.n.u1DescType /* code or data, not system */
225 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
226 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
227 iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
228}
229
230
231/**
232 * Indicates that we have modified the FPU state.
233 *
234 * @param pVCpu The cross context virtual CPU structure of the calling thread.
235 */
236DECLINLINE(void) iemHlpUsedFpu(PVMCPU pVCpu)
237{
238 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
239}
240
241/** @} */
242
243/** @name C Implementations
244 * @{
245 */
246
247/**
248 * Implements a 16-bit popa.
249 */
250IEM_CIMPL_DEF_0(iemCImpl_popa_16)
251{
252 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
253 RTGCPTR GCPtrLast = GCPtrStart + 15;
254 VBOXSTRICTRC rcStrict;
255
256 /*
257 * The docs are a bit hard to comprehend here, but it looks like we wrap
258 * around in real mode as long as none of the individual "popa" crosses the
259 * end of the stack segment. In protected mode we check the whole access
260 * in one go. For efficiency, only do the word-by-word thing if we're in
261 * danger of wrapping around.
262 */
263 /** @todo do popa boundary / wrap-around checks. */
264 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
265 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
266 {
267 /* word-by-word */
268 RTUINT64U TmpRsp;
269 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
270 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp);
271 if (rcStrict == VINF_SUCCESS)
272 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp);
273 if (rcStrict == VINF_SUCCESS)
274 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp);
275 if (rcStrict == VINF_SUCCESS)
276 {
277 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
278 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp);
279 }
280 if (rcStrict == VINF_SUCCESS)
281 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp);
282 if (rcStrict == VINF_SUCCESS)
283 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp);
284 if (rcStrict == VINF_SUCCESS)
285 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp);
286 if (rcStrict == VINF_SUCCESS)
287 {
288 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
289 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
290 }
291 }
292 else
293 {
294 uint16_t const *pa16Mem = NULL;
295 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
296 if (rcStrict == VINF_SUCCESS)
297 {
298 pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI];
299 pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI];
300 pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP];
301 /* skip sp */
302 pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX];
303 pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX];
304 pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX];
305 pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX];
306 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
307 if (rcStrict == VINF_SUCCESS)
308 {
309 iemRegAddToRsp(pVCpu, 16);
310 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
311 }
312 }
313 }
314 return rcStrict;
315}
316
317
318/**
319 * Implements a 32-bit popa.
320 */
321IEM_CIMPL_DEF_0(iemCImpl_popa_32)
322{
323 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
324 RTGCPTR GCPtrLast = GCPtrStart + 31;
325 VBOXSTRICTRC rcStrict;
326
327 /*
328 * The docs are a bit hard to comprehend here, but it looks like we wrap
329 * around in real mode as long as none of the individual "popa" crosses the
330 * end of the stack segment. In protected mode we check the whole access
331 * in one go. For efficiency, only do the word-by-word thing if we're in
332 * danger of wrapping around.
333 */
334 /** @todo do popa boundary / wrap-around checks. */
335 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
336 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
337 {
338 /* word-by-word */
339 RTUINT64U TmpRsp;
340 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
341 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp);
342 if (rcStrict == VINF_SUCCESS)
343 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp);
344 if (rcStrict == VINF_SUCCESS)
345 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp);
346 if (rcStrict == VINF_SUCCESS)
347 {
348 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
349 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp);
350 }
351 if (rcStrict == VINF_SUCCESS)
352 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp);
353 if (rcStrict == VINF_SUCCESS)
354 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp);
355 if (rcStrict == VINF_SUCCESS)
356 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp);
357 if (rcStrict == VINF_SUCCESS)
358 {
359#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
360 pVCpu->cpum.GstCtx.rdi &= UINT32_MAX;
361 pVCpu->cpum.GstCtx.rsi &= UINT32_MAX;
362 pVCpu->cpum.GstCtx.rbp &= UINT32_MAX;
363 pVCpu->cpum.GstCtx.rbx &= UINT32_MAX;
364 pVCpu->cpum.GstCtx.rdx &= UINT32_MAX;
365 pVCpu->cpum.GstCtx.rcx &= UINT32_MAX;
366 pVCpu->cpum.GstCtx.rax &= UINT32_MAX;
367#endif
368 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
369 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
370 }
371 }
372 else
373 {
374 uint32_t const *pa32Mem;
375 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
376 if (rcStrict == VINF_SUCCESS)
377 {
378 pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI];
379 pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI];
380 pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP];
381 /* skip esp */
382 pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX];
383 pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX];
384 pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX];
385 pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX];
386 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
387 if (rcStrict == VINF_SUCCESS)
388 {
389 iemRegAddToRsp(pVCpu, 32);
390 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
391 }
392 }
393 }
394 return rcStrict;
395}
396
397
398/**
399 * Implements a 16-bit pusha.
400 */
401IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
402{
403 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
404 RTGCPTR GCPtrBottom = GCPtrTop - 15;
405 VBOXSTRICTRC rcStrict;
406
407 /*
408 * The docs are a bit hard to comprehend here, but it looks like we wrap
409 * around in real mode as long as none of the individual "pushd" crosses the
410 * end of the stack segment. In protected mode we check the whole access
411 * in one go. For efficiency, only do the word-by-word thing if we're in
412 * danger of wrapping around.
413 */
414 /** @todo do pusha boundary / wrap-around checks. */
415 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
416 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
417 {
418 /* word-by-word */
419 RTUINT64U TmpRsp;
420 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
421 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp);
422 if (rcStrict == VINF_SUCCESS)
423 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp);
424 if (rcStrict == VINF_SUCCESS)
425 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp);
426 if (rcStrict == VINF_SUCCESS)
427 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp);
428 if (rcStrict == VINF_SUCCESS)
429 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp);
430 if (rcStrict == VINF_SUCCESS)
431 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp);
432 if (rcStrict == VINF_SUCCESS)
433 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp);
434 if (rcStrict == VINF_SUCCESS)
435 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp);
436 if (rcStrict == VINF_SUCCESS)
437 {
438 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
439 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
440 }
441 }
442 else
443 {
444 GCPtrBottom--;
445 uint16_t *pa16Mem = NULL;
446 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
447 if (rcStrict == VINF_SUCCESS)
448 {
449 pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di;
450 pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si;
451 pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp;
452 pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp;
453 pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx;
454 pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx;
455 pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx;
456 pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax;
457 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
458 if (rcStrict == VINF_SUCCESS)
459 {
460 iemRegSubFromRsp(pVCpu, 16);
461 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
462 }
463 }
464 }
465 return rcStrict;
466}
467
468
469/**
470 * Implements a 32-bit pusha.
471 */
472IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
473{
474 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
475 RTGCPTR GCPtrBottom = GCPtrTop - 31;
476 VBOXSTRICTRC rcStrict;
477
478 /*
479 * The docs are a bit hard to comprehend here, but it looks like we wrap
480 * around in real mode as long as none of the individual "pusha" crosses the
481 * end of the stack segment. In protected mode we check the whole access
482 * in one go. For efficiency, only do the word-by-word thing if we're in
483 * danger of wrapping around.
484 */
485 /** @todo do pusha boundary / wrap-around checks. */
486 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
487 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
488 {
489 /* word-by-word */
490 RTUINT64U TmpRsp;
491 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
492 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp);
493 if (rcStrict == VINF_SUCCESS)
494 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp);
495 if (rcStrict == VINF_SUCCESS)
496 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp);
497 if (rcStrict == VINF_SUCCESS)
498 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp);
499 if (rcStrict == VINF_SUCCESS)
500 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp);
501 if (rcStrict == VINF_SUCCESS)
502 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp);
503 if (rcStrict == VINF_SUCCESS)
504 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp);
505 if (rcStrict == VINF_SUCCESS)
506 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp);
507 if (rcStrict == VINF_SUCCESS)
508 {
509 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
510 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
511 }
512 }
513 else
514 {
515 GCPtrBottom--;
516 uint32_t *pa32Mem;
517 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
518 if (rcStrict == VINF_SUCCESS)
519 {
520 pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi;
521 pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi;
522 pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp;
523 pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp;
524 pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx;
525 pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx;
526 pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx;
527 pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax;
528 rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
529 if (rcStrict == VINF_SUCCESS)
530 {
531 iemRegSubFromRsp(pVCpu, 32);
532 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
533 }
534 }
535 }
536 return rcStrict;
537}
538
539
540/**
541 * Implements pushf.
542 *
543 *
544 * @param enmEffOpSize The effective operand size.
545 */
546IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
547{
548 VBOXSTRICTRC rcStrict;
549
550 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
551 {
552 Log2(("pushf: Guest intercept -> #VMEXIT\n"));
553 IEM_SVM_UPDATE_NRIP(pVCpu);
554 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
555 }
556
557 /*
558 * If we're in V8086 mode some care is required (which is why we're in
559 * doing this in a C implementation).
560 */
561 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
562 if ( (fEfl & X86_EFL_VM)
563 && X86_EFL_GET_IOPL(fEfl) != 3 )
564 {
565 Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE);
566 if ( enmEffOpSize != IEMMODE_16BIT
567 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
568 return iemRaiseGeneralProtectionFault0(pVCpu);
569 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
570 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
571 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
572 }
573 else
574 {
575
576 /*
577 * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
578 */
579 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
580
581 switch (enmEffOpSize)
582 {
583 case IEMMODE_16BIT:
584 AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
585 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
586 fEfl |= UINT16_C(0xf000);
587 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
588 break;
589 case IEMMODE_32BIT:
590 rcStrict = iemMemStackPushU32(pVCpu, fEfl);
591 break;
592 case IEMMODE_64BIT:
593 rcStrict = iemMemStackPushU64(pVCpu, fEfl);
594 break;
595 IEM_NOT_REACHED_DEFAULT_CASE_RET();
596 }
597 }
598 if (rcStrict != VINF_SUCCESS)
599 return rcStrict;
600
601 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
602 return VINF_SUCCESS;
603}
604
605
606/**
607 * Implements popf.
608 *
609 * @param enmEffOpSize The effective operand size.
610 */
611IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
612{
613 uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu);
614 VBOXSTRICTRC rcStrict;
615 uint32_t fEflNew;
616
617 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
618 {
619 Log2(("popf: Guest intercept -> #VMEXIT\n"));
620 IEM_SVM_UPDATE_NRIP(pVCpu);
621 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
622 }
623
624 /*
625 * V8086 is special as usual.
626 */
627 if (fEflOld & X86_EFL_VM)
628 {
629 /*
630 * Almost anything goes if IOPL is 3.
631 */
632 if (X86_EFL_GET_IOPL(fEflOld) == 3)
633 {
634 switch (enmEffOpSize)
635 {
636 case IEMMODE_16BIT:
637 {
638 uint16_t u16Value;
639 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
640 if (rcStrict != VINF_SUCCESS)
641 return rcStrict;
642 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
643 break;
644 }
645 case IEMMODE_32BIT:
646 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
647 if (rcStrict != VINF_SUCCESS)
648 return rcStrict;
649 break;
650 IEM_NOT_REACHED_DEFAULT_CASE_RET();
651 }
652
653 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
654 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
655 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
656 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
657 }
658 /*
659 * Interrupt flag virtualization with CR4.VME=1.
660 */
661 else if ( enmEffOpSize == IEMMODE_16BIT
662 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
663 {
664 uint16_t u16Value;
665 RTUINT64U TmpRsp;
666 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
667 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
668 if (rcStrict != VINF_SUCCESS)
669 return rcStrict;
670
671 /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
672 * or before? */
673 if ( ( (u16Value & X86_EFL_IF)
674 && (fEflOld & X86_EFL_VIP))
675 || (u16Value & X86_EFL_TF) )
676 return iemRaiseGeneralProtectionFault0(pVCpu);
677
678 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
679 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
680 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
681 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
682
683 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
684 }
685 else
686 return iemRaiseGeneralProtectionFault0(pVCpu);
687
688 }
689 /*
690 * Not in V8086 mode.
691 */
692 else
693 {
694 /* Pop the flags. */
695 switch (enmEffOpSize)
696 {
697 case IEMMODE_16BIT:
698 {
699 uint16_t u16Value;
700 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
701 if (rcStrict != VINF_SUCCESS)
702 return rcStrict;
703 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
704
705 /*
706 * Ancient CPU adjustments:
707 * - 8086, 80186, V20/30:
708 * Fixed bits 15:12 bits are not kept correctly internally, mostly for
709 * practical reasons (masking below). We add them when pushing flags.
710 * - 80286:
711 * The NT and IOPL flags cannot be popped from real mode and are
712 * therefore always zero (since a 286 can never exit from PM and
713 * their initial value is zero). This changed on a 386 and can
714 * therefore be used to detect 286 or 386 CPU in real mode.
715 */
716 if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
717 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
718 fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
719 break;
720 }
721 case IEMMODE_32BIT:
722 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
723 if (rcStrict != VINF_SUCCESS)
724 return rcStrict;
725 break;
726 case IEMMODE_64BIT:
727 {
728 uint64_t u64Value;
729 rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
730 if (rcStrict != VINF_SUCCESS)
731 return rcStrict;
732 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
733 break;
734 }
735 IEM_NOT_REACHED_DEFAULT_CASE_RET();
736 }
737
738 /* Merge them with the current flags. */
739 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
740 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
741 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
742 || pVCpu->iem.s.uCpl == 0)
743 {
744 fEflNew &= fPopfBits;
745 fEflNew |= ~fPopfBits & fEflOld;
746 }
747 else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
748 {
749 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
750 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
751 }
752 else
753 {
754 fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
755 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
756 }
757 }
758
759 /*
760 * Commit the flags.
761 */
762 Assert(fEflNew & RT_BIT_32(1));
763 IEMMISC_SET_EFL(pVCpu, fEflNew);
764 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
765
766 return VINF_SUCCESS;
767}
768
769
770/**
771 * Implements an indirect call.
772 *
773 * @param uNewPC The new program counter (RIP) value (loaded from the
774 * operand).
775 * @param enmEffOpSize The effective operand size.
776 */
777IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
778{
779 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
780 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
781 return iemRaiseGeneralProtectionFault0(pVCpu);
782
783 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
784 if (rcStrict != VINF_SUCCESS)
785 return rcStrict;
786
787 pVCpu->cpum.GstCtx.rip = uNewPC;
788 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
789
790#ifndef IEM_WITH_CODE_TLB
791 /* Flush the prefetch buffer. */
792 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
793#endif
794 return VINF_SUCCESS;
795}
796
797
798/**
799 * Implements a 16-bit relative call.
800 *
801 * @param offDisp The displacment offset.
802 */
803IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
804{
805 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
806 uint16_t uNewPC = uOldPC + offDisp;
807 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
808 return iemRaiseGeneralProtectionFault0(pVCpu);
809
810 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
811 if (rcStrict != VINF_SUCCESS)
812 return rcStrict;
813
814 pVCpu->cpum.GstCtx.rip = uNewPC;
815 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
816
817#ifndef IEM_WITH_CODE_TLB
818 /* Flush the prefetch buffer. */
819 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
820#endif
821 return VINF_SUCCESS;
822}
823
824
825/**
826 * Implements a 32-bit indirect call.
827 *
828 * @param uNewPC The new program counter (RIP) value (loaded from the
829 * operand).
830 * @param enmEffOpSize The effective operand size.
831 */
832IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
833{
834 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
835 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
836 return iemRaiseGeneralProtectionFault0(pVCpu);
837
838 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
839 if (rcStrict != VINF_SUCCESS)
840 return rcStrict;
841
842#if defined(IN_RING3) && defined(VBOX_WITH_RAW_MODE) && defined(VBOX_WITH_CALL_RECORD)
843 /*
844 * CASM hook for recording interesting indirect calls.
845 */
846 if ( !pVCpu->cpum.GstCtx.eflags.Bits.u1IF
847 && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
848 && !CSAMIsEnabled(pVCpu->CTX_SUFF(pVM))
849 && pVCpu->iem.s.uCpl == 0)
850 {
851 EMSTATE enmState = EMGetState(pVCpu);
852 if ( enmState == EMSTATE_IEM_THEN_REM
853 || enmState == EMSTATE_IEM
854 || enmState == EMSTATE_REM)
855 CSAMR3RecordCallAddress(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.eip);
856 }
857#endif
858
859 pVCpu->cpum.GstCtx.rip = uNewPC;
860 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
861
862#ifndef IEM_WITH_CODE_TLB
863 /* Flush the prefetch buffer. */
864 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
865#endif
866 return VINF_SUCCESS;
867}
868
869
870/**
871 * Implements a 32-bit relative call.
872 *
873 * @param offDisp The displacment offset.
874 */
875IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
876{
877 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
878 uint32_t uNewPC = uOldPC + offDisp;
879 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
880 return iemRaiseGeneralProtectionFault0(pVCpu);
881
882 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
883 if (rcStrict != VINF_SUCCESS)
884 return rcStrict;
885
886 pVCpu->cpum.GstCtx.rip = uNewPC;
887 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
888
889#ifndef IEM_WITH_CODE_TLB
890 /* Flush the prefetch buffer. */
891 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
892#endif
893 return VINF_SUCCESS;
894}
895
896
897/**
898 * Implements a 64-bit indirect call.
899 *
900 * @param uNewPC The new program counter (RIP) value (loaded from the
901 * operand).
902 * @param enmEffOpSize The effective operand size.
903 */
904IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
905{
906 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
907 if (!IEM_IS_CANONICAL(uNewPC))
908 return iemRaiseGeneralProtectionFault0(pVCpu);
909
910 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
911 if (rcStrict != VINF_SUCCESS)
912 return rcStrict;
913
914 pVCpu->cpum.GstCtx.rip = uNewPC;
915 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
916
917#ifndef IEM_WITH_CODE_TLB
918 /* Flush the prefetch buffer. */
919 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
920#endif
921 return VINF_SUCCESS;
922}
923
924
925/**
926 * Implements a 64-bit relative call.
927 *
928 * @param offDisp The displacment offset.
929 */
930IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
931{
932 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
933 uint64_t uNewPC = uOldPC + offDisp;
934 if (!IEM_IS_CANONICAL(uNewPC))
935 return iemRaiseNotCanonical(pVCpu);
936
937 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
938 if (rcStrict != VINF_SUCCESS)
939 return rcStrict;
940
941 pVCpu->cpum.GstCtx.rip = uNewPC;
942 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
943
944#ifndef IEM_WITH_CODE_TLB
945 /* Flush the prefetch buffer. */
946 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
947#endif
948
949 return VINF_SUCCESS;
950}
951
952
953/**
954 * Implements far jumps and calls thru task segments (TSS).
955 *
956 * @param uSel The selector.
957 * @param enmBranch The kind of branching we're performing.
958 * @param enmEffOpSize The effective operand size.
959 * @param pDesc The descriptor corresponding to @a uSel. The type is
960 * task gate.
961 */
962IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
963{
964#ifndef IEM_IMPLEMENTS_TASKSWITCH
965 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
966#else
967 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
968 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
969 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
970 RT_NOREF_PV(enmEffOpSize);
971 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
972
973 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
974 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
975 {
976 Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
977 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
978 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
979 }
980
981 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
982 * far calls (see iemCImpl_callf). Most likely in both cases it should be
983 * checked here, need testcases. */
984 if (!pDesc->Legacy.Gen.u1Present)
985 {
986 Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
987 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
988 }
989
990 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
991 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
992 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
993#endif
994}
995
996
997/**
998 * Implements far jumps and calls thru task gates.
999 *
1000 * @param uSel The selector.
1001 * @param enmBranch The kind of branching we're performing.
1002 * @param enmEffOpSize The effective operand size.
1003 * @param pDesc The descriptor corresponding to @a uSel. The type is
1004 * task gate.
1005 */
1006IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1007{
1008#ifndef IEM_IMPLEMENTS_TASKSWITCH
1009 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1010#else
1011 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1012 RT_NOREF_PV(enmEffOpSize);
1013 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1014
1015 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1016 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1017 {
1018 Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1019 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1020 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1021 }
1022
1023 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1024 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1025 * checked here, need testcases. */
1026 if (!pDesc->Legacy.Gen.u1Present)
1027 {
1028 Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
1029 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1030 }
1031
1032 /*
1033 * Fetch the new TSS descriptor from the GDT.
1034 */
1035 RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
1036 if (uSelTss & X86_SEL_LDT)
1037 {
1038 Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
1039 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1040 }
1041
1042 IEMSELDESC TssDesc;
1043 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
1044 if (rcStrict != VINF_SUCCESS)
1045 return rcStrict;
1046
1047 if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
1048 {
1049 Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
1050 TssDesc.Legacy.Gate.u4Type));
1051 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1052 }
1053
1054 if (!TssDesc.Legacy.Gate.u1Present)
1055 {
1056 Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
1057 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
1058 }
1059
1060 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1061 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1062 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
1063#endif
1064}
1065
1066
1067/**
1068 * Implements far jumps and calls thru call gates.
1069 *
1070 * @param uSel The selector.
1071 * @param enmBranch The kind of branching we're performing.
1072 * @param enmEffOpSize The effective operand size.
1073 * @param pDesc The descriptor corresponding to @a uSel. The type is
1074 * call gate.
1075 */
1076IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1077{
1078#define IEM_IMPLEMENTS_CALLGATE
1079#ifndef IEM_IMPLEMENTS_CALLGATE
1080 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1081#else
1082 RT_NOREF_PV(enmEffOpSize);
1083 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1084
1085 /* NB: Far jumps can only do intra-privilege transfers. Far calls support
1086 * inter-privilege calls and are much more complex.
1087 *
1088 * NB: 64-bit call gate has the same type as a 32-bit call gate! If
1089 * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
1090 * must be 16-bit or 32-bit.
1091 */
1092 /** @todo: effective operand size is probably irrelevant here, only the
1093 * call gate bitness matters??
1094 */
1095 VBOXSTRICTRC rcStrict;
1096 RTPTRUNION uPtrRet;
1097 uint64_t uNewRsp;
1098 uint64_t uNewRip;
1099 uint64_t u64Base;
1100 uint32_t cbLimit;
1101 RTSEL uNewCS;
1102 IEMSELDESC DescCS;
1103
1104 AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
1105 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1106 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
1107 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
1108
1109 /* Determine the new instruction pointer from the gate descriptor. */
1110 uNewRip = pDesc->Legacy.Gate.u16OffsetLow
1111 | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
1112 | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
1113
1114 /* Perform DPL checks on the gate descriptor. */
1115 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1116 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1117 {
1118 Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1119 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1120 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1121 }
1122
1123 /** @todo does this catch NULL selectors, too? */
1124 if (!pDesc->Legacy.Gen.u1Present)
1125 {
1126 Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
1127 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1128 }
1129
1130 /*
1131 * Fetch the target CS descriptor from the GDT or LDT.
1132 */
1133 uNewCS = pDesc->Legacy.Gate.u16Sel;
1134 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
1135 if (rcStrict != VINF_SUCCESS)
1136 return rcStrict;
1137
1138 /* Target CS must be a code selector. */
1139 if ( !DescCS.Legacy.Gen.u1DescType
1140 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1141 {
1142 Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1143 uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
1144 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1145 }
1146
1147 /* Privilege checks on target CS. */
1148 if (enmBranch == IEMBRANCH_JUMP)
1149 {
1150 if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1151 {
1152 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1153 {
1154 Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1155 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1156 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1157 }
1158 }
1159 else
1160 {
1161 if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
1162 {
1163 Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1164 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1165 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1166 }
1167 }
1168 }
1169 else
1170 {
1171 Assert(enmBranch == IEMBRANCH_CALL);
1172 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1173 {
1174 Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1175 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1176 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
1177 }
1178 }
1179
1180 /* Additional long mode checks. */
1181 if (IEM_IS_LONG_MODE(pVCpu))
1182 {
1183 if (!DescCS.Legacy.Gen.u1Long)
1184 {
1185 Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
1186 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1187 }
1188
1189 /* L vs D. */
1190 if ( DescCS.Legacy.Gen.u1Long
1191 && DescCS.Legacy.Gen.u1DefBig)
1192 {
1193 Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
1194 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1195 }
1196 }
1197
1198 if (!DescCS.Legacy.Gate.u1Present)
1199 {
1200 Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
1201 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
1202 }
1203
1204 if (enmBranch == IEMBRANCH_JUMP)
1205 {
1206 /** @todo: This is very similar to regular far jumps; merge! */
1207 /* Jumps are fairly simple... */
1208
1209 /* Chop the high bits off if 16-bit gate (Intel says so). */
1210 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1211 uNewRip = (uint16_t)uNewRip;
1212
1213 /* Limit check for non-long segments. */
1214 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1215 if (DescCS.Legacy.Gen.u1Long)
1216 u64Base = 0;
1217 else
1218 {
1219 if (uNewRip > cbLimit)
1220 {
1221 Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
1222 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1223 }
1224 u64Base = X86DESC_BASE(&DescCS.Legacy);
1225 }
1226
1227 /* Canonical address check. */
1228 if (!IEM_IS_CANONICAL(uNewRip))
1229 {
1230 Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1231 return iemRaiseNotCanonical(pVCpu);
1232 }
1233
1234 /*
1235 * Ok, everything checked out fine. Now set the accessed bit before
1236 * committing the result into CS, CSHID and RIP.
1237 */
1238 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1239 {
1240 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1241 if (rcStrict != VINF_SUCCESS)
1242 return rcStrict;
1243 /** @todo check what VT-x and AMD-V does. */
1244 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1245 }
1246
1247 /* commit */
1248 pVCpu->cpum.GstCtx.rip = uNewRip;
1249 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1250 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1251 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1252 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1253 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1254 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1255 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1256 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1257 }
1258 else
1259 {
1260 Assert(enmBranch == IEMBRANCH_CALL);
1261 /* Calls are much more complicated. */
1262
1263 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
1264 {
1265 uint16_t offNewStack; /* Offset of new stack in TSS. */
1266 uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
1267 uint8_t uNewCSDpl;
1268 uint8_t cbWords;
1269 RTSEL uNewSS;
1270 RTSEL uOldSS;
1271 uint64_t uOldRsp;
1272 IEMSELDESC DescSS;
1273 RTPTRUNION uPtrTSS;
1274 RTGCPTR GCPtrTSS;
1275 RTPTRUNION uPtrParmWds;
1276 RTGCPTR GCPtrParmWds;
1277
1278 /* More privilege. This is the fun part. */
1279 Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
1280
1281 /*
1282 * Determine new SS:rSP from the TSS.
1283 */
1284 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
1285
1286 /* Figure out where the new stack pointer is stored in the TSS. */
1287 uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
1288 if (!IEM_IS_LONG_MODE(pVCpu))
1289 {
1290 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1291 {
1292 offNewStack = RT_OFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
1293 cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
1294 }
1295 else
1296 {
1297 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1298 offNewStack = RT_OFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
1299 cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
1300 }
1301 }
1302 else
1303 {
1304 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1305 offNewStack = RT_OFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
1306 cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
1307 }
1308
1309 /* Check against TSS limit. */
1310 if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit)
1311 {
1312 Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit));
1313 return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel);
1314 }
1315
1316 GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack;
1317 rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
1318 if (rcStrict != VINF_SUCCESS)
1319 {
1320 Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1321 return rcStrict;
1322 }
1323
1324 if (!IEM_IS_LONG_MODE(pVCpu))
1325 {
1326 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1327 {
1328 uNewRsp = uPtrTSS.pu32[0];
1329 uNewSS = uPtrTSS.pu16[2];
1330 }
1331 else
1332 {
1333 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1334 uNewRsp = uPtrTSS.pu16[0];
1335 uNewSS = uPtrTSS.pu16[1];
1336 }
1337 }
1338 else
1339 {
1340 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1341 /* SS will be a NULL selector, but that's valid. */
1342 uNewRsp = uPtrTSS.pu64[0];
1343 uNewSS = uNewCSDpl;
1344 }
1345
1346 /* Done with the TSS now. */
1347 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
1348 if (rcStrict != VINF_SUCCESS)
1349 {
1350 Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1351 return rcStrict;
1352 }
1353
1354 /* Only used outside of long mode. */
1355 cbWords = pDesc->Legacy.Gate.u5ParmCount;
1356
1357 /* If EFER.LMA is 0, there's extra work to do. */
1358 if (!IEM_IS_LONG_MODE(pVCpu))
1359 {
1360 if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
1361 {
1362 Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
1363 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1364 }
1365
1366 /* Grab the new SS descriptor. */
1367 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1368 if (rcStrict != VINF_SUCCESS)
1369 return rcStrict;
1370
1371 /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
1372 if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
1373 || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
1374 {
1375 Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
1376 uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
1377 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1378 }
1379
1380 /* Ensure new SS is a writable data segment. */
1381 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
1382 {
1383 Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
1384 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1385 }
1386
1387 if (!DescSS.Legacy.Gen.u1Present)
1388 {
1389 Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
1390 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
1391 }
1392 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1393 cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
1394 else
1395 cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
1396 }
1397 else
1398 {
1399 /* Just grab the new (NULL) SS descriptor. */
1400 /** @todo testcase: Check whether the zero GDT entry is actually loaded here
1401 * like we do... */
1402 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1403 if (rcStrict != VINF_SUCCESS)
1404 return rcStrict;
1405
1406 cbNewStack = sizeof(uint64_t) * 4;
1407 }
1408
1409 /** @todo: According to Intel, new stack is checked for enough space first,
1410 * then switched. According to AMD, the stack is switched first and
1411 * then pushes might fault!
1412 * NB: OS/2 Warp 3/4 actively relies on the fact that possible
1413 * incoming stack #PF happens before actual stack switch. AMD is
1414 * either lying or implicitly assumes that new state is committed
1415 * only if and when an instruction doesn't fault.
1416 */
1417
1418 /** @todo: According to AMD, CS is loaded first, then SS.
1419 * According to Intel, it's the other way around!?
1420 */
1421
1422 /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
1423
1424 /* Set the accessed bit before committing new SS. */
1425 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1426 {
1427 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
1428 if (rcStrict != VINF_SUCCESS)
1429 return rcStrict;
1430 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1431 }
1432
1433 /* Remember the old SS:rSP and their linear address. */
1434 uOldSS = pVCpu->cpum.GstCtx.ss.Sel;
1435 uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp;
1436
1437 GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp;
1438
1439 /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
1440 or #PF, the former is not implemented in this workaround. */
1441 /** @todo Proper fix callgate target stack exceptions. */
1442 /** @todo testcase: Cover callgates with partially or fully inaccessible
1443 * target stacks. */
1444 void *pvNewFrame;
1445 RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
1446 rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW);
1447 if (rcStrict != VINF_SUCCESS)
1448 {
1449 Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
1450 return rcStrict;
1451 }
1452 rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
1453 if (rcStrict != VINF_SUCCESS)
1454 {
1455 Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1456 return rcStrict;
1457 }
1458
1459 /* Commit new SS:rSP. */
1460 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
1461 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
1462 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
1463 pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
1464 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
1465 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1466 pVCpu->cpum.GstCtx.rsp = uNewRsp;
1467 pVCpu->iem.s.uCpl = uNewCSDpl;
1468 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
1469 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
1470
1471 /* At this point the stack access must not fail because new state was already committed. */
1472 /** @todo this can still fail due to SS.LIMIT not check. */
1473 rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
1474 &uPtrRet.pv, &uNewRsp);
1475 AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
1476 VERR_INTERNAL_ERROR_5);
1477
1478 if (!IEM_IS_LONG_MODE(pVCpu))
1479 {
1480 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1481 {
1482 /* Push the old CS:rIP. */
1483 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1484 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1485
1486 if (cbWords)
1487 {
1488 /* Map the relevant chunk of the old stack. */
1489 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1490 if (rcStrict != VINF_SUCCESS)
1491 {
1492 Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1493 return rcStrict;
1494 }
1495
1496 /* Copy the parameter (d)words. */
1497 for (int i = 0; i < cbWords; ++i)
1498 uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
1499
1500 /* Unmap the old stack. */
1501 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1502 if (rcStrict != VINF_SUCCESS)
1503 {
1504 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1505 return rcStrict;
1506 }
1507 }
1508
1509 /* Push the old SS:rSP. */
1510 uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
1511 uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
1512 }
1513 else
1514 {
1515 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1516
1517 /* Push the old CS:rIP. */
1518 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1519 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1520
1521 if (cbWords)
1522 {
1523 /* Map the relevant chunk of the old stack. */
1524 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1525 if (rcStrict != VINF_SUCCESS)
1526 {
1527 Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1528 return rcStrict;
1529 }
1530
1531 /* Copy the parameter words. */
1532 for (int i = 0; i < cbWords; ++i)
1533 uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
1534
1535 /* Unmap the old stack. */
1536 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1537 if (rcStrict != VINF_SUCCESS)
1538 {
1539 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1540 return rcStrict;
1541 }
1542 }
1543
1544 /* Push the old SS:rSP. */
1545 uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
1546 uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
1547 }
1548 }
1549 else
1550 {
1551 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1552
1553 /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
1554 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1555 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1556 uPtrRet.pu64[2] = uOldRsp;
1557 uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
1558 }
1559
1560 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1561 if (rcStrict != VINF_SUCCESS)
1562 {
1563 Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1564 return rcStrict;
1565 }
1566
1567 /* Chop the high bits off if 16-bit gate (Intel says so). */
1568 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1569 uNewRip = (uint16_t)uNewRip;
1570
1571 /* Limit / canonical check. */
1572 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1573 if (!IEM_IS_LONG_MODE(pVCpu))
1574 {
1575 if (uNewRip > cbLimit)
1576 {
1577 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1578 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1579 }
1580 u64Base = X86DESC_BASE(&DescCS.Legacy);
1581 }
1582 else
1583 {
1584 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1585 if (!IEM_IS_CANONICAL(uNewRip))
1586 {
1587 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1588 return iemRaiseNotCanonical(pVCpu);
1589 }
1590 u64Base = 0;
1591 }
1592
1593 /*
1594 * Now set the accessed bit before
1595 * writing the return address to the stack and committing the result into
1596 * CS, CSHID and RIP.
1597 */
1598 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1599 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1600 {
1601 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1602 if (rcStrict != VINF_SUCCESS)
1603 return rcStrict;
1604 /** @todo check what VT-x and AMD-V does. */
1605 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1606 }
1607
1608 /* Commit new CS:rIP. */
1609 pVCpu->cpum.GstCtx.rip = uNewRip;
1610 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1611 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1612 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1613 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1614 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1615 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1616 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1617 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1618 }
1619 else
1620 {
1621 /* Same privilege. */
1622 /** @todo: This is very similar to regular far calls; merge! */
1623
1624 /* Check stack first - may #SS(0). */
1625 /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
1626 * 16-bit code cause a two or four byte CS to be pushed? */
1627 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
1628 IEM_IS_LONG_MODE(pVCpu) ? 8+8
1629 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
1630 &uPtrRet.pv, &uNewRsp);
1631 if (rcStrict != VINF_SUCCESS)
1632 return rcStrict;
1633
1634 /* Chop the high bits off if 16-bit gate (Intel says so). */
1635 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1636 uNewRip = (uint16_t)uNewRip;
1637
1638 /* Limit / canonical check. */
1639 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1640 if (!IEM_IS_LONG_MODE(pVCpu))
1641 {
1642 if (uNewRip > cbLimit)
1643 {
1644 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1645 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1646 }
1647 u64Base = X86DESC_BASE(&DescCS.Legacy);
1648 }
1649 else
1650 {
1651 if (!IEM_IS_CANONICAL(uNewRip))
1652 {
1653 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1654 return iemRaiseNotCanonical(pVCpu);
1655 }
1656 u64Base = 0;
1657 }
1658
1659 /*
1660 * Now set the accessed bit before
1661 * writing the return address to the stack and committing the result into
1662 * CS, CSHID and RIP.
1663 */
1664 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1665 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1666 {
1667 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1668 if (rcStrict != VINF_SUCCESS)
1669 return rcStrict;
1670 /** @todo check what VT-x and AMD-V does. */
1671 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1672 }
1673
1674 /* stack */
1675 if (!IEM_IS_LONG_MODE(pVCpu))
1676 {
1677 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1678 {
1679 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1680 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1681 }
1682 else
1683 {
1684 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1685 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1686 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1687 }
1688 }
1689 else
1690 {
1691 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1692 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1693 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1694 }
1695
1696 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1697 if (rcStrict != VINF_SUCCESS)
1698 return rcStrict;
1699
1700 /* commit */
1701 pVCpu->cpum.GstCtx.rip = uNewRip;
1702 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1703 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1704 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1705 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1706 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1707 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1708 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1709 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1710 }
1711 }
1712 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1713
1714 /* Flush the prefetch buffer. */
1715# ifdef IEM_WITH_CODE_TLB
1716 pVCpu->iem.s.pbInstrBuf = NULL;
1717# else
1718 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1719# endif
1720 return VINF_SUCCESS;
1721#endif
1722}
1723
1724
1725/**
1726 * Implements far jumps and calls thru system selectors.
1727 *
1728 * @param uSel The selector.
1729 * @param enmBranch The kind of branching we're performing.
1730 * @param enmEffOpSize The effective operand size.
1731 * @param pDesc The descriptor corresponding to @a uSel.
1732 */
1733IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1734{
1735 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1736 Assert((uSel & X86_SEL_MASK_OFF_RPL));
1737 IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1738
1739 if (IEM_IS_LONG_MODE(pVCpu))
1740 switch (pDesc->Legacy.Gen.u4Type)
1741 {
1742 case AMD64_SEL_TYPE_SYS_CALL_GATE:
1743 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1744
1745 default:
1746 case AMD64_SEL_TYPE_SYS_LDT:
1747 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
1748 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
1749 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
1750 case AMD64_SEL_TYPE_SYS_INT_GATE:
1751 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1752 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1753 }
1754
1755 switch (pDesc->Legacy.Gen.u4Type)
1756 {
1757 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1758 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1759 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1760
1761 case X86_SEL_TYPE_SYS_TASK_GATE:
1762 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
1763
1764 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1765 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1766 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
1767
1768 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1769 Log(("branch %04x -> busy 286 TSS\n", uSel));
1770 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1771
1772 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1773 Log(("branch %04x -> busy 386 TSS\n", uSel));
1774 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1775
1776 default:
1777 case X86_SEL_TYPE_SYS_LDT:
1778 case X86_SEL_TYPE_SYS_286_INT_GATE:
1779 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1780 case X86_SEL_TYPE_SYS_386_INT_GATE:
1781 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1782 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1783 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1784 }
1785}
1786
1787
1788/**
1789 * Implements far jumps.
1790 *
1791 * @param uSel The selector.
1792 * @param offSeg The segment offset.
1793 * @param enmEffOpSize The effective operand size.
1794 */
1795IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1796{
1797 NOREF(cbInstr);
1798 Assert(offSeg <= UINT32_MAX);
1799
1800 /*
1801 * Real mode and V8086 mode are easy. The only snag seems to be that
1802 * CS.limit doesn't change and the limit check is done against the current
1803 * limit.
1804 */
1805 /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August
1806 * 1998) that up to and including the Intel 486, far control
1807 * transfers in real mode set default CS attributes (0x93) and also
1808 * set a 64K segment limit. Starting with the Pentium, the
1809 * attributes and limit are left alone but the access rights are
1810 * ignored. We only implement the Pentium+ behavior.
1811 * */
1812 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1813 {
1814 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1815 if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit)
1816 {
1817 Log(("iemCImpl_FarJmp: 16-bit limit\n"));
1818 return iemRaiseGeneralProtectionFault0(pVCpu);
1819 }
1820
1821 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1822 pVCpu->cpum.GstCtx.rip = offSeg;
1823 else
1824 pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX;
1825 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1826 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1827 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1828 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1829 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1830 return VINF_SUCCESS;
1831 }
1832
1833 /*
1834 * Protected mode. Need to parse the specified descriptor...
1835 */
1836 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1837 {
1838 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1839 return iemRaiseGeneralProtectionFault0(pVCpu);
1840 }
1841
1842 /* Fetch the descriptor. */
1843 IEMSELDESC Desc;
1844 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
1845 if (rcStrict != VINF_SUCCESS)
1846 return rcStrict;
1847
1848 /* Is it there? */
1849 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1850 {
1851 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1852 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1853 }
1854
1855 /*
1856 * Deal with it according to its type. We do the standard code selectors
1857 * here and dispatch the system selectors to worker functions.
1858 */
1859 if (!Desc.Legacy.Gen.u1DescType)
1860 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1861
1862 /* Only code segments. */
1863 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1864 {
1865 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1866 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1867 }
1868
1869 /* L vs D. */
1870 if ( Desc.Legacy.Gen.u1Long
1871 && Desc.Legacy.Gen.u1DefBig
1872 && IEM_IS_LONG_MODE(pVCpu))
1873 {
1874 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1875 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1876 }
1877
1878 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1879 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1880 {
1881 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
1882 {
1883 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1884 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1885 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1886 }
1887 }
1888 else
1889 {
1890 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
1891 {
1892 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1893 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1894 }
1895 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
1896 {
1897 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
1898 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1899 }
1900 }
1901
1902 /* Chop the high bits if 16-bit (Intel says so). */
1903 if (enmEffOpSize == IEMMODE_16BIT)
1904 offSeg &= UINT16_MAX;
1905
1906 /* Limit check. (Should alternatively check for non-canonical addresses
1907 here, but that is ruled out by offSeg being 32-bit, right?) */
1908 uint64_t u64Base;
1909 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1910 if (Desc.Legacy.Gen.u1Long)
1911 u64Base = 0;
1912 else
1913 {
1914 if (offSeg > cbLimit)
1915 {
1916 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1917 /** @todo: Intel says this is #GP(0)! */
1918 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1919 }
1920 u64Base = X86DESC_BASE(&Desc.Legacy);
1921 }
1922
1923 /*
1924 * Ok, everything checked out fine. Now set the accessed bit before
1925 * committing the result into CS, CSHID and RIP.
1926 */
1927 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1928 {
1929 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
1930 if (rcStrict != VINF_SUCCESS)
1931 return rcStrict;
1932 /** @todo check what VT-x and AMD-V does. */
1933 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1934 }
1935
1936 /* commit */
1937 pVCpu->cpum.GstCtx.rip = offSeg;
1938 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1939 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1940 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1941 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1942 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1943 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1944 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1945 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1946 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1947 /** @todo check if the hidden bits are loaded correctly for 64-bit
1948 * mode. */
1949
1950 /* Flush the prefetch buffer. */
1951#ifdef IEM_WITH_CODE_TLB
1952 pVCpu->iem.s.pbInstrBuf = NULL;
1953#else
1954 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1955#endif
1956
1957 return VINF_SUCCESS;
1958}
1959
1960
1961/**
1962 * Implements far calls.
1963 *
1964 * This very similar to iemCImpl_FarJmp.
1965 *
1966 * @param uSel The selector.
1967 * @param offSeg The segment offset.
1968 * @param enmEffOpSize The operand size (in case we need it).
1969 */
1970IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1971{
1972 VBOXSTRICTRC rcStrict;
1973 uint64_t uNewRsp;
1974 RTPTRUNION uPtrRet;
1975
1976 /*
1977 * Real mode and V8086 mode are easy. The only snag seems to be that
1978 * CS.limit doesn't change and the limit check is done against the current
1979 * limit.
1980 */
1981 /** @todo See comment for similar code in iemCImpl_FarJmp */
1982 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1983 {
1984 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1985
1986 /* Check stack first - may #SS(0). */
1987 rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
1988 &uPtrRet.pv, &uNewRsp);
1989 if (rcStrict != VINF_SUCCESS)
1990 return rcStrict;
1991
1992 /* Check the target address range. */
1993 if (offSeg > UINT32_MAX)
1994 return iemRaiseGeneralProtectionFault0(pVCpu);
1995
1996 /* Everything is fine, push the return address. */
1997 if (enmEffOpSize == IEMMODE_16BIT)
1998 {
1999 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2000 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2001 }
2002 else
2003 {
2004 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2005 uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel;
2006 }
2007 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2008 if (rcStrict != VINF_SUCCESS)
2009 return rcStrict;
2010
2011 /* Branch. */
2012 pVCpu->cpum.GstCtx.rip = offSeg;
2013 pVCpu->cpum.GstCtx.cs.Sel = uSel;
2014 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
2015 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2016 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
2017 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2018 return VINF_SUCCESS;
2019 }
2020
2021 /*
2022 * Protected mode. Need to parse the specified descriptor...
2023 */
2024 if (!(uSel & X86_SEL_MASK_OFF_RPL))
2025 {
2026 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
2027 return iemRaiseGeneralProtectionFault0(pVCpu);
2028 }
2029
2030 /* Fetch the descriptor. */
2031 IEMSELDESC Desc;
2032 rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
2033 if (rcStrict != VINF_SUCCESS)
2034 return rcStrict;
2035
2036 /*
2037 * Deal with it according to its type. We do the standard code selectors
2038 * here and dispatch the system selectors to worker functions.
2039 */
2040 if (!Desc.Legacy.Gen.u1DescType)
2041 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
2042
2043 /* Only code segments. */
2044 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2045 {
2046 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
2047 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2048 }
2049
2050 /* L vs D. */
2051 if ( Desc.Legacy.Gen.u1Long
2052 && Desc.Legacy.Gen.u1DefBig
2053 && IEM_IS_LONG_MODE(pVCpu))
2054 {
2055 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
2056 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2057 }
2058
2059 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
2060 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2061 {
2062 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
2063 {
2064 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
2065 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2066 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2067 }
2068 }
2069 else
2070 {
2071 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
2072 {
2073 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2074 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2075 }
2076 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
2077 {
2078 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
2079 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2080 }
2081 }
2082
2083 /* Is it there? */
2084 if (!Desc.Legacy.Gen.u1Present)
2085 {
2086 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
2087 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
2088 }
2089
2090 /* Check stack first - may #SS(0). */
2091 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
2092 * 16-bit code cause a two or four byte CS to be pushed? */
2093 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
2094 enmEffOpSize == IEMMODE_64BIT ? 8+8
2095 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2096 &uPtrRet.pv, &uNewRsp);
2097 if (rcStrict != VINF_SUCCESS)
2098 return rcStrict;
2099
2100 /* Chop the high bits if 16-bit (Intel says so). */
2101 if (enmEffOpSize == IEMMODE_16BIT)
2102 offSeg &= UINT16_MAX;
2103
2104 /* Limit / canonical check. */
2105 uint64_t u64Base;
2106 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
2107 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2108 {
2109 if (!IEM_IS_CANONICAL(offSeg))
2110 {
2111 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
2112 return iemRaiseNotCanonical(pVCpu);
2113 }
2114 u64Base = 0;
2115 }
2116 else
2117 {
2118 if (offSeg > cbLimit)
2119 {
2120 Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
2121 /** @todo: Intel says this is #GP(0)! */
2122 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2123 }
2124 u64Base = X86DESC_BASE(&Desc.Legacy);
2125 }
2126
2127 /*
2128 * Now set the accessed bit before
2129 * writing the return address to the stack and committing the result into
2130 * CS, CSHID and RIP.
2131 */
2132 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2133 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2134 {
2135 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
2136 if (rcStrict != VINF_SUCCESS)
2137 return rcStrict;
2138 /** @todo check what VT-x and AMD-V does. */
2139 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2140 }
2141
2142 /* stack */
2143 if (enmEffOpSize == IEMMODE_16BIT)
2144 {
2145 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2146 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2147 }
2148 else if (enmEffOpSize == IEMMODE_32BIT)
2149 {
2150 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2151 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
2152 }
2153 else
2154 {
2155 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
2156 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
2157 }
2158 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2159 if (rcStrict != VINF_SUCCESS)
2160 return rcStrict;
2161
2162 /* commit */
2163 pVCpu->cpum.GstCtx.rip = offSeg;
2164 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
2165 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
2166 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
2167 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2168 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
2169 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
2170 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2171 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2172 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2173 /** @todo check if the hidden bits are loaded correctly for 64-bit
2174 * mode. */
2175
2176 /* Flush the prefetch buffer. */
2177#ifdef IEM_WITH_CODE_TLB
2178 pVCpu->iem.s.pbInstrBuf = NULL;
2179#else
2180 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2181#endif
2182 return VINF_SUCCESS;
2183}
2184
2185
2186/**
2187 * Implements retf.
2188 *
2189 * @param enmEffOpSize The effective operand size.
2190 * @param cbPop The amount of arguments to pop from the stack
2191 * (bytes).
2192 */
2193IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2194{
2195 VBOXSTRICTRC rcStrict;
2196 RTCPTRUNION uPtrFrame;
2197 uint64_t uNewRsp;
2198 uint64_t uNewRip;
2199 uint16_t uNewCs;
2200 NOREF(cbInstr);
2201
2202 /*
2203 * Read the stack values first.
2204 */
2205 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
2206 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
2207 rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2208 if (rcStrict != VINF_SUCCESS)
2209 return rcStrict;
2210 if (enmEffOpSize == IEMMODE_16BIT)
2211 {
2212 uNewRip = uPtrFrame.pu16[0];
2213 uNewCs = uPtrFrame.pu16[1];
2214 }
2215 else if (enmEffOpSize == IEMMODE_32BIT)
2216 {
2217 uNewRip = uPtrFrame.pu32[0];
2218 uNewCs = uPtrFrame.pu16[2];
2219 }
2220 else
2221 {
2222 uNewRip = uPtrFrame.pu64[0];
2223 uNewCs = uPtrFrame.pu16[4];
2224 }
2225 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2226 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2227 { /* extremely likely */ }
2228 else
2229 return rcStrict;
2230
2231 /*
2232 * Real mode and V8086 mode are easy.
2233 */
2234 /** @todo See comment for similar code in iemCImpl_FarJmp */
2235 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2236 {
2237 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2238 /** @todo check how this is supposed to work if sp=0xfffe. */
2239
2240 /* Check the limit of the new EIP. */
2241 /** @todo Intel pseudo code only does the limit check for 16-bit
2242 * operands, AMD does not make any distinction. What is right? */
2243 if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit)
2244 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2245
2246 /* commit the operation. */
2247 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2248 pVCpu->cpum.GstCtx.rip = uNewRip;
2249 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2250 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2251 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2252 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2253 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2254 if (cbPop)
2255 iemRegAddToRsp(pVCpu, cbPop);
2256 return VINF_SUCCESS;
2257 }
2258
2259 /*
2260 * Protected mode is complicated, of course.
2261 */
2262 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2263 {
2264 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
2265 return iemRaiseGeneralProtectionFault0(pVCpu);
2266 }
2267
2268 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
2269
2270 /* Fetch the descriptor. */
2271 IEMSELDESC DescCs;
2272 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
2273 if (rcStrict != VINF_SUCCESS)
2274 return rcStrict;
2275
2276 /* Can only return to a code selector. */
2277 if ( !DescCs.Legacy.Gen.u1DescType
2278 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
2279 {
2280 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
2281 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
2282 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2283 }
2284
2285 /* L vs D. */
2286 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
2287 && DescCs.Legacy.Gen.u1DefBig
2288 && IEM_IS_LONG_MODE(pVCpu))
2289 {
2290 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
2291 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2292 }
2293
2294 /* DPL/RPL/CPL checks. */
2295 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
2296 {
2297 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
2298 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2299 }
2300
2301 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2302 {
2303 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
2304 {
2305 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
2306 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2307 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2308 }
2309 }
2310 else
2311 {
2312 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
2313 {
2314 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
2315 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2316 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2317 }
2318 }
2319
2320 /* Is it there? */
2321 if (!DescCs.Legacy.Gen.u1Present)
2322 {
2323 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
2324 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2325 }
2326
2327 /*
2328 * Return to outer privilege? (We'll typically have entered via a call gate.)
2329 */
2330 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
2331 {
2332 /* Read the outer stack pointer stored *after* the parameters. */
2333 rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2334 if (rcStrict != VINF_SUCCESS)
2335 return rcStrict;
2336
2337 uPtrFrame.pu8 += cbPop; /* Skip the parameters. */
2338
2339 uint16_t uNewOuterSs;
2340 uint64_t uNewOuterRsp;
2341 if (enmEffOpSize == IEMMODE_16BIT)
2342 {
2343 uNewOuterRsp = uPtrFrame.pu16[0];
2344 uNewOuterSs = uPtrFrame.pu16[1];
2345 }
2346 else if (enmEffOpSize == IEMMODE_32BIT)
2347 {
2348 uNewOuterRsp = uPtrFrame.pu32[0];
2349 uNewOuterSs = uPtrFrame.pu16[2];
2350 }
2351 else
2352 {
2353 uNewOuterRsp = uPtrFrame.pu64[0];
2354 uNewOuterSs = uPtrFrame.pu16[4];
2355 }
2356 uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */
2357 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2358 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2359 { /* extremely likely */ }
2360 else
2361 return rcStrict;
2362
2363 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
2364 and read the selector. */
2365 IEMSELDESC DescSs;
2366 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
2367 {
2368 if ( !DescCs.Legacy.Gen.u1Long
2369 || (uNewOuterSs & X86_SEL_RPL) == 3)
2370 {
2371 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
2372 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2373 return iemRaiseGeneralProtectionFault0(pVCpu);
2374 }
2375 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
2376 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
2377 }
2378 else
2379 {
2380 /* Fetch the descriptor for the new stack segment. */
2381 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
2382 if (rcStrict != VINF_SUCCESS)
2383 return rcStrict;
2384 }
2385
2386 /* Check that RPL of stack and code selectors match. */
2387 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
2388 {
2389 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2390 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2391 }
2392
2393 /* Must be a writable data segment. */
2394 if ( !DescSs.Legacy.Gen.u1DescType
2395 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
2396 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
2397 {
2398 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
2399 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2400 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2401 }
2402
2403 /* L vs D. (Not mentioned by intel.) */
2404 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
2405 && DescSs.Legacy.Gen.u1DefBig
2406 && IEM_IS_LONG_MODE(pVCpu))
2407 {
2408 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
2409 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2410 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2411 }
2412
2413 /* DPL/RPL/CPL checks. */
2414 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2415 {
2416 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
2417 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
2418 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2419 }
2420
2421 /* Is it there? */
2422 if (!DescSs.Legacy.Gen.u1Present)
2423 {
2424 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2425 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2426 }
2427
2428 /* Calc SS limit.*/
2429 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
2430
2431 /* Is RIP canonical or within CS.limit? */
2432 uint64_t u64Base;
2433 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2434
2435 /** @todo Testcase: Is this correct? */
2436 if ( DescCs.Legacy.Gen.u1Long
2437 && IEM_IS_LONG_MODE(pVCpu) )
2438 {
2439 if (!IEM_IS_CANONICAL(uNewRip))
2440 {
2441 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2442 return iemRaiseNotCanonical(pVCpu);
2443 }
2444 u64Base = 0;
2445 }
2446 else
2447 {
2448 if (uNewRip > cbLimitCs)
2449 {
2450 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
2451 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
2452 /** @todo: Intel says this is #GP(0)! */
2453 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2454 }
2455 u64Base = X86DESC_BASE(&DescCs.Legacy);
2456 }
2457
2458 /*
2459 * Now set the accessed bit before
2460 * writing the return address to the stack and committing the result into
2461 * CS, CSHID and RIP.
2462 */
2463 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
2464 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2465 {
2466 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2467 if (rcStrict != VINF_SUCCESS)
2468 return rcStrict;
2469 /** @todo check what VT-x and AMD-V does. */
2470 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2471 }
2472 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
2473 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2474 {
2475 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
2476 if (rcStrict != VINF_SUCCESS)
2477 return rcStrict;
2478 /** @todo check what VT-x and AMD-V does. */
2479 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2480 }
2481
2482 /* commit */
2483 if (enmEffOpSize == IEMMODE_16BIT)
2484 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2485 else
2486 pVCpu->cpum.GstCtx.rip = uNewRip;
2487 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2488 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2489 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2490 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2491 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2492 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2493 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2494 pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs;
2495 pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs;
2496 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
2497 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
2498 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
2499 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2500 pVCpu->cpum.GstCtx.ss.u64Base = 0;
2501 else
2502 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
2503 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2504 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewOuterRsp;
2505 else
2506 pVCpu->cpum.GstCtx.rsp = uNewOuterRsp;
2507
2508 pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
2509 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
2510 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
2511 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
2512 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
2513
2514 /** @todo check if the hidden bits are loaded correctly for 64-bit
2515 * mode. */
2516
2517 if (cbPop)
2518 iemRegAddToRsp(pVCpu, cbPop);
2519 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2520
2521 /* Done! */
2522 }
2523 /*
2524 * Return to the same privilege level
2525 */
2526 else
2527 {
2528 /* Limit / canonical check. */
2529 uint64_t u64Base;
2530 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2531
2532 /** @todo Testcase: Is this correct? */
2533 if ( DescCs.Legacy.Gen.u1Long
2534 && IEM_IS_LONG_MODE(pVCpu) )
2535 {
2536 if (!IEM_IS_CANONICAL(uNewRip))
2537 {
2538 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
2539 return iemRaiseNotCanonical(pVCpu);
2540 }
2541 u64Base = 0;
2542 }
2543 else
2544 {
2545 if (uNewRip > cbLimitCs)
2546 {
2547 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
2548 /** @todo: Intel says this is #GP(0)! */
2549 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2550 }
2551 u64Base = X86DESC_BASE(&DescCs.Legacy);
2552 }
2553
2554 /*
2555 * Now set the accessed bit before
2556 * writing the return address to the stack and committing the result into
2557 * CS, CSHID and RIP.
2558 */
2559 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2560 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2561 {
2562 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2563 if (rcStrict != VINF_SUCCESS)
2564 return rcStrict;
2565 /** @todo check what VT-x and AMD-V does. */
2566 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2567 }
2568
2569 /* commit */
2570 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2571 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
2572 else
2573 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2574 if (enmEffOpSize == IEMMODE_16BIT)
2575 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2576 else
2577 pVCpu->cpum.GstCtx.rip = uNewRip;
2578 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2579 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2580 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2581 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2582 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2583 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2584 /** @todo check if the hidden bits are loaded correctly for 64-bit
2585 * mode. */
2586 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2587 if (cbPop)
2588 iemRegAddToRsp(pVCpu, cbPop);
2589 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2590 }
2591
2592 /* Flush the prefetch buffer. */
2593#ifdef IEM_WITH_CODE_TLB
2594 pVCpu->iem.s.pbInstrBuf = NULL;
2595#else
2596 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2597#endif
2598 return VINF_SUCCESS;
2599}
2600
2601
2602/**
2603 * Implements retn.
2604 *
2605 * We're doing this in C because of the \#GP that might be raised if the popped
2606 * program counter is out of bounds.
2607 *
2608 * @param enmEffOpSize The effective operand size.
2609 * @param cbPop The amount of arguments to pop from the stack
2610 * (bytes).
2611 */
2612IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2613{
2614 NOREF(cbInstr);
2615
2616 /* Fetch the RSP from the stack. */
2617 VBOXSTRICTRC rcStrict;
2618 RTUINT64U NewRip;
2619 RTUINT64U NewRsp;
2620 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2621
2622 switch (enmEffOpSize)
2623 {
2624 case IEMMODE_16BIT:
2625 NewRip.u = 0;
2626 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
2627 break;
2628 case IEMMODE_32BIT:
2629 NewRip.u = 0;
2630 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
2631 break;
2632 case IEMMODE_64BIT:
2633 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
2634 break;
2635 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2636 }
2637 if (rcStrict != VINF_SUCCESS)
2638 return rcStrict;
2639
2640 /* Check the new RSP before loading it. */
2641 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
2642 * of it. The canonical test is performed here and for call. */
2643 if (enmEffOpSize != IEMMODE_64BIT)
2644 {
2645 if (NewRip.DWords.dw0 > pVCpu->cpum.GstCtx.cs.u32Limit)
2646 {
2647 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit));
2648 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2649 }
2650 }
2651 else
2652 {
2653 if (!IEM_IS_CANONICAL(NewRip.u))
2654 {
2655 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
2656 return iemRaiseNotCanonical(pVCpu);
2657 }
2658 }
2659
2660 /* Apply cbPop */
2661 if (cbPop)
2662 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2663
2664 /* Commit it. */
2665 pVCpu->cpum.GstCtx.rip = NewRip.u;
2666 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2667 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2668
2669 /* Flush the prefetch buffer. */
2670#ifndef IEM_WITH_CODE_TLB
2671 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2672#endif
2673
2674 return VINF_SUCCESS;
2675}
2676
2677
2678/**
2679 * Implements enter.
2680 *
2681 * We're doing this in C because the instruction is insane, even for the
2682 * u8NestingLevel=0 case dealing with the stack is tedious.
2683 *
2684 * @param enmEffOpSize The effective operand size.
2685 */
2686IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
2687{
2688 /* Push RBP, saving the old value in TmpRbp. */
2689 RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2690 RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp;
2691 RTUINT64U NewRbp;
2692 VBOXSTRICTRC rcStrict;
2693 if (enmEffOpSize == IEMMODE_64BIT)
2694 {
2695 rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
2696 NewRbp = NewRsp;
2697 }
2698 else if (enmEffOpSize == IEMMODE_32BIT)
2699 {
2700 rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
2701 NewRbp = NewRsp;
2702 }
2703 else
2704 {
2705 rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
2706 NewRbp = TmpRbp;
2707 NewRbp.Words.w0 = NewRsp.Words.w0;
2708 }
2709 if (rcStrict != VINF_SUCCESS)
2710 return rcStrict;
2711
2712 /* Copy the parameters (aka nesting levels by Intel). */
2713 cParameters &= 0x1f;
2714 if (cParameters > 0)
2715 {
2716 switch (enmEffOpSize)
2717 {
2718 case IEMMODE_16BIT:
2719 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2720 TmpRbp.DWords.dw0 -= 2;
2721 else
2722 TmpRbp.Words.w0 -= 2;
2723 do
2724 {
2725 uint16_t u16Tmp;
2726 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
2727 if (rcStrict != VINF_SUCCESS)
2728 break;
2729 rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
2730 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2731 break;
2732
2733 case IEMMODE_32BIT:
2734 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2735 TmpRbp.DWords.dw0 -= 4;
2736 else
2737 TmpRbp.Words.w0 -= 4;
2738 do
2739 {
2740 uint32_t u32Tmp;
2741 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
2742 if (rcStrict != VINF_SUCCESS)
2743 break;
2744 rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
2745 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2746 break;
2747
2748 case IEMMODE_64BIT:
2749 TmpRbp.u -= 8;
2750 do
2751 {
2752 uint64_t u64Tmp;
2753 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
2754 if (rcStrict != VINF_SUCCESS)
2755 break;
2756 rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
2757 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2758 break;
2759
2760 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2761 }
2762 if (rcStrict != VINF_SUCCESS)
2763 return VINF_SUCCESS;
2764
2765 /* Push the new RBP */
2766 if (enmEffOpSize == IEMMODE_64BIT)
2767 rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
2768 else if (enmEffOpSize == IEMMODE_32BIT)
2769 rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
2770 else
2771 rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
2772 if (rcStrict != VINF_SUCCESS)
2773 return rcStrict;
2774
2775 }
2776
2777 /* Recalc RSP. */
2778 iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame);
2779
2780 /** @todo Should probe write access at the new RSP according to AMD. */
2781
2782 /* Commit it. */
2783 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2784 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2785 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2786
2787 return VINF_SUCCESS;
2788}
2789
2790
2791
2792/**
2793 * Implements leave.
2794 *
2795 * We're doing this in C because messing with the stack registers is annoying
2796 * since they depends on SS attributes.
2797 *
2798 * @param enmEffOpSize The effective operand size.
2799 */
2800IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
2801{
2802 /* Calculate the intermediate RSP from RBP and the stack attributes. */
2803 RTUINT64U NewRsp;
2804 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2805 NewRsp.u = pVCpu->cpum.GstCtx.rbp;
2806 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2807 NewRsp.u = pVCpu->cpum.GstCtx.ebp;
2808 else
2809 {
2810 /** @todo Check that LEAVE actually preserve the high EBP bits. */
2811 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2812 NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp;
2813 }
2814
2815 /* Pop RBP according to the operand size. */
2816 VBOXSTRICTRC rcStrict;
2817 RTUINT64U NewRbp;
2818 switch (enmEffOpSize)
2819 {
2820 case IEMMODE_16BIT:
2821 NewRbp.u = pVCpu->cpum.GstCtx.rbp;
2822 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
2823 break;
2824 case IEMMODE_32BIT:
2825 NewRbp.u = 0;
2826 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
2827 break;
2828 case IEMMODE_64BIT:
2829 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
2830 break;
2831 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2832 }
2833 if (rcStrict != VINF_SUCCESS)
2834 return rcStrict;
2835
2836
2837 /* Commit it. */
2838 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2839 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2840 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2841
2842 return VINF_SUCCESS;
2843}
2844
2845
2846/**
2847 * Implements int3 and int XX.
2848 *
2849 * @param u8Int The interrupt vector number.
2850 * @param enmInt The int instruction type.
2851 */
2852IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
2853{
2854 Assert(pVCpu->iem.s.cXcptRecursions == 0);
2855 return iemRaiseXcptOrInt(pVCpu,
2856 cbInstr,
2857 u8Int,
2858 IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
2859 0,
2860 0);
2861}
2862
2863
2864/**
2865 * Implements iret for real mode and V8086 mode.
2866 *
2867 * @param enmEffOpSize The effective operand size.
2868 */
2869IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2870{
2871 X86EFLAGS Efl;
2872 Efl.u = IEMMISC_GET_EFL(pVCpu);
2873 NOREF(cbInstr);
2874
2875 /*
2876 * iret throws an exception if VME isn't enabled.
2877 */
2878 if ( Efl.Bits.u1VM
2879 && Efl.Bits.u2IOPL != 3
2880 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
2881 return iemRaiseGeneralProtectionFault0(pVCpu);
2882
2883 /*
2884 * Do the stack bits, but don't commit RSP before everything checks
2885 * out right.
2886 */
2887 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2888 VBOXSTRICTRC rcStrict;
2889 RTCPTRUNION uFrame;
2890 uint16_t uNewCs;
2891 uint32_t uNewEip;
2892 uint32_t uNewFlags;
2893 uint64_t uNewRsp;
2894 if (enmEffOpSize == IEMMODE_32BIT)
2895 {
2896 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
2897 if (rcStrict != VINF_SUCCESS)
2898 return rcStrict;
2899 uNewEip = uFrame.pu32[0];
2900 if (uNewEip > UINT16_MAX)
2901 return iemRaiseGeneralProtectionFault0(pVCpu);
2902
2903 uNewCs = (uint16_t)uFrame.pu32[1];
2904 uNewFlags = uFrame.pu32[2];
2905 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2906 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
2907 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
2908 | X86_EFL_ID;
2909 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
2910 uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
2911 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
2912 }
2913 else
2914 {
2915 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
2916 if (rcStrict != VINF_SUCCESS)
2917 return rcStrict;
2918 uNewEip = uFrame.pu16[0];
2919 uNewCs = uFrame.pu16[1];
2920 uNewFlags = uFrame.pu16[2];
2921 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2922 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
2923 uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
2924 /** @todo The intel pseudo code does not indicate what happens to
2925 * reserved flags. We just ignore them. */
2926 /* Ancient CPU adjustments: See iemCImpl_popf. */
2927 if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
2928 uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
2929 }
2930 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
2931 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2932 { /* extremely likely */ }
2933 else
2934 return rcStrict;
2935
2936 /** @todo Check how this is supposed to work if sp=0xfffe. */
2937 Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
2938 uNewCs, uNewEip, uNewFlags, uNewRsp));
2939
2940 /*
2941 * Check the limit of the new EIP.
2942 */
2943 /** @todo Only the AMD pseudo code check the limit here, what's
2944 * right? */
2945 if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit)
2946 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2947
2948 /*
2949 * V8086 checks and flag adjustments
2950 */
2951 if (Efl.Bits.u1VM)
2952 {
2953 if (Efl.Bits.u2IOPL == 3)
2954 {
2955 /* Preserve IOPL and clear RF. */
2956 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
2957 uNewFlags |= Efl.u & (X86_EFL_IOPL);
2958 }
2959 else if ( enmEffOpSize == IEMMODE_16BIT
2960 && ( !(uNewFlags & X86_EFL_IF)
2961 || !Efl.Bits.u1VIP )
2962 && !(uNewFlags & X86_EFL_TF) )
2963 {
2964 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
2965 uNewFlags &= ~X86_EFL_VIF;
2966 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
2967 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
2968 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
2969 }
2970 else
2971 return iemRaiseGeneralProtectionFault0(pVCpu);
2972 Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
2973 }
2974
2975 /*
2976 * Commit the operation.
2977 */
2978#ifdef DBGFTRACE_ENABLED
2979 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
2980 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
2981#endif
2982 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2983 pVCpu->cpum.GstCtx.rip = uNewEip;
2984 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2985 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2986 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2987 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2988 /** @todo do we load attribs and limit as well? */
2989 Assert(uNewFlags & X86_EFL_1);
2990 IEMMISC_SET_EFL(pVCpu, uNewFlags);
2991
2992 /* Flush the prefetch buffer. */
2993#ifdef IEM_WITH_CODE_TLB
2994 pVCpu->iem.s.pbInstrBuf = NULL;
2995#else
2996 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2997#endif
2998
2999 return VINF_SUCCESS;
3000}
3001
3002
3003/**
3004 * Loads a segment register when entering V8086 mode.
3005 *
3006 * @param pSReg The segment register.
3007 * @param uSeg The segment to load.
3008 */
3009static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
3010{
3011 pSReg->Sel = uSeg;
3012 pSReg->ValidSel = uSeg;
3013 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
3014 pSReg->u64Base = (uint32_t)uSeg << 4;
3015 pSReg->u32Limit = 0xffff;
3016 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
3017 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
3018 * IRET'ing to V8086. */
3019}
3020
3021
3022/**
3023 * Implements iret for protected mode returning to V8086 mode.
3024 *
3025 * @param uNewEip The new EIP.
3026 * @param uNewCs The new CS.
3027 * @param uNewFlags The new EFLAGS.
3028 * @param uNewRsp The RSP after the initial IRET frame.
3029 *
3030 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
3031 */
3032IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp)
3033{
3034 RT_NOREF_PV(cbInstr);
3035 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
3036
3037 /*
3038 * Pop the V8086 specific frame bits off the stack.
3039 */
3040 VBOXSTRICTRC rcStrict;
3041 RTCPTRUNION uFrame;
3042 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp);
3043 if (rcStrict != VINF_SUCCESS)
3044 return rcStrict;
3045 uint32_t uNewEsp = uFrame.pu32[0];
3046 uint16_t uNewSs = uFrame.pu32[1];
3047 uint16_t uNewEs = uFrame.pu32[2];
3048 uint16_t uNewDs = uFrame.pu32[3];
3049 uint16_t uNewFs = uFrame.pu32[4];
3050 uint16_t uNewGs = uFrame.pu32[5];
3051 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3052 if (rcStrict != VINF_SUCCESS)
3053 return rcStrict;
3054
3055 /*
3056 * Commit the operation.
3057 */
3058 uNewFlags &= X86_EFL_LIVE_MASK;
3059 uNewFlags |= X86_EFL_RA1_MASK;
3060#ifdef DBGFTRACE_ENABLED
3061 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
3062 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
3063#endif
3064 Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
3065
3066 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3067 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs);
3068 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs);
3069 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs);
3070 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs);
3071 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs);
3072 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs);
3073 pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip;
3074 pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */
3075 pVCpu->iem.s.uCpl = 3;
3076
3077 /* Flush the prefetch buffer. */
3078#ifdef IEM_WITH_CODE_TLB
3079 pVCpu->iem.s.pbInstrBuf = NULL;
3080#else
3081 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3082#endif
3083
3084 return VINF_SUCCESS;
3085}
3086
3087
3088/**
3089 * Implements iret for protected mode returning via a nested task.
3090 *
3091 * @param enmEffOpSize The effective operand size.
3092 */
3093IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
3094{
3095 Log7(("iemCImpl_iret_prot_NestedTask:\n"));
3096#ifndef IEM_IMPLEMENTS_TASKSWITCH
3097 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
3098#else
3099 RT_NOREF_PV(enmEffOpSize);
3100
3101 /*
3102 * Read the segment selector in the link-field of the current TSS.
3103 */
3104 RTSEL uSelRet;
3105 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base);
3106 if (rcStrict != VINF_SUCCESS)
3107 return rcStrict;
3108
3109 /*
3110 * Fetch the returning task's TSS descriptor from the GDT.
3111 */
3112 if (uSelRet & X86_SEL_LDT)
3113 {
3114 Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
3115 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
3116 }
3117
3118 IEMSELDESC TssDesc;
3119 rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
3120 if (rcStrict != VINF_SUCCESS)
3121 return rcStrict;
3122
3123 if (TssDesc.Legacy.Gate.u1DescType)
3124 {
3125 Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
3126 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3127 }
3128
3129 if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
3130 && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
3131 {
3132 Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
3133 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3134 }
3135
3136 if (!TssDesc.Legacy.Gate.u1Present)
3137 {
3138 Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
3139 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3140 }
3141
3142 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
3143 return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
3144 0 /* uCr2 */, uSelRet, &TssDesc);
3145#endif
3146}
3147
3148
3149/**
3150 * Implements iret for protected mode
3151 *
3152 * @param enmEffOpSize The effective operand size.
3153 */
3154IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
3155{
3156 NOREF(cbInstr);
3157 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3158
3159 /*
3160 * Nested task return.
3161 */
3162 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3163 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
3164
3165 /*
3166 * Normal return.
3167 *
3168 * Do the stack bits, but don't commit RSP before everything checks
3169 * out right.
3170 */
3171 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3172 VBOXSTRICTRC rcStrict;
3173 RTCPTRUNION uFrame;
3174 uint16_t uNewCs;
3175 uint32_t uNewEip;
3176 uint32_t uNewFlags;
3177 uint64_t uNewRsp;
3178 if (enmEffOpSize == IEMMODE_32BIT)
3179 {
3180 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
3181 if (rcStrict != VINF_SUCCESS)
3182 return rcStrict;
3183 uNewEip = uFrame.pu32[0];
3184 uNewCs = (uint16_t)uFrame.pu32[1];
3185 uNewFlags = uFrame.pu32[2];
3186 }
3187 else
3188 {
3189 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
3190 if (rcStrict != VINF_SUCCESS)
3191 return rcStrict;
3192 uNewEip = uFrame.pu16[0];
3193 uNewCs = uFrame.pu16[1];
3194 uNewFlags = uFrame.pu16[2];
3195 }
3196 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3197 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3198 { /* extremely likely */ }
3199 else
3200 return rcStrict;
3201 Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
3202
3203 /*
3204 * We're hopefully not returning to V8086 mode...
3205 */
3206 if ( (uNewFlags & X86_EFL_VM)
3207 && pVCpu->iem.s.uCpl == 0)
3208 {
3209 Assert(enmEffOpSize == IEMMODE_32BIT);
3210 return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp);
3211 }
3212
3213 /*
3214 * Protected mode.
3215 */
3216 /* Read the CS descriptor. */
3217 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3218 {
3219 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
3220 return iemRaiseGeneralProtectionFault0(pVCpu);
3221 }
3222
3223 IEMSELDESC DescCS;
3224 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3225 if (rcStrict != VINF_SUCCESS)
3226 {
3227 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
3228 return rcStrict;
3229 }
3230
3231 /* Must be a code descriptor. */
3232 if (!DescCS.Legacy.Gen.u1DescType)
3233 {
3234 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3235 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3236 }
3237 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3238 {
3239 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3240 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3241 }
3242
3243#ifdef VBOX_WITH_RAW_MODE_NOT_R0
3244 /* Raw ring-0 and ring-1 compression adjustments for PATM performance tricks and other CS leaks. */
3245 PVM pVM = pVCpu->CTX_SUFF(pVM);
3246 if (EMIsRawRing0Enabled(pVM) && VM_IS_RAW_MODE_ENABLED(pVM))
3247 {
3248 if ((uNewCs & X86_SEL_RPL) == 1)
3249 {
3250 if ( pVCpu->iem.s.uCpl == 0
3251 && ( !EMIsRawRing1Enabled(pVM)
3252 || pVCpu->cpum.GstCtx.cs.Sel == (uNewCs & X86_SEL_MASK_OFF_RPL)) )
3253 {
3254 Log(("iret: Ring-0 compression fix: uNewCS=%#x -> %#x\n", uNewCs, uNewCs & X86_SEL_MASK_OFF_RPL));
3255 uNewCs &= X86_SEL_MASK_OFF_RPL;
3256 }
3257# ifdef LOG_ENABLED
3258 else if (pVCpu->iem.s.uCpl <= 1 && EMIsRawRing1Enabled(pVM))
3259 Log(("iret: uNewCs=%#x genuine return to ring-1.\n", uNewCs));
3260# endif
3261 }
3262 else if ( (uNewCs & X86_SEL_RPL) == 2
3263 && EMIsRawRing1Enabled(pVM)
3264 && pVCpu->iem.s.uCpl <= 1)
3265 {
3266 Log(("iret: Ring-1 compression fix: uNewCS=%#x -> %#x\n", uNewCs, (uNewCs & X86_SEL_MASK_OFF_RPL) | 1));
3267 uNewCs = (uNewCs & X86_SEL_MASK_OFF_RPL) | 2;
3268 }
3269 }
3270#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
3271
3272
3273 /* Privilege checks. */
3274 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3275 {
3276 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3277 {
3278 Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3279 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3280 }
3281 }
3282 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3283 {
3284 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3285 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3286 }
3287 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3288 {
3289 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
3290 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3291 }
3292
3293 /* Present? */
3294 if (!DescCS.Legacy.Gen.u1Present)
3295 {
3296 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
3297 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3298 }
3299
3300 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3301
3302 /*
3303 * Return to outer level?
3304 */
3305 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
3306 {
3307 uint16_t uNewSS;
3308 uint32_t uNewESP;
3309 if (enmEffOpSize == IEMMODE_32BIT)
3310 {
3311 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp);
3312 if (rcStrict != VINF_SUCCESS)
3313 return rcStrict;
3314/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
3315 * 16-bit or 32-bit are being loaded into SP depends on the D/B
3316 * bit of the popped SS selector it turns out. */
3317 uNewESP = uFrame.pu32[0];
3318 uNewSS = (uint16_t)uFrame.pu32[1];
3319 }
3320 else
3321 {
3322 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp);
3323 if (rcStrict != VINF_SUCCESS)
3324 return rcStrict;
3325 uNewESP = uFrame.pu16[0];
3326 uNewSS = uFrame.pu16[1];
3327 }
3328 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
3329 if (rcStrict != VINF_SUCCESS)
3330 return rcStrict;
3331 Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
3332
3333 /* Read the SS descriptor. */
3334 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
3335 {
3336 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
3337 return iemRaiseGeneralProtectionFault0(pVCpu);
3338 }
3339
3340 IEMSELDESC DescSS;
3341 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
3342 if (rcStrict != VINF_SUCCESS)
3343 {
3344 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
3345 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
3346 return rcStrict;
3347 }
3348
3349 /* Privilege checks. */
3350 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3351 {
3352 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
3353 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3354 }
3355 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3356 {
3357 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
3358 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
3359 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3360 }
3361
3362 /* Must be a writeable data segment descriptor. */
3363 if (!DescSS.Legacy.Gen.u1DescType)
3364 {
3365 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
3366 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3367 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3368 }
3369 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3370 {
3371 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
3372 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3373 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3374 }
3375
3376 /* Present? */
3377 if (!DescSS.Legacy.Gen.u1Present)
3378 {
3379 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
3380 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
3381 }
3382
3383 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3384
3385 /* Check EIP. */
3386 if (uNewEip > cbLimitCS)
3387 {
3388 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
3389 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
3390 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3391 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3392 }
3393
3394 /*
3395 * Commit the changes, marking CS and SS accessed first since
3396 * that may fail.
3397 */
3398 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3399 {
3400 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3401 if (rcStrict != VINF_SUCCESS)
3402 return rcStrict;
3403 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3404 }
3405 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3406 {
3407 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
3408 if (rcStrict != VINF_SUCCESS)
3409 return rcStrict;
3410 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3411 }
3412
3413 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3414 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3415 if (enmEffOpSize != IEMMODE_16BIT)
3416 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3417 if (pVCpu->iem.s.uCpl == 0)
3418 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3419 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3420 fEFlagsMask |= X86_EFL_IF;
3421 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3422 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3423 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3424 fEFlagsNew &= ~fEFlagsMask;
3425 fEFlagsNew |= uNewFlags & fEFlagsMask;
3426#ifdef DBGFTRACE_ENABLED
3427 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
3428 pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3429 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
3430#endif
3431
3432 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3433 pVCpu->cpum.GstCtx.rip = uNewEip;
3434 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3435 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3436 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3437 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3438 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3439 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3440 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3441
3442 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
3443 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
3444 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3445 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3446 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3447 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3448 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3449 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP;
3450 else
3451 pVCpu->cpum.GstCtx.rsp = uNewESP;
3452
3453 pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
3454 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
3455 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
3456 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
3457 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
3458
3459 /* Done! */
3460
3461 }
3462 /*
3463 * Return to the same level.
3464 */
3465 else
3466 {
3467 /* Check EIP. */
3468 if (uNewEip > cbLimitCS)
3469 {
3470 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
3471 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3472 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3473 }
3474
3475 /*
3476 * Commit the changes, marking CS first since it may fail.
3477 */
3478 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3479 {
3480 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3481 if (rcStrict != VINF_SUCCESS)
3482 return rcStrict;
3483 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3484 }
3485
3486 X86EFLAGS NewEfl;
3487 NewEfl.u = IEMMISC_GET_EFL(pVCpu);
3488 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3489 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3490 if (enmEffOpSize != IEMMODE_16BIT)
3491 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3492 if (pVCpu->iem.s.uCpl == 0)
3493 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3494 else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
3495 fEFlagsMask |= X86_EFL_IF;
3496 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3497 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3498 NewEfl.u &= ~fEFlagsMask;
3499 NewEfl.u |= fEFlagsMask & uNewFlags;
3500#ifdef DBGFTRACE_ENABLED
3501 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
3502 pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3503 uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp);
3504#endif
3505
3506 IEMMISC_SET_EFL(pVCpu, NewEfl.u);
3507 pVCpu->cpum.GstCtx.rip = uNewEip;
3508 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3509 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3510 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3511 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3512 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3513 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3514 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3515 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3516 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3517 else
3518 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3519 /* Done! */
3520 }
3521
3522 /* Flush the prefetch buffer. */
3523#ifdef IEM_WITH_CODE_TLB
3524 pVCpu->iem.s.pbInstrBuf = NULL;
3525#else
3526 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3527#endif
3528
3529 return VINF_SUCCESS;
3530}
3531
3532
3533/**
3534 * Implements iret for long mode
3535 *
3536 * @param enmEffOpSize The effective operand size.
3537 */
3538IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
3539{
3540 NOREF(cbInstr);
3541
3542 /*
3543 * Nested task return is not supported in long mode.
3544 */
3545 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3546 {
3547 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u));
3548 return iemRaiseGeneralProtectionFault0(pVCpu);
3549 }
3550
3551 /*
3552 * Normal return.
3553 *
3554 * Do the stack bits, but don't commit RSP before everything checks
3555 * out right.
3556 */
3557 VBOXSTRICTRC rcStrict;
3558 RTCPTRUNION uFrame;
3559 uint64_t uNewRip;
3560 uint16_t uNewCs;
3561 uint16_t uNewSs;
3562 uint32_t uNewFlags;
3563 uint64_t uNewRsp;
3564 if (enmEffOpSize == IEMMODE_64BIT)
3565 {
3566 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp);
3567 if (rcStrict != VINF_SUCCESS)
3568 return rcStrict;
3569 uNewRip = uFrame.pu64[0];
3570 uNewCs = (uint16_t)uFrame.pu64[1];
3571 uNewFlags = (uint32_t)uFrame.pu64[2];
3572 uNewRsp = uFrame.pu64[3];
3573 uNewSs = (uint16_t)uFrame.pu64[4];
3574 }
3575 else if (enmEffOpSize == IEMMODE_32BIT)
3576 {
3577 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp);
3578 if (rcStrict != VINF_SUCCESS)
3579 return rcStrict;
3580 uNewRip = uFrame.pu32[0];
3581 uNewCs = (uint16_t)uFrame.pu32[1];
3582 uNewFlags = uFrame.pu32[2];
3583 uNewRsp = uFrame.pu32[3];
3584 uNewSs = (uint16_t)uFrame.pu32[4];
3585 }
3586 else
3587 {
3588 Assert(enmEffOpSize == IEMMODE_16BIT);
3589 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp);
3590 if (rcStrict != VINF_SUCCESS)
3591 return rcStrict;
3592 uNewRip = uFrame.pu16[0];
3593 uNewCs = uFrame.pu16[1];
3594 uNewFlags = uFrame.pu16[2];
3595 uNewRsp = uFrame.pu16[3];
3596 uNewSs = uFrame.pu16[4];
3597 }
3598 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3599 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3600 { /* extremely like */ }
3601 else
3602 return rcStrict;
3603 Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
3604
3605 /*
3606 * Check stuff.
3607 */
3608 /* Read the CS descriptor. */
3609 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3610 {
3611 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3612 return iemRaiseGeneralProtectionFault0(pVCpu);
3613 }
3614
3615 IEMSELDESC DescCS;
3616 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3617 if (rcStrict != VINF_SUCCESS)
3618 {
3619 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
3620 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3621 return rcStrict;
3622 }
3623
3624 /* Must be a code descriptor. */
3625 if ( !DescCS.Legacy.Gen.u1DescType
3626 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3627 {
3628 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
3629 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
3630 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3631 }
3632
3633 /* Privilege checks. */
3634 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
3635 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3636 {
3637 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3638 {
3639 Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3640 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3641 }
3642 }
3643 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3644 {
3645 Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3646 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3647 }
3648 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3649 {
3650 Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
3651 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3652 }
3653
3654 /* Present? */
3655 if (!DescCS.Legacy.Gen.u1Present)
3656 {
3657 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3658 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3659 }
3660
3661 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3662
3663 /* Read the SS descriptor. */
3664 IEMSELDESC DescSS;
3665 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3666 {
3667 if ( !DescCS.Legacy.Gen.u1Long
3668 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
3669 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
3670 {
3671 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3672 return iemRaiseGeneralProtectionFault0(pVCpu);
3673 }
3674 DescSS.Legacy.u = 0;
3675 }
3676 else
3677 {
3678 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
3679 if (rcStrict != VINF_SUCCESS)
3680 {
3681 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
3682 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3683 return rcStrict;
3684 }
3685 }
3686
3687 /* Privilege checks. */
3688 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3689 {
3690 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3691 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3692 }
3693
3694 uint32_t cbLimitSs;
3695 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3696 cbLimitSs = UINT32_MAX;
3697 else
3698 {
3699 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3700 {
3701 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
3702 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
3703 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3704 }
3705
3706 /* Must be a writeable data segment descriptor. */
3707 if (!DescSS.Legacy.Gen.u1DescType)
3708 {
3709 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
3710 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3711 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3712 }
3713 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3714 {
3715 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
3716 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3717 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3718 }
3719
3720 /* Present? */
3721 if (!DescSS.Legacy.Gen.u1Present)
3722 {
3723 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3724 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
3725 }
3726 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3727 }
3728
3729 /* Check EIP. */
3730 if (DescCS.Legacy.Gen.u1Long)
3731 {
3732 if (!IEM_IS_CANONICAL(uNewRip))
3733 {
3734 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
3735 uNewCs, uNewRip, uNewSs, uNewRsp));
3736 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3737 }
3738 }
3739 else
3740 {
3741 if (uNewRip > cbLimitCS)
3742 {
3743 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
3744 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
3745 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3746 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3747 }
3748 }
3749
3750 /*
3751 * Commit the changes, marking CS and SS accessed first since
3752 * that may fail.
3753 */
3754 /** @todo where exactly are these actually marked accessed by a real CPU? */
3755 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3756 {
3757 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3758 if (rcStrict != VINF_SUCCESS)
3759 return rcStrict;
3760 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3761 }
3762 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3763 {
3764 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
3765 if (rcStrict != VINF_SUCCESS)
3766 return rcStrict;
3767 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3768 }
3769
3770 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3771 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3772 if (enmEffOpSize != IEMMODE_16BIT)
3773 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3774 if (pVCpu->iem.s.uCpl == 0)
3775 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
3776 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3777 fEFlagsMask |= X86_EFL_IF;
3778 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3779 fEFlagsNew &= ~fEFlagsMask;
3780 fEFlagsNew |= uNewFlags & fEFlagsMask;
3781#ifdef DBGFTRACE_ENABLED
3782 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
3783 pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
3784#endif
3785
3786 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3787 pVCpu->cpum.GstCtx.rip = uNewRip;
3788 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3789 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3790 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3791 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3792 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3793 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3794 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3795 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
3796 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3797 else
3798 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3799 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
3800 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
3801 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3802 {
3803 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3804 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
3805 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
3806 pVCpu->cpum.GstCtx.ss.u64Base = 0;
3807 Log2(("iretq new SS: NULL\n"));
3808 }
3809 else
3810 {
3811 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3812 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3813 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3814 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3815 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3816 }
3817
3818 if (pVCpu->iem.s.uCpl != uNewCpl)
3819 {
3820 pVCpu->iem.s.uCpl = uNewCpl;
3821 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds);
3822 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es);
3823 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs);
3824 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs);
3825 }
3826
3827 /* Flush the prefetch buffer. */
3828#ifdef IEM_WITH_CODE_TLB
3829 pVCpu->iem.s.pbInstrBuf = NULL;
3830#else
3831 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3832#endif
3833
3834 return VINF_SUCCESS;
3835}
3836
3837
3838/**
3839 * Implements iret.
3840 *
3841 * @param enmEffOpSize The effective operand size.
3842 */
3843IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
3844{
3845 /*
3846 * First, clear NMI blocking, if any, before causing any exceptions.
3847 * See Intel spec. 6.7.1 "Handling Multiple NMIs".
3848 */
3849 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
3850
3851 /*
3852 * The SVM nested-guest intercept for iret takes priority over all exceptions,
3853 * see AMD spec. "15.9 Instruction Intercepts".
3854 */
3855 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
3856 {
3857 Log(("iret: Guest intercept -> #VMEXIT\n"));
3858 IEM_SVM_UPDATE_NRIP(pVCpu);
3859 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
3860 }
3861
3862 /*
3863 * Call a mode specific worker.
3864 */
3865 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
3866 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
3867 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
3868 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
3869 return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
3870 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
3871}
3872
3873
3874/**
3875 * Implements SYSCALL (AMD and Intel64).
3876 *
3877 * @param enmEffOpSize The effective operand size.
3878 */
3879IEM_CIMPL_DEF_0(iemCImpl_syscall)
3880{
3881 /*
3882 * Check preconditions.
3883 *
3884 * Note that CPUs described in the documentation may load a few odd values
3885 * into CS and SS than we allow here. This has yet to be checked on real
3886 * hardware.
3887 */
3888 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
3889 {
3890 Log(("syscall: Not enabled in EFER -> #UD\n"));
3891 return iemRaiseUndefinedOpcode(pVCpu);
3892 }
3893 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
3894 {
3895 Log(("syscall: Protected mode is required -> #GP(0)\n"));
3896 return iemRaiseGeneralProtectionFault0(pVCpu);
3897 }
3898 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
3899 {
3900 Log(("syscall: Only available in long mode on intel -> #UD\n"));
3901 return iemRaiseUndefinedOpcode(pVCpu);
3902 }
3903
3904 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
3905
3906 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
3907 /** @todo what about LDT selectors? Shouldn't matter, really. */
3908 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
3909 uint16_t uNewSs = uNewCs + 8;
3910 if (uNewCs == 0 || uNewSs == 0)
3911 {
3912 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
3913 return iemRaiseGeneralProtectionFault0(pVCpu);
3914 }
3915
3916 /* Long mode and legacy mode differs. */
3917 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
3918 {
3919 uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR;
3920
3921 /* This test isn't in the docs, but I'm not trusting the guys writing
3922 the MSRs to have validated the values as canonical like they should. */
3923 if (!IEM_IS_CANONICAL(uNewRip))
3924 {
3925 Log(("syscall: Only available in long mode on intel -> #UD\n"));
3926 return iemRaiseUndefinedOpcode(pVCpu);
3927 }
3928
3929 /*
3930 * Commit it.
3931 */
3932 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip));
3933 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr;
3934 pVCpu->cpum.GstCtx.rip = uNewRip;
3935
3936 pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF;
3937 pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u;
3938 pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK;
3939 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
3940
3941 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
3942 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
3943 }
3944 else
3945 {
3946 /*
3947 * Commit it.
3948 */
3949 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
3950 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
3951 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr;
3952 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
3953 pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
3954
3955 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
3956 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
3957 }
3958 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3959 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3960 pVCpu->cpum.GstCtx.cs.u64Base = 0;
3961 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
3962 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3963
3964 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
3965 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
3966 pVCpu->cpum.GstCtx.ss.u64Base = 0;
3967 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
3968 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3969
3970 /* Flush the prefetch buffer. */
3971#ifdef IEM_WITH_CODE_TLB
3972 pVCpu->iem.s.pbInstrBuf = NULL;
3973#else
3974 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3975#endif
3976
3977 return VINF_SUCCESS;
3978}
3979
3980
3981/**
3982 * Implements SYSRET (AMD and Intel64).
3983 */
3984IEM_CIMPL_DEF_0(iemCImpl_sysret)
3985
3986{
3987 RT_NOREF_PV(cbInstr);
3988
3989 /*
3990 * Check preconditions.
3991 *
3992 * Note that CPUs described in the documentation may load a few odd values
3993 * into CS and SS than we allow here. This has yet to be checked on real
3994 * hardware.
3995 */
3996 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
3997 {
3998 Log(("sysret: Not enabled in EFER -> #UD\n"));
3999 return iemRaiseUndefinedOpcode(pVCpu);
4000 }
4001 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4002 {
4003 Log(("sysret: Only available in long mode on intel -> #UD\n"));
4004 return iemRaiseUndefinedOpcode(pVCpu);
4005 }
4006 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4007 {
4008 Log(("sysret: Protected mode is required -> #GP(0)\n"));
4009 return iemRaiseGeneralProtectionFault0(pVCpu);
4010 }
4011 if (pVCpu->iem.s.uCpl != 0)
4012 {
4013 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
4014 return iemRaiseGeneralProtectionFault0(pVCpu);
4015 }
4016
4017 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4018
4019 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
4020 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4021 uint16_t uNewSs = uNewCs + 8;
4022 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4023 uNewCs += 16;
4024 if (uNewCs == 0 || uNewSs == 0)
4025 {
4026 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4027 return iemRaiseGeneralProtectionFault0(pVCpu);
4028 }
4029
4030 /*
4031 * Commit it.
4032 */
4033 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4034 {
4035 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4036 {
4037 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
4038 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11));
4039 /* Note! We disregard intel manual regarding the RCX cananonical
4040 check, ask intel+xen why AMD doesn't do it. */
4041 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4042 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4043 | (3 << X86DESCATTR_DPL_SHIFT);
4044 }
4045 else
4046 {
4047 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
4048 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11));
4049 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx;
4050 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4051 | (3 << X86DESCATTR_DPL_SHIFT);
4052 }
4053 /** @todo testcase: See what kind of flags we can make SYSRET restore and
4054 * what it really ignores. RF and VM are hinted at being zero, by AMD. */
4055 pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
4056 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4057 }
4058 else
4059 {
4060 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx));
4061 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4062 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF;
4063 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4064 | (3 << X86DESCATTR_DPL_SHIFT);
4065 }
4066 pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3;
4067 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3;
4068 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4069 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4070 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4071
4072 pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3;
4073 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3;
4074 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4075 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
4076 pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
4077 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
4078 * on sysret. */
4079
4080 /* Flush the prefetch buffer. */
4081#ifdef IEM_WITH_CODE_TLB
4082 pVCpu->iem.s.pbInstrBuf = NULL;
4083#else
4084 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4085#endif
4086
4087 return VINF_SUCCESS;
4088}
4089
4090
4091/**
4092 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
4093 *
4094 * @param iSegReg The segment register number (valid).
4095 * @param uSel The new selector value.
4096 */
4097IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
4098{
4099 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
4100 uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
4101 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
4102
4103 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
4104
4105 /*
4106 * Real mode and V8086 mode are easy.
4107 */
4108 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4109 {
4110 *pSel = uSel;
4111 pHid->u64Base = (uint32_t)uSel << 4;
4112 pHid->ValidSel = uSel;
4113 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4114#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
4115 /** @todo Does the CPU actually load limits and attributes in the
4116 * real/V8086 mode segment load case? It doesn't for CS in far
4117 * jumps... Affects unreal mode. */
4118 pHid->u32Limit = 0xffff;
4119 pHid->Attr.u = 0;
4120 pHid->Attr.n.u1Present = 1;
4121 pHid->Attr.n.u1DescType = 1;
4122 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
4123 ? X86_SEL_TYPE_RW
4124 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
4125#endif
4126 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4127 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4128 return VINF_SUCCESS;
4129 }
4130
4131 /*
4132 * Protected mode.
4133 *
4134 * Check if it's a null segment selector value first, that's OK for DS, ES,
4135 * FS and GS. If not null, then we have to load and parse the descriptor.
4136 */
4137 if (!(uSel & X86_SEL_MASK_OFF_RPL))
4138 {
4139 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
4140 if (iSegReg == X86_SREG_SS)
4141 {
4142 /* In 64-bit kernel mode, the stack can be 0 because of the way
4143 interrupts are dispatched. AMD seems to have a slighly more
4144 relaxed relationship to SS.RPL than intel does. */
4145 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
4146 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4147 || pVCpu->iem.s.uCpl > 2
4148 || ( uSel != pVCpu->iem.s.uCpl
4149 && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
4150 {
4151 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
4152 return iemRaiseGeneralProtectionFault0(pVCpu);
4153 }
4154 }
4155
4156 *pSel = uSel; /* Not RPL, remember :-) */
4157 iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
4158 if (iSegReg == X86_SREG_SS)
4159 pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
4160
4161 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4162 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4163
4164 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4165 return VINF_SUCCESS;
4166 }
4167
4168 /* Fetch the descriptor. */
4169 IEMSELDESC Desc;
4170 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
4171 if (rcStrict != VINF_SUCCESS)
4172 return rcStrict;
4173
4174 /* Check GPs first. */
4175 if (!Desc.Legacy.Gen.u1DescType)
4176 {
4177 Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
4178 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4179 }
4180 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
4181 {
4182 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
4183 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
4184 {
4185 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
4186 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4187 }
4188 if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
4189 {
4190 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
4191 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4192 }
4193 if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
4194 {
4195 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
4196 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4197 }
4198 }
4199 else
4200 {
4201 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4202 {
4203 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
4204 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4205 }
4206 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4207 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4208 {
4209#if 0 /* this is what intel says. */
4210 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
4211 && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4212 {
4213 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
4214 iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4215 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4216 }
4217#else /* this is what makes more sense. */
4218 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4219 {
4220 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
4221 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
4222 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4223 }
4224 if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4225 {
4226 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
4227 iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4228 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4229 }
4230#endif
4231 }
4232 }
4233
4234 /* Is it there? */
4235 if (!Desc.Legacy.Gen.u1Present)
4236 {
4237 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
4238 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
4239 }
4240
4241 /* The base and limit. */
4242 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
4243 uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
4244
4245 /*
4246 * Ok, everything checked out fine. Now set the accessed bit before
4247 * committing the result into the registers.
4248 */
4249 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
4250 {
4251 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
4252 if (rcStrict != VINF_SUCCESS)
4253 return rcStrict;
4254 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
4255 }
4256
4257 /* commit */
4258 *pSel = uSel;
4259 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4260 pHid->u32Limit = cbLimit;
4261 pHid->u64Base = u64Base;
4262 pHid->ValidSel = uSel;
4263 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4264
4265 /** @todo check if the hidden bits are loaded correctly for 64-bit
4266 * mode. */
4267 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4268
4269 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4270 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4271 return VINF_SUCCESS;
4272}
4273
4274
4275/**
4276 * Implements 'mov SReg, r/m'.
4277 *
4278 * @param iSegReg The segment register number (valid).
4279 * @param uSel The new selector value.
4280 */
4281IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
4282{
4283 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4284 if (rcStrict == VINF_SUCCESS)
4285 {
4286 if (iSegReg == X86_SREG_SS)
4287 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4288 }
4289 return rcStrict;
4290}
4291
4292
4293/**
4294 * Implements 'pop SReg'.
4295 *
4296 * @param iSegReg The segment register number (valid).
4297 * @param enmEffOpSize The efficient operand size (valid).
4298 */
4299IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
4300{
4301 VBOXSTRICTRC rcStrict;
4302
4303 /*
4304 * Read the selector off the stack and join paths with mov ss, reg.
4305 */
4306 RTUINT64U TmpRsp;
4307 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
4308 switch (enmEffOpSize)
4309 {
4310 case IEMMODE_16BIT:
4311 {
4312 uint16_t uSel;
4313 rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
4314 if (rcStrict == VINF_SUCCESS)
4315 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4316 break;
4317 }
4318
4319 case IEMMODE_32BIT:
4320 {
4321 uint32_t u32Value;
4322 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
4323 if (rcStrict == VINF_SUCCESS)
4324 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
4325 break;
4326 }
4327
4328 case IEMMODE_64BIT:
4329 {
4330 uint64_t u64Value;
4331 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
4332 if (rcStrict == VINF_SUCCESS)
4333 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
4334 break;
4335 }
4336 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4337 }
4338
4339 /*
4340 * Commit the stack on success.
4341 */
4342 if (rcStrict == VINF_SUCCESS)
4343 {
4344 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
4345 if (iSegReg == X86_SREG_SS)
4346 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4347 }
4348 return rcStrict;
4349}
4350
4351
4352/**
4353 * Implements lgs, lfs, les, lds & lss.
4354 */
4355IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
4356 uint16_t, uSel,
4357 uint64_t, offSeg,
4358 uint8_t, iSegReg,
4359 uint8_t, iGReg,
4360 IEMMODE, enmEffOpSize)
4361{
4362 /*
4363 * Use iemCImpl_LoadSReg to do the tricky segment register loading.
4364 */
4365 /** @todo verify and test that mov, pop and lXs works the segment
4366 * register loading in the exact same way. */
4367 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4368 if (rcStrict == VINF_SUCCESS)
4369 {
4370 switch (enmEffOpSize)
4371 {
4372 case IEMMODE_16BIT:
4373 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4374 break;
4375 case IEMMODE_32BIT:
4376 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4377 break;
4378 case IEMMODE_64BIT:
4379 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4380 break;
4381 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4382 }
4383 }
4384
4385 return rcStrict;
4386}
4387
4388
4389/**
4390 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
4391 *
4392 * @retval VINF_SUCCESS on success.
4393 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
4394 * @retval iemMemFetchSysU64 return value.
4395 *
4396 * @param pVCpu The cross context virtual CPU structure of the calling thread.
4397 * @param uSel The selector value.
4398 * @param fAllowSysDesc Whether system descriptors are OK or not.
4399 * @param pDesc Where to return the descriptor on success.
4400 */
4401static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPU pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
4402{
4403 pDesc->Long.au64[0] = 0;
4404 pDesc->Long.au64[1] = 0;
4405
4406 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
4407 return VINF_IEM_SELECTOR_NOT_OK;
4408
4409 /* Within the table limits? */
4410 RTGCPTR GCPtrBase;
4411 if (uSel & X86_SEL_LDT)
4412 {
4413 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
4414 if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
4415 || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
4416 return VINF_IEM_SELECTOR_NOT_OK;
4417 GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
4418 }
4419 else
4420 {
4421 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4422 if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
4423 return VINF_IEM_SELECTOR_NOT_OK;
4424 GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
4425 }
4426
4427 /* Fetch the descriptor. */
4428 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
4429 if (rcStrict != VINF_SUCCESS)
4430 return rcStrict;
4431 if (!pDesc->Legacy.Gen.u1DescType)
4432 {
4433 if (!fAllowSysDesc)
4434 return VINF_IEM_SELECTOR_NOT_OK;
4435 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4436 {
4437 rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
4438 if (rcStrict != VINF_SUCCESS)
4439 return rcStrict;
4440 }
4441
4442 }
4443
4444 return VINF_SUCCESS;
4445}
4446
4447
4448/**
4449 * Implements verr (fWrite = false) and verw (fWrite = true).
4450 */
4451IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
4452{
4453 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4454
4455 /** @todo figure whether the accessed bit is set or not. */
4456
4457 bool fAccessible = true;
4458 IEMSELDESC Desc;
4459 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4460 if (rcStrict == VINF_SUCCESS)
4461 {
4462 /* Check the descriptor, order doesn't matter much here. */
4463 if ( !Desc.Legacy.Gen.u1DescType
4464 || !Desc.Legacy.Gen.u1Present)
4465 fAccessible = false;
4466 else
4467 {
4468 if ( fWrite
4469 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
4470 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4471 fAccessible = false;
4472
4473 /** @todo testcase for the conforming behavior. */
4474 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4475 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4476 {
4477 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4478 fAccessible = false;
4479 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4480 fAccessible = false;
4481 }
4482 }
4483
4484 }
4485 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4486 fAccessible = false;
4487 else
4488 return rcStrict;
4489
4490 /* commit */
4491 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible;
4492
4493 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4494 return VINF_SUCCESS;
4495}
4496
4497
4498/**
4499 * Implements LAR and LSL with 64-bit operand size.
4500 *
4501 * @returns VINF_SUCCESS.
4502 * @param pu16Dst Pointer to the destination register.
4503 * @param uSel The selector to load details for.
4504 * @param fIsLar true = LAR, false = LSL.
4505 */
4506IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
4507{
4508 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4509
4510 /** @todo figure whether the accessed bit is set or not. */
4511
4512 bool fDescOk = true;
4513 IEMSELDESC Desc;
4514 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4515 if (rcStrict == VINF_SUCCESS)
4516 {
4517 /*
4518 * Check the descriptor type.
4519 */
4520 if (!Desc.Legacy.Gen.u1DescType)
4521 {
4522 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4523 {
4524 if (Desc.Long.Gen.u5Zeros)
4525 fDescOk = false;
4526 else
4527 switch (Desc.Long.Gen.u4Type)
4528 {
4529 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
4530 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
4531 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
4532 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
4533 break;
4534 case AMD64_SEL_TYPE_SYS_CALL_GATE:
4535 fDescOk = fIsLar;
4536 break;
4537 default:
4538 fDescOk = false;
4539 break;
4540 }
4541 }
4542 else
4543 {
4544 switch (Desc.Long.Gen.u4Type)
4545 {
4546 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4547 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4548 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4549 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
4550 case X86_SEL_TYPE_SYS_LDT:
4551 break;
4552 case X86_SEL_TYPE_SYS_286_CALL_GATE:
4553 case X86_SEL_TYPE_SYS_TASK_GATE:
4554 case X86_SEL_TYPE_SYS_386_CALL_GATE:
4555 fDescOk = fIsLar;
4556 break;
4557 default:
4558 fDescOk = false;
4559 break;
4560 }
4561 }
4562 }
4563 if (fDescOk)
4564 {
4565 /*
4566 * Check the RPL/DPL/CPL interaction..
4567 */
4568 /** @todo testcase for the conforming behavior. */
4569 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
4570 || !Desc.Legacy.Gen.u1DescType)
4571 {
4572 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4573 fDescOk = false;
4574 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4575 fDescOk = false;
4576 }
4577 }
4578
4579 if (fDescOk)
4580 {
4581 /*
4582 * All fine, start committing the result.
4583 */
4584 if (fIsLar)
4585 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
4586 else
4587 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
4588 }
4589
4590 }
4591 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4592 fDescOk = false;
4593 else
4594 return rcStrict;
4595
4596 /* commit flags value and advance rip. */
4597 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk;
4598 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4599
4600 return VINF_SUCCESS;
4601}
4602
4603
4604/**
4605 * Implements LAR and LSL with 16-bit operand size.
4606 *
4607 * @returns VINF_SUCCESS.
4608 * @param pu16Dst Pointer to the destination register.
4609 * @param u16Sel The selector to load details for.
4610 * @param fIsLar true = LAR, false = LSL.
4611 */
4612IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
4613{
4614 uint64_t u64TmpDst = *pu16Dst;
4615 IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
4616 *pu16Dst = u64TmpDst;
4617 return VINF_SUCCESS;
4618}
4619
4620
4621/**
4622 * Implements lgdt.
4623 *
4624 * @param iEffSeg The segment of the new gdtr contents
4625 * @param GCPtrEffSrc The address of the new gdtr contents.
4626 * @param enmEffOpSize The effective operand size.
4627 */
4628IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4629{
4630 if (pVCpu->iem.s.uCpl != 0)
4631 return iemRaiseGeneralProtectionFault0(pVCpu);
4632 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4633
4634 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
4635 {
4636 Log(("lgdt: Guest intercept -> #VMEXIT\n"));
4637 IEM_SVM_UPDATE_NRIP(pVCpu);
4638 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4639 }
4640
4641 /*
4642 * Fetch the limit and base address.
4643 */
4644 uint16_t cbLimit;
4645 RTGCPTR GCPtrBase;
4646 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4647 if (rcStrict == VINF_SUCCESS)
4648 {
4649 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4650 || X86_IS_CANONICAL(GCPtrBase))
4651 {
4652 rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
4653 if (rcStrict == VINF_SUCCESS)
4654 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4655 }
4656 else
4657 {
4658 Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
4659 return iemRaiseGeneralProtectionFault0(pVCpu);
4660 }
4661 }
4662 return rcStrict;
4663}
4664
4665
4666/**
4667 * Implements sgdt.
4668 *
4669 * @param iEffSeg The segment where to store the gdtr content.
4670 * @param GCPtrEffDst The address where to store the gdtr content.
4671 */
4672IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
4673{
4674 /*
4675 * Join paths with sidt.
4676 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4677 * you really must know.
4678 */
4679 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS))
4680 {
4681 Log(("sgdt: Guest intercept -> #VMEXIT\n"));
4682 IEM_SVM_UPDATE_NRIP(pVCpu);
4683 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4684 }
4685
4686 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4687 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst);
4688 if (rcStrict == VINF_SUCCESS)
4689 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4690 return rcStrict;
4691}
4692
4693
4694/**
4695 * Implements lidt.
4696 *
4697 * @param iEffSeg The segment of the new idtr contents
4698 * @param GCPtrEffSrc The address of the new idtr contents.
4699 * @param enmEffOpSize The effective operand size.
4700 */
4701IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4702{
4703 if (pVCpu->iem.s.uCpl != 0)
4704 return iemRaiseGeneralProtectionFault0(pVCpu);
4705 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4706
4707 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
4708 {
4709 Log(("lidt: Guest intercept -> #VMEXIT\n"));
4710 IEM_SVM_UPDATE_NRIP(pVCpu);
4711 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4712 }
4713
4714 /*
4715 * Fetch the limit and base address.
4716 */
4717 uint16_t cbLimit;
4718 RTGCPTR GCPtrBase;
4719 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4720 if (rcStrict == VINF_SUCCESS)
4721 {
4722 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4723 || X86_IS_CANONICAL(GCPtrBase))
4724 {
4725 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
4726 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4727 }
4728 else
4729 {
4730 Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
4731 return iemRaiseGeneralProtectionFault0(pVCpu);
4732 }
4733 }
4734 return rcStrict;
4735}
4736
4737
4738/**
4739 * Implements sidt.
4740 *
4741 * @param iEffSeg The segment where to store the idtr content.
4742 * @param GCPtrEffDst The address where to store the idtr content.
4743 */
4744IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
4745{
4746 /*
4747 * Join paths with sgdt.
4748 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4749 * you really must know.
4750 */
4751 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS))
4752 {
4753 Log(("sidt: Guest intercept -> #VMEXIT\n"));
4754 IEM_SVM_UPDATE_NRIP(pVCpu);
4755 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4756 }
4757
4758 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR);
4759 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst);
4760 if (rcStrict == VINF_SUCCESS)
4761 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4762 return rcStrict;
4763}
4764
4765
4766/**
4767 * Implements lldt.
4768 *
4769 * @param uNewLdt The new LDT selector value.
4770 */
4771IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
4772{
4773 /*
4774 * Check preconditions.
4775 */
4776 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4777 {
4778 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
4779 return iemRaiseUndefinedOpcode(pVCpu);
4780 }
4781 if (pVCpu->iem.s.uCpl != 0)
4782 {
4783 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
4784 return iemRaiseGeneralProtectionFault0(pVCpu);
4785 }
4786 if (uNewLdt & X86_SEL_LDT)
4787 {
4788 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
4789 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
4790 }
4791
4792 /*
4793 * Now, loading a NULL selector is easy.
4794 */
4795 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
4796 {
4797 /* Nested-guest SVM intercept. */
4798 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
4799 {
4800 Log(("lldt: Guest intercept -> #VMEXIT\n"));
4801 IEM_SVM_UPDATE_NRIP(pVCpu);
4802 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4803 }
4804
4805 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
4806 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
4807 CPUMSetGuestLDTR(pVCpu, uNewLdt);
4808 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
4809 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
4810 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
4811 {
4812 /* AMD-V seems to leave the base and limit alone. */
4813 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
4814 }
4815 else
4816 {
4817 /* VT-x (Intel 3960x) seems to be doing the following. */
4818 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
4819 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
4820 pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX;
4821 }
4822
4823 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4824 return VINF_SUCCESS;
4825 }
4826
4827 /*
4828 * Read the descriptor.
4829 */
4830 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR);
4831 IEMSELDESC Desc;
4832 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
4833 if (rcStrict != VINF_SUCCESS)
4834 return rcStrict;
4835
4836 /* Check GPs first. */
4837 if (Desc.Legacy.Gen.u1DescType)
4838 {
4839 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
4840 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
4841 }
4842 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
4843 {
4844 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
4845 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
4846 }
4847 uint64_t u64Base;
4848 if (!IEM_IS_LONG_MODE(pVCpu))
4849 u64Base = X86DESC_BASE(&Desc.Legacy);
4850 else
4851 {
4852 if (Desc.Long.Gen.u5Zeros)
4853 {
4854 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
4855 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
4856 }
4857
4858 u64Base = X86DESC64_BASE(&Desc.Long);
4859 if (!IEM_IS_CANONICAL(u64Base))
4860 {
4861 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
4862 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
4863 }
4864 }
4865
4866 /* NP */
4867 if (!Desc.Legacy.Gen.u1Present)
4868 {
4869 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
4870 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
4871 }
4872
4873 /* Nested-guest SVM intercept. */
4874 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
4875 {
4876 Log(("lldt: Guest intercept -> #VMEXIT\n"));
4877 IEM_SVM_UPDATE_NRIP(pVCpu);
4878 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4879 }
4880
4881 /*
4882 * It checks out alright, update the registers.
4883 */
4884/** @todo check if the actual value is loaded or if the RPL is dropped */
4885 CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
4886 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
4887 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
4888 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4889 pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
4890 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
4891
4892 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4893 return VINF_SUCCESS;
4894}
4895
4896
4897/**
4898 * Implements lldt.
4899 *
4900 * @param uNewLdt The new LDT selector value.
4901 */
4902IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
4903{
4904 /*
4905 * Check preconditions.
4906 */
4907 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4908 {
4909 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
4910 return iemRaiseUndefinedOpcode(pVCpu);
4911 }
4912 if (pVCpu->iem.s.uCpl != 0)
4913 {
4914 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
4915 return iemRaiseGeneralProtectionFault0(pVCpu);
4916 }
4917 if (uNewTr & X86_SEL_LDT)
4918 {
4919 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
4920 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
4921 }
4922 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
4923 {
4924 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
4925 return iemRaiseGeneralProtectionFault0(pVCpu);
4926 }
4927 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
4928 {
4929 Log(("ltr: Guest intercept -> #VMEXIT\n"));
4930 IEM_SVM_UPDATE_NRIP(pVCpu);
4931 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4932 }
4933
4934 /*
4935 * Read the descriptor.
4936 */
4937 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR);
4938 IEMSELDESC Desc;
4939 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
4940 if (rcStrict != VINF_SUCCESS)
4941 return rcStrict;
4942
4943 /* Check GPs first. */
4944 if (Desc.Legacy.Gen.u1DescType)
4945 {
4946 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
4947 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
4948 }
4949 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
4950 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
4951 || IEM_IS_LONG_MODE(pVCpu)) )
4952 {
4953 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
4954 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
4955 }
4956 uint64_t u64Base;
4957 if (!IEM_IS_LONG_MODE(pVCpu))
4958 u64Base = X86DESC_BASE(&Desc.Legacy);
4959 else
4960 {
4961 if (Desc.Long.Gen.u5Zeros)
4962 {
4963 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
4964 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
4965 }
4966
4967 u64Base = X86DESC64_BASE(&Desc.Long);
4968 if (!IEM_IS_CANONICAL(u64Base))
4969 {
4970 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
4971 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
4972 }
4973 }
4974
4975 /* NP */
4976 if (!Desc.Legacy.Gen.u1Present)
4977 {
4978 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
4979 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
4980 }
4981
4982 /*
4983 * Set it busy.
4984 * Note! Intel says this should lock down the whole descriptor, but we'll
4985 * restrict our selves to 32-bit for now due to lack of inline
4986 * assembly and such.
4987 */
4988 void *pvDesc;
4989 rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
4990 if (rcStrict != VINF_SUCCESS)
4991 return rcStrict;
4992 switch ((uintptr_t)pvDesc & 3)
4993 {
4994 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
4995 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
4996 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
4997 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
4998 }
4999 rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
5000 if (rcStrict != VINF_SUCCESS)
5001 return rcStrict;
5002 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
5003
5004 /*
5005 * It checks out alright, update the registers.
5006 */
5007/** @todo check if the actual value is loaded or if the RPL is dropped */
5008 CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5009 pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
5010 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
5011 pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5012 pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5013 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
5014
5015 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5016 return VINF_SUCCESS;
5017}
5018
5019
5020/**
5021 * Implements mov GReg,CRx.
5022 *
5023 * @param iGReg The general register to store the CRx value in.
5024 * @param iCrReg The CRx register to read (valid).
5025 */
5026IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
5027{
5028 if (pVCpu->iem.s.uCpl != 0)
5029 return iemRaiseGeneralProtectionFault0(pVCpu);
5030 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5031
5032 if (IEM_IS_SVM_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
5033 {
5034 Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg));
5035 IEM_SVM_UPDATE_NRIP(pVCpu);
5036 IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
5037 }
5038
5039 /* read it */
5040 uint64_t crX;
5041 switch (iCrReg)
5042 {
5043 case 0:
5044 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5045 crX = pVCpu->cpum.GstCtx.cr0;
5046 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
5047 crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
5048 break;
5049 case 2:
5050 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2);
5051 crX = pVCpu->cpum.GstCtx.cr2;
5052 break;
5053 case 3:
5054 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5055 crX = pVCpu->cpum.GstCtx.cr3;
5056 break;
5057 case 4:
5058 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5059 crX = pVCpu->cpum.GstCtx.cr4;
5060 break;
5061 case 8:
5062 {
5063 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5064#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5065 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5066 {
5067 PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
5068 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5069 {
5070 crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf;
5071 break;
5072 }
5073 }
5074#endif
5075 uint8_t uTpr;
5076 int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
5077 if (RT_SUCCESS(rc))
5078 crX = uTpr >> 4;
5079 else
5080 crX = 0;
5081 break;
5082 }
5083 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5084 }
5085
5086 /* store it */
5087 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5088 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
5089 else
5090 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
5091
5092 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5093 return VINF_SUCCESS;
5094}
5095
5096
5097/**
5098 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
5099 *
5100 * @param iCrReg The CRx register to write (valid).
5101 * @param uNewCrX The new value.
5102 * @param enmAccessCrx The instruction that caused the CrX load.
5103 * @param iGReg The general register in case of a 'mov CRx,GReg'
5104 * instruction.
5105 */
5106IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
5107{
5108 VBOXSTRICTRC rcStrict;
5109 int rc;
5110#ifndef VBOX_WITH_NESTED_HWVIRT_SVM
5111 RT_NOREF2(iGReg, enmAccessCrX);
5112#endif
5113
5114 /*
5115 * Try store it.
5116 * Unfortunately, CPUM only does a tiny bit of the work.
5117 */
5118 switch (iCrReg)
5119 {
5120 case 0:
5121 {
5122 /*
5123 * Perform checks.
5124 */
5125 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5126 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
5127
5128 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0;
5129 uint32_t const fValid = X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS
5130 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM
5131 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG;
5132
5133 /* ET is hardcoded on 486 and later. */
5134 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
5135 uNewCrX |= X86_CR0_ET;
5136 /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
5137 else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
5138 {
5139 uNewCrX &= fValid;
5140 uNewCrX |= X86_CR0_ET;
5141 }
5142 else
5143 uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
5144
5145 /* Check for reserved bits. */
5146 if (uNewCrX & ~(uint64_t)fValid)
5147 {
5148 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5149 return iemRaiseGeneralProtectionFault0(pVCpu);
5150 }
5151
5152 /* Check for invalid combinations. */
5153 if ( (uNewCrX & X86_CR0_PG)
5154 && !(uNewCrX & X86_CR0_PE) )
5155 {
5156 Log(("Trying to set CR0.PG without CR0.PE\n"));
5157 return iemRaiseGeneralProtectionFault0(pVCpu);
5158 }
5159
5160 if ( !(uNewCrX & X86_CR0_CD)
5161 && (uNewCrX & X86_CR0_NW) )
5162 {
5163 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
5164 return iemRaiseGeneralProtectionFault0(pVCpu);
5165 }
5166
5167 if ( !(uNewCrX & X86_CR0_PG)
5168 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE))
5169 {
5170 Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n"));
5171 return iemRaiseGeneralProtectionFault0(pVCpu);
5172 }
5173
5174 /* Long mode consistency checks. */
5175 if ( (uNewCrX & X86_CR0_PG)
5176 && !(uOldCrX & X86_CR0_PG)
5177 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5178 {
5179 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE))
5180 {
5181 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
5182 return iemRaiseGeneralProtectionFault0(pVCpu);
5183 }
5184 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long)
5185 {
5186 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
5187 return iemRaiseGeneralProtectionFault0(pVCpu);
5188 }
5189 }
5190
5191 /** @todo check reserved PDPTR bits as AMD states. */
5192
5193 /*
5194 * SVM nested-guest CR0 write intercepts.
5195 */
5196 if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
5197 {
5198 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5199 IEM_SVM_UPDATE_NRIP(pVCpu);
5200 IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
5201 }
5202 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5203 {
5204 /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
5205 if ( enmAccessCrX == IEMACCESSCRX_LMSW
5206 || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
5207 {
5208 Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
5209 Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg));
5210 IEM_SVM_UPDATE_NRIP(pVCpu);
5211 IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg);
5212 }
5213 }
5214
5215 /*
5216 * Change CR0.
5217 */
5218 CPUMSetGuestCR0(pVCpu, uNewCrX);
5219 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX);
5220
5221 /*
5222 * Change EFER.LMA if entering or leaving long mode.
5223 */
5224 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
5225 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5226 {
5227 uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER;
5228 if (uNewCrX & X86_CR0_PG)
5229 NewEFER |= MSR_K6_EFER_LMA;
5230 else
5231 NewEFER &= ~MSR_K6_EFER_LMA;
5232
5233 CPUMSetGuestEFER(pVCpu, NewEFER);
5234 Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER);
5235 }
5236
5237 /*
5238 * Inform PGM.
5239 */
5240 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
5241 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
5242 {
5243 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5244 AssertRCReturn(rc, rc);
5245 /* ignore informational status codes */
5246 }
5247 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
5248
5249#ifdef IN_RC
5250 /* Return to ring-3 for rescheduling if WP or AM changes. */
5251 if ( rcStrict == VINF_SUCCESS
5252 && ( (uNewCrX & (X86_CR0_WP | X86_CR0_AM))
5253 != (uOldCrX & (X86_CR0_WP | X86_CR0_AM))) )
5254 rcStrict = VINF_EM_RESCHEDULE;
5255#endif
5256 break;
5257 }
5258
5259 /*
5260 * CR2 can be changed without any restrictions.
5261 */
5262 case 2:
5263 {
5264 if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
5265 {
5266 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5267 IEM_SVM_UPDATE_NRIP(pVCpu);
5268 IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
5269 }
5270 pVCpu->cpum.GstCtx.cr2 = uNewCrX;
5271 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2;
5272 rcStrict = VINF_SUCCESS;
5273 break;
5274 }
5275
5276 /*
5277 * CR3 is relatively simple, although AMD and Intel have different
5278 * accounts of how setting reserved bits are handled. We take intel's
5279 * word for the lower bits and AMD's for the high bits (63:52). The
5280 * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
5281 * on this.
5282 */
5283 /** @todo Testcase: Setting reserved bits in CR3, especially before
5284 * enabling paging. */
5285 case 3:
5286 {
5287 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5288
5289 /* clear bit 63 from the source operand and indicate no invalidations are required. */
5290 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)
5291 && (uNewCrX & RT_BIT_64(63)))
5292 {
5293 /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10
5294 * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see
5295 * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and
5296 * Paging-Structure Caches". */
5297 uNewCrX &= ~RT_BIT_64(63);
5298 }
5299
5300 /* check / mask the value. */
5301 if (uNewCrX & UINT64_C(0xfff0000000000000))
5302 {
5303 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
5304 return iemRaiseGeneralProtectionFault0(pVCpu);
5305 }
5306
5307 uint64_t fValid;
5308 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
5309 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME))
5310 fValid = UINT64_C(0x000fffffffffffff);
5311 else
5312 fValid = UINT64_C(0xffffffff);
5313 if (uNewCrX & ~fValid)
5314 {
5315 Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
5316 uNewCrX, uNewCrX & ~fValid));
5317 uNewCrX &= fValid;
5318 }
5319
5320 if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
5321 {
5322 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5323 IEM_SVM_UPDATE_NRIP(pVCpu);
5324 IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
5325 }
5326
5327 /** @todo If we're in PAE mode we should check the PDPTRs for
5328 * invalid bits. */
5329
5330 /* Make the change. */
5331 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
5332 AssertRCSuccessReturn(rc, rc);
5333
5334 /* Inform PGM. */
5335 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
5336 {
5337 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE));
5338 AssertRCReturn(rc, rc);
5339 /* ignore informational status codes */
5340 }
5341 rcStrict = VINF_SUCCESS;
5342 break;
5343 }
5344
5345 /*
5346 * CR4 is a bit more tedious as there are bits which cannot be cleared
5347 * under some circumstances and such.
5348 */
5349 case 4:
5350 {
5351 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5352 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4;
5353
5354 /** @todo Shouldn't this look at the guest CPUID bits to determine
5355 * valid bits? e.g. if guest CPUID doesn't allow X86_CR4_OSXMMEEXCPT, we
5356 * should #GP(0). */
5357 /* reserved bits */
5358 uint32_t fValid = X86_CR4_VME | X86_CR4_PVI
5359 | X86_CR4_TSD | X86_CR4_DE
5360 | X86_CR4_PSE | X86_CR4_PAE
5361 | X86_CR4_MCE | X86_CR4_PGE
5362 | X86_CR4_PCE | X86_CR4_OSFXSR
5363 | X86_CR4_OSXMMEEXCPT;
5364 //if (xxx)
5365 // fValid |= X86_CR4_VMXE;
5366 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fXSaveRstor)
5367 fValid |= X86_CR4_OSXSAVE;
5368 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fPcid)
5369 fValid |= X86_CR4_PCIDE;
5370 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fFsGsBase)
5371 fValid |= X86_CR4_FSGSBASE;
5372 if (uNewCrX & ~(uint64_t)fValid)
5373 {
5374 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5375 return iemRaiseGeneralProtectionFault0(pVCpu);
5376 }
5377
5378 bool const fPcide = ((uNewCrX ^ uOldCrX) & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE);
5379 bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
5380
5381 /* PCIDE check. */
5382 if ( fPcide
5383 && ( !fLongMode
5384 || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))))
5385 {
5386 Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))));
5387 return iemRaiseGeneralProtectionFault0(pVCpu);
5388 }
5389
5390 /* PAE check. */
5391 if ( fLongMode
5392 && (uOldCrX & X86_CR4_PAE)
5393 && !(uNewCrX & X86_CR4_PAE))
5394 {
5395 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
5396 return iemRaiseGeneralProtectionFault0(pVCpu);
5397 }
5398
5399 if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
5400 {
5401 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5402 IEM_SVM_UPDATE_NRIP(pVCpu);
5403 IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
5404 }
5405
5406 /*
5407 * Change it.
5408 */
5409 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
5410 AssertRCSuccessReturn(rc, rc);
5411 Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX);
5412
5413 /*
5414 * Notify SELM and PGM.
5415 */
5416 /* SELM - VME may change things wrt to the TSS shadowing. */
5417 if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
5418 {
5419 Log(("iemCImpl_load_CrX: VME %d -> %d => Setting VMCPU_FF_SELM_SYNC_TSS\n",
5420 RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) ));
5421#ifdef VBOX_WITH_RAW_MODE
5422 if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
5423 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
5424#endif
5425 }
5426
5427 /* PGM - flushing and mode. */
5428 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */))
5429 {
5430 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5431 AssertRCReturn(rc, rc);
5432 /* ignore informational status codes */
5433 }
5434 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
5435 break;
5436 }
5437
5438 /*
5439 * CR8 maps to the APIC TPR.
5440 */
5441 case 8:
5442 {
5443 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5444 if (uNewCrX & ~(uint64_t)0xf)
5445 {
5446 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
5447 return iemRaiseGeneralProtectionFault0(pVCpu);
5448 }
5449
5450#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5451 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5452 {
5453 if (IEM_IS_SVM_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
5454 {
5455 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5456 IEM_SVM_UPDATE_NRIP(pVCpu);
5457 IEM_RETURN_SVM_CRX_VMEXIT(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
5458 }
5459
5460 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
5461 pVmcbCtrl->IntCtrl.n.u8VTPR = uNewCrX;
5462 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5463 {
5464 rcStrict = VINF_SUCCESS;
5465 break;
5466 }
5467 }
5468#endif
5469 uint8_t const u8Tpr = (uint8_t)uNewCrX << 4;
5470 APICSetTpr(pVCpu, u8Tpr);
5471 rcStrict = VINF_SUCCESS;
5472 break;
5473 }
5474
5475 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5476 }
5477
5478 /*
5479 * Advance the RIP on success.
5480 */
5481 if (RT_SUCCESS(rcStrict))
5482 {
5483 if (rcStrict != VINF_SUCCESS)
5484 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
5485 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5486 }
5487
5488 return rcStrict;
5489}
5490
5491
5492/**
5493 * Implements mov CRx,GReg.
5494 *
5495 * @param iCrReg The CRx register to write (valid).
5496 * @param iGReg The general register to load the DRx value from.
5497 */
5498IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
5499{
5500 if (pVCpu->iem.s.uCpl != 0)
5501 return iemRaiseGeneralProtectionFault0(pVCpu);
5502 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5503
5504 /*
5505 * Read the new value from the source register and call common worker.
5506 */
5507 uint64_t uNewCrX;
5508 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5509 uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
5510 else
5511 uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
5512 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
5513}
5514
5515
5516/**
5517 * Implements 'LMSW r/m16'
5518 *
5519 * @param u16NewMsw The new value.
5520 */
5521IEM_CIMPL_DEF_1(iemCImpl_lmsw, uint16_t, u16NewMsw)
5522{
5523 if (pVCpu->iem.s.uCpl != 0)
5524 return iemRaiseGeneralProtectionFault0(pVCpu);
5525 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5526
5527 /*
5528 * Compose the new CR0 value and call common worker.
5529 */
5530 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5531 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
5532 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
5533 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
5534}
5535
5536
5537/**
5538 * Implements 'CLTS'.
5539 */
5540IEM_CIMPL_DEF_0(iemCImpl_clts)
5541{
5542 if (pVCpu->iem.s.uCpl != 0)
5543 return iemRaiseGeneralProtectionFault0(pVCpu);
5544
5545 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5546 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0;
5547 uNewCr0 &= ~X86_CR0_TS;
5548 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
5549}
5550
5551
5552/**
5553 * Implements mov GReg,DRx.
5554 *
5555 * @param iGReg The general register to store the DRx value in.
5556 * @param iDrReg The DRx register to read (0-7).
5557 */
5558IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
5559{
5560 /*
5561 * Check preconditions.
5562 */
5563
5564 /* Raise GPs. */
5565 if (pVCpu->iem.s.uCpl != 0)
5566 return iemRaiseGeneralProtectionFault0(pVCpu);
5567 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5568 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR0);
5569
5570 if ( (iDrReg == 4 || iDrReg == 5)
5571 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) )
5572 {
5573 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
5574 return iemRaiseGeneralProtectionFault0(pVCpu);
5575 }
5576
5577 /* Raise #DB if general access detect is enabled. */
5578 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
5579 {
5580 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
5581 return iemRaiseDebugException(pVCpu);
5582 }
5583
5584 /*
5585 * Read the debug register and store it in the specified general register.
5586 */
5587 uint64_t drX;
5588 switch (iDrReg)
5589 {
5590 case 0:
5591 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
5592 drX = pVCpu->cpum.GstCtx.dr[0];
5593 break;
5594 case 1:
5595 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
5596 drX = pVCpu->cpum.GstCtx.dr[1];
5597 break;
5598 case 2:
5599 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
5600 drX = pVCpu->cpum.GstCtx.dr[2];
5601 break;
5602 case 3:
5603 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
5604 drX = pVCpu->cpum.GstCtx.dr[3];
5605 break;
5606 case 6:
5607 case 4:
5608 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
5609 drX = pVCpu->cpum.GstCtx.dr[6];
5610 drX |= X86_DR6_RA1_MASK;
5611 drX &= ~X86_DR6_RAZ_MASK;
5612 break;
5613 case 7:
5614 case 5:
5615 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
5616 drX = pVCpu->cpum.GstCtx.dr[7];
5617 drX |=X86_DR7_RA1_MASK;
5618 drX &= ~X86_DR7_RAZ_MASK;
5619 break;
5620 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5621 }
5622
5623 /** @todo SVM nested-guest intercept for DR8-DR15? */
5624 /*
5625 * Check for any SVM nested-guest intercepts for the DRx read.
5626 */
5627 if (IEM_IS_SVM_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
5628 {
5629 Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
5630 IEM_SVM_UPDATE_NRIP(pVCpu);
5631 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
5632 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
5633 }
5634
5635 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5636 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
5637 else
5638 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
5639
5640 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5641 return VINF_SUCCESS;
5642}
5643
5644
5645/**
5646 * Implements mov DRx,GReg.
5647 *
5648 * @param iDrReg The DRx register to write (valid).
5649 * @param iGReg The general register to load the DRx value from.
5650 */
5651IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
5652{
5653 /*
5654 * Check preconditions.
5655 */
5656 if (pVCpu->iem.s.uCpl != 0)
5657 return iemRaiseGeneralProtectionFault0(pVCpu);
5658 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5659 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR4);
5660
5661 if (iDrReg == 4 || iDrReg == 5)
5662 {
5663 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
5664 {
5665 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
5666 return iemRaiseGeneralProtectionFault0(pVCpu);
5667 }
5668 iDrReg += 2;
5669 }
5670
5671 /* Raise #DB if general access detect is enabled. */
5672 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
5673 * \#GP? */
5674 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
5675 {
5676 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
5677 return iemRaiseDebugException(pVCpu);
5678 }
5679
5680 /*
5681 * Read the new value from the source register.
5682 */
5683 uint64_t uNewDrX;
5684 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5685 uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
5686 else
5687 uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
5688
5689 /*
5690 * Adjust it.
5691 */
5692 switch (iDrReg)
5693 {
5694 case 0:
5695 case 1:
5696 case 2:
5697 case 3:
5698 /* nothing to adjust */
5699 break;
5700
5701 case 6:
5702 if (uNewDrX & X86_DR6_MBZ_MASK)
5703 {
5704 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
5705 return iemRaiseGeneralProtectionFault0(pVCpu);
5706 }
5707 uNewDrX |= X86_DR6_RA1_MASK;
5708 uNewDrX &= ~X86_DR6_RAZ_MASK;
5709 break;
5710
5711 case 7:
5712 if (uNewDrX & X86_DR7_MBZ_MASK)
5713 {
5714 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
5715 return iemRaiseGeneralProtectionFault0(pVCpu);
5716 }
5717 uNewDrX |= X86_DR7_RA1_MASK;
5718 uNewDrX &= ~X86_DR7_RAZ_MASK;
5719 break;
5720
5721 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5722 }
5723
5724 /** @todo SVM nested-guest intercept for DR8-DR15? */
5725 /*
5726 * Check for any SVM nested-guest intercepts for the DRx write.
5727 */
5728 if (IEM_IS_SVM_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
5729 {
5730 Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
5731 IEM_SVM_UPDATE_NRIP(pVCpu);
5732 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
5733 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
5734 }
5735
5736 /*
5737 * Do the actual setting.
5738 */
5739 if (iDrReg < 4)
5740 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
5741 else if (iDrReg == 6)
5742 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
5743
5744 int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
5745 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
5746
5747 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5748 return VINF_SUCCESS;
5749}
5750
5751
5752/**
5753 * Implements 'INVLPG m'.
5754 *
5755 * @param GCPtrPage The effective address of the page to invalidate.
5756 * @remarks Updates the RIP.
5757 */
5758IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
5759{
5760 /* ring-0 only. */
5761 if (pVCpu->iem.s.uCpl != 0)
5762 return iemRaiseGeneralProtectionFault0(pVCpu);
5763 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5764 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
5765
5766 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
5767 {
5768 Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
5769 IEM_SVM_UPDATE_NRIP(pVCpu);
5770 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_INVLPG,
5771 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */);
5772 }
5773
5774 int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
5775 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5776
5777 if (rc == VINF_SUCCESS)
5778 return VINF_SUCCESS;
5779 if (rc == VINF_PGM_SYNC_CR3)
5780 return iemSetPassUpStatus(pVCpu, rc);
5781
5782 AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
5783 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
5784 return rc;
5785}
5786
5787
5788/**
5789 * Implements INVPCID.
5790 *
5791 * @param uInvpcidType The invalidation type.
5792 * @param GCPtrInvpcidDesc The effective address of invpcid descriptor.
5793 * @remarks Updates the RIP.
5794 */
5795IEM_CIMPL_DEF_2(iemCImpl_invpcid, uint64_t, uInvpcidType, RTGCPTR, GCPtrInvpcidDesc)
5796{
5797 /*
5798 * Check preconditions.
5799 */
5800 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid)
5801 return iemRaiseUndefinedOpcode(pVCpu);
5802 if (pVCpu->iem.s.uCpl != 0)
5803 {
5804 Log(("invpcid: CPL != 0 -> #GP(0)\n"));
5805 return iemRaiseGeneralProtectionFault0(pVCpu);
5806 }
5807 if (IEM_IS_V86_MODE(pVCpu))
5808 {
5809 Log(("invpcid: v8086 mode -> #GP(0)\n"));
5810 return iemRaiseGeneralProtectionFault0(pVCpu);
5811 }
5812 if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID)
5813 {
5814 Log(("invpcid: invalid/unrecognized invpcid type %#x -> #GP(0)\n", uInvpcidType));
5815 return iemRaiseGeneralProtectionFault0(pVCpu);
5816 }
5817 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
5818
5819 /*
5820 * Fetch the invpcid descriptor from guest memory.
5821 */
5822 RTUINT128U uDesc;
5823 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, pVCpu->iem.s.iEffSeg, GCPtrInvpcidDesc);
5824 if (rcStrict == VINF_SUCCESS)
5825 {
5826 /*
5827 * Validate the descriptor.
5828 */
5829 if (uDesc.s.Lo > 0xfff)
5830 {
5831 Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
5832 return iemRaiseGeneralProtectionFault0(pVCpu);
5833 }
5834
5835 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
5836 uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff);
5837 uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4;
5838 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
5839 switch (uInvpcidType)
5840 {
5841 case X86_INVPCID_TYPE_INDV_ADDR:
5842 {
5843 if (!IEM_IS_CANONICAL(GCPtrInvAddr))
5844 {
5845 Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr));
5846 return iemRaiseGeneralProtectionFault0(pVCpu);
5847 }
5848 if ( !(uCr4 & X86_CR4_PCIDE)
5849 && uPcid != 0)
5850 {
5851 Log(("invpcid: invalid pcid %#x\n", uPcid));
5852 return iemRaiseGeneralProtectionFault0(pVCpu);
5853 }
5854
5855 /* Invalidate mappings for the linear address tagged with PCID except global translations. */
5856 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
5857 break;
5858 }
5859
5860 case X86_INVPCID_TYPE_SINGLE_CONTEXT:
5861 {
5862 if ( !(uCr4 & X86_CR4_PCIDE)
5863 && uPcid != 0)
5864 {
5865 Log(("invpcid: invalid pcid %#x\n", uPcid));
5866 return iemRaiseGeneralProtectionFault0(pVCpu);
5867 }
5868 /* Invalidate all mappings associated with PCID except global translations. */
5869 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
5870 break;
5871 }
5872
5873 case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL:
5874 {
5875 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
5876 break;
5877 }
5878
5879 case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL:
5880 {
5881 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
5882 break;
5883 }
5884 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5885 }
5886 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5887 }
5888 return rcStrict;
5889}
5890
5891
5892/**
5893 * Implements RDTSC.
5894 */
5895IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
5896{
5897 /*
5898 * Check preconditions.
5899 */
5900 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
5901 return iemRaiseUndefinedOpcode(pVCpu);
5902
5903 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5904 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
5905 && pVCpu->iem.s.uCpl != 0)
5906 {
5907 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
5908 return iemRaiseGeneralProtectionFault0(pVCpu);
5909 }
5910
5911 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
5912 {
5913 Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
5914 IEM_SVM_UPDATE_NRIP(pVCpu);
5915 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5916 }
5917
5918 /*
5919 * Do the job.
5920 */
5921 uint64_t uTicks = TMCpuTickGet(pVCpu);
5922#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5923 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
5924#endif
5925 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
5926 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
5927 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5928 return VINF_SUCCESS;
5929}
5930
5931
5932/**
5933 * Implements RDTSC.
5934 */
5935IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
5936{
5937 /*
5938 * Check preconditions.
5939 */
5940 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
5941 return iemRaiseUndefinedOpcode(pVCpu);
5942
5943 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5944 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
5945 && pVCpu->iem.s.uCpl != 0)
5946 {
5947 Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
5948 return iemRaiseGeneralProtectionFault0(pVCpu);
5949 }
5950
5951 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
5952 {
5953 Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
5954 IEM_SVM_UPDATE_NRIP(pVCpu);
5955 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5956 }
5957
5958 /*
5959 * Do the job.
5960 * Query the MSR first in case of trips to ring-3.
5961 */
5962 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
5963 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx);
5964 if (rcStrict == VINF_SUCCESS)
5965 {
5966 /* Low dword of the TSC_AUX msr only. */
5967 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
5968
5969 uint64_t uTicks = TMCpuTickGet(pVCpu);
5970#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5971 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
5972#endif
5973 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
5974 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
5975 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5976 }
5977 return rcStrict;
5978}
5979
5980
5981/**
5982 * Implements RDPMC.
5983 */
5984IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
5985{
5986 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5987
5988 if ( pVCpu->iem.s.uCpl != 0
5989 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE))
5990 return iemRaiseGeneralProtectionFault0(pVCpu);
5991
5992 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
5993 {
5994 Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
5995 IEM_SVM_UPDATE_NRIP(pVCpu);
5996 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5997 }
5998
5999 /** @todo Implement RDPMC for the regular guest execution case (the above only
6000 * handles nested-guest intercepts). */
6001 RT_NOREF(cbInstr);
6002 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
6003}
6004
6005
6006/**
6007 * Implements RDMSR.
6008 */
6009IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
6010{
6011 /*
6012 * Check preconditions.
6013 */
6014 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
6015 return iemRaiseUndefinedOpcode(pVCpu);
6016 if (pVCpu->iem.s.uCpl != 0)
6017 return iemRaiseGeneralProtectionFault0(pVCpu);
6018
6019 /*
6020 * Do the job.
6021 */
6022 RTUINT64U uValue;
6023 VBOXSTRICTRC rcStrict;
6024#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6025 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
6026 {
6027 rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */);
6028 if (rcStrict == VINF_SVM_VMEXIT)
6029 return VINF_SUCCESS;
6030 if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE)
6031 {
6032 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
6033 return rcStrict;
6034 }
6035 }
6036#endif
6037
6038 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
6039
6040 rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u);
6041 if (rcStrict == VINF_SUCCESS)
6042 {
6043 pVCpu->cpum.GstCtx.rax = uValue.s.Lo;
6044 pVCpu->cpum.GstCtx.rdx = uValue.s.Hi;
6045
6046 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6047 return VINF_SUCCESS;
6048 }
6049
6050#ifndef IN_RING3
6051 /* Deferred to ring-3. */
6052 if (rcStrict == VINF_CPUM_R3_MSR_READ)
6053 {
6054 Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
6055 return rcStrict;
6056 }
6057#else /* IN_RING3 */
6058 /* Often a unimplemented MSR or MSR bit, so worth logging. */
6059 static uint32_t s_cTimes = 0;
6060 if (s_cTimes++ < 10)
6061 LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
6062 else
6063#endif
6064 Log(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
6065 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
6066 return iemRaiseGeneralProtectionFault0(pVCpu);
6067}
6068
6069
6070/**
6071 * Implements WRMSR.
6072 */
6073IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
6074{
6075 /*
6076 * Check preconditions.
6077 */
6078 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
6079 return iemRaiseUndefinedOpcode(pVCpu);
6080 if (pVCpu->iem.s.uCpl != 0)
6081 return iemRaiseGeneralProtectionFault0(pVCpu);
6082
6083 /*
6084 * Do the job.
6085 */
6086 RTUINT64U uValue;
6087 uValue.s.Lo = pVCpu->cpum.GstCtx.eax;
6088 uValue.s.Hi = pVCpu->cpum.GstCtx.edx;
6089
6090 VBOXSTRICTRC rcStrict;
6091#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6092 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
6093 {
6094 rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, true /* fWrite */);
6095 if (rcStrict == VINF_SVM_VMEXIT)
6096 return VINF_SUCCESS;
6097 if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE)
6098 {
6099 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
6100 return rcStrict;
6101 }
6102 }
6103#endif
6104
6105 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
6106
6107 rcStrict = CPUMSetGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, uValue.u);
6108 if (rcStrict == VINF_SUCCESS)
6109 {
6110 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6111 return VINF_SUCCESS;
6112 }
6113
6114#ifndef IN_RING3
6115 /* Deferred to ring-3. */
6116 if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
6117 {
6118 Log(("IEM: wrmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
6119 return rcStrict;
6120 }
6121#else /* IN_RING3 */
6122 /* Often a unimplemented MSR or MSR bit, so worth logging. */
6123 static uint32_t s_cTimes = 0;
6124 if (s_cTimes++ < 10)
6125 LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx, uValue.s.Hi, uValue.s.Lo));
6126 else
6127#endif
6128 Log(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx, uValue.s.Hi, uValue.s.Lo));
6129 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
6130 return iemRaiseGeneralProtectionFault0(pVCpu);
6131}
6132
6133
6134/**
6135 * Implements 'IN eAX, port'.
6136 *
6137 * @param u16Port The source port.
6138 * @param cbReg The register size.
6139 */
6140IEM_CIMPL_DEF_2(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg)
6141{
6142 /*
6143 * CPL check
6144 */
6145 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
6146 if (rcStrict != VINF_SUCCESS)
6147 return rcStrict;
6148
6149 /*
6150 * Check SVM nested-guest IO intercept.
6151 */
6152#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6153 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
6154 {
6155 uint8_t cAddrSizeBits;
6156 switch (pVCpu->iem.s.enmEffAddrMode)
6157 {
6158 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
6159 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
6160 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
6161 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6162 }
6163 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
6164 false /* fRep */, false /* fStrIo */, cbInstr);
6165 if (rcStrict == VINF_SVM_VMEXIT)
6166 return VINF_SUCCESS;
6167 if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE)
6168 {
6169 Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
6170 VBOXSTRICTRC_VAL(rcStrict)));
6171 return rcStrict;
6172 }
6173 }
6174#endif
6175
6176 /*
6177 * Perform the I/O.
6178 */
6179 uint32_t u32Value = 0;
6180 rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg);
6181 if (IOM_SUCCESS(rcStrict))
6182 {
6183 switch (cbReg)
6184 {
6185 case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break;
6186 case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break;
6187 case 4: pVCpu->cpum.GstCtx.rax = u32Value; break;
6188 default: AssertFailedReturn(VERR_IEM_IPE_3);
6189 }
6190 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6191 pVCpu->iem.s.cPotentialExits++;
6192 if (rcStrict != VINF_SUCCESS)
6193 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
6194 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
6195
6196 /*
6197 * Check for I/O breakpoints.
6198 */
6199 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
6200 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6201 && X86_DR7_ANY_RW_IO(uDr7)
6202 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
6203 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
6204 {
6205 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
6206 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
6207 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
6208 rcStrict = iemRaiseDebugException(pVCpu);
6209 }
6210 }
6211
6212 return rcStrict;
6213}
6214
6215
6216/**
6217 * Implements 'IN eAX, DX'.
6218 *
6219 * @param cbReg The register size.
6220 */
6221IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
6222{
6223 return IEM_CIMPL_CALL_2(iemCImpl_in, pVCpu->cpum.GstCtx.dx, cbReg);
6224}
6225
6226
6227/**
6228 * Implements 'OUT port, eAX'.
6229 *
6230 * @param u16Port The destination port.
6231 * @param cbReg The register size.
6232 */
6233IEM_CIMPL_DEF_2(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg)
6234{
6235 /*
6236 * CPL check
6237 */
6238 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
6239 if (rcStrict != VINF_SUCCESS)
6240 return rcStrict;
6241
6242 /*
6243 * Check SVM nested-guest IO intercept.
6244 */
6245#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6246 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
6247 {
6248 uint8_t cAddrSizeBits;
6249 switch (pVCpu->iem.s.enmEffAddrMode)
6250 {
6251 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
6252 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
6253 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
6254 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6255 }
6256 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
6257 false /* fRep */, false /* fStrIo */, cbInstr);
6258 if (rcStrict == VINF_SVM_VMEXIT)
6259 return VINF_SUCCESS;
6260 if (rcStrict != VINF_HM_INTERCEPT_NOT_ACTIVE)
6261 {
6262 Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
6263 VBOXSTRICTRC_VAL(rcStrict)));
6264 return rcStrict;
6265 }
6266 }
6267#endif
6268
6269 /*
6270 * Perform the I/O.
6271 */
6272 uint32_t u32Value;
6273 switch (cbReg)
6274 {
6275 case 1: u32Value = pVCpu->cpum.GstCtx.al; break;
6276 case 2: u32Value = pVCpu->cpum.GstCtx.ax; break;
6277 case 4: u32Value = pVCpu->cpum.GstCtx.eax; break;
6278 default: AssertFailedReturn(VERR_IEM_IPE_4);
6279 }
6280 rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg);
6281 if (IOM_SUCCESS(rcStrict))
6282 {
6283 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6284 pVCpu->iem.s.cPotentialExits++;
6285 if (rcStrict != VINF_SUCCESS)
6286 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
6287 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
6288
6289 /*
6290 * Check for I/O breakpoints.
6291 */
6292 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
6293 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6294 && X86_DR7_ANY_RW_IO(uDr7)
6295 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
6296 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
6297 {
6298 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
6299 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
6300 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
6301 rcStrict = iemRaiseDebugException(pVCpu);
6302 }
6303 }
6304 return rcStrict;
6305}
6306
6307
6308/**
6309 * Implements 'OUT DX, eAX'.
6310 *
6311 * @param cbReg The register size.
6312 */
6313IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
6314{
6315 return IEM_CIMPL_CALL_2(iemCImpl_out, pVCpu->cpum.GstCtx.dx, cbReg);
6316}
6317
6318
6319/**
6320 * Implements 'CLI'.
6321 */
6322IEM_CIMPL_DEF_0(iemCImpl_cli)
6323{
6324 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
6325 uint32_t const fEflOld = fEfl;
6326
6327 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
6328 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
6329 {
6330 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
6331 if (!(fEfl & X86_EFL_VM))
6332 {
6333 if (pVCpu->iem.s.uCpl <= uIopl)
6334 fEfl &= ~X86_EFL_IF;
6335 else if ( pVCpu->iem.s.uCpl == 3
6336 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) )
6337 fEfl &= ~X86_EFL_VIF;
6338 else
6339 return iemRaiseGeneralProtectionFault0(pVCpu);
6340 }
6341 /* V8086 */
6342 else if (uIopl == 3)
6343 fEfl &= ~X86_EFL_IF;
6344 else if ( uIopl < 3
6345 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
6346 fEfl &= ~X86_EFL_VIF;
6347 else
6348 return iemRaiseGeneralProtectionFault0(pVCpu);
6349 }
6350 /* real mode */
6351 else
6352 fEfl &= ~X86_EFL_IF;
6353
6354 /* Commit. */
6355 IEMMISC_SET_EFL(pVCpu, fEfl);
6356 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6357 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
6358 return VINF_SUCCESS;
6359}
6360
6361
6362/**
6363 * Implements 'STI'.
6364 */
6365IEM_CIMPL_DEF_0(iemCImpl_sti)
6366{
6367 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
6368 uint32_t const fEflOld = fEfl;
6369
6370 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
6371 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
6372 {
6373 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
6374 if (!(fEfl & X86_EFL_VM))
6375 {
6376 if (pVCpu->iem.s.uCpl <= uIopl)
6377 fEfl |= X86_EFL_IF;
6378 else if ( pVCpu->iem.s.uCpl == 3
6379 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI)
6380 && !(fEfl & X86_EFL_VIP) )
6381 fEfl |= X86_EFL_VIF;
6382 else
6383 return iemRaiseGeneralProtectionFault0(pVCpu);
6384 }
6385 /* V8086 */
6386 else if (uIopl == 3)
6387 fEfl |= X86_EFL_IF;
6388 else if ( uIopl < 3
6389 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)
6390 && !(fEfl & X86_EFL_VIP) )
6391 fEfl |= X86_EFL_VIF;
6392 else
6393 return iemRaiseGeneralProtectionFault0(pVCpu);
6394 }
6395 /* real mode */
6396 else
6397 fEfl |= X86_EFL_IF;
6398
6399 /* Commit. */
6400 IEMMISC_SET_EFL(pVCpu, fEfl);
6401 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6402 if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF))
6403 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
6404 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
6405 return VINF_SUCCESS;
6406}
6407
6408
6409/**
6410 * Implements 'HLT'.
6411 */
6412IEM_CIMPL_DEF_0(iemCImpl_hlt)
6413{
6414 if (pVCpu->iem.s.uCpl != 0)
6415 return iemRaiseGeneralProtectionFault0(pVCpu);
6416
6417 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
6418 {
6419 Log2(("hlt: Guest intercept -> #VMEXIT\n"));
6420 IEM_SVM_UPDATE_NRIP(pVCpu);
6421 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6422 }
6423
6424 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6425 return VINF_EM_HALT;
6426}
6427
6428
6429/**
6430 * Implements 'MONITOR'.
6431 */
6432IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
6433{
6434 /*
6435 * Permission checks.
6436 */
6437 if (pVCpu->iem.s.uCpl != 0)
6438 {
6439 Log2(("monitor: CPL != 0\n"));
6440 return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
6441 }
6442 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
6443 {
6444 Log2(("monitor: Not in CPUID\n"));
6445 return iemRaiseUndefinedOpcode(pVCpu);
6446 }
6447
6448 /*
6449 * Gather the operands and validate them.
6450 */
6451 RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
6452 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
6453 uint32_t uEdx = pVCpu->cpum.GstCtx.edx;
6454/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
6455 * \#GP first. */
6456 if (uEcx != 0)
6457 {
6458 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
6459 return iemRaiseGeneralProtectionFault0(pVCpu);
6460 }
6461
6462 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
6463 if (rcStrict != VINF_SUCCESS)
6464 return rcStrict;
6465
6466 RTGCPHYS GCPhysMem;
6467 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
6468 if (rcStrict != VINF_SUCCESS)
6469 return rcStrict;
6470
6471 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
6472 {
6473 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
6474 IEM_SVM_UPDATE_NRIP(pVCpu);
6475 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6476 }
6477
6478 /*
6479 * Call EM to prepare the monitor/wait.
6480 */
6481 rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem);
6482 Assert(rcStrict == VINF_SUCCESS);
6483
6484 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6485 return rcStrict;
6486}
6487
6488
6489/**
6490 * Implements 'MWAIT'.
6491 */
6492IEM_CIMPL_DEF_0(iemCImpl_mwait)
6493{
6494 /*
6495 * Permission checks.
6496 */
6497 if (pVCpu->iem.s.uCpl != 0)
6498 {
6499 Log2(("mwait: CPL != 0\n"));
6500 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
6501 * EFLAGS.VM then.) */
6502 return iemRaiseUndefinedOpcode(pVCpu);
6503 }
6504 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
6505 {
6506 Log2(("mwait: Not in CPUID\n"));
6507 return iemRaiseUndefinedOpcode(pVCpu);
6508 }
6509
6510 /*
6511 * Gather the operands and validate them.
6512 */
6513 uint32_t uEax = pVCpu->cpum.GstCtx.eax;
6514 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
6515 if (uEcx != 0)
6516 {
6517 /* Only supported extension is break on IRQ when IF=0. */
6518 if (uEcx > 1)
6519 {
6520 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
6521 return iemRaiseGeneralProtectionFault0(pVCpu);
6522 }
6523 uint32_t fMWaitFeatures = 0;
6524 uint32_t uIgnore = 0;
6525 CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
6526 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
6527 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
6528 {
6529 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
6530 return iemRaiseGeneralProtectionFault0(pVCpu);
6531 }
6532 }
6533
6534 /*
6535 * Check SVM nested-guest mwait intercepts.
6536 */
6537 if ( IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
6538 && EMMonitorIsArmed(pVCpu))
6539 {
6540 Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
6541 IEM_SVM_UPDATE_NRIP(pVCpu);
6542 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6543 }
6544 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
6545 {
6546 Log2(("mwait: Guest intercept -> #VMEXIT\n"));
6547 IEM_SVM_UPDATE_NRIP(pVCpu);
6548 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6549 }
6550
6551 /*
6552 * Call EM to prepare the monitor/wait.
6553 */
6554 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
6555
6556 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6557 return rcStrict;
6558}
6559
6560
6561/**
6562 * Implements 'SWAPGS'.
6563 */
6564IEM_CIMPL_DEF_0(iemCImpl_swapgs)
6565{
6566 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
6567
6568 /*
6569 * Permission checks.
6570 */
6571 if (pVCpu->iem.s.uCpl != 0)
6572 {
6573 Log2(("swapgs: CPL != 0\n"));
6574 return iemRaiseUndefinedOpcode(pVCpu);
6575 }
6576
6577 /*
6578 * Do the job.
6579 */
6580 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_OTHER_MSRS);
6581 uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
6582 pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base;
6583 pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase;
6584
6585 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6586 return VINF_SUCCESS;
6587}
6588
6589
6590/**
6591 * Implements 'CPUID'.
6592 */
6593IEM_CIMPL_DEF_0(iemCImpl_cpuid)
6594{
6595 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
6596 {
6597 Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
6598 IEM_SVM_UPDATE_NRIP(pVCpu);
6599 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6600 }
6601
6602 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
6603 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
6604 pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff);
6605 pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff);
6606 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
6607 pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff);
6608
6609 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6610 return VINF_SUCCESS;
6611}
6612
6613
6614/**
6615 * Implements 'AAD'.
6616 *
6617 * @param bImm The immediate operand.
6618 */
6619IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
6620{
6621 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
6622 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
6623 pVCpu->cpum.GstCtx.ax = al;
6624 iemHlpUpdateArithEFlagsU8(pVCpu, al,
6625 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
6626 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
6627
6628 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6629 return VINF_SUCCESS;
6630}
6631
6632
6633/**
6634 * Implements 'AAM'.
6635 *
6636 * @param bImm The immediate operand. Cannot be 0.
6637 */
6638IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
6639{
6640 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
6641
6642 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
6643 uint8_t const al = (uint8_t)ax % bImm;
6644 uint8_t const ah = (uint8_t)ax / bImm;
6645 pVCpu->cpum.GstCtx.ax = (ah << 8) + al;
6646 iemHlpUpdateArithEFlagsU8(pVCpu, al,
6647 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
6648 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
6649
6650 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6651 return VINF_SUCCESS;
6652}
6653
6654
6655/**
6656 * Implements 'DAA'.
6657 */
6658IEM_CIMPL_DEF_0(iemCImpl_daa)
6659{
6660 uint8_t const al = pVCpu->cpum.GstCtx.al;
6661 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
6662
6663 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
6664 || (al & 0xf) >= 10)
6665 {
6666 pVCpu->cpum.GstCtx.al = al + 6;
6667 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
6668 }
6669 else
6670 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
6671
6672 if (al >= 0x9a || fCarry)
6673 {
6674 pVCpu->cpum.GstCtx.al += 0x60;
6675 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
6676 }
6677 else
6678 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
6679
6680 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
6681 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6682 return VINF_SUCCESS;
6683}
6684
6685
6686/**
6687 * Implements 'DAS'.
6688 */
6689IEM_CIMPL_DEF_0(iemCImpl_das)
6690{
6691 uint8_t const uInputAL = pVCpu->cpum.GstCtx.al;
6692 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
6693
6694 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
6695 || (uInputAL & 0xf) >= 10)
6696 {
6697 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
6698 if (uInputAL < 6)
6699 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
6700 pVCpu->cpum.GstCtx.al = uInputAL - 6;
6701 }
6702 else
6703 {
6704 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
6705 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
6706 }
6707
6708 if (uInputAL >= 0x9a || fCarry)
6709 {
6710 pVCpu->cpum.GstCtx.al -= 0x60;
6711 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
6712 }
6713
6714 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
6715 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6716 return VINF_SUCCESS;
6717}
6718
6719
6720/**
6721 * Implements 'AAA'.
6722 */
6723IEM_CIMPL_DEF_0(iemCImpl_aaa)
6724{
6725 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
6726 {
6727 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
6728 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
6729 {
6730 iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
6731 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
6732 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
6733 }
6734 else
6735 {
6736 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
6737 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
6738 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
6739 }
6740 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
6741 }
6742 else
6743 {
6744 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
6745 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
6746 {
6747 pVCpu->cpum.GstCtx.ax += UINT16_C(0x106);
6748 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
6749 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
6750 }
6751 else
6752 {
6753 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
6754 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
6755 }
6756 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
6757 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
6758 }
6759
6760 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6761 return VINF_SUCCESS;
6762}
6763
6764
6765/**
6766 * Implements 'AAS'.
6767 */
6768IEM_CIMPL_DEF_0(iemCImpl_aas)
6769{
6770 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
6771 {
6772 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
6773 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
6774 {
6775 iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
6776 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
6777 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
6778 }
6779 else
6780 {
6781 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
6782 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
6783 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
6784 }
6785 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
6786 }
6787 else
6788 {
6789 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
6790 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
6791 {
6792 pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106);
6793 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
6794 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
6795 }
6796 else
6797 {
6798 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
6799 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
6800 }
6801 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
6802 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
6803 }
6804
6805 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6806 return VINF_SUCCESS;
6807}
6808
6809
6810/**
6811 * Implements the 16-bit version of 'BOUND'.
6812 *
6813 * @note We have separate 16-bit and 32-bit variants of this function due to
6814 * the decoder using unsigned parameters, whereas we want signed one to
6815 * do the job. This is significant for a recompiler.
6816 */
6817IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
6818{
6819 /*
6820 * Check if the index is inside the bounds, otherwise raise #BR.
6821 */
6822 if ( idxArray >= idxLowerBound
6823 && idxArray <= idxUpperBound)
6824 {
6825 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6826 return VINF_SUCCESS;
6827 }
6828
6829 return iemRaiseBoundRangeExceeded(pVCpu);
6830}
6831
6832
6833/**
6834 * Implements the 32-bit version of 'BOUND'.
6835 */
6836IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
6837{
6838 /*
6839 * Check if the index is inside the bounds, otherwise raise #BR.
6840 */
6841 if ( idxArray >= idxLowerBound
6842 && idxArray <= idxUpperBound)
6843 {
6844 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6845 return VINF_SUCCESS;
6846 }
6847
6848 return iemRaiseBoundRangeExceeded(pVCpu);
6849}
6850
6851
6852
6853/*
6854 * Instantiate the various string operation combinations.
6855 */
6856#define OP_SIZE 8
6857#define ADDR_SIZE 16
6858#include "IEMAllCImplStrInstr.cpp.h"
6859#define OP_SIZE 8
6860#define ADDR_SIZE 32
6861#include "IEMAllCImplStrInstr.cpp.h"
6862#define OP_SIZE 8
6863#define ADDR_SIZE 64
6864#include "IEMAllCImplStrInstr.cpp.h"
6865
6866#define OP_SIZE 16
6867#define ADDR_SIZE 16
6868#include "IEMAllCImplStrInstr.cpp.h"
6869#define OP_SIZE 16
6870#define ADDR_SIZE 32
6871#include "IEMAllCImplStrInstr.cpp.h"
6872#define OP_SIZE 16
6873#define ADDR_SIZE 64
6874#include "IEMAllCImplStrInstr.cpp.h"
6875
6876#define OP_SIZE 32
6877#define ADDR_SIZE 16
6878#include "IEMAllCImplStrInstr.cpp.h"
6879#define OP_SIZE 32
6880#define ADDR_SIZE 32
6881#include "IEMAllCImplStrInstr.cpp.h"
6882#define OP_SIZE 32
6883#define ADDR_SIZE 64
6884#include "IEMAllCImplStrInstr.cpp.h"
6885
6886#define OP_SIZE 64
6887#define ADDR_SIZE 32
6888#include "IEMAllCImplStrInstr.cpp.h"
6889#define OP_SIZE 64
6890#define ADDR_SIZE 64
6891#include "IEMAllCImplStrInstr.cpp.h"
6892
6893
6894/**
6895 * Implements 'XGETBV'.
6896 */
6897IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
6898{
6899 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6900 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
6901 {
6902 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
6903 switch (uEcx)
6904 {
6905 case 0:
6906 break;
6907
6908 case 1: /** @todo Implement XCR1 support. */
6909 default:
6910 Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
6911 return iemRaiseGeneralProtectionFault0(pVCpu);
6912
6913 }
6914 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
6915 pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
6916 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
6917
6918 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6919 return VINF_SUCCESS;
6920 }
6921 Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
6922 return iemRaiseUndefinedOpcode(pVCpu);
6923}
6924
6925
6926/**
6927 * Implements 'XSETBV'.
6928 */
6929IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
6930{
6931 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
6932 {
6933 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
6934 {
6935 Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
6936 IEM_SVM_UPDATE_NRIP(pVCpu);
6937 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6938 }
6939
6940 if (pVCpu->iem.s.uCpl == 0)
6941 {
6942 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
6943
6944 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
6945 uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx);
6946 switch (uEcx)
6947 {
6948 case 0:
6949 {
6950 int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
6951 if (rc == VINF_SUCCESS)
6952 break;
6953 Assert(rc == VERR_CPUM_RAISE_GP_0);
6954 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
6955 return iemRaiseGeneralProtectionFault0(pVCpu);
6956 }
6957
6958 case 1: /** @todo Implement XCR1 support. */
6959 default:
6960 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
6961 return iemRaiseGeneralProtectionFault0(pVCpu);
6962
6963 }
6964
6965 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6966 return VINF_SUCCESS;
6967 }
6968
6969 Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
6970 return iemRaiseGeneralProtectionFault0(pVCpu);
6971 }
6972 Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
6973 return iemRaiseUndefinedOpcode(pVCpu);
6974}
6975
6976#ifdef IN_RING3
6977
6978/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
6979struct IEMCIMPLCX16ARGS
6980{
6981 PRTUINT128U pu128Dst;
6982 PRTUINT128U pu128RaxRdx;
6983 PRTUINT128U pu128RbxRcx;
6984 uint32_t *pEFlags;
6985# ifdef VBOX_STRICT
6986 uint32_t cCalls;
6987# endif
6988};
6989
6990/**
6991 * @callback_method_impl{FNVMMEMTRENDEZVOUS,
6992 * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
6993 */
6994static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPU pVCpu, void *pvUser)
6995{
6996 RT_NOREF(pVM, pVCpu);
6997 struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
6998# ifdef VBOX_STRICT
6999 Assert(pArgs->cCalls == 0);
7000 pArgs->cCalls++;
7001# endif
7002
7003 iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
7004 return VINF_SUCCESS;
7005}
7006
7007#endif /* IN_RING3 */
7008
7009/**
7010 * Implements 'CMPXCHG16B' fallback using rendezvous.
7011 */
7012IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
7013 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
7014{
7015#ifdef IN_RING3
7016 struct IEMCIMPLCX16ARGS Args;
7017 Args.pu128Dst = pu128Dst;
7018 Args.pu128RaxRdx = pu128RaxRdx;
7019 Args.pu128RbxRcx = pu128RbxRcx;
7020 Args.pEFlags = pEFlags;
7021# ifdef VBOX_STRICT
7022 Args.cCalls = 0;
7023# endif
7024 VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
7025 iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
7026 Assert(Args.cCalls == 1);
7027 if (rcStrict == VINF_SUCCESS)
7028 {
7029 /* Duplicated tail code. */
7030 rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
7031 if (rcStrict == VINF_SUCCESS)
7032 {
7033 pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
7034 if (!(*pEFlags & X86_EFL_ZF))
7035 {
7036 pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo;
7037 pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi;
7038 }
7039 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7040 }
7041 }
7042 return rcStrict;
7043#else
7044 RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
7045 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
7046#endif
7047}
7048
7049
7050/**
7051 * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
7052 *
7053 * This is implemented in C because it triggers a load like behviour without
7054 * actually reading anything. Since that's not so common, it's implemented
7055 * here.
7056 *
7057 * @param iEffSeg The effective segment.
7058 * @param GCPtrEff The address of the image.
7059 */
7060IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
7061{
7062 /*
7063 * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
7064 */
7065 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
7066 if (rcStrict == VINF_SUCCESS)
7067 {
7068 RTGCPHYS GCPhysMem;
7069 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7070 if (rcStrict == VINF_SUCCESS)
7071 {
7072 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7073 return VINF_SUCCESS;
7074 }
7075 }
7076
7077 return rcStrict;
7078}
7079
7080
7081/**
7082 * Implements 'FINIT' and 'FNINIT'.
7083 *
7084 * @param fCheckXcpts Whether to check for umasked pending exceptions or
7085 * not.
7086 */
7087IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
7088{
7089 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
7090
7091 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
7092 return iemRaiseDeviceNotAvailable(pVCpu);
7093
7094 NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
7095 if (fCheckXcpts && TODO )
7096 return iemRaiseMathFault(pVCpu);
7097 */
7098
7099 PX86XSAVEAREA pXState = pVCpu->cpum.GstCtx.CTX_SUFF(pXState);
7100 pXState->x87.FCW = 0x37f;
7101 pXState->x87.FSW = 0;
7102 pXState->x87.FTW = 0x00; /* 0 - empty. */
7103 pXState->x87.FPUDP = 0;
7104 pXState->x87.DS = 0; //??
7105 pXState->x87.Rsrvd2= 0;
7106 pXState->x87.FPUIP = 0;
7107 pXState->x87.CS = 0; //??
7108 pXState->x87.Rsrvd1= 0;
7109 pXState->x87.FOP = 0;
7110
7111 iemHlpUsedFpu(pVCpu);
7112 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7113 return VINF_SUCCESS;
7114}
7115
7116
7117/**
7118 * Implements 'FXSAVE'.
7119 *
7120 * @param iEffSeg The effective segment.
7121 * @param GCPtrEff The address of the image.
7122 * @param enmEffOpSize The operand size (only REX.W really matters).
7123 */
7124IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
7125{
7126 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
7127
7128 /*
7129 * Raise exceptions.
7130 */
7131 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
7132 return iemRaiseUndefinedOpcode(pVCpu);
7133 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
7134 return iemRaiseDeviceNotAvailable(pVCpu);
7135 if (GCPtrEff & 15)
7136 {
7137 /** @todo CPU/VM detection possible! \#AC might not be signal for
7138 * all/any misalignment sizes, intel says its an implementation detail. */
7139 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
7140 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
7141 && pVCpu->iem.s.uCpl == 3)
7142 return iemRaiseAlignmentCheckException(pVCpu);
7143 return iemRaiseGeneralProtectionFault0(pVCpu);
7144 }
7145
7146 /*
7147 * Access the memory.
7148 */
7149 void *pvMem512;
7150 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7151 if (rcStrict != VINF_SUCCESS)
7152 return rcStrict;
7153 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
7154 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
7155
7156 /*
7157 * Store the registers.
7158 */
7159 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
7160 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
7161
7162 /* common for all formats */
7163 pDst->FCW = pSrc->FCW;
7164 pDst->FSW = pSrc->FSW;
7165 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
7166 pDst->FOP = pSrc->FOP;
7167 pDst->MXCSR = pSrc->MXCSR;
7168 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
7169 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
7170 {
7171 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
7172 * them for now... */
7173 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
7174 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
7175 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
7176 pDst->aRegs[i].au32[3] = 0;
7177 }
7178
7179 /* FPU IP, CS, DP and DS. */
7180 pDst->FPUIP = pSrc->FPUIP;
7181 pDst->CS = pSrc->CS;
7182 pDst->FPUDP = pSrc->FPUDP;
7183 pDst->DS = pSrc->DS;
7184 if (enmEffOpSize == IEMMODE_64BIT)
7185 {
7186 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
7187 pDst->Rsrvd1 = pSrc->Rsrvd1;
7188 pDst->Rsrvd2 = pSrc->Rsrvd2;
7189 pDst->au32RsrvdForSoftware[0] = 0;
7190 }
7191 else
7192 {
7193 pDst->Rsrvd1 = 0;
7194 pDst->Rsrvd2 = 0;
7195 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
7196 }
7197
7198 /* XMM registers. */
7199 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
7200 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
7201 || pVCpu->iem.s.uCpl != 0)
7202 {
7203 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
7204 for (uint32_t i = 0; i < cXmmRegs; i++)
7205 pDst->aXMM[i] = pSrc->aXMM[i];
7206 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
7207 * right? */
7208 }
7209
7210 /*
7211 * Commit the memory.
7212 */
7213 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7214 if (rcStrict != VINF_SUCCESS)
7215 return rcStrict;
7216
7217 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7218 return VINF_SUCCESS;
7219}
7220
7221
7222/**
7223 * Implements 'FXRSTOR'.
7224 *
7225 * @param GCPtrEff The address of the image.
7226 * @param enmEffOpSize The operand size (only REX.W really matters).
7227 */
7228IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
7229{
7230 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
7231
7232 /*
7233 * Raise exceptions.
7234 */
7235 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
7236 return iemRaiseUndefinedOpcode(pVCpu);
7237 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
7238 return iemRaiseDeviceNotAvailable(pVCpu);
7239 if (GCPtrEff & 15)
7240 {
7241 /** @todo CPU/VM detection possible! \#AC might not be signal for
7242 * all/any misalignment sizes, intel says its an implementation detail. */
7243 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
7244 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
7245 && pVCpu->iem.s.uCpl == 3)
7246 return iemRaiseAlignmentCheckException(pVCpu);
7247 return iemRaiseGeneralProtectionFault0(pVCpu);
7248 }
7249
7250 /*
7251 * Access the memory.
7252 */
7253 void *pvMem512;
7254 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
7255 if (rcStrict != VINF_SUCCESS)
7256 return rcStrict;
7257 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
7258 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
7259
7260 /*
7261 * Check the state for stuff which will #GP(0).
7262 */
7263 uint32_t const fMXCSR = pSrc->MXCSR;
7264 uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
7265 if (fMXCSR & ~fMXCSR_MASK)
7266 {
7267 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
7268 return iemRaiseGeneralProtectionFault0(pVCpu);
7269 }
7270
7271 /*
7272 * Load the registers.
7273 */
7274 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
7275 * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
7276
7277 /* common for all formats */
7278 pDst->FCW = pSrc->FCW;
7279 pDst->FSW = pSrc->FSW;
7280 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
7281 pDst->FOP = pSrc->FOP;
7282 pDst->MXCSR = fMXCSR;
7283 /* (MXCSR_MASK is read-only) */
7284 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
7285 {
7286 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
7287 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
7288 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
7289 pDst->aRegs[i].au32[3] = 0;
7290 }
7291
7292 /* FPU IP, CS, DP and DS. */
7293 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
7294 {
7295 pDst->FPUIP = pSrc->FPUIP;
7296 pDst->CS = pSrc->CS;
7297 pDst->Rsrvd1 = pSrc->Rsrvd1;
7298 pDst->FPUDP = pSrc->FPUDP;
7299 pDst->DS = pSrc->DS;
7300 pDst->Rsrvd2 = pSrc->Rsrvd2;
7301 }
7302 else
7303 {
7304 pDst->FPUIP = pSrc->FPUIP;
7305 pDst->CS = pSrc->CS;
7306 pDst->Rsrvd1 = 0;
7307 pDst->FPUDP = pSrc->FPUDP;
7308 pDst->DS = pSrc->DS;
7309 pDst->Rsrvd2 = 0;
7310 }
7311
7312 /* XMM registers. */
7313 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
7314 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
7315 || pVCpu->iem.s.uCpl != 0)
7316 {
7317 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
7318 for (uint32_t i = 0; i < cXmmRegs; i++)
7319 pDst->aXMM[i] = pSrc->aXMM[i];
7320 }
7321
7322 /*
7323 * Commit the memory.
7324 */
7325 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
7326 if (rcStrict != VINF_SUCCESS)
7327 return rcStrict;
7328
7329 iemHlpUsedFpu(pVCpu);
7330 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7331 return VINF_SUCCESS;
7332}
7333
7334
7335/**
7336 * Implements 'XSAVE'.
7337 *
7338 * @param iEffSeg The effective segment.
7339 * @param GCPtrEff The address of the image.
7340 * @param enmEffOpSize The operand size (only REX.W really matters).
7341 */
7342IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
7343{
7344 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
7345
7346 /*
7347 * Raise exceptions.
7348 */
7349 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
7350 return iemRaiseUndefinedOpcode(pVCpu);
7351 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
7352 return iemRaiseDeviceNotAvailable(pVCpu);
7353 if (GCPtrEff & 63)
7354 {
7355 /** @todo CPU/VM detection possible! \#AC might not be signal for
7356 * all/any misalignment sizes, intel says its an implementation detail. */
7357 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
7358 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
7359 && pVCpu->iem.s.uCpl == 3)
7360 return iemRaiseAlignmentCheckException(pVCpu);
7361 return iemRaiseGeneralProtectionFault0(pVCpu);
7362 }
7363
7364 /*
7365 * Calc the requested mask
7366 */
7367 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
7368 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
7369 uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
7370
7371/** @todo figure out the exact protocol for the memory access. Currently we
7372 * just need this crap to work halfways to make it possible to test
7373 * AVX instructions. */
7374/** @todo figure out the XINUSE and XMODIFIED */
7375
7376 /*
7377 * Access the x87 memory state.
7378 */
7379 /* The x87+SSE state. */
7380 void *pvMem512;
7381 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7382 if (rcStrict != VINF_SUCCESS)
7383 return rcStrict;
7384 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
7385 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
7386
7387 /* The header. */
7388 PX86XSAVEHDR pHdr;
7389 rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW);
7390 if (rcStrict != VINF_SUCCESS)
7391 return rcStrict;
7392
7393 /*
7394 * Store the X87 state.
7395 */
7396 if (fReqComponents & XSAVE_C_X87)
7397 {
7398 /* common for all formats */
7399 pDst->FCW = pSrc->FCW;
7400 pDst->FSW = pSrc->FSW;
7401 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
7402 pDst->FOP = pSrc->FOP;
7403 pDst->FPUIP = pSrc->FPUIP;
7404 pDst->CS = pSrc->CS;
7405 pDst->FPUDP = pSrc->FPUDP;
7406 pDst->DS = pSrc->DS;
7407 if (enmEffOpSize == IEMMODE_64BIT)
7408 {
7409 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
7410 pDst->Rsrvd1 = pSrc->Rsrvd1;
7411 pDst->Rsrvd2 = pSrc->Rsrvd2;
7412 pDst->au32RsrvdForSoftware[0] = 0;
7413 }
7414 else
7415 {
7416 pDst->Rsrvd1 = 0;
7417 pDst->Rsrvd2 = 0;
7418 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
7419 }
7420 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
7421 {
7422 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
7423 * them for now... */
7424 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
7425 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
7426 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
7427 pDst->aRegs[i].au32[3] = 0;
7428 }
7429
7430 }
7431
7432 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
7433 {
7434 pDst->MXCSR = pSrc->MXCSR;
7435 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
7436 }
7437
7438 if (fReqComponents & XSAVE_C_SSE)
7439 {
7440 /* XMM registers. */
7441 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
7442 for (uint32_t i = 0; i < cXmmRegs; i++)
7443 pDst->aXMM[i] = pSrc->aXMM[i];
7444 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
7445 * right? */
7446 }
7447
7448 /* Commit the x87 state bits. (probably wrong) */
7449 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7450 if (rcStrict != VINF_SUCCESS)
7451 return rcStrict;
7452
7453 /*
7454 * Store AVX state.
7455 */
7456 if (fReqComponents & XSAVE_C_YMM)
7457 {
7458 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
7459 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
7460 PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
7461 PX86XSAVEYMMHI pCompDst;
7462 rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
7463 IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7464 if (rcStrict != VINF_SUCCESS)
7465 return rcStrict;
7466
7467 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
7468 for (uint32_t i = 0; i < cXmmRegs; i++)
7469 pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
7470
7471 rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7472 if (rcStrict != VINF_SUCCESS)
7473 return rcStrict;
7474 }
7475
7476 /*
7477 * Update the header.
7478 */
7479 pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
7480 | (fReqComponents & fXInUse);
7481
7482 rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
7483 if (rcStrict != VINF_SUCCESS)
7484 return rcStrict;
7485
7486 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7487 return VINF_SUCCESS;
7488}
7489
7490
7491/**
7492 * Implements 'XRSTOR'.
7493 *
7494 * @param iEffSeg The effective segment.
7495 * @param GCPtrEff The address of the image.
7496 * @param enmEffOpSize The operand size (only REX.W really matters).
7497 */
7498IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
7499{
7500 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
7501
7502 /*
7503 * Raise exceptions.
7504 */
7505 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
7506 return iemRaiseUndefinedOpcode(pVCpu);
7507 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
7508 return iemRaiseDeviceNotAvailable(pVCpu);
7509 if (GCPtrEff & 63)
7510 {
7511 /** @todo CPU/VM detection possible! \#AC might not be signal for
7512 * all/any misalignment sizes, intel says its an implementation detail. */
7513 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
7514 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
7515 && pVCpu->iem.s.uCpl == 3)
7516 return iemRaiseAlignmentCheckException(pVCpu);
7517 return iemRaiseGeneralProtectionFault0(pVCpu);
7518 }
7519
7520/** @todo figure out the exact protocol for the memory access. Currently we
7521 * just need this crap to work halfways to make it possible to test
7522 * AVX instructions. */
7523/** @todo figure out the XINUSE and XMODIFIED */
7524
7525 /*
7526 * Access the x87 memory state.
7527 */
7528 /* The x87+SSE state. */
7529 void *pvMem512;
7530 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
7531 if (rcStrict != VINF_SUCCESS)
7532 return rcStrict;
7533 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
7534 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
7535
7536 /*
7537 * Calc the requested mask
7538 */
7539 PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->Hdr;
7540 PCX86XSAVEHDR pHdrSrc;
7541 rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R);
7542 if (rcStrict != VINF_SUCCESS)
7543 return rcStrict;
7544
7545 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
7546 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
7547 //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
7548 uint64_t const fRstorMask = pHdrSrc->bmXState;
7549 uint64_t const fCompMask = pHdrSrc->bmXComp;
7550
7551 AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
7552
7553 uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
7554
7555 /* We won't need this any longer. */
7556 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
7557 if (rcStrict != VINF_SUCCESS)
7558 return rcStrict;
7559
7560 /*
7561 * Store the X87 state.
7562 */
7563 if (fReqComponents & XSAVE_C_X87)
7564 {
7565 if (fRstorMask & XSAVE_C_X87)
7566 {
7567 pDst->FCW = pSrc->FCW;
7568 pDst->FSW = pSrc->FSW;
7569 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
7570 pDst->FOP = pSrc->FOP;
7571 pDst->FPUIP = pSrc->FPUIP;
7572 pDst->CS = pSrc->CS;
7573 pDst->FPUDP = pSrc->FPUDP;
7574 pDst->DS = pSrc->DS;
7575 if (enmEffOpSize == IEMMODE_64BIT)
7576 {
7577 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
7578 pDst->Rsrvd1 = pSrc->Rsrvd1;
7579 pDst->Rsrvd2 = pSrc->Rsrvd2;
7580 }
7581 else
7582 {
7583 pDst->Rsrvd1 = 0;
7584 pDst->Rsrvd2 = 0;
7585 }
7586 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
7587 {
7588 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
7589 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
7590 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
7591 pDst->aRegs[i].au32[3] = 0;
7592 }
7593 }
7594 else
7595 {
7596 pDst->FCW = 0x37f;
7597 pDst->FSW = 0;
7598 pDst->FTW = 0x00; /* 0 - empty. */
7599 pDst->FPUDP = 0;
7600 pDst->DS = 0; //??
7601 pDst->Rsrvd2= 0;
7602 pDst->FPUIP = 0;
7603 pDst->CS = 0; //??
7604 pDst->Rsrvd1= 0;
7605 pDst->FOP = 0;
7606 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
7607 {
7608 pDst->aRegs[i].au32[0] = 0;
7609 pDst->aRegs[i].au32[1] = 0;
7610 pDst->aRegs[i].au32[2] = 0;
7611 pDst->aRegs[i].au32[3] = 0;
7612 }
7613 }
7614 pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
7615 }
7616
7617 /* MXCSR */
7618 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
7619 {
7620 if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
7621 pDst->MXCSR = pSrc->MXCSR;
7622 else
7623 pDst->MXCSR = 0x1f80;
7624 }
7625
7626 /* XMM registers. */
7627 if (fReqComponents & XSAVE_C_SSE)
7628 {
7629 if (fRstorMask & XSAVE_C_SSE)
7630 {
7631 for (uint32_t i = 0; i < cXmmRegs; i++)
7632 pDst->aXMM[i] = pSrc->aXMM[i];
7633 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
7634 * right? */
7635 }
7636 else
7637 {
7638 for (uint32_t i = 0; i < cXmmRegs; i++)
7639 {
7640 pDst->aXMM[i].au64[0] = 0;
7641 pDst->aXMM[i].au64[1] = 0;
7642 }
7643 }
7644 pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
7645 }
7646
7647 /* Unmap the x87 state bits (so we've don't run out of mapping). */
7648 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
7649 if (rcStrict != VINF_SUCCESS)
7650 return rcStrict;
7651
7652 /*
7653 * Restore AVX state.
7654 */
7655 if (fReqComponents & XSAVE_C_YMM)
7656 {
7657 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
7658 PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
7659
7660 if (fRstorMask & XSAVE_C_YMM)
7661 {
7662 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
7663 PCX86XSAVEYMMHI pCompSrc;
7664 rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
7665 iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R);
7666 if (rcStrict != VINF_SUCCESS)
7667 return rcStrict;
7668
7669 for (uint32_t i = 0; i < cXmmRegs; i++)
7670 {
7671 pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
7672 pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
7673 }
7674
7675 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
7676 if (rcStrict != VINF_SUCCESS)
7677 return rcStrict;
7678 }
7679 else
7680 {
7681 for (uint32_t i = 0; i < cXmmRegs; i++)
7682 {
7683 pCompDst->aYmmHi[i].au64[0] = 0;
7684 pCompDst->aYmmHi[i].au64[1] = 0;
7685 }
7686 }
7687 pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
7688 }
7689
7690 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7691 return VINF_SUCCESS;
7692}
7693
7694
7695
7696
7697/**
7698 * Implements 'STMXCSR'.
7699 *
7700 * @param GCPtrEff The address of the image.
7701 */
7702IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
7703{
7704 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
7705
7706 /*
7707 * Raise exceptions.
7708 */
7709 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
7710 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
7711 {
7712 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
7713 {
7714 /*
7715 * Do the job.
7716 */
7717 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
7718 if (rcStrict == VINF_SUCCESS)
7719 {
7720 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7721 return VINF_SUCCESS;
7722 }
7723 return rcStrict;
7724 }
7725 return iemRaiseDeviceNotAvailable(pVCpu);
7726 }
7727 return iemRaiseUndefinedOpcode(pVCpu);
7728}
7729
7730
7731/**
7732 * Implements 'VSTMXCSR'.
7733 *
7734 * @param GCPtrEff The address of the image.
7735 */
7736IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
7737{
7738 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx);
7739
7740 /*
7741 * Raise exceptions.
7742 */
7743 if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
7744 ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
7745 : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
7746 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
7747 {
7748 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
7749 {
7750 /*
7751 * Do the job.
7752 */
7753 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
7754 if (rcStrict == VINF_SUCCESS)
7755 {
7756 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7757 return VINF_SUCCESS;
7758 }
7759 return rcStrict;
7760 }
7761 return iemRaiseDeviceNotAvailable(pVCpu);
7762 }
7763 return iemRaiseUndefinedOpcode(pVCpu);
7764}
7765
7766
7767/**
7768 * Implements 'LDMXCSR'.
7769 *
7770 * @param GCPtrEff The address of the image.
7771 */
7772IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
7773{
7774 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
7775
7776 /*
7777 * Raise exceptions.
7778 */
7779 /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
7780 * happen after or before \#UD and \#EM? */
7781 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
7782 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
7783 {
7784 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
7785 {
7786 /*
7787 * Do the job.
7788 */
7789 uint32_t fNewMxCsr;
7790 VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
7791 if (rcStrict == VINF_SUCCESS)
7792 {
7793 uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
7794 if (!(fNewMxCsr & ~fMxCsrMask))
7795 {
7796 pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR = fNewMxCsr;
7797 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7798 return VINF_SUCCESS;
7799 }
7800 Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
7801 fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
7802 return iemRaiseGeneralProtectionFault0(pVCpu);
7803 }
7804 return rcStrict;
7805 }
7806 return iemRaiseDeviceNotAvailable(pVCpu);
7807 }
7808 return iemRaiseUndefinedOpcode(pVCpu);
7809}
7810
7811
7812/**
7813 * Commmon routine for fnstenv and fnsave.
7814 *
7815 * @param pVCpu The cross context virtual CPU structure of the calling thread.
7816 * @param enmEffOpSize The effective operand size.
7817 * @param uPtr Where to store the state.
7818 */
7819static void iemCImplCommonFpuStoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr)
7820{
7821 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
7822 PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
7823 if (enmEffOpSize == IEMMODE_16BIT)
7824 {
7825 uPtr.pu16[0] = pSrcX87->FCW;
7826 uPtr.pu16[1] = pSrcX87->FSW;
7827 uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
7828 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
7829 {
7830 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
7831 * protected mode or long mode and we save it in real mode? And vice
7832 * versa? And with 32-bit operand size? I think CPU is storing the
7833 * effective address ((CS << 4) + IP) in the offset register and not
7834 * doing any address calculations here. */
7835 uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
7836 uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
7837 uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
7838 uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
7839 }
7840 else
7841 {
7842 uPtr.pu16[3] = pSrcX87->FPUIP;
7843 uPtr.pu16[4] = pSrcX87->CS;
7844 uPtr.pu16[5] = pSrcX87->FPUDP;
7845 uPtr.pu16[6] = pSrcX87->DS;
7846 }
7847 }
7848 else
7849 {
7850 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
7851 uPtr.pu16[0*2] = pSrcX87->FCW;
7852 uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
7853 uPtr.pu16[1*2] = pSrcX87->FSW;
7854 uPtr.pu16[1*2+1] = 0xffff;
7855 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
7856 uPtr.pu16[2*2+1] = 0xffff;
7857 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
7858 {
7859 uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
7860 uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
7861 uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
7862 uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
7863 }
7864 else
7865 {
7866 uPtr.pu32[3] = pSrcX87->FPUIP;
7867 uPtr.pu16[4*2] = pSrcX87->CS;
7868 uPtr.pu16[4*2+1] = pSrcX87->FOP;
7869 uPtr.pu32[5] = pSrcX87->FPUDP;
7870 uPtr.pu16[6*2] = pSrcX87->DS;
7871 uPtr.pu16[6*2+1] = 0xffff;
7872 }
7873 }
7874}
7875
7876
7877/**
7878 * Commmon routine for fldenv and frstor
7879 *
7880 * @param pVCpu The cross context virtual CPU structure of the calling thread.
7881 * @param enmEffOpSize The effective operand size.
7882 * @param uPtr Where to store the state.
7883 */
7884static void iemCImplCommonFpuRestoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr)
7885{
7886 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
7887 PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
7888 if (enmEffOpSize == IEMMODE_16BIT)
7889 {
7890 pDstX87->FCW = uPtr.pu16[0];
7891 pDstX87->FSW = uPtr.pu16[1];
7892 pDstX87->FTW = uPtr.pu16[2];
7893 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
7894 {
7895 pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
7896 pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
7897 pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
7898 pDstX87->CS = 0;
7899 pDstX87->Rsrvd1= 0;
7900 pDstX87->DS = 0;
7901 pDstX87->Rsrvd2= 0;
7902 }
7903 else
7904 {
7905 pDstX87->FPUIP = uPtr.pu16[3];
7906 pDstX87->CS = uPtr.pu16[4];
7907 pDstX87->Rsrvd1= 0;
7908 pDstX87->FPUDP = uPtr.pu16[5];
7909 pDstX87->DS = uPtr.pu16[6];
7910 pDstX87->Rsrvd2= 0;
7911 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
7912 }
7913 }
7914 else
7915 {
7916 pDstX87->FCW = uPtr.pu16[0*2];
7917 pDstX87->FSW = uPtr.pu16[1*2];
7918 pDstX87->FTW = uPtr.pu16[2*2];
7919 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
7920 {
7921 pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
7922 pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
7923 pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
7924 pDstX87->CS = 0;
7925 pDstX87->Rsrvd1= 0;
7926 pDstX87->DS = 0;
7927 pDstX87->Rsrvd2= 0;
7928 }
7929 else
7930 {
7931 pDstX87->FPUIP = uPtr.pu32[3];
7932 pDstX87->CS = uPtr.pu16[4*2];
7933 pDstX87->Rsrvd1= 0;
7934 pDstX87->FOP = uPtr.pu16[4*2+1];
7935 pDstX87->FPUDP = uPtr.pu32[5];
7936 pDstX87->DS = uPtr.pu16[6*2];
7937 pDstX87->Rsrvd2= 0;
7938 }
7939 }
7940
7941 /* Make adjustments. */
7942 pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
7943 pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
7944 iemFpuRecalcExceptionStatus(pDstX87);
7945 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
7946 * exceptions are pending after loading the saved state? */
7947}
7948
7949
7950/**
7951 * Implements 'FNSTENV'.
7952 *
7953 * @param enmEffOpSize The operand size (only REX.W really matters).
7954 * @param iEffSeg The effective segment register for @a GCPtrEff.
7955 * @param GCPtrEffDst The address of the image.
7956 */
7957IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
7958{
7959 RTPTRUNION uPtr;
7960 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
7961 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7962 if (rcStrict != VINF_SUCCESS)
7963 return rcStrict;
7964
7965 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
7966
7967 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7968 if (rcStrict != VINF_SUCCESS)
7969 return rcStrict;
7970
7971 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
7972 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7973 return VINF_SUCCESS;
7974}
7975
7976
7977/**
7978 * Implements 'FNSAVE'.
7979 *
7980 * @param GCPtrEffDst The address of the image.
7981 * @param enmEffOpSize The operand size.
7982 */
7983IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
7984{
7985 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
7986
7987 RTPTRUNION uPtr;
7988 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
7989 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7990 if (rcStrict != VINF_SUCCESS)
7991 return rcStrict;
7992
7993 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
7994 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
7995 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
7996 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
7997 {
7998 paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
7999 paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
8000 paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
8001 }
8002
8003 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8004 if (rcStrict != VINF_SUCCESS)
8005 return rcStrict;
8006
8007 /*
8008 * Re-initialize the FPU context.
8009 */
8010 pFpuCtx->FCW = 0x37f;
8011 pFpuCtx->FSW = 0;
8012 pFpuCtx->FTW = 0x00; /* 0 - empty */
8013 pFpuCtx->FPUDP = 0;
8014 pFpuCtx->DS = 0;
8015 pFpuCtx->Rsrvd2= 0;
8016 pFpuCtx->FPUIP = 0;
8017 pFpuCtx->CS = 0;
8018 pFpuCtx->Rsrvd1= 0;
8019 pFpuCtx->FOP = 0;
8020
8021 iemHlpUsedFpu(pVCpu);
8022 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8023 return VINF_SUCCESS;
8024}
8025
8026
8027
8028/**
8029 * Implements 'FLDENV'.
8030 *
8031 * @param enmEffOpSize The operand size (only REX.W really matters).
8032 * @param iEffSeg The effective segment register for @a GCPtrEff.
8033 * @param GCPtrEffSrc The address of the image.
8034 */
8035IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
8036{
8037 RTCPTRUNION uPtr;
8038 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
8039 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
8040 if (rcStrict != VINF_SUCCESS)
8041 return rcStrict;
8042
8043 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
8044
8045 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
8046 if (rcStrict != VINF_SUCCESS)
8047 return rcStrict;
8048
8049 iemHlpUsedFpu(pVCpu);
8050 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8051 return VINF_SUCCESS;
8052}
8053
8054
8055/**
8056 * Implements 'FRSTOR'.
8057 *
8058 * @param GCPtrEffSrc The address of the image.
8059 * @param enmEffOpSize The operand size.
8060 */
8061IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
8062{
8063 RTCPTRUNION uPtr;
8064 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
8065 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
8066 if (rcStrict != VINF_SUCCESS)
8067 return rcStrict;
8068
8069 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8070 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
8071 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
8072 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
8073 {
8074 pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
8075 pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
8076 pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
8077 pFpuCtx->aRegs[i].au32[3] = 0;
8078 }
8079
8080 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
8081 if (rcStrict != VINF_SUCCESS)
8082 return rcStrict;
8083
8084 iemHlpUsedFpu(pVCpu);
8085 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8086 return VINF_SUCCESS;
8087}
8088
8089
8090/**
8091 * Implements 'FLDCW'.
8092 *
8093 * @param u16Fcw The new FCW.
8094 */
8095IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
8096{
8097 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8098
8099 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
8100 /** @todo Testcase: Try see what happens when trying to set undefined bits
8101 * (other than 6 and 7). Currently ignoring them. */
8102 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
8103 * according to FSW. (This is was is currently implemented.) */
8104 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8105 pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
8106 iemFpuRecalcExceptionStatus(pFpuCtx);
8107
8108 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
8109 iemHlpUsedFpu(pVCpu);
8110 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8111 return VINF_SUCCESS;
8112}
8113
8114
8115
8116/**
8117 * Implements the underflow case of fxch.
8118 *
8119 * @param iStReg The other stack register.
8120 */
8121IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
8122{
8123 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8124
8125 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8126 unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
8127 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
8128 Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
8129
8130 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
8131 * registers are read as QNaN and then exchanged. This could be
8132 * wrong... */
8133 if (pFpuCtx->FCW & X86_FCW_IM)
8134 {
8135 if (RT_BIT(iReg1) & pFpuCtx->FTW)
8136 {
8137 if (RT_BIT(iReg2) & pFpuCtx->FTW)
8138 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
8139 else
8140 pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
8141 iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
8142 }
8143 else
8144 {
8145 pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
8146 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
8147 }
8148 pFpuCtx->FSW &= ~X86_FSW_C_MASK;
8149 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
8150 }
8151 else
8152 {
8153 /* raise underflow exception, don't change anything. */
8154 pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
8155 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
8156 }
8157
8158 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
8159 iemHlpUsedFpu(pVCpu);
8160 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8161 return VINF_SUCCESS;
8162}
8163
8164
8165/**
8166 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
8167 *
8168 * @param cToAdd 1 or 7.
8169 */
8170IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
8171{
8172 Assert(iStReg < 8);
8173 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8174
8175 /*
8176 * Raise exceptions.
8177 */
8178 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
8179 return iemRaiseDeviceNotAvailable(pVCpu);
8180
8181 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8182 uint16_t u16Fsw = pFpuCtx->FSW;
8183 if (u16Fsw & X86_FSW_ES)
8184 return iemRaiseMathFault(pVCpu);
8185
8186 /*
8187 * Check if any of the register accesses causes #SF + #IA.
8188 */
8189 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
8190 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
8191 if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
8192 {
8193 uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
8194 NOREF(u32Eflags);
8195
8196 pFpuCtx->FSW &= ~X86_FSW_C1;
8197 pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
8198 if ( !(u16Fsw & X86_FSW_IE)
8199 || (pFpuCtx->FCW & X86_FCW_IM) )
8200 {
8201 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
8202 pVCpu->cpum.GstCtx.eflags.u |= pVCpu->cpum.GstCtx.eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
8203 }
8204 }
8205 else if (pFpuCtx->FCW & X86_FCW_IM)
8206 {
8207 /* Masked underflow. */
8208 pFpuCtx->FSW &= ~X86_FSW_C1;
8209 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
8210 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
8211 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
8212 }
8213 else
8214 {
8215 /* Raise underflow - don't touch EFLAGS or TOP. */
8216 pFpuCtx->FSW &= ~X86_FSW_C1;
8217 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
8218 fPop = false;
8219 }
8220
8221 /*
8222 * Pop if necessary.
8223 */
8224 if (fPop)
8225 {
8226 pFpuCtx->FTW &= ~RT_BIT(iReg1);
8227 pFpuCtx->FSW &= X86_FSW_TOP_MASK;
8228 pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
8229 }
8230
8231 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
8232 iemHlpUsedFpu(pVCpu);
8233 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8234 return VINF_SUCCESS;
8235}
8236
8237/** @} */
8238
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette