VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h@ 75671

Last change on this file since 75671 was 75671, checked in by vboxsync, 6 years ago

VMM: Nested VMX: bugref:9180 Implement NMI-unblocking due to IRET for VM-exits. Implemented restoring blocking of NMI when VM-entry fails while checking/loading guest-state. Fixed loading blocking by NMI during VM-entry.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 324.5 KB
Line 
1/* $Id: IEMAllCImpl.cpp.h 75671 2018-11-22 15:08:24Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#include "IEMAllCImplSvmInstr.cpp.h"
19#include "IEMAllCImplVmxInstr.cpp.h"
20
21
22/** @name Misc Helpers
23 * @{
24 */
25
26
27/**
28 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
29 *
30 * @returns Strict VBox status code.
31 *
32 * @param pVCpu The cross context virtual CPU structure of the calling thread.
33 * @param u16Port The port number.
34 * @param cbOperand The operand size.
35 */
36static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbOperand)
37{
38 /* The TSS bits we're interested in are the same on 386 and AMD64. */
39 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
40 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
41 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
42 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
43
44 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
45
46 /*
47 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
48 */
49 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
50 if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
51 && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
52 {
53 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
54 u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u));
55 return iemRaiseGeneralProtectionFault0(pVCpu);
56 }
57
58 /*
59 * Read the bitmap offset (may #PF).
60 */
61 uint16_t offBitmap;
62 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
63 pVCpu->cpum.GstCtx.tr.u64Base + RT_UOFFSETOF(X86TSS64, offIoBitmap));
64 if (rcStrict != VINF_SUCCESS)
65 {
66 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
67 return rcStrict;
68 }
69
70 /*
71 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
72 * describes the CPU actually reading two bytes regardless of whether the
73 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
74 */
75 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
76 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
77 * for instance sizeof(X86TSS32). */
78 if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */
79 {
80 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
81 offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit));
82 return iemRaiseGeneralProtectionFault0(pVCpu);
83 }
84
85 /*
86 * Read the necessary bits.
87 */
88 /** @todo Test the assertion in the intel manual that the CPU reads two
89 * bytes. The question is how this works wrt to #PF and #GP on the
90 * 2nd byte when it's not required. */
91 uint16_t bmBytes = UINT16_MAX;
92 rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit);
93 if (rcStrict != VINF_SUCCESS)
94 {
95 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
96 return rcStrict;
97 }
98
99 /*
100 * Perform the check.
101 */
102 uint16_t fPortMask = (1 << cbOperand) - 1;
103 bmBytes >>= (u16Port & 7);
104 if (bmBytes & fPortMask)
105 {
106 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
107 u16Port, cbOperand, bmBytes, fPortMask));
108 return iemRaiseGeneralProtectionFault0(pVCpu);
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115/**
116 * Checks if we are allowed to access the given I/O port, raising the
117 * appropriate exceptions if we aren't (or if the I/O bitmap is not
118 * accessible).
119 *
120 * @returns Strict VBox status code.
121 *
122 * @param pVCpu The cross context virtual CPU structure of the calling thread.
123 * @param u16Port The port number.
124 * @param cbOperand The operand size.
125 */
126DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbOperand)
127{
128 X86EFLAGS Efl;
129 Efl.u = IEMMISC_GET_EFL(pVCpu);
130 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
131 && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
132 || Efl.Bits.u1VM) )
133 return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand);
134 return VINF_SUCCESS;
135}
136
137
138#if 0
139/**
140 * Calculates the parity bit.
141 *
142 * @returns true if the bit is set, false if not.
143 * @param u8Result The least significant byte of the result.
144 */
145static bool iemHlpCalcParityFlag(uint8_t u8Result)
146{
147 /*
148 * Parity is set if the number of bits in the least significant byte of
149 * the result is even.
150 */
151 uint8_t cBits;
152 cBits = u8Result & 1; /* 0 */
153 u8Result >>= 1;
154 cBits += u8Result & 1;
155 u8Result >>= 1;
156 cBits += u8Result & 1;
157 u8Result >>= 1;
158 cBits += u8Result & 1;
159 u8Result >>= 1;
160 cBits += u8Result & 1; /* 4 */
161 u8Result >>= 1;
162 cBits += u8Result & 1;
163 u8Result >>= 1;
164 cBits += u8Result & 1;
165 u8Result >>= 1;
166 cBits += u8Result & 1;
167 return !(cBits & 1);
168}
169#endif /* not used */
170
171
172/**
173 * Updates the specified flags according to a 8-bit result.
174 *
175 * @param pVCpu The cross context virtual CPU structure of the calling thread.
176 * @param u8Result The result to set the flags according to.
177 * @param fToUpdate The flags to update.
178 * @param fUndefined The flags that are specified as undefined.
179 */
180static void iemHlpUpdateArithEFlagsU8(PVMCPU pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
181{
182 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
183 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
184 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
185 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
186}
187
188
189/**
190 * Updates the specified flags according to a 16-bit result.
191 *
192 * @param pVCpu The cross context virtual CPU structure of the calling thread.
193 * @param u16Result The result to set the flags according to.
194 * @param fToUpdate The flags to update.
195 * @param fUndefined The flags that are specified as undefined.
196 */
197static void iemHlpUpdateArithEFlagsU16(PVMCPU pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
198{
199 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
200 iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
201 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
202 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
203}
204
205
206/**
207 * Helper used by iret.
208 *
209 * @param pVCpu The cross context virtual CPU structure of the calling thread.
210 * @param uCpl The new CPL.
211 * @param pSReg Pointer to the segment register.
212 */
213static void iemHlpAdjustSelectorForNewCpl(PVMCPU pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
214{
215#ifdef VBOX_WITH_RAW_MODE_NOT_R0
216 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
217 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg);
218#else
219 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
220#endif
221 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
222
223 if ( uCpl > pSReg->Attr.n.u2Dpl
224 && pSReg->Attr.n.u1DescType /* code or data, not system */
225 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
226 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
227 iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
228}
229
230
231/**
232 * Indicates that we have modified the FPU state.
233 *
234 * @param pVCpu The cross context virtual CPU structure of the calling thread.
235 */
236DECLINLINE(void) iemHlpUsedFpu(PVMCPU pVCpu)
237{
238 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
239}
240
241/** @} */
242
243/** @name C Implementations
244 * @{
245 */
246
247/**
248 * Implements a 16-bit popa.
249 */
250IEM_CIMPL_DEF_0(iemCImpl_popa_16)
251{
252 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
253 RTGCPTR GCPtrLast = GCPtrStart + 15;
254 VBOXSTRICTRC rcStrict;
255
256 /*
257 * The docs are a bit hard to comprehend here, but it looks like we wrap
258 * around in real mode as long as none of the individual "popa" crosses the
259 * end of the stack segment. In protected mode we check the whole access
260 * in one go. For efficiency, only do the word-by-word thing if we're in
261 * danger of wrapping around.
262 */
263 /** @todo do popa boundary / wrap-around checks. */
264 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
265 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
266 {
267 /* word-by-word */
268 RTUINT64U TmpRsp;
269 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
270 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp);
271 if (rcStrict == VINF_SUCCESS)
272 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp);
273 if (rcStrict == VINF_SUCCESS)
274 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp);
275 if (rcStrict == VINF_SUCCESS)
276 {
277 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
278 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp);
279 }
280 if (rcStrict == VINF_SUCCESS)
281 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp);
282 if (rcStrict == VINF_SUCCESS)
283 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp);
284 if (rcStrict == VINF_SUCCESS)
285 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp);
286 if (rcStrict == VINF_SUCCESS)
287 {
288 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
289 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
290 }
291 }
292 else
293 {
294 uint16_t const *pa16Mem = NULL;
295 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
296 if (rcStrict == VINF_SUCCESS)
297 {
298 pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI];
299 pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI];
300 pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP];
301 /* skip sp */
302 pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX];
303 pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX];
304 pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX];
305 pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX];
306 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
307 if (rcStrict == VINF_SUCCESS)
308 {
309 iemRegAddToRsp(pVCpu, 16);
310 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
311 }
312 }
313 }
314 return rcStrict;
315}
316
317
318/**
319 * Implements a 32-bit popa.
320 */
321IEM_CIMPL_DEF_0(iemCImpl_popa_32)
322{
323 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
324 RTGCPTR GCPtrLast = GCPtrStart + 31;
325 VBOXSTRICTRC rcStrict;
326
327 /*
328 * The docs are a bit hard to comprehend here, but it looks like we wrap
329 * around in real mode as long as none of the individual "popa" crosses the
330 * end of the stack segment. In protected mode we check the whole access
331 * in one go. For efficiency, only do the word-by-word thing if we're in
332 * danger of wrapping around.
333 */
334 /** @todo do popa boundary / wrap-around checks. */
335 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
336 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
337 {
338 /* word-by-word */
339 RTUINT64U TmpRsp;
340 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
341 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp);
342 if (rcStrict == VINF_SUCCESS)
343 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp);
344 if (rcStrict == VINF_SUCCESS)
345 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp);
346 if (rcStrict == VINF_SUCCESS)
347 {
348 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
349 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp);
350 }
351 if (rcStrict == VINF_SUCCESS)
352 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp);
353 if (rcStrict == VINF_SUCCESS)
354 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp);
355 if (rcStrict == VINF_SUCCESS)
356 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp);
357 if (rcStrict == VINF_SUCCESS)
358 {
359#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
360 pVCpu->cpum.GstCtx.rdi &= UINT32_MAX;
361 pVCpu->cpum.GstCtx.rsi &= UINT32_MAX;
362 pVCpu->cpum.GstCtx.rbp &= UINT32_MAX;
363 pVCpu->cpum.GstCtx.rbx &= UINT32_MAX;
364 pVCpu->cpum.GstCtx.rdx &= UINT32_MAX;
365 pVCpu->cpum.GstCtx.rcx &= UINT32_MAX;
366 pVCpu->cpum.GstCtx.rax &= UINT32_MAX;
367#endif
368 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
369 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
370 }
371 }
372 else
373 {
374 uint32_t const *pa32Mem;
375 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
376 if (rcStrict == VINF_SUCCESS)
377 {
378 pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI];
379 pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI];
380 pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP];
381 /* skip esp */
382 pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX];
383 pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX];
384 pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX];
385 pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX];
386 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
387 if (rcStrict == VINF_SUCCESS)
388 {
389 iemRegAddToRsp(pVCpu, 32);
390 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
391 }
392 }
393 }
394 return rcStrict;
395}
396
397
398/**
399 * Implements a 16-bit pusha.
400 */
401IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
402{
403 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
404 RTGCPTR GCPtrBottom = GCPtrTop - 15;
405 VBOXSTRICTRC rcStrict;
406
407 /*
408 * The docs are a bit hard to comprehend here, but it looks like we wrap
409 * around in real mode as long as none of the individual "pushd" crosses the
410 * end of the stack segment. In protected mode we check the whole access
411 * in one go. For efficiency, only do the word-by-word thing if we're in
412 * danger of wrapping around.
413 */
414 /** @todo do pusha boundary / wrap-around checks. */
415 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
416 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
417 {
418 /* word-by-word */
419 RTUINT64U TmpRsp;
420 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
421 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp);
422 if (rcStrict == VINF_SUCCESS)
423 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp);
424 if (rcStrict == VINF_SUCCESS)
425 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp);
426 if (rcStrict == VINF_SUCCESS)
427 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp);
428 if (rcStrict == VINF_SUCCESS)
429 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp);
430 if (rcStrict == VINF_SUCCESS)
431 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp);
432 if (rcStrict == VINF_SUCCESS)
433 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp);
434 if (rcStrict == VINF_SUCCESS)
435 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp);
436 if (rcStrict == VINF_SUCCESS)
437 {
438 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
439 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
440 }
441 }
442 else
443 {
444 GCPtrBottom--;
445 uint16_t *pa16Mem = NULL;
446 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
447 if (rcStrict == VINF_SUCCESS)
448 {
449 pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di;
450 pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si;
451 pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp;
452 pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp;
453 pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx;
454 pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx;
455 pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx;
456 pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax;
457 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
458 if (rcStrict == VINF_SUCCESS)
459 {
460 iemRegSubFromRsp(pVCpu, 16);
461 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
462 }
463 }
464 }
465 return rcStrict;
466}
467
468
469/**
470 * Implements a 32-bit pusha.
471 */
472IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
473{
474 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
475 RTGCPTR GCPtrBottom = GCPtrTop - 31;
476 VBOXSTRICTRC rcStrict;
477
478 /*
479 * The docs are a bit hard to comprehend here, but it looks like we wrap
480 * around in real mode as long as none of the individual "pusha" crosses the
481 * end of the stack segment. In protected mode we check the whole access
482 * in one go. For efficiency, only do the word-by-word thing if we're in
483 * danger of wrapping around.
484 */
485 /** @todo do pusha boundary / wrap-around checks. */
486 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
487 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
488 {
489 /* word-by-word */
490 RTUINT64U TmpRsp;
491 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
492 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp);
493 if (rcStrict == VINF_SUCCESS)
494 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp);
495 if (rcStrict == VINF_SUCCESS)
496 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp);
497 if (rcStrict == VINF_SUCCESS)
498 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp);
499 if (rcStrict == VINF_SUCCESS)
500 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp);
501 if (rcStrict == VINF_SUCCESS)
502 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp);
503 if (rcStrict == VINF_SUCCESS)
504 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp);
505 if (rcStrict == VINF_SUCCESS)
506 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp);
507 if (rcStrict == VINF_SUCCESS)
508 {
509 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
510 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
511 }
512 }
513 else
514 {
515 GCPtrBottom--;
516 uint32_t *pa32Mem;
517 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
518 if (rcStrict == VINF_SUCCESS)
519 {
520 pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi;
521 pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi;
522 pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp;
523 pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp;
524 pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx;
525 pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx;
526 pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx;
527 pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax;
528 rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
529 if (rcStrict == VINF_SUCCESS)
530 {
531 iemRegSubFromRsp(pVCpu, 32);
532 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
533 }
534 }
535 }
536 return rcStrict;
537}
538
539
540/**
541 * Implements pushf.
542 *
543 *
544 * @param enmEffOpSize The effective operand size.
545 */
546IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
547{
548 VBOXSTRICTRC rcStrict;
549
550 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
551 {
552 Log2(("pushf: Guest intercept -> #VMEXIT\n"));
553 IEM_SVM_UPDATE_NRIP(pVCpu);
554 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
555 }
556
557 /*
558 * If we're in V8086 mode some care is required (which is why we're in
559 * doing this in a C implementation).
560 */
561 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
562 if ( (fEfl & X86_EFL_VM)
563 && X86_EFL_GET_IOPL(fEfl) != 3 )
564 {
565 Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE);
566 if ( enmEffOpSize != IEMMODE_16BIT
567 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
568 return iemRaiseGeneralProtectionFault0(pVCpu);
569 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
570 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
571 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
572 }
573 else
574 {
575
576 /*
577 * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
578 */
579 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
580
581 switch (enmEffOpSize)
582 {
583 case IEMMODE_16BIT:
584 AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
585 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
586 fEfl |= UINT16_C(0xf000);
587 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
588 break;
589 case IEMMODE_32BIT:
590 rcStrict = iemMemStackPushU32(pVCpu, fEfl);
591 break;
592 case IEMMODE_64BIT:
593 rcStrict = iemMemStackPushU64(pVCpu, fEfl);
594 break;
595 IEM_NOT_REACHED_DEFAULT_CASE_RET();
596 }
597 }
598 if (rcStrict != VINF_SUCCESS)
599 return rcStrict;
600
601 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
602 return VINF_SUCCESS;
603}
604
605
606/**
607 * Implements popf.
608 *
609 * @param enmEffOpSize The effective operand size.
610 */
611IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
612{
613 uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu);
614 VBOXSTRICTRC rcStrict;
615 uint32_t fEflNew;
616
617 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
618 {
619 Log2(("popf: Guest intercept -> #VMEXIT\n"));
620 IEM_SVM_UPDATE_NRIP(pVCpu);
621 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
622 }
623
624 /*
625 * V8086 is special as usual.
626 */
627 if (fEflOld & X86_EFL_VM)
628 {
629 /*
630 * Almost anything goes if IOPL is 3.
631 */
632 if (X86_EFL_GET_IOPL(fEflOld) == 3)
633 {
634 switch (enmEffOpSize)
635 {
636 case IEMMODE_16BIT:
637 {
638 uint16_t u16Value;
639 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
640 if (rcStrict != VINF_SUCCESS)
641 return rcStrict;
642 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
643 break;
644 }
645 case IEMMODE_32BIT:
646 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
647 if (rcStrict != VINF_SUCCESS)
648 return rcStrict;
649 break;
650 IEM_NOT_REACHED_DEFAULT_CASE_RET();
651 }
652
653 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
654 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
655 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
656 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
657 }
658 /*
659 * Interrupt flag virtualization with CR4.VME=1.
660 */
661 else if ( enmEffOpSize == IEMMODE_16BIT
662 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
663 {
664 uint16_t u16Value;
665 RTUINT64U TmpRsp;
666 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
667 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
668 if (rcStrict != VINF_SUCCESS)
669 return rcStrict;
670
671 /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
672 * or before? */
673 if ( ( (u16Value & X86_EFL_IF)
674 && (fEflOld & X86_EFL_VIP))
675 || (u16Value & X86_EFL_TF) )
676 return iemRaiseGeneralProtectionFault0(pVCpu);
677
678 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
679 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
680 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
681 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
682
683 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
684 }
685 else
686 return iemRaiseGeneralProtectionFault0(pVCpu);
687
688 }
689 /*
690 * Not in V8086 mode.
691 */
692 else
693 {
694 /* Pop the flags. */
695 switch (enmEffOpSize)
696 {
697 case IEMMODE_16BIT:
698 {
699 uint16_t u16Value;
700 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
701 if (rcStrict != VINF_SUCCESS)
702 return rcStrict;
703 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
704
705 /*
706 * Ancient CPU adjustments:
707 * - 8086, 80186, V20/30:
708 * Fixed bits 15:12 bits are not kept correctly internally, mostly for
709 * practical reasons (masking below). We add them when pushing flags.
710 * - 80286:
711 * The NT and IOPL flags cannot be popped from real mode and are
712 * therefore always zero (since a 286 can never exit from PM and
713 * their initial value is zero). This changed on a 386 and can
714 * therefore be used to detect 286 or 386 CPU in real mode.
715 */
716 if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
717 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
718 fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
719 break;
720 }
721 case IEMMODE_32BIT:
722 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
723 if (rcStrict != VINF_SUCCESS)
724 return rcStrict;
725 break;
726 case IEMMODE_64BIT:
727 {
728 uint64_t u64Value;
729 rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
730 if (rcStrict != VINF_SUCCESS)
731 return rcStrict;
732 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
733 break;
734 }
735 IEM_NOT_REACHED_DEFAULT_CASE_RET();
736 }
737
738 /* Merge them with the current flags. */
739 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
740 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
741 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
742 || pVCpu->iem.s.uCpl == 0)
743 {
744 fEflNew &= fPopfBits;
745 fEflNew |= ~fPopfBits & fEflOld;
746 }
747 else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
748 {
749 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
750 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
751 }
752 else
753 {
754 fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
755 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
756 }
757 }
758
759 /*
760 * Commit the flags.
761 */
762 Assert(fEflNew & RT_BIT_32(1));
763 IEMMISC_SET_EFL(pVCpu, fEflNew);
764 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
765
766 return VINF_SUCCESS;
767}
768
769
770/**
771 * Implements an indirect call.
772 *
773 * @param uNewPC The new program counter (RIP) value (loaded from the
774 * operand).
775 * @param enmEffOpSize The effective operand size.
776 */
777IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
778{
779 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
780 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
781 return iemRaiseGeneralProtectionFault0(pVCpu);
782
783 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
784 if (rcStrict != VINF_SUCCESS)
785 return rcStrict;
786
787 pVCpu->cpum.GstCtx.rip = uNewPC;
788 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
789
790#ifndef IEM_WITH_CODE_TLB
791 /* Flush the prefetch buffer. */
792 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
793#endif
794 return VINF_SUCCESS;
795}
796
797
798/**
799 * Implements a 16-bit relative call.
800 *
801 * @param offDisp The displacment offset.
802 */
803IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
804{
805 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
806 uint16_t uNewPC = uOldPC + offDisp;
807 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
808 return iemRaiseGeneralProtectionFault0(pVCpu);
809
810 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
811 if (rcStrict != VINF_SUCCESS)
812 return rcStrict;
813
814 pVCpu->cpum.GstCtx.rip = uNewPC;
815 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
816
817#ifndef IEM_WITH_CODE_TLB
818 /* Flush the prefetch buffer. */
819 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
820#endif
821 return VINF_SUCCESS;
822}
823
824
825/**
826 * Implements a 32-bit indirect call.
827 *
828 * @param uNewPC The new program counter (RIP) value (loaded from the
829 * operand).
830 * @param enmEffOpSize The effective operand size.
831 */
832IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
833{
834 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
835 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
836 return iemRaiseGeneralProtectionFault0(pVCpu);
837
838 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
839 if (rcStrict != VINF_SUCCESS)
840 return rcStrict;
841
842#if defined(IN_RING3) && defined(VBOX_WITH_RAW_MODE) && defined(VBOX_WITH_CALL_RECORD)
843 /*
844 * CASM hook for recording interesting indirect calls.
845 */
846 if ( !pVCpu->cpum.GstCtx.eflags.Bits.u1IF
847 && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
848 && !CSAMIsEnabled(pVCpu->CTX_SUFF(pVM))
849 && pVCpu->iem.s.uCpl == 0)
850 {
851 EMSTATE enmState = EMGetState(pVCpu);
852 if ( enmState == EMSTATE_IEM_THEN_REM
853 || enmState == EMSTATE_IEM
854 || enmState == EMSTATE_REM)
855 CSAMR3RecordCallAddress(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.eip);
856 }
857#endif
858
859 pVCpu->cpum.GstCtx.rip = uNewPC;
860 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
861
862#ifndef IEM_WITH_CODE_TLB
863 /* Flush the prefetch buffer. */
864 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
865#endif
866 return VINF_SUCCESS;
867}
868
869
870/**
871 * Implements a 32-bit relative call.
872 *
873 * @param offDisp The displacment offset.
874 */
875IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
876{
877 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
878 uint32_t uNewPC = uOldPC + offDisp;
879 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
880 return iemRaiseGeneralProtectionFault0(pVCpu);
881
882 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
883 if (rcStrict != VINF_SUCCESS)
884 return rcStrict;
885
886 pVCpu->cpum.GstCtx.rip = uNewPC;
887 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
888
889#ifndef IEM_WITH_CODE_TLB
890 /* Flush the prefetch buffer. */
891 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
892#endif
893 return VINF_SUCCESS;
894}
895
896
897/**
898 * Implements a 64-bit indirect call.
899 *
900 * @param uNewPC The new program counter (RIP) value (loaded from the
901 * operand).
902 * @param enmEffOpSize The effective operand size.
903 */
904IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
905{
906 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
907 if (!IEM_IS_CANONICAL(uNewPC))
908 return iemRaiseGeneralProtectionFault0(pVCpu);
909
910 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
911 if (rcStrict != VINF_SUCCESS)
912 return rcStrict;
913
914 pVCpu->cpum.GstCtx.rip = uNewPC;
915 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
916
917#ifndef IEM_WITH_CODE_TLB
918 /* Flush the prefetch buffer. */
919 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
920#endif
921 return VINF_SUCCESS;
922}
923
924
925/**
926 * Implements a 64-bit relative call.
927 *
928 * @param offDisp The displacment offset.
929 */
930IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
931{
932 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
933 uint64_t uNewPC = uOldPC + offDisp;
934 if (!IEM_IS_CANONICAL(uNewPC))
935 return iemRaiseNotCanonical(pVCpu);
936
937 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
938 if (rcStrict != VINF_SUCCESS)
939 return rcStrict;
940
941 pVCpu->cpum.GstCtx.rip = uNewPC;
942 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
943
944#ifndef IEM_WITH_CODE_TLB
945 /* Flush the prefetch buffer. */
946 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
947#endif
948
949 return VINF_SUCCESS;
950}
951
952
953/**
954 * Implements far jumps and calls thru task segments (TSS).
955 *
956 * @param uSel The selector.
957 * @param enmBranch The kind of branching we're performing.
958 * @param enmEffOpSize The effective operand size.
959 * @param pDesc The descriptor corresponding to @a uSel. The type is
960 * task gate.
961 */
962IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
963{
964#ifndef IEM_IMPLEMENTS_TASKSWITCH
965 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
966#else
967 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
968 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
969 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
970 RT_NOREF_PV(enmEffOpSize);
971 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
972
973 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
974 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
975 {
976 Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
977 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
978 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
979 }
980
981 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
982 * far calls (see iemCImpl_callf). Most likely in both cases it should be
983 * checked here, need testcases. */
984 if (!pDesc->Legacy.Gen.u1Present)
985 {
986 Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
987 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
988 }
989
990 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
991 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
992 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
993#endif
994}
995
996
997/**
998 * Implements far jumps and calls thru task gates.
999 *
1000 * @param uSel The selector.
1001 * @param enmBranch The kind of branching we're performing.
1002 * @param enmEffOpSize The effective operand size.
1003 * @param pDesc The descriptor corresponding to @a uSel. The type is
1004 * task gate.
1005 */
1006IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1007{
1008#ifndef IEM_IMPLEMENTS_TASKSWITCH
1009 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1010#else
1011 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1012 RT_NOREF_PV(enmEffOpSize);
1013 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1014
1015 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1016 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1017 {
1018 Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1019 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1020 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1021 }
1022
1023 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1024 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1025 * checked here, need testcases. */
1026 if (!pDesc->Legacy.Gen.u1Present)
1027 {
1028 Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
1029 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1030 }
1031
1032 /*
1033 * Fetch the new TSS descriptor from the GDT.
1034 */
1035 RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
1036 if (uSelTss & X86_SEL_LDT)
1037 {
1038 Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
1039 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1040 }
1041
1042 IEMSELDESC TssDesc;
1043 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
1044 if (rcStrict != VINF_SUCCESS)
1045 return rcStrict;
1046
1047 if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
1048 {
1049 Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
1050 TssDesc.Legacy.Gate.u4Type));
1051 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1052 }
1053
1054 if (!TssDesc.Legacy.Gate.u1Present)
1055 {
1056 Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
1057 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
1058 }
1059
1060 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1061 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1062 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
1063#endif
1064}
1065
1066
1067/**
1068 * Implements far jumps and calls thru call gates.
1069 *
1070 * @param uSel The selector.
1071 * @param enmBranch The kind of branching we're performing.
1072 * @param enmEffOpSize The effective operand size.
1073 * @param pDesc The descriptor corresponding to @a uSel. The type is
1074 * call gate.
1075 */
1076IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1077{
1078#define IEM_IMPLEMENTS_CALLGATE
1079#ifndef IEM_IMPLEMENTS_CALLGATE
1080 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1081#else
1082 RT_NOREF_PV(enmEffOpSize);
1083 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1084
1085 /* NB: Far jumps can only do intra-privilege transfers. Far calls support
1086 * inter-privilege calls and are much more complex.
1087 *
1088 * NB: 64-bit call gate has the same type as a 32-bit call gate! If
1089 * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
1090 * must be 16-bit or 32-bit.
1091 */
1092 /** @todo: effective operand size is probably irrelevant here, only the
1093 * call gate bitness matters??
1094 */
1095 VBOXSTRICTRC rcStrict;
1096 RTPTRUNION uPtrRet;
1097 uint64_t uNewRsp;
1098 uint64_t uNewRip;
1099 uint64_t u64Base;
1100 uint32_t cbLimit;
1101 RTSEL uNewCS;
1102 IEMSELDESC DescCS;
1103
1104 AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
1105 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1106 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
1107 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
1108
1109 /* Determine the new instruction pointer from the gate descriptor. */
1110 uNewRip = pDesc->Legacy.Gate.u16OffsetLow
1111 | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
1112 | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
1113
1114 /* Perform DPL checks on the gate descriptor. */
1115 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1116 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1117 {
1118 Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1119 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1120 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1121 }
1122
1123 /** @todo does this catch NULL selectors, too? */
1124 if (!pDesc->Legacy.Gen.u1Present)
1125 {
1126 Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
1127 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1128 }
1129
1130 /*
1131 * Fetch the target CS descriptor from the GDT or LDT.
1132 */
1133 uNewCS = pDesc->Legacy.Gate.u16Sel;
1134 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
1135 if (rcStrict != VINF_SUCCESS)
1136 return rcStrict;
1137
1138 /* Target CS must be a code selector. */
1139 if ( !DescCS.Legacy.Gen.u1DescType
1140 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1141 {
1142 Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1143 uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
1144 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1145 }
1146
1147 /* Privilege checks on target CS. */
1148 if (enmBranch == IEMBRANCH_JUMP)
1149 {
1150 if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1151 {
1152 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1153 {
1154 Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1155 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1156 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1157 }
1158 }
1159 else
1160 {
1161 if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
1162 {
1163 Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1164 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1165 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1166 }
1167 }
1168 }
1169 else
1170 {
1171 Assert(enmBranch == IEMBRANCH_CALL);
1172 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1173 {
1174 Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1175 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1176 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
1177 }
1178 }
1179
1180 /* Additional long mode checks. */
1181 if (IEM_IS_LONG_MODE(pVCpu))
1182 {
1183 if (!DescCS.Legacy.Gen.u1Long)
1184 {
1185 Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
1186 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1187 }
1188
1189 /* L vs D. */
1190 if ( DescCS.Legacy.Gen.u1Long
1191 && DescCS.Legacy.Gen.u1DefBig)
1192 {
1193 Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
1194 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1195 }
1196 }
1197
1198 if (!DescCS.Legacy.Gate.u1Present)
1199 {
1200 Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
1201 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
1202 }
1203
1204 if (enmBranch == IEMBRANCH_JUMP)
1205 {
1206 /** @todo: This is very similar to regular far jumps; merge! */
1207 /* Jumps are fairly simple... */
1208
1209 /* Chop the high bits off if 16-bit gate (Intel says so). */
1210 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1211 uNewRip = (uint16_t)uNewRip;
1212
1213 /* Limit check for non-long segments. */
1214 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1215 if (DescCS.Legacy.Gen.u1Long)
1216 u64Base = 0;
1217 else
1218 {
1219 if (uNewRip > cbLimit)
1220 {
1221 Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
1222 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1223 }
1224 u64Base = X86DESC_BASE(&DescCS.Legacy);
1225 }
1226
1227 /* Canonical address check. */
1228 if (!IEM_IS_CANONICAL(uNewRip))
1229 {
1230 Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1231 return iemRaiseNotCanonical(pVCpu);
1232 }
1233
1234 /*
1235 * Ok, everything checked out fine. Now set the accessed bit before
1236 * committing the result into CS, CSHID and RIP.
1237 */
1238 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1239 {
1240 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1241 if (rcStrict != VINF_SUCCESS)
1242 return rcStrict;
1243 /** @todo check what VT-x and AMD-V does. */
1244 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1245 }
1246
1247 /* commit */
1248 pVCpu->cpum.GstCtx.rip = uNewRip;
1249 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1250 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1251 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1252 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1253 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1254 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1255 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1256 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1257 }
1258 else
1259 {
1260 Assert(enmBranch == IEMBRANCH_CALL);
1261 /* Calls are much more complicated. */
1262
1263 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
1264 {
1265 uint16_t offNewStack; /* Offset of new stack in TSS. */
1266 uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
1267 uint8_t uNewCSDpl;
1268 uint8_t cbWords;
1269 RTSEL uNewSS;
1270 RTSEL uOldSS;
1271 uint64_t uOldRsp;
1272 IEMSELDESC DescSS;
1273 RTPTRUNION uPtrTSS;
1274 RTGCPTR GCPtrTSS;
1275 RTPTRUNION uPtrParmWds;
1276 RTGCPTR GCPtrParmWds;
1277
1278 /* More privilege. This is the fun part. */
1279 Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
1280
1281 /*
1282 * Determine new SS:rSP from the TSS.
1283 */
1284 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
1285
1286 /* Figure out where the new stack pointer is stored in the TSS. */
1287 uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
1288 if (!IEM_IS_LONG_MODE(pVCpu))
1289 {
1290 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1291 {
1292 offNewStack = RT_UOFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
1293 cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
1294 }
1295 else
1296 {
1297 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1298 offNewStack = RT_UOFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
1299 cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
1300 }
1301 }
1302 else
1303 {
1304 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1305 offNewStack = RT_UOFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
1306 cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
1307 }
1308
1309 /* Check against TSS limit. */
1310 if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit)
1311 {
1312 Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit));
1313 return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel);
1314 }
1315
1316 GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack;
1317 rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
1318 if (rcStrict != VINF_SUCCESS)
1319 {
1320 Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1321 return rcStrict;
1322 }
1323
1324 if (!IEM_IS_LONG_MODE(pVCpu))
1325 {
1326 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1327 {
1328 uNewRsp = uPtrTSS.pu32[0];
1329 uNewSS = uPtrTSS.pu16[2];
1330 }
1331 else
1332 {
1333 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1334 uNewRsp = uPtrTSS.pu16[0];
1335 uNewSS = uPtrTSS.pu16[1];
1336 }
1337 }
1338 else
1339 {
1340 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1341 /* SS will be a NULL selector, but that's valid. */
1342 uNewRsp = uPtrTSS.pu64[0];
1343 uNewSS = uNewCSDpl;
1344 }
1345
1346 /* Done with the TSS now. */
1347 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
1348 if (rcStrict != VINF_SUCCESS)
1349 {
1350 Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1351 return rcStrict;
1352 }
1353
1354 /* Only used outside of long mode. */
1355 cbWords = pDesc->Legacy.Gate.u5ParmCount;
1356
1357 /* If EFER.LMA is 0, there's extra work to do. */
1358 if (!IEM_IS_LONG_MODE(pVCpu))
1359 {
1360 if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
1361 {
1362 Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
1363 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1364 }
1365
1366 /* Grab the new SS descriptor. */
1367 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1368 if (rcStrict != VINF_SUCCESS)
1369 return rcStrict;
1370
1371 /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
1372 if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
1373 || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
1374 {
1375 Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
1376 uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
1377 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1378 }
1379
1380 /* Ensure new SS is a writable data segment. */
1381 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
1382 {
1383 Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
1384 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1385 }
1386
1387 if (!DescSS.Legacy.Gen.u1Present)
1388 {
1389 Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
1390 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
1391 }
1392 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1393 cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
1394 else
1395 cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
1396 }
1397 else
1398 {
1399 /* Just grab the new (NULL) SS descriptor. */
1400 /** @todo testcase: Check whether the zero GDT entry is actually loaded here
1401 * like we do... */
1402 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1403 if (rcStrict != VINF_SUCCESS)
1404 return rcStrict;
1405
1406 cbNewStack = sizeof(uint64_t) * 4;
1407 }
1408
1409 /** @todo: According to Intel, new stack is checked for enough space first,
1410 * then switched. According to AMD, the stack is switched first and
1411 * then pushes might fault!
1412 * NB: OS/2 Warp 3/4 actively relies on the fact that possible
1413 * incoming stack #PF happens before actual stack switch. AMD is
1414 * either lying or implicitly assumes that new state is committed
1415 * only if and when an instruction doesn't fault.
1416 */
1417
1418 /** @todo: According to AMD, CS is loaded first, then SS.
1419 * According to Intel, it's the other way around!?
1420 */
1421
1422 /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
1423
1424 /* Set the accessed bit before committing new SS. */
1425 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1426 {
1427 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
1428 if (rcStrict != VINF_SUCCESS)
1429 return rcStrict;
1430 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1431 }
1432
1433 /* Remember the old SS:rSP and their linear address. */
1434 uOldSS = pVCpu->cpum.GstCtx.ss.Sel;
1435 uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp;
1436
1437 GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp;
1438
1439 /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
1440 or #PF, the former is not implemented in this workaround. */
1441 /** @todo Proper fix callgate target stack exceptions. */
1442 /** @todo testcase: Cover callgates with partially or fully inaccessible
1443 * target stacks. */
1444 void *pvNewFrame;
1445 RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
1446 rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW);
1447 if (rcStrict != VINF_SUCCESS)
1448 {
1449 Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
1450 return rcStrict;
1451 }
1452 rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
1453 if (rcStrict != VINF_SUCCESS)
1454 {
1455 Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1456 return rcStrict;
1457 }
1458
1459 /* Commit new SS:rSP. */
1460 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
1461 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
1462 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
1463 pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
1464 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
1465 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1466 pVCpu->cpum.GstCtx.rsp = uNewRsp;
1467 pVCpu->iem.s.uCpl = uNewCSDpl;
1468 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
1469 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
1470
1471 /* At this point the stack access must not fail because new state was already committed. */
1472 /** @todo this can still fail due to SS.LIMIT not check. */
1473 rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
1474 &uPtrRet.pv, &uNewRsp);
1475 AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
1476 VERR_INTERNAL_ERROR_5);
1477
1478 if (!IEM_IS_LONG_MODE(pVCpu))
1479 {
1480 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1481 {
1482 /* Push the old CS:rIP. */
1483 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1484 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1485
1486 if (cbWords)
1487 {
1488 /* Map the relevant chunk of the old stack. */
1489 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1490 if (rcStrict != VINF_SUCCESS)
1491 {
1492 Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1493 return rcStrict;
1494 }
1495
1496 /* Copy the parameter (d)words. */
1497 for (int i = 0; i < cbWords; ++i)
1498 uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
1499
1500 /* Unmap the old stack. */
1501 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1502 if (rcStrict != VINF_SUCCESS)
1503 {
1504 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1505 return rcStrict;
1506 }
1507 }
1508
1509 /* Push the old SS:rSP. */
1510 uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
1511 uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
1512 }
1513 else
1514 {
1515 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1516
1517 /* Push the old CS:rIP. */
1518 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1519 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1520
1521 if (cbWords)
1522 {
1523 /* Map the relevant chunk of the old stack. */
1524 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1525 if (rcStrict != VINF_SUCCESS)
1526 {
1527 Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1528 return rcStrict;
1529 }
1530
1531 /* Copy the parameter words. */
1532 for (int i = 0; i < cbWords; ++i)
1533 uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
1534
1535 /* Unmap the old stack. */
1536 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1537 if (rcStrict != VINF_SUCCESS)
1538 {
1539 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1540 return rcStrict;
1541 }
1542 }
1543
1544 /* Push the old SS:rSP. */
1545 uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
1546 uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
1547 }
1548 }
1549 else
1550 {
1551 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1552
1553 /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
1554 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1555 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1556 uPtrRet.pu64[2] = uOldRsp;
1557 uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
1558 }
1559
1560 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1561 if (rcStrict != VINF_SUCCESS)
1562 {
1563 Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1564 return rcStrict;
1565 }
1566
1567 /* Chop the high bits off if 16-bit gate (Intel says so). */
1568 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1569 uNewRip = (uint16_t)uNewRip;
1570
1571 /* Limit / canonical check. */
1572 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1573 if (!IEM_IS_LONG_MODE(pVCpu))
1574 {
1575 if (uNewRip > cbLimit)
1576 {
1577 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1578 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1579 }
1580 u64Base = X86DESC_BASE(&DescCS.Legacy);
1581 }
1582 else
1583 {
1584 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1585 if (!IEM_IS_CANONICAL(uNewRip))
1586 {
1587 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1588 return iemRaiseNotCanonical(pVCpu);
1589 }
1590 u64Base = 0;
1591 }
1592
1593 /*
1594 * Now set the accessed bit before
1595 * writing the return address to the stack and committing the result into
1596 * CS, CSHID and RIP.
1597 */
1598 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1599 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1600 {
1601 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1602 if (rcStrict != VINF_SUCCESS)
1603 return rcStrict;
1604 /** @todo check what VT-x and AMD-V does. */
1605 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1606 }
1607
1608 /* Commit new CS:rIP. */
1609 pVCpu->cpum.GstCtx.rip = uNewRip;
1610 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1611 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1612 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1613 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1614 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1615 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1616 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1617 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1618 }
1619 else
1620 {
1621 /* Same privilege. */
1622 /** @todo: This is very similar to regular far calls; merge! */
1623
1624 /* Check stack first - may #SS(0). */
1625 /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
1626 * 16-bit code cause a two or four byte CS to be pushed? */
1627 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
1628 IEM_IS_LONG_MODE(pVCpu) ? 8+8
1629 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
1630 &uPtrRet.pv, &uNewRsp);
1631 if (rcStrict != VINF_SUCCESS)
1632 return rcStrict;
1633
1634 /* Chop the high bits off if 16-bit gate (Intel says so). */
1635 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1636 uNewRip = (uint16_t)uNewRip;
1637
1638 /* Limit / canonical check. */
1639 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1640 if (!IEM_IS_LONG_MODE(pVCpu))
1641 {
1642 if (uNewRip > cbLimit)
1643 {
1644 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1645 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1646 }
1647 u64Base = X86DESC_BASE(&DescCS.Legacy);
1648 }
1649 else
1650 {
1651 if (!IEM_IS_CANONICAL(uNewRip))
1652 {
1653 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1654 return iemRaiseNotCanonical(pVCpu);
1655 }
1656 u64Base = 0;
1657 }
1658
1659 /*
1660 * Now set the accessed bit before
1661 * writing the return address to the stack and committing the result into
1662 * CS, CSHID and RIP.
1663 */
1664 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1665 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1666 {
1667 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1668 if (rcStrict != VINF_SUCCESS)
1669 return rcStrict;
1670 /** @todo check what VT-x and AMD-V does. */
1671 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1672 }
1673
1674 /* stack */
1675 if (!IEM_IS_LONG_MODE(pVCpu))
1676 {
1677 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1678 {
1679 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1680 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1681 }
1682 else
1683 {
1684 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1685 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1686 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1687 }
1688 }
1689 else
1690 {
1691 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1692 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1693 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1694 }
1695
1696 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1697 if (rcStrict != VINF_SUCCESS)
1698 return rcStrict;
1699
1700 /* commit */
1701 pVCpu->cpum.GstCtx.rip = uNewRip;
1702 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1703 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1704 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1705 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1706 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1707 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1708 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1709 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1710 }
1711 }
1712 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1713
1714 /* Flush the prefetch buffer. */
1715# ifdef IEM_WITH_CODE_TLB
1716 pVCpu->iem.s.pbInstrBuf = NULL;
1717# else
1718 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1719# endif
1720 return VINF_SUCCESS;
1721#endif
1722}
1723
1724
1725/**
1726 * Implements far jumps and calls thru system selectors.
1727 *
1728 * @param uSel The selector.
1729 * @param enmBranch The kind of branching we're performing.
1730 * @param enmEffOpSize The effective operand size.
1731 * @param pDesc The descriptor corresponding to @a uSel.
1732 */
1733IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1734{
1735 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1736 Assert((uSel & X86_SEL_MASK_OFF_RPL));
1737 IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1738
1739 if (IEM_IS_LONG_MODE(pVCpu))
1740 switch (pDesc->Legacy.Gen.u4Type)
1741 {
1742 case AMD64_SEL_TYPE_SYS_CALL_GATE:
1743 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1744
1745 default:
1746 case AMD64_SEL_TYPE_SYS_LDT:
1747 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
1748 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
1749 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
1750 case AMD64_SEL_TYPE_SYS_INT_GATE:
1751 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1752 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1753 }
1754
1755 switch (pDesc->Legacy.Gen.u4Type)
1756 {
1757 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1758 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1759 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1760
1761 case X86_SEL_TYPE_SYS_TASK_GATE:
1762 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
1763
1764 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1765 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1766 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
1767
1768 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1769 Log(("branch %04x -> busy 286 TSS\n", uSel));
1770 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1771
1772 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1773 Log(("branch %04x -> busy 386 TSS\n", uSel));
1774 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1775
1776 default:
1777 case X86_SEL_TYPE_SYS_LDT:
1778 case X86_SEL_TYPE_SYS_286_INT_GATE:
1779 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1780 case X86_SEL_TYPE_SYS_386_INT_GATE:
1781 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1782 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1783 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1784 }
1785}
1786
1787
1788/**
1789 * Implements far jumps.
1790 *
1791 * @param uSel The selector.
1792 * @param offSeg The segment offset.
1793 * @param enmEffOpSize The effective operand size.
1794 */
1795IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1796{
1797 NOREF(cbInstr);
1798 Assert(offSeg <= UINT32_MAX);
1799
1800 /*
1801 * Real mode and V8086 mode are easy. The only snag seems to be that
1802 * CS.limit doesn't change and the limit check is done against the current
1803 * limit.
1804 */
1805 /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August
1806 * 1998) that up to and including the Intel 486, far control
1807 * transfers in real mode set default CS attributes (0x93) and also
1808 * set a 64K segment limit. Starting with the Pentium, the
1809 * attributes and limit are left alone but the access rights are
1810 * ignored. We only implement the Pentium+ behavior.
1811 * */
1812 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1813 {
1814 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1815 if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit)
1816 {
1817 Log(("iemCImpl_FarJmp: 16-bit limit\n"));
1818 return iemRaiseGeneralProtectionFault0(pVCpu);
1819 }
1820
1821 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1822 pVCpu->cpum.GstCtx.rip = offSeg;
1823 else
1824 pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX;
1825 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1826 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1827 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1828 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1829 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1830 return VINF_SUCCESS;
1831 }
1832
1833 /*
1834 * Protected mode. Need to parse the specified descriptor...
1835 */
1836 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1837 {
1838 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1839 return iemRaiseGeneralProtectionFault0(pVCpu);
1840 }
1841
1842 /* Fetch the descriptor. */
1843 IEMSELDESC Desc;
1844 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
1845 if (rcStrict != VINF_SUCCESS)
1846 return rcStrict;
1847
1848 /* Is it there? */
1849 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1850 {
1851 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1852 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1853 }
1854
1855 /*
1856 * Deal with it according to its type. We do the standard code selectors
1857 * here and dispatch the system selectors to worker functions.
1858 */
1859 if (!Desc.Legacy.Gen.u1DescType)
1860 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1861
1862 /* Only code segments. */
1863 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1864 {
1865 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1866 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1867 }
1868
1869 /* L vs D. */
1870 if ( Desc.Legacy.Gen.u1Long
1871 && Desc.Legacy.Gen.u1DefBig
1872 && IEM_IS_LONG_MODE(pVCpu))
1873 {
1874 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1875 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1876 }
1877
1878 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1879 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1880 {
1881 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
1882 {
1883 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1884 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1885 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1886 }
1887 }
1888 else
1889 {
1890 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
1891 {
1892 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1893 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1894 }
1895 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
1896 {
1897 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
1898 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1899 }
1900 }
1901
1902 /* Chop the high bits if 16-bit (Intel says so). */
1903 if (enmEffOpSize == IEMMODE_16BIT)
1904 offSeg &= UINT16_MAX;
1905
1906 /* Limit check. (Should alternatively check for non-canonical addresses
1907 here, but that is ruled out by offSeg being 32-bit, right?) */
1908 uint64_t u64Base;
1909 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1910 if (Desc.Legacy.Gen.u1Long)
1911 u64Base = 0;
1912 else
1913 {
1914 if (offSeg > cbLimit)
1915 {
1916 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1917 /** @todo: Intel says this is #GP(0)! */
1918 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1919 }
1920 u64Base = X86DESC_BASE(&Desc.Legacy);
1921 }
1922
1923 /*
1924 * Ok, everything checked out fine. Now set the accessed bit before
1925 * committing the result into CS, CSHID and RIP.
1926 */
1927 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1928 {
1929 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
1930 if (rcStrict != VINF_SUCCESS)
1931 return rcStrict;
1932 /** @todo check what VT-x and AMD-V does. */
1933 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1934 }
1935
1936 /* commit */
1937 pVCpu->cpum.GstCtx.rip = offSeg;
1938 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1939 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1940 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1941 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1942 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1943 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1944 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1945 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1946 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1947 /** @todo check if the hidden bits are loaded correctly for 64-bit
1948 * mode. */
1949
1950 /* Flush the prefetch buffer. */
1951#ifdef IEM_WITH_CODE_TLB
1952 pVCpu->iem.s.pbInstrBuf = NULL;
1953#else
1954 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1955#endif
1956
1957 return VINF_SUCCESS;
1958}
1959
1960
1961/**
1962 * Implements far calls.
1963 *
1964 * This very similar to iemCImpl_FarJmp.
1965 *
1966 * @param uSel The selector.
1967 * @param offSeg The segment offset.
1968 * @param enmEffOpSize The operand size (in case we need it).
1969 */
1970IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1971{
1972 VBOXSTRICTRC rcStrict;
1973 uint64_t uNewRsp;
1974 RTPTRUNION uPtrRet;
1975
1976 /*
1977 * Real mode and V8086 mode are easy. The only snag seems to be that
1978 * CS.limit doesn't change and the limit check is done against the current
1979 * limit.
1980 */
1981 /** @todo See comment for similar code in iemCImpl_FarJmp */
1982 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1983 {
1984 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1985
1986 /* Check stack first - may #SS(0). */
1987 rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
1988 &uPtrRet.pv, &uNewRsp);
1989 if (rcStrict != VINF_SUCCESS)
1990 return rcStrict;
1991
1992 /* Check the target address range. */
1993 if (offSeg > UINT32_MAX)
1994 return iemRaiseGeneralProtectionFault0(pVCpu);
1995
1996 /* Everything is fine, push the return address. */
1997 if (enmEffOpSize == IEMMODE_16BIT)
1998 {
1999 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2000 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2001 }
2002 else
2003 {
2004 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2005 uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel;
2006 }
2007 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2008 if (rcStrict != VINF_SUCCESS)
2009 return rcStrict;
2010
2011 /* Branch. */
2012 pVCpu->cpum.GstCtx.rip = offSeg;
2013 pVCpu->cpum.GstCtx.cs.Sel = uSel;
2014 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
2015 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2016 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
2017 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2018 return VINF_SUCCESS;
2019 }
2020
2021 /*
2022 * Protected mode. Need to parse the specified descriptor...
2023 */
2024 if (!(uSel & X86_SEL_MASK_OFF_RPL))
2025 {
2026 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
2027 return iemRaiseGeneralProtectionFault0(pVCpu);
2028 }
2029
2030 /* Fetch the descriptor. */
2031 IEMSELDESC Desc;
2032 rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
2033 if (rcStrict != VINF_SUCCESS)
2034 return rcStrict;
2035
2036 /*
2037 * Deal with it according to its type. We do the standard code selectors
2038 * here and dispatch the system selectors to worker functions.
2039 */
2040 if (!Desc.Legacy.Gen.u1DescType)
2041 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
2042
2043 /* Only code segments. */
2044 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2045 {
2046 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
2047 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2048 }
2049
2050 /* L vs D. */
2051 if ( Desc.Legacy.Gen.u1Long
2052 && Desc.Legacy.Gen.u1DefBig
2053 && IEM_IS_LONG_MODE(pVCpu))
2054 {
2055 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
2056 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2057 }
2058
2059 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
2060 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2061 {
2062 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
2063 {
2064 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
2065 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2066 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2067 }
2068 }
2069 else
2070 {
2071 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
2072 {
2073 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2074 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2075 }
2076 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
2077 {
2078 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
2079 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2080 }
2081 }
2082
2083 /* Is it there? */
2084 if (!Desc.Legacy.Gen.u1Present)
2085 {
2086 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
2087 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
2088 }
2089
2090 /* Check stack first - may #SS(0). */
2091 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
2092 * 16-bit code cause a two or four byte CS to be pushed? */
2093 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
2094 enmEffOpSize == IEMMODE_64BIT ? 8+8
2095 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2096 &uPtrRet.pv, &uNewRsp);
2097 if (rcStrict != VINF_SUCCESS)
2098 return rcStrict;
2099
2100 /* Chop the high bits if 16-bit (Intel says so). */
2101 if (enmEffOpSize == IEMMODE_16BIT)
2102 offSeg &= UINT16_MAX;
2103
2104 /* Limit / canonical check. */
2105 uint64_t u64Base;
2106 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
2107 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2108 {
2109 if (!IEM_IS_CANONICAL(offSeg))
2110 {
2111 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
2112 return iemRaiseNotCanonical(pVCpu);
2113 }
2114 u64Base = 0;
2115 }
2116 else
2117 {
2118 if (offSeg > cbLimit)
2119 {
2120 Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
2121 /** @todo: Intel says this is #GP(0)! */
2122 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2123 }
2124 u64Base = X86DESC_BASE(&Desc.Legacy);
2125 }
2126
2127 /*
2128 * Now set the accessed bit before
2129 * writing the return address to the stack and committing the result into
2130 * CS, CSHID and RIP.
2131 */
2132 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2133 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2134 {
2135 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
2136 if (rcStrict != VINF_SUCCESS)
2137 return rcStrict;
2138 /** @todo check what VT-x and AMD-V does. */
2139 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2140 }
2141
2142 /* stack */
2143 if (enmEffOpSize == IEMMODE_16BIT)
2144 {
2145 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2146 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2147 }
2148 else if (enmEffOpSize == IEMMODE_32BIT)
2149 {
2150 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2151 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
2152 }
2153 else
2154 {
2155 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
2156 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
2157 }
2158 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2159 if (rcStrict != VINF_SUCCESS)
2160 return rcStrict;
2161
2162 /* commit */
2163 pVCpu->cpum.GstCtx.rip = offSeg;
2164 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
2165 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
2166 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
2167 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2168 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
2169 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
2170 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2171 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2172 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2173 /** @todo check if the hidden bits are loaded correctly for 64-bit
2174 * mode. */
2175
2176 /* Flush the prefetch buffer. */
2177#ifdef IEM_WITH_CODE_TLB
2178 pVCpu->iem.s.pbInstrBuf = NULL;
2179#else
2180 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2181#endif
2182 return VINF_SUCCESS;
2183}
2184
2185
2186/**
2187 * Implements retf.
2188 *
2189 * @param enmEffOpSize The effective operand size.
2190 * @param cbPop The amount of arguments to pop from the stack
2191 * (bytes).
2192 */
2193IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2194{
2195 VBOXSTRICTRC rcStrict;
2196 RTCPTRUNION uPtrFrame;
2197 uint64_t uNewRsp;
2198 uint64_t uNewRip;
2199 uint16_t uNewCs;
2200 NOREF(cbInstr);
2201
2202 /*
2203 * Read the stack values first.
2204 */
2205 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
2206 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
2207 rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2208 if (rcStrict != VINF_SUCCESS)
2209 return rcStrict;
2210 if (enmEffOpSize == IEMMODE_16BIT)
2211 {
2212 uNewRip = uPtrFrame.pu16[0];
2213 uNewCs = uPtrFrame.pu16[1];
2214 }
2215 else if (enmEffOpSize == IEMMODE_32BIT)
2216 {
2217 uNewRip = uPtrFrame.pu32[0];
2218 uNewCs = uPtrFrame.pu16[2];
2219 }
2220 else
2221 {
2222 uNewRip = uPtrFrame.pu64[0];
2223 uNewCs = uPtrFrame.pu16[4];
2224 }
2225 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2226 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2227 { /* extremely likely */ }
2228 else
2229 return rcStrict;
2230
2231 /*
2232 * Real mode and V8086 mode are easy.
2233 */
2234 /** @todo See comment for similar code in iemCImpl_FarJmp */
2235 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2236 {
2237 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2238 /** @todo check how this is supposed to work if sp=0xfffe. */
2239
2240 /* Check the limit of the new EIP. */
2241 /** @todo Intel pseudo code only does the limit check for 16-bit
2242 * operands, AMD does not make any distinction. What is right? */
2243 if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit)
2244 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2245
2246 /* commit the operation. */
2247 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2248 pVCpu->cpum.GstCtx.rip = uNewRip;
2249 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2250 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2251 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2252 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2253 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2254 if (cbPop)
2255 iemRegAddToRsp(pVCpu, cbPop);
2256 return VINF_SUCCESS;
2257 }
2258
2259 /*
2260 * Protected mode is complicated, of course.
2261 */
2262 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2263 {
2264 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
2265 return iemRaiseGeneralProtectionFault0(pVCpu);
2266 }
2267
2268 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
2269
2270 /* Fetch the descriptor. */
2271 IEMSELDESC DescCs;
2272 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
2273 if (rcStrict != VINF_SUCCESS)
2274 return rcStrict;
2275
2276 /* Can only return to a code selector. */
2277 if ( !DescCs.Legacy.Gen.u1DescType
2278 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
2279 {
2280 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
2281 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
2282 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2283 }
2284
2285 /* L vs D. */
2286 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
2287 && DescCs.Legacy.Gen.u1DefBig
2288 && IEM_IS_LONG_MODE(pVCpu))
2289 {
2290 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
2291 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2292 }
2293
2294 /* DPL/RPL/CPL checks. */
2295 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
2296 {
2297 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
2298 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2299 }
2300
2301 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2302 {
2303 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
2304 {
2305 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
2306 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2307 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2308 }
2309 }
2310 else
2311 {
2312 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
2313 {
2314 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
2315 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2316 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2317 }
2318 }
2319
2320 /* Is it there? */
2321 if (!DescCs.Legacy.Gen.u1Present)
2322 {
2323 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
2324 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2325 }
2326
2327 /*
2328 * Return to outer privilege? (We'll typically have entered via a call gate.)
2329 */
2330 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
2331 {
2332 /* Read the outer stack pointer stored *after* the parameters. */
2333 rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2334 if (rcStrict != VINF_SUCCESS)
2335 return rcStrict;
2336
2337 uPtrFrame.pu8 += cbPop; /* Skip the parameters. */
2338
2339 uint16_t uNewOuterSs;
2340 uint64_t uNewOuterRsp;
2341 if (enmEffOpSize == IEMMODE_16BIT)
2342 {
2343 uNewOuterRsp = uPtrFrame.pu16[0];
2344 uNewOuterSs = uPtrFrame.pu16[1];
2345 }
2346 else if (enmEffOpSize == IEMMODE_32BIT)
2347 {
2348 uNewOuterRsp = uPtrFrame.pu32[0];
2349 uNewOuterSs = uPtrFrame.pu16[2];
2350 }
2351 else
2352 {
2353 uNewOuterRsp = uPtrFrame.pu64[0];
2354 uNewOuterSs = uPtrFrame.pu16[4];
2355 }
2356 uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */
2357 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2358 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2359 { /* extremely likely */ }
2360 else
2361 return rcStrict;
2362
2363 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
2364 and read the selector. */
2365 IEMSELDESC DescSs;
2366 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
2367 {
2368 if ( !DescCs.Legacy.Gen.u1Long
2369 || (uNewOuterSs & X86_SEL_RPL) == 3)
2370 {
2371 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
2372 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2373 return iemRaiseGeneralProtectionFault0(pVCpu);
2374 }
2375 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
2376 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
2377 }
2378 else
2379 {
2380 /* Fetch the descriptor for the new stack segment. */
2381 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
2382 if (rcStrict != VINF_SUCCESS)
2383 return rcStrict;
2384 }
2385
2386 /* Check that RPL of stack and code selectors match. */
2387 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
2388 {
2389 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2390 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2391 }
2392
2393 /* Must be a writable data segment. */
2394 if ( !DescSs.Legacy.Gen.u1DescType
2395 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
2396 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
2397 {
2398 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
2399 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2400 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2401 }
2402
2403 /* L vs D. (Not mentioned by intel.) */
2404 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
2405 && DescSs.Legacy.Gen.u1DefBig
2406 && IEM_IS_LONG_MODE(pVCpu))
2407 {
2408 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
2409 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2410 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2411 }
2412
2413 /* DPL/RPL/CPL checks. */
2414 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2415 {
2416 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
2417 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
2418 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2419 }
2420
2421 /* Is it there? */
2422 if (!DescSs.Legacy.Gen.u1Present)
2423 {
2424 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2425 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2426 }
2427
2428 /* Calc SS limit.*/
2429 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
2430
2431 /* Is RIP canonical or within CS.limit? */
2432 uint64_t u64Base;
2433 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2434
2435 /** @todo Testcase: Is this correct? */
2436 if ( DescCs.Legacy.Gen.u1Long
2437 && IEM_IS_LONG_MODE(pVCpu) )
2438 {
2439 if (!IEM_IS_CANONICAL(uNewRip))
2440 {
2441 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2442 return iemRaiseNotCanonical(pVCpu);
2443 }
2444 u64Base = 0;
2445 }
2446 else
2447 {
2448 if (uNewRip > cbLimitCs)
2449 {
2450 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
2451 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
2452 /** @todo: Intel says this is #GP(0)! */
2453 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2454 }
2455 u64Base = X86DESC_BASE(&DescCs.Legacy);
2456 }
2457
2458 /*
2459 * Now set the accessed bit before
2460 * writing the return address to the stack and committing the result into
2461 * CS, CSHID and RIP.
2462 */
2463 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
2464 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2465 {
2466 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2467 if (rcStrict != VINF_SUCCESS)
2468 return rcStrict;
2469 /** @todo check what VT-x and AMD-V does. */
2470 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2471 }
2472 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
2473 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2474 {
2475 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
2476 if (rcStrict != VINF_SUCCESS)
2477 return rcStrict;
2478 /** @todo check what VT-x and AMD-V does. */
2479 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2480 }
2481
2482 /* commit */
2483 if (enmEffOpSize == IEMMODE_16BIT)
2484 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2485 else
2486 pVCpu->cpum.GstCtx.rip = uNewRip;
2487 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2488 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2489 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2490 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2491 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2492 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2493 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2494 pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs;
2495 pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs;
2496 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
2497 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
2498 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
2499 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2500 pVCpu->cpum.GstCtx.ss.u64Base = 0;
2501 else
2502 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
2503 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2504 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewOuterRsp;
2505 else
2506 pVCpu->cpum.GstCtx.rsp = uNewOuterRsp;
2507
2508 pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
2509 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
2510 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
2511 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
2512 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
2513
2514 /** @todo check if the hidden bits are loaded correctly for 64-bit
2515 * mode. */
2516
2517 if (cbPop)
2518 iemRegAddToRsp(pVCpu, cbPop);
2519 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2520
2521 /* Done! */
2522 }
2523 /*
2524 * Return to the same privilege level
2525 */
2526 else
2527 {
2528 /* Limit / canonical check. */
2529 uint64_t u64Base;
2530 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2531
2532 /** @todo Testcase: Is this correct? */
2533 if ( DescCs.Legacy.Gen.u1Long
2534 && IEM_IS_LONG_MODE(pVCpu) )
2535 {
2536 if (!IEM_IS_CANONICAL(uNewRip))
2537 {
2538 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
2539 return iemRaiseNotCanonical(pVCpu);
2540 }
2541 u64Base = 0;
2542 }
2543 else
2544 {
2545 if (uNewRip > cbLimitCs)
2546 {
2547 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
2548 /** @todo: Intel says this is #GP(0)! */
2549 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2550 }
2551 u64Base = X86DESC_BASE(&DescCs.Legacy);
2552 }
2553
2554 /*
2555 * Now set the accessed bit before
2556 * writing the return address to the stack and committing the result into
2557 * CS, CSHID and RIP.
2558 */
2559 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2560 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2561 {
2562 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2563 if (rcStrict != VINF_SUCCESS)
2564 return rcStrict;
2565 /** @todo check what VT-x and AMD-V does. */
2566 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2567 }
2568
2569 /* commit */
2570 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2571 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
2572 else
2573 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2574 if (enmEffOpSize == IEMMODE_16BIT)
2575 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2576 else
2577 pVCpu->cpum.GstCtx.rip = uNewRip;
2578 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2579 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2580 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2581 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2582 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2583 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2584 /** @todo check if the hidden bits are loaded correctly for 64-bit
2585 * mode. */
2586 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2587 if (cbPop)
2588 iemRegAddToRsp(pVCpu, cbPop);
2589 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2590 }
2591
2592 /* Flush the prefetch buffer. */
2593#ifdef IEM_WITH_CODE_TLB
2594 pVCpu->iem.s.pbInstrBuf = NULL;
2595#else
2596 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2597#endif
2598 return VINF_SUCCESS;
2599}
2600
2601
2602/**
2603 * Implements retn.
2604 *
2605 * We're doing this in C because of the \#GP that might be raised if the popped
2606 * program counter is out of bounds.
2607 *
2608 * @param enmEffOpSize The effective operand size.
2609 * @param cbPop The amount of arguments to pop from the stack
2610 * (bytes).
2611 */
2612IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2613{
2614 NOREF(cbInstr);
2615
2616 /* Fetch the RSP from the stack. */
2617 VBOXSTRICTRC rcStrict;
2618 RTUINT64U NewRip;
2619 RTUINT64U NewRsp;
2620 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2621
2622 switch (enmEffOpSize)
2623 {
2624 case IEMMODE_16BIT:
2625 NewRip.u = 0;
2626 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
2627 break;
2628 case IEMMODE_32BIT:
2629 NewRip.u = 0;
2630 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
2631 break;
2632 case IEMMODE_64BIT:
2633 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
2634 break;
2635 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2636 }
2637 if (rcStrict != VINF_SUCCESS)
2638 return rcStrict;
2639
2640 /* Check the new RSP before loading it. */
2641 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
2642 * of it. The canonical test is performed here and for call. */
2643 if (enmEffOpSize != IEMMODE_64BIT)
2644 {
2645 if (NewRip.DWords.dw0 > pVCpu->cpum.GstCtx.cs.u32Limit)
2646 {
2647 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit));
2648 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2649 }
2650 }
2651 else
2652 {
2653 if (!IEM_IS_CANONICAL(NewRip.u))
2654 {
2655 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
2656 return iemRaiseNotCanonical(pVCpu);
2657 }
2658 }
2659
2660 /* Apply cbPop */
2661 if (cbPop)
2662 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2663
2664 /* Commit it. */
2665 pVCpu->cpum.GstCtx.rip = NewRip.u;
2666 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2667 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2668
2669 /* Flush the prefetch buffer. */
2670#ifndef IEM_WITH_CODE_TLB
2671 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2672#endif
2673
2674 return VINF_SUCCESS;
2675}
2676
2677
2678/**
2679 * Implements enter.
2680 *
2681 * We're doing this in C because the instruction is insane, even for the
2682 * u8NestingLevel=0 case dealing with the stack is tedious.
2683 *
2684 * @param enmEffOpSize The effective operand size.
2685 */
2686IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
2687{
2688 /* Push RBP, saving the old value in TmpRbp. */
2689 RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2690 RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp;
2691 RTUINT64U NewRbp;
2692 VBOXSTRICTRC rcStrict;
2693 if (enmEffOpSize == IEMMODE_64BIT)
2694 {
2695 rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
2696 NewRbp = NewRsp;
2697 }
2698 else if (enmEffOpSize == IEMMODE_32BIT)
2699 {
2700 rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
2701 NewRbp = NewRsp;
2702 }
2703 else
2704 {
2705 rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
2706 NewRbp = TmpRbp;
2707 NewRbp.Words.w0 = NewRsp.Words.w0;
2708 }
2709 if (rcStrict != VINF_SUCCESS)
2710 return rcStrict;
2711
2712 /* Copy the parameters (aka nesting levels by Intel). */
2713 cParameters &= 0x1f;
2714 if (cParameters > 0)
2715 {
2716 switch (enmEffOpSize)
2717 {
2718 case IEMMODE_16BIT:
2719 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2720 TmpRbp.DWords.dw0 -= 2;
2721 else
2722 TmpRbp.Words.w0 -= 2;
2723 do
2724 {
2725 uint16_t u16Tmp;
2726 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
2727 if (rcStrict != VINF_SUCCESS)
2728 break;
2729 rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
2730 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2731 break;
2732
2733 case IEMMODE_32BIT:
2734 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2735 TmpRbp.DWords.dw0 -= 4;
2736 else
2737 TmpRbp.Words.w0 -= 4;
2738 do
2739 {
2740 uint32_t u32Tmp;
2741 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
2742 if (rcStrict != VINF_SUCCESS)
2743 break;
2744 rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
2745 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2746 break;
2747
2748 case IEMMODE_64BIT:
2749 TmpRbp.u -= 8;
2750 do
2751 {
2752 uint64_t u64Tmp;
2753 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
2754 if (rcStrict != VINF_SUCCESS)
2755 break;
2756 rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
2757 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2758 break;
2759
2760 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2761 }
2762 if (rcStrict != VINF_SUCCESS)
2763 return VINF_SUCCESS;
2764
2765 /* Push the new RBP */
2766 if (enmEffOpSize == IEMMODE_64BIT)
2767 rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
2768 else if (enmEffOpSize == IEMMODE_32BIT)
2769 rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
2770 else
2771 rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
2772 if (rcStrict != VINF_SUCCESS)
2773 return rcStrict;
2774
2775 }
2776
2777 /* Recalc RSP. */
2778 iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame);
2779
2780 /** @todo Should probe write access at the new RSP according to AMD. */
2781
2782 /* Commit it. */
2783 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2784 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2785 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2786
2787 return VINF_SUCCESS;
2788}
2789
2790
2791
2792/**
2793 * Implements leave.
2794 *
2795 * We're doing this in C because messing with the stack registers is annoying
2796 * since they depends on SS attributes.
2797 *
2798 * @param enmEffOpSize The effective operand size.
2799 */
2800IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
2801{
2802 /* Calculate the intermediate RSP from RBP and the stack attributes. */
2803 RTUINT64U NewRsp;
2804 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2805 NewRsp.u = pVCpu->cpum.GstCtx.rbp;
2806 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2807 NewRsp.u = pVCpu->cpum.GstCtx.ebp;
2808 else
2809 {
2810 /** @todo Check that LEAVE actually preserve the high EBP bits. */
2811 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2812 NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp;
2813 }
2814
2815 /* Pop RBP according to the operand size. */
2816 VBOXSTRICTRC rcStrict;
2817 RTUINT64U NewRbp;
2818 switch (enmEffOpSize)
2819 {
2820 case IEMMODE_16BIT:
2821 NewRbp.u = pVCpu->cpum.GstCtx.rbp;
2822 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
2823 break;
2824 case IEMMODE_32BIT:
2825 NewRbp.u = 0;
2826 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
2827 break;
2828 case IEMMODE_64BIT:
2829 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
2830 break;
2831 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2832 }
2833 if (rcStrict != VINF_SUCCESS)
2834 return rcStrict;
2835
2836
2837 /* Commit it. */
2838 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2839 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2840 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2841
2842 return VINF_SUCCESS;
2843}
2844
2845
2846/**
2847 * Implements int3 and int XX.
2848 *
2849 * @param u8Int The interrupt vector number.
2850 * @param enmInt The int instruction type.
2851 */
2852IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
2853{
2854 Assert(pVCpu->iem.s.cXcptRecursions == 0);
2855 return iemRaiseXcptOrInt(pVCpu,
2856 cbInstr,
2857 u8Int,
2858 IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
2859 0,
2860 0);
2861}
2862
2863
2864/**
2865 * Implements iret for real mode and V8086 mode.
2866 *
2867 * @param enmEffOpSize The effective operand size.
2868 */
2869IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2870{
2871 X86EFLAGS Efl;
2872 Efl.u = IEMMISC_GET_EFL(pVCpu);
2873 NOREF(cbInstr);
2874
2875 /*
2876 * iret throws an exception if VME isn't enabled.
2877 */
2878 if ( Efl.Bits.u1VM
2879 && Efl.Bits.u2IOPL != 3
2880 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
2881 return iemRaiseGeneralProtectionFault0(pVCpu);
2882
2883 /*
2884 * Do the stack bits, but don't commit RSP before everything checks
2885 * out right.
2886 */
2887 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2888 VBOXSTRICTRC rcStrict;
2889 RTCPTRUNION uFrame;
2890 uint16_t uNewCs;
2891 uint32_t uNewEip;
2892 uint32_t uNewFlags;
2893 uint64_t uNewRsp;
2894 if (enmEffOpSize == IEMMODE_32BIT)
2895 {
2896 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
2897 if (rcStrict != VINF_SUCCESS)
2898 return rcStrict;
2899 uNewEip = uFrame.pu32[0];
2900 if (uNewEip > UINT16_MAX)
2901 return iemRaiseGeneralProtectionFault0(pVCpu);
2902
2903 uNewCs = (uint16_t)uFrame.pu32[1];
2904 uNewFlags = uFrame.pu32[2];
2905 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2906 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
2907 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
2908 | X86_EFL_ID;
2909 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
2910 uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
2911 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
2912 }
2913 else
2914 {
2915 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
2916 if (rcStrict != VINF_SUCCESS)
2917 return rcStrict;
2918 uNewEip = uFrame.pu16[0];
2919 uNewCs = uFrame.pu16[1];
2920 uNewFlags = uFrame.pu16[2];
2921 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2922 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
2923 uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
2924 /** @todo The intel pseudo code does not indicate what happens to
2925 * reserved flags. We just ignore them. */
2926 /* Ancient CPU adjustments: See iemCImpl_popf. */
2927 if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
2928 uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
2929 }
2930 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
2931 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2932 { /* extremely likely */ }
2933 else
2934 return rcStrict;
2935
2936 /** @todo Check how this is supposed to work if sp=0xfffe. */
2937 Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
2938 uNewCs, uNewEip, uNewFlags, uNewRsp));
2939
2940 /*
2941 * Check the limit of the new EIP.
2942 */
2943 /** @todo Only the AMD pseudo code check the limit here, what's
2944 * right? */
2945 if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit)
2946 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2947
2948 /*
2949 * V8086 checks and flag adjustments
2950 */
2951 if (Efl.Bits.u1VM)
2952 {
2953 if (Efl.Bits.u2IOPL == 3)
2954 {
2955 /* Preserve IOPL and clear RF. */
2956 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
2957 uNewFlags |= Efl.u & (X86_EFL_IOPL);
2958 }
2959 else if ( enmEffOpSize == IEMMODE_16BIT
2960 && ( !(uNewFlags & X86_EFL_IF)
2961 || !Efl.Bits.u1VIP )
2962 && !(uNewFlags & X86_EFL_TF) )
2963 {
2964 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
2965 uNewFlags &= ~X86_EFL_VIF;
2966 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
2967 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
2968 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
2969 }
2970 else
2971 return iemRaiseGeneralProtectionFault0(pVCpu);
2972 Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
2973 }
2974
2975 /*
2976 * Commit the operation.
2977 */
2978#ifdef DBGFTRACE_ENABLED
2979 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
2980 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
2981#endif
2982 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2983 pVCpu->cpum.GstCtx.rip = uNewEip;
2984 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2985 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2986 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2987 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2988 /** @todo do we load attribs and limit as well? */
2989 Assert(uNewFlags & X86_EFL_1);
2990 IEMMISC_SET_EFL(pVCpu, uNewFlags);
2991
2992 /* Flush the prefetch buffer. */
2993#ifdef IEM_WITH_CODE_TLB
2994 pVCpu->iem.s.pbInstrBuf = NULL;
2995#else
2996 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2997#endif
2998
2999 return VINF_SUCCESS;
3000}
3001
3002
3003/**
3004 * Loads a segment register when entering V8086 mode.
3005 *
3006 * @param pSReg The segment register.
3007 * @param uSeg The segment to load.
3008 */
3009static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
3010{
3011 pSReg->Sel = uSeg;
3012 pSReg->ValidSel = uSeg;
3013 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
3014 pSReg->u64Base = (uint32_t)uSeg << 4;
3015 pSReg->u32Limit = 0xffff;
3016 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
3017 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
3018 * IRET'ing to V8086. */
3019}
3020
3021
3022/**
3023 * Implements iret for protected mode returning to V8086 mode.
3024 *
3025 * @param uNewEip The new EIP.
3026 * @param uNewCs The new CS.
3027 * @param uNewFlags The new EFLAGS.
3028 * @param uNewRsp The RSP after the initial IRET frame.
3029 *
3030 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
3031 */
3032IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp)
3033{
3034 RT_NOREF_PV(cbInstr);
3035 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
3036
3037 /*
3038 * Pop the V8086 specific frame bits off the stack.
3039 */
3040 VBOXSTRICTRC rcStrict;
3041 RTCPTRUNION uFrame;
3042 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp);
3043 if (rcStrict != VINF_SUCCESS)
3044 return rcStrict;
3045 uint32_t uNewEsp = uFrame.pu32[0];
3046 uint16_t uNewSs = uFrame.pu32[1];
3047 uint16_t uNewEs = uFrame.pu32[2];
3048 uint16_t uNewDs = uFrame.pu32[3];
3049 uint16_t uNewFs = uFrame.pu32[4];
3050 uint16_t uNewGs = uFrame.pu32[5];
3051 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3052 if (rcStrict != VINF_SUCCESS)
3053 return rcStrict;
3054
3055 /*
3056 * Commit the operation.
3057 */
3058 uNewFlags &= X86_EFL_LIVE_MASK;
3059 uNewFlags |= X86_EFL_RA1_MASK;
3060#ifdef DBGFTRACE_ENABLED
3061 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
3062 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
3063#endif
3064 Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
3065
3066 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3067 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs);
3068 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs);
3069 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs);
3070 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs);
3071 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs);
3072 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs);
3073 pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip;
3074 pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */
3075 pVCpu->iem.s.uCpl = 3;
3076
3077 /* Flush the prefetch buffer. */
3078#ifdef IEM_WITH_CODE_TLB
3079 pVCpu->iem.s.pbInstrBuf = NULL;
3080#else
3081 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3082#endif
3083
3084 return VINF_SUCCESS;
3085}
3086
3087
3088/**
3089 * Implements iret for protected mode returning via a nested task.
3090 *
3091 * @param enmEffOpSize The effective operand size.
3092 */
3093IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
3094{
3095 Log7(("iemCImpl_iret_prot_NestedTask:\n"));
3096#ifndef IEM_IMPLEMENTS_TASKSWITCH
3097 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
3098#else
3099 RT_NOREF_PV(enmEffOpSize);
3100
3101 /*
3102 * Read the segment selector in the link-field of the current TSS.
3103 */
3104 RTSEL uSelRet;
3105 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base);
3106 if (rcStrict != VINF_SUCCESS)
3107 return rcStrict;
3108
3109 /*
3110 * Fetch the returning task's TSS descriptor from the GDT.
3111 */
3112 if (uSelRet & X86_SEL_LDT)
3113 {
3114 Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
3115 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
3116 }
3117
3118 IEMSELDESC TssDesc;
3119 rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
3120 if (rcStrict != VINF_SUCCESS)
3121 return rcStrict;
3122
3123 if (TssDesc.Legacy.Gate.u1DescType)
3124 {
3125 Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
3126 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3127 }
3128
3129 if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
3130 && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
3131 {
3132 Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
3133 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3134 }
3135
3136 if (!TssDesc.Legacy.Gate.u1Present)
3137 {
3138 Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
3139 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3140 }
3141
3142 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
3143 return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
3144 0 /* uCr2 */, uSelRet, &TssDesc);
3145#endif
3146}
3147
3148
3149/**
3150 * Implements iret for protected mode
3151 *
3152 * @param enmEffOpSize The effective operand size.
3153 */
3154IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
3155{
3156 NOREF(cbInstr);
3157 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3158
3159 /*
3160 * Nested task return.
3161 */
3162 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3163 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
3164
3165 /*
3166 * Normal return.
3167 *
3168 * Do the stack bits, but don't commit RSP before everything checks
3169 * out right.
3170 */
3171 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3172 VBOXSTRICTRC rcStrict;
3173 RTCPTRUNION uFrame;
3174 uint16_t uNewCs;
3175 uint32_t uNewEip;
3176 uint32_t uNewFlags;
3177 uint64_t uNewRsp;
3178 if (enmEffOpSize == IEMMODE_32BIT)
3179 {
3180 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
3181 if (rcStrict != VINF_SUCCESS)
3182 return rcStrict;
3183 uNewEip = uFrame.pu32[0];
3184 uNewCs = (uint16_t)uFrame.pu32[1];
3185 uNewFlags = uFrame.pu32[2];
3186 }
3187 else
3188 {
3189 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
3190 if (rcStrict != VINF_SUCCESS)
3191 return rcStrict;
3192 uNewEip = uFrame.pu16[0];
3193 uNewCs = uFrame.pu16[1];
3194 uNewFlags = uFrame.pu16[2];
3195 }
3196 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3197 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3198 { /* extremely likely */ }
3199 else
3200 return rcStrict;
3201 Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
3202
3203 /*
3204 * We're hopefully not returning to V8086 mode...
3205 */
3206 if ( (uNewFlags & X86_EFL_VM)
3207 && pVCpu->iem.s.uCpl == 0)
3208 {
3209 Assert(enmEffOpSize == IEMMODE_32BIT);
3210 return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp);
3211 }
3212
3213 /*
3214 * Protected mode.
3215 */
3216 /* Read the CS descriptor. */
3217 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3218 {
3219 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
3220 return iemRaiseGeneralProtectionFault0(pVCpu);
3221 }
3222
3223 IEMSELDESC DescCS;
3224 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3225 if (rcStrict != VINF_SUCCESS)
3226 {
3227 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
3228 return rcStrict;
3229 }
3230
3231 /* Must be a code descriptor. */
3232 if (!DescCS.Legacy.Gen.u1DescType)
3233 {
3234 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3235 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3236 }
3237 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3238 {
3239 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3240 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3241 }
3242
3243#ifdef VBOX_WITH_RAW_MODE_NOT_R0
3244 /* Raw ring-0 and ring-1 compression adjustments for PATM performance tricks and other CS leaks. */
3245 PVM pVM = pVCpu->CTX_SUFF(pVM);
3246 if (EMIsRawRing0Enabled(pVM) && VM_IS_RAW_MODE_ENABLED(pVM))
3247 {
3248 if ((uNewCs & X86_SEL_RPL) == 1)
3249 {
3250 if ( pVCpu->iem.s.uCpl == 0
3251 && ( !EMIsRawRing1Enabled(pVM)
3252 || pVCpu->cpum.GstCtx.cs.Sel == (uNewCs & X86_SEL_MASK_OFF_RPL)) )
3253 {
3254 Log(("iret: Ring-0 compression fix: uNewCS=%#x -> %#x\n", uNewCs, uNewCs & X86_SEL_MASK_OFF_RPL));
3255 uNewCs &= X86_SEL_MASK_OFF_RPL;
3256 }
3257# ifdef LOG_ENABLED
3258 else if (pVCpu->iem.s.uCpl <= 1 && EMIsRawRing1Enabled(pVM))
3259 Log(("iret: uNewCs=%#x genuine return to ring-1.\n", uNewCs));
3260# endif
3261 }
3262 else if ( (uNewCs & X86_SEL_RPL) == 2
3263 && EMIsRawRing1Enabled(pVM)
3264 && pVCpu->iem.s.uCpl <= 1)
3265 {
3266 Log(("iret: Ring-1 compression fix: uNewCS=%#x -> %#x\n", uNewCs, (uNewCs & X86_SEL_MASK_OFF_RPL) | 1));
3267 uNewCs = (uNewCs & X86_SEL_MASK_OFF_RPL) | 2;
3268 }
3269 }
3270#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
3271
3272
3273 /* Privilege checks. */
3274 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3275 {
3276 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3277 {
3278 Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3279 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3280 }
3281 }
3282 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3283 {
3284 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3285 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3286 }
3287 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3288 {
3289 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
3290 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3291 }
3292
3293 /* Present? */
3294 if (!DescCS.Legacy.Gen.u1Present)
3295 {
3296 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
3297 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3298 }
3299
3300 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3301
3302 /*
3303 * Return to outer level?
3304 */
3305 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
3306 {
3307 uint16_t uNewSS;
3308 uint32_t uNewESP;
3309 if (enmEffOpSize == IEMMODE_32BIT)
3310 {
3311 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp);
3312 if (rcStrict != VINF_SUCCESS)
3313 return rcStrict;
3314/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
3315 * 16-bit or 32-bit are being loaded into SP depends on the D/B
3316 * bit of the popped SS selector it turns out. */
3317 uNewESP = uFrame.pu32[0];
3318 uNewSS = (uint16_t)uFrame.pu32[1];
3319 }
3320 else
3321 {
3322 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp);
3323 if (rcStrict != VINF_SUCCESS)
3324 return rcStrict;
3325 uNewESP = uFrame.pu16[0];
3326 uNewSS = uFrame.pu16[1];
3327 }
3328 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
3329 if (rcStrict != VINF_SUCCESS)
3330 return rcStrict;
3331 Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
3332
3333 /* Read the SS descriptor. */
3334 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
3335 {
3336 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
3337 return iemRaiseGeneralProtectionFault0(pVCpu);
3338 }
3339
3340 IEMSELDESC DescSS;
3341 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
3342 if (rcStrict != VINF_SUCCESS)
3343 {
3344 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
3345 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
3346 return rcStrict;
3347 }
3348
3349 /* Privilege checks. */
3350 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3351 {
3352 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
3353 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3354 }
3355 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3356 {
3357 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
3358 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
3359 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3360 }
3361
3362 /* Must be a writeable data segment descriptor. */
3363 if (!DescSS.Legacy.Gen.u1DescType)
3364 {
3365 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
3366 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3367 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3368 }
3369 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3370 {
3371 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
3372 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3373 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3374 }
3375
3376 /* Present? */
3377 if (!DescSS.Legacy.Gen.u1Present)
3378 {
3379 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
3380 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
3381 }
3382
3383 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3384
3385 /* Check EIP. */
3386 if (uNewEip > cbLimitCS)
3387 {
3388 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
3389 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
3390 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3391 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3392 }
3393
3394 /*
3395 * Commit the changes, marking CS and SS accessed first since
3396 * that may fail.
3397 */
3398 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3399 {
3400 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3401 if (rcStrict != VINF_SUCCESS)
3402 return rcStrict;
3403 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3404 }
3405 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3406 {
3407 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
3408 if (rcStrict != VINF_SUCCESS)
3409 return rcStrict;
3410 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3411 }
3412
3413 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3414 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3415 if (enmEffOpSize != IEMMODE_16BIT)
3416 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3417 if (pVCpu->iem.s.uCpl == 0)
3418 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3419 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3420 fEFlagsMask |= X86_EFL_IF;
3421 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3422 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3423 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3424 fEFlagsNew &= ~fEFlagsMask;
3425 fEFlagsNew |= uNewFlags & fEFlagsMask;
3426#ifdef DBGFTRACE_ENABLED
3427 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
3428 pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3429 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
3430#endif
3431
3432 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3433 pVCpu->cpum.GstCtx.rip = uNewEip;
3434 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3435 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3436 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3437 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3438 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3439 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3440 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3441
3442 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
3443 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
3444 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3445 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3446 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3447 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3448 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3449 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP;
3450 else
3451 pVCpu->cpum.GstCtx.rsp = uNewESP;
3452
3453 pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
3454 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
3455 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
3456 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
3457 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
3458
3459 /* Done! */
3460
3461 }
3462 /*
3463 * Return to the same level.
3464 */
3465 else
3466 {
3467 /* Check EIP. */
3468 if (uNewEip > cbLimitCS)
3469 {
3470 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
3471 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3472 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3473 }
3474
3475 /*
3476 * Commit the changes, marking CS first since it may fail.
3477 */
3478 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3479 {
3480 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3481 if (rcStrict != VINF_SUCCESS)
3482 return rcStrict;
3483 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3484 }
3485
3486 X86EFLAGS NewEfl;
3487 NewEfl.u = IEMMISC_GET_EFL(pVCpu);
3488 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3489 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3490 if (enmEffOpSize != IEMMODE_16BIT)
3491 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3492 if (pVCpu->iem.s.uCpl == 0)
3493 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3494 else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
3495 fEFlagsMask |= X86_EFL_IF;
3496 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3497 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3498 NewEfl.u &= ~fEFlagsMask;
3499 NewEfl.u |= fEFlagsMask & uNewFlags;
3500#ifdef DBGFTRACE_ENABLED
3501 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
3502 pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3503 uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp);
3504#endif
3505
3506 IEMMISC_SET_EFL(pVCpu, NewEfl.u);
3507 pVCpu->cpum.GstCtx.rip = uNewEip;
3508 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3509 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3510 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3511 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3512 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3513 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3514 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3515 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3516 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3517 else
3518 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3519 /* Done! */
3520 }
3521
3522 /* Flush the prefetch buffer. */
3523#ifdef IEM_WITH_CODE_TLB
3524 pVCpu->iem.s.pbInstrBuf = NULL;
3525#else
3526 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3527#endif
3528
3529 return VINF_SUCCESS;
3530}
3531
3532
3533/**
3534 * Implements iret for long mode
3535 *
3536 * @param enmEffOpSize The effective operand size.
3537 */
3538IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
3539{
3540 NOREF(cbInstr);
3541
3542 /*
3543 * Nested task return is not supported in long mode.
3544 */
3545 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3546 {
3547 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u));
3548 return iemRaiseGeneralProtectionFault0(pVCpu);
3549 }
3550
3551 /*
3552 * Normal return.
3553 *
3554 * Do the stack bits, but don't commit RSP before everything checks
3555 * out right.
3556 */
3557 VBOXSTRICTRC rcStrict;
3558 RTCPTRUNION uFrame;
3559 uint64_t uNewRip;
3560 uint16_t uNewCs;
3561 uint16_t uNewSs;
3562 uint32_t uNewFlags;
3563 uint64_t uNewRsp;
3564 if (enmEffOpSize == IEMMODE_64BIT)
3565 {
3566 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp);
3567 if (rcStrict != VINF_SUCCESS)
3568 return rcStrict;
3569 uNewRip = uFrame.pu64[0];
3570 uNewCs = (uint16_t)uFrame.pu64[1];
3571 uNewFlags = (uint32_t)uFrame.pu64[2];
3572 uNewRsp = uFrame.pu64[3];
3573 uNewSs = (uint16_t)uFrame.pu64[4];
3574 }
3575 else if (enmEffOpSize == IEMMODE_32BIT)
3576 {
3577 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp);
3578 if (rcStrict != VINF_SUCCESS)
3579 return rcStrict;
3580 uNewRip = uFrame.pu32[0];
3581 uNewCs = (uint16_t)uFrame.pu32[1];
3582 uNewFlags = uFrame.pu32[2];
3583 uNewRsp = uFrame.pu32[3];
3584 uNewSs = (uint16_t)uFrame.pu32[4];
3585 }
3586 else
3587 {
3588 Assert(enmEffOpSize == IEMMODE_16BIT);
3589 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp);
3590 if (rcStrict != VINF_SUCCESS)
3591 return rcStrict;
3592 uNewRip = uFrame.pu16[0];
3593 uNewCs = uFrame.pu16[1];
3594 uNewFlags = uFrame.pu16[2];
3595 uNewRsp = uFrame.pu16[3];
3596 uNewSs = uFrame.pu16[4];
3597 }
3598 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3599 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3600 { /* extremely like */ }
3601 else
3602 return rcStrict;
3603 Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
3604
3605 /*
3606 * Check stuff.
3607 */
3608 /* Read the CS descriptor. */
3609 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3610 {
3611 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3612 return iemRaiseGeneralProtectionFault0(pVCpu);
3613 }
3614
3615 IEMSELDESC DescCS;
3616 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3617 if (rcStrict != VINF_SUCCESS)
3618 {
3619 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
3620 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3621 return rcStrict;
3622 }
3623
3624 /* Must be a code descriptor. */
3625 if ( !DescCS.Legacy.Gen.u1DescType
3626 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3627 {
3628 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
3629 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
3630 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3631 }
3632
3633 /* Privilege checks. */
3634 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
3635 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3636 {
3637 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3638 {
3639 Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3640 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3641 }
3642 }
3643 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3644 {
3645 Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3646 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3647 }
3648 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3649 {
3650 Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
3651 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3652 }
3653
3654 /* Present? */
3655 if (!DescCS.Legacy.Gen.u1Present)
3656 {
3657 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3658 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3659 }
3660
3661 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3662
3663 /* Read the SS descriptor. */
3664 IEMSELDESC DescSS;
3665 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3666 {
3667 if ( !DescCS.Legacy.Gen.u1Long
3668 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
3669 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
3670 {
3671 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3672 return iemRaiseGeneralProtectionFault0(pVCpu);
3673 }
3674 DescSS.Legacy.u = 0;
3675 }
3676 else
3677 {
3678 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
3679 if (rcStrict != VINF_SUCCESS)
3680 {
3681 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
3682 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3683 return rcStrict;
3684 }
3685 }
3686
3687 /* Privilege checks. */
3688 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3689 {
3690 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3691 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3692 }
3693
3694 uint32_t cbLimitSs;
3695 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3696 cbLimitSs = UINT32_MAX;
3697 else
3698 {
3699 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3700 {
3701 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
3702 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
3703 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3704 }
3705
3706 /* Must be a writeable data segment descriptor. */
3707 if (!DescSS.Legacy.Gen.u1DescType)
3708 {
3709 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
3710 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3711 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3712 }
3713 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3714 {
3715 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
3716 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3717 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3718 }
3719
3720 /* Present? */
3721 if (!DescSS.Legacy.Gen.u1Present)
3722 {
3723 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3724 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
3725 }
3726 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3727 }
3728
3729 /* Check EIP. */
3730 if (DescCS.Legacy.Gen.u1Long)
3731 {
3732 if (!IEM_IS_CANONICAL(uNewRip))
3733 {
3734 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
3735 uNewCs, uNewRip, uNewSs, uNewRsp));
3736 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3737 }
3738 }
3739 else
3740 {
3741 if (uNewRip > cbLimitCS)
3742 {
3743 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
3744 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
3745 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3746 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3747 }
3748 }
3749
3750 /*
3751 * Commit the changes, marking CS and SS accessed first since
3752 * that may fail.
3753 */
3754 /** @todo where exactly are these actually marked accessed by a real CPU? */
3755 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3756 {
3757 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3758 if (rcStrict != VINF_SUCCESS)
3759 return rcStrict;
3760 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3761 }
3762 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3763 {
3764 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
3765 if (rcStrict != VINF_SUCCESS)
3766 return rcStrict;
3767 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3768 }
3769
3770 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3771 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3772 if (enmEffOpSize != IEMMODE_16BIT)
3773 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3774 if (pVCpu->iem.s.uCpl == 0)
3775 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
3776 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3777 fEFlagsMask |= X86_EFL_IF;
3778 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3779 fEFlagsNew &= ~fEFlagsMask;
3780 fEFlagsNew |= uNewFlags & fEFlagsMask;
3781#ifdef DBGFTRACE_ENABLED
3782 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
3783 pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
3784#endif
3785
3786 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3787 pVCpu->cpum.GstCtx.rip = uNewRip;
3788 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3789 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3790 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3791 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3792 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3793 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3794 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3795 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
3796 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3797 else
3798 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3799 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
3800 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
3801 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3802 {
3803 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3804 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
3805 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
3806 pVCpu->cpum.GstCtx.ss.u64Base = 0;
3807 Log2(("iretq new SS: NULL\n"));
3808 }
3809 else
3810 {
3811 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3812 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3813 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3814 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3815 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3816 }
3817
3818 if (pVCpu->iem.s.uCpl != uNewCpl)
3819 {
3820 pVCpu->iem.s.uCpl = uNewCpl;
3821 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds);
3822 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es);
3823 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs);
3824 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs);
3825 }
3826
3827 /* Flush the prefetch buffer. */
3828#ifdef IEM_WITH_CODE_TLB
3829 pVCpu->iem.s.pbInstrBuf = NULL;
3830#else
3831 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3832#endif
3833
3834 return VINF_SUCCESS;
3835}
3836
3837
3838/**
3839 * Implements iret.
3840 *
3841 * @param enmEffOpSize The effective operand size.
3842 */
3843IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
3844{
3845 /*
3846 * First, clear NMI blocking, if any, before causing any exceptions.
3847 * See Intel spec. 6.7.1 "Handling Multiple NMIs".
3848 */
3849 bool const fBlockingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3850 if (fBlockingNmi)
3851 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
3852
3853#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3854 /*
3855 * Record whether NMIs (or virtual-NMIs) were unblocked by execution of this
3856 * IRET instruction. We need to provide this information as part of some VM-exits.
3857 *
3858 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3859 */
3860 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
3861 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = fBlockingNmi;
3862#endif
3863
3864 /*
3865 * The SVM nested-guest intercept for iret takes priority over all exceptions,
3866 * see AMD spec. "15.9 Instruction Intercepts".
3867 */
3868 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
3869 {
3870 Log(("iret: Guest intercept -> #VMEXIT\n"));
3871 IEM_SVM_UPDATE_NRIP(pVCpu);
3872 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
3873 }
3874
3875 /*
3876 * Call a mode specific worker.
3877 */
3878 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
3879 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
3880 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
3881 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
3882 return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
3883 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
3884}
3885
3886
3887static void iemLoadallSetSelector(PVMCPU pVCpu, uint8_t iSegReg, uint16_t uSel)
3888{
3889 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3890
3891 pHid->Sel = uSel;
3892 pHid->ValidSel = uSel;
3893 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3894}
3895
3896
3897static void iemLoadall286SetDescCache(PVMCPU pVCpu, uint8_t iSegReg, uint8_t const *pbMem)
3898{
3899 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3900
3901 /* The base is in the first three bytes. */
3902 pHid->u64Base = pbMem[0] + (pbMem[1] << 8) + (pbMem[2] << 16);
3903 /* The attributes are in the fourth byte. */
3904 pHid->Attr.u = pbMem[3];
3905 /* The limit is in the last two bytes. */
3906 pHid->u32Limit = pbMem[4] + (pbMem[5] << 8);
3907}
3908
3909
3910/**
3911 * Implements 286 LOADALL (286 CPUs only).
3912 */
3913IEM_CIMPL_DEF_0(iemCImpl_loadall286)
3914{
3915 NOREF(cbInstr);
3916
3917 /* Data is loaded from a buffer at 800h. No checks are done on the
3918 * validity of loaded state.
3919 *
3920 * LOADALL only loads the internal CPU state, it does not access any
3921 * GDT, LDT, or similar tables.
3922 */
3923
3924 if (pVCpu->iem.s.uCpl != 0)
3925 {
3926 Log(("loadall286: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
3927 return iemRaiseGeneralProtectionFault0(pVCpu);
3928 }
3929
3930 uint8_t const *pbMem = NULL;
3931 uint16_t const *pa16Mem;
3932 uint8_t const *pa8Mem;
3933 RTGCPHYS GCPtrStart = 0x800; /* Fixed table location. */
3934 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pbMem, 0x66, UINT8_MAX, GCPtrStart, IEM_ACCESS_SYS_R);
3935 if (rcStrict != VINF_SUCCESS)
3936 return rcStrict;
3937
3938 /* The MSW is at offset 0x06. */
3939 pa16Mem = (uint16_t const *)(pbMem + 0x06);
3940 /* Even LOADALL can't clear the MSW.PE bit, though it can set it. */
3941 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3942 uNewCr0 |= *pa16Mem & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3943 uint64_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
3944
3945 CPUMSetGuestCR0(pVCpu, uNewCr0);
3946 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCr0);
3947
3948 /* Inform PGM if mode changed. */
3949 if ((uNewCr0 & X86_CR0_PE) != (uOldCr0 & X86_CR0_PE))
3950 {
3951 int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
3952 AssertRCReturn(rc, rc);
3953 /* ignore informational status codes */
3954 }
3955 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
3956
3957 /* TR selector is at offset 0x16. */
3958 pa16Mem = (uint16_t const *)(pbMem + 0x16);
3959 pVCpu->cpum.GstCtx.tr.Sel = pa16Mem[0];
3960 pVCpu->cpum.GstCtx.tr.ValidSel = pa16Mem[0];
3961 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3962
3963 /* Followed by FLAGS... */
3964 pVCpu->cpum.GstCtx.eflags.u = pa16Mem[1] | X86_EFL_1;
3965 pVCpu->cpum.GstCtx.ip = pa16Mem[2]; /* ...and IP. */
3966
3967 /* LDT is at offset 0x1C. */
3968 pa16Mem = (uint16_t const *)(pbMem + 0x1C);
3969 pVCpu->cpum.GstCtx.ldtr.Sel = pa16Mem[0];
3970 pVCpu->cpum.GstCtx.ldtr.ValidSel = pa16Mem[0];
3971 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3972
3973 /* Segment registers are at offset 0x1E. */
3974 pa16Mem = (uint16_t const *)(pbMem + 0x1E);
3975 iemLoadallSetSelector(pVCpu, X86_SREG_DS, pa16Mem[0]);
3976 iemLoadallSetSelector(pVCpu, X86_SREG_SS, pa16Mem[1]);
3977 iemLoadallSetSelector(pVCpu, X86_SREG_CS, pa16Mem[2]);
3978 iemLoadallSetSelector(pVCpu, X86_SREG_ES, pa16Mem[3]);
3979
3980 /* GPRs are at offset 0x26. */
3981 pa16Mem = (uint16_t const *)(pbMem + 0x26);
3982 pVCpu->cpum.GstCtx.di = pa16Mem[0];
3983 pVCpu->cpum.GstCtx.si = pa16Mem[1];
3984 pVCpu->cpum.GstCtx.bp = pa16Mem[2];
3985 pVCpu->cpum.GstCtx.sp = pa16Mem[3];
3986 pVCpu->cpum.GstCtx.bx = pa16Mem[4];
3987 pVCpu->cpum.GstCtx.dx = pa16Mem[5];
3988 pVCpu->cpum.GstCtx.cx = pa16Mem[6];
3989 pVCpu->cpum.GstCtx.ax = pa16Mem[7];
3990
3991 /* Descriptor caches are at offset 0x36, 6 bytes per entry. */
3992 iemLoadall286SetDescCache(pVCpu, X86_SREG_ES, pbMem + 0x36);
3993 iemLoadall286SetDescCache(pVCpu, X86_SREG_CS, pbMem + 0x3C);
3994 iemLoadall286SetDescCache(pVCpu, X86_SREG_SS, pbMem + 0x42);
3995 iemLoadall286SetDescCache(pVCpu, X86_SREG_DS, pbMem + 0x48);
3996
3997 /* GDTR contents are at offset 0x4E, 6 bytes. */
3998 RTGCPHYS GCPtrBase;
3999 uint16_t cbLimit;
4000 pa8Mem = pbMem + 0x4E;
4001 /* NB: Fourth byte "should be zero"; we are ignoring it. */
4002 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
4003 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
4004 CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
4005
4006 /* IDTR contents are at offset 0x5A, 6 bytes. */
4007 pa8Mem = pbMem + 0x5A;
4008 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
4009 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
4010 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
4011
4012 Log(("LOADALL: GDTR:%08RX64/%04X, IDTR:%08RX64/%04X\n", pVCpu->cpum.GstCtx.gdtr.pGdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.idtr.pIdt, pVCpu->cpum.GstCtx.idtr.cbIdt));
4013 Log(("LOADALL: CS:%04X, CS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.cs.u64Base, pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.Attr.u));
4014 Log(("LOADALL: DS:%04X, DS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.ds.u64Base, pVCpu->cpum.GstCtx.ds.u32Limit, pVCpu->cpum.GstCtx.ds.Attr.u));
4015 Log(("LOADALL: ES:%04X, ES base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.es.u64Base, pVCpu->cpum.GstCtx.es.u32Limit, pVCpu->cpum.GstCtx.es.Attr.u));
4016 Log(("LOADALL: SS:%04X, SS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
4017 Log(("LOADALL: SI:%04X, DI:%04X, AX:%04X, BX:%04X, CX:%04X, DX:%04X\n", pVCpu->cpum.GstCtx.si, pVCpu->cpum.GstCtx.di, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.cx, pVCpu->cpum.GstCtx.dx));
4018
4019 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pbMem, IEM_ACCESS_SYS_R);
4020 if (rcStrict != VINF_SUCCESS)
4021 return rcStrict;
4022
4023 /* The CPL may change. It is taken from the "DPL fields of the SS and CS
4024 * descriptor caches" but there is no word as to what happens if those are
4025 * not identical (probably bad things).
4026 */
4027 pVCpu->iem.s.uCpl = pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl;
4028
4029 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS | CPUM_CHANGED_IDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_TR | CPUM_CHANGED_LDTR);
4030
4031 /* Flush the prefetch buffer. */
4032#ifdef IEM_WITH_CODE_TLB
4033 pVCpu->iem.s.pbInstrBuf = NULL;
4034#else
4035 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4036#endif
4037 return rcStrict;
4038}
4039
4040
4041/**
4042 * Implements SYSCALL (AMD and Intel64).
4043 *
4044 * @param enmEffOpSize The effective operand size.
4045 */
4046IEM_CIMPL_DEF_0(iemCImpl_syscall)
4047{
4048 /** @todo hack, LOADALL should be decoded as such on a 286. */
4049 if (RT_UNLIKELY(pVCpu->iem.s.uTargetCpu == IEMTARGETCPU_286))
4050 return iemCImpl_loadall286(pVCpu, cbInstr);
4051
4052 /*
4053 * Check preconditions.
4054 *
4055 * Note that CPUs described in the documentation may load a few odd values
4056 * into CS and SS than we allow here. This has yet to be checked on real
4057 * hardware.
4058 */
4059 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4060 {
4061 Log(("syscall: Not enabled in EFER -> #UD\n"));
4062 return iemRaiseUndefinedOpcode(pVCpu);
4063 }
4064 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4065 {
4066 Log(("syscall: Protected mode is required -> #GP(0)\n"));
4067 return iemRaiseGeneralProtectionFault0(pVCpu);
4068 }
4069 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4070 {
4071 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4072 return iemRaiseUndefinedOpcode(pVCpu);
4073 }
4074
4075 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4076
4077 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
4078 /** @todo what about LDT selectors? Shouldn't matter, really. */
4079 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4080 uint16_t uNewSs = uNewCs + 8;
4081 if (uNewCs == 0 || uNewSs == 0)
4082 {
4083 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4084 return iemRaiseGeneralProtectionFault0(pVCpu);
4085 }
4086
4087 /* Long mode and legacy mode differs. */
4088 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4089 {
4090 uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR;
4091
4092 /* This test isn't in the docs, but I'm not trusting the guys writing
4093 the MSRs to have validated the values as canonical like they should. */
4094 if (!IEM_IS_CANONICAL(uNewRip))
4095 {
4096 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4097 return iemRaiseUndefinedOpcode(pVCpu);
4098 }
4099
4100 /*
4101 * Commit it.
4102 */
4103 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip));
4104 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr;
4105 pVCpu->cpum.GstCtx.rip = uNewRip;
4106
4107 pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF;
4108 pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u;
4109 pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK;
4110 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4111
4112 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4113 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4114 }
4115 else
4116 {
4117 /*
4118 * Commit it.
4119 */
4120 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
4121 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
4122 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr;
4123 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
4124 pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
4125
4126 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4127 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4128 }
4129 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
4130 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
4131 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4132 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4133 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4134
4135 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
4136 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
4137 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4138 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4139 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4140
4141 /* Flush the prefetch buffer. */
4142#ifdef IEM_WITH_CODE_TLB
4143 pVCpu->iem.s.pbInstrBuf = NULL;
4144#else
4145 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4146#endif
4147
4148 return VINF_SUCCESS;
4149}
4150
4151
4152/**
4153 * Implements SYSRET (AMD and Intel64).
4154 */
4155IEM_CIMPL_DEF_0(iemCImpl_sysret)
4156
4157{
4158 RT_NOREF_PV(cbInstr);
4159
4160 /*
4161 * Check preconditions.
4162 *
4163 * Note that CPUs described in the documentation may load a few odd values
4164 * into CS and SS than we allow here. This has yet to be checked on real
4165 * hardware.
4166 */
4167 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4168 {
4169 Log(("sysret: Not enabled in EFER -> #UD\n"));
4170 return iemRaiseUndefinedOpcode(pVCpu);
4171 }
4172 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4173 {
4174 Log(("sysret: Only available in long mode on intel -> #UD\n"));
4175 return iemRaiseUndefinedOpcode(pVCpu);
4176 }
4177 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4178 {
4179 Log(("sysret: Protected mode is required -> #GP(0)\n"));
4180 return iemRaiseGeneralProtectionFault0(pVCpu);
4181 }
4182 if (pVCpu->iem.s.uCpl != 0)
4183 {
4184 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
4185 return iemRaiseGeneralProtectionFault0(pVCpu);
4186 }
4187
4188 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4189
4190 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
4191 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4192 uint16_t uNewSs = uNewCs + 8;
4193 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4194 uNewCs += 16;
4195 if (uNewCs == 0 || uNewSs == 0)
4196 {
4197 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4198 return iemRaiseGeneralProtectionFault0(pVCpu);
4199 }
4200
4201 /*
4202 * Commit it.
4203 */
4204 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4205 {
4206 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4207 {
4208 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
4209 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11));
4210 /* Note! We disregard intel manual regarding the RCX cananonical
4211 check, ask intel+xen why AMD doesn't do it. */
4212 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4213 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4214 | (3 << X86DESCATTR_DPL_SHIFT);
4215 }
4216 else
4217 {
4218 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
4219 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11));
4220 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx;
4221 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4222 | (3 << X86DESCATTR_DPL_SHIFT);
4223 }
4224 /** @todo testcase: See what kind of flags we can make SYSRET restore and
4225 * what it really ignores. RF and VM are hinted at being zero, by AMD. */
4226 pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
4227 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4228 }
4229 else
4230 {
4231 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx));
4232 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4233 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF;
4234 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4235 | (3 << X86DESCATTR_DPL_SHIFT);
4236 }
4237 pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3;
4238 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3;
4239 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4240 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4241 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4242
4243 pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3;
4244 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3;
4245 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4246 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
4247 pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
4248 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
4249 * on sysret. */
4250
4251 /* Flush the prefetch buffer. */
4252#ifdef IEM_WITH_CODE_TLB
4253 pVCpu->iem.s.pbInstrBuf = NULL;
4254#else
4255 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4256#endif
4257
4258 return VINF_SUCCESS;
4259}
4260
4261
4262/**
4263 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
4264 *
4265 * @param iSegReg The segment register number (valid).
4266 * @param uSel The new selector value.
4267 */
4268IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
4269{
4270 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
4271 uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
4272 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
4273
4274 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
4275
4276 /*
4277 * Real mode and V8086 mode are easy.
4278 */
4279 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4280 {
4281 *pSel = uSel;
4282 pHid->u64Base = (uint32_t)uSel << 4;
4283 pHid->ValidSel = uSel;
4284 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4285#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
4286 /** @todo Does the CPU actually load limits and attributes in the
4287 * real/V8086 mode segment load case? It doesn't for CS in far
4288 * jumps... Affects unreal mode. */
4289 pHid->u32Limit = 0xffff;
4290 pHid->Attr.u = 0;
4291 pHid->Attr.n.u1Present = 1;
4292 pHid->Attr.n.u1DescType = 1;
4293 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
4294 ? X86_SEL_TYPE_RW
4295 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
4296#endif
4297 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4298 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4299 return VINF_SUCCESS;
4300 }
4301
4302 /*
4303 * Protected mode.
4304 *
4305 * Check if it's a null segment selector value first, that's OK for DS, ES,
4306 * FS and GS. If not null, then we have to load and parse the descriptor.
4307 */
4308 if (!(uSel & X86_SEL_MASK_OFF_RPL))
4309 {
4310 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
4311 if (iSegReg == X86_SREG_SS)
4312 {
4313 /* In 64-bit kernel mode, the stack can be 0 because of the way
4314 interrupts are dispatched. AMD seems to have a slighly more
4315 relaxed relationship to SS.RPL than intel does. */
4316 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
4317 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4318 || pVCpu->iem.s.uCpl > 2
4319 || ( uSel != pVCpu->iem.s.uCpl
4320 && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
4321 {
4322 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
4323 return iemRaiseGeneralProtectionFault0(pVCpu);
4324 }
4325 }
4326
4327 *pSel = uSel; /* Not RPL, remember :-) */
4328 iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
4329 if (iSegReg == X86_SREG_SS)
4330 pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
4331
4332 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4333 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4334
4335 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4336 return VINF_SUCCESS;
4337 }
4338
4339 /* Fetch the descriptor. */
4340 IEMSELDESC Desc;
4341 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
4342 if (rcStrict != VINF_SUCCESS)
4343 return rcStrict;
4344
4345 /* Check GPs first. */
4346 if (!Desc.Legacy.Gen.u1DescType)
4347 {
4348 Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
4349 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4350 }
4351 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
4352 {
4353 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
4354 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
4355 {
4356 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
4357 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4358 }
4359 if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
4360 {
4361 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
4362 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4363 }
4364 if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
4365 {
4366 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
4367 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4368 }
4369 }
4370 else
4371 {
4372 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4373 {
4374 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
4375 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4376 }
4377 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4378 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4379 {
4380#if 0 /* this is what intel says. */
4381 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
4382 && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4383 {
4384 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
4385 iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4386 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4387 }
4388#else /* this is what makes more sense. */
4389 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4390 {
4391 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
4392 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
4393 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4394 }
4395 if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4396 {
4397 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
4398 iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4399 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4400 }
4401#endif
4402 }
4403 }
4404
4405 /* Is it there? */
4406 if (!Desc.Legacy.Gen.u1Present)
4407 {
4408 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
4409 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
4410 }
4411
4412 /* The base and limit. */
4413 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
4414 uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
4415
4416 /*
4417 * Ok, everything checked out fine. Now set the accessed bit before
4418 * committing the result into the registers.
4419 */
4420 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
4421 {
4422 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
4423 if (rcStrict != VINF_SUCCESS)
4424 return rcStrict;
4425 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
4426 }
4427
4428 /* commit */
4429 *pSel = uSel;
4430 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4431 pHid->u32Limit = cbLimit;
4432 pHid->u64Base = u64Base;
4433 pHid->ValidSel = uSel;
4434 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4435
4436 /** @todo check if the hidden bits are loaded correctly for 64-bit
4437 * mode. */
4438 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4439
4440 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4441 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4442 return VINF_SUCCESS;
4443}
4444
4445
4446/**
4447 * Implements 'mov SReg, r/m'.
4448 *
4449 * @param iSegReg The segment register number (valid).
4450 * @param uSel The new selector value.
4451 */
4452IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
4453{
4454 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4455 if (rcStrict == VINF_SUCCESS)
4456 {
4457 if (iSegReg == X86_SREG_SS)
4458 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4459 }
4460 return rcStrict;
4461}
4462
4463
4464/**
4465 * Implements 'pop SReg'.
4466 *
4467 * @param iSegReg The segment register number (valid).
4468 * @param enmEffOpSize The efficient operand size (valid).
4469 */
4470IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
4471{
4472 VBOXSTRICTRC rcStrict;
4473
4474 /*
4475 * Read the selector off the stack and join paths with mov ss, reg.
4476 */
4477 RTUINT64U TmpRsp;
4478 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
4479 switch (enmEffOpSize)
4480 {
4481 case IEMMODE_16BIT:
4482 {
4483 uint16_t uSel;
4484 rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
4485 if (rcStrict == VINF_SUCCESS)
4486 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4487 break;
4488 }
4489
4490 case IEMMODE_32BIT:
4491 {
4492 uint32_t u32Value;
4493 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
4494 if (rcStrict == VINF_SUCCESS)
4495 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
4496 break;
4497 }
4498
4499 case IEMMODE_64BIT:
4500 {
4501 uint64_t u64Value;
4502 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
4503 if (rcStrict == VINF_SUCCESS)
4504 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
4505 break;
4506 }
4507 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4508 }
4509
4510 /*
4511 * Commit the stack on success.
4512 */
4513 if (rcStrict == VINF_SUCCESS)
4514 {
4515 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
4516 if (iSegReg == X86_SREG_SS)
4517 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4518 }
4519 return rcStrict;
4520}
4521
4522
4523/**
4524 * Implements lgs, lfs, les, lds & lss.
4525 */
4526IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
4527 uint16_t, uSel,
4528 uint64_t, offSeg,
4529 uint8_t, iSegReg,
4530 uint8_t, iGReg,
4531 IEMMODE, enmEffOpSize)
4532{
4533 /*
4534 * Use iemCImpl_LoadSReg to do the tricky segment register loading.
4535 */
4536 /** @todo verify and test that mov, pop and lXs works the segment
4537 * register loading in the exact same way. */
4538 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4539 if (rcStrict == VINF_SUCCESS)
4540 {
4541 switch (enmEffOpSize)
4542 {
4543 case IEMMODE_16BIT:
4544 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4545 break;
4546 case IEMMODE_32BIT:
4547 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4548 break;
4549 case IEMMODE_64BIT:
4550 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4551 break;
4552 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4553 }
4554 }
4555
4556 return rcStrict;
4557}
4558
4559
4560/**
4561 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
4562 *
4563 * @retval VINF_SUCCESS on success.
4564 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
4565 * @retval iemMemFetchSysU64 return value.
4566 *
4567 * @param pVCpu The cross context virtual CPU structure of the calling thread.
4568 * @param uSel The selector value.
4569 * @param fAllowSysDesc Whether system descriptors are OK or not.
4570 * @param pDesc Where to return the descriptor on success.
4571 */
4572static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPU pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
4573{
4574 pDesc->Long.au64[0] = 0;
4575 pDesc->Long.au64[1] = 0;
4576
4577 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
4578 return VINF_IEM_SELECTOR_NOT_OK;
4579
4580 /* Within the table limits? */
4581 RTGCPTR GCPtrBase;
4582 if (uSel & X86_SEL_LDT)
4583 {
4584 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
4585 if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
4586 || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
4587 return VINF_IEM_SELECTOR_NOT_OK;
4588 GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
4589 }
4590 else
4591 {
4592 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4593 if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
4594 return VINF_IEM_SELECTOR_NOT_OK;
4595 GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
4596 }
4597
4598 /* Fetch the descriptor. */
4599 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
4600 if (rcStrict != VINF_SUCCESS)
4601 return rcStrict;
4602 if (!pDesc->Legacy.Gen.u1DescType)
4603 {
4604 if (!fAllowSysDesc)
4605 return VINF_IEM_SELECTOR_NOT_OK;
4606 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4607 {
4608 rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
4609 if (rcStrict != VINF_SUCCESS)
4610 return rcStrict;
4611 }
4612
4613 }
4614
4615 return VINF_SUCCESS;
4616}
4617
4618
4619/**
4620 * Implements verr (fWrite = false) and verw (fWrite = true).
4621 */
4622IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
4623{
4624 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4625
4626 /** @todo figure whether the accessed bit is set or not. */
4627
4628 bool fAccessible = true;
4629 IEMSELDESC Desc;
4630 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4631 if (rcStrict == VINF_SUCCESS)
4632 {
4633 /* Check the descriptor, order doesn't matter much here. */
4634 if ( !Desc.Legacy.Gen.u1DescType
4635 || !Desc.Legacy.Gen.u1Present)
4636 fAccessible = false;
4637 else
4638 {
4639 if ( fWrite
4640 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
4641 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4642 fAccessible = false;
4643
4644 /** @todo testcase for the conforming behavior. */
4645 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4646 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4647 {
4648 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4649 fAccessible = false;
4650 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4651 fAccessible = false;
4652 }
4653 }
4654
4655 }
4656 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4657 fAccessible = false;
4658 else
4659 return rcStrict;
4660
4661 /* commit */
4662 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible;
4663
4664 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4665 return VINF_SUCCESS;
4666}
4667
4668
4669/**
4670 * Implements LAR and LSL with 64-bit operand size.
4671 *
4672 * @returns VINF_SUCCESS.
4673 * @param pu16Dst Pointer to the destination register.
4674 * @param uSel The selector to load details for.
4675 * @param fIsLar true = LAR, false = LSL.
4676 */
4677IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
4678{
4679 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4680
4681 /** @todo figure whether the accessed bit is set or not. */
4682
4683 bool fDescOk = true;
4684 IEMSELDESC Desc;
4685 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, true /*fAllowSysDesc*/, &Desc);
4686 if (rcStrict == VINF_SUCCESS)
4687 {
4688 /*
4689 * Check the descriptor type.
4690 */
4691 if (!Desc.Legacy.Gen.u1DescType)
4692 {
4693 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4694 {
4695 if (Desc.Long.Gen.u5Zeros)
4696 fDescOk = false;
4697 else
4698 switch (Desc.Long.Gen.u4Type)
4699 {
4700 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
4701 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
4702 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
4703 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
4704 break;
4705 case AMD64_SEL_TYPE_SYS_CALL_GATE:
4706 fDescOk = fIsLar;
4707 break;
4708 default:
4709 fDescOk = false;
4710 break;
4711 }
4712 }
4713 else
4714 {
4715 switch (Desc.Long.Gen.u4Type)
4716 {
4717 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4718 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4719 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4720 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
4721 case X86_SEL_TYPE_SYS_LDT:
4722 break;
4723 case X86_SEL_TYPE_SYS_286_CALL_GATE:
4724 case X86_SEL_TYPE_SYS_TASK_GATE:
4725 case X86_SEL_TYPE_SYS_386_CALL_GATE:
4726 fDescOk = fIsLar;
4727 break;
4728 default:
4729 fDescOk = false;
4730 break;
4731 }
4732 }
4733 }
4734 if (fDescOk)
4735 {
4736 /*
4737 * Check the RPL/DPL/CPL interaction..
4738 */
4739 /** @todo testcase for the conforming behavior. */
4740 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
4741 || !Desc.Legacy.Gen.u1DescType)
4742 {
4743 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4744 fDescOk = false;
4745 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4746 fDescOk = false;
4747 }
4748 }
4749
4750 if (fDescOk)
4751 {
4752 /*
4753 * All fine, start committing the result.
4754 */
4755 if (fIsLar)
4756 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
4757 else
4758 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
4759 }
4760
4761 }
4762 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4763 fDescOk = false;
4764 else
4765 return rcStrict;
4766
4767 /* commit flags value and advance rip. */
4768 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk;
4769 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4770
4771 return VINF_SUCCESS;
4772}
4773
4774
4775/**
4776 * Implements LAR and LSL with 16-bit operand size.
4777 *
4778 * @returns VINF_SUCCESS.
4779 * @param pu16Dst Pointer to the destination register.
4780 * @param u16Sel The selector to load details for.
4781 * @param fIsLar true = LAR, false = LSL.
4782 */
4783IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
4784{
4785 uint64_t u64TmpDst = *pu16Dst;
4786 IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
4787 *pu16Dst = u64TmpDst;
4788 return VINF_SUCCESS;
4789}
4790
4791
4792/**
4793 * Implements lgdt.
4794 *
4795 * @param iEffSeg The segment of the new gdtr contents
4796 * @param GCPtrEffSrc The address of the new gdtr contents.
4797 * @param enmEffOpSize The effective operand size.
4798 */
4799IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4800{
4801 if (pVCpu->iem.s.uCpl != 0)
4802 return iemRaiseGeneralProtectionFault0(pVCpu);
4803 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4804
4805 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4806 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4807 {
4808 Log(("lgdt: Guest intercept -> VM-exit\n"));
4809 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_LGDT, cbInstr);
4810 }
4811
4812 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
4813 {
4814 Log(("lgdt: Guest intercept -> #VMEXIT\n"));
4815 IEM_SVM_UPDATE_NRIP(pVCpu);
4816 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4817 }
4818
4819 /*
4820 * Fetch the limit and base address.
4821 */
4822 uint16_t cbLimit;
4823 RTGCPTR GCPtrBase;
4824 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4825 if (rcStrict == VINF_SUCCESS)
4826 {
4827 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4828 || X86_IS_CANONICAL(GCPtrBase))
4829 {
4830 rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
4831 if (rcStrict == VINF_SUCCESS)
4832 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4833 }
4834 else
4835 {
4836 Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
4837 return iemRaiseGeneralProtectionFault0(pVCpu);
4838 }
4839 }
4840 return rcStrict;
4841}
4842
4843
4844/**
4845 * Implements sgdt.
4846 *
4847 * @param iEffSeg The segment where to store the gdtr content.
4848 * @param GCPtrEffDst The address where to store the gdtr content.
4849 */
4850IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
4851{
4852 /*
4853 * Join paths with sidt.
4854 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4855 * you really must know.
4856 */
4857 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4858 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4859 {
4860 Log(("sgdt: Guest intercept -> VM-exit\n"));
4861 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_SGDT, cbInstr);
4862 }
4863
4864 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS))
4865 {
4866 Log(("sgdt: Guest intercept -> #VMEXIT\n"));
4867 IEM_SVM_UPDATE_NRIP(pVCpu);
4868 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4869 }
4870
4871 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4872 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst);
4873 if (rcStrict == VINF_SUCCESS)
4874 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4875 return rcStrict;
4876}
4877
4878
4879/**
4880 * Implements lidt.
4881 *
4882 * @param iEffSeg The segment of the new idtr contents
4883 * @param GCPtrEffSrc The address of the new idtr contents.
4884 * @param enmEffOpSize The effective operand size.
4885 */
4886IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4887{
4888 if (pVCpu->iem.s.uCpl != 0)
4889 return iemRaiseGeneralProtectionFault0(pVCpu);
4890 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4891
4892 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
4893 {
4894 Log(("lidt: Guest intercept -> #VMEXIT\n"));
4895 IEM_SVM_UPDATE_NRIP(pVCpu);
4896 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4897 }
4898
4899 /*
4900 * Fetch the limit and base address.
4901 */
4902 uint16_t cbLimit;
4903 RTGCPTR GCPtrBase;
4904 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4905 if (rcStrict == VINF_SUCCESS)
4906 {
4907 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4908 || X86_IS_CANONICAL(GCPtrBase))
4909 {
4910 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
4911 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4912 }
4913 else
4914 {
4915 Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
4916 return iemRaiseGeneralProtectionFault0(pVCpu);
4917 }
4918 }
4919 return rcStrict;
4920}
4921
4922
4923/**
4924 * Implements sidt.
4925 *
4926 * @param iEffSeg The segment where to store the idtr content.
4927 * @param GCPtrEffDst The address where to store the idtr content.
4928 */
4929IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
4930{
4931 /*
4932 * Join paths with sgdt.
4933 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4934 * you really must know.
4935 */
4936 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS))
4937 {
4938 Log(("sidt: Guest intercept -> #VMEXIT\n"));
4939 IEM_SVM_UPDATE_NRIP(pVCpu);
4940 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4941 }
4942
4943 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR);
4944 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst);
4945 if (rcStrict == VINF_SUCCESS)
4946 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4947 return rcStrict;
4948}
4949
4950
4951/**
4952 * Implements lldt.
4953 *
4954 * @param uNewLdt The new LDT selector value.
4955 */
4956IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
4957{
4958 /*
4959 * Check preconditions.
4960 */
4961 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4962 {
4963 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
4964 return iemRaiseUndefinedOpcode(pVCpu);
4965 }
4966 if (pVCpu->iem.s.uCpl != 0)
4967 {
4968 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
4969 return iemRaiseGeneralProtectionFault0(pVCpu);
4970 }
4971 /* Nested-guest VMX intercept. */
4972 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4973 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4974 {
4975 Log(("lldt: Guest intercept -> VM-exit\n"));
4976 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LLDT, cbInstr);
4977 }
4978 if (uNewLdt & X86_SEL_LDT)
4979 {
4980 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
4981 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
4982 }
4983
4984 /*
4985 * Now, loading a NULL selector is easy.
4986 */
4987 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
4988 {
4989 /* Nested-guest SVM intercept. */
4990 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
4991 {
4992 Log(("lldt: Guest intercept -> #VMEXIT\n"));
4993 IEM_SVM_UPDATE_NRIP(pVCpu);
4994 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4995 }
4996
4997 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
4998 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
4999 CPUMSetGuestLDTR(pVCpu, uNewLdt);
5000 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
5001 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5002 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
5003 {
5004 /* AMD-V seems to leave the base and limit alone. */
5005 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
5006 }
5007 else
5008 {
5009 /* VT-x (Intel 3960x) seems to be doing the following. */
5010 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
5011 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
5012 pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX;
5013 }
5014
5015 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5016 return VINF_SUCCESS;
5017 }
5018
5019 /*
5020 * Read the descriptor.
5021 */
5022 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR);
5023 IEMSELDESC Desc;
5024 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
5025 if (rcStrict != VINF_SUCCESS)
5026 return rcStrict;
5027
5028 /* Check GPs first. */
5029 if (Desc.Legacy.Gen.u1DescType)
5030 {
5031 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5032 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5033 }
5034 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
5035 {
5036 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5037 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5038 }
5039 uint64_t u64Base;
5040 if (!IEM_IS_LONG_MODE(pVCpu))
5041 u64Base = X86DESC_BASE(&Desc.Legacy);
5042 else
5043 {
5044 if (Desc.Long.Gen.u5Zeros)
5045 {
5046 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
5047 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5048 }
5049
5050 u64Base = X86DESC64_BASE(&Desc.Long);
5051 if (!IEM_IS_CANONICAL(u64Base))
5052 {
5053 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
5054 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5055 }
5056 }
5057
5058 /* NP */
5059 if (!Desc.Legacy.Gen.u1Present)
5060 {
5061 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
5062 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
5063 }
5064
5065 /* Nested-guest SVM intercept. */
5066 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5067 {
5068 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5069 IEM_SVM_UPDATE_NRIP(pVCpu);
5070 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5071 }
5072
5073 /*
5074 * It checks out alright, update the registers.
5075 */
5076/** @todo check if the actual value is loaded or if the RPL is dropped */
5077 CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5078 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
5079 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5080 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5081 pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5082 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
5083
5084 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5085 return VINF_SUCCESS;
5086}
5087
5088
5089/**
5090 * Implements sldt GReg
5091 *
5092 * @param iGReg The general register to store the CRx value in.
5093 * @param enmEffOpSize The operand size.
5094 */
5095IEM_CIMPL_DEF_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5096{
5097 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5098 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5099 {
5100 Log(("sldt: Guest intercept -> VM-exit\n"));
5101 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_SLDT, cbInstr);
5102 }
5103
5104 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5105
5106 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5107 switch (enmEffOpSize)
5108 {
5109 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5110 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5111 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5112 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5113 }
5114 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5115 return VINF_SUCCESS;
5116}
5117
5118
5119/**
5120 * Implements sldt mem.
5121 *
5122 * @param iGReg The general register to store the CRx value in.
5123 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5124 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5125 */
5126IEM_CIMPL_DEF_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5127{
5128 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5129
5130 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5131 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.ldtr.Sel);
5132 if (rcStrict == VINF_SUCCESS)
5133 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5134 return rcStrict;
5135}
5136
5137
5138/**
5139 * Implements ltr.
5140 *
5141 * @param uNewTr The new TSS selector value.
5142 */
5143IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
5144{
5145 /*
5146 * Check preconditions.
5147 */
5148 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5149 {
5150 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
5151 return iemRaiseUndefinedOpcode(pVCpu);
5152 }
5153 if (pVCpu->iem.s.uCpl != 0)
5154 {
5155 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
5156 return iemRaiseGeneralProtectionFault0(pVCpu);
5157 }
5158 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5159 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5160 {
5161 Log(("ltr: Guest intercept -> VM-exit\n"));
5162 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LTR, cbInstr);
5163 }
5164 if (uNewTr & X86_SEL_LDT)
5165 {
5166 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
5167 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
5168 }
5169 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
5170 {
5171 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
5172 return iemRaiseGeneralProtectionFault0(pVCpu);
5173 }
5174 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
5175 {
5176 Log(("ltr: Guest intercept -> #VMEXIT\n"));
5177 IEM_SVM_UPDATE_NRIP(pVCpu);
5178 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5179 }
5180
5181 /*
5182 * Read the descriptor.
5183 */
5184 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR);
5185 IEMSELDESC Desc;
5186 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
5187 if (rcStrict != VINF_SUCCESS)
5188 return rcStrict;
5189
5190 /* Check GPs first. */
5191 if (Desc.Legacy.Gen.u1DescType)
5192 {
5193 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5194 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5195 }
5196 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
5197 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
5198 || IEM_IS_LONG_MODE(pVCpu)) )
5199 {
5200 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5201 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5202 }
5203 uint64_t u64Base;
5204 if (!IEM_IS_LONG_MODE(pVCpu))
5205 u64Base = X86DESC_BASE(&Desc.Legacy);
5206 else
5207 {
5208 if (Desc.Long.Gen.u5Zeros)
5209 {
5210 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
5211 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5212 }
5213
5214 u64Base = X86DESC64_BASE(&Desc.Long);
5215 if (!IEM_IS_CANONICAL(u64Base))
5216 {
5217 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
5218 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5219 }
5220 }
5221
5222 /* NP */
5223 if (!Desc.Legacy.Gen.u1Present)
5224 {
5225 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
5226 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
5227 }
5228
5229 /*
5230 * Set it busy.
5231 * Note! Intel says this should lock down the whole descriptor, but we'll
5232 * restrict our selves to 32-bit for now due to lack of inline
5233 * assembly and such.
5234 */
5235 void *pvDesc;
5236 rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
5237 if (rcStrict != VINF_SUCCESS)
5238 return rcStrict;
5239 switch ((uintptr_t)pvDesc & 3)
5240 {
5241 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
5242 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
5243 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
5244 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
5245 }
5246 rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
5247 if (rcStrict != VINF_SUCCESS)
5248 return rcStrict;
5249 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
5250
5251 /*
5252 * It checks out alright, update the registers.
5253 */
5254/** @todo check if the actual value is loaded or if the RPL is dropped */
5255 CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5256 pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
5257 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
5258 pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5259 pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5260 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
5261
5262 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5263 return VINF_SUCCESS;
5264}
5265
5266
5267/**
5268 * Implements str GReg
5269 *
5270 * @param iGReg The general register to store the CRx value in.
5271 * @param enmEffOpSize The operand size.
5272 */
5273IEM_CIMPL_DEF_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5274{
5275 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5276 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5277 {
5278 Log(("str_reg: Guest intercept -> VM-exit\n"));
5279 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5280 }
5281
5282 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5283
5284 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5285 switch (enmEffOpSize)
5286 {
5287 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5288 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5289 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5290 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5291 }
5292 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5293 return VINF_SUCCESS;
5294}
5295
5296
5297/**
5298 * Implements str mem.
5299 *
5300 * @param iGReg The general register to store the CRx value in.
5301 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5302 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5303 */
5304IEM_CIMPL_DEF_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5305{
5306 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5307 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5308 {
5309 Log(("str_mem: Guest intercept -> VM-exit\n"));
5310 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5311 }
5312
5313 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5314
5315 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5316 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.tr.Sel);
5317 if (rcStrict == VINF_SUCCESS)
5318 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5319 return rcStrict;
5320}
5321
5322
5323/**
5324 * Implements mov GReg,CRx.
5325 *
5326 * @param iGReg The general register to store the CRx value in.
5327 * @param iCrReg The CRx register to read (valid).
5328 */
5329IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
5330{
5331 if (pVCpu->iem.s.uCpl != 0)
5332 return iemRaiseGeneralProtectionFault0(pVCpu);
5333 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5334
5335 if (IEM_SVM_IS_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
5336 {
5337 Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg));
5338 IEM_SVM_UPDATE_NRIP(pVCpu);
5339 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
5340 }
5341
5342 /* Read it. */
5343 uint64_t crX;
5344 switch (iCrReg)
5345 {
5346 case 0:
5347 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5348 crX = pVCpu->cpum.GstCtx.cr0;
5349 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
5350 crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
5351 break;
5352 case 2:
5353 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2);
5354 crX = pVCpu->cpum.GstCtx.cr2;
5355 break;
5356 case 3:
5357 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5358 crX = pVCpu->cpum.GstCtx.cr3;
5359 break;
5360 case 4:
5361 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5362 crX = pVCpu->cpum.GstCtx.cr4;
5363 break;
5364 case 8:
5365 {
5366 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5367#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5368 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5369 {
5370 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr8(pVCpu, iGReg, cbInstr);
5371 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5372 return rcStrict;
5373
5374 /*
5375 * If the Mov-from-CR8 doesn't cause a VM-exit, bits 7:4 of the VTPR is copied
5376 * to bits 0:3 of the destination operand. Bits 63:4 of the destination operand
5377 * are cleared.
5378 *
5379 * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5380 */
5381 if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5382 {
5383 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5384 crX = (uTpr >> 4) & 0xf;
5385 break;
5386 }
5387 }
5388#endif
5389#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5390 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5391 {
5392 PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
5393 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5394 {
5395 crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf;
5396 break;
5397 }
5398 }
5399#endif
5400 uint8_t uTpr;
5401 int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
5402 if (RT_SUCCESS(rc))
5403 crX = uTpr >> 4;
5404 else
5405 crX = 0;
5406 break;
5407 }
5408 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5409 }
5410
5411#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5412 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5413 {
5414 switch (iCrReg)
5415 {
5416 case 0:
5417 case 4:
5418 {
5419 /* CR0/CR4 reads are subject to masking when in VMX non-root mode. */
5420 crX = iemVmxMaskCr0CR4(pVCpu, iCrReg, crX);
5421 break;
5422 }
5423
5424 case 3:
5425 {
5426 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr3(pVCpu, iGReg, cbInstr);
5427 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5428 return rcStrict;
5429 break;
5430 }
5431 }
5432 }
5433#endif
5434
5435 /* Store it. */
5436 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5437 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
5438 else
5439 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
5440
5441 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5442 return VINF_SUCCESS;
5443}
5444
5445
5446/**
5447 * Implements smsw GReg.
5448 *
5449 * @param iGReg The general register to store the CRx value in.
5450 * @param enmEffOpSize The operand size.
5451 */
5452IEM_CIMPL_DEF_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5453{
5454 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5455
5456 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5457#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5458 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5459 u64GuestCr0 = iemVmxMaskCr0CR4(pVCpu, 0 /* iCrReg */, u64GuestCr0);
5460#endif
5461
5462 switch (enmEffOpSize)
5463 {
5464 case IEMMODE_16BIT:
5465 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5466 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0;
5467 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5468 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xffe0;
5469 else
5470 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xfff0;
5471 break;
5472
5473 case IEMMODE_32BIT:
5474 *(uint32_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)u64GuestCr0;
5475 break;
5476
5477 case IEMMODE_64BIT:
5478 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = u64GuestCr0;
5479 break;
5480
5481 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5482 }
5483
5484 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5485 return VINF_SUCCESS;
5486}
5487
5488
5489/**
5490 * Implements smsw mem.
5491 *
5492 * @param iGReg The general register to store the CR0 value in.
5493 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5494 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5495 */
5496IEM_CIMPL_DEF_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5497{
5498 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5499
5500 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5501#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5502 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5503 u64GuestCr0 = iemVmxMaskCr0CR4(pVCpu, 0 /* iCrReg */, u64GuestCr0);
5504#endif
5505
5506 uint16_t u16Value;
5507 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5508 u16Value = (uint16_t)u64GuestCr0;
5509 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5510 u16Value = (uint16_t)u64GuestCr0 | 0xffe0;
5511 else
5512 u16Value = (uint16_t)u64GuestCr0 | 0xfff0;
5513
5514 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, u16Value);
5515 if (rcStrict == VINF_SUCCESS)
5516 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5517 return rcStrict;
5518}
5519
5520
5521/**
5522 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
5523 *
5524 * @param iCrReg The CRx register to write (valid).
5525 * @param uNewCrX The new value.
5526 * @param enmAccessCrx The instruction that caused the CrX load.
5527 * @param iGReg The general register in case of a 'mov CRx,GReg'
5528 * instruction.
5529 */
5530IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
5531{
5532 VBOXSTRICTRC rcStrict;
5533 int rc;
5534#ifndef VBOX_WITH_NESTED_HWVIRT_SVM
5535 RT_NOREF2(iGReg, enmAccessCrX);
5536#endif
5537
5538 /*
5539 * Try store it.
5540 * Unfortunately, CPUM only does a tiny bit of the work.
5541 */
5542 switch (iCrReg)
5543 {
5544 case 0:
5545 {
5546 /*
5547 * Perform checks.
5548 */
5549 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5550
5551 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0;
5552 uint32_t const fValid = X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS
5553 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM
5554 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG;
5555
5556 /* ET is hardcoded on 486 and later. */
5557 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
5558 uNewCrX |= X86_CR0_ET;
5559 /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
5560 else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
5561 {
5562 uNewCrX &= fValid;
5563 uNewCrX |= X86_CR0_ET;
5564 }
5565 else
5566 uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
5567
5568 /* Check for reserved bits. */
5569 if (uNewCrX & ~(uint64_t)fValid)
5570 {
5571 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5572 return iemRaiseGeneralProtectionFault0(pVCpu);
5573 }
5574
5575 /* Check for invalid combinations. */
5576 if ( (uNewCrX & X86_CR0_PG)
5577 && !(uNewCrX & X86_CR0_PE) )
5578 {
5579 Log(("Trying to set CR0.PG without CR0.PE\n"));
5580 return iemRaiseGeneralProtectionFault0(pVCpu);
5581 }
5582
5583 if ( !(uNewCrX & X86_CR0_CD)
5584 && (uNewCrX & X86_CR0_NW) )
5585 {
5586 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
5587 return iemRaiseGeneralProtectionFault0(pVCpu);
5588 }
5589
5590 if ( !(uNewCrX & X86_CR0_PG)
5591 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE))
5592 {
5593 Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n"));
5594 return iemRaiseGeneralProtectionFault0(pVCpu);
5595 }
5596
5597 /* Long mode consistency checks. */
5598 if ( (uNewCrX & X86_CR0_PG)
5599 && !(uOldCrX & X86_CR0_PG)
5600 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5601 {
5602 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE))
5603 {
5604 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
5605 return iemRaiseGeneralProtectionFault0(pVCpu);
5606 }
5607 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long)
5608 {
5609 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
5610 return iemRaiseGeneralProtectionFault0(pVCpu);
5611 }
5612 }
5613
5614 /* Check for bits that must remain set or cleared in VMX operation,
5615 see Intel spec. 23.8 "Restrictions on VMX operation". */
5616 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5617 {
5618 uint32_t const uCr0Fixed0 = CPUMGetGuestIa32VmxCr0Fixed0(pVCpu);
5619 if ((uNewCrX & uCr0Fixed0) != uCr0Fixed0)
5620 {
5621 Log(("Trying to clear reserved CR0 bits in VMX operation: NewCr0=%#llx MB1=%#llx\n", uNewCrX, uCr0Fixed0));
5622 return iemRaiseGeneralProtectionFault0(pVCpu);
5623 }
5624
5625 uint32_t const uCr0Fixed1 = CPUMGetGuestIa32VmxCr0Fixed1(pVCpu);
5626 if (uNewCrX & ~uCr0Fixed1)
5627 {
5628 Log(("Trying to set reserved CR0 bits in VMX operation: NewCr0=%#llx MB0=%#llx\n", uNewCrX, uCr0Fixed1));
5629 return iemRaiseGeneralProtectionFault0(pVCpu);
5630 }
5631 }
5632
5633 /** @todo check reserved PDPTR bits as AMD states. */
5634
5635 /*
5636 * SVM nested-guest CR0 write intercepts.
5637 */
5638 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
5639 {
5640 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5641 IEM_SVM_UPDATE_NRIP(pVCpu);
5642 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
5643 }
5644 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5645 {
5646 /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
5647 if ( enmAccessCrX == IEMACCESSCRX_LMSW
5648 || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
5649 {
5650 Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
5651 Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg));
5652 IEM_SVM_UPDATE_NRIP(pVCpu);
5653 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg);
5654 }
5655 }
5656
5657 /*
5658 * Change CR0.
5659 */
5660 CPUMSetGuestCR0(pVCpu, uNewCrX);
5661 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX);
5662
5663 /*
5664 * Change EFER.LMA if entering or leaving long mode.
5665 */
5666 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
5667 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5668 {
5669 uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER;
5670 if (uNewCrX & X86_CR0_PG)
5671 NewEFER |= MSR_K6_EFER_LMA;
5672 else
5673 NewEFER &= ~MSR_K6_EFER_LMA;
5674
5675 CPUMSetGuestEFER(pVCpu, NewEFER);
5676 Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER);
5677 }
5678
5679 /*
5680 * Inform PGM.
5681 */
5682 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
5683 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
5684 {
5685 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5686 AssertRCReturn(rc, rc);
5687 /* ignore informational status codes */
5688 }
5689 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
5690
5691#ifdef IN_RC
5692 /* Return to ring-3 for rescheduling if WP or AM changes. */
5693 if ( rcStrict == VINF_SUCCESS
5694 && ( (uNewCrX & (X86_CR0_WP | X86_CR0_AM))
5695 != (uOldCrX & (X86_CR0_WP | X86_CR0_AM))) )
5696 rcStrict = VINF_EM_RESCHEDULE;
5697#endif
5698 break;
5699 }
5700
5701 /*
5702 * CR2 can be changed without any restrictions.
5703 */
5704 case 2:
5705 {
5706 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
5707 {
5708 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5709 IEM_SVM_UPDATE_NRIP(pVCpu);
5710 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
5711 }
5712 pVCpu->cpum.GstCtx.cr2 = uNewCrX;
5713 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2;
5714 rcStrict = VINF_SUCCESS;
5715 break;
5716 }
5717
5718 /*
5719 * CR3 is relatively simple, although AMD and Intel have different
5720 * accounts of how setting reserved bits are handled. We take intel's
5721 * word for the lower bits and AMD's for the high bits (63:52). The
5722 * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
5723 * on this.
5724 */
5725 /** @todo Testcase: Setting reserved bits in CR3, especially before
5726 * enabling paging. */
5727 case 3:
5728 {
5729 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5730
5731 /* Bit 63 being clear in the source operand with PCIDE indicates no invalidations are required. */
5732 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)
5733 && (uNewCrX & RT_BIT_64(63)))
5734 {
5735 /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10
5736 * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see
5737 * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and
5738 * Paging-Structure Caches". */
5739 uNewCrX &= ~RT_BIT_64(63);
5740 }
5741
5742 /* Check / mask the value. */
5743 if (uNewCrX & UINT64_C(0xfff0000000000000))
5744 {
5745 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
5746 return iemRaiseGeneralProtectionFault0(pVCpu);
5747 }
5748
5749 uint64_t fValid;
5750 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
5751 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME))
5752 fValid = UINT64_C(0x000fffffffffffff);
5753 else
5754 fValid = UINT64_C(0xffffffff);
5755 if (uNewCrX & ~fValid)
5756 {
5757 Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
5758 uNewCrX, uNewCrX & ~fValid));
5759 uNewCrX &= fValid;
5760 }
5761
5762 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
5763 {
5764 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5765 IEM_SVM_UPDATE_NRIP(pVCpu);
5766 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
5767 }
5768
5769 /** @todo If we're in PAE mode we should check the PDPTRs for
5770 * invalid bits. */
5771
5772 /* Make the change. */
5773 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
5774 AssertRCSuccessReturn(rc, rc);
5775
5776 /* Inform PGM. */
5777 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
5778 {
5779 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE));
5780 AssertRCReturn(rc, rc);
5781 /* ignore informational status codes */
5782 }
5783 rcStrict = VINF_SUCCESS;
5784 break;
5785 }
5786
5787 /*
5788 * CR4 is a bit more tedious as there are bits which cannot be cleared
5789 * under some circumstances and such.
5790 */
5791 case 4:
5792 {
5793 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5794 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4;
5795
5796 /** @todo Shouldn't this look at the guest CPUID bits to determine
5797 * valid bits? e.g. if guest CPUID doesn't allow X86_CR4_OSXMMEEXCPT, we
5798 * should #GP(0). */
5799 /* reserved bits */
5800 uint32_t fValid = X86_CR4_VME | X86_CR4_PVI
5801 | X86_CR4_TSD | X86_CR4_DE
5802 | X86_CR4_PSE | X86_CR4_PAE
5803 | X86_CR4_MCE | X86_CR4_PGE
5804 | X86_CR4_PCE | X86_CR4_OSFXSR
5805 | X86_CR4_OSXMMEEXCPT;
5806 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmx)
5807 fValid |= X86_CR4_VMXE;
5808 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fXSaveRstor)
5809 fValid |= X86_CR4_OSXSAVE;
5810 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fPcid)
5811 fValid |= X86_CR4_PCIDE;
5812 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fFsGsBase)
5813 fValid |= X86_CR4_FSGSBASE;
5814 if (uNewCrX & ~(uint64_t)fValid)
5815 {
5816 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5817 return iemRaiseGeneralProtectionFault0(pVCpu);
5818 }
5819
5820 bool const fPcide = ((uNewCrX ^ uOldCrX) & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE);
5821 bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
5822
5823 /* PCIDE check. */
5824 if ( fPcide
5825 && ( !fLongMode
5826 || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))))
5827 {
5828 Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))));
5829 return iemRaiseGeneralProtectionFault0(pVCpu);
5830 }
5831
5832 /* PAE check. */
5833 if ( fLongMode
5834 && (uOldCrX & X86_CR4_PAE)
5835 && !(uNewCrX & X86_CR4_PAE))
5836 {
5837 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
5838 return iemRaiseGeneralProtectionFault0(pVCpu);
5839 }
5840
5841 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
5842 {
5843 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5844 IEM_SVM_UPDATE_NRIP(pVCpu);
5845 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
5846 }
5847
5848 /* Check for bits that must remain set or cleared in VMX operation,
5849 see Intel spec. 23.8 "Restrictions on VMX operation". */
5850 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5851 {
5852 uint32_t const uCr4Fixed0 = CPUMGetGuestIa32VmxCr4Fixed0(pVCpu);
5853 if ((uNewCrX & uCr4Fixed0) != uCr4Fixed0)
5854 {
5855 Log(("Trying to clear reserved CR4 bits in VMX operation: NewCr4=%#llx MB1=%#llx\n", uNewCrX, uCr4Fixed0));
5856 return iemRaiseGeneralProtectionFault0(pVCpu);
5857 }
5858
5859 uint32_t const uCr4Fixed1 = CPUMGetGuestIa32VmxCr4Fixed1(pVCpu);
5860 if (uNewCrX & ~uCr4Fixed1)
5861 {
5862 Log(("Trying to set reserved CR4 bits in VMX operation: NewCr4=%#llx MB0=%#llx\n", uNewCrX, uCr4Fixed1));
5863 return iemRaiseGeneralProtectionFault0(pVCpu);
5864 }
5865 }
5866
5867 /*
5868 * Change it.
5869 */
5870 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
5871 AssertRCSuccessReturn(rc, rc);
5872 Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX);
5873
5874 /*
5875 * Notify SELM and PGM.
5876 */
5877 /* SELM - VME may change things wrt to the TSS shadowing. */
5878 if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
5879 {
5880 Log(("iemCImpl_load_CrX: VME %d -> %d => Setting VMCPU_FF_SELM_SYNC_TSS\n",
5881 RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) ));
5882#ifdef VBOX_WITH_RAW_MODE
5883 if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
5884 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
5885#endif
5886 }
5887
5888 /* PGM - flushing and mode. */
5889 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */))
5890 {
5891 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5892 AssertRCReturn(rc, rc);
5893 /* ignore informational status codes */
5894 }
5895 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
5896 break;
5897 }
5898
5899 /*
5900 * CR8 maps to the APIC TPR.
5901 */
5902 case 8:
5903 {
5904 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5905 if (uNewCrX & ~(uint64_t)0xf)
5906 {
5907 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
5908 return iemRaiseGeneralProtectionFault0(pVCpu);
5909 }
5910
5911#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5912 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5913 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5914 {
5915 /*
5916 * If the Mov-to-CR8 doesn't cause a VM-exit, bits 0:3 of the source operand
5917 * is copied to bits 7:4 of the VTPR. Bits 0:3 and bits 31:8 of the VTPR are
5918 * cleared. Following this the processor performs TPR virtualization.
5919 *
5920 * However, we should not perform TPR virtualization immediately here but
5921 * after this instruction has completed.
5922 *
5923 * See Intel spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5924 * See Intel spec. 27.1 "Architectural State Before A VM-exit"
5925 */
5926 uint32_t const uTpr = (uNewCrX & 0xf) << 4;
5927 Log(("iemCImpl_load_Cr%#x: Virtualizing TPR (%#x) write\n", iCrReg, uTpr));
5928 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
5929 iemVmxVirtApicSetPendingWrite(pVCpu, XAPIC_OFF_TPR);
5930 rcStrict = VINF_SUCCESS;
5931 break;
5932 }
5933#endif
5934
5935#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5936 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5937 {
5938 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
5939 {
5940 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5941 IEM_SVM_UPDATE_NRIP(pVCpu);
5942 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
5943 }
5944
5945 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
5946 pVmcbCtrl->IntCtrl.n.u8VTPR = uNewCrX;
5947 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5948 {
5949 rcStrict = VINF_SUCCESS;
5950 break;
5951 }
5952 }
5953#endif
5954 uint8_t const u8Tpr = (uint8_t)uNewCrX << 4;
5955 APICSetTpr(pVCpu, u8Tpr);
5956 rcStrict = VINF_SUCCESS;
5957 break;
5958 }
5959
5960 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5961 }
5962
5963 /*
5964 * Advance the RIP on success.
5965 */
5966 if (RT_SUCCESS(rcStrict))
5967 {
5968 if (rcStrict != VINF_SUCCESS)
5969 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
5970 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5971 }
5972
5973 return rcStrict;
5974}
5975
5976
5977/**
5978 * Implements mov CRx,GReg.
5979 *
5980 * @param iCrReg The CRx register to write (valid).
5981 * @param iGReg The general register to load the CRx value from.
5982 */
5983IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
5984{
5985 if (pVCpu->iem.s.uCpl != 0)
5986 return iemRaiseGeneralProtectionFault0(pVCpu);
5987 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5988
5989 /*
5990 * Read the new value from the source register and call common worker.
5991 */
5992 uint64_t uNewCrX;
5993 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5994 uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
5995 else
5996 uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
5997
5998#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5999 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6000 {
6001 VBOXSTRICTRC rcStrict = VINF_VMX_INTERCEPT_NOT_ACTIVE;
6002 switch (iCrReg)
6003 {
6004 case 0:
6005 case 4: rcStrict = iemVmxVmexitInstrMovToCr0Cr4(pVCpu, iCrReg, &uNewCrX, iGReg, cbInstr); break;
6006 case 3: rcStrict = iemVmxVmexitInstrMovToCr3(pVCpu, uNewCrX, iGReg, cbInstr); break;
6007 case 8: rcStrict = iemVmxVmexitInstrMovToCr8(pVCpu, iGReg, cbInstr); break;
6008 }
6009 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6010 return rcStrict;
6011 }
6012#endif
6013
6014 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
6015}
6016
6017
6018/**
6019 * Implements 'LMSW r/m16'
6020 *
6021 * @param u16NewMsw The new value.
6022 * @param GCPtrEffDst The guest-linear address of the source operand in case
6023 * of a memory operand. For register operand, pass
6024 * NIL_RTGCPTR.
6025 */
6026IEM_CIMPL_DEF_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst)
6027{
6028 if (pVCpu->iem.s.uCpl != 0)
6029 return iemRaiseGeneralProtectionFault0(pVCpu);
6030 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6031 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6032
6033#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6034 /* Check nested-guest VMX intercept and get updated MSW if there's no VM-exit. */
6035 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6036 {
6037 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrLmsw(pVCpu, pVCpu->cpum.GstCtx.cr0, &u16NewMsw, GCPtrEffDst, cbInstr);
6038 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6039 return rcStrict;
6040 }
6041#else
6042 RT_NOREF_PV(GCPtrEffDst);
6043#endif
6044
6045 /*
6046 * Compose the new CR0 value and call common worker.
6047 */
6048 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6049 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6050 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
6051}
6052
6053
6054/**
6055 * Implements 'CLTS'.
6056 */
6057IEM_CIMPL_DEF_0(iemCImpl_clts)
6058{
6059 if (pVCpu->iem.s.uCpl != 0)
6060 return iemRaiseGeneralProtectionFault0(pVCpu);
6061
6062 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6063 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0;
6064 uNewCr0 &= ~X86_CR0_TS;
6065
6066#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6067 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6068 {
6069 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrClts(pVCpu, cbInstr);
6070 if (rcStrict == VINF_VMX_MODIFIES_BEHAVIOR)
6071 uNewCr0 |= (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS);
6072 else if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6073 return rcStrict;
6074 }
6075#endif
6076
6077 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
6078}
6079
6080
6081/**
6082 * Implements mov GReg,DRx.
6083 *
6084 * @param iGReg The general register to store the DRx value in.
6085 * @param iDrReg The DRx register to read (0-7).
6086 */
6087IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
6088{
6089#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6090 /*
6091 * Check nested-guest VMX intercept.
6092 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6093 * over CPL and CR4.DE and even DR4/DR5 checks.
6094 *
6095 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6096 */
6097 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6098 {
6099 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_FROM_DRX, iDrReg, iGReg, cbInstr);
6100 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6101 return rcStrict;
6102 }
6103#endif
6104
6105 /*
6106 * Check preconditions.
6107 */
6108 /* Raise GPs. */
6109 if (pVCpu->iem.s.uCpl != 0)
6110 return iemRaiseGeneralProtectionFault0(pVCpu);
6111 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6112 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR0);
6113
6114 if ( (iDrReg == 4 || iDrReg == 5)
6115 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) )
6116 {
6117 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
6118 return iemRaiseGeneralProtectionFault0(pVCpu);
6119 }
6120
6121 /* Raise #DB if general access detect is enabled. */
6122 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6123 {
6124 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
6125 return iemRaiseDebugException(pVCpu);
6126 }
6127
6128 /*
6129 * Read the debug register and store it in the specified general register.
6130 */
6131 uint64_t drX;
6132 switch (iDrReg)
6133 {
6134 case 0:
6135 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6136 drX = pVCpu->cpum.GstCtx.dr[0];
6137 break;
6138 case 1:
6139 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6140 drX = pVCpu->cpum.GstCtx.dr[1];
6141 break;
6142 case 2:
6143 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6144 drX = pVCpu->cpum.GstCtx.dr[2];
6145 break;
6146 case 3:
6147 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6148 drX = pVCpu->cpum.GstCtx.dr[3];
6149 break;
6150 case 6:
6151 case 4:
6152 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6153 drX = pVCpu->cpum.GstCtx.dr[6];
6154 drX |= X86_DR6_RA1_MASK;
6155 drX &= ~X86_DR6_RAZ_MASK;
6156 break;
6157 case 7:
6158 case 5:
6159 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6160 drX = pVCpu->cpum.GstCtx.dr[7];
6161 drX |=X86_DR7_RA1_MASK;
6162 drX &= ~X86_DR7_RAZ_MASK;
6163 break;
6164 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6165 }
6166
6167 /** @todo SVM nested-guest intercept for DR8-DR15? */
6168 /*
6169 * Check for any SVM nested-guest intercepts for the DRx read.
6170 */
6171 if (IEM_SVM_IS_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
6172 {
6173 Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
6174 IEM_SVM_UPDATE_NRIP(pVCpu);
6175 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
6176 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6177 }
6178
6179 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6180 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
6181 else
6182 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
6183
6184 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6185 return VINF_SUCCESS;
6186}
6187
6188
6189/**
6190 * Implements mov DRx,GReg.
6191 *
6192 * @param iDrReg The DRx register to write (valid).
6193 * @param iGReg The general register to load the DRx value from.
6194 */
6195IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
6196{
6197#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6198 /*
6199 * Check nested-guest VMX intercept.
6200 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6201 * over CPL and CR4.DE and even DR4/DR5 checks.
6202 *
6203 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6204 */
6205 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6206 {
6207 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_TO_DRX, iDrReg, iGReg, cbInstr);
6208 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6209 return rcStrict;
6210 }
6211#endif
6212
6213 /*
6214 * Check preconditions.
6215 */
6216 if (pVCpu->iem.s.uCpl != 0)
6217 return iemRaiseGeneralProtectionFault0(pVCpu);
6218 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6219 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR4);
6220
6221 if (iDrReg == 4 || iDrReg == 5)
6222 {
6223 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
6224 {
6225 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
6226 return iemRaiseGeneralProtectionFault0(pVCpu);
6227 }
6228 iDrReg += 2;
6229 }
6230
6231 /* Raise #DB if general access detect is enabled. */
6232 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
6233 * \#GP? */
6234 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6235 {
6236 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
6237 return iemRaiseDebugException(pVCpu);
6238 }
6239
6240 /*
6241 * Read the new value from the source register.
6242 */
6243 uint64_t uNewDrX;
6244 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6245 uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
6246 else
6247 uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
6248
6249 /*
6250 * Adjust it.
6251 */
6252 switch (iDrReg)
6253 {
6254 case 0:
6255 case 1:
6256 case 2:
6257 case 3:
6258 /* nothing to adjust */
6259 break;
6260
6261 case 6:
6262 if (uNewDrX & X86_DR6_MBZ_MASK)
6263 {
6264 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6265 return iemRaiseGeneralProtectionFault0(pVCpu);
6266 }
6267 uNewDrX |= X86_DR6_RA1_MASK;
6268 uNewDrX &= ~X86_DR6_RAZ_MASK;
6269 break;
6270
6271 case 7:
6272 if (uNewDrX & X86_DR7_MBZ_MASK)
6273 {
6274 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6275 return iemRaiseGeneralProtectionFault0(pVCpu);
6276 }
6277 uNewDrX |= X86_DR7_RA1_MASK;
6278 uNewDrX &= ~X86_DR7_RAZ_MASK;
6279 break;
6280
6281 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6282 }
6283
6284 /** @todo SVM nested-guest intercept for DR8-DR15? */
6285 /*
6286 * Check for any SVM nested-guest intercepts for the DRx write.
6287 */
6288 if (IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
6289 {
6290 Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
6291 IEM_SVM_UPDATE_NRIP(pVCpu);
6292 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
6293 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6294 }
6295
6296 /*
6297 * Do the actual setting.
6298 */
6299 if (iDrReg < 4)
6300 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6301 else if (iDrReg == 6)
6302 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6303
6304 int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
6305 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
6306
6307 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6308 return VINF_SUCCESS;
6309}
6310
6311
6312/**
6313 * Implements 'INVLPG m'.
6314 *
6315 * @param GCPtrPage The effective address of the page to invalidate.
6316 * @remarks Updates the RIP.
6317 */
6318IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
6319{
6320 /* ring-0 only. */
6321 if (pVCpu->iem.s.uCpl != 0)
6322 return iemRaiseGeneralProtectionFault0(pVCpu);
6323 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6324 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6325
6326#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6327 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6328 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6329 {
6330 Log(("invlpg: Guest intercept (%RGp) -> VM-exit\n", GCPtrPage));
6331 return iemVmxVmexitInstrInvlpg(pVCpu, GCPtrPage, cbInstr);
6332 }
6333#endif
6334
6335 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
6336 {
6337 Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
6338 IEM_SVM_UPDATE_NRIP(pVCpu);
6339 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPG,
6340 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */);
6341 }
6342
6343 int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
6344 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6345
6346 if (rc == VINF_SUCCESS)
6347 return VINF_SUCCESS;
6348 if (rc == VINF_PGM_SYNC_CR3)
6349 return iemSetPassUpStatus(pVCpu, rc);
6350
6351 AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
6352 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
6353 return rc;
6354}
6355
6356
6357/**
6358 * Implements INVPCID.
6359 *
6360 * @param iEffSeg The segment of the invpcid descriptor.
6361 * @param GCPtrInvpcidDesc The address of invpcid descriptor.
6362 * @param uInvpcidType The invalidation type.
6363 * @remarks Updates the RIP.
6364 */
6365IEM_CIMPL_DEF_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint8_t, uInvpcidType)
6366{
6367 /*
6368 * Check preconditions.
6369 */
6370 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid)
6371 return iemRaiseUndefinedOpcode(pVCpu);
6372
6373 /* When in VMX non-root mode and INVPCID is not enabled, it results in #UD. */
6374 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6375 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_INVPCID))
6376 {
6377 Log(("invpcid: Not enabled for nested-guest execution -> #UD\n"));
6378 return iemRaiseUndefinedOpcode(pVCpu);
6379 }
6380
6381 if (pVCpu->iem.s.uCpl != 0)
6382 {
6383 Log(("invpcid: CPL != 0 -> #GP(0)\n"));
6384 return iemRaiseGeneralProtectionFault0(pVCpu);
6385 }
6386
6387 if (IEM_IS_V86_MODE(pVCpu))
6388 {
6389 Log(("invpcid: v8086 mode -> #GP(0)\n"));
6390 return iemRaiseGeneralProtectionFault0(pVCpu);
6391 }
6392
6393 /*
6394 * Check nested-guest intercept.
6395 *
6396 * INVPCID causes a VM-exit if "enable INVPCID" and "INVLPG exiting" are
6397 * both set. We have already checked the former earlier in this function.
6398 *
6399 * CPL checks take priority over VM-exit.
6400 * See Intel spec. "25.1.1 Relative Priority of Faults and VM Exits".
6401 */
6402 /** @todo r=ramshankar: NSTVMX: I'm not entirely certain if V86 mode check has
6403 * higher or lower priority than a VM-exit, we assume higher for the time
6404 * being. */
6405 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6406 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6407 {
6408 Log(("invpcid: Guest intercept -> #VM-exit\n"));
6409 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_INVPCID, VMXINSTRID_NONE, cbInstr);
6410 }
6411
6412 if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID)
6413 {
6414 Log(("invpcid: invalid/unrecognized invpcid type %#x -> #GP(0)\n", uInvpcidType));
6415 return iemRaiseGeneralProtectionFault0(pVCpu);
6416 }
6417 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6418
6419 /*
6420 * Fetch the invpcid descriptor from guest memory.
6421 */
6422 RTUINT128U uDesc;
6423 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvpcidDesc);
6424 if (rcStrict == VINF_SUCCESS)
6425 {
6426 /*
6427 * Validate the descriptor.
6428 */
6429 if (uDesc.s.Lo > 0xfff)
6430 {
6431 Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
6432 return iemRaiseGeneralProtectionFault0(pVCpu);
6433 }
6434
6435 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
6436 uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff);
6437 uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4;
6438 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
6439 switch (uInvpcidType)
6440 {
6441 case X86_INVPCID_TYPE_INDV_ADDR:
6442 {
6443 if (!IEM_IS_CANONICAL(GCPtrInvAddr))
6444 {
6445 Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr));
6446 return iemRaiseGeneralProtectionFault0(pVCpu);
6447 }
6448 if ( !(uCr4 & X86_CR4_PCIDE)
6449 && uPcid != 0)
6450 {
6451 Log(("invpcid: invalid pcid %#x\n", uPcid));
6452 return iemRaiseGeneralProtectionFault0(pVCpu);
6453 }
6454
6455 /* Invalidate mappings for the linear address tagged with PCID except global translations. */
6456 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6457 break;
6458 }
6459
6460 case X86_INVPCID_TYPE_SINGLE_CONTEXT:
6461 {
6462 if ( !(uCr4 & X86_CR4_PCIDE)
6463 && uPcid != 0)
6464 {
6465 Log(("invpcid: invalid pcid %#x\n", uPcid));
6466 return iemRaiseGeneralProtectionFault0(pVCpu);
6467 }
6468 /* Invalidate all mappings associated with PCID except global translations. */
6469 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6470 break;
6471 }
6472
6473 case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL:
6474 {
6475 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
6476 break;
6477 }
6478
6479 case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL:
6480 {
6481 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6482 break;
6483 }
6484 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6485 }
6486 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6487 }
6488 return rcStrict;
6489}
6490
6491
6492/**
6493 * Implements INVD.
6494 */
6495IEM_CIMPL_DEF_0(iemCImpl_invd)
6496{
6497 if (pVCpu->iem.s.uCpl != 0)
6498 {
6499 Log(("invd: CPL != 0 -> #GP(0)\n"));
6500 return iemRaiseGeneralProtectionFault0(pVCpu);
6501 }
6502
6503 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6504 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_INVD, cbInstr);
6505
6506 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_INVD, SVM_EXIT_INVD, 0, 0);
6507
6508 /* We currently take no action here. */
6509 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6510 return VINF_SUCCESS;
6511}
6512
6513
6514/**
6515 * Implements WBINVD.
6516 */
6517IEM_CIMPL_DEF_0(iemCImpl_wbinvd)
6518{
6519 if (pVCpu->iem.s.uCpl != 0)
6520 {
6521 Log(("wbinvd: CPL != 0 -> #GP(0)\n"));
6522 return iemRaiseGeneralProtectionFault0(pVCpu);
6523 }
6524
6525 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6526 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WBINVD, cbInstr);
6527
6528 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_WBINVD, SVM_EXIT_WBINVD, 0, 0);
6529
6530 /* We currently take no action here. */
6531 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6532 return VINF_SUCCESS;
6533}
6534
6535
6536/** Opcode 0x0f 0xaa. */
6537IEM_CIMPL_DEF_0(iemCImpl_rsm)
6538{
6539 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_RSM, SVM_EXIT_RSM, 0, 0);
6540 NOREF(cbInstr);
6541 return iemRaiseUndefinedOpcode(pVCpu);
6542}
6543
6544
6545/**
6546 * Implements RDTSC.
6547 */
6548IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
6549{
6550 /*
6551 * Check preconditions.
6552 */
6553 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
6554 return iemRaiseUndefinedOpcode(pVCpu);
6555
6556 if (pVCpu->iem.s.uCpl != 0)
6557 {
6558 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6559 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6560 {
6561 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6562 return iemRaiseGeneralProtectionFault0(pVCpu);
6563 }
6564 }
6565
6566 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6567 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6568 {
6569 Log(("rdtsc: Guest intercept -> VM-exit\n"));
6570 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSC, cbInstr);
6571 }
6572
6573 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
6574 {
6575 Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
6576 IEM_SVM_UPDATE_NRIP(pVCpu);
6577 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6578 }
6579
6580 /*
6581 * Do the job.
6582 */
6583 uint64_t uTicks = TMCpuTickGet(pVCpu);
6584#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6585 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6586#endif
6587 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6588 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6589 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); /* For IEMExecDecodedRdtsc. */
6590 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6591 return VINF_SUCCESS;
6592}
6593
6594
6595/**
6596 * Implements RDTSC.
6597 */
6598IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
6599{
6600 /*
6601 * Check preconditions.
6602 */
6603 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
6604 return iemRaiseUndefinedOpcode(pVCpu);
6605
6606 if (pVCpu->iem.s.uCpl != 0)
6607 {
6608 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6609 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6610 {
6611 Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6612 return iemRaiseGeneralProtectionFault0(pVCpu);
6613 }
6614 }
6615
6616 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6617 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_RDTSCP))
6618 {
6619 Log(("rdtscp: Guest intercept -> VM-exit\n"));
6620 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSCP, cbInstr);
6621 }
6622 else if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
6623 {
6624 Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
6625 IEM_SVM_UPDATE_NRIP(pVCpu);
6626 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6627 }
6628
6629 /*
6630 * Do the job.
6631 * Query the MSR first in case of trips to ring-3.
6632 */
6633 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
6634 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx);
6635 if (rcStrict == VINF_SUCCESS)
6636 {
6637 /* Low dword of the TSC_AUX msr only. */
6638 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
6639
6640 uint64_t uTicks = TMCpuTickGet(pVCpu);
6641#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6642 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6643#endif
6644 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6645 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6646 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX); /* For IEMExecDecodedRdtscp. */
6647 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6648 }
6649 return rcStrict;
6650}
6651
6652
6653/**
6654 * Implements RDPMC.
6655 */
6656IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
6657{
6658 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6659
6660 if ( pVCpu->iem.s.uCpl != 0
6661 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE))
6662 return iemRaiseGeneralProtectionFault0(pVCpu);
6663
6664 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6665 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDPMC_EXIT))
6666 {
6667 Log(("rdpmc: Guest intercept -> VM-exit\n"));
6668 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDPMC, cbInstr);
6669 }
6670
6671 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
6672 {
6673 Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
6674 IEM_SVM_UPDATE_NRIP(pVCpu);
6675 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6676 }
6677
6678 /** @todo Emulate performance counters, for now just return 0. */
6679 pVCpu->cpum.GstCtx.rax = 0;
6680 pVCpu->cpum.GstCtx.rdx = 0;
6681 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
6682 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
6683 * ecx but see @bugref{3472}! */
6684
6685 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6686 return VINF_SUCCESS;
6687}
6688
6689
6690/**
6691 * Implements RDMSR.
6692 */
6693IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
6694{
6695 /*
6696 * Check preconditions.
6697 */
6698 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
6699 return iemRaiseUndefinedOpcode(pVCpu);
6700 if (pVCpu->iem.s.uCpl != 0)
6701 return iemRaiseGeneralProtectionFault0(pVCpu);
6702
6703 /*
6704 * Check nested-guest intercepts.
6705 */
6706#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6707 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6708 {
6709 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_RDMSR, pVCpu->cpum.GstCtx.ecx))
6710 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDMSR, cbInstr);
6711 }
6712#endif
6713
6714#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6715 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
6716 {
6717 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */);
6718 if (rcStrict == VINF_SVM_VMEXIT)
6719 return VINF_SUCCESS;
6720 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6721 {
6722 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
6723 return rcStrict;
6724 }
6725 }
6726#endif
6727
6728 /*
6729 * Do the job.
6730 */
6731 RTUINT64U uValue;
6732 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
6733 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
6734
6735 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u);
6736 if (rcStrict == VINF_SUCCESS)
6737 {
6738 pVCpu->cpum.GstCtx.rax = uValue.s.Lo;
6739 pVCpu->cpum.GstCtx.rdx = uValue.s.Hi;
6740 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
6741
6742 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6743 return VINF_SUCCESS;
6744 }
6745
6746#ifndef IN_RING3
6747 /* Deferred to ring-3. */
6748 if (rcStrict == VINF_CPUM_R3_MSR_READ)
6749 {
6750 Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
6751 return rcStrict;
6752 }
6753#endif
6754
6755 /* Often a unimplemented MSR or MSR bit, so worth logging. */
6756 if (pVCpu->iem.s.cLogRelRdMsr < 32)
6757 {
6758 pVCpu->iem.s.cLogRelRdMsr++;
6759 LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
6760 }
6761 else
6762 Log(( "IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
6763 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
6764 return iemRaiseGeneralProtectionFault0(pVCpu);
6765}
6766
6767
6768/**
6769 * Implements WRMSR.
6770 */
6771IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
6772{
6773 /*
6774 * Check preconditions.
6775 */
6776 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
6777 return iemRaiseUndefinedOpcode(pVCpu);
6778 if (pVCpu->iem.s.uCpl != 0)
6779 return iemRaiseGeneralProtectionFault0(pVCpu);
6780
6781 RTUINT64U uValue;
6782 uValue.s.Lo = pVCpu->cpum.GstCtx.eax;
6783 uValue.s.Hi = pVCpu->cpum.GstCtx.edx;
6784
6785 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
6786
6787 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
6788 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
6789
6790 /*
6791 * Check nested-guest intercepts.
6792 */
6793#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6794 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6795 {
6796 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_WRMSR, idMsr))
6797 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WRMSR, cbInstr);
6798 }
6799#endif
6800
6801#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6802 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
6803 {
6804 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, idMsr, true /* fWrite */);
6805 if (rcStrict == VINF_SVM_VMEXIT)
6806 return VINF_SUCCESS;
6807 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6808 {
6809 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", idMsr, VBOXSTRICTRC_VAL(rcStrict)));
6810 return rcStrict;
6811 }
6812 }
6813#endif
6814
6815 /*
6816 * Do the job.
6817 */
6818 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, idMsr, uValue.u);
6819 if (rcStrict == VINF_SUCCESS)
6820 {
6821 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6822 return VINF_SUCCESS;
6823 }
6824
6825#ifndef IN_RING3
6826 /* Deferred to ring-3. */
6827 if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
6828 {
6829 Log(("IEM: wrmsr(%#x) -> ring-3\n", idMsr));
6830 return rcStrict;
6831 }
6832#endif
6833
6834 /* Often a unimplemented MSR or MSR bit, so worth logging. */
6835 if (pVCpu->iem.s.cLogRelWrMsr < 32)
6836 {
6837 pVCpu->iem.s.cLogRelWrMsr++;
6838 LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
6839 }
6840 else
6841 Log(( "IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
6842 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
6843 return iemRaiseGeneralProtectionFault0(pVCpu);
6844}
6845
6846
6847/**
6848 * Implements 'IN eAX, port'.
6849 *
6850 * @param u16Port The source port.
6851 * @param fImm Whether the port was specified through an immediate operand
6852 * or the implicit DX register.
6853 * @param cbReg The register size.
6854 */
6855IEM_CIMPL_DEF_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
6856{
6857 /*
6858 * CPL check
6859 */
6860 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
6861 if (rcStrict != VINF_SUCCESS)
6862 return rcStrict;
6863
6864 /*
6865 * Check VMX nested-guest IO intercept.
6866 */
6867#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6868 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6869 {
6870 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_IN, u16Port, fImm, cbReg, cbInstr);
6871 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6872 return rcStrict;
6873 }
6874#else
6875 RT_NOREF(fImm);
6876#endif
6877
6878 /*
6879 * Check SVM nested-guest IO intercept.
6880 */
6881#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6882 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
6883 {
6884 uint8_t cAddrSizeBits;
6885 switch (pVCpu->iem.s.enmEffAddrMode)
6886 {
6887 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
6888 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
6889 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
6890 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6891 }
6892 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
6893 false /* fRep */, false /* fStrIo */, cbInstr);
6894 if (rcStrict == VINF_SVM_VMEXIT)
6895 return VINF_SUCCESS;
6896 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6897 {
6898 Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
6899 VBOXSTRICTRC_VAL(rcStrict)));
6900 return rcStrict;
6901 }
6902 }
6903#endif
6904
6905 /*
6906 * Perform the I/O.
6907 */
6908 uint32_t u32Value = 0;
6909 rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg);
6910 if (IOM_SUCCESS(rcStrict))
6911 {
6912 switch (cbReg)
6913 {
6914 case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break;
6915 case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break;
6916 case 4: pVCpu->cpum.GstCtx.rax = u32Value; break;
6917 default: AssertFailedReturn(VERR_IEM_IPE_3);
6918 }
6919 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6920 pVCpu->iem.s.cPotentialExits++;
6921 if (rcStrict != VINF_SUCCESS)
6922 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
6923 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
6924
6925 /*
6926 * Check for I/O breakpoints.
6927 */
6928 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
6929 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6930 && X86_DR7_ANY_RW_IO(uDr7)
6931 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
6932 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
6933 {
6934 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
6935 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
6936 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
6937 rcStrict = iemRaiseDebugException(pVCpu);
6938 }
6939 }
6940
6941 return rcStrict;
6942}
6943
6944
6945/**
6946 * Implements 'IN eAX, DX'.
6947 *
6948 * @param cbReg The register size.
6949 */
6950IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
6951{
6952 return IEM_CIMPL_CALL_3(iemCImpl_in, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
6953}
6954
6955
6956/**
6957 * Implements 'OUT port, eAX'.
6958 *
6959 * @param u16Port The destination port.
6960 * @param fImm Whether the port was specified through an immediate operand
6961 * or the implicit DX register.
6962 * @param cbReg The register size.
6963 */
6964IEM_CIMPL_DEF_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
6965{
6966 /*
6967 * CPL check
6968 */
6969 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
6970 if (rcStrict != VINF_SUCCESS)
6971 return rcStrict;
6972
6973 /*
6974 * Check VMX nested-guest I/O intercept.
6975 */
6976#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6977 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6978 {
6979 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_OUT, u16Port, fImm, cbReg, cbInstr);
6980 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6981 return rcStrict;
6982 }
6983#else
6984 RT_NOREF(fImm);
6985#endif
6986
6987 /*
6988 * Check SVM nested-guest I/O intercept.
6989 */
6990#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6991 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
6992 {
6993 uint8_t cAddrSizeBits;
6994 switch (pVCpu->iem.s.enmEffAddrMode)
6995 {
6996 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
6997 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
6998 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
6999 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7000 }
7001 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7002 false /* fRep */, false /* fStrIo */, cbInstr);
7003 if (rcStrict == VINF_SVM_VMEXIT)
7004 return VINF_SUCCESS;
7005 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7006 {
7007 Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7008 VBOXSTRICTRC_VAL(rcStrict)));
7009 return rcStrict;
7010 }
7011 }
7012#endif
7013
7014 /*
7015 * Perform the I/O.
7016 */
7017 uint32_t u32Value;
7018 switch (cbReg)
7019 {
7020 case 1: u32Value = pVCpu->cpum.GstCtx.al; break;
7021 case 2: u32Value = pVCpu->cpum.GstCtx.ax; break;
7022 case 4: u32Value = pVCpu->cpum.GstCtx.eax; break;
7023 default: AssertFailedReturn(VERR_IEM_IPE_4);
7024 }
7025 rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg);
7026 if (IOM_SUCCESS(rcStrict))
7027 {
7028 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7029 pVCpu->iem.s.cPotentialExits++;
7030 if (rcStrict != VINF_SUCCESS)
7031 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7032 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
7033
7034 /*
7035 * Check for I/O breakpoints.
7036 */
7037 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7038 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7039 && X86_DR7_ANY_RW_IO(uDr7)
7040 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7041 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
7042 {
7043 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7044 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7045 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7046 rcStrict = iemRaiseDebugException(pVCpu);
7047 }
7048 }
7049 return rcStrict;
7050}
7051
7052
7053/**
7054 * Implements 'OUT DX, eAX'.
7055 *
7056 * @param cbReg The register size.
7057 */
7058IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
7059{
7060 return IEM_CIMPL_CALL_3(iemCImpl_out, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7061}
7062
7063
7064/**
7065 * Implements 'CLI'.
7066 */
7067IEM_CIMPL_DEF_0(iemCImpl_cli)
7068{
7069 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7070 uint32_t const fEflOld = fEfl;
7071
7072 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7073 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7074 {
7075 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7076 if (!(fEfl & X86_EFL_VM))
7077 {
7078 if (pVCpu->iem.s.uCpl <= uIopl)
7079 fEfl &= ~X86_EFL_IF;
7080 else if ( pVCpu->iem.s.uCpl == 3
7081 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) )
7082 fEfl &= ~X86_EFL_VIF;
7083 else
7084 return iemRaiseGeneralProtectionFault0(pVCpu);
7085 }
7086 /* V8086 */
7087 else if (uIopl == 3)
7088 fEfl &= ~X86_EFL_IF;
7089 else if ( uIopl < 3
7090 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
7091 fEfl &= ~X86_EFL_VIF;
7092 else
7093 return iemRaiseGeneralProtectionFault0(pVCpu);
7094 }
7095 /* real mode */
7096 else
7097 fEfl &= ~X86_EFL_IF;
7098
7099 /* Commit. */
7100 IEMMISC_SET_EFL(pVCpu, fEfl);
7101 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7102 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
7103 return VINF_SUCCESS;
7104}
7105
7106
7107/**
7108 * Implements 'STI'.
7109 */
7110IEM_CIMPL_DEF_0(iemCImpl_sti)
7111{
7112 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7113 uint32_t const fEflOld = fEfl;
7114
7115 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7116 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7117 {
7118 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7119 if (!(fEfl & X86_EFL_VM))
7120 {
7121 if (pVCpu->iem.s.uCpl <= uIopl)
7122 fEfl |= X86_EFL_IF;
7123 else if ( pVCpu->iem.s.uCpl == 3
7124 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI)
7125 && !(fEfl & X86_EFL_VIP) )
7126 fEfl |= X86_EFL_VIF;
7127 else
7128 return iemRaiseGeneralProtectionFault0(pVCpu);
7129 }
7130 /* V8086 */
7131 else if (uIopl == 3)
7132 fEfl |= X86_EFL_IF;
7133 else if ( uIopl < 3
7134 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)
7135 && !(fEfl & X86_EFL_VIP) )
7136 fEfl |= X86_EFL_VIF;
7137 else
7138 return iemRaiseGeneralProtectionFault0(pVCpu);
7139 }
7140 /* real mode */
7141 else
7142 fEfl |= X86_EFL_IF;
7143
7144 /* Commit. */
7145 IEMMISC_SET_EFL(pVCpu, fEfl);
7146 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7147 if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF))
7148 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7149 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
7150 return VINF_SUCCESS;
7151}
7152
7153
7154/**
7155 * Implements 'HLT'.
7156 */
7157IEM_CIMPL_DEF_0(iemCImpl_hlt)
7158{
7159 if (pVCpu->iem.s.uCpl != 0)
7160 return iemRaiseGeneralProtectionFault0(pVCpu);
7161
7162 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7163 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_HLT_EXIT))
7164 {
7165 Log2(("hlt: Guest intercept -> VM-exit\n"));
7166 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_HLT, cbInstr);
7167 }
7168
7169 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
7170 {
7171 Log2(("hlt: Guest intercept -> #VMEXIT\n"));
7172 IEM_SVM_UPDATE_NRIP(pVCpu);
7173 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7174 }
7175
7176 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7177 return VINF_EM_HALT;
7178}
7179
7180
7181/**
7182 * Implements 'MONITOR'.
7183 */
7184IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
7185{
7186 /*
7187 * Permission checks.
7188 */
7189 if (pVCpu->iem.s.uCpl != 0)
7190 {
7191 Log2(("monitor: CPL != 0\n"));
7192 return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
7193 }
7194 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7195 {
7196 Log2(("monitor: Not in CPUID\n"));
7197 return iemRaiseUndefinedOpcode(pVCpu);
7198 }
7199
7200 /*
7201 * Check VMX guest-intercept.
7202 * This should be considered a fault-like VM-exit.
7203 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
7204 */
7205 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7206 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MONITOR_EXIT))
7207 {
7208 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7209 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_MONITOR, cbInstr);
7210 }
7211
7212 /*
7213 * Gather the operands and validate them.
7214 */
7215 RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
7216 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7217 uint32_t uEdx = pVCpu->cpum.GstCtx.edx;
7218/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
7219 * \#GP first. */
7220 if (uEcx != 0)
7221 {
7222 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
7223 return iemRaiseGeneralProtectionFault0(pVCpu);
7224 }
7225
7226 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
7227 if (rcStrict != VINF_SUCCESS)
7228 return rcStrict;
7229
7230 RTGCPHYS GCPhysMem;
7231 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7232 if (rcStrict != VINF_SUCCESS)
7233 return rcStrict;
7234
7235#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7236 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7237 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
7238 {
7239 /*
7240 * MONITOR does not access the memory, just monitors the address. However,
7241 * if the address falls in the APIC-access page, the address monitored must
7242 * instead be the corresponding address in the virtual-APIC page.
7243 *
7244 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
7245 */
7246 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
7247 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
7248 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
7249 return rcStrict;
7250 }
7251#endif
7252
7253 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
7254 {
7255 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7256 IEM_SVM_UPDATE_NRIP(pVCpu);
7257 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7258 }
7259
7260 /*
7261 * Call EM to prepare the monitor/wait.
7262 */
7263 rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem);
7264 Assert(rcStrict == VINF_SUCCESS);
7265
7266 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7267 return rcStrict;
7268}
7269
7270
7271/**
7272 * Implements 'MWAIT'.
7273 */
7274IEM_CIMPL_DEF_0(iemCImpl_mwait)
7275{
7276 /*
7277 * Permission checks.
7278 */
7279 if (pVCpu->iem.s.uCpl != 0)
7280 {
7281 Log2(("mwait: CPL != 0\n"));
7282 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
7283 * EFLAGS.VM then.) */
7284 return iemRaiseUndefinedOpcode(pVCpu);
7285 }
7286 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7287 {
7288 Log2(("mwait: Not in CPUID\n"));
7289 return iemRaiseUndefinedOpcode(pVCpu);
7290 }
7291
7292 /* Check VMX nested-guest intercept. */
7293 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7294 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MWAIT_EXIT))
7295 IEM_VMX_VMEXIT_MWAIT_RET(pVCpu, EMMonitorIsArmed(pVCpu), cbInstr);
7296
7297 /*
7298 * Gather the operands and validate them.
7299 */
7300 uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
7301 uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
7302 if (uEcx != 0)
7303 {
7304 /* Only supported extension is break on IRQ when IF=0. */
7305 if (uEcx > 1)
7306 {
7307 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
7308 return iemRaiseGeneralProtectionFault0(pVCpu);
7309 }
7310 uint32_t fMWaitFeatures = 0;
7311 uint32_t uIgnore = 0;
7312 CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
7313 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7314 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7315 {
7316 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
7317 return iemRaiseGeneralProtectionFault0(pVCpu);
7318 }
7319
7320#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7321 /*
7322 * If the interrupt-window exiting control is set or a virtual-interrupt is pending
7323 * for delivery; and interrupts are disabled the processor does not enter its
7324 * mwait state but rather passes control to the next instruction.
7325 *
7326 * See Intel spec. 25.3 "Changes to Instruction Behavior In VMX Non-root Operation".
7327 */
7328 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7329 && !pVCpu->cpum.GstCtx.eflags.Bits.u1IF)
7330 {
7331 if ( IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INT_WINDOW_EXIT)
7332 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
7333 {
7334 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7335 return VINF_SUCCESS;
7336 }
7337 }
7338#endif
7339 }
7340
7341 /*
7342 * Check SVM nested-guest mwait intercepts.
7343 */
7344 if ( IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
7345 && EMMonitorIsArmed(pVCpu))
7346 {
7347 Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
7348 IEM_SVM_UPDATE_NRIP(pVCpu);
7349 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7350 }
7351 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
7352 {
7353 Log2(("mwait: Guest intercept -> #VMEXIT\n"));
7354 IEM_SVM_UPDATE_NRIP(pVCpu);
7355 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7356 }
7357
7358 /*
7359 * Call EM to prepare the monitor/wait.
7360 */
7361 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
7362
7363 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7364 return rcStrict;
7365}
7366
7367
7368/**
7369 * Implements 'SWAPGS'.
7370 */
7371IEM_CIMPL_DEF_0(iemCImpl_swapgs)
7372{
7373 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
7374
7375 /*
7376 * Permission checks.
7377 */
7378 if (pVCpu->iem.s.uCpl != 0)
7379 {
7380 Log2(("swapgs: CPL != 0\n"));
7381 return iemRaiseUndefinedOpcode(pVCpu);
7382 }
7383
7384 /*
7385 * Do the job.
7386 */
7387 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_GS);
7388 uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
7389 pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base;
7390 pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase;
7391
7392 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7393 return VINF_SUCCESS;
7394}
7395
7396
7397/**
7398 * Implements 'CPUID'.
7399 */
7400IEM_CIMPL_DEF_0(iemCImpl_cpuid)
7401{
7402 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7403 {
7404 Log2(("cpuid: Guest intercept -> VM-exit\n"));
7405 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_CPUID, cbInstr);
7406 }
7407
7408 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
7409 {
7410 Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
7411 IEM_SVM_UPDATE_NRIP(pVCpu);
7412 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7413 }
7414
7415 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
7416 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
7417 pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff);
7418 pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff);
7419 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
7420 pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff);
7421 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
7422
7423 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7424 pVCpu->iem.s.cPotentialExits++;
7425 return VINF_SUCCESS;
7426}
7427
7428
7429/**
7430 * Implements 'AAD'.
7431 *
7432 * @param bImm The immediate operand.
7433 */
7434IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
7435{
7436 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7437 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
7438 pVCpu->cpum.GstCtx.ax = al;
7439 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7440 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7441 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7442
7443 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7444 return VINF_SUCCESS;
7445}
7446
7447
7448/**
7449 * Implements 'AAM'.
7450 *
7451 * @param bImm The immediate operand. Cannot be 0.
7452 */
7453IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
7454{
7455 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
7456
7457 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7458 uint8_t const al = (uint8_t)ax % bImm;
7459 uint8_t const ah = (uint8_t)ax / bImm;
7460 pVCpu->cpum.GstCtx.ax = (ah << 8) + al;
7461 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7462 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7463 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7464
7465 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7466 return VINF_SUCCESS;
7467}
7468
7469
7470/**
7471 * Implements 'DAA'.
7472 */
7473IEM_CIMPL_DEF_0(iemCImpl_daa)
7474{
7475 uint8_t const al = pVCpu->cpum.GstCtx.al;
7476 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7477
7478 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7479 || (al & 0xf) >= 10)
7480 {
7481 pVCpu->cpum.GstCtx.al = al + 6;
7482 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7483 }
7484 else
7485 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7486
7487 if (al >= 0x9a || fCarry)
7488 {
7489 pVCpu->cpum.GstCtx.al += 0x60;
7490 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7491 }
7492 else
7493 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7494
7495 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7496 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7497 return VINF_SUCCESS;
7498}
7499
7500
7501/**
7502 * Implements 'DAS'.
7503 */
7504IEM_CIMPL_DEF_0(iemCImpl_das)
7505{
7506 uint8_t const uInputAL = pVCpu->cpum.GstCtx.al;
7507 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7508
7509 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7510 || (uInputAL & 0xf) >= 10)
7511 {
7512 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7513 if (uInputAL < 6)
7514 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7515 pVCpu->cpum.GstCtx.al = uInputAL - 6;
7516 }
7517 else
7518 {
7519 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7520 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7521 }
7522
7523 if (uInputAL >= 0x9a || fCarry)
7524 {
7525 pVCpu->cpum.GstCtx.al -= 0x60;
7526 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7527 }
7528
7529 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7530 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7531 return VINF_SUCCESS;
7532}
7533
7534
7535/**
7536 * Implements 'AAA'.
7537 */
7538IEM_CIMPL_DEF_0(iemCImpl_aaa)
7539{
7540 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7541 {
7542 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7543 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7544 {
7545 iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7546 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7547 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7548 }
7549 else
7550 {
7551 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7552 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7553 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7554 }
7555 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7556 }
7557 else
7558 {
7559 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7560 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7561 {
7562 pVCpu->cpum.GstCtx.ax += UINT16_C(0x106);
7563 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7564 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7565 }
7566 else
7567 {
7568 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7569 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7570 }
7571 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7572 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7573 }
7574
7575 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7576 return VINF_SUCCESS;
7577}
7578
7579
7580/**
7581 * Implements 'AAS'.
7582 */
7583IEM_CIMPL_DEF_0(iemCImpl_aas)
7584{
7585 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7586 {
7587 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7588 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7589 {
7590 iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7591 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7592 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7593 }
7594 else
7595 {
7596 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7597 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7598 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7599 }
7600 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7601 }
7602 else
7603 {
7604 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7605 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7606 {
7607 pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106);
7608 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7609 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7610 }
7611 else
7612 {
7613 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7614 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7615 }
7616 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7617 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7618 }
7619
7620 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7621 return VINF_SUCCESS;
7622}
7623
7624
7625/**
7626 * Implements the 16-bit version of 'BOUND'.
7627 *
7628 * @note We have separate 16-bit and 32-bit variants of this function due to
7629 * the decoder using unsigned parameters, whereas we want signed one to
7630 * do the job. This is significant for a recompiler.
7631 */
7632IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
7633{
7634 /*
7635 * Check if the index is inside the bounds, otherwise raise #BR.
7636 */
7637 if ( idxArray >= idxLowerBound
7638 && idxArray <= idxUpperBound)
7639 {
7640 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7641 return VINF_SUCCESS;
7642 }
7643
7644 return iemRaiseBoundRangeExceeded(pVCpu);
7645}
7646
7647
7648/**
7649 * Implements the 32-bit version of 'BOUND'.
7650 */
7651IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
7652{
7653 /*
7654 * Check if the index is inside the bounds, otherwise raise #BR.
7655 */
7656 if ( idxArray >= idxLowerBound
7657 && idxArray <= idxUpperBound)
7658 {
7659 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7660 return VINF_SUCCESS;
7661 }
7662
7663 return iemRaiseBoundRangeExceeded(pVCpu);
7664}
7665
7666
7667
7668/*
7669 * Instantiate the various string operation combinations.
7670 */
7671#define OP_SIZE 8
7672#define ADDR_SIZE 16
7673#include "IEMAllCImplStrInstr.cpp.h"
7674#define OP_SIZE 8
7675#define ADDR_SIZE 32
7676#include "IEMAllCImplStrInstr.cpp.h"
7677#define OP_SIZE 8
7678#define ADDR_SIZE 64
7679#include "IEMAllCImplStrInstr.cpp.h"
7680
7681#define OP_SIZE 16
7682#define ADDR_SIZE 16
7683#include "IEMAllCImplStrInstr.cpp.h"
7684#define OP_SIZE 16
7685#define ADDR_SIZE 32
7686#include "IEMAllCImplStrInstr.cpp.h"
7687#define OP_SIZE 16
7688#define ADDR_SIZE 64
7689#include "IEMAllCImplStrInstr.cpp.h"
7690
7691#define OP_SIZE 32
7692#define ADDR_SIZE 16
7693#include "IEMAllCImplStrInstr.cpp.h"
7694#define OP_SIZE 32
7695#define ADDR_SIZE 32
7696#include "IEMAllCImplStrInstr.cpp.h"
7697#define OP_SIZE 32
7698#define ADDR_SIZE 64
7699#include "IEMAllCImplStrInstr.cpp.h"
7700
7701#define OP_SIZE 64
7702#define ADDR_SIZE 32
7703#include "IEMAllCImplStrInstr.cpp.h"
7704#define OP_SIZE 64
7705#define ADDR_SIZE 64
7706#include "IEMAllCImplStrInstr.cpp.h"
7707
7708
7709/**
7710 * Implements 'XGETBV'.
7711 */
7712IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
7713{
7714 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
7715 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
7716 {
7717 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7718 switch (uEcx)
7719 {
7720 case 0:
7721 break;
7722
7723 case 1: /** @todo Implement XCR1 support. */
7724 default:
7725 Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
7726 return iemRaiseGeneralProtectionFault0(pVCpu);
7727
7728 }
7729 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
7730 pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
7731 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
7732
7733 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7734 return VINF_SUCCESS;
7735 }
7736 Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
7737 return iemRaiseUndefinedOpcode(pVCpu);
7738}
7739
7740
7741/**
7742 * Implements 'XSETBV'.
7743 */
7744IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
7745{
7746 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
7747 {
7748 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
7749 {
7750 Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
7751 IEM_SVM_UPDATE_NRIP(pVCpu);
7752 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7753 }
7754
7755 if (pVCpu->iem.s.uCpl == 0)
7756 {
7757 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
7758
7759 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7760 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_XSETBV, cbInstr);
7761
7762 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7763 uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx);
7764 switch (uEcx)
7765 {
7766 case 0:
7767 {
7768 int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
7769 if (rc == VINF_SUCCESS)
7770 break;
7771 Assert(rc == VERR_CPUM_RAISE_GP_0);
7772 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
7773 return iemRaiseGeneralProtectionFault0(pVCpu);
7774 }
7775
7776 case 1: /** @todo Implement XCR1 support. */
7777 default:
7778 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
7779 return iemRaiseGeneralProtectionFault0(pVCpu);
7780
7781 }
7782
7783 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7784 return VINF_SUCCESS;
7785 }
7786
7787 Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
7788 return iemRaiseGeneralProtectionFault0(pVCpu);
7789 }
7790 Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
7791 return iemRaiseUndefinedOpcode(pVCpu);
7792}
7793
7794#ifdef IN_RING3
7795
7796/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
7797struct IEMCIMPLCX16ARGS
7798{
7799 PRTUINT128U pu128Dst;
7800 PRTUINT128U pu128RaxRdx;
7801 PRTUINT128U pu128RbxRcx;
7802 uint32_t *pEFlags;
7803# ifdef VBOX_STRICT
7804 uint32_t cCalls;
7805# endif
7806};
7807
7808/**
7809 * @callback_method_impl{FNVMMEMTRENDEZVOUS,
7810 * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
7811 */
7812static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPU pVCpu, void *pvUser)
7813{
7814 RT_NOREF(pVM, pVCpu);
7815 struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
7816# ifdef VBOX_STRICT
7817 Assert(pArgs->cCalls == 0);
7818 pArgs->cCalls++;
7819# endif
7820
7821 iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
7822 return VINF_SUCCESS;
7823}
7824
7825#endif /* IN_RING3 */
7826
7827/**
7828 * Implements 'CMPXCHG16B' fallback using rendezvous.
7829 */
7830IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
7831 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
7832{
7833#ifdef IN_RING3
7834 struct IEMCIMPLCX16ARGS Args;
7835 Args.pu128Dst = pu128Dst;
7836 Args.pu128RaxRdx = pu128RaxRdx;
7837 Args.pu128RbxRcx = pu128RbxRcx;
7838 Args.pEFlags = pEFlags;
7839# ifdef VBOX_STRICT
7840 Args.cCalls = 0;
7841# endif
7842 VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
7843 iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
7844 Assert(Args.cCalls == 1);
7845 if (rcStrict == VINF_SUCCESS)
7846 {
7847 /* Duplicated tail code. */
7848 rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
7849 if (rcStrict == VINF_SUCCESS)
7850 {
7851 pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
7852 if (!(*pEFlags & X86_EFL_ZF))
7853 {
7854 pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo;
7855 pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi;
7856 }
7857 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7858 }
7859 }
7860 return rcStrict;
7861#else
7862 RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
7863 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
7864#endif
7865}
7866
7867
7868/**
7869 * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
7870 *
7871 * This is implemented in C because it triggers a load like behaviour without
7872 * actually reading anything. Since that's not so common, it's implemented
7873 * here.
7874 *
7875 * @param iEffSeg The effective segment.
7876 * @param GCPtrEff The address of the image.
7877 */
7878IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
7879{
7880 /*
7881 * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
7882 */
7883 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
7884 if (rcStrict == VINF_SUCCESS)
7885 {
7886 RTGCPHYS GCPhysMem;
7887 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7888 if (rcStrict == VINF_SUCCESS)
7889 {
7890#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7891 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7892 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
7893 {
7894 /*
7895 * CLFLUSH/CLFLUSHOPT does not access the memory, but flushes the cache-line
7896 * that contains the address. However, if the address falls in the APIC-access
7897 * page, the address flushed must instead be the corresponding address in the
7898 * virtual-APIC page.
7899 *
7900 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
7901 */
7902 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
7903 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
7904 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
7905 return rcStrict;
7906 }
7907#endif
7908 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7909 return VINF_SUCCESS;
7910 }
7911 }
7912
7913 return rcStrict;
7914}
7915
7916
7917/**
7918 * Implements 'FINIT' and 'FNINIT'.
7919 *
7920 * @param fCheckXcpts Whether to check for umasked pending exceptions or
7921 * not.
7922 */
7923IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
7924{
7925 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
7926 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
7927 return iemRaiseDeviceNotAvailable(pVCpu);
7928
7929 iemFpuActualizeStateForChange(pVCpu);
7930 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_X87);
7931
7932 NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
7933 if (fCheckXcpts && TODO )
7934 return iemRaiseMathFault(pVCpu);
7935 */
7936
7937 PX86XSAVEAREA pXState = pVCpu->cpum.GstCtx.CTX_SUFF(pXState);
7938 pXState->x87.FCW = 0x37f;
7939 pXState->x87.FSW = 0;
7940 pXState->x87.FTW = 0x00; /* 0 - empty. */
7941 pXState->x87.FPUDP = 0;
7942 pXState->x87.DS = 0; //??
7943 pXState->x87.Rsrvd2= 0;
7944 pXState->x87.FPUIP = 0;
7945 pXState->x87.CS = 0; //??
7946 pXState->x87.Rsrvd1= 0;
7947 pXState->x87.FOP = 0;
7948
7949 iemHlpUsedFpu(pVCpu);
7950 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7951 return VINF_SUCCESS;
7952}
7953
7954
7955/**
7956 * Implements 'FXSAVE'.
7957 *
7958 * @param iEffSeg The effective segment.
7959 * @param GCPtrEff The address of the image.
7960 * @param enmEffOpSize The operand size (only REX.W really matters).
7961 */
7962IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
7963{
7964 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
7965
7966 /*
7967 * Raise exceptions.
7968 */
7969 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
7970 return iemRaiseUndefinedOpcode(pVCpu);
7971 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
7972 return iemRaiseDeviceNotAvailable(pVCpu);
7973 if (GCPtrEff & 15)
7974 {
7975 /** @todo CPU/VM detection possible! \#AC might not be signal for
7976 * all/any misalignment sizes, intel says its an implementation detail. */
7977 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
7978 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
7979 && pVCpu->iem.s.uCpl == 3)
7980 return iemRaiseAlignmentCheckException(pVCpu);
7981 return iemRaiseGeneralProtectionFault0(pVCpu);
7982 }
7983
7984 /*
7985 * Access the memory.
7986 */
7987 void *pvMem512;
7988 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7989 if (rcStrict != VINF_SUCCESS)
7990 return rcStrict;
7991 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
7992 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
7993
7994 /*
7995 * Store the registers.
7996 */
7997 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
7998 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
7999
8000 /* common for all formats */
8001 pDst->FCW = pSrc->FCW;
8002 pDst->FSW = pSrc->FSW;
8003 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8004 pDst->FOP = pSrc->FOP;
8005 pDst->MXCSR = pSrc->MXCSR;
8006 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8007 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8008 {
8009 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8010 * them for now... */
8011 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8012 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8013 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8014 pDst->aRegs[i].au32[3] = 0;
8015 }
8016
8017 /* FPU IP, CS, DP and DS. */
8018 pDst->FPUIP = pSrc->FPUIP;
8019 pDst->CS = pSrc->CS;
8020 pDst->FPUDP = pSrc->FPUDP;
8021 pDst->DS = pSrc->DS;
8022 if (enmEffOpSize == IEMMODE_64BIT)
8023 {
8024 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8025 pDst->Rsrvd1 = pSrc->Rsrvd1;
8026 pDst->Rsrvd2 = pSrc->Rsrvd2;
8027 pDst->au32RsrvdForSoftware[0] = 0;
8028 }
8029 else
8030 {
8031 pDst->Rsrvd1 = 0;
8032 pDst->Rsrvd2 = 0;
8033 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8034 }
8035
8036 /* XMM registers. */
8037 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8038 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8039 || pVCpu->iem.s.uCpl != 0)
8040 {
8041 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8042 for (uint32_t i = 0; i < cXmmRegs; i++)
8043 pDst->aXMM[i] = pSrc->aXMM[i];
8044 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8045 * right? */
8046 }
8047
8048 /*
8049 * Commit the memory.
8050 */
8051 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8052 if (rcStrict != VINF_SUCCESS)
8053 return rcStrict;
8054
8055 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8056 return VINF_SUCCESS;
8057}
8058
8059
8060/**
8061 * Implements 'FXRSTOR'.
8062 *
8063 * @param GCPtrEff The address of the image.
8064 * @param enmEffOpSize The operand size (only REX.W really matters).
8065 */
8066IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8067{
8068 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8069
8070 /*
8071 * Raise exceptions.
8072 */
8073 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8074 return iemRaiseUndefinedOpcode(pVCpu);
8075 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8076 return iemRaiseDeviceNotAvailable(pVCpu);
8077 if (GCPtrEff & 15)
8078 {
8079 /** @todo CPU/VM detection possible! \#AC might not be signal for
8080 * all/any misalignment sizes, intel says its an implementation detail. */
8081 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8082 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8083 && pVCpu->iem.s.uCpl == 3)
8084 return iemRaiseAlignmentCheckException(pVCpu);
8085 return iemRaiseGeneralProtectionFault0(pVCpu);
8086 }
8087
8088 /*
8089 * Access the memory.
8090 */
8091 void *pvMem512;
8092 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8093 if (rcStrict != VINF_SUCCESS)
8094 return rcStrict;
8095 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8096 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8097
8098 /*
8099 * Check the state for stuff which will #GP(0).
8100 */
8101 uint32_t const fMXCSR = pSrc->MXCSR;
8102 uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8103 if (fMXCSR & ~fMXCSR_MASK)
8104 {
8105 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
8106 return iemRaiseGeneralProtectionFault0(pVCpu);
8107 }
8108
8109 /*
8110 * Load the registers.
8111 */
8112 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8113 * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
8114
8115 /* common for all formats */
8116 pDst->FCW = pSrc->FCW;
8117 pDst->FSW = pSrc->FSW;
8118 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8119 pDst->FOP = pSrc->FOP;
8120 pDst->MXCSR = fMXCSR;
8121 /* (MXCSR_MASK is read-only) */
8122 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8123 {
8124 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8125 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8126 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8127 pDst->aRegs[i].au32[3] = 0;
8128 }
8129
8130 /* FPU IP, CS, DP and DS. */
8131 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8132 {
8133 pDst->FPUIP = pSrc->FPUIP;
8134 pDst->CS = pSrc->CS;
8135 pDst->Rsrvd1 = pSrc->Rsrvd1;
8136 pDst->FPUDP = pSrc->FPUDP;
8137 pDst->DS = pSrc->DS;
8138 pDst->Rsrvd2 = pSrc->Rsrvd2;
8139 }
8140 else
8141 {
8142 pDst->FPUIP = pSrc->FPUIP;
8143 pDst->CS = pSrc->CS;
8144 pDst->Rsrvd1 = 0;
8145 pDst->FPUDP = pSrc->FPUDP;
8146 pDst->DS = pSrc->DS;
8147 pDst->Rsrvd2 = 0;
8148 }
8149
8150 /* XMM registers. */
8151 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8152 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8153 || pVCpu->iem.s.uCpl != 0)
8154 {
8155 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8156 for (uint32_t i = 0; i < cXmmRegs; i++)
8157 pDst->aXMM[i] = pSrc->aXMM[i];
8158 }
8159
8160 /*
8161 * Commit the memory.
8162 */
8163 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8164 if (rcStrict != VINF_SUCCESS)
8165 return rcStrict;
8166
8167 iemHlpUsedFpu(pVCpu);
8168 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8169 return VINF_SUCCESS;
8170}
8171
8172
8173/**
8174 * Implements 'XSAVE'.
8175 *
8176 * @param iEffSeg The effective segment.
8177 * @param GCPtrEff The address of the image.
8178 * @param enmEffOpSize The operand size (only REX.W really matters).
8179 */
8180IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8181{
8182 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8183
8184 /*
8185 * Raise exceptions.
8186 */
8187 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8188 return iemRaiseUndefinedOpcode(pVCpu);
8189 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8190 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8191 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8192 {
8193 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8194 return iemRaiseUndefinedOpcode(pVCpu);
8195 }
8196 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8197 return iemRaiseDeviceNotAvailable(pVCpu);
8198 if (GCPtrEff & 63)
8199 {
8200 /** @todo CPU/VM detection possible! \#AC might not be signal for
8201 * all/any misalignment sizes, intel says its an implementation detail. */
8202 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8203 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8204 && pVCpu->iem.s.uCpl == 3)
8205 return iemRaiseAlignmentCheckException(pVCpu);
8206 return iemRaiseGeneralProtectionFault0(pVCpu);
8207 }
8208
8209 /*
8210 * Calc the requested mask.
8211 */
8212 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8213 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8214 uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8215
8216/** @todo figure out the exact protocol for the memory access. Currently we
8217 * just need this crap to work halfways to make it possible to test
8218 * AVX instructions. */
8219/** @todo figure out the XINUSE and XMODIFIED */
8220
8221 /*
8222 * Access the x87 memory state.
8223 */
8224 /* The x87+SSE state. */
8225 void *pvMem512;
8226 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8227 if (rcStrict != VINF_SUCCESS)
8228 return rcStrict;
8229 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8230 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8231
8232 /* The header. */
8233 PX86XSAVEHDR pHdr;
8234 rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW);
8235 if (rcStrict != VINF_SUCCESS)
8236 return rcStrict;
8237
8238 /*
8239 * Store the X87 state.
8240 */
8241 if (fReqComponents & XSAVE_C_X87)
8242 {
8243 /* common for all formats */
8244 pDst->FCW = pSrc->FCW;
8245 pDst->FSW = pSrc->FSW;
8246 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8247 pDst->FOP = pSrc->FOP;
8248 pDst->FPUIP = pSrc->FPUIP;
8249 pDst->CS = pSrc->CS;
8250 pDst->FPUDP = pSrc->FPUDP;
8251 pDst->DS = pSrc->DS;
8252 if (enmEffOpSize == IEMMODE_64BIT)
8253 {
8254 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8255 pDst->Rsrvd1 = pSrc->Rsrvd1;
8256 pDst->Rsrvd2 = pSrc->Rsrvd2;
8257 pDst->au32RsrvdForSoftware[0] = 0;
8258 }
8259 else
8260 {
8261 pDst->Rsrvd1 = 0;
8262 pDst->Rsrvd2 = 0;
8263 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8264 }
8265 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8266 {
8267 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8268 * them for now... */
8269 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8270 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8271 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8272 pDst->aRegs[i].au32[3] = 0;
8273 }
8274
8275 }
8276
8277 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8278 {
8279 pDst->MXCSR = pSrc->MXCSR;
8280 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8281 }
8282
8283 if (fReqComponents & XSAVE_C_SSE)
8284 {
8285 /* XMM registers. */
8286 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8287 for (uint32_t i = 0; i < cXmmRegs; i++)
8288 pDst->aXMM[i] = pSrc->aXMM[i];
8289 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8290 * right? */
8291 }
8292
8293 /* Commit the x87 state bits. (probably wrong) */
8294 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8295 if (rcStrict != VINF_SUCCESS)
8296 return rcStrict;
8297
8298 /*
8299 * Store AVX state.
8300 */
8301 if (fReqComponents & XSAVE_C_YMM)
8302 {
8303 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8304 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8305 PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
8306 PX86XSAVEYMMHI pCompDst;
8307 rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
8308 IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8309 if (rcStrict != VINF_SUCCESS)
8310 return rcStrict;
8311
8312 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8313 for (uint32_t i = 0; i < cXmmRegs; i++)
8314 pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
8315
8316 rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8317 if (rcStrict != VINF_SUCCESS)
8318 return rcStrict;
8319 }
8320
8321 /*
8322 * Update the header.
8323 */
8324 pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
8325 | (fReqComponents & fXInUse);
8326
8327 rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
8328 if (rcStrict != VINF_SUCCESS)
8329 return rcStrict;
8330
8331 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8332 return VINF_SUCCESS;
8333}
8334
8335
8336/**
8337 * Implements 'XRSTOR'.
8338 *
8339 * @param iEffSeg The effective segment.
8340 * @param GCPtrEff The address of the image.
8341 * @param enmEffOpSize The operand size (only REX.W really matters).
8342 */
8343IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8344{
8345 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8346
8347 /*
8348 * Raise exceptions.
8349 */
8350 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8351 return iemRaiseUndefinedOpcode(pVCpu);
8352 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8353 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8354 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8355 {
8356 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8357 return iemRaiseUndefinedOpcode(pVCpu);
8358 }
8359 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8360 return iemRaiseDeviceNotAvailable(pVCpu);
8361 if (GCPtrEff & 63)
8362 {
8363 /** @todo CPU/VM detection possible! \#AC might not be signal for
8364 * all/any misalignment sizes, intel says its an implementation detail. */
8365 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8366 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8367 && pVCpu->iem.s.uCpl == 3)
8368 return iemRaiseAlignmentCheckException(pVCpu);
8369 return iemRaiseGeneralProtectionFault0(pVCpu);
8370 }
8371
8372/** @todo figure out the exact protocol for the memory access. Currently we
8373 * just need this crap to work halfways to make it possible to test
8374 * AVX instructions. */
8375/** @todo figure out the XINUSE and XMODIFIED */
8376
8377 /*
8378 * Access the x87 memory state.
8379 */
8380 /* The x87+SSE state. */
8381 void *pvMem512;
8382 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8383 if (rcStrict != VINF_SUCCESS)
8384 return rcStrict;
8385 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8386 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8387
8388 /*
8389 * Calc the requested mask
8390 */
8391 PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->Hdr;
8392 PCX86XSAVEHDR pHdrSrc;
8393 rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R);
8394 if (rcStrict != VINF_SUCCESS)
8395 return rcStrict;
8396
8397 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8398 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8399 //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8400 uint64_t const fRstorMask = pHdrSrc->bmXState;
8401 uint64_t const fCompMask = pHdrSrc->bmXComp;
8402
8403 AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8404
8405 uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8406
8407 /* We won't need this any longer. */
8408 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
8409 if (rcStrict != VINF_SUCCESS)
8410 return rcStrict;
8411
8412 /*
8413 * Store the X87 state.
8414 */
8415 if (fReqComponents & XSAVE_C_X87)
8416 {
8417 if (fRstorMask & XSAVE_C_X87)
8418 {
8419 pDst->FCW = pSrc->FCW;
8420 pDst->FSW = pSrc->FSW;
8421 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8422 pDst->FOP = pSrc->FOP;
8423 pDst->FPUIP = pSrc->FPUIP;
8424 pDst->CS = pSrc->CS;
8425 pDst->FPUDP = pSrc->FPUDP;
8426 pDst->DS = pSrc->DS;
8427 if (enmEffOpSize == IEMMODE_64BIT)
8428 {
8429 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8430 pDst->Rsrvd1 = pSrc->Rsrvd1;
8431 pDst->Rsrvd2 = pSrc->Rsrvd2;
8432 }
8433 else
8434 {
8435 pDst->Rsrvd1 = 0;
8436 pDst->Rsrvd2 = 0;
8437 }
8438 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8439 {
8440 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8441 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8442 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8443 pDst->aRegs[i].au32[3] = 0;
8444 }
8445 }
8446 else
8447 {
8448 pDst->FCW = 0x37f;
8449 pDst->FSW = 0;
8450 pDst->FTW = 0x00; /* 0 - empty. */
8451 pDst->FPUDP = 0;
8452 pDst->DS = 0; //??
8453 pDst->Rsrvd2= 0;
8454 pDst->FPUIP = 0;
8455 pDst->CS = 0; //??
8456 pDst->Rsrvd1= 0;
8457 pDst->FOP = 0;
8458 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8459 {
8460 pDst->aRegs[i].au32[0] = 0;
8461 pDst->aRegs[i].au32[1] = 0;
8462 pDst->aRegs[i].au32[2] = 0;
8463 pDst->aRegs[i].au32[3] = 0;
8464 }
8465 }
8466 pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
8467 }
8468
8469 /* MXCSR */
8470 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8471 {
8472 if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
8473 pDst->MXCSR = pSrc->MXCSR;
8474 else
8475 pDst->MXCSR = 0x1f80;
8476 }
8477
8478 /* XMM registers. */
8479 if (fReqComponents & XSAVE_C_SSE)
8480 {
8481 if (fRstorMask & XSAVE_C_SSE)
8482 {
8483 for (uint32_t i = 0; i < cXmmRegs; i++)
8484 pDst->aXMM[i] = pSrc->aXMM[i];
8485 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8486 * right? */
8487 }
8488 else
8489 {
8490 for (uint32_t i = 0; i < cXmmRegs; i++)
8491 {
8492 pDst->aXMM[i].au64[0] = 0;
8493 pDst->aXMM[i].au64[1] = 0;
8494 }
8495 }
8496 pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
8497 }
8498
8499 /* Unmap the x87 state bits (so we've don't run out of mapping). */
8500 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8501 if (rcStrict != VINF_SUCCESS)
8502 return rcStrict;
8503
8504 /*
8505 * Restore AVX state.
8506 */
8507 if (fReqComponents & XSAVE_C_YMM)
8508 {
8509 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8510 PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
8511
8512 if (fRstorMask & XSAVE_C_YMM)
8513 {
8514 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8515 PCX86XSAVEYMMHI pCompSrc;
8516 rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
8517 iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R);
8518 if (rcStrict != VINF_SUCCESS)
8519 return rcStrict;
8520
8521 for (uint32_t i = 0; i < cXmmRegs; i++)
8522 {
8523 pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
8524 pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
8525 }
8526
8527 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
8528 if (rcStrict != VINF_SUCCESS)
8529 return rcStrict;
8530 }
8531 else
8532 {
8533 for (uint32_t i = 0; i < cXmmRegs; i++)
8534 {
8535 pCompDst->aYmmHi[i].au64[0] = 0;
8536 pCompDst->aYmmHi[i].au64[1] = 0;
8537 }
8538 }
8539 pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
8540 }
8541
8542 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8543 return VINF_SUCCESS;
8544}
8545
8546
8547
8548
8549/**
8550 * Implements 'STMXCSR'.
8551 *
8552 * @param GCPtrEff The address of the image.
8553 */
8554IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8555{
8556 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8557
8558 /*
8559 * Raise exceptions.
8560 */
8561 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8562 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8563 {
8564 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8565 {
8566 /*
8567 * Do the job.
8568 */
8569 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
8570 if (rcStrict == VINF_SUCCESS)
8571 {
8572 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8573 return VINF_SUCCESS;
8574 }
8575 return rcStrict;
8576 }
8577 return iemRaiseDeviceNotAvailable(pVCpu);
8578 }
8579 return iemRaiseUndefinedOpcode(pVCpu);
8580}
8581
8582
8583/**
8584 * Implements 'VSTMXCSR'.
8585 *
8586 * @param GCPtrEff The address of the image.
8587 */
8588IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8589{
8590 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx);
8591
8592 /*
8593 * Raise exceptions.
8594 */
8595 if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
8596 ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
8597 : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
8598 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8599 {
8600 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8601 {
8602 /*
8603 * Do the job.
8604 */
8605 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
8606 if (rcStrict == VINF_SUCCESS)
8607 {
8608 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8609 return VINF_SUCCESS;
8610 }
8611 return rcStrict;
8612 }
8613 return iemRaiseDeviceNotAvailable(pVCpu);
8614 }
8615 return iemRaiseUndefinedOpcode(pVCpu);
8616}
8617
8618
8619/**
8620 * Implements 'LDMXCSR'.
8621 *
8622 * @param GCPtrEff The address of the image.
8623 */
8624IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8625{
8626 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8627
8628 /*
8629 * Raise exceptions.
8630 */
8631 /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
8632 * happen after or before \#UD and \#EM? */
8633 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8634 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8635 {
8636 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8637 {
8638 /*
8639 * Do the job.
8640 */
8641 uint32_t fNewMxCsr;
8642 VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
8643 if (rcStrict == VINF_SUCCESS)
8644 {
8645 uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8646 if (!(fNewMxCsr & ~fMxCsrMask))
8647 {
8648 pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR = fNewMxCsr;
8649 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8650 return VINF_SUCCESS;
8651 }
8652 Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
8653 fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
8654 return iemRaiseGeneralProtectionFault0(pVCpu);
8655 }
8656 return rcStrict;
8657 }
8658 return iemRaiseDeviceNotAvailable(pVCpu);
8659 }
8660 return iemRaiseUndefinedOpcode(pVCpu);
8661}
8662
8663
8664/**
8665 * Commmon routine for fnstenv and fnsave.
8666 *
8667 * @param pVCpu The cross context virtual CPU structure of the calling thread.
8668 * @param enmEffOpSize The effective operand size.
8669 * @param uPtr Where to store the state.
8670 */
8671static void iemCImplCommonFpuStoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr)
8672{
8673 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8674 PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8675 if (enmEffOpSize == IEMMODE_16BIT)
8676 {
8677 uPtr.pu16[0] = pSrcX87->FCW;
8678 uPtr.pu16[1] = pSrcX87->FSW;
8679 uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
8680 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8681 {
8682 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
8683 * protected mode or long mode and we save it in real mode? And vice
8684 * versa? And with 32-bit operand size? I think CPU is storing the
8685 * effective address ((CS << 4) + IP) in the offset register and not
8686 * doing any address calculations here. */
8687 uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
8688 uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
8689 uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
8690 uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
8691 }
8692 else
8693 {
8694 uPtr.pu16[3] = pSrcX87->FPUIP;
8695 uPtr.pu16[4] = pSrcX87->CS;
8696 uPtr.pu16[5] = pSrcX87->FPUDP;
8697 uPtr.pu16[6] = pSrcX87->DS;
8698 }
8699 }
8700 else
8701 {
8702 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
8703 uPtr.pu16[0*2] = pSrcX87->FCW;
8704 uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
8705 uPtr.pu16[1*2] = pSrcX87->FSW;
8706 uPtr.pu16[1*2+1] = 0xffff;
8707 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
8708 uPtr.pu16[2*2+1] = 0xffff;
8709 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8710 {
8711 uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
8712 uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
8713 uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
8714 uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
8715 }
8716 else
8717 {
8718 uPtr.pu32[3] = pSrcX87->FPUIP;
8719 uPtr.pu16[4*2] = pSrcX87->CS;
8720 uPtr.pu16[4*2+1] = pSrcX87->FOP;
8721 uPtr.pu32[5] = pSrcX87->FPUDP;
8722 uPtr.pu16[6*2] = pSrcX87->DS;
8723 uPtr.pu16[6*2+1] = 0xffff;
8724 }
8725 }
8726}
8727
8728
8729/**
8730 * Commmon routine for fldenv and frstor
8731 *
8732 * @param pVCpu The cross context virtual CPU structure of the calling thread.
8733 * @param enmEffOpSize The effective operand size.
8734 * @param uPtr Where to store the state.
8735 */
8736static void iemCImplCommonFpuRestoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr)
8737{
8738 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8739 PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8740 if (enmEffOpSize == IEMMODE_16BIT)
8741 {
8742 pDstX87->FCW = uPtr.pu16[0];
8743 pDstX87->FSW = uPtr.pu16[1];
8744 pDstX87->FTW = uPtr.pu16[2];
8745 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8746 {
8747 pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
8748 pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
8749 pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
8750 pDstX87->CS = 0;
8751 pDstX87->Rsrvd1= 0;
8752 pDstX87->DS = 0;
8753 pDstX87->Rsrvd2= 0;
8754 }
8755 else
8756 {
8757 pDstX87->FPUIP = uPtr.pu16[3];
8758 pDstX87->CS = uPtr.pu16[4];
8759 pDstX87->Rsrvd1= 0;
8760 pDstX87->FPUDP = uPtr.pu16[5];
8761 pDstX87->DS = uPtr.pu16[6];
8762 pDstX87->Rsrvd2= 0;
8763 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
8764 }
8765 }
8766 else
8767 {
8768 pDstX87->FCW = uPtr.pu16[0*2];
8769 pDstX87->FSW = uPtr.pu16[1*2];
8770 pDstX87->FTW = uPtr.pu16[2*2];
8771 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8772 {
8773 pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
8774 pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
8775 pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
8776 pDstX87->CS = 0;
8777 pDstX87->Rsrvd1= 0;
8778 pDstX87->DS = 0;
8779 pDstX87->Rsrvd2= 0;
8780 }
8781 else
8782 {
8783 pDstX87->FPUIP = uPtr.pu32[3];
8784 pDstX87->CS = uPtr.pu16[4*2];
8785 pDstX87->Rsrvd1= 0;
8786 pDstX87->FOP = uPtr.pu16[4*2+1];
8787 pDstX87->FPUDP = uPtr.pu32[5];
8788 pDstX87->DS = uPtr.pu16[6*2];
8789 pDstX87->Rsrvd2= 0;
8790 }
8791 }
8792
8793 /* Make adjustments. */
8794 pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
8795 pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
8796 iemFpuRecalcExceptionStatus(pDstX87);
8797 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
8798 * exceptions are pending after loading the saved state? */
8799}
8800
8801
8802/**
8803 * Implements 'FNSTENV'.
8804 *
8805 * @param enmEffOpSize The operand size (only REX.W really matters).
8806 * @param iEffSeg The effective segment register for @a GCPtrEff.
8807 * @param GCPtrEffDst The address of the image.
8808 */
8809IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
8810{
8811 RTPTRUNION uPtr;
8812 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
8813 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8814 if (rcStrict != VINF_SUCCESS)
8815 return rcStrict;
8816
8817 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
8818
8819 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8820 if (rcStrict != VINF_SUCCESS)
8821 return rcStrict;
8822
8823 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
8824 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8825 return VINF_SUCCESS;
8826}
8827
8828
8829/**
8830 * Implements 'FNSAVE'.
8831 *
8832 * @param GCPtrEffDst The address of the image.
8833 * @param enmEffOpSize The operand size.
8834 */
8835IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
8836{
8837 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8838
8839 RTPTRUNION uPtr;
8840 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
8841 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8842 if (rcStrict != VINF_SUCCESS)
8843 return rcStrict;
8844
8845 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8846 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
8847 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
8848 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
8849 {
8850 paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
8851 paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
8852 paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
8853 }
8854
8855 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8856 if (rcStrict != VINF_SUCCESS)
8857 return rcStrict;
8858
8859 /*
8860 * Re-initialize the FPU context.
8861 */
8862 pFpuCtx->FCW = 0x37f;
8863 pFpuCtx->FSW = 0;
8864 pFpuCtx->FTW = 0x00; /* 0 - empty */
8865 pFpuCtx->FPUDP = 0;
8866 pFpuCtx->DS = 0;
8867 pFpuCtx->Rsrvd2= 0;
8868 pFpuCtx->FPUIP = 0;
8869 pFpuCtx->CS = 0;
8870 pFpuCtx->Rsrvd1= 0;
8871 pFpuCtx->FOP = 0;
8872
8873 iemHlpUsedFpu(pVCpu);
8874 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8875 return VINF_SUCCESS;
8876}
8877
8878
8879
8880/**
8881 * Implements 'FLDENV'.
8882 *
8883 * @param enmEffOpSize The operand size (only REX.W really matters).
8884 * @param iEffSeg The effective segment register for @a GCPtrEff.
8885 * @param GCPtrEffSrc The address of the image.
8886 */
8887IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
8888{
8889 RTCPTRUNION uPtr;
8890 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
8891 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
8892 if (rcStrict != VINF_SUCCESS)
8893 return rcStrict;
8894
8895 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
8896
8897 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
8898 if (rcStrict != VINF_SUCCESS)
8899 return rcStrict;
8900
8901 iemHlpUsedFpu(pVCpu);
8902 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8903 return VINF_SUCCESS;
8904}
8905
8906
8907/**
8908 * Implements 'FRSTOR'.
8909 *
8910 * @param GCPtrEffSrc The address of the image.
8911 * @param enmEffOpSize The operand size.
8912 */
8913IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
8914{
8915 RTCPTRUNION uPtr;
8916 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
8917 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
8918 if (rcStrict != VINF_SUCCESS)
8919 return rcStrict;
8920
8921 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8922 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
8923 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
8924 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
8925 {
8926 pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
8927 pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
8928 pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
8929 pFpuCtx->aRegs[i].au32[3] = 0;
8930 }
8931
8932 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
8933 if (rcStrict != VINF_SUCCESS)
8934 return rcStrict;
8935
8936 iemHlpUsedFpu(pVCpu);
8937 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8938 return VINF_SUCCESS;
8939}
8940
8941
8942/**
8943 * Implements 'FLDCW'.
8944 *
8945 * @param u16Fcw The new FCW.
8946 */
8947IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
8948{
8949 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8950
8951 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
8952 /** @todo Testcase: Try see what happens when trying to set undefined bits
8953 * (other than 6 and 7). Currently ignoring them. */
8954 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
8955 * according to FSW. (This is was is currently implemented.) */
8956 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8957 pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
8958 iemFpuRecalcExceptionStatus(pFpuCtx);
8959
8960 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
8961 iemHlpUsedFpu(pVCpu);
8962 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8963 return VINF_SUCCESS;
8964}
8965
8966
8967
8968/**
8969 * Implements the underflow case of fxch.
8970 *
8971 * @param iStReg The other stack register.
8972 */
8973IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
8974{
8975 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8976
8977 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8978 unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
8979 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
8980 Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
8981
8982 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
8983 * registers are read as QNaN and then exchanged. This could be
8984 * wrong... */
8985 if (pFpuCtx->FCW & X86_FCW_IM)
8986 {
8987 if (RT_BIT(iReg1) & pFpuCtx->FTW)
8988 {
8989 if (RT_BIT(iReg2) & pFpuCtx->FTW)
8990 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
8991 else
8992 pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
8993 iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
8994 }
8995 else
8996 {
8997 pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
8998 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
8999 }
9000 pFpuCtx->FSW &= ~X86_FSW_C_MASK;
9001 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
9002 }
9003 else
9004 {
9005 /* raise underflow exception, don't change anything. */
9006 pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
9007 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9008 }
9009
9010 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9011 iemHlpUsedFpu(pVCpu);
9012 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9013 return VINF_SUCCESS;
9014}
9015
9016
9017/**
9018 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
9019 *
9020 * @param cToAdd 1 or 7.
9021 */
9022IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
9023{
9024 Assert(iStReg < 8);
9025 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9026
9027 /*
9028 * Raise exceptions.
9029 */
9030 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
9031 return iemRaiseDeviceNotAvailable(pVCpu);
9032
9033 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
9034 uint16_t u16Fsw = pFpuCtx->FSW;
9035 if (u16Fsw & X86_FSW_ES)
9036 return iemRaiseMathFault(pVCpu);
9037
9038 /*
9039 * Check if any of the register accesses causes #SF + #IA.
9040 */
9041 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
9042 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9043 if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
9044 {
9045 uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
9046 NOREF(u32Eflags);
9047
9048 pFpuCtx->FSW &= ~X86_FSW_C1;
9049 pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
9050 if ( !(u16Fsw & X86_FSW_IE)
9051 || (pFpuCtx->FCW & X86_FCW_IM) )
9052 {
9053 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9054 pVCpu->cpum.GstCtx.eflags.u |= pVCpu->cpum.GstCtx.eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9055 }
9056 }
9057 else if (pFpuCtx->FCW & X86_FCW_IM)
9058 {
9059 /* Masked underflow. */
9060 pFpuCtx->FSW &= ~X86_FSW_C1;
9061 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
9062 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9063 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
9064 }
9065 else
9066 {
9067 /* Raise underflow - don't touch EFLAGS or TOP. */
9068 pFpuCtx->FSW &= ~X86_FSW_C1;
9069 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9070 fPop = false;
9071 }
9072
9073 /*
9074 * Pop if necessary.
9075 */
9076 if (fPop)
9077 {
9078 pFpuCtx->FTW &= ~RT_BIT(iReg1);
9079 pFpuCtx->FSW &= X86_FSW_TOP_MASK;
9080 pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
9081 }
9082
9083 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9084 iemHlpUsedFpu(pVCpu);
9085 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9086 return VINF_SUCCESS;
9087}
9088
9089/** @} */
9090
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette