VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h@ 78404

Last change on this file since 78404 was 77610, checked in by vboxsync, 6 years ago

VMM/EM, VMM/IEM: Nested VMX: bugref:9180 Implemented NMI-exiting, NMI-window and virtual-NMI support. Moved VMCPU_FF_VMX_APIC_WRITE to high-priority post mask. Fixed calling iemMemRollback in IEMExecDecodedXXX for VMX instructions. Clear all VMX force-flags in common VM-exit handler rather than in the specific handler, esp since multiple of them may be active at the time of VM-exit.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 324.7 KB
Line 
1/* $Id: IEMAllCImpl.cpp.h 77610 2019-03-08 10:31:35Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#include "IEMAllCImplSvmInstr.cpp.h"
19#include "IEMAllCImplVmxInstr.cpp.h"
20
21
22/** @name Misc Helpers
23 * @{
24 */
25
26
27/**
28 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
29 *
30 * @returns Strict VBox status code.
31 *
32 * @param pVCpu The cross context virtual CPU structure of the calling thread.
33 * @param u16Port The port number.
34 * @param cbOperand The operand size.
35 */
36static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbOperand)
37{
38 /* The TSS bits we're interested in are the same on 386 and AMD64. */
39 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
40 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
41 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
42 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
43
44 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
45
46 /*
47 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
48 */
49 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
50 if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
51 && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
52 {
53 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
54 u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u));
55 return iemRaiseGeneralProtectionFault0(pVCpu);
56 }
57
58 /*
59 * Read the bitmap offset (may #PF).
60 */
61 uint16_t offBitmap;
62 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
63 pVCpu->cpum.GstCtx.tr.u64Base + RT_UOFFSETOF(X86TSS64, offIoBitmap));
64 if (rcStrict != VINF_SUCCESS)
65 {
66 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
67 return rcStrict;
68 }
69
70 /*
71 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
72 * describes the CPU actually reading two bytes regardless of whether the
73 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
74 */
75 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
76 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
77 * for instance sizeof(X86TSS32). */
78 if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */
79 {
80 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
81 offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit));
82 return iemRaiseGeneralProtectionFault0(pVCpu);
83 }
84
85 /*
86 * Read the necessary bits.
87 */
88 /** @todo Test the assertion in the intel manual that the CPU reads two
89 * bytes. The question is how this works wrt to #PF and #GP on the
90 * 2nd byte when it's not required. */
91 uint16_t bmBytes = UINT16_MAX;
92 rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit);
93 if (rcStrict != VINF_SUCCESS)
94 {
95 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
96 return rcStrict;
97 }
98
99 /*
100 * Perform the check.
101 */
102 uint16_t fPortMask = (1 << cbOperand) - 1;
103 bmBytes >>= (u16Port & 7);
104 if (bmBytes & fPortMask)
105 {
106 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
107 u16Port, cbOperand, bmBytes, fPortMask));
108 return iemRaiseGeneralProtectionFault0(pVCpu);
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115/**
116 * Checks if we are allowed to access the given I/O port, raising the
117 * appropriate exceptions if we aren't (or if the I/O bitmap is not
118 * accessible).
119 *
120 * @returns Strict VBox status code.
121 *
122 * @param pVCpu The cross context virtual CPU structure of the calling thread.
123 * @param u16Port The port number.
124 * @param cbOperand The operand size.
125 */
126DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbOperand)
127{
128 X86EFLAGS Efl;
129 Efl.u = IEMMISC_GET_EFL(pVCpu);
130 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
131 && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
132 || Efl.Bits.u1VM) )
133 return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand);
134 return VINF_SUCCESS;
135}
136
137
138#if 0
139/**
140 * Calculates the parity bit.
141 *
142 * @returns true if the bit is set, false if not.
143 * @param u8Result The least significant byte of the result.
144 */
145static bool iemHlpCalcParityFlag(uint8_t u8Result)
146{
147 /*
148 * Parity is set if the number of bits in the least significant byte of
149 * the result is even.
150 */
151 uint8_t cBits;
152 cBits = u8Result & 1; /* 0 */
153 u8Result >>= 1;
154 cBits += u8Result & 1;
155 u8Result >>= 1;
156 cBits += u8Result & 1;
157 u8Result >>= 1;
158 cBits += u8Result & 1;
159 u8Result >>= 1;
160 cBits += u8Result & 1; /* 4 */
161 u8Result >>= 1;
162 cBits += u8Result & 1;
163 u8Result >>= 1;
164 cBits += u8Result & 1;
165 u8Result >>= 1;
166 cBits += u8Result & 1;
167 return !(cBits & 1);
168}
169#endif /* not used */
170
171
172/**
173 * Updates the specified flags according to a 8-bit result.
174 *
175 * @param pVCpu The cross context virtual CPU structure of the calling thread.
176 * @param u8Result The result to set the flags according to.
177 * @param fToUpdate The flags to update.
178 * @param fUndefined The flags that are specified as undefined.
179 */
180static void iemHlpUpdateArithEFlagsU8(PVMCPU pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
181{
182 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
183 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
184 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
185 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
186}
187
188
189/**
190 * Updates the specified flags according to a 16-bit result.
191 *
192 * @param pVCpu The cross context virtual CPU structure of the calling thread.
193 * @param u16Result The result to set the flags according to.
194 * @param fToUpdate The flags to update.
195 * @param fUndefined The flags that are specified as undefined.
196 */
197static void iemHlpUpdateArithEFlagsU16(PVMCPU pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
198{
199 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
200 iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
201 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
202 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
203}
204
205
206/**
207 * Helper used by iret.
208 *
209 * @param pVCpu The cross context virtual CPU structure of the calling thread.
210 * @param uCpl The new CPL.
211 * @param pSReg Pointer to the segment register.
212 */
213static void iemHlpAdjustSelectorForNewCpl(PVMCPU pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
214{
215#ifdef VBOX_WITH_RAW_MODE_NOT_R0
216 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
217 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg);
218#else
219 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
220#endif
221 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
222
223 if ( uCpl > pSReg->Attr.n.u2Dpl
224 && pSReg->Attr.n.u1DescType /* code or data, not system */
225 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
226 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
227 iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
228}
229
230
231/**
232 * Indicates that we have modified the FPU state.
233 *
234 * @param pVCpu The cross context virtual CPU structure of the calling thread.
235 */
236DECLINLINE(void) iemHlpUsedFpu(PVMCPU pVCpu)
237{
238 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
239}
240
241/** @} */
242
243/** @name C Implementations
244 * @{
245 */
246
247/**
248 * Implements a 16-bit popa.
249 */
250IEM_CIMPL_DEF_0(iemCImpl_popa_16)
251{
252 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
253 RTGCPTR GCPtrLast = GCPtrStart + 15;
254 VBOXSTRICTRC rcStrict;
255
256 /*
257 * The docs are a bit hard to comprehend here, but it looks like we wrap
258 * around in real mode as long as none of the individual "popa" crosses the
259 * end of the stack segment. In protected mode we check the whole access
260 * in one go. For efficiency, only do the word-by-word thing if we're in
261 * danger of wrapping around.
262 */
263 /** @todo do popa boundary / wrap-around checks. */
264 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
265 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
266 {
267 /* word-by-word */
268 RTUINT64U TmpRsp;
269 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
270 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp);
271 if (rcStrict == VINF_SUCCESS)
272 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp);
273 if (rcStrict == VINF_SUCCESS)
274 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp);
275 if (rcStrict == VINF_SUCCESS)
276 {
277 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
278 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp);
279 }
280 if (rcStrict == VINF_SUCCESS)
281 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp);
282 if (rcStrict == VINF_SUCCESS)
283 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp);
284 if (rcStrict == VINF_SUCCESS)
285 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp);
286 if (rcStrict == VINF_SUCCESS)
287 {
288 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
289 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
290 }
291 }
292 else
293 {
294 uint16_t const *pa16Mem = NULL;
295 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
296 if (rcStrict == VINF_SUCCESS)
297 {
298 pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI];
299 pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI];
300 pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP];
301 /* skip sp */
302 pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX];
303 pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX];
304 pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX];
305 pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX];
306 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
307 if (rcStrict == VINF_SUCCESS)
308 {
309 iemRegAddToRsp(pVCpu, 16);
310 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
311 }
312 }
313 }
314 return rcStrict;
315}
316
317
318/**
319 * Implements a 32-bit popa.
320 */
321IEM_CIMPL_DEF_0(iemCImpl_popa_32)
322{
323 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
324 RTGCPTR GCPtrLast = GCPtrStart + 31;
325 VBOXSTRICTRC rcStrict;
326
327 /*
328 * The docs are a bit hard to comprehend here, but it looks like we wrap
329 * around in real mode as long as none of the individual "popa" crosses the
330 * end of the stack segment. In protected mode we check the whole access
331 * in one go. For efficiency, only do the word-by-word thing if we're in
332 * danger of wrapping around.
333 */
334 /** @todo do popa boundary / wrap-around checks. */
335 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
336 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
337 {
338 /* word-by-word */
339 RTUINT64U TmpRsp;
340 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
341 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp);
342 if (rcStrict == VINF_SUCCESS)
343 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp);
344 if (rcStrict == VINF_SUCCESS)
345 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp);
346 if (rcStrict == VINF_SUCCESS)
347 {
348 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
349 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp);
350 }
351 if (rcStrict == VINF_SUCCESS)
352 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp);
353 if (rcStrict == VINF_SUCCESS)
354 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp);
355 if (rcStrict == VINF_SUCCESS)
356 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp);
357 if (rcStrict == VINF_SUCCESS)
358 {
359#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
360 pVCpu->cpum.GstCtx.rdi &= UINT32_MAX;
361 pVCpu->cpum.GstCtx.rsi &= UINT32_MAX;
362 pVCpu->cpum.GstCtx.rbp &= UINT32_MAX;
363 pVCpu->cpum.GstCtx.rbx &= UINT32_MAX;
364 pVCpu->cpum.GstCtx.rdx &= UINT32_MAX;
365 pVCpu->cpum.GstCtx.rcx &= UINT32_MAX;
366 pVCpu->cpum.GstCtx.rax &= UINT32_MAX;
367#endif
368 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
369 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
370 }
371 }
372 else
373 {
374 uint32_t const *pa32Mem;
375 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
376 if (rcStrict == VINF_SUCCESS)
377 {
378 pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI];
379 pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI];
380 pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP];
381 /* skip esp */
382 pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX];
383 pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX];
384 pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX];
385 pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX];
386 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
387 if (rcStrict == VINF_SUCCESS)
388 {
389 iemRegAddToRsp(pVCpu, 32);
390 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
391 }
392 }
393 }
394 return rcStrict;
395}
396
397
398/**
399 * Implements a 16-bit pusha.
400 */
401IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
402{
403 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
404 RTGCPTR GCPtrBottom = GCPtrTop - 15;
405 VBOXSTRICTRC rcStrict;
406
407 /*
408 * The docs are a bit hard to comprehend here, but it looks like we wrap
409 * around in real mode as long as none of the individual "pushd" crosses the
410 * end of the stack segment. In protected mode we check the whole access
411 * in one go. For efficiency, only do the word-by-word thing if we're in
412 * danger of wrapping around.
413 */
414 /** @todo do pusha boundary / wrap-around checks. */
415 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
416 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
417 {
418 /* word-by-word */
419 RTUINT64U TmpRsp;
420 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
421 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp);
422 if (rcStrict == VINF_SUCCESS)
423 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp);
424 if (rcStrict == VINF_SUCCESS)
425 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp);
426 if (rcStrict == VINF_SUCCESS)
427 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp);
428 if (rcStrict == VINF_SUCCESS)
429 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp);
430 if (rcStrict == VINF_SUCCESS)
431 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp);
432 if (rcStrict == VINF_SUCCESS)
433 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp);
434 if (rcStrict == VINF_SUCCESS)
435 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp);
436 if (rcStrict == VINF_SUCCESS)
437 {
438 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
439 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
440 }
441 }
442 else
443 {
444 GCPtrBottom--;
445 uint16_t *pa16Mem = NULL;
446 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
447 if (rcStrict == VINF_SUCCESS)
448 {
449 pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di;
450 pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si;
451 pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp;
452 pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp;
453 pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx;
454 pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx;
455 pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx;
456 pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax;
457 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
458 if (rcStrict == VINF_SUCCESS)
459 {
460 iemRegSubFromRsp(pVCpu, 16);
461 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
462 }
463 }
464 }
465 return rcStrict;
466}
467
468
469/**
470 * Implements a 32-bit pusha.
471 */
472IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
473{
474 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
475 RTGCPTR GCPtrBottom = GCPtrTop - 31;
476 VBOXSTRICTRC rcStrict;
477
478 /*
479 * The docs are a bit hard to comprehend here, but it looks like we wrap
480 * around in real mode as long as none of the individual "pusha" crosses the
481 * end of the stack segment. In protected mode we check the whole access
482 * in one go. For efficiency, only do the word-by-word thing if we're in
483 * danger of wrapping around.
484 */
485 /** @todo do pusha boundary / wrap-around checks. */
486 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
487 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
488 {
489 /* word-by-word */
490 RTUINT64U TmpRsp;
491 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
492 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp);
493 if (rcStrict == VINF_SUCCESS)
494 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp);
495 if (rcStrict == VINF_SUCCESS)
496 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp);
497 if (rcStrict == VINF_SUCCESS)
498 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp);
499 if (rcStrict == VINF_SUCCESS)
500 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp);
501 if (rcStrict == VINF_SUCCESS)
502 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp);
503 if (rcStrict == VINF_SUCCESS)
504 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp);
505 if (rcStrict == VINF_SUCCESS)
506 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp);
507 if (rcStrict == VINF_SUCCESS)
508 {
509 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
510 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
511 }
512 }
513 else
514 {
515 GCPtrBottom--;
516 uint32_t *pa32Mem;
517 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
518 if (rcStrict == VINF_SUCCESS)
519 {
520 pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi;
521 pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi;
522 pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp;
523 pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp;
524 pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx;
525 pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx;
526 pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx;
527 pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax;
528 rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
529 if (rcStrict == VINF_SUCCESS)
530 {
531 iemRegSubFromRsp(pVCpu, 32);
532 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
533 }
534 }
535 }
536 return rcStrict;
537}
538
539
540/**
541 * Implements pushf.
542 *
543 *
544 * @param enmEffOpSize The effective operand size.
545 */
546IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
547{
548 VBOXSTRICTRC rcStrict;
549
550 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
551 {
552 Log2(("pushf: Guest intercept -> #VMEXIT\n"));
553 IEM_SVM_UPDATE_NRIP(pVCpu);
554 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
555 }
556
557 /*
558 * If we're in V8086 mode some care is required (which is why we're in
559 * doing this in a C implementation).
560 */
561 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
562 if ( (fEfl & X86_EFL_VM)
563 && X86_EFL_GET_IOPL(fEfl) != 3 )
564 {
565 Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE);
566 if ( enmEffOpSize != IEMMODE_16BIT
567 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
568 return iemRaiseGeneralProtectionFault0(pVCpu);
569 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
570 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
571 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
572 }
573 else
574 {
575
576 /*
577 * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
578 */
579 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
580
581 switch (enmEffOpSize)
582 {
583 case IEMMODE_16BIT:
584 AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
585 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
586 fEfl |= UINT16_C(0xf000);
587 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
588 break;
589 case IEMMODE_32BIT:
590 rcStrict = iemMemStackPushU32(pVCpu, fEfl);
591 break;
592 case IEMMODE_64BIT:
593 rcStrict = iemMemStackPushU64(pVCpu, fEfl);
594 break;
595 IEM_NOT_REACHED_DEFAULT_CASE_RET();
596 }
597 }
598 if (rcStrict != VINF_SUCCESS)
599 return rcStrict;
600
601 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
602 return VINF_SUCCESS;
603}
604
605
606/**
607 * Implements popf.
608 *
609 * @param enmEffOpSize The effective operand size.
610 */
611IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
612{
613 uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu);
614 VBOXSTRICTRC rcStrict;
615 uint32_t fEflNew;
616
617 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
618 {
619 Log2(("popf: Guest intercept -> #VMEXIT\n"));
620 IEM_SVM_UPDATE_NRIP(pVCpu);
621 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
622 }
623
624 /*
625 * V8086 is special as usual.
626 */
627 if (fEflOld & X86_EFL_VM)
628 {
629 /*
630 * Almost anything goes if IOPL is 3.
631 */
632 if (X86_EFL_GET_IOPL(fEflOld) == 3)
633 {
634 switch (enmEffOpSize)
635 {
636 case IEMMODE_16BIT:
637 {
638 uint16_t u16Value;
639 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
640 if (rcStrict != VINF_SUCCESS)
641 return rcStrict;
642 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
643 break;
644 }
645 case IEMMODE_32BIT:
646 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
647 if (rcStrict != VINF_SUCCESS)
648 return rcStrict;
649 break;
650 IEM_NOT_REACHED_DEFAULT_CASE_RET();
651 }
652
653 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
654 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
655 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
656 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
657 }
658 /*
659 * Interrupt flag virtualization with CR4.VME=1.
660 */
661 else if ( enmEffOpSize == IEMMODE_16BIT
662 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
663 {
664 uint16_t u16Value;
665 RTUINT64U TmpRsp;
666 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
667 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
668 if (rcStrict != VINF_SUCCESS)
669 return rcStrict;
670
671 /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
672 * or before? */
673 if ( ( (u16Value & X86_EFL_IF)
674 && (fEflOld & X86_EFL_VIP))
675 || (u16Value & X86_EFL_TF) )
676 return iemRaiseGeneralProtectionFault0(pVCpu);
677
678 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
679 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
680 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
681 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
682
683 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
684 }
685 else
686 return iemRaiseGeneralProtectionFault0(pVCpu);
687
688 }
689 /*
690 * Not in V8086 mode.
691 */
692 else
693 {
694 /* Pop the flags. */
695 switch (enmEffOpSize)
696 {
697 case IEMMODE_16BIT:
698 {
699 uint16_t u16Value;
700 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
701 if (rcStrict != VINF_SUCCESS)
702 return rcStrict;
703 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
704
705 /*
706 * Ancient CPU adjustments:
707 * - 8086, 80186, V20/30:
708 * Fixed bits 15:12 bits are not kept correctly internally, mostly for
709 * practical reasons (masking below). We add them when pushing flags.
710 * - 80286:
711 * The NT and IOPL flags cannot be popped from real mode and are
712 * therefore always zero (since a 286 can never exit from PM and
713 * their initial value is zero). This changed on a 386 and can
714 * therefore be used to detect 286 or 386 CPU in real mode.
715 */
716 if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
717 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
718 fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
719 break;
720 }
721 case IEMMODE_32BIT:
722 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
723 if (rcStrict != VINF_SUCCESS)
724 return rcStrict;
725 break;
726 case IEMMODE_64BIT:
727 {
728 uint64_t u64Value;
729 rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
730 if (rcStrict != VINF_SUCCESS)
731 return rcStrict;
732 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
733 break;
734 }
735 IEM_NOT_REACHED_DEFAULT_CASE_RET();
736 }
737
738 /* Merge them with the current flags. */
739 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
740 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
741 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
742 || pVCpu->iem.s.uCpl == 0)
743 {
744 fEflNew &= fPopfBits;
745 fEflNew |= ~fPopfBits & fEflOld;
746 }
747 else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
748 {
749 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
750 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
751 }
752 else
753 {
754 fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
755 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
756 }
757 }
758
759 /*
760 * Commit the flags.
761 */
762 Assert(fEflNew & RT_BIT_32(1));
763 IEMMISC_SET_EFL(pVCpu, fEflNew);
764 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
765
766 return VINF_SUCCESS;
767}
768
769
770/**
771 * Implements an indirect call.
772 *
773 * @param uNewPC The new program counter (RIP) value (loaded from the
774 * operand).
775 * @param enmEffOpSize The effective operand size.
776 */
777IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
778{
779 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
780 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
781 return iemRaiseGeneralProtectionFault0(pVCpu);
782
783 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
784 if (rcStrict != VINF_SUCCESS)
785 return rcStrict;
786
787 pVCpu->cpum.GstCtx.rip = uNewPC;
788 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
789
790#ifndef IEM_WITH_CODE_TLB
791 /* Flush the prefetch buffer. */
792 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
793#endif
794 return VINF_SUCCESS;
795}
796
797
798/**
799 * Implements a 16-bit relative call.
800 *
801 * @param offDisp The displacment offset.
802 */
803IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
804{
805 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
806 uint16_t uNewPC = uOldPC + offDisp;
807 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
808 return iemRaiseGeneralProtectionFault0(pVCpu);
809
810 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
811 if (rcStrict != VINF_SUCCESS)
812 return rcStrict;
813
814 pVCpu->cpum.GstCtx.rip = uNewPC;
815 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
816
817#ifndef IEM_WITH_CODE_TLB
818 /* Flush the prefetch buffer. */
819 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
820#endif
821 return VINF_SUCCESS;
822}
823
824
825/**
826 * Implements a 32-bit indirect call.
827 *
828 * @param uNewPC The new program counter (RIP) value (loaded from the
829 * operand).
830 * @param enmEffOpSize The effective operand size.
831 */
832IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
833{
834 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
835 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
836 return iemRaiseGeneralProtectionFault0(pVCpu);
837
838 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
839 if (rcStrict != VINF_SUCCESS)
840 return rcStrict;
841
842#if defined(IN_RING3) && defined(VBOX_WITH_RAW_MODE) && defined(VBOX_WITH_CALL_RECORD)
843 /*
844 * CASM hook for recording interesting indirect calls.
845 */
846 if ( !pVCpu->cpum.GstCtx.eflags.Bits.u1IF
847 && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
848 && !CSAMIsEnabled(pVCpu->CTX_SUFF(pVM))
849 && pVCpu->iem.s.uCpl == 0)
850 {
851 EMSTATE enmState = EMGetState(pVCpu);
852 if ( enmState == EMSTATE_IEM_THEN_REM
853 || enmState == EMSTATE_IEM
854 || enmState == EMSTATE_REM)
855 CSAMR3RecordCallAddress(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.eip);
856 }
857#endif
858
859 pVCpu->cpum.GstCtx.rip = uNewPC;
860 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
861
862#ifndef IEM_WITH_CODE_TLB
863 /* Flush the prefetch buffer. */
864 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
865#endif
866 return VINF_SUCCESS;
867}
868
869
870/**
871 * Implements a 32-bit relative call.
872 *
873 * @param offDisp The displacment offset.
874 */
875IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
876{
877 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
878 uint32_t uNewPC = uOldPC + offDisp;
879 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
880 return iemRaiseGeneralProtectionFault0(pVCpu);
881
882 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
883 if (rcStrict != VINF_SUCCESS)
884 return rcStrict;
885
886 pVCpu->cpum.GstCtx.rip = uNewPC;
887 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
888
889#ifndef IEM_WITH_CODE_TLB
890 /* Flush the prefetch buffer. */
891 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
892#endif
893 return VINF_SUCCESS;
894}
895
896
897/**
898 * Implements a 64-bit indirect call.
899 *
900 * @param uNewPC The new program counter (RIP) value (loaded from the
901 * operand).
902 * @param enmEffOpSize The effective operand size.
903 */
904IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
905{
906 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
907 if (!IEM_IS_CANONICAL(uNewPC))
908 return iemRaiseGeneralProtectionFault0(pVCpu);
909
910 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
911 if (rcStrict != VINF_SUCCESS)
912 return rcStrict;
913
914 pVCpu->cpum.GstCtx.rip = uNewPC;
915 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
916
917#ifndef IEM_WITH_CODE_TLB
918 /* Flush the prefetch buffer. */
919 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
920#endif
921 return VINF_SUCCESS;
922}
923
924
925/**
926 * Implements a 64-bit relative call.
927 *
928 * @param offDisp The displacment offset.
929 */
930IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
931{
932 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
933 uint64_t uNewPC = uOldPC + offDisp;
934 if (!IEM_IS_CANONICAL(uNewPC))
935 return iemRaiseNotCanonical(pVCpu);
936
937 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
938 if (rcStrict != VINF_SUCCESS)
939 return rcStrict;
940
941 pVCpu->cpum.GstCtx.rip = uNewPC;
942 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
943
944#ifndef IEM_WITH_CODE_TLB
945 /* Flush the prefetch buffer. */
946 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
947#endif
948
949 return VINF_SUCCESS;
950}
951
952
953/**
954 * Implements far jumps and calls thru task segments (TSS).
955 *
956 * @param uSel The selector.
957 * @param enmBranch The kind of branching we're performing.
958 * @param enmEffOpSize The effective operand size.
959 * @param pDesc The descriptor corresponding to @a uSel. The type is
960 * task gate.
961 */
962IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
963{
964#ifndef IEM_IMPLEMENTS_TASKSWITCH
965 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
966#else
967 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
968 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
969 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
970 RT_NOREF_PV(enmEffOpSize);
971 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
972
973 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
974 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
975 {
976 Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
977 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
978 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
979 }
980
981 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
982 * far calls (see iemCImpl_callf). Most likely in both cases it should be
983 * checked here, need testcases. */
984 if (!pDesc->Legacy.Gen.u1Present)
985 {
986 Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
987 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
988 }
989
990 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
991 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
992 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
993#endif
994}
995
996
997/**
998 * Implements far jumps and calls thru task gates.
999 *
1000 * @param uSel The selector.
1001 * @param enmBranch The kind of branching we're performing.
1002 * @param enmEffOpSize The effective operand size.
1003 * @param pDesc The descriptor corresponding to @a uSel. The type is
1004 * task gate.
1005 */
1006IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1007{
1008#ifndef IEM_IMPLEMENTS_TASKSWITCH
1009 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1010#else
1011 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1012 RT_NOREF_PV(enmEffOpSize);
1013 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1014
1015 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1016 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1017 {
1018 Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1019 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1020 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1021 }
1022
1023 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1024 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1025 * checked here, need testcases. */
1026 if (!pDesc->Legacy.Gen.u1Present)
1027 {
1028 Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
1029 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1030 }
1031
1032 /*
1033 * Fetch the new TSS descriptor from the GDT.
1034 */
1035 RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
1036 if (uSelTss & X86_SEL_LDT)
1037 {
1038 Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
1039 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1040 }
1041
1042 IEMSELDESC TssDesc;
1043 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
1044 if (rcStrict != VINF_SUCCESS)
1045 return rcStrict;
1046
1047 if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
1048 {
1049 Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
1050 TssDesc.Legacy.Gate.u4Type));
1051 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1052 }
1053
1054 if (!TssDesc.Legacy.Gate.u1Present)
1055 {
1056 Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
1057 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
1058 }
1059
1060 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1061 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1062 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
1063#endif
1064}
1065
1066
1067/**
1068 * Implements far jumps and calls thru call gates.
1069 *
1070 * @param uSel The selector.
1071 * @param enmBranch The kind of branching we're performing.
1072 * @param enmEffOpSize The effective operand size.
1073 * @param pDesc The descriptor corresponding to @a uSel. The type is
1074 * call gate.
1075 */
1076IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1077{
1078#define IEM_IMPLEMENTS_CALLGATE
1079#ifndef IEM_IMPLEMENTS_CALLGATE
1080 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1081#else
1082 RT_NOREF_PV(enmEffOpSize);
1083 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1084
1085 /* NB: Far jumps can only do intra-privilege transfers. Far calls support
1086 * inter-privilege calls and are much more complex.
1087 *
1088 * NB: 64-bit call gate has the same type as a 32-bit call gate! If
1089 * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
1090 * must be 16-bit or 32-bit.
1091 */
1092 /** @todo: effective operand size is probably irrelevant here, only the
1093 * call gate bitness matters??
1094 */
1095 VBOXSTRICTRC rcStrict;
1096 RTPTRUNION uPtrRet;
1097 uint64_t uNewRsp;
1098 uint64_t uNewRip;
1099 uint64_t u64Base;
1100 uint32_t cbLimit;
1101 RTSEL uNewCS;
1102 IEMSELDESC DescCS;
1103
1104 AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
1105 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1106 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
1107 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
1108
1109 /* Determine the new instruction pointer from the gate descriptor. */
1110 uNewRip = pDesc->Legacy.Gate.u16OffsetLow
1111 | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
1112 | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
1113
1114 /* Perform DPL checks on the gate descriptor. */
1115 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1116 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1117 {
1118 Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1119 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1120 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1121 }
1122
1123 /** @todo does this catch NULL selectors, too? */
1124 if (!pDesc->Legacy.Gen.u1Present)
1125 {
1126 Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
1127 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1128 }
1129
1130 /*
1131 * Fetch the target CS descriptor from the GDT or LDT.
1132 */
1133 uNewCS = pDesc->Legacy.Gate.u16Sel;
1134 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
1135 if (rcStrict != VINF_SUCCESS)
1136 return rcStrict;
1137
1138 /* Target CS must be a code selector. */
1139 if ( !DescCS.Legacy.Gen.u1DescType
1140 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1141 {
1142 Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1143 uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
1144 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1145 }
1146
1147 /* Privilege checks on target CS. */
1148 if (enmBranch == IEMBRANCH_JUMP)
1149 {
1150 if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1151 {
1152 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1153 {
1154 Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1155 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1156 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1157 }
1158 }
1159 else
1160 {
1161 if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
1162 {
1163 Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1164 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1165 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1166 }
1167 }
1168 }
1169 else
1170 {
1171 Assert(enmBranch == IEMBRANCH_CALL);
1172 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1173 {
1174 Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1175 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1176 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
1177 }
1178 }
1179
1180 /* Additional long mode checks. */
1181 if (IEM_IS_LONG_MODE(pVCpu))
1182 {
1183 if (!DescCS.Legacy.Gen.u1Long)
1184 {
1185 Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
1186 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1187 }
1188
1189 /* L vs D. */
1190 if ( DescCS.Legacy.Gen.u1Long
1191 && DescCS.Legacy.Gen.u1DefBig)
1192 {
1193 Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
1194 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1195 }
1196 }
1197
1198 if (!DescCS.Legacy.Gate.u1Present)
1199 {
1200 Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
1201 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
1202 }
1203
1204 if (enmBranch == IEMBRANCH_JUMP)
1205 {
1206 /** @todo: This is very similar to regular far jumps; merge! */
1207 /* Jumps are fairly simple... */
1208
1209 /* Chop the high bits off if 16-bit gate (Intel says so). */
1210 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1211 uNewRip = (uint16_t)uNewRip;
1212
1213 /* Limit check for non-long segments. */
1214 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1215 if (DescCS.Legacy.Gen.u1Long)
1216 u64Base = 0;
1217 else
1218 {
1219 if (uNewRip > cbLimit)
1220 {
1221 Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
1222 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1223 }
1224 u64Base = X86DESC_BASE(&DescCS.Legacy);
1225 }
1226
1227 /* Canonical address check. */
1228 if (!IEM_IS_CANONICAL(uNewRip))
1229 {
1230 Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1231 return iemRaiseNotCanonical(pVCpu);
1232 }
1233
1234 /*
1235 * Ok, everything checked out fine. Now set the accessed bit before
1236 * committing the result into CS, CSHID and RIP.
1237 */
1238 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1239 {
1240 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1241 if (rcStrict != VINF_SUCCESS)
1242 return rcStrict;
1243 /** @todo check what VT-x and AMD-V does. */
1244 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1245 }
1246
1247 /* commit */
1248 pVCpu->cpum.GstCtx.rip = uNewRip;
1249 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1250 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1251 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1252 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1253 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1254 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1255 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1256 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1257 }
1258 else
1259 {
1260 Assert(enmBranch == IEMBRANCH_CALL);
1261 /* Calls are much more complicated. */
1262
1263 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
1264 {
1265 uint16_t offNewStack; /* Offset of new stack in TSS. */
1266 uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
1267 uint8_t uNewCSDpl;
1268 uint8_t cbWords;
1269 RTSEL uNewSS;
1270 RTSEL uOldSS;
1271 uint64_t uOldRsp;
1272 IEMSELDESC DescSS;
1273 RTPTRUNION uPtrTSS;
1274 RTGCPTR GCPtrTSS;
1275 RTPTRUNION uPtrParmWds;
1276 RTGCPTR GCPtrParmWds;
1277
1278 /* More privilege. This is the fun part. */
1279 Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
1280
1281 /*
1282 * Determine new SS:rSP from the TSS.
1283 */
1284 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
1285
1286 /* Figure out where the new stack pointer is stored in the TSS. */
1287 uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
1288 if (!IEM_IS_LONG_MODE(pVCpu))
1289 {
1290 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1291 {
1292 offNewStack = RT_UOFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
1293 cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
1294 }
1295 else
1296 {
1297 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1298 offNewStack = RT_UOFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
1299 cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
1300 }
1301 }
1302 else
1303 {
1304 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1305 offNewStack = RT_UOFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
1306 cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
1307 }
1308
1309 /* Check against TSS limit. */
1310 if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit)
1311 {
1312 Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit));
1313 return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel);
1314 }
1315
1316 GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack;
1317 rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
1318 if (rcStrict != VINF_SUCCESS)
1319 {
1320 Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1321 return rcStrict;
1322 }
1323
1324 if (!IEM_IS_LONG_MODE(pVCpu))
1325 {
1326 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1327 {
1328 uNewRsp = uPtrTSS.pu32[0];
1329 uNewSS = uPtrTSS.pu16[2];
1330 }
1331 else
1332 {
1333 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1334 uNewRsp = uPtrTSS.pu16[0];
1335 uNewSS = uPtrTSS.pu16[1];
1336 }
1337 }
1338 else
1339 {
1340 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1341 /* SS will be a NULL selector, but that's valid. */
1342 uNewRsp = uPtrTSS.pu64[0];
1343 uNewSS = uNewCSDpl;
1344 }
1345
1346 /* Done with the TSS now. */
1347 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
1348 if (rcStrict != VINF_SUCCESS)
1349 {
1350 Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1351 return rcStrict;
1352 }
1353
1354 /* Only used outside of long mode. */
1355 cbWords = pDesc->Legacy.Gate.u5ParmCount;
1356
1357 /* If EFER.LMA is 0, there's extra work to do. */
1358 if (!IEM_IS_LONG_MODE(pVCpu))
1359 {
1360 if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
1361 {
1362 Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
1363 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1364 }
1365
1366 /* Grab the new SS descriptor. */
1367 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1368 if (rcStrict != VINF_SUCCESS)
1369 return rcStrict;
1370
1371 /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
1372 if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
1373 || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
1374 {
1375 Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
1376 uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
1377 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1378 }
1379
1380 /* Ensure new SS is a writable data segment. */
1381 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
1382 {
1383 Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
1384 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1385 }
1386
1387 if (!DescSS.Legacy.Gen.u1Present)
1388 {
1389 Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
1390 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
1391 }
1392 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1393 cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
1394 else
1395 cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
1396 }
1397 else
1398 {
1399 /* Just grab the new (NULL) SS descriptor. */
1400 /** @todo testcase: Check whether the zero GDT entry is actually loaded here
1401 * like we do... */
1402 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1403 if (rcStrict != VINF_SUCCESS)
1404 return rcStrict;
1405
1406 cbNewStack = sizeof(uint64_t) * 4;
1407 }
1408
1409 /** @todo: According to Intel, new stack is checked for enough space first,
1410 * then switched. According to AMD, the stack is switched first and
1411 * then pushes might fault!
1412 * NB: OS/2 Warp 3/4 actively relies on the fact that possible
1413 * incoming stack #PF happens before actual stack switch. AMD is
1414 * either lying or implicitly assumes that new state is committed
1415 * only if and when an instruction doesn't fault.
1416 */
1417
1418 /** @todo: According to AMD, CS is loaded first, then SS.
1419 * According to Intel, it's the other way around!?
1420 */
1421
1422 /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
1423
1424 /* Set the accessed bit before committing new SS. */
1425 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1426 {
1427 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
1428 if (rcStrict != VINF_SUCCESS)
1429 return rcStrict;
1430 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1431 }
1432
1433 /* Remember the old SS:rSP and their linear address. */
1434 uOldSS = pVCpu->cpum.GstCtx.ss.Sel;
1435 uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp;
1436
1437 GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp;
1438
1439 /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
1440 or #PF, the former is not implemented in this workaround. */
1441 /** @todo Proper fix callgate target stack exceptions. */
1442 /** @todo testcase: Cover callgates with partially or fully inaccessible
1443 * target stacks. */
1444 void *pvNewFrame;
1445 RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
1446 rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW);
1447 if (rcStrict != VINF_SUCCESS)
1448 {
1449 Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
1450 return rcStrict;
1451 }
1452 rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
1453 if (rcStrict != VINF_SUCCESS)
1454 {
1455 Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1456 return rcStrict;
1457 }
1458
1459 /* Commit new SS:rSP. */
1460 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
1461 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
1462 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
1463 pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
1464 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
1465 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1466 pVCpu->cpum.GstCtx.rsp = uNewRsp;
1467 pVCpu->iem.s.uCpl = uNewCSDpl;
1468 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
1469 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
1470
1471 /* At this point the stack access must not fail because new state was already committed. */
1472 /** @todo this can still fail due to SS.LIMIT not check. */
1473 rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
1474 &uPtrRet.pv, &uNewRsp);
1475 AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
1476 VERR_INTERNAL_ERROR_5);
1477
1478 if (!IEM_IS_LONG_MODE(pVCpu))
1479 {
1480 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1481 {
1482 /* Push the old CS:rIP. */
1483 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1484 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1485
1486 if (cbWords)
1487 {
1488 /* Map the relevant chunk of the old stack. */
1489 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1490 if (rcStrict != VINF_SUCCESS)
1491 {
1492 Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1493 return rcStrict;
1494 }
1495
1496 /* Copy the parameter (d)words. */
1497 for (int i = 0; i < cbWords; ++i)
1498 uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
1499
1500 /* Unmap the old stack. */
1501 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1502 if (rcStrict != VINF_SUCCESS)
1503 {
1504 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1505 return rcStrict;
1506 }
1507 }
1508
1509 /* Push the old SS:rSP. */
1510 uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
1511 uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
1512 }
1513 else
1514 {
1515 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1516
1517 /* Push the old CS:rIP. */
1518 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1519 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1520
1521 if (cbWords)
1522 {
1523 /* Map the relevant chunk of the old stack. */
1524 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1525 if (rcStrict != VINF_SUCCESS)
1526 {
1527 Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1528 return rcStrict;
1529 }
1530
1531 /* Copy the parameter words. */
1532 for (int i = 0; i < cbWords; ++i)
1533 uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
1534
1535 /* Unmap the old stack. */
1536 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1537 if (rcStrict != VINF_SUCCESS)
1538 {
1539 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1540 return rcStrict;
1541 }
1542 }
1543
1544 /* Push the old SS:rSP. */
1545 uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
1546 uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
1547 }
1548 }
1549 else
1550 {
1551 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1552
1553 /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
1554 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1555 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1556 uPtrRet.pu64[2] = uOldRsp;
1557 uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
1558 }
1559
1560 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1561 if (rcStrict != VINF_SUCCESS)
1562 {
1563 Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1564 return rcStrict;
1565 }
1566
1567 /* Chop the high bits off if 16-bit gate (Intel says so). */
1568 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1569 uNewRip = (uint16_t)uNewRip;
1570
1571 /* Limit / canonical check. */
1572 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1573 if (!IEM_IS_LONG_MODE(pVCpu))
1574 {
1575 if (uNewRip > cbLimit)
1576 {
1577 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1578 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1579 }
1580 u64Base = X86DESC_BASE(&DescCS.Legacy);
1581 }
1582 else
1583 {
1584 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1585 if (!IEM_IS_CANONICAL(uNewRip))
1586 {
1587 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1588 return iemRaiseNotCanonical(pVCpu);
1589 }
1590 u64Base = 0;
1591 }
1592
1593 /*
1594 * Now set the accessed bit before
1595 * writing the return address to the stack and committing the result into
1596 * CS, CSHID and RIP.
1597 */
1598 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1599 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1600 {
1601 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1602 if (rcStrict != VINF_SUCCESS)
1603 return rcStrict;
1604 /** @todo check what VT-x and AMD-V does. */
1605 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1606 }
1607
1608 /* Commit new CS:rIP. */
1609 pVCpu->cpum.GstCtx.rip = uNewRip;
1610 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1611 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1612 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1613 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1614 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1615 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1616 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1617 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1618 }
1619 else
1620 {
1621 /* Same privilege. */
1622 /** @todo: This is very similar to regular far calls; merge! */
1623
1624 /* Check stack first - may #SS(0). */
1625 /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
1626 * 16-bit code cause a two or four byte CS to be pushed? */
1627 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
1628 IEM_IS_LONG_MODE(pVCpu) ? 8+8
1629 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
1630 &uPtrRet.pv, &uNewRsp);
1631 if (rcStrict != VINF_SUCCESS)
1632 return rcStrict;
1633
1634 /* Chop the high bits off if 16-bit gate (Intel says so). */
1635 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1636 uNewRip = (uint16_t)uNewRip;
1637
1638 /* Limit / canonical check. */
1639 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1640 if (!IEM_IS_LONG_MODE(pVCpu))
1641 {
1642 if (uNewRip > cbLimit)
1643 {
1644 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1645 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1646 }
1647 u64Base = X86DESC_BASE(&DescCS.Legacy);
1648 }
1649 else
1650 {
1651 if (!IEM_IS_CANONICAL(uNewRip))
1652 {
1653 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1654 return iemRaiseNotCanonical(pVCpu);
1655 }
1656 u64Base = 0;
1657 }
1658
1659 /*
1660 * Now set the accessed bit before
1661 * writing the return address to the stack and committing the result into
1662 * CS, CSHID and RIP.
1663 */
1664 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1665 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1666 {
1667 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1668 if (rcStrict != VINF_SUCCESS)
1669 return rcStrict;
1670 /** @todo check what VT-x and AMD-V does. */
1671 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1672 }
1673
1674 /* stack */
1675 if (!IEM_IS_LONG_MODE(pVCpu))
1676 {
1677 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1678 {
1679 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1680 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1681 }
1682 else
1683 {
1684 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1685 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1686 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1687 }
1688 }
1689 else
1690 {
1691 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1692 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1693 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1694 }
1695
1696 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1697 if (rcStrict != VINF_SUCCESS)
1698 return rcStrict;
1699
1700 /* commit */
1701 pVCpu->cpum.GstCtx.rip = uNewRip;
1702 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1703 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1704 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1705 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1706 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1707 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1708 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1709 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1710 }
1711 }
1712 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1713
1714 /* Flush the prefetch buffer. */
1715# ifdef IEM_WITH_CODE_TLB
1716 pVCpu->iem.s.pbInstrBuf = NULL;
1717# else
1718 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1719# endif
1720 return VINF_SUCCESS;
1721#endif
1722}
1723
1724
1725/**
1726 * Implements far jumps and calls thru system selectors.
1727 *
1728 * @param uSel The selector.
1729 * @param enmBranch The kind of branching we're performing.
1730 * @param enmEffOpSize The effective operand size.
1731 * @param pDesc The descriptor corresponding to @a uSel.
1732 */
1733IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1734{
1735 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1736 Assert((uSel & X86_SEL_MASK_OFF_RPL));
1737 IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1738
1739 if (IEM_IS_LONG_MODE(pVCpu))
1740 switch (pDesc->Legacy.Gen.u4Type)
1741 {
1742 case AMD64_SEL_TYPE_SYS_CALL_GATE:
1743 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1744
1745 default:
1746 case AMD64_SEL_TYPE_SYS_LDT:
1747 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
1748 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
1749 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
1750 case AMD64_SEL_TYPE_SYS_INT_GATE:
1751 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1752 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1753 }
1754
1755 switch (pDesc->Legacy.Gen.u4Type)
1756 {
1757 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1758 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1759 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1760
1761 case X86_SEL_TYPE_SYS_TASK_GATE:
1762 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
1763
1764 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1765 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1766 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
1767
1768 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1769 Log(("branch %04x -> busy 286 TSS\n", uSel));
1770 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1771
1772 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1773 Log(("branch %04x -> busy 386 TSS\n", uSel));
1774 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1775
1776 default:
1777 case X86_SEL_TYPE_SYS_LDT:
1778 case X86_SEL_TYPE_SYS_286_INT_GATE:
1779 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1780 case X86_SEL_TYPE_SYS_386_INT_GATE:
1781 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1782 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1783 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1784 }
1785}
1786
1787
1788/**
1789 * Implements far jumps.
1790 *
1791 * @param uSel The selector.
1792 * @param offSeg The segment offset.
1793 * @param enmEffOpSize The effective operand size.
1794 */
1795IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1796{
1797 NOREF(cbInstr);
1798 Assert(offSeg <= UINT32_MAX);
1799
1800 /*
1801 * Real mode and V8086 mode are easy. The only snag seems to be that
1802 * CS.limit doesn't change and the limit check is done against the current
1803 * limit.
1804 */
1805 /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August
1806 * 1998) that up to and including the Intel 486, far control
1807 * transfers in real mode set default CS attributes (0x93) and also
1808 * set a 64K segment limit. Starting with the Pentium, the
1809 * attributes and limit are left alone but the access rights are
1810 * ignored. We only implement the Pentium+ behavior.
1811 * */
1812 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1813 {
1814 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1815 if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit)
1816 {
1817 Log(("iemCImpl_FarJmp: 16-bit limit\n"));
1818 return iemRaiseGeneralProtectionFault0(pVCpu);
1819 }
1820
1821 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1822 pVCpu->cpum.GstCtx.rip = offSeg;
1823 else
1824 pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX;
1825 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1826 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1827 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1828 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1829 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1830 return VINF_SUCCESS;
1831 }
1832
1833 /*
1834 * Protected mode. Need to parse the specified descriptor...
1835 */
1836 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1837 {
1838 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1839 return iemRaiseGeneralProtectionFault0(pVCpu);
1840 }
1841
1842 /* Fetch the descriptor. */
1843 IEMSELDESC Desc;
1844 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
1845 if (rcStrict != VINF_SUCCESS)
1846 return rcStrict;
1847
1848 /* Is it there? */
1849 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1850 {
1851 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1852 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1853 }
1854
1855 /*
1856 * Deal with it according to its type. We do the standard code selectors
1857 * here and dispatch the system selectors to worker functions.
1858 */
1859 if (!Desc.Legacy.Gen.u1DescType)
1860 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1861
1862 /* Only code segments. */
1863 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1864 {
1865 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1866 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1867 }
1868
1869 /* L vs D. */
1870 if ( Desc.Legacy.Gen.u1Long
1871 && Desc.Legacy.Gen.u1DefBig
1872 && IEM_IS_LONG_MODE(pVCpu))
1873 {
1874 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1875 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1876 }
1877
1878 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1879 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1880 {
1881 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
1882 {
1883 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1884 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1885 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1886 }
1887 }
1888 else
1889 {
1890 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
1891 {
1892 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1893 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1894 }
1895 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
1896 {
1897 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
1898 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1899 }
1900 }
1901
1902 /* Chop the high bits if 16-bit (Intel says so). */
1903 if (enmEffOpSize == IEMMODE_16BIT)
1904 offSeg &= UINT16_MAX;
1905
1906 /* Limit check. (Should alternatively check for non-canonical addresses
1907 here, but that is ruled out by offSeg being 32-bit, right?) */
1908 uint64_t u64Base;
1909 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1910 if (Desc.Legacy.Gen.u1Long)
1911 u64Base = 0;
1912 else
1913 {
1914 if (offSeg > cbLimit)
1915 {
1916 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1917 /** @todo: Intel says this is #GP(0)! */
1918 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1919 }
1920 u64Base = X86DESC_BASE(&Desc.Legacy);
1921 }
1922
1923 /*
1924 * Ok, everything checked out fine. Now set the accessed bit before
1925 * committing the result into CS, CSHID and RIP.
1926 */
1927 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1928 {
1929 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
1930 if (rcStrict != VINF_SUCCESS)
1931 return rcStrict;
1932 /** @todo check what VT-x and AMD-V does. */
1933 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1934 }
1935
1936 /* commit */
1937 pVCpu->cpum.GstCtx.rip = offSeg;
1938 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1939 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1940 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1941 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1942 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1943 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1944 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1945 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1946 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1947 /** @todo check if the hidden bits are loaded correctly for 64-bit
1948 * mode. */
1949
1950 /* Flush the prefetch buffer. */
1951#ifdef IEM_WITH_CODE_TLB
1952 pVCpu->iem.s.pbInstrBuf = NULL;
1953#else
1954 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1955#endif
1956
1957 return VINF_SUCCESS;
1958}
1959
1960
1961/**
1962 * Implements far calls.
1963 *
1964 * This very similar to iemCImpl_FarJmp.
1965 *
1966 * @param uSel The selector.
1967 * @param offSeg The segment offset.
1968 * @param enmEffOpSize The operand size (in case we need it).
1969 */
1970IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1971{
1972 VBOXSTRICTRC rcStrict;
1973 uint64_t uNewRsp;
1974 RTPTRUNION uPtrRet;
1975
1976 /*
1977 * Real mode and V8086 mode are easy. The only snag seems to be that
1978 * CS.limit doesn't change and the limit check is done against the current
1979 * limit.
1980 */
1981 /** @todo See comment for similar code in iemCImpl_FarJmp */
1982 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1983 {
1984 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1985
1986 /* Check stack first - may #SS(0). */
1987 rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
1988 &uPtrRet.pv, &uNewRsp);
1989 if (rcStrict != VINF_SUCCESS)
1990 return rcStrict;
1991
1992 /* Check the target address range. */
1993 if (offSeg > UINT32_MAX)
1994 return iemRaiseGeneralProtectionFault0(pVCpu);
1995
1996 /* Everything is fine, push the return address. */
1997 if (enmEffOpSize == IEMMODE_16BIT)
1998 {
1999 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2000 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2001 }
2002 else
2003 {
2004 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2005 uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel;
2006 }
2007 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2008 if (rcStrict != VINF_SUCCESS)
2009 return rcStrict;
2010
2011 /* Branch. */
2012 pVCpu->cpum.GstCtx.rip = offSeg;
2013 pVCpu->cpum.GstCtx.cs.Sel = uSel;
2014 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
2015 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2016 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
2017 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2018 return VINF_SUCCESS;
2019 }
2020
2021 /*
2022 * Protected mode. Need to parse the specified descriptor...
2023 */
2024 if (!(uSel & X86_SEL_MASK_OFF_RPL))
2025 {
2026 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
2027 return iemRaiseGeneralProtectionFault0(pVCpu);
2028 }
2029
2030 /* Fetch the descriptor. */
2031 IEMSELDESC Desc;
2032 rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
2033 if (rcStrict != VINF_SUCCESS)
2034 return rcStrict;
2035
2036 /*
2037 * Deal with it according to its type. We do the standard code selectors
2038 * here and dispatch the system selectors to worker functions.
2039 */
2040 if (!Desc.Legacy.Gen.u1DescType)
2041 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
2042
2043 /* Only code segments. */
2044 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2045 {
2046 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
2047 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2048 }
2049
2050 /* L vs D. */
2051 if ( Desc.Legacy.Gen.u1Long
2052 && Desc.Legacy.Gen.u1DefBig
2053 && IEM_IS_LONG_MODE(pVCpu))
2054 {
2055 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
2056 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2057 }
2058
2059 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
2060 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2061 {
2062 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
2063 {
2064 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
2065 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2066 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2067 }
2068 }
2069 else
2070 {
2071 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
2072 {
2073 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2074 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2075 }
2076 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
2077 {
2078 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
2079 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2080 }
2081 }
2082
2083 /* Is it there? */
2084 if (!Desc.Legacy.Gen.u1Present)
2085 {
2086 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
2087 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
2088 }
2089
2090 /* Check stack first - may #SS(0). */
2091 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
2092 * 16-bit code cause a two or four byte CS to be pushed? */
2093 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
2094 enmEffOpSize == IEMMODE_64BIT ? 8+8
2095 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2096 &uPtrRet.pv, &uNewRsp);
2097 if (rcStrict != VINF_SUCCESS)
2098 return rcStrict;
2099
2100 /* Chop the high bits if 16-bit (Intel says so). */
2101 if (enmEffOpSize == IEMMODE_16BIT)
2102 offSeg &= UINT16_MAX;
2103
2104 /* Limit / canonical check. */
2105 uint64_t u64Base;
2106 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
2107 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2108 {
2109 if (!IEM_IS_CANONICAL(offSeg))
2110 {
2111 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
2112 return iemRaiseNotCanonical(pVCpu);
2113 }
2114 u64Base = 0;
2115 }
2116 else
2117 {
2118 if (offSeg > cbLimit)
2119 {
2120 Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
2121 /** @todo: Intel says this is #GP(0)! */
2122 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2123 }
2124 u64Base = X86DESC_BASE(&Desc.Legacy);
2125 }
2126
2127 /*
2128 * Now set the accessed bit before
2129 * writing the return address to the stack and committing the result into
2130 * CS, CSHID and RIP.
2131 */
2132 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2133 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2134 {
2135 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
2136 if (rcStrict != VINF_SUCCESS)
2137 return rcStrict;
2138 /** @todo check what VT-x and AMD-V does. */
2139 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2140 }
2141
2142 /* stack */
2143 if (enmEffOpSize == IEMMODE_16BIT)
2144 {
2145 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2146 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2147 }
2148 else if (enmEffOpSize == IEMMODE_32BIT)
2149 {
2150 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2151 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
2152 }
2153 else
2154 {
2155 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
2156 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
2157 }
2158 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2159 if (rcStrict != VINF_SUCCESS)
2160 return rcStrict;
2161
2162 /* commit */
2163 pVCpu->cpum.GstCtx.rip = offSeg;
2164 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
2165 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
2166 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
2167 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2168 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
2169 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
2170 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2171 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2172 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2173 /** @todo check if the hidden bits are loaded correctly for 64-bit
2174 * mode. */
2175
2176 /* Flush the prefetch buffer. */
2177#ifdef IEM_WITH_CODE_TLB
2178 pVCpu->iem.s.pbInstrBuf = NULL;
2179#else
2180 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2181#endif
2182 return VINF_SUCCESS;
2183}
2184
2185
2186/**
2187 * Implements retf.
2188 *
2189 * @param enmEffOpSize The effective operand size.
2190 * @param cbPop The amount of arguments to pop from the stack
2191 * (bytes).
2192 */
2193IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2194{
2195 VBOXSTRICTRC rcStrict;
2196 RTCPTRUNION uPtrFrame;
2197 uint64_t uNewRsp;
2198 uint64_t uNewRip;
2199 uint16_t uNewCs;
2200 NOREF(cbInstr);
2201
2202 /*
2203 * Read the stack values first.
2204 */
2205 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
2206 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
2207 rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2208 if (rcStrict != VINF_SUCCESS)
2209 return rcStrict;
2210 if (enmEffOpSize == IEMMODE_16BIT)
2211 {
2212 uNewRip = uPtrFrame.pu16[0];
2213 uNewCs = uPtrFrame.pu16[1];
2214 }
2215 else if (enmEffOpSize == IEMMODE_32BIT)
2216 {
2217 uNewRip = uPtrFrame.pu32[0];
2218 uNewCs = uPtrFrame.pu16[2];
2219 }
2220 else
2221 {
2222 uNewRip = uPtrFrame.pu64[0];
2223 uNewCs = uPtrFrame.pu16[4];
2224 }
2225 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2226 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2227 { /* extremely likely */ }
2228 else
2229 return rcStrict;
2230
2231 /*
2232 * Real mode and V8086 mode are easy.
2233 */
2234 /** @todo See comment for similar code in iemCImpl_FarJmp */
2235 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2236 {
2237 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2238 /** @todo check how this is supposed to work if sp=0xfffe. */
2239
2240 /* Check the limit of the new EIP. */
2241 /** @todo Intel pseudo code only does the limit check for 16-bit
2242 * operands, AMD does not make any distinction. What is right? */
2243 if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit)
2244 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2245
2246 /* commit the operation. */
2247 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2248 pVCpu->cpum.GstCtx.rip = uNewRip;
2249 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2250 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2251 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2252 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2253 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2254 if (cbPop)
2255 iemRegAddToRsp(pVCpu, cbPop);
2256 return VINF_SUCCESS;
2257 }
2258
2259 /*
2260 * Protected mode is complicated, of course.
2261 */
2262 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2263 {
2264 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
2265 return iemRaiseGeneralProtectionFault0(pVCpu);
2266 }
2267
2268 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
2269
2270 /* Fetch the descriptor. */
2271 IEMSELDESC DescCs;
2272 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
2273 if (rcStrict != VINF_SUCCESS)
2274 return rcStrict;
2275
2276 /* Can only return to a code selector. */
2277 if ( !DescCs.Legacy.Gen.u1DescType
2278 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
2279 {
2280 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
2281 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
2282 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2283 }
2284
2285 /* L vs D. */
2286 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
2287 && DescCs.Legacy.Gen.u1DefBig
2288 && IEM_IS_LONG_MODE(pVCpu))
2289 {
2290 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
2291 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2292 }
2293
2294 /* DPL/RPL/CPL checks. */
2295 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
2296 {
2297 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
2298 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2299 }
2300
2301 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2302 {
2303 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
2304 {
2305 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
2306 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2307 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2308 }
2309 }
2310 else
2311 {
2312 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
2313 {
2314 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
2315 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2316 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2317 }
2318 }
2319
2320 /* Is it there? */
2321 if (!DescCs.Legacy.Gen.u1Present)
2322 {
2323 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
2324 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2325 }
2326
2327 /*
2328 * Return to outer privilege? (We'll typically have entered via a call gate.)
2329 */
2330 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
2331 {
2332 /* Read the outer stack pointer stored *after* the parameters. */
2333 rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2334 if (rcStrict != VINF_SUCCESS)
2335 return rcStrict;
2336
2337 uPtrFrame.pu8 += cbPop; /* Skip the parameters. */
2338
2339 uint16_t uNewOuterSs;
2340 uint64_t uNewOuterRsp;
2341 if (enmEffOpSize == IEMMODE_16BIT)
2342 {
2343 uNewOuterRsp = uPtrFrame.pu16[0];
2344 uNewOuterSs = uPtrFrame.pu16[1];
2345 }
2346 else if (enmEffOpSize == IEMMODE_32BIT)
2347 {
2348 uNewOuterRsp = uPtrFrame.pu32[0];
2349 uNewOuterSs = uPtrFrame.pu16[2];
2350 }
2351 else
2352 {
2353 uNewOuterRsp = uPtrFrame.pu64[0];
2354 uNewOuterSs = uPtrFrame.pu16[4];
2355 }
2356 uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */
2357 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2358 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2359 { /* extremely likely */ }
2360 else
2361 return rcStrict;
2362
2363 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
2364 and read the selector. */
2365 IEMSELDESC DescSs;
2366 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
2367 {
2368 if ( !DescCs.Legacy.Gen.u1Long
2369 || (uNewOuterSs & X86_SEL_RPL) == 3)
2370 {
2371 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
2372 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2373 return iemRaiseGeneralProtectionFault0(pVCpu);
2374 }
2375 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
2376 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
2377 }
2378 else
2379 {
2380 /* Fetch the descriptor for the new stack segment. */
2381 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
2382 if (rcStrict != VINF_SUCCESS)
2383 return rcStrict;
2384 }
2385
2386 /* Check that RPL of stack and code selectors match. */
2387 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
2388 {
2389 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2390 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2391 }
2392
2393 /* Must be a writable data segment. */
2394 if ( !DescSs.Legacy.Gen.u1DescType
2395 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
2396 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
2397 {
2398 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
2399 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2400 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2401 }
2402
2403 /* L vs D. (Not mentioned by intel.) */
2404 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
2405 && DescSs.Legacy.Gen.u1DefBig
2406 && IEM_IS_LONG_MODE(pVCpu))
2407 {
2408 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
2409 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2410 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2411 }
2412
2413 /* DPL/RPL/CPL checks. */
2414 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2415 {
2416 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
2417 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
2418 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2419 }
2420
2421 /* Is it there? */
2422 if (!DescSs.Legacy.Gen.u1Present)
2423 {
2424 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2425 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2426 }
2427
2428 /* Calc SS limit.*/
2429 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
2430
2431 /* Is RIP canonical or within CS.limit? */
2432 uint64_t u64Base;
2433 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2434
2435 /** @todo Testcase: Is this correct? */
2436 if ( DescCs.Legacy.Gen.u1Long
2437 && IEM_IS_LONG_MODE(pVCpu) )
2438 {
2439 if (!IEM_IS_CANONICAL(uNewRip))
2440 {
2441 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2442 return iemRaiseNotCanonical(pVCpu);
2443 }
2444 u64Base = 0;
2445 }
2446 else
2447 {
2448 if (uNewRip > cbLimitCs)
2449 {
2450 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
2451 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
2452 /** @todo: Intel says this is #GP(0)! */
2453 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2454 }
2455 u64Base = X86DESC_BASE(&DescCs.Legacy);
2456 }
2457
2458 /*
2459 * Now set the accessed bit before
2460 * writing the return address to the stack and committing the result into
2461 * CS, CSHID and RIP.
2462 */
2463 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
2464 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2465 {
2466 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2467 if (rcStrict != VINF_SUCCESS)
2468 return rcStrict;
2469 /** @todo check what VT-x and AMD-V does. */
2470 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2471 }
2472 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
2473 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2474 {
2475 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
2476 if (rcStrict != VINF_SUCCESS)
2477 return rcStrict;
2478 /** @todo check what VT-x and AMD-V does. */
2479 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2480 }
2481
2482 /* commit */
2483 if (enmEffOpSize == IEMMODE_16BIT)
2484 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2485 else
2486 pVCpu->cpum.GstCtx.rip = uNewRip;
2487 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2488 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2489 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2490 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2491 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2492 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2493 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2494 pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs;
2495 pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs;
2496 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
2497 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
2498 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
2499 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2500 pVCpu->cpum.GstCtx.ss.u64Base = 0;
2501 else
2502 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
2503 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2504 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewOuterRsp;
2505 else
2506 pVCpu->cpum.GstCtx.rsp = uNewOuterRsp;
2507
2508 pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
2509 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
2510 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
2511 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
2512 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
2513
2514 /** @todo check if the hidden bits are loaded correctly for 64-bit
2515 * mode. */
2516
2517 if (cbPop)
2518 iemRegAddToRsp(pVCpu, cbPop);
2519 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2520
2521 /* Done! */
2522 }
2523 /*
2524 * Return to the same privilege level
2525 */
2526 else
2527 {
2528 /* Limit / canonical check. */
2529 uint64_t u64Base;
2530 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2531
2532 /** @todo Testcase: Is this correct? */
2533 if ( DescCs.Legacy.Gen.u1Long
2534 && IEM_IS_LONG_MODE(pVCpu) )
2535 {
2536 if (!IEM_IS_CANONICAL(uNewRip))
2537 {
2538 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
2539 return iemRaiseNotCanonical(pVCpu);
2540 }
2541 u64Base = 0;
2542 }
2543 else
2544 {
2545 if (uNewRip > cbLimitCs)
2546 {
2547 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
2548 /** @todo: Intel says this is #GP(0)! */
2549 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2550 }
2551 u64Base = X86DESC_BASE(&DescCs.Legacy);
2552 }
2553
2554 /*
2555 * Now set the accessed bit before
2556 * writing the return address to the stack and committing the result into
2557 * CS, CSHID and RIP.
2558 */
2559 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2560 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2561 {
2562 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2563 if (rcStrict != VINF_SUCCESS)
2564 return rcStrict;
2565 /** @todo check what VT-x and AMD-V does. */
2566 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2567 }
2568
2569 /* commit */
2570 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2571 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
2572 else
2573 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2574 if (enmEffOpSize == IEMMODE_16BIT)
2575 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2576 else
2577 pVCpu->cpum.GstCtx.rip = uNewRip;
2578 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2579 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2580 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2581 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2582 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2583 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2584 /** @todo check if the hidden bits are loaded correctly for 64-bit
2585 * mode. */
2586 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2587 if (cbPop)
2588 iemRegAddToRsp(pVCpu, cbPop);
2589 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2590 }
2591
2592 /* Flush the prefetch buffer. */
2593#ifdef IEM_WITH_CODE_TLB
2594 pVCpu->iem.s.pbInstrBuf = NULL;
2595#else
2596 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2597#endif
2598 return VINF_SUCCESS;
2599}
2600
2601
2602/**
2603 * Implements retn.
2604 *
2605 * We're doing this in C because of the \#GP that might be raised if the popped
2606 * program counter is out of bounds.
2607 *
2608 * @param enmEffOpSize The effective operand size.
2609 * @param cbPop The amount of arguments to pop from the stack
2610 * (bytes).
2611 */
2612IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2613{
2614 NOREF(cbInstr);
2615
2616 /* Fetch the RSP from the stack. */
2617 VBOXSTRICTRC rcStrict;
2618 RTUINT64U NewRip;
2619 RTUINT64U NewRsp;
2620 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2621
2622 switch (enmEffOpSize)
2623 {
2624 case IEMMODE_16BIT:
2625 NewRip.u = 0;
2626 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
2627 break;
2628 case IEMMODE_32BIT:
2629 NewRip.u = 0;
2630 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
2631 break;
2632 case IEMMODE_64BIT:
2633 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
2634 break;
2635 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2636 }
2637 if (rcStrict != VINF_SUCCESS)
2638 return rcStrict;
2639
2640 /* Check the new RSP before loading it. */
2641 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
2642 * of it. The canonical test is performed here and for call. */
2643 if (enmEffOpSize != IEMMODE_64BIT)
2644 {
2645 if (NewRip.DWords.dw0 > pVCpu->cpum.GstCtx.cs.u32Limit)
2646 {
2647 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit));
2648 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2649 }
2650 }
2651 else
2652 {
2653 if (!IEM_IS_CANONICAL(NewRip.u))
2654 {
2655 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
2656 return iemRaiseNotCanonical(pVCpu);
2657 }
2658 }
2659
2660 /* Apply cbPop */
2661 if (cbPop)
2662 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2663
2664 /* Commit it. */
2665 pVCpu->cpum.GstCtx.rip = NewRip.u;
2666 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2667 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2668
2669 /* Flush the prefetch buffer. */
2670#ifndef IEM_WITH_CODE_TLB
2671 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2672#endif
2673
2674 return VINF_SUCCESS;
2675}
2676
2677
2678/**
2679 * Implements enter.
2680 *
2681 * We're doing this in C because the instruction is insane, even for the
2682 * u8NestingLevel=0 case dealing with the stack is tedious.
2683 *
2684 * @param enmEffOpSize The effective operand size.
2685 */
2686IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
2687{
2688 /* Push RBP, saving the old value in TmpRbp. */
2689 RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2690 RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp;
2691 RTUINT64U NewRbp;
2692 VBOXSTRICTRC rcStrict;
2693 if (enmEffOpSize == IEMMODE_64BIT)
2694 {
2695 rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
2696 NewRbp = NewRsp;
2697 }
2698 else if (enmEffOpSize == IEMMODE_32BIT)
2699 {
2700 rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
2701 NewRbp = NewRsp;
2702 }
2703 else
2704 {
2705 rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
2706 NewRbp = TmpRbp;
2707 NewRbp.Words.w0 = NewRsp.Words.w0;
2708 }
2709 if (rcStrict != VINF_SUCCESS)
2710 return rcStrict;
2711
2712 /* Copy the parameters (aka nesting levels by Intel). */
2713 cParameters &= 0x1f;
2714 if (cParameters > 0)
2715 {
2716 switch (enmEffOpSize)
2717 {
2718 case IEMMODE_16BIT:
2719 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2720 TmpRbp.DWords.dw0 -= 2;
2721 else
2722 TmpRbp.Words.w0 -= 2;
2723 do
2724 {
2725 uint16_t u16Tmp;
2726 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
2727 if (rcStrict != VINF_SUCCESS)
2728 break;
2729 rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
2730 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2731 break;
2732
2733 case IEMMODE_32BIT:
2734 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2735 TmpRbp.DWords.dw0 -= 4;
2736 else
2737 TmpRbp.Words.w0 -= 4;
2738 do
2739 {
2740 uint32_t u32Tmp;
2741 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
2742 if (rcStrict != VINF_SUCCESS)
2743 break;
2744 rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
2745 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2746 break;
2747
2748 case IEMMODE_64BIT:
2749 TmpRbp.u -= 8;
2750 do
2751 {
2752 uint64_t u64Tmp;
2753 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
2754 if (rcStrict != VINF_SUCCESS)
2755 break;
2756 rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
2757 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2758 break;
2759
2760 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2761 }
2762 if (rcStrict != VINF_SUCCESS)
2763 return VINF_SUCCESS;
2764
2765 /* Push the new RBP */
2766 if (enmEffOpSize == IEMMODE_64BIT)
2767 rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
2768 else if (enmEffOpSize == IEMMODE_32BIT)
2769 rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
2770 else
2771 rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
2772 if (rcStrict != VINF_SUCCESS)
2773 return rcStrict;
2774
2775 }
2776
2777 /* Recalc RSP. */
2778 iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame);
2779
2780 /** @todo Should probe write access at the new RSP according to AMD. */
2781
2782 /* Commit it. */
2783 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2784 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2785 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2786
2787 return VINF_SUCCESS;
2788}
2789
2790
2791
2792/**
2793 * Implements leave.
2794 *
2795 * We're doing this in C because messing with the stack registers is annoying
2796 * since they depends on SS attributes.
2797 *
2798 * @param enmEffOpSize The effective operand size.
2799 */
2800IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
2801{
2802 /* Calculate the intermediate RSP from RBP and the stack attributes. */
2803 RTUINT64U NewRsp;
2804 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2805 NewRsp.u = pVCpu->cpum.GstCtx.rbp;
2806 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2807 NewRsp.u = pVCpu->cpum.GstCtx.ebp;
2808 else
2809 {
2810 /** @todo Check that LEAVE actually preserve the high EBP bits. */
2811 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2812 NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp;
2813 }
2814
2815 /* Pop RBP according to the operand size. */
2816 VBOXSTRICTRC rcStrict;
2817 RTUINT64U NewRbp;
2818 switch (enmEffOpSize)
2819 {
2820 case IEMMODE_16BIT:
2821 NewRbp.u = pVCpu->cpum.GstCtx.rbp;
2822 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
2823 break;
2824 case IEMMODE_32BIT:
2825 NewRbp.u = 0;
2826 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
2827 break;
2828 case IEMMODE_64BIT:
2829 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
2830 break;
2831 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2832 }
2833 if (rcStrict != VINF_SUCCESS)
2834 return rcStrict;
2835
2836
2837 /* Commit it. */
2838 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2839 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2840 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2841
2842 return VINF_SUCCESS;
2843}
2844
2845
2846/**
2847 * Implements int3 and int XX.
2848 *
2849 * @param u8Int The interrupt vector number.
2850 * @param enmInt The int instruction type.
2851 */
2852IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
2853{
2854 Assert(pVCpu->iem.s.cXcptRecursions == 0);
2855 return iemRaiseXcptOrInt(pVCpu,
2856 cbInstr,
2857 u8Int,
2858 IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
2859 0,
2860 0);
2861}
2862
2863
2864/**
2865 * Implements iret for real mode and V8086 mode.
2866 *
2867 * @param enmEffOpSize The effective operand size.
2868 */
2869IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2870{
2871 X86EFLAGS Efl;
2872 Efl.u = IEMMISC_GET_EFL(pVCpu);
2873 NOREF(cbInstr);
2874
2875 /*
2876 * iret throws an exception if VME isn't enabled.
2877 */
2878 if ( Efl.Bits.u1VM
2879 && Efl.Bits.u2IOPL != 3
2880 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
2881 return iemRaiseGeneralProtectionFault0(pVCpu);
2882
2883 /*
2884 * Do the stack bits, but don't commit RSP before everything checks
2885 * out right.
2886 */
2887 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2888 VBOXSTRICTRC rcStrict;
2889 RTCPTRUNION uFrame;
2890 uint16_t uNewCs;
2891 uint32_t uNewEip;
2892 uint32_t uNewFlags;
2893 uint64_t uNewRsp;
2894 if (enmEffOpSize == IEMMODE_32BIT)
2895 {
2896 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
2897 if (rcStrict != VINF_SUCCESS)
2898 return rcStrict;
2899 uNewEip = uFrame.pu32[0];
2900 if (uNewEip > UINT16_MAX)
2901 return iemRaiseGeneralProtectionFault0(pVCpu);
2902
2903 uNewCs = (uint16_t)uFrame.pu32[1];
2904 uNewFlags = uFrame.pu32[2];
2905 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2906 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
2907 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
2908 | X86_EFL_ID;
2909 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
2910 uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
2911 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
2912 }
2913 else
2914 {
2915 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
2916 if (rcStrict != VINF_SUCCESS)
2917 return rcStrict;
2918 uNewEip = uFrame.pu16[0];
2919 uNewCs = uFrame.pu16[1];
2920 uNewFlags = uFrame.pu16[2];
2921 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2922 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
2923 uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
2924 /** @todo The intel pseudo code does not indicate what happens to
2925 * reserved flags. We just ignore them. */
2926 /* Ancient CPU adjustments: See iemCImpl_popf. */
2927 if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
2928 uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
2929 }
2930 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
2931 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2932 { /* extremely likely */ }
2933 else
2934 return rcStrict;
2935
2936 /** @todo Check how this is supposed to work if sp=0xfffe. */
2937 Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
2938 uNewCs, uNewEip, uNewFlags, uNewRsp));
2939
2940 /*
2941 * Check the limit of the new EIP.
2942 */
2943 /** @todo Only the AMD pseudo code check the limit here, what's
2944 * right? */
2945 if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit)
2946 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2947
2948 /*
2949 * V8086 checks and flag adjustments
2950 */
2951 if (Efl.Bits.u1VM)
2952 {
2953 if (Efl.Bits.u2IOPL == 3)
2954 {
2955 /* Preserve IOPL and clear RF. */
2956 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
2957 uNewFlags |= Efl.u & (X86_EFL_IOPL);
2958 }
2959 else if ( enmEffOpSize == IEMMODE_16BIT
2960 && ( !(uNewFlags & X86_EFL_IF)
2961 || !Efl.Bits.u1VIP )
2962 && !(uNewFlags & X86_EFL_TF) )
2963 {
2964 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
2965 uNewFlags &= ~X86_EFL_VIF;
2966 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
2967 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
2968 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
2969 }
2970 else
2971 return iemRaiseGeneralProtectionFault0(pVCpu);
2972 Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
2973 }
2974
2975 /*
2976 * Commit the operation.
2977 */
2978#ifdef DBGFTRACE_ENABLED
2979 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
2980 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
2981#endif
2982 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2983 pVCpu->cpum.GstCtx.rip = uNewEip;
2984 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2985 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2986 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2987 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2988 /** @todo do we load attribs and limit as well? */
2989 Assert(uNewFlags & X86_EFL_1);
2990 IEMMISC_SET_EFL(pVCpu, uNewFlags);
2991
2992 /* Flush the prefetch buffer. */
2993#ifdef IEM_WITH_CODE_TLB
2994 pVCpu->iem.s.pbInstrBuf = NULL;
2995#else
2996 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2997#endif
2998
2999 return VINF_SUCCESS;
3000}
3001
3002
3003/**
3004 * Loads a segment register when entering V8086 mode.
3005 *
3006 * @param pSReg The segment register.
3007 * @param uSeg The segment to load.
3008 */
3009static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
3010{
3011 pSReg->Sel = uSeg;
3012 pSReg->ValidSel = uSeg;
3013 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
3014 pSReg->u64Base = (uint32_t)uSeg << 4;
3015 pSReg->u32Limit = 0xffff;
3016 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
3017 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
3018 * IRET'ing to V8086. */
3019}
3020
3021
3022/**
3023 * Implements iret for protected mode returning to V8086 mode.
3024 *
3025 * @param uNewEip The new EIP.
3026 * @param uNewCs The new CS.
3027 * @param uNewFlags The new EFLAGS.
3028 * @param uNewRsp The RSP after the initial IRET frame.
3029 *
3030 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
3031 */
3032IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp)
3033{
3034 RT_NOREF_PV(cbInstr);
3035 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
3036
3037 /*
3038 * Pop the V8086 specific frame bits off the stack.
3039 */
3040 VBOXSTRICTRC rcStrict;
3041 RTCPTRUNION uFrame;
3042 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp);
3043 if (rcStrict != VINF_SUCCESS)
3044 return rcStrict;
3045 uint32_t uNewEsp = uFrame.pu32[0];
3046 uint16_t uNewSs = uFrame.pu32[1];
3047 uint16_t uNewEs = uFrame.pu32[2];
3048 uint16_t uNewDs = uFrame.pu32[3];
3049 uint16_t uNewFs = uFrame.pu32[4];
3050 uint16_t uNewGs = uFrame.pu32[5];
3051 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3052 if (rcStrict != VINF_SUCCESS)
3053 return rcStrict;
3054
3055 /*
3056 * Commit the operation.
3057 */
3058 uNewFlags &= X86_EFL_LIVE_MASK;
3059 uNewFlags |= X86_EFL_RA1_MASK;
3060#ifdef DBGFTRACE_ENABLED
3061 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
3062 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
3063#endif
3064 Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
3065
3066 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3067 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs);
3068 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs);
3069 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs);
3070 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs);
3071 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs);
3072 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs);
3073 pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip;
3074 pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */
3075 pVCpu->iem.s.uCpl = 3;
3076
3077 /* Flush the prefetch buffer. */
3078#ifdef IEM_WITH_CODE_TLB
3079 pVCpu->iem.s.pbInstrBuf = NULL;
3080#else
3081 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3082#endif
3083
3084 return VINF_SUCCESS;
3085}
3086
3087
3088/**
3089 * Implements iret for protected mode returning via a nested task.
3090 *
3091 * @param enmEffOpSize The effective operand size.
3092 */
3093IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
3094{
3095 Log7(("iemCImpl_iret_prot_NestedTask:\n"));
3096#ifndef IEM_IMPLEMENTS_TASKSWITCH
3097 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
3098#else
3099 RT_NOREF_PV(enmEffOpSize);
3100
3101 /*
3102 * Read the segment selector in the link-field of the current TSS.
3103 */
3104 RTSEL uSelRet;
3105 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base);
3106 if (rcStrict != VINF_SUCCESS)
3107 return rcStrict;
3108
3109 /*
3110 * Fetch the returning task's TSS descriptor from the GDT.
3111 */
3112 if (uSelRet & X86_SEL_LDT)
3113 {
3114 Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
3115 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
3116 }
3117
3118 IEMSELDESC TssDesc;
3119 rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
3120 if (rcStrict != VINF_SUCCESS)
3121 return rcStrict;
3122
3123 if (TssDesc.Legacy.Gate.u1DescType)
3124 {
3125 Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
3126 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3127 }
3128
3129 if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
3130 && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
3131 {
3132 Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
3133 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3134 }
3135
3136 if (!TssDesc.Legacy.Gate.u1Present)
3137 {
3138 Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
3139 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3140 }
3141
3142 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
3143 return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
3144 0 /* uCr2 */, uSelRet, &TssDesc);
3145#endif
3146}
3147
3148
3149/**
3150 * Implements iret for protected mode
3151 *
3152 * @param enmEffOpSize The effective operand size.
3153 */
3154IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
3155{
3156 NOREF(cbInstr);
3157 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3158
3159 /*
3160 * Nested task return.
3161 */
3162 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3163 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
3164
3165 /*
3166 * Normal return.
3167 *
3168 * Do the stack bits, but don't commit RSP before everything checks
3169 * out right.
3170 */
3171 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3172 VBOXSTRICTRC rcStrict;
3173 RTCPTRUNION uFrame;
3174 uint16_t uNewCs;
3175 uint32_t uNewEip;
3176 uint32_t uNewFlags;
3177 uint64_t uNewRsp;
3178 if (enmEffOpSize == IEMMODE_32BIT)
3179 {
3180 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
3181 if (rcStrict != VINF_SUCCESS)
3182 return rcStrict;
3183 uNewEip = uFrame.pu32[0];
3184 uNewCs = (uint16_t)uFrame.pu32[1];
3185 uNewFlags = uFrame.pu32[2];
3186 }
3187 else
3188 {
3189 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
3190 if (rcStrict != VINF_SUCCESS)
3191 return rcStrict;
3192 uNewEip = uFrame.pu16[0];
3193 uNewCs = uFrame.pu16[1];
3194 uNewFlags = uFrame.pu16[2];
3195 }
3196 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3197 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3198 { /* extremely likely */ }
3199 else
3200 return rcStrict;
3201 Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
3202
3203 /*
3204 * We're hopefully not returning to V8086 mode...
3205 */
3206 if ( (uNewFlags & X86_EFL_VM)
3207 && pVCpu->iem.s.uCpl == 0)
3208 {
3209 Assert(enmEffOpSize == IEMMODE_32BIT);
3210 return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp);
3211 }
3212
3213 /*
3214 * Protected mode.
3215 */
3216 /* Read the CS descriptor. */
3217 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3218 {
3219 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
3220 return iemRaiseGeneralProtectionFault0(pVCpu);
3221 }
3222
3223 IEMSELDESC DescCS;
3224 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3225 if (rcStrict != VINF_SUCCESS)
3226 {
3227 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
3228 return rcStrict;
3229 }
3230
3231 /* Must be a code descriptor. */
3232 if (!DescCS.Legacy.Gen.u1DescType)
3233 {
3234 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3235 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3236 }
3237 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3238 {
3239 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3240 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3241 }
3242
3243#ifdef VBOX_WITH_RAW_MODE_NOT_R0
3244 /* Raw ring-0 and ring-1 compression adjustments for PATM performance tricks and other CS leaks. */
3245 PVM pVM = pVCpu->CTX_SUFF(pVM);
3246 if (EMIsRawRing0Enabled(pVM) && VM_IS_RAW_MODE_ENABLED(pVM))
3247 {
3248 if ((uNewCs & X86_SEL_RPL) == 1)
3249 {
3250 if ( pVCpu->iem.s.uCpl == 0
3251 && ( !EMIsRawRing1Enabled(pVM)
3252 || pVCpu->cpum.GstCtx.cs.Sel == (uNewCs & X86_SEL_MASK_OFF_RPL)) )
3253 {
3254 Log(("iret: Ring-0 compression fix: uNewCS=%#x -> %#x\n", uNewCs, uNewCs & X86_SEL_MASK_OFF_RPL));
3255 uNewCs &= X86_SEL_MASK_OFF_RPL;
3256 }
3257# ifdef LOG_ENABLED
3258 else if (pVCpu->iem.s.uCpl <= 1 && EMIsRawRing1Enabled(pVM))
3259 Log(("iret: uNewCs=%#x genuine return to ring-1.\n", uNewCs));
3260# endif
3261 }
3262 else if ( (uNewCs & X86_SEL_RPL) == 2
3263 && EMIsRawRing1Enabled(pVM)
3264 && pVCpu->iem.s.uCpl <= 1)
3265 {
3266 Log(("iret: Ring-1 compression fix: uNewCS=%#x -> %#x\n", uNewCs, (uNewCs & X86_SEL_MASK_OFF_RPL) | 1));
3267 uNewCs = (uNewCs & X86_SEL_MASK_OFF_RPL) | 2;
3268 }
3269 }
3270#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
3271
3272
3273 /* Privilege checks. */
3274 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3275 {
3276 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3277 {
3278 Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3279 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3280 }
3281 }
3282 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3283 {
3284 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3285 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3286 }
3287 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3288 {
3289 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
3290 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3291 }
3292
3293 /* Present? */
3294 if (!DescCS.Legacy.Gen.u1Present)
3295 {
3296 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
3297 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3298 }
3299
3300 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3301
3302 /*
3303 * Return to outer level?
3304 */
3305 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
3306 {
3307 uint16_t uNewSS;
3308 uint32_t uNewESP;
3309 if (enmEffOpSize == IEMMODE_32BIT)
3310 {
3311 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp);
3312 if (rcStrict != VINF_SUCCESS)
3313 return rcStrict;
3314/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
3315 * 16-bit or 32-bit are being loaded into SP depends on the D/B
3316 * bit of the popped SS selector it turns out. */
3317 uNewESP = uFrame.pu32[0];
3318 uNewSS = (uint16_t)uFrame.pu32[1];
3319 }
3320 else
3321 {
3322 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp);
3323 if (rcStrict != VINF_SUCCESS)
3324 return rcStrict;
3325 uNewESP = uFrame.pu16[0];
3326 uNewSS = uFrame.pu16[1];
3327 }
3328 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
3329 if (rcStrict != VINF_SUCCESS)
3330 return rcStrict;
3331 Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
3332
3333 /* Read the SS descriptor. */
3334 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
3335 {
3336 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
3337 return iemRaiseGeneralProtectionFault0(pVCpu);
3338 }
3339
3340 IEMSELDESC DescSS;
3341 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
3342 if (rcStrict != VINF_SUCCESS)
3343 {
3344 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
3345 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
3346 return rcStrict;
3347 }
3348
3349 /* Privilege checks. */
3350 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3351 {
3352 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
3353 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3354 }
3355 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3356 {
3357 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
3358 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
3359 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3360 }
3361
3362 /* Must be a writeable data segment descriptor. */
3363 if (!DescSS.Legacy.Gen.u1DescType)
3364 {
3365 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
3366 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3367 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3368 }
3369 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3370 {
3371 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
3372 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3373 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3374 }
3375
3376 /* Present? */
3377 if (!DescSS.Legacy.Gen.u1Present)
3378 {
3379 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
3380 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
3381 }
3382
3383 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3384
3385 /* Check EIP. */
3386 if (uNewEip > cbLimitCS)
3387 {
3388 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
3389 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
3390 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3391 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3392 }
3393
3394 /*
3395 * Commit the changes, marking CS and SS accessed first since
3396 * that may fail.
3397 */
3398 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3399 {
3400 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3401 if (rcStrict != VINF_SUCCESS)
3402 return rcStrict;
3403 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3404 }
3405 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3406 {
3407 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
3408 if (rcStrict != VINF_SUCCESS)
3409 return rcStrict;
3410 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3411 }
3412
3413 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3414 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3415 if (enmEffOpSize != IEMMODE_16BIT)
3416 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3417 if (pVCpu->iem.s.uCpl == 0)
3418 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3419 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3420 fEFlagsMask |= X86_EFL_IF;
3421 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3422 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3423 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3424 fEFlagsNew &= ~fEFlagsMask;
3425 fEFlagsNew |= uNewFlags & fEFlagsMask;
3426#ifdef DBGFTRACE_ENABLED
3427 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
3428 pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3429 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
3430#endif
3431
3432 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3433 pVCpu->cpum.GstCtx.rip = uNewEip;
3434 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3435 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3436 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3437 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3438 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3439 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3440 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3441
3442 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
3443 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
3444 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3445 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3446 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3447 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3448 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3449 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP;
3450 else
3451 pVCpu->cpum.GstCtx.rsp = uNewESP;
3452
3453 pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
3454 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
3455 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
3456 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
3457 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
3458
3459 /* Done! */
3460
3461 }
3462 /*
3463 * Return to the same level.
3464 */
3465 else
3466 {
3467 /* Check EIP. */
3468 if (uNewEip > cbLimitCS)
3469 {
3470 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
3471 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3472 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3473 }
3474
3475 /*
3476 * Commit the changes, marking CS first since it may fail.
3477 */
3478 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3479 {
3480 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3481 if (rcStrict != VINF_SUCCESS)
3482 return rcStrict;
3483 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3484 }
3485
3486 X86EFLAGS NewEfl;
3487 NewEfl.u = IEMMISC_GET_EFL(pVCpu);
3488 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3489 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3490 if (enmEffOpSize != IEMMODE_16BIT)
3491 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3492 if (pVCpu->iem.s.uCpl == 0)
3493 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3494 else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
3495 fEFlagsMask |= X86_EFL_IF;
3496 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3497 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3498 NewEfl.u &= ~fEFlagsMask;
3499 NewEfl.u |= fEFlagsMask & uNewFlags;
3500#ifdef DBGFTRACE_ENABLED
3501 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
3502 pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3503 uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp);
3504#endif
3505
3506 IEMMISC_SET_EFL(pVCpu, NewEfl.u);
3507 pVCpu->cpum.GstCtx.rip = uNewEip;
3508 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3509 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3510 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3511 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3512 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3513 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3514 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3515 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3516 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3517 else
3518 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3519 /* Done! */
3520 }
3521
3522 /* Flush the prefetch buffer. */
3523#ifdef IEM_WITH_CODE_TLB
3524 pVCpu->iem.s.pbInstrBuf = NULL;
3525#else
3526 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3527#endif
3528
3529 return VINF_SUCCESS;
3530}
3531
3532
3533/**
3534 * Implements iret for long mode
3535 *
3536 * @param enmEffOpSize The effective operand size.
3537 */
3538IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
3539{
3540 NOREF(cbInstr);
3541
3542 /*
3543 * Nested task return is not supported in long mode.
3544 */
3545 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3546 {
3547 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u));
3548 return iemRaiseGeneralProtectionFault0(pVCpu);
3549 }
3550
3551 /*
3552 * Normal return.
3553 *
3554 * Do the stack bits, but don't commit RSP before everything checks
3555 * out right.
3556 */
3557 VBOXSTRICTRC rcStrict;
3558 RTCPTRUNION uFrame;
3559 uint64_t uNewRip;
3560 uint16_t uNewCs;
3561 uint16_t uNewSs;
3562 uint32_t uNewFlags;
3563 uint64_t uNewRsp;
3564 if (enmEffOpSize == IEMMODE_64BIT)
3565 {
3566 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp);
3567 if (rcStrict != VINF_SUCCESS)
3568 return rcStrict;
3569 uNewRip = uFrame.pu64[0];
3570 uNewCs = (uint16_t)uFrame.pu64[1];
3571 uNewFlags = (uint32_t)uFrame.pu64[2];
3572 uNewRsp = uFrame.pu64[3];
3573 uNewSs = (uint16_t)uFrame.pu64[4];
3574 }
3575 else if (enmEffOpSize == IEMMODE_32BIT)
3576 {
3577 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp);
3578 if (rcStrict != VINF_SUCCESS)
3579 return rcStrict;
3580 uNewRip = uFrame.pu32[0];
3581 uNewCs = (uint16_t)uFrame.pu32[1];
3582 uNewFlags = uFrame.pu32[2];
3583 uNewRsp = uFrame.pu32[3];
3584 uNewSs = (uint16_t)uFrame.pu32[4];
3585 }
3586 else
3587 {
3588 Assert(enmEffOpSize == IEMMODE_16BIT);
3589 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp);
3590 if (rcStrict != VINF_SUCCESS)
3591 return rcStrict;
3592 uNewRip = uFrame.pu16[0];
3593 uNewCs = uFrame.pu16[1];
3594 uNewFlags = uFrame.pu16[2];
3595 uNewRsp = uFrame.pu16[3];
3596 uNewSs = uFrame.pu16[4];
3597 }
3598 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3599 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3600 { /* extremely like */ }
3601 else
3602 return rcStrict;
3603 Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
3604
3605 /*
3606 * Check stuff.
3607 */
3608 /* Read the CS descriptor. */
3609 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3610 {
3611 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3612 return iemRaiseGeneralProtectionFault0(pVCpu);
3613 }
3614
3615 IEMSELDESC DescCS;
3616 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3617 if (rcStrict != VINF_SUCCESS)
3618 {
3619 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
3620 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3621 return rcStrict;
3622 }
3623
3624 /* Must be a code descriptor. */
3625 if ( !DescCS.Legacy.Gen.u1DescType
3626 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3627 {
3628 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
3629 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
3630 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3631 }
3632
3633 /* Privilege checks. */
3634 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
3635 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3636 {
3637 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3638 {
3639 Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3640 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3641 }
3642 }
3643 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3644 {
3645 Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3646 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3647 }
3648 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3649 {
3650 Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
3651 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3652 }
3653
3654 /* Present? */
3655 if (!DescCS.Legacy.Gen.u1Present)
3656 {
3657 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3658 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3659 }
3660
3661 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3662
3663 /* Read the SS descriptor. */
3664 IEMSELDESC DescSS;
3665 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3666 {
3667 if ( !DescCS.Legacy.Gen.u1Long
3668 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
3669 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
3670 {
3671 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3672 return iemRaiseGeneralProtectionFault0(pVCpu);
3673 }
3674 DescSS.Legacy.u = 0;
3675 }
3676 else
3677 {
3678 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
3679 if (rcStrict != VINF_SUCCESS)
3680 {
3681 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
3682 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3683 return rcStrict;
3684 }
3685 }
3686
3687 /* Privilege checks. */
3688 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3689 {
3690 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3691 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3692 }
3693
3694 uint32_t cbLimitSs;
3695 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3696 cbLimitSs = UINT32_MAX;
3697 else
3698 {
3699 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3700 {
3701 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
3702 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
3703 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3704 }
3705
3706 /* Must be a writeable data segment descriptor. */
3707 if (!DescSS.Legacy.Gen.u1DescType)
3708 {
3709 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
3710 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3711 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3712 }
3713 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3714 {
3715 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
3716 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3717 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3718 }
3719
3720 /* Present? */
3721 if (!DescSS.Legacy.Gen.u1Present)
3722 {
3723 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3724 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
3725 }
3726 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3727 }
3728
3729 /* Check EIP. */
3730 if (DescCS.Legacy.Gen.u1Long)
3731 {
3732 if (!IEM_IS_CANONICAL(uNewRip))
3733 {
3734 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
3735 uNewCs, uNewRip, uNewSs, uNewRsp));
3736 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3737 }
3738 }
3739 else
3740 {
3741 if (uNewRip > cbLimitCS)
3742 {
3743 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
3744 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
3745 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3746 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3747 }
3748 }
3749
3750 /*
3751 * Commit the changes, marking CS and SS accessed first since
3752 * that may fail.
3753 */
3754 /** @todo where exactly are these actually marked accessed by a real CPU? */
3755 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3756 {
3757 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3758 if (rcStrict != VINF_SUCCESS)
3759 return rcStrict;
3760 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3761 }
3762 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3763 {
3764 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
3765 if (rcStrict != VINF_SUCCESS)
3766 return rcStrict;
3767 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3768 }
3769
3770 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3771 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3772 if (enmEffOpSize != IEMMODE_16BIT)
3773 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3774 if (pVCpu->iem.s.uCpl == 0)
3775 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
3776 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3777 fEFlagsMask |= X86_EFL_IF;
3778 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3779 fEFlagsNew &= ~fEFlagsMask;
3780 fEFlagsNew |= uNewFlags & fEFlagsMask;
3781#ifdef DBGFTRACE_ENABLED
3782 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
3783 pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
3784#endif
3785
3786 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3787 pVCpu->cpum.GstCtx.rip = uNewRip;
3788 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3789 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3790 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3791 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3792 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3793 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3794 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3795 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
3796 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3797 else
3798 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3799 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
3800 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
3801 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3802 {
3803 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3804 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
3805 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
3806 pVCpu->cpum.GstCtx.ss.u64Base = 0;
3807 Log2(("iretq new SS: NULL\n"));
3808 }
3809 else
3810 {
3811 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3812 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3813 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3814 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3815 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3816 }
3817
3818 if (pVCpu->iem.s.uCpl != uNewCpl)
3819 {
3820 pVCpu->iem.s.uCpl = uNewCpl;
3821 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds);
3822 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es);
3823 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs);
3824 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs);
3825 }
3826
3827 /* Flush the prefetch buffer. */
3828#ifdef IEM_WITH_CODE_TLB
3829 pVCpu->iem.s.pbInstrBuf = NULL;
3830#else
3831 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3832#endif
3833
3834 return VINF_SUCCESS;
3835}
3836
3837
3838/**
3839 * Implements iret.
3840 *
3841 * @param enmEffOpSize The effective operand size.
3842 */
3843IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
3844{
3845 bool fBlockingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3846
3847#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3848 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
3849 {
3850 /*
3851 * Record whether NMI (or virtual-NMI) blocking is in effect during the execution
3852 * of this IRET instruction. We need to provide this information as part of some
3853 * VM-exits.
3854 *
3855 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3856 */
3857 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_VIRT_NMI))
3858 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking;
3859 else
3860 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = fBlockingNmi;
3861
3862 /*
3863 * If "NMI exiting" is set, IRET does not affect blocking of NMIs.
3864 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3865 */
3866 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_NMI_EXIT))
3867 {
3868 fBlockingNmi = false;
3869
3870 /* Signal a pending NMI-window VM-exit before executing the next instruction. */
3871 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW))
3872 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW);
3873 }
3874
3875 /* Clear virtual-NMI blocking, if any, before causing any further exceptions. */
3876 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
3877 }
3878#endif
3879
3880 /*
3881 * The SVM nested-guest intercept for IRET takes priority over all exceptions,
3882 * The NMI is still held pending (which I assume means blocking of further NMIs
3883 * is in effect).
3884 *
3885 * See AMD spec. 15.9 "Instruction Intercepts".
3886 * See AMD spec. 15.21.9 "NMI Support".
3887 */
3888 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
3889 {
3890 Log(("iret: Guest intercept -> #VMEXIT\n"));
3891 IEM_SVM_UPDATE_NRIP(pVCpu);
3892 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
3893 }
3894
3895 /*
3896 * Clear NMI blocking, if any, before causing any further exceptions.
3897 * See Intel spec. 6.7.1 "Handling Multiple NMIs".
3898 */
3899 if (fBlockingNmi)
3900 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
3901
3902 /*
3903 * Call a mode specific worker.
3904 */
3905 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
3906 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
3907 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
3908 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
3909 return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
3910 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
3911}
3912
3913
3914static void iemLoadallSetSelector(PVMCPU pVCpu, uint8_t iSegReg, uint16_t uSel)
3915{
3916 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3917
3918 pHid->Sel = uSel;
3919 pHid->ValidSel = uSel;
3920 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3921}
3922
3923
3924static void iemLoadall286SetDescCache(PVMCPU pVCpu, uint8_t iSegReg, uint8_t const *pbMem)
3925{
3926 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3927
3928 /* The base is in the first three bytes. */
3929 pHid->u64Base = pbMem[0] + (pbMem[1] << 8) + (pbMem[2] << 16);
3930 /* The attributes are in the fourth byte. */
3931 pHid->Attr.u = pbMem[3];
3932 /* The limit is in the last two bytes. */
3933 pHid->u32Limit = pbMem[4] + (pbMem[5] << 8);
3934}
3935
3936
3937/**
3938 * Implements 286 LOADALL (286 CPUs only).
3939 */
3940IEM_CIMPL_DEF_0(iemCImpl_loadall286)
3941{
3942 NOREF(cbInstr);
3943
3944 /* Data is loaded from a buffer at 800h. No checks are done on the
3945 * validity of loaded state.
3946 *
3947 * LOADALL only loads the internal CPU state, it does not access any
3948 * GDT, LDT, or similar tables.
3949 */
3950
3951 if (pVCpu->iem.s.uCpl != 0)
3952 {
3953 Log(("loadall286: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
3954 return iemRaiseGeneralProtectionFault0(pVCpu);
3955 }
3956
3957 uint8_t const *pbMem = NULL;
3958 uint16_t const *pa16Mem;
3959 uint8_t const *pa8Mem;
3960 RTGCPHYS GCPtrStart = 0x800; /* Fixed table location. */
3961 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pbMem, 0x66, UINT8_MAX, GCPtrStart, IEM_ACCESS_SYS_R);
3962 if (rcStrict != VINF_SUCCESS)
3963 return rcStrict;
3964
3965 /* The MSW is at offset 0x06. */
3966 pa16Mem = (uint16_t const *)(pbMem + 0x06);
3967 /* Even LOADALL can't clear the MSW.PE bit, though it can set it. */
3968 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3969 uNewCr0 |= *pa16Mem & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3970 uint64_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
3971
3972 CPUMSetGuestCR0(pVCpu, uNewCr0);
3973 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCr0);
3974
3975 /* Inform PGM if mode changed. */
3976 if ((uNewCr0 & X86_CR0_PE) != (uOldCr0 & X86_CR0_PE))
3977 {
3978 int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
3979 AssertRCReturn(rc, rc);
3980 /* ignore informational status codes */
3981 }
3982 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
3983
3984 /* TR selector is at offset 0x16. */
3985 pa16Mem = (uint16_t const *)(pbMem + 0x16);
3986 pVCpu->cpum.GstCtx.tr.Sel = pa16Mem[0];
3987 pVCpu->cpum.GstCtx.tr.ValidSel = pa16Mem[0];
3988 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3989
3990 /* Followed by FLAGS... */
3991 pVCpu->cpum.GstCtx.eflags.u = pa16Mem[1] | X86_EFL_1;
3992 pVCpu->cpum.GstCtx.ip = pa16Mem[2]; /* ...and IP. */
3993
3994 /* LDT is at offset 0x1C. */
3995 pa16Mem = (uint16_t const *)(pbMem + 0x1C);
3996 pVCpu->cpum.GstCtx.ldtr.Sel = pa16Mem[0];
3997 pVCpu->cpum.GstCtx.ldtr.ValidSel = pa16Mem[0];
3998 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3999
4000 /* Segment registers are at offset 0x1E. */
4001 pa16Mem = (uint16_t const *)(pbMem + 0x1E);
4002 iemLoadallSetSelector(pVCpu, X86_SREG_DS, pa16Mem[0]);
4003 iemLoadallSetSelector(pVCpu, X86_SREG_SS, pa16Mem[1]);
4004 iemLoadallSetSelector(pVCpu, X86_SREG_CS, pa16Mem[2]);
4005 iemLoadallSetSelector(pVCpu, X86_SREG_ES, pa16Mem[3]);
4006
4007 /* GPRs are at offset 0x26. */
4008 pa16Mem = (uint16_t const *)(pbMem + 0x26);
4009 pVCpu->cpum.GstCtx.di = pa16Mem[0];
4010 pVCpu->cpum.GstCtx.si = pa16Mem[1];
4011 pVCpu->cpum.GstCtx.bp = pa16Mem[2];
4012 pVCpu->cpum.GstCtx.sp = pa16Mem[3];
4013 pVCpu->cpum.GstCtx.bx = pa16Mem[4];
4014 pVCpu->cpum.GstCtx.dx = pa16Mem[5];
4015 pVCpu->cpum.GstCtx.cx = pa16Mem[6];
4016 pVCpu->cpum.GstCtx.ax = pa16Mem[7];
4017
4018 /* Descriptor caches are at offset 0x36, 6 bytes per entry. */
4019 iemLoadall286SetDescCache(pVCpu, X86_SREG_ES, pbMem + 0x36);
4020 iemLoadall286SetDescCache(pVCpu, X86_SREG_CS, pbMem + 0x3C);
4021 iemLoadall286SetDescCache(pVCpu, X86_SREG_SS, pbMem + 0x42);
4022 iemLoadall286SetDescCache(pVCpu, X86_SREG_DS, pbMem + 0x48);
4023
4024 /* GDTR contents are at offset 0x4E, 6 bytes. */
4025 RTGCPHYS GCPtrBase;
4026 uint16_t cbLimit;
4027 pa8Mem = pbMem + 0x4E;
4028 /* NB: Fourth byte "should be zero"; we are ignoring it. */
4029 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
4030 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
4031 CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
4032
4033 /* IDTR contents are at offset 0x5A, 6 bytes. */
4034 pa8Mem = pbMem + 0x5A;
4035 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
4036 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
4037 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
4038
4039 Log(("LOADALL: GDTR:%08RX64/%04X, IDTR:%08RX64/%04X\n", pVCpu->cpum.GstCtx.gdtr.pGdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.idtr.pIdt, pVCpu->cpum.GstCtx.idtr.cbIdt));
4040 Log(("LOADALL: CS:%04X, CS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.cs.u64Base, pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.Attr.u));
4041 Log(("LOADALL: DS:%04X, DS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.ds.u64Base, pVCpu->cpum.GstCtx.ds.u32Limit, pVCpu->cpum.GstCtx.ds.Attr.u));
4042 Log(("LOADALL: ES:%04X, ES base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.es.u64Base, pVCpu->cpum.GstCtx.es.u32Limit, pVCpu->cpum.GstCtx.es.Attr.u));
4043 Log(("LOADALL: SS:%04X, SS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
4044 Log(("LOADALL: SI:%04X, DI:%04X, AX:%04X, BX:%04X, CX:%04X, DX:%04X\n", pVCpu->cpum.GstCtx.si, pVCpu->cpum.GstCtx.di, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.cx, pVCpu->cpum.GstCtx.dx));
4045
4046 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pbMem, IEM_ACCESS_SYS_R);
4047 if (rcStrict != VINF_SUCCESS)
4048 return rcStrict;
4049
4050 /* The CPL may change. It is taken from the "DPL fields of the SS and CS
4051 * descriptor caches" but there is no word as to what happens if those are
4052 * not identical (probably bad things).
4053 */
4054 pVCpu->iem.s.uCpl = pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl;
4055
4056 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS | CPUM_CHANGED_IDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_TR | CPUM_CHANGED_LDTR);
4057
4058 /* Flush the prefetch buffer. */
4059#ifdef IEM_WITH_CODE_TLB
4060 pVCpu->iem.s.pbInstrBuf = NULL;
4061#else
4062 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4063#endif
4064 return rcStrict;
4065}
4066
4067
4068/**
4069 * Implements SYSCALL (AMD and Intel64).
4070 *
4071 * @param enmEffOpSize The effective operand size.
4072 */
4073IEM_CIMPL_DEF_0(iemCImpl_syscall)
4074{
4075 /** @todo hack, LOADALL should be decoded as such on a 286. */
4076 if (RT_UNLIKELY(pVCpu->iem.s.uTargetCpu == IEMTARGETCPU_286))
4077 return iemCImpl_loadall286(pVCpu, cbInstr);
4078
4079 /*
4080 * Check preconditions.
4081 *
4082 * Note that CPUs described in the documentation may load a few odd values
4083 * into CS and SS than we allow here. This has yet to be checked on real
4084 * hardware.
4085 */
4086 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4087 {
4088 Log(("syscall: Not enabled in EFER -> #UD\n"));
4089 return iemRaiseUndefinedOpcode(pVCpu);
4090 }
4091 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4092 {
4093 Log(("syscall: Protected mode is required -> #GP(0)\n"));
4094 return iemRaiseGeneralProtectionFault0(pVCpu);
4095 }
4096 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4097 {
4098 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4099 return iemRaiseUndefinedOpcode(pVCpu);
4100 }
4101
4102 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4103
4104 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
4105 /** @todo what about LDT selectors? Shouldn't matter, really. */
4106 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4107 uint16_t uNewSs = uNewCs + 8;
4108 if (uNewCs == 0 || uNewSs == 0)
4109 {
4110 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4111 return iemRaiseGeneralProtectionFault0(pVCpu);
4112 }
4113
4114 /* Long mode and legacy mode differs. */
4115 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4116 {
4117 uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR;
4118
4119 /* This test isn't in the docs, but I'm not trusting the guys writing
4120 the MSRs to have validated the values as canonical like they should. */
4121 if (!IEM_IS_CANONICAL(uNewRip))
4122 {
4123 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4124 return iemRaiseUndefinedOpcode(pVCpu);
4125 }
4126
4127 /*
4128 * Commit it.
4129 */
4130 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip));
4131 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr;
4132 pVCpu->cpum.GstCtx.rip = uNewRip;
4133
4134 pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF;
4135 pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u;
4136 pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK;
4137 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4138
4139 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4140 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4141 }
4142 else
4143 {
4144 /*
4145 * Commit it.
4146 */
4147 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
4148 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
4149 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr;
4150 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
4151 pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
4152
4153 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4154 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4155 }
4156 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
4157 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
4158 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4159 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4160 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4161
4162 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
4163 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
4164 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4165 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4166 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4167
4168 /* Flush the prefetch buffer. */
4169#ifdef IEM_WITH_CODE_TLB
4170 pVCpu->iem.s.pbInstrBuf = NULL;
4171#else
4172 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4173#endif
4174
4175 return VINF_SUCCESS;
4176}
4177
4178
4179/**
4180 * Implements SYSRET (AMD and Intel64).
4181 */
4182IEM_CIMPL_DEF_0(iemCImpl_sysret)
4183
4184{
4185 RT_NOREF_PV(cbInstr);
4186
4187 /*
4188 * Check preconditions.
4189 *
4190 * Note that CPUs described in the documentation may load a few odd values
4191 * into CS and SS than we allow here. This has yet to be checked on real
4192 * hardware.
4193 */
4194 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4195 {
4196 Log(("sysret: Not enabled in EFER -> #UD\n"));
4197 return iemRaiseUndefinedOpcode(pVCpu);
4198 }
4199 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4200 {
4201 Log(("sysret: Only available in long mode on intel -> #UD\n"));
4202 return iemRaiseUndefinedOpcode(pVCpu);
4203 }
4204 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4205 {
4206 Log(("sysret: Protected mode is required -> #GP(0)\n"));
4207 return iemRaiseGeneralProtectionFault0(pVCpu);
4208 }
4209 if (pVCpu->iem.s.uCpl != 0)
4210 {
4211 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
4212 return iemRaiseGeneralProtectionFault0(pVCpu);
4213 }
4214
4215 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4216
4217 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
4218 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4219 uint16_t uNewSs = uNewCs + 8;
4220 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4221 uNewCs += 16;
4222 if (uNewCs == 0 || uNewSs == 0)
4223 {
4224 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4225 return iemRaiseGeneralProtectionFault0(pVCpu);
4226 }
4227
4228 /*
4229 * Commit it.
4230 */
4231 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4232 {
4233 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4234 {
4235 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
4236 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11));
4237 /* Note! We disregard intel manual regarding the RCX cananonical
4238 check, ask intel+xen why AMD doesn't do it. */
4239 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4240 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4241 | (3 << X86DESCATTR_DPL_SHIFT);
4242 }
4243 else
4244 {
4245 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
4246 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11));
4247 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx;
4248 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4249 | (3 << X86DESCATTR_DPL_SHIFT);
4250 }
4251 /** @todo testcase: See what kind of flags we can make SYSRET restore and
4252 * what it really ignores. RF and VM are hinted at being zero, by AMD. */
4253 pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
4254 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4255 }
4256 else
4257 {
4258 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx));
4259 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4260 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF;
4261 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4262 | (3 << X86DESCATTR_DPL_SHIFT);
4263 }
4264 pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3;
4265 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3;
4266 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4267 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4268 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4269
4270 pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3;
4271 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3;
4272 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4273 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
4274 pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
4275 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
4276 * on sysret. */
4277
4278 /* Flush the prefetch buffer. */
4279#ifdef IEM_WITH_CODE_TLB
4280 pVCpu->iem.s.pbInstrBuf = NULL;
4281#else
4282 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4283#endif
4284
4285 return VINF_SUCCESS;
4286}
4287
4288
4289/**
4290 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
4291 *
4292 * @param iSegReg The segment register number (valid).
4293 * @param uSel The new selector value.
4294 */
4295IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
4296{
4297 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
4298 uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
4299 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
4300
4301 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
4302
4303 /*
4304 * Real mode and V8086 mode are easy.
4305 */
4306 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4307 {
4308 *pSel = uSel;
4309 pHid->u64Base = (uint32_t)uSel << 4;
4310 pHid->ValidSel = uSel;
4311 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4312#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
4313 /** @todo Does the CPU actually load limits and attributes in the
4314 * real/V8086 mode segment load case? It doesn't for CS in far
4315 * jumps... Affects unreal mode. */
4316 pHid->u32Limit = 0xffff;
4317 pHid->Attr.u = 0;
4318 pHid->Attr.n.u1Present = 1;
4319 pHid->Attr.n.u1DescType = 1;
4320 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
4321 ? X86_SEL_TYPE_RW
4322 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
4323#endif
4324 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4325 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4326 return VINF_SUCCESS;
4327 }
4328
4329 /*
4330 * Protected mode.
4331 *
4332 * Check if it's a null segment selector value first, that's OK for DS, ES,
4333 * FS and GS. If not null, then we have to load and parse the descriptor.
4334 */
4335 if (!(uSel & X86_SEL_MASK_OFF_RPL))
4336 {
4337 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
4338 if (iSegReg == X86_SREG_SS)
4339 {
4340 /* In 64-bit kernel mode, the stack can be 0 because of the way
4341 interrupts are dispatched. AMD seems to have a slighly more
4342 relaxed relationship to SS.RPL than intel does. */
4343 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
4344 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4345 || pVCpu->iem.s.uCpl > 2
4346 || ( uSel != pVCpu->iem.s.uCpl
4347 && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
4348 {
4349 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
4350 return iemRaiseGeneralProtectionFault0(pVCpu);
4351 }
4352 }
4353
4354 *pSel = uSel; /* Not RPL, remember :-) */
4355 iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
4356 if (iSegReg == X86_SREG_SS)
4357 pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
4358
4359 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4360 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4361
4362 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4363 return VINF_SUCCESS;
4364 }
4365
4366 /* Fetch the descriptor. */
4367 IEMSELDESC Desc;
4368 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
4369 if (rcStrict != VINF_SUCCESS)
4370 return rcStrict;
4371
4372 /* Check GPs first. */
4373 if (!Desc.Legacy.Gen.u1DescType)
4374 {
4375 Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
4376 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4377 }
4378 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
4379 {
4380 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
4381 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
4382 {
4383 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
4384 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4385 }
4386 if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
4387 {
4388 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
4389 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4390 }
4391 if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
4392 {
4393 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
4394 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4395 }
4396 }
4397 else
4398 {
4399 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4400 {
4401 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
4402 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4403 }
4404 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4405 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4406 {
4407#if 0 /* this is what intel says. */
4408 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
4409 && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4410 {
4411 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
4412 iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4413 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4414 }
4415#else /* this is what makes more sense. */
4416 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4417 {
4418 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
4419 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
4420 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4421 }
4422 if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4423 {
4424 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
4425 iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4426 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4427 }
4428#endif
4429 }
4430 }
4431
4432 /* Is it there? */
4433 if (!Desc.Legacy.Gen.u1Present)
4434 {
4435 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
4436 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
4437 }
4438
4439 /* The base and limit. */
4440 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
4441 uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
4442
4443 /*
4444 * Ok, everything checked out fine. Now set the accessed bit before
4445 * committing the result into the registers.
4446 */
4447 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
4448 {
4449 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
4450 if (rcStrict != VINF_SUCCESS)
4451 return rcStrict;
4452 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
4453 }
4454
4455 /* commit */
4456 *pSel = uSel;
4457 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4458 pHid->u32Limit = cbLimit;
4459 pHid->u64Base = u64Base;
4460 pHid->ValidSel = uSel;
4461 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4462
4463 /** @todo check if the hidden bits are loaded correctly for 64-bit
4464 * mode. */
4465 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4466
4467 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4468 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4469 return VINF_SUCCESS;
4470}
4471
4472
4473/**
4474 * Implements 'mov SReg, r/m'.
4475 *
4476 * @param iSegReg The segment register number (valid).
4477 * @param uSel The new selector value.
4478 */
4479IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
4480{
4481 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4482 if (rcStrict == VINF_SUCCESS)
4483 {
4484 if (iSegReg == X86_SREG_SS)
4485 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4486 }
4487 return rcStrict;
4488}
4489
4490
4491/**
4492 * Implements 'pop SReg'.
4493 *
4494 * @param iSegReg The segment register number (valid).
4495 * @param enmEffOpSize The efficient operand size (valid).
4496 */
4497IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
4498{
4499 VBOXSTRICTRC rcStrict;
4500
4501 /*
4502 * Read the selector off the stack and join paths with mov ss, reg.
4503 */
4504 RTUINT64U TmpRsp;
4505 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
4506 switch (enmEffOpSize)
4507 {
4508 case IEMMODE_16BIT:
4509 {
4510 uint16_t uSel;
4511 rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
4512 if (rcStrict == VINF_SUCCESS)
4513 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4514 break;
4515 }
4516
4517 case IEMMODE_32BIT:
4518 {
4519 uint32_t u32Value;
4520 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
4521 if (rcStrict == VINF_SUCCESS)
4522 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
4523 break;
4524 }
4525
4526 case IEMMODE_64BIT:
4527 {
4528 uint64_t u64Value;
4529 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
4530 if (rcStrict == VINF_SUCCESS)
4531 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
4532 break;
4533 }
4534 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4535 }
4536
4537 /*
4538 * Commit the stack on success.
4539 */
4540 if (rcStrict == VINF_SUCCESS)
4541 {
4542 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
4543 if (iSegReg == X86_SREG_SS)
4544 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4545 }
4546 return rcStrict;
4547}
4548
4549
4550/**
4551 * Implements lgs, lfs, les, lds & lss.
4552 */
4553IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
4554 uint16_t, uSel,
4555 uint64_t, offSeg,
4556 uint8_t, iSegReg,
4557 uint8_t, iGReg,
4558 IEMMODE, enmEffOpSize)
4559{
4560 /*
4561 * Use iemCImpl_LoadSReg to do the tricky segment register loading.
4562 */
4563 /** @todo verify and test that mov, pop and lXs works the segment
4564 * register loading in the exact same way. */
4565 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4566 if (rcStrict == VINF_SUCCESS)
4567 {
4568 switch (enmEffOpSize)
4569 {
4570 case IEMMODE_16BIT:
4571 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4572 break;
4573 case IEMMODE_32BIT:
4574 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4575 break;
4576 case IEMMODE_64BIT:
4577 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4578 break;
4579 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4580 }
4581 }
4582
4583 return rcStrict;
4584}
4585
4586
4587/**
4588 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
4589 *
4590 * @retval VINF_SUCCESS on success.
4591 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
4592 * @retval iemMemFetchSysU64 return value.
4593 *
4594 * @param pVCpu The cross context virtual CPU structure of the calling thread.
4595 * @param uSel The selector value.
4596 * @param fAllowSysDesc Whether system descriptors are OK or not.
4597 * @param pDesc Where to return the descriptor on success.
4598 */
4599static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPU pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
4600{
4601 pDesc->Long.au64[0] = 0;
4602 pDesc->Long.au64[1] = 0;
4603
4604 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
4605 return VINF_IEM_SELECTOR_NOT_OK;
4606
4607 /* Within the table limits? */
4608 RTGCPTR GCPtrBase;
4609 if (uSel & X86_SEL_LDT)
4610 {
4611 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
4612 if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
4613 || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
4614 return VINF_IEM_SELECTOR_NOT_OK;
4615 GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
4616 }
4617 else
4618 {
4619 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4620 if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
4621 return VINF_IEM_SELECTOR_NOT_OK;
4622 GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
4623 }
4624
4625 /* Fetch the descriptor. */
4626 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
4627 if (rcStrict != VINF_SUCCESS)
4628 return rcStrict;
4629 if (!pDesc->Legacy.Gen.u1DescType)
4630 {
4631 if (!fAllowSysDesc)
4632 return VINF_IEM_SELECTOR_NOT_OK;
4633 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4634 {
4635 rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
4636 if (rcStrict != VINF_SUCCESS)
4637 return rcStrict;
4638 }
4639
4640 }
4641
4642 return VINF_SUCCESS;
4643}
4644
4645
4646/**
4647 * Implements verr (fWrite = false) and verw (fWrite = true).
4648 */
4649IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
4650{
4651 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4652
4653 /** @todo figure whether the accessed bit is set or not. */
4654
4655 bool fAccessible = true;
4656 IEMSELDESC Desc;
4657 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4658 if (rcStrict == VINF_SUCCESS)
4659 {
4660 /* Check the descriptor, order doesn't matter much here. */
4661 if ( !Desc.Legacy.Gen.u1DescType
4662 || !Desc.Legacy.Gen.u1Present)
4663 fAccessible = false;
4664 else
4665 {
4666 if ( fWrite
4667 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
4668 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4669 fAccessible = false;
4670
4671 /** @todo testcase for the conforming behavior. */
4672 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4673 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4674 {
4675 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4676 fAccessible = false;
4677 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4678 fAccessible = false;
4679 }
4680 }
4681
4682 }
4683 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4684 fAccessible = false;
4685 else
4686 return rcStrict;
4687
4688 /* commit */
4689 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible;
4690
4691 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4692 return VINF_SUCCESS;
4693}
4694
4695
4696/**
4697 * Implements LAR and LSL with 64-bit operand size.
4698 *
4699 * @returns VINF_SUCCESS.
4700 * @param pu16Dst Pointer to the destination register.
4701 * @param uSel The selector to load details for.
4702 * @param fIsLar true = LAR, false = LSL.
4703 */
4704IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
4705{
4706 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4707
4708 /** @todo figure whether the accessed bit is set or not. */
4709
4710 bool fDescOk = true;
4711 IEMSELDESC Desc;
4712 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, true /*fAllowSysDesc*/, &Desc);
4713 if (rcStrict == VINF_SUCCESS)
4714 {
4715 /*
4716 * Check the descriptor type.
4717 */
4718 if (!Desc.Legacy.Gen.u1DescType)
4719 {
4720 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4721 {
4722 if (Desc.Long.Gen.u5Zeros)
4723 fDescOk = false;
4724 else
4725 switch (Desc.Long.Gen.u4Type)
4726 {
4727 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
4728 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
4729 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
4730 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
4731 break;
4732 case AMD64_SEL_TYPE_SYS_CALL_GATE:
4733 fDescOk = fIsLar;
4734 break;
4735 default:
4736 fDescOk = false;
4737 break;
4738 }
4739 }
4740 else
4741 {
4742 switch (Desc.Long.Gen.u4Type)
4743 {
4744 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4745 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4746 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4747 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
4748 case X86_SEL_TYPE_SYS_LDT:
4749 break;
4750 case X86_SEL_TYPE_SYS_286_CALL_GATE:
4751 case X86_SEL_TYPE_SYS_TASK_GATE:
4752 case X86_SEL_TYPE_SYS_386_CALL_GATE:
4753 fDescOk = fIsLar;
4754 break;
4755 default:
4756 fDescOk = false;
4757 break;
4758 }
4759 }
4760 }
4761 if (fDescOk)
4762 {
4763 /*
4764 * Check the RPL/DPL/CPL interaction..
4765 */
4766 /** @todo testcase for the conforming behavior. */
4767 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
4768 || !Desc.Legacy.Gen.u1DescType)
4769 {
4770 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4771 fDescOk = false;
4772 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4773 fDescOk = false;
4774 }
4775 }
4776
4777 if (fDescOk)
4778 {
4779 /*
4780 * All fine, start committing the result.
4781 */
4782 if (fIsLar)
4783 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
4784 else
4785 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
4786 }
4787
4788 }
4789 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4790 fDescOk = false;
4791 else
4792 return rcStrict;
4793
4794 /* commit flags value and advance rip. */
4795 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk;
4796 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4797
4798 return VINF_SUCCESS;
4799}
4800
4801
4802/**
4803 * Implements LAR and LSL with 16-bit operand size.
4804 *
4805 * @returns VINF_SUCCESS.
4806 * @param pu16Dst Pointer to the destination register.
4807 * @param u16Sel The selector to load details for.
4808 * @param fIsLar true = LAR, false = LSL.
4809 */
4810IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
4811{
4812 uint64_t u64TmpDst = *pu16Dst;
4813 IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
4814 *pu16Dst = u64TmpDst;
4815 return VINF_SUCCESS;
4816}
4817
4818
4819/**
4820 * Implements lgdt.
4821 *
4822 * @param iEffSeg The segment of the new gdtr contents
4823 * @param GCPtrEffSrc The address of the new gdtr contents.
4824 * @param enmEffOpSize The effective operand size.
4825 */
4826IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4827{
4828 if (pVCpu->iem.s.uCpl != 0)
4829 return iemRaiseGeneralProtectionFault0(pVCpu);
4830 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4831
4832 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4833 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4834 {
4835 Log(("lgdt: Guest intercept -> VM-exit\n"));
4836 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_LGDT, cbInstr);
4837 }
4838
4839 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
4840 {
4841 Log(("lgdt: Guest intercept -> #VMEXIT\n"));
4842 IEM_SVM_UPDATE_NRIP(pVCpu);
4843 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4844 }
4845
4846 /*
4847 * Fetch the limit and base address.
4848 */
4849 uint16_t cbLimit;
4850 RTGCPTR GCPtrBase;
4851 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4852 if (rcStrict == VINF_SUCCESS)
4853 {
4854 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4855 || X86_IS_CANONICAL(GCPtrBase))
4856 {
4857 rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
4858 if (rcStrict == VINF_SUCCESS)
4859 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4860 }
4861 else
4862 {
4863 Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
4864 return iemRaiseGeneralProtectionFault0(pVCpu);
4865 }
4866 }
4867 return rcStrict;
4868}
4869
4870
4871/**
4872 * Implements sgdt.
4873 *
4874 * @param iEffSeg The segment where to store the gdtr content.
4875 * @param GCPtrEffDst The address where to store the gdtr content.
4876 */
4877IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
4878{
4879 /*
4880 * Join paths with sidt.
4881 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4882 * you really must know.
4883 */
4884 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4885 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4886 {
4887 Log(("sgdt: Guest intercept -> VM-exit\n"));
4888 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_SGDT, cbInstr);
4889 }
4890
4891 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS))
4892 {
4893 Log(("sgdt: Guest intercept -> #VMEXIT\n"));
4894 IEM_SVM_UPDATE_NRIP(pVCpu);
4895 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4896 }
4897
4898 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4899 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst);
4900 if (rcStrict == VINF_SUCCESS)
4901 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4902 return rcStrict;
4903}
4904
4905
4906/**
4907 * Implements lidt.
4908 *
4909 * @param iEffSeg The segment of the new idtr contents
4910 * @param GCPtrEffSrc The address of the new idtr contents.
4911 * @param enmEffOpSize The effective operand size.
4912 */
4913IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4914{
4915 if (pVCpu->iem.s.uCpl != 0)
4916 return iemRaiseGeneralProtectionFault0(pVCpu);
4917 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4918
4919 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
4920 {
4921 Log(("lidt: Guest intercept -> #VMEXIT\n"));
4922 IEM_SVM_UPDATE_NRIP(pVCpu);
4923 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4924 }
4925
4926 /*
4927 * Fetch the limit and base address.
4928 */
4929 uint16_t cbLimit;
4930 RTGCPTR GCPtrBase;
4931 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4932 if (rcStrict == VINF_SUCCESS)
4933 {
4934 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4935 || X86_IS_CANONICAL(GCPtrBase))
4936 {
4937 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
4938 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4939 }
4940 else
4941 {
4942 Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
4943 return iemRaiseGeneralProtectionFault0(pVCpu);
4944 }
4945 }
4946 return rcStrict;
4947}
4948
4949
4950/**
4951 * Implements sidt.
4952 *
4953 * @param iEffSeg The segment where to store the idtr content.
4954 * @param GCPtrEffDst The address where to store the idtr content.
4955 */
4956IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
4957{
4958 /*
4959 * Join paths with sgdt.
4960 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4961 * you really must know.
4962 */
4963 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS))
4964 {
4965 Log(("sidt: Guest intercept -> #VMEXIT\n"));
4966 IEM_SVM_UPDATE_NRIP(pVCpu);
4967 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4968 }
4969
4970 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR);
4971 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst);
4972 if (rcStrict == VINF_SUCCESS)
4973 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4974 return rcStrict;
4975}
4976
4977
4978/**
4979 * Implements lldt.
4980 *
4981 * @param uNewLdt The new LDT selector value.
4982 */
4983IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
4984{
4985 /*
4986 * Check preconditions.
4987 */
4988 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4989 {
4990 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
4991 return iemRaiseUndefinedOpcode(pVCpu);
4992 }
4993 if (pVCpu->iem.s.uCpl != 0)
4994 {
4995 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
4996 return iemRaiseGeneralProtectionFault0(pVCpu);
4997 }
4998 /* Nested-guest VMX intercept. */
4999 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5000 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5001 {
5002 Log(("lldt: Guest intercept -> VM-exit\n"));
5003 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LLDT, cbInstr);
5004 }
5005 if (uNewLdt & X86_SEL_LDT)
5006 {
5007 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
5008 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
5009 }
5010
5011 /*
5012 * Now, loading a NULL selector is easy.
5013 */
5014 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
5015 {
5016 /* Nested-guest SVM intercept. */
5017 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5018 {
5019 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5020 IEM_SVM_UPDATE_NRIP(pVCpu);
5021 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5022 }
5023
5024 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
5025 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
5026 CPUMSetGuestLDTR(pVCpu, uNewLdt);
5027 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
5028 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5029 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
5030 {
5031 /* AMD-V seems to leave the base and limit alone. */
5032 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
5033 }
5034 else
5035 {
5036 /* VT-x (Intel 3960x) seems to be doing the following. */
5037 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
5038 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
5039 pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX;
5040 }
5041
5042 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5043 return VINF_SUCCESS;
5044 }
5045
5046 /*
5047 * Read the descriptor.
5048 */
5049 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR);
5050 IEMSELDESC Desc;
5051 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
5052 if (rcStrict != VINF_SUCCESS)
5053 return rcStrict;
5054
5055 /* Check GPs first. */
5056 if (Desc.Legacy.Gen.u1DescType)
5057 {
5058 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5059 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5060 }
5061 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
5062 {
5063 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5064 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5065 }
5066 uint64_t u64Base;
5067 if (!IEM_IS_LONG_MODE(pVCpu))
5068 u64Base = X86DESC_BASE(&Desc.Legacy);
5069 else
5070 {
5071 if (Desc.Long.Gen.u5Zeros)
5072 {
5073 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
5074 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5075 }
5076
5077 u64Base = X86DESC64_BASE(&Desc.Long);
5078 if (!IEM_IS_CANONICAL(u64Base))
5079 {
5080 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
5081 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5082 }
5083 }
5084
5085 /* NP */
5086 if (!Desc.Legacy.Gen.u1Present)
5087 {
5088 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
5089 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
5090 }
5091
5092 /* Nested-guest SVM intercept. */
5093 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5094 {
5095 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5096 IEM_SVM_UPDATE_NRIP(pVCpu);
5097 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5098 }
5099
5100 /*
5101 * It checks out alright, update the registers.
5102 */
5103/** @todo check if the actual value is loaded or if the RPL is dropped */
5104 CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5105 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
5106 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5107 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5108 pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5109 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
5110
5111 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5112 return VINF_SUCCESS;
5113}
5114
5115
5116/**
5117 * Implements sldt GReg
5118 *
5119 * @param iGReg The general register to store the CRx value in.
5120 * @param enmEffOpSize The operand size.
5121 */
5122IEM_CIMPL_DEF_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5123{
5124 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5125 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5126 {
5127 Log(("sldt: Guest intercept -> VM-exit\n"));
5128 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_SLDT, cbInstr);
5129 }
5130
5131 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5132
5133 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5134 switch (enmEffOpSize)
5135 {
5136 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5137 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5138 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5139 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5140 }
5141 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5142 return VINF_SUCCESS;
5143}
5144
5145
5146/**
5147 * Implements sldt mem.
5148 *
5149 * @param iGReg The general register to store the CRx value in.
5150 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5151 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5152 */
5153IEM_CIMPL_DEF_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5154{
5155 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5156
5157 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5158 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.ldtr.Sel);
5159 if (rcStrict == VINF_SUCCESS)
5160 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5161 return rcStrict;
5162}
5163
5164
5165/**
5166 * Implements ltr.
5167 *
5168 * @param uNewTr The new TSS selector value.
5169 */
5170IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
5171{
5172 /*
5173 * Check preconditions.
5174 */
5175 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5176 {
5177 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
5178 return iemRaiseUndefinedOpcode(pVCpu);
5179 }
5180 if (pVCpu->iem.s.uCpl != 0)
5181 {
5182 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
5183 return iemRaiseGeneralProtectionFault0(pVCpu);
5184 }
5185 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5186 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5187 {
5188 Log(("ltr: Guest intercept -> VM-exit\n"));
5189 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LTR, cbInstr);
5190 }
5191 if (uNewTr & X86_SEL_LDT)
5192 {
5193 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
5194 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
5195 }
5196 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
5197 {
5198 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
5199 return iemRaiseGeneralProtectionFault0(pVCpu);
5200 }
5201 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
5202 {
5203 Log(("ltr: Guest intercept -> #VMEXIT\n"));
5204 IEM_SVM_UPDATE_NRIP(pVCpu);
5205 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5206 }
5207
5208 /*
5209 * Read the descriptor.
5210 */
5211 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR);
5212 IEMSELDESC Desc;
5213 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
5214 if (rcStrict != VINF_SUCCESS)
5215 return rcStrict;
5216
5217 /* Check GPs first. */
5218 if (Desc.Legacy.Gen.u1DescType)
5219 {
5220 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5221 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5222 }
5223 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
5224 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
5225 || IEM_IS_LONG_MODE(pVCpu)) )
5226 {
5227 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5228 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5229 }
5230 uint64_t u64Base;
5231 if (!IEM_IS_LONG_MODE(pVCpu))
5232 u64Base = X86DESC_BASE(&Desc.Legacy);
5233 else
5234 {
5235 if (Desc.Long.Gen.u5Zeros)
5236 {
5237 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
5238 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5239 }
5240
5241 u64Base = X86DESC64_BASE(&Desc.Long);
5242 if (!IEM_IS_CANONICAL(u64Base))
5243 {
5244 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
5245 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5246 }
5247 }
5248
5249 /* NP */
5250 if (!Desc.Legacy.Gen.u1Present)
5251 {
5252 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
5253 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
5254 }
5255
5256 /*
5257 * Set it busy.
5258 * Note! Intel says this should lock down the whole descriptor, but we'll
5259 * restrict our selves to 32-bit for now due to lack of inline
5260 * assembly and such.
5261 */
5262 void *pvDesc;
5263 rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
5264 if (rcStrict != VINF_SUCCESS)
5265 return rcStrict;
5266 switch ((uintptr_t)pvDesc & 3)
5267 {
5268 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
5269 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
5270 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
5271 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
5272 }
5273 rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
5274 if (rcStrict != VINF_SUCCESS)
5275 return rcStrict;
5276 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
5277
5278 /*
5279 * It checks out alright, update the registers.
5280 */
5281/** @todo check if the actual value is loaded or if the RPL is dropped */
5282 CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5283 pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
5284 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
5285 pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5286 pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5287 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
5288
5289 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5290 return VINF_SUCCESS;
5291}
5292
5293
5294/**
5295 * Implements str GReg
5296 *
5297 * @param iGReg The general register to store the CRx value in.
5298 * @param enmEffOpSize The operand size.
5299 */
5300IEM_CIMPL_DEF_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5301{
5302 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5303 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5304 {
5305 Log(("str_reg: Guest intercept -> VM-exit\n"));
5306 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5307 }
5308
5309 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5310
5311 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5312 switch (enmEffOpSize)
5313 {
5314 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5315 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5316 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5317 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5318 }
5319 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5320 return VINF_SUCCESS;
5321}
5322
5323
5324/**
5325 * Implements str mem.
5326 *
5327 * @param iGReg The general register to store the CRx value in.
5328 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5329 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5330 */
5331IEM_CIMPL_DEF_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5332{
5333 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5334 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5335 {
5336 Log(("str_mem: Guest intercept -> VM-exit\n"));
5337 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5338 }
5339
5340 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5341
5342 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5343 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.tr.Sel);
5344 if (rcStrict == VINF_SUCCESS)
5345 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5346 return rcStrict;
5347}
5348
5349
5350/**
5351 * Implements mov GReg,CRx.
5352 *
5353 * @param iGReg The general register to store the CRx value in.
5354 * @param iCrReg The CRx register to read (valid).
5355 */
5356IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
5357{
5358 if (pVCpu->iem.s.uCpl != 0)
5359 return iemRaiseGeneralProtectionFault0(pVCpu);
5360 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5361
5362 if (IEM_SVM_IS_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
5363 {
5364 Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg));
5365 IEM_SVM_UPDATE_NRIP(pVCpu);
5366 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
5367 }
5368
5369 /* Read it. */
5370 uint64_t crX;
5371 switch (iCrReg)
5372 {
5373 case 0:
5374 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5375 crX = pVCpu->cpum.GstCtx.cr0;
5376 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
5377 crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
5378 break;
5379 case 2:
5380 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2);
5381 crX = pVCpu->cpum.GstCtx.cr2;
5382 break;
5383 case 3:
5384 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5385 crX = pVCpu->cpum.GstCtx.cr3;
5386 break;
5387 case 4:
5388 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5389 crX = pVCpu->cpum.GstCtx.cr4;
5390 break;
5391 case 8:
5392 {
5393 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5394#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5395 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5396 {
5397 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr8(pVCpu, iGReg, cbInstr);
5398 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5399 return rcStrict;
5400
5401 /*
5402 * If the Mov-from-CR8 doesn't cause a VM-exit, bits 7:4 of the VTPR is copied
5403 * to bits 0:3 of the destination operand. Bits 63:4 of the destination operand
5404 * are cleared.
5405 *
5406 * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5407 */
5408 if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5409 {
5410 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5411 crX = (uTpr >> 4) & 0xf;
5412 break;
5413 }
5414 }
5415#endif
5416#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5417 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5418 {
5419 PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
5420 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5421 {
5422 crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf;
5423 break;
5424 }
5425 }
5426#endif
5427 uint8_t uTpr;
5428 int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
5429 if (RT_SUCCESS(rc))
5430 crX = uTpr >> 4;
5431 else
5432 crX = 0;
5433 break;
5434 }
5435 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5436 }
5437
5438#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5439 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5440 {
5441 switch (iCrReg)
5442 {
5443 case 0:
5444 case 4:
5445 {
5446 /* CR0/CR4 reads are subject to masking when in VMX non-root mode. */
5447 crX = iemVmxMaskCr0CR4(pVCpu, iCrReg, crX);
5448 break;
5449 }
5450
5451 case 3:
5452 {
5453 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr3(pVCpu, iGReg, cbInstr);
5454 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5455 return rcStrict;
5456 break;
5457 }
5458 }
5459 }
5460#endif
5461
5462 /* Store it. */
5463 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5464 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
5465 else
5466 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
5467
5468 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5469 return VINF_SUCCESS;
5470}
5471
5472
5473/**
5474 * Implements smsw GReg.
5475 *
5476 * @param iGReg The general register to store the CRx value in.
5477 * @param enmEffOpSize The operand size.
5478 */
5479IEM_CIMPL_DEF_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5480{
5481 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5482
5483 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5484#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5485 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5486 u64GuestCr0 = iemVmxMaskCr0CR4(pVCpu, 0 /* iCrReg */, u64GuestCr0);
5487#endif
5488
5489 switch (enmEffOpSize)
5490 {
5491 case IEMMODE_16BIT:
5492 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5493 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0;
5494 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5495 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xffe0;
5496 else
5497 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xfff0;
5498 break;
5499
5500 case IEMMODE_32BIT:
5501 *(uint32_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)u64GuestCr0;
5502 break;
5503
5504 case IEMMODE_64BIT:
5505 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = u64GuestCr0;
5506 break;
5507
5508 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5509 }
5510
5511 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5512 return VINF_SUCCESS;
5513}
5514
5515
5516/**
5517 * Implements smsw mem.
5518 *
5519 * @param iGReg The general register to store the CR0 value in.
5520 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5521 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5522 */
5523IEM_CIMPL_DEF_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5524{
5525 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5526
5527 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5528#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5529 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5530 u64GuestCr0 = iemVmxMaskCr0CR4(pVCpu, 0 /* iCrReg */, u64GuestCr0);
5531#endif
5532
5533 uint16_t u16Value;
5534 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5535 u16Value = (uint16_t)u64GuestCr0;
5536 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5537 u16Value = (uint16_t)u64GuestCr0 | 0xffe0;
5538 else
5539 u16Value = (uint16_t)u64GuestCr0 | 0xfff0;
5540
5541 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, u16Value);
5542 if (rcStrict == VINF_SUCCESS)
5543 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5544 return rcStrict;
5545}
5546
5547
5548/**
5549 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
5550 *
5551 * @param iCrReg The CRx register to write (valid).
5552 * @param uNewCrX The new value.
5553 * @param enmAccessCrx The instruction that caused the CrX load.
5554 * @param iGReg The general register in case of a 'mov CRx,GReg'
5555 * instruction.
5556 */
5557IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
5558{
5559 VBOXSTRICTRC rcStrict;
5560 int rc;
5561#ifndef VBOX_WITH_NESTED_HWVIRT_SVM
5562 RT_NOREF2(iGReg, enmAccessCrX);
5563#endif
5564
5565 /*
5566 * Try store it.
5567 * Unfortunately, CPUM only does a tiny bit of the work.
5568 */
5569 switch (iCrReg)
5570 {
5571 case 0:
5572 {
5573 /*
5574 * Perform checks.
5575 */
5576 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5577
5578 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0;
5579 uint32_t const fValid = CPUMGetGuestCR0ValidMask();
5580
5581 /* ET is hardcoded on 486 and later. */
5582 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
5583 uNewCrX |= X86_CR0_ET;
5584 /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
5585 else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
5586 {
5587 uNewCrX &= fValid;
5588 uNewCrX |= X86_CR0_ET;
5589 }
5590 else
5591 uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
5592
5593 /* Check for reserved bits. */
5594 if (uNewCrX & ~(uint64_t)fValid)
5595 {
5596 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5597 return iemRaiseGeneralProtectionFault0(pVCpu);
5598 }
5599
5600 /* Check for invalid combinations. */
5601 if ( (uNewCrX & X86_CR0_PG)
5602 && !(uNewCrX & X86_CR0_PE) )
5603 {
5604 Log(("Trying to set CR0.PG without CR0.PE\n"));
5605 return iemRaiseGeneralProtectionFault0(pVCpu);
5606 }
5607
5608 if ( !(uNewCrX & X86_CR0_CD)
5609 && (uNewCrX & X86_CR0_NW) )
5610 {
5611 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
5612 return iemRaiseGeneralProtectionFault0(pVCpu);
5613 }
5614
5615 if ( !(uNewCrX & X86_CR0_PG)
5616 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE))
5617 {
5618 Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n"));
5619 return iemRaiseGeneralProtectionFault0(pVCpu);
5620 }
5621
5622 /* Long mode consistency checks. */
5623 if ( (uNewCrX & X86_CR0_PG)
5624 && !(uOldCrX & X86_CR0_PG)
5625 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5626 {
5627 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE))
5628 {
5629 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
5630 return iemRaiseGeneralProtectionFault0(pVCpu);
5631 }
5632 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long)
5633 {
5634 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
5635 return iemRaiseGeneralProtectionFault0(pVCpu);
5636 }
5637 }
5638
5639 /* Check for bits that must remain set or cleared in VMX operation,
5640 see Intel spec. 23.8 "Restrictions on VMX operation". */
5641 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5642 {
5643 uint32_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
5644 if ((uNewCrX & uCr0Fixed0) != uCr0Fixed0)
5645 {
5646 Log(("Trying to clear reserved CR0 bits in VMX operation: NewCr0=%#llx MB1=%#llx\n", uNewCrX, uCr0Fixed0));
5647 return iemRaiseGeneralProtectionFault0(pVCpu);
5648 }
5649
5650 uint32_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5651 if (uNewCrX & ~uCr0Fixed1)
5652 {
5653 Log(("Trying to set reserved CR0 bits in VMX operation: NewCr0=%#llx MB0=%#llx\n", uNewCrX, uCr0Fixed1));
5654 return iemRaiseGeneralProtectionFault0(pVCpu);
5655 }
5656 }
5657
5658 /** @todo check reserved PDPTR bits as AMD states. */
5659
5660 /*
5661 * SVM nested-guest CR0 write intercepts.
5662 */
5663 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
5664 {
5665 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5666 IEM_SVM_UPDATE_NRIP(pVCpu);
5667 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
5668 }
5669 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5670 {
5671 /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
5672 if ( enmAccessCrX == IEMACCESSCRX_LMSW
5673 || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
5674 {
5675 Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
5676 Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg));
5677 IEM_SVM_UPDATE_NRIP(pVCpu);
5678 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg);
5679 }
5680 }
5681
5682 /*
5683 * Change CR0.
5684 */
5685 CPUMSetGuestCR0(pVCpu, uNewCrX);
5686 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX);
5687
5688 /*
5689 * Change EFER.LMA if entering or leaving long mode.
5690 */
5691 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
5692 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5693 {
5694 uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER;
5695 if (uNewCrX & X86_CR0_PG)
5696 NewEFER |= MSR_K6_EFER_LMA;
5697 else
5698 NewEFER &= ~MSR_K6_EFER_LMA;
5699
5700 CPUMSetGuestEFER(pVCpu, NewEFER);
5701 Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER);
5702 }
5703
5704 /*
5705 * Inform PGM.
5706 */
5707 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
5708 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
5709 {
5710 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5711 AssertRCReturn(rc, rc);
5712 /* ignore informational status codes */
5713 }
5714 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
5715
5716#ifdef IN_RC
5717 /* Return to ring-3 for rescheduling if WP or AM changes. */
5718 if ( rcStrict == VINF_SUCCESS
5719 && ( (uNewCrX & (X86_CR0_WP | X86_CR0_AM))
5720 != (uOldCrX & (X86_CR0_WP | X86_CR0_AM))) )
5721 rcStrict = VINF_EM_RESCHEDULE;
5722#endif
5723 break;
5724 }
5725
5726 /*
5727 * CR2 can be changed without any restrictions.
5728 */
5729 case 2:
5730 {
5731 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
5732 {
5733 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5734 IEM_SVM_UPDATE_NRIP(pVCpu);
5735 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
5736 }
5737 pVCpu->cpum.GstCtx.cr2 = uNewCrX;
5738 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2;
5739 rcStrict = VINF_SUCCESS;
5740 break;
5741 }
5742
5743 /*
5744 * CR3 is relatively simple, although AMD and Intel have different
5745 * accounts of how setting reserved bits are handled. We take intel's
5746 * word for the lower bits and AMD's for the high bits (63:52). The
5747 * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
5748 * on this.
5749 */
5750 /** @todo Testcase: Setting reserved bits in CR3, especially before
5751 * enabling paging. */
5752 case 3:
5753 {
5754 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5755
5756 /* Bit 63 being clear in the source operand with PCIDE indicates no invalidations are required. */
5757 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)
5758 && (uNewCrX & RT_BIT_64(63)))
5759 {
5760 /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10
5761 * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see
5762 * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and
5763 * Paging-Structure Caches". */
5764 uNewCrX &= ~RT_BIT_64(63);
5765 }
5766
5767 /* Check / mask the value. */
5768 if (uNewCrX & UINT64_C(0xfff0000000000000))
5769 {
5770 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
5771 return iemRaiseGeneralProtectionFault0(pVCpu);
5772 }
5773
5774 uint64_t fValid;
5775 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
5776 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME))
5777 fValid = UINT64_C(0x000fffffffffffff);
5778 else
5779 fValid = UINT64_C(0xffffffff);
5780 if (uNewCrX & ~fValid)
5781 {
5782 Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
5783 uNewCrX, uNewCrX & ~fValid));
5784 uNewCrX &= fValid;
5785 }
5786
5787 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
5788 {
5789 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5790 IEM_SVM_UPDATE_NRIP(pVCpu);
5791 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
5792 }
5793
5794 /** @todo If we're in PAE mode we should check the PDPTRs for
5795 * invalid bits. */
5796
5797 /* Make the change. */
5798 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
5799 AssertRCSuccessReturn(rc, rc);
5800
5801 /* Inform PGM. */
5802 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
5803 {
5804 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE));
5805 AssertRCReturn(rc, rc);
5806 /* ignore informational status codes */
5807 }
5808 rcStrict = VINF_SUCCESS;
5809 break;
5810 }
5811
5812 /*
5813 * CR4 is a bit more tedious as there are bits which cannot be cleared
5814 * under some circumstances and such.
5815 */
5816 case 4:
5817 {
5818 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5819 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4;
5820
5821 /* Reserved bits. */
5822 uint32_t const fValid = CPUMGetGuestCR4ValidMask(pVCpu->CTX_SUFF(pVM));
5823 if (uNewCrX & ~(uint64_t)fValid)
5824 {
5825 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5826 return iemRaiseGeneralProtectionFault0(pVCpu);
5827 }
5828
5829 bool const fPcide = ((uNewCrX ^ uOldCrX) & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE);
5830 bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
5831
5832 /* PCIDE check. */
5833 if ( fPcide
5834 && ( !fLongMode
5835 || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))))
5836 {
5837 Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))));
5838 return iemRaiseGeneralProtectionFault0(pVCpu);
5839 }
5840
5841 /* PAE check. */
5842 if ( fLongMode
5843 && (uOldCrX & X86_CR4_PAE)
5844 && !(uNewCrX & X86_CR4_PAE))
5845 {
5846 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
5847 return iemRaiseGeneralProtectionFault0(pVCpu);
5848 }
5849
5850 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
5851 {
5852 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5853 IEM_SVM_UPDATE_NRIP(pVCpu);
5854 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
5855 }
5856
5857 /* Check for bits that must remain set or cleared in VMX operation,
5858 see Intel spec. 23.8 "Restrictions on VMX operation". */
5859 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5860 {
5861 uint32_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
5862 if ((uNewCrX & uCr4Fixed0) != uCr4Fixed0)
5863 {
5864 Log(("Trying to clear reserved CR4 bits in VMX operation: NewCr4=%#llx MB1=%#llx\n", uNewCrX, uCr4Fixed0));
5865 return iemRaiseGeneralProtectionFault0(pVCpu);
5866 }
5867
5868 uint32_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
5869 if (uNewCrX & ~uCr4Fixed1)
5870 {
5871 Log(("Trying to set reserved CR4 bits in VMX operation: NewCr4=%#llx MB0=%#llx\n", uNewCrX, uCr4Fixed1));
5872 return iemRaiseGeneralProtectionFault0(pVCpu);
5873 }
5874 }
5875
5876 /*
5877 * Change it.
5878 */
5879 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
5880 AssertRCSuccessReturn(rc, rc);
5881 Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX);
5882
5883 /*
5884 * Notify SELM and PGM.
5885 */
5886 /* SELM - VME may change things wrt to the TSS shadowing. */
5887 if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
5888 {
5889 Log(("iemCImpl_load_CrX: VME %d -> %d => Setting VMCPU_FF_SELM_SYNC_TSS\n",
5890 RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) ));
5891#ifdef VBOX_WITH_RAW_MODE
5892 if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
5893 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
5894#endif
5895 }
5896
5897 /* PGM - flushing and mode. */
5898 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */))
5899 {
5900 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5901 AssertRCReturn(rc, rc);
5902 /* ignore informational status codes */
5903 }
5904 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
5905 break;
5906 }
5907
5908 /*
5909 * CR8 maps to the APIC TPR.
5910 */
5911 case 8:
5912 {
5913 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5914 if (uNewCrX & ~(uint64_t)0xf)
5915 {
5916 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
5917 return iemRaiseGeneralProtectionFault0(pVCpu);
5918 }
5919
5920#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5921 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5922 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5923 {
5924 /*
5925 * If the Mov-to-CR8 doesn't cause a VM-exit, bits 0:3 of the source operand
5926 * is copied to bits 7:4 of the VTPR. Bits 0:3 and bits 31:8 of the VTPR are
5927 * cleared. Following this the processor performs TPR virtualization.
5928 *
5929 * However, we should not perform TPR virtualization immediately here but
5930 * after this instruction has completed.
5931 *
5932 * See Intel spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5933 * See Intel spec. 27.1 "Architectural State Before A VM-exit"
5934 */
5935 uint32_t const uTpr = (uNewCrX & 0xf) << 4;
5936 Log(("iemCImpl_load_Cr%#x: Virtualizing TPR (%#x) write\n", iCrReg, uTpr));
5937 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
5938 iemVmxVirtApicSetPendingWrite(pVCpu, XAPIC_OFF_TPR);
5939 rcStrict = VINF_SUCCESS;
5940 break;
5941 }
5942#endif
5943
5944#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5945 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5946 {
5947 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
5948 {
5949 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5950 IEM_SVM_UPDATE_NRIP(pVCpu);
5951 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
5952 }
5953
5954 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
5955 pVmcbCtrl->IntCtrl.n.u8VTPR = uNewCrX;
5956 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5957 {
5958 rcStrict = VINF_SUCCESS;
5959 break;
5960 }
5961 }
5962#endif
5963 uint8_t const u8Tpr = (uint8_t)uNewCrX << 4;
5964 APICSetTpr(pVCpu, u8Tpr);
5965 rcStrict = VINF_SUCCESS;
5966 break;
5967 }
5968
5969 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5970 }
5971
5972 /*
5973 * Advance the RIP on success.
5974 */
5975 if (RT_SUCCESS(rcStrict))
5976 {
5977 if (rcStrict != VINF_SUCCESS)
5978 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
5979 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5980 }
5981
5982 return rcStrict;
5983}
5984
5985
5986/**
5987 * Implements mov CRx,GReg.
5988 *
5989 * @param iCrReg The CRx register to write (valid).
5990 * @param iGReg The general register to load the CRx value from.
5991 */
5992IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
5993{
5994 if (pVCpu->iem.s.uCpl != 0)
5995 return iemRaiseGeneralProtectionFault0(pVCpu);
5996 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5997
5998 /*
5999 * Read the new value from the source register and call common worker.
6000 */
6001 uint64_t uNewCrX;
6002 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6003 uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
6004 else
6005 uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
6006
6007#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6008 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6009 {
6010 VBOXSTRICTRC rcStrict = VINF_VMX_INTERCEPT_NOT_ACTIVE;
6011 switch (iCrReg)
6012 {
6013 case 0:
6014 case 4: rcStrict = iemVmxVmexitInstrMovToCr0Cr4(pVCpu, iCrReg, &uNewCrX, iGReg, cbInstr); break;
6015 case 3: rcStrict = iemVmxVmexitInstrMovToCr3(pVCpu, uNewCrX, iGReg, cbInstr); break;
6016 case 8: rcStrict = iemVmxVmexitInstrMovToCr8(pVCpu, iGReg, cbInstr); break;
6017 }
6018 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6019 return rcStrict;
6020 }
6021#endif
6022
6023 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
6024}
6025
6026
6027/**
6028 * Implements 'LMSW r/m16'
6029 *
6030 * @param u16NewMsw The new value.
6031 * @param GCPtrEffDst The guest-linear address of the source operand in case
6032 * of a memory operand. For register operand, pass
6033 * NIL_RTGCPTR.
6034 */
6035IEM_CIMPL_DEF_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst)
6036{
6037 if (pVCpu->iem.s.uCpl != 0)
6038 return iemRaiseGeneralProtectionFault0(pVCpu);
6039 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6040 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6041
6042#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6043 /* Check nested-guest VMX intercept and get updated MSW if there's no VM-exit. */
6044 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6045 {
6046 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrLmsw(pVCpu, pVCpu->cpum.GstCtx.cr0, &u16NewMsw, GCPtrEffDst, cbInstr);
6047 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6048 return rcStrict;
6049 }
6050#else
6051 RT_NOREF_PV(GCPtrEffDst);
6052#endif
6053
6054 /*
6055 * Compose the new CR0 value and call common worker.
6056 */
6057 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6058 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6059 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
6060}
6061
6062
6063/**
6064 * Implements 'CLTS'.
6065 */
6066IEM_CIMPL_DEF_0(iemCImpl_clts)
6067{
6068 if (pVCpu->iem.s.uCpl != 0)
6069 return iemRaiseGeneralProtectionFault0(pVCpu);
6070
6071 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6072 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0;
6073 uNewCr0 &= ~X86_CR0_TS;
6074
6075#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6076 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6077 {
6078 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrClts(pVCpu, cbInstr);
6079 if (rcStrict == VINF_VMX_MODIFIES_BEHAVIOR)
6080 uNewCr0 |= (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS);
6081 else if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6082 return rcStrict;
6083 }
6084#endif
6085
6086 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
6087}
6088
6089
6090/**
6091 * Implements mov GReg,DRx.
6092 *
6093 * @param iGReg The general register to store the DRx value in.
6094 * @param iDrReg The DRx register to read (0-7).
6095 */
6096IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
6097{
6098#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6099 /*
6100 * Check nested-guest VMX intercept.
6101 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6102 * over CPL and CR4.DE and even DR4/DR5 checks.
6103 *
6104 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6105 */
6106 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6107 {
6108 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_FROM_DRX, iDrReg, iGReg, cbInstr);
6109 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6110 return rcStrict;
6111 }
6112#endif
6113
6114 /*
6115 * Check preconditions.
6116 */
6117 /* Raise GPs. */
6118 if (pVCpu->iem.s.uCpl != 0)
6119 return iemRaiseGeneralProtectionFault0(pVCpu);
6120 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6121 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR0);
6122
6123 if ( (iDrReg == 4 || iDrReg == 5)
6124 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) )
6125 {
6126 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
6127 return iemRaiseGeneralProtectionFault0(pVCpu);
6128 }
6129
6130 /* Raise #DB if general access detect is enabled. */
6131 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6132 {
6133 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
6134 return iemRaiseDebugException(pVCpu);
6135 }
6136
6137 /*
6138 * Read the debug register and store it in the specified general register.
6139 */
6140 uint64_t drX;
6141 switch (iDrReg)
6142 {
6143 case 0:
6144 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6145 drX = pVCpu->cpum.GstCtx.dr[0];
6146 break;
6147 case 1:
6148 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6149 drX = pVCpu->cpum.GstCtx.dr[1];
6150 break;
6151 case 2:
6152 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6153 drX = pVCpu->cpum.GstCtx.dr[2];
6154 break;
6155 case 3:
6156 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6157 drX = pVCpu->cpum.GstCtx.dr[3];
6158 break;
6159 case 6:
6160 case 4:
6161 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6162 drX = pVCpu->cpum.GstCtx.dr[6];
6163 drX |= X86_DR6_RA1_MASK;
6164 drX &= ~X86_DR6_RAZ_MASK;
6165 break;
6166 case 7:
6167 case 5:
6168 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6169 drX = pVCpu->cpum.GstCtx.dr[7];
6170 drX |=X86_DR7_RA1_MASK;
6171 drX &= ~X86_DR7_RAZ_MASK;
6172 break;
6173 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6174 }
6175
6176 /** @todo SVM nested-guest intercept for DR8-DR15? */
6177 /*
6178 * Check for any SVM nested-guest intercepts for the DRx read.
6179 */
6180 if (IEM_SVM_IS_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
6181 {
6182 Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
6183 IEM_SVM_UPDATE_NRIP(pVCpu);
6184 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
6185 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6186 }
6187
6188 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6189 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
6190 else
6191 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
6192
6193 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6194 return VINF_SUCCESS;
6195}
6196
6197
6198/**
6199 * Implements mov DRx,GReg.
6200 *
6201 * @param iDrReg The DRx register to write (valid).
6202 * @param iGReg The general register to load the DRx value from.
6203 */
6204IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
6205{
6206#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6207 /*
6208 * Check nested-guest VMX intercept.
6209 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6210 * over CPL and CR4.DE and even DR4/DR5 checks.
6211 *
6212 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6213 */
6214 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6215 {
6216 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_TO_DRX, iDrReg, iGReg, cbInstr);
6217 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6218 return rcStrict;
6219 }
6220#endif
6221
6222 /*
6223 * Check preconditions.
6224 */
6225 if (pVCpu->iem.s.uCpl != 0)
6226 return iemRaiseGeneralProtectionFault0(pVCpu);
6227 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6228 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR4);
6229
6230 if (iDrReg == 4 || iDrReg == 5)
6231 {
6232 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
6233 {
6234 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
6235 return iemRaiseGeneralProtectionFault0(pVCpu);
6236 }
6237 iDrReg += 2;
6238 }
6239
6240 /* Raise #DB if general access detect is enabled. */
6241 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
6242 * \#GP? */
6243 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6244 {
6245 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
6246 return iemRaiseDebugException(pVCpu);
6247 }
6248
6249 /*
6250 * Read the new value from the source register.
6251 */
6252 uint64_t uNewDrX;
6253 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6254 uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
6255 else
6256 uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
6257
6258 /*
6259 * Adjust it.
6260 */
6261 switch (iDrReg)
6262 {
6263 case 0:
6264 case 1:
6265 case 2:
6266 case 3:
6267 /* nothing to adjust */
6268 break;
6269
6270 case 6:
6271 if (uNewDrX & X86_DR6_MBZ_MASK)
6272 {
6273 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6274 return iemRaiseGeneralProtectionFault0(pVCpu);
6275 }
6276 uNewDrX |= X86_DR6_RA1_MASK;
6277 uNewDrX &= ~X86_DR6_RAZ_MASK;
6278 break;
6279
6280 case 7:
6281 if (uNewDrX & X86_DR7_MBZ_MASK)
6282 {
6283 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6284 return iemRaiseGeneralProtectionFault0(pVCpu);
6285 }
6286 uNewDrX |= X86_DR7_RA1_MASK;
6287 uNewDrX &= ~X86_DR7_RAZ_MASK;
6288 break;
6289
6290 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6291 }
6292
6293 /** @todo SVM nested-guest intercept for DR8-DR15? */
6294 /*
6295 * Check for any SVM nested-guest intercepts for the DRx write.
6296 */
6297 if (IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
6298 {
6299 Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
6300 IEM_SVM_UPDATE_NRIP(pVCpu);
6301 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
6302 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6303 }
6304
6305 /*
6306 * Do the actual setting.
6307 */
6308 if (iDrReg < 4)
6309 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6310 else if (iDrReg == 6)
6311 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6312
6313 int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
6314 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
6315
6316 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6317 return VINF_SUCCESS;
6318}
6319
6320
6321/**
6322 * Implements 'INVLPG m'.
6323 *
6324 * @param GCPtrPage The effective address of the page to invalidate.
6325 * @remarks Updates the RIP.
6326 */
6327IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
6328{
6329 /* ring-0 only. */
6330 if (pVCpu->iem.s.uCpl != 0)
6331 return iemRaiseGeneralProtectionFault0(pVCpu);
6332 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6333 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6334
6335#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6336 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6337 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6338 {
6339 Log(("invlpg: Guest intercept (%RGp) -> VM-exit\n", GCPtrPage));
6340 return iemVmxVmexitInstrInvlpg(pVCpu, GCPtrPage, cbInstr);
6341 }
6342#endif
6343
6344 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
6345 {
6346 Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
6347 IEM_SVM_UPDATE_NRIP(pVCpu);
6348 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPG,
6349 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */);
6350 }
6351
6352 int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
6353 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6354
6355 if (rc == VINF_SUCCESS)
6356 return VINF_SUCCESS;
6357 if (rc == VINF_PGM_SYNC_CR3)
6358 return iemSetPassUpStatus(pVCpu, rc);
6359
6360 AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
6361 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
6362 return rc;
6363}
6364
6365
6366/**
6367 * Implements INVPCID.
6368 *
6369 * @param iEffSeg The segment of the invpcid descriptor.
6370 * @param GCPtrInvpcidDesc The address of invpcid descriptor.
6371 * @param uInvpcidType The invalidation type.
6372 * @remarks Updates the RIP.
6373 */
6374IEM_CIMPL_DEF_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint8_t, uInvpcidType)
6375{
6376 /*
6377 * Check preconditions.
6378 */
6379 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid)
6380 return iemRaiseUndefinedOpcode(pVCpu);
6381
6382 /* When in VMX non-root mode and INVPCID is not enabled, it results in #UD. */
6383 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6384 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_INVPCID))
6385 {
6386 Log(("invpcid: Not enabled for nested-guest execution -> #UD\n"));
6387 return iemRaiseUndefinedOpcode(pVCpu);
6388 }
6389
6390 if (pVCpu->iem.s.uCpl != 0)
6391 {
6392 Log(("invpcid: CPL != 0 -> #GP(0)\n"));
6393 return iemRaiseGeneralProtectionFault0(pVCpu);
6394 }
6395
6396 if (IEM_IS_V86_MODE(pVCpu))
6397 {
6398 Log(("invpcid: v8086 mode -> #GP(0)\n"));
6399 return iemRaiseGeneralProtectionFault0(pVCpu);
6400 }
6401
6402 /*
6403 * Check nested-guest intercept.
6404 *
6405 * INVPCID causes a VM-exit if "enable INVPCID" and "INVLPG exiting" are
6406 * both set. We have already checked the former earlier in this function.
6407 *
6408 * CPL checks take priority over VM-exit.
6409 * See Intel spec. "25.1.1 Relative Priority of Faults and VM Exits".
6410 */
6411 /** @todo r=ramshankar: NSTVMX: I'm not entirely certain if V86 mode check has
6412 * higher or lower priority than a VM-exit, we assume higher for the time
6413 * being. */
6414 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6415 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6416 {
6417 Log(("invpcid: Guest intercept -> #VM-exit\n"));
6418 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_INVPCID, VMXINSTRID_NONE, cbInstr);
6419 }
6420
6421 if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID)
6422 {
6423 Log(("invpcid: invalid/unrecognized invpcid type %#x -> #GP(0)\n", uInvpcidType));
6424 return iemRaiseGeneralProtectionFault0(pVCpu);
6425 }
6426 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6427
6428 /*
6429 * Fetch the invpcid descriptor from guest memory.
6430 */
6431 RTUINT128U uDesc;
6432 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvpcidDesc);
6433 if (rcStrict == VINF_SUCCESS)
6434 {
6435 /*
6436 * Validate the descriptor.
6437 */
6438 if (uDesc.s.Lo > 0xfff)
6439 {
6440 Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
6441 return iemRaiseGeneralProtectionFault0(pVCpu);
6442 }
6443
6444 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
6445 uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff);
6446 uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4;
6447 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
6448 switch (uInvpcidType)
6449 {
6450 case X86_INVPCID_TYPE_INDV_ADDR:
6451 {
6452 if (!IEM_IS_CANONICAL(GCPtrInvAddr))
6453 {
6454 Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr));
6455 return iemRaiseGeneralProtectionFault0(pVCpu);
6456 }
6457 if ( !(uCr4 & X86_CR4_PCIDE)
6458 && uPcid != 0)
6459 {
6460 Log(("invpcid: invalid pcid %#x\n", uPcid));
6461 return iemRaiseGeneralProtectionFault0(pVCpu);
6462 }
6463
6464 /* Invalidate mappings for the linear address tagged with PCID except global translations. */
6465 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6466 break;
6467 }
6468
6469 case X86_INVPCID_TYPE_SINGLE_CONTEXT:
6470 {
6471 if ( !(uCr4 & X86_CR4_PCIDE)
6472 && uPcid != 0)
6473 {
6474 Log(("invpcid: invalid pcid %#x\n", uPcid));
6475 return iemRaiseGeneralProtectionFault0(pVCpu);
6476 }
6477 /* Invalidate all mappings associated with PCID except global translations. */
6478 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6479 break;
6480 }
6481
6482 case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL:
6483 {
6484 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
6485 break;
6486 }
6487
6488 case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL:
6489 {
6490 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6491 break;
6492 }
6493 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6494 }
6495 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6496 }
6497 return rcStrict;
6498}
6499
6500
6501/**
6502 * Implements INVD.
6503 */
6504IEM_CIMPL_DEF_0(iemCImpl_invd)
6505{
6506 if (pVCpu->iem.s.uCpl != 0)
6507 {
6508 Log(("invd: CPL != 0 -> #GP(0)\n"));
6509 return iemRaiseGeneralProtectionFault0(pVCpu);
6510 }
6511
6512 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6513 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_INVD, cbInstr);
6514
6515 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_INVD, SVM_EXIT_INVD, 0, 0);
6516
6517 /* We currently take no action here. */
6518 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6519 return VINF_SUCCESS;
6520}
6521
6522
6523/**
6524 * Implements WBINVD.
6525 */
6526IEM_CIMPL_DEF_0(iemCImpl_wbinvd)
6527{
6528 if (pVCpu->iem.s.uCpl != 0)
6529 {
6530 Log(("wbinvd: CPL != 0 -> #GP(0)\n"));
6531 return iemRaiseGeneralProtectionFault0(pVCpu);
6532 }
6533
6534 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6535 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WBINVD, cbInstr);
6536
6537 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_WBINVD, SVM_EXIT_WBINVD, 0, 0);
6538
6539 /* We currently take no action here. */
6540 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6541 return VINF_SUCCESS;
6542}
6543
6544
6545/** Opcode 0x0f 0xaa. */
6546IEM_CIMPL_DEF_0(iemCImpl_rsm)
6547{
6548 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_RSM, SVM_EXIT_RSM, 0, 0);
6549 NOREF(cbInstr);
6550 return iemRaiseUndefinedOpcode(pVCpu);
6551}
6552
6553
6554/**
6555 * Implements RDTSC.
6556 */
6557IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
6558{
6559 /*
6560 * Check preconditions.
6561 */
6562 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
6563 return iemRaiseUndefinedOpcode(pVCpu);
6564
6565 if (pVCpu->iem.s.uCpl != 0)
6566 {
6567 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6568 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6569 {
6570 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6571 return iemRaiseGeneralProtectionFault0(pVCpu);
6572 }
6573 }
6574
6575 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6576 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6577 {
6578 Log(("rdtsc: Guest intercept -> VM-exit\n"));
6579 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSC, cbInstr);
6580 }
6581
6582 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
6583 {
6584 Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
6585 IEM_SVM_UPDATE_NRIP(pVCpu);
6586 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6587 }
6588
6589 /*
6590 * Do the job.
6591 */
6592 uint64_t uTicks = TMCpuTickGet(pVCpu);
6593#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
6594 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6595#endif
6596 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6597 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6598 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); /* For IEMExecDecodedRdtsc. */
6599 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6600 return VINF_SUCCESS;
6601}
6602
6603
6604/**
6605 * Implements RDTSC.
6606 */
6607IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
6608{
6609 /*
6610 * Check preconditions.
6611 */
6612 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
6613 return iemRaiseUndefinedOpcode(pVCpu);
6614
6615 if (pVCpu->iem.s.uCpl != 0)
6616 {
6617 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6618 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6619 {
6620 Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6621 return iemRaiseGeneralProtectionFault0(pVCpu);
6622 }
6623 }
6624
6625 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6626 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_RDTSCP))
6627 {
6628 Log(("rdtscp: Guest intercept -> VM-exit\n"));
6629 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSCP, cbInstr);
6630 }
6631 else if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
6632 {
6633 Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
6634 IEM_SVM_UPDATE_NRIP(pVCpu);
6635 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6636 }
6637
6638 /*
6639 * Do the job.
6640 * Query the MSR first in case of trips to ring-3.
6641 */
6642 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
6643 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx);
6644 if (rcStrict == VINF_SUCCESS)
6645 {
6646 /* Low dword of the TSC_AUX msr only. */
6647 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
6648
6649 uint64_t uTicks = TMCpuTickGet(pVCpu);
6650#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
6651 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6652#endif
6653 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6654 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6655 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX); /* For IEMExecDecodedRdtscp. */
6656 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6657 }
6658 return rcStrict;
6659}
6660
6661
6662/**
6663 * Implements RDPMC.
6664 */
6665IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
6666{
6667 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6668
6669 if ( pVCpu->iem.s.uCpl != 0
6670 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE))
6671 return iemRaiseGeneralProtectionFault0(pVCpu);
6672
6673 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6674 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDPMC_EXIT))
6675 {
6676 Log(("rdpmc: Guest intercept -> VM-exit\n"));
6677 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDPMC, cbInstr);
6678 }
6679
6680 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
6681 {
6682 Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
6683 IEM_SVM_UPDATE_NRIP(pVCpu);
6684 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6685 }
6686
6687 /** @todo Emulate performance counters, for now just return 0. */
6688 pVCpu->cpum.GstCtx.rax = 0;
6689 pVCpu->cpum.GstCtx.rdx = 0;
6690 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
6691 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
6692 * ecx but see @bugref{3472}! */
6693
6694 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6695 return VINF_SUCCESS;
6696}
6697
6698
6699/**
6700 * Implements RDMSR.
6701 */
6702IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
6703{
6704 /*
6705 * Check preconditions.
6706 */
6707 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
6708 return iemRaiseUndefinedOpcode(pVCpu);
6709 if (pVCpu->iem.s.uCpl != 0)
6710 return iemRaiseGeneralProtectionFault0(pVCpu);
6711
6712 /*
6713 * Check nested-guest intercepts.
6714 */
6715#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6716 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6717 {
6718 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_RDMSR, pVCpu->cpum.GstCtx.ecx))
6719 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDMSR, cbInstr);
6720 }
6721#endif
6722
6723#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6724 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
6725 {
6726 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */);
6727 if (rcStrict == VINF_SVM_VMEXIT)
6728 return VINF_SUCCESS;
6729 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6730 {
6731 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
6732 return rcStrict;
6733 }
6734 }
6735#endif
6736
6737 /*
6738 * Do the job.
6739 */
6740 RTUINT64U uValue;
6741 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
6742 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
6743
6744 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u);
6745 if (rcStrict == VINF_SUCCESS)
6746 {
6747 pVCpu->cpum.GstCtx.rax = uValue.s.Lo;
6748 pVCpu->cpum.GstCtx.rdx = uValue.s.Hi;
6749 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
6750
6751 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6752 return VINF_SUCCESS;
6753 }
6754
6755#ifndef IN_RING3
6756 /* Deferred to ring-3. */
6757 if (rcStrict == VINF_CPUM_R3_MSR_READ)
6758 {
6759 Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
6760 return rcStrict;
6761 }
6762#endif
6763
6764 /* Often a unimplemented MSR or MSR bit, so worth logging. */
6765 if (pVCpu->iem.s.cLogRelRdMsr < 32)
6766 {
6767 pVCpu->iem.s.cLogRelRdMsr++;
6768 LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
6769 }
6770 else
6771 Log(( "IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
6772 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
6773 return iemRaiseGeneralProtectionFault0(pVCpu);
6774}
6775
6776
6777/**
6778 * Implements WRMSR.
6779 */
6780IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
6781{
6782 /*
6783 * Check preconditions.
6784 */
6785 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
6786 return iemRaiseUndefinedOpcode(pVCpu);
6787 if (pVCpu->iem.s.uCpl != 0)
6788 return iemRaiseGeneralProtectionFault0(pVCpu);
6789
6790 RTUINT64U uValue;
6791 uValue.s.Lo = pVCpu->cpum.GstCtx.eax;
6792 uValue.s.Hi = pVCpu->cpum.GstCtx.edx;
6793
6794 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
6795
6796 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
6797 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
6798
6799 /*
6800 * Check nested-guest intercepts.
6801 */
6802#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6803 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6804 {
6805 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_WRMSR, idMsr))
6806 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WRMSR, cbInstr);
6807 }
6808#endif
6809
6810#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6811 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
6812 {
6813 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, idMsr, true /* fWrite */);
6814 if (rcStrict == VINF_SVM_VMEXIT)
6815 return VINF_SUCCESS;
6816 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6817 {
6818 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", idMsr, VBOXSTRICTRC_VAL(rcStrict)));
6819 return rcStrict;
6820 }
6821 }
6822#endif
6823
6824 /*
6825 * Do the job.
6826 */
6827 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, idMsr, uValue.u);
6828 if (rcStrict == VINF_SUCCESS)
6829 {
6830 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6831 return VINF_SUCCESS;
6832 }
6833
6834#ifndef IN_RING3
6835 /* Deferred to ring-3. */
6836 if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
6837 {
6838 Log(("IEM: wrmsr(%#x) -> ring-3\n", idMsr));
6839 return rcStrict;
6840 }
6841#endif
6842
6843 /* Often a unimplemented MSR or MSR bit, so worth logging. */
6844 if (pVCpu->iem.s.cLogRelWrMsr < 32)
6845 {
6846 pVCpu->iem.s.cLogRelWrMsr++;
6847 LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
6848 }
6849 else
6850 Log(( "IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
6851 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
6852 return iemRaiseGeneralProtectionFault0(pVCpu);
6853}
6854
6855
6856/**
6857 * Implements 'IN eAX, port'.
6858 *
6859 * @param u16Port The source port.
6860 * @param fImm Whether the port was specified through an immediate operand
6861 * or the implicit DX register.
6862 * @param cbReg The register size.
6863 */
6864IEM_CIMPL_DEF_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
6865{
6866 /*
6867 * CPL check
6868 */
6869 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
6870 if (rcStrict != VINF_SUCCESS)
6871 return rcStrict;
6872
6873 /*
6874 * Check VMX nested-guest IO intercept.
6875 */
6876#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6877 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6878 {
6879 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_IN, u16Port, fImm, cbReg, cbInstr);
6880 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6881 return rcStrict;
6882 }
6883#else
6884 RT_NOREF(fImm);
6885#endif
6886
6887 /*
6888 * Check SVM nested-guest IO intercept.
6889 */
6890#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6891 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
6892 {
6893 uint8_t cAddrSizeBits;
6894 switch (pVCpu->iem.s.enmEffAddrMode)
6895 {
6896 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
6897 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
6898 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
6899 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6900 }
6901 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
6902 false /* fRep */, false /* fStrIo */, cbInstr);
6903 if (rcStrict == VINF_SVM_VMEXIT)
6904 return VINF_SUCCESS;
6905 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6906 {
6907 Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
6908 VBOXSTRICTRC_VAL(rcStrict)));
6909 return rcStrict;
6910 }
6911 }
6912#endif
6913
6914 /*
6915 * Perform the I/O.
6916 */
6917 uint32_t u32Value = 0;
6918 rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg);
6919 if (IOM_SUCCESS(rcStrict))
6920 {
6921 switch (cbReg)
6922 {
6923 case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break;
6924 case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break;
6925 case 4: pVCpu->cpum.GstCtx.rax = u32Value; break;
6926 default: AssertFailedReturn(VERR_IEM_IPE_3);
6927 }
6928 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6929 pVCpu->iem.s.cPotentialExits++;
6930 if (rcStrict != VINF_SUCCESS)
6931 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
6932 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
6933
6934 /*
6935 * Check for I/O breakpoints.
6936 */
6937 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
6938 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6939 && X86_DR7_ANY_RW_IO(uDr7)
6940 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
6941 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
6942 {
6943 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
6944 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
6945 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
6946 rcStrict = iemRaiseDebugException(pVCpu);
6947 }
6948 }
6949
6950 return rcStrict;
6951}
6952
6953
6954/**
6955 * Implements 'IN eAX, DX'.
6956 *
6957 * @param cbReg The register size.
6958 */
6959IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
6960{
6961 return IEM_CIMPL_CALL_3(iemCImpl_in, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
6962}
6963
6964
6965/**
6966 * Implements 'OUT port, eAX'.
6967 *
6968 * @param u16Port The destination port.
6969 * @param fImm Whether the port was specified through an immediate operand
6970 * or the implicit DX register.
6971 * @param cbReg The register size.
6972 */
6973IEM_CIMPL_DEF_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
6974{
6975 /*
6976 * CPL check
6977 */
6978 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
6979 if (rcStrict != VINF_SUCCESS)
6980 return rcStrict;
6981
6982 /*
6983 * Check VMX nested-guest I/O intercept.
6984 */
6985#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6986 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6987 {
6988 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_OUT, u16Port, fImm, cbReg, cbInstr);
6989 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6990 return rcStrict;
6991 }
6992#else
6993 RT_NOREF(fImm);
6994#endif
6995
6996 /*
6997 * Check SVM nested-guest I/O intercept.
6998 */
6999#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7000 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7001 {
7002 uint8_t cAddrSizeBits;
7003 switch (pVCpu->iem.s.enmEffAddrMode)
7004 {
7005 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7006 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7007 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7008 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7009 }
7010 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7011 false /* fRep */, false /* fStrIo */, cbInstr);
7012 if (rcStrict == VINF_SVM_VMEXIT)
7013 return VINF_SUCCESS;
7014 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7015 {
7016 Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7017 VBOXSTRICTRC_VAL(rcStrict)));
7018 return rcStrict;
7019 }
7020 }
7021#endif
7022
7023 /*
7024 * Perform the I/O.
7025 */
7026 uint32_t u32Value;
7027 switch (cbReg)
7028 {
7029 case 1: u32Value = pVCpu->cpum.GstCtx.al; break;
7030 case 2: u32Value = pVCpu->cpum.GstCtx.ax; break;
7031 case 4: u32Value = pVCpu->cpum.GstCtx.eax; break;
7032 default: AssertFailedReturn(VERR_IEM_IPE_4);
7033 }
7034 rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg);
7035 if (IOM_SUCCESS(rcStrict))
7036 {
7037 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7038 pVCpu->iem.s.cPotentialExits++;
7039 if (rcStrict != VINF_SUCCESS)
7040 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7041 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
7042
7043 /*
7044 * Check for I/O breakpoints.
7045 */
7046 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7047 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7048 && X86_DR7_ANY_RW_IO(uDr7)
7049 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7050 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
7051 {
7052 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7053 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7054 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7055 rcStrict = iemRaiseDebugException(pVCpu);
7056 }
7057 }
7058 return rcStrict;
7059}
7060
7061
7062/**
7063 * Implements 'OUT DX, eAX'.
7064 *
7065 * @param cbReg The register size.
7066 */
7067IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
7068{
7069 return IEM_CIMPL_CALL_3(iemCImpl_out, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7070}
7071
7072
7073/**
7074 * Implements 'CLI'.
7075 */
7076IEM_CIMPL_DEF_0(iemCImpl_cli)
7077{
7078 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7079 uint32_t const fEflOld = fEfl;
7080
7081 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7082 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7083 {
7084 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7085 if (!(fEfl & X86_EFL_VM))
7086 {
7087 if (pVCpu->iem.s.uCpl <= uIopl)
7088 fEfl &= ~X86_EFL_IF;
7089 else if ( pVCpu->iem.s.uCpl == 3
7090 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) )
7091 fEfl &= ~X86_EFL_VIF;
7092 else
7093 return iemRaiseGeneralProtectionFault0(pVCpu);
7094 }
7095 /* V8086 */
7096 else if (uIopl == 3)
7097 fEfl &= ~X86_EFL_IF;
7098 else if ( uIopl < 3
7099 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
7100 fEfl &= ~X86_EFL_VIF;
7101 else
7102 return iemRaiseGeneralProtectionFault0(pVCpu);
7103 }
7104 /* real mode */
7105 else
7106 fEfl &= ~X86_EFL_IF;
7107
7108 /* Commit. */
7109 IEMMISC_SET_EFL(pVCpu, fEfl);
7110 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7111 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
7112 return VINF_SUCCESS;
7113}
7114
7115
7116/**
7117 * Implements 'STI'.
7118 */
7119IEM_CIMPL_DEF_0(iemCImpl_sti)
7120{
7121 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7122 uint32_t const fEflOld = fEfl;
7123
7124 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7125 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7126 {
7127 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7128 if (!(fEfl & X86_EFL_VM))
7129 {
7130 if (pVCpu->iem.s.uCpl <= uIopl)
7131 fEfl |= X86_EFL_IF;
7132 else if ( pVCpu->iem.s.uCpl == 3
7133 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI)
7134 && !(fEfl & X86_EFL_VIP) )
7135 fEfl |= X86_EFL_VIF;
7136 else
7137 return iemRaiseGeneralProtectionFault0(pVCpu);
7138 }
7139 /* V8086 */
7140 else if (uIopl == 3)
7141 fEfl |= X86_EFL_IF;
7142 else if ( uIopl < 3
7143 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)
7144 && !(fEfl & X86_EFL_VIP) )
7145 fEfl |= X86_EFL_VIF;
7146 else
7147 return iemRaiseGeneralProtectionFault0(pVCpu);
7148 }
7149 /* real mode */
7150 else
7151 fEfl |= X86_EFL_IF;
7152
7153 /* Commit. */
7154 IEMMISC_SET_EFL(pVCpu, fEfl);
7155 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7156 if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF))
7157 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7158 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
7159 return VINF_SUCCESS;
7160}
7161
7162
7163/**
7164 * Implements 'HLT'.
7165 */
7166IEM_CIMPL_DEF_0(iemCImpl_hlt)
7167{
7168 if (pVCpu->iem.s.uCpl != 0)
7169 return iemRaiseGeneralProtectionFault0(pVCpu);
7170
7171 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7172 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_HLT_EXIT))
7173 {
7174 Log2(("hlt: Guest intercept -> VM-exit\n"));
7175 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_HLT, cbInstr);
7176 }
7177
7178 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
7179 {
7180 Log2(("hlt: Guest intercept -> #VMEXIT\n"));
7181 IEM_SVM_UPDATE_NRIP(pVCpu);
7182 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7183 }
7184
7185 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7186 return VINF_EM_HALT;
7187}
7188
7189
7190/**
7191 * Implements 'MONITOR'.
7192 */
7193IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
7194{
7195 /*
7196 * Permission checks.
7197 */
7198 if (pVCpu->iem.s.uCpl != 0)
7199 {
7200 Log2(("monitor: CPL != 0\n"));
7201 return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
7202 }
7203 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7204 {
7205 Log2(("monitor: Not in CPUID\n"));
7206 return iemRaiseUndefinedOpcode(pVCpu);
7207 }
7208
7209 /*
7210 * Check VMX guest-intercept.
7211 * This should be considered a fault-like VM-exit.
7212 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
7213 */
7214 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7215 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MONITOR_EXIT))
7216 {
7217 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7218 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_MONITOR, cbInstr);
7219 }
7220
7221 /*
7222 * Gather the operands and validate them.
7223 */
7224 RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
7225 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7226 uint32_t uEdx = pVCpu->cpum.GstCtx.edx;
7227/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
7228 * \#GP first. */
7229 if (uEcx != 0)
7230 {
7231 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
7232 return iemRaiseGeneralProtectionFault0(pVCpu);
7233 }
7234
7235 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
7236 if (rcStrict != VINF_SUCCESS)
7237 return rcStrict;
7238
7239 RTGCPHYS GCPhysMem;
7240 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7241 if (rcStrict != VINF_SUCCESS)
7242 return rcStrict;
7243
7244#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7245 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7246 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
7247 {
7248 /*
7249 * MONITOR does not access the memory, just monitors the address. However,
7250 * if the address falls in the APIC-access page, the address monitored must
7251 * instead be the corresponding address in the virtual-APIC page.
7252 *
7253 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
7254 */
7255 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
7256 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
7257 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
7258 return rcStrict;
7259 }
7260#endif
7261
7262 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
7263 {
7264 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7265 IEM_SVM_UPDATE_NRIP(pVCpu);
7266 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7267 }
7268
7269 /*
7270 * Call EM to prepare the monitor/wait.
7271 */
7272 rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem);
7273 Assert(rcStrict == VINF_SUCCESS);
7274
7275 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7276 return rcStrict;
7277}
7278
7279
7280/**
7281 * Implements 'MWAIT'.
7282 */
7283IEM_CIMPL_DEF_0(iemCImpl_mwait)
7284{
7285 /*
7286 * Permission checks.
7287 */
7288 if (pVCpu->iem.s.uCpl != 0)
7289 {
7290 Log2(("mwait: CPL != 0\n"));
7291 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
7292 * EFLAGS.VM then.) */
7293 return iemRaiseUndefinedOpcode(pVCpu);
7294 }
7295 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7296 {
7297 Log2(("mwait: Not in CPUID\n"));
7298 return iemRaiseUndefinedOpcode(pVCpu);
7299 }
7300
7301 /* Check VMX nested-guest intercept. */
7302 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7303 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MWAIT_EXIT))
7304 IEM_VMX_VMEXIT_MWAIT_RET(pVCpu, EMMonitorIsArmed(pVCpu), cbInstr);
7305
7306 /*
7307 * Gather the operands and validate them.
7308 */
7309 uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
7310 uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
7311 if (uEcx != 0)
7312 {
7313 /* Only supported extension is break on IRQ when IF=0. */
7314 if (uEcx > 1)
7315 {
7316 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
7317 return iemRaiseGeneralProtectionFault0(pVCpu);
7318 }
7319 uint32_t fMWaitFeatures = 0;
7320 uint32_t uIgnore = 0;
7321 CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
7322 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7323 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7324 {
7325 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
7326 return iemRaiseGeneralProtectionFault0(pVCpu);
7327 }
7328
7329#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7330 /*
7331 * If the interrupt-window exiting control is set or a virtual-interrupt is pending
7332 * for delivery; and interrupts are disabled the processor does not enter its
7333 * mwait state but rather passes control to the next instruction.
7334 *
7335 * See Intel spec. 25.3 "Changes to Instruction Behavior In VMX Non-root Operation".
7336 */
7337 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7338 && !pVCpu->cpum.GstCtx.eflags.Bits.u1IF)
7339 {
7340 if ( IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INT_WINDOW_EXIT)
7341 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
7342 {
7343 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7344 return VINF_SUCCESS;
7345 }
7346 }
7347#endif
7348 }
7349
7350 /*
7351 * Check SVM nested-guest mwait intercepts.
7352 */
7353 if ( IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
7354 && EMMonitorIsArmed(pVCpu))
7355 {
7356 Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
7357 IEM_SVM_UPDATE_NRIP(pVCpu);
7358 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7359 }
7360 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
7361 {
7362 Log2(("mwait: Guest intercept -> #VMEXIT\n"));
7363 IEM_SVM_UPDATE_NRIP(pVCpu);
7364 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7365 }
7366
7367 /*
7368 * Call EM to prepare the monitor/wait.
7369 */
7370 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
7371
7372 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7373 return rcStrict;
7374}
7375
7376
7377/**
7378 * Implements 'SWAPGS'.
7379 */
7380IEM_CIMPL_DEF_0(iemCImpl_swapgs)
7381{
7382 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
7383
7384 /*
7385 * Permission checks.
7386 */
7387 if (pVCpu->iem.s.uCpl != 0)
7388 {
7389 Log2(("swapgs: CPL != 0\n"));
7390 return iemRaiseUndefinedOpcode(pVCpu);
7391 }
7392
7393 /*
7394 * Do the job.
7395 */
7396 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_GS);
7397 uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
7398 pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base;
7399 pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase;
7400
7401 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7402 return VINF_SUCCESS;
7403}
7404
7405
7406/**
7407 * Implements 'CPUID'.
7408 */
7409IEM_CIMPL_DEF_0(iemCImpl_cpuid)
7410{
7411 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7412 {
7413 Log2(("cpuid: Guest intercept -> VM-exit\n"));
7414 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_CPUID, cbInstr);
7415 }
7416
7417 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
7418 {
7419 Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
7420 IEM_SVM_UPDATE_NRIP(pVCpu);
7421 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7422 }
7423
7424 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
7425 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
7426 pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff);
7427 pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff);
7428 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
7429 pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff);
7430 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
7431
7432 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7433 pVCpu->iem.s.cPotentialExits++;
7434 return VINF_SUCCESS;
7435}
7436
7437
7438/**
7439 * Implements 'AAD'.
7440 *
7441 * @param bImm The immediate operand.
7442 */
7443IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
7444{
7445 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7446 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
7447 pVCpu->cpum.GstCtx.ax = al;
7448 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7449 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7450 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7451
7452 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7453 return VINF_SUCCESS;
7454}
7455
7456
7457/**
7458 * Implements 'AAM'.
7459 *
7460 * @param bImm The immediate operand. Cannot be 0.
7461 */
7462IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
7463{
7464 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
7465
7466 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7467 uint8_t const al = (uint8_t)ax % bImm;
7468 uint8_t const ah = (uint8_t)ax / bImm;
7469 pVCpu->cpum.GstCtx.ax = (ah << 8) + al;
7470 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7471 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7472 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7473
7474 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7475 return VINF_SUCCESS;
7476}
7477
7478
7479/**
7480 * Implements 'DAA'.
7481 */
7482IEM_CIMPL_DEF_0(iemCImpl_daa)
7483{
7484 uint8_t const al = pVCpu->cpum.GstCtx.al;
7485 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7486
7487 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7488 || (al & 0xf) >= 10)
7489 {
7490 pVCpu->cpum.GstCtx.al = al + 6;
7491 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7492 }
7493 else
7494 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7495
7496 if (al >= 0x9a || fCarry)
7497 {
7498 pVCpu->cpum.GstCtx.al += 0x60;
7499 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7500 }
7501 else
7502 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7503
7504 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7505 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7506 return VINF_SUCCESS;
7507}
7508
7509
7510/**
7511 * Implements 'DAS'.
7512 */
7513IEM_CIMPL_DEF_0(iemCImpl_das)
7514{
7515 uint8_t const uInputAL = pVCpu->cpum.GstCtx.al;
7516 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7517
7518 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7519 || (uInputAL & 0xf) >= 10)
7520 {
7521 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7522 if (uInputAL < 6)
7523 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7524 pVCpu->cpum.GstCtx.al = uInputAL - 6;
7525 }
7526 else
7527 {
7528 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7529 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7530 }
7531
7532 if (uInputAL >= 0x9a || fCarry)
7533 {
7534 pVCpu->cpum.GstCtx.al -= 0x60;
7535 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7536 }
7537
7538 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7539 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7540 return VINF_SUCCESS;
7541}
7542
7543
7544/**
7545 * Implements 'AAA'.
7546 */
7547IEM_CIMPL_DEF_0(iemCImpl_aaa)
7548{
7549 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7550 {
7551 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7552 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7553 {
7554 iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7555 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7556 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7557 }
7558 else
7559 {
7560 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7561 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7562 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7563 }
7564 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7565 }
7566 else
7567 {
7568 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7569 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7570 {
7571 pVCpu->cpum.GstCtx.ax += UINT16_C(0x106);
7572 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7573 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7574 }
7575 else
7576 {
7577 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7578 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7579 }
7580 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7581 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7582 }
7583
7584 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7585 return VINF_SUCCESS;
7586}
7587
7588
7589/**
7590 * Implements 'AAS'.
7591 */
7592IEM_CIMPL_DEF_0(iemCImpl_aas)
7593{
7594 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7595 {
7596 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7597 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7598 {
7599 iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7600 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7601 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7602 }
7603 else
7604 {
7605 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7606 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7607 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7608 }
7609 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7610 }
7611 else
7612 {
7613 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7614 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7615 {
7616 pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106);
7617 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7618 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7619 }
7620 else
7621 {
7622 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7623 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7624 }
7625 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7626 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7627 }
7628
7629 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7630 return VINF_SUCCESS;
7631}
7632
7633
7634/**
7635 * Implements the 16-bit version of 'BOUND'.
7636 *
7637 * @note We have separate 16-bit and 32-bit variants of this function due to
7638 * the decoder using unsigned parameters, whereas we want signed one to
7639 * do the job. This is significant for a recompiler.
7640 */
7641IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
7642{
7643 /*
7644 * Check if the index is inside the bounds, otherwise raise #BR.
7645 */
7646 if ( idxArray >= idxLowerBound
7647 && idxArray <= idxUpperBound)
7648 {
7649 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7650 return VINF_SUCCESS;
7651 }
7652
7653 return iemRaiseBoundRangeExceeded(pVCpu);
7654}
7655
7656
7657/**
7658 * Implements the 32-bit version of 'BOUND'.
7659 */
7660IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
7661{
7662 /*
7663 * Check if the index is inside the bounds, otherwise raise #BR.
7664 */
7665 if ( idxArray >= idxLowerBound
7666 && idxArray <= idxUpperBound)
7667 {
7668 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7669 return VINF_SUCCESS;
7670 }
7671
7672 return iemRaiseBoundRangeExceeded(pVCpu);
7673}
7674
7675
7676
7677/*
7678 * Instantiate the various string operation combinations.
7679 */
7680#define OP_SIZE 8
7681#define ADDR_SIZE 16
7682#include "IEMAllCImplStrInstr.cpp.h"
7683#define OP_SIZE 8
7684#define ADDR_SIZE 32
7685#include "IEMAllCImplStrInstr.cpp.h"
7686#define OP_SIZE 8
7687#define ADDR_SIZE 64
7688#include "IEMAllCImplStrInstr.cpp.h"
7689
7690#define OP_SIZE 16
7691#define ADDR_SIZE 16
7692#include "IEMAllCImplStrInstr.cpp.h"
7693#define OP_SIZE 16
7694#define ADDR_SIZE 32
7695#include "IEMAllCImplStrInstr.cpp.h"
7696#define OP_SIZE 16
7697#define ADDR_SIZE 64
7698#include "IEMAllCImplStrInstr.cpp.h"
7699
7700#define OP_SIZE 32
7701#define ADDR_SIZE 16
7702#include "IEMAllCImplStrInstr.cpp.h"
7703#define OP_SIZE 32
7704#define ADDR_SIZE 32
7705#include "IEMAllCImplStrInstr.cpp.h"
7706#define OP_SIZE 32
7707#define ADDR_SIZE 64
7708#include "IEMAllCImplStrInstr.cpp.h"
7709
7710#define OP_SIZE 64
7711#define ADDR_SIZE 32
7712#include "IEMAllCImplStrInstr.cpp.h"
7713#define OP_SIZE 64
7714#define ADDR_SIZE 64
7715#include "IEMAllCImplStrInstr.cpp.h"
7716
7717
7718/**
7719 * Implements 'XGETBV'.
7720 */
7721IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
7722{
7723 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
7724 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
7725 {
7726 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7727 switch (uEcx)
7728 {
7729 case 0:
7730 break;
7731
7732 case 1: /** @todo Implement XCR1 support. */
7733 default:
7734 Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
7735 return iemRaiseGeneralProtectionFault0(pVCpu);
7736
7737 }
7738 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
7739 pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
7740 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
7741
7742 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7743 return VINF_SUCCESS;
7744 }
7745 Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
7746 return iemRaiseUndefinedOpcode(pVCpu);
7747}
7748
7749
7750/**
7751 * Implements 'XSETBV'.
7752 */
7753IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
7754{
7755 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
7756 {
7757 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
7758 {
7759 Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
7760 IEM_SVM_UPDATE_NRIP(pVCpu);
7761 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7762 }
7763
7764 if (pVCpu->iem.s.uCpl == 0)
7765 {
7766 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
7767
7768 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7769 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_XSETBV, cbInstr);
7770
7771 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7772 uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx);
7773 switch (uEcx)
7774 {
7775 case 0:
7776 {
7777 int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
7778 if (rc == VINF_SUCCESS)
7779 break;
7780 Assert(rc == VERR_CPUM_RAISE_GP_0);
7781 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
7782 return iemRaiseGeneralProtectionFault0(pVCpu);
7783 }
7784
7785 case 1: /** @todo Implement XCR1 support. */
7786 default:
7787 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
7788 return iemRaiseGeneralProtectionFault0(pVCpu);
7789
7790 }
7791
7792 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7793 return VINF_SUCCESS;
7794 }
7795
7796 Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
7797 return iemRaiseGeneralProtectionFault0(pVCpu);
7798 }
7799 Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
7800 return iemRaiseUndefinedOpcode(pVCpu);
7801}
7802
7803#ifdef IN_RING3
7804
7805/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
7806struct IEMCIMPLCX16ARGS
7807{
7808 PRTUINT128U pu128Dst;
7809 PRTUINT128U pu128RaxRdx;
7810 PRTUINT128U pu128RbxRcx;
7811 uint32_t *pEFlags;
7812# ifdef VBOX_STRICT
7813 uint32_t cCalls;
7814# endif
7815};
7816
7817/**
7818 * @callback_method_impl{FNVMMEMTRENDEZVOUS,
7819 * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
7820 */
7821static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPU pVCpu, void *pvUser)
7822{
7823 RT_NOREF(pVM, pVCpu);
7824 struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
7825# ifdef VBOX_STRICT
7826 Assert(pArgs->cCalls == 0);
7827 pArgs->cCalls++;
7828# endif
7829
7830 iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
7831 return VINF_SUCCESS;
7832}
7833
7834#endif /* IN_RING3 */
7835
7836/**
7837 * Implements 'CMPXCHG16B' fallback using rendezvous.
7838 */
7839IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
7840 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
7841{
7842#ifdef IN_RING3
7843 struct IEMCIMPLCX16ARGS Args;
7844 Args.pu128Dst = pu128Dst;
7845 Args.pu128RaxRdx = pu128RaxRdx;
7846 Args.pu128RbxRcx = pu128RbxRcx;
7847 Args.pEFlags = pEFlags;
7848# ifdef VBOX_STRICT
7849 Args.cCalls = 0;
7850# endif
7851 VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
7852 iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
7853 Assert(Args.cCalls == 1);
7854 if (rcStrict == VINF_SUCCESS)
7855 {
7856 /* Duplicated tail code. */
7857 rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
7858 if (rcStrict == VINF_SUCCESS)
7859 {
7860 pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
7861 if (!(*pEFlags & X86_EFL_ZF))
7862 {
7863 pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo;
7864 pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi;
7865 }
7866 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7867 }
7868 }
7869 return rcStrict;
7870#else
7871 RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
7872 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
7873#endif
7874}
7875
7876
7877/**
7878 * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
7879 *
7880 * This is implemented in C because it triggers a load like behaviour without
7881 * actually reading anything. Since that's not so common, it's implemented
7882 * here.
7883 *
7884 * @param iEffSeg The effective segment.
7885 * @param GCPtrEff The address of the image.
7886 */
7887IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
7888{
7889 /*
7890 * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
7891 */
7892 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
7893 if (rcStrict == VINF_SUCCESS)
7894 {
7895 RTGCPHYS GCPhysMem;
7896 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7897 if (rcStrict == VINF_SUCCESS)
7898 {
7899#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7900 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7901 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
7902 {
7903 /*
7904 * CLFLUSH/CLFLUSHOPT does not access the memory, but flushes the cache-line
7905 * that contains the address. However, if the address falls in the APIC-access
7906 * page, the address flushed must instead be the corresponding address in the
7907 * virtual-APIC page.
7908 *
7909 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
7910 */
7911 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
7912 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
7913 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
7914 return rcStrict;
7915 }
7916#endif
7917 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7918 return VINF_SUCCESS;
7919 }
7920 }
7921
7922 return rcStrict;
7923}
7924
7925
7926/**
7927 * Implements 'FINIT' and 'FNINIT'.
7928 *
7929 * @param fCheckXcpts Whether to check for umasked pending exceptions or
7930 * not.
7931 */
7932IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
7933{
7934 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
7935 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
7936 return iemRaiseDeviceNotAvailable(pVCpu);
7937
7938 iemFpuActualizeStateForChange(pVCpu);
7939 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_X87);
7940
7941 NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
7942 if (fCheckXcpts && TODO )
7943 return iemRaiseMathFault(pVCpu);
7944 */
7945
7946 PX86XSAVEAREA pXState = pVCpu->cpum.GstCtx.CTX_SUFF(pXState);
7947 pXState->x87.FCW = 0x37f;
7948 pXState->x87.FSW = 0;
7949 pXState->x87.FTW = 0x00; /* 0 - empty. */
7950 pXState->x87.FPUDP = 0;
7951 pXState->x87.DS = 0; //??
7952 pXState->x87.Rsrvd2= 0;
7953 pXState->x87.FPUIP = 0;
7954 pXState->x87.CS = 0; //??
7955 pXState->x87.Rsrvd1= 0;
7956 pXState->x87.FOP = 0;
7957
7958 iemHlpUsedFpu(pVCpu);
7959 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7960 return VINF_SUCCESS;
7961}
7962
7963
7964/**
7965 * Implements 'FXSAVE'.
7966 *
7967 * @param iEffSeg The effective segment.
7968 * @param GCPtrEff The address of the image.
7969 * @param enmEffOpSize The operand size (only REX.W really matters).
7970 */
7971IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
7972{
7973 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
7974
7975 /*
7976 * Raise exceptions.
7977 */
7978 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
7979 return iemRaiseUndefinedOpcode(pVCpu);
7980 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
7981 return iemRaiseDeviceNotAvailable(pVCpu);
7982 if (GCPtrEff & 15)
7983 {
7984 /** @todo CPU/VM detection possible! \#AC might not be signal for
7985 * all/any misalignment sizes, intel says its an implementation detail. */
7986 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
7987 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
7988 && pVCpu->iem.s.uCpl == 3)
7989 return iemRaiseAlignmentCheckException(pVCpu);
7990 return iemRaiseGeneralProtectionFault0(pVCpu);
7991 }
7992
7993 /*
7994 * Access the memory.
7995 */
7996 void *pvMem512;
7997 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7998 if (rcStrict != VINF_SUCCESS)
7999 return rcStrict;
8000 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8001 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8002
8003 /*
8004 * Store the registers.
8005 */
8006 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8007 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
8008
8009 /* common for all formats */
8010 pDst->FCW = pSrc->FCW;
8011 pDst->FSW = pSrc->FSW;
8012 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8013 pDst->FOP = pSrc->FOP;
8014 pDst->MXCSR = pSrc->MXCSR;
8015 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8016 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8017 {
8018 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8019 * them for now... */
8020 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8021 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8022 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8023 pDst->aRegs[i].au32[3] = 0;
8024 }
8025
8026 /* FPU IP, CS, DP and DS. */
8027 pDst->FPUIP = pSrc->FPUIP;
8028 pDst->CS = pSrc->CS;
8029 pDst->FPUDP = pSrc->FPUDP;
8030 pDst->DS = pSrc->DS;
8031 if (enmEffOpSize == IEMMODE_64BIT)
8032 {
8033 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8034 pDst->Rsrvd1 = pSrc->Rsrvd1;
8035 pDst->Rsrvd2 = pSrc->Rsrvd2;
8036 pDst->au32RsrvdForSoftware[0] = 0;
8037 }
8038 else
8039 {
8040 pDst->Rsrvd1 = 0;
8041 pDst->Rsrvd2 = 0;
8042 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8043 }
8044
8045 /* XMM registers. */
8046 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8047 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8048 || pVCpu->iem.s.uCpl != 0)
8049 {
8050 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8051 for (uint32_t i = 0; i < cXmmRegs; i++)
8052 pDst->aXMM[i] = pSrc->aXMM[i];
8053 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8054 * right? */
8055 }
8056
8057 /*
8058 * Commit the memory.
8059 */
8060 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8061 if (rcStrict != VINF_SUCCESS)
8062 return rcStrict;
8063
8064 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8065 return VINF_SUCCESS;
8066}
8067
8068
8069/**
8070 * Implements 'FXRSTOR'.
8071 *
8072 * @param GCPtrEff The address of the image.
8073 * @param enmEffOpSize The operand size (only REX.W really matters).
8074 */
8075IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8076{
8077 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8078
8079 /*
8080 * Raise exceptions.
8081 */
8082 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8083 return iemRaiseUndefinedOpcode(pVCpu);
8084 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8085 return iemRaiseDeviceNotAvailable(pVCpu);
8086 if (GCPtrEff & 15)
8087 {
8088 /** @todo CPU/VM detection possible! \#AC might not be signal for
8089 * all/any misalignment sizes, intel says its an implementation detail. */
8090 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8091 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8092 && pVCpu->iem.s.uCpl == 3)
8093 return iemRaiseAlignmentCheckException(pVCpu);
8094 return iemRaiseGeneralProtectionFault0(pVCpu);
8095 }
8096
8097 /*
8098 * Access the memory.
8099 */
8100 void *pvMem512;
8101 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8102 if (rcStrict != VINF_SUCCESS)
8103 return rcStrict;
8104 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8105 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8106
8107 /*
8108 * Check the state for stuff which will #GP(0).
8109 */
8110 uint32_t const fMXCSR = pSrc->MXCSR;
8111 uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8112 if (fMXCSR & ~fMXCSR_MASK)
8113 {
8114 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
8115 return iemRaiseGeneralProtectionFault0(pVCpu);
8116 }
8117
8118 /*
8119 * Load the registers.
8120 */
8121 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8122 * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
8123
8124 /* common for all formats */
8125 pDst->FCW = pSrc->FCW;
8126 pDst->FSW = pSrc->FSW;
8127 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8128 pDst->FOP = pSrc->FOP;
8129 pDst->MXCSR = fMXCSR;
8130 /* (MXCSR_MASK is read-only) */
8131 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8132 {
8133 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8134 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8135 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8136 pDst->aRegs[i].au32[3] = 0;
8137 }
8138
8139 /* FPU IP, CS, DP and DS. */
8140 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8141 {
8142 pDst->FPUIP = pSrc->FPUIP;
8143 pDst->CS = pSrc->CS;
8144 pDst->Rsrvd1 = pSrc->Rsrvd1;
8145 pDst->FPUDP = pSrc->FPUDP;
8146 pDst->DS = pSrc->DS;
8147 pDst->Rsrvd2 = pSrc->Rsrvd2;
8148 }
8149 else
8150 {
8151 pDst->FPUIP = pSrc->FPUIP;
8152 pDst->CS = pSrc->CS;
8153 pDst->Rsrvd1 = 0;
8154 pDst->FPUDP = pSrc->FPUDP;
8155 pDst->DS = pSrc->DS;
8156 pDst->Rsrvd2 = 0;
8157 }
8158
8159 /* XMM registers. */
8160 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8161 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8162 || pVCpu->iem.s.uCpl != 0)
8163 {
8164 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8165 for (uint32_t i = 0; i < cXmmRegs; i++)
8166 pDst->aXMM[i] = pSrc->aXMM[i];
8167 }
8168
8169 /*
8170 * Commit the memory.
8171 */
8172 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8173 if (rcStrict != VINF_SUCCESS)
8174 return rcStrict;
8175
8176 iemHlpUsedFpu(pVCpu);
8177 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8178 return VINF_SUCCESS;
8179}
8180
8181
8182/**
8183 * Implements 'XSAVE'.
8184 *
8185 * @param iEffSeg The effective segment.
8186 * @param GCPtrEff The address of the image.
8187 * @param enmEffOpSize The operand size (only REX.W really matters).
8188 */
8189IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8190{
8191 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8192
8193 /*
8194 * Raise exceptions.
8195 */
8196 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8197 return iemRaiseUndefinedOpcode(pVCpu);
8198 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8199 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8200 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8201 {
8202 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8203 return iemRaiseUndefinedOpcode(pVCpu);
8204 }
8205 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8206 return iemRaiseDeviceNotAvailable(pVCpu);
8207 if (GCPtrEff & 63)
8208 {
8209 /** @todo CPU/VM detection possible! \#AC might not be signal for
8210 * all/any misalignment sizes, intel says its an implementation detail. */
8211 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8212 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8213 && pVCpu->iem.s.uCpl == 3)
8214 return iemRaiseAlignmentCheckException(pVCpu);
8215 return iemRaiseGeneralProtectionFault0(pVCpu);
8216 }
8217
8218 /*
8219 * Calc the requested mask.
8220 */
8221 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8222 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8223 uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8224
8225/** @todo figure out the exact protocol for the memory access. Currently we
8226 * just need this crap to work halfways to make it possible to test
8227 * AVX instructions. */
8228/** @todo figure out the XINUSE and XMODIFIED */
8229
8230 /*
8231 * Access the x87 memory state.
8232 */
8233 /* The x87+SSE state. */
8234 void *pvMem512;
8235 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8236 if (rcStrict != VINF_SUCCESS)
8237 return rcStrict;
8238 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8239 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8240
8241 /* The header. */
8242 PX86XSAVEHDR pHdr;
8243 rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW);
8244 if (rcStrict != VINF_SUCCESS)
8245 return rcStrict;
8246
8247 /*
8248 * Store the X87 state.
8249 */
8250 if (fReqComponents & XSAVE_C_X87)
8251 {
8252 /* common for all formats */
8253 pDst->FCW = pSrc->FCW;
8254 pDst->FSW = pSrc->FSW;
8255 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8256 pDst->FOP = pSrc->FOP;
8257 pDst->FPUIP = pSrc->FPUIP;
8258 pDst->CS = pSrc->CS;
8259 pDst->FPUDP = pSrc->FPUDP;
8260 pDst->DS = pSrc->DS;
8261 if (enmEffOpSize == IEMMODE_64BIT)
8262 {
8263 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8264 pDst->Rsrvd1 = pSrc->Rsrvd1;
8265 pDst->Rsrvd2 = pSrc->Rsrvd2;
8266 pDst->au32RsrvdForSoftware[0] = 0;
8267 }
8268 else
8269 {
8270 pDst->Rsrvd1 = 0;
8271 pDst->Rsrvd2 = 0;
8272 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8273 }
8274 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8275 {
8276 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8277 * them for now... */
8278 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8279 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8280 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8281 pDst->aRegs[i].au32[3] = 0;
8282 }
8283
8284 }
8285
8286 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8287 {
8288 pDst->MXCSR = pSrc->MXCSR;
8289 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8290 }
8291
8292 if (fReqComponents & XSAVE_C_SSE)
8293 {
8294 /* XMM registers. */
8295 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8296 for (uint32_t i = 0; i < cXmmRegs; i++)
8297 pDst->aXMM[i] = pSrc->aXMM[i];
8298 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8299 * right? */
8300 }
8301
8302 /* Commit the x87 state bits. (probably wrong) */
8303 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8304 if (rcStrict != VINF_SUCCESS)
8305 return rcStrict;
8306
8307 /*
8308 * Store AVX state.
8309 */
8310 if (fReqComponents & XSAVE_C_YMM)
8311 {
8312 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8313 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8314 PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
8315 PX86XSAVEYMMHI pCompDst;
8316 rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
8317 IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8318 if (rcStrict != VINF_SUCCESS)
8319 return rcStrict;
8320
8321 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8322 for (uint32_t i = 0; i < cXmmRegs; i++)
8323 pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
8324
8325 rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8326 if (rcStrict != VINF_SUCCESS)
8327 return rcStrict;
8328 }
8329
8330 /*
8331 * Update the header.
8332 */
8333 pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
8334 | (fReqComponents & fXInUse);
8335
8336 rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
8337 if (rcStrict != VINF_SUCCESS)
8338 return rcStrict;
8339
8340 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8341 return VINF_SUCCESS;
8342}
8343
8344
8345/**
8346 * Implements 'XRSTOR'.
8347 *
8348 * @param iEffSeg The effective segment.
8349 * @param GCPtrEff The address of the image.
8350 * @param enmEffOpSize The operand size (only REX.W really matters).
8351 */
8352IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8353{
8354 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8355
8356 /*
8357 * Raise exceptions.
8358 */
8359 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8360 return iemRaiseUndefinedOpcode(pVCpu);
8361 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8362 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8363 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8364 {
8365 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8366 return iemRaiseUndefinedOpcode(pVCpu);
8367 }
8368 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8369 return iemRaiseDeviceNotAvailable(pVCpu);
8370 if (GCPtrEff & 63)
8371 {
8372 /** @todo CPU/VM detection possible! \#AC might not be signal for
8373 * all/any misalignment sizes, intel says its an implementation detail. */
8374 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8375 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8376 && pVCpu->iem.s.uCpl == 3)
8377 return iemRaiseAlignmentCheckException(pVCpu);
8378 return iemRaiseGeneralProtectionFault0(pVCpu);
8379 }
8380
8381/** @todo figure out the exact protocol for the memory access. Currently we
8382 * just need this crap to work halfways to make it possible to test
8383 * AVX instructions. */
8384/** @todo figure out the XINUSE and XMODIFIED */
8385
8386 /*
8387 * Access the x87 memory state.
8388 */
8389 /* The x87+SSE state. */
8390 void *pvMem512;
8391 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8392 if (rcStrict != VINF_SUCCESS)
8393 return rcStrict;
8394 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8395 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8396
8397 /*
8398 * Calc the requested mask
8399 */
8400 PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->Hdr;
8401 PCX86XSAVEHDR pHdrSrc;
8402 rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R);
8403 if (rcStrict != VINF_SUCCESS)
8404 return rcStrict;
8405
8406 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8407 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8408 //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8409 uint64_t const fRstorMask = pHdrSrc->bmXState;
8410 uint64_t const fCompMask = pHdrSrc->bmXComp;
8411
8412 AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8413
8414 uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8415
8416 /* We won't need this any longer. */
8417 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
8418 if (rcStrict != VINF_SUCCESS)
8419 return rcStrict;
8420
8421 /*
8422 * Store the X87 state.
8423 */
8424 if (fReqComponents & XSAVE_C_X87)
8425 {
8426 if (fRstorMask & XSAVE_C_X87)
8427 {
8428 pDst->FCW = pSrc->FCW;
8429 pDst->FSW = pSrc->FSW;
8430 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8431 pDst->FOP = pSrc->FOP;
8432 pDst->FPUIP = pSrc->FPUIP;
8433 pDst->CS = pSrc->CS;
8434 pDst->FPUDP = pSrc->FPUDP;
8435 pDst->DS = pSrc->DS;
8436 if (enmEffOpSize == IEMMODE_64BIT)
8437 {
8438 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8439 pDst->Rsrvd1 = pSrc->Rsrvd1;
8440 pDst->Rsrvd2 = pSrc->Rsrvd2;
8441 }
8442 else
8443 {
8444 pDst->Rsrvd1 = 0;
8445 pDst->Rsrvd2 = 0;
8446 }
8447 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8448 {
8449 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8450 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8451 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8452 pDst->aRegs[i].au32[3] = 0;
8453 }
8454 }
8455 else
8456 {
8457 pDst->FCW = 0x37f;
8458 pDst->FSW = 0;
8459 pDst->FTW = 0x00; /* 0 - empty. */
8460 pDst->FPUDP = 0;
8461 pDst->DS = 0; //??
8462 pDst->Rsrvd2= 0;
8463 pDst->FPUIP = 0;
8464 pDst->CS = 0; //??
8465 pDst->Rsrvd1= 0;
8466 pDst->FOP = 0;
8467 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8468 {
8469 pDst->aRegs[i].au32[0] = 0;
8470 pDst->aRegs[i].au32[1] = 0;
8471 pDst->aRegs[i].au32[2] = 0;
8472 pDst->aRegs[i].au32[3] = 0;
8473 }
8474 }
8475 pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
8476 }
8477
8478 /* MXCSR */
8479 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8480 {
8481 if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
8482 pDst->MXCSR = pSrc->MXCSR;
8483 else
8484 pDst->MXCSR = 0x1f80;
8485 }
8486
8487 /* XMM registers. */
8488 if (fReqComponents & XSAVE_C_SSE)
8489 {
8490 if (fRstorMask & XSAVE_C_SSE)
8491 {
8492 for (uint32_t i = 0; i < cXmmRegs; i++)
8493 pDst->aXMM[i] = pSrc->aXMM[i];
8494 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8495 * right? */
8496 }
8497 else
8498 {
8499 for (uint32_t i = 0; i < cXmmRegs; i++)
8500 {
8501 pDst->aXMM[i].au64[0] = 0;
8502 pDst->aXMM[i].au64[1] = 0;
8503 }
8504 }
8505 pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
8506 }
8507
8508 /* Unmap the x87 state bits (so we've don't run out of mapping). */
8509 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8510 if (rcStrict != VINF_SUCCESS)
8511 return rcStrict;
8512
8513 /*
8514 * Restore AVX state.
8515 */
8516 if (fReqComponents & XSAVE_C_YMM)
8517 {
8518 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8519 PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
8520
8521 if (fRstorMask & XSAVE_C_YMM)
8522 {
8523 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8524 PCX86XSAVEYMMHI pCompSrc;
8525 rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
8526 iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R);
8527 if (rcStrict != VINF_SUCCESS)
8528 return rcStrict;
8529
8530 for (uint32_t i = 0; i < cXmmRegs; i++)
8531 {
8532 pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
8533 pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
8534 }
8535
8536 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
8537 if (rcStrict != VINF_SUCCESS)
8538 return rcStrict;
8539 }
8540 else
8541 {
8542 for (uint32_t i = 0; i < cXmmRegs; i++)
8543 {
8544 pCompDst->aYmmHi[i].au64[0] = 0;
8545 pCompDst->aYmmHi[i].au64[1] = 0;
8546 }
8547 }
8548 pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
8549 }
8550
8551 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8552 return VINF_SUCCESS;
8553}
8554
8555
8556
8557
8558/**
8559 * Implements 'STMXCSR'.
8560 *
8561 * @param GCPtrEff The address of the image.
8562 */
8563IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8564{
8565 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8566
8567 /*
8568 * Raise exceptions.
8569 */
8570 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8571 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8572 {
8573 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8574 {
8575 /*
8576 * Do the job.
8577 */
8578 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
8579 if (rcStrict == VINF_SUCCESS)
8580 {
8581 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8582 return VINF_SUCCESS;
8583 }
8584 return rcStrict;
8585 }
8586 return iemRaiseDeviceNotAvailable(pVCpu);
8587 }
8588 return iemRaiseUndefinedOpcode(pVCpu);
8589}
8590
8591
8592/**
8593 * Implements 'VSTMXCSR'.
8594 *
8595 * @param GCPtrEff The address of the image.
8596 */
8597IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8598{
8599 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx);
8600
8601 /*
8602 * Raise exceptions.
8603 */
8604 if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
8605 ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
8606 : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
8607 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8608 {
8609 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8610 {
8611 /*
8612 * Do the job.
8613 */
8614 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
8615 if (rcStrict == VINF_SUCCESS)
8616 {
8617 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8618 return VINF_SUCCESS;
8619 }
8620 return rcStrict;
8621 }
8622 return iemRaiseDeviceNotAvailable(pVCpu);
8623 }
8624 return iemRaiseUndefinedOpcode(pVCpu);
8625}
8626
8627
8628/**
8629 * Implements 'LDMXCSR'.
8630 *
8631 * @param GCPtrEff The address of the image.
8632 */
8633IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8634{
8635 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8636
8637 /*
8638 * Raise exceptions.
8639 */
8640 /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
8641 * happen after or before \#UD and \#EM? */
8642 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8643 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8644 {
8645 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8646 {
8647 /*
8648 * Do the job.
8649 */
8650 uint32_t fNewMxCsr;
8651 VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
8652 if (rcStrict == VINF_SUCCESS)
8653 {
8654 uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8655 if (!(fNewMxCsr & ~fMxCsrMask))
8656 {
8657 pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR = fNewMxCsr;
8658 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8659 return VINF_SUCCESS;
8660 }
8661 Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
8662 fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
8663 return iemRaiseGeneralProtectionFault0(pVCpu);
8664 }
8665 return rcStrict;
8666 }
8667 return iemRaiseDeviceNotAvailable(pVCpu);
8668 }
8669 return iemRaiseUndefinedOpcode(pVCpu);
8670}
8671
8672
8673/**
8674 * Commmon routine for fnstenv and fnsave.
8675 *
8676 * @param pVCpu The cross context virtual CPU structure of the calling thread.
8677 * @param enmEffOpSize The effective operand size.
8678 * @param uPtr Where to store the state.
8679 */
8680static void iemCImplCommonFpuStoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr)
8681{
8682 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8683 PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8684 if (enmEffOpSize == IEMMODE_16BIT)
8685 {
8686 uPtr.pu16[0] = pSrcX87->FCW;
8687 uPtr.pu16[1] = pSrcX87->FSW;
8688 uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
8689 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8690 {
8691 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
8692 * protected mode or long mode and we save it in real mode? And vice
8693 * versa? And with 32-bit operand size? I think CPU is storing the
8694 * effective address ((CS << 4) + IP) in the offset register and not
8695 * doing any address calculations here. */
8696 uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
8697 uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
8698 uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
8699 uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
8700 }
8701 else
8702 {
8703 uPtr.pu16[3] = pSrcX87->FPUIP;
8704 uPtr.pu16[4] = pSrcX87->CS;
8705 uPtr.pu16[5] = pSrcX87->FPUDP;
8706 uPtr.pu16[6] = pSrcX87->DS;
8707 }
8708 }
8709 else
8710 {
8711 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
8712 uPtr.pu16[0*2] = pSrcX87->FCW;
8713 uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
8714 uPtr.pu16[1*2] = pSrcX87->FSW;
8715 uPtr.pu16[1*2+1] = 0xffff;
8716 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
8717 uPtr.pu16[2*2+1] = 0xffff;
8718 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8719 {
8720 uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
8721 uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
8722 uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
8723 uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
8724 }
8725 else
8726 {
8727 uPtr.pu32[3] = pSrcX87->FPUIP;
8728 uPtr.pu16[4*2] = pSrcX87->CS;
8729 uPtr.pu16[4*2+1] = pSrcX87->FOP;
8730 uPtr.pu32[5] = pSrcX87->FPUDP;
8731 uPtr.pu16[6*2] = pSrcX87->DS;
8732 uPtr.pu16[6*2+1] = 0xffff;
8733 }
8734 }
8735}
8736
8737
8738/**
8739 * Commmon routine for fldenv and frstor
8740 *
8741 * @param pVCpu The cross context virtual CPU structure of the calling thread.
8742 * @param enmEffOpSize The effective operand size.
8743 * @param uPtr Where to store the state.
8744 */
8745static void iemCImplCommonFpuRestoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr)
8746{
8747 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8748 PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8749 if (enmEffOpSize == IEMMODE_16BIT)
8750 {
8751 pDstX87->FCW = uPtr.pu16[0];
8752 pDstX87->FSW = uPtr.pu16[1];
8753 pDstX87->FTW = uPtr.pu16[2];
8754 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8755 {
8756 pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
8757 pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
8758 pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
8759 pDstX87->CS = 0;
8760 pDstX87->Rsrvd1= 0;
8761 pDstX87->DS = 0;
8762 pDstX87->Rsrvd2= 0;
8763 }
8764 else
8765 {
8766 pDstX87->FPUIP = uPtr.pu16[3];
8767 pDstX87->CS = uPtr.pu16[4];
8768 pDstX87->Rsrvd1= 0;
8769 pDstX87->FPUDP = uPtr.pu16[5];
8770 pDstX87->DS = uPtr.pu16[6];
8771 pDstX87->Rsrvd2= 0;
8772 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
8773 }
8774 }
8775 else
8776 {
8777 pDstX87->FCW = uPtr.pu16[0*2];
8778 pDstX87->FSW = uPtr.pu16[1*2];
8779 pDstX87->FTW = uPtr.pu16[2*2];
8780 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8781 {
8782 pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
8783 pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
8784 pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
8785 pDstX87->CS = 0;
8786 pDstX87->Rsrvd1= 0;
8787 pDstX87->DS = 0;
8788 pDstX87->Rsrvd2= 0;
8789 }
8790 else
8791 {
8792 pDstX87->FPUIP = uPtr.pu32[3];
8793 pDstX87->CS = uPtr.pu16[4*2];
8794 pDstX87->Rsrvd1= 0;
8795 pDstX87->FOP = uPtr.pu16[4*2+1];
8796 pDstX87->FPUDP = uPtr.pu32[5];
8797 pDstX87->DS = uPtr.pu16[6*2];
8798 pDstX87->Rsrvd2= 0;
8799 }
8800 }
8801
8802 /* Make adjustments. */
8803 pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
8804 pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
8805 iemFpuRecalcExceptionStatus(pDstX87);
8806 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
8807 * exceptions are pending after loading the saved state? */
8808}
8809
8810
8811/**
8812 * Implements 'FNSTENV'.
8813 *
8814 * @param enmEffOpSize The operand size (only REX.W really matters).
8815 * @param iEffSeg The effective segment register for @a GCPtrEff.
8816 * @param GCPtrEffDst The address of the image.
8817 */
8818IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
8819{
8820 RTPTRUNION uPtr;
8821 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
8822 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8823 if (rcStrict != VINF_SUCCESS)
8824 return rcStrict;
8825
8826 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
8827
8828 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8829 if (rcStrict != VINF_SUCCESS)
8830 return rcStrict;
8831
8832 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
8833 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8834 return VINF_SUCCESS;
8835}
8836
8837
8838/**
8839 * Implements 'FNSAVE'.
8840 *
8841 * @param GCPtrEffDst The address of the image.
8842 * @param enmEffOpSize The operand size.
8843 */
8844IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
8845{
8846 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8847
8848 RTPTRUNION uPtr;
8849 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
8850 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8851 if (rcStrict != VINF_SUCCESS)
8852 return rcStrict;
8853
8854 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8855 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
8856 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
8857 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
8858 {
8859 paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
8860 paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
8861 paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
8862 }
8863
8864 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8865 if (rcStrict != VINF_SUCCESS)
8866 return rcStrict;
8867
8868 /*
8869 * Re-initialize the FPU context.
8870 */
8871 pFpuCtx->FCW = 0x37f;
8872 pFpuCtx->FSW = 0;
8873 pFpuCtx->FTW = 0x00; /* 0 - empty */
8874 pFpuCtx->FPUDP = 0;
8875 pFpuCtx->DS = 0;
8876 pFpuCtx->Rsrvd2= 0;
8877 pFpuCtx->FPUIP = 0;
8878 pFpuCtx->CS = 0;
8879 pFpuCtx->Rsrvd1= 0;
8880 pFpuCtx->FOP = 0;
8881
8882 iemHlpUsedFpu(pVCpu);
8883 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8884 return VINF_SUCCESS;
8885}
8886
8887
8888
8889/**
8890 * Implements 'FLDENV'.
8891 *
8892 * @param enmEffOpSize The operand size (only REX.W really matters).
8893 * @param iEffSeg The effective segment register for @a GCPtrEff.
8894 * @param GCPtrEffSrc The address of the image.
8895 */
8896IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
8897{
8898 RTCPTRUNION uPtr;
8899 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
8900 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
8901 if (rcStrict != VINF_SUCCESS)
8902 return rcStrict;
8903
8904 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
8905
8906 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
8907 if (rcStrict != VINF_SUCCESS)
8908 return rcStrict;
8909
8910 iemHlpUsedFpu(pVCpu);
8911 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8912 return VINF_SUCCESS;
8913}
8914
8915
8916/**
8917 * Implements 'FRSTOR'.
8918 *
8919 * @param GCPtrEffSrc The address of the image.
8920 * @param enmEffOpSize The operand size.
8921 */
8922IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
8923{
8924 RTCPTRUNION uPtr;
8925 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
8926 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
8927 if (rcStrict != VINF_SUCCESS)
8928 return rcStrict;
8929
8930 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8931 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
8932 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
8933 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
8934 {
8935 pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
8936 pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
8937 pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
8938 pFpuCtx->aRegs[i].au32[3] = 0;
8939 }
8940
8941 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
8942 if (rcStrict != VINF_SUCCESS)
8943 return rcStrict;
8944
8945 iemHlpUsedFpu(pVCpu);
8946 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8947 return VINF_SUCCESS;
8948}
8949
8950
8951/**
8952 * Implements 'FLDCW'.
8953 *
8954 * @param u16Fcw The new FCW.
8955 */
8956IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
8957{
8958 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8959
8960 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
8961 /** @todo Testcase: Try see what happens when trying to set undefined bits
8962 * (other than 6 and 7). Currently ignoring them. */
8963 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
8964 * according to FSW. (This is was is currently implemented.) */
8965 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8966 pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
8967 iemFpuRecalcExceptionStatus(pFpuCtx);
8968
8969 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
8970 iemHlpUsedFpu(pVCpu);
8971 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8972 return VINF_SUCCESS;
8973}
8974
8975
8976
8977/**
8978 * Implements the underflow case of fxch.
8979 *
8980 * @param iStReg The other stack register.
8981 */
8982IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
8983{
8984 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8985
8986 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8987 unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
8988 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
8989 Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
8990
8991 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
8992 * registers are read as QNaN and then exchanged. This could be
8993 * wrong... */
8994 if (pFpuCtx->FCW & X86_FCW_IM)
8995 {
8996 if (RT_BIT(iReg1) & pFpuCtx->FTW)
8997 {
8998 if (RT_BIT(iReg2) & pFpuCtx->FTW)
8999 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9000 else
9001 pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
9002 iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
9003 }
9004 else
9005 {
9006 pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
9007 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9008 }
9009 pFpuCtx->FSW &= ~X86_FSW_C_MASK;
9010 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
9011 }
9012 else
9013 {
9014 /* raise underflow exception, don't change anything. */
9015 pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
9016 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9017 }
9018
9019 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9020 iemHlpUsedFpu(pVCpu);
9021 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9022 return VINF_SUCCESS;
9023}
9024
9025
9026/**
9027 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
9028 *
9029 * @param cToAdd 1 or 7.
9030 */
9031IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
9032{
9033 Assert(iStReg < 8);
9034 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9035
9036 /*
9037 * Raise exceptions.
9038 */
9039 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
9040 return iemRaiseDeviceNotAvailable(pVCpu);
9041
9042 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
9043 uint16_t u16Fsw = pFpuCtx->FSW;
9044 if (u16Fsw & X86_FSW_ES)
9045 return iemRaiseMathFault(pVCpu);
9046
9047 /*
9048 * Check if any of the register accesses causes #SF + #IA.
9049 */
9050 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
9051 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9052 if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
9053 {
9054 uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
9055 NOREF(u32Eflags);
9056
9057 pFpuCtx->FSW &= ~X86_FSW_C1;
9058 pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
9059 if ( !(u16Fsw & X86_FSW_IE)
9060 || (pFpuCtx->FCW & X86_FCW_IM) )
9061 {
9062 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9063 pVCpu->cpum.GstCtx.eflags.u |= pVCpu->cpum.GstCtx.eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9064 }
9065 }
9066 else if (pFpuCtx->FCW & X86_FCW_IM)
9067 {
9068 /* Masked underflow. */
9069 pFpuCtx->FSW &= ~X86_FSW_C1;
9070 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
9071 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9072 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
9073 }
9074 else
9075 {
9076 /* Raise underflow - don't touch EFLAGS or TOP. */
9077 pFpuCtx->FSW &= ~X86_FSW_C1;
9078 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9079 fPop = false;
9080 }
9081
9082 /*
9083 * Pop if necessary.
9084 */
9085 if (fPop)
9086 {
9087 pFpuCtx->FTW &= ~RT_BIT(iReg1);
9088 pFpuCtx->FSW &= X86_FSW_TOP_MASK;
9089 pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
9090 }
9091
9092 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9093 iemHlpUsedFpu(pVCpu);
9094 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9095 return VINF_SUCCESS;
9096}
9097
9098/** @} */
9099
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette