VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h@ 79059

Last change on this file since 79059 was 78919, checked in by vboxsync, 6 years ago

VMM/IEM: Nested VMX: bugref:9180 Signal NMI-window FF not just when an IRET finishes executing. Set it up during nested-guest VM-entry.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 324.8 KB
Line 
1/* $Id: IEMAllCImpl.cpp.h 78919 2019-06-03 06:52:00Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#include "IEMAllCImplSvmInstr.cpp.h"
19#include "IEMAllCImplVmxInstr.cpp.h"
20
21
22/** @name Misc Helpers
23 * @{
24 */
25
26
27/**
28 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
29 *
30 * @returns Strict VBox status code.
31 *
32 * @param pVCpu The cross context virtual CPU structure of the calling thread.
33 * @param u16Port The port number.
34 * @param cbOperand The operand size.
35 */
36static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbOperand)
37{
38 /* The TSS bits we're interested in are the same on 386 and AMD64. */
39 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
40 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
41 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
42 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
43
44 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
45
46 /*
47 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
48 */
49 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
50 if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
51 && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
52 {
53 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
54 u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u));
55 return iemRaiseGeneralProtectionFault0(pVCpu);
56 }
57
58 /*
59 * Read the bitmap offset (may #PF).
60 */
61 uint16_t offBitmap;
62 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
63 pVCpu->cpum.GstCtx.tr.u64Base + RT_UOFFSETOF(X86TSS64, offIoBitmap));
64 if (rcStrict != VINF_SUCCESS)
65 {
66 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
67 return rcStrict;
68 }
69
70 /*
71 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
72 * describes the CPU actually reading two bytes regardless of whether the
73 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
74 */
75 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
76 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
77 * for instance sizeof(X86TSS32). */
78 if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */
79 {
80 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
81 offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit));
82 return iemRaiseGeneralProtectionFault0(pVCpu);
83 }
84
85 /*
86 * Read the necessary bits.
87 */
88 /** @todo Test the assertion in the intel manual that the CPU reads two
89 * bytes. The question is how this works wrt to #PF and #GP on the
90 * 2nd byte when it's not required. */
91 uint16_t bmBytes = UINT16_MAX;
92 rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit);
93 if (rcStrict != VINF_SUCCESS)
94 {
95 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
96 return rcStrict;
97 }
98
99 /*
100 * Perform the check.
101 */
102 uint16_t fPortMask = (1 << cbOperand) - 1;
103 bmBytes >>= (u16Port & 7);
104 if (bmBytes & fPortMask)
105 {
106 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
107 u16Port, cbOperand, bmBytes, fPortMask));
108 return iemRaiseGeneralProtectionFault0(pVCpu);
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115/**
116 * Checks if we are allowed to access the given I/O port, raising the
117 * appropriate exceptions if we aren't (or if the I/O bitmap is not
118 * accessible).
119 *
120 * @returns Strict VBox status code.
121 *
122 * @param pVCpu The cross context virtual CPU structure of the calling thread.
123 * @param u16Port The port number.
124 * @param cbOperand The operand size.
125 */
126DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbOperand)
127{
128 X86EFLAGS Efl;
129 Efl.u = IEMMISC_GET_EFL(pVCpu);
130 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
131 && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
132 || Efl.Bits.u1VM) )
133 return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand);
134 return VINF_SUCCESS;
135}
136
137
138#if 0
139/**
140 * Calculates the parity bit.
141 *
142 * @returns true if the bit is set, false if not.
143 * @param u8Result The least significant byte of the result.
144 */
145static bool iemHlpCalcParityFlag(uint8_t u8Result)
146{
147 /*
148 * Parity is set if the number of bits in the least significant byte of
149 * the result is even.
150 */
151 uint8_t cBits;
152 cBits = u8Result & 1; /* 0 */
153 u8Result >>= 1;
154 cBits += u8Result & 1;
155 u8Result >>= 1;
156 cBits += u8Result & 1;
157 u8Result >>= 1;
158 cBits += u8Result & 1;
159 u8Result >>= 1;
160 cBits += u8Result & 1; /* 4 */
161 u8Result >>= 1;
162 cBits += u8Result & 1;
163 u8Result >>= 1;
164 cBits += u8Result & 1;
165 u8Result >>= 1;
166 cBits += u8Result & 1;
167 return !(cBits & 1);
168}
169#endif /* not used */
170
171
172/**
173 * Updates the specified flags according to a 8-bit result.
174 *
175 * @param pVCpu The cross context virtual CPU structure of the calling thread.
176 * @param u8Result The result to set the flags according to.
177 * @param fToUpdate The flags to update.
178 * @param fUndefined The flags that are specified as undefined.
179 */
180static void iemHlpUpdateArithEFlagsU8(PVMCPU pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
181{
182 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
183 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
184 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
185 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
186}
187
188
189/**
190 * Updates the specified flags according to a 16-bit result.
191 *
192 * @param pVCpu The cross context virtual CPU structure of the calling thread.
193 * @param u16Result The result to set the flags according to.
194 * @param fToUpdate The flags to update.
195 * @param fUndefined The flags that are specified as undefined.
196 */
197static void iemHlpUpdateArithEFlagsU16(PVMCPU pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
198{
199 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
200 iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
201 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
202 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
203}
204
205
206/**
207 * Helper used by iret.
208 *
209 * @param pVCpu The cross context virtual CPU structure of the calling thread.
210 * @param uCpl The new CPL.
211 * @param pSReg Pointer to the segment register.
212 */
213static void iemHlpAdjustSelectorForNewCpl(PVMCPU pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
214{
215#ifdef VBOX_WITH_RAW_MODE_NOT_R0
216 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg))
217 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, pSReg);
218#else
219 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
220#endif
221 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
222
223 if ( uCpl > pSReg->Attr.n.u2Dpl
224 && pSReg->Attr.n.u1DescType /* code or data, not system */
225 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
226 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
227 iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
228}
229
230
231/**
232 * Indicates that we have modified the FPU state.
233 *
234 * @param pVCpu The cross context virtual CPU structure of the calling thread.
235 */
236DECLINLINE(void) iemHlpUsedFpu(PVMCPU pVCpu)
237{
238 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
239}
240
241/** @} */
242
243/** @name C Implementations
244 * @{
245 */
246
247/**
248 * Implements a 16-bit popa.
249 */
250IEM_CIMPL_DEF_0(iemCImpl_popa_16)
251{
252 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
253 RTGCPTR GCPtrLast = GCPtrStart + 15;
254 VBOXSTRICTRC rcStrict;
255
256 /*
257 * The docs are a bit hard to comprehend here, but it looks like we wrap
258 * around in real mode as long as none of the individual "popa" crosses the
259 * end of the stack segment. In protected mode we check the whole access
260 * in one go. For efficiency, only do the word-by-word thing if we're in
261 * danger of wrapping around.
262 */
263 /** @todo do popa boundary / wrap-around checks. */
264 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
265 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
266 {
267 /* word-by-word */
268 RTUINT64U TmpRsp;
269 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
270 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp);
271 if (rcStrict == VINF_SUCCESS)
272 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp);
273 if (rcStrict == VINF_SUCCESS)
274 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp);
275 if (rcStrict == VINF_SUCCESS)
276 {
277 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
278 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp);
279 }
280 if (rcStrict == VINF_SUCCESS)
281 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp);
282 if (rcStrict == VINF_SUCCESS)
283 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp);
284 if (rcStrict == VINF_SUCCESS)
285 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp);
286 if (rcStrict == VINF_SUCCESS)
287 {
288 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
289 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
290 }
291 }
292 else
293 {
294 uint16_t const *pa16Mem = NULL;
295 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
296 if (rcStrict == VINF_SUCCESS)
297 {
298 pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI];
299 pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI];
300 pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP];
301 /* skip sp */
302 pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX];
303 pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX];
304 pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX];
305 pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX];
306 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
307 if (rcStrict == VINF_SUCCESS)
308 {
309 iemRegAddToRsp(pVCpu, 16);
310 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
311 }
312 }
313 }
314 return rcStrict;
315}
316
317
318/**
319 * Implements a 32-bit popa.
320 */
321IEM_CIMPL_DEF_0(iemCImpl_popa_32)
322{
323 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
324 RTGCPTR GCPtrLast = GCPtrStart + 31;
325 VBOXSTRICTRC rcStrict;
326
327 /*
328 * The docs are a bit hard to comprehend here, but it looks like we wrap
329 * around in real mode as long as none of the individual "popa" crosses the
330 * end of the stack segment. In protected mode we check the whole access
331 * in one go. For efficiency, only do the word-by-word thing if we're in
332 * danger of wrapping around.
333 */
334 /** @todo do popa boundary / wrap-around checks. */
335 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
336 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
337 {
338 /* word-by-word */
339 RTUINT64U TmpRsp;
340 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
341 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp);
342 if (rcStrict == VINF_SUCCESS)
343 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp);
344 if (rcStrict == VINF_SUCCESS)
345 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp);
346 if (rcStrict == VINF_SUCCESS)
347 {
348 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
349 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp);
350 }
351 if (rcStrict == VINF_SUCCESS)
352 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp);
353 if (rcStrict == VINF_SUCCESS)
354 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp);
355 if (rcStrict == VINF_SUCCESS)
356 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp);
357 if (rcStrict == VINF_SUCCESS)
358 {
359#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
360 pVCpu->cpum.GstCtx.rdi &= UINT32_MAX;
361 pVCpu->cpum.GstCtx.rsi &= UINT32_MAX;
362 pVCpu->cpum.GstCtx.rbp &= UINT32_MAX;
363 pVCpu->cpum.GstCtx.rbx &= UINT32_MAX;
364 pVCpu->cpum.GstCtx.rdx &= UINT32_MAX;
365 pVCpu->cpum.GstCtx.rcx &= UINT32_MAX;
366 pVCpu->cpum.GstCtx.rax &= UINT32_MAX;
367#endif
368 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
369 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
370 }
371 }
372 else
373 {
374 uint32_t const *pa32Mem;
375 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
376 if (rcStrict == VINF_SUCCESS)
377 {
378 pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI];
379 pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI];
380 pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP];
381 /* skip esp */
382 pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX];
383 pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX];
384 pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX];
385 pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX];
386 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
387 if (rcStrict == VINF_SUCCESS)
388 {
389 iemRegAddToRsp(pVCpu, 32);
390 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
391 }
392 }
393 }
394 return rcStrict;
395}
396
397
398/**
399 * Implements a 16-bit pusha.
400 */
401IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
402{
403 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
404 RTGCPTR GCPtrBottom = GCPtrTop - 15;
405 VBOXSTRICTRC rcStrict;
406
407 /*
408 * The docs are a bit hard to comprehend here, but it looks like we wrap
409 * around in real mode as long as none of the individual "pushd" crosses the
410 * end of the stack segment. In protected mode we check the whole access
411 * in one go. For efficiency, only do the word-by-word thing if we're in
412 * danger of wrapping around.
413 */
414 /** @todo do pusha boundary / wrap-around checks. */
415 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
416 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
417 {
418 /* word-by-word */
419 RTUINT64U TmpRsp;
420 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
421 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp);
422 if (rcStrict == VINF_SUCCESS)
423 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp);
424 if (rcStrict == VINF_SUCCESS)
425 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp);
426 if (rcStrict == VINF_SUCCESS)
427 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp);
428 if (rcStrict == VINF_SUCCESS)
429 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp);
430 if (rcStrict == VINF_SUCCESS)
431 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp);
432 if (rcStrict == VINF_SUCCESS)
433 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp);
434 if (rcStrict == VINF_SUCCESS)
435 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp);
436 if (rcStrict == VINF_SUCCESS)
437 {
438 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
439 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
440 }
441 }
442 else
443 {
444 GCPtrBottom--;
445 uint16_t *pa16Mem = NULL;
446 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
447 if (rcStrict == VINF_SUCCESS)
448 {
449 pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di;
450 pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si;
451 pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp;
452 pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp;
453 pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx;
454 pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx;
455 pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx;
456 pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax;
457 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
458 if (rcStrict == VINF_SUCCESS)
459 {
460 iemRegSubFromRsp(pVCpu, 16);
461 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
462 }
463 }
464 }
465 return rcStrict;
466}
467
468
469/**
470 * Implements a 32-bit pusha.
471 */
472IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
473{
474 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
475 RTGCPTR GCPtrBottom = GCPtrTop - 31;
476 VBOXSTRICTRC rcStrict;
477
478 /*
479 * The docs are a bit hard to comprehend here, but it looks like we wrap
480 * around in real mode as long as none of the individual "pusha" crosses the
481 * end of the stack segment. In protected mode we check the whole access
482 * in one go. For efficiency, only do the word-by-word thing if we're in
483 * danger of wrapping around.
484 */
485 /** @todo do pusha boundary / wrap-around checks. */
486 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
487 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
488 {
489 /* word-by-word */
490 RTUINT64U TmpRsp;
491 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
492 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp);
493 if (rcStrict == VINF_SUCCESS)
494 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp);
495 if (rcStrict == VINF_SUCCESS)
496 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp);
497 if (rcStrict == VINF_SUCCESS)
498 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp);
499 if (rcStrict == VINF_SUCCESS)
500 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp);
501 if (rcStrict == VINF_SUCCESS)
502 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp);
503 if (rcStrict == VINF_SUCCESS)
504 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp);
505 if (rcStrict == VINF_SUCCESS)
506 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp);
507 if (rcStrict == VINF_SUCCESS)
508 {
509 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
510 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
511 }
512 }
513 else
514 {
515 GCPtrBottom--;
516 uint32_t *pa32Mem;
517 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
518 if (rcStrict == VINF_SUCCESS)
519 {
520 pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi;
521 pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi;
522 pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp;
523 pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp;
524 pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx;
525 pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx;
526 pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx;
527 pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax;
528 rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
529 if (rcStrict == VINF_SUCCESS)
530 {
531 iemRegSubFromRsp(pVCpu, 32);
532 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
533 }
534 }
535 }
536 return rcStrict;
537}
538
539
540/**
541 * Implements pushf.
542 *
543 *
544 * @param enmEffOpSize The effective operand size.
545 */
546IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
547{
548 VBOXSTRICTRC rcStrict;
549
550 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
551 {
552 Log2(("pushf: Guest intercept -> #VMEXIT\n"));
553 IEM_SVM_UPDATE_NRIP(pVCpu);
554 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
555 }
556
557 /*
558 * If we're in V8086 mode some care is required (which is why we're in
559 * doing this in a C implementation).
560 */
561 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
562 if ( (fEfl & X86_EFL_VM)
563 && X86_EFL_GET_IOPL(fEfl) != 3 )
564 {
565 Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE);
566 if ( enmEffOpSize != IEMMODE_16BIT
567 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
568 return iemRaiseGeneralProtectionFault0(pVCpu);
569 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
570 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
571 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
572 }
573 else
574 {
575
576 /*
577 * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
578 */
579 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
580
581 switch (enmEffOpSize)
582 {
583 case IEMMODE_16BIT:
584 AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
585 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
586 fEfl |= UINT16_C(0xf000);
587 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
588 break;
589 case IEMMODE_32BIT:
590 rcStrict = iemMemStackPushU32(pVCpu, fEfl);
591 break;
592 case IEMMODE_64BIT:
593 rcStrict = iemMemStackPushU64(pVCpu, fEfl);
594 break;
595 IEM_NOT_REACHED_DEFAULT_CASE_RET();
596 }
597 }
598 if (rcStrict != VINF_SUCCESS)
599 return rcStrict;
600
601 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
602 return VINF_SUCCESS;
603}
604
605
606/**
607 * Implements popf.
608 *
609 * @param enmEffOpSize The effective operand size.
610 */
611IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
612{
613 uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu);
614 VBOXSTRICTRC rcStrict;
615 uint32_t fEflNew;
616
617 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
618 {
619 Log2(("popf: Guest intercept -> #VMEXIT\n"));
620 IEM_SVM_UPDATE_NRIP(pVCpu);
621 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
622 }
623
624 /*
625 * V8086 is special as usual.
626 */
627 if (fEflOld & X86_EFL_VM)
628 {
629 /*
630 * Almost anything goes if IOPL is 3.
631 */
632 if (X86_EFL_GET_IOPL(fEflOld) == 3)
633 {
634 switch (enmEffOpSize)
635 {
636 case IEMMODE_16BIT:
637 {
638 uint16_t u16Value;
639 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
640 if (rcStrict != VINF_SUCCESS)
641 return rcStrict;
642 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
643 break;
644 }
645 case IEMMODE_32BIT:
646 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
647 if (rcStrict != VINF_SUCCESS)
648 return rcStrict;
649 break;
650 IEM_NOT_REACHED_DEFAULT_CASE_RET();
651 }
652
653 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
654 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
655 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
656 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
657 }
658 /*
659 * Interrupt flag virtualization with CR4.VME=1.
660 */
661 else if ( enmEffOpSize == IEMMODE_16BIT
662 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
663 {
664 uint16_t u16Value;
665 RTUINT64U TmpRsp;
666 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
667 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
668 if (rcStrict != VINF_SUCCESS)
669 return rcStrict;
670
671 /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
672 * or before? */
673 if ( ( (u16Value & X86_EFL_IF)
674 && (fEflOld & X86_EFL_VIP))
675 || (u16Value & X86_EFL_TF) )
676 return iemRaiseGeneralProtectionFault0(pVCpu);
677
678 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
679 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
680 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
681 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
682
683 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
684 }
685 else
686 return iemRaiseGeneralProtectionFault0(pVCpu);
687
688 }
689 /*
690 * Not in V8086 mode.
691 */
692 else
693 {
694 /* Pop the flags. */
695 switch (enmEffOpSize)
696 {
697 case IEMMODE_16BIT:
698 {
699 uint16_t u16Value;
700 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
701 if (rcStrict != VINF_SUCCESS)
702 return rcStrict;
703 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
704
705 /*
706 * Ancient CPU adjustments:
707 * - 8086, 80186, V20/30:
708 * Fixed bits 15:12 bits are not kept correctly internally, mostly for
709 * practical reasons (masking below). We add them when pushing flags.
710 * - 80286:
711 * The NT and IOPL flags cannot be popped from real mode and are
712 * therefore always zero (since a 286 can never exit from PM and
713 * their initial value is zero). This changed on a 386 and can
714 * therefore be used to detect 286 or 386 CPU in real mode.
715 */
716 if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
717 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
718 fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
719 break;
720 }
721 case IEMMODE_32BIT:
722 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
723 if (rcStrict != VINF_SUCCESS)
724 return rcStrict;
725 break;
726 case IEMMODE_64BIT:
727 {
728 uint64_t u64Value;
729 rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
730 if (rcStrict != VINF_SUCCESS)
731 return rcStrict;
732 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
733 break;
734 }
735 IEM_NOT_REACHED_DEFAULT_CASE_RET();
736 }
737
738 /* Merge them with the current flags. */
739 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
740 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
741 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
742 || pVCpu->iem.s.uCpl == 0)
743 {
744 fEflNew &= fPopfBits;
745 fEflNew |= ~fPopfBits & fEflOld;
746 }
747 else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
748 {
749 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
750 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
751 }
752 else
753 {
754 fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
755 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
756 }
757 }
758
759 /*
760 * Commit the flags.
761 */
762 Assert(fEflNew & RT_BIT_32(1));
763 IEMMISC_SET_EFL(pVCpu, fEflNew);
764 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
765
766 return VINF_SUCCESS;
767}
768
769
770/**
771 * Implements an indirect call.
772 *
773 * @param uNewPC The new program counter (RIP) value (loaded from the
774 * operand).
775 * @param enmEffOpSize The effective operand size.
776 */
777IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
778{
779 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
780 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
781 return iemRaiseGeneralProtectionFault0(pVCpu);
782
783 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
784 if (rcStrict != VINF_SUCCESS)
785 return rcStrict;
786
787 pVCpu->cpum.GstCtx.rip = uNewPC;
788 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
789
790#ifndef IEM_WITH_CODE_TLB
791 /* Flush the prefetch buffer. */
792 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
793#endif
794 return VINF_SUCCESS;
795}
796
797
798/**
799 * Implements a 16-bit relative call.
800 *
801 * @param offDisp The displacment offset.
802 */
803IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
804{
805 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
806 uint16_t uNewPC = uOldPC + offDisp;
807 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
808 return iemRaiseGeneralProtectionFault0(pVCpu);
809
810 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
811 if (rcStrict != VINF_SUCCESS)
812 return rcStrict;
813
814 pVCpu->cpum.GstCtx.rip = uNewPC;
815 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
816
817#ifndef IEM_WITH_CODE_TLB
818 /* Flush the prefetch buffer. */
819 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
820#endif
821 return VINF_SUCCESS;
822}
823
824
825/**
826 * Implements a 32-bit indirect call.
827 *
828 * @param uNewPC The new program counter (RIP) value (loaded from the
829 * operand).
830 * @param enmEffOpSize The effective operand size.
831 */
832IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
833{
834 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
835 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
836 return iemRaiseGeneralProtectionFault0(pVCpu);
837
838 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
839 if (rcStrict != VINF_SUCCESS)
840 return rcStrict;
841
842#if defined(IN_RING3) && defined(VBOX_WITH_RAW_MODE) && defined(VBOX_WITH_CALL_RECORD)
843 /*
844 * CASM hook for recording interesting indirect calls.
845 */
846 if ( !pVCpu->cpum.GstCtx.eflags.Bits.u1IF
847 && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
848 && !CSAMIsEnabled(pVCpu->CTX_SUFF(pVM))
849 && pVCpu->iem.s.uCpl == 0)
850 {
851 EMSTATE enmState = EMGetState(pVCpu);
852 if ( enmState == EMSTATE_IEM_THEN_REM
853 || enmState == EMSTATE_IEM
854 || enmState == EMSTATE_REM)
855 CSAMR3RecordCallAddress(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.eip);
856 }
857#endif
858
859 pVCpu->cpum.GstCtx.rip = uNewPC;
860 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
861
862#ifndef IEM_WITH_CODE_TLB
863 /* Flush the prefetch buffer. */
864 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
865#endif
866 return VINF_SUCCESS;
867}
868
869
870/**
871 * Implements a 32-bit relative call.
872 *
873 * @param offDisp The displacment offset.
874 */
875IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
876{
877 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
878 uint32_t uNewPC = uOldPC + offDisp;
879 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
880 return iemRaiseGeneralProtectionFault0(pVCpu);
881
882 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
883 if (rcStrict != VINF_SUCCESS)
884 return rcStrict;
885
886 pVCpu->cpum.GstCtx.rip = uNewPC;
887 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
888
889#ifndef IEM_WITH_CODE_TLB
890 /* Flush the prefetch buffer. */
891 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
892#endif
893 return VINF_SUCCESS;
894}
895
896
897/**
898 * Implements a 64-bit indirect call.
899 *
900 * @param uNewPC The new program counter (RIP) value (loaded from the
901 * operand).
902 * @param enmEffOpSize The effective operand size.
903 */
904IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
905{
906 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
907 if (!IEM_IS_CANONICAL(uNewPC))
908 return iemRaiseGeneralProtectionFault0(pVCpu);
909
910 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
911 if (rcStrict != VINF_SUCCESS)
912 return rcStrict;
913
914 pVCpu->cpum.GstCtx.rip = uNewPC;
915 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
916
917#ifndef IEM_WITH_CODE_TLB
918 /* Flush the prefetch buffer. */
919 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
920#endif
921 return VINF_SUCCESS;
922}
923
924
925/**
926 * Implements a 64-bit relative call.
927 *
928 * @param offDisp The displacment offset.
929 */
930IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
931{
932 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
933 uint64_t uNewPC = uOldPC + offDisp;
934 if (!IEM_IS_CANONICAL(uNewPC))
935 return iemRaiseNotCanonical(pVCpu);
936
937 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
938 if (rcStrict != VINF_SUCCESS)
939 return rcStrict;
940
941 pVCpu->cpum.GstCtx.rip = uNewPC;
942 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
943
944#ifndef IEM_WITH_CODE_TLB
945 /* Flush the prefetch buffer. */
946 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
947#endif
948
949 return VINF_SUCCESS;
950}
951
952
953/**
954 * Implements far jumps and calls thru task segments (TSS).
955 *
956 * @param uSel The selector.
957 * @param enmBranch The kind of branching we're performing.
958 * @param enmEffOpSize The effective operand size.
959 * @param pDesc The descriptor corresponding to @a uSel. The type is
960 * task gate.
961 */
962IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
963{
964#ifndef IEM_IMPLEMENTS_TASKSWITCH
965 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
966#else
967 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
968 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
969 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
970 RT_NOREF_PV(enmEffOpSize);
971 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
972
973 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
974 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
975 {
976 Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
977 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
978 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
979 }
980
981 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
982 * far calls (see iemCImpl_callf). Most likely in both cases it should be
983 * checked here, need testcases. */
984 if (!pDesc->Legacy.Gen.u1Present)
985 {
986 Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
987 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
988 }
989
990 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
991 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
992 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
993#endif
994}
995
996
997/**
998 * Implements far jumps and calls thru task gates.
999 *
1000 * @param uSel The selector.
1001 * @param enmBranch The kind of branching we're performing.
1002 * @param enmEffOpSize The effective operand size.
1003 * @param pDesc The descriptor corresponding to @a uSel. The type is
1004 * task gate.
1005 */
1006IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1007{
1008#ifndef IEM_IMPLEMENTS_TASKSWITCH
1009 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1010#else
1011 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1012 RT_NOREF_PV(enmEffOpSize);
1013 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1014
1015 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1016 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1017 {
1018 Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1019 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1020 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1021 }
1022
1023 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1024 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1025 * checked here, need testcases. */
1026 if (!pDesc->Legacy.Gen.u1Present)
1027 {
1028 Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
1029 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1030 }
1031
1032 /*
1033 * Fetch the new TSS descriptor from the GDT.
1034 */
1035 RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
1036 if (uSelTss & X86_SEL_LDT)
1037 {
1038 Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
1039 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1040 }
1041
1042 IEMSELDESC TssDesc;
1043 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
1044 if (rcStrict != VINF_SUCCESS)
1045 return rcStrict;
1046
1047 if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
1048 {
1049 Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
1050 TssDesc.Legacy.Gate.u4Type));
1051 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1052 }
1053
1054 if (!TssDesc.Legacy.Gate.u1Present)
1055 {
1056 Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
1057 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
1058 }
1059
1060 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1061 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1062 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
1063#endif
1064}
1065
1066
1067/**
1068 * Implements far jumps and calls thru call gates.
1069 *
1070 * @param uSel The selector.
1071 * @param enmBranch The kind of branching we're performing.
1072 * @param enmEffOpSize The effective operand size.
1073 * @param pDesc The descriptor corresponding to @a uSel. The type is
1074 * call gate.
1075 */
1076IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1077{
1078#define IEM_IMPLEMENTS_CALLGATE
1079#ifndef IEM_IMPLEMENTS_CALLGATE
1080 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1081#else
1082 RT_NOREF_PV(enmEffOpSize);
1083 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1084
1085 /* NB: Far jumps can only do intra-privilege transfers. Far calls support
1086 * inter-privilege calls and are much more complex.
1087 *
1088 * NB: 64-bit call gate has the same type as a 32-bit call gate! If
1089 * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
1090 * must be 16-bit or 32-bit.
1091 */
1092 /** @todo: effective operand size is probably irrelevant here, only the
1093 * call gate bitness matters??
1094 */
1095 VBOXSTRICTRC rcStrict;
1096 RTPTRUNION uPtrRet;
1097 uint64_t uNewRsp;
1098 uint64_t uNewRip;
1099 uint64_t u64Base;
1100 uint32_t cbLimit;
1101 RTSEL uNewCS;
1102 IEMSELDESC DescCS;
1103
1104 AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
1105 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1106 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
1107 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
1108
1109 /* Determine the new instruction pointer from the gate descriptor. */
1110 uNewRip = pDesc->Legacy.Gate.u16OffsetLow
1111 | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
1112 | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
1113
1114 /* Perform DPL checks on the gate descriptor. */
1115 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1116 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1117 {
1118 Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1119 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1120 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1121 }
1122
1123 /** @todo does this catch NULL selectors, too? */
1124 if (!pDesc->Legacy.Gen.u1Present)
1125 {
1126 Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
1127 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1128 }
1129
1130 /*
1131 * Fetch the target CS descriptor from the GDT or LDT.
1132 */
1133 uNewCS = pDesc->Legacy.Gate.u16Sel;
1134 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
1135 if (rcStrict != VINF_SUCCESS)
1136 return rcStrict;
1137
1138 /* Target CS must be a code selector. */
1139 if ( !DescCS.Legacy.Gen.u1DescType
1140 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1141 {
1142 Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1143 uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
1144 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1145 }
1146
1147 /* Privilege checks on target CS. */
1148 if (enmBranch == IEMBRANCH_JUMP)
1149 {
1150 if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1151 {
1152 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1153 {
1154 Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1155 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1156 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1157 }
1158 }
1159 else
1160 {
1161 if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
1162 {
1163 Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1164 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1165 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1166 }
1167 }
1168 }
1169 else
1170 {
1171 Assert(enmBranch == IEMBRANCH_CALL);
1172 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1173 {
1174 Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1175 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1176 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
1177 }
1178 }
1179
1180 /* Additional long mode checks. */
1181 if (IEM_IS_LONG_MODE(pVCpu))
1182 {
1183 if (!DescCS.Legacy.Gen.u1Long)
1184 {
1185 Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
1186 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1187 }
1188
1189 /* L vs D. */
1190 if ( DescCS.Legacy.Gen.u1Long
1191 && DescCS.Legacy.Gen.u1DefBig)
1192 {
1193 Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
1194 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1195 }
1196 }
1197
1198 if (!DescCS.Legacy.Gate.u1Present)
1199 {
1200 Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
1201 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
1202 }
1203
1204 if (enmBranch == IEMBRANCH_JUMP)
1205 {
1206 /** @todo: This is very similar to regular far jumps; merge! */
1207 /* Jumps are fairly simple... */
1208
1209 /* Chop the high bits off if 16-bit gate (Intel says so). */
1210 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1211 uNewRip = (uint16_t)uNewRip;
1212
1213 /* Limit check for non-long segments. */
1214 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1215 if (DescCS.Legacy.Gen.u1Long)
1216 u64Base = 0;
1217 else
1218 {
1219 if (uNewRip > cbLimit)
1220 {
1221 Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
1222 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1223 }
1224 u64Base = X86DESC_BASE(&DescCS.Legacy);
1225 }
1226
1227 /* Canonical address check. */
1228 if (!IEM_IS_CANONICAL(uNewRip))
1229 {
1230 Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1231 return iemRaiseNotCanonical(pVCpu);
1232 }
1233
1234 /*
1235 * Ok, everything checked out fine. Now set the accessed bit before
1236 * committing the result into CS, CSHID and RIP.
1237 */
1238 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1239 {
1240 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1241 if (rcStrict != VINF_SUCCESS)
1242 return rcStrict;
1243 /** @todo check what VT-x and AMD-V does. */
1244 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1245 }
1246
1247 /* commit */
1248 pVCpu->cpum.GstCtx.rip = uNewRip;
1249 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1250 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1251 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1252 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1253 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1254 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1255 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1256 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1257 }
1258 else
1259 {
1260 Assert(enmBranch == IEMBRANCH_CALL);
1261 /* Calls are much more complicated. */
1262
1263 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
1264 {
1265 uint16_t offNewStack; /* Offset of new stack in TSS. */
1266 uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
1267 uint8_t uNewCSDpl;
1268 uint8_t cbWords;
1269 RTSEL uNewSS;
1270 RTSEL uOldSS;
1271 uint64_t uOldRsp;
1272 IEMSELDESC DescSS;
1273 RTPTRUNION uPtrTSS;
1274 RTGCPTR GCPtrTSS;
1275 RTPTRUNION uPtrParmWds;
1276 RTGCPTR GCPtrParmWds;
1277
1278 /* More privilege. This is the fun part. */
1279 Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
1280
1281 /*
1282 * Determine new SS:rSP from the TSS.
1283 */
1284 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
1285
1286 /* Figure out where the new stack pointer is stored in the TSS. */
1287 uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
1288 if (!IEM_IS_LONG_MODE(pVCpu))
1289 {
1290 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1291 {
1292 offNewStack = RT_UOFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
1293 cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
1294 }
1295 else
1296 {
1297 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1298 offNewStack = RT_UOFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
1299 cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
1300 }
1301 }
1302 else
1303 {
1304 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1305 offNewStack = RT_UOFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
1306 cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
1307 }
1308
1309 /* Check against TSS limit. */
1310 if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit)
1311 {
1312 Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit));
1313 return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel);
1314 }
1315
1316 GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack;
1317 rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
1318 if (rcStrict != VINF_SUCCESS)
1319 {
1320 Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1321 return rcStrict;
1322 }
1323
1324 if (!IEM_IS_LONG_MODE(pVCpu))
1325 {
1326 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1327 {
1328 uNewRsp = uPtrTSS.pu32[0];
1329 uNewSS = uPtrTSS.pu16[2];
1330 }
1331 else
1332 {
1333 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1334 uNewRsp = uPtrTSS.pu16[0];
1335 uNewSS = uPtrTSS.pu16[1];
1336 }
1337 }
1338 else
1339 {
1340 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1341 /* SS will be a NULL selector, but that's valid. */
1342 uNewRsp = uPtrTSS.pu64[0];
1343 uNewSS = uNewCSDpl;
1344 }
1345
1346 /* Done with the TSS now. */
1347 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
1348 if (rcStrict != VINF_SUCCESS)
1349 {
1350 Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1351 return rcStrict;
1352 }
1353
1354 /* Only used outside of long mode. */
1355 cbWords = pDesc->Legacy.Gate.u5ParmCount;
1356
1357 /* If EFER.LMA is 0, there's extra work to do. */
1358 if (!IEM_IS_LONG_MODE(pVCpu))
1359 {
1360 if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
1361 {
1362 Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
1363 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1364 }
1365
1366 /* Grab the new SS descriptor. */
1367 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1368 if (rcStrict != VINF_SUCCESS)
1369 return rcStrict;
1370
1371 /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
1372 if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
1373 || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
1374 {
1375 Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
1376 uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
1377 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1378 }
1379
1380 /* Ensure new SS is a writable data segment. */
1381 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
1382 {
1383 Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
1384 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1385 }
1386
1387 if (!DescSS.Legacy.Gen.u1Present)
1388 {
1389 Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
1390 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
1391 }
1392 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1393 cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
1394 else
1395 cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
1396 }
1397 else
1398 {
1399 /* Just grab the new (NULL) SS descriptor. */
1400 /** @todo testcase: Check whether the zero GDT entry is actually loaded here
1401 * like we do... */
1402 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1403 if (rcStrict != VINF_SUCCESS)
1404 return rcStrict;
1405
1406 cbNewStack = sizeof(uint64_t) * 4;
1407 }
1408
1409 /** @todo: According to Intel, new stack is checked for enough space first,
1410 * then switched. According to AMD, the stack is switched first and
1411 * then pushes might fault!
1412 * NB: OS/2 Warp 3/4 actively relies on the fact that possible
1413 * incoming stack #PF happens before actual stack switch. AMD is
1414 * either lying or implicitly assumes that new state is committed
1415 * only if and when an instruction doesn't fault.
1416 */
1417
1418 /** @todo: According to AMD, CS is loaded first, then SS.
1419 * According to Intel, it's the other way around!?
1420 */
1421
1422 /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
1423
1424 /* Set the accessed bit before committing new SS. */
1425 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1426 {
1427 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
1428 if (rcStrict != VINF_SUCCESS)
1429 return rcStrict;
1430 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1431 }
1432
1433 /* Remember the old SS:rSP and their linear address. */
1434 uOldSS = pVCpu->cpum.GstCtx.ss.Sel;
1435 uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp;
1436
1437 GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp;
1438
1439 /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
1440 or #PF, the former is not implemented in this workaround. */
1441 /** @todo Proper fix callgate target stack exceptions. */
1442 /** @todo testcase: Cover callgates with partially or fully inaccessible
1443 * target stacks. */
1444 void *pvNewFrame;
1445 RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
1446 rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW);
1447 if (rcStrict != VINF_SUCCESS)
1448 {
1449 Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
1450 return rcStrict;
1451 }
1452 rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
1453 if (rcStrict != VINF_SUCCESS)
1454 {
1455 Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1456 return rcStrict;
1457 }
1458
1459 /* Commit new SS:rSP. */
1460 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
1461 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
1462 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
1463 pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
1464 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
1465 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1466 pVCpu->cpum.GstCtx.rsp = uNewRsp;
1467 pVCpu->iem.s.uCpl = uNewCSDpl;
1468 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
1469 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
1470
1471 /* At this point the stack access must not fail because new state was already committed. */
1472 /** @todo this can still fail due to SS.LIMIT not check. */
1473 rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
1474 &uPtrRet.pv, &uNewRsp);
1475 AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
1476 VERR_INTERNAL_ERROR_5);
1477
1478 if (!IEM_IS_LONG_MODE(pVCpu))
1479 {
1480 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1481 {
1482 /* Push the old CS:rIP. */
1483 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1484 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1485
1486 if (cbWords)
1487 {
1488 /* Map the relevant chunk of the old stack. */
1489 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1490 if (rcStrict != VINF_SUCCESS)
1491 {
1492 Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1493 return rcStrict;
1494 }
1495
1496 /* Copy the parameter (d)words. */
1497 for (int i = 0; i < cbWords; ++i)
1498 uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
1499
1500 /* Unmap the old stack. */
1501 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1502 if (rcStrict != VINF_SUCCESS)
1503 {
1504 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1505 return rcStrict;
1506 }
1507 }
1508
1509 /* Push the old SS:rSP. */
1510 uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
1511 uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
1512 }
1513 else
1514 {
1515 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1516
1517 /* Push the old CS:rIP. */
1518 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1519 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1520
1521 if (cbWords)
1522 {
1523 /* Map the relevant chunk of the old stack. */
1524 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1525 if (rcStrict != VINF_SUCCESS)
1526 {
1527 Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1528 return rcStrict;
1529 }
1530
1531 /* Copy the parameter words. */
1532 for (int i = 0; i < cbWords; ++i)
1533 uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
1534
1535 /* Unmap the old stack. */
1536 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1537 if (rcStrict != VINF_SUCCESS)
1538 {
1539 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1540 return rcStrict;
1541 }
1542 }
1543
1544 /* Push the old SS:rSP. */
1545 uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
1546 uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
1547 }
1548 }
1549 else
1550 {
1551 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1552
1553 /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
1554 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1555 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1556 uPtrRet.pu64[2] = uOldRsp;
1557 uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
1558 }
1559
1560 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1561 if (rcStrict != VINF_SUCCESS)
1562 {
1563 Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1564 return rcStrict;
1565 }
1566
1567 /* Chop the high bits off if 16-bit gate (Intel says so). */
1568 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1569 uNewRip = (uint16_t)uNewRip;
1570
1571 /* Limit / canonical check. */
1572 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1573 if (!IEM_IS_LONG_MODE(pVCpu))
1574 {
1575 if (uNewRip > cbLimit)
1576 {
1577 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1578 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1579 }
1580 u64Base = X86DESC_BASE(&DescCS.Legacy);
1581 }
1582 else
1583 {
1584 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1585 if (!IEM_IS_CANONICAL(uNewRip))
1586 {
1587 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1588 return iemRaiseNotCanonical(pVCpu);
1589 }
1590 u64Base = 0;
1591 }
1592
1593 /*
1594 * Now set the accessed bit before
1595 * writing the return address to the stack and committing the result into
1596 * CS, CSHID and RIP.
1597 */
1598 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1599 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1600 {
1601 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1602 if (rcStrict != VINF_SUCCESS)
1603 return rcStrict;
1604 /** @todo check what VT-x and AMD-V does. */
1605 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1606 }
1607
1608 /* Commit new CS:rIP. */
1609 pVCpu->cpum.GstCtx.rip = uNewRip;
1610 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1611 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1612 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1613 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1614 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1615 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1616 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1617 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1618 }
1619 else
1620 {
1621 /* Same privilege. */
1622 /** @todo: This is very similar to regular far calls; merge! */
1623
1624 /* Check stack first - may #SS(0). */
1625 /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
1626 * 16-bit code cause a two or four byte CS to be pushed? */
1627 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
1628 IEM_IS_LONG_MODE(pVCpu) ? 8+8
1629 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
1630 &uPtrRet.pv, &uNewRsp);
1631 if (rcStrict != VINF_SUCCESS)
1632 return rcStrict;
1633
1634 /* Chop the high bits off if 16-bit gate (Intel says so). */
1635 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1636 uNewRip = (uint16_t)uNewRip;
1637
1638 /* Limit / canonical check. */
1639 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1640 if (!IEM_IS_LONG_MODE(pVCpu))
1641 {
1642 if (uNewRip > cbLimit)
1643 {
1644 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1645 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1646 }
1647 u64Base = X86DESC_BASE(&DescCS.Legacy);
1648 }
1649 else
1650 {
1651 if (!IEM_IS_CANONICAL(uNewRip))
1652 {
1653 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1654 return iemRaiseNotCanonical(pVCpu);
1655 }
1656 u64Base = 0;
1657 }
1658
1659 /*
1660 * Now set the accessed bit before
1661 * writing the return address to the stack and committing the result into
1662 * CS, CSHID and RIP.
1663 */
1664 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1665 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1666 {
1667 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1668 if (rcStrict != VINF_SUCCESS)
1669 return rcStrict;
1670 /** @todo check what VT-x and AMD-V does. */
1671 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1672 }
1673
1674 /* stack */
1675 if (!IEM_IS_LONG_MODE(pVCpu))
1676 {
1677 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1678 {
1679 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1680 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1681 }
1682 else
1683 {
1684 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1685 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1686 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1687 }
1688 }
1689 else
1690 {
1691 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1692 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1693 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1694 }
1695
1696 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1697 if (rcStrict != VINF_SUCCESS)
1698 return rcStrict;
1699
1700 /* commit */
1701 pVCpu->cpum.GstCtx.rip = uNewRip;
1702 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1703 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1704 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1705 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1706 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1707 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1708 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1709 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1710 }
1711 }
1712 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1713
1714 /* Flush the prefetch buffer. */
1715# ifdef IEM_WITH_CODE_TLB
1716 pVCpu->iem.s.pbInstrBuf = NULL;
1717# else
1718 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1719# endif
1720 return VINF_SUCCESS;
1721#endif
1722}
1723
1724
1725/**
1726 * Implements far jumps and calls thru system selectors.
1727 *
1728 * @param uSel The selector.
1729 * @param enmBranch The kind of branching we're performing.
1730 * @param enmEffOpSize The effective operand size.
1731 * @param pDesc The descriptor corresponding to @a uSel.
1732 */
1733IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1734{
1735 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1736 Assert((uSel & X86_SEL_MASK_OFF_RPL));
1737 IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1738
1739 if (IEM_IS_LONG_MODE(pVCpu))
1740 switch (pDesc->Legacy.Gen.u4Type)
1741 {
1742 case AMD64_SEL_TYPE_SYS_CALL_GATE:
1743 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1744
1745 default:
1746 case AMD64_SEL_TYPE_SYS_LDT:
1747 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
1748 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
1749 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
1750 case AMD64_SEL_TYPE_SYS_INT_GATE:
1751 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1752 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1753 }
1754
1755 switch (pDesc->Legacy.Gen.u4Type)
1756 {
1757 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1758 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1759 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1760
1761 case X86_SEL_TYPE_SYS_TASK_GATE:
1762 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
1763
1764 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1765 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1766 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
1767
1768 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1769 Log(("branch %04x -> busy 286 TSS\n", uSel));
1770 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1771
1772 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1773 Log(("branch %04x -> busy 386 TSS\n", uSel));
1774 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1775
1776 default:
1777 case X86_SEL_TYPE_SYS_LDT:
1778 case X86_SEL_TYPE_SYS_286_INT_GATE:
1779 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1780 case X86_SEL_TYPE_SYS_386_INT_GATE:
1781 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1782 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1783 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1784 }
1785}
1786
1787
1788/**
1789 * Implements far jumps.
1790 *
1791 * @param uSel The selector.
1792 * @param offSeg The segment offset.
1793 * @param enmEffOpSize The effective operand size.
1794 */
1795IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1796{
1797 NOREF(cbInstr);
1798 Assert(offSeg <= UINT32_MAX);
1799
1800 /*
1801 * Real mode and V8086 mode are easy. The only snag seems to be that
1802 * CS.limit doesn't change and the limit check is done against the current
1803 * limit.
1804 */
1805 /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August
1806 * 1998) that up to and including the Intel 486, far control
1807 * transfers in real mode set default CS attributes (0x93) and also
1808 * set a 64K segment limit. Starting with the Pentium, the
1809 * attributes and limit are left alone but the access rights are
1810 * ignored. We only implement the Pentium+ behavior.
1811 * */
1812 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1813 {
1814 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1815 if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit)
1816 {
1817 Log(("iemCImpl_FarJmp: 16-bit limit\n"));
1818 return iemRaiseGeneralProtectionFault0(pVCpu);
1819 }
1820
1821 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1822 pVCpu->cpum.GstCtx.rip = offSeg;
1823 else
1824 pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX;
1825 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1826 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1827 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1828 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1829 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1830 return VINF_SUCCESS;
1831 }
1832
1833 /*
1834 * Protected mode. Need to parse the specified descriptor...
1835 */
1836 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1837 {
1838 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1839 return iemRaiseGeneralProtectionFault0(pVCpu);
1840 }
1841
1842 /* Fetch the descriptor. */
1843 IEMSELDESC Desc;
1844 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
1845 if (rcStrict != VINF_SUCCESS)
1846 return rcStrict;
1847
1848 /* Is it there? */
1849 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1850 {
1851 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1852 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1853 }
1854
1855 /*
1856 * Deal with it according to its type. We do the standard code selectors
1857 * here and dispatch the system selectors to worker functions.
1858 */
1859 if (!Desc.Legacy.Gen.u1DescType)
1860 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1861
1862 /* Only code segments. */
1863 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1864 {
1865 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1866 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1867 }
1868
1869 /* L vs D. */
1870 if ( Desc.Legacy.Gen.u1Long
1871 && Desc.Legacy.Gen.u1DefBig
1872 && IEM_IS_LONG_MODE(pVCpu))
1873 {
1874 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1875 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1876 }
1877
1878 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1879 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1880 {
1881 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
1882 {
1883 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1884 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1885 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1886 }
1887 }
1888 else
1889 {
1890 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
1891 {
1892 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1893 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1894 }
1895 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
1896 {
1897 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
1898 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1899 }
1900 }
1901
1902 /* Chop the high bits if 16-bit (Intel says so). */
1903 if (enmEffOpSize == IEMMODE_16BIT)
1904 offSeg &= UINT16_MAX;
1905
1906 /* Limit check. (Should alternatively check for non-canonical addresses
1907 here, but that is ruled out by offSeg being 32-bit, right?) */
1908 uint64_t u64Base;
1909 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1910 if (Desc.Legacy.Gen.u1Long)
1911 u64Base = 0;
1912 else
1913 {
1914 if (offSeg > cbLimit)
1915 {
1916 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1917 /** @todo: Intel says this is #GP(0)! */
1918 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1919 }
1920 u64Base = X86DESC_BASE(&Desc.Legacy);
1921 }
1922
1923 /*
1924 * Ok, everything checked out fine. Now set the accessed bit before
1925 * committing the result into CS, CSHID and RIP.
1926 */
1927 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1928 {
1929 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
1930 if (rcStrict != VINF_SUCCESS)
1931 return rcStrict;
1932 /** @todo check what VT-x and AMD-V does. */
1933 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1934 }
1935
1936 /* commit */
1937 pVCpu->cpum.GstCtx.rip = offSeg;
1938 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1939 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1940 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1941 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1942 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1943 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1944 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1945 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1946 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1947 /** @todo check if the hidden bits are loaded correctly for 64-bit
1948 * mode. */
1949
1950 /* Flush the prefetch buffer. */
1951#ifdef IEM_WITH_CODE_TLB
1952 pVCpu->iem.s.pbInstrBuf = NULL;
1953#else
1954 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1955#endif
1956
1957 return VINF_SUCCESS;
1958}
1959
1960
1961/**
1962 * Implements far calls.
1963 *
1964 * This very similar to iemCImpl_FarJmp.
1965 *
1966 * @param uSel The selector.
1967 * @param offSeg The segment offset.
1968 * @param enmEffOpSize The operand size (in case we need it).
1969 */
1970IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1971{
1972 VBOXSTRICTRC rcStrict;
1973 uint64_t uNewRsp;
1974 RTPTRUNION uPtrRet;
1975
1976 /*
1977 * Real mode and V8086 mode are easy. The only snag seems to be that
1978 * CS.limit doesn't change and the limit check is done against the current
1979 * limit.
1980 */
1981 /** @todo See comment for similar code in iemCImpl_FarJmp */
1982 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1983 {
1984 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1985
1986 /* Check stack first - may #SS(0). */
1987 rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
1988 &uPtrRet.pv, &uNewRsp);
1989 if (rcStrict != VINF_SUCCESS)
1990 return rcStrict;
1991
1992 /* Check the target address range. */
1993 if (offSeg > UINT32_MAX)
1994 return iemRaiseGeneralProtectionFault0(pVCpu);
1995
1996 /* Everything is fine, push the return address. */
1997 if (enmEffOpSize == IEMMODE_16BIT)
1998 {
1999 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2000 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2001 }
2002 else
2003 {
2004 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2005 uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel;
2006 }
2007 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2008 if (rcStrict != VINF_SUCCESS)
2009 return rcStrict;
2010
2011 /* Branch. */
2012 pVCpu->cpum.GstCtx.rip = offSeg;
2013 pVCpu->cpum.GstCtx.cs.Sel = uSel;
2014 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
2015 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2016 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
2017 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2018 return VINF_SUCCESS;
2019 }
2020
2021 /*
2022 * Protected mode. Need to parse the specified descriptor...
2023 */
2024 if (!(uSel & X86_SEL_MASK_OFF_RPL))
2025 {
2026 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
2027 return iemRaiseGeneralProtectionFault0(pVCpu);
2028 }
2029
2030 /* Fetch the descriptor. */
2031 IEMSELDESC Desc;
2032 rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
2033 if (rcStrict != VINF_SUCCESS)
2034 return rcStrict;
2035
2036 /*
2037 * Deal with it according to its type. We do the standard code selectors
2038 * here and dispatch the system selectors to worker functions.
2039 */
2040 if (!Desc.Legacy.Gen.u1DescType)
2041 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
2042
2043 /* Only code segments. */
2044 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2045 {
2046 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
2047 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2048 }
2049
2050 /* L vs D. */
2051 if ( Desc.Legacy.Gen.u1Long
2052 && Desc.Legacy.Gen.u1DefBig
2053 && IEM_IS_LONG_MODE(pVCpu))
2054 {
2055 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
2056 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2057 }
2058
2059 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
2060 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2061 {
2062 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
2063 {
2064 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
2065 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2066 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2067 }
2068 }
2069 else
2070 {
2071 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
2072 {
2073 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2074 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2075 }
2076 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
2077 {
2078 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
2079 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2080 }
2081 }
2082
2083 /* Is it there? */
2084 if (!Desc.Legacy.Gen.u1Present)
2085 {
2086 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
2087 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
2088 }
2089
2090 /* Check stack first - may #SS(0). */
2091 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
2092 * 16-bit code cause a two or four byte CS to be pushed? */
2093 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
2094 enmEffOpSize == IEMMODE_64BIT ? 8+8
2095 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2096 &uPtrRet.pv, &uNewRsp);
2097 if (rcStrict != VINF_SUCCESS)
2098 return rcStrict;
2099
2100 /* Chop the high bits if 16-bit (Intel says so). */
2101 if (enmEffOpSize == IEMMODE_16BIT)
2102 offSeg &= UINT16_MAX;
2103
2104 /* Limit / canonical check. */
2105 uint64_t u64Base;
2106 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
2107 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2108 {
2109 if (!IEM_IS_CANONICAL(offSeg))
2110 {
2111 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
2112 return iemRaiseNotCanonical(pVCpu);
2113 }
2114 u64Base = 0;
2115 }
2116 else
2117 {
2118 if (offSeg > cbLimit)
2119 {
2120 Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
2121 /** @todo: Intel says this is #GP(0)! */
2122 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2123 }
2124 u64Base = X86DESC_BASE(&Desc.Legacy);
2125 }
2126
2127 /*
2128 * Now set the accessed bit before
2129 * writing the return address to the stack and committing the result into
2130 * CS, CSHID and RIP.
2131 */
2132 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2133 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2134 {
2135 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
2136 if (rcStrict != VINF_SUCCESS)
2137 return rcStrict;
2138 /** @todo check what VT-x and AMD-V does. */
2139 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2140 }
2141
2142 /* stack */
2143 if (enmEffOpSize == IEMMODE_16BIT)
2144 {
2145 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2146 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2147 }
2148 else if (enmEffOpSize == IEMMODE_32BIT)
2149 {
2150 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2151 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
2152 }
2153 else
2154 {
2155 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
2156 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
2157 }
2158 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2159 if (rcStrict != VINF_SUCCESS)
2160 return rcStrict;
2161
2162 /* commit */
2163 pVCpu->cpum.GstCtx.rip = offSeg;
2164 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
2165 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
2166 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
2167 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2168 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
2169 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
2170 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2171 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2172 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2173 /** @todo check if the hidden bits are loaded correctly for 64-bit
2174 * mode. */
2175
2176 /* Flush the prefetch buffer. */
2177#ifdef IEM_WITH_CODE_TLB
2178 pVCpu->iem.s.pbInstrBuf = NULL;
2179#else
2180 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2181#endif
2182 return VINF_SUCCESS;
2183}
2184
2185
2186/**
2187 * Implements retf.
2188 *
2189 * @param enmEffOpSize The effective operand size.
2190 * @param cbPop The amount of arguments to pop from the stack
2191 * (bytes).
2192 */
2193IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2194{
2195 VBOXSTRICTRC rcStrict;
2196 RTCPTRUNION uPtrFrame;
2197 uint64_t uNewRsp;
2198 uint64_t uNewRip;
2199 uint16_t uNewCs;
2200 NOREF(cbInstr);
2201
2202 /*
2203 * Read the stack values first.
2204 */
2205 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
2206 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
2207 rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2208 if (rcStrict != VINF_SUCCESS)
2209 return rcStrict;
2210 if (enmEffOpSize == IEMMODE_16BIT)
2211 {
2212 uNewRip = uPtrFrame.pu16[0];
2213 uNewCs = uPtrFrame.pu16[1];
2214 }
2215 else if (enmEffOpSize == IEMMODE_32BIT)
2216 {
2217 uNewRip = uPtrFrame.pu32[0];
2218 uNewCs = uPtrFrame.pu16[2];
2219 }
2220 else
2221 {
2222 uNewRip = uPtrFrame.pu64[0];
2223 uNewCs = uPtrFrame.pu16[4];
2224 }
2225 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2226 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2227 { /* extremely likely */ }
2228 else
2229 return rcStrict;
2230
2231 /*
2232 * Real mode and V8086 mode are easy.
2233 */
2234 /** @todo See comment for similar code in iemCImpl_FarJmp */
2235 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2236 {
2237 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2238 /** @todo check how this is supposed to work if sp=0xfffe. */
2239
2240 /* Check the limit of the new EIP. */
2241 /** @todo Intel pseudo code only does the limit check for 16-bit
2242 * operands, AMD does not make any distinction. What is right? */
2243 if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit)
2244 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2245
2246 /* commit the operation. */
2247 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2248 pVCpu->cpum.GstCtx.rip = uNewRip;
2249 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2250 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2251 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2252 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2253 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2254 if (cbPop)
2255 iemRegAddToRsp(pVCpu, cbPop);
2256 return VINF_SUCCESS;
2257 }
2258
2259 /*
2260 * Protected mode is complicated, of course.
2261 */
2262 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2263 {
2264 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
2265 return iemRaiseGeneralProtectionFault0(pVCpu);
2266 }
2267
2268 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
2269
2270 /* Fetch the descriptor. */
2271 IEMSELDESC DescCs;
2272 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
2273 if (rcStrict != VINF_SUCCESS)
2274 return rcStrict;
2275
2276 /* Can only return to a code selector. */
2277 if ( !DescCs.Legacy.Gen.u1DescType
2278 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
2279 {
2280 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
2281 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
2282 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2283 }
2284
2285 /* L vs D. */
2286 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
2287 && DescCs.Legacy.Gen.u1DefBig
2288 && IEM_IS_LONG_MODE(pVCpu))
2289 {
2290 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
2291 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2292 }
2293
2294 /* DPL/RPL/CPL checks. */
2295 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
2296 {
2297 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
2298 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2299 }
2300
2301 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2302 {
2303 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
2304 {
2305 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
2306 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2307 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2308 }
2309 }
2310 else
2311 {
2312 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
2313 {
2314 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
2315 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2316 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2317 }
2318 }
2319
2320 /* Is it there? */
2321 if (!DescCs.Legacy.Gen.u1Present)
2322 {
2323 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
2324 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2325 }
2326
2327 /*
2328 * Return to outer privilege? (We'll typically have entered via a call gate.)
2329 */
2330 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
2331 {
2332 /* Read the outer stack pointer stored *after* the parameters. */
2333 rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2334 if (rcStrict != VINF_SUCCESS)
2335 return rcStrict;
2336
2337 uPtrFrame.pu8 += cbPop; /* Skip the parameters. */
2338
2339 uint16_t uNewOuterSs;
2340 uint64_t uNewOuterRsp;
2341 if (enmEffOpSize == IEMMODE_16BIT)
2342 {
2343 uNewOuterRsp = uPtrFrame.pu16[0];
2344 uNewOuterSs = uPtrFrame.pu16[1];
2345 }
2346 else if (enmEffOpSize == IEMMODE_32BIT)
2347 {
2348 uNewOuterRsp = uPtrFrame.pu32[0];
2349 uNewOuterSs = uPtrFrame.pu16[2];
2350 }
2351 else
2352 {
2353 uNewOuterRsp = uPtrFrame.pu64[0];
2354 uNewOuterSs = uPtrFrame.pu16[4];
2355 }
2356 uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */
2357 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2358 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2359 { /* extremely likely */ }
2360 else
2361 return rcStrict;
2362
2363 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
2364 and read the selector. */
2365 IEMSELDESC DescSs;
2366 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
2367 {
2368 if ( !DescCs.Legacy.Gen.u1Long
2369 || (uNewOuterSs & X86_SEL_RPL) == 3)
2370 {
2371 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
2372 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2373 return iemRaiseGeneralProtectionFault0(pVCpu);
2374 }
2375 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
2376 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
2377 }
2378 else
2379 {
2380 /* Fetch the descriptor for the new stack segment. */
2381 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
2382 if (rcStrict != VINF_SUCCESS)
2383 return rcStrict;
2384 }
2385
2386 /* Check that RPL of stack and code selectors match. */
2387 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
2388 {
2389 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2390 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2391 }
2392
2393 /* Must be a writable data segment. */
2394 if ( !DescSs.Legacy.Gen.u1DescType
2395 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
2396 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
2397 {
2398 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
2399 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2400 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2401 }
2402
2403 /* L vs D. (Not mentioned by intel.) */
2404 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
2405 && DescSs.Legacy.Gen.u1DefBig
2406 && IEM_IS_LONG_MODE(pVCpu))
2407 {
2408 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
2409 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2410 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2411 }
2412
2413 /* DPL/RPL/CPL checks. */
2414 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2415 {
2416 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
2417 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
2418 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2419 }
2420
2421 /* Is it there? */
2422 if (!DescSs.Legacy.Gen.u1Present)
2423 {
2424 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2425 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2426 }
2427
2428 /* Calc SS limit.*/
2429 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
2430
2431 /* Is RIP canonical or within CS.limit? */
2432 uint64_t u64Base;
2433 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2434
2435 /** @todo Testcase: Is this correct? */
2436 if ( DescCs.Legacy.Gen.u1Long
2437 && IEM_IS_LONG_MODE(pVCpu) )
2438 {
2439 if (!IEM_IS_CANONICAL(uNewRip))
2440 {
2441 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2442 return iemRaiseNotCanonical(pVCpu);
2443 }
2444 u64Base = 0;
2445 }
2446 else
2447 {
2448 if (uNewRip > cbLimitCs)
2449 {
2450 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
2451 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
2452 /** @todo: Intel says this is #GP(0)! */
2453 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2454 }
2455 u64Base = X86DESC_BASE(&DescCs.Legacy);
2456 }
2457
2458 /*
2459 * Now set the accessed bit before
2460 * writing the return address to the stack and committing the result into
2461 * CS, CSHID and RIP.
2462 */
2463 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
2464 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2465 {
2466 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2467 if (rcStrict != VINF_SUCCESS)
2468 return rcStrict;
2469 /** @todo check what VT-x and AMD-V does. */
2470 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2471 }
2472 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
2473 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2474 {
2475 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
2476 if (rcStrict != VINF_SUCCESS)
2477 return rcStrict;
2478 /** @todo check what VT-x and AMD-V does. */
2479 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2480 }
2481
2482 /* commit */
2483 if (enmEffOpSize == IEMMODE_16BIT)
2484 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2485 else
2486 pVCpu->cpum.GstCtx.rip = uNewRip;
2487 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2488 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2489 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2490 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2491 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2492 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2493 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2494 pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs;
2495 pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs;
2496 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
2497 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
2498 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
2499 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2500 pVCpu->cpum.GstCtx.ss.u64Base = 0;
2501 else
2502 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
2503 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2504 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewOuterRsp;
2505 else
2506 pVCpu->cpum.GstCtx.rsp = uNewOuterRsp;
2507
2508 pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
2509 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
2510 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
2511 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
2512 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
2513
2514 /** @todo check if the hidden bits are loaded correctly for 64-bit
2515 * mode. */
2516
2517 if (cbPop)
2518 iemRegAddToRsp(pVCpu, cbPop);
2519 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2520
2521 /* Done! */
2522 }
2523 /*
2524 * Return to the same privilege level
2525 */
2526 else
2527 {
2528 /* Limit / canonical check. */
2529 uint64_t u64Base;
2530 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2531
2532 /** @todo Testcase: Is this correct? */
2533 if ( DescCs.Legacy.Gen.u1Long
2534 && IEM_IS_LONG_MODE(pVCpu) )
2535 {
2536 if (!IEM_IS_CANONICAL(uNewRip))
2537 {
2538 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
2539 return iemRaiseNotCanonical(pVCpu);
2540 }
2541 u64Base = 0;
2542 }
2543 else
2544 {
2545 if (uNewRip > cbLimitCs)
2546 {
2547 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
2548 /** @todo: Intel says this is #GP(0)! */
2549 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2550 }
2551 u64Base = X86DESC_BASE(&DescCs.Legacy);
2552 }
2553
2554 /*
2555 * Now set the accessed bit before
2556 * writing the return address to the stack and committing the result into
2557 * CS, CSHID and RIP.
2558 */
2559 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2560 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2561 {
2562 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2563 if (rcStrict != VINF_SUCCESS)
2564 return rcStrict;
2565 /** @todo check what VT-x and AMD-V does. */
2566 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2567 }
2568
2569 /* commit */
2570 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2571 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
2572 else
2573 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2574 if (enmEffOpSize == IEMMODE_16BIT)
2575 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2576 else
2577 pVCpu->cpum.GstCtx.rip = uNewRip;
2578 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2579 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2580 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2581 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2582 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2583 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2584 /** @todo check if the hidden bits are loaded correctly for 64-bit
2585 * mode. */
2586 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2587 if (cbPop)
2588 iemRegAddToRsp(pVCpu, cbPop);
2589 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2590 }
2591
2592 /* Flush the prefetch buffer. */
2593#ifdef IEM_WITH_CODE_TLB
2594 pVCpu->iem.s.pbInstrBuf = NULL;
2595#else
2596 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2597#endif
2598 return VINF_SUCCESS;
2599}
2600
2601
2602/**
2603 * Implements retn.
2604 *
2605 * We're doing this in C because of the \#GP that might be raised if the popped
2606 * program counter is out of bounds.
2607 *
2608 * @param enmEffOpSize The effective operand size.
2609 * @param cbPop The amount of arguments to pop from the stack
2610 * (bytes).
2611 */
2612IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2613{
2614 NOREF(cbInstr);
2615
2616 /* Fetch the RSP from the stack. */
2617 VBOXSTRICTRC rcStrict;
2618 RTUINT64U NewRip;
2619 RTUINT64U NewRsp;
2620 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2621
2622 switch (enmEffOpSize)
2623 {
2624 case IEMMODE_16BIT:
2625 NewRip.u = 0;
2626 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
2627 break;
2628 case IEMMODE_32BIT:
2629 NewRip.u = 0;
2630 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
2631 break;
2632 case IEMMODE_64BIT:
2633 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
2634 break;
2635 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2636 }
2637 if (rcStrict != VINF_SUCCESS)
2638 return rcStrict;
2639
2640 /* Check the new RSP before loading it. */
2641 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
2642 * of it. The canonical test is performed here and for call. */
2643 if (enmEffOpSize != IEMMODE_64BIT)
2644 {
2645 if (NewRip.DWords.dw0 > pVCpu->cpum.GstCtx.cs.u32Limit)
2646 {
2647 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit));
2648 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2649 }
2650 }
2651 else
2652 {
2653 if (!IEM_IS_CANONICAL(NewRip.u))
2654 {
2655 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
2656 return iemRaiseNotCanonical(pVCpu);
2657 }
2658 }
2659
2660 /* Apply cbPop */
2661 if (cbPop)
2662 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2663
2664 /* Commit it. */
2665 pVCpu->cpum.GstCtx.rip = NewRip.u;
2666 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2667 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2668
2669 /* Flush the prefetch buffer. */
2670#ifndef IEM_WITH_CODE_TLB
2671 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2672#endif
2673
2674 return VINF_SUCCESS;
2675}
2676
2677
2678/**
2679 * Implements enter.
2680 *
2681 * We're doing this in C because the instruction is insane, even for the
2682 * u8NestingLevel=0 case dealing with the stack is tedious.
2683 *
2684 * @param enmEffOpSize The effective operand size.
2685 */
2686IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
2687{
2688 /* Push RBP, saving the old value in TmpRbp. */
2689 RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2690 RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp;
2691 RTUINT64U NewRbp;
2692 VBOXSTRICTRC rcStrict;
2693 if (enmEffOpSize == IEMMODE_64BIT)
2694 {
2695 rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
2696 NewRbp = NewRsp;
2697 }
2698 else if (enmEffOpSize == IEMMODE_32BIT)
2699 {
2700 rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
2701 NewRbp = NewRsp;
2702 }
2703 else
2704 {
2705 rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
2706 NewRbp = TmpRbp;
2707 NewRbp.Words.w0 = NewRsp.Words.w0;
2708 }
2709 if (rcStrict != VINF_SUCCESS)
2710 return rcStrict;
2711
2712 /* Copy the parameters (aka nesting levels by Intel). */
2713 cParameters &= 0x1f;
2714 if (cParameters > 0)
2715 {
2716 switch (enmEffOpSize)
2717 {
2718 case IEMMODE_16BIT:
2719 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2720 TmpRbp.DWords.dw0 -= 2;
2721 else
2722 TmpRbp.Words.w0 -= 2;
2723 do
2724 {
2725 uint16_t u16Tmp;
2726 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
2727 if (rcStrict != VINF_SUCCESS)
2728 break;
2729 rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
2730 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2731 break;
2732
2733 case IEMMODE_32BIT:
2734 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2735 TmpRbp.DWords.dw0 -= 4;
2736 else
2737 TmpRbp.Words.w0 -= 4;
2738 do
2739 {
2740 uint32_t u32Tmp;
2741 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
2742 if (rcStrict != VINF_SUCCESS)
2743 break;
2744 rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
2745 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2746 break;
2747
2748 case IEMMODE_64BIT:
2749 TmpRbp.u -= 8;
2750 do
2751 {
2752 uint64_t u64Tmp;
2753 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
2754 if (rcStrict != VINF_SUCCESS)
2755 break;
2756 rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
2757 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2758 break;
2759
2760 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2761 }
2762 if (rcStrict != VINF_SUCCESS)
2763 return VINF_SUCCESS;
2764
2765 /* Push the new RBP */
2766 if (enmEffOpSize == IEMMODE_64BIT)
2767 rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
2768 else if (enmEffOpSize == IEMMODE_32BIT)
2769 rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
2770 else
2771 rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
2772 if (rcStrict != VINF_SUCCESS)
2773 return rcStrict;
2774
2775 }
2776
2777 /* Recalc RSP. */
2778 iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame);
2779
2780 /** @todo Should probe write access at the new RSP according to AMD. */
2781
2782 /* Commit it. */
2783 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2784 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2785 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2786
2787 return VINF_SUCCESS;
2788}
2789
2790
2791
2792/**
2793 * Implements leave.
2794 *
2795 * We're doing this in C because messing with the stack registers is annoying
2796 * since they depends on SS attributes.
2797 *
2798 * @param enmEffOpSize The effective operand size.
2799 */
2800IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
2801{
2802 /* Calculate the intermediate RSP from RBP and the stack attributes. */
2803 RTUINT64U NewRsp;
2804 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2805 NewRsp.u = pVCpu->cpum.GstCtx.rbp;
2806 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2807 NewRsp.u = pVCpu->cpum.GstCtx.ebp;
2808 else
2809 {
2810 /** @todo Check that LEAVE actually preserve the high EBP bits. */
2811 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2812 NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp;
2813 }
2814
2815 /* Pop RBP according to the operand size. */
2816 VBOXSTRICTRC rcStrict;
2817 RTUINT64U NewRbp;
2818 switch (enmEffOpSize)
2819 {
2820 case IEMMODE_16BIT:
2821 NewRbp.u = pVCpu->cpum.GstCtx.rbp;
2822 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
2823 break;
2824 case IEMMODE_32BIT:
2825 NewRbp.u = 0;
2826 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
2827 break;
2828 case IEMMODE_64BIT:
2829 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
2830 break;
2831 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2832 }
2833 if (rcStrict != VINF_SUCCESS)
2834 return rcStrict;
2835
2836
2837 /* Commit it. */
2838 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2839 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2840 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2841
2842 return VINF_SUCCESS;
2843}
2844
2845
2846/**
2847 * Implements int3 and int XX.
2848 *
2849 * @param u8Int The interrupt vector number.
2850 * @param enmInt The int instruction type.
2851 */
2852IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
2853{
2854 Assert(pVCpu->iem.s.cXcptRecursions == 0);
2855 return iemRaiseXcptOrInt(pVCpu,
2856 cbInstr,
2857 u8Int,
2858 IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
2859 0,
2860 0);
2861}
2862
2863
2864/**
2865 * Implements iret for real mode and V8086 mode.
2866 *
2867 * @param enmEffOpSize The effective operand size.
2868 */
2869IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2870{
2871 X86EFLAGS Efl;
2872 Efl.u = IEMMISC_GET_EFL(pVCpu);
2873 NOREF(cbInstr);
2874
2875 /*
2876 * iret throws an exception if VME isn't enabled.
2877 */
2878 if ( Efl.Bits.u1VM
2879 && Efl.Bits.u2IOPL != 3
2880 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
2881 return iemRaiseGeneralProtectionFault0(pVCpu);
2882
2883 /*
2884 * Do the stack bits, but don't commit RSP before everything checks
2885 * out right.
2886 */
2887 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2888 VBOXSTRICTRC rcStrict;
2889 RTCPTRUNION uFrame;
2890 uint16_t uNewCs;
2891 uint32_t uNewEip;
2892 uint32_t uNewFlags;
2893 uint64_t uNewRsp;
2894 if (enmEffOpSize == IEMMODE_32BIT)
2895 {
2896 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
2897 if (rcStrict != VINF_SUCCESS)
2898 return rcStrict;
2899 uNewEip = uFrame.pu32[0];
2900 if (uNewEip > UINT16_MAX)
2901 return iemRaiseGeneralProtectionFault0(pVCpu);
2902
2903 uNewCs = (uint16_t)uFrame.pu32[1];
2904 uNewFlags = uFrame.pu32[2];
2905 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2906 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
2907 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
2908 | X86_EFL_ID;
2909 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
2910 uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
2911 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
2912 }
2913 else
2914 {
2915 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
2916 if (rcStrict != VINF_SUCCESS)
2917 return rcStrict;
2918 uNewEip = uFrame.pu16[0];
2919 uNewCs = uFrame.pu16[1];
2920 uNewFlags = uFrame.pu16[2];
2921 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2922 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
2923 uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
2924 /** @todo The intel pseudo code does not indicate what happens to
2925 * reserved flags. We just ignore them. */
2926 /* Ancient CPU adjustments: See iemCImpl_popf. */
2927 if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
2928 uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
2929 }
2930 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
2931 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2932 { /* extremely likely */ }
2933 else
2934 return rcStrict;
2935
2936 /** @todo Check how this is supposed to work if sp=0xfffe. */
2937 Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
2938 uNewCs, uNewEip, uNewFlags, uNewRsp));
2939
2940 /*
2941 * Check the limit of the new EIP.
2942 */
2943 /** @todo Only the AMD pseudo code check the limit here, what's
2944 * right? */
2945 if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit)
2946 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2947
2948 /*
2949 * V8086 checks and flag adjustments
2950 */
2951 if (Efl.Bits.u1VM)
2952 {
2953 if (Efl.Bits.u2IOPL == 3)
2954 {
2955 /* Preserve IOPL and clear RF. */
2956 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
2957 uNewFlags |= Efl.u & (X86_EFL_IOPL);
2958 }
2959 else if ( enmEffOpSize == IEMMODE_16BIT
2960 && ( !(uNewFlags & X86_EFL_IF)
2961 || !Efl.Bits.u1VIP )
2962 && !(uNewFlags & X86_EFL_TF) )
2963 {
2964 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
2965 uNewFlags &= ~X86_EFL_VIF;
2966 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
2967 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
2968 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
2969 }
2970 else
2971 return iemRaiseGeneralProtectionFault0(pVCpu);
2972 Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
2973 }
2974
2975 /*
2976 * Commit the operation.
2977 */
2978#ifdef DBGFTRACE_ENABLED
2979 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
2980 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
2981#endif
2982 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2983 pVCpu->cpum.GstCtx.rip = uNewEip;
2984 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2985 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2986 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2987 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2988 /** @todo do we load attribs and limit as well? */
2989 Assert(uNewFlags & X86_EFL_1);
2990 IEMMISC_SET_EFL(pVCpu, uNewFlags);
2991
2992 /* Flush the prefetch buffer. */
2993#ifdef IEM_WITH_CODE_TLB
2994 pVCpu->iem.s.pbInstrBuf = NULL;
2995#else
2996 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2997#endif
2998
2999 return VINF_SUCCESS;
3000}
3001
3002
3003/**
3004 * Loads a segment register when entering V8086 mode.
3005 *
3006 * @param pSReg The segment register.
3007 * @param uSeg The segment to load.
3008 */
3009static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
3010{
3011 pSReg->Sel = uSeg;
3012 pSReg->ValidSel = uSeg;
3013 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
3014 pSReg->u64Base = (uint32_t)uSeg << 4;
3015 pSReg->u32Limit = 0xffff;
3016 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
3017 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
3018 * IRET'ing to V8086. */
3019}
3020
3021
3022/**
3023 * Implements iret for protected mode returning to V8086 mode.
3024 *
3025 * @param uNewEip The new EIP.
3026 * @param uNewCs The new CS.
3027 * @param uNewFlags The new EFLAGS.
3028 * @param uNewRsp The RSP after the initial IRET frame.
3029 *
3030 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
3031 */
3032IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp)
3033{
3034 RT_NOREF_PV(cbInstr);
3035 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
3036
3037 /*
3038 * Pop the V8086 specific frame bits off the stack.
3039 */
3040 VBOXSTRICTRC rcStrict;
3041 RTCPTRUNION uFrame;
3042 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp);
3043 if (rcStrict != VINF_SUCCESS)
3044 return rcStrict;
3045 uint32_t uNewEsp = uFrame.pu32[0];
3046 uint16_t uNewSs = uFrame.pu32[1];
3047 uint16_t uNewEs = uFrame.pu32[2];
3048 uint16_t uNewDs = uFrame.pu32[3];
3049 uint16_t uNewFs = uFrame.pu32[4];
3050 uint16_t uNewGs = uFrame.pu32[5];
3051 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3052 if (rcStrict != VINF_SUCCESS)
3053 return rcStrict;
3054
3055 /*
3056 * Commit the operation.
3057 */
3058 uNewFlags &= X86_EFL_LIVE_MASK;
3059 uNewFlags |= X86_EFL_RA1_MASK;
3060#ifdef DBGFTRACE_ENABLED
3061 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
3062 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
3063#endif
3064 Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
3065
3066 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3067 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs);
3068 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs);
3069 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs);
3070 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs);
3071 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs);
3072 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs);
3073 pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip;
3074 pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */
3075 pVCpu->iem.s.uCpl = 3;
3076
3077 /* Flush the prefetch buffer. */
3078#ifdef IEM_WITH_CODE_TLB
3079 pVCpu->iem.s.pbInstrBuf = NULL;
3080#else
3081 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3082#endif
3083
3084 return VINF_SUCCESS;
3085}
3086
3087
3088/**
3089 * Implements iret for protected mode returning via a nested task.
3090 *
3091 * @param enmEffOpSize The effective operand size.
3092 */
3093IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
3094{
3095 Log7(("iemCImpl_iret_prot_NestedTask:\n"));
3096#ifndef IEM_IMPLEMENTS_TASKSWITCH
3097 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
3098#else
3099 RT_NOREF_PV(enmEffOpSize);
3100
3101 /*
3102 * Read the segment selector in the link-field of the current TSS.
3103 */
3104 RTSEL uSelRet;
3105 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base);
3106 if (rcStrict != VINF_SUCCESS)
3107 return rcStrict;
3108
3109 /*
3110 * Fetch the returning task's TSS descriptor from the GDT.
3111 */
3112 if (uSelRet & X86_SEL_LDT)
3113 {
3114 Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
3115 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
3116 }
3117
3118 IEMSELDESC TssDesc;
3119 rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
3120 if (rcStrict != VINF_SUCCESS)
3121 return rcStrict;
3122
3123 if (TssDesc.Legacy.Gate.u1DescType)
3124 {
3125 Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
3126 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3127 }
3128
3129 if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
3130 && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
3131 {
3132 Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
3133 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3134 }
3135
3136 if (!TssDesc.Legacy.Gate.u1Present)
3137 {
3138 Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
3139 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3140 }
3141
3142 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
3143 return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
3144 0 /* uCr2 */, uSelRet, &TssDesc);
3145#endif
3146}
3147
3148
3149/**
3150 * Implements iret for protected mode
3151 *
3152 * @param enmEffOpSize The effective operand size.
3153 */
3154IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
3155{
3156 NOREF(cbInstr);
3157 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3158
3159 /*
3160 * Nested task return.
3161 */
3162 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3163 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
3164
3165 /*
3166 * Normal return.
3167 *
3168 * Do the stack bits, but don't commit RSP before everything checks
3169 * out right.
3170 */
3171 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3172 VBOXSTRICTRC rcStrict;
3173 RTCPTRUNION uFrame;
3174 uint16_t uNewCs;
3175 uint32_t uNewEip;
3176 uint32_t uNewFlags;
3177 uint64_t uNewRsp;
3178 if (enmEffOpSize == IEMMODE_32BIT)
3179 {
3180 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
3181 if (rcStrict != VINF_SUCCESS)
3182 return rcStrict;
3183 uNewEip = uFrame.pu32[0];
3184 uNewCs = (uint16_t)uFrame.pu32[1];
3185 uNewFlags = uFrame.pu32[2];
3186 }
3187 else
3188 {
3189 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
3190 if (rcStrict != VINF_SUCCESS)
3191 return rcStrict;
3192 uNewEip = uFrame.pu16[0];
3193 uNewCs = uFrame.pu16[1];
3194 uNewFlags = uFrame.pu16[2];
3195 }
3196 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3197 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3198 { /* extremely likely */ }
3199 else
3200 return rcStrict;
3201 Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
3202
3203 /*
3204 * We're hopefully not returning to V8086 mode...
3205 */
3206 if ( (uNewFlags & X86_EFL_VM)
3207 && pVCpu->iem.s.uCpl == 0)
3208 {
3209 Assert(enmEffOpSize == IEMMODE_32BIT);
3210 return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp);
3211 }
3212
3213 /*
3214 * Protected mode.
3215 */
3216 /* Read the CS descriptor. */
3217 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3218 {
3219 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
3220 return iemRaiseGeneralProtectionFault0(pVCpu);
3221 }
3222
3223 IEMSELDESC DescCS;
3224 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3225 if (rcStrict != VINF_SUCCESS)
3226 {
3227 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
3228 return rcStrict;
3229 }
3230
3231 /* Must be a code descriptor. */
3232 if (!DescCS.Legacy.Gen.u1DescType)
3233 {
3234 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3235 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3236 }
3237 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3238 {
3239 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3240 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3241 }
3242
3243#ifdef VBOX_WITH_RAW_MODE_NOT_R0
3244 /* Raw ring-0 and ring-1 compression adjustments for PATM performance tricks and other CS leaks. */
3245 PVM pVM = pVCpu->CTX_SUFF(pVM);
3246 if (EMIsRawRing0Enabled(pVM) && VM_IS_RAW_MODE_ENABLED(pVM))
3247 {
3248 if ((uNewCs & X86_SEL_RPL) == 1)
3249 {
3250 if ( pVCpu->iem.s.uCpl == 0
3251 && ( !EMIsRawRing1Enabled(pVM)
3252 || pVCpu->cpum.GstCtx.cs.Sel == (uNewCs & X86_SEL_MASK_OFF_RPL)) )
3253 {
3254 Log(("iret: Ring-0 compression fix: uNewCS=%#x -> %#x\n", uNewCs, uNewCs & X86_SEL_MASK_OFF_RPL));
3255 uNewCs &= X86_SEL_MASK_OFF_RPL;
3256 }
3257# ifdef LOG_ENABLED
3258 else if (pVCpu->iem.s.uCpl <= 1 && EMIsRawRing1Enabled(pVM))
3259 Log(("iret: uNewCs=%#x genuine return to ring-1.\n", uNewCs));
3260# endif
3261 }
3262 else if ( (uNewCs & X86_SEL_RPL) == 2
3263 && EMIsRawRing1Enabled(pVM)
3264 && pVCpu->iem.s.uCpl <= 1)
3265 {
3266 Log(("iret: Ring-1 compression fix: uNewCS=%#x -> %#x\n", uNewCs, (uNewCs & X86_SEL_MASK_OFF_RPL) | 1));
3267 uNewCs = (uNewCs & X86_SEL_MASK_OFF_RPL) | 2;
3268 }
3269 }
3270#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
3271
3272
3273 /* Privilege checks. */
3274 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3275 {
3276 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3277 {
3278 Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3279 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3280 }
3281 }
3282 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3283 {
3284 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3285 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3286 }
3287 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3288 {
3289 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
3290 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3291 }
3292
3293 /* Present? */
3294 if (!DescCS.Legacy.Gen.u1Present)
3295 {
3296 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
3297 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3298 }
3299
3300 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3301
3302 /*
3303 * Return to outer level?
3304 */
3305 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
3306 {
3307 uint16_t uNewSS;
3308 uint32_t uNewESP;
3309 if (enmEffOpSize == IEMMODE_32BIT)
3310 {
3311 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp);
3312 if (rcStrict != VINF_SUCCESS)
3313 return rcStrict;
3314/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
3315 * 16-bit or 32-bit are being loaded into SP depends on the D/B
3316 * bit of the popped SS selector it turns out. */
3317 uNewESP = uFrame.pu32[0];
3318 uNewSS = (uint16_t)uFrame.pu32[1];
3319 }
3320 else
3321 {
3322 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp);
3323 if (rcStrict != VINF_SUCCESS)
3324 return rcStrict;
3325 uNewESP = uFrame.pu16[0];
3326 uNewSS = uFrame.pu16[1];
3327 }
3328 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
3329 if (rcStrict != VINF_SUCCESS)
3330 return rcStrict;
3331 Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
3332
3333 /* Read the SS descriptor. */
3334 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
3335 {
3336 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
3337 return iemRaiseGeneralProtectionFault0(pVCpu);
3338 }
3339
3340 IEMSELDESC DescSS;
3341 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
3342 if (rcStrict != VINF_SUCCESS)
3343 {
3344 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
3345 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
3346 return rcStrict;
3347 }
3348
3349 /* Privilege checks. */
3350 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3351 {
3352 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
3353 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3354 }
3355 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3356 {
3357 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
3358 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
3359 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3360 }
3361
3362 /* Must be a writeable data segment descriptor. */
3363 if (!DescSS.Legacy.Gen.u1DescType)
3364 {
3365 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
3366 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3367 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3368 }
3369 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3370 {
3371 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
3372 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3373 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3374 }
3375
3376 /* Present? */
3377 if (!DescSS.Legacy.Gen.u1Present)
3378 {
3379 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
3380 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
3381 }
3382
3383 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3384
3385 /* Check EIP. */
3386 if (uNewEip > cbLimitCS)
3387 {
3388 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
3389 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
3390 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3391 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3392 }
3393
3394 /*
3395 * Commit the changes, marking CS and SS accessed first since
3396 * that may fail.
3397 */
3398 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3399 {
3400 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3401 if (rcStrict != VINF_SUCCESS)
3402 return rcStrict;
3403 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3404 }
3405 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3406 {
3407 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
3408 if (rcStrict != VINF_SUCCESS)
3409 return rcStrict;
3410 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3411 }
3412
3413 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3414 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3415 if (enmEffOpSize != IEMMODE_16BIT)
3416 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3417 if (pVCpu->iem.s.uCpl == 0)
3418 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3419 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3420 fEFlagsMask |= X86_EFL_IF;
3421 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3422 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3423 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3424 fEFlagsNew &= ~fEFlagsMask;
3425 fEFlagsNew |= uNewFlags & fEFlagsMask;
3426#ifdef DBGFTRACE_ENABLED
3427 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
3428 pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3429 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
3430#endif
3431
3432 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3433 pVCpu->cpum.GstCtx.rip = uNewEip;
3434 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3435 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3436 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3437 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3438 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3439 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3440 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3441
3442 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
3443 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
3444 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3445 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3446 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3447 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3448 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3449 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP;
3450 else
3451 pVCpu->cpum.GstCtx.rsp = uNewESP;
3452
3453 pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
3454 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
3455 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
3456 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
3457 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
3458
3459 /* Done! */
3460
3461 }
3462 /*
3463 * Return to the same level.
3464 */
3465 else
3466 {
3467 /* Check EIP. */
3468 if (uNewEip > cbLimitCS)
3469 {
3470 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
3471 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3472 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3473 }
3474
3475 /*
3476 * Commit the changes, marking CS first since it may fail.
3477 */
3478 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3479 {
3480 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3481 if (rcStrict != VINF_SUCCESS)
3482 return rcStrict;
3483 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3484 }
3485
3486 X86EFLAGS NewEfl;
3487 NewEfl.u = IEMMISC_GET_EFL(pVCpu);
3488 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3489 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3490 if (enmEffOpSize != IEMMODE_16BIT)
3491 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3492 if (pVCpu->iem.s.uCpl == 0)
3493 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3494 else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
3495 fEFlagsMask |= X86_EFL_IF;
3496 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3497 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3498 NewEfl.u &= ~fEFlagsMask;
3499 NewEfl.u |= fEFlagsMask & uNewFlags;
3500#ifdef DBGFTRACE_ENABLED
3501 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
3502 pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3503 uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp);
3504#endif
3505
3506 IEMMISC_SET_EFL(pVCpu, NewEfl.u);
3507 pVCpu->cpum.GstCtx.rip = uNewEip;
3508 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3509 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3510 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3511 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3512 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3513 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3514 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3515 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3516 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3517 else
3518 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3519 /* Done! */
3520 }
3521
3522 /* Flush the prefetch buffer. */
3523#ifdef IEM_WITH_CODE_TLB
3524 pVCpu->iem.s.pbInstrBuf = NULL;
3525#else
3526 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3527#endif
3528
3529 return VINF_SUCCESS;
3530}
3531
3532
3533/**
3534 * Implements iret for long mode
3535 *
3536 * @param enmEffOpSize The effective operand size.
3537 */
3538IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
3539{
3540 NOREF(cbInstr);
3541
3542 /*
3543 * Nested task return is not supported in long mode.
3544 */
3545 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3546 {
3547 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u));
3548 return iemRaiseGeneralProtectionFault0(pVCpu);
3549 }
3550
3551 /*
3552 * Normal return.
3553 *
3554 * Do the stack bits, but don't commit RSP before everything checks
3555 * out right.
3556 */
3557 VBOXSTRICTRC rcStrict;
3558 RTCPTRUNION uFrame;
3559 uint64_t uNewRip;
3560 uint16_t uNewCs;
3561 uint16_t uNewSs;
3562 uint32_t uNewFlags;
3563 uint64_t uNewRsp;
3564 if (enmEffOpSize == IEMMODE_64BIT)
3565 {
3566 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp);
3567 if (rcStrict != VINF_SUCCESS)
3568 return rcStrict;
3569 uNewRip = uFrame.pu64[0];
3570 uNewCs = (uint16_t)uFrame.pu64[1];
3571 uNewFlags = (uint32_t)uFrame.pu64[2];
3572 uNewRsp = uFrame.pu64[3];
3573 uNewSs = (uint16_t)uFrame.pu64[4];
3574 }
3575 else if (enmEffOpSize == IEMMODE_32BIT)
3576 {
3577 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp);
3578 if (rcStrict != VINF_SUCCESS)
3579 return rcStrict;
3580 uNewRip = uFrame.pu32[0];
3581 uNewCs = (uint16_t)uFrame.pu32[1];
3582 uNewFlags = uFrame.pu32[2];
3583 uNewRsp = uFrame.pu32[3];
3584 uNewSs = (uint16_t)uFrame.pu32[4];
3585 }
3586 else
3587 {
3588 Assert(enmEffOpSize == IEMMODE_16BIT);
3589 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp);
3590 if (rcStrict != VINF_SUCCESS)
3591 return rcStrict;
3592 uNewRip = uFrame.pu16[0];
3593 uNewCs = uFrame.pu16[1];
3594 uNewFlags = uFrame.pu16[2];
3595 uNewRsp = uFrame.pu16[3];
3596 uNewSs = uFrame.pu16[4];
3597 }
3598 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3599 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3600 { /* extremely like */ }
3601 else
3602 return rcStrict;
3603 Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
3604
3605 /*
3606 * Check stuff.
3607 */
3608 /* Read the CS descriptor. */
3609 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3610 {
3611 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3612 return iemRaiseGeneralProtectionFault0(pVCpu);
3613 }
3614
3615 IEMSELDESC DescCS;
3616 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3617 if (rcStrict != VINF_SUCCESS)
3618 {
3619 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
3620 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3621 return rcStrict;
3622 }
3623
3624 /* Must be a code descriptor. */
3625 if ( !DescCS.Legacy.Gen.u1DescType
3626 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3627 {
3628 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
3629 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
3630 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3631 }
3632
3633 /* Privilege checks. */
3634 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
3635 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3636 {
3637 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3638 {
3639 Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3640 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3641 }
3642 }
3643 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3644 {
3645 Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3646 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3647 }
3648 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3649 {
3650 Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
3651 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3652 }
3653
3654 /* Present? */
3655 if (!DescCS.Legacy.Gen.u1Present)
3656 {
3657 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3658 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3659 }
3660
3661 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3662
3663 /* Read the SS descriptor. */
3664 IEMSELDESC DescSS;
3665 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3666 {
3667 if ( !DescCS.Legacy.Gen.u1Long
3668 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
3669 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
3670 {
3671 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3672 return iemRaiseGeneralProtectionFault0(pVCpu);
3673 }
3674 DescSS.Legacy.u = 0;
3675 }
3676 else
3677 {
3678 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
3679 if (rcStrict != VINF_SUCCESS)
3680 {
3681 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
3682 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3683 return rcStrict;
3684 }
3685 }
3686
3687 /* Privilege checks. */
3688 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3689 {
3690 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3691 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3692 }
3693
3694 uint32_t cbLimitSs;
3695 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3696 cbLimitSs = UINT32_MAX;
3697 else
3698 {
3699 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3700 {
3701 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
3702 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
3703 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3704 }
3705
3706 /* Must be a writeable data segment descriptor. */
3707 if (!DescSS.Legacy.Gen.u1DescType)
3708 {
3709 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
3710 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3711 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3712 }
3713 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3714 {
3715 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
3716 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3717 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3718 }
3719
3720 /* Present? */
3721 if (!DescSS.Legacy.Gen.u1Present)
3722 {
3723 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3724 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
3725 }
3726 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3727 }
3728
3729 /* Check EIP. */
3730 if (DescCS.Legacy.Gen.u1Long)
3731 {
3732 if (!IEM_IS_CANONICAL(uNewRip))
3733 {
3734 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
3735 uNewCs, uNewRip, uNewSs, uNewRsp));
3736 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3737 }
3738 }
3739 else
3740 {
3741 if (uNewRip > cbLimitCS)
3742 {
3743 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
3744 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
3745 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3746 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3747 }
3748 }
3749
3750 /*
3751 * Commit the changes, marking CS and SS accessed first since
3752 * that may fail.
3753 */
3754 /** @todo where exactly are these actually marked accessed by a real CPU? */
3755 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3756 {
3757 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3758 if (rcStrict != VINF_SUCCESS)
3759 return rcStrict;
3760 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3761 }
3762 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3763 {
3764 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
3765 if (rcStrict != VINF_SUCCESS)
3766 return rcStrict;
3767 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3768 }
3769
3770 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3771 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3772 if (enmEffOpSize != IEMMODE_16BIT)
3773 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3774 if (pVCpu->iem.s.uCpl == 0)
3775 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
3776 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3777 fEFlagsMask |= X86_EFL_IF;
3778 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3779 fEFlagsNew &= ~fEFlagsMask;
3780 fEFlagsNew |= uNewFlags & fEFlagsMask;
3781#ifdef DBGFTRACE_ENABLED
3782 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
3783 pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
3784#endif
3785
3786 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3787 pVCpu->cpum.GstCtx.rip = uNewRip;
3788 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3789 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3790 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3791 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3792 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3793 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3794 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3795 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
3796 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3797 else
3798 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3799 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
3800 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
3801 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3802 {
3803 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3804 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
3805 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
3806 pVCpu->cpum.GstCtx.ss.u64Base = 0;
3807 Log2(("iretq new SS: NULL\n"));
3808 }
3809 else
3810 {
3811 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3812 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3813 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3814 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3815 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3816 }
3817
3818 if (pVCpu->iem.s.uCpl != uNewCpl)
3819 {
3820 pVCpu->iem.s.uCpl = uNewCpl;
3821 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds);
3822 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es);
3823 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs);
3824 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs);
3825 }
3826
3827 /* Flush the prefetch buffer. */
3828#ifdef IEM_WITH_CODE_TLB
3829 pVCpu->iem.s.pbInstrBuf = NULL;
3830#else
3831 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3832#endif
3833
3834 return VINF_SUCCESS;
3835}
3836
3837
3838/**
3839 * Implements iret.
3840 *
3841 * @param enmEffOpSize The effective operand size.
3842 */
3843IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
3844{
3845 bool fBlockingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3846
3847#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3848 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
3849 {
3850 /*
3851 * Record whether NMI (or virtual-NMI) blocking is in effect during the execution
3852 * of this IRET instruction. We need to provide this information as part of some
3853 * VM-exits.
3854 *
3855 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3856 */
3857 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_VIRT_NMI))
3858 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking;
3859 else
3860 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = fBlockingNmi;
3861
3862 /*
3863 * If "NMI exiting" is set, IRET does not affect blocking of NMIs.
3864 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3865 */
3866 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_NMI_EXIT))
3867 fBlockingNmi = false;
3868
3869 /* Clear virtual-NMI blocking, if any, before causing any further exceptions. */
3870 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
3871 }
3872#endif
3873
3874 /*
3875 * The SVM nested-guest intercept for IRET takes priority over all exceptions,
3876 * The NMI is still held pending (which I assume means blocking of further NMIs
3877 * is in effect).
3878 *
3879 * See AMD spec. 15.9 "Instruction Intercepts".
3880 * See AMD spec. 15.21.9 "NMI Support".
3881 */
3882 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
3883 {
3884 Log(("iret: Guest intercept -> #VMEXIT\n"));
3885 IEM_SVM_UPDATE_NRIP(pVCpu);
3886 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
3887 }
3888
3889 /*
3890 * Clear NMI blocking, if any, before causing any further exceptions.
3891 * See Intel spec. 6.7.1 "Handling Multiple NMIs".
3892 */
3893 if (fBlockingNmi)
3894 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
3895
3896 /*
3897 * Call a mode specific worker.
3898 */
3899 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
3900 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
3901 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
3902 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
3903 return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
3904 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
3905}
3906
3907
3908static void iemLoadallSetSelector(PVMCPU pVCpu, uint8_t iSegReg, uint16_t uSel)
3909{
3910 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3911
3912 pHid->Sel = uSel;
3913 pHid->ValidSel = uSel;
3914 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3915}
3916
3917
3918static void iemLoadall286SetDescCache(PVMCPU pVCpu, uint8_t iSegReg, uint8_t const *pbMem)
3919{
3920 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3921
3922 /* The base is in the first three bytes. */
3923 pHid->u64Base = pbMem[0] + (pbMem[1] << 8) + (pbMem[2] << 16);
3924 /* The attributes are in the fourth byte. */
3925 pHid->Attr.u = pbMem[3];
3926 /* The limit is in the last two bytes. */
3927 pHid->u32Limit = pbMem[4] + (pbMem[5] << 8);
3928}
3929
3930
3931/**
3932 * Implements 286 LOADALL (286 CPUs only).
3933 */
3934IEM_CIMPL_DEF_0(iemCImpl_loadall286)
3935{
3936 NOREF(cbInstr);
3937
3938 /* Data is loaded from a buffer at 800h. No checks are done on the
3939 * validity of loaded state.
3940 *
3941 * LOADALL only loads the internal CPU state, it does not access any
3942 * GDT, LDT, or similar tables.
3943 */
3944
3945 if (pVCpu->iem.s.uCpl != 0)
3946 {
3947 Log(("loadall286: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
3948 return iemRaiseGeneralProtectionFault0(pVCpu);
3949 }
3950
3951 uint8_t const *pbMem = NULL;
3952 uint16_t const *pa16Mem;
3953 uint8_t const *pa8Mem;
3954 RTGCPHYS GCPtrStart = 0x800; /* Fixed table location. */
3955 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pbMem, 0x66, UINT8_MAX, GCPtrStart, IEM_ACCESS_SYS_R);
3956 if (rcStrict != VINF_SUCCESS)
3957 return rcStrict;
3958
3959 /* The MSW is at offset 0x06. */
3960 pa16Mem = (uint16_t const *)(pbMem + 0x06);
3961 /* Even LOADALL can't clear the MSW.PE bit, though it can set it. */
3962 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3963 uNewCr0 |= *pa16Mem & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3964 uint64_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
3965
3966 CPUMSetGuestCR0(pVCpu, uNewCr0);
3967 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCr0);
3968
3969 /* Inform PGM if mode changed. */
3970 if ((uNewCr0 & X86_CR0_PE) != (uOldCr0 & X86_CR0_PE))
3971 {
3972 int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
3973 AssertRCReturn(rc, rc);
3974 /* ignore informational status codes */
3975 }
3976 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
3977
3978 /* TR selector is at offset 0x16. */
3979 pa16Mem = (uint16_t const *)(pbMem + 0x16);
3980 pVCpu->cpum.GstCtx.tr.Sel = pa16Mem[0];
3981 pVCpu->cpum.GstCtx.tr.ValidSel = pa16Mem[0];
3982 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3983
3984 /* Followed by FLAGS... */
3985 pVCpu->cpum.GstCtx.eflags.u = pa16Mem[1] | X86_EFL_1;
3986 pVCpu->cpum.GstCtx.ip = pa16Mem[2]; /* ...and IP. */
3987
3988 /* LDT is at offset 0x1C. */
3989 pa16Mem = (uint16_t const *)(pbMem + 0x1C);
3990 pVCpu->cpum.GstCtx.ldtr.Sel = pa16Mem[0];
3991 pVCpu->cpum.GstCtx.ldtr.ValidSel = pa16Mem[0];
3992 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3993
3994 /* Segment registers are at offset 0x1E. */
3995 pa16Mem = (uint16_t const *)(pbMem + 0x1E);
3996 iemLoadallSetSelector(pVCpu, X86_SREG_DS, pa16Mem[0]);
3997 iemLoadallSetSelector(pVCpu, X86_SREG_SS, pa16Mem[1]);
3998 iemLoadallSetSelector(pVCpu, X86_SREG_CS, pa16Mem[2]);
3999 iemLoadallSetSelector(pVCpu, X86_SREG_ES, pa16Mem[3]);
4000
4001 /* GPRs are at offset 0x26. */
4002 pa16Mem = (uint16_t const *)(pbMem + 0x26);
4003 pVCpu->cpum.GstCtx.di = pa16Mem[0];
4004 pVCpu->cpum.GstCtx.si = pa16Mem[1];
4005 pVCpu->cpum.GstCtx.bp = pa16Mem[2];
4006 pVCpu->cpum.GstCtx.sp = pa16Mem[3];
4007 pVCpu->cpum.GstCtx.bx = pa16Mem[4];
4008 pVCpu->cpum.GstCtx.dx = pa16Mem[5];
4009 pVCpu->cpum.GstCtx.cx = pa16Mem[6];
4010 pVCpu->cpum.GstCtx.ax = pa16Mem[7];
4011
4012 /* Descriptor caches are at offset 0x36, 6 bytes per entry. */
4013 iemLoadall286SetDescCache(pVCpu, X86_SREG_ES, pbMem + 0x36);
4014 iemLoadall286SetDescCache(pVCpu, X86_SREG_CS, pbMem + 0x3C);
4015 iemLoadall286SetDescCache(pVCpu, X86_SREG_SS, pbMem + 0x42);
4016 iemLoadall286SetDescCache(pVCpu, X86_SREG_DS, pbMem + 0x48);
4017
4018 /* GDTR contents are at offset 0x4E, 6 bytes. */
4019 RTGCPHYS GCPtrBase;
4020 uint16_t cbLimit;
4021 pa8Mem = pbMem + 0x4E;
4022 /* NB: Fourth byte "should be zero"; we are ignoring it. */
4023 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
4024 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
4025 CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
4026
4027 /* IDTR contents are at offset 0x5A, 6 bytes. */
4028 pa8Mem = pbMem + 0x5A;
4029 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
4030 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
4031 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
4032
4033 Log(("LOADALL: GDTR:%08RX64/%04X, IDTR:%08RX64/%04X\n", pVCpu->cpum.GstCtx.gdtr.pGdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.idtr.pIdt, pVCpu->cpum.GstCtx.idtr.cbIdt));
4034 Log(("LOADALL: CS:%04X, CS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.cs.u64Base, pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.Attr.u));
4035 Log(("LOADALL: DS:%04X, DS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.ds.u64Base, pVCpu->cpum.GstCtx.ds.u32Limit, pVCpu->cpum.GstCtx.ds.Attr.u));
4036 Log(("LOADALL: ES:%04X, ES base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.es.u64Base, pVCpu->cpum.GstCtx.es.u32Limit, pVCpu->cpum.GstCtx.es.Attr.u));
4037 Log(("LOADALL: SS:%04X, SS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
4038 Log(("LOADALL: SI:%04X, DI:%04X, AX:%04X, BX:%04X, CX:%04X, DX:%04X\n", pVCpu->cpum.GstCtx.si, pVCpu->cpum.GstCtx.di, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.cx, pVCpu->cpum.GstCtx.dx));
4039
4040 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pbMem, IEM_ACCESS_SYS_R);
4041 if (rcStrict != VINF_SUCCESS)
4042 return rcStrict;
4043
4044 /* The CPL may change. It is taken from the "DPL fields of the SS and CS
4045 * descriptor caches" but there is no word as to what happens if those are
4046 * not identical (probably bad things).
4047 */
4048 pVCpu->iem.s.uCpl = pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl;
4049
4050 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS | CPUM_CHANGED_IDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_TR | CPUM_CHANGED_LDTR);
4051
4052 /* Flush the prefetch buffer. */
4053#ifdef IEM_WITH_CODE_TLB
4054 pVCpu->iem.s.pbInstrBuf = NULL;
4055#else
4056 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4057#endif
4058 return rcStrict;
4059}
4060
4061
4062/**
4063 * Implements SYSCALL (AMD and Intel64).
4064 *
4065 * @param enmEffOpSize The effective operand size.
4066 */
4067IEM_CIMPL_DEF_0(iemCImpl_syscall)
4068{
4069 /** @todo hack, LOADALL should be decoded as such on a 286. */
4070 if (RT_UNLIKELY(pVCpu->iem.s.uTargetCpu == IEMTARGETCPU_286))
4071 return iemCImpl_loadall286(pVCpu, cbInstr);
4072
4073 /*
4074 * Check preconditions.
4075 *
4076 * Note that CPUs described in the documentation may load a few odd values
4077 * into CS and SS than we allow here. This has yet to be checked on real
4078 * hardware.
4079 */
4080 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4081 {
4082 Log(("syscall: Not enabled in EFER -> #UD\n"));
4083 return iemRaiseUndefinedOpcode(pVCpu);
4084 }
4085 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4086 {
4087 Log(("syscall: Protected mode is required -> #GP(0)\n"));
4088 return iemRaiseGeneralProtectionFault0(pVCpu);
4089 }
4090 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4091 {
4092 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4093 return iemRaiseUndefinedOpcode(pVCpu);
4094 }
4095
4096 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4097
4098 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
4099 /** @todo what about LDT selectors? Shouldn't matter, really. */
4100 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4101 uint16_t uNewSs = uNewCs + 8;
4102 if (uNewCs == 0 || uNewSs == 0)
4103 {
4104 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4105 return iemRaiseGeneralProtectionFault0(pVCpu);
4106 }
4107
4108 /* Long mode and legacy mode differs. */
4109 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4110 {
4111 uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR;
4112
4113 /* This test isn't in the docs, but I'm not trusting the guys writing
4114 the MSRs to have validated the values as canonical like they should. */
4115 if (!IEM_IS_CANONICAL(uNewRip))
4116 {
4117 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4118 return iemRaiseUndefinedOpcode(pVCpu);
4119 }
4120
4121 /*
4122 * Commit it.
4123 */
4124 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip));
4125 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr;
4126 pVCpu->cpum.GstCtx.rip = uNewRip;
4127
4128 pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF;
4129 pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u;
4130 pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK;
4131 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4132
4133 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4134 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4135 }
4136 else
4137 {
4138 /*
4139 * Commit it.
4140 */
4141 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
4142 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
4143 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr;
4144 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
4145 pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
4146
4147 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4148 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4149 }
4150 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
4151 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
4152 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4153 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4154 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4155
4156 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
4157 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
4158 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4159 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4160 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4161
4162 /* Flush the prefetch buffer. */
4163#ifdef IEM_WITH_CODE_TLB
4164 pVCpu->iem.s.pbInstrBuf = NULL;
4165#else
4166 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4167#endif
4168
4169 return VINF_SUCCESS;
4170}
4171
4172
4173/**
4174 * Implements SYSRET (AMD and Intel64).
4175 */
4176IEM_CIMPL_DEF_0(iemCImpl_sysret)
4177
4178{
4179 RT_NOREF_PV(cbInstr);
4180
4181 /*
4182 * Check preconditions.
4183 *
4184 * Note that CPUs described in the documentation may load a few odd values
4185 * into CS and SS than we allow here. This has yet to be checked on real
4186 * hardware.
4187 */
4188 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4189 {
4190 Log(("sysret: Not enabled in EFER -> #UD\n"));
4191 return iemRaiseUndefinedOpcode(pVCpu);
4192 }
4193 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4194 {
4195 Log(("sysret: Only available in long mode on intel -> #UD\n"));
4196 return iemRaiseUndefinedOpcode(pVCpu);
4197 }
4198 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4199 {
4200 Log(("sysret: Protected mode is required -> #GP(0)\n"));
4201 return iemRaiseGeneralProtectionFault0(pVCpu);
4202 }
4203 if (pVCpu->iem.s.uCpl != 0)
4204 {
4205 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
4206 return iemRaiseGeneralProtectionFault0(pVCpu);
4207 }
4208
4209 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4210
4211 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
4212 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4213 uint16_t uNewSs = uNewCs + 8;
4214 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4215 uNewCs += 16;
4216 if (uNewCs == 0 || uNewSs == 0)
4217 {
4218 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4219 return iemRaiseGeneralProtectionFault0(pVCpu);
4220 }
4221
4222 /*
4223 * Commit it.
4224 */
4225 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4226 {
4227 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4228 {
4229 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
4230 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11));
4231 /* Note! We disregard intel manual regarding the RCX cananonical
4232 check, ask intel+xen why AMD doesn't do it. */
4233 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4234 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4235 | (3 << X86DESCATTR_DPL_SHIFT);
4236 }
4237 else
4238 {
4239 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
4240 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11));
4241 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx;
4242 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4243 | (3 << X86DESCATTR_DPL_SHIFT);
4244 }
4245 /** @todo testcase: See what kind of flags we can make SYSRET restore and
4246 * what it really ignores. RF and VM are hinted at being zero, by AMD. */
4247 pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
4248 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4249 }
4250 else
4251 {
4252 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx));
4253 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4254 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF;
4255 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4256 | (3 << X86DESCATTR_DPL_SHIFT);
4257 }
4258 pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3;
4259 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3;
4260 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4261 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4262 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4263
4264 pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3;
4265 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3;
4266 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4267 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
4268 pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
4269 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
4270 * on sysret. */
4271
4272 /* Flush the prefetch buffer. */
4273#ifdef IEM_WITH_CODE_TLB
4274 pVCpu->iem.s.pbInstrBuf = NULL;
4275#else
4276 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4277#endif
4278
4279 return VINF_SUCCESS;
4280}
4281
4282
4283/**
4284 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
4285 *
4286 * @param iSegReg The segment register number (valid).
4287 * @param uSel The new selector value.
4288 */
4289IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
4290{
4291 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
4292 uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
4293 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
4294
4295 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
4296
4297 /*
4298 * Real mode and V8086 mode are easy.
4299 */
4300 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4301 {
4302 *pSel = uSel;
4303 pHid->u64Base = (uint32_t)uSel << 4;
4304 pHid->ValidSel = uSel;
4305 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4306#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
4307 /** @todo Does the CPU actually load limits and attributes in the
4308 * real/V8086 mode segment load case? It doesn't for CS in far
4309 * jumps... Affects unreal mode. */
4310 pHid->u32Limit = 0xffff;
4311 pHid->Attr.u = 0;
4312 pHid->Attr.n.u1Present = 1;
4313 pHid->Attr.n.u1DescType = 1;
4314 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
4315 ? X86_SEL_TYPE_RW
4316 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
4317#endif
4318 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4319 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4320 return VINF_SUCCESS;
4321 }
4322
4323 /*
4324 * Protected mode.
4325 *
4326 * Check if it's a null segment selector value first, that's OK for DS, ES,
4327 * FS and GS. If not null, then we have to load and parse the descriptor.
4328 */
4329 if (!(uSel & X86_SEL_MASK_OFF_RPL))
4330 {
4331 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
4332 if (iSegReg == X86_SREG_SS)
4333 {
4334 /* In 64-bit kernel mode, the stack can be 0 because of the way
4335 interrupts are dispatched. AMD seems to have a slighly more
4336 relaxed relationship to SS.RPL than intel does. */
4337 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
4338 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4339 || pVCpu->iem.s.uCpl > 2
4340 || ( uSel != pVCpu->iem.s.uCpl
4341 && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
4342 {
4343 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
4344 return iemRaiseGeneralProtectionFault0(pVCpu);
4345 }
4346 }
4347
4348 *pSel = uSel; /* Not RPL, remember :-) */
4349 iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
4350 if (iSegReg == X86_SREG_SS)
4351 pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
4352
4353 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4354 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4355
4356 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4357 return VINF_SUCCESS;
4358 }
4359
4360 /* Fetch the descriptor. */
4361 IEMSELDESC Desc;
4362 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
4363 if (rcStrict != VINF_SUCCESS)
4364 return rcStrict;
4365
4366 /* Check GPs first. */
4367 if (!Desc.Legacy.Gen.u1DescType)
4368 {
4369 Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
4370 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4371 }
4372 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
4373 {
4374 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
4375 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
4376 {
4377 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
4378 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4379 }
4380 if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
4381 {
4382 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
4383 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4384 }
4385 if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
4386 {
4387 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
4388 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4389 }
4390 }
4391 else
4392 {
4393 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4394 {
4395 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
4396 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4397 }
4398 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4399 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4400 {
4401#if 0 /* this is what intel says. */
4402 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
4403 && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4404 {
4405 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
4406 iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4407 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4408 }
4409#else /* this is what makes more sense. */
4410 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4411 {
4412 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
4413 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
4414 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4415 }
4416 if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4417 {
4418 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
4419 iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4420 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4421 }
4422#endif
4423 }
4424 }
4425
4426 /* Is it there? */
4427 if (!Desc.Legacy.Gen.u1Present)
4428 {
4429 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
4430 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
4431 }
4432
4433 /* The base and limit. */
4434 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
4435 uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
4436
4437 /*
4438 * Ok, everything checked out fine. Now set the accessed bit before
4439 * committing the result into the registers.
4440 */
4441 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
4442 {
4443 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
4444 if (rcStrict != VINF_SUCCESS)
4445 return rcStrict;
4446 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
4447 }
4448
4449 /* commit */
4450 *pSel = uSel;
4451 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4452 pHid->u32Limit = cbLimit;
4453 pHid->u64Base = u64Base;
4454 pHid->ValidSel = uSel;
4455 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4456
4457 /** @todo check if the hidden bits are loaded correctly for 64-bit
4458 * mode. */
4459 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4460
4461 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4462 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4463 return VINF_SUCCESS;
4464}
4465
4466
4467/**
4468 * Implements 'mov SReg, r/m'.
4469 *
4470 * @param iSegReg The segment register number (valid).
4471 * @param uSel The new selector value.
4472 */
4473IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
4474{
4475 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4476 if (rcStrict == VINF_SUCCESS)
4477 {
4478 if (iSegReg == X86_SREG_SS)
4479 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4480 }
4481 return rcStrict;
4482}
4483
4484
4485/**
4486 * Implements 'pop SReg'.
4487 *
4488 * @param iSegReg The segment register number (valid).
4489 * @param enmEffOpSize The efficient operand size (valid).
4490 */
4491IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
4492{
4493 VBOXSTRICTRC rcStrict;
4494
4495 /*
4496 * Read the selector off the stack and join paths with mov ss, reg.
4497 */
4498 RTUINT64U TmpRsp;
4499 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
4500 switch (enmEffOpSize)
4501 {
4502 case IEMMODE_16BIT:
4503 {
4504 uint16_t uSel;
4505 rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
4506 if (rcStrict == VINF_SUCCESS)
4507 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4508 break;
4509 }
4510
4511 case IEMMODE_32BIT:
4512 {
4513 uint32_t u32Value;
4514 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
4515 if (rcStrict == VINF_SUCCESS)
4516 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
4517 break;
4518 }
4519
4520 case IEMMODE_64BIT:
4521 {
4522 uint64_t u64Value;
4523 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
4524 if (rcStrict == VINF_SUCCESS)
4525 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
4526 break;
4527 }
4528 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4529 }
4530
4531 /*
4532 * Commit the stack on success.
4533 */
4534 if (rcStrict == VINF_SUCCESS)
4535 {
4536 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
4537 if (iSegReg == X86_SREG_SS)
4538 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4539 }
4540 return rcStrict;
4541}
4542
4543
4544/**
4545 * Implements lgs, lfs, les, lds & lss.
4546 */
4547IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
4548 uint16_t, uSel,
4549 uint64_t, offSeg,
4550 uint8_t, iSegReg,
4551 uint8_t, iGReg,
4552 IEMMODE, enmEffOpSize)
4553{
4554 /*
4555 * Use iemCImpl_LoadSReg to do the tricky segment register loading.
4556 */
4557 /** @todo verify and test that mov, pop and lXs works the segment
4558 * register loading in the exact same way. */
4559 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4560 if (rcStrict == VINF_SUCCESS)
4561 {
4562 switch (enmEffOpSize)
4563 {
4564 case IEMMODE_16BIT:
4565 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4566 break;
4567 case IEMMODE_32BIT:
4568 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4569 break;
4570 case IEMMODE_64BIT:
4571 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4572 break;
4573 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4574 }
4575 }
4576
4577 return rcStrict;
4578}
4579
4580
4581/**
4582 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
4583 *
4584 * @retval VINF_SUCCESS on success.
4585 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
4586 * @retval iemMemFetchSysU64 return value.
4587 *
4588 * @param pVCpu The cross context virtual CPU structure of the calling thread.
4589 * @param uSel The selector value.
4590 * @param fAllowSysDesc Whether system descriptors are OK or not.
4591 * @param pDesc Where to return the descriptor on success.
4592 */
4593static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPU pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
4594{
4595 pDesc->Long.au64[0] = 0;
4596 pDesc->Long.au64[1] = 0;
4597
4598 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
4599 return VINF_IEM_SELECTOR_NOT_OK;
4600
4601 /* Within the table limits? */
4602 RTGCPTR GCPtrBase;
4603 if (uSel & X86_SEL_LDT)
4604 {
4605 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
4606 if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
4607 || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
4608 return VINF_IEM_SELECTOR_NOT_OK;
4609 GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
4610 }
4611 else
4612 {
4613 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4614 if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
4615 return VINF_IEM_SELECTOR_NOT_OK;
4616 GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
4617 }
4618
4619 /* Fetch the descriptor. */
4620 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
4621 if (rcStrict != VINF_SUCCESS)
4622 return rcStrict;
4623 if (!pDesc->Legacy.Gen.u1DescType)
4624 {
4625 if (!fAllowSysDesc)
4626 return VINF_IEM_SELECTOR_NOT_OK;
4627 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4628 {
4629 rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
4630 if (rcStrict != VINF_SUCCESS)
4631 return rcStrict;
4632 }
4633
4634 }
4635
4636 return VINF_SUCCESS;
4637}
4638
4639
4640/**
4641 * Implements verr (fWrite = false) and verw (fWrite = true).
4642 */
4643IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
4644{
4645 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4646
4647 /** @todo figure whether the accessed bit is set or not. */
4648
4649 bool fAccessible = true;
4650 IEMSELDESC Desc;
4651 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4652 if (rcStrict == VINF_SUCCESS)
4653 {
4654 /* Check the descriptor, order doesn't matter much here. */
4655 if ( !Desc.Legacy.Gen.u1DescType
4656 || !Desc.Legacy.Gen.u1Present)
4657 fAccessible = false;
4658 else
4659 {
4660 if ( fWrite
4661 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
4662 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4663 fAccessible = false;
4664
4665 /** @todo testcase for the conforming behavior. */
4666 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4667 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4668 {
4669 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4670 fAccessible = false;
4671 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4672 fAccessible = false;
4673 }
4674 }
4675
4676 }
4677 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4678 fAccessible = false;
4679 else
4680 return rcStrict;
4681
4682 /* commit */
4683 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible;
4684
4685 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4686 return VINF_SUCCESS;
4687}
4688
4689
4690/**
4691 * Implements LAR and LSL with 64-bit operand size.
4692 *
4693 * @returns VINF_SUCCESS.
4694 * @param pu16Dst Pointer to the destination register.
4695 * @param uSel The selector to load details for.
4696 * @param fIsLar true = LAR, false = LSL.
4697 */
4698IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
4699{
4700 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4701
4702 /** @todo figure whether the accessed bit is set or not. */
4703
4704 bool fDescOk = true;
4705 IEMSELDESC Desc;
4706 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, true /*fAllowSysDesc*/, &Desc);
4707 if (rcStrict == VINF_SUCCESS)
4708 {
4709 /*
4710 * Check the descriptor type.
4711 */
4712 if (!Desc.Legacy.Gen.u1DescType)
4713 {
4714 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4715 {
4716 if (Desc.Long.Gen.u5Zeros)
4717 fDescOk = false;
4718 else
4719 switch (Desc.Long.Gen.u4Type)
4720 {
4721 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
4722 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
4723 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
4724 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
4725 break;
4726 case AMD64_SEL_TYPE_SYS_CALL_GATE:
4727 fDescOk = fIsLar;
4728 break;
4729 default:
4730 fDescOk = false;
4731 break;
4732 }
4733 }
4734 else
4735 {
4736 switch (Desc.Long.Gen.u4Type)
4737 {
4738 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4739 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4740 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4741 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
4742 case X86_SEL_TYPE_SYS_LDT:
4743 break;
4744 case X86_SEL_TYPE_SYS_286_CALL_GATE:
4745 case X86_SEL_TYPE_SYS_TASK_GATE:
4746 case X86_SEL_TYPE_SYS_386_CALL_GATE:
4747 fDescOk = fIsLar;
4748 break;
4749 default:
4750 fDescOk = false;
4751 break;
4752 }
4753 }
4754 }
4755 if (fDescOk)
4756 {
4757 /*
4758 * Check the RPL/DPL/CPL interaction..
4759 */
4760 /** @todo testcase for the conforming behavior. */
4761 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
4762 || !Desc.Legacy.Gen.u1DescType)
4763 {
4764 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4765 fDescOk = false;
4766 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4767 fDescOk = false;
4768 }
4769 }
4770
4771 if (fDescOk)
4772 {
4773 /*
4774 * All fine, start committing the result.
4775 */
4776 if (fIsLar)
4777 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
4778 else
4779 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
4780 }
4781
4782 }
4783 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4784 fDescOk = false;
4785 else
4786 return rcStrict;
4787
4788 /* commit flags value and advance rip. */
4789 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk;
4790 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4791
4792 return VINF_SUCCESS;
4793}
4794
4795
4796/**
4797 * Implements LAR and LSL with 16-bit operand size.
4798 *
4799 * @returns VINF_SUCCESS.
4800 * @param pu16Dst Pointer to the destination register.
4801 * @param u16Sel The selector to load details for.
4802 * @param fIsLar true = LAR, false = LSL.
4803 */
4804IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
4805{
4806 uint64_t u64TmpDst = *pu16Dst;
4807 IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
4808 *pu16Dst = u64TmpDst;
4809 return VINF_SUCCESS;
4810}
4811
4812
4813/**
4814 * Implements lgdt.
4815 *
4816 * @param iEffSeg The segment of the new gdtr contents
4817 * @param GCPtrEffSrc The address of the new gdtr contents.
4818 * @param enmEffOpSize The effective operand size.
4819 */
4820IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4821{
4822 if (pVCpu->iem.s.uCpl != 0)
4823 return iemRaiseGeneralProtectionFault0(pVCpu);
4824 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4825
4826 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4827 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4828 {
4829 Log(("lgdt: Guest intercept -> VM-exit\n"));
4830 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_LGDT, cbInstr);
4831 }
4832
4833 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
4834 {
4835 Log(("lgdt: Guest intercept -> #VMEXIT\n"));
4836 IEM_SVM_UPDATE_NRIP(pVCpu);
4837 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4838 }
4839
4840 /*
4841 * Fetch the limit and base address.
4842 */
4843 uint16_t cbLimit;
4844 RTGCPTR GCPtrBase;
4845 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4846 if (rcStrict == VINF_SUCCESS)
4847 {
4848 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4849 || X86_IS_CANONICAL(GCPtrBase))
4850 {
4851 rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
4852 if (rcStrict == VINF_SUCCESS)
4853 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4854 }
4855 else
4856 {
4857 Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
4858 return iemRaiseGeneralProtectionFault0(pVCpu);
4859 }
4860 }
4861 return rcStrict;
4862}
4863
4864
4865/**
4866 * Implements sgdt.
4867 *
4868 * @param iEffSeg The segment where to store the gdtr content.
4869 * @param GCPtrEffDst The address where to store the gdtr content.
4870 */
4871IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
4872{
4873 /*
4874 * Join paths with sidt.
4875 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4876 * you really must know.
4877 */
4878 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4879 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4880 {
4881 Log(("sgdt: Guest intercept -> VM-exit\n"));
4882 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_SGDT, cbInstr);
4883 }
4884
4885 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS))
4886 {
4887 Log(("sgdt: Guest intercept -> #VMEXIT\n"));
4888 IEM_SVM_UPDATE_NRIP(pVCpu);
4889 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4890 }
4891
4892 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4893 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst);
4894 if (rcStrict == VINF_SUCCESS)
4895 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4896 return rcStrict;
4897}
4898
4899
4900/**
4901 * Implements lidt.
4902 *
4903 * @param iEffSeg The segment of the new idtr contents
4904 * @param GCPtrEffSrc The address of the new idtr contents.
4905 * @param enmEffOpSize The effective operand size.
4906 */
4907IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4908{
4909 if (pVCpu->iem.s.uCpl != 0)
4910 return iemRaiseGeneralProtectionFault0(pVCpu);
4911 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4912
4913 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
4914 {
4915 Log(("lidt: Guest intercept -> #VMEXIT\n"));
4916 IEM_SVM_UPDATE_NRIP(pVCpu);
4917 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4918 }
4919
4920 /*
4921 * Fetch the limit and base address.
4922 */
4923 uint16_t cbLimit;
4924 RTGCPTR GCPtrBase;
4925 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4926 if (rcStrict == VINF_SUCCESS)
4927 {
4928 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4929 || X86_IS_CANONICAL(GCPtrBase))
4930 {
4931 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
4932 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4933 }
4934 else
4935 {
4936 Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
4937 return iemRaiseGeneralProtectionFault0(pVCpu);
4938 }
4939 }
4940 return rcStrict;
4941}
4942
4943
4944/**
4945 * Implements sidt.
4946 *
4947 * @param iEffSeg The segment where to store the idtr content.
4948 * @param GCPtrEffDst The address where to store the idtr content.
4949 */
4950IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
4951{
4952 /*
4953 * Join paths with sgdt.
4954 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
4955 * you really must know.
4956 */
4957 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS))
4958 {
4959 Log(("sidt: Guest intercept -> #VMEXIT\n"));
4960 IEM_SVM_UPDATE_NRIP(pVCpu);
4961 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4962 }
4963
4964 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR);
4965 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst);
4966 if (rcStrict == VINF_SUCCESS)
4967 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4968 return rcStrict;
4969}
4970
4971
4972/**
4973 * Implements lldt.
4974 *
4975 * @param uNewLdt The new LDT selector value.
4976 */
4977IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
4978{
4979 /*
4980 * Check preconditions.
4981 */
4982 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4983 {
4984 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
4985 return iemRaiseUndefinedOpcode(pVCpu);
4986 }
4987 if (pVCpu->iem.s.uCpl != 0)
4988 {
4989 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
4990 return iemRaiseGeneralProtectionFault0(pVCpu);
4991 }
4992 /* Nested-guest VMX intercept. */
4993 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4994 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4995 {
4996 Log(("lldt: Guest intercept -> VM-exit\n"));
4997 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LLDT, cbInstr);
4998 }
4999 if (uNewLdt & X86_SEL_LDT)
5000 {
5001 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
5002 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
5003 }
5004
5005 /*
5006 * Now, loading a NULL selector is easy.
5007 */
5008 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
5009 {
5010 /* Nested-guest SVM intercept. */
5011 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5012 {
5013 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5014 IEM_SVM_UPDATE_NRIP(pVCpu);
5015 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5016 }
5017
5018 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
5019 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
5020 CPUMSetGuestLDTR(pVCpu, uNewLdt);
5021 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
5022 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5023 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
5024 {
5025 /* AMD-V seems to leave the base and limit alone. */
5026 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
5027 }
5028 else
5029 {
5030 /* VT-x (Intel 3960x) seems to be doing the following. */
5031 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
5032 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
5033 pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX;
5034 }
5035
5036 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5037 return VINF_SUCCESS;
5038 }
5039
5040 /*
5041 * Read the descriptor.
5042 */
5043 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR);
5044 IEMSELDESC Desc;
5045 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
5046 if (rcStrict != VINF_SUCCESS)
5047 return rcStrict;
5048
5049 /* Check GPs first. */
5050 if (Desc.Legacy.Gen.u1DescType)
5051 {
5052 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5053 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5054 }
5055 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
5056 {
5057 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5058 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5059 }
5060 uint64_t u64Base;
5061 if (!IEM_IS_LONG_MODE(pVCpu))
5062 u64Base = X86DESC_BASE(&Desc.Legacy);
5063 else
5064 {
5065 if (Desc.Long.Gen.u5Zeros)
5066 {
5067 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
5068 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5069 }
5070
5071 u64Base = X86DESC64_BASE(&Desc.Long);
5072 if (!IEM_IS_CANONICAL(u64Base))
5073 {
5074 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
5075 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5076 }
5077 }
5078
5079 /* NP */
5080 if (!Desc.Legacy.Gen.u1Present)
5081 {
5082 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
5083 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
5084 }
5085
5086 /* Nested-guest SVM intercept. */
5087 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5088 {
5089 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5090 IEM_SVM_UPDATE_NRIP(pVCpu);
5091 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5092 }
5093
5094 /*
5095 * It checks out alright, update the registers.
5096 */
5097/** @todo check if the actual value is loaded or if the RPL is dropped */
5098 CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5099 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
5100 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5101 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5102 pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5103 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
5104
5105 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5106 return VINF_SUCCESS;
5107}
5108
5109
5110/**
5111 * Implements sldt GReg
5112 *
5113 * @param iGReg The general register to store the CRx value in.
5114 * @param enmEffOpSize The operand size.
5115 */
5116IEM_CIMPL_DEF_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5117{
5118 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5119 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5120 {
5121 Log(("sldt: Guest intercept -> VM-exit\n"));
5122 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_SLDT, cbInstr);
5123 }
5124
5125 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5126
5127 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5128 switch (enmEffOpSize)
5129 {
5130 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5131 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5132 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5133 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5134 }
5135 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5136 return VINF_SUCCESS;
5137}
5138
5139
5140/**
5141 * Implements sldt mem.
5142 *
5143 * @param iGReg The general register to store the CRx value in.
5144 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5145 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5146 */
5147IEM_CIMPL_DEF_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5148{
5149 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5150
5151 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5152 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.ldtr.Sel);
5153 if (rcStrict == VINF_SUCCESS)
5154 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5155 return rcStrict;
5156}
5157
5158
5159/**
5160 * Implements ltr.
5161 *
5162 * @param uNewTr The new TSS selector value.
5163 */
5164IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
5165{
5166 /*
5167 * Check preconditions.
5168 */
5169 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5170 {
5171 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
5172 return iemRaiseUndefinedOpcode(pVCpu);
5173 }
5174 if (pVCpu->iem.s.uCpl != 0)
5175 {
5176 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
5177 return iemRaiseGeneralProtectionFault0(pVCpu);
5178 }
5179 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5180 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5181 {
5182 Log(("ltr: Guest intercept -> VM-exit\n"));
5183 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LTR, cbInstr);
5184 }
5185 if (uNewTr & X86_SEL_LDT)
5186 {
5187 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
5188 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
5189 }
5190 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
5191 {
5192 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
5193 return iemRaiseGeneralProtectionFault0(pVCpu);
5194 }
5195 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
5196 {
5197 Log(("ltr: Guest intercept -> #VMEXIT\n"));
5198 IEM_SVM_UPDATE_NRIP(pVCpu);
5199 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5200 }
5201
5202 /*
5203 * Read the descriptor.
5204 */
5205 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR);
5206 IEMSELDESC Desc;
5207 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
5208 if (rcStrict != VINF_SUCCESS)
5209 return rcStrict;
5210
5211 /* Check GPs first. */
5212 if (Desc.Legacy.Gen.u1DescType)
5213 {
5214 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5215 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5216 }
5217 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
5218 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
5219 || IEM_IS_LONG_MODE(pVCpu)) )
5220 {
5221 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5222 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5223 }
5224 uint64_t u64Base;
5225 if (!IEM_IS_LONG_MODE(pVCpu))
5226 u64Base = X86DESC_BASE(&Desc.Legacy);
5227 else
5228 {
5229 if (Desc.Long.Gen.u5Zeros)
5230 {
5231 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
5232 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5233 }
5234
5235 u64Base = X86DESC64_BASE(&Desc.Long);
5236 if (!IEM_IS_CANONICAL(u64Base))
5237 {
5238 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
5239 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5240 }
5241 }
5242
5243 /* NP */
5244 if (!Desc.Legacy.Gen.u1Present)
5245 {
5246 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
5247 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
5248 }
5249
5250 /*
5251 * Set it busy.
5252 * Note! Intel says this should lock down the whole descriptor, but we'll
5253 * restrict our selves to 32-bit for now due to lack of inline
5254 * assembly and such.
5255 */
5256 void *pvDesc;
5257 rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
5258 if (rcStrict != VINF_SUCCESS)
5259 return rcStrict;
5260 switch ((uintptr_t)pvDesc & 3)
5261 {
5262 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
5263 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
5264 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
5265 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
5266 }
5267 rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
5268 if (rcStrict != VINF_SUCCESS)
5269 return rcStrict;
5270 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
5271
5272 /*
5273 * It checks out alright, update the registers.
5274 */
5275/** @todo check if the actual value is loaded or if the RPL is dropped */
5276 CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5277 pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
5278 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
5279 pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5280 pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5281 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
5282
5283 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5284 return VINF_SUCCESS;
5285}
5286
5287
5288/**
5289 * Implements str GReg
5290 *
5291 * @param iGReg The general register to store the CRx value in.
5292 * @param enmEffOpSize The operand size.
5293 */
5294IEM_CIMPL_DEF_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5295{
5296 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5297 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5298 {
5299 Log(("str_reg: Guest intercept -> VM-exit\n"));
5300 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5301 }
5302
5303 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5304
5305 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5306 switch (enmEffOpSize)
5307 {
5308 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5309 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5310 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5311 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5312 }
5313 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5314 return VINF_SUCCESS;
5315}
5316
5317
5318/**
5319 * Implements str mem.
5320 *
5321 * @param iGReg The general register to store the CRx value in.
5322 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5323 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5324 */
5325IEM_CIMPL_DEF_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5326{
5327 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5328 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5329 {
5330 Log(("str_mem: Guest intercept -> VM-exit\n"));
5331 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5332 }
5333
5334 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5335
5336 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5337 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.tr.Sel);
5338 if (rcStrict == VINF_SUCCESS)
5339 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5340 return rcStrict;
5341}
5342
5343
5344/**
5345 * Implements mov GReg,CRx.
5346 *
5347 * @param iGReg The general register to store the CRx value in.
5348 * @param iCrReg The CRx register to read (valid).
5349 */
5350IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
5351{
5352 if (pVCpu->iem.s.uCpl != 0)
5353 return iemRaiseGeneralProtectionFault0(pVCpu);
5354 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5355
5356 if (IEM_SVM_IS_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
5357 {
5358 Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg));
5359 IEM_SVM_UPDATE_NRIP(pVCpu);
5360 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
5361 }
5362
5363 /* Read it. */
5364 uint64_t crX;
5365 switch (iCrReg)
5366 {
5367 case 0:
5368 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5369 crX = pVCpu->cpum.GstCtx.cr0;
5370 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
5371 crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
5372 break;
5373 case 2:
5374 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2);
5375 crX = pVCpu->cpum.GstCtx.cr2;
5376 break;
5377 case 3:
5378 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5379 crX = pVCpu->cpum.GstCtx.cr3;
5380 break;
5381 case 4:
5382 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5383 crX = pVCpu->cpum.GstCtx.cr4;
5384 break;
5385 case 8:
5386 {
5387 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5388#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5389 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5390 {
5391 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr8(pVCpu, iGReg, cbInstr);
5392 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5393 return rcStrict;
5394
5395 /*
5396 * If the Mov-from-CR8 doesn't cause a VM-exit, bits 7:4 of the VTPR is copied
5397 * to bits 0:3 of the destination operand. Bits 63:4 of the destination operand
5398 * are cleared.
5399 *
5400 * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5401 */
5402 if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5403 {
5404 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5405 crX = (uTpr >> 4) & 0xf;
5406 break;
5407 }
5408 }
5409#endif
5410#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5411 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5412 {
5413 PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
5414 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5415 {
5416 crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf;
5417 break;
5418 }
5419 }
5420#endif
5421 uint8_t uTpr;
5422 int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
5423 if (RT_SUCCESS(rc))
5424 crX = uTpr >> 4;
5425 else
5426 crX = 0;
5427 break;
5428 }
5429 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5430 }
5431
5432#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5433 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5434 {
5435 switch (iCrReg)
5436 {
5437 /* CR0/CR4 reads are subject to masking when in VMX non-root mode. */
5438 case 0: crX = CPUMGetGuestVmxMaskedCr0(pVCpu, &pVCpu->cpum.GstCtx); break;
5439 case 4: crX = CPUMGetGuestVmxMaskedCr4(pVCpu, &pVCpu->cpum.GstCtx); break;
5440
5441 case 3:
5442 {
5443 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr3(pVCpu, iGReg, cbInstr);
5444 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5445 return rcStrict;
5446 break;
5447 }
5448 }
5449 }
5450#endif
5451
5452 /* Store it. */
5453 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5454 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
5455 else
5456 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
5457
5458 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5459 return VINF_SUCCESS;
5460}
5461
5462
5463/**
5464 * Implements smsw GReg.
5465 *
5466 * @param iGReg The general register to store the CRx value in.
5467 * @param enmEffOpSize The operand size.
5468 */
5469IEM_CIMPL_DEF_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5470{
5471 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5472
5473#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5474 uint64_t const u64GuestCr0 = !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5475 ? pVCpu->cpum.GstCtx.cr0
5476 : CPUMGetGuestVmxMaskedCr0(pVCpu, &pVCpu->cpum.GstCtx);
5477#else
5478 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5479#endif
5480
5481 switch (enmEffOpSize)
5482 {
5483 case IEMMODE_16BIT:
5484 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5485 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0;
5486 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5487 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xffe0;
5488 else
5489 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xfff0;
5490 break;
5491
5492 case IEMMODE_32BIT:
5493 *(uint32_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)u64GuestCr0;
5494 break;
5495
5496 case IEMMODE_64BIT:
5497 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = u64GuestCr0;
5498 break;
5499
5500 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5501 }
5502
5503 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5504 return VINF_SUCCESS;
5505}
5506
5507
5508/**
5509 * Implements smsw mem.
5510 *
5511 * @param iGReg The general register to store the CR0 value in.
5512 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5513 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5514 */
5515IEM_CIMPL_DEF_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5516{
5517 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5518
5519#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5520 uint64_t const u64GuestCr0 = !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5521 ? pVCpu->cpum.GstCtx.cr0
5522 : CPUMGetGuestVmxMaskedCr0(pVCpu, &pVCpu->cpum.GstCtx);
5523#else
5524 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5525#endif
5526
5527 uint16_t u16Value;
5528 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5529 u16Value = (uint16_t)u64GuestCr0;
5530 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5531 u16Value = (uint16_t)u64GuestCr0 | 0xffe0;
5532 else
5533 u16Value = (uint16_t)u64GuestCr0 | 0xfff0;
5534
5535 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, u16Value);
5536 if (rcStrict == VINF_SUCCESS)
5537 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5538 return rcStrict;
5539}
5540
5541
5542/**
5543 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
5544 *
5545 * @param iCrReg The CRx register to write (valid).
5546 * @param uNewCrX The new value.
5547 * @param enmAccessCrx The instruction that caused the CrX load.
5548 * @param iGReg The general register in case of a 'mov CRx,GReg'
5549 * instruction.
5550 */
5551IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
5552{
5553 VBOXSTRICTRC rcStrict;
5554 int rc;
5555#ifndef VBOX_WITH_NESTED_HWVIRT_SVM
5556 RT_NOREF2(iGReg, enmAccessCrX);
5557#endif
5558
5559 /*
5560 * Try store it.
5561 * Unfortunately, CPUM only does a tiny bit of the work.
5562 */
5563 switch (iCrReg)
5564 {
5565 case 0:
5566 {
5567 /*
5568 * Perform checks.
5569 */
5570 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5571
5572 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0;
5573 uint32_t const fValid = CPUMGetGuestCR0ValidMask();
5574
5575 /* ET is hardcoded on 486 and later. */
5576 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
5577 uNewCrX |= X86_CR0_ET;
5578 /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
5579 else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
5580 {
5581 uNewCrX &= fValid;
5582 uNewCrX |= X86_CR0_ET;
5583 }
5584 else
5585 uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
5586
5587 /* Check for reserved bits. */
5588 if (uNewCrX & ~(uint64_t)fValid)
5589 {
5590 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5591 return iemRaiseGeneralProtectionFault0(pVCpu);
5592 }
5593
5594 /* Check for invalid combinations. */
5595 if ( (uNewCrX & X86_CR0_PG)
5596 && !(uNewCrX & X86_CR0_PE) )
5597 {
5598 Log(("Trying to set CR0.PG without CR0.PE\n"));
5599 return iemRaiseGeneralProtectionFault0(pVCpu);
5600 }
5601
5602 if ( !(uNewCrX & X86_CR0_CD)
5603 && (uNewCrX & X86_CR0_NW) )
5604 {
5605 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
5606 return iemRaiseGeneralProtectionFault0(pVCpu);
5607 }
5608
5609 if ( !(uNewCrX & X86_CR0_PG)
5610 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE))
5611 {
5612 Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n"));
5613 return iemRaiseGeneralProtectionFault0(pVCpu);
5614 }
5615
5616 /* Long mode consistency checks. */
5617 if ( (uNewCrX & X86_CR0_PG)
5618 && !(uOldCrX & X86_CR0_PG)
5619 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5620 {
5621 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE))
5622 {
5623 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
5624 return iemRaiseGeneralProtectionFault0(pVCpu);
5625 }
5626 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long)
5627 {
5628 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
5629 return iemRaiseGeneralProtectionFault0(pVCpu);
5630 }
5631 }
5632
5633 /* Check for bits that must remain set or cleared in VMX operation,
5634 see Intel spec. 23.8 "Restrictions on VMX operation". */
5635 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5636 {
5637 uint32_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
5638 if ((uNewCrX & uCr0Fixed0) != uCr0Fixed0)
5639 {
5640 Log(("Trying to clear reserved CR0 bits in VMX operation: NewCr0=%#llx MB1=%#llx\n", uNewCrX, uCr0Fixed0));
5641 return iemRaiseGeneralProtectionFault0(pVCpu);
5642 }
5643
5644 uint32_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5645 if (uNewCrX & ~uCr0Fixed1)
5646 {
5647 Log(("Trying to set reserved CR0 bits in VMX operation: NewCr0=%#llx MB0=%#llx\n", uNewCrX, uCr0Fixed1));
5648 return iemRaiseGeneralProtectionFault0(pVCpu);
5649 }
5650 }
5651
5652 /** @todo check reserved PDPTR bits as AMD states. */
5653
5654 /*
5655 * SVM nested-guest CR0 write intercepts.
5656 */
5657 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
5658 {
5659 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5660 IEM_SVM_UPDATE_NRIP(pVCpu);
5661 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
5662 }
5663 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5664 {
5665 /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
5666 if ( enmAccessCrX == IEMACCESSCRX_LMSW
5667 || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
5668 {
5669 Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
5670 Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg));
5671 IEM_SVM_UPDATE_NRIP(pVCpu);
5672 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg);
5673 }
5674 }
5675
5676 /*
5677 * Change CR0.
5678 */
5679 CPUMSetGuestCR0(pVCpu, uNewCrX);
5680 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX);
5681
5682 /*
5683 * Change EFER.LMA if entering or leaving long mode.
5684 */
5685 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
5686 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5687 {
5688 uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER;
5689 if (uNewCrX & X86_CR0_PG)
5690 NewEFER |= MSR_K6_EFER_LMA;
5691 else
5692 NewEFER &= ~MSR_K6_EFER_LMA;
5693
5694 CPUMSetGuestEFER(pVCpu, NewEFER);
5695 Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER);
5696 }
5697
5698 /*
5699 * Inform PGM.
5700 */
5701 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
5702 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) )
5703 {
5704 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5705 AssertRCReturn(rc, rc);
5706 /* ignore informational status codes */
5707 }
5708 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
5709
5710#ifdef IN_RC
5711 /* Return to ring-3 for rescheduling if WP or AM changes. */
5712 if ( rcStrict == VINF_SUCCESS
5713 && ( (uNewCrX & (X86_CR0_WP | X86_CR0_AM))
5714 != (uOldCrX & (X86_CR0_WP | X86_CR0_AM))) )
5715 rcStrict = VINF_EM_RESCHEDULE;
5716#endif
5717 break;
5718 }
5719
5720 /*
5721 * CR2 can be changed without any restrictions.
5722 */
5723 case 2:
5724 {
5725 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
5726 {
5727 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5728 IEM_SVM_UPDATE_NRIP(pVCpu);
5729 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
5730 }
5731 pVCpu->cpum.GstCtx.cr2 = uNewCrX;
5732 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2;
5733 rcStrict = VINF_SUCCESS;
5734 break;
5735 }
5736
5737 /*
5738 * CR3 is relatively simple, although AMD and Intel have different
5739 * accounts of how setting reserved bits are handled. We take intel's
5740 * word for the lower bits and AMD's for the high bits (63:52). The
5741 * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
5742 * on this.
5743 */
5744 /** @todo Testcase: Setting reserved bits in CR3, especially before
5745 * enabling paging. */
5746 case 3:
5747 {
5748 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5749
5750 /* Bit 63 being clear in the source operand with PCIDE indicates no invalidations are required. */
5751 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)
5752 && (uNewCrX & RT_BIT_64(63)))
5753 {
5754 /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10
5755 * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see
5756 * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and
5757 * Paging-Structure Caches". */
5758 uNewCrX &= ~RT_BIT_64(63);
5759 }
5760
5761 /* Check / mask the value. */
5762 if (uNewCrX & UINT64_C(0xfff0000000000000))
5763 {
5764 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
5765 return iemRaiseGeneralProtectionFault0(pVCpu);
5766 }
5767
5768 uint64_t fValid;
5769 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
5770 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME))
5771 fValid = UINT64_C(0x000fffffffffffff);
5772 else
5773 fValid = UINT64_C(0xffffffff);
5774 if (uNewCrX & ~fValid)
5775 {
5776 Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
5777 uNewCrX, uNewCrX & ~fValid));
5778 uNewCrX &= fValid;
5779 }
5780
5781 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
5782 {
5783 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5784 IEM_SVM_UPDATE_NRIP(pVCpu);
5785 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
5786 }
5787
5788 /** @todo If we're in PAE mode we should check the PDPTRs for
5789 * invalid bits. */
5790
5791 /* Make the change. */
5792 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
5793 AssertRCSuccessReturn(rc, rc);
5794
5795 /* Inform PGM. */
5796 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
5797 {
5798 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE));
5799 AssertRCReturn(rc, rc);
5800 /* ignore informational status codes */
5801 }
5802 rcStrict = VINF_SUCCESS;
5803 break;
5804 }
5805
5806 /*
5807 * CR4 is a bit more tedious as there are bits which cannot be cleared
5808 * under some circumstances and such.
5809 */
5810 case 4:
5811 {
5812 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5813 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4;
5814
5815 /* Reserved bits. */
5816 uint32_t const fValid = CPUMGetGuestCR4ValidMask(pVCpu->CTX_SUFF(pVM));
5817 if (uNewCrX & ~(uint64_t)fValid)
5818 {
5819 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5820 return iemRaiseGeneralProtectionFault0(pVCpu);
5821 }
5822
5823 bool const fPcide = ((uNewCrX ^ uOldCrX) & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE);
5824 bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
5825
5826 /* PCIDE check. */
5827 if ( fPcide
5828 && ( !fLongMode
5829 || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))))
5830 {
5831 Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))));
5832 return iemRaiseGeneralProtectionFault0(pVCpu);
5833 }
5834
5835 /* PAE check. */
5836 if ( fLongMode
5837 && (uOldCrX & X86_CR4_PAE)
5838 && !(uNewCrX & X86_CR4_PAE))
5839 {
5840 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
5841 return iemRaiseGeneralProtectionFault0(pVCpu);
5842 }
5843
5844 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
5845 {
5846 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5847 IEM_SVM_UPDATE_NRIP(pVCpu);
5848 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
5849 }
5850
5851 /* Check for bits that must remain set or cleared in VMX operation,
5852 see Intel spec. 23.8 "Restrictions on VMX operation". */
5853 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5854 {
5855 uint32_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
5856 if ((uNewCrX & uCr4Fixed0) != uCr4Fixed0)
5857 {
5858 Log(("Trying to clear reserved CR4 bits in VMX operation: NewCr4=%#llx MB1=%#llx\n", uNewCrX, uCr4Fixed0));
5859 return iemRaiseGeneralProtectionFault0(pVCpu);
5860 }
5861
5862 uint32_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
5863 if (uNewCrX & ~uCr4Fixed1)
5864 {
5865 Log(("Trying to set reserved CR4 bits in VMX operation: NewCr4=%#llx MB0=%#llx\n", uNewCrX, uCr4Fixed1));
5866 return iemRaiseGeneralProtectionFault0(pVCpu);
5867 }
5868 }
5869
5870 /*
5871 * Change it.
5872 */
5873 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
5874 AssertRCSuccessReturn(rc, rc);
5875 Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX);
5876
5877 /*
5878 * Notify SELM and PGM.
5879 */
5880 /* SELM - VME may change things wrt to the TSS shadowing. */
5881 if ((uNewCrX ^ uOldCrX) & X86_CR4_VME)
5882 {
5883 Log(("iemCImpl_load_CrX: VME %d -> %d => Setting VMCPU_FF_SELM_SYNC_TSS\n",
5884 RT_BOOL(uOldCrX & X86_CR4_VME), RT_BOOL(uNewCrX & X86_CR4_VME) ));
5885#ifdef VBOX_WITH_RAW_MODE
5886 if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
5887 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
5888#endif
5889 }
5890
5891 /* PGM - flushing and mode. */
5892 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */))
5893 {
5894 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */);
5895 AssertRCReturn(rc, rc);
5896 /* ignore informational status codes */
5897 }
5898 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
5899 break;
5900 }
5901
5902 /*
5903 * CR8 maps to the APIC TPR.
5904 */
5905 case 8:
5906 {
5907 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5908 if (uNewCrX & ~(uint64_t)0xf)
5909 {
5910 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
5911 return iemRaiseGeneralProtectionFault0(pVCpu);
5912 }
5913
5914#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5915 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5916 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5917 {
5918 /*
5919 * If the Mov-to-CR8 doesn't cause a VM-exit, bits 0:3 of the source operand
5920 * is copied to bits 7:4 of the VTPR. Bits 0:3 and bits 31:8 of the VTPR are
5921 * cleared. Following this the processor performs TPR virtualization.
5922 *
5923 * However, we should not perform TPR virtualization immediately here but
5924 * after this instruction has completed.
5925 *
5926 * See Intel spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5927 * See Intel spec. 27.1 "Architectural State Before A VM-exit"
5928 */
5929 uint32_t const uTpr = (uNewCrX & 0xf) << 4;
5930 Log(("iemCImpl_load_Cr%#x: Virtualizing TPR (%#x) write\n", iCrReg, uTpr));
5931 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
5932 iemVmxVirtApicSetPendingWrite(pVCpu, XAPIC_OFF_TPR);
5933 rcStrict = VINF_SUCCESS;
5934 break;
5935 }
5936#endif
5937
5938#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5939 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5940 {
5941 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
5942 {
5943 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5944 IEM_SVM_UPDATE_NRIP(pVCpu);
5945 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
5946 }
5947
5948 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
5949 pVmcbCtrl->IntCtrl.n.u8VTPR = uNewCrX;
5950 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5951 {
5952 rcStrict = VINF_SUCCESS;
5953 break;
5954 }
5955 }
5956#endif
5957 uint8_t const u8Tpr = (uint8_t)uNewCrX << 4;
5958 APICSetTpr(pVCpu, u8Tpr);
5959 rcStrict = VINF_SUCCESS;
5960 break;
5961 }
5962
5963 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5964 }
5965
5966 /*
5967 * Advance the RIP on success.
5968 */
5969 if (RT_SUCCESS(rcStrict))
5970 {
5971 if (rcStrict != VINF_SUCCESS)
5972 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
5973 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5974 }
5975
5976 return rcStrict;
5977}
5978
5979
5980/**
5981 * Implements mov CRx,GReg.
5982 *
5983 * @param iCrReg The CRx register to write (valid).
5984 * @param iGReg The general register to load the CRx value from.
5985 */
5986IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
5987{
5988 if (pVCpu->iem.s.uCpl != 0)
5989 return iemRaiseGeneralProtectionFault0(pVCpu);
5990 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5991
5992 /*
5993 * Read the new value from the source register and call common worker.
5994 */
5995 uint64_t uNewCrX;
5996 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5997 uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
5998 else
5999 uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
6000
6001#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6002 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6003 {
6004 VBOXSTRICTRC rcStrict = VINF_VMX_INTERCEPT_NOT_ACTIVE;
6005 switch (iCrReg)
6006 {
6007 case 0:
6008 case 4: rcStrict = iemVmxVmexitInstrMovToCr0Cr4(pVCpu, iCrReg, &uNewCrX, iGReg, cbInstr); break;
6009 case 3: rcStrict = iemVmxVmexitInstrMovToCr3(pVCpu, uNewCrX, iGReg, cbInstr); break;
6010 case 8: rcStrict = iemVmxVmexitInstrMovToCr8(pVCpu, iGReg, cbInstr); break;
6011 }
6012 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6013 return rcStrict;
6014 }
6015#endif
6016
6017 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
6018}
6019
6020
6021/**
6022 * Implements 'LMSW r/m16'
6023 *
6024 * @param u16NewMsw The new value.
6025 * @param GCPtrEffDst The guest-linear address of the source operand in case
6026 * of a memory operand. For register operand, pass
6027 * NIL_RTGCPTR.
6028 */
6029IEM_CIMPL_DEF_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst)
6030{
6031 if (pVCpu->iem.s.uCpl != 0)
6032 return iemRaiseGeneralProtectionFault0(pVCpu);
6033 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6034 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6035
6036#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6037 /* Check nested-guest VMX intercept and get updated MSW if there's no VM-exit. */
6038 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6039 {
6040 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrLmsw(pVCpu, pVCpu->cpum.GstCtx.cr0, &u16NewMsw, GCPtrEffDst, cbInstr);
6041 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6042 return rcStrict;
6043 }
6044#else
6045 RT_NOREF_PV(GCPtrEffDst);
6046#endif
6047
6048 /*
6049 * Compose the new CR0 value and call common worker.
6050 */
6051 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6052 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6053 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
6054}
6055
6056
6057/**
6058 * Implements 'CLTS'.
6059 */
6060IEM_CIMPL_DEF_0(iemCImpl_clts)
6061{
6062 if (pVCpu->iem.s.uCpl != 0)
6063 return iemRaiseGeneralProtectionFault0(pVCpu);
6064
6065 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6066 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0;
6067 uNewCr0 &= ~X86_CR0_TS;
6068
6069#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6070 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6071 {
6072 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrClts(pVCpu, cbInstr);
6073 if (rcStrict == VINF_VMX_MODIFIES_BEHAVIOR)
6074 uNewCr0 |= (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS);
6075 else if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6076 return rcStrict;
6077 }
6078#endif
6079
6080 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
6081}
6082
6083
6084/**
6085 * Implements mov GReg,DRx.
6086 *
6087 * @param iGReg The general register to store the DRx value in.
6088 * @param iDrReg The DRx register to read (0-7).
6089 */
6090IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
6091{
6092#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6093 /*
6094 * Check nested-guest VMX intercept.
6095 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6096 * over CPL and CR4.DE and even DR4/DR5 checks.
6097 *
6098 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6099 */
6100 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6101 {
6102 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_FROM_DRX, iDrReg, iGReg, cbInstr);
6103 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6104 return rcStrict;
6105 }
6106#endif
6107
6108 /*
6109 * Check preconditions.
6110 */
6111 /* Raise GPs. */
6112 if (pVCpu->iem.s.uCpl != 0)
6113 return iemRaiseGeneralProtectionFault0(pVCpu);
6114 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6115 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR0);
6116
6117 if ( (iDrReg == 4 || iDrReg == 5)
6118 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) )
6119 {
6120 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
6121 return iemRaiseGeneralProtectionFault0(pVCpu);
6122 }
6123
6124 /* Raise #DB if general access detect is enabled. */
6125 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6126 {
6127 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
6128 return iemRaiseDebugException(pVCpu);
6129 }
6130
6131 /*
6132 * Read the debug register and store it in the specified general register.
6133 */
6134 uint64_t drX;
6135 switch (iDrReg)
6136 {
6137 case 0:
6138 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6139 drX = pVCpu->cpum.GstCtx.dr[0];
6140 break;
6141 case 1:
6142 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6143 drX = pVCpu->cpum.GstCtx.dr[1];
6144 break;
6145 case 2:
6146 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6147 drX = pVCpu->cpum.GstCtx.dr[2];
6148 break;
6149 case 3:
6150 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6151 drX = pVCpu->cpum.GstCtx.dr[3];
6152 break;
6153 case 6:
6154 case 4:
6155 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6156 drX = pVCpu->cpum.GstCtx.dr[6];
6157 drX |= X86_DR6_RA1_MASK;
6158 drX &= ~X86_DR6_RAZ_MASK;
6159 break;
6160 case 7:
6161 case 5:
6162 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6163 drX = pVCpu->cpum.GstCtx.dr[7];
6164 drX |=X86_DR7_RA1_MASK;
6165 drX &= ~X86_DR7_RAZ_MASK;
6166 break;
6167 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6168 }
6169
6170 /** @todo SVM nested-guest intercept for DR8-DR15? */
6171 /*
6172 * Check for any SVM nested-guest intercepts for the DRx read.
6173 */
6174 if (IEM_SVM_IS_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
6175 {
6176 Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
6177 IEM_SVM_UPDATE_NRIP(pVCpu);
6178 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
6179 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6180 }
6181
6182 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6183 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
6184 else
6185 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
6186
6187 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6188 return VINF_SUCCESS;
6189}
6190
6191
6192/**
6193 * Implements mov DRx,GReg.
6194 *
6195 * @param iDrReg The DRx register to write (valid).
6196 * @param iGReg The general register to load the DRx value from.
6197 */
6198IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
6199{
6200#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6201 /*
6202 * Check nested-guest VMX intercept.
6203 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6204 * over CPL and CR4.DE and even DR4/DR5 checks.
6205 *
6206 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6207 */
6208 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6209 {
6210 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_TO_DRX, iDrReg, iGReg, cbInstr);
6211 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6212 return rcStrict;
6213 }
6214#endif
6215
6216 /*
6217 * Check preconditions.
6218 */
6219 if (pVCpu->iem.s.uCpl != 0)
6220 return iemRaiseGeneralProtectionFault0(pVCpu);
6221 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6222 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR4);
6223
6224 if (iDrReg == 4 || iDrReg == 5)
6225 {
6226 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
6227 {
6228 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
6229 return iemRaiseGeneralProtectionFault0(pVCpu);
6230 }
6231 iDrReg += 2;
6232 }
6233
6234 /* Raise #DB if general access detect is enabled. */
6235 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
6236 * \#GP? */
6237 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6238 {
6239 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
6240 return iemRaiseDebugException(pVCpu);
6241 }
6242
6243 /*
6244 * Read the new value from the source register.
6245 */
6246 uint64_t uNewDrX;
6247 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6248 uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
6249 else
6250 uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
6251
6252 /*
6253 * Adjust it.
6254 */
6255 switch (iDrReg)
6256 {
6257 case 0:
6258 case 1:
6259 case 2:
6260 case 3:
6261 /* nothing to adjust */
6262 break;
6263
6264 case 6:
6265 if (uNewDrX & X86_DR6_MBZ_MASK)
6266 {
6267 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6268 return iemRaiseGeneralProtectionFault0(pVCpu);
6269 }
6270 uNewDrX |= X86_DR6_RA1_MASK;
6271 uNewDrX &= ~X86_DR6_RAZ_MASK;
6272 break;
6273
6274 case 7:
6275 if (uNewDrX & X86_DR7_MBZ_MASK)
6276 {
6277 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6278 return iemRaiseGeneralProtectionFault0(pVCpu);
6279 }
6280 uNewDrX |= X86_DR7_RA1_MASK;
6281 uNewDrX &= ~X86_DR7_RAZ_MASK;
6282 break;
6283
6284 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6285 }
6286
6287 /** @todo SVM nested-guest intercept for DR8-DR15? */
6288 /*
6289 * Check for any SVM nested-guest intercepts for the DRx write.
6290 */
6291 if (IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
6292 {
6293 Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
6294 IEM_SVM_UPDATE_NRIP(pVCpu);
6295 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
6296 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6297 }
6298
6299 /*
6300 * Do the actual setting.
6301 */
6302 if (iDrReg < 4)
6303 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6304 else if (iDrReg == 6)
6305 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6306
6307 int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
6308 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
6309
6310 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6311 return VINF_SUCCESS;
6312}
6313
6314
6315/**
6316 * Implements 'INVLPG m'.
6317 *
6318 * @param GCPtrPage The effective address of the page to invalidate.
6319 * @remarks Updates the RIP.
6320 */
6321IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
6322{
6323 /* ring-0 only. */
6324 if (pVCpu->iem.s.uCpl != 0)
6325 return iemRaiseGeneralProtectionFault0(pVCpu);
6326 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6327 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6328
6329#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6330 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6331 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6332 {
6333 Log(("invlpg: Guest intercept (%RGp) -> VM-exit\n", GCPtrPage));
6334 return iemVmxVmexitInstrInvlpg(pVCpu, GCPtrPage, cbInstr);
6335 }
6336#endif
6337
6338 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
6339 {
6340 Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
6341 IEM_SVM_UPDATE_NRIP(pVCpu);
6342 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPG,
6343 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */);
6344 }
6345
6346 int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
6347 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6348
6349 if (rc == VINF_SUCCESS)
6350 return VINF_SUCCESS;
6351 if (rc == VINF_PGM_SYNC_CR3)
6352 return iemSetPassUpStatus(pVCpu, rc);
6353
6354 AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
6355 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
6356 return rc;
6357}
6358
6359
6360/**
6361 * Implements INVPCID.
6362 *
6363 * @param iEffSeg The segment of the invpcid descriptor.
6364 * @param GCPtrInvpcidDesc The address of invpcid descriptor.
6365 * @param uInvpcidType The invalidation type.
6366 * @remarks Updates the RIP.
6367 */
6368IEM_CIMPL_DEF_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint8_t, uInvpcidType)
6369{
6370 /*
6371 * Check preconditions.
6372 */
6373 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid)
6374 return iemRaiseUndefinedOpcode(pVCpu);
6375
6376 /* When in VMX non-root mode and INVPCID is not enabled, it results in #UD. */
6377 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6378 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_INVPCID))
6379 {
6380 Log(("invpcid: Not enabled for nested-guest execution -> #UD\n"));
6381 return iemRaiseUndefinedOpcode(pVCpu);
6382 }
6383
6384 if (pVCpu->iem.s.uCpl != 0)
6385 {
6386 Log(("invpcid: CPL != 0 -> #GP(0)\n"));
6387 return iemRaiseGeneralProtectionFault0(pVCpu);
6388 }
6389
6390 if (IEM_IS_V86_MODE(pVCpu))
6391 {
6392 Log(("invpcid: v8086 mode -> #GP(0)\n"));
6393 return iemRaiseGeneralProtectionFault0(pVCpu);
6394 }
6395
6396 /*
6397 * Check nested-guest intercept.
6398 *
6399 * INVPCID causes a VM-exit if "enable INVPCID" and "INVLPG exiting" are
6400 * both set. We have already checked the former earlier in this function.
6401 *
6402 * CPL and virtual-8086 mode checks take priority over this VM-exit.
6403 * See Intel spec. "25.1.1 Relative Priority of Faults and VM Exits".
6404 */
6405 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6406 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6407 {
6408 Log(("invpcid: Guest intercept -> #VM-exit\n"));
6409 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_INVPCID, VMXINSTRID_NONE, cbInstr);
6410 }
6411
6412 if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID)
6413 {
6414 Log(("invpcid: invalid/unrecognized invpcid type %#x -> #GP(0)\n", uInvpcidType));
6415 return iemRaiseGeneralProtectionFault0(pVCpu);
6416 }
6417 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6418
6419 /*
6420 * Fetch the invpcid descriptor from guest memory.
6421 */
6422 RTUINT128U uDesc;
6423 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvpcidDesc);
6424 if (rcStrict == VINF_SUCCESS)
6425 {
6426 /*
6427 * Validate the descriptor.
6428 */
6429 if (uDesc.s.Lo > 0xfff)
6430 {
6431 Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
6432 return iemRaiseGeneralProtectionFault0(pVCpu);
6433 }
6434
6435 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
6436 uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff);
6437 uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4;
6438 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
6439 switch (uInvpcidType)
6440 {
6441 case X86_INVPCID_TYPE_INDV_ADDR:
6442 {
6443 if (!IEM_IS_CANONICAL(GCPtrInvAddr))
6444 {
6445 Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr));
6446 return iemRaiseGeneralProtectionFault0(pVCpu);
6447 }
6448 if ( !(uCr4 & X86_CR4_PCIDE)
6449 && uPcid != 0)
6450 {
6451 Log(("invpcid: invalid pcid %#x\n", uPcid));
6452 return iemRaiseGeneralProtectionFault0(pVCpu);
6453 }
6454
6455 /* Invalidate mappings for the linear address tagged with PCID except global translations. */
6456 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6457 break;
6458 }
6459
6460 case X86_INVPCID_TYPE_SINGLE_CONTEXT:
6461 {
6462 if ( !(uCr4 & X86_CR4_PCIDE)
6463 && uPcid != 0)
6464 {
6465 Log(("invpcid: invalid pcid %#x\n", uPcid));
6466 return iemRaiseGeneralProtectionFault0(pVCpu);
6467 }
6468 /* Invalidate all mappings associated with PCID except global translations. */
6469 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6470 break;
6471 }
6472
6473 case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL:
6474 {
6475 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
6476 break;
6477 }
6478
6479 case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL:
6480 {
6481 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */);
6482 break;
6483 }
6484 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6485 }
6486 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6487 }
6488 return rcStrict;
6489}
6490
6491
6492/**
6493 * Implements INVD.
6494 */
6495IEM_CIMPL_DEF_0(iemCImpl_invd)
6496{
6497 if (pVCpu->iem.s.uCpl != 0)
6498 {
6499 Log(("invd: CPL != 0 -> #GP(0)\n"));
6500 return iemRaiseGeneralProtectionFault0(pVCpu);
6501 }
6502
6503 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6504 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_INVD, cbInstr);
6505
6506 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_INVD, SVM_EXIT_INVD, 0, 0);
6507
6508 /* We currently take no action here. */
6509 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6510 return VINF_SUCCESS;
6511}
6512
6513
6514/**
6515 * Implements WBINVD.
6516 */
6517IEM_CIMPL_DEF_0(iemCImpl_wbinvd)
6518{
6519 if (pVCpu->iem.s.uCpl != 0)
6520 {
6521 Log(("wbinvd: CPL != 0 -> #GP(0)\n"));
6522 return iemRaiseGeneralProtectionFault0(pVCpu);
6523 }
6524
6525 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6526 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WBINVD, cbInstr);
6527
6528 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_WBINVD, SVM_EXIT_WBINVD, 0, 0);
6529
6530 /* We currently take no action here. */
6531 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6532 return VINF_SUCCESS;
6533}
6534
6535
6536/** Opcode 0x0f 0xaa. */
6537IEM_CIMPL_DEF_0(iemCImpl_rsm)
6538{
6539 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_RSM, SVM_EXIT_RSM, 0, 0);
6540 NOREF(cbInstr);
6541 return iemRaiseUndefinedOpcode(pVCpu);
6542}
6543
6544
6545/**
6546 * Implements RDTSC.
6547 */
6548IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
6549{
6550 /*
6551 * Check preconditions.
6552 */
6553 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
6554 return iemRaiseUndefinedOpcode(pVCpu);
6555
6556 if (pVCpu->iem.s.uCpl != 0)
6557 {
6558 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6559 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6560 {
6561 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6562 return iemRaiseGeneralProtectionFault0(pVCpu);
6563 }
6564 }
6565
6566 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6567 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6568 {
6569 Log(("rdtsc: Guest intercept -> VM-exit\n"));
6570 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSC, cbInstr);
6571 }
6572
6573 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
6574 {
6575 Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
6576 IEM_SVM_UPDATE_NRIP(pVCpu);
6577 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6578 }
6579
6580 /*
6581 * Do the job.
6582 */
6583 uint64_t uTicks = TMCpuTickGet(pVCpu);
6584#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
6585 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6586#endif
6587 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6588 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6589 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); /* For IEMExecDecodedRdtsc. */
6590 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6591 return VINF_SUCCESS;
6592}
6593
6594
6595/**
6596 * Implements RDTSC.
6597 */
6598IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
6599{
6600 /*
6601 * Check preconditions.
6602 */
6603 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
6604 return iemRaiseUndefinedOpcode(pVCpu);
6605
6606 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6607 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_RDTSCP))
6608 {
6609 Log(("rdtscp: Not enabled for VMX non-root mode -> #UD\n"));
6610 return iemRaiseUndefinedOpcode(pVCpu);
6611 }
6612
6613 if (pVCpu->iem.s.uCpl != 0)
6614 {
6615 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6616 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6617 {
6618 Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6619 return iemRaiseGeneralProtectionFault0(pVCpu);
6620 }
6621 }
6622
6623 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6624 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6625 {
6626 Log(("rdtscp: Guest intercept -> VM-exit\n"));
6627 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSCP, cbInstr);
6628 }
6629 else if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
6630 {
6631 Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
6632 IEM_SVM_UPDATE_NRIP(pVCpu);
6633 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6634 }
6635
6636 /*
6637 * Do the job.
6638 * Query the MSR first in case of trips to ring-3.
6639 */
6640 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
6641 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx);
6642 if (rcStrict == VINF_SUCCESS)
6643 {
6644 /* Low dword of the TSC_AUX msr only. */
6645 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
6646
6647 uint64_t uTicks = TMCpuTickGet(pVCpu);
6648#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
6649 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6650#endif
6651 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6652 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6653 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX); /* For IEMExecDecodedRdtscp. */
6654 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6655 }
6656 return rcStrict;
6657}
6658
6659
6660/**
6661 * Implements RDPMC.
6662 */
6663IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
6664{
6665 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6666
6667 if ( pVCpu->iem.s.uCpl != 0
6668 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE))
6669 return iemRaiseGeneralProtectionFault0(pVCpu);
6670
6671 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6672 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDPMC_EXIT))
6673 {
6674 Log(("rdpmc: Guest intercept -> VM-exit\n"));
6675 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDPMC, cbInstr);
6676 }
6677
6678 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
6679 {
6680 Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
6681 IEM_SVM_UPDATE_NRIP(pVCpu);
6682 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6683 }
6684
6685 /** @todo Emulate performance counters, for now just return 0. */
6686 pVCpu->cpum.GstCtx.rax = 0;
6687 pVCpu->cpum.GstCtx.rdx = 0;
6688 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
6689 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
6690 * ecx but see @bugref{3472}! */
6691
6692 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6693 return VINF_SUCCESS;
6694}
6695
6696
6697/**
6698 * Implements RDMSR.
6699 */
6700IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
6701{
6702 /*
6703 * Check preconditions.
6704 */
6705 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
6706 return iemRaiseUndefinedOpcode(pVCpu);
6707 if (pVCpu->iem.s.uCpl != 0)
6708 return iemRaiseGeneralProtectionFault0(pVCpu);
6709
6710 /*
6711 * Check nested-guest intercepts.
6712 */
6713#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6714 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6715 {
6716 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_RDMSR, pVCpu->cpum.GstCtx.ecx))
6717 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDMSR, cbInstr);
6718 }
6719#endif
6720
6721#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6722 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
6723 {
6724 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */);
6725 if (rcStrict == VINF_SVM_VMEXIT)
6726 return VINF_SUCCESS;
6727 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6728 {
6729 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
6730 return rcStrict;
6731 }
6732 }
6733#endif
6734
6735 /*
6736 * Do the job.
6737 */
6738 RTUINT64U uValue;
6739 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
6740 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
6741
6742 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u);
6743 if (rcStrict == VINF_SUCCESS)
6744 {
6745 pVCpu->cpum.GstCtx.rax = uValue.s.Lo;
6746 pVCpu->cpum.GstCtx.rdx = uValue.s.Hi;
6747 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
6748
6749 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6750 return VINF_SUCCESS;
6751 }
6752
6753#ifndef IN_RING3
6754 /* Deferred to ring-3. */
6755 if (rcStrict == VINF_CPUM_R3_MSR_READ)
6756 {
6757 Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
6758 return rcStrict;
6759 }
6760#endif
6761
6762 /* Often a unimplemented MSR or MSR bit, so worth logging. */
6763 if (pVCpu->iem.s.cLogRelRdMsr < 32)
6764 {
6765 pVCpu->iem.s.cLogRelRdMsr++;
6766 LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
6767 }
6768 else
6769 Log(( "IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
6770 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
6771 return iemRaiseGeneralProtectionFault0(pVCpu);
6772}
6773
6774
6775/**
6776 * Implements WRMSR.
6777 */
6778IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
6779{
6780 /*
6781 * Check preconditions.
6782 */
6783 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
6784 return iemRaiseUndefinedOpcode(pVCpu);
6785 if (pVCpu->iem.s.uCpl != 0)
6786 return iemRaiseGeneralProtectionFault0(pVCpu);
6787
6788 RTUINT64U uValue;
6789 uValue.s.Lo = pVCpu->cpum.GstCtx.eax;
6790 uValue.s.Hi = pVCpu->cpum.GstCtx.edx;
6791
6792 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
6793
6794 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
6795 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
6796
6797 /*
6798 * Check nested-guest intercepts.
6799 */
6800#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6801 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6802 {
6803 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_WRMSR, idMsr))
6804 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WRMSR, cbInstr);
6805 }
6806#endif
6807
6808#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6809 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
6810 {
6811 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, idMsr, true /* fWrite */);
6812 if (rcStrict == VINF_SVM_VMEXIT)
6813 return VINF_SUCCESS;
6814 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6815 {
6816 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", idMsr, VBOXSTRICTRC_VAL(rcStrict)));
6817 return rcStrict;
6818 }
6819 }
6820#endif
6821
6822 /*
6823 * Do the job.
6824 */
6825 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, idMsr, uValue.u);
6826 if (rcStrict == VINF_SUCCESS)
6827 {
6828 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6829 return VINF_SUCCESS;
6830 }
6831
6832#ifndef IN_RING3
6833 /* Deferred to ring-3. */
6834 if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
6835 {
6836 Log(("IEM: wrmsr(%#x) -> ring-3\n", idMsr));
6837 return rcStrict;
6838 }
6839#endif
6840
6841 /* Often a unimplemented MSR or MSR bit, so worth logging. */
6842 if (pVCpu->iem.s.cLogRelWrMsr < 32)
6843 {
6844 pVCpu->iem.s.cLogRelWrMsr++;
6845 LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
6846 }
6847 else
6848 Log(( "IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
6849 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
6850 return iemRaiseGeneralProtectionFault0(pVCpu);
6851}
6852
6853
6854/**
6855 * Implements 'IN eAX, port'.
6856 *
6857 * @param u16Port The source port.
6858 * @param fImm Whether the port was specified through an immediate operand
6859 * or the implicit DX register.
6860 * @param cbReg The register size.
6861 */
6862IEM_CIMPL_DEF_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
6863{
6864 /*
6865 * CPL check
6866 */
6867 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
6868 if (rcStrict != VINF_SUCCESS)
6869 return rcStrict;
6870
6871 /*
6872 * Check VMX nested-guest IO intercept.
6873 */
6874#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6875 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6876 {
6877 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_IN, u16Port, fImm, cbReg, cbInstr);
6878 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6879 return rcStrict;
6880 }
6881#else
6882 RT_NOREF(fImm);
6883#endif
6884
6885 /*
6886 * Check SVM nested-guest IO intercept.
6887 */
6888#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6889 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
6890 {
6891 uint8_t cAddrSizeBits;
6892 switch (pVCpu->iem.s.enmEffAddrMode)
6893 {
6894 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
6895 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
6896 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
6897 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6898 }
6899 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
6900 false /* fRep */, false /* fStrIo */, cbInstr);
6901 if (rcStrict == VINF_SVM_VMEXIT)
6902 return VINF_SUCCESS;
6903 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
6904 {
6905 Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
6906 VBOXSTRICTRC_VAL(rcStrict)));
6907 return rcStrict;
6908 }
6909 }
6910#endif
6911
6912 /*
6913 * Perform the I/O.
6914 */
6915 uint32_t u32Value = 0;
6916 rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg);
6917 if (IOM_SUCCESS(rcStrict))
6918 {
6919 switch (cbReg)
6920 {
6921 case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break;
6922 case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break;
6923 case 4: pVCpu->cpum.GstCtx.rax = u32Value; break;
6924 default: AssertFailedReturn(VERR_IEM_IPE_3);
6925 }
6926 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6927 pVCpu->iem.s.cPotentialExits++;
6928 if (rcStrict != VINF_SUCCESS)
6929 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
6930 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
6931
6932 /*
6933 * Check for I/O breakpoints.
6934 */
6935 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
6936 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6937 && X86_DR7_ANY_RW_IO(uDr7)
6938 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
6939 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
6940 {
6941 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
6942 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
6943 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
6944 rcStrict = iemRaiseDebugException(pVCpu);
6945 }
6946 }
6947
6948 return rcStrict;
6949}
6950
6951
6952/**
6953 * Implements 'IN eAX, DX'.
6954 *
6955 * @param cbReg The register size.
6956 */
6957IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
6958{
6959 return IEM_CIMPL_CALL_3(iemCImpl_in, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
6960}
6961
6962
6963/**
6964 * Implements 'OUT port, eAX'.
6965 *
6966 * @param u16Port The destination port.
6967 * @param fImm Whether the port was specified through an immediate operand
6968 * or the implicit DX register.
6969 * @param cbReg The register size.
6970 */
6971IEM_CIMPL_DEF_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
6972{
6973 /*
6974 * CPL check
6975 */
6976 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
6977 if (rcStrict != VINF_SUCCESS)
6978 return rcStrict;
6979
6980 /*
6981 * Check VMX nested-guest I/O intercept.
6982 */
6983#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6984 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6985 {
6986 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_OUT, u16Port, fImm, cbReg, cbInstr);
6987 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6988 return rcStrict;
6989 }
6990#else
6991 RT_NOREF(fImm);
6992#endif
6993
6994 /*
6995 * Check SVM nested-guest I/O intercept.
6996 */
6997#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6998 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
6999 {
7000 uint8_t cAddrSizeBits;
7001 switch (pVCpu->iem.s.enmEffAddrMode)
7002 {
7003 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7004 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7005 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7006 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7007 }
7008 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7009 false /* fRep */, false /* fStrIo */, cbInstr);
7010 if (rcStrict == VINF_SVM_VMEXIT)
7011 return VINF_SUCCESS;
7012 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7013 {
7014 Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7015 VBOXSTRICTRC_VAL(rcStrict)));
7016 return rcStrict;
7017 }
7018 }
7019#endif
7020
7021 /*
7022 * Perform the I/O.
7023 */
7024 uint32_t u32Value;
7025 switch (cbReg)
7026 {
7027 case 1: u32Value = pVCpu->cpum.GstCtx.al; break;
7028 case 2: u32Value = pVCpu->cpum.GstCtx.ax; break;
7029 case 4: u32Value = pVCpu->cpum.GstCtx.eax; break;
7030 default: AssertFailedReturn(VERR_IEM_IPE_4);
7031 }
7032 rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg);
7033 if (IOM_SUCCESS(rcStrict))
7034 {
7035 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7036 pVCpu->iem.s.cPotentialExits++;
7037 if (rcStrict != VINF_SUCCESS)
7038 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7039 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
7040
7041 /*
7042 * Check for I/O breakpoints.
7043 */
7044 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7045 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7046 && X86_DR7_ANY_RW_IO(uDr7)
7047 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7048 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
7049 {
7050 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7051 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7052 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7053 rcStrict = iemRaiseDebugException(pVCpu);
7054 }
7055 }
7056 return rcStrict;
7057}
7058
7059
7060/**
7061 * Implements 'OUT DX, eAX'.
7062 *
7063 * @param cbReg The register size.
7064 */
7065IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
7066{
7067 return IEM_CIMPL_CALL_3(iemCImpl_out, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7068}
7069
7070
7071/**
7072 * Implements 'CLI'.
7073 */
7074IEM_CIMPL_DEF_0(iemCImpl_cli)
7075{
7076 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7077 uint32_t const fEflOld = fEfl;
7078
7079 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7080 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7081 {
7082 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7083 if (!(fEfl & X86_EFL_VM))
7084 {
7085 if (pVCpu->iem.s.uCpl <= uIopl)
7086 fEfl &= ~X86_EFL_IF;
7087 else if ( pVCpu->iem.s.uCpl == 3
7088 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) )
7089 fEfl &= ~X86_EFL_VIF;
7090 else
7091 return iemRaiseGeneralProtectionFault0(pVCpu);
7092 }
7093 /* V8086 */
7094 else if (uIopl == 3)
7095 fEfl &= ~X86_EFL_IF;
7096 else if ( uIopl < 3
7097 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
7098 fEfl &= ~X86_EFL_VIF;
7099 else
7100 return iemRaiseGeneralProtectionFault0(pVCpu);
7101 }
7102 /* real mode */
7103 else
7104 fEfl &= ~X86_EFL_IF;
7105
7106 /* Commit. */
7107 IEMMISC_SET_EFL(pVCpu, fEfl);
7108 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7109 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
7110 return VINF_SUCCESS;
7111}
7112
7113
7114/**
7115 * Implements 'STI'.
7116 */
7117IEM_CIMPL_DEF_0(iemCImpl_sti)
7118{
7119 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7120 uint32_t const fEflOld = fEfl;
7121
7122 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7123 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7124 {
7125 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7126 if (!(fEfl & X86_EFL_VM))
7127 {
7128 if (pVCpu->iem.s.uCpl <= uIopl)
7129 fEfl |= X86_EFL_IF;
7130 else if ( pVCpu->iem.s.uCpl == 3
7131 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI)
7132 && !(fEfl & X86_EFL_VIP) )
7133 fEfl |= X86_EFL_VIF;
7134 else
7135 return iemRaiseGeneralProtectionFault0(pVCpu);
7136 }
7137 /* V8086 */
7138 else if (uIopl == 3)
7139 fEfl |= X86_EFL_IF;
7140 else if ( uIopl < 3
7141 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)
7142 && !(fEfl & X86_EFL_VIP) )
7143 fEfl |= X86_EFL_VIF;
7144 else
7145 return iemRaiseGeneralProtectionFault0(pVCpu);
7146 }
7147 /* real mode */
7148 else
7149 fEfl |= X86_EFL_IF;
7150
7151 /* Commit. */
7152 IEMMISC_SET_EFL(pVCpu, fEfl);
7153 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7154 if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF))
7155 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7156 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
7157 return VINF_SUCCESS;
7158}
7159
7160
7161/**
7162 * Implements 'HLT'.
7163 */
7164IEM_CIMPL_DEF_0(iemCImpl_hlt)
7165{
7166 if (pVCpu->iem.s.uCpl != 0)
7167 return iemRaiseGeneralProtectionFault0(pVCpu);
7168
7169 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7170 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_HLT_EXIT))
7171 {
7172 Log2(("hlt: Guest intercept -> VM-exit\n"));
7173 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_HLT, cbInstr);
7174 }
7175
7176 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
7177 {
7178 Log2(("hlt: Guest intercept -> #VMEXIT\n"));
7179 IEM_SVM_UPDATE_NRIP(pVCpu);
7180 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7181 }
7182
7183 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7184 return VINF_EM_HALT;
7185}
7186
7187
7188/**
7189 * Implements 'MONITOR'.
7190 */
7191IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
7192{
7193 /*
7194 * Permission checks.
7195 */
7196 if (pVCpu->iem.s.uCpl != 0)
7197 {
7198 Log2(("monitor: CPL != 0\n"));
7199 return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
7200 }
7201 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7202 {
7203 Log2(("monitor: Not in CPUID\n"));
7204 return iemRaiseUndefinedOpcode(pVCpu);
7205 }
7206
7207 /*
7208 * Check VMX guest-intercept.
7209 * This should be considered a fault-like VM-exit.
7210 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
7211 */
7212 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7213 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MONITOR_EXIT))
7214 {
7215 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7216 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_MONITOR, cbInstr);
7217 }
7218
7219 /*
7220 * Gather the operands and validate them.
7221 */
7222 RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
7223 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7224 uint32_t uEdx = pVCpu->cpum.GstCtx.edx;
7225/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
7226 * \#GP first. */
7227 if (uEcx != 0)
7228 {
7229 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
7230 return iemRaiseGeneralProtectionFault0(pVCpu);
7231 }
7232
7233 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
7234 if (rcStrict != VINF_SUCCESS)
7235 return rcStrict;
7236
7237 RTGCPHYS GCPhysMem;
7238 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7239 if (rcStrict != VINF_SUCCESS)
7240 return rcStrict;
7241
7242#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7243 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7244 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
7245 {
7246 /*
7247 * MONITOR does not access the memory, just monitors the address. However,
7248 * if the address falls in the APIC-access page, the address monitored must
7249 * instead be the corresponding address in the virtual-APIC page.
7250 *
7251 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
7252 */
7253 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
7254 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
7255 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
7256 return rcStrict;
7257 }
7258#endif
7259
7260 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
7261 {
7262 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7263 IEM_SVM_UPDATE_NRIP(pVCpu);
7264 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7265 }
7266
7267 /*
7268 * Call EM to prepare the monitor/wait.
7269 */
7270 rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem);
7271 Assert(rcStrict == VINF_SUCCESS);
7272
7273 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7274 return rcStrict;
7275}
7276
7277
7278/**
7279 * Implements 'MWAIT'.
7280 */
7281IEM_CIMPL_DEF_0(iemCImpl_mwait)
7282{
7283 /*
7284 * Permission checks.
7285 */
7286 if (pVCpu->iem.s.uCpl != 0)
7287 {
7288 Log2(("mwait: CPL != 0\n"));
7289 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
7290 * EFLAGS.VM then.) */
7291 return iemRaiseUndefinedOpcode(pVCpu);
7292 }
7293 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7294 {
7295 Log2(("mwait: Not in CPUID\n"));
7296 return iemRaiseUndefinedOpcode(pVCpu);
7297 }
7298
7299 /* Check VMX nested-guest intercept. */
7300 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7301 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MWAIT_EXIT))
7302 IEM_VMX_VMEXIT_MWAIT_RET(pVCpu, EMMonitorIsArmed(pVCpu), cbInstr);
7303
7304 /*
7305 * Gather the operands and validate them.
7306 */
7307 uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
7308 uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
7309 if (uEcx != 0)
7310 {
7311 /* Only supported extension is break on IRQ when IF=0. */
7312 if (uEcx > 1)
7313 {
7314 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
7315 return iemRaiseGeneralProtectionFault0(pVCpu);
7316 }
7317 uint32_t fMWaitFeatures = 0;
7318 uint32_t uIgnore = 0;
7319 CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
7320 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7321 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7322 {
7323 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
7324 return iemRaiseGeneralProtectionFault0(pVCpu);
7325 }
7326
7327#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7328 /*
7329 * If the interrupt-window exiting control is set or a virtual-interrupt is pending
7330 * for delivery; and interrupts are disabled the processor does not enter its
7331 * mwait state but rather passes control to the next instruction.
7332 *
7333 * See Intel spec. 25.3 "Changes to Instruction Behavior In VMX Non-root Operation".
7334 */
7335 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7336 && !pVCpu->cpum.GstCtx.eflags.Bits.u1IF)
7337 {
7338 if ( IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INT_WINDOW_EXIT)
7339 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
7340 {
7341 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7342 return VINF_SUCCESS;
7343 }
7344 }
7345#endif
7346 }
7347
7348 /*
7349 * Check SVM nested-guest mwait intercepts.
7350 */
7351 if ( IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
7352 && EMMonitorIsArmed(pVCpu))
7353 {
7354 Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
7355 IEM_SVM_UPDATE_NRIP(pVCpu);
7356 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7357 }
7358 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
7359 {
7360 Log2(("mwait: Guest intercept -> #VMEXIT\n"));
7361 IEM_SVM_UPDATE_NRIP(pVCpu);
7362 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7363 }
7364
7365 /*
7366 * Call EM to prepare the monitor/wait.
7367 */
7368 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
7369
7370 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7371 return rcStrict;
7372}
7373
7374
7375/**
7376 * Implements 'SWAPGS'.
7377 */
7378IEM_CIMPL_DEF_0(iemCImpl_swapgs)
7379{
7380 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
7381
7382 /*
7383 * Permission checks.
7384 */
7385 if (pVCpu->iem.s.uCpl != 0)
7386 {
7387 Log2(("swapgs: CPL != 0\n"));
7388 return iemRaiseUndefinedOpcode(pVCpu);
7389 }
7390
7391 /*
7392 * Do the job.
7393 */
7394 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_GS);
7395 uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
7396 pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base;
7397 pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase;
7398
7399 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7400 return VINF_SUCCESS;
7401}
7402
7403
7404/**
7405 * Implements 'CPUID'.
7406 */
7407IEM_CIMPL_DEF_0(iemCImpl_cpuid)
7408{
7409 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7410 {
7411 Log2(("cpuid: Guest intercept -> VM-exit\n"));
7412 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_CPUID, cbInstr);
7413 }
7414
7415 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
7416 {
7417 Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
7418 IEM_SVM_UPDATE_NRIP(pVCpu);
7419 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7420 }
7421
7422 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
7423 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
7424 pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff);
7425 pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff);
7426 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
7427 pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff);
7428 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
7429
7430 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7431 pVCpu->iem.s.cPotentialExits++;
7432 return VINF_SUCCESS;
7433}
7434
7435
7436/**
7437 * Implements 'AAD'.
7438 *
7439 * @param bImm The immediate operand.
7440 */
7441IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
7442{
7443 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7444 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
7445 pVCpu->cpum.GstCtx.ax = al;
7446 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7447 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7448 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7449
7450 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7451 return VINF_SUCCESS;
7452}
7453
7454
7455/**
7456 * Implements 'AAM'.
7457 *
7458 * @param bImm The immediate operand. Cannot be 0.
7459 */
7460IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
7461{
7462 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
7463
7464 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7465 uint8_t const al = (uint8_t)ax % bImm;
7466 uint8_t const ah = (uint8_t)ax / bImm;
7467 pVCpu->cpum.GstCtx.ax = (ah << 8) + al;
7468 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7469 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7470 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7471
7472 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7473 return VINF_SUCCESS;
7474}
7475
7476
7477/**
7478 * Implements 'DAA'.
7479 */
7480IEM_CIMPL_DEF_0(iemCImpl_daa)
7481{
7482 uint8_t const al = pVCpu->cpum.GstCtx.al;
7483 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7484
7485 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7486 || (al & 0xf) >= 10)
7487 {
7488 pVCpu->cpum.GstCtx.al = al + 6;
7489 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7490 }
7491 else
7492 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7493
7494 if (al >= 0x9a || fCarry)
7495 {
7496 pVCpu->cpum.GstCtx.al += 0x60;
7497 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7498 }
7499 else
7500 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7501
7502 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7503 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7504 return VINF_SUCCESS;
7505}
7506
7507
7508/**
7509 * Implements 'DAS'.
7510 */
7511IEM_CIMPL_DEF_0(iemCImpl_das)
7512{
7513 uint8_t const uInputAL = pVCpu->cpum.GstCtx.al;
7514 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7515
7516 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7517 || (uInputAL & 0xf) >= 10)
7518 {
7519 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7520 if (uInputAL < 6)
7521 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7522 pVCpu->cpum.GstCtx.al = uInputAL - 6;
7523 }
7524 else
7525 {
7526 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7527 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7528 }
7529
7530 if (uInputAL >= 0x9a || fCarry)
7531 {
7532 pVCpu->cpum.GstCtx.al -= 0x60;
7533 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7534 }
7535
7536 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7537 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7538 return VINF_SUCCESS;
7539}
7540
7541
7542/**
7543 * Implements 'AAA'.
7544 */
7545IEM_CIMPL_DEF_0(iemCImpl_aaa)
7546{
7547 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7548 {
7549 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7550 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7551 {
7552 iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7553 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7554 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7555 }
7556 else
7557 {
7558 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7559 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7560 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7561 }
7562 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7563 }
7564 else
7565 {
7566 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7567 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7568 {
7569 pVCpu->cpum.GstCtx.ax += UINT16_C(0x106);
7570 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7571 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7572 }
7573 else
7574 {
7575 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7576 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7577 }
7578 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7579 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7580 }
7581
7582 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7583 return VINF_SUCCESS;
7584}
7585
7586
7587/**
7588 * Implements 'AAS'.
7589 */
7590IEM_CIMPL_DEF_0(iemCImpl_aas)
7591{
7592 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7593 {
7594 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7595 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7596 {
7597 iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7598 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7599 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7600 }
7601 else
7602 {
7603 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7604 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7605 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7606 }
7607 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7608 }
7609 else
7610 {
7611 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7612 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7613 {
7614 pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106);
7615 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7616 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7617 }
7618 else
7619 {
7620 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7621 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7622 }
7623 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7624 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7625 }
7626
7627 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7628 return VINF_SUCCESS;
7629}
7630
7631
7632/**
7633 * Implements the 16-bit version of 'BOUND'.
7634 *
7635 * @note We have separate 16-bit and 32-bit variants of this function due to
7636 * the decoder using unsigned parameters, whereas we want signed one to
7637 * do the job. This is significant for a recompiler.
7638 */
7639IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
7640{
7641 /*
7642 * Check if the index is inside the bounds, otherwise raise #BR.
7643 */
7644 if ( idxArray >= idxLowerBound
7645 && idxArray <= idxUpperBound)
7646 {
7647 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7648 return VINF_SUCCESS;
7649 }
7650
7651 return iemRaiseBoundRangeExceeded(pVCpu);
7652}
7653
7654
7655/**
7656 * Implements the 32-bit version of 'BOUND'.
7657 */
7658IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
7659{
7660 /*
7661 * Check if the index is inside the bounds, otherwise raise #BR.
7662 */
7663 if ( idxArray >= idxLowerBound
7664 && idxArray <= idxUpperBound)
7665 {
7666 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7667 return VINF_SUCCESS;
7668 }
7669
7670 return iemRaiseBoundRangeExceeded(pVCpu);
7671}
7672
7673
7674
7675/*
7676 * Instantiate the various string operation combinations.
7677 */
7678#define OP_SIZE 8
7679#define ADDR_SIZE 16
7680#include "IEMAllCImplStrInstr.cpp.h"
7681#define OP_SIZE 8
7682#define ADDR_SIZE 32
7683#include "IEMAllCImplStrInstr.cpp.h"
7684#define OP_SIZE 8
7685#define ADDR_SIZE 64
7686#include "IEMAllCImplStrInstr.cpp.h"
7687
7688#define OP_SIZE 16
7689#define ADDR_SIZE 16
7690#include "IEMAllCImplStrInstr.cpp.h"
7691#define OP_SIZE 16
7692#define ADDR_SIZE 32
7693#include "IEMAllCImplStrInstr.cpp.h"
7694#define OP_SIZE 16
7695#define ADDR_SIZE 64
7696#include "IEMAllCImplStrInstr.cpp.h"
7697
7698#define OP_SIZE 32
7699#define ADDR_SIZE 16
7700#include "IEMAllCImplStrInstr.cpp.h"
7701#define OP_SIZE 32
7702#define ADDR_SIZE 32
7703#include "IEMAllCImplStrInstr.cpp.h"
7704#define OP_SIZE 32
7705#define ADDR_SIZE 64
7706#include "IEMAllCImplStrInstr.cpp.h"
7707
7708#define OP_SIZE 64
7709#define ADDR_SIZE 32
7710#include "IEMAllCImplStrInstr.cpp.h"
7711#define OP_SIZE 64
7712#define ADDR_SIZE 64
7713#include "IEMAllCImplStrInstr.cpp.h"
7714
7715
7716/**
7717 * Implements 'XGETBV'.
7718 */
7719IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
7720{
7721 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
7722 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
7723 {
7724 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7725 switch (uEcx)
7726 {
7727 case 0:
7728 break;
7729
7730 case 1: /** @todo Implement XCR1 support. */
7731 default:
7732 Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
7733 return iemRaiseGeneralProtectionFault0(pVCpu);
7734
7735 }
7736 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
7737 pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
7738 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
7739
7740 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7741 return VINF_SUCCESS;
7742 }
7743 Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
7744 return iemRaiseUndefinedOpcode(pVCpu);
7745}
7746
7747
7748/**
7749 * Implements 'XSETBV'.
7750 */
7751IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
7752{
7753 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
7754 {
7755 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
7756 {
7757 Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
7758 IEM_SVM_UPDATE_NRIP(pVCpu);
7759 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7760 }
7761
7762 if (pVCpu->iem.s.uCpl == 0)
7763 {
7764 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
7765
7766 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7767 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_XSETBV, cbInstr);
7768
7769 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7770 uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx);
7771 switch (uEcx)
7772 {
7773 case 0:
7774 {
7775 int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
7776 if (rc == VINF_SUCCESS)
7777 break;
7778 Assert(rc == VERR_CPUM_RAISE_GP_0);
7779 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
7780 return iemRaiseGeneralProtectionFault0(pVCpu);
7781 }
7782
7783 case 1: /** @todo Implement XCR1 support. */
7784 default:
7785 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
7786 return iemRaiseGeneralProtectionFault0(pVCpu);
7787
7788 }
7789
7790 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7791 return VINF_SUCCESS;
7792 }
7793
7794 Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
7795 return iemRaiseGeneralProtectionFault0(pVCpu);
7796 }
7797 Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
7798 return iemRaiseUndefinedOpcode(pVCpu);
7799}
7800
7801#ifdef IN_RING3
7802
7803/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
7804struct IEMCIMPLCX16ARGS
7805{
7806 PRTUINT128U pu128Dst;
7807 PRTUINT128U pu128RaxRdx;
7808 PRTUINT128U pu128RbxRcx;
7809 uint32_t *pEFlags;
7810# ifdef VBOX_STRICT
7811 uint32_t cCalls;
7812# endif
7813};
7814
7815/**
7816 * @callback_method_impl{FNVMMEMTRENDEZVOUS,
7817 * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
7818 */
7819static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPU pVCpu, void *pvUser)
7820{
7821 RT_NOREF(pVM, pVCpu);
7822 struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
7823# ifdef VBOX_STRICT
7824 Assert(pArgs->cCalls == 0);
7825 pArgs->cCalls++;
7826# endif
7827
7828 iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
7829 return VINF_SUCCESS;
7830}
7831
7832#endif /* IN_RING3 */
7833
7834/**
7835 * Implements 'CMPXCHG16B' fallback using rendezvous.
7836 */
7837IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
7838 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
7839{
7840#ifdef IN_RING3
7841 struct IEMCIMPLCX16ARGS Args;
7842 Args.pu128Dst = pu128Dst;
7843 Args.pu128RaxRdx = pu128RaxRdx;
7844 Args.pu128RbxRcx = pu128RbxRcx;
7845 Args.pEFlags = pEFlags;
7846# ifdef VBOX_STRICT
7847 Args.cCalls = 0;
7848# endif
7849 VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
7850 iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
7851 Assert(Args.cCalls == 1);
7852 if (rcStrict == VINF_SUCCESS)
7853 {
7854 /* Duplicated tail code. */
7855 rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
7856 if (rcStrict == VINF_SUCCESS)
7857 {
7858 pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
7859 if (!(*pEFlags & X86_EFL_ZF))
7860 {
7861 pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo;
7862 pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi;
7863 }
7864 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7865 }
7866 }
7867 return rcStrict;
7868#else
7869 RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
7870 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
7871#endif
7872}
7873
7874
7875/**
7876 * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
7877 *
7878 * This is implemented in C because it triggers a load like behaviour without
7879 * actually reading anything. Since that's not so common, it's implemented
7880 * here.
7881 *
7882 * @param iEffSeg The effective segment.
7883 * @param GCPtrEff The address of the image.
7884 */
7885IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
7886{
7887 /*
7888 * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
7889 */
7890 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
7891 if (rcStrict == VINF_SUCCESS)
7892 {
7893 RTGCPHYS GCPhysMem;
7894 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7895 if (rcStrict == VINF_SUCCESS)
7896 {
7897#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7898 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7899 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
7900 {
7901 /*
7902 * CLFLUSH/CLFLUSHOPT does not access the memory, but flushes the cache-line
7903 * that contains the address. However, if the address falls in the APIC-access
7904 * page, the address flushed must instead be the corresponding address in the
7905 * virtual-APIC page.
7906 *
7907 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
7908 */
7909 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
7910 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
7911 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
7912 return rcStrict;
7913 }
7914#endif
7915 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7916 return VINF_SUCCESS;
7917 }
7918 }
7919
7920 return rcStrict;
7921}
7922
7923
7924/**
7925 * Implements 'FINIT' and 'FNINIT'.
7926 *
7927 * @param fCheckXcpts Whether to check for umasked pending exceptions or
7928 * not.
7929 */
7930IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
7931{
7932 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
7933 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
7934 return iemRaiseDeviceNotAvailable(pVCpu);
7935
7936 iemFpuActualizeStateForChange(pVCpu);
7937 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_X87);
7938
7939 NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
7940 if (fCheckXcpts && TODO )
7941 return iemRaiseMathFault(pVCpu);
7942 */
7943
7944 PX86XSAVEAREA pXState = pVCpu->cpum.GstCtx.CTX_SUFF(pXState);
7945 pXState->x87.FCW = 0x37f;
7946 pXState->x87.FSW = 0;
7947 pXState->x87.FTW = 0x00; /* 0 - empty. */
7948 pXState->x87.FPUDP = 0;
7949 pXState->x87.DS = 0; //??
7950 pXState->x87.Rsrvd2= 0;
7951 pXState->x87.FPUIP = 0;
7952 pXState->x87.CS = 0; //??
7953 pXState->x87.Rsrvd1= 0;
7954 pXState->x87.FOP = 0;
7955
7956 iemHlpUsedFpu(pVCpu);
7957 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7958 return VINF_SUCCESS;
7959}
7960
7961
7962/**
7963 * Implements 'FXSAVE'.
7964 *
7965 * @param iEffSeg The effective segment.
7966 * @param GCPtrEff The address of the image.
7967 * @param enmEffOpSize The operand size (only REX.W really matters).
7968 */
7969IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
7970{
7971 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
7972
7973 /*
7974 * Raise exceptions.
7975 */
7976 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
7977 return iemRaiseUndefinedOpcode(pVCpu);
7978 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
7979 return iemRaiseDeviceNotAvailable(pVCpu);
7980 if (GCPtrEff & 15)
7981 {
7982 /** @todo CPU/VM detection possible! \#AC might not be signal for
7983 * all/any misalignment sizes, intel says its an implementation detail. */
7984 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
7985 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
7986 && pVCpu->iem.s.uCpl == 3)
7987 return iemRaiseAlignmentCheckException(pVCpu);
7988 return iemRaiseGeneralProtectionFault0(pVCpu);
7989 }
7990
7991 /*
7992 * Access the memory.
7993 */
7994 void *pvMem512;
7995 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
7996 if (rcStrict != VINF_SUCCESS)
7997 return rcStrict;
7998 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
7999 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8000
8001 /*
8002 * Store the registers.
8003 */
8004 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8005 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
8006
8007 /* common for all formats */
8008 pDst->FCW = pSrc->FCW;
8009 pDst->FSW = pSrc->FSW;
8010 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8011 pDst->FOP = pSrc->FOP;
8012 pDst->MXCSR = pSrc->MXCSR;
8013 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8014 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8015 {
8016 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8017 * them for now... */
8018 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8019 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8020 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8021 pDst->aRegs[i].au32[3] = 0;
8022 }
8023
8024 /* FPU IP, CS, DP and DS. */
8025 pDst->FPUIP = pSrc->FPUIP;
8026 pDst->CS = pSrc->CS;
8027 pDst->FPUDP = pSrc->FPUDP;
8028 pDst->DS = pSrc->DS;
8029 if (enmEffOpSize == IEMMODE_64BIT)
8030 {
8031 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8032 pDst->Rsrvd1 = pSrc->Rsrvd1;
8033 pDst->Rsrvd2 = pSrc->Rsrvd2;
8034 pDst->au32RsrvdForSoftware[0] = 0;
8035 }
8036 else
8037 {
8038 pDst->Rsrvd1 = 0;
8039 pDst->Rsrvd2 = 0;
8040 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8041 }
8042
8043 /* XMM registers. */
8044 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8045 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8046 || pVCpu->iem.s.uCpl != 0)
8047 {
8048 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8049 for (uint32_t i = 0; i < cXmmRegs; i++)
8050 pDst->aXMM[i] = pSrc->aXMM[i];
8051 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8052 * right? */
8053 }
8054
8055 /*
8056 * Commit the memory.
8057 */
8058 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8059 if (rcStrict != VINF_SUCCESS)
8060 return rcStrict;
8061
8062 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8063 return VINF_SUCCESS;
8064}
8065
8066
8067/**
8068 * Implements 'FXRSTOR'.
8069 *
8070 * @param GCPtrEff The address of the image.
8071 * @param enmEffOpSize The operand size (only REX.W really matters).
8072 */
8073IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8074{
8075 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8076
8077 /*
8078 * Raise exceptions.
8079 */
8080 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8081 return iemRaiseUndefinedOpcode(pVCpu);
8082 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8083 return iemRaiseDeviceNotAvailable(pVCpu);
8084 if (GCPtrEff & 15)
8085 {
8086 /** @todo CPU/VM detection possible! \#AC might not be signal for
8087 * all/any misalignment sizes, intel says its an implementation detail. */
8088 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8089 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8090 && pVCpu->iem.s.uCpl == 3)
8091 return iemRaiseAlignmentCheckException(pVCpu);
8092 return iemRaiseGeneralProtectionFault0(pVCpu);
8093 }
8094
8095 /*
8096 * Access the memory.
8097 */
8098 void *pvMem512;
8099 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8100 if (rcStrict != VINF_SUCCESS)
8101 return rcStrict;
8102 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8103 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8104
8105 /*
8106 * Check the state for stuff which will #GP(0).
8107 */
8108 uint32_t const fMXCSR = pSrc->MXCSR;
8109 uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8110 if (fMXCSR & ~fMXCSR_MASK)
8111 {
8112 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
8113 return iemRaiseGeneralProtectionFault0(pVCpu);
8114 }
8115
8116 /*
8117 * Load the registers.
8118 */
8119 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8120 * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
8121
8122 /* common for all formats */
8123 pDst->FCW = pSrc->FCW;
8124 pDst->FSW = pSrc->FSW;
8125 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8126 pDst->FOP = pSrc->FOP;
8127 pDst->MXCSR = fMXCSR;
8128 /* (MXCSR_MASK is read-only) */
8129 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8130 {
8131 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8132 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8133 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8134 pDst->aRegs[i].au32[3] = 0;
8135 }
8136
8137 /* FPU IP, CS, DP and DS. */
8138 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8139 {
8140 pDst->FPUIP = pSrc->FPUIP;
8141 pDst->CS = pSrc->CS;
8142 pDst->Rsrvd1 = pSrc->Rsrvd1;
8143 pDst->FPUDP = pSrc->FPUDP;
8144 pDst->DS = pSrc->DS;
8145 pDst->Rsrvd2 = pSrc->Rsrvd2;
8146 }
8147 else
8148 {
8149 pDst->FPUIP = pSrc->FPUIP;
8150 pDst->CS = pSrc->CS;
8151 pDst->Rsrvd1 = 0;
8152 pDst->FPUDP = pSrc->FPUDP;
8153 pDst->DS = pSrc->DS;
8154 pDst->Rsrvd2 = 0;
8155 }
8156
8157 /* XMM registers. */
8158 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8159 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8160 || pVCpu->iem.s.uCpl != 0)
8161 {
8162 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8163 for (uint32_t i = 0; i < cXmmRegs; i++)
8164 pDst->aXMM[i] = pSrc->aXMM[i];
8165 }
8166
8167 /*
8168 * Commit the memory.
8169 */
8170 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8171 if (rcStrict != VINF_SUCCESS)
8172 return rcStrict;
8173
8174 iemHlpUsedFpu(pVCpu);
8175 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8176 return VINF_SUCCESS;
8177}
8178
8179
8180/**
8181 * Implements 'XSAVE'.
8182 *
8183 * @param iEffSeg The effective segment.
8184 * @param GCPtrEff The address of the image.
8185 * @param enmEffOpSize The operand size (only REX.W really matters).
8186 */
8187IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8188{
8189 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8190
8191 /*
8192 * Raise exceptions.
8193 */
8194 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8195 return iemRaiseUndefinedOpcode(pVCpu);
8196 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8197 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8198 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8199 {
8200 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8201 return iemRaiseUndefinedOpcode(pVCpu);
8202 }
8203 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8204 return iemRaiseDeviceNotAvailable(pVCpu);
8205 if (GCPtrEff & 63)
8206 {
8207 /** @todo CPU/VM detection possible! \#AC might not be signal for
8208 * all/any misalignment sizes, intel says its an implementation detail. */
8209 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8210 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8211 && pVCpu->iem.s.uCpl == 3)
8212 return iemRaiseAlignmentCheckException(pVCpu);
8213 return iemRaiseGeneralProtectionFault0(pVCpu);
8214 }
8215
8216 /*
8217 * Calc the requested mask.
8218 */
8219 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8220 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8221 uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8222
8223/** @todo figure out the exact protocol for the memory access. Currently we
8224 * just need this crap to work halfways to make it possible to test
8225 * AVX instructions. */
8226/** @todo figure out the XINUSE and XMODIFIED */
8227
8228 /*
8229 * Access the x87 memory state.
8230 */
8231 /* The x87+SSE state. */
8232 void *pvMem512;
8233 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8234 if (rcStrict != VINF_SUCCESS)
8235 return rcStrict;
8236 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8237 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8238
8239 /* The header. */
8240 PX86XSAVEHDR pHdr;
8241 rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW);
8242 if (rcStrict != VINF_SUCCESS)
8243 return rcStrict;
8244
8245 /*
8246 * Store the X87 state.
8247 */
8248 if (fReqComponents & XSAVE_C_X87)
8249 {
8250 /* common for all formats */
8251 pDst->FCW = pSrc->FCW;
8252 pDst->FSW = pSrc->FSW;
8253 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8254 pDst->FOP = pSrc->FOP;
8255 pDst->FPUIP = pSrc->FPUIP;
8256 pDst->CS = pSrc->CS;
8257 pDst->FPUDP = pSrc->FPUDP;
8258 pDst->DS = pSrc->DS;
8259 if (enmEffOpSize == IEMMODE_64BIT)
8260 {
8261 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8262 pDst->Rsrvd1 = pSrc->Rsrvd1;
8263 pDst->Rsrvd2 = pSrc->Rsrvd2;
8264 pDst->au32RsrvdForSoftware[0] = 0;
8265 }
8266 else
8267 {
8268 pDst->Rsrvd1 = 0;
8269 pDst->Rsrvd2 = 0;
8270 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8271 }
8272 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8273 {
8274 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8275 * them for now... */
8276 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8277 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8278 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8279 pDst->aRegs[i].au32[3] = 0;
8280 }
8281
8282 }
8283
8284 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8285 {
8286 pDst->MXCSR = pSrc->MXCSR;
8287 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8288 }
8289
8290 if (fReqComponents & XSAVE_C_SSE)
8291 {
8292 /* XMM registers. */
8293 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8294 for (uint32_t i = 0; i < cXmmRegs; i++)
8295 pDst->aXMM[i] = pSrc->aXMM[i];
8296 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8297 * right? */
8298 }
8299
8300 /* Commit the x87 state bits. (probably wrong) */
8301 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8302 if (rcStrict != VINF_SUCCESS)
8303 return rcStrict;
8304
8305 /*
8306 * Store AVX state.
8307 */
8308 if (fReqComponents & XSAVE_C_YMM)
8309 {
8310 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8311 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8312 PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
8313 PX86XSAVEYMMHI pCompDst;
8314 rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
8315 IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8316 if (rcStrict != VINF_SUCCESS)
8317 return rcStrict;
8318
8319 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8320 for (uint32_t i = 0; i < cXmmRegs; i++)
8321 pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
8322
8323 rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8324 if (rcStrict != VINF_SUCCESS)
8325 return rcStrict;
8326 }
8327
8328 /*
8329 * Update the header.
8330 */
8331 pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
8332 | (fReqComponents & fXInUse);
8333
8334 rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
8335 if (rcStrict != VINF_SUCCESS)
8336 return rcStrict;
8337
8338 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8339 return VINF_SUCCESS;
8340}
8341
8342
8343/**
8344 * Implements 'XRSTOR'.
8345 *
8346 * @param iEffSeg The effective segment.
8347 * @param GCPtrEff The address of the image.
8348 * @param enmEffOpSize The operand size (only REX.W really matters).
8349 */
8350IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8351{
8352 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8353
8354 /*
8355 * Raise exceptions.
8356 */
8357 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8358 return iemRaiseUndefinedOpcode(pVCpu);
8359 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8360 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8361 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8362 {
8363 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8364 return iemRaiseUndefinedOpcode(pVCpu);
8365 }
8366 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8367 return iemRaiseDeviceNotAvailable(pVCpu);
8368 if (GCPtrEff & 63)
8369 {
8370 /** @todo CPU/VM detection possible! \#AC might not be signal for
8371 * all/any misalignment sizes, intel says its an implementation detail. */
8372 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8373 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8374 && pVCpu->iem.s.uCpl == 3)
8375 return iemRaiseAlignmentCheckException(pVCpu);
8376 return iemRaiseGeneralProtectionFault0(pVCpu);
8377 }
8378
8379/** @todo figure out the exact protocol for the memory access. Currently we
8380 * just need this crap to work halfways to make it possible to test
8381 * AVX instructions. */
8382/** @todo figure out the XINUSE and XMODIFIED */
8383
8384 /*
8385 * Access the x87 memory state.
8386 */
8387 /* The x87+SSE state. */
8388 void *pvMem512;
8389 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8390 if (rcStrict != VINF_SUCCESS)
8391 return rcStrict;
8392 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8393 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8394
8395 /*
8396 * Calc the requested mask
8397 */
8398 PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->Hdr;
8399 PCX86XSAVEHDR pHdrSrc;
8400 rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R);
8401 if (rcStrict != VINF_SUCCESS)
8402 return rcStrict;
8403
8404 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8405 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8406 //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8407 uint64_t const fRstorMask = pHdrSrc->bmXState;
8408 uint64_t const fCompMask = pHdrSrc->bmXComp;
8409
8410 AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8411
8412 uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8413
8414 /* We won't need this any longer. */
8415 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
8416 if (rcStrict != VINF_SUCCESS)
8417 return rcStrict;
8418
8419 /*
8420 * Store the X87 state.
8421 */
8422 if (fReqComponents & XSAVE_C_X87)
8423 {
8424 if (fRstorMask & XSAVE_C_X87)
8425 {
8426 pDst->FCW = pSrc->FCW;
8427 pDst->FSW = pSrc->FSW;
8428 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8429 pDst->FOP = pSrc->FOP;
8430 pDst->FPUIP = pSrc->FPUIP;
8431 pDst->CS = pSrc->CS;
8432 pDst->FPUDP = pSrc->FPUDP;
8433 pDst->DS = pSrc->DS;
8434 if (enmEffOpSize == IEMMODE_64BIT)
8435 {
8436 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8437 pDst->Rsrvd1 = pSrc->Rsrvd1;
8438 pDst->Rsrvd2 = pSrc->Rsrvd2;
8439 }
8440 else
8441 {
8442 pDst->Rsrvd1 = 0;
8443 pDst->Rsrvd2 = 0;
8444 }
8445 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8446 {
8447 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8448 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8449 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8450 pDst->aRegs[i].au32[3] = 0;
8451 }
8452 }
8453 else
8454 {
8455 pDst->FCW = 0x37f;
8456 pDst->FSW = 0;
8457 pDst->FTW = 0x00; /* 0 - empty. */
8458 pDst->FPUDP = 0;
8459 pDst->DS = 0; //??
8460 pDst->Rsrvd2= 0;
8461 pDst->FPUIP = 0;
8462 pDst->CS = 0; //??
8463 pDst->Rsrvd1= 0;
8464 pDst->FOP = 0;
8465 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8466 {
8467 pDst->aRegs[i].au32[0] = 0;
8468 pDst->aRegs[i].au32[1] = 0;
8469 pDst->aRegs[i].au32[2] = 0;
8470 pDst->aRegs[i].au32[3] = 0;
8471 }
8472 }
8473 pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
8474 }
8475
8476 /* MXCSR */
8477 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8478 {
8479 if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
8480 pDst->MXCSR = pSrc->MXCSR;
8481 else
8482 pDst->MXCSR = 0x1f80;
8483 }
8484
8485 /* XMM registers. */
8486 if (fReqComponents & XSAVE_C_SSE)
8487 {
8488 if (fRstorMask & XSAVE_C_SSE)
8489 {
8490 for (uint32_t i = 0; i < cXmmRegs; i++)
8491 pDst->aXMM[i] = pSrc->aXMM[i];
8492 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8493 * right? */
8494 }
8495 else
8496 {
8497 for (uint32_t i = 0; i < cXmmRegs; i++)
8498 {
8499 pDst->aXMM[i].au64[0] = 0;
8500 pDst->aXMM[i].au64[1] = 0;
8501 }
8502 }
8503 pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
8504 }
8505
8506 /* Unmap the x87 state bits (so we've don't run out of mapping). */
8507 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8508 if (rcStrict != VINF_SUCCESS)
8509 return rcStrict;
8510
8511 /*
8512 * Restore AVX state.
8513 */
8514 if (fReqComponents & XSAVE_C_YMM)
8515 {
8516 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8517 PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
8518
8519 if (fRstorMask & XSAVE_C_YMM)
8520 {
8521 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8522 PCX86XSAVEYMMHI pCompSrc;
8523 rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
8524 iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R);
8525 if (rcStrict != VINF_SUCCESS)
8526 return rcStrict;
8527
8528 for (uint32_t i = 0; i < cXmmRegs; i++)
8529 {
8530 pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
8531 pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
8532 }
8533
8534 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
8535 if (rcStrict != VINF_SUCCESS)
8536 return rcStrict;
8537 }
8538 else
8539 {
8540 for (uint32_t i = 0; i < cXmmRegs; i++)
8541 {
8542 pCompDst->aYmmHi[i].au64[0] = 0;
8543 pCompDst->aYmmHi[i].au64[1] = 0;
8544 }
8545 }
8546 pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
8547 }
8548
8549 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8550 return VINF_SUCCESS;
8551}
8552
8553
8554
8555
8556/**
8557 * Implements 'STMXCSR'.
8558 *
8559 * @param GCPtrEff The address of the image.
8560 */
8561IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8562{
8563 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8564
8565 /*
8566 * Raise exceptions.
8567 */
8568 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8569 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8570 {
8571 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8572 {
8573 /*
8574 * Do the job.
8575 */
8576 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
8577 if (rcStrict == VINF_SUCCESS)
8578 {
8579 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8580 return VINF_SUCCESS;
8581 }
8582 return rcStrict;
8583 }
8584 return iemRaiseDeviceNotAvailable(pVCpu);
8585 }
8586 return iemRaiseUndefinedOpcode(pVCpu);
8587}
8588
8589
8590/**
8591 * Implements 'VSTMXCSR'.
8592 *
8593 * @param GCPtrEff The address of the image.
8594 */
8595IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8596{
8597 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx);
8598
8599 /*
8600 * Raise exceptions.
8601 */
8602 if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
8603 ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
8604 : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
8605 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8606 {
8607 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8608 {
8609 /*
8610 * Do the job.
8611 */
8612 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR);
8613 if (rcStrict == VINF_SUCCESS)
8614 {
8615 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8616 return VINF_SUCCESS;
8617 }
8618 return rcStrict;
8619 }
8620 return iemRaiseDeviceNotAvailable(pVCpu);
8621 }
8622 return iemRaiseUndefinedOpcode(pVCpu);
8623}
8624
8625
8626/**
8627 * Implements 'LDMXCSR'.
8628 *
8629 * @param GCPtrEff The address of the image.
8630 */
8631IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8632{
8633 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8634
8635 /*
8636 * Raise exceptions.
8637 */
8638 /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
8639 * happen after or before \#UD and \#EM? */
8640 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8641 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8642 {
8643 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8644 {
8645 /*
8646 * Do the job.
8647 */
8648 uint32_t fNewMxCsr;
8649 VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
8650 if (rcStrict == VINF_SUCCESS)
8651 {
8652 uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8653 if (!(fNewMxCsr & ~fMxCsrMask))
8654 {
8655 pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87.MXCSR = fNewMxCsr;
8656 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8657 return VINF_SUCCESS;
8658 }
8659 Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
8660 fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
8661 return iemRaiseGeneralProtectionFault0(pVCpu);
8662 }
8663 return rcStrict;
8664 }
8665 return iemRaiseDeviceNotAvailable(pVCpu);
8666 }
8667 return iemRaiseUndefinedOpcode(pVCpu);
8668}
8669
8670
8671/**
8672 * Commmon routine for fnstenv and fnsave.
8673 *
8674 * @param pVCpu The cross context virtual CPU structure of the calling thread.
8675 * @param enmEffOpSize The effective operand size.
8676 * @param uPtr Where to store the state.
8677 */
8678static void iemCImplCommonFpuStoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr)
8679{
8680 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8681 PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8682 if (enmEffOpSize == IEMMODE_16BIT)
8683 {
8684 uPtr.pu16[0] = pSrcX87->FCW;
8685 uPtr.pu16[1] = pSrcX87->FSW;
8686 uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
8687 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8688 {
8689 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
8690 * protected mode or long mode and we save it in real mode? And vice
8691 * versa? And with 32-bit operand size? I think CPU is storing the
8692 * effective address ((CS << 4) + IP) in the offset register and not
8693 * doing any address calculations here. */
8694 uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
8695 uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
8696 uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
8697 uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
8698 }
8699 else
8700 {
8701 uPtr.pu16[3] = pSrcX87->FPUIP;
8702 uPtr.pu16[4] = pSrcX87->CS;
8703 uPtr.pu16[5] = pSrcX87->FPUDP;
8704 uPtr.pu16[6] = pSrcX87->DS;
8705 }
8706 }
8707 else
8708 {
8709 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
8710 uPtr.pu16[0*2] = pSrcX87->FCW;
8711 uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
8712 uPtr.pu16[1*2] = pSrcX87->FSW;
8713 uPtr.pu16[1*2+1] = 0xffff;
8714 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
8715 uPtr.pu16[2*2+1] = 0xffff;
8716 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8717 {
8718 uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
8719 uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
8720 uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
8721 uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
8722 }
8723 else
8724 {
8725 uPtr.pu32[3] = pSrcX87->FPUIP;
8726 uPtr.pu16[4*2] = pSrcX87->CS;
8727 uPtr.pu16[4*2+1] = pSrcX87->FOP;
8728 uPtr.pu32[5] = pSrcX87->FPUDP;
8729 uPtr.pu16[6*2] = pSrcX87->DS;
8730 uPtr.pu16[6*2+1] = 0xffff;
8731 }
8732 }
8733}
8734
8735
8736/**
8737 * Commmon routine for fldenv and frstor
8738 *
8739 * @param pVCpu The cross context virtual CPU structure of the calling thread.
8740 * @param enmEffOpSize The effective operand size.
8741 * @param uPtr Where to store the state.
8742 */
8743static void iemCImplCommonFpuRestoreEnv(PVMCPU pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr)
8744{
8745 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8746 PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8747 if (enmEffOpSize == IEMMODE_16BIT)
8748 {
8749 pDstX87->FCW = uPtr.pu16[0];
8750 pDstX87->FSW = uPtr.pu16[1];
8751 pDstX87->FTW = uPtr.pu16[2];
8752 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8753 {
8754 pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
8755 pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
8756 pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
8757 pDstX87->CS = 0;
8758 pDstX87->Rsrvd1= 0;
8759 pDstX87->DS = 0;
8760 pDstX87->Rsrvd2= 0;
8761 }
8762 else
8763 {
8764 pDstX87->FPUIP = uPtr.pu16[3];
8765 pDstX87->CS = uPtr.pu16[4];
8766 pDstX87->Rsrvd1= 0;
8767 pDstX87->FPUDP = uPtr.pu16[5];
8768 pDstX87->DS = uPtr.pu16[6];
8769 pDstX87->Rsrvd2= 0;
8770 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
8771 }
8772 }
8773 else
8774 {
8775 pDstX87->FCW = uPtr.pu16[0*2];
8776 pDstX87->FSW = uPtr.pu16[1*2];
8777 pDstX87->FTW = uPtr.pu16[2*2];
8778 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8779 {
8780 pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
8781 pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
8782 pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
8783 pDstX87->CS = 0;
8784 pDstX87->Rsrvd1= 0;
8785 pDstX87->DS = 0;
8786 pDstX87->Rsrvd2= 0;
8787 }
8788 else
8789 {
8790 pDstX87->FPUIP = uPtr.pu32[3];
8791 pDstX87->CS = uPtr.pu16[4*2];
8792 pDstX87->Rsrvd1= 0;
8793 pDstX87->FOP = uPtr.pu16[4*2+1];
8794 pDstX87->FPUDP = uPtr.pu32[5];
8795 pDstX87->DS = uPtr.pu16[6*2];
8796 pDstX87->Rsrvd2= 0;
8797 }
8798 }
8799
8800 /* Make adjustments. */
8801 pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
8802 pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
8803 iemFpuRecalcExceptionStatus(pDstX87);
8804 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
8805 * exceptions are pending after loading the saved state? */
8806}
8807
8808
8809/**
8810 * Implements 'FNSTENV'.
8811 *
8812 * @param enmEffOpSize The operand size (only REX.W really matters).
8813 * @param iEffSeg The effective segment register for @a GCPtrEff.
8814 * @param GCPtrEffDst The address of the image.
8815 */
8816IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
8817{
8818 RTPTRUNION uPtr;
8819 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
8820 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8821 if (rcStrict != VINF_SUCCESS)
8822 return rcStrict;
8823
8824 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
8825
8826 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8827 if (rcStrict != VINF_SUCCESS)
8828 return rcStrict;
8829
8830 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
8831 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8832 return VINF_SUCCESS;
8833}
8834
8835
8836/**
8837 * Implements 'FNSAVE'.
8838 *
8839 * @param GCPtrEffDst The address of the image.
8840 * @param enmEffOpSize The operand size.
8841 */
8842IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
8843{
8844 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8845
8846 RTPTRUNION uPtr;
8847 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
8848 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8849 if (rcStrict != VINF_SUCCESS)
8850 return rcStrict;
8851
8852 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8853 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
8854 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
8855 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
8856 {
8857 paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
8858 paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
8859 paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
8860 }
8861
8862 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8863 if (rcStrict != VINF_SUCCESS)
8864 return rcStrict;
8865
8866 /*
8867 * Re-initialize the FPU context.
8868 */
8869 pFpuCtx->FCW = 0x37f;
8870 pFpuCtx->FSW = 0;
8871 pFpuCtx->FTW = 0x00; /* 0 - empty */
8872 pFpuCtx->FPUDP = 0;
8873 pFpuCtx->DS = 0;
8874 pFpuCtx->Rsrvd2= 0;
8875 pFpuCtx->FPUIP = 0;
8876 pFpuCtx->CS = 0;
8877 pFpuCtx->Rsrvd1= 0;
8878 pFpuCtx->FOP = 0;
8879
8880 iemHlpUsedFpu(pVCpu);
8881 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8882 return VINF_SUCCESS;
8883}
8884
8885
8886
8887/**
8888 * Implements 'FLDENV'.
8889 *
8890 * @param enmEffOpSize The operand size (only REX.W really matters).
8891 * @param iEffSeg The effective segment register for @a GCPtrEff.
8892 * @param GCPtrEffSrc The address of the image.
8893 */
8894IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
8895{
8896 RTCPTRUNION uPtr;
8897 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
8898 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
8899 if (rcStrict != VINF_SUCCESS)
8900 return rcStrict;
8901
8902 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
8903
8904 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
8905 if (rcStrict != VINF_SUCCESS)
8906 return rcStrict;
8907
8908 iemHlpUsedFpu(pVCpu);
8909 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8910 return VINF_SUCCESS;
8911}
8912
8913
8914/**
8915 * Implements 'FRSTOR'.
8916 *
8917 * @param GCPtrEffSrc The address of the image.
8918 * @param enmEffOpSize The operand size.
8919 */
8920IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
8921{
8922 RTCPTRUNION uPtr;
8923 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
8924 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
8925 if (rcStrict != VINF_SUCCESS)
8926 return rcStrict;
8927
8928 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8929 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
8930 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
8931 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
8932 {
8933 pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
8934 pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
8935 pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
8936 pFpuCtx->aRegs[i].au32[3] = 0;
8937 }
8938
8939 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
8940 if (rcStrict != VINF_SUCCESS)
8941 return rcStrict;
8942
8943 iemHlpUsedFpu(pVCpu);
8944 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8945 return VINF_SUCCESS;
8946}
8947
8948
8949/**
8950 * Implements 'FLDCW'.
8951 *
8952 * @param u16Fcw The new FCW.
8953 */
8954IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
8955{
8956 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8957
8958 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
8959 /** @todo Testcase: Try see what happens when trying to set undefined bits
8960 * (other than 6 and 7). Currently ignoring them. */
8961 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
8962 * according to FSW. (This is was is currently implemented.) */
8963 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8964 pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
8965 iemFpuRecalcExceptionStatus(pFpuCtx);
8966
8967 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
8968 iemHlpUsedFpu(pVCpu);
8969 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8970 return VINF_SUCCESS;
8971}
8972
8973
8974
8975/**
8976 * Implements the underflow case of fxch.
8977 *
8978 * @param iStReg The other stack register.
8979 */
8980IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
8981{
8982 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8983
8984 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
8985 unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
8986 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
8987 Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
8988
8989 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
8990 * registers are read as QNaN and then exchanged. This could be
8991 * wrong... */
8992 if (pFpuCtx->FCW & X86_FCW_IM)
8993 {
8994 if (RT_BIT(iReg1) & pFpuCtx->FTW)
8995 {
8996 if (RT_BIT(iReg2) & pFpuCtx->FTW)
8997 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
8998 else
8999 pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
9000 iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
9001 }
9002 else
9003 {
9004 pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
9005 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9006 }
9007 pFpuCtx->FSW &= ~X86_FSW_C_MASK;
9008 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
9009 }
9010 else
9011 {
9012 /* raise underflow exception, don't change anything. */
9013 pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
9014 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9015 }
9016
9017 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9018 iemHlpUsedFpu(pVCpu);
9019 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9020 return VINF_SUCCESS;
9021}
9022
9023
9024/**
9025 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
9026 *
9027 * @param cToAdd 1 or 7.
9028 */
9029IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
9030{
9031 Assert(iStReg < 8);
9032 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9033
9034 /*
9035 * Raise exceptions.
9036 */
9037 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
9038 return iemRaiseDeviceNotAvailable(pVCpu);
9039
9040 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.CTX_SUFF(pXState)->x87;
9041 uint16_t u16Fsw = pFpuCtx->FSW;
9042 if (u16Fsw & X86_FSW_ES)
9043 return iemRaiseMathFault(pVCpu);
9044
9045 /*
9046 * Check if any of the register accesses causes #SF + #IA.
9047 */
9048 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
9049 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9050 if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
9051 {
9052 uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
9053 NOREF(u32Eflags);
9054
9055 pFpuCtx->FSW &= ~X86_FSW_C1;
9056 pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
9057 if ( !(u16Fsw & X86_FSW_IE)
9058 || (pFpuCtx->FCW & X86_FCW_IM) )
9059 {
9060 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9061 pVCpu->cpum.GstCtx.eflags.u |= pVCpu->cpum.GstCtx.eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9062 }
9063 }
9064 else if (pFpuCtx->FCW & X86_FCW_IM)
9065 {
9066 /* Masked underflow. */
9067 pFpuCtx->FSW &= ~X86_FSW_C1;
9068 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
9069 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9070 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
9071 }
9072 else
9073 {
9074 /* Raise underflow - don't touch EFLAGS or TOP. */
9075 pFpuCtx->FSW &= ~X86_FSW_C1;
9076 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9077 fPop = false;
9078 }
9079
9080 /*
9081 * Pop if necessary.
9082 */
9083 if (fPop)
9084 {
9085 pFpuCtx->FTW &= ~RT_BIT(iReg1);
9086 pFpuCtx->FSW &= X86_FSW_TOP_MASK;
9087 pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
9088 }
9089
9090 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9091 iemHlpUsedFpu(pVCpu);
9092 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9093 return VINF_SUCCESS;
9094}
9095
9096/** @} */
9097
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette