VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImpl.cpp.h@ 92568

Last change on this file since 92568 was 92568, checked in by vboxsync, 3 years ago

VMM/IEM: Nested VMX: bugref:10092 Comment clarifying we should raise #GP(0) in both cases.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 336.1 KB
Line 
1/* $Id: IEMAllCImpl.cpp.h 92568 2021-11-23 15:45:50Z vboxsync $ */
2/** @file
3 * IEM - Instruction Implementation in C/C++ (code include).
4 */
5
6/*
7 * Copyright (C) 2011-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#include "IEMAllCImplSvmInstr.cpp.h"
19#include "IEMAllCImplVmxInstr.cpp.h"
20
21
22/** @name Misc Helpers
23 * @{
24 */
25
26
27/**
28 * Worker function for iemHlpCheckPortIOPermission, don't call directly.
29 *
30 * @returns Strict VBox status code.
31 *
32 * @param pVCpu The cross context virtual CPU structure of the calling thread.
33 * @param u16Port The port number.
34 * @param cbOperand The operand size.
35 */
36static VBOXSTRICTRC iemHlpCheckPortIOPermissionBitmap(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
37{
38 /* The TSS bits we're interested in are the same on 386 and AMD64. */
39 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_BUSY == X86_SEL_TYPE_SYS_386_TSS_BUSY);
40 AssertCompile(AMD64_SEL_TYPE_SYS_TSS_AVAIL == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
41 AssertCompileMembersAtSameOffset(X86TSS32, offIoBitmap, X86TSS64, offIoBitmap);
42 AssertCompile(sizeof(X86TSS32) == sizeof(X86TSS64));
43
44 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
45
46 /*
47 * Check the TSS type, 16-bit TSSes doesn't have any I/O permission bitmap.
48 */
49 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
50 if (RT_UNLIKELY( pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_BUSY
51 && pVCpu->cpum.GstCtx.tr.Attr.n.u4Type != AMD64_SEL_TYPE_SYS_TSS_AVAIL))
52 {
53 Log(("iemHlpCheckPortIOPermissionBitmap: Port=%#x cb=%d - TSS type %#x (attr=%#x) has no I/O bitmap -> #GP(0)\n",
54 u16Port, cbOperand, pVCpu->cpum.GstCtx.tr.Attr.n.u4Type, pVCpu->cpum.GstCtx.tr.Attr.u));
55 return iemRaiseGeneralProtectionFault0(pVCpu);
56 }
57
58 /*
59 * Read the bitmap offset (may #PF).
60 */
61 uint16_t offBitmap;
62 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &offBitmap, UINT8_MAX,
63 pVCpu->cpum.GstCtx.tr.u64Base + RT_UOFFSETOF(X86TSS64, offIoBitmap));
64 if (rcStrict != VINF_SUCCESS)
65 {
66 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading offIoBitmap (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
67 return rcStrict;
68 }
69
70 /*
71 * The bit range from u16Port to (u16Port + cbOperand - 1), however intel
72 * describes the CPU actually reading two bytes regardless of whether the
73 * bit range crosses a byte boundrary. Thus the + 1 in the test below.
74 */
75 uint32_t offFirstBit = (uint32_t)u16Port / 8 + offBitmap;
76 /** @todo check if real CPUs ensures that offBitmap has a minimum value of
77 * for instance sizeof(X86TSS32). */
78 if (offFirstBit + 1 > pVCpu->cpum.GstCtx.tr.u32Limit) /* the limit is inclusive */
79 {
80 Log(("iemHlpCheckPortIOPermissionBitmap: offFirstBit=%#x + 1 is beyond u32Limit=%#x -> #GP(0)\n",
81 offFirstBit, pVCpu->cpum.GstCtx.tr.u32Limit));
82 return iemRaiseGeneralProtectionFault0(pVCpu);
83 }
84
85 /*
86 * Read the necessary bits.
87 */
88 /** @todo Test the assertion in the intel manual that the CPU reads two
89 * bytes. The question is how this works wrt to #PF and #GP on the
90 * 2nd byte when it's not required. */
91 uint16_t bmBytes = UINT16_MAX;
92 rcStrict = iemMemFetchSysU16(pVCpu, &bmBytes, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base + offFirstBit);
93 if (rcStrict != VINF_SUCCESS)
94 {
95 Log(("iemHlpCheckPortIOPermissionBitmap: Error reading I/O bitmap @%#x (%Rrc)\n", offFirstBit, VBOXSTRICTRC_VAL(rcStrict)));
96 return rcStrict;
97 }
98
99 /*
100 * Perform the check.
101 */
102 uint16_t fPortMask = (1 << cbOperand) - 1;
103 bmBytes >>= (u16Port & 7);
104 if (bmBytes & fPortMask)
105 {
106 Log(("iemHlpCheckPortIOPermissionBitmap: u16Port=%#x LB %u - access denied (bm=%#x mask=%#x) -> #GP(0)\n",
107 u16Port, cbOperand, bmBytes, fPortMask));
108 return iemRaiseGeneralProtectionFault0(pVCpu);
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115/**
116 * Checks if we are allowed to access the given I/O port, raising the
117 * appropriate exceptions if we aren't (or if the I/O bitmap is not
118 * accessible).
119 *
120 * @returns Strict VBox status code.
121 *
122 * @param pVCpu The cross context virtual CPU structure of the calling thread.
123 * @param u16Port The port number.
124 * @param cbOperand The operand size.
125 */
126DECLINLINE(VBOXSTRICTRC) iemHlpCheckPortIOPermission(PVMCPUCC pVCpu, uint16_t u16Port, uint8_t cbOperand)
127{
128 X86EFLAGS Efl;
129 Efl.u = IEMMISC_GET_EFL(pVCpu);
130 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
131 && ( pVCpu->iem.s.uCpl > Efl.Bits.u2IOPL
132 || Efl.Bits.u1VM) )
133 return iemHlpCheckPortIOPermissionBitmap(pVCpu, u16Port, cbOperand);
134 return VINF_SUCCESS;
135}
136
137
138#if 0
139/**
140 * Calculates the parity bit.
141 *
142 * @returns true if the bit is set, false if not.
143 * @param u8Result The least significant byte of the result.
144 */
145static bool iemHlpCalcParityFlag(uint8_t u8Result)
146{
147 /*
148 * Parity is set if the number of bits in the least significant byte of
149 * the result is even.
150 */
151 uint8_t cBits;
152 cBits = u8Result & 1; /* 0 */
153 u8Result >>= 1;
154 cBits += u8Result & 1;
155 u8Result >>= 1;
156 cBits += u8Result & 1;
157 u8Result >>= 1;
158 cBits += u8Result & 1;
159 u8Result >>= 1;
160 cBits += u8Result & 1; /* 4 */
161 u8Result >>= 1;
162 cBits += u8Result & 1;
163 u8Result >>= 1;
164 cBits += u8Result & 1;
165 u8Result >>= 1;
166 cBits += u8Result & 1;
167 return !(cBits & 1);
168}
169#endif /* not used */
170
171
172/**
173 * Updates the specified flags according to a 8-bit result.
174 *
175 * @param pVCpu The cross context virtual CPU structure of the calling thread.
176 * @param u8Result The result to set the flags according to.
177 * @param fToUpdate The flags to update.
178 * @param fUndefined The flags that are specified as undefined.
179 */
180static void iemHlpUpdateArithEFlagsU8(PVMCPUCC pVCpu, uint8_t u8Result, uint32_t fToUpdate, uint32_t fUndefined)
181{
182 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
183 iemAImpl_test_u8(&u8Result, u8Result, &fEFlags);
184 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
185 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
186}
187
188
189/**
190 * Updates the specified flags according to a 16-bit result.
191 *
192 * @param pVCpu The cross context virtual CPU structure of the calling thread.
193 * @param u16Result The result to set the flags according to.
194 * @param fToUpdate The flags to update.
195 * @param fUndefined The flags that are specified as undefined.
196 */
197static void iemHlpUpdateArithEFlagsU16(PVMCPUCC pVCpu, uint16_t u16Result, uint32_t fToUpdate, uint32_t fUndefined)
198{
199 uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
200 iemAImpl_test_u16(&u16Result, u16Result, &fEFlags);
201 pVCpu->cpum.GstCtx.eflags.u &= ~(fToUpdate | fUndefined);
202 pVCpu->cpum.GstCtx.eflags.u |= (fToUpdate | fUndefined) & fEFlags;
203}
204
205
206/**
207 * Helper used by iret.
208 *
209 * @param pVCpu The cross context virtual CPU structure of the calling thread.
210 * @param uCpl The new CPL.
211 * @param pSReg Pointer to the segment register.
212 */
213static void iemHlpAdjustSelectorForNewCpl(PVMCPUCC pVCpu, uint8_t uCpl, PCPUMSELREG pSReg)
214{
215 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
216 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
217
218 if ( uCpl > pSReg->Attr.n.u2Dpl
219 && pSReg->Attr.n.u1DescType /* code or data, not system */
220 && (pSReg->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
221 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) /* not conforming code */
222 iemHlpLoadNullDataSelectorProt(pVCpu, pSReg, 0);
223}
224
225
226/**
227 * Indicates that we have modified the FPU state.
228 *
229 * @param pVCpu The cross context virtual CPU structure of the calling thread.
230 */
231DECLINLINE(void) iemHlpUsedFpu(PVMCPUCC pVCpu)
232{
233 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
234}
235
236/** @} */
237
238/** @name C Implementations
239 * @{
240 */
241
242/**
243 * Implements a 16-bit popa.
244 */
245IEM_CIMPL_DEF_0(iemCImpl_popa_16)
246{
247 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
248 RTGCPTR GCPtrLast = GCPtrStart + 15;
249 VBOXSTRICTRC rcStrict;
250
251 /*
252 * The docs are a bit hard to comprehend here, but it looks like we wrap
253 * around in real mode as long as none of the individual "popa" crosses the
254 * end of the stack segment. In protected mode we check the whole access
255 * in one go. For efficiency, only do the word-by-word thing if we're in
256 * danger of wrapping around.
257 */
258 /** @todo do popa boundary / wrap-around checks. */
259 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
260 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
261 {
262 /* word-by-word */
263 RTUINT64U TmpRsp;
264 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
265 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.di, &TmpRsp);
266 if (rcStrict == VINF_SUCCESS)
267 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.si, &TmpRsp);
268 if (rcStrict == VINF_SUCCESS)
269 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bp, &TmpRsp);
270 if (rcStrict == VINF_SUCCESS)
271 {
272 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
273 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.bx, &TmpRsp);
274 }
275 if (rcStrict == VINF_SUCCESS)
276 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.dx, &TmpRsp);
277 if (rcStrict == VINF_SUCCESS)
278 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.cx, &TmpRsp);
279 if (rcStrict == VINF_SUCCESS)
280 rcStrict = iemMemStackPopU16Ex(pVCpu, &pVCpu->cpum.GstCtx.ax, &TmpRsp);
281 if (rcStrict == VINF_SUCCESS)
282 {
283 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
284 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
285 }
286 }
287 else
288 {
289 uint16_t const *pa16Mem = NULL;
290 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
291 if (rcStrict == VINF_SUCCESS)
292 {
293 pVCpu->cpum.GstCtx.di = pa16Mem[7 - X86_GREG_xDI];
294 pVCpu->cpum.GstCtx.si = pa16Mem[7 - X86_GREG_xSI];
295 pVCpu->cpum.GstCtx.bp = pa16Mem[7 - X86_GREG_xBP];
296 /* skip sp */
297 pVCpu->cpum.GstCtx.bx = pa16Mem[7 - X86_GREG_xBX];
298 pVCpu->cpum.GstCtx.dx = pa16Mem[7 - X86_GREG_xDX];
299 pVCpu->cpum.GstCtx.cx = pa16Mem[7 - X86_GREG_xCX];
300 pVCpu->cpum.GstCtx.ax = pa16Mem[7 - X86_GREG_xAX];
301 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_R);
302 if (rcStrict == VINF_SUCCESS)
303 {
304 iemRegAddToRsp(pVCpu, 16);
305 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
306 }
307 }
308 }
309 return rcStrict;
310}
311
312
313/**
314 * Implements a 32-bit popa.
315 */
316IEM_CIMPL_DEF_0(iemCImpl_popa_32)
317{
318 RTGCPTR GCPtrStart = iemRegGetEffRsp(pVCpu);
319 RTGCPTR GCPtrLast = GCPtrStart + 31;
320 VBOXSTRICTRC rcStrict;
321
322 /*
323 * The docs are a bit hard to comprehend here, but it looks like we wrap
324 * around in real mode as long as none of the individual "popa" crosses the
325 * end of the stack segment. In protected mode we check the whole access
326 * in one go. For efficiency, only do the word-by-word thing if we're in
327 * danger of wrapping around.
328 */
329 /** @todo do popa boundary / wrap-around checks. */
330 if (RT_UNLIKELY( IEM_IS_REAL_OR_V86_MODE(pVCpu)
331 && (pVCpu->cpum.GstCtx.cs.u32Limit < GCPtrLast)) ) /* ASSUMES 64-bit RTGCPTR */
332 {
333 /* word-by-word */
334 RTUINT64U TmpRsp;
335 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
336 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edi, &TmpRsp);
337 if (rcStrict == VINF_SUCCESS)
338 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.esi, &TmpRsp);
339 if (rcStrict == VINF_SUCCESS)
340 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebp, &TmpRsp);
341 if (rcStrict == VINF_SUCCESS)
342 {
343 iemRegAddToRspEx(pVCpu, &TmpRsp, 2); /* sp */
344 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ebx, &TmpRsp);
345 }
346 if (rcStrict == VINF_SUCCESS)
347 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.edx, &TmpRsp);
348 if (rcStrict == VINF_SUCCESS)
349 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.ecx, &TmpRsp);
350 if (rcStrict == VINF_SUCCESS)
351 rcStrict = iemMemStackPopU32Ex(pVCpu, &pVCpu->cpum.GstCtx.eax, &TmpRsp);
352 if (rcStrict == VINF_SUCCESS)
353 {
354#if 1 /** @todo what actually happens with the high bits when we're in 16-bit mode? */
355 pVCpu->cpum.GstCtx.rdi &= UINT32_MAX;
356 pVCpu->cpum.GstCtx.rsi &= UINT32_MAX;
357 pVCpu->cpum.GstCtx.rbp &= UINT32_MAX;
358 pVCpu->cpum.GstCtx.rbx &= UINT32_MAX;
359 pVCpu->cpum.GstCtx.rdx &= UINT32_MAX;
360 pVCpu->cpum.GstCtx.rcx &= UINT32_MAX;
361 pVCpu->cpum.GstCtx.rax &= UINT32_MAX;
362#endif
363 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
364 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
365 }
366 }
367 else
368 {
369 uint32_t const *pa32Mem;
370 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrStart, IEM_ACCESS_STACK_R);
371 if (rcStrict == VINF_SUCCESS)
372 {
373 pVCpu->cpum.GstCtx.rdi = pa32Mem[7 - X86_GREG_xDI];
374 pVCpu->cpum.GstCtx.rsi = pa32Mem[7 - X86_GREG_xSI];
375 pVCpu->cpum.GstCtx.rbp = pa32Mem[7 - X86_GREG_xBP];
376 /* skip esp */
377 pVCpu->cpum.GstCtx.rbx = pa32Mem[7 - X86_GREG_xBX];
378 pVCpu->cpum.GstCtx.rdx = pa32Mem[7 - X86_GREG_xDX];
379 pVCpu->cpum.GstCtx.rcx = pa32Mem[7 - X86_GREG_xCX];
380 pVCpu->cpum.GstCtx.rax = pa32Mem[7 - X86_GREG_xAX];
381 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa32Mem, IEM_ACCESS_STACK_R);
382 if (rcStrict == VINF_SUCCESS)
383 {
384 iemRegAddToRsp(pVCpu, 32);
385 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
386 }
387 }
388 }
389 return rcStrict;
390}
391
392
393/**
394 * Implements a 16-bit pusha.
395 */
396IEM_CIMPL_DEF_0(iemCImpl_pusha_16)
397{
398 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
399 RTGCPTR GCPtrBottom = GCPtrTop - 15;
400 VBOXSTRICTRC rcStrict;
401
402 /*
403 * The docs are a bit hard to comprehend here, but it looks like we wrap
404 * around in real mode as long as none of the individual "pushd" crosses the
405 * end of the stack segment. In protected mode we check the whole access
406 * in one go. For efficiency, only do the word-by-word thing if we're in
407 * danger of wrapping around.
408 */
409 /** @todo do pusha boundary / wrap-around checks. */
410 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
411 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
412 {
413 /* word-by-word */
414 RTUINT64U TmpRsp;
415 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
416 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.ax, &TmpRsp);
417 if (rcStrict == VINF_SUCCESS)
418 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.cx, &TmpRsp);
419 if (rcStrict == VINF_SUCCESS)
420 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.dx, &TmpRsp);
421 if (rcStrict == VINF_SUCCESS)
422 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bx, &TmpRsp);
423 if (rcStrict == VINF_SUCCESS)
424 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.sp, &TmpRsp);
425 if (rcStrict == VINF_SUCCESS)
426 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.bp, &TmpRsp);
427 if (rcStrict == VINF_SUCCESS)
428 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.si, &TmpRsp);
429 if (rcStrict == VINF_SUCCESS)
430 rcStrict = iemMemStackPushU16Ex(pVCpu, pVCpu->cpum.GstCtx.di, &TmpRsp);
431 if (rcStrict == VINF_SUCCESS)
432 {
433 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
434 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
435 }
436 }
437 else
438 {
439 GCPtrBottom--;
440 uint16_t *pa16Mem = NULL;
441 rcStrict = iemMemMap(pVCpu, (void **)&pa16Mem, 16, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
442 if (rcStrict == VINF_SUCCESS)
443 {
444 pa16Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.di;
445 pa16Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.si;
446 pa16Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.bp;
447 pa16Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.sp;
448 pa16Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.bx;
449 pa16Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.dx;
450 pa16Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.cx;
451 pa16Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.ax;
452 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pa16Mem, IEM_ACCESS_STACK_W);
453 if (rcStrict == VINF_SUCCESS)
454 {
455 iemRegSubFromRsp(pVCpu, 16);
456 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
457 }
458 }
459 }
460 return rcStrict;
461}
462
463
464/**
465 * Implements a 32-bit pusha.
466 */
467IEM_CIMPL_DEF_0(iemCImpl_pusha_32)
468{
469 RTGCPTR GCPtrTop = iemRegGetEffRsp(pVCpu);
470 RTGCPTR GCPtrBottom = GCPtrTop - 31;
471 VBOXSTRICTRC rcStrict;
472
473 /*
474 * The docs are a bit hard to comprehend here, but it looks like we wrap
475 * around in real mode as long as none of the individual "pusha" crosses the
476 * end of the stack segment. In protected mode we check the whole access
477 * in one go. For efficiency, only do the word-by-word thing if we're in
478 * danger of wrapping around.
479 */
480 /** @todo do pusha boundary / wrap-around checks. */
481 if (RT_UNLIKELY( GCPtrBottom > GCPtrTop
482 && IEM_IS_REAL_OR_V86_MODE(pVCpu) ) )
483 {
484 /* word-by-word */
485 RTUINT64U TmpRsp;
486 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
487 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.eax, &TmpRsp);
488 if (rcStrict == VINF_SUCCESS)
489 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ecx, &TmpRsp);
490 if (rcStrict == VINF_SUCCESS)
491 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edx, &TmpRsp);
492 if (rcStrict == VINF_SUCCESS)
493 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebx, &TmpRsp);
494 if (rcStrict == VINF_SUCCESS)
495 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esp, &TmpRsp);
496 if (rcStrict == VINF_SUCCESS)
497 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.ebp, &TmpRsp);
498 if (rcStrict == VINF_SUCCESS)
499 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.esi, &TmpRsp);
500 if (rcStrict == VINF_SUCCESS)
501 rcStrict = iemMemStackPushU32Ex(pVCpu, pVCpu->cpum.GstCtx.edi, &TmpRsp);
502 if (rcStrict == VINF_SUCCESS)
503 {
504 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
505 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
506 }
507 }
508 else
509 {
510 GCPtrBottom--;
511 uint32_t *pa32Mem;
512 rcStrict = iemMemMap(pVCpu, (void **)&pa32Mem, 32, X86_SREG_SS, GCPtrBottom, IEM_ACCESS_STACK_W);
513 if (rcStrict == VINF_SUCCESS)
514 {
515 pa32Mem[7 - X86_GREG_xDI] = pVCpu->cpum.GstCtx.edi;
516 pa32Mem[7 - X86_GREG_xSI] = pVCpu->cpum.GstCtx.esi;
517 pa32Mem[7 - X86_GREG_xBP] = pVCpu->cpum.GstCtx.ebp;
518 pa32Mem[7 - X86_GREG_xSP] = pVCpu->cpum.GstCtx.esp;
519 pa32Mem[7 - X86_GREG_xBX] = pVCpu->cpum.GstCtx.ebx;
520 pa32Mem[7 - X86_GREG_xDX] = pVCpu->cpum.GstCtx.edx;
521 pa32Mem[7 - X86_GREG_xCX] = pVCpu->cpum.GstCtx.ecx;
522 pa32Mem[7 - X86_GREG_xAX] = pVCpu->cpum.GstCtx.eax;
523 rcStrict = iemMemCommitAndUnmap(pVCpu, pa32Mem, IEM_ACCESS_STACK_W);
524 if (rcStrict == VINF_SUCCESS)
525 {
526 iemRegSubFromRsp(pVCpu, 32);
527 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
528 }
529 }
530 }
531 return rcStrict;
532}
533
534
535/**
536 * Implements pushf.
537 *
538 *
539 * @param enmEffOpSize The effective operand size.
540 */
541IEM_CIMPL_DEF_1(iemCImpl_pushf, IEMMODE, enmEffOpSize)
542{
543 VBOXSTRICTRC rcStrict;
544
545 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_PUSHF))
546 {
547 Log2(("pushf: Guest intercept -> #VMEXIT\n"));
548 IEM_SVM_UPDATE_NRIP(pVCpu);
549 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_PUSHF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
550 }
551
552 /*
553 * If we're in V8086 mode some care is required (which is why we're in
554 * doing this in a C implementation).
555 */
556 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
557 if ( (fEfl & X86_EFL_VM)
558 && X86_EFL_GET_IOPL(fEfl) != 3 )
559 {
560 Assert(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE);
561 if ( enmEffOpSize != IEMMODE_16BIT
562 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
563 return iemRaiseGeneralProtectionFault0(pVCpu);
564 fEfl &= ~X86_EFL_IF; /* (RF and VM are out of range) */
565 fEfl |= (fEfl & X86_EFL_VIF) >> (19 - 9);
566 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
567 }
568 else
569 {
570
571 /*
572 * Ok, clear RF and VM, adjust for ancient CPUs, and push the flags.
573 */
574 fEfl &= ~(X86_EFL_RF | X86_EFL_VM);
575
576 switch (enmEffOpSize)
577 {
578 case IEMMODE_16BIT:
579 AssertCompile(IEMTARGETCPU_8086 <= IEMTARGETCPU_186 && IEMTARGETCPU_V20 <= IEMTARGETCPU_186 && IEMTARGETCPU_286 > IEMTARGETCPU_186);
580 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_186)
581 fEfl |= UINT16_C(0xf000);
582 rcStrict = iemMemStackPushU16(pVCpu, (uint16_t)fEfl);
583 break;
584 case IEMMODE_32BIT:
585 rcStrict = iemMemStackPushU32(pVCpu, fEfl);
586 break;
587 case IEMMODE_64BIT:
588 rcStrict = iemMemStackPushU64(pVCpu, fEfl);
589 break;
590 IEM_NOT_REACHED_DEFAULT_CASE_RET();
591 }
592 }
593 if (rcStrict != VINF_SUCCESS)
594 return rcStrict;
595
596 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
597 return VINF_SUCCESS;
598}
599
600
601/**
602 * Implements popf.
603 *
604 * @param enmEffOpSize The effective operand size.
605 */
606IEM_CIMPL_DEF_1(iemCImpl_popf, IEMMODE, enmEffOpSize)
607{
608 uint32_t const fEflOld = IEMMISC_GET_EFL(pVCpu);
609 VBOXSTRICTRC rcStrict;
610 uint32_t fEflNew;
611
612 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_POPF))
613 {
614 Log2(("popf: Guest intercept -> #VMEXIT\n"));
615 IEM_SVM_UPDATE_NRIP(pVCpu);
616 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_POPF, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
617 }
618
619 /*
620 * V8086 is special as usual.
621 */
622 if (fEflOld & X86_EFL_VM)
623 {
624 /*
625 * Almost anything goes if IOPL is 3.
626 */
627 if (X86_EFL_GET_IOPL(fEflOld) == 3)
628 {
629 switch (enmEffOpSize)
630 {
631 case IEMMODE_16BIT:
632 {
633 uint16_t u16Value;
634 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
635 if (rcStrict != VINF_SUCCESS)
636 return rcStrict;
637 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
638 break;
639 }
640 case IEMMODE_32BIT:
641 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
642 if (rcStrict != VINF_SUCCESS)
643 return rcStrict;
644 break;
645 IEM_NOT_REACHED_DEFAULT_CASE_RET();
646 }
647
648 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
649 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
650 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
651 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
652 }
653 /*
654 * Interrupt flag virtualization with CR4.VME=1.
655 */
656 else if ( enmEffOpSize == IEMMODE_16BIT
657 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
658 {
659 uint16_t u16Value;
660 RTUINT64U TmpRsp;
661 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
662 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
663 if (rcStrict != VINF_SUCCESS)
664 return rcStrict;
665
666 /** @todo Is the popf VME #GP(0) delivered after updating RSP+RIP
667 * or before? */
668 if ( ( (u16Value & X86_EFL_IF)
669 && (fEflOld & X86_EFL_VIP))
670 || (u16Value & X86_EFL_TF) )
671 return iemRaiseGeneralProtectionFault0(pVCpu);
672
673 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000) & ~X86_EFL_VIF);
674 fEflNew |= (fEflNew & X86_EFL_IF) << (19 - 9);
675 fEflNew &= X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF);
676 fEflNew |= ~(X86_EFL_POPF_BITS & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
677
678 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
679 }
680 else
681 return iemRaiseGeneralProtectionFault0(pVCpu);
682
683 }
684 /*
685 * Not in V8086 mode.
686 */
687 else
688 {
689 /* Pop the flags. */
690 switch (enmEffOpSize)
691 {
692 case IEMMODE_16BIT:
693 {
694 uint16_t u16Value;
695 rcStrict = iemMemStackPopU16(pVCpu, &u16Value);
696 if (rcStrict != VINF_SUCCESS)
697 return rcStrict;
698 fEflNew = u16Value | (fEflOld & UINT32_C(0xffff0000));
699
700 /*
701 * Ancient CPU adjustments:
702 * - 8086, 80186, V20/30:
703 * Fixed bits 15:12 bits are not kept correctly internally, mostly for
704 * practical reasons (masking below). We add them when pushing flags.
705 * - 80286:
706 * The NT and IOPL flags cannot be popped from real mode and are
707 * therefore always zero (since a 286 can never exit from PM and
708 * their initial value is zero). This changed on a 386 and can
709 * therefore be used to detect 286 or 386 CPU in real mode.
710 */
711 if ( IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286
712 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
713 fEflNew &= ~(X86_EFL_NT | X86_EFL_IOPL);
714 break;
715 }
716 case IEMMODE_32BIT:
717 rcStrict = iemMemStackPopU32(pVCpu, &fEflNew);
718 if (rcStrict != VINF_SUCCESS)
719 return rcStrict;
720 break;
721 case IEMMODE_64BIT:
722 {
723 uint64_t u64Value;
724 rcStrict = iemMemStackPopU64(pVCpu, &u64Value);
725 if (rcStrict != VINF_SUCCESS)
726 return rcStrict;
727 fEflNew = u64Value; /** @todo testcase: Check exactly what happens if high bits are set. */
728 break;
729 }
730 IEM_NOT_REACHED_DEFAULT_CASE_RET();
731 }
732
733 /* Merge them with the current flags. */
734 const uint32_t fPopfBits = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386
735 ? X86_EFL_POPF_BITS : X86_EFL_POPF_BITS_386;
736 if ( (fEflNew & (X86_EFL_IOPL | X86_EFL_IF)) == (fEflOld & (X86_EFL_IOPL | X86_EFL_IF))
737 || pVCpu->iem.s.uCpl == 0)
738 {
739 fEflNew &= fPopfBits;
740 fEflNew |= ~fPopfBits & fEflOld;
741 }
742 else if (pVCpu->iem.s.uCpl <= X86_EFL_GET_IOPL(fEflOld))
743 {
744 fEflNew &= fPopfBits & ~(X86_EFL_IOPL);
745 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL)) & fEflOld;
746 }
747 else
748 {
749 fEflNew &= fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF);
750 fEflNew |= ~(fPopfBits & ~(X86_EFL_IOPL | X86_EFL_IF)) & fEflOld;
751 }
752 }
753
754 /*
755 * Commit the flags.
756 */
757 Assert(fEflNew & RT_BIT_32(1));
758 IEMMISC_SET_EFL(pVCpu, fEflNew);
759 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
760
761 return VINF_SUCCESS;
762}
763
764
765/**
766 * Implements an indirect call.
767 *
768 * @param uNewPC The new program counter (RIP) value (loaded from the
769 * operand).
770 * @param enmEffOpSize The effective operand size.
771 */
772IEM_CIMPL_DEF_1(iemCImpl_call_16, uint16_t, uNewPC)
773{
774 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
775 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
776 return iemRaiseGeneralProtectionFault0(pVCpu);
777
778 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
779 if (rcStrict != VINF_SUCCESS)
780 return rcStrict;
781
782 pVCpu->cpum.GstCtx.rip = uNewPC;
783 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
784
785#ifndef IEM_WITH_CODE_TLB
786 /* Flush the prefetch buffer. */
787 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
788#endif
789 return VINF_SUCCESS;
790}
791
792
793/**
794 * Implements a 16-bit relative call.
795 *
796 * @param offDisp The displacment offset.
797 */
798IEM_CIMPL_DEF_1(iemCImpl_call_rel_16, int16_t, offDisp)
799{
800 uint16_t uOldPC = pVCpu->cpum.GstCtx.ip + cbInstr;
801 uint16_t uNewPC = uOldPC + offDisp;
802 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
803 return iemRaiseGeneralProtectionFault0(pVCpu);
804
805 VBOXSTRICTRC rcStrict = iemMemStackPushU16(pVCpu, uOldPC);
806 if (rcStrict != VINF_SUCCESS)
807 return rcStrict;
808
809 pVCpu->cpum.GstCtx.rip = uNewPC;
810 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
811
812#ifndef IEM_WITH_CODE_TLB
813 /* Flush the prefetch buffer. */
814 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
815#endif
816 return VINF_SUCCESS;
817}
818
819
820/**
821 * Implements a 32-bit indirect call.
822 *
823 * @param uNewPC The new program counter (RIP) value (loaded from the
824 * operand).
825 * @param enmEffOpSize The effective operand size.
826 */
827IEM_CIMPL_DEF_1(iemCImpl_call_32, uint32_t, uNewPC)
828{
829 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
830 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
831 return iemRaiseGeneralProtectionFault0(pVCpu);
832
833 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
834 if (rcStrict != VINF_SUCCESS)
835 return rcStrict;
836
837 pVCpu->cpum.GstCtx.rip = uNewPC;
838 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
839
840#ifndef IEM_WITH_CODE_TLB
841 /* Flush the prefetch buffer. */
842 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
843#endif
844 return VINF_SUCCESS;
845}
846
847
848/**
849 * Implements a 32-bit relative call.
850 *
851 * @param offDisp The displacment offset.
852 */
853IEM_CIMPL_DEF_1(iemCImpl_call_rel_32, int32_t, offDisp)
854{
855 uint32_t uOldPC = pVCpu->cpum.GstCtx.eip + cbInstr;
856 uint32_t uNewPC = uOldPC + offDisp;
857 if (uNewPC > pVCpu->cpum.GstCtx.cs.u32Limit)
858 return iemRaiseGeneralProtectionFault0(pVCpu);
859
860 VBOXSTRICTRC rcStrict = iemMemStackPushU32(pVCpu, uOldPC);
861 if (rcStrict != VINF_SUCCESS)
862 return rcStrict;
863
864 pVCpu->cpum.GstCtx.rip = uNewPC;
865 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
866
867#ifndef IEM_WITH_CODE_TLB
868 /* Flush the prefetch buffer. */
869 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
870#endif
871 return VINF_SUCCESS;
872}
873
874
875/**
876 * Implements a 64-bit indirect call.
877 *
878 * @param uNewPC The new program counter (RIP) value (loaded from the
879 * operand).
880 * @param enmEffOpSize The effective operand size.
881 */
882IEM_CIMPL_DEF_1(iemCImpl_call_64, uint64_t, uNewPC)
883{
884 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
885 if (!IEM_IS_CANONICAL(uNewPC))
886 return iemRaiseGeneralProtectionFault0(pVCpu);
887
888 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
889 if (rcStrict != VINF_SUCCESS)
890 return rcStrict;
891
892 pVCpu->cpum.GstCtx.rip = uNewPC;
893 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
894
895#ifndef IEM_WITH_CODE_TLB
896 /* Flush the prefetch buffer. */
897 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
898#endif
899 return VINF_SUCCESS;
900}
901
902
903/**
904 * Implements a 64-bit relative call.
905 *
906 * @param offDisp The displacment offset.
907 */
908IEM_CIMPL_DEF_1(iemCImpl_call_rel_64, int64_t, offDisp)
909{
910 uint64_t uOldPC = pVCpu->cpum.GstCtx.rip + cbInstr;
911 uint64_t uNewPC = uOldPC + offDisp;
912 if (!IEM_IS_CANONICAL(uNewPC))
913 return iemRaiseNotCanonical(pVCpu);
914
915 VBOXSTRICTRC rcStrict = iemMemStackPushU64(pVCpu, uOldPC);
916 if (rcStrict != VINF_SUCCESS)
917 return rcStrict;
918
919 pVCpu->cpum.GstCtx.rip = uNewPC;
920 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
921
922#ifndef IEM_WITH_CODE_TLB
923 /* Flush the prefetch buffer. */
924 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
925#endif
926
927 return VINF_SUCCESS;
928}
929
930
931/**
932 * Implements far jumps and calls thru task segments (TSS).
933 *
934 * @param uSel The selector.
935 * @param enmBranch The kind of branching we're performing.
936 * @param enmEffOpSize The effective operand size.
937 * @param pDesc The descriptor corresponding to @a uSel. The type is
938 * task gate.
939 */
940IEM_CIMPL_DEF_4(iemCImpl_BranchTaskSegment, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
941{
942#ifndef IEM_IMPLEMENTS_TASKSWITCH
943 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
944#else
945 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
946 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL
947 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL);
948 RT_NOREF_PV(enmEffOpSize);
949 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
950
951 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
952 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
953 {
954 Log(("BranchTaskSegment invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
955 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
956 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
957 }
958
959 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
960 * far calls (see iemCImpl_callf). Most likely in both cases it should be
961 * checked here, need testcases. */
962 if (!pDesc->Legacy.Gen.u1Present)
963 {
964 Log(("BranchTaskSegment TSS not present uSel=%04x -> #NP\n", uSel));
965 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
966 }
967
968 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
969 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
970 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSel, pDesc);
971#endif
972}
973
974
975/**
976 * Implements far jumps and calls thru task gates.
977 *
978 * @param uSel The selector.
979 * @param enmBranch The kind of branching we're performing.
980 * @param enmEffOpSize The effective operand size.
981 * @param pDesc The descriptor corresponding to @a uSel. The type is
982 * task gate.
983 */
984IEM_CIMPL_DEF_4(iemCImpl_BranchTaskGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
985{
986#ifndef IEM_IMPLEMENTS_TASKSWITCH
987 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
988#else
989 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
990 RT_NOREF_PV(enmEffOpSize);
991 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
992
993 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
994 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
995 {
996 Log(("BranchTaskGate invalid priv. uSel=%04x TSS DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
997 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
998 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
999 }
1000
1001 /** @todo This is checked earlier for far jumps (see iemCImpl_FarJmp) but not
1002 * far calls (see iemCImpl_callf). Most likely in both cases it should be
1003 * checked here, need testcases. */
1004 if (!pDesc->Legacy.Gen.u1Present)
1005 {
1006 Log(("BranchTaskSegment segment not present uSel=%04x -> #NP\n", uSel));
1007 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1008 }
1009
1010 /*
1011 * Fetch the new TSS descriptor from the GDT.
1012 */
1013 RTSEL uSelTss = pDesc->Legacy.Gate.u16Sel;
1014 if (uSelTss & X86_SEL_LDT)
1015 {
1016 Log(("BranchTaskGate TSS is in LDT. uSel=%04x uSelTss=%04x -> #GP\n", uSel, uSelTss));
1017 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1018 }
1019
1020 IEMSELDESC TssDesc;
1021 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelTss, X86_XCPT_GP);
1022 if (rcStrict != VINF_SUCCESS)
1023 return rcStrict;
1024
1025 if (TssDesc.Legacy.Gate.u4Type & X86_SEL_TYPE_SYS_TSS_BUSY_MASK)
1026 {
1027 Log(("BranchTaskGate TSS is busy. uSel=%04x uSelTss=%04x DescType=%#x -> #GP\n", uSel, uSelTss,
1028 TssDesc.Legacy.Gate.u4Type));
1029 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel & X86_SEL_MASK_OFF_RPL);
1030 }
1031
1032 if (!TssDesc.Legacy.Gate.u1Present)
1033 {
1034 Log(("BranchTaskGate TSS is not present. uSel=%04x uSelTss=%04x -> #NP\n", uSel, uSelTss));
1035 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelTss & X86_SEL_MASK_OFF_RPL);
1036 }
1037
1038 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
1039 return iemTaskSwitch(pVCpu, enmBranch == IEMBRANCH_JUMP ? IEMTASKSWITCH_JUMP : IEMTASKSWITCH_CALL,
1040 uNextEip, 0 /* fFlags */, 0 /* uErr */, 0 /* uCr2 */, uSelTss, &TssDesc);
1041#endif
1042}
1043
1044
1045/**
1046 * Implements far jumps and calls thru call gates.
1047 *
1048 * @param uSel The selector.
1049 * @param enmBranch The kind of branching we're performing.
1050 * @param enmEffOpSize The effective operand size.
1051 * @param pDesc The descriptor corresponding to @a uSel. The type is
1052 * call gate.
1053 */
1054IEM_CIMPL_DEF_4(iemCImpl_BranchCallGate, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1055{
1056#define IEM_IMPLEMENTS_CALLGATE
1057#ifndef IEM_IMPLEMENTS_CALLGATE
1058 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
1059#else
1060 RT_NOREF_PV(enmEffOpSize);
1061 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1062
1063 /* NB: Far jumps can only do intra-privilege transfers. Far calls support
1064 * inter-privilege calls and are much more complex.
1065 *
1066 * NB: 64-bit call gate has the same type as a 32-bit call gate! If
1067 * EFER.LMA=1, the gate must be 64-bit. Conversely if EFER.LMA=0, the gate
1068 * must be 16-bit or 32-bit.
1069 */
1070 /** @todo: effective operand size is probably irrelevant here, only the
1071 * call gate bitness matters??
1072 */
1073 VBOXSTRICTRC rcStrict;
1074 RTPTRUNION uPtrRet;
1075 uint64_t uNewRsp;
1076 uint64_t uNewRip;
1077 uint64_t u64Base;
1078 uint32_t cbLimit;
1079 RTSEL uNewCS;
1080 IEMSELDESC DescCS;
1081
1082 AssertCompile(X86_SEL_TYPE_SYS_386_CALL_GATE == AMD64_SEL_TYPE_SYS_CALL_GATE);
1083 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1084 Assert( pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE
1085 || pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE);
1086
1087 /* Determine the new instruction pointer from the gate descriptor. */
1088 uNewRip = pDesc->Legacy.Gate.u16OffsetLow
1089 | ((uint32_t)pDesc->Legacy.Gate.u16OffsetHigh << 16)
1090 | ((uint64_t)pDesc->Long.Gate.u32OffsetTop << 32);
1091
1092 /* Perform DPL checks on the gate descriptor. */
1093 if ( pDesc->Legacy.Gate.u2Dpl < pVCpu->iem.s.uCpl
1094 || pDesc->Legacy.Gate.u2Dpl < (uSel & X86_SEL_RPL))
1095 {
1096 Log(("BranchCallGate invalid priv. uSel=%04x Gate DPL=%d CPL=%u Sel RPL=%u -> #GP\n", uSel, pDesc->Legacy.Gate.u2Dpl,
1097 pVCpu->iem.s.uCpl, (uSel & X86_SEL_RPL)));
1098 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1099 }
1100
1101 /** @todo does this catch NULL selectors, too? */
1102 if (!pDesc->Legacy.Gen.u1Present)
1103 {
1104 Log(("BranchCallGate Gate not present uSel=%04x -> #NP\n", uSel));
1105 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1106 }
1107
1108 /*
1109 * Fetch the target CS descriptor from the GDT or LDT.
1110 */
1111 uNewCS = pDesc->Legacy.Gate.u16Sel;
1112 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCS, X86_XCPT_GP);
1113 if (rcStrict != VINF_SUCCESS)
1114 return rcStrict;
1115
1116 /* Target CS must be a code selector. */
1117 if ( !DescCS.Legacy.Gen.u1DescType
1118 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
1119 {
1120 Log(("BranchCallGate %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
1121 uNewCS, uNewRip, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
1122 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1123 }
1124
1125 /* Privilege checks on target CS. */
1126 if (enmBranch == IEMBRANCH_JUMP)
1127 {
1128 if (DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1129 {
1130 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1131 {
1132 Log(("BranchCallGate jump (conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1133 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1134 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1135 }
1136 }
1137 else
1138 {
1139 if (DescCS.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
1140 {
1141 Log(("BranchCallGate jump (non-conforming) bad DPL uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1142 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1143 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1144 }
1145 }
1146 }
1147 else
1148 {
1149 Assert(enmBranch == IEMBRANCH_CALL);
1150 if (DescCS.Legacy.Gen.u2Dpl > pVCpu->iem.s.uCpl)
1151 {
1152 Log(("BranchCallGate call invalid priv. uNewCS=%04x Gate DPL=%d CPL=%u -> #GP\n",
1153 uNewCS, DescCS.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1154 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS & X86_SEL_MASK_OFF_RPL);
1155 }
1156 }
1157
1158 /* Additional long mode checks. */
1159 if (IEM_IS_LONG_MODE(pVCpu))
1160 {
1161 if (!DescCS.Legacy.Gen.u1Long)
1162 {
1163 Log(("BranchCallGate uNewCS %04x -> not a 64-bit code segment.\n", uNewCS));
1164 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1165 }
1166
1167 /* L vs D. */
1168 if ( DescCS.Legacy.Gen.u1Long
1169 && DescCS.Legacy.Gen.u1DefBig)
1170 {
1171 Log(("BranchCallGate uNewCS %04x -> both L and D are set.\n", uNewCS));
1172 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCS);
1173 }
1174 }
1175
1176 if (!DescCS.Legacy.Gate.u1Present)
1177 {
1178 Log(("BranchCallGate target CS is not present. uSel=%04x uNewCS=%04x -> #NP(CS)\n", uSel, uNewCS));
1179 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCS);
1180 }
1181
1182 if (enmBranch == IEMBRANCH_JUMP)
1183 {
1184 /** @todo: This is very similar to regular far jumps; merge! */
1185 /* Jumps are fairly simple... */
1186
1187 /* Chop the high bits off if 16-bit gate (Intel says so). */
1188 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1189 uNewRip = (uint16_t)uNewRip;
1190
1191 /* Limit check for non-long segments. */
1192 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1193 if (DescCS.Legacy.Gen.u1Long)
1194 u64Base = 0;
1195 else
1196 {
1197 if (uNewRip > cbLimit)
1198 {
1199 Log(("BranchCallGate jump %04x:%08RX64 -> out of bounds (%#x) -> #GP(0)\n", uNewCS, uNewRip, cbLimit));
1200 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1201 }
1202 u64Base = X86DESC_BASE(&DescCS.Legacy);
1203 }
1204
1205 /* Canonical address check. */
1206 if (!IEM_IS_CANONICAL(uNewRip))
1207 {
1208 Log(("BranchCallGate jump %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1209 return iemRaiseNotCanonical(pVCpu);
1210 }
1211
1212 /*
1213 * Ok, everything checked out fine. Now set the accessed bit before
1214 * committing the result into CS, CSHID and RIP.
1215 */
1216 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1217 {
1218 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1219 if (rcStrict != VINF_SUCCESS)
1220 return rcStrict;
1221 /** @todo check what VT-x and AMD-V does. */
1222 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1223 }
1224
1225 /* commit */
1226 pVCpu->cpum.GstCtx.rip = uNewRip;
1227 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1228 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1229 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1230 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1231 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1232 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1233 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1234 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1235 }
1236 else
1237 {
1238 Assert(enmBranch == IEMBRANCH_CALL);
1239 /* Calls are much more complicated. */
1240
1241 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF) && (DescCS.Legacy.Gen.u2Dpl < pVCpu->iem.s.uCpl))
1242 {
1243 uint16_t offNewStack; /* Offset of new stack in TSS. */
1244 uint16_t cbNewStack; /* Number of bytes the stack information takes up in TSS. */
1245 uint8_t uNewCSDpl;
1246 uint8_t cbWords;
1247 RTSEL uNewSS;
1248 RTSEL uOldSS;
1249 uint64_t uOldRsp;
1250 IEMSELDESC DescSS;
1251 RTPTRUNION uPtrTSS;
1252 RTGCPTR GCPtrTSS;
1253 RTPTRUNION uPtrParmWds;
1254 RTGCPTR GCPtrParmWds;
1255
1256 /* More privilege. This is the fun part. */
1257 Assert(!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)); /* Filtered out above. */
1258
1259 /*
1260 * Determine new SS:rSP from the TSS.
1261 */
1262 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType);
1263
1264 /* Figure out where the new stack pointer is stored in the TSS. */
1265 uNewCSDpl = DescCS.Legacy.Gen.u2Dpl;
1266 if (!IEM_IS_LONG_MODE(pVCpu))
1267 {
1268 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1269 {
1270 offNewStack = RT_UOFFSETOF(X86TSS32, esp0) + uNewCSDpl * 8;
1271 cbNewStack = RT_SIZEOFMEMB(X86TSS32, esp0) + RT_SIZEOFMEMB(X86TSS32, ss0);
1272 }
1273 else
1274 {
1275 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1276 offNewStack = RT_UOFFSETOF(X86TSS16, sp0) + uNewCSDpl * 4;
1277 cbNewStack = RT_SIZEOFMEMB(X86TSS16, sp0) + RT_SIZEOFMEMB(X86TSS16, ss0);
1278 }
1279 }
1280 else
1281 {
1282 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1283 offNewStack = RT_UOFFSETOF(X86TSS64, rsp0) + uNewCSDpl * RT_SIZEOFMEMB(X86TSS64, rsp0);
1284 cbNewStack = RT_SIZEOFMEMB(X86TSS64, rsp0);
1285 }
1286
1287 /* Check against TSS limit. */
1288 if ((uint16_t)(offNewStack + cbNewStack - 1) > pVCpu->cpum.GstCtx.tr.u32Limit)
1289 {
1290 Log(("BranchCallGate inner stack past TSS limit - %u > %u -> #TS(TSS)\n", offNewStack + cbNewStack - 1, pVCpu->cpum.GstCtx.tr.u32Limit));
1291 return iemRaiseTaskSwitchFaultBySelector(pVCpu, pVCpu->cpum.GstCtx.tr.Sel);
1292 }
1293
1294 GCPtrTSS = pVCpu->cpum.GstCtx.tr.u64Base + offNewStack;
1295 rcStrict = iemMemMap(pVCpu, &uPtrTSS.pv, cbNewStack, UINT8_MAX, GCPtrTSS, IEM_ACCESS_SYS_R);
1296 if (rcStrict != VINF_SUCCESS)
1297 {
1298 Log(("BranchCallGate: TSS mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1299 return rcStrict;
1300 }
1301
1302 if (!IEM_IS_LONG_MODE(pVCpu))
1303 {
1304 if (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY)
1305 {
1306 uNewRsp = uPtrTSS.pu32[0];
1307 uNewSS = uPtrTSS.pu16[2];
1308 }
1309 else
1310 {
1311 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY);
1312 uNewRsp = uPtrTSS.pu16[0];
1313 uNewSS = uPtrTSS.pu16[1];
1314 }
1315 }
1316 else
1317 {
1318 Assert(pVCpu->cpum.GstCtx.tr.Attr.n.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY);
1319 /* SS will be a NULL selector, but that's valid. */
1320 uNewRsp = uPtrTSS.pu64[0];
1321 uNewSS = uNewCSDpl;
1322 }
1323
1324 /* Done with the TSS now. */
1325 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrTSS.pv, IEM_ACCESS_SYS_R);
1326 if (rcStrict != VINF_SUCCESS)
1327 {
1328 Log(("BranchCallGate: TSS unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1329 return rcStrict;
1330 }
1331
1332 /* Only used outside of long mode. */
1333 cbWords = pDesc->Legacy.Gate.u5ParmCount;
1334
1335 /* If EFER.LMA is 0, there's extra work to do. */
1336 if (!IEM_IS_LONG_MODE(pVCpu))
1337 {
1338 if ((uNewSS & X86_SEL_MASK_OFF_RPL) == 0)
1339 {
1340 Log(("BranchCallGate new SS NULL -> #TS(NewSS)\n"));
1341 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1342 }
1343
1344 /* Grab the new SS descriptor. */
1345 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1346 if (rcStrict != VINF_SUCCESS)
1347 return rcStrict;
1348
1349 /* Ensure that CS.DPL == SS.RPL == SS.DPL. */
1350 if ( (DescCS.Legacy.Gen.u2Dpl != (uNewSS & X86_SEL_RPL))
1351 || (DescCS.Legacy.Gen.u2Dpl != DescSS.Legacy.Gen.u2Dpl))
1352 {
1353 Log(("BranchCallGate call bad RPL/DPL uNewSS=%04x SS DPL=%d CS DPL=%u -> #TS(NewSS)\n",
1354 uNewSS, DescCS.Legacy.Gen.u2Dpl, DescCS.Legacy.Gen.u2Dpl));
1355 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1356 }
1357
1358 /* Ensure new SS is a writable data segment. */
1359 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
1360 {
1361 Log(("BranchCallGate call new SS -> not a writable data selector (u4Type=%#x)\n", DescSS.Legacy.Gen.u4Type));
1362 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uNewSS);
1363 }
1364
1365 if (!DescSS.Legacy.Gen.u1Present)
1366 {
1367 Log(("BranchCallGate New stack not present uSel=%04x -> #SS(NewSS)\n", uNewSS));
1368 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
1369 }
1370 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1371 cbNewStack = (uint16_t)sizeof(uint32_t) * (4 + cbWords);
1372 else
1373 cbNewStack = (uint16_t)sizeof(uint16_t) * (4 + cbWords);
1374 }
1375 else
1376 {
1377 /* Just grab the new (NULL) SS descriptor. */
1378 /** @todo testcase: Check whether the zero GDT entry is actually loaded here
1379 * like we do... */
1380 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_SS);
1381 if (rcStrict != VINF_SUCCESS)
1382 return rcStrict;
1383
1384 cbNewStack = sizeof(uint64_t) * 4;
1385 }
1386
1387 /** @todo: According to Intel, new stack is checked for enough space first,
1388 * then switched. According to AMD, the stack is switched first and
1389 * then pushes might fault!
1390 * NB: OS/2 Warp 3/4 actively relies on the fact that possible
1391 * incoming stack #PF happens before actual stack switch. AMD is
1392 * either lying or implicitly assumes that new state is committed
1393 * only if and when an instruction doesn't fault.
1394 */
1395
1396 /** @todo: According to AMD, CS is loaded first, then SS.
1397 * According to Intel, it's the other way around!?
1398 */
1399
1400 /** @todo: Intel and AMD disagree on when exactly the CPL changes! */
1401
1402 /* Set the accessed bit before committing new SS. */
1403 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1404 {
1405 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
1406 if (rcStrict != VINF_SUCCESS)
1407 return rcStrict;
1408 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1409 }
1410
1411 /* Remember the old SS:rSP and their linear address. */
1412 uOldSS = pVCpu->cpum.GstCtx.ss.Sel;
1413 uOldRsp = pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig ? pVCpu->cpum.GstCtx.rsp : pVCpu->cpum.GstCtx.sp;
1414
1415 GCPtrParmWds = pVCpu->cpum.GstCtx.ss.u64Base + uOldRsp;
1416
1417 /* HACK ALERT! Probe if the write to the new stack will succeed. May #SS(NewSS)
1418 or #PF, the former is not implemented in this workaround. */
1419 /** @todo Proper fix callgate target stack exceptions. */
1420 /** @todo testcase: Cover callgates with partially or fully inaccessible
1421 * target stacks. */
1422 void *pvNewFrame;
1423 RTGCPTR GCPtrNewStack = X86DESC_BASE(&DescSS.Legacy) + uNewRsp - cbNewStack;
1424 rcStrict = iemMemMap(pVCpu, &pvNewFrame, cbNewStack, UINT8_MAX, GCPtrNewStack, IEM_ACCESS_SYS_RW);
1425 if (rcStrict != VINF_SUCCESS)
1426 {
1427 Log(("BranchCallGate: Incoming stack (%04x:%08RX64) not accessible, rc=%Rrc\n", uNewSS, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
1428 return rcStrict;
1429 }
1430 rcStrict = iemMemCommitAndUnmap(pVCpu, pvNewFrame, IEM_ACCESS_SYS_RW);
1431 if (rcStrict != VINF_SUCCESS)
1432 {
1433 Log(("BranchCallGate: New stack probe unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1434 return rcStrict;
1435 }
1436
1437 /* Commit new SS:rSP. */
1438 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
1439 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
1440 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
1441 pVCpu->cpum.GstCtx.ss.u32Limit = X86DESC_LIMIT_G(&DescSS.Legacy);
1442 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
1443 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1444 pVCpu->cpum.GstCtx.rsp = uNewRsp;
1445 pVCpu->iem.s.uCpl = uNewCSDpl;
1446 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
1447 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
1448
1449 /* At this point the stack access must not fail because new state was already committed. */
1450 /** @todo this can still fail due to SS.LIMIT not check. */
1451 rcStrict = iemMemStackPushBeginSpecial(pVCpu, cbNewStack,
1452 &uPtrRet.pv, &uNewRsp);
1453 AssertMsgReturn(rcStrict == VINF_SUCCESS, ("BranchCallGate: New stack mapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)),
1454 VERR_INTERNAL_ERROR_5);
1455
1456 if (!IEM_IS_LONG_MODE(pVCpu))
1457 {
1458 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1459 {
1460 /* Push the old CS:rIP. */
1461 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1462 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1463
1464 if (cbWords)
1465 {
1466 /* Map the relevant chunk of the old stack. */
1467 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 4, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1468 if (rcStrict != VINF_SUCCESS)
1469 {
1470 Log(("BranchCallGate: Old stack mapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1471 return rcStrict;
1472 }
1473
1474 /* Copy the parameter (d)words. */
1475 for (int i = 0; i < cbWords; ++i)
1476 uPtrRet.pu32[2 + i] = uPtrParmWds.pu32[i];
1477
1478 /* Unmap the old stack. */
1479 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1480 if (rcStrict != VINF_SUCCESS)
1481 {
1482 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1483 return rcStrict;
1484 }
1485 }
1486
1487 /* Push the old SS:rSP. */
1488 uPtrRet.pu32[2 + cbWords + 0] = uOldRsp;
1489 uPtrRet.pu32[2 + cbWords + 1] = uOldSS;
1490 }
1491 else
1492 {
1493 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1494
1495 /* Push the old CS:rIP. */
1496 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1497 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1498
1499 if (cbWords)
1500 {
1501 /* Map the relevant chunk of the old stack. */
1502 rcStrict = iemMemMap(pVCpu, &uPtrParmWds.pv, cbWords * 2, UINT8_MAX, GCPtrParmWds, IEM_ACCESS_DATA_R);
1503 if (rcStrict != VINF_SUCCESS)
1504 {
1505 Log(("BranchCallGate: Old stack mapping (16-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1506 return rcStrict;
1507 }
1508
1509 /* Copy the parameter words. */
1510 for (int i = 0; i < cbWords; ++i)
1511 uPtrRet.pu16[2 + i] = uPtrParmWds.pu16[i];
1512
1513 /* Unmap the old stack. */
1514 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtrParmWds.pv, IEM_ACCESS_DATA_R);
1515 if (rcStrict != VINF_SUCCESS)
1516 {
1517 Log(("BranchCallGate: Old stack unmapping (32-bit) failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1518 return rcStrict;
1519 }
1520 }
1521
1522 /* Push the old SS:rSP. */
1523 uPtrRet.pu16[2 + cbWords + 0] = uOldRsp;
1524 uPtrRet.pu16[2 + cbWords + 1] = uOldSS;
1525 }
1526 }
1527 else
1528 {
1529 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1530
1531 /* For 64-bit gates, no parameters are copied. Just push old SS:rSP and CS:rIP. */
1532 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1533 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1534 uPtrRet.pu64[2] = uOldRsp;
1535 uPtrRet.pu64[3] = uOldSS; /** @todo Testcase: What is written to the high words when pushing SS? */
1536 }
1537
1538 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1539 if (rcStrict != VINF_SUCCESS)
1540 {
1541 Log(("BranchCallGate: New stack unmapping failed (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
1542 return rcStrict;
1543 }
1544
1545 /* Chop the high bits off if 16-bit gate (Intel says so). */
1546 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1547 uNewRip = (uint16_t)uNewRip;
1548
1549 /* Limit / canonical check. */
1550 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1551 if (!IEM_IS_LONG_MODE(pVCpu))
1552 {
1553 if (uNewRip > cbLimit)
1554 {
1555 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1556 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1557 }
1558 u64Base = X86DESC_BASE(&DescCS.Legacy);
1559 }
1560 else
1561 {
1562 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1563 if (!IEM_IS_CANONICAL(uNewRip))
1564 {
1565 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1566 return iemRaiseNotCanonical(pVCpu);
1567 }
1568 u64Base = 0;
1569 }
1570
1571 /*
1572 * Now set the accessed bit before
1573 * writing the return address to the stack and committing the result into
1574 * CS, CSHID and RIP.
1575 */
1576 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1577 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1578 {
1579 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1580 if (rcStrict != VINF_SUCCESS)
1581 return rcStrict;
1582 /** @todo check what VT-x and AMD-V does. */
1583 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1584 }
1585
1586 /* Commit new CS:rIP. */
1587 pVCpu->cpum.GstCtx.rip = uNewRip;
1588 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1589 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1590 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1591 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1592 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1593 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1594 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1595 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1596 }
1597 else
1598 {
1599 /* Same privilege. */
1600 /** @todo: This is very similar to regular far calls; merge! */
1601
1602 /* Check stack first - may #SS(0). */
1603 /** @todo check how gate size affects pushing of CS! Does callf 16:32 in
1604 * 16-bit code cause a two or four byte CS to be pushed? */
1605 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
1606 IEM_IS_LONG_MODE(pVCpu) ? 8+8
1607 : pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE ? 4+4 : 2+2,
1608 &uPtrRet.pv, &uNewRsp);
1609 if (rcStrict != VINF_SUCCESS)
1610 return rcStrict;
1611
1612 /* Chop the high bits off if 16-bit gate (Intel says so). */
1613 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE)
1614 uNewRip = (uint16_t)uNewRip;
1615
1616 /* Limit / canonical check. */
1617 cbLimit = X86DESC_LIMIT_G(&DescCS.Legacy);
1618 if (!IEM_IS_LONG_MODE(pVCpu))
1619 {
1620 if (uNewRip > cbLimit)
1621 {
1622 Log(("BranchCallGate %04x:%08RX64 -> out of bounds (%#x)\n", uNewCS, uNewRip, cbLimit));
1623 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, 0);
1624 }
1625 u64Base = X86DESC_BASE(&DescCS.Legacy);
1626 }
1627 else
1628 {
1629 if (!IEM_IS_CANONICAL(uNewRip))
1630 {
1631 Log(("BranchCallGate call %04x:%016RX64 - not canonical -> #GP\n", uNewCS, uNewRip));
1632 return iemRaiseNotCanonical(pVCpu);
1633 }
1634 u64Base = 0;
1635 }
1636
1637 /*
1638 * Now set the accessed bit before
1639 * writing the return address to the stack and committing the result into
1640 * CS, CSHID and RIP.
1641 */
1642 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
1643 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1644 {
1645 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCS);
1646 if (rcStrict != VINF_SUCCESS)
1647 return rcStrict;
1648 /** @todo check what VT-x and AMD-V does. */
1649 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1650 }
1651
1652 /* stack */
1653 if (!IEM_IS_LONG_MODE(pVCpu))
1654 {
1655 if (pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_386_CALL_GATE)
1656 {
1657 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1658 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when pushing CS? */
1659 }
1660 else
1661 {
1662 Assert(pDesc->Legacy.Gate.u4Type == X86_SEL_TYPE_SYS_286_CALL_GATE);
1663 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1664 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1665 }
1666 }
1667 else
1668 {
1669 Assert(pDesc->Legacy.Gate.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE);
1670 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
1671 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when pushing CS? */
1672 }
1673
1674 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1675 if (rcStrict != VINF_SUCCESS)
1676 return rcStrict;
1677
1678 /* commit */
1679 pVCpu->cpum.GstCtx.rip = uNewRip;
1680 pVCpu->cpum.GstCtx.cs.Sel = uNewCS & X86_SEL_MASK_OFF_RPL;
1681 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
1682 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1683 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1684 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
1685 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1686 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1687 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1688 }
1689 }
1690 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1691
1692 /* Flush the prefetch buffer. */
1693# ifdef IEM_WITH_CODE_TLB
1694 pVCpu->iem.s.pbInstrBuf = NULL;
1695# else
1696 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1697# endif
1698 return VINF_SUCCESS;
1699#endif
1700}
1701
1702
1703/**
1704 * Implements far jumps and calls thru system selectors.
1705 *
1706 * @param uSel The selector.
1707 * @param enmBranch The kind of branching we're performing.
1708 * @param enmEffOpSize The effective operand size.
1709 * @param pDesc The descriptor corresponding to @a uSel.
1710 */
1711IEM_CIMPL_DEF_4(iemCImpl_BranchSysSel, uint16_t, uSel, IEMBRANCH, enmBranch, IEMMODE, enmEffOpSize, PIEMSELDESC, pDesc)
1712{
1713 Assert(enmBranch == IEMBRANCH_JUMP || enmBranch == IEMBRANCH_CALL);
1714 Assert((uSel & X86_SEL_MASK_OFF_RPL));
1715 IEM_CTX_IMPORT_RET(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
1716
1717 if (IEM_IS_LONG_MODE(pVCpu))
1718 switch (pDesc->Legacy.Gen.u4Type)
1719 {
1720 case AMD64_SEL_TYPE_SYS_CALL_GATE:
1721 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1722
1723 default:
1724 case AMD64_SEL_TYPE_SYS_LDT:
1725 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
1726 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
1727 case AMD64_SEL_TYPE_SYS_TRAP_GATE:
1728 case AMD64_SEL_TYPE_SYS_INT_GATE:
1729 Log(("branch %04x -> wrong sys selector (64-bit): %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1730 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1731 }
1732
1733 switch (pDesc->Legacy.Gen.u4Type)
1734 {
1735 case X86_SEL_TYPE_SYS_286_CALL_GATE:
1736 case X86_SEL_TYPE_SYS_386_CALL_GATE:
1737 return IEM_CIMPL_CALL_4(iemCImpl_BranchCallGate, uSel, enmBranch, enmEffOpSize, pDesc);
1738
1739 case X86_SEL_TYPE_SYS_TASK_GATE:
1740 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskGate, uSel, enmBranch, enmEffOpSize, pDesc);
1741
1742 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
1743 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
1744 return IEM_CIMPL_CALL_4(iemCImpl_BranchTaskSegment, uSel, enmBranch, enmEffOpSize, pDesc);
1745
1746 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
1747 Log(("branch %04x -> busy 286 TSS\n", uSel));
1748 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1749
1750 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
1751 Log(("branch %04x -> busy 386 TSS\n", uSel));
1752 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1753
1754 default:
1755 case X86_SEL_TYPE_SYS_LDT:
1756 case X86_SEL_TYPE_SYS_286_INT_GATE:
1757 case X86_SEL_TYPE_SYS_286_TRAP_GATE:
1758 case X86_SEL_TYPE_SYS_386_INT_GATE:
1759 case X86_SEL_TYPE_SYS_386_TRAP_GATE:
1760 Log(("branch %04x -> wrong sys selector: %d\n", uSel, pDesc->Legacy.Gen.u4Type));
1761 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1762 }
1763}
1764
1765
1766/**
1767 * Implements far jumps.
1768 *
1769 * @param uSel The selector.
1770 * @param offSeg The segment offset.
1771 * @param enmEffOpSize The effective operand size.
1772 */
1773IEM_CIMPL_DEF_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1774{
1775 NOREF(cbInstr);
1776 Assert(offSeg <= UINT32_MAX);
1777
1778 /*
1779 * Real mode and V8086 mode are easy. The only snag seems to be that
1780 * CS.limit doesn't change and the limit check is done against the current
1781 * limit.
1782 */
1783 /** @todo Robert Collins claims (The Segment Descriptor Cache, DDJ August
1784 * 1998) that up to and including the Intel 486, far control
1785 * transfers in real mode set default CS attributes (0x93) and also
1786 * set a 64K segment limit. Starting with the Pentium, the
1787 * attributes and limit are left alone but the access rights are
1788 * ignored. We only implement the Pentium+ behavior.
1789 * */
1790 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1791 {
1792 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1793 if (offSeg > pVCpu->cpum.GstCtx.cs.u32Limit)
1794 {
1795 Log(("iemCImpl_FarJmp: 16-bit limit\n"));
1796 return iemRaiseGeneralProtectionFault0(pVCpu);
1797 }
1798
1799 if (enmEffOpSize == IEMMODE_16BIT) /** @todo WRONG, must pass this. */
1800 pVCpu->cpum.GstCtx.rip = offSeg;
1801 else
1802 pVCpu->cpum.GstCtx.rip = offSeg & UINT16_MAX;
1803 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1804 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1805 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1806 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1807 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1808 return VINF_SUCCESS;
1809 }
1810
1811 /*
1812 * Protected mode. Need to parse the specified descriptor...
1813 */
1814 if (!(uSel & X86_SEL_MASK_OFF_RPL))
1815 {
1816 Log(("jmpf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
1817 return iemRaiseGeneralProtectionFault0(pVCpu);
1818 }
1819
1820 /* Fetch the descriptor. */
1821 IEMSELDESC Desc;
1822 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
1823 if (rcStrict != VINF_SUCCESS)
1824 return rcStrict;
1825
1826 /* Is it there? */
1827 if (!Desc.Legacy.Gen.u1Present) /** @todo this is probably checked too early. Testcase! */
1828 {
1829 Log(("jmpf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
1830 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
1831 }
1832
1833 /*
1834 * Deal with it according to its type. We do the standard code selectors
1835 * here and dispatch the system selectors to worker functions.
1836 */
1837 if (!Desc.Legacy.Gen.u1DescType)
1838 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_JUMP, enmEffOpSize, &Desc);
1839
1840 /* Only code segments. */
1841 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
1842 {
1843 Log(("jmpf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
1844 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1845 }
1846
1847 /* L vs D. */
1848 if ( Desc.Legacy.Gen.u1Long
1849 && Desc.Legacy.Gen.u1DefBig
1850 && IEM_IS_LONG_MODE(pVCpu))
1851 {
1852 Log(("jmpf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
1853 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1854 }
1855
1856 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
1857 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
1858 {
1859 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
1860 {
1861 Log(("jmpf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
1862 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1863 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1864 }
1865 }
1866 else
1867 {
1868 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
1869 {
1870 Log(("jmpf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
1871 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1872 }
1873 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
1874 {
1875 Log(("jmpf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
1876 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1877 }
1878 }
1879
1880 /* Chop the high bits if 16-bit (Intel says so). */
1881 if (enmEffOpSize == IEMMODE_16BIT)
1882 offSeg &= UINT16_MAX;
1883
1884 /* Limit check. (Should alternatively check for non-canonical addresses
1885 here, but that is ruled out by offSeg being 32-bit, right?) */
1886 uint64_t u64Base;
1887 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
1888 if (Desc.Legacy.Gen.u1Long)
1889 u64Base = 0;
1890 else
1891 {
1892 if (offSeg > cbLimit)
1893 {
1894 Log(("jmpf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
1895 /** @todo: Intel says this is #GP(0)! */
1896 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
1897 }
1898 u64Base = X86DESC_BASE(&Desc.Legacy);
1899 }
1900
1901 /*
1902 * Ok, everything checked out fine. Now set the accessed bit before
1903 * committing the result into CS, CSHID and RIP.
1904 */
1905 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1906 {
1907 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
1908 if (rcStrict != VINF_SUCCESS)
1909 return rcStrict;
1910 /** @todo check what VT-x and AMD-V does. */
1911 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1912 }
1913
1914 /* commit */
1915 pVCpu->cpum.GstCtx.rip = offSeg;
1916 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
1917 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl; /** @todo is this right for conforming segs? or in general? */
1918 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
1919 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1920 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
1921 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
1922 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
1923 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
1924 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1925 /** @todo check if the hidden bits are loaded correctly for 64-bit
1926 * mode. */
1927
1928 /* Flush the prefetch buffer. */
1929#ifdef IEM_WITH_CODE_TLB
1930 pVCpu->iem.s.pbInstrBuf = NULL;
1931#else
1932 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
1933#endif
1934
1935 return VINF_SUCCESS;
1936}
1937
1938
1939/**
1940 * Implements far calls.
1941 *
1942 * This very similar to iemCImpl_FarJmp.
1943 *
1944 * @param uSel The selector.
1945 * @param offSeg The segment offset.
1946 * @param enmEffOpSize The operand size (in case we need it).
1947 */
1948IEM_CIMPL_DEF_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize)
1949{
1950 VBOXSTRICTRC rcStrict;
1951 uint64_t uNewRsp;
1952 RTPTRUNION uPtrRet;
1953
1954 /*
1955 * Real mode and V8086 mode are easy. The only snag seems to be that
1956 * CS.limit doesn't change and the limit check is done against the current
1957 * limit.
1958 */
1959 /** @todo See comment for similar code in iemCImpl_FarJmp */
1960 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1961 {
1962 Assert(enmEffOpSize == IEMMODE_16BIT || enmEffOpSize == IEMMODE_32BIT);
1963
1964 /* Check stack first - may #SS(0). */
1965 rcStrict = iemMemStackPushBeginSpecial(pVCpu, enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
1966 &uPtrRet.pv, &uNewRsp);
1967 if (rcStrict != VINF_SUCCESS)
1968 return rcStrict;
1969
1970 /* Check the target address range. */
1971 if (offSeg > UINT32_MAX)
1972 return iemRaiseGeneralProtectionFault0(pVCpu);
1973
1974 /* Everything is fine, push the return address. */
1975 if (enmEffOpSize == IEMMODE_16BIT)
1976 {
1977 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
1978 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
1979 }
1980 else
1981 {
1982 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
1983 uPtrRet.pu16[2] = pVCpu->cpum.GstCtx.cs.Sel;
1984 }
1985 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
1986 if (rcStrict != VINF_SUCCESS)
1987 return rcStrict;
1988
1989 /* Branch. */
1990 pVCpu->cpum.GstCtx.rip = offSeg;
1991 pVCpu->cpum.GstCtx.cs.Sel = uSel;
1992 pVCpu->cpum.GstCtx.cs.ValidSel = uSel;
1993 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1994 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uSel << 4;
1995 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1996 return VINF_SUCCESS;
1997 }
1998
1999 /*
2000 * Protected mode. Need to parse the specified descriptor...
2001 */
2002 if (!(uSel & X86_SEL_MASK_OFF_RPL))
2003 {
2004 Log(("callf %04x:%08RX64 -> invalid selector, #GP(0)\n", uSel, offSeg));
2005 return iemRaiseGeneralProtectionFault0(pVCpu);
2006 }
2007
2008 /* Fetch the descriptor. */
2009 IEMSELDESC Desc;
2010 rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP);
2011 if (rcStrict != VINF_SUCCESS)
2012 return rcStrict;
2013
2014 /*
2015 * Deal with it according to its type. We do the standard code selectors
2016 * here and dispatch the system selectors to worker functions.
2017 */
2018 if (!Desc.Legacy.Gen.u1DescType)
2019 return IEM_CIMPL_CALL_4(iemCImpl_BranchSysSel, uSel, IEMBRANCH_CALL, enmEffOpSize, &Desc);
2020
2021 /* Only code segments. */
2022 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
2023 {
2024 Log(("callf %04x:%08RX64 -> not a code selector (u4Type=%#x).\n", uSel, offSeg, Desc.Legacy.Gen.u4Type));
2025 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2026 }
2027
2028 /* L vs D. */
2029 if ( Desc.Legacy.Gen.u1Long
2030 && Desc.Legacy.Gen.u1DefBig
2031 && IEM_IS_LONG_MODE(pVCpu))
2032 {
2033 Log(("callf %04x:%08RX64 -> both L and D are set.\n", uSel, offSeg));
2034 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2035 }
2036
2037 /* DPL/RPL/CPL check, where conforming segments makes a difference. */
2038 if (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2039 {
2040 if (pVCpu->iem.s.uCpl < Desc.Legacy.Gen.u2Dpl)
2041 {
2042 Log(("callf %04x:%08RX64 -> DPL violation (conforming); DPL=%d CPL=%u\n",
2043 uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2044 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2045 }
2046 }
2047 else
2048 {
2049 if (pVCpu->iem.s.uCpl != Desc.Legacy.Gen.u2Dpl)
2050 {
2051 Log(("callf %04x:%08RX64 -> CPL != DPL; DPL=%d CPL=%u\n", uSel, offSeg, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
2052 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2053 }
2054 if ((uSel & X86_SEL_RPL) > pVCpu->iem.s.uCpl)
2055 {
2056 Log(("callf %04x:%08RX64 -> RPL > DPL; RPL=%d CPL=%u\n", uSel, offSeg, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl));
2057 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2058 }
2059 }
2060
2061 /* Is it there? */
2062 if (!Desc.Legacy.Gen.u1Present)
2063 {
2064 Log(("callf %04x:%08RX64 -> segment not present\n", uSel, offSeg));
2065 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
2066 }
2067
2068 /* Check stack first - may #SS(0). */
2069 /** @todo check how operand prefix affects pushing of CS! Does callf 16:32 in
2070 * 16-bit code cause a two or four byte CS to be pushed? */
2071 rcStrict = iemMemStackPushBeginSpecial(pVCpu,
2072 enmEffOpSize == IEMMODE_64BIT ? 8+8
2073 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 2+2,
2074 &uPtrRet.pv, &uNewRsp);
2075 if (rcStrict != VINF_SUCCESS)
2076 return rcStrict;
2077
2078 /* Chop the high bits if 16-bit (Intel says so). */
2079 if (enmEffOpSize == IEMMODE_16BIT)
2080 offSeg &= UINT16_MAX;
2081
2082 /* Limit / canonical check. */
2083 uint64_t u64Base;
2084 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
2085 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2086 {
2087 if (!IEM_IS_CANONICAL(offSeg))
2088 {
2089 Log(("callf %04x:%016RX64 - not canonical -> #GP\n", uSel, offSeg));
2090 return iemRaiseNotCanonical(pVCpu);
2091 }
2092 u64Base = 0;
2093 }
2094 else
2095 {
2096 if (offSeg > cbLimit)
2097 {
2098 Log(("callf %04x:%08RX64 -> out of bounds (%#x)\n", uSel, offSeg, cbLimit));
2099 /** @todo: Intel says this is #GP(0)! */
2100 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
2101 }
2102 u64Base = X86DESC_BASE(&Desc.Legacy);
2103 }
2104
2105 /*
2106 * Now set the accessed bit before
2107 * writing the return address to the stack and committing the result into
2108 * CS, CSHID and RIP.
2109 */
2110 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2111 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2112 {
2113 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
2114 if (rcStrict != VINF_SUCCESS)
2115 return rcStrict;
2116 /** @todo check what VT-x and AMD-V does. */
2117 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2118 }
2119
2120 /* stack */
2121 if (enmEffOpSize == IEMMODE_16BIT)
2122 {
2123 uPtrRet.pu16[0] = pVCpu->cpum.GstCtx.ip + cbInstr;
2124 uPtrRet.pu16[1] = pVCpu->cpum.GstCtx.cs.Sel;
2125 }
2126 else if (enmEffOpSize == IEMMODE_32BIT)
2127 {
2128 uPtrRet.pu32[0] = pVCpu->cpum.GstCtx.eip + cbInstr;
2129 uPtrRet.pu32[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high word when callf is pushing CS? */
2130 }
2131 else
2132 {
2133 uPtrRet.pu64[0] = pVCpu->cpum.GstCtx.rip + cbInstr;
2134 uPtrRet.pu64[1] = pVCpu->cpum.GstCtx.cs.Sel; /** @todo Testcase: What is written to the high words when callf is pushing CS? */
2135 }
2136 rcStrict = iemMemStackPushCommitSpecial(pVCpu, uPtrRet.pv, uNewRsp);
2137 if (rcStrict != VINF_SUCCESS)
2138 return rcStrict;
2139
2140 /* commit */
2141 pVCpu->cpum.GstCtx.rip = offSeg;
2142 pVCpu->cpum.GstCtx.cs.Sel = uSel & X86_SEL_MASK_OFF_RPL;
2143 pVCpu->cpum.GstCtx.cs.Sel |= pVCpu->iem.s.uCpl;
2144 pVCpu->cpum.GstCtx.cs.ValidSel = pVCpu->cpum.GstCtx.cs.Sel;
2145 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2146 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
2147 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimit;
2148 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2149 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2150 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2151 /** @todo check if the hidden bits are loaded correctly for 64-bit
2152 * mode. */
2153
2154 /* Flush the prefetch buffer. */
2155#ifdef IEM_WITH_CODE_TLB
2156 pVCpu->iem.s.pbInstrBuf = NULL;
2157#else
2158 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2159#endif
2160 return VINF_SUCCESS;
2161}
2162
2163
2164/**
2165 * Implements retf.
2166 *
2167 * @param enmEffOpSize The effective operand size.
2168 * @param cbPop The amount of arguments to pop from the stack
2169 * (bytes).
2170 */
2171IEM_CIMPL_DEF_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2172{
2173 VBOXSTRICTRC rcStrict;
2174 RTCPTRUNION uPtrFrame;
2175 uint64_t uNewRsp;
2176 uint64_t uNewRip;
2177 uint16_t uNewCs;
2178 NOREF(cbInstr);
2179
2180 /*
2181 * Read the stack values first.
2182 */
2183 uint32_t cbRetPtr = enmEffOpSize == IEMMODE_16BIT ? 2+2
2184 : enmEffOpSize == IEMMODE_32BIT ? 4+4 : 8+8;
2185 rcStrict = iemMemStackPopBeginSpecial(pVCpu, cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2186 if (rcStrict != VINF_SUCCESS)
2187 return rcStrict;
2188 if (enmEffOpSize == IEMMODE_16BIT)
2189 {
2190 uNewRip = uPtrFrame.pu16[0];
2191 uNewCs = uPtrFrame.pu16[1];
2192 }
2193 else if (enmEffOpSize == IEMMODE_32BIT)
2194 {
2195 uNewRip = uPtrFrame.pu32[0];
2196 uNewCs = uPtrFrame.pu16[2];
2197 }
2198 else
2199 {
2200 uNewRip = uPtrFrame.pu64[0];
2201 uNewCs = uPtrFrame.pu16[4];
2202 }
2203 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2204 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2205 { /* extremely likely */ }
2206 else
2207 return rcStrict;
2208
2209 /*
2210 * Real mode and V8086 mode are easy.
2211 */
2212 /** @todo See comment for similar code in iemCImpl_FarJmp */
2213 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
2214 {
2215 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2216 /** @todo check how this is supposed to work if sp=0xfffe. */
2217
2218 /* Check the limit of the new EIP. */
2219 /** @todo Intel pseudo code only does the limit check for 16-bit
2220 * operands, AMD does not make any distinction. What is right? */
2221 if (uNewRip > pVCpu->cpum.GstCtx.cs.u32Limit)
2222 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2223
2224 /* commit the operation. */
2225 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2226 pVCpu->cpum.GstCtx.rip = uNewRip;
2227 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2228 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2229 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2230 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2231 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2232 if (cbPop)
2233 iemRegAddToRsp(pVCpu, cbPop);
2234 return VINF_SUCCESS;
2235 }
2236
2237 /*
2238 * Protected mode is complicated, of course.
2239 */
2240 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
2241 {
2242 Log(("retf %04x:%08RX64 -> invalid selector, #GP(0)\n", uNewCs, uNewRip));
2243 return iemRaiseGeneralProtectionFault0(pVCpu);
2244 }
2245
2246 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
2247
2248 /* Fetch the descriptor. */
2249 IEMSELDESC DescCs;
2250 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCs, uNewCs, X86_XCPT_GP);
2251 if (rcStrict != VINF_SUCCESS)
2252 return rcStrict;
2253
2254 /* Can only return to a code selector. */
2255 if ( !DescCs.Legacy.Gen.u1DescType
2256 || !(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE) )
2257 {
2258 Log(("retf %04x:%08RX64 -> not a code selector (u1DescType=%u u4Type=%#x).\n",
2259 uNewCs, uNewRip, DescCs.Legacy.Gen.u1DescType, DescCs.Legacy.Gen.u4Type));
2260 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2261 }
2262
2263 /* L vs D. */
2264 if ( DescCs.Legacy.Gen.u1Long /** @todo Testcase: far return to a selector with both L and D set. */
2265 && DescCs.Legacy.Gen.u1DefBig
2266 && IEM_IS_LONG_MODE(pVCpu))
2267 {
2268 Log(("retf %04x:%08RX64 -> both L & D set.\n", uNewCs, uNewRip));
2269 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2270 }
2271
2272 /* DPL/RPL/CPL checks. */
2273 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
2274 {
2275 Log(("retf %04x:%08RX64 -> RPL < CPL(%d).\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
2276 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2277 }
2278
2279 if (DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF)
2280 {
2281 if ((uNewCs & X86_SEL_RPL) < DescCs.Legacy.Gen.u2Dpl)
2282 {
2283 Log(("retf %04x:%08RX64 -> DPL violation (conforming); DPL=%u RPL=%u\n",
2284 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2285 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2286 }
2287 }
2288 else
2289 {
2290 if ((uNewCs & X86_SEL_RPL) != DescCs.Legacy.Gen.u2Dpl)
2291 {
2292 Log(("retf %04x:%08RX64 -> RPL != DPL; DPL=%u RPL=%u\n",
2293 uNewCs, uNewRip, DescCs.Legacy.Gen.u2Dpl, (uNewCs & X86_SEL_RPL)));
2294 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2295 }
2296 }
2297
2298 /* Is it there? */
2299 if (!DescCs.Legacy.Gen.u1Present)
2300 {
2301 Log(("retf %04x:%08RX64 -> segment not present\n", uNewCs, uNewRip));
2302 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2303 }
2304
2305 /*
2306 * Return to outer privilege? (We'll typically have entered via a call gate.)
2307 */
2308 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
2309 {
2310 /* Read the outer stack pointer stored *after* the parameters. */
2311 rcStrict = iemMemStackPopContinueSpecial(pVCpu, cbPop + cbRetPtr, &uPtrFrame.pv, &uNewRsp);
2312 if (rcStrict != VINF_SUCCESS)
2313 return rcStrict;
2314
2315 uPtrFrame.pu8 += cbPop; /* Skip the parameters. */
2316
2317 uint16_t uNewOuterSs;
2318 uint64_t uNewOuterRsp;
2319 if (enmEffOpSize == IEMMODE_16BIT)
2320 {
2321 uNewOuterRsp = uPtrFrame.pu16[0];
2322 uNewOuterSs = uPtrFrame.pu16[1];
2323 }
2324 else if (enmEffOpSize == IEMMODE_32BIT)
2325 {
2326 uNewOuterRsp = uPtrFrame.pu32[0];
2327 uNewOuterSs = uPtrFrame.pu16[2];
2328 }
2329 else
2330 {
2331 uNewOuterRsp = uPtrFrame.pu64[0];
2332 uNewOuterSs = uPtrFrame.pu16[4];
2333 }
2334 uPtrFrame.pu8 -= cbPop; /* Put uPtrFrame back the way it was. */
2335 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uPtrFrame.pv);
2336 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2337 { /* extremely likely */ }
2338 else
2339 return rcStrict;
2340
2341 /* Check for NULL stack selector (invalid in ring-3 and non-long mode)
2342 and read the selector. */
2343 IEMSELDESC DescSs;
2344 if (!(uNewOuterSs & X86_SEL_MASK_OFF_RPL))
2345 {
2346 if ( !DescCs.Legacy.Gen.u1Long
2347 || (uNewOuterSs & X86_SEL_RPL) == 3)
2348 {
2349 Log(("retf %04x:%08RX64 %04x:%08RX64 -> invalid stack selector, #GP\n",
2350 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2351 return iemRaiseGeneralProtectionFault0(pVCpu);
2352 }
2353 /** @todo Testcase: Return far to ring-1 or ring-2 with SS=0. */
2354 iemMemFakeStackSelDesc(&DescSs, (uNewOuterSs & X86_SEL_RPL));
2355 }
2356 else
2357 {
2358 /* Fetch the descriptor for the new stack segment. */
2359 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSs, uNewOuterSs, X86_XCPT_GP);
2360 if (rcStrict != VINF_SUCCESS)
2361 return rcStrict;
2362 }
2363
2364 /* Check that RPL of stack and code selectors match. */
2365 if ((uNewCs & X86_SEL_RPL) != (uNewOuterSs & X86_SEL_RPL))
2366 {
2367 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.RPL != CS.RPL -> #GP(SS)\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2368 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2369 }
2370
2371 /* Must be a writable data segment. */
2372 if ( !DescSs.Legacy.Gen.u1DescType
2373 || (DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
2374 || !(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
2375 {
2376 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not a writable data segment (u1DescType=%u u4Type=%#x) -> #GP(SS).\n",
2377 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u1DescType, DescSs.Legacy.Gen.u4Type));
2378 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2379 }
2380
2381 /* L vs D. (Not mentioned by intel.) */
2382 if ( DescSs.Legacy.Gen.u1Long /** @todo Testcase: far return to a stack selector with both L and D set. */
2383 && DescSs.Legacy.Gen.u1DefBig
2384 && IEM_IS_LONG_MODE(pVCpu))
2385 {
2386 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS has both L & D set -> #GP(SS).\n",
2387 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2388 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2389 }
2390
2391 /* DPL/RPL/CPL checks. */
2392 if (DescSs.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
2393 {
2394 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS.DPL(%u) != CS.RPL (%u) -> #GP(SS).\n",
2395 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, DescSs.Legacy.Gen.u2Dpl, uNewCs & X86_SEL_RPL));
2396 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewOuterSs);
2397 }
2398
2399 /* Is it there? */
2400 if (!DescSs.Legacy.Gen.u1Present)
2401 {
2402 Log(("retf %04x:%08RX64 %04x:%08RX64 - SS not present -> #NP(SS).\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2403 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
2404 }
2405
2406 /* Calc SS limit.*/
2407 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSs.Legacy);
2408
2409 /* Is RIP canonical or within CS.limit? */
2410 uint64_t u64Base;
2411 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2412
2413 /** @todo Testcase: Is this correct? */
2414 if ( DescCs.Legacy.Gen.u1Long
2415 && IEM_IS_LONG_MODE(pVCpu) )
2416 {
2417 if (!IEM_IS_CANONICAL(uNewRip))
2418 {
2419 Log(("retf %04x:%08RX64 %04x:%08RX64 - not canonical -> #GP.\n", uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp));
2420 return iemRaiseNotCanonical(pVCpu);
2421 }
2422 u64Base = 0;
2423 }
2424 else
2425 {
2426 if (uNewRip > cbLimitCs)
2427 {
2428 Log(("retf %04x:%08RX64 %04x:%08RX64 - out of bounds (%#x)-> #GP(CS).\n",
2429 uNewCs, uNewRip, uNewOuterSs, uNewOuterRsp, cbLimitCs));
2430 /** @todo: Intel says this is #GP(0)! */
2431 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2432 }
2433 u64Base = X86DESC_BASE(&DescCs.Legacy);
2434 }
2435
2436 /*
2437 * Now set the accessed bit before
2438 * writing the return address to the stack and committing the result into
2439 * CS, CSHID and RIP.
2440 */
2441 /** @todo Testcase: Need to check WHEN exactly the CS accessed bit is set. */
2442 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2443 {
2444 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2445 if (rcStrict != VINF_SUCCESS)
2446 return rcStrict;
2447 /** @todo check what VT-x and AMD-V does. */
2448 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2449 }
2450 /** @todo Testcase: Need to check WHEN exactly the SS accessed bit is set. */
2451 if (!(DescSs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2452 {
2453 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewOuterSs);
2454 if (rcStrict != VINF_SUCCESS)
2455 return rcStrict;
2456 /** @todo check what VT-x and AMD-V does. */
2457 DescSs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2458 }
2459
2460 /* commit */
2461 if (enmEffOpSize == IEMMODE_16BIT)
2462 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2463 else
2464 pVCpu->cpum.GstCtx.rip = uNewRip;
2465 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2466 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2467 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2468 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2469 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2470 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2471 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2472 pVCpu->cpum.GstCtx.ss.Sel = uNewOuterSs;
2473 pVCpu->cpum.GstCtx.ss.ValidSel = uNewOuterSs;
2474 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
2475 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSs.Legacy);
2476 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
2477 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2478 pVCpu->cpum.GstCtx.ss.u64Base = 0;
2479 else
2480 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSs.Legacy);
2481 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2482 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewOuterRsp;
2483 else
2484 pVCpu->cpum.GstCtx.rsp = uNewOuterRsp;
2485
2486 pVCpu->iem.s.uCpl = (uNewCs & X86_SEL_RPL);
2487 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
2488 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
2489 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
2490 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
2491
2492 /** @todo check if the hidden bits are loaded correctly for 64-bit
2493 * mode. */
2494
2495 if (cbPop)
2496 iemRegAddToRsp(pVCpu, cbPop);
2497 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2498
2499 /* Done! */
2500 }
2501 /*
2502 * Return to the same privilege level
2503 */
2504 else
2505 {
2506 /* Limit / canonical check. */
2507 uint64_t u64Base;
2508 uint32_t cbLimitCs = X86DESC_LIMIT_G(&DescCs.Legacy);
2509
2510 /** @todo Testcase: Is this correct? */
2511 if ( DescCs.Legacy.Gen.u1Long
2512 && IEM_IS_LONG_MODE(pVCpu) )
2513 {
2514 if (!IEM_IS_CANONICAL(uNewRip))
2515 {
2516 Log(("retf %04x:%08RX64 - not canonical -> #GP\n", uNewCs, uNewRip));
2517 return iemRaiseNotCanonical(pVCpu);
2518 }
2519 u64Base = 0;
2520 }
2521 else
2522 {
2523 if (uNewRip > cbLimitCs)
2524 {
2525 Log(("retf %04x:%08RX64 -> out of bounds (%#x)\n", uNewCs, uNewRip, cbLimitCs));
2526 /** @todo: Intel says this is #GP(0)! */
2527 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
2528 }
2529 u64Base = X86DESC_BASE(&DescCs.Legacy);
2530 }
2531
2532 /*
2533 * Now set the accessed bit before
2534 * writing the return address to the stack and committing the result into
2535 * CS, CSHID and RIP.
2536 */
2537 /** @todo Testcase: Need to check WHEN exactly the accessed bit is set. */
2538 if (!(DescCs.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
2539 {
2540 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
2541 if (rcStrict != VINF_SUCCESS)
2542 return rcStrict;
2543 /** @todo check what VT-x and AMD-V does. */
2544 DescCs.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
2545 }
2546
2547 /* commit */
2548 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2549 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
2550 else
2551 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2552 if (enmEffOpSize == IEMMODE_16BIT)
2553 pVCpu->cpum.GstCtx.rip = uNewRip & UINT16_MAX; /** @todo Testcase: When exactly does this occur? With call it happens prior to the limit check according to Intel... */
2554 else
2555 pVCpu->cpum.GstCtx.rip = uNewRip;
2556 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2557 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2558 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2559 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCs.Legacy);
2560 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCs;
2561 pVCpu->cpum.GstCtx.cs.u64Base = u64Base;
2562 /** @todo check if the hidden bits are loaded correctly for 64-bit
2563 * mode. */
2564 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
2565 if (cbPop)
2566 iemRegAddToRsp(pVCpu, cbPop);
2567 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2568 }
2569
2570 /* Flush the prefetch buffer. */
2571#ifdef IEM_WITH_CODE_TLB
2572 pVCpu->iem.s.pbInstrBuf = NULL;
2573#else
2574 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2575#endif
2576 return VINF_SUCCESS;
2577}
2578
2579
2580/**
2581 * Implements retn.
2582 *
2583 * We're doing this in C because of the \#GP that might be raised if the popped
2584 * program counter is out of bounds.
2585 *
2586 * @param enmEffOpSize The effective operand size.
2587 * @param cbPop The amount of arguments to pop from the stack
2588 * (bytes).
2589 */
2590IEM_CIMPL_DEF_2(iemCImpl_retn, IEMMODE, enmEffOpSize, uint16_t, cbPop)
2591{
2592 NOREF(cbInstr);
2593
2594 /* Fetch the RSP from the stack. */
2595 VBOXSTRICTRC rcStrict;
2596 RTUINT64U NewRip;
2597 RTUINT64U NewRsp;
2598 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2599
2600 switch (enmEffOpSize)
2601 {
2602 case IEMMODE_16BIT:
2603 NewRip.u = 0;
2604 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRip.Words.w0, &NewRsp);
2605 break;
2606 case IEMMODE_32BIT:
2607 NewRip.u = 0;
2608 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRip.DWords.dw0, &NewRsp);
2609 break;
2610 case IEMMODE_64BIT:
2611 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRip.u, &NewRsp);
2612 break;
2613 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2614 }
2615 if (rcStrict != VINF_SUCCESS)
2616 return rcStrict;
2617
2618 /* Check the new RSP before loading it. */
2619 /** @todo Should test this as the intel+amd pseudo code doesn't mention half
2620 * of it. The canonical test is performed here and for call. */
2621 if (enmEffOpSize != IEMMODE_64BIT)
2622 {
2623 if (NewRip.DWords.dw0 > pVCpu->cpum.GstCtx.cs.u32Limit)
2624 {
2625 Log(("retn newrip=%llx - out of bounds (%x) -> #GP\n", NewRip.u, pVCpu->cpum.GstCtx.cs.u32Limit));
2626 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2627 }
2628 }
2629 else
2630 {
2631 if (!IEM_IS_CANONICAL(NewRip.u))
2632 {
2633 Log(("retn newrip=%llx - not canonical -> #GP\n", NewRip.u));
2634 return iemRaiseNotCanonical(pVCpu);
2635 }
2636 }
2637
2638 /* Apply cbPop */
2639 if (cbPop)
2640 iemRegAddToRspEx(pVCpu, &NewRsp, cbPop);
2641
2642 /* Commit it. */
2643 pVCpu->cpum.GstCtx.rip = NewRip.u;
2644 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2645 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
2646
2647 /* Flush the prefetch buffer. */
2648#ifndef IEM_WITH_CODE_TLB
2649 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2650#endif
2651
2652 return VINF_SUCCESS;
2653}
2654
2655
2656/**
2657 * Implements enter.
2658 *
2659 * We're doing this in C because the instruction is insane, even for the
2660 * u8NestingLevel=0 case dealing with the stack is tedious.
2661 *
2662 * @param enmEffOpSize The effective operand size.
2663 */
2664IEM_CIMPL_DEF_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters)
2665{
2666 /* Push RBP, saving the old value in TmpRbp. */
2667 RTUINT64U NewRsp; NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2668 RTUINT64U TmpRbp; TmpRbp.u = pVCpu->cpum.GstCtx.rbp;
2669 RTUINT64U NewRbp;
2670 VBOXSTRICTRC rcStrict;
2671 if (enmEffOpSize == IEMMODE_64BIT)
2672 {
2673 rcStrict = iemMemStackPushU64Ex(pVCpu, TmpRbp.u, &NewRsp);
2674 NewRbp = NewRsp;
2675 }
2676 else if (enmEffOpSize == IEMMODE_32BIT)
2677 {
2678 rcStrict = iemMemStackPushU32Ex(pVCpu, TmpRbp.DWords.dw0, &NewRsp);
2679 NewRbp = NewRsp;
2680 }
2681 else
2682 {
2683 rcStrict = iemMemStackPushU16Ex(pVCpu, TmpRbp.Words.w0, &NewRsp);
2684 NewRbp = TmpRbp;
2685 NewRbp.Words.w0 = NewRsp.Words.w0;
2686 }
2687 if (rcStrict != VINF_SUCCESS)
2688 return rcStrict;
2689
2690 /* Copy the parameters (aka nesting levels by Intel). */
2691 cParameters &= 0x1f;
2692 if (cParameters > 0)
2693 {
2694 switch (enmEffOpSize)
2695 {
2696 case IEMMODE_16BIT:
2697 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2698 TmpRbp.DWords.dw0 -= 2;
2699 else
2700 TmpRbp.Words.w0 -= 2;
2701 do
2702 {
2703 uint16_t u16Tmp;
2704 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Tmp, &TmpRbp);
2705 if (rcStrict != VINF_SUCCESS)
2706 break;
2707 rcStrict = iemMemStackPushU16Ex(pVCpu, u16Tmp, &NewRsp);
2708 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2709 break;
2710
2711 case IEMMODE_32BIT:
2712 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2713 TmpRbp.DWords.dw0 -= 4;
2714 else
2715 TmpRbp.Words.w0 -= 4;
2716 do
2717 {
2718 uint32_t u32Tmp;
2719 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Tmp, &TmpRbp);
2720 if (rcStrict != VINF_SUCCESS)
2721 break;
2722 rcStrict = iemMemStackPushU32Ex(pVCpu, u32Tmp, &NewRsp);
2723 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2724 break;
2725
2726 case IEMMODE_64BIT:
2727 TmpRbp.u -= 8;
2728 do
2729 {
2730 uint64_t u64Tmp;
2731 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Tmp, &TmpRbp);
2732 if (rcStrict != VINF_SUCCESS)
2733 break;
2734 rcStrict = iemMemStackPushU64Ex(pVCpu, u64Tmp, &NewRsp);
2735 } while (--cParameters > 0 && rcStrict == VINF_SUCCESS);
2736 break;
2737
2738 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2739 }
2740 if (rcStrict != VINF_SUCCESS)
2741 return VINF_SUCCESS;
2742
2743 /* Push the new RBP */
2744 if (enmEffOpSize == IEMMODE_64BIT)
2745 rcStrict = iemMemStackPushU64Ex(pVCpu, NewRbp.u, &NewRsp);
2746 else if (enmEffOpSize == IEMMODE_32BIT)
2747 rcStrict = iemMemStackPushU32Ex(pVCpu, NewRbp.DWords.dw0, &NewRsp);
2748 else
2749 rcStrict = iemMemStackPushU16Ex(pVCpu, NewRbp.Words.w0, &NewRsp);
2750 if (rcStrict != VINF_SUCCESS)
2751 return rcStrict;
2752
2753 }
2754
2755 /* Recalc RSP. */
2756 iemRegSubFromRspEx(pVCpu, &NewRsp, cbFrame);
2757
2758 /** @todo Should probe write access at the new RSP according to AMD. */
2759
2760 /* Commit it. */
2761 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2762 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2763 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2764
2765 return VINF_SUCCESS;
2766}
2767
2768
2769
2770/**
2771 * Implements leave.
2772 *
2773 * We're doing this in C because messing with the stack registers is annoying
2774 * since they depends on SS attributes.
2775 *
2776 * @param enmEffOpSize The effective operand size.
2777 */
2778IEM_CIMPL_DEF_1(iemCImpl_leave, IEMMODE, enmEffOpSize)
2779{
2780 /* Calculate the intermediate RSP from RBP and the stack attributes. */
2781 RTUINT64U NewRsp;
2782 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2783 NewRsp.u = pVCpu->cpum.GstCtx.rbp;
2784 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
2785 NewRsp.u = pVCpu->cpum.GstCtx.ebp;
2786 else
2787 {
2788 /** @todo Check that LEAVE actually preserve the high EBP bits. */
2789 NewRsp.u = pVCpu->cpum.GstCtx.rsp;
2790 NewRsp.Words.w0 = pVCpu->cpum.GstCtx.bp;
2791 }
2792
2793 /* Pop RBP according to the operand size. */
2794 VBOXSTRICTRC rcStrict;
2795 RTUINT64U NewRbp;
2796 switch (enmEffOpSize)
2797 {
2798 case IEMMODE_16BIT:
2799 NewRbp.u = pVCpu->cpum.GstCtx.rbp;
2800 rcStrict = iemMemStackPopU16Ex(pVCpu, &NewRbp.Words.w0, &NewRsp);
2801 break;
2802 case IEMMODE_32BIT:
2803 NewRbp.u = 0;
2804 rcStrict = iemMemStackPopU32Ex(pVCpu, &NewRbp.DWords.dw0, &NewRsp);
2805 break;
2806 case IEMMODE_64BIT:
2807 rcStrict = iemMemStackPopU64Ex(pVCpu, &NewRbp.u, &NewRsp);
2808 break;
2809 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2810 }
2811 if (rcStrict != VINF_SUCCESS)
2812 return rcStrict;
2813
2814
2815 /* Commit it. */
2816 pVCpu->cpum.GstCtx.rbp = NewRbp.u;
2817 pVCpu->cpum.GstCtx.rsp = NewRsp.u;
2818 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
2819
2820 return VINF_SUCCESS;
2821}
2822
2823
2824/**
2825 * Implements int3 and int XX.
2826 *
2827 * @param u8Int The interrupt vector number.
2828 * @param enmInt The int instruction type.
2829 */
2830IEM_CIMPL_DEF_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt)
2831{
2832 Assert(pVCpu->iem.s.cXcptRecursions == 0);
2833 return iemRaiseXcptOrInt(pVCpu,
2834 cbInstr,
2835 u8Int,
2836 IEM_XCPT_FLAGS_T_SOFT_INT | enmInt,
2837 0,
2838 0);
2839}
2840
2841
2842/**
2843 * Implements iret for real mode and V8086 mode.
2844 *
2845 * @param enmEffOpSize The effective operand size.
2846 */
2847IEM_CIMPL_DEF_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize)
2848{
2849 X86EFLAGS Efl;
2850 Efl.u = IEMMISC_GET_EFL(pVCpu);
2851 NOREF(cbInstr);
2852
2853 /*
2854 * iret throws an exception if VME isn't enabled.
2855 */
2856 if ( Efl.Bits.u1VM
2857 && Efl.Bits.u2IOPL != 3
2858 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME))
2859 return iemRaiseGeneralProtectionFault0(pVCpu);
2860
2861 /*
2862 * Do the stack bits, but don't commit RSP before everything checks
2863 * out right.
2864 */
2865 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
2866 VBOXSTRICTRC rcStrict;
2867 RTCPTRUNION uFrame;
2868 uint16_t uNewCs;
2869 uint32_t uNewEip;
2870 uint32_t uNewFlags;
2871 uint64_t uNewRsp;
2872 if (enmEffOpSize == IEMMODE_32BIT)
2873 {
2874 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
2875 if (rcStrict != VINF_SUCCESS)
2876 return rcStrict;
2877 uNewEip = uFrame.pu32[0];
2878 if (uNewEip > UINT16_MAX)
2879 return iemRaiseGeneralProtectionFault0(pVCpu);
2880
2881 uNewCs = (uint16_t)uFrame.pu32[1];
2882 uNewFlags = uFrame.pu32[2];
2883 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2884 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT
2885 | X86_EFL_RF /*| X86_EFL_VM*/ | X86_EFL_AC /*|X86_EFL_VIF*/ /*|X86_EFL_VIP*/
2886 | X86_EFL_ID;
2887 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
2888 uNewFlags &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
2889 uNewFlags |= Efl.u & (X86_EFL_VM | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_1);
2890 }
2891 else
2892 {
2893 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
2894 if (rcStrict != VINF_SUCCESS)
2895 return rcStrict;
2896 uNewEip = uFrame.pu16[0];
2897 uNewCs = uFrame.pu16[1];
2898 uNewFlags = uFrame.pu16[2];
2899 uNewFlags &= X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
2900 | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT;
2901 uNewFlags |= Efl.u & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF);
2902 /** @todo The intel pseudo code does not indicate what happens to
2903 * reserved flags. We just ignore them. */
2904 /* Ancient CPU adjustments: See iemCImpl_popf. */
2905 if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_286)
2906 uNewFlags &= ~(X86_EFL_NT | X86_EFL_IOPL);
2907 }
2908 rcStrict = iemMemStackPopDoneSpecial(pVCpu, uFrame.pv);
2909 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2910 { /* extremely likely */ }
2911 else
2912 return rcStrict;
2913
2914 /** @todo Check how this is supposed to work if sp=0xfffe. */
2915 Log7(("iemCImpl_iret_real_v8086: uNewCs=%#06x uNewRip=%#010x uNewFlags=%#x uNewRsp=%#18llx\n",
2916 uNewCs, uNewEip, uNewFlags, uNewRsp));
2917
2918 /*
2919 * Check the limit of the new EIP.
2920 */
2921 /** @todo Only the AMD pseudo code check the limit here, what's
2922 * right? */
2923 if (uNewEip > pVCpu->cpum.GstCtx.cs.u32Limit)
2924 return iemRaiseSelectorBounds(pVCpu, X86_SREG_CS, IEM_ACCESS_INSTRUCTION);
2925
2926 /*
2927 * V8086 checks and flag adjustments
2928 */
2929 if (Efl.Bits.u1VM)
2930 {
2931 if (Efl.Bits.u2IOPL == 3)
2932 {
2933 /* Preserve IOPL and clear RF. */
2934 uNewFlags &= ~(X86_EFL_IOPL | X86_EFL_RF);
2935 uNewFlags |= Efl.u & (X86_EFL_IOPL);
2936 }
2937 else if ( enmEffOpSize == IEMMODE_16BIT
2938 && ( !(uNewFlags & X86_EFL_IF)
2939 || !Efl.Bits.u1VIP )
2940 && !(uNewFlags & X86_EFL_TF) )
2941 {
2942 /* Move IF to VIF, clear RF and preserve IF and IOPL.*/
2943 uNewFlags &= ~X86_EFL_VIF;
2944 uNewFlags |= (uNewFlags & X86_EFL_IF) << (19 - 9);
2945 uNewFlags &= ~(X86_EFL_IF | X86_EFL_IOPL | X86_EFL_RF);
2946 uNewFlags |= Efl.u & (X86_EFL_IF | X86_EFL_IOPL);
2947 }
2948 else
2949 return iemRaiseGeneralProtectionFault0(pVCpu);
2950 Log7(("iemCImpl_iret_real_v8086: u1VM=1: adjusted uNewFlags=%#x\n", uNewFlags));
2951 }
2952
2953 /*
2954 * Commit the operation.
2955 */
2956#ifdef DBGFTRACE_ENABLED
2957 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/rm %04x:%04x -> %04x:%04x %x %04llx",
2958 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewRsp);
2959#endif
2960 pVCpu->cpum.GstCtx.rsp = uNewRsp;
2961 pVCpu->cpum.GstCtx.rip = uNewEip;
2962 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
2963 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
2964 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
2965 pVCpu->cpum.GstCtx.cs.u64Base = (uint32_t)uNewCs << 4;
2966 /** @todo do we load attribs and limit as well? */
2967 Assert(uNewFlags & X86_EFL_1);
2968 IEMMISC_SET_EFL(pVCpu, uNewFlags);
2969
2970 /* Flush the prefetch buffer. */
2971#ifdef IEM_WITH_CODE_TLB
2972 pVCpu->iem.s.pbInstrBuf = NULL;
2973#else
2974 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
2975#endif
2976
2977 return VINF_SUCCESS;
2978}
2979
2980
2981/**
2982 * Loads a segment register when entering V8086 mode.
2983 *
2984 * @param pSReg The segment register.
2985 * @param uSeg The segment to load.
2986 */
2987static void iemCImplCommonV8086LoadSeg(PCPUMSELREG pSReg, uint16_t uSeg)
2988{
2989 pSReg->Sel = uSeg;
2990 pSReg->ValidSel = uSeg;
2991 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
2992 pSReg->u64Base = (uint32_t)uSeg << 4;
2993 pSReg->u32Limit = 0xffff;
2994 pSReg->Attr.u = X86_SEL_TYPE_RW_ACC | RT_BIT(4) /*!sys*/ | RT_BIT(7) /*P*/ | (3 /*DPL*/ << 5); /* VT-x wants 0xf3 */
2995 /** @todo Testcase: Check if VT-x really needs this and what it does itself when
2996 * IRET'ing to V8086. */
2997}
2998
2999
3000/**
3001 * Implements iret for protected mode returning to V8086 mode.
3002 *
3003 * @param uNewEip The new EIP.
3004 * @param uNewCs The new CS.
3005 * @param uNewFlags The new EFLAGS.
3006 * @param uNewRsp The RSP after the initial IRET frame.
3007 *
3008 * @note This can only be a 32-bit iret du to the X86_EFL_VM position.
3009 */
3010IEM_CIMPL_DEF_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp)
3011{
3012 RT_NOREF_PV(cbInstr);
3013 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK);
3014
3015 /*
3016 * Pop the V8086 specific frame bits off the stack.
3017 */
3018 VBOXSTRICTRC rcStrict;
3019 RTCPTRUNION uFrame;
3020 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 24, &uFrame.pv, &uNewRsp);
3021 if (rcStrict != VINF_SUCCESS)
3022 return rcStrict;
3023 uint32_t uNewEsp = uFrame.pu32[0];
3024 uint16_t uNewSs = uFrame.pu32[1];
3025 uint16_t uNewEs = uFrame.pu32[2];
3026 uint16_t uNewDs = uFrame.pu32[3];
3027 uint16_t uNewFs = uFrame.pu32[4];
3028 uint16_t uNewGs = uFrame.pu32[5];
3029 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R); /* don't use iemMemStackPopCommitSpecial here. */
3030 if (rcStrict != VINF_SUCCESS)
3031 return rcStrict;
3032
3033 /*
3034 * Commit the operation.
3035 */
3036 uNewFlags &= X86_EFL_LIVE_MASK;
3037 uNewFlags |= X86_EFL_RA1_MASK;
3038#ifdef DBGFTRACE_ENABLED
3039 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/p/v %04x:%08x -> %04x:%04x %x %04x:%04x",
3040 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp);
3041#endif
3042 Log7(("iemCImpl_iret_prot_v8086: %04x:%08x -> %04x:%04x %x %04x:%04x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, uNewCs, uNewEip, uNewFlags, uNewSs, uNewEsp));
3043
3044 IEMMISC_SET_EFL(pVCpu, uNewFlags);
3045 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.cs, uNewCs);
3046 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ss, uNewSs);
3047 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.es, uNewEs);
3048 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.ds, uNewDs);
3049 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.fs, uNewFs);
3050 iemCImplCommonV8086LoadSeg(&pVCpu->cpum.GstCtx.gs, uNewGs);
3051 pVCpu->cpum.GstCtx.rip = (uint16_t)uNewEip;
3052 pVCpu->cpum.GstCtx.rsp = uNewEsp; /** @todo check this out! */
3053 pVCpu->iem.s.uCpl = 3;
3054
3055 /* Flush the prefetch buffer. */
3056#ifdef IEM_WITH_CODE_TLB
3057 pVCpu->iem.s.pbInstrBuf = NULL;
3058#else
3059 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3060#endif
3061
3062 return VINF_SUCCESS;
3063}
3064
3065
3066/**
3067 * Implements iret for protected mode returning via a nested task.
3068 *
3069 * @param enmEffOpSize The effective operand size.
3070 */
3071IEM_CIMPL_DEF_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize)
3072{
3073 Log7(("iemCImpl_iret_prot_NestedTask:\n"));
3074#ifndef IEM_IMPLEMENTS_TASKSWITCH
3075 IEM_RETURN_ASPECT_NOT_IMPLEMENTED();
3076#else
3077 RT_NOREF_PV(enmEffOpSize);
3078
3079 /*
3080 * Read the segment selector in the link-field of the current TSS.
3081 */
3082 RTSEL uSelRet;
3083 VBOXSTRICTRC rcStrict = iemMemFetchSysU16(pVCpu, &uSelRet, UINT8_MAX, pVCpu->cpum.GstCtx.tr.u64Base);
3084 if (rcStrict != VINF_SUCCESS)
3085 return rcStrict;
3086
3087 /*
3088 * Fetch the returning task's TSS descriptor from the GDT.
3089 */
3090 if (uSelRet & X86_SEL_LDT)
3091 {
3092 Log(("iret_prot_NestedTask TSS not in LDT. uSelRet=%04x -> #TS\n", uSelRet));
3093 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet);
3094 }
3095
3096 IEMSELDESC TssDesc;
3097 rcStrict = iemMemFetchSelDesc(pVCpu, &TssDesc, uSelRet, X86_XCPT_GP);
3098 if (rcStrict != VINF_SUCCESS)
3099 return rcStrict;
3100
3101 if (TssDesc.Legacy.Gate.u1DescType)
3102 {
3103 Log(("iret_prot_NestedTask Invalid TSS type. uSelRet=%04x -> #TS\n", uSelRet));
3104 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3105 }
3106
3107 if ( TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_286_TSS_BUSY
3108 && TssDesc.Legacy.Gate.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
3109 {
3110 Log(("iret_prot_NestedTask TSS is not busy. uSelRet=%04x DescType=%#x -> #TS\n", uSelRet, TssDesc.Legacy.Gate.u4Type));
3111 return iemRaiseTaskSwitchFaultBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3112 }
3113
3114 if (!TssDesc.Legacy.Gate.u1Present)
3115 {
3116 Log(("iret_prot_NestedTask TSS is not present. uSelRet=%04x -> #NP\n", uSelRet));
3117 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSelRet & X86_SEL_MASK_OFF_RPL);
3118 }
3119
3120 uint32_t uNextEip = pVCpu->cpum.GstCtx.eip + cbInstr;
3121 return iemTaskSwitch(pVCpu, IEMTASKSWITCH_IRET, uNextEip, 0 /* fFlags */, 0 /* uErr */,
3122 0 /* uCr2 */, uSelRet, &TssDesc);
3123#endif
3124}
3125
3126
3127/**
3128 * Implements iret for protected mode
3129 *
3130 * @param enmEffOpSize The effective operand size.
3131 */
3132IEM_CIMPL_DEF_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize)
3133{
3134 NOREF(cbInstr);
3135 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3136
3137 /*
3138 * Nested task return.
3139 */
3140 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3141 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot_NestedTask, enmEffOpSize);
3142
3143 /*
3144 * Normal return.
3145 *
3146 * Do the stack bits, but don't commit RSP before everything checks
3147 * out right.
3148 */
3149 Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
3150 VBOXSTRICTRC rcStrict;
3151 RTCPTRUNION uFrame;
3152 uint16_t uNewCs;
3153 uint32_t uNewEip;
3154 uint32_t uNewFlags;
3155 uint64_t uNewRsp;
3156 if (enmEffOpSize == IEMMODE_32BIT)
3157 {
3158 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 12, &uFrame.pv, &uNewRsp);
3159 if (rcStrict != VINF_SUCCESS)
3160 return rcStrict;
3161 uNewEip = uFrame.pu32[0];
3162 uNewCs = (uint16_t)uFrame.pu32[1];
3163 uNewFlags = uFrame.pu32[2];
3164 }
3165 else
3166 {
3167 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 6, &uFrame.pv, &uNewRsp);
3168 if (rcStrict != VINF_SUCCESS)
3169 return rcStrict;
3170 uNewEip = uFrame.pu16[0];
3171 uNewCs = uFrame.pu16[1];
3172 uNewFlags = uFrame.pu16[2];
3173 }
3174 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3175 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3176 { /* extremely likely */ }
3177 else
3178 return rcStrict;
3179 Log7(("iemCImpl_iret_prot: uNewCs=%#06x uNewEip=%#010x uNewFlags=%#x uNewRsp=%#18llx uCpl=%u\n", uNewCs, uNewEip, uNewFlags, uNewRsp, pVCpu->iem.s.uCpl));
3180
3181 /*
3182 * We're hopefully not returning to V8086 mode...
3183 */
3184 if ( (uNewFlags & X86_EFL_VM)
3185 && pVCpu->iem.s.uCpl == 0)
3186 {
3187 Assert(enmEffOpSize == IEMMODE_32BIT);
3188 return IEM_CIMPL_CALL_4(iemCImpl_iret_prot_v8086, uNewEip, uNewCs, uNewFlags, uNewRsp);
3189 }
3190
3191 /*
3192 * Protected mode.
3193 */
3194 /* Read the CS descriptor. */
3195 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3196 {
3197 Log(("iret %04x:%08x -> invalid CS selector, #GP(0)\n", uNewCs, uNewEip));
3198 return iemRaiseGeneralProtectionFault0(pVCpu);
3199 }
3200
3201 IEMSELDESC DescCS;
3202 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3203 if (rcStrict != VINF_SUCCESS)
3204 {
3205 Log(("iret %04x:%08x - rcStrict=%Rrc when fetching CS\n", uNewCs, uNewEip, VBOXSTRICTRC_VAL(rcStrict)));
3206 return rcStrict;
3207 }
3208
3209 /* Must be a code descriptor. */
3210 if (!DescCS.Legacy.Gen.u1DescType)
3211 {
3212 Log(("iret %04x:%08x - CS is system segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3213 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3214 }
3215 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3216 {
3217 Log(("iret %04x:%08x - not code segment (%#x) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u4Type));
3218 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3219 }
3220
3221 /* Privilege checks. */
3222 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3223 {
3224 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3225 {
3226 Log(("iret %04x:%08x - RPL != DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3227 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3228 }
3229 }
3230 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3231 {
3232 Log(("iret %04x:%08x - RPL < DPL (%d) -> #GP\n", uNewCs, uNewEip, DescCS.Legacy.Gen.u2Dpl));
3233 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3234 }
3235 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3236 {
3237 Log(("iret %04x:%08x - RPL < CPL (%d) -> #GP\n", uNewCs, uNewEip, pVCpu->iem.s.uCpl));
3238 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3239 }
3240
3241 /* Present? */
3242 if (!DescCS.Legacy.Gen.u1Present)
3243 {
3244 Log(("iret %04x:%08x - CS not present -> #NP\n", uNewCs, uNewEip));
3245 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3246 }
3247
3248 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3249
3250 /*
3251 * Return to outer level?
3252 */
3253 if ((uNewCs & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
3254 {
3255 uint16_t uNewSS;
3256 uint32_t uNewESP;
3257 if (enmEffOpSize == IEMMODE_32BIT)
3258 {
3259 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 8, &uFrame.pv, &uNewRsp);
3260 if (rcStrict != VINF_SUCCESS)
3261 return rcStrict;
3262/** @todo We might be popping a 32-bit ESP from the IRET frame, but whether
3263 * 16-bit or 32-bit are being loaded into SP depends on the D/B
3264 * bit of the popped SS selector it turns out. */
3265 uNewESP = uFrame.pu32[0];
3266 uNewSS = (uint16_t)uFrame.pu32[1];
3267 }
3268 else
3269 {
3270 rcStrict = iemMemStackPopContinueSpecial(pVCpu, 4, &uFrame.pv, &uNewRsp);
3271 if (rcStrict != VINF_SUCCESS)
3272 return rcStrict;
3273 uNewESP = uFrame.pu16[0];
3274 uNewSS = uFrame.pu16[1];
3275 }
3276 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uFrame.pv, IEM_ACCESS_STACK_R);
3277 if (rcStrict != VINF_SUCCESS)
3278 return rcStrict;
3279 Log7(("iemCImpl_iret_prot: uNewSS=%#06x uNewESP=%#010x\n", uNewSS, uNewESP));
3280
3281 /* Read the SS descriptor. */
3282 if (!(uNewSS & X86_SEL_MASK_OFF_RPL))
3283 {
3284 Log(("iret %04x:%08x/%04x:%08x -> invalid SS selector, #GP(0)\n", uNewCs, uNewEip, uNewSS, uNewESP));
3285 return iemRaiseGeneralProtectionFault0(pVCpu);
3286 }
3287
3288 IEMSELDESC DescSS;
3289 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSS, X86_XCPT_GP); /** @todo Correct exception? */
3290 if (rcStrict != VINF_SUCCESS)
3291 {
3292 Log(("iret %04x:%08x/%04x:%08x - %Rrc when fetching SS\n",
3293 uNewCs, uNewEip, uNewSS, uNewESP, VBOXSTRICTRC_VAL(rcStrict)));
3294 return rcStrict;
3295 }
3296
3297 /* Privilege checks. */
3298 if ((uNewSS & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3299 {
3300 Log(("iret %04x:%08x/%04x:%08x -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewEip, uNewSS, uNewESP));
3301 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3302 }
3303 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3304 {
3305 Log(("iret %04x:%08x/%04x:%08x -> SS.DPL (%d) != CS.RPL -> #GP\n",
3306 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u2Dpl));
3307 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3308 }
3309
3310 /* Must be a writeable data segment descriptor. */
3311 if (!DescSS.Legacy.Gen.u1DescType)
3312 {
3313 Log(("iret %04x:%08x/%04x:%08x -> SS is system segment (%#x) -> #GP\n",
3314 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3315 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3316 }
3317 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3318 {
3319 Log(("iret %04x:%08x/%04x:%08x - not writable data segment (%#x) -> #GP\n",
3320 uNewCs, uNewEip, uNewSS, uNewESP, DescSS.Legacy.Gen.u4Type));
3321 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSS);
3322 }
3323
3324 /* Present? */
3325 if (!DescSS.Legacy.Gen.u1Present)
3326 {
3327 Log(("iret %04x:%08x/%04x:%08x -> SS not present -> #SS\n", uNewCs, uNewEip, uNewSS, uNewESP));
3328 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSS);
3329 }
3330
3331 uint32_t cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3332
3333 /* Check EIP. */
3334 if (uNewEip > cbLimitCS)
3335 {
3336 Log(("iret %04x:%08x/%04x:%08x -> EIP is out of bounds (%#x) -> #GP(0)\n",
3337 uNewCs, uNewEip, uNewSS, uNewESP, cbLimitCS));
3338 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3339 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3340 }
3341
3342 /*
3343 * Commit the changes, marking CS and SS accessed first since
3344 * that may fail.
3345 */
3346 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3347 {
3348 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3349 if (rcStrict != VINF_SUCCESS)
3350 return rcStrict;
3351 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3352 }
3353 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3354 {
3355 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSS);
3356 if (rcStrict != VINF_SUCCESS)
3357 return rcStrict;
3358 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3359 }
3360
3361 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3362 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3363 if (enmEffOpSize != IEMMODE_16BIT)
3364 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3365 if (pVCpu->iem.s.uCpl == 0)
3366 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3367 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3368 fEFlagsMask |= X86_EFL_IF;
3369 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3370 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3371 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3372 fEFlagsNew &= ~fEFlagsMask;
3373 fEFlagsNew |= uNewFlags & fEFlagsMask;
3374#ifdef DBGFTRACE_ENABLED
3375 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up%u %04x:%08x -> %04x:%04x %x %04x:%04x",
3376 pVCpu->iem.s.uCpl, uNewCs & X86_SEL_RPL, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3377 uNewCs, uNewEip, uNewFlags, uNewSS, uNewESP);
3378#endif
3379
3380 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3381 pVCpu->cpum.GstCtx.rip = uNewEip;
3382 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3383 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3384 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3385 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3386 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3387 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3388 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3389
3390 pVCpu->cpum.GstCtx.ss.Sel = uNewSS;
3391 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSS;
3392 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3393 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3394 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3395 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3396 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3397 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewESP;
3398 else
3399 pVCpu->cpum.GstCtx.rsp = uNewESP;
3400
3401 pVCpu->iem.s.uCpl = uNewCs & X86_SEL_RPL;
3402 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.ds);
3403 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.es);
3404 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.fs);
3405 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCs & X86_SEL_RPL, &pVCpu->cpum.GstCtx.gs);
3406
3407 /* Done! */
3408
3409 }
3410 /*
3411 * Return to the same level.
3412 */
3413 else
3414 {
3415 /* Check EIP. */
3416 if (uNewEip > cbLimitCS)
3417 {
3418 Log(("iret %04x:%08x - EIP is out of bounds (%#x) -> #GP(0)\n", uNewCs, uNewEip, cbLimitCS));
3419 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3420 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3421 }
3422
3423 /*
3424 * Commit the changes, marking CS first since it may fail.
3425 */
3426 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3427 {
3428 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3429 if (rcStrict != VINF_SUCCESS)
3430 return rcStrict;
3431 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3432 }
3433
3434 X86EFLAGS NewEfl;
3435 NewEfl.u = IEMMISC_GET_EFL(pVCpu);
3436 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3437 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3438 if (enmEffOpSize != IEMMODE_16BIT)
3439 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3440 if (pVCpu->iem.s.uCpl == 0)
3441 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is 0 */
3442 else if (pVCpu->iem.s.uCpl <= NewEfl.Bits.u2IOPL)
3443 fEFlagsMask |= X86_EFL_IF;
3444 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
3445 fEFlagsMask &= ~(X86_EFL_AC | X86_EFL_ID | X86_EFL_VIF | X86_EFL_VIP);
3446 NewEfl.u &= ~fEFlagsMask;
3447 NewEfl.u |= fEFlagsMask & uNewFlags;
3448#ifdef DBGFTRACE_ENABLED
3449 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%up %04x:%08x -> %04x:%04x %x %04x:%04llx",
3450 pVCpu->iem.s.uCpl, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip,
3451 uNewCs, uNewEip, uNewFlags, pVCpu->cpum.GstCtx.ss.Sel, uNewRsp);
3452#endif
3453
3454 IEMMISC_SET_EFL(pVCpu, NewEfl.u);
3455 pVCpu->cpum.GstCtx.rip = uNewEip;
3456 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3457 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3458 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3459 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3460 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3461 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3462 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3463 if (!pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
3464 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3465 else
3466 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3467 /* Done! */
3468 }
3469
3470 /* Flush the prefetch buffer. */
3471#ifdef IEM_WITH_CODE_TLB
3472 pVCpu->iem.s.pbInstrBuf = NULL;
3473#else
3474 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3475#endif
3476
3477 return VINF_SUCCESS;
3478}
3479
3480
3481/**
3482 * Implements iret for long mode
3483 *
3484 * @param enmEffOpSize The effective operand size.
3485 */
3486IEM_CIMPL_DEF_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize)
3487{
3488 NOREF(cbInstr);
3489
3490 /*
3491 * Nested task return is not supported in long mode.
3492 */
3493 if (pVCpu->cpum.GstCtx.eflags.Bits.u1NT)
3494 {
3495 Log(("iretq with NT=1 (eflags=%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.eflags.u));
3496 return iemRaiseGeneralProtectionFault0(pVCpu);
3497 }
3498
3499 /*
3500 * Normal return.
3501 *
3502 * Do the stack bits, but don't commit RSP before everything checks
3503 * out right.
3504 */
3505 VBOXSTRICTRC rcStrict;
3506 RTCPTRUNION uFrame;
3507 uint64_t uNewRip;
3508 uint16_t uNewCs;
3509 uint16_t uNewSs;
3510 uint32_t uNewFlags;
3511 uint64_t uNewRsp;
3512 if (enmEffOpSize == IEMMODE_64BIT)
3513 {
3514 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*8, &uFrame.pv, &uNewRsp);
3515 if (rcStrict != VINF_SUCCESS)
3516 return rcStrict;
3517 uNewRip = uFrame.pu64[0];
3518 uNewCs = (uint16_t)uFrame.pu64[1];
3519 uNewFlags = (uint32_t)uFrame.pu64[2];
3520 uNewRsp = uFrame.pu64[3];
3521 uNewSs = (uint16_t)uFrame.pu64[4];
3522 }
3523 else if (enmEffOpSize == IEMMODE_32BIT)
3524 {
3525 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*4, &uFrame.pv, &uNewRsp);
3526 if (rcStrict != VINF_SUCCESS)
3527 return rcStrict;
3528 uNewRip = uFrame.pu32[0];
3529 uNewCs = (uint16_t)uFrame.pu32[1];
3530 uNewFlags = uFrame.pu32[2];
3531 uNewRsp = uFrame.pu32[3];
3532 uNewSs = (uint16_t)uFrame.pu32[4];
3533 }
3534 else
3535 {
3536 Assert(enmEffOpSize == IEMMODE_16BIT);
3537 rcStrict = iemMemStackPopBeginSpecial(pVCpu, 5*2, &uFrame.pv, &uNewRsp);
3538 if (rcStrict != VINF_SUCCESS)
3539 return rcStrict;
3540 uNewRip = uFrame.pu16[0];
3541 uNewCs = uFrame.pu16[1];
3542 uNewFlags = uFrame.pu16[2];
3543 uNewRsp = uFrame.pu16[3];
3544 uNewSs = uFrame.pu16[4];
3545 }
3546 rcStrict = iemMemStackPopDoneSpecial(pVCpu, (void *)uFrame.pv); /* don't use iemMemStackPopCommitSpecial here. */
3547 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3548 { /* extremely like */ }
3549 else
3550 return rcStrict;
3551 Log7(("iretq stack: cs:rip=%04x:%016RX64 rflags=%016RX64 ss:rsp=%04x:%016RX64\n", uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp));
3552
3553 /*
3554 * Check stuff.
3555 */
3556 /* Read the CS descriptor. */
3557 if (!(uNewCs & X86_SEL_MASK_OFF_RPL))
3558 {
3559 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid CS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3560 return iemRaiseGeneralProtectionFault0(pVCpu);
3561 }
3562
3563 IEMSELDESC DescCS;
3564 rcStrict = iemMemFetchSelDesc(pVCpu, &DescCS, uNewCs, X86_XCPT_GP);
3565 if (rcStrict != VINF_SUCCESS)
3566 {
3567 Log(("iret %04x:%016RX64/%04x:%016RX64 - rcStrict=%Rrc when fetching CS\n",
3568 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3569 return rcStrict;
3570 }
3571
3572 /* Must be a code descriptor. */
3573 if ( !DescCS.Legacy.Gen.u1DescType
3574 || !(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE))
3575 {
3576 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS is not a code segment T=%u T=%#xu -> #GP\n",
3577 uNewCs, uNewRip, uNewSs, uNewRsp, DescCS.Legacy.Gen.u1DescType, DescCS.Legacy.Gen.u4Type));
3578 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3579 }
3580
3581 /* Privilege checks. */
3582 uint8_t const uNewCpl = uNewCs & X86_SEL_RPL;
3583 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_CONF))
3584 {
3585 if ((uNewCs & X86_SEL_RPL) != DescCS.Legacy.Gen.u2Dpl)
3586 {
3587 Log(("iret %04x:%016RX64 - RPL != DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3588 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3589 }
3590 }
3591 else if ((uNewCs & X86_SEL_RPL) < DescCS.Legacy.Gen.u2Dpl)
3592 {
3593 Log(("iret %04x:%016RX64 - RPL < DPL (%d) -> #GP\n", uNewCs, uNewRip, DescCS.Legacy.Gen.u2Dpl));
3594 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3595 }
3596 if ((uNewCs & X86_SEL_RPL) < pVCpu->iem.s.uCpl)
3597 {
3598 Log(("iret %04x:%016RX64 - RPL < CPL (%d) -> #GP\n", uNewCs, uNewRip, pVCpu->iem.s.uCpl));
3599 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewCs);
3600 }
3601
3602 /* Present? */
3603 if (!DescCS.Legacy.Gen.u1Present)
3604 {
3605 Log(("iret %04x:%016RX64/%04x:%016RX64 - CS not present -> #NP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3606 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewCs);
3607 }
3608
3609 uint32_t cbLimitCS = X86DESC_LIMIT_G(&DescCS.Legacy);
3610
3611 /* Read the SS descriptor. */
3612 IEMSELDESC DescSS;
3613 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3614 {
3615 if ( !DescCS.Legacy.Gen.u1Long
3616 || DescCS.Legacy.Gen.u1DefBig /** @todo exactly how does iret (and others) behave with u1Long=1 and u1DefBig=1? \#GP(sel)? */
3617 || uNewCpl > 2) /** @todo verify SS=0 impossible for ring-3. */
3618 {
3619 Log(("iret %04x:%016RX64/%04x:%016RX64 -> invalid SS selector, #GP(0)\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3620 return iemRaiseGeneralProtectionFault0(pVCpu);
3621 }
3622 DescSS.Legacy.u = 0;
3623 }
3624 else
3625 {
3626 rcStrict = iemMemFetchSelDesc(pVCpu, &DescSS, uNewSs, X86_XCPT_GP); /** @todo Correct exception? */
3627 if (rcStrict != VINF_SUCCESS)
3628 {
3629 Log(("iret %04x:%016RX64/%04x:%016RX64 - %Rrc when fetching SS\n",
3630 uNewCs, uNewRip, uNewSs, uNewRsp, VBOXSTRICTRC_VAL(rcStrict)));
3631 return rcStrict;
3632 }
3633 }
3634
3635 /* Privilege checks. */
3636 if ((uNewSs & X86_SEL_RPL) != (uNewCs & X86_SEL_RPL))
3637 {
3638 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.RPL != CS.RPL -> #GP\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3639 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3640 }
3641
3642 uint32_t cbLimitSs;
3643 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3644 cbLimitSs = UINT32_MAX;
3645 else
3646 {
3647 if (DescSS.Legacy.Gen.u2Dpl != (uNewCs & X86_SEL_RPL))
3648 {
3649 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS.DPL (%d) != CS.RPL -> #GP\n",
3650 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u2Dpl));
3651 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3652 }
3653
3654 /* Must be a writeable data segment descriptor. */
3655 if (!DescSS.Legacy.Gen.u1DescType)
3656 {
3657 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS is system segment (%#x) -> #GP\n",
3658 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3659 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3660 }
3661 if ((DescSS.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE)
3662 {
3663 Log(("iret %04x:%016RX64/%04x:%016RX64 - not writable data segment (%#x) -> #GP\n",
3664 uNewCs, uNewRip, uNewSs, uNewRsp, DescSS.Legacy.Gen.u4Type));
3665 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewSs);
3666 }
3667
3668 /* Present? */
3669 if (!DescSS.Legacy.Gen.u1Present)
3670 {
3671 Log(("iret %04x:%016RX64/%04x:%016RX64 -> SS not present -> #SS\n", uNewCs, uNewRip, uNewSs, uNewRsp));
3672 return iemRaiseStackSelectorNotPresentBySelector(pVCpu, uNewSs);
3673 }
3674 cbLimitSs = X86DESC_LIMIT_G(&DescSS.Legacy);
3675 }
3676
3677 /* Check EIP. */
3678 if (DescCS.Legacy.Gen.u1Long)
3679 {
3680 if (!IEM_IS_CANONICAL(uNewRip))
3681 {
3682 Log(("iret %04x:%016RX64/%04x:%016RX64 -> RIP is not canonical -> #GP(0)\n",
3683 uNewCs, uNewRip, uNewSs, uNewRsp));
3684 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3685 }
3686 }
3687 else
3688 {
3689 if (uNewRip > cbLimitCS)
3690 {
3691 Log(("iret %04x:%016RX64/%04x:%016RX64 -> EIP is out of bounds (%#x) -> #GP(0)\n",
3692 uNewCs, uNewRip, uNewSs, uNewRsp, cbLimitCS));
3693 /** @todo: Which is it, #GP(0) or #GP(sel)? */
3694 return iemRaiseSelectorBoundsBySelector(pVCpu, uNewCs);
3695 }
3696 }
3697
3698 /*
3699 * Commit the changes, marking CS and SS accessed first since
3700 * that may fail.
3701 */
3702 /** @todo where exactly are these actually marked accessed by a real CPU? */
3703 if (!(DescCS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3704 {
3705 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewCs);
3706 if (rcStrict != VINF_SUCCESS)
3707 return rcStrict;
3708 DescCS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3709 }
3710 if (!(DescSS.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
3711 {
3712 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uNewSs);
3713 if (rcStrict != VINF_SUCCESS)
3714 return rcStrict;
3715 DescSS.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
3716 }
3717
3718 uint32_t fEFlagsMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF
3719 | X86_EFL_TF | X86_EFL_DF | X86_EFL_OF | X86_EFL_NT;
3720 if (enmEffOpSize != IEMMODE_16BIT)
3721 fEFlagsMask |= X86_EFL_RF | X86_EFL_AC | X86_EFL_ID;
3722 if (pVCpu->iem.s.uCpl == 0)
3723 fEFlagsMask |= X86_EFL_IF | X86_EFL_IOPL | X86_EFL_VIF | X86_EFL_VIP; /* VM is ignored */
3724 else if (pVCpu->iem.s.uCpl <= pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL)
3725 fEFlagsMask |= X86_EFL_IF;
3726 uint32_t fEFlagsNew = IEMMISC_GET_EFL(pVCpu);
3727 fEFlagsNew &= ~fEFlagsMask;
3728 fEFlagsNew |= uNewFlags & fEFlagsMask;
3729#ifdef DBGFTRACE_ENABLED
3730 RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "iret/%ul%u %08llx -> %04x:%04llx %llx %04x:%04llx",
3731 pVCpu->iem.s.uCpl, uNewCpl, pVCpu->cpum.GstCtx.rip, uNewCs, uNewRip, uNewFlags, uNewSs, uNewRsp);
3732#endif
3733
3734 IEMMISC_SET_EFL(pVCpu, fEFlagsNew);
3735 pVCpu->cpum.GstCtx.rip = uNewRip;
3736 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
3737 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
3738 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
3739 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESC_GET_HID_ATTR(&DescCS.Legacy);
3740 pVCpu->cpum.GstCtx.cs.u32Limit = cbLimitCS;
3741 pVCpu->cpum.GstCtx.cs.u64Base = X86DESC_BASE(&DescCS.Legacy);
3742 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
3743 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long || pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig)
3744 pVCpu->cpum.GstCtx.rsp = uNewRsp;
3745 else
3746 pVCpu->cpum.GstCtx.sp = (uint16_t)uNewRsp;
3747 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
3748 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
3749 if (!(uNewSs & X86_SEL_MASK_OFF_RPL))
3750 {
3751 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3752 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_UNUSABLE | (uNewCpl << X86DESCATTR_DPL_SHIFT);
3753 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
3754 pVCpu->cpum.GstCtx.ss.u64Base = 0;
3755 Log2(("iretq new SS: NULL\n"));
3756 }
3757 else
3758 {
3759 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
3760 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESC_GET_HID_ATTR(&DescSS.Legacy);
3761 pVCpu->cpum.GstCtx.ss.u32Limit = cbLimitSs;
3762 pVCpu->cpum.GstCtx.ss.u64Base = X86DESC_BASE(&DescSS.Legacy);
3763 Log2(("iretq new SS: base=%#RX64 lim=%#x attr=%#x\n", pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3764 }
3765
3766 if (pVCpu->iem.s.uCpl != uNewCpl)
3767 {
3768 pVCpu->iem.s.uCpl = uNewCpl;
3769 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.ds);
3770 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.es);
3771 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.fs);
3772 iemHlpAdjustSelectorForNewCpl(pVCpu, uNewCpl, &pVCpu->cpum.GstCtx.gs);
3773 }
3774
3775 /* Flush the prefetch buffer. */
3776#ifdef IEM_WITH_CODE_TLB
3777 pVCpu->iem.s.pbInstrBuf = NULL;
3778#else
3779 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
3780#endif
3781
3782 return VINF_SUCCESS;
3783}
3784
3785
3786/**
3787 * Implements iret.
3788 *
3789 * @param enmEffOpSize The effective operand size.
3790 */
3791IEM_CIMPL_DEF_1(iemCImpl_iret, IEMMODE, enmEffOpSize)
3792{
3793 bool fBlockingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3794
3795#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3796 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
3797 {
3798 /*
3799 * Record whether NMI (or virtual-NMI) blocking is in effect during the execution
3800 * of this IRET instruction. We need to provide this information as part of some
3801 * VM-exits.
3802 *
3803 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3804 */
3805 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_VIRT_NMI))
3806 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking;
3807 else
3808 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = fBlockingNmi;
3809
3810 /*
3811 * If "NMI exiting" is set, IRET does not affect blocking of NMIs.
3812 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3813 */
3814 if (IEM_VMX_IS_PINCTLS_SET(pVCpu, VMX_PIN_CTLS_NMI_EXIT))
3815 fBlockingNmi = false;
3816
3817 /* Clear virtual-NMI blocking, if any, before causing any further exceptions. */
3818 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
3819 }
3820#endif
3821
3822 /*
3823 * The SVM nested-guest intercept for IRET takes priority over all exceptions,
3824 * The NMI is still held pending (which I assume means blocking of further NMIs
3825 * is in effect).
3826 *
3827 * See AMD spec. 15.9 "Instruction Intercepts".
3828 * See AMD spec. 15.21.9 "NMI Support".
3829 */
3830 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IRET))
3831 {
3832 Log(("iret: Guest intercept -> #VMEXIT\n"));
3833 IEM_SVM_UPDATE_NRIP(pVCpu);
3834 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IRET, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
3835 }
3836
3837 /*
3838 * Clear NMI blocking, if any, before causing any further exceptions.
3839 * See Intel spec. 6.7.1 "Handling Multiple NMIs".
3840 */
3841 if (fBlockingNmi)
3842 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
3843
3844 /*
3845 * Call a mode specific worker.
3846 */
3847 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
3848 return IEM_CIMPL_CALL_1(iemCImpl_iret_real_v8086, enmEffOpSize);
3849 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_LDTR);
3850 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
3851 return IEM_CIMPL_CALL_1(iemCImpl_iret_64bit, enmEffOpSize);
3852 return IEM_CIMPL_CALL_1(iemCImpl_iret_prot, enmEffOpSize);
3853}
3854
3855
3856static void iemLoadallSetSelector(PVMCPUCC pVCpu, uint8_t iSegReg, uint16_t uSel)
3857{
3858 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3859
3860 pHid->Sel = uSel;
3861 pHid->ValidSel = uSel;
3862 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
3863}
3864
3865
3866static void iemLoadall286SetDescCache(PVMCPUCC pVCpu, uint8_t iSegReg, uint8_t const *pbMem)
3867{
3868 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
3869
3870 /* The base is in the first three bytes. */
3871 pHid->u64Base = pbMem[0] + (pbMem[1] << 8) + (pbMem[2] << 16);
3872 /* The attributes are in the fourth byte. */
3873 pHid->Attr.u = pbMem[3];
3874 /* The limit is in the last two bytes. */
3875 pHid->u32Limit = pbMem[4] + (pbMem[5] << 8);
3876}
3877
3878
3879/**
3880 * Implements 286 LOADALL (286 CPUs only).
3881 */
3882IEM_CIMPL_DEF_0(iemCImpl_loadall286)
3883{
3884 NOREF(cbInstr);
3885
3886 /* Data is loaded from a buffer at 800h. No checks are done on the
3887 * validity of loaded state.
3888 *
3889 * LOADALL only loads the internal CPU state, it does not access any
3890 * GDT, LDT, or similar tables.
3891 */
3892
3893 if (pVCpu->iem.s.uCpl != 0)
3894 {
3895 Log(("loadall286: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
3896 return iemRaiseGeneralProtectionFault0(pVCpu);
3897 }
3898
3899 uint8_t const *pbMem = NULL;
3900 uint16_t const *pa16Mem;
3901 uint8_t const *pa8Mem;
3902 RTGCPHYS GCPtrStart = 0x800; /* Fixed table location. */
3903 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&pbMem, 0x66, UINT8_MAX, GCPtrStart, IEM_ACCESS_SYS_R);
3904 if (rcStrict != VINF_SUCCESS)
3905 return rcStrict;
3906
3907 /* The MSW is at offset 0x06. */
3908 pa16Mem = (uint16_t const *)(pbMem + 0x06);
3909 /* Even LOADALL can't clear the MSW.PE bit, though it can set it. */
3910 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3911 uNewCr0 |= *pa16Mem & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3912 uint64_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
3913
3914 CPUMSetGuestCR0(pVCpu, uNewCr0);
3915 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCr0);
3916
3917 /* Inform PGM if mode changed. */
3918 if ((uNewCr0 & X86_CR0_PE) != (uOldCr0 & X86_CR0_PE))
3919 {
3920 int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */, false /* fPdpesMapped */);
3921 AssertRCReturn(rc, rc);
3922 /* ignore informational status codes */
3923 }
3924 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
3925 false /* fForce */);
3926
3927 /* TR selector is at offset 0x16. */
3928 pa16Mem = (uint16_t const *)(pbMem + 0x16);
3929 pVCpu->cpum.GstCtx.tr.Sel = pa16Mem[0];
3930 pVCpu->cpum.GstCtx.tr.ValidSel = pa16Mem[0];
3931 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
3932
3933 /* Followed by FLAGS... */
3934 pVCpu->cpum.GstCtx.eflags.u = pa16Mem[1] | X86_EFL_1;
3935 pVCpu->cpum.GstCtx.ip = pa16Mem[2]; /* ...and IP. */
3936
3937 /* LDT is at offset 0x1C. */
3938 pa16Mem = (uint16_t const *)(pbMem + 0x1C);
3939 pVCpu->cpum.GstCtx.ldtr.Sel = pa16Mem[0];
3940 pVCpu->cpum.GstCtx.ldtr.ValidSel = pa16Mem[0];
3941 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
3942
3943 /* Segment registers are at offset 0x1E. */
3944 pa16Mem = (uint16_t const *)(pbMem + 0x1E);
3945 iemLoadallSetSelector(pVCpu, X86_SREG_DS, pa16Mem[0]);
3946 iemLoadallSetSelector(pVCpu, X86_SREG_SS, pa16Mem[1]);
3947 iemLoadallSetSelector(pVCpu, X86_SREG_CS, pa16Mem[2]);
3948 iemLoadallSetSelector(pVCpu, X86_SREG_ES, pa16Mem[3]);
3949
3950 /* GPRs are at offset 0x26. */
3951 pa16Mem = (uint16_t const *)(pbMem + 0x26);
3952 pVCpu->cpum.GstCtx.di = pa16Mem[0];
3953 pVCpu->cpum.GstCtx.si = pa16Mem[1];
3954 pVCpu->cpum.GstCtx.bp = pa16Mem[2];
3955 pVCpu->cpum.GstCtx.sp = pa16Mem[3];
3956 pVCpu->cpum.GstCtx.bx = pa16Mem[4];
3957 pVCpu->cpum.GstCtx.dx = pa16Mem[5];
3958 pVCpu->cpum.GstCtx.cx = pa16Mem[6];
3959 pVCpu->cpum.GstCtx.ax = pa16Mem[7];
3960
3961 /* Descriptor caches are at offset 0x36, 6 bytes per entry. */
3962 iemLoadall286SetDescCache(pVCpu, X86_SREG_ES, pbMem + 0x36);
3963 iemLoadall286SetDescCache(pVCpu, X86_SREG_CS, pbMem + 0x3C);
3964 iemLoadall286SetDescCache(pVCpu, X86_SREG_SS, pbMem + 0x42);
3965 iemLoadall286SetDescCache(pVCpu, X86_SREG_DS, pbMem + 0x48);
3966
3967 /* GDTR contents are at offset 0x4E, 6 bytes. */
3968 RTGCPHYS GCPtrBase;
3969 uint16_t cbLimit;
3970 pa8Mem = pbMem + 0x4E;
3971 /* NB: Fourth byte "should be zero"; we are ignoring it. */
3972 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
3973 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
3974 CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
3975
3976 /* IDTR contents are at offset 0x5A, 6 bytes. */
3977 pa8Mem = pbMem + 0x5A;
3978 GCPtrBase = pa8Mem[0] + (pa8Mem[1] << 8) + (pa8Mem[2] << 16);
3979 cbLimit = pa8Mem[4] + (pa8Mem[5] << 8);
3980 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
3981
3982 Log(("LOADALL: GDTR:%08RX64/%04X, IDTR:%08RX64/%04X\n", pVCpu->cpum.GstCtx.gdtr.pGdt, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.idtr.pIdt, pVCpu->cpum.GstCtx.idtr.cbIdt));
3983 Log(("LOADALL: CS:%04X, CS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.cs.u64Base, pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.Attr.u));
3984 Log(("LOADALL: DS:%04X, DS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.ds.u64Base, pVCpu->cpum.GstCtx.ds.u32Limit, pVCpu->cpum.GstCtx.ds.Attr.u));
3985 Log(("LOADALL: ES:%04X, ES base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.es.u64Base, pVCpu->cpum.GstCtx.es.u32Limit, pVCpu->cpum.GstCtx.es.Attr.u));
3986 Log(("LOADALL: SS:%04X, SS base:%08X, limit:%04X, attrs:%02X\n", pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ss.u64Base, pVCpu->cpum.GstCtx.ss.u32Limit, pVCpu->cpum.GstCtx.ss.Attr.u));
3987 Log(("LOADALL: SI:%04X, DI:%04X, AX:%04X, BX:%04X, CX:%04X, DX:%04X\n", pVCpu->cpum.GstCtx.si, pVCpu->cpum.GstCtx.di, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.bx, pVCpu->cpum.GstCtx.cx, pVCpu->cpum.GstCtx.dx));
3988
3989 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pbMem, IEM_ACCESS_SYS_R);
3990 if (rcStrict != VINF_SUCCESS)
3991 return rcStrict;
3992
3993 /* The CPL may change. It is taken from the "DPL fields of the SS and CS
3994 * descriptor caches" but there is no word as to what happens if those are
3995 * not identical (probably bad things).
3996 */
3997 pVCpu->iem.s.uCpl = pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl;
3998
3999 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS | CPUM_CHANGED_IDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_TR | CPUM_CHANGED_LDTR);
4000
4001 /* Flush the prefetch buffer. */
4002#ifdef IEM_WITH_CODE_TLB
4003 pVCpu->iem.s.pbInstrBuf = NULL;
4004#else
4005 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4006#endif
4007 return rcStrict;
4008}
4009
4010
4011/**
4012 * Implements SYSCALL (AMD and Intel64).
4013 *
4014 * @param enmEffOpSize The effective operand size.
4015 */
4016IEM_CIMPL_DEF_0(iemCImpl_syscall)
4017{
4018 /** @todo hack, LOADALL should be decoded as such on a 286. */
4019 if (RT_UNLIKELY(pVCpu->iem.s.uTargetCpu == IEMTARGETCPU_286))
4020 return iemCImpl_loadall286(pVCpu, cbInstr);
4021
4022 /*
4023 * Check preconditions.
4024 *
4025 * Note that CPUs described in the documentation may load a few odd values
4026 * into CS and SS than we allow here. This has yet to be checked on real
4027 * hardware.
4028 */
4029 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4030 {
4031 Log(("syscall: Not enabled in EFER -> #UD\n"));
4032 return iemRaiseUndefinedOpcode(pVCpu);
4033 }
4034 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4035 {
4036 Log(("syscall: Protected mode is required -> #GP(0)\n"));
4037 return iemRaiseGeneralProtectionFault0(pVCpu);
4038 }
4039 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4040 {
4041 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4042 return iemRaiseUndefinedOpcode(pVCpu);
4043 }
4044
4045 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4046
4047 /** @todo verify RPL ignoring and CS=0xfff8 (i.e. SS == 0). */
4048 /** @todo what about LDT selectors? Shouldn't matter, really. */
4049 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSCALL_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4050 uint16_t uNewSs = uNewCs + 8;
4051 if (uNewCs == 0 || uNewSs == 0)
4052 {
4053 Log(("syscall: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4054 return iemRaiseGeneralProtectionFault0(pVCpu);
4055 }
4056
4057 /* Long mode and legacy mode differs. */
4058 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4059 {
4060 uint64_t uNewRip = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.msrLSTAR : pVCpu->cpum.GstCtx. msrCSTAR;
4061
4062 /* This test isn't in the docs, but I'm not trusting the guys writing
4063 the MSRs to have validated the values as canonical like they should. */
4064 if (!IEM_IS_CANONICAL(uNewRip))
4065 {
4066 Log(("syscall: Only available in long mode on intel -> #UD\n"));
4067 return iemRaiseUndefinedOpcode(pVCpu);
4068 }
4069
4070 /*
4071 * Commit it.
4072 */
4073 Log(("syscall: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, uNewRip));
4074 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.rip + cbInstr;
4075 pVCpu->cpum.GstCtx.rip = uNewRip;
4076
4077 pVCpu->cpum.GstCtx.rflags.u &= ~X86_EFL_RF;
4078 pVCpu->cpum.GstCtx.r11 = pVCpu->cpum.GstCtx.rflags.u;
4079 pVCpu->cpum.GstCtx.rflags.u &= ~pVCpu->cpum.GstCtx.msrSFMASK;
4080 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4081
4082 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4083 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4084 }
4085 else
4086 {
4087 /*
4088 * Commit it.
4089 */
4090 Log(("syscall: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n",
4091 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, (uint32_t)(pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK)));
4092 pVCpu->cpum.GstCtx.rcx = pVCpu->cpum.GstCtx.eip + cbInstr;
4093 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.msrSTAR & MSR_K6_STAR_SYSCALL_EIP_MASK;
4094 pVCpu->cpum.GstCtx.rflags.u &= ~(X86_EFL_VM | X86_EFL_IF | X86_EFL_RF);
4095
4096 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC;
4097 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_RW_ACC;
4098 }
4099 pVCpu->cpum.GstCtx.cs.Sel = uNewCs;
4100 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs;
4101 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4102 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4103 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4104
4105 pVCpu->cpum.GstCtx.ss.Sel = uNewSs;
4106 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs;
4107 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4108 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4109 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4110
4111 /* Flush the prefetch buffer. */
4112#ifdef IEM_WITH_CODE_TLB
4113 pVCpu->iem.s.pbInstrBuf = NULL;
4114#else
4115 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4116#endif
4117
4118 return VINF_SUCCESS;
4119}
4120
4121
4122/**
4123 * Implements SYSRET (AMD and Intel64).
4124 */
4125IEM_CIMPL_DEF_0(iemCImpl_sysret)
4126
4127{
4128 RT_NOREF_PV(cbInstr);
4129
4130 /*
4131 * Check preconditions.
4132 *
4133 * Note that CPUs described in the documentation may load a few odd values
4134 * into CS and SS than we allow here. This has yet to be checked on real
4135 * hardware.
4136 */
4137 if (!(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_SCE))
4138 {
4139 Log(("sysret: Not enabled in EFER -> #UD\n"));
4140 return iemRaiseUndefinedOpcode(pVCpu);
4141 }
4142 if (IEM_IS_GUEST_CPU_INTEL(pVCpu) && !CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4143 {
4144 Log(("sysret: Only available in long mode on intel -> #UD\n"));
4145 return iemRaiseUndefinedOpcode(pVCpu);
4146 }
4147 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4148 {
4149 Log(("sysret: Protected mode is required -> #GP(0)\n"));
4150 return iemRaiseGeneralProtectionFault0(pVCpu);
4151 }
4152 if (pVCpu->iem.s.uCpl != 0)
4153 {
4154 Log(("sysret: CPL must be 0 not %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
4155 return iemRaiseGeneralProtectionFault0(pVCpu);
4156 }
4157
4158 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS);
4159
4160 /** @todo Does SYSRET verify CS != 0 and SS != 0? Neither is valid in ring-3. */
4161 uint16_t uNewCs = (pVCpu->cpum.GstCtx.msrSTAR >> MSR_K6_STAR_SYSRET_CS_SS_SHIFT) & X86_SEL_MASK_OFF_RPL;
4162 uint16_t uNewSs = uNewCs + 8;
4163 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4164 uNewCs += 16;
4165 if (uNewCs == 0 || uNewSs == 0)
4166 {
4167 Log(("sysret: msrSTAR.CS = 0 or SS = 0 -> #GP(0)\n"));
4168 return iemRaiseGeneralProtectionFault0(pVCpu);
4169 }
4170
4171 /*
4172 * Commit it.
4173 */
4174 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4175 {
4176 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT)
4177 {
4178 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64 [r11=%#llx]\n",
4179 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.r11));
4180 /* Note! We disregard intel manual regarding the RCX cananonical
4181 check, ask intel+xen why AMD doesn't do it. */
4182 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4183 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_L | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4184 | (3 << X86DESCATTR_DPL_SHIFT);
4185 }
4186 else
4187 {
4188 Log(("sysret: %04x:%016RX64 [efl=%#llx] -> %04x:%08RX32 [r11=%#llx]\n",
4189 pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.r11));
4190 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.ecx;
4191 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4192 | (3 << X86DESCATTR_DPL_SHIFT);
4193 }
4194 /** @todo testcase: See what kind of flags we can make SYSRET restore and
4195 * what it really ignores. RF and VM are hinted at being zero, by AMD. */
4196 pVCpu->cpum.GstCtx.rflags.u = pVCpu->cpum.GstCtx.r11 & (X86_EFL_POPF_BITS | X86_EFL_VIF | X86_EFL_VIP);
4197 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_1;
4198 }
4199 else
4200 {
4201 Log(("sysret: %04x:%08RX32 [efl=%#x] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.eflags.u, uNewCs, pVCpu->cpum.GstCtx.ecx));
4202 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rcx;
4203 pVCpu->cpum.GstCtx.rflags.u |= X86_EFL_IF;
4204 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_P | X86DESCATTR_G | X86DESCATTR_D | X86DESCATTR_DT | X86_SEL_TYPE_ER_ACC
4205 | (3 << X86DESCATTR_DPL_SHIFT);
4206 }
4207 pVCpu->cpum.GstCtx.cs.Sel = uNewCs | 3;
4208 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs | 3;
4209 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4210 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4211 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4212
4213 pVCpu->cpum.GstCtx.ss.Sel = uNewSs | 3;
4214 pVCpu->cpum.GstCtx.ss.ValidSel = uNewSs | 3;
4215 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4216 /* The SS hidden bits remains unchanged says AMD. To that I say "Yeah, right!". */
4217 pVCpu->cpum.GstCtx.ss.Attr.u |= (3 << X86DESCATTR_DPL_SHIFT);
4218 /** @todo Testcase: verify that SS.u1Long and SS.u1DefBig are left unchanged
4219 * on sysret. */
4220
4221 /* Flush the prefetch buffer. */
4222#ifdef IEM_WITH_CODE_TLB
4223 pVCpu->iem.s.pbInstrBuf = NULL;
4224#else
4225 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4226#endif
4227
4228 return VINF_SUCCESS;
4229}
4230
4231
4232/**
4233 * Implements SYSENTER (Intel, 32-bit AMD).
4234 */
4235IEM_CIMPL_DEF_0(iemCImpl_sysenter)
4236{
4237 RT_NOREF(cbInstr);
4238
4239 /*
4240 * Check preconditions.
4241 *
4242 * Note that CPUs described in the documentation may load a few odd values
4243 * into CS and SS than we allow here. This has yet to be checked on real
4244 * hardware.
4245 */
4246 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSysEnter)
4247 {
4248 Log(("sysenter: not supported -=> #UD\n"));
4249 return iemRaiseUndefinedOpcode(pVCpu);
4250 }
4251 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4252 {
4253 Log(("sysenter: Protected or long mode is required -> #GP(0)\n"));
4254 return iemRaiseGeneralProtectionFault0(pVCpu);
4255 }
4256 bool fIsLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
4257 if (IEM_IS_GUEST_CPU_AMD(pVCpu) && !fIsLongMode)
4258 {
4259 Log(("sysenter: Only available in protected mode on AMD -> #UD\n"));
4260 return iemRaiseUndefinedOpcode(pVCpu);
4261 }
4262 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4263 uint16_t uNewCs = pVCpu->cpum.GstCtx.SysEnter.cs;
4264 if ((uNewCs & X86_SEL_MASK_OFF_RPL) == 0)
4265 {
4266 Log(("sysenter: SYSENTER_CS = %#x -> #GP(0)\n", uNewCs));
4267 return iemRaiseGeneralProtectionFault0(pVCpu);
4268 }
4269
4270 /* This test isn't in the docs, it's just a safeguard against missing
4271 canonical checks when writing the registers. */
4272 if (RT_LIKELY( !fIsLongMode
4273 || ( IEM_IS_CANONICAL(pVCpu->cpum.GstCtx.SysEnter.eip)
4274 && IEM_IS_CANONICAL(pVCpu->cpum.GstCtx.SysEnter.esp))))
4275 { /* likely */ }
4276 else
4277 {
4278 Log(("sysenter: SYSENTER_EIP = %#RX64 or/and SYSENTER_ESP = %#RX64 not canonical -> #GP(0)\n",
4279 pVCpu->cpum.GstCtx.SysEnter.eip, pVCpu->cpum.GstCtx.SysEnter.esp));
4280 return iemRaiseUndefinedOpcode(pVCpu);
4281 }
4282
4283/** @todo Test: Sysenter from ring-0, ring-1 and ring-2. */
4284
4285 /*
4286 * Update registers and commit.
4287 */
4288 if (fIsLongMode)
4289 {
4290 Log(("sysenter: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4291 pVCpu->cpum.GstCtx.rflags.u, uNewCs & X86_SEL_MASK_OFF_RPL, pVCpu->cpum.GstCtx.SysEnter.eip));
4292 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.SysEnter.eip;
4293 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.SysEnter.esp;
4294 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_L | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4295 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC;
4296 }
4297 else
4298 {
4299 Log(("sysenter: %04x:%08RX32 [efl=%#llx] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, (uint32_t)pVCpu->cpum.GstCtx.rip,
4300 pVCpu->cpum.GstCtx.rflags.u, uNewCs & X86_SEL_MASK_OFF_RPL, (uint32_t)pVCpu->cpum.GstCtx.SysEnter.eip));
4301 pVCpu->cpum.GstCtx.rip = (uint32_t)pVCpu->cpum.GstCtx.SysEnter.eip;
4302 pVCpu->cpum.GstCtx.rsp = (uint32_t)pVCpu->cpum.GstCtx.SysEnter.esp;
4303 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4304 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC;
4305 }
4306 pVCpu->cpum.GstCtx.cs.Sel = uNewCs & X86_SEL_MASK_OFF_RPL;
4307 pVCpu->cpum.GstCtx.cs.ValidSel = uNewCs & X86_SEL_MASK_OFF_RPL;
4308 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4309 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4310 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4311
4312 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs & X86_SEL_MASK_OFF_RPL) + 8;
4313 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs & X86_SEL_MASK_OFF_RPL) + 8;
4314 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4315 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4316 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4317 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_RW_ACC;
4318 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4319
4320 pVCpu->cpum.GstCtx.rflags.Bits.u1IF = 0;
4321 pVCpu->cpum.GstCtx.rflags.Bits.u1VM = 0;
4322 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
4323
4324 pVCpu->iem.s.uCpl = 0;
4325
4326 /* Flush the prefetch buffer. */
4327#ifdef IEM_WITH_CODE_TLB
4328 pVCpu->iem.s.pbInstrBuf = NULL;
4329#else
4330 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4331#endif
4332
4333 return VINF_SUCCESS;
4334}
4335
4336
4337/**
4338 * Implements SYSEXIT (Intel, 32-bit AMD).
4339 *
4340 * @param enmEffOpSize The effective operand size.
4341 */
4342IEM_CIMPL_DEF_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize)
4343{
4344 RT_NOREF(cbInstr);
4345
4346 /*
4347 * Check preconditions.
4348 *
4349 * Note that CPUs described in the documentation may load a few odd values
4350 * into CS and SS than we allow here. This has yet to be checked on real
4351 * hardware.
4352 */
4353 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSysEnter)
4354 {
4355 Log(("sysexit: not supported -=> #UD\n"));
4356 return iemRaiseUndefinedOpcode(pVCpu);
4357 }
4358 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
4359 {
4360 Log(("sysexit: Protected or long mode is required -> #GP(0)\n"));
4361 return iemRaiseGeneralProtectionFault0(pVCpu);
4362 }
4363 bool fIsLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
4364 if (IEM_IS_GUEST_CPU_AMD(pVCpu) && !fIsLongMode)
4365 {
4366 Log(("sysexit: Only available in protected mode on AMD -> #UD\n"));
4367 return iemRaiseUndefinedOpcode(pVCpu);
4368 }
4369 if (pVCpu->iem.s.uCpl != 0)
4370 {
4371 Log(("sysexit: CPL(=%u) != 0 -> #GP(0)\n", pVCpu->iem.s.uCpl));
4372 return iemRaiseGeneralProtectionFault0(pVCpu);
4373 }
4374 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4375 uint16_t uNewCs = pVCpu->cpum.GstCtx.SysEnter.cs;
4376 if ((uNewCs & X86_SEL_MASK_OFF_RPL) == 0)
4377 {
4378 Log(("sysexit: SYSENTER_CS = %#x -> #GP(0)\n", uNewCs));
4379 return iemRaiseGeneralProtectionFault0(pVCpu);
4380 }
4381
4382 /*
4383 * Update registers and commit.
4384 */
4385 if (enmEffOpSize == IEMMODE_64BIT)
4386 {
4387 Log(("sysexit: %04x:%016RX64 [efl=%#llx] -> %04x:%016RX64\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4388 pVCpu->cpum.GstCtx.rflags.u, (uNewCs | 3) + 32, pVCpu->cpum.GstCtx.rcx));
4389 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.rdx;
4390 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.rcx;
4391 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_L | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4392 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4393 pVCpu->cpum.GstCtx.cs.Sel = (uNewCs | 3) + 32;
4394 pVCpu->cpum.GstCtx.cs.ValidSel = (uNewCs | 3) + 32;
4395 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs | 3) + 40;
4396 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs | 3) + 40;
4397 }
4398 else
4399 {
4400 Log(("sysexit: %04x:%08RX64 [efl=%#llx] -> %04x:%08RX32\n", pVCpu->cpum.GstCtx.cs, pVCpu->cpum.GstCtx.rip,
4401 pVCpu->cpum.GstCtx.rflags.u, (uNewCs | 3) + 16, (uint32_t)pVCpu->cpum.GstCtx.edx));
4402 pVCpu->cpum.GstCtx.rip = pVCpu->cpum.GstCtx.edx;
4403 pVCpu->cpum.GstCtx.rsp = pVCpu->cpum.GstCtx.ecx;
4404 pVCpu->cpum.GstCtx.cs.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4405 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_ER_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4406 pVCpu->cpum.GstCtx.cs.Sel = (uNewCs | 3) + 16;
4407 pVCpu->cpum.GstCtx.cs.ValidSel = (uNewCs | 3) + 16;
4408 pVCpu->cpum.GstCtx.ss.Sel = (uNewCs | 3) + 24;
4409 pVCpu->cpum.GstCtx.ss.ValidSel = (uNewCs | 3) + 24;
4410 }
4411 pVCpu->cpum.GstCtx.cs.u64Base = 0;
4412 pVCpu->cpum.GstCtx.cs.u32Limit = UINT32_MAX;
4413 pVCpu->cpum.GstCtx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
4414
4415 pVCpu->cpum.GstCtx.ss.u64Base = 0;
4416 pVCpu->cpum.GstCtx.ss.u32Limit = UINT32_MAX;
4417 pVCpu->cpum.GstCtx.ss.Attr.u = X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_P | X86DESCATTR_DT
4418 | X86DESCATTR_LIMIT_HIGH | X86_SEL_TYPE_RW_ACC | (3 << X86DESCATTR_DPL_SHIFT);
4419 pVCpu->cpum.GstCtx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
4420 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
4421
4422 pVCpu->iem.s.uCpl = 3;
4423
4424 /* Flush the prefetch buffer. */
4425#ifdef IEM_WITH_CODE_TLB
4426 pVCpu->iem.s.pbInstrBuf = NULL;
4427#else
4428 pVCpu->iem.s.cbOpcode = pVCpu->iem.s.offOpcode;
4429#endif
4430
4431 return VINF_SUCCESS;
4432}
4433
4434
4435/**
4436 * Common worker for 'pop SReg', 'mov SReg, GReg' and 'lXs GReg, reg/mem'.
4437 *
4438 * @param iSegReg The segment register number (valid).
4439 * @param uSel The new selector value.
4440 */
4441IEM_CIMPL_DEF_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel)
4442{
4443 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
4444 uint16_t *pSel = iemSRegRef(pVCpu, iSegReg);
4445 PCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iSegReg);
4446
4447 Assert(iSegReg <= X86_SREG_GS && iSegReg != X86_SREG_CS);
4448
4449 /*
4450 * Real mode and V8086 mode are easy.
4451 */
4452 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
4453 {
4454 *pSel = uSel;
4455 pHid->u64Base = (uint32_t)uSel << 4;
4456 pHid->ValidSel = uSel;
4457 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4458#if 0 /* AMD Volume 2, chapter 4.1 - "real mode segmentation" - states that limit and attributes are untouched. */
4459 /** @todo Does the CPU actually load limits and attributes in the
4460 * real/V8086 mode segment load case? It doesn't for CS in far
4461 * jumps... Affects unreal mode. */
4462 pHid->u32Limit = 0xffff;
4463 pHid->Attr.u = 0;
4464 pHid->Attr.n.u1Present = 1;
4465 pHid->Attr.n.u1DescType = 1;
4466 pHid->Attr.n.u4Type = iSegReg != X86_SREG_CS
4467 ? X86_SEL_TYPE_RW
4468 : X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
4469#endif
4470 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4471 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4472 return VINF_SUCCESS;
4473 }
4474
4475 /*
4476 * Protected mode.
4477 *
4478 * Check if it's a null segment selector value first, that's OK for DS, ES,
4479 * FS and GS. If not null, then we have to load and parse the descriptor.
4480 */
4481 if (!(uSel & X86_SEL_MASK_OFF_RPL))
4482 {
4483 Assert(iSegReg != X86_SREG_CS); /** @todo testcase for \#UD on MOV CS, ax! */
4484 if (iSegReg == X86_SREG_SS)
4485 {
4486 /* In 64-bit kernel mode, the stack can be 0 because of the way
4487 interrupts are dispatched. AMD seems to have a slighly more
4488 relaxed relationship to SS.RPL than intel does. */
4489 /** @todo We cannot 'mov ss, 3' in 64-bit kernel mode, can we? There is a testcase (bs-cpu-xcpt-1), but double check this! */
4490 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
4491 || pVCpu->iem.s.uCpl > 2
4492 || ( uSel != pVCpu->iem.s.uCpl
4493 && !IEM_IS_GUEST_CPU_AMD(pVCpu)) )
4494 {
4495 Log(("load sreg %#x -> invalid stack selector, #GP(0)\n", uSel));
4496 return iemRaiseGeneralProtectionFault0(pVCpu);
4497 }
4498 }
4499
4500 *pSel = uSel; /* Not RPL, remember :-) */
4501 iemHlpLoadNullDataSelectorProt(pVCpu, pHid, uSel);
4502 if (iSegReg == X86_SREG_SS)
4503 pHid->Attr.u |= pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT;
4504
4505 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4506 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4507
4508 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4509 return VINF_SUCCESS;
4510 }
4511
4512 /* Fetch the descriptor. */
4513 IEMSELDESC Desc;
4514 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uSel, X86_XCPT_GP); /** @todo Correct exception? */
4515 if (rcStrict != VINF_SUCCESS)
4516 return rcStrict;
4517
4518 /* Check GPs first. */
4519 if (!Desc.Legacy.Gen.u1DescType)
4520 {
4521 Log(("load sreg %d (=%#x) - system selector (%#x) -> #GP\n", iSegReg, uSel, Desc.Legacy.Gen.u4Type));
4522 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4523 }
4524 if (iSegReg == X86_SREG_SS) /* SS gets different treatment */
4525 {
4526 if ( (Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_CODE)
4527 || !(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_WRITE) )
4528 {
4529 Log(("load sreg SS, %#x - code or read only (%#x) -> #GP\n", uSel, Desc.Legacy.Gen.u4Type));
4530 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4531 }
4532 if ((uSel & X86_SEL_RPL) != pVCpu->iem.s.uCpl)
4533 {
4534 Log(("load sreg SS, %#x - RPL and CPL (%d) differs -> #GP\n", uSel, pVCpu->iem.s.uCpl));
4535 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4536 }
4537 if (Desc.Legacy.Gen.u2Dpl != pVCpu->iem.s.uCpl)
4538 {
4539 Log(("load sreg SS, %#x - DPL (%d) and CPL (%d) differs -> #GP\n", uSel, Desc.Legacy.Gen.u2Dpl, pVCpu->iem.s.uCpl));
4540 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4541 }
4542 }
4543 else
4544 {
4545 if ((Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4546 {
4547 Log(("load sreg%u, %#x - execute only segment -> #GP\n", iSegReg, uSel));
4548 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4549 }
4550 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4551 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4552 {
4553#if 0 /* this is what intel says. */
4554 if ( (uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl
4555 && pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4556 {
4557 Log(("load sreg%u, %#x - both RPL (%d) and CPL (%d) are greater than DPL (%d) -> #GP\n",
4558 iSegReg, uSel, (uSel & X86_SEL_RPL), pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4559 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4560 }
4561#else /* this is what makes more sense. */
4562 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4563 {
4564 Log(("load sreg%u, %#x - RPL (%d) is greater than DPL (%d) -> #GP\n",
4565 iSegReg, uSel, (uSel & X86_SEL_RPL), Desc.Legacy.Gen.u2Dpl));
4566 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4567 }
4568 if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4569 {
4570 Log(("load sreg%u, %#x - CPL (%d) is greater than DPL (%d) -> #GP\n",
4571 iSegReg, uSel, pVCpu->iem.s.uCpl, Desc.Legacy.Gen.u2Dpl));
4572 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uSel);
4573 }
4574#endif
4575 }
4576 }
4577
4578 /* Is it there? */
4579 if (!Desc.Legacy.Gen.u1Present)
4580 {
4581 Log(("load sreg%d,%#x - segment not present -> #NP\n", iSegReg, uSel));
4582 return iemRaiseSelectorNotPresentBySelector(pVCpu, uSel);
4583 }
4584
4585 /* The base and limit. */
4586 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc.Legacy);
4587 uint64_t u64Base = X86DESC_BASE(&Desc.Legacy);
4588
4589 /*
4590 * Ok, everything checked out fine. Now set the accessed bit before
4591 * committing the result into the registers.
4592 */
4593 if (!(Desc.Legacy.Gen.u4Type & X86_SEL_TYPE_ACCESSED))
4594 {
4595 rcStrict = iemMemMarkSelDescAccessed(pVCpu, uSel);
4596 if (rcStrict != VINF_SUCCESS)
4597 return rcStrict;
4598 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
4599 }
4600
4601 /* commit */
4602 *pSel = uSel;
4603 pHid->Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
4604 pHid->u32Limit = cbLimit;
4605 pHid->u64Base = u64Base;
4606 pHid->ValidSel = uSel;
4607 pHid->fFlags = CPUMSELREG_FLAGS_VALID;
4608
4609 /** @todo check if the hidden bits are loaded correctly for 64-bit
4610 * mode. */
4611 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pHid));
4612
4613 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_HIDDEN_SEL_REGS);
4614 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4615 return VINF_SUCCESS;
4616}
4617
4618
4619/**
4620 * Implements 'mov SReg, r/m'.
4621 *
4622 * @param iSegReg The segment register number (valid).
4623 * @param uSel The new selector value.
4624 */
4625IEM_CIMPL_DEF_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel)
4626{
4627 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4628 if (rcStrict == VINF_SUCCESS)
4629 {
4630 if (iSegReg == X86_SREG_SS)
4631 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4632 }
4633 return rcStrict;
4634}
4635
4636
4637/**
4638 * Implements 'pop SReg'.
4639 *
4640 * @param iSegReg The segment register number (valid).
4641 * @param enmEffOpSize The efficient operand size (valid).
4642 */
4643IEM_CIMPL_DEF_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize)
4644{
4645 VBOXSTRICTRC rcStrict;
4646
4647 /*
4648 * Read the selector off the stack and join paths with mov ss, reg.
4649 */
4650 RTUINT64U TmpRsp;
4651 TmpRsp.u = pVCpu->cpum.GstCtx.rsp;
4652 switch (enmEffOpSize)
4653 {
4654 case IEMMODE_16BIT:
4655 {
4656 uint16_t uSel;
4657 rcStrict = iemMemStackPopU16Ex(pVCpu, &uSel, &TmpRsp);
4658 if (rcStrict == VINF_SUCCESS)
4659 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4660 break;
4661 }
4662
4663 case IEMMODE_32BIT:
4664 {
4665 uint32_t u32Value;
4666 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
4667 if (rcStrict == VINF_SUCCESS)
4668 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u32Value);
4669 break;
4670 }
4671
4672 case IEMMODE_64BIT:
4673 {
4674 uint64_t u64Value;
4675 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
4676 if (rcStrict == VINF_SUCCESS)
4677 rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, (uint16_t)u64Value);
4678 break;
4679 }
4680 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4681 }
4682
4683 /*
4684 * Commit the stack on success.
4685 */
4686 if (rcStrict == VINF_SUCCESS)
4687 {
4688 pVCpu->cpum.GstCtx.rsp = TmpRsp.u;
4689 if (iSegReg == X86_SREG_SS)
4690 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
4691 }
4692 return rcStrict;
4693}
4694
4695
4696/**
4697 * Implements lgs, lfs, les, lds & lss.
4698 */
4699IEM_CIMPL_DEF_5(iemCImpl_load_SReg_Greg,
4700 uint16_t, uSel,
4701 uint64_t, offSeg,
4702 uint8_t, iSegReg,
4703 uint8_t, iGReg,
4704 IEMMODE, enmEffOpSize)
4705{
4706 /*
4707 * Use iemCImpl_LoadSReg to do the tricky segment register loading.
4708 */
4709 /** @todo verify and test that mov, pop and lXs works the segment
4710 * register loading in the exact same way. */
4711 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_2(iemCImpl_LoadSReg, iSegReg, uSel);
4712 if (rcStrict == VINF_SUCCESS)
4713 {
4714 switch (enmEffOpSize)
4715 {
4716 case IEMMODE_16BIT:
4717 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4718 break;
4719 case IEMMODE_32BIT:
4720 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4721 break;
4722 case IEMMODE_64BIT:
4723 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = offSeg;
4724 break;
4725 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4726 }
4727 }
4728
4729 return rcStrict;
4730}
4731
4732
4733/**
4734 * Helper for VERR, VERW, LAR, and LSL and loads the descriptor into memory.
4735 *
4736 * @retval VINF_SUCCESS on success.
4737 * @retval VINF_IEM_SELECTOR_NOT_OK if the selector isn't ok.
4738 * @retval iemMemFetchSysU64 return value.
4739 *
4740 * @param pVCpu The cross context virtual CPU structure of the calling thread.
4741 * @param uSel The selector value.
4742 * @param fAllowSysDesc Whether system descriptors are OK or not.
4743 * @param pDesc Where to return the descriptor on success.
4744 */
4745static VBOXSTRICTRC iemCImpl_LoadDescHelper(PVMCPUCC pVCpu, uint16_t uSel, bool fAllowSysDesc, PIEMSELDESC pDesc)
4746{
4747 pDesc->Long.au64[0] = 0;
4748 pDesc->Long.au64[1] = 0;
4749
4750 if (!(uSel & X86_SEL_MASK_OFF_RPL)) /** @todo test this on 64-bit. */
4751 return VINF_IEM_SELECTOR_NOT_OK;
4752
4753 /* Within the table limits? */
4754 RTGCPTR GCPtrBase;
4755 if (uSel & X86_SEL_LDT)
4756 {
4757 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
4758 if ( !pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Present
4759 || (uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.ldtr.u32Limit )
4760 return VINF_IEM_SELECTOR_NOT_OK;
4761 GCPtrBase = pVCpu->cpum.GstCtx.ldtr.u64Base;
4762 }
4763 else
4764 {
4765 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
4766 if ((uSel | X86_SEL_RPL_LDT) > pVCpu->cpum.GstCtx.gdtr.cbGdt)
4767 return VINF_IEM_SELECTOR_NOT_OK;
4768 GCPtrBase = pVCpu->cpum.GstCtx.gdtr.pGdt;
4769 }
4770
4771 /* Fetch the descriptor. */
4772 VBOXSTRICTRC rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Legacy.u, UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK));
4773 if (rcStrict != VINF_SUCCESS)
4774 return rcStrict;
4775 if (!pDesc->Legacy.Gen.u1DescType)
4776 {
4777 if (!fAllowSysDesc)
4778 return VINF_IEM_SELECTOR_NOT_OK;
4779 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4780 {
4781 rcStrict = iemMemFetchSysU64(pVCpu, &pDesc->Long.au64[1], UINT8_MAX, GCPtrBase + (uSel & X86_SEL_MASK) + 8);
4782 if (rcStrict != VINF_SUCCESS)
4783 return rcStrict;
4784 }
4785
4786 }
4787
4788 return VINF_SUCCESS;
4789}
4790
4791
4792/**
4793 * Implements verr (fWrite = false) and verw (fWrite = true).
4794 */
4795IEM_CIMPL_DEF_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite)
4796{
4797 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4798
4799 /** @todo figure whether the accessed bit is set or not. */
4800
4801 bool fAccessible = true;
4802 IEMSELDESC Desc;
4803 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, false /*fAllowSysDesc*/, &Desc);
4804 if (rcStrict == VINF_SUCCESS)
4805 {
4806 /* Check the descriptor, order doesn't matter much here. */
4807 if ( !Desc.Legacy.Gen.u1DescType
4808 || !Desc.Legacy.Gen.u1Present)
4809 fAccessible = false;
4810 else
4811 {
4812 if ( fWrite
4813 ? (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE)) != X86_SEL_TYPE_WRITE
4814 : (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
4815 fAccessible = false;
4816
4817 /** @todo testcase for the conforming behavior. */
4818 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4819 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
4820 {
4821 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4822 fAccessible = false;
4823 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4824 fAccessible = false;
4825 }
4826 }
4827
4828 }
4829 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4830 fAccessible = false;
4831 else
4832 return rcStrict;
4833
4834 /* commit */
4835 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fAccessible;
4836
4837 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4838 return VINF_SUCCESS;
4839}
4840
4841
4842/**
4843 * Implements LAR and LSL with 64-bit operand size.
4844 *
4845 * @returns VINF_SUCCESS.
4846 * @param pu16Dst Pointer to the destination register.
4847 * @param uSel The selector to load details for.
4848 * @param fIsLar true = LAR, false = LSL.
4849 */
4850IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar)
4851{
4852 Assert(!IEM_IS_REAL_OR_V86_MODE(pVCpu));
4853
4854 /** @todo figure whether the accessed bit is set or not. */
4855
4856 bool fDescOk = true;
4857 IEMSELDESC Desc;
4858 VBOXSTRICTRC rcStrict = iemCImpl_LoadDescHelper(pVCpu, uSel, true /*fAllowSysDesc*/, &Desc);
4859 if (rcStrict == VINF_SUCCESS)
4860 {
4861 /*
4862 * Check the descriptor type.
4863 */
4864 if (!Desc.Legacy.Gen.u1DescType)
4865 {
4866 if (CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
4867 {
4868 if (Desc.Long.Gen.u5Zeros)
4869 fDescOk = false;
4870 else
4871 switch (Desc.Long.Gen.u4Type)
4872 {
4873 /** @todo Intel lists 0 as valid for LSL, verify whether that's correct */
4874 case AMD64_SEL_TYPE_SYS_TSS_AVAIL:
4875 case AMD64_SEL_TYPE_SYS_TSS_BUSY:
4876 case AMD64_SEL_TYPE_SYS_LDT: /** @todo Intel lists this as invalid for LAR, AMD and 32-bit does otherwise. */
4877 break;
4878 case AMD64_SEL_TYPE_SYS_CALL_GATE:
4879 fDescOk = fIsLar;
4880 break;
4881 default:
4882 fDescOk = false;
4883 break;
4884 }
4885 }
4886 else
4887 {
4888 switch (Desc.Long.Gen.u4Type)
4889 {
4890 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
4891 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
4892 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
4893 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
4894 case X86_SEL_TYPE_SYS_LDT:
4895 break;
4896 case X86_SEL_TYPE_SYS_286_CALL_GATE:
4897 case X86_SEL_TYPE_SYS_TASK_GATE:
4898 case X86_SEL_TYPE_SYS_386_CALL_GATE:
4899 fDescOk = fIsLar;
4900 break;
4901 default:
4902 fDescOk = false;
4903 break;
4904 }
4905 }
4906 }
4907 if (fDescOk)
4908 {
4909 /*
4910 * Check the RPL/DPL/CPL interaction..
4911 */
4912 /** @todo testcase for the conforming behavior. */
4913 if ( (Desc.Legacy.Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)) != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF)
4914 || !Desc.Legacy.Gen.u1DescType)
4915 {
4916 if ((unsigned)(uSel & X86_SEL_RPL) > Desc.Legacy.Gen.u2Dpl)
4917 fDescOk = false;
4918 else if (pVCpu->iem.s.uCpl > Desc.Legacy.Gen.u2Dpl)
4919 fDescOk = false;
4920 }
4921 }
4922
4923 if (fDescOk)
4924 {
4925 /*
4926 * All fine, start committing the result.
4927 */
4928 if (fIsLar)
4929 *pu64Dst = Desc.Legacy.au32[1] & UINT32_C(0x00ffff00);
4930 else
4931 *pu64Dst = X86DESC_LIMIT_G(&Desc.Legacy);
4932 }
4933
4934 }
4935 else if (rcStrict == VINF_IEM_SELECTOR_NOT_OK)
4936 fDescOk = false;
4937 else
4938 return rcStrict;
4939
4940 /* commit flags value and advance rip. */
4941 pVCpu->cpum.GstCtx.eflags.Bits.u1ZF = fDescOk;
4942 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
4943
4944 return VINF_SUCCESS;
4945}
4946
4947
4948/**
4949 * Implements LAR and LSL with 16-bit operand size.
4950 *
4951 * @returns VINF_SUCCESS.
4952 * @param pu16Dst Pointer to the destination register.
4953 * @param u16Sel The selector to load details for.
4954 * @param fIsLar true = LAR, false = LSL.
4955 */
4956IEM_CIMPL_DEF_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar)
4957{
4958 uint64_t u64TmpDst = *pu16Dst;
4959 IEM_CIMPL_CALL_3(iemCImpl_LarLsl_u64, &u64TmpDst, uSel, fIsLar);
4960 *pu16Dst = u64TmpDst;
4961 return VINF_SUCCESS;
4962}
4963
4964
4965/**
4966 * Implements lgdt.
4967 *
4968 * @param iEffSeg The segment of the new gdtr contents
4969 * @param GCPtrEffSrc The address of the new gdtr contents.
4970 * @param enmEffOpSize The effective operand size.
4971 */
4972IEM_CIMPL_DEF_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
4973{
4974 if (pVCpu->iem.s.uCpl != 0)
4975 return iemRaiseGeneralProtectionFault0(pVCpu);
4976 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
4977
4978 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
4979 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
4980 {
4981 Log(("lgdt: Guest intercept -> VM-exit\n"));
4982 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_LGDT, cbInstr);
4983 }
4984
4985 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_WRITES))
4986 {
4987 Log(("lgdt: Guest intercept -> #VMEXIT\n"));
4988 IEM_SVM_UPDATE_NRIP(pVCpu);
4989 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
4990 }
4991
4992 /*
4993 * Fetch the limit and base address.
4994 */
4995 uint16_t cbLimit;
4996 RTGCPTR GCPtrBase;
4997 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
4998 if (rcStrict == VINF_SUCCESS)
4999 {
5000 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
5001 || X86_IS_CANONICAL(GCPtrBase))
5002 {
5003 rcStrict = CPUMSetGuestGDTR(pVCpu, GCPtrBase, cbLimit);
5004 if (rcStrict == VINF_SUCCESS)
5005 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5006 }
5007 else
5008 {
5009 Log(("iemCImpl_lgdt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
5010 return iemRaiseGeneralProtectionFault0(pVCpu);
5011 }
5012 }
5013 return rcStrict;
5014}
5015
5016
5017/**
5018 * Implements sgdt.
5019 *
5020 * @param iEffSeg The segment where to store the gdtr content.
5021 * @param GCPtrEffDst The address where to store the gdtr content.
5022 */
5023IEM_CIMPL_DEF_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5024{
5025 /*
5026 * Join paths with sidt.
5027 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
5028 * you really must know.
5029 */
5030 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5031 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5032 {
5033 Log(("sgdt: Guest intercept -> VM-exit\n"));
5034 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_GDTR_IDTR_ACCESS, VMXINSTRID_SGDT, cbInstr);
5035 }
5036
5037 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_GDTR_READS))
5038 {
5039 Log(("sgdt: Guest intercept -> #VMEXIT\n"));
5040 IEM_SVM_UPDATE_NRIP(pVCpu);
5041 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_GDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5042 }
5043
5044 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_GDTR);
5045 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.gdtr.cbGdt, pVCpu->cpum.GstCtx.gdtr.pGdt, iEffSeg, GCPtrEffDst);
5046 if (rcStrict == VINF_SUCCESS)
5047 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5048 return rcStrict;
5049}
5050
5051
5052/**
5053 * Implements lidt.
5054 *
5055 * @param iEffSeg The segment of the new idtr contents
5056 * @param GCPtrEffSrc The address of the new idtr contents.
5057 * @param enmEffOpSize The effective operand size.
5058 */
5059IEM_CIMPL_DEF_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize)
5060{
5061 if (pVCpu->iem.s.uCpl != 0)
5062 return iemRaiseGeneralProtectionFault0(pVCpu);
5063 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5064
5065 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_WRITES))
5066 {
5067 Log(("lidt: Guest intercept -> #VMEXIT\n"));
5068 IEM_SVM_UPDATE_NRIP(pVCpu);
5069 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5070 }
5071
5072 /*
5073 * Fetch the limit and base address.
5074 */
5075 uint16_t cbLimit;
5076 RTGCPTR GCPtrBase;
5077 VBOXSTRICTRC rcStrict = iemMemFetchDataXdtr(pVCpu, &cbLimit, &GCPtrBase, iEffSeg, GCPtrEffSrc, enmEffOpSize);
5078 if (rcStrict == VINF_SUCCESS)
5079 {
5080 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
5081 || X86_IS_CANONICAL(GCPtrBase))
5082 {
5083 CPUMSetGuestIDTR(pVCpu, GCPtrBase, cbLimit);
5084 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5085 }
5086 else
5087 {
5088 Log(("iemCImpl_lidt: Non-canonical base %04x:%RGv\n", cbLimit, GCPtrBase));
5089 return iemRaiseGeneralProtectionFault0(pVCpu);
5090 }
5091 }
5092 return rcStrict;
5093}
5094
5095
5096/**
5097 * Implements sidt.
5098 *
5099 * @param iEffSeg The segment where to store the idtr content.
5100 * @param GCPtrEffDst The address where to store the idtr content.
5101 */
5102IEM_CIMPL_DEF_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5103{
5104 /*
5105 * Join paths with sgdt.
5106 * Note! No CPL or V8086 checks here, it's a really sad story, ask Intel if
5107 * you really must know.
5108 */
5109 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IDTR_READS))
5110 {
5111 Log(("sidt: Guest intercept -> #VMEXIT\n"));
5112 IEM_SVM_UPDATE_NRIP(pVCpu);
5113 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_IDTR_READ, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5114 }
5115
5116 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_IDTR);
5117 VBOXSTRICTRC rcStrict = iemMemStoreDataXdtr(pVCpu, pVCpu->cpum.GstCtx.idtr.cbIdt, pVCpu->cpum.GstCtx.idtr.pIdt, iEffSeg, GCPtrEffDst);
5118 if (rcStrict == VINF_SUCCESS)
5119 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5120 return rcStrict;
5121}
5122
5123
5124/**
5125 * Implements lldt.
5126 *
5127 * @param uNewLdt The new LDT selector value.
5128 */
5129IEM_CIMPL_DEF_1(iemCImpl_lldt, uint16_t, uNewLdt)
5130{
5131 /*
5132 * Check preconditions.
5133 */
5134 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5135 {
5136 Log(("lldt %04x - real or v8086 mode -> #GP(0)\n", uNewLdt));
5137 return iemRaiseUndefinedOpcode(pVCpu);
5138 }
5139 if (pVCpu->iem.s.uCpl != 0)
5140 {
5141 Log(("lldt %04x - CPL is %d -> #GP(0)\n", uNewLdt, pVCpu->iem.s.uCpl));
5142 return iemRaiseGeneralProtectionFault0(pVCpu);
5143 }
5144 /* Nested-guest VMX intercept. */
5145 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5146 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5147 {
5148 Log(("lldt: Guest intercept -> VM-exit\n"));
5149 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LLDT, cbInstr);
5150 }
5151 if (uNewLdt & X86_SEL_LDT)
5152 {
5153 Log(("lldt %04x - LDT selector -> #GP\n", uNewLdt));
5154 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewLdt);
5155 }
5156
5157 /*
5158 * Now, loading a NULL selector is easy.
5159 */
5160 if (!(uNewLdt & X86_SEL_MASK_OFF_RPL))
5161 {
5162 /* Nested-guest SVM intercept. */
5163 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5164 {
5165 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5166 IEM_SVM_UPDATE_NRIP(pVCpu);
5167 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5168 }
5169
5170 Log(("lldt %04x: Loading NULL selector.\n", uNewLdt));
5171 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_LDTR;
5172 CPUMSetGuestLDTR(pVCpu, uNewLdt);
5173 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt;
5174 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5175 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
5176 {
5177 /* AMD-V seems to leave the base and limit alone. */
5178 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
5179 }
5180 else
5181 {
5182 /* VT-x (Intel 3960x) seems to be doing the following. */
5183 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D;
5184 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
5185 pVCpu->cpum.GstCtx.ldtr.u32Limit = UINT32_MAX;
5186 }
5187
5188 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5189 return VINF_SUCCESS;
5190 }
5191
5192 /*
5193 * Read the descriptor.
5194 */
5195 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR);
5196 IEMSELDESC Desc;
5197 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewLdt, X86_XCPT_GP); /** @todo Correct exception? */
5198 if (rcStrict != VINF_SUCCESS)
5199 return rcStrict;
5200
5201 /* Check GPs first. */
5202 if (Desc.Legacy.Gen.u1DescType)
5203 {
5204 Log(("lldt %#x - not system selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5205 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5206 }
5207 if (Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
5208 {
5209 Log(("lldt %#x - not LDT selector (type %x) -> #GP\n", uNewLdt, Desc.Legacy.Gen.u4Type));
5210 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5211 }
5212 uint64_t u64Base;
5213 if (!IEM_IS_LONG_MODE(pVCpu))
5214 u64Base = X86DESC_BASE(&Desc.Legacy);
5215 else
5216 {
5217 if (Desc.Long.Gen.u5Zeros)
5218 {
5219 Log(("lldt %#x - u5Zeros=%#x -> #GP\n", uNewLdt, Desc.Long.Gen.u5Zeros));
5220 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5221 }
5222
5223 u64Base = X86DESC64_BASE(&Desc.Long);
5224 if (!IEM_IS_CANONICAL(u64Base))
5225 {
5226 Log(("lldt %#x - non-canonical base address %#llx -> #GP\n", uNewLdt, u64Base));
5227 return iemRaiseGeneralProtectionFault(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5228 }
5229 }
5230
5231 /* NP */
5232 if (!Desc.Legacy.Gen.u1Present)
5233 {
5234 Log(("lldt %#x - segment not present -> #NP\n", uNewLdt));
5235 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewLdt);
5236 }
5237
5238 /* Nested-guest SVM intercept. */
5239 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_LDTR_WRITES))
5240 {
5241 Log(("lldt: Guest intercept -> #VMEXIT\n"));
5242 IEM_SVM_UPDATE_NRIP(pVCpu);
5243 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_LDTR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5244 }
5245
5246 /*
5247 * It checks out alright, update the registers.
5248 */
5249/** @todo check if the actual value is loaded or if the RPL is dropped */
5250 CPUMSetGuestLDTR(pVCpu, uNewLdt & X86_SEL_MASK_OFF_RPL);
5251 pVCpu->cpum.GstCtx.ldtr.ValidSel = uNewLdt & X86_SEL_MASK_OFF_RPL;
5252 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
5253 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5254 pVCpu->cpum.GstCtx.ldtr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5255 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
5256
5257 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5258 return VINF_SUCCESS;
5259}
5260
5261
5262/**
5263 * Implements sldt GReg
5264 *
5265 * @param iGReg The general register to store the CRx value in.
5266 * @param enmEffOpSize The operand size.
5267 */
5268IEM_CIMPL_DEF_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5269{
5270 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5271 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5272 {
5273 Log(("sldt: Guest intercept -> VM-exit\n"));
5274 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_SLDT, cbInstr);
5275 }
5276
5277 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5278
5279 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5280 switch (enmEffOpSize)
5281 {
5282 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5283 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5284 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.ldtr.Sel; break;
5285 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5286 }
5287 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5288 return VINF_SUCCESS;
5289}
5290
5291
5292/**
5293 * Implements sldt mem.
5294 *
5295 * @param iGReg The general register to store the CRx value in.
5296 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5297 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5298 */
5299IEM_CIMPL_DEF_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5300{
5301 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_LDTR_READS, SVM_EXIT_LDTR_READ, 0, 0);
5302
5303 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR);
5304 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.ldtr.Sel);
5305 if (rcStrict == VINF_SUCCESS)
5306 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5307 return rcStrict;
5308}
5309
5310
5311/**
5312 * Implements ltr.
5313 *
5314 * @param uNewTr The new TSS selector value.
5315 */
5316IEM_CIMPL_DEF_1(iemCImpl_ltr, uint16_t, uNewTr)
5317{
5318 /*
5319 * Check preconditions.
5320 */
5321 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
5322 {
5323 Log(("ltr %04x - real or v8086 mode -> #GP(0)\n", uNewTr));
5324 return iemRaiseUndefinedOpcode(pVCpu);
5325 }
5326 if (pVCpu->iem.s.uCpl != 0)
5327 {
5328 Log(("ltr %04x - CPL is %d -> #GP(0)\n", uNewTr, pVCpu->iem.s.uCpl));
5329 return iemRaiseGeneralProtectionFault0(pVCpu);
5330 }
5331 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5332 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5333 {
5334 Log(("ltr: Guest intercept -> VM-exit\n"));
5335 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_LTR, cbInstr);
5336 }
5337 if (uNewTr & X86_SEL_LDT)
5338 {
5339 Log(("ltr %04x - LDT selector -> #GP\n", uNewTr));
5340 return iemRaiseGeneralProtectionFaultBySelector(pVCpu, uNewTr);
5341 }
5342 if (!(uNewTr & X86_SEL_MASK_OFF_RPL))
5343 {
5344 Log(("ltr %04x - NULL selector -> #GP(0)\n", uNewTr));
5345 return iemRaiseGeneralProtectionFault0(pVCpu);
5346 }
5347 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_TR_WRITES))
5348 {
5349 Log(("ltr: Guest intercept -> #VMEXIT\n"));
5350 IEM_SVM_UPDATE_NRIP(pVCpu);
5351 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_TR_WRITE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5352 }
5353
5354 /*
5355 * Read the descriptor.
5356 */
5357 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_TR);
5358 IEMSELDESC Desc;
5359 VBOXSTRICTRC rcStrict = iemMemFetchSelDesc(pVCpu, &Desc, uNewTr, X86_XCPT_GP); /** @todo Correct exception? */
5360 if (rcStrict != VINF_SUCCESS)
5361 return rcStrict;
5362
5363 /* Check GPs first. */
5364 if (Desc.Legacy.Gen.u1DescType)
5365 {
5366 Log(("ltr %#x - not system selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5367 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5368 }
5369 if ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL /* same as AMD64_SEL_TYPE_SYS_TSS_AVAIL */
5370 && ( Desc.Legacy.Gen.u4Type != X86_SEL_TYPE_SYS_286_TSS_AVAIL
5371 || IEM_IS_LONG_MODE(pVCpu)) )
5372 {
5373 Log(("ltr %#x - not an available TSS selector (type %x) -> #GP\n", uNewTr, Desc.Legacy.Gen.u4Type));
5374 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5375 }
5376 uint64_t u64Base;
5377 if (!IEM_IS_LONG_MODE(pVCpu))
5378 u64Base = X86DESC_BASE(&Desc.Legacy);
5379 else
5380 {
5381 if (Desc.Long.Gen.u5Zeros)
5382 {
5383 Log(("ltr %#x - u5Zeros=%#x -> #GP\n", uNewTr, Desc.Long.Gen.u5Zeros));
5384 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5385 }
5386
5387 u64Base = X86DESC64_BASE(&Desc.Long);
5388 if (!IEM_IS_CANONICAL(u64Base))
5389 {
5390 Log(("ltr %#x - non-canonical base address %#llx -> #GP\n", uNewTr, u64Base));
5391 return iemRaiseGeneralProtectionFault(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5392 }
5393 }
5394
5395 /* NP */
5396 if (!Desc.Legacy.Gen.u1Present)
5397 {
5398 Log(("ltr %#x - segment not present -> #NP\n", uNewTr));
5399 return iemRaiseSelectorNotPresentBySelector(pVCpu, uNewTr);
5400 }
5401
5402 /*
5403 * Set it busy.
5404 * Note! Intel says this should lock down the whole descriptor, but we'll
5405 * restrict our selves to 32-bit for now due to lack of inline
5406 * assembly and such.
5407 */
5408 void *pvDesc;
5409 rcStrict = iemMemMap(pVCpu, &pvDesc, 8, UINT8_MAX, pVCpu->cpum.GstCtx.gdtr.pGdt + (uNewTr & X86_SEL_MASK_OFF_RPL), IEM_ACCESS_DATA_RW);
5410 if (rcStrict != VINF_SUCCESS)
5411 return rcStrict;
5412 switch ((uintptr_t)pvDesc & 3)
5413 {
5414 case 0: ASMAtomicBitSet(pvDesc, 40 + 1); break;
5415 case 1: ASMAtomicBitSet((uint8_t *)pvDesc + 3, 40 + 1 - 24); break;
5416 case 2: ASMAtomicBitSet((uint8_t *)pvDesc + 2, 40 + 1 - 16); break;
5417 case 3: ASMAtomicBitSet((uint8_t *)pvDesc + 1, 40 + 1 - 8); break;
5418 }
5419 rcStrict = iemMemCommitAndUnmap(pVCpu, pvDesc, IEM_ACCESS_DATA_RW);
5420 if (rcStrict != VINF_SUCCESS)
5421 return rcStrict;
5422 Desc.Legacy.Gen.u4Type |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
5423
5424 /*
5425 * It checks out alright, update the registers.
5426 */
5427/** @todo check if the actual value is loaded or if the RPL is dropped */
5428 CPUMSetGuestTR(pVCpu, uNewTr & X86_SEL_MASK_OFF_RPL);
5429 pVCpu->cpum.GstCtx.tr.ValidSel = uNewTr & X86_SEL_MASK_OFF_RPL;
5430 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
5431 pVCpu->cpum.GstCtx.tr.Attr.u = X86DESC_GET_HID_ATTR(&Desc.Legacy);
5432 pVCpu->cpum.GstCtx.tr.u32Limit = X86DESC_LIMIT_G(&Desc.Legacy);
5433 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
5434
5435 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5436 return VINF_SUCCESS;
5437}
5438
5439
5440/**
5441 * Implements str GReg
5442 *
5443 * @param iGReg The general register to store the CRx value in.
5444 * @param enmEffOpSize The operand size.
5445 */
5446IEM_CIMPL_DEF_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5447{
5448 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5449 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5450 {
5451 Log(("str_reg: Guest intercept -> VM-exit\n"));
5452 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5453 }
5454
5455 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5456
5457 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5458 switch (enmEffOpSize)
5459 {
5460 case IEMMODE_16BIT: *(uint16_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5461 case IEMMODE_32BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5462 case IEMMODE_64BIT: *(uint64_t *)iemGRegRef(pVCpu, iGReg) = pVCpu->cpum.GstCtx.tr.Sel; break;
5463 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5464 }
5465 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5466 return VINF_SUCCESS;
5467}
5468
5469
5470/**
5471 * Implements str mem.
5472 *
5473 * @param iGReg The general register to store the CRx value in.
5474 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5475 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5476 */
5477IEM_CIMPL_DEF_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5478{
5479 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
5480 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_DESC_TABLE_EXIT))
5481 {
5482 Log(("str_mem: Guest intercept -> VM-exit\n"));
5483 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_LDTR_TR_ACCESS, VMXINSTRID_STR, cbInstr);
5484 }
5485
5486 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_TR_READS, SVM_EXIT_TR_READ, 0, 0);
5487
5488 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TR);
5489 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, pVCpu->cpum.GstCtx.tr.Sel);
5490 if (rcStrict == VINF_SUCCESS)
5491 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5492 return rcStrict;
5493}
5494
5495
5496/**
5497 * Implements mov GReg,CRx.
5498 *
5499 * @param iGReg The general register to store the CRx value in.
5500 * @param iCrReg The CRx register to read (valid).
5501 */
5502IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg)
5503{
5504 if (pVCpu->iem.s.uCpl != 0)
5505 return iemRaiseGeneralProtectionFault0(pVCpu);
5506 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
5507
5508 if (IEM_SVM_IS_READ_CR_INTERCEPT_SET(pVCpu, iCrReg))
5509 {
5510 Log(("iemCImpl_mov_Rd_Cd: Guest intercept CR%u -> #VMEXIT\n", iCrReg));
5511 IEM_SVM_UPDATE_NRIP(pVCpu);
5512 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_READ_CR0 + iCrReg, IEMACCESSCRX_MOV_CRX, iGReg);
5513 }
5514
5515 /* Read it. */
5516 uint64_t crX;
5517 switch (iCrReg)
5518 {
5519 case 0:
5520 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5521 crX = pVCpu->cpum.GstCtx.cr0;
5522 if (IEM_GET_TARGET_CPU(pVCpu) <= IEMTARGETCPU_386)
5523 crX |= UINT32_C(0x7fffffe0); /* All reserved CR0 flags are set on a 386, just like MSW on 286. */
5524 break;
5525 case 2:
5526 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR2);
5527 crX = pVCpu->cpum.GstCtx.cr2;
5528 break;
5529 case 3:
5530 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5531 crX = pVCpu->cpum.GstCtx.cr3;
5532 break;
5533 case 4:
5534 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5535 crX = pVCpu->cpum.GstCtx.cr4;
5536 break;
5537 case 8:
5538 {
5539 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5540#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5541 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5542 {
5543 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr8(pVCpu, iGReg, cbInstr);
5544 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5545 return rcStrict;
5546
5547 /*
5548 * If the Mov-from-CR8 doesn't cause a VM-exit, bits 7:4 of the VTPR is copied
5549 * to bits 0:3 of the destination operand. Bits 63:4 of the destination operand
5550 * are cleared.
5551 *
5552 * See Intel Spec. 29.3 "Virtualizing CR8-based TPR Accesses"
5553 */
5554 if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
5555 {
5556 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5557 crX = (uTpr >> 4) & 0xf;
5558 break;
5559 }
5560 }
5561#endif
5562#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5563 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5564 {
5565 PCSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl;
5566 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
5567 {
5568 crX = pVmcbCtrl->IntCtrl.n.u8VTPR & 0xf;
5569 break;
5570 }
5571 }
5572#endif
5573 uint8_t uTpr;
5574 int rc = APICGetTpr(pVCpu, &uTpr, NULL, NULL);
5575 if (RT_SUCCESS(rc))
5576 crX = uTpr >> 4;
5577 else
5578 crX = 0;
5579 break;
5580 }
5581 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
5582 }
5583
5584#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5585 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5586 {
5587 switch (iCrReg)
5588 {
5589 /* CR0/CR4 reads are subject to masking when in VMX non-root mode. */
5590 case 0: crX = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u); break;
5591 case 4: crX = CPUMGetGuestVmxMaskedCr4(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr4Mask.u); break;
5592
5593 case 3:
5594 {
5595 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovFromCr3(pVCpu, iGReg, cbInstr);
5596 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
5597 return rcStrict;
5598 break;
5599 }
5600 }
5601 }
5602#endif
5603
5604 /* Store it. */
5605 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
5606 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = crX;
5607 else
5608 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)crX;
5609
5610 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5611 return VINF_SUCCESS;
5612}
5613
5614
5615/**
5616 * Implements smsw GReg.
5617 *
5618 * @param iGReg The general register to store the CRx value in.
5619 * @param enmEffOpSize The operand size.
5620 */
5621IEM_CIMPL_DEF_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize)
5622{
5623 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5624
5625#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5626 uint64_t u64MaskedCr0;
5627 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5628 u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
5629 else
5630 u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u);
5631 uint64_t const u64GuestCr0 = u64MaskedCr0;
5632#else
5633 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5634#endif
5635
5636 switch (enmEffOpSize)
5637 {
5638 case IEMMODE_16BIT:
5639 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5640 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0;
5641 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5642 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xffe0;
5643 else
5644 *(uint16_t *)iemGRegRef(pVCpu, iGReg) = (uint16_t)u64GuestCr0 | 0xfff0;
5645 break;
5646
5647 case IEMMODE_32BIT:
5648 *(uint32_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)u64GuestCr0;
5649 break;
5650
5651 case IEMMODE_64BIT:
5652 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = u64GuestCr0;
5653 break;
5654
5655 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5656 }
5657
5658 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5659 return VINF_SUCCESS;
5660}
5661
5662
5663/**
5664 * Implements smsw mem.
5665 *
5666 * @param iGReg The general register to store the CR0 value in.
5667 * @param iEffSeg The effective segment register to use with @a GCPtrMem.
5668 * @param GCPtrEffDst Where to store the 16-bit CR0 value.
5669 */
5670IEM_CIMPL_DEF_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
5671{
5672 IEM_SVM_CHECK_READ_CR0_INTERCEPT(pVCpu, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
5673
5674#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5675 uint64_t u64MaskedCr0;
5676 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
5677 u64MaskedCr0 = pVCpu->cpum.GstCtx.cr0;
5678 else
5679 u64MaskedCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u);
5680 uint64_t const u64GuestCr0 = u64MaskedCr0;
5681#else
5682 uint64_t const u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5683#endif
5684
5685 uint16_t u16Value;
5686 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_386)
5687 u16Value = (uint16_t)u64GuestCr0;
5688 else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
5689 u16Value = (uint16_t)u64GuestCr0 | 0xffe0;
5690 else
5691 u16Value = (uint16_t)u64GuestCr0 | 0xfff0;
5692
5693 VBOXSTRICTRC rcStrict = iemMemStoreDataU16(pVCpu, iEffSeg, GCPtrEffDst, u16Value);
5694 if (rcStrict == VINF_SUCCESS)
5695 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
5696 return rcStrict;
5697}
5698
5699
5700/**
5701 * Helper for mapping CR3 and PAE PDPEs for 'mov CRx,GReg'.
5702 */
5703#define IEM_MAP_PAE_PDPES_AT_CR3_RET(a_pVCpu, a_iCrReg, a_uCr3) \
5704 do \
5705 { \
5706 int const rcX = PGMGstMapPaePdpesAtCr3(a_pVCpu, a_uCr3); \
5707 if (RT_SUCCESS(rcX)) \
5708 { /* likely */ } \
5709 else \
5710 { \
5711 /* Either invalid PDPTEs or CR3 second-level translation failed. Raise #GP(0) either way. */ \
5712 Log(("iemCImpl_load_Cr%#x: Trying to load invalid PAE PDPEs\n", a_iCrReg)); \
5713 return iemRaiseGeneralProtectionFault0(a_pVCpu); \
5714 } \
5715 } while (0)
5716
5717
5718/**
5719 * Used to implemented 'mov CRx,GReg' and 'lmsw r/m16'.
5720 *
5721 * @param iCrReg The CRx register to write (valid).
5722 * @param uNewCrX The new value.
5723 * @param enmAccessCrx The instruction that caused the CrX load.
5724 * @param iGReg The general register in case of a 'mov CRx,GReg'
5725 * instruction.
5726 */
5727IEM_CIMPL_DEF_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg)
5728{
5729 VBOXSTRICTRC rcStrict;
5730 int rc;
5731#ifndef VBOX_WITH_NESTED_HWVIRT_SVM
5732 RT_NOREF2(iGReg, enmAccessCrX);
5733#endif
5734
5735 /*
5736 * Try store it.
5737 * Unfortunately, CPUM only does a tiny bit of the work.
5738 */
5739 switch (iCrReg)
5740 {
5741 case 0:
5742 {
5743 /*
5744 * Perform checks.
5745 */
5746 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5747
5748 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr0;
5749 uint32_t const fValid = CPUMGetGuestCR0ValidMask();
5750
5751 /* ET is hardcoded on 486 and later. */
5752 if (IEM_GET_TARGET_CPU(pVCpu) > IEMTARGETCPU_486)
5753 uNewCrX |= X86_CR0_ET;
5754 /* The 386 and 486 didn't #GP(0) on attempting to set reserved CR0 bits. ET was settable on 386. */
5755 else if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_486)
5756 {
5757 uNewCrX &= fValid;
5758 uNewCrX |= X86_CR0_ET;
5759 }
5760 else
5761 uNewCrX &= X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG | X86_CR0_ET;
5762
5763 /* Check for reserved bits. */
5764 if (uNewCrX & ~(uint64_t)fValid)
5765 {
5766 Log(("Trying to set reserved CR0 bits: NewCR0=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
5767 return iemRaiseGeneralProtectionFault0(pVCpu);
5768 }
5769
5770 /* Check for invalid combinations. */
5771 if ( (uNewCrX & X86_CR0_PG)
5772 && !(uNewCrX & X86_CR0_PE) )
5773 {
5774 Log(("Trying to set CR0.PG without CR0.PE\n"));
5775 return iemRaiseGeneralProtectionFault0(pVCpu);
5776 }
5777
5778 if ( !(uNewCrX & X86_CR0_CD)
5779 && (uNewCrX & X86_CR0_NW) )
5780 {
5781 Log(("Trying to clear CR0.CD while leaving CR0.NW set\n"));
5782 return iemRaiseGeneralProtectionFault0(pVCpu);
5783 }
5784
5785 if ( !(uNewCrX & X86_CR0_PG)
5786 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE))
5787 {
5788 Log(("Trying to clear CR0.PG while leaving CR4.PCID set\n"));
5789 return iemRaiseGeneralProtectionFault0(pVCpu);
5790 }
5791
5792 /* Long mode consistency checks. */
5793 if ( (uNewCrX & X86_CR0_PG)
5794 && !(uOldCrX & X86_CR0_PG)
5795 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5796 {
5797 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE))
5798 {
5799 Log(("Trying to enabled long mode paging without CR4.PAE set\n"));
5800 return iemRaiseGeneralProtectionFault0(pVCpu);
5801 }
5802 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1Long)
5803 {
5804 Log(("Trying to enabled long mode paging with a long CS descriptor loaded.\n"));
5805 return iemRaiseGeneralProtectionFault0(pVCpu);
5806 }
5807 }
5808
5809 /* Check for bits that must remain set or cleared in VMX operation,
5810 see Intel spec. 23.8 "Restrictions on VMX operation". */
5811 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
5812 {
5813 uint64_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
5814 if ((uNewCrX & uCr0Fixed0) != uCr0Fixed0)
5815 {
5816 Log(("Trying to clear reserved CR0 bits in VMX operation: NewCr0=%#llx MB1=%#llx\n", uNewCrX, uCr0Fixed0));
5817 return iemRaiseGeneralProtectionFault0(pVCpu);
5818 }
5819
5820 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5821 if (uNewCrX & ~uCr0Fixed1)
5822 {
5823 Log(("Trying to set reserved CR0 bits in VMX operation: NewCr0=%#llx MB0=%#llx\n", uNewCrX, uCr0Fixed1));
5824 return iemRaiseGeneralProtectionFault0(pVCpu);
5825 }
5826 }
5827
5828 /*
5829 * SVM nested-guest CR0 write intercepts.
5830 */
5831 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, iCrReg))
5832 {
5833 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5834 IEM_SVM_UPDATE_NRIP(pVCpu);
5835 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR0, enmAccessCrX, iGReg);
5836 }
5837 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5838 {
5839 /* 'lmsw' intercepts regardless of whether the TS/MP bits are actually toggled. */
5840 if ( enmAccessCrX == IEMACCESSCRX_LMSW
5841 || (uNewCrX & ~(X86_CR0_TS | X86_CR0_MP)) != (uOldCrX & ~(X86_CR0_TS | X86_CR0_MP)))
5842 {
5843 Assert(enmAccessCrX != IEMACCESSCRX_CLTS);
5844 Log(("iemCImpl_load_Cr%#x: lmsw or bits other than TS/MP changed: Guest intercept -> #VMEXIT\n", iCrReg));
5845 IEM_SVM_UPDATE_NRIP(pVCpu);
5846 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_CR0_SEL_WRITE, enmAccessCrX, iGReg);
5847 }
5848 }
5849
5850 /*
5851 * Change EFER.LMA if entering or leaving long mode.
5852 */
5853 uint64_t NewEFER = pVCpu->cpum.GstCtx.msrEFER;
5854 if ( (uNewCrX & X86_CR0_PG) != (uOldCrX & X86_CR0_PG)
5855 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME) )
5856 {
5857 if (uNewCrX & X86_CR0_PG)
5858 NewEFER |= MSR_K6_EFER_LMA;
5859 else
5860 NewEFER &= ~MSR_K6_EFER_LMA;
5861
5862 CPUMSetGuestEFER(pVCpu, NewEFER);
5863 Assert(pVCpu->cpum.GstCtx.msrEFER == NewEFER);
5864 }
5865
5866 /*
5867 * Inform PGM.
5868 */
5869 if ( (uNewCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE | X86_CR0_CD | X86_CR0_NW))
5870 != (uOldCrX & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE | X86_CR0_CD | X86_CR0_NW)) )
5871 {
5872 bool fPdpesMapped;
5873 if ( enmAccessCrX != IEMACCESSCRX_MOV_CRX
5874 || !CPUMIsPaePagingEnabled(uNewCrX, pVCpu->cpum.GstCtx.cr4, NewEFER)
5875 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5876 fPdpesMapped = false;
5877 else
5878 {
5879 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, pVCpu->cpum.GstCtx.cr3);
5880 fPdpesMapped = true;
5881 }
5882 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */, fPdpesMapped);
5883 AssertRCReturn(rc, rc);
5884 /* ignore informational status codes */
5885 }
5886
5887 /*
5888 * Change CR0.
5889 */
5890 CPUMSetGuestCR0(pVCpu, uNewCrX);
5891 Assert(pVCpu->cpum.GstCtx.cr0 == uNewCrX);
5892
5893 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
5894 false /* fForce */);
5895 break;
5896 }
5897
5898 /*
5899 * CR2 can be changed without any restrictions.
5900 */
5901 case 2:
5902 {
5903 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 2))
5904 {
5905 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5906 IEM_SVM_UPDATE_NRIP(pVCpu);
5907 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR2, enmAccessCrX, iGReg);
5908 }
5909 pVCpu->cpum.GstCtx.cr2 = uNewCrX;
5910 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_CR2;
5911 rcStrict = VINF_SUCCESS;
5912 break;
5913 }
5914
5915 /*
5916 * CR3 is relatively simple, although AMD and Intel have different
5917 * accounts of how setting reserved bits are handled. We take intel's
5918 * word for the lower bits and AMD's for the high bits (63:52). The
5919 * lower reserved bits are ignored and left alone; OpenBSD 5.8 relies
5920 * on this.
5921 */
5922 /** @todo Testcase: Setting reserved bits in CR3, especially before
5923 * enabling paging. */
5924 case 3:
5925 {
5926 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5927
5928 /* Bit 63 being clear in the source operand with PCIDE indicates no invalidations are required. */
5929 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCIDE)
5930 && (uNewCrX & RT_BIT_64(63)))
5931 {
5932 /** @todo r=ramshankar: avoiding a TLB flush altogether here causes Windows 10
5933 * SMP(w/o nested-paging) to hang during bootup on Skylake systems, see
5934 * Intel spec. 4.10.4.1 "Operations that Invalidate TLBs and
5935 * Paging-Structure Caches". */
5936 uNewCrX &= ~RT_BIT_64(63);
5937 }
5938
5939 /* Check / mask the value. */
5940#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
5941 /* See Intel spec. 27.2.2 "EPT Translation Mechanism" footnote. */
5942 uint64_t const fInvPhysMask = !CPUMIsGuestVmxEptPagingEnabledEx(IEM_GET_CTX(pVCpu))
5943 ? (UINT64_MAX << IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
5944 : (~X86_CR3_EPT_PAGE_MASK & X86_PAGE_4K_BASE_MASK);
5945#else
5946 uint64_t const fInvPhysMask = UINT64_C(0xfff0000000000000);
5947#endif
5948 if (uNewCrX & fInvPhysMask)
5949 {
5950 /** @todo Should we raise this only for 64-bit mode like Intel claims? AMD is
5951 * very vague in this area. As mentioned above, need testcase on real
5952 * hardware... Sigh. */
5953 Log(("Trying to load CR3 with invalid high bits set: %#llx\n", uNewCrX));
5954 return iemRaiseGeneralProtectionFault0(pVCpu);
5955 }
5956
5957 uint64_t fValid;
5958 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
5959 && (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME))
5960 {
5961 /** @todo Redundant? This value has already been validated above. */
5962 fValid = UINT64_C(0x000fffffffffffff);
5963 }
5964 else
5965 fValid = UINT64_C(0xffffffff);
5966 if (uNewCrX & ~fValid)
5967 {
5968 Log(("Automatically clearing reserved MBZ bits in CR3 load: NewCR3=%#llx ClearedBits=%#llx\n",
5969 uNewCrX, uNewCrX & ~fValid));
5970 uNewCrX &= fValid;
5971 }
5972
5973 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 3))
5974 {
5975 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
5976 IEM_SVM_UPDATE_NRIP(pVCpu);
5977 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR3, enmAccessCrX, iGReg);
5978 }
5979
5980 /* Inform PGM. */
5981 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG)
5982 {
5983 bool fPdpesMapped;
5984 if ( !CPUMIsGuestInPAEModeEx(IEM_GET_CTX(pVCpu))
5985 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
5986 fPdpesMapped = false;
5987 else
5988 {
5989 Assert(enmAccessCrX == IEMACCESSCRX_MOV_CRX);
5990 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, uNewCrX);
5991 fPdpesMapped = true;
5992 }
5993 rc = PGMFlushTLB(pVCpu, uNewCrX, !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PGE), fPdpesMapped);
5994 AssertRCReturn(rc, rc);
5995 /* ignore informational status codes */
5996 }
5997
5998 /* Make the change. */
5999 rc = CPUMSetGuestCR3(pVCpu, uNewCrX);
6000 AssertRCSuccessReturn(rc, rc);
6001
6002 rcStrict = VINF_SUCCESS;
6003 break;
6004 }
6005
6006 /*
6007 * CR4 is a bit more tedious as there are bits which cannot be cleared
6008 * under some circumstances and such.
6009 */
6010 case 4:
6011 {
6012 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6013 uint64_t const uOldCrX = pVCpu->cpum.GstCtx.cr4;
6014
6015 /* Reserved bits. */
6016 uint32_t const fValid = CPUMGetGuestCR4ValidMask(pVCpu->CTX_SUFF(pVM));
6017 if (uNewCrX & ~(uint64_t)fValid)
6018 {
6019 Log(("Trying to set reserved CR4 bits: NewCR4=%#llx InvalidBits=%#llx\n", uNewCrX, uNewCrX & ~(uint64_t)fValid));
6020 return iemRaiseGeneralProtectionFault0(pVCpu);
6021 }
6022
6023 bool const fPcide = !(uOldCrX & X86_CR4_PCIDE) && (uNewCrX & X86_CR4_PCIDE);
6024 bool const fLongMode = CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu));
6025
6026 /* PCIDE check. */
6027 if ( fPcide
6028 && ( !fLongMode
6029 || (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))))
6030 {
6031 Log(("Trying to set PCIDE with invalid PCID or outside long mode. Pcid=%#x\n", (pVCpu->cpum.GstCtx.cr3 & UINT64_C(0xfff))));
6032 return iemRaiseGeneralProtectionFault0(pVCpu);
6033 }
6034
6035 /* PAE check. */
6036 if ( fLongMode
6037 && (uOldCrX & X86_CR4_PAE)
6038 && !(uNewCrX & X86_CR4_PAE))
6039 {
6040 Log(("Trying to set clear CR4.PAE while long mode is active\n"));
6041 return iemRaiseGeneralProtectionFault0(pVCpu);
6042 }
6043
6044 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 4))
6045 {
6046 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6047 IEM_SVM_UPDATE_NRIP(pVCpu);
6048 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR4, enmAccessCrX, iGReg);
6049 }
6050
6051 /* Check for bits that must remain set or cleared in VMX operation,
6052 see Intel spec. 23.8 "Restrictions on VMX operation". */
6053 if (IEM_VMX_IS_ROOT_MODE(pVCpu))
6054 {
6055 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
6056 if ((uNewCrX & uCr4Fixed0) != uCr4Fixed0)
6057 {
6058 Log(("Trying to clear reserved CR4 bits in VMX operation: NewCr4=%#llx MB1=%#llx\n", uNewCrX, uCr4Fixed0));
6059 return iemRaiseGeneralProtectionFault0(pVCpu);
6060 }
6061
6062 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
6063 if (uNewCrX & ~uCr4Fixed1)
6064 {
6065 Log(("Trying to set reserved CR4 bits in VMX operation: NewCr4=%#llx MB0=%#llx\n", uNewCrX, uCr4Fixed1));
6066 return iemRaiseGeneralProtectionFault0(pVCpu);
6067 }
6068 }
6069
6070 /*
6071 * Notify PGM.
6072 */
6073 if ((uNewCrX ^ uOldCrX) & (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_PCIDE /* | X86_CR4_SMEP */))
6074 {
6075 bool fPdpesMapped;
6076 if ( !CPUMIsPaePagingEnabled(pVCpu->cpum.GstCtx.cr0, uNewCrX, pVCpu->cpum.GstCtx.msrEFER)
6077 || CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6078 fPdpesMapped = false;
6079 else
6080 {
6081 Assert(enmAccessCrX == IEMACCESSCRX_MOV_CRX);
6082 IEM_MAP_PAE_PDPES_AT_CR3_RET(pVCpu, iCrReg, pVCpu->cpum.GstCtx.cr3);
6083 fPdpesMapped = true;
6084 }
6085 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /* global */, fPdpesMapped);
6086 AssertRCReturn(rc, rc);
6087 /* ignore informational status codes */
6088 }
6089
6090 /*
6091 * Change it.
6092 */
6093 rc = CPUMSetGuestCR4(pVCpu, uNewCrX);
6094 AssertRCSuccessReturn(rc, rc);
6095 Assert(pVCpu->cpum.GstCtx.cr4 == uNewCrX);
6096
6097 rcStrict = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
6098 false /* fForce */);
6099 break;
6100 }
6101
6102 /*
6103 * CR8 maps to the APIC TPR.
6104 */
6105 case 8:
6106 {
6107 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
6108 if (uNewCrX & ~(uint64_t)0xf)
6109 {
6110 Log(("Trying to set reserved CR8 bits (%#RX64)\n", uNewCrX));
6111 return iemRaiseGeneralProtectionFault0(pVCpu);
6112 }
6113
6114#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6115 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6116 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_TPR_SHADOW))
6117 {
6118 /*
6119 * If the Mov-to-CR8 doesn't cause a VM-exit, bits 0:3 of the source operand
6120 * is copied to bits 7:4 of the VTPR. Bits 0:3 and bits 31:8 of the VTPR are
6121 * cleared. Following this the processor performs TPR virtualization.
6122 *
6123 * However, we should not perform TPR virtualization immediately here but
6124 * after this instruction has completed.
6125 *
6126 * See Intel spec. 29.3 "Virtualizing CR8-based TPR Accesses"
6127 * See Intel spec. 27.1 "Architectural State Before A VM-exit"
6128 */
6129 uint32_t const uTpr = (uNewCrX & 0xf) << 4;
6130 Log(("iemCImpl_load_Cr%#x: Virtualizing TPR (%#x) write\n", iCrReg, uTpr));
6131 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
6132 iemVmxVirtApicSetPendingWrite(pVCpu, XAPIC_OFF_TPR);
6133 rcStrict = VINF_SUCCESS;
6134 break;
6135 }
6136#endif
6137
6138#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6139 if (CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)))
6140 {
6141 if (IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(pVCpu, /*cr*/ 8))
6142 {
6143 Log(("iemCImpl_load_Cr%#x: Guest intercept -> #VMEXIT\n", iCrReg));
6144 IEM_SVM_UPDATE_NRIP(pVCpu);
6145 IEM_SVM_CRX_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_CR8, enmAccessCrX, iGReg);
6146 }
6147
6148 pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl.IntCtrl.n.u8VTPR = uNewCrX;
6149 if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, IEM_GET_CTX(pVCpu)))
6150 {
6151 rcStrict = VINF_SUCCESS;
6152 break;
6153 }
6154 }
6155#endif
6156 uint8_t const u8Tpr = (uint8_t)uNewCrX << 4;
6157 APICSetTpr(pVCpu, u8Tpr);
6158 rcStrict = VINF_SUCCESS;
6159 break;
6160 }
6161
6162 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6163 }
6164
6165 /*
6166 * Advance the RIP on success.
6167 */
6168 if (RT_SUCCESS(rcStrict))
6169 {
6170 if (rcStrict != VINF_SUCCESS)
6171 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
6172 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6173 }
6174
6175 return rcStrict;
6176}
6177
6178
6179/**
6180 * Implements mov CRx,GReg.
6181 *
6182 * @param iCrReg The CRx register to write (valid).
6183 * @param iGReg The general register to load the CRx value from.
6184 */
6185IEM_CIMPL_DEF_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg)
6186{
6187 if (pVCpu->iem.s.uCpl != 0)
6188 return iemRaiseGeneralProtectionFault0(pVCpu);
6189 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6190
6191 /*
6192 * Read the new value from the source register and call common worker.
6193 */
6194 uint64_t uNewCrX;
6195 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6196 uNewCrX = iemGRegFetchU64(pVCpu, iGReg);
6197 else
6198 uNewCrX = iemGRegFetchU32(pVCpu, iGReg);
6199
6200#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6201 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6202 {
6203 VBOXSTRICTRC rcStrict = VINF_VMX_INTERCEPT_NOT_ACTIVE;
6204 switch (iCrReg)
6205 {
6206 case 0:
6207 case 4: rcStrict = iemVmxVmexitInstrMovToCr0Cr4(pVCpu, iCrReg, &uNewCrX, iGReg, cbInstr); break;
6208 case 3: rcStrict = iemVmxVmexitInstrMovToCr3(pVCpu, uNewCrX, iGReg, cbInstr); break;
6209 case 8: rcStrict = iemVmxVmexitInstrMovToCr8(pVCpu, iGReg, cbInstr); break;
6210 }
6211 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6212 return rcStrict;
6213 }
6214#endif
6215
6216 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, iCrReg, uNewCrX, IEMACCESSCRX_MOV_CRX, iGReg);
6217}
6218
6219
6220/**
6221 * Implements 'LMSW r/m16'
6222 *
6223 * @param u16NewMsw The new value.
6224 * @param GCPtrEffDst The guest-linear address of the source operand in case
6225 * of a memory operand. For register operand, pass
6226 * NIL_RTGCPTR.
6227 */
6228IEM_CIMPL_DEF_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst)
6229{
6230 if (pVCpu->iem.s.uCpl != 0)
6231 return iemRaiseGeneralProtectionFault0(pVCpu);
6232 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6233 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6234
6235#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6236 /* Check nested-guest VMX intercept and get updated MSW if there's no VM-exit. */
6237 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6238 {
6239 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrLmsw(pVCpu, pVCpu->cpum.GstCtx.cr0, &u16NewMsw, GCPtrEffDst, cbInstr);
6240 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6241 return rcStrict;
6242 }
6243#else
6244 RT_NOREF_PV(GCPtrEffDst);
6245#endif
6246
6247 /*
6248 * Compose the new CR0 value and call common worker.
6249 */
6250 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0 & ~(X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6251 uNewCr0 |= u16NewMsw & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
6252 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_LMSW, UINT8_MAX /* iGReg */);
6253}
6254
6255
6256/**
6257 * Implements 'CLTS'.
6258 */
6259IEM_CIMPL_DEF_0(iemCImpl_clts)
6260{
6261 if (pVCpu->iem.s.uCpl != 0)
6262 return iemRaiseGeneralProtectionFault0(pVCpu);
6263
6264 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6265 uint64_t uNewCr0 = pVCpu->cpum.GstCtx.cr0;
6266 uNewCr0 &= ~X86_CR0_TS;
6267
6268#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6269 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6270 {
6271 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrClts(pVCpu, cbInstr);
6272 if (rcStrict == VINF_VMX_MODIFIES_BEHAVIOR)
6273 uNewCr0 |= (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS);
6274 else if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6275 return rcStrict;
6276 }
6277#endif
6278
6279 return IEM_CIMPL_CALL_4(iemCImpl_load_CrX, /*cr*/ 0, uNewCr0, IEMACCESSCRX_CLTS, UINT8_MAX /* iGReg */);
6280}
6281
6282
6283/**
6284 * Implements mov GReg,DRx.
6285 *
6286 * @param iGReg The general register to store the DRx value in.
6287 * @param iDrReg The DRx register to read (0-7).
6288 */
6289IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg)
6290{
6291#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6292 /*
6293 * Check nested-guest VMX intercept.
6294 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6295 * over CPL and CR4.DE and even DR4/DR5 checks.
6296 *
6297 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6298 */
6299 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6300 {
6301 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_FROM_DRX, iDrReg, iGReg, cbInstr);
6302 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6303 return rcStrict;
6304 }
6305#endif
6306
6307 /*
6308 * Check preconditions.
6309 */
6310 /* Raise GPs. */
6311 if (pVCpu->iem.s.uCpl != 0)
6312 return iemRaiseGeneralProtectionFault0(pVCpu);
6313 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6314 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR0);
6315
6316 if ( (iDrReg == 4 || iDrReg == 5)
6317 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE) )
6318 {
6319 Log(("mov r%u,dr%u: CR4.DE=1 -> #GP(0)\n", iGReg, iDrReg));
6320 return iemRaiseGeneralProtectionFault0(pVCpu);
6321 }
6322
6323 /* Raise #DB if general access detect is enabled. */
6324 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6325 {
6326 Log(("mov r%u,dr%u: DR7.GD=1 -> #DB\n", iGReg, iDrReg));
6327 return iemRaiseDebugException(pVCpu);
6328 }
6329
6330 /*
6331 * Read the debug register and store it in the specified general register.
6332 */
6333 uint64_t drX;
6334 switch (iDrReg)
6335 {
6336 case 0:
6337 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6338 drX = pVCpu->cpum.GstCtx.dr[0];
6339 break;
6340 case 1:
6341 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6342 drX = pVCpu->cpum.GstCtx.dr[1];
6343 break;
6344 case 2:
6345 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6346 drX = pVCpu->cpum.GstCtx.dr[2];
6347 break;
6348 case 3:
6349 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6350 drX = pVCpu->cpum.GstCtx.dr[3];
6351 break;
6352 case 6:
6353 case 4:
6354 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6355 drX = pVCpu->cpum.GstCtx.dr[6];
6356 drX |= X86_DR6_RA1_MASK;
6357 drX &= ~X86_DR6_RAZ_MASK;
6358 break;
6359 case 7:
6360 case 5:
6361 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6362 drX = pVCpu->cpum.GstCtx.dr[7];
6363 drX |=X86_DR7_RA1_MASK;
6364 drX &= ~X86_DR7_RAZ_MASK;
6365 break;
6366 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6367 }
6368
6369 /** @todo SVM nested-guest intercept for DR8-DR15? */
6370 /*
6371 * Check for any SVM nested-guest intercepts for the DRx read.
6372 */
6373 if (IEM_SVM_IS_READ_DR_INTERCEPT_SET(pVCpu, iDrReg))
6374 {
6375 Log(("mov r%u,dr%u: Guest intercept -> #VMEXIT\n", iGReg, iDrReg));
6376 IEM_SVM_UPDATE_NRIP(pVCpu);
6377 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_READ_DR0 + (iDrReg & 0xf),
6378 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6379 }
6380
6381 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6382 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = drX;
6383 else
6384 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)drX;
6385
6386 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6387 return VINF_SUCCESS;
6388}
6389
6390
6391/**
6392 * Implements mov DRx,GReg.
6393 *
6394 * @param iDrReg The DRx register to write (valid).
6395 * @param iGReg The general register to load the DRx value from.
6396 */
6397IEM_CIMPL_DEF_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg)
6398{
6399#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6400 /*
6401 * Check nested-guest VMX intercept.
6402 * Unlike most other intercepts, the Mov DRx intercept takes preceedence
6403 * over CPL and CR4.DE and even DR4/DR5 checks.
6404 *
6405 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
6406 */
6407 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6408 {
6409 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrMovDrX(pVCpu, VMXINSTRID_MOV_TO_DRX, iDrReg, iGReg, cbInstr);
6410 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
6411 return rcStrict;
6412 }
6413#endif
6414
6415 /*
6416 * Check preconditions.
6417 */
6418 if (pVCpu->iem.s.uCpl != 0)
6419 return iemRaiseGeneralProtectionFault0(pVCpu);
6420 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6421 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_CR4);
6422
6423 if (iDrReg == 4 || iDrReg == 5)
6424 {
6425 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE)
6426 {
6427 Log(("mov dr%u,r%u: CR4.DE=1 -> #GP(0)\n", iDrReg, iGReg));
6428 return iemRaiseGeneralProtectionFault0(pVCpu);
6429 }
6430 iDrReg += 2;
6431 }
6432
6433 /* Raise #DB if general access detect is enabled. */
6434 /** @todo is \#DB/DR7.GD raised before any reserved high bits in DR7/DR6
6435 * \#GP? */
6436 if (pVCpu->cpum.GstCtx.dr[7] & X86_DR7_GD)
6437 {
6438 Log(("mov dr%u,r%u: DR7.GD=1 -> #DB\n", iDrReg, iGReg));
6439 return iemRaiseDebugException(pVCpu);
6440 }
6441
6442 /*
6443 * Read the new value from the source register.
6444 */
6445 uint64_t uNewDrX;
6446 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6447 uNewDrX = iemGRegFetchU64(pVCpu, iGReg);
6448 else
6449 uNewDrX = iemGRegFetchU32(pVCpu, iGReg);
6450
6451 /*
6452 * Adjust it.
6453 */
6454 switch (iDrReg)
6455 {
6456 case 0:
6457 case 1:
6458 case 2:
6459 case 3:
6460 /* nothing to adjust */
6461 break;
6462
6463 case 6:
6464 if (uNewDrX & X86_DR6_MBZ_MASK)
6465 {
6466 Log(("mov dr%u,%#llx: DR6 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6467 return iemRaiseGeneralProtectionFault0(pVCpu);
6468 }
6469 uNewDrX |= X86_DR6_RA1_MASK;
6470 uNewDrX &= ~X86_DR6_RAZ_MASK;
6471 break;
6472
6473 case 7:
6474 if (uNewDrX & X86_DR7_MBZ_MASK)
6475 {
6476 Log(("mov dr%u,%#llx: DR7 high bits are not zero -> #GP(0)\n", iDrReg, uNewDrX));
6477 return iemRaiseGeneralProtectionFault0(pVCpu);
6478 }
6479 uNewDrX |= X86_DR7_RA1_MASK;
6480 uNewDrX &= ~X86_DR7_RAZ_MASK;
6481 break;
6482
6483 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6484 }
6485
6486 /** @todo SVM nested-guest intercept for DR8-DR15? */
6487 /*
6488 * Check for any SVM nested-guest intercepts for the DRx write.
6489 */
6490 if (IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(pVCpu, iDrReg))
6491 {
6492 Log2(("mov dr%u,r%u: Guest intercept -> #VMEXIT\n", iDrReg, iGReg));
6493 IEM_SVM_UPDATE_NRIP(pVCpu);
6494 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_WRITE_DR0 + (iDrReg & 0xf),
6495 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? (iGReg & 7) : 0, 0 /* uExitInfo2 */);
6496 }
6497
6498 /*
6499 * Do the actual setting.
6500 */
6501 if (iDrReg < 4)
6502 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
6503 else if (iDrReg == 6)
6504 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
6505
6506 int rc = CPUMSetGuestDRx(pVCpu, iDrReg, uNewDrX);
6507 AssertRCSuccessReturn(rc, RT_SUCCESS_NP(rc) ? VERR_IEM_IPE_1 : rc);
6508
6509 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6510 return VINF_SUCCESS;
6511}
6512
6513
6514/**
6515 * Implements mov GReg,TRx.
6516 *
6517 * @param iGReg The general register to store the
6518 * TRx value in.
6519 * @param iTrReg The TRx register to read (6/7).
6520 */
6521IEM_CIMPL_DEF_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg)
6522{
6523 /*
6524 * Check preconditions. NB: This instruction is 386/486 only.
6525 */
6526
6527 /* Raise GPs. */
6528 if (pVCpu->iem.s.uCpl != 0)
6529 return iemRaiseGeneralProtectionFault0(pVCpu);
6530 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6531
6532 if (iTrReg < 6 || iTrReg > 7)
6533 {
6534 /** @todo Do Intel CPUs reject this or are the TRs aliased? */
6535 Log(("mov r%u,tr%u: invalid register -> #GP(0)\n", iGReg, iTrReg));
6536 return iemRaiseGeneralProtectionFault0(pVCpu);
6537 }
6538
6539 /*
6540 * Read the test register and store it in the specified general register.
6541 * This is currently a dummy implementation that only exists to satisfy
6542 * old debuggers like WDEB386 or OS/2 KDB which unconditionally read the
6543 * TR6/TR7 registers. Software which actually depends on the TR values
6544 * (different on 386/486) is exceedingly rare.
6545 */
6546 uint64_t trX;
6547 switch (iTrReg)
6548 {
6549 case 6:
6550 trX = 0; /* Currently a dummy. */
6551 break;
6552 case 7:
6553 trX = 0; /* Currently a dummy. */
6554 break;
6555 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* call checks */
6556 }
6557
6558 *(uint64_t *)iemGRegRef(pVCpu, iGReg) = (uint32_t)trX;
6559
6560 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6561 return VINF_SUCCESS;
6562}
6563
6564
6565/**
6566 * Implements mov TRx,GReg.
6567 *
6568 * @param iTrReg The TRx register to write (valid).
6569 * @param iGReg The general register to load the TRx
6570 * value from.
6571 */
6572IEM_CIMPL_DEF_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg)
6573{
6574 /*
6575 * Check preconditions. NB: This instruction is 386/486 only.
6576 */
6577
6578 /* Raise GPs. */
6579 if (pVCpu->iem.s.uCpl != 0)
6580 return iemRaiseGeneralProtectionFault0(pVCpu);
6581 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6582
6583 if (iTrReg < 6 || iTrReg > 7)
6584 {
6585 /** @todo Do Intel CPUs reject this or are the TRs aliased? */
6586 Log(("mov r%u,tr%u: invalid register -> #GP(0)\n", iGReg, iTrReg));
6587 return iemRaiseGeneralProtectionFault0(pVCpu);
6588 }
6589
6590 /*
6591 * Read the new value from the source register.
6592 */
6593 uint64_t uNewTrX;
6594 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
6595 uNewTrX = iemGRegFetchU64(pVCpu, iGReg);
6596 else
6597 uNewTrX = iemGRegFetchU32(pVCpu, iGReg);
6598
6599 /*
6600 * Here we would do the actual setting if this weren't a dummy implementation.
6601 * This is currently a dummy implementation that only exists to prevent
6602 * old debuggers like WDEB386 or OS/2 KDB from crashing.
6603 */
6604 RT_NOREF(uNewTrX);
6605
6606 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6607 return VINF_SUCCESS;
6608}
6609
6610
6611/**
6612 * Implements 'INVLPG m'.
6613 *
6614 * @param GCPtrPage The effective address of the page to invalidate.
6615 * @remarks Updates the RIP.
6616 */
6617IEM_CIMPL_DEF_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage)
6618{
6619 /* ring-0 only. */
6620 if (pVCpu->iem.s.uCpl != 0)
6621 return iemRaiseGeneralProtectionFault0(pVCpu);
6622 Assert(!pVCpu->cpum.GstCtx.eflags.Bits.u1VM);
6623 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6624
6625#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6626 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6627 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6628 {
6629 Log(("invlpg: Guest intercept (%RGp) -> VM-exit\n", GCPtrPage));
6630 return iemVmxVmexitInstrInvlpg(pVCpu, GCPtrPage, cbInstr);
6631 }
6632#endif
6633
6634 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
6635 {
6636 Log(("invlpg: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
6637 IEM_SVM_UPDATE_NRIP(pVCpu);
6638 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPG,
6639 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? GCPtrPage : 0, 0 /* uExitInfo2 */);
6640 }
6641
6642 int rc = PGMInvalidatePage(pVCpu, GCPtrPage);
6643 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6644
6645 if (rc == VINF_SUCCESS)
6646 return VINF_SUCCESS;
6647 if (rc == VINF_PGM_SYNC_CR3)
6648 return iemSetPassUpStatus(pVCpu, rc);
6649
6650 AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
6651 Log(("PGMInvalidatePage(%RGv) -> %Rrc\n", GCPtrPage, rc));
6652 return rc;
6653}
6654
6655
6656/**
6657 * Implements INVPCID.
6658 *
6659 * @param iEffSeg The segment of the invpcid descriptor.
6660 * @param GCPtrInvpcidDesc The address of invpcid descriptor.
6661 * @param uInvpcidType The invalidation type.
6662 * @remarks Updates the RIP.
6663 */
6664IEM_CIMPL_DEF_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType)
6665{
6666 /*
6667 * Check preconditions.
6668 */
6669 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fInvpcid)
6670 return iemRaiseUndefinedOpcode(pVCpu);
6671
6672 /* When in VMX non-root mode and INVPCID is not enabled, it results in #UD. */
6673 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6674 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_INVPCID))
6675 {
6676 Log(("invpcid: Not enabled for nested-guest execution -> #UD\n"));
6677 return iemRaiseUndefinedOpcode(pVCpu);
6678 }
6679
6680 if (pVCpu->iem.s.uCpl != 0)
6681 {
6682 Log(("invpcid: CPL != 0 -> #GP(0)\n"));
6683 return iemRaiseGeneralProtectionFault0(pVCpu);
6684 }
6685
6686 if (IEM_IS_V86_MODE(pVCpu))
6687 {
6688 Log(("invpcid: v8086 mode -> #GP(0)\n"));
6689 return iemRaiseGeneralProtectionFault0(pVCpu);
6690 }
6691
6692 /*
6693 * Check nested-guest intercept.
6694 *
6695 * INVPCID causes a VM-exit if "enable INVPCID" and "INVLPG exiting" are
6696 * both set. We have already checked the former earlier in this function.
6697 *
6698 * CPL and virtual-8086 mode checks take priority over this VM-exit.
6699 * See Intel spec. "25.1.1 Relative Priority of Faults and VM Exits".
6700 */
6701 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6702 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INVLPG_EXIT))
6703 {
6704 Log(("invpcid: Guest intercept -> #VM-exit\n"));
6705 IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(pVCpu, VMX_EXIT_INVPCID, VMXINSTRID_NONE, cbInstr);
6706 }
6707
6708 if (uInvpcidType > X86_INVPCID_TYPE_MAX_VALID)
6709 {
6710 Log(("invpcid: invalid/unrecognized invpcid type %#RX64 -> #GP(0)\n", uInvpcidType));
6711 return iemRaiseGeneralProtectionFault0(pVCpu);
6712 }
6713 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
6714
6715 /*
6716 * Fetch the invpcid descriptor from guest memory.
6717 */
6718 RTUINT128U uDesc;
6719 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvpcidDesc);
6720 if (rcStrict == VINF_SUCCESS)
6721 {
6722 /*
6723 * Validate the descriptor.
6724 */
6725 if (uDesc.s.Lo > 0xfff)
6726 {
6727 Log(("invpcid: reserved bits set in invpcid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
6728 return iemRaiseGeneralProtectionFault0(pVCpu);
6729 }
6730
6731 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
6732 uint8_t const uPcid = uDesc.s.Lo & UINT64_C(0xfff);
6733 uint32_t const uCr4 = pVCpu->cpum.GstCtx.cr4;
6734 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
6735 switch (uInvpcidType)
6736 {
6737 case X86_INVPCID_TYPE_INDV_ADDR:
6738 {
6739 if (!IEM_IS_CANONICAL(GCPtrInvAddr))
6740 {
6741 Log(("invpcid: invalidation address %#RGP is not canonical -> #GP(0)\n", GCPtrInvAddr));
6742 return iemRaiseGeneralProtectionFault0(pVCpu);
6743 }
6744 if ( !(uCr4 & X86_CR4_PCIDE)
6745 && uPcid != 0)
6746 {
6747 Log(("invpcid: invalid pcid %#x\n", uPcid));
6748 return iemRaiseGeneralProtectionFault0(pVCpu);
6749 }
6750
6751 /* Invalidate mappings for the linear address tagged with PCID except global translations. */
6752 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */, false /* fPdpesMapped */);
6753 break;
6754 }
6755
6756 case X86_INVPCID_TYPE_SINGLE_CONTEXT:
6757 {
6758 if ( !(uCr4 & X86_CR4_PCIDE)
6759 && uPcid != 0)
6760 {
6761 Log(("invpcid: invalid pcid %#x\n", uPcid));
6762 return iemRaiseGeneralProtectionFault0(pVCpu);
6763 }
6764 /* Invalidate all mappings associated with PCID except global translations. */
6765 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */, false /* fPdpesMapped */);
6766 break;
6767 }
6768
6769 case X86_INVPCID_TYPE_ALL_CONTEXT_INCL_GLOBAL:
6770 {
6771 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */, false /* fPdpesMapped */);
6772 break;
6773 }
6774
6775 case X86_INVPCID_TYPE_ALL_CONTEXT_EXCL_GLOBAL:
6776 {
6777 PGMFlushTLB(pVCpu, uCr3, false /* fGlobal */, false /* fPdpesMapped */);
6778 break;
6779 }
6780 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6781 }
6782 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6783 }
6784 return rcStrict;
6785}
6786
6787
6788/**
6789 * Implements INVD.
6790 */
6791IEM_CIMPL_DEF_0(iemCImpl_invd)
6792{
6793 if (pVCpu->iem.s.uCpl != 0)
6794 {
6795 Log(("invd: CPL != 0 -> #GP(0)\n"));
6796 return iemRaiseGeneralProtectionFault0(pVCpu);
6797 }
6798
6799 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6800 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_INVD, cbInstr);
6801
6802 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_INVD, SVM_EXIT_INVD, 0, 0);
6803
6804 /* We currently take no action here. */
6805 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6806 return VINF_SUCCESS;
6807}
6808
6809
6810/**
6811 * Implements WBINVD.
6812 */
6813IEM_CIMPL_DEF_0(iemCImpl_wbinvd)
6814{
6815 if (pVCpu->iem.s.uCpl != 0)
6816 {
6817 Log(("wbinvd: CPL != 0 -> #GP(0)\n"));
6818 return iemRaiseGeneralProtectionFault0(pVCpu);
6819 }
6820
6821 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
6822 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WBINVD, cbInstr);
6823
6824 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_WBINVD, SVM_EXIT_WBINVD, 0, 0);
6825
6826 /* We currently take no action here. */
6827 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6828 return VINF_SUCCESS;
6829}
6830
6831
6832/** Opcode 0x0f 0xaa. */
6833IEM_CIMPL_DEF_0(iemCImpl_rsm)
6834{
6835 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_RSM, SVM_EXIT_RSM, 0, 0);
6836 NOREF(cbInstr);
6837 return iemRaiseUndefinedOpcode(pVCpu);
6838}
6839
6840
6841/**
6842 * Implements RDTSC.
6843 */
6844IEM_CIMPL_DEF_0(iemCImpl_rdtsc)
6845{
6846 /*
6847 * Check preconditions.
6848 */
6849 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fTsc)
6850 return iemRaiseUndefinedOpcode(pVCpu);
6851
6852 if (pVCpu->iem.s.uCpl != 0)
6853 {
6854 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6855 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6856 {
6857 Log(("rdtsc: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6858 return iemRaiseGeneralProtectionFault0(pVCpu);
6859 }
6860 }
6861
6862 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6863 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6864 {
6865 Log(("rdtsc: Guest intercept -> VM-exit\n"));
6866 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSC, cbInstr);
6867 }
6868
6869 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
6870 {
6871 Log(("rdtsc: Guest intercept -> #VMEXIT\n"));
6872 IEM_SVM_UPDATE_NRIP(pVCpu);
6873 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6874 }
6875
6876 /*
6877 * Do the job.
6878 */
6879 uint64_t uTicks = TMCpuTickGet(pVCpu);
6880#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
6881 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6882#endif
6883 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6884 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6885 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); /* For IEMExecDecodedRdtsc. */
6886 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6887 return VINF_SUCCESS;
6888}
6889
6890
6891/**
6892 * Implements RDTSC.
6893 */
6894IEM_CIMPL_DEF_0(iemCImpl_rdtscp)
6895{
6896 /*
6897 * Check preconditions.
6898 */
6899 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fRdTscP)
6900 return iemRaiseUndefinedOpcode(pVCpu);
6901
6902 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6903 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_RDTSCP))
6904 {
6905 Log(("rdtscp: Not enabled for VMX non-root mode -> #UD\n"));
6906 return iemRaiseUndefinedOpcode(pVCpu);
6907 }
6908
6909 if (pVCpu->iem.s.uCpl != 0)
6910 {
6911 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6912 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_TSD)
6913 {
6914 Log(("rdtscp: CR4.TSD and CPL=%u -> #GP(0)\n", pVCpu->iem.s.uCpl));
6915 return iemRaiseGeneralProtectionFault0(pVCpu);
6916 }
6917 }
6918
6919 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6920 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDTSC_EXIT))
6921 {
6922 Log(("rdtscp: Guest intercept -> VM-exit\n"));
6923 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDTSCP, cbInstr);
6924 }
6925 else if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
6926 {
6927 Log(("rdtscp: Guest intercept -> #VMEXIT\n"));
6928 IEM_SVM_UPDATE_NRIP(pVCpu);
6929 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDTSCP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6930 }
6931
6932 /*
6933 * Do the job.
6934 * Query the MSR first in case of trips to ring-3.
6935 */
6936 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
6937 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pVCpu->cpum.GstCtx.rcx);
6938 if (rcStrict == VINF_SUCCESS)
6939 {
6940 /* Low dword of the TSC_AUX msr only. */
6941 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
6942
6943 uint64_t uTicks = TMCpuTickGet(pVCpu);
6944#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
6945 uTicks = CPUMApplyNestedGuestTscOffset(pVCpu, uTicks);
6946#endif
6947 pVCpu->cpum.GstCtx.rax = RT_LO_U32(uTicks);
6948 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(uTicks);
6949 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX); /* For IEMExecDecodedRdtscp. */
6950 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6951 }
6952 return rcStrict;
6953}
6954
6955
6956/**
6957 * Implements RDPMC.
6958 */
6959IEM_CIMPL_DEF_0(iemCImpl_rdpmc)
6960{
6961 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6962
6963 if ( pVCpu->iem.s.uCpl != 0
6964 && !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_PCE))
6965 return iemRaiseGeneralProtectionFault0(pVCpu);
6966
6967 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
6968 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_RDPMC_EXIT))
6969 {
6970 Log(("rdpmc: Guest intercept -> VM-exit\n"));
6971 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDPMC, cbInstr);
6972 }
6973
6974 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
6975 {
6976 Log(("rdpmc: Guest intercept -> #VMEXIT\n"));
6977 IEM_SVM_UPDATE_NRIP(pVCpu);
6978 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_RDPMC, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
6979 }
6980
6981 /** @todo Emulate performance counters, for now just return 0. */
6982 pVCpu->cpum.GstCtx.rax = 0;
6983 pVCpu->cpum.GstCtx.rdx = 0;
6984 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
6985 /** @todo We should trigger a \#GP here if the CPU doesn't support the index in
6986 * ecx but see @bugref{3472}! */
6987
6988 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
6989 return VINF_SUCCESS;
6990}
6991
6992
6993/**
6994 * Implements RDMSR.
6995 */
6996IEM_CIMPL_DEF_0(iemCImpl_rdmsr)
6997{
6998 /*
6999 * Check preconditions.
7000 */
7001 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
7002 return iemRaiseUndefinedOpcode(pVCpu);
7003 if (pVCpu->iem.s.uCpl != 0)
7004 return iemRaiseGeneralProtectionFault0(pVCpu);
7005
7006 /*
7007 * Check nested-guest intercepts.
7008 */
7009#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7010 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7011 {
7012 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_RDMSR, pVCpu->cpum.GstCtx.ecx))
7013 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_RDMSR, cbInstr);
7014 }
7015#endif
7016
7017#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7018 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
7019 {
7020 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, pVCpu->cpum.GstCtx.ecx, false /* fWrite */);
7021 if (rcStrict == VINF_SVM_VMEXIT)
7022 return VINF_SUCCESS;
7023 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7024 {
7025 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.ecx, VBOXSTRICTRC_VAL(rcStrict)));
7026 return rcStrict;
7027 }
7028 }
7029#endif
7030
7031 /*
7032 * Do the job.
7033 */
7034 RTUINT64U uValue;
7035 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
7036 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
7037
7038 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pVCpu->cpum.GstCtx.ecx, &uValue.u);
7039 if (rcStrict == VINF_SUCCESS)
7040 {
7041 pVCpu->cpum.GstCtx.rax = uValue.s.Lo;
7042 pVCpu->cpum.GstCtx.rdx = uValue.s.Hi;
7043 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
7044
7045 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7046 return VINF_SUCCESS;
7047 }
7048
7049#ifndef IN_RING3
7050 /* Deferred to ring-3. */
7051 if (rcStrict == VINF_CPUM_R3_MSR_READ)
7052 {
7053 Log(("IEM: rdmsr(%#x) -> ring-3\n", pVCpu->cpum.GstCtx.ecx));
7054 return rcStrict;
7055 }
7056#endif
7057
7058 /* Often a unimplemented MSR or MSR bit, so worth logging. */
7059 if (pVCpu->iem.s.cLogRelRdMsr < 32)
7060 {
7061 pVCpu->iem.s.cLogRelRdMsr++;
7062 LogRel(("IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
7063 }
7064 else
7065 Log(( "IEM: rdmsr(%#x) -> #GP(0)\n", pVCpu->cpum.GstCtx.ecx));
7066 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
7067 return iemRaiseGeneralProtectionFault0(pVCpu);
7068}
7069
7070
7071/**
7072 * Implements WRMSR.
7073 */
7074IEM_CIMPL_DEF_0(iemCImpl_wrmsr)
7075{
7076 /*
7077 * Check preconditions.
7078 */
7079 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMsr)
7080 return iemRaiseUndefinedOpcode(pVCpu);
7081 if (pVCpu->iem.s.uCpl != 0)
7082 return iemRaiseGeneralProtectionFault0(pVCpu);
7083
7084 RTUINT64U uValue;
7085 uValue.s.Lo = pVCpu->cpum.GstCtx.eax;
7086 uValue.s.Hi = pVCpu->cpum.GstCtx.edx;
7087
7088 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
7089
7090 /** @todo make CPUMAllMsrs.cpp import the necessary MSR state. */
7091 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL_MSRS);
7092
7093 /*
7094 * Check nested-guest intercepts.
7095 */
7096#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7097 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7098 {
7099 if (iemVmxIsRdmsrWrmsrInterceptSet(pVCpu, VMX_EXIT_WRMSR, idMsr))
7100 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_WRMSR, cbInstr);
7101 }
7102#endif
7103
7104#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7105 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
7106 {
7107 VBOXSTRICTRC rcStrict = iemSvmHandleMsrIntercept(pVCpu, idMsr, true /* fWrite */);
7108 if (rcStrict == VINF_SVM_VMEXIT)
7109 return VINF_SUCCESS;
7110 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7111 {
7112 Log(("IEM: SVM intercepted rdmsr(%#x) failed. rc=%Rrc\n", idMsr, VBOXSTRICTRC_VAL(rcStrict)));
7113 return rcStrict;
7114 }
7115 }
7116#endif
7117
7118 /*
7119 * Do the job.
7120 */
7121 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, idMsr, uValue.u);
7122 if (rcStrict == VINF_SUCCESS)
7123 {
7124 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7125 return VINF_SUCCESS;
7126 }
7127
7128#ifndef IN_RING3
7129 /* Deferred to ring-3. */
7130 if (rcStrict == VINF_CPUM_R3_MSR_WRITE)
7131 {
7132 Log(("IEM: wrmsr(%#x) -> ring-3\n", idMsr));
7133 return rcStrict;
7134 }
7135#endif
7136
7137 /* Often a unimplemented MSR or MSR bit, so worth logging. */
7138 if (pVCpu->iem.s.cLogRelWrMsr < 32)
7139 {
7140 pVCpu->iem.s.cLogRelWrMsr++;
7141 LogRel(("IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
7142 }
7143 else
7144 Log(( "IEM: wrmsr(%#x,%#x`%08x) -> #GP(0)\n", idMsr, uValue.s.Hi, uValue.s.Lo));
7145 AssertMsgReturn(rcStrict == VERR_CPUM_RAISE_GP_0, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_STATUS);
7146 return iemRaiseGeneralProtectionFault0(pVCpu);
7147}
7148
7149
7150/**
7151 * Implements 'IN eAX, port'.
7152 *
7153 * @param u16Port The source port.
7154 * @param fImm Whether the port was specified through an immediate operand
7155 * or the implicit DX register.
7156 * @param cbReg The register size.
7157 */
7158IEM_CIMPL_DEF_3(iemCImpl_in, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
7159{
7160 /*
7161 * CPL check
7162 */
7163 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
7164 if (rcStrict != VINF_SUCCESS)
7165 return rcStrict;
7166
7167 /*
7168 * Check VMX nested-guest IO intercept.
7169 */
7170#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7171 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7172 {
7173 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_IN, u16Port, fImm, cbReg, cbInstr);
7174 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
7175 return rcStrict;
7176 }
7177#else
7178 RT_NOREF(fImm);
7179#endif
7180
7181 /*
7182 * Check SVM nested-guest IO intercept.
7183 */
7184#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7185 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7186 {
7187 uint8_t cAddrSizeBits;
7188 switch (pVCpu->iem.s.enmEffAddrMode)
7189 {
7190 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7191 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7192 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7193 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7194 }
7195 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7196 false /* fRep */, false /* fStrIo */, cbInstr);
7197 if (rcStrict == VINF_SVM_VMEXIT)
7198 return VINF_SUCCESS;
7199 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7200 {
7201 Log(("iemCImpl_in: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7202 VBOXSTRICTRC_VAL(rcStrict)));
7203 return rcStrict;
7204 }
7205 }
7206#endif
7207
7208 /*
7209 * Perform the I/O.
7210 */
7211 uint32_t u32Value = 0;
7212 rcStrict = IOMIOPortRead(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, &u32Value, cbReg);
7213 if (IOM_SUCCESS(rcStrict))
7214 {
7215 switch (cbReg)
7216 {
7217 case 1: pVCpu->cpum.GstCtx.al = (uint8_t)u32Value; break;
7218 case 2: pVCpu->cpum.GstCtx.ax = (uint16_t)u32Value; break;
7219 case 4: pVCpu->cpum.GstCtx.rax = u32Value; break;
7220 default: AssertFailedReturn(VERR_IEM_IPE_3);
7221 }
7222 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7223 pVCpu->iem.s.cPotentialExits++;
7224 if (rcStrict != VINF_SUCCESS)
7225 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7226 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
7227
7228 /*
7229 * Check for I/O breakpoints.
7230 */
7231 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7232 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7233 && X86_DR7_ANY_RW_IO(uDr7)
7234 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7235 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
7236 {
7237 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7238 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7239 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7240 rcStrict = iemRaiseDebugException(pVCpu);
7241 }
7242 }
7243
7244 return rcStrict;
7245}
7246
7247
7248/**
7249 * Implements 'IN eAX, DX'.
7250 *
7251 * @param cbReg The register size.
7252 */
7253IEM_CIMPL_DEF_1(iemCImpl_in_eAX_DX, uint8_t, cbReg)
7254{
7255 return IEM_CIMPL_CALL_3(iemCImpl_in, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7256}
7257
7258
7259/**
7260 * Implements 'OUT port, eAX'.
7261 *
7262 * @param u16Port The destination port.
7263 * @param fImm Whether the port was specified through an immediate operand
7264 * or the implicit DX register.
7265 * @param cbReg The register size.
7266 */
7267IEM_CIMPL_DEF_3(iemCImpl_out, uint16_t, u16Port, bool, fImm, uint8_t, cbReg)
7268{
7269 /*
7270 * CPL check
7271 */
7272 VBOXSTRICTRC rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, cbReg);
7273 if (rcStrict != VINF_SUCCESS)
7274 return rcStrict;
7275
7276 /*
7277 * Check VMX nested-guest I/O intercept.
7278 */
7279#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7280 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7281 {
7282 rcStrict = iemVmxVmexitInstrIo(pVCpu, VMXINSTRID_IO_OUT, u16Port, fImm, cbReg, cbInstr);
7283 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
7284 return rcStrict;
7285 }
7286#else
7287 RT_NOREF(fImm);
7288#endif
7289
7290 /*
7291 * Check SVM nested-guest I/O intercept.
7292 */
7293#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7294 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
7295 {
7296 uint8_t cAddrSizeBits;
7297 switch (pVCpu->iem.s.enmEffAddrMode)
7298 {
7299 case IEMMODE_16BIT: cAddrSizeBits = 16; break;
7300 case IEMMODE_32BIT: cAddrSizeBits = 32; break;
7301 case IEMMODE_64BIT: cAddrSizeBits = 64; break;
7302 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7303 }
7304 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, cbReg, cAddrSizeBits, 0 /* N/A - iEffSeg */,
7305 false /* fRep */, false /* fStrIo */, cbInstr);
7306 if (rcStrict == VINF_SVM_VMEXIT)
7307 return VINF_SUCCESS;
7308 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
7309 {
7310 Log(("iemCImpl_out: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, cbReg,
7311 VBOXSTRICTRC_VAL(rcStrict)));
7312 return rcStrict;
7313 }
7314 }
7315#endif
7316
7317 /*
7318 * Perform the I/O.
7319 */
7320 uint32_t u32Value;
7321 switch (cbReg)
7322 {
7323 case 1: u32Value = pVCpu->cpum.GstCtx.al; break;
7324 case 2: u32Value = pVCpu->cpum.GstCtx.ax; break;
7325 case 4: u32Value = pVCpu->cpum.GstCtx.eax; break;
7326 default: AssertFailedReturn(VERR_IEM_IPE_4);
7327 }
7328 rcStrict = IOMIOPortWrite(pVCpu->CTX_SUFF(pVM), pVCpu, u16Port, u32Value, cbReg);
7329 if (IOM_SUCCESS(rcStrict))
7330 {
7331 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7332 pVCpu->iem.s.cPotentialExits++;
7333 if (rcStrict != VINF_SUCCESS)
7334 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7335 Assert(rcStrict == VINF_SUCCESS); /* assumed below */
7336
7337 /*
7338 * Check for I/O breakpoints.
7339 */
7340 uint32_t const uDr7 = pVCpu->cpum.GstCtx.dr[7];
7341 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7342 && X86_DR7_ANY_RW_IO(uDr7)
7343 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_DE))
7344 || DBGFBpIsHwIoArmed(pVCpu->CTX_SUFF(pVM))))
7345 {
7346 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR6);
7347 rcStrict = DBGFBpCheckIo(pVCpu->CTX_SUFF(pVM), pVCpu, IEM_GET_CTX(pVCpu), u16Port, cbReg);
7348 if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
7349 rcStrict = iemRaiseDebugException(pVCpu);
7350 }
7351 }
7352 return rcStrict;
7353}
7354
7355
7356/**
7357 * Implements 'OUT DX, eAX'.
7358 *
7359 * @param cbReg The register size.
7360 */
7361IEM_CIMPL_DEF_1(iemCImpl_out_DX_eAX, uint8_t, cbReg)
7362{
7363 return IEM_CIMPL_CALL_3(iemCImpl_out, pVCpu->cpum.GstCtx.dx, false /* fImm */, cbReg);
7364}
7365
7366
7367/**
7368 * Implements 'CLI'.
7369 */
7370IEM_CIMPL_DEF_0(iemCImpl_cli)
7371{
7372 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7373 uint32_t const fEflOld = fEfl;
7374
7375 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7376 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7377 {
7378 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7379 if (!(fEfl & X86_EFL_VM))
7380 {
7381 if (pVCpu->iem.s.uCpl <= uIopl)
7382 fEfl &= ~X86_EFL_IF;
7383 else if ( pVCpu->iem.s.uCpl == 3
7384 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI) )
7385 fEfl &= ~X86_EFL_VIF;
7386 else
7387 return iemRaiseGeneralProtectionFault0(pVCpu);
7388 }
7389 /* V8086 */
7390 else if (uIopl == 3)
7391 fEfl &= ~X86_EFL_IF;
7392 else if ( uIopl < 3
7393 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME) )
7394 fEfl &= ~X86_EFL_VIF;
7395 else
7396 return iemRaiseGeneralProtectionFault0(pVCpu);
7397 }
7398 /* real mode */
7399 else
7400 fEfl &= ~X86_EFL_IF;
7401
7402 /* Commit. */
7403 IEMMISC_SET_EFL(pVCpu, fEfl);
7404 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7405 Log2(("CLI: %#x -> %#x\n", fEflOld, fEfl)); NOREF(fEflOld);
7406 return VINF_SUCCESS;
7407}
7408
7409
7410/**
7411 * Implements 'STI'.
7412 */
7413IEM_CIMPL_DEF_0(iemCImpl_sti)
7414{
7415 uint32_t fEfl = IEMMISC_GET_EFL(pVCpu);
7416 uint32_t const fEflOld = fEfl;
7417
7418 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4);
7419 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)
7420 {
7421 uint8_t const uIopl = X86_EFL_GET_IOPL(fEfl);
7422 if (!(fEfl & X86_EFL_VM))
7423 {
7424 if (pVCpu->iem.s.uCpl <= uIopl)
7425 fEfl |= X86_EFL_IF;
7426 else if ( pVCpu->iem.s.uCpl == 3
7427 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PVI)
7428 && !(fEfl & X86_EFL_VIP) )
7429 fEfl |= X86_EFL_VIF;
7430 else
7431 return iemRaiseGeneralProtectionFault0(pVCpu);
7432 }
7433 /* V8086 */
7434 else if (uIopl == 3)
7435 fEfl |= X86_EFL_IF;
7436 else if ( uIopl < 3
7437 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_VME)
7438 && !(fEfl & X86_EFL_VIP) )
7439 fEfl |= X86_EFL_VIF;
7440 else
7441 return iemRaiseGeneralProtectionFault0(pVCpu);
7442 }
7443 /* real mode */
7444 else
7445 fEfl |= X86_EFL_IF;
7446
7447 /* Commit. */
7448 IEMMISC_SET_EFL(pVCpu, fEfl);
7449 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7450 if (!(fEflOld & X86_EFL_IF) && (fEfl & X86_EFL_IF))
7451 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7452 Log2(("STI: %#x -> %#x\n", fEflOld, fEfl));
7453 return VINF_SUCCESS;
7454}
7455
7456
7457/**
7458 * Implements 'HLT'.
7459 */
7460IEM_CIMPL_DEF_0(iemCImpl_hlt)
7461{
7462 if (pVCpu->iem.s.uCpl != 0)
7463 return iemRaiseGeneralProtectionFault0(pVCpu);
7464
7465 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7466 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_HLT_EXIT))
7467 {
7468 Log2(("hlt: Guest intercept -> VM-exit\n"));
7469 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_HLT, cbInstr);
7470 }
7471
7472 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_HLT))
7473 {
7474 Log2(("hlt: Guest intercept -> #VMEXIT\n"));
7475 IEM_SVM_UPDATE_NRIP(pVCpu);
7476 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_HLT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7477 }
7478
7479 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7480 return VINF_EM_HALT;
7481}
7482
7483
7484/**
7485 * Implements 'MONITOR'.
7486 */
7487IEM_CIMPL_DEF_1(iemCImpl_monitor, uint8_t, iEffSeg)
7488{
7489 /*
7490 * Permission checks.
7491 */
7492 if (pVCpu->iem.s.uCpl != 0)
7493 {
7494 Log2(("monitor: CPL != 0\n"));
7495 return iemRaiseUndefinedOpcode(pVCpu); /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. */
7496 }
7497 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7498 {
7499 Log2(("monitor: Not in CPUID\n"));
7500 return iemRaiseUndefinedOpcode(pVCpu);
7501 }
7502
7503 /*
7504 * Check VMX guest-intercept.
7505 * This should be considered a fault-like VM-exit.
7506 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
7507 */
7508 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7509 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MONITOR_EXIT))
7510 {
7511 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7512 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_MONITOR, cbInstr);
7513 }
7514
7515 /*
7516 * Gather the operands and validate them.
7517 */
7518 RTGCPTR GCPtrMem = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
7519 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
7520 uint32_t uEdx = pVCpu->cpum.GstCtx.edx;
7521/** @todo Test whether EAX or ECX is processed first, i.e. do we get \#PF or
7522 * \#GP first. */
7523 if (uEcx != 0)
7524 {
7525 Log2(("monitor rax=%RX64, ecx=%RX32, edx=%RX32; ECX != 0 -> #GP(0)\n", GCPtrMem, uEcx, uEdx)); NOREF(uEdx);
7526 return iemRaiseGeneralProtectionFault0(pVCpu);
7527 }
7528
7529 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrMem);
7530 if (rcStrict != VINF_SUCCESS)
7531 return rcStrict;
7532
7533 RTGCPHYS GCPhysMem;
7534 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrMem, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
7535 if (rcStrict != VINF_SUCCESS)
7536 return rcStrict;
7537
7538#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7539 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7540 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
7541 {
7542 /*
7543 * MONITOR does not access the memory, just monitors the address. However,
7544 * if the address falls in the APIC-access page, the address monitored must
7545 * instead be the corresponding address in the virtual-APIC page.
7546 *
7547 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
7548 */
7549 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
7550 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
7551 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
7552 return rcStrict;
7553 }
7554#endif
7555
7556 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
7557 {
7558 Log2(("monitor: Guest intercept -> #VMEXIT\n"));
7559 IEM_SVM_UPDATE_NRIP(pVCpu);
7560 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MONITOR, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7561 }
7562
7563 /*
7564 * Call EM to prepare the monitor/wait.
7565 */
7566 rcStrict = EMMonitorWaitPrepare(pVCpu, pVCpu->cpum.GstCtx.rax, pVCpu->cpum.GstCtx.rcx, pVCpu->cpum.GstCtx.rdx, GCPhysMem);
7567 Assert(rcStrict == VINF_SUCCESS);
7568
7569 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7570 return rcStrict;
7571}
7572
7573
7574/**
7575 * Implements 'MWAIT'.
7576 */
7577IEM_CIMPL_DEF_0(iemCImpl_mwait)
7578{
7579 /*
7580 * Permission checks.
7581 */
7582 if (pVCpu->iem.s.uCpl != 0)
7583 {
7584 Log2(("mwait: CPL != 0\n"));
7585 /** @todo MSR[0xC0010015].MonMwaitUserEn if we care. (Remember to check
7586 * EFLAGS.VM then.) */
7587 return iemRaiseUndefinedOpcode(pVCpu);
7588 }
7589 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMonitorMWait)
7590 {
7591 Log2(("mwait: Not in CPUID\n"));
7592 return iemRaiseUndefinedOpcode(pVCpu);
7593 }
7594
7595 /* Check VMX nested-guest intercept. */
7596 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7597 && IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_MWAIT_EXIT))
7598 IEM_VMX_VMEXIT_MWAIT_RET(pVCpu, EMMonitorIsArmed(pVCpu), cbInstr);
7599
7600 /*
7601 * Gather the operands and validate them.
7602 */
7603 uint32_t const uEax = pVCpu->cpum.GstCtx.eax;
7604 uint32_t const uEcx = pVCpu->cpum.GstCtx.ecx;
7605 if (uEcx != 0)
7606 {
7607 /* Only supported extension is break on IRQ when IF=0. */
7608 if (uEcx > 1)
7609 {
7610 Log2(("mwait eax=%RX32, ecx=%RX32; ECX > 1 -> #GP(0)\n", uEax, uEcx));
7611 return iemRaiseGeneralProtectionFault0(pVCpu);
7612 }
7613 uint32_t fMWaitFeatures = 0;
7614 uint32_t uIgnore = 0;
7615 CPUMGetGuestCpuId(pVCpu, 5, 0, &uIgnore, &uIgnore, &fMWaitFeatures, &uIgnore);
7616 if ( (fMWaitFeatures & (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7617 != (X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0))
7618 {
7619 Log2(("mwait eax=%RX32, ecx=%RX32; break-on-IRQ-IF=0 extension not enabled -> #GP(0)\n", uEax, uEcx));
7620 return iemRaiseGeneralProtectionFault0(pVCpu);
7621 }
7622
7623#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7624 /*
7625 * If the interrupt-window exiting control is set or a virtual-interrupt is pending
7626 * for delivery; and interrupts are disabled the processor does not enter its
7627 * mwait state but rather passes control to the next instruction.
7628 *
7629 * See Intel spec. 25.3 "Changes to Instruction Behavior In VMX Non-root Operation".
7630 */
7631 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7632 && !pVCpu->cpum.GstCtx.eflags.Bits.u1IF)
7633 {
7634 if ( IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_INT_WINDOW_EXIT)
7635 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
7636 {
7637 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7638 return VINF_SUCCESS;
7639 }
7640 }
7641#endif
7642 }
7643
7644 /*
7645 * Check SVM nested-guest mwait intercepts.
7646 */
7647 if ( IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT_ARMED)
7648 && EMMonitorIsArmed(pVCpu))
7649 {
7650 Log2(("mwait: Guest intercept (monitor hardware armed) -> #VMEXIT\n"));
7651 IEM_SVM_UPDATE_NRIP(pVCpu);
7652 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT_ARMED, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7653 }
7654 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
7655 {
7656 Log2(("mwait: Guest intercept -> #VMEXIT\n"));
7657 IEM_SVM_UPDATE_NRIP(pVCpu);
7658 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_MWAIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7659 }
7660
7661 /*
7662 * Call EM to prepare the monitor/wait.
7663 */
7664 VBOXSTRICTRC rcStrict = EMMonitorWaitPerform(pVCpu, uEax, uEcx);
7665
7666 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7667 return rcStrict;
7668}
7669
7670
7671/**
7672 * Implements 'SWAPGS'.
7673 */
7674IEM_CIMPL_DEF_0(iemCImpl_swapgs)
7675{
7676 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT); /* Caller checks this. */
7677
7678 /*
7679 * Permission checks.
7680 */
7681 if (pVCpu->iem.s.uCpl != 0)
7682 {
7683 Log2(("swapgs: CPL != 0\n"));
7684 return iemRaiseUndefinedOpcode(pVCpu);
7685 }
7686
7687 /*
7688 * Do the job.
7689 */
7690 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_GS);
7691 uint64_t uOtherGsBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
7692 pVCpu->cpum.GstCtx.msrKERNELGSBASE = pVCpu->cpum.GstCtx.gs.u64Base;
7693 pVCpu->cpum.GstCtx.gs.u64Base = uOtherGsBase;
7694
7695 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7696 return VINF_SUCCESS;
7697}
7698
7699
7700/**
7701 * Implements 'CPUID'.
7702 */
7703IEM_CIMPL_DEF_0(iemCImpl_cpuid)
7704{
7705 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7706 {
7707 Log2(("cpuid: Guest intercept -> VM-exit\n"));
7708 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_CPUID, cbInstr);
7709 }
7710
7711 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
7712 {
7713 Log2(("cpuid: Guest intercept -> #VMEXIT\n"));
7714 IEM_SVM_UPDATE_NRIP(pVCpu);
7715 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CPUID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
7716 }
7717
7718 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
7719 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
7720 pVCpu->cpum.GstCtx.rax &= UINT32_C(0xffffffff);
7721 pVCpu->cpum.GstCtx.rbx &= UINT32_C(0xffffffff);
7722 pVCpu->cpum.GstCtx.rcx &= UINT32_C(0xffffffff);
7723 pVCpu->cpum.GstCtx.rdx &= UINT32_C(0xffffffff);
7724 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
7725
7726 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7727 pVCpu->iem.s.cPotentialExits++;
7728 return VINF_SUCCESS;
7729}
7730
7731
7732/**
7733 * Implements 'AAD'.
7734 *
7735 * @param bImm The immediate operand.
7736 */
7737IEM_CIMPL_DEF_1(iemCImpl_aad, uint8_t, bImm)
7738{
7739 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7740 uint8_t const al = (uint8_t)ax + (uint8_t)(ax >> 8) * bImm;
7741 pVCpu->cpum.GstCtx.ax = al;
7742 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7743 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7744 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7745
7746 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7747 return VINF_SUCCESS;
7748}
7749
7750
7751/**
7752 * Implements 'AAM'.
7753 *
7754 * @param bImm The immediate operand. Cannot be 0.
7755 */
7756IEM_CIMPL_DEF_1(iemCImpl_aam, uint8_t, bImm)
7757{
7758 Assert(bImm != 0); /* #DE on 0 is handled in the decoder. */
7759
7760 uint16_t const ax = pVCpu->cpum.GstCtx.ax;
7761 uint8_t const al = (uint8_t)ax % bImm;
7762 uint8_t const ah = (uint8_t)ax / bImm;
7763 pVCpu->cpum.GstCtx.ax = (ah << 8) + al;
7764 iemHlpUpdateArithEFlagsU8(pVCpu, al,
7765 X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF,
7766 X86_EFL_OF | X86_EFL_AF | X86_EFL_CF);
7767
7768 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7769 return VINF_SUCCESS;
7770}
7771
7772
7773/**
7774 * Implements 'DAA'.
7775 */
7776IEM_CIMPL_DEF_0(iemCImpl_daa)
7777{
7778 uint8_t const al = pVCpu->cpum.GstCtx.al;
7779 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7780
7781 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7782 || (al & 0xf) >= 10)
7783 {
7784 pVCpu->cpum.GstCtx.al = al + 6;
7785 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7786 }
7787 else
7788 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7789
7790 if (al >= 0x9a || fCarry)
7791 {
7792 pVCpu->cpum.GstCtx.al += 0x60;
7793 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7794 }
7795 else
7796 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7797
7798 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7799 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7800 return VINF_SUCCESS;
7801}
7802
7803
7804/**
7805 * Implements 'DAS'.
7806 */
7807IEM_CIMPL_DEF_0(iemCImpl_das)
7808{
7809 uint8_t const uInputAL = pVCpu->cpum.GstCtx.al;
7810 bool const fCarry = pVCpu->cpum.GstCtx.eflags.Bits.u1CF;
7811
7812 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7813 || (uInputAL & 0xf) >= 10)
7814 {
7815 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7816 if (uInputAL < 6)
7817 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7818 pVCpu->cpum.GstCtx.al = uInputAL - 6;
7819 }
7820 else
7821 {
7822 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7823 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7824 }
7825
7826 if (uInputAL >= 0x9a || fCarry)
7827 {
7828 pVCpu->cpum.GstCtx.al -= 0x60;
7829 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7830 }
7831
7832 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7833 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7834 return VINF_SUCCESS;
7835}
7836
7837
7838/**
7839 * Implements 'AAA'.
7840 */
7841IEM_CIMPL_DEF_0(iemCImpl_aaa)
7842{
7843 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7844 {
7845 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7846 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7847 {
7848 iemAImpl_add_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7849 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7850 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7851 }
7852 else
7853 {
7854 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7855 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7856 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7857 }
7858 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7859 }
7860 else
7861 {
7862 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7863 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7864 {
7865 pVCpu->cpum.GstCtx.ax += UINT16_C(0x106);
7866 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7867 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7868 }
7869 else
7870 {
7871 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7872 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7873 }
7874 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7875 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7876 }
7877
7878 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7879 return VINF_SUCCESS;
7880}
7881
7882
7883/**
7884 * Implements 'AAS'.
7885 */
7886IEM_CIMPL_DEF_0(iemCImpl_aas)
7887{
7888 if (IEM_IS_GUEST_CPU_AMD(pVCpu))
7889 {
7890 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7891 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7892 {
7893 iemAImpl_sub_u16(&pVCpu->cpum.GstCtx.ax, 0x106, &pVCpu->cpum.GstCtx.eflags.u32);
7894 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7895 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7896 }
7897 else
7898 {
7899 iemHlpUpdateArithEFlagsU16(pVCpu, pVCpu->cpum.GstCtx.ax, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7900 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7901 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7902 }
7903 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7904 }
7905 else
7906 {
7907 if ( pVCpu->cpum.GstCtx.eflags.Bits.u1AF
7908 || (pVCpu->cpum.GstCtx.ax & 0xf) >= 10)
7909 {
7910 pVCpu->cpum.GstCtx.ax -= UINT16_C(0x106);
7911 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 1;
7912 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 1;
7913 }
7914 else
7915 {
7916 pVCpu->cpum.GstCtx.eflags.Bits.u1AF = 0;
7917 pVCpu->cpum.GstCtx.eflags.Bits.u1CF = 0;
7918 }
7919 pVCpu->cpum.GstCtx.ax &= UINT16_C(0xff0f);
7920 iemHlpUpdateArithEFlagsU8(pVCpu, pVCpu->cpum.GstCtx.al, X86_EFL_SF | X86_EFL_ZF | X86_EFL_PF, X86_EFL_OF);
7921 }
7922
7923 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7924 return VINF_SUCCESS;
7925}
7926
7927
7928/**
7929 * Implements the 16-bit version of 'BOUND'.
7930 *
7931 * @note We have separate 16-bit and 32-bit variants of this function due to
7932 * the decoder using unsigned parameters, whereas we want signed one to
7933 * do the job. This is significant for a recompiler.
7934 */
7935IEM_CIMPL_DEF_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound)
7936{
7937 /*
7938 * Check if the index is inside the bounds, otherwise raise #BR.
7939 */
7940 if ( idxArray >= idxLowerBound
7941 && idxArray <= idxUpperBound)
7942 {
7943 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7944 return VINF_SUCCESS;
7945 }
7946
7947 return iemRaiseBoundRangeExceeded(pVCpu);
7948}
7949
7950
7951/**
7952 * Implements the 32-bit version of 'BOUND'.
7953 */
7954IEM_CIMPL_DEF_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound)
7955{
7956 /*
7957 * Check if the index is inside the bounds, otherwise raise #BR.
7958 */
7959 if ( idxArray >= idxLowerBound
7960 && idxArray <= idxUpperBound)
7961 {
7962 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7963 return VINF_SUCCESS;
7964 }
7965
7966 return iemRaiseBoundRangeExceeded(pVCpu);
7967}
7968
7969
7970
7971/*
7972 * Instantiate the various string operation combinations.
7973 */
7974#define OP_SIZE 8
7975#define ADDR_SIZE 16
7976#include "IEMAllCImplStrInstr.cpp.h"
7977#define OP_SIZE 8
7978#define ADDR_SIZE 32
7979#include "IEMAllCImplStrInstr.cpp.h"
7980#define OP_SIZE 8
7981#define ADDR_SIZE 64
7982#include "IEMAllCImplStrInstr.cpp.h"
7983
7984#define OP_SIZE 16
7985#define ADDR_SIZE 16
7986#include "IEMAllCImplStrInstr.cpp.h"
7987#define OP_SIZE 16
7988#define ADDR_SIZE 32
7989#include "IEMAllCImplStrInstr.cpp.h"
7990#define OP_SIZE 16
7991#define ADDR_SIZE 64
7992#include "IEMAllCImplStrInstr.cpp.h"
7993
7994#define OP_SIZE 32
7995#define ADDR_SIZE 16
7996#include "IEMAllCImplStrInstr.cpp.h"
7997#define OP_SIZE 32
7998#define ADDR_SIZE 32
7999#include "IEMAllCImplStrInstr.cpp.h"
8000#define OP_SIZE 32
8001#define ADDR_SIZE 64
8002#include "IEMAllCImplStrInstr.cpp.h"
8003
8004#define OP_SIZE 64
8005#define ADDR_SIZE 32
8006#include "IEMAllCImplStrInstr.cpp.h"
8007#define OP_SIZE 64
8008#define ADDR_SIZE 64
8009#include "IEMAllCImplStrInstr.cpp.h"
8010
8011
8012/**
8013 * Implements 'XGETBV'.
8014 */
8015IEM_CIMPL_DEF_0(iemCImpl_xgetbv)
8016{
8017 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
8018 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
8019 {
8020 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
8021 switch (uEcx)
8022 {
8023 case 0:
8024 break;
8025
8026 case 1: /** @todo Implement XCR1 support. */
8027 default:
8028 Log(("xgetbv ecx=%RX32 -> #GP(0)\n", uEcx));
8029 return iemRaiseGeneralProtectionFault0(pVCpu);
8030
8031 }
8032 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
8033 pVCpu->cpum.GstCtx.rax = RT_LO_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
8034 pVCpu->cpum.GstCtx.rdx = RT_HI_U32(pVCpu->cpum.GstCtx.aXcr[uEcx]);
8035
8036 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8037 return VINF_SUCCESS;
8038 }
8039 Log(("xgetbv CR4.OSXSAVE=0 -> UD\n"));
8040 return iemRaiseUndefinedOpcode(pVCpu);
8041}
8042
8043
8044/**
8045 * Implements 'XSETBV'.
8046 */
8047IEM_CIMPL_DEF_0(iemCImpl_xsetbv)
8048{
8049 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)
8050 {
8051 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
8052 {
8053 Log2(("xsetbv: Guest intercept -> #VMEXIT\n"));
8054 IEM_SVM_UPDATE_NRIP(pVCpu);
8055 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XSETBV, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
8056 }
8057
8058 if (pVCpu->iem.s.uCpl == 0)
8059 {
8060 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_XCRx);
8061
8062 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8063 IEM_VMX_VMEXIT_INSTR_RET(pVCpu, VMX_EXIT_XSETBV, cbInstr);
8064
8065 uint32_t uEcx = pVCpu->cpum.GstCtx.ecx;
8066 uint64_t uNewValue = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx);
8067 switch (uEcx)
8068 {
8069 case 0:
8070 {
8071 int rc = CPUMSetGuestXcr0(pVCpu, uNewValue);
8072 if (rc == VINF_SUCCESS)
8073 break;
8074 Assert(rc == VERR_CPUM_RAISE_GP_0);
8075 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
8076 return iemRaiseGeneralProtectionFault0(pVCpu);
8077 }
8078
8079 case 1: /** @todo Implement XCR1 support. */
8080 default:
8081 Log(("xsetbv ecx=%RX32 (newvalue=%RX64) -> #GP(0)\n", uEcx, uNewValue));
8082 return iemRaiseGeneralProtectionFault0(pVCpu);
8083
8084 }
8085
8086 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8087 return VINF_SUCCESS;
8088 }
8089
8090 Log(("xsetbv cpl=%u -> GP(0)\n", pVCpu->iem.s.uCpl));
8091 return iemRaiseGeneralProtectionFault0(pVCpu);
8092 }
8093 Log(("xsetbv CR4.OSXSAVE=0 -> UD\n"));
8094 return iemRaiseUndefinedOpcode(pVCpu);
8095}
8096
8097#ifdef IN_RING3
8098
8099/** Argument package for iemCImpl_cmpxchg16b_fallback_rendezvous_callback. */
8100struct IEMCIMPLCX16ARGS
8101{
8102 PRTUINT128U pu128Dst;
8103 PRTUINT128U pu128RaxRdx;
8104 PRTUINT128U pu128RbxRcx;
8105 uint32_t *pEFlags;
8106# ifdef VBOX_STRICT
8107 uint32_t cCalls;
8108# endif
8109};
8110
8111/**
8112 * @callback_method_impl{FNVMMEMTRENDEZVOUS,
8113 * Worker for iemCImpl_cmpxchg16b_fallback_rendezvous}
8114 */
8115static DECLCALLBACK(VBOXSTRICTRC) iemCImpl_cmpxchg16b_fallback_rendezvous_callback(PVM pVM, PVMCPUCC pVCpu, void *pvUser)
8116{
8117 RT_NOREF(pVM, pVCpu);
8118 struct IEMCIMPLCX16ARGS *pArgs = (struct IEMCIMPLCX16ARGS *)pvUser;
8119# ifdef VBOX_STRICT
8120 Assert(pArgs->cCalls == 0);
8121 pArgs->cCalls++;
8122# endif
8123
8124 iemAImpl_cmpxchg16b_fallback(pArgs->pu128Dst, pArgs->pu128RaxRdx, pArgs->pu128RbxRcx, pArgs->pEFlags);
8125 return VINF_SUCCESS;
8126}
8127
8128#endif /* IN_RING3 */
8129
8130/**
8131 * Implements 'CMPXCHG16B' fallback using rendezvous.
8132 */
8133IEM_CIMPL_DEF_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
8134 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags)
8135{
8136#ifdef IN_RING3
8137 struct IEMCIMPLCX16ARGS Args;
8138 Args.pu128Dst = pu128Dst;
8139 Args.pu128RaxRdx = pu128RaxRdx;
8140 Args.pu128RbxRcx = pu128RbxRcx;
8141 Args.pEFlags = pEFlags;
8142# ifdef VBOX_STRICT
8143 Args.cCalls = 0;
8144# endif
8145 VBOXSTRICTRC rcStrict = VMMR3EmtRendezvous(pVCpu->CTX_SUFF(pVM), VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
8146 iemCImpl_cmpxchg16b_fallback_rendezvous_callback, &Args);
8147 Assert(Args.cCalls == 1);
8148 if (rcStrict == VINF_SUCCESS)
8149 {
8150 /* Duplicated tail code. */
8151 rcStrict = iemMemCommitAndUnmap(pVCpu, pu128Dst, IEM_ACCESS_DATA_RW);
8152 if (rcStrict == VINF_SUCCESS)
8153 {
8154 pVCpu->cpum.GstCtx.eflags.u = *pEFlags; /* IEM_MC_COMMIT_EFLAGS */
8155 if (!(*pEFlags & X86_EFL_ZF))
8156 {
8157 pVCpu->cpum.GstCtx.rax = pu128RaxRdx->s.Lo;
8158 pVCpu->cpum.GstCtx.rdx = pu128RaxRdx->s.Hi;
8159 }
8160 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8161 }
8162 }
8163 return rcStrict;
8164#else
8165 RT_NOREF(pVCpu, cbInstr, pu128Dst, pu128RaxRdx, pu128RbxRcx, pEFlags);
8166 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; /* This should get us to ring-3 for now. Should perhaps be replaced later. */
8167#endif
8168}
8169
8170
8171/**
8172 * Implements 'CLFLUSH' and 'CLFLUSHOPT'.
8173 *
8174 * This is implemented in C because it triggers a load like behaviour without
8175 * actually reading anything. Since that's not so common, it's implemented
8176 * here.
8177 *
8178 * @param iEffSeg The effective segment.
8179 * @param GCPtrEff The address of the image.
8180 */
8181IEM_CIMPL_DEF_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8182{
8183 /*
8184 * Pretend to do a load w/o reading (see also iemCImpl_monitor and iemMemMap).
8185 */
8186 VBOXSTRICTRC rcStrict = iemMemApplySegment(pVCpu, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, iEffSeg, 1, &GCPtrEff);
8187 if (rcStrict == VINF_SUCCESS)
8188 {
8189 RTGCPHYS GCPhysMem;
8190 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, GCPtrEff, IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA, &GCPhysMem);
8191 if (rcStrict == VINF_SUCCESS)
8192 {
8193#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8194 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8195 && IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
8196 {
8197 /*
8198 * CLFLUSH/CLFLUSHOPT does not access the memory, but flushes the cache-line
8199 * that contains the address. However, if the address falls in the APIC-access
8200 * page, the address flushed must instead be the corresponding address in the
8201 * virtual-APIC page.
8202 *
8203 * See Intel spec. 29.4.4 "Instruction-Specific Considerations".
8204 */
8205 rcStrict = iemVmxVirtApicAccessUnused(pVCpu, &GCPhysMem);
8206 if ( rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE
8207 && rcStrict != VINF_VMX_MODIFIES_BEHAVIOR)
8208 return rcStrict;
8209 }
8210#endif
8211 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8212 return VINF_SUCCESS;
8213 }
8214 }
8215
8216 return rcStrict;
8217}
8218
8219
8220/**
8221 * Implements 'FINIT' and 'FNINIT'.
8222 *
8223 * @param fCheckXcpts Whether to check for umasked pending exceptions or
8224 * not.
8225 */
8226IEM_CIMPL_DEF_1(iemCImpl_finit, bool, fCheckXcpts)
8227{
8228 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
8229 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
8230 return iemRaiseDeviceNotAvailable(pVCpu);
8231
8232 iemFpuActualizeStateForChange(pVCpu);
8233 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_X87);
8234
8235 NOREF(fCheckXcpts); /** @todo trigger pending exceptions:
8236 if (fCheckXcpts && TODO )
8237 return iemRaiseMathFault(pVCpu);
8238 */
8239
8240 PX86XSAVEAREA pXState = &pVCpu->cpum.GstCtx.XState;
8241 pXState->x87.FCW = 0x37f;
8242 pXState->x87.FSW = 0;
8243 pXState->x87.FTW = 0x00; /* 0 - empty. */
8244 pXState->x87.FPUDP = 0;
8245 pXState->x87.DS = 0; //??
8246 pXState->x87.Rsrvd2= 0;
8247 pXState->x87.FPUIP = 0;
8248 pXState->x87.CS = 0; //??
8249 pXState->x87.Rsrvd1= 0;
8250 pXState->x87.FOP = 0;
8251
8252 iemHlpUsedFpu(pVCpu);
8253 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8254 return VINF_SUCCESS;
8255}
8256
8257
8258/**
8259 * Implements 'FXSAVE'.
8260 *
8261 * @param iEffSeg The effective segment.
8262 * @param GCPtrEff The address of the image.
8263 * @param enmEffOpSize The operand size (only REX.W really matters).
8264 */
8265IEM_CIMPL_DEF_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8266{
8267 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8268
8269 /*
8270 * Raise exceptions.
8271 */
8272 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8273 return iemRaiseUndefinedOpcode(pVCpu);
8274 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8275 return iemRaiseDeviceNotAvailable(pVCpu);
8276 if (GCPtrEff & 15)
8277 {
8278 /** @todo CPU/VM detection possible! \#AC might not be signal for
8279 * all/any misalignment sizes, intel says its an implementation detail. */
8280 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8281 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8282 && pVCpu->iem.s.uCpl == 3)
8283 return iemRaiseAlignmentCheckException(pVCpu);
8284 return iemRaiseGeneralProtectionFault0(pVCpu);
8285 }
8286
8287 /*
8288 * Access the memory.
8289 */
8290 void *pvMem512;
8291 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8292 if (rcStrict != VINF_SUCCESS)
8293 return rcStrict;
8294 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8295 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.XState.x87;
8296
8297 /*
8298 * Store the registers.
8299 */
8300 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8301 * implementation specific whether MXCSR and XMM0-XMM7 are saved. */
8302
8303 /* common for all formats */
8304 pDst->FCW = pSrc->FCW;
8305 pDst->FSW = pSrc->FSW;
8306 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8307 pDst->FOP = pSrc->FOP;
8308 pDst->MXCSR = pSrc->MXCSR;
8309 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8310 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8311 {
8312 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8313 * them for now... */
8314 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8315 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8316 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8317 pDst->aRegs[i].au32[3] = 0;
8318 }
8319
8320 /* FPU IP, CS, DP and DS. */
8321 pDst->FPUIP = pSrc->FPUIP;
8322 pDst->CS = pSrc->CS;
8323 pDst->FPUDP = pSrc->FPUDP;
8324 pDst->DS = pSrc->DS;
8325 if (enmEffOpSize == IEMMODE_64BIT)
8326 {
8327 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8328 pDst->Rsrvd1 = pSrc->Rsrvd1;
8329 pDst->Rsrvd2 = pSrc->Rsrvd2;
8330 pDst->au32RsrvdForSoftware[0] = 0;
8331 }
8332 else
8333 {
8334 pDst->Rsrvd1 = 0;
8335 pDst->Rsrvd2 = 0;
8336 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8337 }
8338
8339 /* XMM registers. */
8340 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8341 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8342 || pVCpu->iem.s.uCpl != 0)
8343 {
8344 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8345 for (uint32_t i = 0; i < cXmmRegs; i++)
8346 pDst->aXMM[i] = pSrc->aXMM[i];
8347 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8348 * right? */
8349 }
8350
8351 /*
8352 * Commit the memory.
8353 */
8354 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8355 if (rcStrict != VINF_SUCCESS)
8356 return rcStrict;
8357
8358 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8359 return VINF_SUCCESS;
8360}
8361
8362
8363/**
8364 * Implements 'FXRSTOR'.
8365 *
8366 * @param GCPtrEff The address of the image.
8367 * @param enmEffOpSize The operand size (only REX.W really matters).
8368 */
8369IEM_CIMPL_DEF_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8370{
8371 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8372
8373 /*
8374 * Raise exceptions.
8375 */
8376 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8377 return iemRaiseUndefinedOpcode(pVCpu);
8378 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_TS | X86_CR0_EM))
8379 return iemRaiseDeviceNotAvailable(pVCpu);
8380 if (GCPtrEff & 15)
8381 {
8382 /** @todo CPU/VM detection possible! \#AC might not be signal for
8383 * all/any misalignment sizes, intel says its an implementation detail. */
8384 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8385 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8386 && pVCpu->iem.s.uCpl == 3)
8387 return iemRaiseAlignmentCheckException(pVCpu);
8388 return iemRaiseGeneralProtectionFault0(pVCpu);
8389 }
8390
8391 /*
8392 * Access the memory.
8393 */
8394 void *pvMem512;
8395 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8396 if (rcStrict != VINF_SUCCESS)
8397 return rcStrict;
8398 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8399 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.XState.x87;
8400
8401 /*
8402 * Check the state for stuff which will #GP(0).
8403 */
8404 uint32_t const fMXCSR = pSrc->MXCSR;
8405 uint32_t const fMXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8406 if (fMXCSR & ~fMXCSR_MASK)
8407 {
8408 Log(("fxrstor: MXCSR=%#x (MXCSR_MASK=%#x) -> #GP(0)\n", fMXCSR, fMXCSR_MASK));
8409 return iemRaiseGeneralProtectionFault0(pVCpu);
8410 }
8411
8412 /*
8413 * Load the registers.
8414 */
8415 /** @todo CPU/VM detection possible! If CR4.OSFXSR=0 MXCSR it's
8416 * implementation specific whether MXCSR and XMM0-XMM7 are restored. */
8417
8418 /* common for all formats */
8419 pDst->FCW = pSrc->FCW;
8420 pDst->FSW = pSrc->FSW;
8421 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8422 pDst->FOP = pSrc->FOP;
8423 pDst->MXCSR = fMXCSR;
8424 /* (MXCSR_MASK is read-only) */
8425 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8426 {
8427 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8428 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8429 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8430 pDst->aRegs[i].au32[3] = 0;
8431 }
8432
8433 /* FPU IP, CS, DP and DS. */
8434 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8435 {
8436 pDst->FPUIP = pSrc->FPUIP;
8437 pDst->CS = pSrc->CS;
8438 pDst->Rsrvd1 = pSrc->Rsrvd1;
8439 pDst->FPUDP = pSrc->FPUDP;
8440 pDst->DS = pSrc->DS;
8441 pDst->Rsrvd2 = pSrc->Rsrvd2;
8442 }
8443 else
8444 {
8445 pDst->FPUIP = pSrc->FPUIP;
8446 pDst->CS = pSrc->CS;
8447 pDst->Rsrvd1 = 0;
8448 pDst->FPUDP = pSrc->FPUDP;
8449 pDst->DS = pSrc->DS;
8450 pDst->Rsrvd2 = 0;
8451 }
8452
8453 /* XMM registers. */
8454 if ( !(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_FFXSR)
8455 || pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT
8456 || pVCpu->iem.s.uCpl != 0)
8457 {
8458 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8459 for (uint32_t i = 0; i < cXmmRegs; i++)
8460 pDst->aXMM[i] = pSrc->aXMM[i];
8461 }
8462
8463 /*
8464 * Commit the memory.
8465 */
8466 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8467 if (rcStrict != VINF_SUCCESS)
8468 return rcStrict;
8469
8470 iemHlpUsedFpu(pVCpu);
8471 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8472 return VINF_SUCCESS;
8473}
8474
8475
8476/**
8477 * Implements 'XSAVE'.
8478 *
8479 * @param iEffSeg The effective segment.
8480 * @param GCPtrEff The address of the image.
8481 * @param enmEffOpSize The operand size (only REX.W really matters).
8482 */
8483IEM_CIMPL_DEF_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8484{
8485 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8486
8487 /*
8488 * Raise exceptions.
8489 */
8490 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8491 return iemRaiseUndefinedOpcode(pVCpu);
8492 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8493 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8494 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8495 {
8496 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8497 return iemRaiseUndefinedOpcode(pVCpu);
8498 }
8499 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8500 return iemRaiseDeviceNotAvailable(pVCpu);
8501 if (GCPtrEff & 63)
8502 {
8503 /** @todo CPU/VM detection possible! \#AC might not be signal for
8504 * all/any misalignment sizes, intel says its an implementation detail. */
8505 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8506 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8507 && pVCpu->iem.s.uCpl == 3)
8508 return iemRaiseAlignmentCheckException(pVCpu);
8509 return iemRaiseGeneralProtectionFault0(pVCpu);
8510 }
8511
8512 /*
8513 * Calc the requested mask.
8514 */
8515 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8516 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8517 uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8518
8519/** @todo figure out the exact protocol for the memory access. Currently we
8520 * just need this crap to work halfways to make it possible to test
8521 * AVX instructions. */
8522/** @todo figure out the XINUSE and XMODIFIED */
8523
8524 /*
8525 * Access the x87 memory state.
8526 */
8527 /* The x87+SSE state. */
8528 void *pvMem512;
8529 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8530 if (rcStrict != VINF_SUCCESS)
8531 return rcStrict;
8532 PX86FXSTATE pDst = (PX86FXSTATE)pvMem512;
8533 PCX86FXSTATE pSrc = &pVCpu->cpum.GstCtx.XState.x87;
8534
8535 /* The header. */
8536 PX86XSAVEHDR pHdr;
8537 rcStrict = iemMemMap(pVCpu, (void **)&pHdr, sizeof(&pHdr), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_RW);
8538 if (rcStrict != VINF_SUCCESS)
8539 return rcStrict;
8540
8541 /*
8542 * Store the X87 state.
8543 */
8544 if (fReqComponents & XSAVE_C_X87)
8545 {
8546 /* common for all formats */
8547 pDst->FCW = pSrc->FCW;
8548 pDst->FSW = pSrc->FSW;
8549 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8550 pDst->FOP = pSrc->FOP;
8551 pDst->FPUIP = pSrc->FPUIP;
8552 pDst->CS = pSrc->CS;
8553 pDst->FPUDP = pSrc->FPUDP;
8554 pDst->DS = pSrc->DS;
8555 if (enmEffOpSize == IEMMODE_64BIT)
8556 {
8557 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8558 pDst->Rsrvd1 = pSrc->Rsrvd1;
8559 pDst->Rsrvd2 = pSrc->Rsrvd2;
8560 pDst->au32RsrvdForSoftware[0] = 0;
8561 }
8562 else
8563 {
8564 pDst->Rsrvd1 = 0;
8565 pDst->Rsrvd2 = 0;
8566 pDst->au32RsrvdForSoftware[0] = X86_FXSTATE_RSVD_32BIT_MAGIC;
8567 }
8568 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8569 {
8570 /** @todo Testcase: What actually happens to the 6 reserved bytes? I'm clearing
8571 * them for now... */
8572 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8573 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8574 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8575 pDst->aRegs[i].au32[3] = 0;
8576 }
8577
8578 }
8579
8580 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8581 {
8582 pDst->MXCSR = pSrc->MXCSR;
8583 pDst->MXCSR_MASK = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8584 }
8585
8586 if (fReqComponents & XSAVE_C_SSE)
8587 {
8588 /* XMM registers. */
8589 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8590 for (uint32_t i = 0; i < cXmmRegs; i++)
8591 pDst->aXMM[i] = pSrc->aXMM[i];
8592 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8593 * right? */
8594 }
8595
8596 /* Commit the x87 state bits. (probably wrong) */
8597 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8598 if (rcStrict != VINF_SUCCESS)
8599 return rcStrict;
8600
8601 /*
8602 * Store AVX state.
8603 */
8604 if (fReqComponents & XSAVE_C_YMM)
8605 {
8606 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8607 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8608 PCX86XSAVEYMMHI pCompSrc = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
8609 PX86XSAVEYMMHI pCompDst;
8610 rcStrict = iemMemMap(pVCpu, (void **)&pCompDst, sizeof(*pCompDst), iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT],
8611 IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8612 if (rcStrict != VINF_SUCCESS)
8613 return rcStrict;
8614
8615 uint32_t cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8616 for (uint32_t i = 0; i < cXmmRegs; i++)
8617 pCompDst->aYmmHi[i] = pCompSrc->aYmmHi[i];
8618
8619 rcStrict = iemMemCommitAndUnmap(pVCpu, pCompDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
8620 if (rcStrict != VINF_SUCCESS)
8621 return rcStrict;
8622 }
8623
8624 /*
8625 * Update the header.
8626 */
8627 pHdr->bmXState = (pHdr->bmXState & ~fReqComponents)
8628 | (fReqComponents & fXInUse);
8629
8630 rcStrict = iemMemCommitAndUnmap(pVCpu, pHdr, IEM_ACCESS_DATA_RW);
8631 if (rcStrict != VINF_SUCCESS)
8632 return rcStrict;
8633
8634 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8635 return VINF_SUCCESS;
8636}
8637
8638
8639/**
8640 * Implements 'XRSTOR'.
8641 *
8642 * @param iEffSeg The effective segment.
8643 * @param GCPtrEff The address of the image.
8644 * @param enmEffOpSize The operand size (only REX.W really matters).
8645 */
8646IEM_CIMPL_DEF_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize)
8647{
8648 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
8649
8650 /*
8651 * Raise exceptions.
8652 */
8653 if (!(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8654 return iemRaiseUndefinedOpcode(pVCpu);
8655 /* When in VMX non-root mode and XSAVE/XRSTOR is not enabled, it results in #UD. */
8656 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8657 && !IEM_VMX_IS_PROCCTLS2_SET(pVCpu, VMX_PROC_CTLS2_XSAVES_XRSTORS))
8658 {
8659 Log(("xrstor: Not enabled for nested-guest execution -> #UD\n"));
8660 return iemRaiseUndefinedOpcode(pVCpu);
8661 }
8662 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)
8663 return iemRaiseDeviceNotAvailable(pVCpu);
8664 if (GCPtrEff & 63)
8665 {
8666 /** @todo CPU/VM detection possible! \#AC might not be signal for
8667 * all/any misalignment sizes, intel says its an implementation detail. */
8668 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
8669 && pVCpu->cpum.GstCtx.eflags.Bits.u1AC
8670 && pVCpu->iem.s.uCpl == 3)
8671 return iemRaiseAlignmentCheckException(pVCpu);
8672 return iemRaiseGeneralProtectionFault0(pVCpu);
8673 }
8674
8675/** @todo figure out the exact protocol for the memory access. Currently we
8676 * just need this crap to work halfways to make it possible to test
8677 * AVX instructions. */
8678/** @todo figure out the XINUSE and XMODIFIED */
8679
8680 /*
8681 * Access the x87 memory state.
8682 */
8683 /* The x87+SSE state. */
8684 void *pvMem512;
8685 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &pvMem512, 512, iEffSeg, GCPtrEff, IEM_ACCESS_DATA_R);
8686 if (rcStrict != VINF_SUCCESS)
8687 return rcStrict;
8688 PCX86FXSTATE pSrc = (PCX86FXSTATE)pvMem512;
8689 PX86FXSTATE pDst = &pVCpu->cpum.GstCtx.XState.x87;
8690
8691 /*
8692 * Calc the requested mask
8693 */
8694 PX86XSAVEHDR pHdrDst = &pVCpu->cpum.GstCtx.XState.Hdr;
8695 PCX86XSAVEHDR pHdrSrc;
8696 rcStrict = iemMemMap(pVCpu, (void **)&pHdrSrc, sizeof(&pHdrSrc), iEffSeg, GCPtrEff + 512, IEM_ACCESS_DATA_R);
8697 if (rcStrict != VINF_SUCCESS)
8698 return rcStrict;
8699
8700 uint64_t const fReqComponents = RT_MAKE_U64(pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.edx) & pVCpu->cpum.GstCtx.aXcr[0];
8701 AssertLogRelReturn(!(fReqComponents & ~(XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM)), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8702 //uint64_t const fXInUse = pVCpu->cpum.GstCtx.aXcr[0];
8703 uint64_t const fRstorMask = pHdrSrc->bmXState;
8704 uint64_t const fCompMask = pHdrSrc->bmXComp;
8705
8706 AssertLogRelReturn(!(fCompMask & XSAVE_C_X), VERR_IEM_ASPECT_NOT_IMPLEMENTED);
8707
8708 uint32_t const cXmmRegs = enmEffOpSize == IEMMODE_64BIT ? 16 : 8;
8709
8710 /* We won't need this any longer. */
8711 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pHdrSrc, IEM_ACCESS_DATA_R);
8712 if (rcStrict != VINF_SUCCESS)
8713 return rcStrict;
8714
8715 /*
8716 * Store the X87 state.
8717 */
8718 if (fReqComponents & XSAVE_C_X87)
8719 {
8720 if (fRstorMask & XSAVE_C_X87)
8721 {
8722 pDst->FCW = pSrc->FCW;
8723 pDst->FSW = pSrc->FSW;
8724 pDst->FTW = pSrc->FTW & UINT16_C(0xff);
8725 pDst->FOP = pSrc->FOP;
8726 pDst->FPUIP = pSrc->FPUIP;
8727 pDst->CS = pSrc->CS;
8728 pDst->FPUDP = pSrc->FPUDP;
8729 pDst->DS = pSrc->DS;
8730 if (enmEffOpSize == IEMMODE_64BIT)
8731 {
8732 /* Save upper 16-bits of FPUIP (IP:CS:Rsvd1) and FPUDP (DP:DS:Rsvd2). */
8733 pDst->Rsrvd1 = pSrc->Rsrvd1;
8734 pDst->Rsrvd2 = pSrc->Rsrvd2;
8735 }
8736 else
8737 {
8738 pDst->Rsrvd1 = 0;
8739 pDst->Rsrvd2 = 0;
8740 }
8741 for (uint32_t i = 0; i < RT_ELEMENTS(pDst->aRegs); i++)
8742 {
8743 pDst->aRegs[i].au32[0] = pSrc->aRegs[i].au32[0];
8744 pDst->aRegs[i].au32[1] = pSrc->aRegs[i].au32[1];
8745 pDst->aRegs[i].au32[2] = pSrc->aRegs[i].au32[2] & UINT32_C(0xffff);
8746 pDst->aRegs[i].au32[3] = 0;
8747 }
8748 }
8749 else
8750 {
8751 pDst->FCW = 0x37f;
8752 pDst->FSW = 0;
8753 pDst->FTW = 0x00; /* 0 - empty. */
8754 pDst->FPUDP = 0;
8755 pDst->DS = 0; //??
8756 pDst->Rsrvd2= 0;
8757 pDst->FPUIP = 0;
8758 pDst->CS = 0; //??
8759 pDst->Rsrvd1= 0;
8760 pDst->FOP = 0;
8761 for (uint32_t i = 0; i < RT_ELEMENTS(pSrc->aRegs); i++)
8762 {
8763 pDst->aRegs[i].au32[0] = 0;
8764 pDst->aRegs[i].au32[1] = 0;
8765 pDst->aRegs[i].au32[2] = 0;
8766 pDst->aRegs[i].au32[3] = 0;
8767 }
8768 }
8769 pHdrDst->bmXState |= XSAVE_C_X87; /* playing safe for now */
8770 }
8771
8772 /* MXCSR */
8773 if (fReqComponents & (XSAVE_C_SSE | XSAVE_C_YMM))
8774 {
8775 if (fRstorMask & (XSAVE_C_SSE | XSAVE_C_YMM))
8776 pDst->MXCSR = pSrc->MXCSR;
8777 else
8778 pDst->MXCSR = 0x1f80;
8779 }
8780
8781 /* XMM registers. */
8782 if (fReqComponents & XSAVE_C_SSE)
8783 {
8784 if (fRstorMask & XSAVE_C_SSE)
8785 {
8786 for (uint32_t i = 0; i < cXmmRegs; i++)
8787 pDst->aXMM[i] = pSrc->aXMM[i];
8788 /** @todo Testcase: What happens to the reserved XMM registers? Untouched,
8789 * right? */
8790 }
8791 else
8792 {
8793 for (uint32_t i = 0; i < cXmmRegs; i++)
8794 {
8795 pDst->aXMM[i].au64[0] = 0;
8796 pDst->aXMM[i].au64[1] = 0;
8797 }
8798 }
8799 pHdrDst->bmXState |= XSAVE_C_SSE; /* playing safe for now */
8800 }
8801
8802 /* Unmap the x87 state bits (so we've don't run out of mapping). */
8803 rcStrict = iemMemCommitAndUnmap(pVCpu, pvMem512, IEM_ACCESS_DATA_R);
8804 if (rcStrict != VINF_SUCCESS)
8805 return rcStrict;
8806
8807 /*
8808 * Restore AVX state.
8809 */
8810 if (fReqComponents & XSAVE_C_YMM)
8811 {
8812 AssertLogRelReturn(pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT] != UINT16_MAX, VERR_IEM_IPE_9);
8813 PX86XSAVEYMMHI pCompDst = CPUMCTX_XSAVE_C_PTR(IEM_GET_CTX(pVCpu), XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
8814
8815 if (fRstorMask & XSAVE_C_YMM)
8816 {
8817 /** @todo testcase: xsave64 vs xsave32 wrt XSAVE_C_YMM. */
8818 PCX86XSAVEYMMHI pCompSrc;
8819 rcStrict = iemMemMap(pVCpu, (void **)&pCompSrc, sizeof(*pCompDst),
8820 iEffSeg, GCPtrEff + pVCpu->cpum.GstCtx.aoffXState[XSAVE_C_YMM_BIT], IEM_ACCESS_DATA_R);
8821 if (rcStrict != VINF_SUCCESS)
8822 return rcStrict;
8823
8824 for (uint32_t i = 0; i < cXmmRegs; i++)
8825 {
8826 pCompDst->aYmmHi[i].au64[0] = pCompSrc->aYmmHi[i].au64[0];
8827 pCompDst->aYmmHi[i].au64[1] = pCompSrc->aYmmHi[i].au64[1];
8828 }
8829
8830 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)pCompSrc, IEM_ACCESS_DATA_R);
8831 if (rcStrict != VINF_SUCCESS)
8832 return rcStrict;
8833 }
8834 else
8835 {
8836 for (uint32_t i = 0; i < cXmmRegs; i++)
8837 {
8838 pCompDst->aYmmHi[i].au64[0] = 0;
8839 pCompDst->aYmmHi[i].au64[1] = 0;
8840 }
8841 }
8842 pHdrDst->bmXState |= XSAVE_C_YMM; /* playing safe for now */
8843 }
8844
8845 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8846 return VINF_SUCCESS;
8847}
8848
8849
8850
8851
8852/**
8853 * Implements 'STMXCSR'.
8854 *
8855 * @param GCPtrEff The address of the image.
8856 */
8857IEM_CIMPL_DEF_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8858{
8859 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8860
8861 /*
8862 * Raise exceptions.
8863 */
8864 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8865 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8866 {
8867 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8868 {
8869 /*
8870 * Do the job.
8871 */
8872 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.XState.x87.MXCSR);
8873 if (rcStrict == VINF_SUCCESS)
8874 {
8875 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8876 return VINF_SUCCESS;
8877 }
8878 return rcStrict;
8879 }
8880 return iemRaiseDeviceNotAvailable(pVCpu);
8881 }
8882 return iemRaiseUndefinedOpcode(pVCpu);
8883}
8884
8885
8886/**
8887 * Implements 'VSTMXCSR'.
8888 *
8889 * @param GCPtrEff The address of the image.
8890 */
8891IEM_CIMPL_DEF_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8892{
8893 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_XCRx);
8894
8895 /*
8896 * Raise exceptions.
8897 */
8898 if ( ( !IEM_IS_GUEST_CPU_AMD(pVCpu)
8899 ? (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) == (XSAVE_C_SSE | XSAVE_C_YMM)
8900 : !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)) /* AMD Jaguar CPU (f0x16,m0,s1) behaviour */
8901 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE))
8902 {
8903 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8904 {
8905 /*
8906 * Do the job.
8907 */
8908 VBOXSTRICTRC rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrEff, pVCpu->cpum.GstCtx.XState.x87.MXCSR);
8909 if (rcStrict == VINF_SUCCESS)
8910 {
8911 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8912 return VINF_SUCCESS;
8913 }
8914 return rcStrict;
8915 }
8916 return iemRaiseDeviceNotAvailable(pVCpu);
8917 }
8918 return iemRaiseUndefinedOpcode(pVCpu);
8919}
8920
8921
8922/**
8923 * Implements 'LDMXCSR'.
8924 *
8925 * @param GCPtrEff The address of the image.
8926 */
8927IEM_CIMPL_DEF_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff)
8928{
8929 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX);
8930
8931 /*
8932 * Raise exceptions.
8933 */
8934 /** @todo testcase - order of LDMXCSR faults. Does \#PF, \#GP and \#SS
8935 * happen after or before \#UD and \#EM? */
8936 if ( !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM)
8937 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR))
8938 {
8939 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS))
8940 {
8941 /*
8942 * Do the job.
8943 */
8944 uint32_t fNewMxCsr;
8945 VBOXSTRICTRC rcStrict = iemMemFetchDataU32(pVCpu, &fNewMxCsr, iEffSeg, GCPtrEff);
8946 if (rcStrict == VINF_SUCCESS)
8947 {
8948 uint32_t const fMxCsrMask = CPUMGetGuestMxCsrMask(pVCpu->CTX_SUFF(pVM));
8949 if (!(fNewMxCsr & ~fMxCsrMask))
8950 {
8951 pVCpu->cpum.GstCtx.XState.x87.MXCSR = fNewMxCsr;
8952 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8953 return VINF_SUCCESS;
8954 }
8955 Log(("lddmxcsr: New MXCSR=%#RX32 & ~MASK=%#RX32 = %#RX32 -> #GP(0)\n",
8956 fNewMxCsr, fMxCsrMask, fNewMxCsr & ~fMxCsrMask));
8957 return iemRaiseGeneralProtectionFault0(pVCpu);
8958 }
8959 return rcStrict;
8960 }
8961 return iemRaiseDeviceNotAvailable(pVCpu);
8962 }
8963 return iemRaiseUndefinedOpcode(pVCpu);
8964}
8965
8966
8967/**
8968 * Commmon routine for fnstenv and fnsave.
8969 *
8970 * @param pVCpu The cross context virtual CPU structure of the calling thread.
8971 * @param enmEffOpSize The effective operand size.
8972 * @param uPtr Where to store the state.
8973 */
8974static void iemCImplCommonFpuStoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTPTRUNION uPtr)
8975{
8976 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
8977 PCX86FXSTATE pSrcX87 = &pVCpu->cpum.GstCtx.XState.x87;
8978 if (enmEffOpSize == IEMMODE_16BIT)
8979 {
8980 uPtr.pu16[0] = pSrcX87->FCW;
8981 uPtr.pu16[1] = pSrcX87->FSW;
8982 uPtr.pu16[2] = iemFpuCalcFullFtw(pSrcX87);
8983 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
8984 {
8985 /** @todo Testcase: How does this work when the FPUIP/CS was saved in
8986 * protected mode or long mode and we save it in real mode? And vice
8987 * versa? And with 32-bit operand size? I think CPU is storing the
8988 * effective address ((CS << 4) + IP) in the offset register and not
8989 * doing any address calculations here. */
8990 uPtr.pu16[3] = (uint16_t)pSrcX87->FPUIP;
8991 uPtr.pu16[4] = ((pSrcX87->FPUIP >> 4) & UINT16_C(0xf000)) | pSrcX87->FOP;
8992 uPtr.pu16[5] = (uint16_t)pSrcX87->FPUDP;
8993 uPtr.pu16[6] = (pSrcX87->FPUDP >> 4) & UINT16_C(0xf000);
8994 }
8995 else
8996 {
8997 uPtr.pu16[3] = pSrcX87->FPUIP;
8998 uPtr.pu16[4] = pSrcX87->CS;
8999 uPtr.pu16[5] = pSrcX87->FPUDP;
9000 uPtr.pu16[6] = pSrcX87->DS;
9001 }
9002 }
9003 else
9004 {
9005 /** @todo Testcase: what is stored in the "gray" areas? (figure 8-9 and 8-10) */
9006 uPtr.pu16[0*2] = pSrcX87->FCW;
9007 uPtr.pu16[0*2+1] = 0xffff; /* (0xffff observed on intel skylake.) */
9008 uPtr.pu16[1*2] = pSrcX87->FSW;
9009 uPtr.pu16[1*2+1] = 0xffff;
9010 uPtr.pu16[2*2] = iemFpuCalcFullFtw(pSrcX87);
9011 uPtr.pu16[2*2+1] = 0xffff;
9012 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9013 {
9014 uPtr.pu16[3*2] = (uint16_t)pSrcX87->FPUIP;
9015 uPtr.pu32[4] = ((pSrcX87->FPUIP & UINT32_C(0xffff0000)) >> 4) | pSrcX87->FOP;
9016 uPtr.pu16[5*2] = (uint16_t)pSrcX87->FPUDP;
9017 uPtr.pu32[6] = (pSrcX87->FPUDP & UINT32_C(0xffff0000)) >> 4;
9018 }
9019 else
9020 {
9021 uPtr.pu32[3] = pSrcX87->FPUIP;
9022 uPtr.pu16[4*2] = pSrcX87->CS;
9023 uPtr.pu16[4*2+1] = pSrcX87->FOP;
9024 uPtr.pu32[5] = pSrcX87->FPUDP;
9025 uPtr.pu16[6*2] = pSrcX87->DS;
9026 uPtr.pu16[6*2+1] = 0xffff;
9027 }
9028 }
9029}
9030
9031
9032/**
9033 * Commmon routine for fldenv and frstor
9034 *
9035 * @param pVCpu The cross context virtual CPU structure of the calling thread.
9036 * @param enmEffOpSize The effective operand size.
9037 * @param uPtr Where to store the state.
9038 */
9039static void iemCImplCommonFpuRestoreEnv(PVMCPUCC pVCpu, IEMMODE enmEffOpSize, RTCPTRUNION uPtr)
9040{
9041 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9042 PX86FXSTATE pDstX87 = &pVCpu->cpum.GstCtx.XState.x87;
9043 if (enmEffOpSize == IEMMODE_16BIT)
9044 {
9045 pDstX87->FCW = uPtr.pu16[0];
9046 pDstX87->FSW = uPtr.pu16[1];
9047 pDstX87->FTW = uPtr.pu16[2];
9048 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9049 {
9050 pDstX87->FPUIP = uPtr.pu16[3] | ((uint32_t)(uPtr.pu16[4] & UINT16_C(0xf000)) << 4);
9051 pDstX87->FPUDP = uPtr.pu16[5] | ((uint32_t)(uPtr.pu16[6] & UINT16_C(0xf000)) << 4);
9052 pDstX87->FOP = uPtr.pu16[4] & UINT16_C(0x07ff);
9053 pDstX87->CS = 0;
9054 pDstX87->Rsrvd1= 0;
9055 pDstX87->DS = 0;
9056 pDstX87->Rsrvd2= 0;
9057 }
9058 else
9059 {
9060 pDstX87->FPUIP = uPtr.pu16[3];
9061 pDstX87->CS = uPtr.pu16[4];
9062 pDstX87->Rsrvd1= 0;
9063 pDstX87->FPUDP = uPtr.pu16[5];
9064 pDstX87->DS = uPtr.pu16[6];
9065 pDstX87->Rsrvd2= 0;
9066 /** @todo Testcase: Is FOP cleared when doing 16-bit protected mode fldenv? */
9067 }
9068 }
9069 else
9070 {
9071 pDstX87->FCW = uPtr.pu16[0*2];
9072 pDstX87->FSW = uPtr.pu16[1*2];
9073 pDstX87->FTW = uPtr.pu16[2*2];
9074 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
9075 {
9076 pDstX87->FPUIP = uPtr.pu16[3*2] | ((uPtr.pu32[4] & UINT32_C(0x0ffff000)) << 4);
9077 pDstX87->FOP = uPtr.pu32[4] & UINT16_C(0x07ff);
9078 pDstX87->FPUDP = uPtr.pu16[5*2] | ((uPtr.pu32[6] & UINT32_C(0x0ffff000)) << 4);
9079 pDstX87->CS = 0;
9080 pDstX87->Rsrvd1= 0;
9081 pDstX87->DS = 0;
9082 pDstX87->Rsrvd2= 0;
9083 }
9084 else
9085 {
9086 pDstX87->FPUIP = uPtr.pu32[3];
9087 pDstX87->CS = uPtr.pu16[4*2];
9088 pDstX87->Rsrvd1= 0;
9089 pDstX87->FOP = uPtr.pu16[4*2+1];
9090 pDstX87->FPUDP = uPtr.pu32[5];
9091 pDstX87->DS = uPtr.pu16[6*2];
9092 pDstX87->Rsrvd2= 0;
9093 }
9094 }
9095
9096 /* Make adjustments. */
9097 pDstX87->FTW = iemFpuCompressFtw(pDstX87->FTW);
9098 pDstX87->FCW &= ~X86_FCW_ZERO_MASK;
9099 iemFpuRecalcExceptionStatus(pDstX87);
9100 /** @todo Testcase: Check if ES and/or B are automatically cleared if no
9101 * exceptions are pending after loading the saved state? */
9102}
9103
9104
9105/**
9106 * Implements 'FNSTENV'.
9107 *
9108 * @param enmEffOpSize The operand size (only REX.W really matters).
9109 * @param iEffSeg The effective segment register for @a GCPtrEff.
9110 * @param GCPtrEffDst The address of the image.
9111 */
9112IEM_CIMPL_DEF_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
9113{
9114 RTPTRUNION uPtr;
9115 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
9116 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9117 if (rcStrict != VINF_SUCCESS)
9118 return rcStrict;
9119
9120 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
9121
9122 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9123 if (rcStrict != VINF_SUCCESS)
9124 return rcStrict;
9125
9126 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
9127 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9128 return VINF_SUCCESS;
9129}
9130
9131
9132/**
9133 * Implements 'FNSAVE'.
9134 *
9135 * @param GCPtrEffDst The address of the image.
9136 * @param enmEffOpSize The operand size.
9137 */
9138IEM_CIMPL_DEF_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst)
9139{
9140 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9141
9142 RTPTRUNION uPtr;
9143 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, &uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
9144 iEffSeg, GCPtrEffDst, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9145 if (rcStrict != VINF_SUCCESS)
9146 return rcStrict;
9147
9148 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9149 iemCImplCommonFpuStoreEnv(pVCpu, enmEffOpSize, uPtr);
9150 PRTFLOAT80U paRegs = (PRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
9151 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
9152 {
9153 paRegs[i].au32[0] = pFpuCtx->aRegs[i].au32[0];
9154 paRegs[i].au32[1] = pFpuCtx->aRegs[i].au32[1];
9155 paRegs[i].au16[4] = pFpuCtx->aRegs[i].au16[4];
9156 }
9157
9158 rcStrict = iemMemCommitAndUnmap(pVCpu, uPtr.pv, IEM_ACCESS_DATA_W | IEM_ACCESS_PARTIAL_WRITE);
9159 if (rcStrict != VINF_SUCCESS)
9160 return rcStrict;
9161
9162 /*
9163 * Re-initialize the FPU context.
9164 */
9165 pFpuCtx->FCW = 0x37f;
9166 pFpuCtx->FSW = 0;
9167 pFpuCtx->FTW = 0x00; /* 0 - empty */
9168 pFpuCtx->FPUDP = 0;
9169 pFpuCtx->DS = 0;
9170 pFpuCtx->Rsrvd2= 0;
9171 pFpuCtx->FPUIP = 0;
9172 pFpuCtx->CS = 0;
9173 pFpuCtx->Rsrvd1= 0;
9174 pFpuCtx->FOP = 0;
9175
9176 iemHlpUsedFpu(pVCpu);
9177 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9178 return VINF_SUCCESS;
9179}
9180
9181
9182
9183/**
9184 * Implements 'FLDENV'.
9185 *
9186 * @param enmEffOpSize The operand size (only REX.W really matters).
9187 * @param iEffSeg The effective segment register for @a GCPtrEff.
9188 * @param GCPtrEffSrc The address of the image.
9189 */
9190IEM_CIMPL_DEF_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
9191{
9192 RTCPTRUNION uPtr;
9193 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 14 : 28,
9194 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
9195 if (rcStrict != VINF_SUCCESS)
9196 return rcStrict;
9197
9198 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
9199
9200 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
9201 if (rcStrict != VINF_SUCCESS)
9202 return rcStrict;
9203
9204 iemHlpUsedFpu(pVCpu);
9205 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9206 return VINF_SUCCESS;
9207}
9208
9209
9210/**
9211 * Implements 'FRSTOR'.
9212 *
9213 * @param GCPtrEffSrc The address of the image.
9214 * @param enmEffOpSize The operand size.
9215 */
9216IEM_CIMPL_DEF_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc)
9217{
9218 RTCPTRUNION uPtr;
9219 VBOXSTRICTRC rcStrict = iemMemMap(pVCpu, (void **)&uPtr.pv, enmEffOpSize == IEMMODE_16BIT ? 94 : 108,
9220 iEffSeg, GCPtrEffSrc, IEM_ACCESS_DATA_R);
9221 if (rcStrict != VINF_SUCCESS)
9222 return rcStrict;
9223
9224 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9225 iemCImplCommonFpuRestoreEnv(pVCpu, enmEffOpSize, uPtr);
9226 PCRTFLOAT80U paRegs = (PCRTFLOAT80U)(uPtr.pu8 + (enmEffOpSize == IEMMODE_16BIT ? 14 : 28));
9227 for (uint32_t i = 0; i < RT_ELEMENTS(pFpuCtx->aRegs); i++)
9228 {
9229 pFpuCtx->aRegs[i].au32[0] = paRegs[i].au32[0];
9230 pFpuCtx->aRegs[i].au32[1] = paRegs[i].au32[1];
9231 pFpuCtx->aRegs[i].au32[2] = paRegs[i].au16[4];
9232 pFpuCtx->aRegs[i].au32[3] = 0;
9233 }
9234
9235 rcStrict = iemMemCommitAndUnmap(pVCpu, (void *)uPtr.pv, IEM_ACCESS_DATA_R);
9236 if (rcStrict != VINF_SUCCESS)
9237 return rcStrict;
9238
9239 iemHlpUsedFpu(pVCpu);
9240 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9241 return VINF_SUCCESS;
9242}
9243
9244
9245/**
9246 * Implements 'FLDCW'.
9247 *
9248 * @param u16Fcw The new FCW.
9249 */
9250IEM_CIMPL_DEF_1(iemCImpl_fldcw, uint16_t, u16Fcw)
9251{
9252 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9253
9254 /** @todo Testcase: Check what happens when trying to load X86_FCW_PC_RSVD. */
9255 /** @todo Testcase: Try see what happens when trying to set undefined bits
9256 * (other than 6 and 7). Currently ignoring them. */
9257 /** @todo Testcase: Test that it raises and loweres the FPU exception bits
9258 * according to FSW. (This is was is currently implemented.) */
9259 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9260 pFpuCtx->FCW = u16Fcw & ~X86_FCW_ZERO_MASK;
9261 iemFpuRecalcExceptionStatus(pFpuCtx);
9262
9263 /* Note: C0, C1, C2 and C3 are documented as undefined, we leave them untouched! */
9264 iemHlpUsedFpu(pVCpu);
9265 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9266 return VINF_SUCCESS;
9267}
9268
9269
9270
9271/**
9272 * Implements the underflow case of fxch.
9273 *
9274 * @param iStReg The other stack register.
9275 */
9276IEM_CIMPL_DEF_1(iemCImpl_fxch_underflow, uint8_t, iStReg)
9277{
9278 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9279
9280 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9281 unsigned const iReg1 = X86_FSW_TOP_GET(pFpuCtx->FSW);
9282 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9283 Assert(!(RT_BIT(iReg1) & pFpuCtx->FTW) || !(RT_BIT(iReg2) & pFpuCtx->FTW));
9284
9285 /** @todo Testcase: fxch underflow. Making assumptions that underflowed
9286 * registers are read as QNaN and then exchanged. This could be
9287 * wrong... */
9288 if (pFpuCtx->FCW & X86_FCW_IM)
9289 {
9290 if (RT_BIT(iReg1) & pFpuCtx->FTW)
9291 {
9292 if (RT_BIT(iReg2) & pFpuCtx->FTW)
9293 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9294 else
9295 pFpuCtx->aRegs[0].r80 = pFpuCtx->aRegs[iStReg].r80;
9296 iemFpuStoreQNan(&pFpuCtx->aRegs[iStReg].r80);
9297 }
9298 else
9299 {
9300 pFpuCtx->aRegs[iStReg].r80 = pFpuCtx->aRegs[0].r80;
9301 iemFpuStoreQNan(&pFpuCtx->aRegs[0].r80);
9302 }
9303 pFpuCtx->FSW &= ~X86_FSW_C_MASK;
9304 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF;
9305 }
9306 else
9307 {
9308 /* raise underflow exception, don't change anything. */
9309 pFpuCtx->FSW &= ~(X86_FSW_TOP_MASK | X86_FSW_XCPT_MASK);
9310 pFpuCtx->FSW |= X86_FSW_C1 | X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9311 }
9312
9313 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9314 iemHlpUsedFpu(pVCpu);
9315 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9316 return VINF_SUCCESS;
9317}
9318
9319
9320/**
9321 * Implements 'FCOMI', 'FCOMIP', 'FUCOMI', and 'FUCOMIP'.
9322 *
9323 * @param cToAdd 1 or 7.
9324 */
9325IEM_CIMPL_DEF_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, PFNIEMAIMPLFPUR80EFL, pfnAImpl, bool, fPop)
9326{
9327 Assert(iStReg < 8);
9328 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_X87);
9329
9330 /*
9331 * Raise exceptions.
9332 */
9333 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS))
9334 return iemRaiseDeviceNotAvailable(pVCpu);
9335
9336 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
9337 uint16_t u16Fsw = pFpuCtx->FSW;
9338 if (u16Fsw & X86_FSW_ES)
9339 return iemRaiseMathFault(pVCpu);
9340
9341 /*
9342 * Check if any of the register accesses causes #SF + #IA.
9343 */
9344 unsigned const iReg1 = X86_FSW_TOP_GET(u16Fsw);
9345 unsigned const iReg2 = (iReg1 + iStReg) & X86_FSW_TOP_SMASK;
9346 if ((pFpuCtx->FTW & (RT_BIT(iReg1) | RT_BIT(iReg2))) == (RT_BIT(iReg1) | RT_BIT(iReg2)))
9347 {
9348 uint32_t u32Eflags = pfnAImpl(pFpuCtx, &u16Fsw, &pFpuCtx->aRegs[0].r80, &pFpuCtx->aRegs[iStReg].r80);
9349 NOREF(u32Eflags);
9350
9351 pFpuCtx->FSW &= ~X86_FSW_C1;
9352 pFpuCtx->FSW |= u16Fsw & ~X86_FSW_TOP_MASK;
9353 if ( !(u16Fsw & X86_FSW_IE)
9354 || (pFpuCtx->FCW & X86_FCW_IM) )
9355 {
9356 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9357 pVCpu->cpum.GstCtx.eflags.u |= pVCpu->cpum.GstCtx.eflags.u & (X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9358 }
9359 }
9360 else if (pFpuCtx->FCW & X86_FCW_IM)
9361 {
9362 /* Masked underflow. */
9363 pFpuCtx->FSW &= ~X86_FSW_C1;
9364 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF;
9365 pVCpu->cpum.GstCtx.eflags.u &= ~(X86_EFL_OF | X86_EFL_SF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF);
9366 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_ZF | X86_EFL_PF | X86_EFL_CF;
9367 }
9368 else
9369 {
9370 /* Raise underflow - don't touch EFLAGS or TOP. */
9371 pFpuCtx->FSW &= ~X86_FSW_C1;
9372 pFpuCtx->FSW |= X86_FSW_IE | X86_FSW_SF | X86_FSW_ES | X86_FSW_B;
9373 fPop = false;
9374 }
9375
9376 /*
9377 * Pop if necessary.
9378 */
9379 if (fPop)
9380 {
9381 pFpuCtx->FTW &= ~RT_BIT(iReg1);
9382 pFpuCtx->FSW &= X86_FSW_TOP_MASK;
9383 pFpuCtx->FSW |= ((iReg1 + 7) & X86_FSW_TOP_SMASK) << X86_FSW_TOP_SHIFT;
9384 }
9385
9386 iemFpuUpdateOpcodeAndIpWorker(pVCpu, pFpuCtx);
9387 iemHlpUsedFpu(pVCpu);
9388 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9389 return VINF_SUCCESS;
9390}
9391
9392/** @} */
9393
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette