1 | /* $Id: IEMAllCImplStrInstr.cpp.h 76553 2019-01-01 01:45:53Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - String Instruction Implementation Code Template.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2019 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*******************************************************************************
|
---|
20 | * Defined Constants And Macros *
|
---|
21 | *******************************************************************************/
|
---|
22 | #if OP_SIZE == 8
|
---|
23 | # define OP_rAX al
|
---|
24 | #elif OP_SIZE == 16
|
---|
25 | # define OP_rAX ax
|
---|
26 | #elif OP_SIZE == 32
|
---|
27 | # define OP_rAX eax
|
---|
28 | #elif OP_SIZE == 64
|
---|
29 | # define OP_rAX rax
|
---|
30 | #else
|
---|
31 | # error "Bad OP_SIZE."
|
---|
32 | #endif
|
---|
33 | #define OP_TYPE RT_CONCAT3(uint,OP_SIZE,_t)
|
---|
34 |
|
---|
35 | #if ADDR_SIZE == 16
|
---|
36 | # define ADDR_rDI di
|
---|
37 | # define ADDR_rSI si
|
---|
38 | # define ADDR_rCX cx
|
---|
39 | # define ADDR2_TYPE uint32_t
|
---|
40 | # define ADDR_VMXSTRIO 0
|
---|
41 | #elif ADDR_SIZE == 32
|
---|
42 | # define ADDR_rDI edi
|
---|
43 | # define ADDR_rSI esi
|
---|
44 | # define ADDR_rCX ecx
|
---|
45 | # define ADDR2_TYPE uint32_t
|
---|
46 | # define ADDR_VMXSTRIO 1
|
---|
47 | #elif ADDR_SIZE == 64
|
---|
48 | # define ADDR_rDI rdi
|
---|
49 | # define ADDR_rSI rsi
|
---|
50 | # define ADDR_rCX rcx
|
---|
51 | # define ADDR2_TYPE uint64_t
|
---|
52 | # define ADDR_VMXSTRIO 2
|
---|
53 | # define IS_64_BIT_CODE(a_pVCpu) (true)
|
---|
54 | #else
|
---|
55 | # error "Bad ADDR_SIZE."
|
---|
56 | #endif
|
---|
57 | #define ADDR_TYPE RT_CONCAT3(uint,ADDR_SIZE,_t)
|
---|
58 |
|
---|
59 | #if ADDR_SIZE == 64 || OP_SIZE == 64
|
---|
60 | # define IS_64_BIT_CODE(a_pVCpu) (true)
|
---|
61 | #elif ADDR_SIZE == 32
|
---|
62 | # define IS_64_BIT_CODE(a_pVCpu) ((a_pVCpu)->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
63 | #else
|
---|
64 | # define IS_64_BIT_CODE(a_pVCpu) (false)
|
---|
65 | #endif
|
---|
66 |
|
---|
67 | /** @def IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN
|
---|
68 | * Used in the outer (page-by-page) loop to check for reasons for returnning
|
---|
69 | * before completing the instruction. In raw-mode we temporarily enable
|
---|
70 | * interrupts to let the host interrupt us. We cannot let big string operations
|
---|
71 | * hog the CPU, especially not in raw-mode.
|
---|
72 | */
|
---|
73 | #ifdef IN_RC
|
---|
74 | # define IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fEflags) \
|
---|
75 | do { \
|
---|
76 | if (RT_LIKELY( !VMCPU_FF_IS_ANY_SET(a_pVCpu, (a_fEflags) & X86_EFL_IF ? VMCPU_FF_YIELD_REPSTR_MASK \
|
---|
77 | : VMCPU_FF_YIELD_REPSTR_NOINT_MASK) \
|
---|
78 | && !VM_FF_IS_ANY_SET(a_pVM, VM_FF_YIELD_REPSTR_MASK) \
|
---|
79 | )) \
|
---|
80 | { \
|
---|
81 | RTCCUINTREG fSavedFlags = ASMGetFlags(); \
|
---|
82 | if (!(fSavedFlags & X86_EFL_IF)) \
|
---|
83 | { \
|
---|
84 | ASMSetFlags(fSavedFlags | X86_EFL_IF); \
|
---|
85 | ASMNopPause(); \
|
---|
86 | ASMSetFlags(fSavedFlags); \
|
---|
87 | } \
|
---|
88 | } \
|
---|
89 | else \
|
---|
90 | { \
|
---|
91 | LogFlow(("%s: Leaving early (outer)! ffcpu=%#RX64 ffvm=%#x\n", \
|
---|
92 | __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
|
---|
93 | return VINF_SUCCESS; \
|
---|
94 | } \
|
---|
95 | } while (0)
|
---|
96 | #else
|
---|
97 | # define IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fEflags) \
|
---|
98 | do { \
|
---|
99 | if (RT_LIKELY( !VMCPU_FF_IS_ANY_SET(a_pVCpu, (a_fEflags) & X86_EFL_IF ? VMCPU_FF_YIELD_REPSTR_MASK \
|
---|
100 | : VMCPU_FF_YIELD_REPSTR_NOINT_MASK) \
|
---|
101 | && !VM_FF_IS_ANY_SET(a_pVM, VM_FF_YIELD_REPSTR_MASK) \
|
---|
102 | )) \
|
---|
103 | { /* probable */ } \
|
---|
104 | else \
|
---|
105 | { \
|
---|
106 | LogFlow(("%s: Leaving early (outer)! ffcpu=%#RX64 ffvm=%#x\n", \
|
---|
107 | __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
|
---|
108 | return VINF_SUCCESS; \
|
---|
109 | } \
|
---|
110 | } while (0)
|
---|
111 | #endif
|
---|
112 |
|
---|
113 | /** @def IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
114 | * This is used in some of the inner loops to make sure we respond immediately
|
---|
115 | * to VMCPU_FF_IOM as well as outside requests. Use this for expensive
|
---|
116 | * instructions. Use IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN for
|
---|
117 | * ones that are typically cheap. */
|
---|
118 | #define IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fExitExpr) \
|
---|
119 | do { \
|
---|
120 | if (RT_LIKELY( ( !VMCPU_FF_IS_ANY_SET(a_pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_REPSTR_MASK) \
|
---|
121 | && !VM_FF_IS_ANY_SET(a_pVM, VM_FF_HIGH_PRIORITY_POST_REPSTR_MASK)) \
|
---|
122 | || (a_fExitExpr) )) \
|
---|
123 | { /* very likely */ } \
|
---|
124 | else \
|
---|
125 | { \
|
---|
126 | LogFlow(("%s: Leaving early (inner)! ffcpu=%#RX64 ffvm=%#x\n", \
|
---|
127 | __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
|
---|
128 | return VINF_SUCCESS; \
|
---|
129 | } \
|
---|
130 | } while (0)
|
---|
131 |
|
---|
132 |
|
---|
133 | /** @def IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
134 | * This is used in the inner loops where
|
---|
135 | * IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN isn't used. It only
|
---|
136 | * checks the CPU FFs so that we respond immediately to the pending IOM FF
|
---|
137 | * (status code is hidden in IEMCPU::rcPassUp by IEM memory commit code).
|
---|
138 | */
|
---|
139 | #define IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fExitExpr) \
|
---|
140 | do { \
|
---|
141 | if (RT_LIKELY( !VMCPU_FF_IS_ANY_SET(a_pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_REPSTR_MASK) \
|
---|
142 | || (a_fExitExpr) )) \
|
---|
143 | { /* very likely */ } \
|
---|
144 | else \
|
---|
145 | { \
|
---|
146 | LogFlow(("%s: Leaving early (inner)! ffcpu=%#RX64 (ffvm=%#x)\n", \
|
---|
147 | __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
|
---|
148 | return VINF_SUCCESS; \
|
---|
149 | } \
|
---|
150 | } while (0)
|
---|
151 |
|
---|
152 |
|
---|
153 | /**
|
---|
154 | * Implements 'REPE CMPS'.
|
---|
155 | */
|
---|
156 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_repe_cmps_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
157 | {
|
---|
158 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
159 |
|
---|
160 | /*
|
---|
161 | * Setup.
|
---|
162 | */
|
---|
163 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
164 | if (uCounterReg == 0)
|
---|
165 | {
|
---|
166 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
167 | return VINF_SUCCESS;
|
---|
168 | }
|
---|
169 |
|
---|
170 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
|
---|
171 |
|
---|
172 | PCCPUMSELREGHID pSrc1Hid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
173 | uint64_t uSrc1Base;
|
---|
174 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrc1Hid, iEffSeg, &uSrc1Base);
|
---|
175 | if (rcStrict != VINF_SUCCESS)
|
---|
176 | return rcStrict;
|
---|
177 |
|
---|
178 | uint64_t uSrc2Base;
|
---|
179 | rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uSrc2Base);
|
---|
180 | if (rcStrict != VINF_SUCCESS)
|
---|
181 | return rcStrict;
|
---|
182 |
|
---|
183 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
184 | ADDR_TYPE uSrc1AddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
185 | ADDR_TYPE uSrc2AddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
186 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
187 |
|
---|
188 | /*
|
---|
189 | * The loop.
|
---|
190 | */
|
---|
191 | for (;;)
|
---|
192 | {
|
---|
193 | /*
|
---|
194 | * Do segmentation and virtual page stuff.
|
---|
195 | */
|
---|
196 | ADDR2_TYPE uVirtSrc1Addr = uSrc1AddrReg + (ADDR2_TYPE)uSrc1Base;
|
---|
197 | ADDR2_TYPE uVirtSrc2Addr = uSrc2AddrReg + (ADDR2_TYPE)uSrc2Base;
|
---|
198 | uint32_t cLeftSrc1Page = (PAGE_SIZE - (uVirtSrc1Addr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
199 | if (cLeftSrc1Page > uCounterReg)
|
---|
200 | cLeftSrc1Page = uCounterReg;
|
---|
201 | uint32_t cLeftSrc2Page = (PAGE_SIZE - (uVirtSrc2Addr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
202 | uint32_t cLeftPage = RT_MIN(cLeftSrc1Page, cLeftSrc2Page);
|
---|
203 |
|
---|
204 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
205 | && cbIncr > 0 /** @todo Optimize reverse direction string ops. */
|
---|
206 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
207 | || ( uSrc1AddrReg < pSrc1Hid->u32Limit
|
---|
208 | && uSrc1AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrc1Hid->u32Limit
|
---|
209 | && uSrc2AddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
210 | && uSrc2AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
211 | )
|
---|
212 | )
|
---|
213 | {
|
---|
214 | RTGCPHYS GCPhysSrc1Mem;
|
---|
215 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc1Addr, IEM_ACCESS_DATA_R, &GCPhysSrc1Mem);
|
---|
216 | if (rcStrict != VINF_SUCCESS)
|
---|
217 | return rcStrict;
|
---|
218 |
|
---|
219 | RTGCPHYS GCPhysSrc2Mem;
|
---|
220 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc2Addr, IEM_ACCESS_DATA_R, &GCPhysSrc2Mem);
|
---|
221 | if (rcStrict != VINF_SUCCESS)
|
---|
222 | return rcStrict;
|
---|
223 |
|
---|
224 | /*
|
---|
225 | * If we can map the page without trouble, do a block processing
|
---|
226 | * until the end of the current page.
|
---|
227 | */
|
---|
228 | PGMPAGEMAPLOCK PgLockSrc2Mem;
|
---|
229 | OP_TYPE const *puSrc2Mem;
|
---|
230 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, (void **)&puSrc2Mem, &PgLockSrc2Mem);
|
---|
231 | if (rcStrict == VINF_SUCCESS)
|
---|
232 | {
|
---|
233 | PGMPAGEMAPLOCK PgLockSrc1Mem;
|
---|
234 | OP_TYPE const *puSrc1Mem;
|
---|
235 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, (void **)&puSrc1Mem, &PgLockSrc1Mem);
|
---|
236 | if (rcStrict == VINF_SUCCESS)
|
---|
237 | {
|
---|
238 | if (!memcmp(puSrc2Mem, puSrc1Mem, cLeftPage * (OP_SIZE / 8)))
|
---|
239 | {
|
---|
240 | /* All matches, only compare the last itme to get the right eflags. */
|
---|
241 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[cLeftPage-1], puSrc2Mem[cLeftPage-1], &uEFlags);
|
---|
242 | uSrc1AddrReg += cLeftPage * cbIncr;
|
---|
243 | uSrc2AddrReg += cLeftPage * cbIncr;
|
---|
244 | uCounterReg -= cLeftPage;
|
---|
245 | }
|
---|
246 | else
|
---|
247 | {
|
---|
248 | /* Some mismatch, compare each item (and keep volatile
|
---|
249 | memory in mind). */
|
---|
250 | uint32_t off = 0;
|
---|
251 | do
|
---|
252 | {
|
---|
253 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[off], puSrc2Mem[off], &uEFlags);
|
---|
254 | off++;
|
---|
255 | } while ( off < cLeftPage
|
---|
256 | && (uEFlags & X86_EFL_ZF));
|
---|
257 | uSrc1AddrReg += cbIncr * off;
|
---|
258 | uSrc2AddrReg += cbIncr * off;
|
---|
259 | uCounterReg -= off;
|
---|
260 | }
|
---|
261 |
|
---|
262 | /* Update the registers before looping. */
|
---|
263 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg;
|
---|
264 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg;
|
---|
265 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg;
|
---|
266 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
267 |
|
---|
268 | iemMemPageUnmap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, puSrc1Mem, &PgLockSrc1Mem);
|
---|
269 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
270 | if ( uCounterReg == 0
|
---|
271 | || !(uEFlags & X86_EFL_ZF))
|
---|
272 | break;
|
---|
273 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
274 | continue;
|
---|
275 | }
|
---|
276 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
277 | }
|
---|
278 | }
|
---|
279 |
|
---|
280 | /*
|
---|
281 | * Fallback - slow processing till the end of the current page.
|
---|
282 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
283 | * as 0, we execute one loop then.
|
---|
284 | */
|
---|
285 | do
|
---|
286 | {
|
---|
287 | OP_TYPE uValue1;
|
---|
288 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue1, iEffSeg, uSrc1AddrReg);
|
---|
289 | if (rcStrict != VINF_SUCCESS)
|
---|
290 | return rcStrict;
|
---|
291 | OP_TYPE uValue2;
|
---|
292 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue2, X86_SREG_ES, uSrc2AddrReg);
|
---|
293 | if (rcStrict != VINF_SUCCESS)
|
---|
294 | return rcStrict;
|
---|
295 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(&uValue1, uValue2, &uEFlags);
|
---|
296 |
|
---|
297 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg += cbIncr;
|
---|
298 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg += cbIncr;
|
---|
299 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
300 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
301 | cLeftPage--;
|
---|
302 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || !(uEFlags & X86_EFL_ZF));
|
---|
303 | } while ( (int32_t)cLeftPage > 0
|
---|
304 | && (uEFlags & X86_EFL_ZF));
|
---|
305 |
|
---|
306 | /*
|
---|
307 | * Next page? Must check for interrupts and stuff here.
|
---|
308 | */
|
---|
309 | if ( uCounterReg == 0
|
---|
310 | || !(uEFlags & X86_EFL_ZF))
|
---|
311 | break;
|
---|
312 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
313 | }
|
---|
314 |
|
---|
315 | /*
|
---|
316 | * Done.
|
---|
317 | */
|
---|
318 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
319 | return VINF_SUCCESS;
|
---|
320 | }
|
---|
321 |
|
---|
322 |
|
---|
323 | /**
|
---|
324 | * Implements 'REPNE CMPS'.
|
---|
325 | */
|
---|
326 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_repne_cmps_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
327 | {
|
---|
328 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
329 |
|
---|
330 | /*
|
---|
331 | * Setup.
|
---|
332 | */
|
---|
333 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
334 | if (uCounterReg == 0)
|
---|
335 | {
|
---|
336 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
337 | return VINF_SUCCESS;
|
---|
338 | }
|
---|
339 |
|
---|
340 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
|
---|
341 |
|
---|
342 | PCCPUMSELREGHID pSrc1Hid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
343 | uint64_t uSrc1Base;
|
---|
344 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrc1Hid, iEffSeg, &uSrc1Base);
|
---|
345 | if (rcStrict != VINF_SUCCESS)
|
---|
346 | return rcStrict;
|
---|
347 |
|
---|
348 | uint64_t uSrc2Base;
|
---|
349 | rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uSrc2Base);
|
---|
350 | if (rcStrict != VINF_SUCCESS)
|
---|
351 | return rcStrict;
|
---|
352 |
|
---|
353 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
354 | ADDR_TYPE uSrc1AddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
355 | ADDR_TYPE uSrc2AddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
356 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
357 |
|
---|
358 | /*
|
---|
359 | * The loop.
|
---|
360 | */
|
---|
361 | for (;;)
|
---|
362 | {
|
---|
363 | /*
|
---|
364 | * Do segmentation and virtual page stuff.
|
---|
365 | */
|
---|
366 | ADDR2_TYPE uVirtSrc1Addr = uSrc1AddrReg + (ADDR2_TYPE)uSrc1Base;
|
---|
367 | ADDR2_TYPE uVirtSrc2Addr = uSrc2AddrReg + (ADDR2_TYPE)uSrc2Base;
|
---|
368 | uint32_t cLeftSrc1Page = (PAGE_SIZE - (uVirtSrc1Addr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
369 | if (cLeftSrc1Page > uCounterReg)
|
---|
370 | cLeftSrc1Page = uCounterReg;
|
---|
371 | uint32_t cLeftSrc2Page = (PAGE_SIZE - (uVirtSrc2Addr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
372 | uint32_t cLeftPage = RT_MIN(cLeftSrc1Page, cLeftSrc2Page);
|
---|
373 |
|
---|
374 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
375 | && cbIncr > 0 /** @todo Optimize reverse direction string ops. */
|
---|
376 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
377 | || ( uSrc1AddrReg < pSrc1Hid->u32Limit
|
---|
378 | && uSrc1AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrc1Hid->u32Limit
|
---|
379 | && uSrc2AddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
380 | && uSrc2AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
381 | )
|
---|
382 | )
|
---|
383 | {
|
---|
384 | RTGCPHYS GCPhysSrc1Mem;
|
---|
385 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc1Addr, IEM_ACCESS_DATA_R, &GCPhysSrc1Mem);
|
---|
386 | if (rcStrict != VINF_SUCCESS)
|
---|
387 | return rcStrict;
|
---|
388 |
|
---|
389 | RTGCPHYS GCPhysSrc2Mem;
|
---|
390 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc2Addr, IEM_ACCESS_DATA_R, &GCPhysSrc2Mem);
|
---|
391 | if (rcStrict != VINF_SUCCESS)
|
---|
392 | return rcStrict;
|
---|
393 |
|
---|
394 | /*
|
---|
395 | * If we can map the page without trouble, do a block processing
|
---|
396 | * until the end of the current page.
|
---|
397 | */
|
---|
398 | OP_TYPE const *puSrc2Mem;
|
---|
399 | PGMPAGEMAPLOCK PgLockSrc2Mem;
|
---|
400 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, (void **)&puSrc2Mem, &PgLockSrc2Mem);
|
---|
401 | if (rcStrict == VINF_SUCCESS)
|
---|
402 | {
|
---|
403 | OP_TYPE const *puSrc1Mem;
|
---|
404 | PGMPAGEMAPLOCK PgLockSrc1Mem;
|
---|
405 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, (void **)&puSrc1Mem, &PgLockSrc1Mem);
|
---|
406 | if (rcStrict == VINF_SUCCESS)
|
---|
407 | {
|
---|
408 | if (memcmp(puSrc2Mem, puSrc1Mem, cLeftPage * (OP_SIZE / 8)))
|
---|
409 | {
|
---|
410 | /* All matches, only compare the last item to get the right eflags. */
|
---|
411 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[cLeftPage-1], puSrc2Mem[cLeftPage-1], &uEFlags);
|
---|
412 | uSrc1AddrReg += cLeftPage * cbIncr;
|
---|
413 | uSrc2AddrReg += cLeftPage * cbIncr;
|
---|
414 | uCounterReg -= cLeftPage;
|
---|
415 | }
|
---|
416 | else
|
---|
417 | {
|
---|
418 | /* Some mismatch, compare each item (and keep volatile
|
---|
419 | memory in mind). */
|
---|
420 | uint32_t off = 0;
|
---|
421 | do
|
---|
422 | {
|
---|
423 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[off], puSrc2Mem[off], &uEFlags);
|
---|
424 | off++;
|
---|
425 | } while ( off < cLeftPage
|
---|
426 | && !(uEFlags & X86_EFL_ZF));
|
---|
427 | uSrc1AddrReg += cbIncr * off;
|
---|
428 | uSrc2AddrReg += cbIncr * off;
|
---|
429 | uCounterReg -= off;
|
---|
430 | }
|
---|
431 |
|
---|
432 | /* Update the registers before looping. */
|
---|
433 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg;
|
---|
434 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg;
|
---|
435 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg;
|
---|
436 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
437 |
|
---|
438 | iemMemPageUnmap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, puSrc1Mem, &PgLockSrc1Mem);
|
---|
439 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
440 | if ( uCounterReg == 0
|
---|
441 | || (uEFlags & X86_EFL_ZF))
|
---|
442 | break;
|
---|
443 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
444 | continue;
|
---|
445 | }
|
---|
446 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
447 | }
|
---|
448 | }
|
---|
449 |
|
---|
450 | /*
|
---|
451 | * Fallback - slow processing till the end of the current page.
|
---|
452 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
453 | * as 0, we execute one loop then.
|
---|
454 | */
|
---|
455 | do
|
---|
456 | {
|
---|
457 | OP_TYPE uValue1;
|
---|
458 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue1, iEffSeg, uSrc1AddrReg);
|
---|
459 | if (rcStrict != VINF_SUCCESS)
|
---|
460 | return rcStrict;
|
---|
461 | OP_TYPE uValue2;
|
---|
462 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue2, X86_SREG_ES, uSrc2AddrReg);
|
---|
463 | if (rcStrict != VINF_SUCCESS)
|
---|
464 | return rcStrict;
|
---|
465 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(&uValue1, uValue2, &uEFlags);
|
---|
466 |
|
---|
467 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg += cbIncr;
|
---|
468 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg += cbIncr;
|
---|
469 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
470 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
471 | cLeftPage--;
|
---|
472 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || (uEFlags & X86_EFL_ZF));
|
---|
473 | } while ( (int32_t)cLeftPage > 0
|
---|
474 | && !(uEFlags & X86_EFL_ZF));
|
---|
475 |
|
---|
476 | /*
|
---|
477 | * Next page? Must check for interrupts and stuff here.
|
---|
478 | */
|
---|
479 | if ( uCounterReg == 0
|
---|
480 | || (uEFlags & X86_EFL_ZF))
|
---|
481 | break;
|
---|
482 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
483 | }
|
---|
484 |
|
---|
485 | /*
|
---|
486 | * Done.
|
---|
487 | */
|
---|
488 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
489 | return VINF_SUCCESS;
|
---|
490 | }
|
---|
491 |
|
---|
492 |
|
---|
493 | /**
|
---|
494 | * Implements 'REPE SCAS'.
|
---|
495 | */
|
---|
496 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_repe_scas_,OP_rAX,_m,ADDR_SIZE))
|
---|
497 | {
|
---|
498 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
499 |
|
---|
500 | /*
|
---|
501 | * Setup.
|
---|
502 | */
|
---|
503 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
504 | if (uCounterReg == 0)
|
---|
505 | {
|
---|
506 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
507 | return VINF_SUCCESS;
|
---|
508 | }
|
---|
509 |
|
---|
510 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
511 | uint64_t uBaseAddr;
|
---|
512 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
513 | if (rcStrict != VINF_SUCCESS)
|
---|
514 | return rcStrict;
|
---|
515 |
|
---|
516 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
517 | OP_TYPE const uValueReg = pVCpu->cpum.GstCtx.OP_rAX;
|
---|
518 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
519 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
520 |
|
---|
521 | /*
|
---|
522 | * The loop.
|
---|
523 | */
|
---|
524 | for (;;)
|
---|
525 | {
|
---|
526 | /*
|
---|
527 | * Do segmentation and virtual page stuff.
|
---|
528 | */
|
---|
529 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
530 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
531 | if (cLeftPage > uCounterReg)
|
---|
532 | cLeftPage = uCounterReg;
|
---|
533 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
534 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
535 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
536 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
537 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
538 | )
|
---|
539 | )
|
---|
540 | {
|
---|
541 | RTGCPHYS GCPhysMem;
|
---|
542 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
543 | if (rcStrict != VINF_SUCCESS)
|
---|
544 | return rcStrict;
|
---|
545 |
|
---|
546 | /*
|
---|
547 | * If we can map the page without trouble, do a block processing
|
---|
548 | * until the end of the current page.
|
---|
549 | */
|
---|
550 | PGMPAGEMAPLOCK PgLockMem;
|
---|
551 | OP_TYPE const *puMem;
|
---|
552 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
553 | if (rcStrict == VINF_SUCCESS)
|
---|
554 | {
|
---|
555 | /* Search till we find a mismatching item. */
|
---|
556 | OP_TYPE uTmpValue;
|
---|
557 | bool fQuit;
|
---|
558 | uint32_t i = 0;
|
---|
559 | do
|
---|
560 | {
|
---|
561 | uTmpValue = puMem[i++];
|
---|
562 | fQuit = uTmpValue != uValueReg;
|
---|
563 | } while (i < cLeftPage && !fQuit);
|
---|
564 |
|
---|
565 | /* Update the regs. */
|
---|
566 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
567 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= i;
|
---|
568 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += i * cbIncr;
|
---|
569 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
570 | Assert(!(uEFlags & X86_EFL_ZF) == fQuit);
|
---|
571 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
572 | if ( fQuit
|
---|
573 | || uCounterReg == 0)
|
---|
574 | break;
|
---|
575 |
|
---|
576 | /* If unaligned, we drop thru and do the page crossing access
|
---|
577 | below. Otherwise, do the next page. */
|
---|
578 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
579 | {
|
---|
580 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
581 | continue;
|
---|
582 | }
|
---|
583 | cLeftPage = 0;
|
---|
584 | }
|
---|
585 | }
|
---|
586 |
|
---|
587 | /*
|
---|
588 | * Fallback - slow processing till the end of the current page.
|
---|
589 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
590 | * as 0, we execute one loop then.
|
---|
591 | */
|
---|
592 | do
|
---|
593 | {
|
---|
594 | OP_TYPE uTmpValue;
|
---|
595 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, X86_SREG_ES, uAddrReg);
|
---|
596 | if (rcStrict != VINF_SUCCESS)
|
---|
597 | return rcStrict;
|
---|
598 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
599 |
|
---|
600 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
601 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
602 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
603 | cLeftPage--;
|
---|
604 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || !(uEFlags & X86_EFL_ZF));
|
---|
605 | } while ( (int32_t)cLeftPage > 0
|
---|
606 | && (uEFlags & X86_EFL_ZF));
|
---|
607 |
|
---|
608 | /*
|
---|
609 | * Next page? Must check for interrupts and stuff here.
|
---|
610 | */
|
---|
611 | if ( uCounterReg == 0
|
---|
612 | || !(uEFlags & X86_EFL_ZF))
|
---|
613 | break;
|
---|
614 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
615 | }
|
---|
616 |
|
---|
617 | /*
|
---|
618 | * Done.
|
---|
619 | */
|
---|
620 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
621 | return VINF_SUCCESS;
|
---|
622 | }
|
---|
623 |
|
---|
624 |
|
---|
625 | /**
|
---|
626 | * Implements 'REPNE SCAS'.
|
---|
627 | */
|
---|
628 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_repne_scas_,OP_rAX,_m,ADDR_SIZE))
|
---|
629 | {
|
---|
630 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
631 |
|
---|
632 | /*
|
---|
633 | * Setup.
|
---|
634 | */
|
---|
635 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
636 | if (uCounterReg == 0)
|
---|
637 | {
|
---|
638 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
639 | return VINF_SUCCESS;
|
---|
640 | }
|
---|
641 |
|
---|
642 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
643 | uint64_t uBaseAddr;
|
---|
644 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
645 | if (rcStrict != VINF_SUCCESS)
|
---|
646 | return rcStrict;
|
---|
647 |
|
---|
648 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
649 | OP_TYPE const uValueReg = pVCpu->cpum.GstCtx.OP_rAX;
|
---|
650 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
651 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
652 |
|
---|
653 | /*
|
---|
654 | * The loop.
|
---|
655 | */
|
---|
656 | for (;;)
|
---|
657 | {
|
---|
658 | /*
|
---|
659 | * Do segmentation and virtual page stuff.
|
---|
660 | */
|
---|
661 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
662 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
663 | if (cLeftPage > uCounterReg)
|
---|
664 | cLeftPage = uCounterReg;
|
---|
665 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
666 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
667 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
668 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
669 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
670 | )
|
---|
671 | )
|
---|
672 | {
|
---|
673 | RTGCPHYS GCPhysMem;
|
---|
674 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
675 | if (rcStrict != VINF_SUCCESS)
|
---|
676 | return rcStrict;
|
---|
677 |
|
---|
678 | /*
|
---|
679 | * If we can map the page without trouble, do a block processing
|
---|
680 | * until the end of the current page.
|
---|
681 | */
|
---|
682 | PGMPAGEMAPLOCK PgLockMem;
|
---|
683 | OP_TYPE const *puMem;
|
---|
684 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
685 | if (rcStrict == VINF_SUCCESS)
|
---|
686 | {
|
---|
687 | /* Search till we find a mismatching item. */
|
---|
688 | OP_TYPE uTmpValue;
|
---|
689 | bool fQuit;
|
---|
690 | uint32_t i = 0;
|
---|
691 | do
|
---|
692 | {
|
---|
693 | uTmpValue = puMem[i++];
|
---|
694 | fQuit = uTmpValue == uValueReg;
|
---|
695 | } while (i < cLeftPage && !fQuit);
|
---|
696 |
|
---|
697 | /* Update the regs. */
|
---|
698 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
699 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= i;
|
---|
700 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += i * cbIncr;
|
---|
701 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
702 | Assert(!!(uEFlags & X86_EFL_ZF) == fQuit);
|
---|
703 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
704 | if ( fQuit
|
---|
705 | || uCounterReg == 0)
|
---|
706 | break;
|
---|
707 |
|
---|
708 | /* If unaligned, we drop thru and do the page crossing access
|
---|
709 | below. Otherwise, do the next page. */
|
---|
710 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
711 | {
|
---|
712 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
713 | continue;
|
---|
714 | }
|
---|
715 | cLeftPage = 0;
|
---|
716 | }
|
---|
717 | }
|
---|
718 |
|
---|
719 | /*
|
---|
720 | * Fallback - slow processing till the end of the current page.
|
---|
721 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
722 | * as 0, we execute one loop then.
|
---|
723 | */
|
---|
724 | do
|
---|
725 | {
|
---|
726 | OP_TYPE uTmpValue;
|
---|
727 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, X86_SREG_ES, uAddrReg);
|
---|
728 | if (rcStrict != VINF_SUCCESS)
|
---|
729 | return rcStrict;
|
---|
730 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
731 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
732 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
733 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
734 | cLeftPage--;
|
---|
735 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || (uEFlags & X86_EFL_ZF));
|
---|
736 | } while ( (int32_t)cLeftPage > 0
|
---|
737 | && !(uEFlags & X86_EFL_ZF));
|
---|
738 |
|
---|
739 | /*
|
---|
740 | * Next page? Must check for interrupts and stuff here.
|
---|
741 | */
|
---|
742 | if ( uCounterReg == 0
|
---|
743 | || (uEFlags & X86_EFL_ZF))
|
---|
744 | break;
|
---|
745 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
746 | }
|
---|
747 |
|
---|
748 | /*
|
---|
749 | * Done.
|
---|
750 | */
|
---|
751 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
752 | return VINF_SUCCESS;
|
---|
753 | }
|
---|
754 |
|
---|
755 |
|
---|
756 |
|
---|
757 |
|
---|
758 | /**
|
---|
759 | * Implements 'REP MOVS'.
|
---|
760 | */
|
---|
761 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_rep_movs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
762 | {
|
---|
763 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
764 |
|
---|
765 | /*
|
---|
766 | * Setup.
|
---|
767 | */
|
---|
768 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
769 | if (uCounterReg == 0)
|
---|
770 | {
|
---|
771 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
772 | return VINF_SUCCESS;
|
---|
773 | }
|
---|
774 |
|
---|
775 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
|
---|
776 |
|
---|
777 | PCCPUMSELREGHID pSrcHid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
778 | uint64_t uSrcBase;
|
---|
779 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrcHid, iEffSeg, &uSrcBase);
|
---|
780 | if (rcStrict != VINF_SUCCESS)
|
---|
781 | return rcStrict;
|
---|
782 |
|
---|
783 | uint64_t uDstBase;
|
---|
784 | rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uDstBase);
|
---|
785 | if (rcStrict != VINF_SUCCESS)
|
---|
786 | return rcStrict;
|
---|
787 |
|
---|
788 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
789 | ADDR_TYPE uSrcAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
790 | ADDR_TYPE uDstAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
791 |
|
---|
792 | /*
|
---|
793 | * Be careful with handle bypassing.
|
---|
794 | */
|
---|
795 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
796 | {
|
---|
797 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
798 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
799 | }
|
---|
800 |
|
---|
801 | /*
|
---|
802 | * The loop.
|
---|
803 | */
|
---|
804 | for (;;)
|
---|
805 | {
|
---|
806 | /*
|
---|
807 | * Do segmentation and virtual page stuff.
|
---|
808 | */
|
---|
809 | ADDR2_TYPE uVirtSrcAddr = uSrcAddrReg + (ADDR2_TYPE)uSrcBase;
|
---|
810 | ADDR2_TYPE uVirtDstAddr = uDstAddrReg + (ADDR2_TYPE)uDstBase;
|
---|
811 | uint32_t cLeftSrcPage = (PAGE_SIZE - (uVirtSrcAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
812 | if (cLeftSrcPage > uCounterReg)
|
---|
813 | cLeftSrcPage = uCounterReg;
|
---|
814 | uint32_t cLeftDstPage = (PAGE_SIZE - (uVirtDstAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
815 | uint32_t cLeftPage = RT_MIN(cLeftSrcPage, cLeftDstPage);
|
---|
816 |
|
---|
817 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
818 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
819 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
820 | || ( uSrcAddrReg < pSrcHid->u32Limit
|
---|
821 | && uSrcAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrcHid->u32Limit
|
---|
822 | && uDstAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
823 | && uDstAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
824 | )
|
---|
825 | )
|
---|
826 | {
|
---|
827 | RTGCPHYS GCPhysSrcMem;
|
---|
828 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrcAddr, IEM_ACCESS_DATA_R, &GCPhysSrcMem);
|
---|
829 | if (rcStrict != VINF_SUCCESS)
|
---|
830 | return rcStrict;
|
---|
831 |
|
---|
832 | RTGCPHYS GCPhysDstMem;
|
---|
833 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtDstAddr, IEM_ACCESS_DATA_W, &GCPhysDstMem);
|
---|
834 | if (rcStrict != VINF_SUCCESS)
|
---|
835 | return rcStrict;
|
---|
836 |
|
---|
837 | /*
|
---|
838 | * If we can map the page without trouble, do a block processing
|
---|
839 | * until the end of the current page.
|
---|
840 | */
|
---|
841 | PGMPAGEMAPLOCK PgLockDstMem;
|
---|
842 | OP_TYPE *puDstMem;
|
---|
843 | rcStrict = iemMemPageMap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, (void **)&puDstMem, &PgLockDstMem);
|
---|
844 | if (rcStrict == VINF_SUCCESS)
|
---|
845 | {
|
---|
846 | PGMPAGEMAPLOCK PgLockSrcMem;
|
---|
847 | OP_TYPE const *puSrcMem;
|
---|
848 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrcMem, IEM_ACCESS_DATA_R, (void **)&puSrcMem, &PgLockSrcMem);
|
---|
849 | if (rcStrict == VINF_SUCCESS)
|
---|
850 | {
|
---|
851 | Assert( (GCPhysSrcMem >> PAGE_SHIFT) != (GCPhysDstMem >> PAGE_SHIFT)
|
---|
852 | || ((uintptr_t)puSrcMem >> PAGE_SHIFT) == ((uintptr_t)puDstMem >> PAGE_SHIFT));
|
---|
853 |
|
---|
854 | /* Perform the operation exactly (don't use memcpy to avoid
|
---|
855 | having to consider how its implementation would affect
|
---|
856 | any overlapping source and destination area). */
|
---|
857 | OP_TYPE const *puSrcCur = puSrcMem;
|
---|
858 | OP_TYPE *puDstCur = puDstMem;
|
---|
859 | uint32_t cTodo = cLeftPage;
|
---|
860 | while (cTodo-- > 0)
|
---|
861 | *puDstCur++ = *puSrcCur++;
|
---|
862 |
|
---|
863 | /* Update the registers. */
|
---|
864 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrcAddrReg += cLeftPage * cbIncr;
|
---|
865 | pVCpu->cpum.GstCtx.ADDR_rDI = uDstAddrReg += cLeftPage * cbIncr;
|
---|
866 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
867 |
|
---|
868 | iemMemPageUnmap(pVCpu, GCPhysSrcMem, IEM_ACCESS_DATA_R, puSrcMem, &PgLockSrcMem);
|
---|
869 | iemMemPageUnmap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, puDstMem, &PgLockDstMem);
|
---|
870 |
|
---|
871 | if (uCounterReg == 0)
|
---|
872 | break;
|
---|
873 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
874 | continue;
|
---|
875 | }
|
---|
876 | iemMemPageUnmap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, puDstMem, &PgLockDstMem);
|
---|
877 | }
|
---|
878 | }
|
---|
879 |
|
---|
880 | /*
|
---|
881 | * Fallback - slow processing till the end of the current page.
|
---|
882 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
883 | * as 0, we execute one loop then.
|
---|
884 | */
|
---|
885 | do
|
---|
886 | {
|
---|
887 | OP_TYPE uValue;
|
---|
888 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, uSrcAddrReg);
|
---|
889 | if (rcStrict != VINF_SUCCESS)
|
---|
890 | return rcStrict;
|
---|
891 | rcStrict = RT_CONCAT(iemMemStoreDataU,OP_SIZE)(pVCpu, X86_SREG_ES, uDstAddrReg, uValue);
|
---|
892 | if (rcStrict != VINF_SUCCESS)
|
---|
893 | return rcStrict;
|
---|
894 |
|
---|
895 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrcAddrReg += cbIncr;
|
---|
896 | pVCpu->cpum.GstCtx.ADDR_rDI = uDstAddrReg += cbIncr;
|
---|
897 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
898 | cLeftPage--;
|
---|
899 | IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
900 | } while ((int32_t)cLeftPage > 0);
|
---|
901 |
|
---|
902 | /*
|
---|
903 | * Next page. Must check for interrupts and stuff here.
|
---|
904 | */
|
---|
905 | if (uCounterReg == 0)
|
---|
906 | break;
|
---|
907 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
908 | }
|
---|
909 |
|
---|
910 | /*
|
---|
911 | * Done.
|
---|
912 | */
|
---|
913 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
914 | return VINF_SUCCESS;
|
---|
915 | }
|
---|
916 |
|
---|
917 |
|
---|
918 | /**
|
---|
919 | * Implements 'REP STOS'.
|
---|
920 | */
|
---|
921 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_stos_,OP_rAX,_m,ADDR_SIZE))
|
---|
922 | {
|
---|
923 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
924 |
|
---|
925 | /*
|
---|
926 | * Setup.
|
---|
927 | */
|
---|
928 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
929 | if (uCounterReg == 0)
|
---|
930 | {
|
---|
931 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
932 | return VINF_SUCCESS;
|
---|
933 | }
|
---|
934 |
|
---|
935 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
936 |
|
---|
937 | uint64_t uBaseAddr;
|
---|
938 | VBOXSTRICTRC rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
939 | if (rcStrict != VINF_SUCCESS)
|
---|
940 | return rcStrict;
|
---|
941 |
|
---|
942 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
943 | OP_TYPE const uValue = pVCpu->cpum.GstCtx.OP_rAX;
|
---|
944 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
945 |
|
---|
946 | /*
|
---|
947 | * Be careful with handle bypassing.
|
---|
948 | */
|
---|
949 | /** @todo Permit doing a page if correctly aligned. */
|
---|
950 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
951 | {
|
---|
952 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
953 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
954 | }
|
---|
955 |
|
---|
956 | /*
|
---|
957 | * The loop.
|
---|
958 | */
|
---|
959 | for (;;)
|
---|
960 | {
|
---|
961 | /*
|
---|
962 | * Do segmentation and virtual page stuff.
|
---|
963 | */
|
---|
964 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
965 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
966 | if (cLeftPage > uCounterReg)
|
---|
967 | cLeftPage = uCounterReg;
|
---|
968 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
969 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
970 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
971 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
972 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
973 | )
|
---|
974 | )
|
---|
975 | {
|
---|
976 | RTGCPHYS GCPhysMem;
|
---|
977 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_W, &GCPhysMem);
|
---|
978 | if (rcStrict != VINF_SUCCESS)
|
---|
979 | return rcStrict;
|
---|
980 |
|
---|
981 | /*
|
---|
982 | * If we can map the page without trouble, do a block processing
|
---|
983 | * until the end of the current page.
|
---|
984 | */
|
---|
985 | PGMPAGEMAPLOCK PgLockMem;
|
---|
986 | OP_TYPE *puMem;
|
---|
987 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, (void **)&puMem, &PgLockMem);
|
---|
988 | if (rcStrict == VINF_SUCCESS)
|
---|
989 | {
|
---|
990 | /* Update the regs first so we can loop on cLeftPage. */
|
---|
991 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
992 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cLeftPage * cbIncr;
|
---|
993 |
|
---|
994 | /* Do the memsetting. */
|
---|
995 | #if OP_SIZE == 8
|
---|
996 | memset(puMem, uValue, cLeftPage);
|
---|
997 | /*#elif OP_SIZE == 32
|
---|
998 | ASMMemFill32(puMem, cLeftPage * (OP_SIZE / 8), uValue);*/
|
---|
999 | #else
|
---|
1000 | while (cLeftPage-- > 0)
|
---|
1001 | *puMem++ = uValue;
|
---|
1002 | #endif
|
---|
1003 |
|
---|
1004 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, puMem, &PgLockMem);
|
---|
1005 |
|
---|
1006 | if (uCounterReg == 0)
|
---|
1007 | break;
|
---|
1008 |
|
---|
1009 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1010 | below. Otherwise, do the next page. */
|
---|
1011 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
1012 | {
|
---|
1013 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1014 | continue;
|
---|
1015 | }
|
---|
1016 | cLeftPage = 0;
|
---|
1017 | }
|
---|
1018 | }
|
---|
1019 |
|
---|
1020 | /*
|
---|
1021 | * Fallback - slow processing till the end of the current page.
|
---|
1022 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1023 | * as 0, we execute one loop then.
|
---|
1024 | */
|
---|
1025 | do
|
---|
1026 | {
|
---|
1027 | rcStrict = RT_CONCAT(iemMemStoreDataU,OP_SIZE)(pVCpu, X86_SREG_ES, uAddrReg, uValue);
|
---|
1028 | if (rcStrict != VINF_SUCCESS)
|
---|
1029 | return rcStrict;
|
---|
1030 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
1031 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1032 | cLeftPage--;
|
---|
1033 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1034 | } while ((int32_t)cLeftPage > 0);
|
---|
1035 |
|
---|
1036 | /*
|
---|
1037 | * Next page. Must check for interrupts and stuff here.
|
---|
1038 | */
|
---|
1039 | if (uCounterReg == 0)
|
---|
1040 | break;
|
---|
1041 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 | /*
|
---|
1045 | * Done.
|
---|
1046 | */
|
---|
1047 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1048 | return VINF_SUCCESS;
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 |
|
---|
1052 | /**
|
---|
1053 | * Implements 'REP LODS'.
|
---|
1054 | */
|
---|
1055 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_lods_,OP_rAX,_m,ADDR_SIZE), int8_t, iEffSeg)
|
---|
1056 | {
|
---|
1057 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1058 |
|
---|
1059 | /*
|
---|
1060 | * Setup.
|
---|
1061 | */
|
---|
1062 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
1063 | if (uCounterReg == 0)
|
---|
1064 | {
|
---|
1065 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1066 | return VINF_SUCCESS;
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg));
|
---|
1070 | PCCPUMSELREGHID pSrcHid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
1071 | uint64_t uBaseAddr;
|
---|
1072 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrcHid, iEffSeg, &uBaseAddr);
|
---|
1073 | if (rcStrict != VINF_SUCCESS)
|
---|
1074 | return rcStrict;
|
---|
1075 |
|
---|
1076 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
1077 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
1078 |
|
---|
1079 | /*
|
---|
1080 | * The loop.
|
---|
1081 | */
|
---|
1082 | for (;;)
|
---|
1083 | {
|
---|
1084 | /*
|
---|
1085 | * Do segmentation and virtual page stuff.
|
---|
1086 | */
|
---|
1087 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
1088 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
1089 | if (cLeftPage > uCounterReg)
|
---|
1090 | cLeftPage = uCounterReg;
|
---|
1091 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
1092 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
1093 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
1094 | || ( uAddrReg < pSrcHid->u32Limit
|
---|
1095 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrcHid->u32Limit)
|
---|
1096 | )
|
---|
1097 | )
|
---|
1098 | {
|
---|
1099 | RTGCPHYS GCPhysMem;
|
---|
1100 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
1101 | if (rcStrict != VINF_SUCCESS)
|
---|
1102 | return rcStrict;
|
---|
1103 |
|
---|
1104 | /*
|
---|
1105 | * If we can map the page without trouble, we can get away with
|
---|
1106 | * just reading the last value on the page.
|
---|
1107 | */
|
---|
1108 | PGMPAGEMAPLOCK PgLockMem;
|
---|
1109 | OP_TYPE const *puMem;
|
---|
1110 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
1111 | if (rcStrict == VINF_SUCCESS)
|
---|
1112 | {
|
---|
1113 | /* Only get the last byte, the rest doesn't matter in direct access mode. */
|
---|
1114 | #if OP_SIZE == 32
|
---|
1115 | pVCpu->cpum.GstCtx.rax = puMem[cLeftPage - 1];
|
---|
1116 | #else
|
---|
1117 | pVCpu->cpum.GstCtx.OP_rAX = puMem[cLeftPage - 1];
|
---|
1118 | #endif
|
---|
1119 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
1120 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cLeftPage * cbIncr;
|
---|
1121 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
1122 |
|
---|
1123 | if (uCounterReg == 0)
|
---|
1124 | break;
|
---|
1125 |
|
---|
1126 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1127 | below. Otherwise, do the next page. */
|
---|
1128 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
1129 | {
|
---|
1130 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1131 | continue;
|
---|
1132 | }
|
---|
1133 | cLeftPage = 0;
|
---|
1134 | }
|
---|
1135 | }
|
---|
1136 |
|
---|
1137 | /*
|
---|
1138 | * Fallback - slow processing till the end of the current page.
|
---|
1139 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1140 | * as 0, we execute one loop then.
|
---|
1141 | */
|
---|
1142 | do
|
---|
1143 | {
|
---|
1144 | OP_TYPE uTmpValue;
|
---|
1145 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, iEffSeg, uAddrReg);
|
---|
1146 | if (rcStrict != VINF_SUCCESS)
|
---|
1147 | return rcStrict;
|
---|
1148 | #if OP_SIZE == 32
|
---|
1149 | pVCpu->cpum.GstCtx.rax = uTmpValue;
|
---|
1150 | #else
|
---|
1151 | pVCpu->cpum.GstCtx.OP_rAX = uTmpValue;
|
---|
1152 | #endif
|
---|
1153 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr;
|
---|
1154 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1155 | cLeftPage--;
|
---|
1156 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1157 | } while ((int32_t)cLeftPage > 0);
|
---|
1158 |
|
---|
1159 | if (rcStrict != VINF_SUCCESS)
|
---|
1160 | break;
|
---|
1161 |
|
---|
1162 | /*
|
---|
1163 | * Next page. Must check for interrupts and stuff here.
|
---|
1164 | */
|
---|
1165 | if (uCounterReg == 0)
|
---|
1166 | break;
|
---|
1167 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 | /*
|
---|
1171 | * Done.
|
---|
1172 | */
|
---|
1173 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1174 | return VINF_SUCCESS;
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 |
|
---|
1178 | #if OP_SIZE != 64
|
---|
1179 |
|
---|
1180 | /**
|
---|
1181 | * Implements 'INS' (no rep)
|
---|
1182 | */
|
---|
1183 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_ins_op,OP_SIZE,_addr,ADDR_SIZE), bool, fIoChecked)
|
---|
1184 | {
|
---|
1185 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1186 | VBOXSTRICTRC rcStrict;
|
---|
1187 |
|
---|
1188 | /*
|
---|
1189 | * Be careful with handle bypassing.
|
---|
1190 | */
|
---|
1191 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
1192 | {
|
---|
1193 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
1194 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
1195 | }
|
---|
1196 |
|
---|
1197 | /*
|
---|
1198 | * ASSUMES the #GP for I/O permission is taken first, then any #GP for
|
---|
1199 | * segmentation and finally any #PF due to virtual address translation.
|
---|
1200 | * ASSUMES nothing is read from the I/O port before traps are taken.
|
---|
1201 | */
|
---|
1202 | if (!fIoChecked)
|
---|
1203 | {
|
---|
1204 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8);
|
---|
1205 | if (rcStrict != VINF_SUCCESS)
|
---|
1206 | return rcStrict;
|
---|
1207 | }
|
---|
1208 |
|
---|
1209 | /*
|
---|
1210 | * Check nested-guest I/O intercepts.
|
---|
1211 | */
|
---|
1212 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1213 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1214 | {
|
---|
1215 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1216 | ExitInstrInfo.u = 0;
|
---|
1217 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1218 | ExitInstrInfo.StrIo.iSegReg = X86_SREG_ES;
|
---|
1219 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_INS, pVCpu->cpum.GstCtx.dx, (OP_SIZE / 8) - 1, false /* fRep */,
|
---|
1220 | ExitInstrInfo, cbInstr);
|
---|
1221 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1222 | return rcStrict;
|
---|
1223 | }
|
---|
1224 | #endif
|
---|
1225 |
|
---|
1226 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1227 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1228 | {
|
---|
1229 | rcStrict = iemSvmHandleIOIntercept(pVCpu, pVCpu->cpum.GstCtx.dx, SVMIOIOTYPE_IN, OP_SIZE / 8, ADDR_SIZE, X86_SREG_ES,
|
---|
1230 | false /* fRep */, true /* fStrIo */, cbInstr);
|
---|
1231 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1232 | return VINF_SUCCESS;
|
---|
1233 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1234 | {
|
---|
1235 | Log(("iemCImpl_ins_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", pVCpu->cpum.GstCtx.dx,
|
---|
1236 | OP_SIZE / 8, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1237 | return rcStrict;
|
---|
1238 | }
|
---|
1239 | }
|
---|
1240 | #endif
|
---|
1241 |
|
---|
1242 | OP_TYPE *puMem;
|
---|
1243 | rcStrict = iemMemMap(pVCpu, (void **)&puMem, OP_SIZE / 8, X86_SREG_ES, pVCpu->cpum.GstCtx.ADDR_rDI, IEM_ACCESS_DATA_W);
|
---|
1244 | if (rcStrict != VINF_SUCCESS)
|
---|
1245 | return rcStrict;
|
---|
1246 |
|
---|
1247 | uint32_t u32Value = 0;
|
---|
1248 | rcStrict = IOMIOPortRead(pVM, pVCpu, pVCpu->cpum.GstCtx.dx, &u32Value, OP_SIZE / 8);
|
---|
1249 | if (IOM_SUCCESS(rcStrict))
|
---|
1250 | {
|
---|
1251 | *puMem = (OP_TYPE)u32Value;
|
---|
1252 | # ifdef IN_RING3
|
---|
1253 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmap(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1254 | # else
|
---|
1255 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmapPostponeTroubleToR3(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1256 | # endif
|
---|
1257 | if (RT_LIKELY(rcStrict2 == VINF_SUCCESS))
|
---|
1258 | {
|
---|
1259 | if (!pVCpu->cpum.GstCtx.eflags.Bits.u1DF)
|
---|
1260 | pVCpu->cpum.GstCtx.ADDR_rDI += OP_SIZE / 8;
|
---|
1261 | else
|
---|
1262 | pVCpu->cpum.GstCtx.ADDR_rDI -= OP_SIZE / 8;
|
---|
1263 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1264 | }
|
---|
1265 | else
|
---|
1266 | AssertLogRelMsgFailedReturn(("rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)), RT_FAILURE_NP(rcStrict2) ? rcStrict2 : VERR_IEM_IPE_1);
|
---|
1267 | }
|
---|
1268 | return rcStrict;
|
---|
1269 | }
|
---|
1270 |
|
---|
1271 |
|
---|
1272 | /**
|
---|
1273 | * Implements 'REP INS'.
|
---|
1274 | */
|
---|
1275 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_rep_ins_op,OP_SIZE,_addr,ADDR_SIZE), bool, fIoChecked)
|
---|
1276 | {
|
---|
1277 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1278 |
|
---|
1279 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES | CPUMCTX_EXTRN_TR);
|
---|
1280 |
|
---|
1281 | /*
|
---|
1282 | * Setup.
|
---|
1283 | */
|
---|
1284 | uint16_t const u16Port = pVCpu->cpum.GstCtx.dx;
|
---|
1285 | VBOXSTRICTRC rcStrict;
|
---|
1286 | if (!fIoChecked)
|
---|
1287 | {
|
---|
1288 | /** @todo check if this is too early for ecx=0. */
|
---|
1289 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, OP_SIZE / 8);
|
---|
1290 | if (rcStrict != VINF_SUCCESS)
|
---|
1291 | return rcStrict;
|
---|
1292 | }
|
---|
1293 |
|
---|
1294 | /*
|
---|
1295 | * Check nested-guest I/O intercepts.
|
---|
1296 | */
|
---|
1297 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1298 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1299 | {
|
---|
1300 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1301 | ExitInstrInfo.u = 0;
|
---|
1302 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1303 | ExitInstrInfo.StrIo.iSegReg = X86_SREG_ES;
|
---|
1304 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_INS, pVCpu->cpum.GstCtx.dx, (OP_SIZE / 8) - 1, true /* fRep */,
|
---|
1305 | ExitInstrInfo, cbInstr);
|
---|
1306 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1307 | return rcStrict;
|
---|
1308 | }
|
---|
1309 | #endif
|
---|
1310 |
|
---|
1311 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1312 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1313 | {
|
---|
1314 | rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, OP_SIZE / 8, ADDR_SIZE, X86_SREG_ES, true /* fRep */,
|
---|
1315 | true /* fStrIo */, cbInstr);
|
---|
1316 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1317 | return VINF_SUCCESS;
|
---|
1318 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1319 | {
|
---|
1320 | Log(("iemCImpl_rep_ins_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, OP_SIZE / 8,
|
---|
1321 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1322 | return rcStrict;
|
---|
1323 | }
|
---|
1324 | }
|
---|
1325 | #endif
|
---|
1326 |
|
---|
1327 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
1328 | if (uCounterReg == 0)
|
---|
1329 | {
|
---|
1330 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1331 | return VINF_SUCCESS;
|
---|
1332 | }
|
---|
1333 |
|
---|
1334 | uint64_t uBaseAddr;
|
---|
1335 | rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
1336 | if (rcStrict != VINF_SUCCESS)
|
---|
1337 | return rcStrict;
|
---|
1338 |
|
---|
1339 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
1340 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
1341 |
|
---|
1342 | /*
|
---|
1343 | * Be careful with handle bypassing.
|
---|
1344 | */
|
---|
1345 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
1346 | {
|
---|
1347 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
1348 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
1349 | }
|
---|
1350 |
|
---|
1351 | /*
|
---|
1352 | * The loop.
|
---|
1353 | */
|
---|
1354 | for (;;)
|
---|
1355 | {
|
---|
1356 | /*
|
---|
1357 | * Do segmentation and virtual page stuff.
|
---|
1358 | */
|
---|
1359 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
1360 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
1361 | if (cLeftPage > uCounterReg)
|
---|
1362 | cLeftPage = uCounterReg;
|
---|
1363 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
1364 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
1365 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
1366 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
1367 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
1368 | )
|
---|
1369 | )
|
---|
1370 | {
|
---|
1371 | RTGCPHYS GCPhysMem;
|
---|
1372 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_W, &GCPhysMem);
|
---|
1373 | if (rcStrict != VINF_SUCCESS)
|
---|
1374 | return rcStrict;
|
---|
1375 |
|
---|
1376 | /*
|
---|
1377 | * If we can map the page without trouble, use the IOM
|
---|
1378 | * string I/O interface to do the work.
|
---|
1379 | */
|
---|
1380 | PGMPAGEMAPLOCK PgLockMem;
|
---|
1381 | OP_TYPE *puMem;
|
---|
1382 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, (void **)&puMem, &PgLockMem);
|
---|
1383 | if (rcStrict == VINF_SUCCESS)
|
---|
1384 | {
|
---|
1385 | uint32_t cTransfers = cLeftPage;
|
---|
1386 | rcStrict = IOMIOPortReadString(pVM, pVCpu, u16Port, puMem, &cTransfers, OP_SIZE / 8);
|
---|
1387 |
|
---|
1388 | uint32_t cActualTransfers = cLeftPage - cTransfers;
|
---|
1389 | Assert(cActualTransfers <= cLeftPage);
|
---|
1390 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr * cActualTransfers;
|
---|
1391 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cActualTransfers;
|
---|
1392 | puMem += cActualTransfers;
|
---|
1393 |
|
---|
1394 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, puMem, &PgLockMem);
|
---|
1395 |
|
---|
1396 | if (rcStrict != VINF_SUCCESS)
|
---|
1397 | {
|
---|
1398 | if (IOM_SUCCESS(rcStrict))
|
---|
1399 | {
|
---|
1400 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1401 | if (uCounterReg == 0)
|
---|
1402 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1403 | }
|
---|
1404 | return rcStrict;
|
---|
1405 | }
|
---|
1406 |
|
---|
1407 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1408 | below. Otherwise, do the next page. */
|
---|
1409 | if (uCounterReg == 0)
|
---|
1410 | break;
|
---|
1411 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
1412 | {
|
---|
1413 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1414 | continue;
|
---|
1415 | }
|
---|
1416 | cLeftPage = 0;
|
---|
1417 | }
|
---|
1418 | }
|
---|
1419 |
|
---|
1420 | /*
|
---|
1421 | * Fallback - slow processing till the end of the current page.
|
---|
1422 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1423 | * as 0, we execute one loop then.
|
---|
1424 | *
|
---|
1425 | * Note! We ASSUME the CPU will raise #PF or #GP before access the
|
---|
1426 | * I/O port, otherwise it wouldn't really be restartable.
|
---|
1427 | */
|
---|
1428 | /** @todo investigate what the CPU actually does with \#PF/\#GP
|
---|
1429 | * during INS. */
|
---|
1430 | do
|
---|
1431 | {
|
---|
1432 | OP_TYPE *puMem;
|
---|
1433 | rcStrict = iemMemMap(pVCpu, (void **)&puMem, OP_SIZE / 8, X86_SREG_ES, uAddrReg, IEM_ACCESS_DATA_W);
|
---|
1434 | if (rcStrict != VINF_SUCCESS)
|
---|
1435 | return rcStrict;
|
---|
1436 |
|
---|
1437 | uint32_t u32Value = 0;
|
---|
1438 | rcStrict = IOMIOPortRead(pVM, pVCpu, u16Port, &u32Value, OP_SIZE / 8);
|
---|
1439 | if (!IOM_SUCCESS(rcStrict))
|
---|
1440 | {
|
---|
1441 | iemMemRollback(pVCpu);
|
---|
1442 | return rcStrict;
|
---|
1443 | }
|
---|
1444 |
|
---|
1445 | *puMem = (OP_TYPE)u32Value;
|
---|
1446 | # ifdef IN_RING3
|
---|
1447 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmap(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1448 | # else
|
---|
1449 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmapPostponeTroubleToR3(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1450 | # endif
|
---|
1451 | if (rcStrict2 == VINF_SUCCESS)
|
---|
1452 | { /* likely */ }
|
---|
1453 | else
|
---|
1454 | AssertLogRelMsgFailedReturn(("rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
|
---|
1455 | RT_FAILURE(rcStrict2) ? rcStrict2 : VERR_IEM_IPE_1);
|
---|
1456 |
|
---|
1457 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
1458 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1459 |
|
---|
1460 | cLeftPage--;
|
---|
1461 | if (rcStrict != VINF_SUCCESS)
|
---|
1462 | {
|
---|
1463 | if (uCounterReg == 0)
|
---|
1464 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1465 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1466 | return rcStrict;
|
---|
1467 | }
|
---|
1468 |
|
---|
1469 | IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1470 | } while ((int32_t)cLeftPage > 0);
|
---|
1471 |
|
---|
1472 |
|
---|
1473 | /*
|
---|
1474 | * Next page. Must check for interrupts and stuff here.
|
---|
1475 | */
|
---|
1476 | if (uCounterReg == 0)
|
---|
1477 | break;
|
---|
1478 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1479 | }
|
---|
1480 |
|
---|
1481 | /*
|
---|
1482 | * Done.
|
---|
1483 | */
|
---|
1484 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1485 | return VINF_SUCCESS;
|
---|
1486 | }
|
---|
1487 |
|
---|
1488 |
|
---|
1489 | /**
|
---|
1490 | * Implements 'OUTS' (no rep)
|
---|
1491 | */
|
---|
1492 | IEM_CIMPL_DEF_2(RT_CONCAT4(iemCImpl_outs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg, bool, fIoChecked)
|
---|
1493 | {
|
---|
1494 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1495 | VBOXSTRICTRC rcStrict;
|
---|
1496 |
|
---|
1497 | /*
|
---|
1498 | * ASSUMES the #GP for I/O permission is taken first, then any #GP for
|
---|
1499 | * segmentation and finally any #PF due to virtual address translation.
|
---|
1500 | * ASSUMES nothing is read from the I/O port before traps are taken.
|
---|
1501 | */
|
---|
1502 | if (!fIoChecked)
|
---|
1503 | {
|
---|
1504 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8);
|
---|
1505 | if (rcStrict != VINF_SUCCESS)
|
---|
1506 | return rcStrict;
|
---|
1507 | }
|
---|
1508 |
|
---|
1509 | /*
|
---|
1510 | * Check nested-guest I/O intercepts.
|
---|
1511 | */
|
---|
1512 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1513 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1514 | {
|
---|
1515 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1516 | ExitInstrInfo.u = 0;
|
---|
1517 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1518 | ExitInstrInfo.StrIo.iSegReg = iEffSeg;
|
---|
1519 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_OUTS, pVCpu->cpum.GstCtx.dx, (OP_SIZE / 8) - 1, false /* fRep */,
|
---|
1520 | ExitInstrInfo, cbInstr);
|
---|
1521 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1522 | return rcStrict;
|
---|
1523 | }
|
---|
1524 | #endif
|
---|
1525 |
|
---|
1526 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1527 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1528 | {
|
---|
1529 | rcStrict = iemSvmHandleIOIntercept(pVCpu, pVCpu->cpum.GstCtx.dx, SVMIOIOTYPE_OUT, OP_SIZE / 8, ADDR_SIZE, iEffSeg,
|
---|
1530 | false /* fRep */, true /* fStrIo */, cbInstr);
|
---|
1531 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1532 | return VINF_SUCCESS;
|
---|
1533 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1534 | {
|
---|
1535 | Log(("iemCImpl_outs_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", pVCpu->cpum.GstCtx.dx,
|
---|
1536 | OP_SIZE / 8, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1537 | return rcStrict;
|
---|
1538 | }
|
---|
1539 | }
|
---|
1540 | #endif
|
---|
1541 |
|
---|
1542 | OP_TYPE uValue;
|
---|
1543 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, pVCpu->cpum.GstCtx.ADDR_rSI);
|
---|
1544 | if (rcStrict == VINF_SUCCESS)
|
---|
1545 | {
|
---|
1546 | rcStrict = IOMIOPortWrite(pVM, pVCpu, pVCpu->cpum.GstCtx.dx, uValue, OP_SIZE / 8);
|
---|
1547 | if (IOM_SUCCESS(rcStrict))
|
---|
1548 | {
|
---|
1549 | if (!pVCpu->cpum.GstCtx.eflags.Bits.u1DF)
|
---|
1550 | pVCpu->cpum.GstCtx.ADDR_rSI += OP_SIZE / 8;
|
---|
1551 | else
|
---|
1552 | pVCpu->cpum.GstCtx.ADDR_rSI -= OP_SIZE / 8;
|
---|
1553 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1554 | if (rcStrict != VINF_SUCCESS)
|
---|
1555 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1556 | }
|
---|
1557 | }
|
---|
1558 | return rcStrict;
|
---|
1559 | }
|
---|
1560 |
|
---|
1561 |
|
---|
1562 | /**
|
---|
1563 | * Implements 'REP OUTS'.
|
---|
1564 | */
|
---|
1565 | IEM_CIMPL_DEF_2(RT_CONCAT4(iemCImpl_rep_outs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg, bool, fIoChecked)
|
---|
1566 | {
|
---|
1567 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1568 |
|
---|
1569 | /*
|
---|
1570 | * Setup.
|
---|
1571 | */
|
---|
1572 | uint16_t const u16Port = pVCpu->cpum.GstCtx.dx;
|
---|
1573 | VBOXSTRICTRC rcStrict;
|
---|
1574 | if (!fIoChecked)
|
---|
1575 | {
|
---|
1576 | /** @todo check if this is too early for ecx=0. */
|
---|
1577 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, OP_SIZE / 8);
|
---|
1578 | if (rcStrict != VINF_SUCCESS)
|
---|
1579 | return rcStrict;
|
---|
1580 | }
|
---|
1581 |
|
---|
1582 | /*
|
---|
1583 | * Check nested-guest I/O intercepts.
|
---|
1584 | */
|
---|
1585 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1586 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1587 | {
|
---|
1588 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1589 | ExitInstrInfo.u = 0;
|
---|
1590 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1591 | ExitInstrInfo.StrIo.iSegReg = iEffSeg;
|
---|
1592 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_OUTS, pVCpu->cpum.GstCtx.dx, (OP_SIZE / 8) - 1, true /* fRep */,
|
---|
1593 | ExitInstrInfo, cbInstr);
|
---|
1594 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1595 | return rcStrict;
|
---|
1596 | }
|
---|
1597 | #endif
|
---|
1598 |
|
---|
1599 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1600 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1601 | {
|
---|
1602 | rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, OP_SIZE / 8, ADDR_SIZE, iEffSeg, true /* fRep */,
|
---|
1603 | true /* fStrIo */, cbInstr);
|
---|
1604 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1605 | return VINF_SUCCESS;
|
---|
1606 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1607 | {
|
---|
1608 | Log(("iemCImpl_rep_outs_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, OP_SIZE / 8,
|
---|
1609 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1610 | return rcStrict;
|
---|
1611 | }
|
---|
1612 | }
|
---|
1613 | #endif
|
---|
1614 |
|
---|
1615 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
1616 | if (uCounterReg == 0)
|
---|
1617 | {
|
---|
1618 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1619 | return VINF_SUCCESS;
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | PCCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
1623 | uint64_t uBaseAddr;
|
---|
1624 | rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pHid, iEffSeg, &uBaseAddr);
|
---|
1625 | if (rcStrict != VINF_SUCCESS)
|
---|
1626 | return rcStrict;
|
---|
1627 |
|
---|
1628 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
1629 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
1630 |
|
---|
1631 | /*
|
---|
1632 | * The loop.
|
---|
1633 | */
|
---|
1634 | for (;;)
|
---|
1635 | {
|
---|
1636 | /*
|
---|
1637 | * Do segmentation and virtual page stuff.
|
---|
1638 | */
|
---|
1639 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
1640 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
1641 | if (cLeftPage > uCounterReg)
|
---|
1642 | cLeftPage = uCounterReg;
|
---|
1643 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
1644 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
1645 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
1646 | || ( uAddrReg < pHid->u32Limit
|
---|
1647 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pHid->u32Limit)
|
---|
1648 | )
|
---|
1649 | )
|
---|
1650 | {
|
---|
1651 | RTGCPHYS GCPhysMem;
|
---|
1652 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
1653 | if (rcStrict != VINF_SUCCESS)
|
---|
1654 | return rcStrict;
|
---|
1655 |
|
---|
1656 | /*
|
---|
1657 | * If we can map the page without trouble, we use the IOM
|
---|
1658 | * string I/O interface to do the job.
|
---|
1659 | */
|
---|
1660 | PGMPAGEMAPLOCK PgLockMem;
|
---|
1661 | OP_TYPE const *puMem;
|
---|
1662 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
1663 | if (rcStrict == VINF_SUCCESS)
|
---|
1664 | {
|
---|
1665 | uint32_t cTransfers = cLeftPage;
|
---|
1666 | rcStrict = IOMIOPortWriteString(pVM, pVCpu, u16Port, puMem, &cTransfers, OP_SIZE / 8);
|
---|
1667 |
|
---|
1668 | uint32_t cActualTransfers = cLeftPage - cTransfers;
|
---|
1669 | Assert(cActualTransfers <= cLeftPage);
|
---|
1670 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr * cActualTransfers;
|
---|
1671 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cActualTransfers;
|
---|
1672 | puMem += cActualTransfers;
|
---|
1673 |
|
---|
1674 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
1675 |
|
---|
1676 | if (rcStrict != VINF_SUCCESS)
|
---|
1677 | {
|
---|
1678 | if (IOM_SUCCESS(rcStrict))
|
---|
1679 | {
|
---|
1680 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1681 | if (uCounterReg == 0)
|
---|
1682 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1683 | }
|
---|
1684 | return rcStrict;
|
---|
1685 | }
|
---|
1686 |
|
---|
1687 | if (uCounterReg == 0)
|
---|
1688 | break;
|
---|
1689 |
|
---|
1690 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1691 | below. Otherwise, do the next page. */
|
---|
1692 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
1693 | {
|
---|
1694 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1695 | continue;
|
---|
1696 | }
|
---|
1697 | cLeftPage = 0;
|
---|
1698 | }
|
---|
1699 | }
|
---|
1700 |
|
---|
1701 | /*
|
---|
1702 | * Fallback - slow processing till the end of the current page.
|
---|
1703 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1704 | * as 0, we execute one loop then.
|
---|
1705 | *
|
---|
1706 | * Note! We ASSUME the CPU will raise #PF or #GP before access the
|
---|
1707 | * I/O port, otherwise it wouldn't really be restartable.
|
---|
1708 | */
|
---|
1709 | /** @todo investigate what the CPU actually does with \#PF/\#GP
|
---|
1710 | * during INS. */
|
---|
1711 | do
|
---|
1712 | {
|
---|
1713 | OP_TYPE uValue;
|
---|
1714 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, uAddrReg);
|
---|
1715 | if (rcStrict != VINF_SUCCESS)
|
---|
1716 | return rcStrict;
|
---|
1717 |
|
---|
1718 | rcStrict = IOMIOPortWrite(pVM, pVCpu, u16Port, uValue, OP_SIZE / 8);
|
---|
1719 | if (IOM_SUCCESS(rcStrict))
|
---|
1720 | {
|
---|
1721 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr;
|
---|
1722 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1723 | cLeftPage--;
|
---|
1724 | }
|
---|
1725 | if (rcStrict != VINF_SUCCESS)
|
---|
1726 | {
|
---|
1727 | if (IOM_SUCCESS(rcStrict))
|
---|
1728 | {
|
---|
1729 | if (uCounterReg == 0)
|
---|
1730 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1731 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1732 | }
|
---|
1733 | return rcStrict;
|
---|
1734 | }
|
---|
1735 | IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1736 | } while ((int32_t)cLeftPage > 0);
|
---|
1737 |
|
---|
1738 |
|
---|
1739 | /*
|
---|
1740 | * Next page. Must check for interrupts and stuff here.
|
---|
1741 | */
|
---|
1742 | if (uCounterReg == 0)
|
---|
1743 | break;
|
---|
1744 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1745 | }
|
---|
1746 |
|
---|
1747 | /*
|
---|
1748 | * Done.
|
---|
1749 | */
|
---|
1750 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1751 | return VINF_SUCCESS;
|
---|
1752 | }
|
---|
1753 |
|
---|
1754 | #endif /* OP_SIZE != 64-bit */
|
---|
1755 |
|
---|
1756 |
|
---|
1757 | #undef OP_rAX
|
---|
1758 | #undef OP_SIZE
|
---|
1759 | #undef ADDR_SIZE
|
---|
1760 | #undef ADDR_rDI
|
---|
1761 | #undef ADDR_rSI
|
---|
1762 | #undef ADDR_rCX
|
---|
1763 | #undef ADDR_rIP
|
---|
1764 | #undef ADDR2_TYPE
|
---|
1765 | #undef ADDR_TYPE
|
---|
1766 | #undef ADDR2_TYPE
|
---|
1767 | #undef ADDR_VMXSTRIO
|
---|
1768 | #undef IS_64_BIT_CODE
|
---|
1769 | #undef IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN
|
---|
1770 | #undef IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
1771 | #undef IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
1772 |
|
---|