VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplStrInstr.cpp.h@ 104195

Last change on this file since 104195 was 104195, checked in by vboxsync, 8 months ago

VMM/IEM: Refactoring assembly helpers to not pass eflags by reference but instead by value and return the updated value (via eax/w0) - first chunk: ADD,ADC,SUB,SBB,CMP,TEST,AND,OR,XOR. bugref:10376

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 69.0 KB
Line 
1/* $Id: IEMAllCImplStrInstr.cpp.h 104195 2024-04-05 14:45:23Z vboxsync $ */
2/** @file
3 * IEM - String Instruction Implementation Code Template.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*******************************************************************************
30* Defined Constants And Macros *
31*******************************************************************************/
32#if OP_SIZE == 8
33# define OP_rAX al
34#elif OP_SIZE == 16
35# define OP_rAX ax
36#elif OP_SIZE == 32
37# define OP_rAX eax
38#elif OP_SIZE == 64
39# define OP_rAX rax
40#else
41# error "Bad OP_SIZE."
42#endif
43#define OP_TYPE RT_CONCAT3(uint,OP_SIZE,_t)
44
45#if ADDR_SIZE == 16
46# define ADDR_rDI di
47# define ADDR_rSI si
48# define ADDR_rCX cx
49# define ADDR2_TYPE uint32_t
50# define ADDR_VMXSTRIO 0
51#elif ADDR_SIZE == 32
52# define ADDR_rDI edi
53# define ADDR_rSI esi
54# define ADDR_rCX ecx
55# define ADDR2_TYPE uint32_t
56# define ADDR_VMXSTRIO 1
57#elif ADDR_SIZE == 64
58# define ADDR_rDI rdi
59# define ADDR_rSI rsi
60# define ADDR_rCX rcx
61# define ADDR2_TYPE uint64_t
62# define ADDR_VMXSTRIO 2
63# define IS_64_BIT_CODE(a_pVCpu) (true)
64#else
65# error "Bad ADDR_SIZE."
66#endif
67#define ADDR_TYPE RT_CONCAT3(uint,ADDR_SIZE,_t)
68
69#if ADDR_SIZE == 64 || OP_SIZE == 64
70# define IS_64_BIT_CODE(a_pVCpu) (true)
71#elif ADDR_SIZE == 32
72# define IS_64_BIT_CODE(a_pVCpu) IEM_IS_64BIT_CODE(a_pVCpu)
73#else
74# define IS_64_BIT_CODE(a_pVCpu) (false)
75#endif
76
77/** @def IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN
78 * Used in the outer (page-by-page) loop to check for reasons for returnning
79 * before completing the instruction. In raw-mode we temporarily enable
80 * interrupts to let the host interrupt us. We cannot let big string operations
81 * hog the CPU, especially not in raw-mode.
82 */
83#define IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fEflags) \
84 do { \
85 if (RT_LIKELY( !VMCPU_FF_IS_ANY_SET(a_pVCpu, (a_fEflags) & X86_EFL_IF ? VMCPU_FF_YIELD_REPSTR_MASK \
86 : VMCPU_FF_YIELD_REPSTR_NOINT_MASK) \
87 && !VM_FF_IS_ANY_SET(a_pVM, VM_FF_YIELD_REPSTR_MASK) \
88 )) \
89 { /* probable */ } \
90 else \
91 { \
92 LogFlow(("%s: Leaving early (outer)! ffcpu=%#RX64 ffvm=%#x\n", \
93 __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
94 return VINF_IEM_YIELD_PENDING_FF; \
95 } \
96 } while (0)
97
98/** @def IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
99 * This is used in some of the inner loops to make sure we respond immediately
100 * to VMCPU_FF_IOM as well as outside requests. Use this for expensive
101 * instructions. Use IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN for
102 * ones that are typically cheap. */
103#define IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fExitExpr) \
104 do { \
105 if (RT_LIKELY( ( !VMCPU_FF_IS_ANY_SET(a_pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_REPSTR_MASK) \
106 && !VM_FF_IS_ANY_SET(a_pVM, VM_FF_HIGH_PRIORITY_POST_REPSTR_MASK)) \
107 || (a_fExitExpr) )) \
108 { /* very likely */ } \
109 else \
110 { \
111 LogFlow(("%s: Leaving early (inner)! ffcpu=%#RX64 ffvm=%#x\n", \
112 __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
113 return VINF_IEM_YIELD_PENDING_FF; \
114 } \
115 } while (0)
116
117
118/** @def IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
119 * This is used in the inner loops where
120 * IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN isn't used. It only
121 * checks the CPU FFs so that we respond immediately to the pending IOM FF
122 * (status code is hidden in IEMCPU::rcPassUp by IEM memory commit code).
123 */
124#define IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fExitExpr) \
125 do { \
126 if (RT_LIKELY( !VMCPU_FF_IS_ANY_SET(a_pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_REPSTR_MASK) \
127 || (a_fExitExpr) )) \
128 { /* very likely */ } \
129 else \
130 { \
131 LogFlow(("%s: Leaving early (inner)! ffcpu=%#RX64 (ffvm=%#x)\n", \
132 __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
133 return VINF_IEM_YIELD_PENDING_FF; \
134 } \
135 } while (0)
136
137
138/**
139 * Implements 'REPE CMPS'.
140 */
141IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_repe_cmps_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
142{
143 PVM pVM = pVCpu->CTX_SUFF(pVM);
144
145 /*
146 * Setup.
147 */
148 ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
149 if (uCounterReg == 0)
150 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
151
152 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
153
154 PCCPUMSELREGHID pSrc1Hid = iemSRegGetHid(pVCpu, iEffSeg);
155 uint64_t uSrc1Base = 0; /* gcc may not be used uninitialized */
156 VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrc1Hid, iEffSeg, &uSrc1Base);
157 if (rcStrict != VINF_SUCCESS)
158 return rcStrict;
159
160 uint64_t uSrc2Base = 0; /* gcc may not be used uninitialized */
161 rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uSrc2Base);
162 if (rcStrict != VINF_SUCCESS)
163 return rcStrict;
164
165 int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
166 ADDR_TYPE uSrc1AddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
167 ADDR_TYPE uSrc2AddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
168 uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
169
170 /*
171 * The loop.
172 */
173 for (;;)
174 {
175 /*
176 * Do segmentation and virtual page stuff.
177 */
178 ADDR2_TYPE uVirtSrc1Addr = uSrc1AddrReg + (ADDR2_TYPE)uSrc1Base;
179 ADDR2_TYPE uVirtSrc2Addr = uSrc2AddrReg + (ADDR2_TYPE)uSrc2Base;
180 uint32_t cLeftSrc1Page = (GUEST_PAGE_SIZE - (uVirtSrc1Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
181 if (cLeftSrc1Page > uCounterReg)
182 cLeftSrc1Page = uCounterReg;
183 uint32_t cLeftSrc2Page = (GUEST_PAGE_SIZE - (uVirtSrc2Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
184 uint32_t cLeftPage = RT_MIN(cLeftSrc1Page, cLeftSrc2Page);
185
186 if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
187 && cbIncr > 0 /** @todo Optimize reverse direction string ops. */
188 && ( IS_64_BIT_CODE(pVCpu)
189 || ( uSrc1AddrReg < pSrc1Hid->u32Limit
190 && uSrc1AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrc1Hid->u32Limit
191 && uSrc2AddrReg < pVCpu->cpum.GstCtx.es.u32Limit
192 && uSrc2AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
193 )
194 )
195 {
196 RTGCPHYS GCPhysSrc1Mem;
197 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc1Addr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysSrc1Mem);
198 if (rcStrict != VINF_SUCCESS)
199 return rcStrict;
200
201 RTGCPHYS GCPhysSrc2Mem;
202 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc2Addr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysSrc2Mem);
203 if (rcStrict != VINF_SUCCESS)
204 return rcStrict;
205
206 /*
207 * If we can map the page without trouble, do a block processing
208 * until the end of the current page.
209 */
210 PGMPAGEMAPLOCK PgLockSrc2Mem;
211 OP_TYPE const *puSrc2Mem;
212 rcStrict = iemMemPageMap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, (void **)&puSrc2Mem, &PgLockSrc2Mem);
213 if (rcStrict == VINF_SUCCESS)
214 {
215 PGMPAGEMAPLOCK PgLockSrc1Mem;
216 OP_TYPE const *puSrc1Mem;
217 rcStrict = iemMemPageMap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, (void **)&puSrc1Mem, &PgLockSrc1Mem);
218 if (rcStrict == VINF_SUCCESS)
219 {
220 if (!memcmp(puSrc2Mem, puSrc1Mem, cLeftPage * (OP_SIZE / 8)))
221 {
222 /* All matches, only compare the last itme to get the right eflags. */
223 uEFlags = RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(uEFlags, (OP_TYPE *)&puSrc1Mem[cLeftPage-1], puSrc2Mem[cLeftPage-1]);
224 uSrc1AddrReg += cLeftPage * cbIncr;
225 uSrc2AddrReg += cLeftPage * cbIncr;
226 uCounterReg -= cLeftPage;
227 }
228 else
229 {
230 /* Some mismatch, compare each item (and keep volatile
231 memory in mind). */
232 uint32_t off = 0;
233 do
234 {
235 uEFlags = RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(uEFlags, (OP_TYPE *)&puSrc1Mem[off], puSrc2Mem[off]);
236 off++;
237 } while ( off < cLeftPage
238 && (uEFlags & X86_EFL_ZF));
239 uSrc1AddrReg += cbIncr * off;
240 uSrc2AddrReg += cbIncr * off;
241 uCounterReg -= off;
242 }
243
244 /* Update the registers before looping. */
245 pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg;
246 pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg;
247 pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg;
248 pVCpu->cpum.GstCtx.eflags.u = uEFlags;
249
250 iemMemPageUnmap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, puSrc1Mem, &PgLockSrc1Mem);
251 iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
252 if ( uCounterReg == 0
253 || !(uEFlags & X86_EFL_ZF))
254 break;
255 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
256 continue;
257 }
258 iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
259 }
260 }
261
262 /*
263 * Fallback - slow processing till the end of the current page.
264 * In the cross page boundrary case we will end up here with cLeftPage
265 * as 0, we execute one loop then.
266 */
267 do
268 {
269 OP_TYPE uValue1;
270 rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue1, iEffSeg, uSrc1AddrReg);
271 if (rcStrict != VINF_SUCCESS)
272 return rcStrict;
273 OP_TYPE uValue2;
274 rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue2, X86_SREG_ES, uSrc2AddrReg);
275 if (rcStrict != VINF_SUCCESS)
276 return rcStrict;
277 uEFlags = RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(uEFlags, &uValue1, uValue2);
278
279 pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg += cbIncr;
280 pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg += cbIncr;
281 pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
282 pVCpu->cpum.GstCtx.eflags.u = uEFlags;
283 cLeftPage--;
284 IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || !(uEFlags & X86_EFL_ZF));
285 } while ( (int32_t)cLeftPage > 0
286 && (uEFlags & X86_EFL_ZF));
287
288 /*
289 * Next page? Must check for interrupts and stuff here.
290 */
291 if ( uCounterReg == 0
292 || !(uEFlags & X86_EFL_ZF))
293 break;
294 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
295 }
296
297 /*
298 * Done.
299 */
300 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
301}
302
303
304/**
305 * Implements 'REPNE CMPS'.
306 */
307IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_repne_cmps_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
308{
309 PVM pVM = pVCpu->CTX_SUFF(pVM);
310
311 /*
312 * Setup.
313 */
314 ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
315 if (uCounterReg == 0)
316 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
317
318 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
319
320 PCCPUMSELREGHID pSrc1Hid = iemSRegGetHid(pVCpu, iEffSeg);
321 uint64_t uSrc1Base = 0; /* gcc may not be used uninitialized */;
322 VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrc1Hid, iEffSeg, &uSrc1Base);
323 if (rcStrict != VINF_SUCCESS)
324 return rcStrict;
325
326 uint64_t uSrc2Base = 0; /* gcc may not be used uninitialized */
327 rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uSrc2Base);
328 if (rcStrict != VINF_SUCCESS)
329 return rcStrict;
330
331 int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
332 ADDR_TYPE uSrc1AddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
333 ADDR_TYPE uSrc2AddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
334 uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
335
336 /*
337 * The loop.
338 */
339 for (;;)
340 {
341 /*
342 * Do segmentation and virtual page stuff.
343 */
344 ADDR2_TYPE uVirtSrc1Addr = uSrc1AddrReg + (ADDR2_TYPE)uSrc1Base;
345 ADDR2_TYPE uVirtSrc2Addr = uSrc2AddrReg + (ADDR2_TYPE)uSrc2Base;
346 uint32_t cLeftSrc1Page = (GUEST_PAGE_SIZE - (uVirtSrc1Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
347 if (cLeftSrc1Page > uCounterReg)
348 cLeftSrc1Page = uCounterReg;
349 uint32_t cLeftSrc2Page = (GUEST_PAGE_SIZE - (uVirtSrc2Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
350 uint32_t cLeftPage = RT_MIN(cLeftSrc1Page, cLeftSrc2Page);
351
352 if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
353 && cbIncr > 0 /** @todo Optimize reverse direction string ops. */
354 && ( IS_64_BIT_CODE(pVCpu)
355 || ( uSrc1AddrReg < pSrc1Hid->u32Limit
356 && uSrc1AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrc1Hid->u32Limit
357 && uSrc2AddrReg < pVCpu->cpum.GstCtx.es.u32Limit
358 && uSrc2AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
359 )
360 )
361 {
362 RTGCPHYS GCPhysSrc1Mem;
363 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc1Addr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysSrc1Mem);
364 if (rcStrict != VINF_SUCCESS)
365 return rcStrict;
366
367 RTGCPHYS GCPhysSrc2Mem;
368 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc2Addr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysSrc2Mem);
369 if (rcStrict != VINF_SUCCESS)
370 return rcStrict;
371
372 /*
373 * If we can map the page without trouble, do a block processing
374 * until the end of the current page.
375 */
376 OP_TYPE const *puSrc2Mem;
377 PGMPAGEMAPLOCK PgLockSrc2Mem;
378 rcStrict = iemMemPageMap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, (void **)&puSrc2Mem, &PgLockSrc2Mem);
379 if (rcStrict == VINF_SUCCESS)
380 {
381 OP_TYPE const *puSrc1Mem;
382 PGMPAGEMAPLOCK PgLockSrc1Mem;
383 rcStrict = iemMemPageMap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, (void **)&puSrc1Mem, &PgLockSrc1Mem);
384 if (rcStrict == VINF_SUCCESS)
385 {
386 if (memcmp(puSrc2Mem, puSrc1Mem, cLeftPage * (OP_SIZE / 8)))
387 {
388 /* All matches, only compare the last item to get the right eflags. */
389 uEFlags = RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(uEFlags, (OP_TYPE *)&puSrc1Mem[cLeftPage-1], puSrc2Mem[cLeftPage-1]);
390 uSrc1AddrReg += cLeftPage * cbIncr;
391 uSrc2AddrReg += cLeftPage * cbIncr;
392 uCounterReg -= cLeftPage;
393 }
394 else
395 {
396 /* Some mismatch, compare each item (and keep volatile
397 memory in mind). */
398 uint32_t off = 0;
399 do
400 {
401 uEFlags = RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(uEFlags, (OP_TYPE *)&puSrc1Mem[off], puSrc2Mem[off]);
402 off++;
403 } while ( off < cLeftPage
404 && !(uEFlags & X86_EFL_ZF));
405 uSrc1AddrReg += cbIncr * off;
406 uSrc2AddrReg += cbIncr * off;
407 uCounterReg -= off;
408 }
409
410 /* Update the registers before looping. */
411 pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg;
412 pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg;
413 pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg;
414 pVCpu->cpum.GstCtx.eflags.u = uEFlags;
415
416 iemMemPageUnmap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, puSrc1Mem, &PgLockSrc1Mem);
417 iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
418 if ( uCounterReg == 0
419 || (uEFlags & X86_EFL_ZF))
420 break;
421 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
422 continue;
423 }
424 iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
425 }
426 }
427
428 /*
429 * Fallback - slow processing till the end of the current page.
430 * In the cross page boundrary case we will end up here with cLeftPage
431 * as 0, we execute one loop then.
432 */
433 do
434 {
435 OP_TYPE uValue1;
436 rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue1, iEffSeg, uSrc1AddrReg);
437 if (rcStrict != VINF_SUCCESS)
438 return rcStrict;
439 OP_TYPE uValue2;
440 rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue2, X86_SREG_ES, uSrc2AddrReg);
441 if (rcStrict != VINF_SUCCESS)
442 return rcStrict;
443 uEFlags = RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(uEFlags, &uValue1, uValue2);
444
445 pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg += cbIncr;
446 pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg += cbIncr;
447 pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
448 pVCpu->cpum.GstCtx.eflags.u = uEFlags;
449 cLeftPage--;
450 IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || (uEFlags & X86_EFL_ZF));
451 } while ( (int32_t)cLeftPage > 0
452 && !(uEFlags & X86_EFL_ZF));
453
454 /*
455 * Next page? Must check for interrupts and stuff here.
456 */
457 if ( uCounterReg == 0
458 || (uEFlags & X86_EFL_ZF))
459 break;
460 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
461 }
462
463 /*
464 * Done.
465 */
466 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
467}
468
469
470/**
471 * Implements 'REPE SCAS'.
472 */
473IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_repe_scas_,OP_rAX,_m,ADDR_SIZE))
474{
475 PVM pVM = pVCpu->CTX_SUFF(pVM);
476
477 /*
478 * Setup.
479 */
480 ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
481 if (uCounterReg == 0)
482 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
483
484 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
485 uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
486 VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
487 if (rcStrict != VINF_SUCCESS)
488 return rcStrict;
489
490 int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
491 OP_TYPE const uValueReg = pVCpu->cpum.GstCtx.OP_rAX;
492 ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
493 uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
494
495 /*
496 * The loop.
497 */
498 for (;;)
499 {
500 /*
501 * Do segmentation and virtual page stuff.
502 */
503 ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
504 uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
505 if (cLeftPage > uCounterReg)
506 cLeftPage = uCounterReg;
507 if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
508 && cbIncr > 0 /** @todo Implement reverse direction string ops. */
509 && ( IS_64_BIT_CODE(pVCpu)
510 || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
511 && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
512 )
513 )
514 {
515 RTGCPHYS GCPhysMem;
516 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysMem);
517 if (rcStrict != VINF_SUCCESS)
518 return rcStrict;
519
520 /*
521 * If we can map the page without trouble, do a block processing
522 * until the end of the current page.
523 */
524 PGMPAGEMAPLOCK PgLockMem;
525 OP_TYPE const *puMem;
526 rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
527 if (rcStrict == VINF_SUCCESS)
528 {
529 /* Search till we find a mismatching item. */
530 OP_TYPE uTmpValue;
531 bool fQuit;
532 uint32_t i = 0;
533 do
534 {
535 uTmpValue = puMem[i++];
536 fQuit = uTmpValue != uValueReg;
537 } while (i < cLeftPage && !fQuit);
538
539 /* Update the regs. */
540 uEFlags = RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(uEFlags, (OP_TYPE *)&uValueReg, uTmpValue);
541 pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= i;
542 pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += i * cbIncr;
543 pVCpu->cpum.GstCtx.eflags.u = uEFlags;
544 Assert(!(uEFlags & X86_EFL_ZF) == fQuit);
545 iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
546 if ( fQuit
547 || uCounterReg == 0)
548 break;
549
550 /* If unaligned, we drop thru and do the page crossing access
551 below. Otherwise, do the next page. */
552 if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
553 {
554 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
555 continue;
556 }
557 cLeftPage = 0;
558 }
559 }
560
561 /*
562 * Fallback - slow processing till the end of the current page.
563 * In the cross page boundrary case we will end up here with cLeftPage
564 * as 0, we execute one loop then.
565 */
566 do
567 {
568 OP_TYPE uTmpValue;
569 rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, X86_SREG_ES, uAddrReg);
570 if (rcStrict != VINF_SUCCESS)
571 return rcStrict;
572 uEFlags = RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(uEFlags, (OP_TYPE *)&uValueReg, uTmpValue);
573
574 pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
575 pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
576 pVCpu->cpum.GstCtx.eflags.u = uEFlags;
577 cLeftPage--;
578 IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || !(uEFlags & X86_EFL_ZF));
579 } while ( (int32_t)cLeftPage > 0
580 && (uEFlags & X86_EFL_ZF));
581
582 /*
583 * Next page? Must check for interrupts and stuff here.
584 */
585 if ( uCounterReg == 0
586 || !(uEFlags & X86_EFL_ZF))
587 break;
588 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
589 }
590
591 /*
592 * Done.
593 */
594 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
595}
596
597
598/**
599 * Implements 'REPNE SCAS'.
600 */
601IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_repne_scas_,OP_rAX,_m,ADDR_SIZE))
602{
603 PVM pVM = pVCpu->CTX_SUFF(pVM);
604
605 /*
606 * Setup.
607 */
608 ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
609 if (uCounterReg == 0)
610 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
611
612 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
613 uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
614 VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
615 if (rcStrict != VINF_SUCCESS)
616 return rcStrict;
617
618 int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
619 OP_TYPE const uValueReg = pVCpu->cpum.GstCtx.OP_rAX;
620 ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
621 uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
622
623 /*
624 * The loop.
625 */
626 for (;;)
627 {
628 /*
629 * Do segmentation and virtual page stuff.
630 */
631 ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
632 uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
633 if (cLeftPage > uCounterReg)
634 cLeftPage = uCounterReg;
635 if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
636 && cbIncr > 0 /** @todo Implement reverse direction string ops. */
637 && ( IS_64_BIT_CODE(pVCpu)
638 || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
639 && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
640 )
641 )
642 {
643 RTGCPHYS GCPhysMem;
644 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysMem);
645 if (rcStrict != VINF_SUCCESS)
646 return rcStrict;
647
648 /*
649 * If we can map the page without trouble, do a block processing
650 * until the end of the current page.
651 */
652 PGMPAGEMAPLOCK PgLockMem;
653 OP_TYPE const *puMem;
654 rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
655 if (rcStrict == VINF_SUCCESS)
656 {
657 /* Search till we find a mismatching item. */
658 OP_TYPE uTmpValue;
659 bool fQuit;
660 uint32_t i = 0;
661 do
662 {
663 uTmpValue = puMem[i++];
664 fQuit = uTmpValue == uValueReg;
665 } while (i < cLeftPage && !fQuit);
666
667 /* Update the regs. */
668 uEFlags = RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(uEFlags, (OP_TYPE *)&uValueReg, uTmpValue);
669 pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= i;
670 pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += i * cbIncr;
671 pVCpu->cpum.GstCtx.eflags.u = uEFlags;
672 Assert(!!(uEFlags & X86_EFL_ZF) == fQuit);
673 iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
674 if ( fQuit
675 || uCounterReg == 0)
676 break;
677
678 /* If unaligned, we drop thru and do the page crossing access
679 below. Otherwise, do the next page. */
680 if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
681 {
682 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
683 continue;
684 }
685 cLeftPage = 0;
686 }
687 }
688
689 /*
690 * Fallback - slow processing till the end of the current page.
691 * In the cross page boundrary case we will end up here with cLeftPage
692 * as 0, we execute one loop then.
693 */
694 do
695 {
696 OP_TYPE uTmpValue;
697 rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, X86_SREG_ES, uAddrReg);
698 if (rcStrict != VINF_SUCCESS)
699 return rcStrict;
700 uEFlags = RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(uEFlags, (OP_TYPE *)&uValueReg, uTmpValue);
701 pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
702 pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
703 pVCpu->cpum.GstCtx.eflags.u = uEFlags;
704 cLeftPage--;
705 IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || (uEFlags & X86_EFL_ZF));
706 } while ( (int32_t)cLeftPage > 0
707 && !(uEFlags & X86_EFL_ZF));
708
709 /*
710 * Next page? Must check for interrupts and stuff here.
711 */
712 if ( uCounterReg == 0
713 || (uEFlags & X86_EFL_ZF))
714 break;
715 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
716 }
717
718 /*
719 * Done.
720 */
721 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
722}
723
724
725
726
727/**
728 * Implements 'REP MOVS'.
729 */
730IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_rep_movs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
731{
732 PVM pVM = pVCpu->CTX_SUFF(pVM);
733
734 /*
735 * Setup.
736 */
737 ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
738 if (uCounterReg == 0)
739 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
740
741 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
742
743 PCCPUMSELREGHID pSrcHid = iemSRegGetHid(pVCpu, iEffSeg);
744 uint64_t uSrcBase = 0; /* gcc may not be used uninitialized */
745 VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrcHid, iEffSeg, &uSrcBase);
746 if (rcStrict != VINF_SUCCESS)
747 return rcStrict;
748
749 uint64_t uDstBase = 0; /* gcc may not be used uninitialized */
750 rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uDstBase);
751 if (rcStrict != VINF_SUCCESS)
752 return rcStrict;
753
754 int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
755 ADDR_TYPE uSrcAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
756 ADDR_TYPE uDstAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
757
758 /*
759 * Be careful with handle bypassing.
760 */
761 if (pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS)
762 {
763 Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
764 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
765 }
766
767 /*
768 * The loop.
769 */
770 for (;;)
771 {
772 /*
773 * Do segmentation and virtual page stuff.
774 */
775 ADDR2_TYPE uVirtSrcAddr = uSrcAddrReg + (ADDR2_TYPE)uSrcBase;
776 ADDR2_TYPE uVirtDstAddr = uDstAddrReg + (ADDR2_TYPE)uDstBase;
777 uint32_t cLeftSrcPage = (GUEST_PAGE_SIZE - (uVirtSrcAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
778 if (cLeftSrcPage > uCounterReg)
779 cLeftSrcPage = uCounterReg;
780 uint32_t cLeftDstPage = (GUEST_PAGE_SIZE - (uVirtDstAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
781 uint32_t cLeftPage = RT_MIN(cLeftSrcPage, cLeftDstPage);
782
783 if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
784 && cbIncr > 0 /** @todo Implement reverse direction string ops. */
785 && ( IS_64_BIT_CODE(pVCpu)
786 || ( uSrcAddrReg < pSrcHid->u32Limit
787 && uSrcAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrcHid->u32Limit
788 && uDstAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
789 && uDstAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
790 )
791 )
792 {
793 RTGCPHYS GCPhysSrcMem;
794 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrcAddr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysSrcMem);
795 if (rcStrict != VINF_SUCCESS)
796 return rcStrict;
797
798 RTGCPHYS GCPhysDstMem;
799 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtDstAddr, OP_SIZE / 8, IEM_ACCESS_DATA_W, &GCPhysDstMem);
800 if (rcStrict != VINF_SUCCESS)
801 return rcStrict;
802
803 /*
804 * If we can map the page without trouble, do a block processing
805 * until the end of the current page.
806 */
807 PGMPAGEMAPLOCK PgLockDstMem;
808 OP_TYPE *puDstMem;
809 rcStrict = iemMemPageMap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, (void **)&puDstMem, &PgLockDstMem);
810 if (rcStrict == VINF_SUCCESS)
811 {
812 PGMPAGEMAPLOCK PgLockSrcMem;
813 OP_TYPE const *puSrcMem;
814 rcStrict = iemMemPageMap(pVCpu, GCPhysSrcMem, IEM_ACCESS_DATA_R, (void **)&puSrcMem, &PgLockSrcMem);
815 if (rcStrict == VINF_SUCCESS)
816 {
817 Assert( (GCPhysSrcMem >> GUEST_PAGE_SHIFT) != (GCPhysDstMem >> GUEST_PAGE_SHIFT)
818 || ((uintptr_t)puSrcMem >> GUEST_PAGE_SHIFT) == ((uintptr_t)puDstMem >> GUEST_PAGE_SHIFT));
819
820 /* Perform the operation exactly (don't use memcpy to avoid
821 having to consider how its implementation would affect
822 any overlapping source and destination area). */
823 OP_TYPE const *puSrcCur = puSrcMem;
824 OP_TYPE *puDstCur = puDstMem;
825 uint32_t cTodo = cLeftPage;
826 while (cTodo-- > 0)
827 *puDstCur++ = *puSrcCur++;
828
829 /* Update the registers. */
830 pVCpu->cpum.GstCtx.ADDR_rSI = uSrcAddrReg += cLeftPage * cbIncr;
831 pVCpu->cpum.GstCtx.ADDR_rDI = uDstAddrReg += cLeftPage * cbIncr;
832 pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
833
834 iemMemPageUnmap(pVCpu, GCPhysSrcMem, IEM_ACCESS_DATA_R, puSrcMem, &PgLockSrcMem);
835 iemMemPageUnmap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, puDstMem, &PgLockDstMem);
836
837 if (uCounterReg == 0)
838 break;
839 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
840 continue;
841 }
842 iemMemPageUnmap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, puDstMem, &PgLockDstMem);
843 }
844 }
845
846 /*
847 * Fallback - slow processing till the end of the current page.
848 * In the cross page boundrary case we will end up here with cLeftPage
849 * as 0, we execute one loop then.
850 */
851 do
852 {
853 OP_TYPE uValue;
854 rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, uSrcAddrReg);
855 if (rcStrict != VINF_SUCCESS)
856 return rcStrict;
857 rcStrict = RT_CONCAT(iemMemStoreDataU,OP_SIZE)(pVCpu, X86_SREG_ES, uDstAddrReg, uValue);
858 if (rcStrict != VINF_SUCCESS)
859 return rcStrict;
860
861 pVCpu->cpum.GstCtx.ADDR_rSI = uSrcAddrReg += cbIncr;
862 pVCpu->cpum.GstCtx.ADDR_rDI = uDstAddrReg += cbIncr;
863 pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
864 cLeftPage--;
865 IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
866 } while ((int32_t)cLeftPage > 0);
867
868 /*
869 * Next page. Must check for interrupts and stuff here.
870 */
871 if (uCounterReg == 0)
872 break;
873 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
874 }
875
876 /*
877 * Done.
878 */
879 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
880}
881
882
883/**
884 * Implements 'REP STOS'.
885 */
886IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_stos_,OP_rAX,_m,ADDR_SIZE))
887{
888 PVM pVM = pVCpu->CTX_SUFF(pVM);
889
890 /*
891 * Setup.
892 */
893 ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
894 if (uCounterReg == 0)
895 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
896
897 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
898
899 uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
900 VBOXSTRICTRC rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
901 if (rcStrict != VINF_SUCCESS)
902 return rcStrict;
903
904 int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
905 OP_TYPE const uValue = pVCpu->cpum.GstCtx.OP_rAX;
906 ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
907
908 /*
909 * Be careful with handle bypassing.
910 */
911 /** @todo Permit doing a page if correctly aligned. */
912 if (pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS)
913 {
914 Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
915 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
916 }
917
918 /*
919 * The loop.
920 */
921 for (;;)
922 {
923 /*
924 * Do segmentation and virtual page stuff.
925 */
926 ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
927 uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
928 if (cLeftPage > uCounterReg)
929 cLeftPage = uCounterReg;
930 if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
931 && cbIncr > 0 /** @todo Implement reverse direction string ops. */
932 && ( IS_64_BIT_CODE(pVCpu)
933 || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
934 && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
935 )
936 )
937 {
938 RTGCPHYS GCPhysMem;
939 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_W, &GCPhysMem);
940 if (rcStrict != VINF_SUCCESS)
941 return rcStrict;
942
943 /*
944 * If we can map the page without trouble, do a block processing
945 * until the end of the current page.
946 */
947 PGMPAGEMAPLOCK PgLockMem;
948 OP_TYPE *puMem;
949 rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, (void **)&puMem, &PgLockMem);
950 if (rcStrict == VINF_SUCCESS)
951 {
952 /* Update the regs first so we can loop on cLeftPage. */
953 pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
954 pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cLeftPage * cbIncr;
955
956 /* Do the memsetting. */
957#if OP_SIZE == 8
958 memset(puMem, uValue, cLeftPage);
959/*#elif OP_SIZE == 32
960 ASMMemFill32(puMem, cLeftPage * (OP_SIZE / 8), uValue);*/
961#else
962 while (cLeftPage-- > 0)
963 *puMem++ = uValue;
964#endif
965
966 iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, puMem, &PgLockMem);
967
968 if (uCounterReg == 0)
969 break;
970
971 /* If unaligned, we drop thru and do the page crossing access
972 below. Otherwise, do the next page. */
973 if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
974 {
975 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
976 continue;
977 }
978 cLeftPage = 0;
979 }
980 /* If we got an invalid physical address in the page table, just skip
981 ahead to the next page or the counter reaches zero. This crazy
982 optimization is for a buggy EFI firmware that's driving me nuts. */
983 else if (rcStrict == VERR_PGM_PHYS_TLB_UNASSIGNED)
984 {
985 pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
986 pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cLeftPage * cbIncr;
987 if (uCounterReg == 0)
988 break;
989 if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
990 {
991 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
992 continue;
993 }
994 }
995 }
996
997 /*
998 * Fallback - slow processing till the end of the current page.
999 * In the cross page boundrary case we will end up here with cLeftPage
1000 * as 0, we execute one loop then.
1001 */
1002 do
1003 {
1004 rcStrict = RT_CONCAT(iemMemStoreDataU,OP_SIZE)(pVCpu, X86_SREG_ES, uAddrReg, uValue);
1005 if (rcStrict != VINF_SUCCESS)
1006 return rcStrict;
1007 pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
1008 pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
1009 cLeftPage--;
1010 IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
1011 } while ((int32_t)cLeftPage > 0);
1012
1013 /*
1014 * Next page. Must check for interrupts and stuff here.
1015 */
1016 if (uCounterReg == 0)
1017 break;
1018 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
1019 }
1020
1021 /*
1022 * Done.
1023 */
1024 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1025}
1026
1027
1028/**
1029 * Implements 'REP LODS'.
1030 */
1031IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_lods_,OP_rAX,_m,ADDR_SIZE), int8_t, iEffSeg)
1032{
1033 PVM pVM = pVCpu->CTX_SUFF(pVM);
1034
1035 /*
1036 * Setup.
1037 */
1038 ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
1039 if (uCounterReg == 0)
1040 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1041
1042 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg));
1043 PCCPUMSELREGHID pSrcHid = iemSRegGetHid(pVCpu, iEffSeg);
1044 uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
1045 VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrcHid, iEffSeg, &uBaseAddr);
1046 if (rcStrict != VINF_SUCCESS)
1047 return rcStrict;
1048
1049 int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
1050 ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
1051
1052 /*
1053 * The loop.
1054 */
1055 for (;;)
1056 {
1057 /*
1058 * Do segmentation and virtual page stuff.
1059 */
1060 ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
1061 uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
1062 if (cLeftPage > uCounterReg)
1063 cLeftPage = uCounterReg;
1064 if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
1065 && cbIncr > 0 /** @todo Implement reverse direction string ops. */
1066 && ( IS_64_BIT_CODE(pVCpu)
1067 || ( uAddrReg < pSrcHid->u32Limit
1068 && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrcHid->u32Limit)
1069 )
1070 )
1071 {
1072 RTGCPHYS GCPhysMem;
1073 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysMem);
1074 if (rcStrict != VINF_SUCCESS)
1075 return rcStrict;
1076
1077 /*
1078 * If we can map the page without trouble, we can get away with
1079 * just reading the last value on the page.
1080 */
1081 PGMPAGEMAPLOCK PgLockMem;
1082 OP_TYPE const *puMem;
1083 rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
1084 if (rcStrict == VINF_SUCCESS)
1085 {
1086 /* Only get the last byte, the rest doesn't matter in direct access mode. */
1087#if OP_SIZE == 32
1088 pVCpu->cpum.GstCtx.rax = puMem[cLeftPage - 1];
1089#else
1090 pVCpu->cpum.GstCtx.OP_rAX = puMem[cLeftPage - 1];
1091#endif
1092 pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
1093 pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cLeftPage * cbIncr;
1094 iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
1095
1096 if (uCounterReg == 0)
1097 break;
1098
1099 /* If unaligned, we drop thru and do the page crossing access
1100 below. Otherwise, do the next page. */
1101 if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
1102 {
1103 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
1104 continue;
1105 }
1106 cLeftPage = 0;
1107 }
1108 }
1109
1110 /*
1111 * Fallback - slow processing till the end of the current page.
1112 * In the cross page boundrary case we will end up here with cLeftPage
1113 * as 0, we execute one loop then.
1114 */
1115 do
1116 {
1117 OP_TYPE uTmpValue;
1118 rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, iEffSeg, uAddrReg);
1119 if (rcStrict != VINF_SUCCESS)
1120 return rcStrict;
1121#if OP_SIZE == 32
1122 pVCpu->cpum.GstCtx.rax = uTmpValue;
1123#else
1124 pVCpu->cpum.GstCtx.OP_rAX = uTmpValue;
1125#endif
1126 pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr;
1127 pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
1128 cLeftPage--;
1129 IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
1130 } while ((int32_t)cLeftPage > 0);
1131
1132 if (rcStrict != VINF_SUCCESS)
1133 break;
1134
1135 /*
1136 * Next page. Must check for interrupts and stuff here.
1137 */
1138 if (uCounterReg == 0)
1139 break;
1140 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
1141 }
1142
1143 /*
1144 * Done.
1145 */
1146 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1147}
1148
1149
1150#if OP_SIZE != 64
1151
1152/**
1153 * Implements 'INS' (no rep)
1154 */
1155IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_ins_op,OP_SIZE,_addr,ADDR_SIZE), bool, fIoChecked)
1156{
1157 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1158 VBOXSTRICTRC rcStrict;
1159
1160 /*
1161 * Be careful with handle bypassing.
1162 */
1163 if (pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS)
1164 {
1165 Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
1166 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
1167 }
1168
1169 /*
1170 * ASSUMES the #GP for I/O permission is taken first, then any #GP for
1171 * segmentation and finally any #PF due to virtual address translation.
1172 * ASSUMES nothing is read from the I/O port before traps are taken.
1173 */
1174 if (!fIoChecked)
1175 {
1176 rcStrict = iemHlpCheckPortIOPermission(pVCpu, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8);
1177 if (rcStrict != VINF_SUCCESS)
1178 return rcStrict;
1179 }
1180
1181 /*
1182 * Check nested-guest I/O intercepts.
1183 */
1184#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1185 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
1186 {
1187 VMXEXITINSTRINFO ExitInstrInfo;
1188 ExitInstrInfo.u = 0;
1189 ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
1190 ExitInstrInfo.StrIo.iSegReg = X86_SREG_ES;
1191 rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_INS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, false /* fRep */,
1192 ExitInstrInfo, cbInstr);
1193 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
1194 return rcStrict;
1195 }
1196#endif
1197
1198#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1199 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
1200 {
1201 rcStrict = iemSvmHandleIOIntercept(pVCpu, pVCpu->cpum.GstCtx.dx, SVMIOIOTYPE_IN, OP_SIZE / 8, ADDR_SIZE, X86_SREG_ES,
1202 false /* fRep */, true /* fStrIo */, cbInstr);
1203 if (rcStrict == VINF_SVM_VMEXIT)
1204 return VINF_SUCCESS;
1205 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
1206 {
1207 Log(("iemCImpl_ins_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", pVCpu->cpum.GstCtx.dx,
1208 OP_SIZE / 8, VBOXSTRICTRC_VAL(rcStrict)));
1209 return rcStrict;
1210 }
1211 }
1212#endif
1213
1214 uint8_t bUnmapInfo;
1215 OP_TYPE *puMem;
1216 rcStrict = iemMemMap(pVCpu, (void **)&puMem, &bUnmapInfo, OP_SIZE / 8, X86_SREG_ES, pVCpu->cpum.GstCtx.ADDR_rDI,
1217 IEM_ACCESS_DATA_W, OP_SIZE / 8 - 1);
1218 if (rcStrict != VINF_SUCCESS)
1219 return rcStrict;
1220
1221 uint32_t u32Value = 0;
1222 rcStrict = IOMIOPortRead(pVM, pVCpu, pVCpu->cpum.GstCtx.dx, &u32Value, OP_SIZE / 8);
1223 if (IOM_SUCCESS(rcStrict))
1224 {
1225 /**
1226 * @todo I/O breakpoint support for INS
1227 */
1228 *puMem = (OP_TYPE)u32Value;
1229# ifdef IN_RING3
1230 VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
1231# else
1232 VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmapPostponeTroubleToR3(pVCpu, bUnmapInfo);
1233# endif
1234 if (RT_LIKELY(rcStrict2 == VINF_SUCCESS))
1235 {
1236 if (!pVCpu->cpum.GstCtx.eflags.Bits.u1DF)
1237 pVCpu->cpum.GstCtx.ADDR_rDI += OP_SIZE / 8;
1238 else
1239 pVCpu->cpum.GstCtx.ADDR_rDI -= OP_SIZE / 8;
1240
1241 /** @todo finish: work out how this should work wrt status codes. Not sure we
1242 * can use iemSetPassUpStatus here, but it depends on what
1243 * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
1244 rcStrict2 = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1245 if (rcStrict2 != VINF_SUCCESS)
1246 {
1247 iemSetPassUpStatus(pVCpu, rcStrict);
1248 rcStrict = rcStrict2;
1249 }
1250 pVCpu->iem.s.cPotentialExits++;
1251 }
1252 else
1253 AssertLogRelMsgFailedReturn(("rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)), RT_FAILURE_NP(rcStrict2) ? rcStrict2 : VERR_IEM_IPE_1);
1254 }
1255 return rcStrict;
1256}
1257
1258
1259/**
1260 * Implements 'REP INS'.
1261 */
1262IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_rep_ins_op,OP_SIZE,_addr,ADDR_SIZE), bool, fIoChecked)
1263{
1264 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1265
1266 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES | CPUMCTX_EXTRN_TR);
1267
1268 /*
1269 * Setup.
1270 */
1271 uint16_t const u16Port = pVCpu->cpum.GstCtx.dx;
1272 VBOXSTRICTRC rcStrict;
1273 if (!fIoChecked)
1274 {
1275/** @todo check if this is too early for ecx=0. */
1276 rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, OP_SIZE / 8);
1277 if (rcStrict != VINF_SUCCESS)
1278 return rcStrict;
1279 }
1280
1281 /*
1282 * Check nested-guest I/O intercepts.
1283 */
1284#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1285 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
1286 {
1287 VMXEXITINSTRINFO ExitInstrInfo;
1288 ExitInstrInfo.u = 0;
1289 ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
1290 ExitInstrInfo.StrIo.iSegReg = X86_SREG_ES;
1291 rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_INS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, true /* fRep */,
1292 ExitInstrInfo, cbInstr);
1293 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
1294 return rcStrict;
1295 }
1296#endif
1297
1298#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1299 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
1300 {
1301 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, OP_SIZE / 8, ADDR_SIZE, X86_SREG_ES, true /* fRep */,
1302 true /* fStrIo */, cbInstr);
1303 if (rcStrict == VINF_SVM_VMEXIT)
1304 return VINF_SUCCESS;
1305 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
1306 {
1307 Log(("iemCImpl_rep_ins_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, OP_SIZE / 8,
1308 VBOXSTRICTRC_VAL(rcStrict)));
1309 return rcStrict;
1310 }
1311 }
1312#endif
1313
1314 ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
1315 if (uCounterReg == 0)
1316 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1317
1318 uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
1319 rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
1320 if (rcStrict != VINF_SUCCESS)
1321 return rcStrict;
1322
1323 int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
1324 ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
1325
1326 /*
1327 * Be careful with handle bypassing.
1328 */
1329 if (pVCpu->iem.s.fExec & IEM_F_BYPASS_HANDLERS)
1330 {
1331 Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
1332 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
1333 }
1334
1335 /*
1336 * The loop.
1337 */
1338 for (;;)
1339 {
1340 /*
1341 * Do segmentation and virtual page stuff.
1342 */
1343 ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
1344 uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
1345 if (cLeftPage > uCounterReg)
1346 cLeftPage = uCounterReg;
1347 if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
1348 && cbIncr > 0 /** @todo Implement reverse direction string ops. */
1349 && ( IS_64_BIT_CODE(pVCpu)
1350 || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
1351 && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
1352 )
1353 )
1354 {
1355 RTGCPHYS GCPhysMem;
1356 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_W, &GCPhysMem);
1357 if (rcStrict != VINF_SUCCESS)
1358 return rcStrict;
1359
1360 /*
1361 * If we can map the page without trouble, use the IOM
1362 * string I/O interface to do the work.
1363 */
1364 PGMPAGEMAPLOCK PgLockMem;
1365 OP_TYPE *puMem;
1366 rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, (void **)&puMem, &PgLockMem);
1367 if (rcStrict == VINF_SUCCESS)
1368 {
1369 uint32_t cTransfers = cLeftPage;
1370 rcStrict = IOMIOPortReadString(pVM, pVCpu, u16Port, puMem, &cTransfers, OP_SIZE / 8);
1371
1372 uint32_t cActualTransfers = cLeftPage - cTransfers;
1373 Assert(cActualTransfers <= cLeftPage);
1374 pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr * cActualTransfers;
1375 pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cActualTransfers;
1376 puMem += cActualTransfers;
1377
1378 iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, puMem, &PgLockMem);
1379
1380 if (rcStrict != VINF_SUCCESS)
1381 {
1382 if (IOM_SUCCESS(rcStrict))
1383 {
1384 /** @todo finish: work out how this should work wrt status codes. Not sure we
1385 * can use iemSetPassUpStatus here, but it depends on what
1386 * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
1387 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
1388 if (uCounterReg == 0)
1389 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1390 pVCpu->iem.s.cPotentialExits++;
1391 }
1392 return rcStrict;
1393 }
1394
1395 /* If unaligned, we drop thru and do the page crossing access
1396 below. Otherwise, do the next page. */
1397 if (uCounterReg == 0)
1398 break;
1399 if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
1400 {
1401 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
1402 continue;
1403 }
1404 cLeftPage = 0;
1405 }
1406 }
1407
1408 /*
1409 * Fallback - slow processing till the end of the current page.
1410 * In the cross page boundrary case we will end up here with cLeftPage
1411 * as 0, we execute one loop then.
1412 *
1413 * Note! We ASSUME the CPU will raise #PF or #GP before access the
1414 * I/O port, otherwise it wouldn't really be restartable.
1415 */
1416 /** @todo investigate what the CPU actually does with \#PF/\#GP
1417 * during INS. */
1418 do
1419 {
1420 uint8_t bUnmapInfo;
1421 OP_TYPE *puMem;
1422 rcStrict = iemMemMap(pVCpu, (void **)&puMem, &bUnmapInfo, OP_SIZE / 8, X86_SREG_ES, uAddrReg,
1423 IEM_ACCESS_DATA_W, OP_SIZE / 8 - 1);
1424 if (rcStrict != VINF_SUCCESS)
1425 return rcStrict;
1426
1427 uint32_t u32Value = 0;
1428 rcStrict = IOMIOPortRead(pVM, pVCpu, u16Port, &u32Value, OP_SIZE / 8);
1429 if (!IOM_SUCCESS(rcStrict))
1430 {
1431 iemMemRollback(pVCpu);
1432 return rcStrict;
1433 }
1434
1435 *puMem = (OP_TYPE)u32Value;
1436# ifdef IN_RING3
1437 VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmap(pVCpu, bUnmapInfo);
1438# else
1439 VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmapPostponeTroubleToR3(pVCpu, bUnmapInfo);
1440# endif
1441 if (rcStrict2 == VINF_SUCCESS)
1442 { /* likely */ }
1443 else
1444 AssertLogRelMsgFailedReturn(("rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1445 RT_FAILURE(rcStrict2) ? rcStrict2 : VERR_IEM_IPE_1);
1446
1447 pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
1448 pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
1449
1450 cLeftPage--;
1451 if (rcStrict != VINF_SUCCESS)
1452 {
1453 /** @todo finish: work out how this should work wrt status codes. Not sure we
1454 * can use iemSetPassUpStatus here, but it depends on what
1455 * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
1456 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
1457 if (uCounterReg == 0)
1458 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1459 pVCpu->iem.s.cPotentialExits++;
1460 return rcStrict;
1461 }
1462
1463 IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
1464 } while ((int32_t)cLeftPage > 0);
1465
1466
1467 /*
1468 * Next page. Must check for interrupts and stuff here.
1469 */
1470 if (uCounterReg == 0)
1471 break;
1472 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
1473 }
1474
1475 /*
1476 * Done.
1477 */
1478 pVCpu->iem.s.cPotentialExits++;
1479 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1480}
1481
1482
1483/**
1484 * Implements 'OUTS' (no rep)
1485 */
1486IEM_CIMPL_DEF_2(RT_CONCAT4(iemCImpl_outs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg, bool, fIoChecked)
1487{
1488 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1489 VBOXSTRICTRC rcStrict;
1490
1491 /*
1492 * ASSUMES the #GP for I/O permission is taken first, then any #GP for
1493 * segmentation and finally any #PF due to virtual address translation.
1494 * ASSUMES nothing is read from the I/O port before traps are taken.
1495 */
1496 if (!fIoChecked)
1497 {
1498 rcStrict = iemHlpCheckPortIOPermission(pVCpu, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8);
1499 if (rcStrict != VINF_SUCCESS)
1500 return rcStrict;
1501 }
1502
1503 /*
1504 * Check nested-guest I/O intercepts.
1505 */
1506#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1507 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
1508 {
1509 VMXEXITINSTRINFO ExitInstrInfo;
1510 ExitInstrInfo.u = 0;
1511 ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
1512 ExitInstrInfo.StrIo.iSegReg = iEffSeg;
1513 rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_OUTS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, false /* fRep */,
1514 ExitInstrInfo, cbInstr);
1515 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
1516 return rcStrict;
1517 }
1518#endif
1519
1520#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1521 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
1522 {
1523 rcStrict = iemSvmHandleIOIntercept(pVCpu, pVCpu->cpum.GstCtx.dx, SVMIOIOTYPE_OUT, OP_SIZE / 8, ADDR_SIZE, iEffSeg,
1524 false /* fRep */, true /* fStrIo */, cbInstr);
1525 if (rcStrict == VINF_SVM_VMEXIT)
1526 return VINF_SUCCESS;
1527 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
1528 {
1529 Log(("iemCImpl_outs_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", pVCpu->cpum.GstCtx.dx,
1530 OP_SIZE / 8, VBOXSTRICTRC_VAL(rcStrict)));
1531 return rcStrict;
1532 }
1533 }
1534#endif
1535
1536 OP_TYPE uValue;
1537 rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, pVCpu->cpum.GstCtx.ADDR_rSI);
1538 if (rcStrict == VINF_SUCCESS)
1539 {
1540 rcStrict = IOMIOPortWrite(pVM, pVCpu, pVCpu->cpum.GstCtx.dx, uValue, OP_SIZE / 8);
1541 if (IOM_SUCCESS(rcStrict))
1542 {
1543 if (!pVCpu->cpum.GstCtx.eflags.Bits.u1DF)
1544 pVCpu->cpum.GstCtx.ADDR_rSI += OP_SIZE / 8;
1545 else
1546 pVCpu->cpum.GstCtx.ADDR_rSI -= OP_SIZE / 8;
1547 /** @todo finish: work out how this should work wrt status codes. Not sure we
1548 * can use iemSetPassUpStatus here, but it depends on what
1549 * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
1550 if (rcStrict != VINF_SUCCESS)
1551 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
1552 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1553 pVCpu->iem.s.cPotentialExits++;
1554 }
1555 }
1556 return rcStrict;
1557}
1558
1559
1560/**
1561 * Implements 'REP OUTS'.
1562 */
1563IEM_CIMPL_DEF_2(RT_CONCAT4(iemCImpl_rep_outs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg, bool, fIoChecked)
1564{
1565 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1566
1567 /*
1568 * Setup.
1569 */
1570 uint16_t const u16Port = pVCpu->cpum.GstCtx.dx;
1571 VBOXSTRICTRC rcStrict;
1572 if (!fIoChecked)
1573 {
1574/** @todo check if this is too early for ecx=0. */
1575 rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, OP_SIZE / 8);
1576 if (rcStrict != VINF_SUCCESS)
1577 return rcStrict;
1578 }
1579
1580 /*
1581 * Check nested-guest I/O intercepts.
1582 */
1583#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1584 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
1585 {
1586 VMXEXITINSTRINFO ExitInstrInfo;
1587 ExitInstrInfo.u = 0;
1588 ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
1589 ExitInstrInfo.StrIo.iSegReg = iEffSeg;
1590 rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_OUTS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, true /* fRep */,
1591 ExitInstrInfo, cbInstr);
1592 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
1593 return rcStrict;
1594 }
1595#endif
1596
1597#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1598 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
1599 {
1600 rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, OP_SIZE / 8, ADDR_SIZE, iEffSeg, true /* fRep */,
1601 true /* fStrIo */, cbInstr);
1602 if (rcStrict == VINF_SVM_VMEXIT)
1603 return VINF_SUCCESS;
1604 if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
1605 {
1606 Log(("iemCImpl_rep_outs_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, OP_SIZE / 8,
1607 VBOXSTRICTRC_VAL(rcStrict)));
1608 return rcStrict;
1609 }
1610 }
1611#endif
1612
1613 ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
1614 if (uCounterReg == 0)
1615 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1616
1617 PCCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iEffSeg);
1618 uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
1619 rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pHid, iEffSeg, &uBaseAddr);
1620 if (rcStrict != VINF_SUCCESS)
1621 return rcStrict;
1622
1623 int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
1624 ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
1625
1626 /*
1627 * The loop.
1628 */
1629 for (;;)
1630 {
1631 /*
1632 * Do segmentation and virtual page stuff.
1633 */
1634 ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
1635 uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
1636 if (cLeftPage > uCounterReg)
1637 cLeftPage = uCounterReg;
1638 if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
1639 && cbIncr > 0 /** @todo Implement reverse direction string ops. */
1640 && ( IS_64_BIT_CODE(pVCpu)
1641 || ( uAddrReg < pHid->u32Limit
1642 && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pHid->u32Limit)
1643 )
1644 )
1645 {
1646 RTGCPHYS GCPhysMem;
1647 rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, OP_SIZE / 8, IEM_ACCESS_DATA_R, &GCPhysMem);
1648 if (rcStrict != VINF_SUCCESS)
1649 return rcStrict;
1650
1651 /*
1652 * If we can map the page without trouble, we use the IOM
1653 * string I/O interface to do the job.
1654 */
1655 PGMPAGEMAPLOCK PgLockMem;
1656 OP_TYPE const *puMem;
1657 rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
1658 if (rcStrict == VINF_SUCCESS)
1659 {
1660 uint32_t cTransfers = cLeftPage;
1661 rcStrict = IOMIOPortWriteString(pVM, pVCpu, u16Port, puMem, &cTransfers, OP_SIZE / 8);
1662
1663 uint32_t cActualTransfers = cLeftPage - cTransfers;
1664 Assert(cActualTransfers <= cLeftPage);
1665 pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr * cActualTransfers;
1666 pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cActualTransfers;
1667 puMem += cActualTransfers;
1668
1669 iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
1670
1671 if (rcStrict != VINF_SUCCESS)
1672 {
1673 if (IOM_SUCCESS(rcStrict))
1674 {
1675 /** @todo finish: work out how this should work wrt status codes. Not sure we
1676 * can use iemSetPassUpStatus here, but it depends on what
1677 * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
1678 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
1679 if (uCounterReg == 0)
1680 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1681 pVCpu->iem.s.cPotentialExits++;
1682 }
1683 return rcStrict;
1684 }
1685
1686 if (uCounterReg == 0)
1687 break;
1688
1689 /* If unaligned, we drop thru and do the page crossing access
1690 below. Otherwise, do the next page. */
1691 if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
1692 {
1693 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
1694 continue;
1695 }
1696 cLeftPage = 0;
1697 }
1698 }
1699
1700 /*
1701 * Fallback - slow processing till the end of the current page.
1702 * In the cross page boundrary case we will end up here with cLeftPage
1703 * as 0, we execute one loop then.
1704 *
1705 * Note! We ASSUME the CPU will raise #PF or #GP before access the
1706 * I/O port, otherwise it wouldn't really be restartable.
1707 */
1708 /** @todo investigate what the CPU actually does with \#PF/\#GP
1709 * during INS. */
1710 do
1711 {
1712 OP_TYPE uValue;
1713 rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, uAddrReg);
1714 if (rcStrict != VINF_SUCCESS)
1715 return rcStrict;
1716
1717 rcStrict = IOMIOPortWrite(pVM, pVCpu, u16Port, uValue, OP_SIZE / 8);
1718 if (IOM_SUCCESS(rcStrict))
1719 {
1720 pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr;
1721 pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
1722 cLeftPage--;
1723 }
1724 if (rcStrict != VINF_SUCCESS)
1725 {
1726 if (IOM_SUCCESS(rcStrict))
1727 {
1728 /** @todo finish: work out how this should work wrt status codes. Not sure we
1729 * can use iemSetPassUpStatus here, but it depends on what
1730 * iemRegAddToRipAndFinishingClearingRF may eventually return (if anything)... */
1731 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
1732 if (uCounterReg == 0)
1733 iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1734 pVCpu->iem.s.cPotentialExits++;
1735 }
1736 return rcStrict;
1737 }
1738 IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
1739 } while ((int32_t)cLeftPage > 0);
1740
1741
1742 /*
1743 * Next page. Must check for interrupts and stuff here.
1744 */
1745 if (uCounterReg == 0)
1746 break;
1747 IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
1748 }
1749
1750 /*
1751 * Done.
1752 */
1753 pVCpu->iem.s.cPotentialExits++;
1754 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
1755}
1756
1757#endif /* OP_SIZE != 64-bit */
1758
1759
1760#undef OP_rAX
1761#undef OP_SIZE
1762#undef ADDR_SIZE
1763#undef ADDR_rDI
1764#undef ADDR_rSI
1765#undef ADDR_rCX
1766#undef ADDR_rIP
1767#undef ADDR2_TYPE
1768#undef ADDR_TYPE
1769#undef ADDR2_TYPE
1770#undef ADDR_VMXSTRIO
1771#undef IS_64_BIT_CODE
1772#undef IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN
1773#undef IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
1774#undef IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
1775
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette