1 | /* $Id: IEMAllCImplStrInstr.cpp.h 52456 2014-08-22 08:46:41Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - String Instruction Implementation Code Template.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2012 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*******************************************************************************
|
---|
20 | * Defined Constants And Macros *
|
---|
21 | *******************************************************************************/
|
---|
22 | #if OP_SIZE == 8
|
---|
23 | # define OP_rAX al
|
---|
24 | #elif OP_SIZE == 16
|
---|
25 | # define OP_rAX ax
|
---|
26 | #elif OP_SIZE == 32
|
---|
27 | # define OP_rAX eax
|
---|
28 | #elif OP_SIZE == 64
|
---|
29 | # define OP_rAX rax
|
---|
30 | #else
|
---|
31 | # error "Bad OP_SIZE."
|
---|
32 | #endif
|
---|
33 | #define OP_TYPE RT_CONCAT3(uint,OP_SIZE,_t)
|
---|
34 |
|
---|
35 | #if ADDR_SIZE == 16
|
---|
36 | # define ADDR_rDI di
|
---|
37 | # define ADDR_rSI si
|
---|
38 | # define ADDR_rCX cx
|
---|
39 | # define ADDR2_TYPE uint32_t
|
---|
40 | #elif ADDR_SIZE == 32
|
---|
41 | # define ADDR_rDI edi
|
---|
42 | # define ADDR_rSI esi
|
---|
43 | # define ADDR_rCX ecx
|
---|
44 | # define ADDR2_TYPE uint32_t
|
---|
45 | #elif ADDR_SIZE == 64
|
---|
46 | # define ADDR_rDI rdi
|
---|
47 | # define ADDR_rSI rsi
|
---|
48 | # define ADDR_rCX rcx
|
---|
49 | # define ADDR2_TYPE uint64_t
|
---|
50 | # define IS_64_BIT_CODE(a_pIemCpu) (true)
|
---|
51 | #else
|
---|
52 | # error "Bad ADDR_SIZE."
|
---|
53 | #endif
|
---|
54 | #define ADDR_TYPE RT_CONCAT3(uint,ADDR_SIZE,_t)
|
---|
55 |
|
---|
56 | #if ADDR_SIZE == 64 || OP_SIZE == 64
|
---|
57 | # define IS_64_BIT_CODE(a_pIemCpu) (true)
|
---|
58 | #elif ADDR_SIZE == 32
|
---|
59 | # define IS_64_BIT_CODE(a_pIemCpu) ((a_pIemCpu)->enmCpuMode == IEMMODE_64BIT)
|
---|
60 | #else
|
---|
61 | # define IS_64_BIT_CODE(a_pIemCpu) (false)
|
---|
62 | #endif
|
---|
63 |
|
---|
64 |
|
---|
65 | /**
|
---|
66 | * Implements 'REPE CMPS'.
|
---|
67 | */
|
---|
68 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_repe_cmps_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
69 | {
|
---|
70 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
71 |
|
---|
72 | /*
|
---|
73 | * Setup.
|
---|
74 | */
|
---|
75 | ADDR_TYPE uCounterReg = pCtx->ADDR_rCX;
|
---|
76 | if (uCounterReg == 0)
|
---|
77 | {
|
---|
78 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
79 | return VINF_SUCCESS;
|
---|
80 | }
|
---|
81 |
|
---|
82 | PCCPUMSELREGHID pSrc1Hid = iemSRegGetHid(pIemCpu, iEffSeg);
|
---|
83 | uint64_t uSrc1Base;
|
---|
84 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pIemCpu, pSrc1Hid, iEffSeg, &uSrc1Base);
|
---|
85 | if (rcStrict != VINF_SUCCESS)
|
---|
86 | return rcStrict;
|
---|
87 |
|
---|
88 | uint64_t uSrc2Base;
|
---|
89 | rcStrict = iemMemSegCheckReadAccessEx(pIemCpu, &pCtx->es, X86_SREG_ES, &uSrc2Base);
|
---|
90 | if (rcStrict != VINF_SUCCESS)
|
---|
91 | return rcStrict;
|
---|
92 |
|
---|
93 | int8_t const cbIncr = pCtx->eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
94 | ADDR_TYPE uSrc1AddrReg = pCtx->ADDR_rSI;
|
---|
95 | ADDR_TYPE uSrc2AddrReg = pCtx->ADDR_rDI;
|
---|
96 | uint32_t uEFlags = pCtx->eflags.u;
|
---|
97 |
|
---|
98 | /*
|
---|
99 | * The loop.
|
---|
100 | */
|
---|
101 | do
|
---|
102 | {
|
---|
103 | /*
|
---|
104 | * Do segmentation and virtual page stuff.
|
---|
105 | */
|
---|
106 | ADDR2_TYPE uVirtSrc1Addr = uSrc1AddrReg + (ADDR2_TYPE)uSrc1Base;
|
---|
107 | ADDR2_TYPE uVirtSrc2Addr = uSrc2AddrReg + (ADDR2_TYPE)uSrc2Base;
|
---|
108 | uint32_t cLeftSrc1Page = (PAGE_SIZE - (uVirtSrc1Addr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
109 | if (cLeftSrc1Page > uCounterReg)
|
---|
110 | cLeftSrc1Page = uCounterReg;
|
---|
111 | uint32_t cLeftSrc2Page = (PAGE_SIZE - (uVirtSrc2Addr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
112 | uint32_t cLeftPage = RT_MIN(cLeftSrc1Page, cLeftSrc2Page);
|
---|
113 |
|
---|
114 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
115 | && cbIncr > 0 /** @todo Optimize reverse direction string ops. */
|
---|
116 | && ( IS_64_BIT_CODE(pIemCpu)
|
---|
117 | || ( uSrc1AddrReg < pSrc1Hid->u32Limit
|
---|
118 | && uSrc1AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrc1Hid->u32Limit
|
---|
119 | && uSrc2AddrReg < pCtx->es.u32Limit
|
---|
120 | && uSrc2AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pCtx->es.u32Limit)
|
---|
121 | )
|
---|
122 | )
|
---|
123 | {
|
---|
124 | RTGCPHYS GCPhysSrc1Mem;
|
---|
125 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtSrc1Addr, IEM_ACCESS_DATA_R, &GCPhysSrc1Mem);
|
---|
126 | if (rcStrict != VINF_SUCCESS)
|
---|
127 | return rcStrict;
|
---|
128 |
|
---|
129 | RTGCPHYS GCPhysSrc2Mem;
|
---|
130 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtSrc2Addr, IEM_ACCESS_DATA_R, &GCPhysSrc2Mem);
|
---|
131 | if (rcStrict != VINF_SUCCESS)
|
---|
132 | return rcStrict;
|
---|
133 |
|
---|
134 | /*
|
---|
135 | * If we can map the page without trouble, do a block processing
|
---|
136 | * until the end of the current page.
|
---|
137 | */
|
---|
138 | PGMPAGEMAPLOCK PgLockSrc2Mem;
|
---|
139 | OP_TYPE const *puSrc2Mem;
|
---|
140 | rcStrict = iemMemPageMap(pIemCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, (void **)&puSrc2Mem, &PgLockSrc2Mem);
|
---|
141 | if (rcStrict == VINF_SUCCESS)
|
---|
142 | {
|
---|
143 | PGMPAGEMAPLOCK PgLockSrc1Mem;
|
---|
144 | OP_TYPE const *puSrc1Mem;
|
---|
145 | rcStrict = iemMemPageMap(pIemCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, (void **)&puSrc1Mem, &PgLockSrc1Mem);
|
---|
146 | if (rcStrict == VINF_SUCCESS)
|
---|
147 | {
|
---|
148 | if (!memcmp(puSrc2Mem, puSrc1Mem, cLeftPage * (OP_SIZE / 8)))
|
---|
149 | {
|
---|
150 | /* All matches, only compare the last itme to get the right eflags. */
|
---|
151 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[cLeftPage-1], puSrc2Mem[cLeftPage-1], &uEFlags);
|
---|
152 | uSrc1AddrReg += cLeftPage * cbIncr;
|
---|
153 | uSrc2AddrReg += cLeftPage * cbIncr;
|
---|
154 | uCounterReg -= cLeftPage;
|
---|
155 | }
|
---|
156 | else
|
---|
157 | {
|
---|
158 | /* Some mismatch, compare each item (and keep volatile
|
---|
159 | memory in mind). */
|
---|
160 | uint32_t off = 0;
|
---|
161 | do
|
---|
162 | {
|
---|
163 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[off], puSrc2Mem[off], &uEFlags);
|
---|
164 | off++;
|
---|
165 | } while ( off < cLeftPage
|
---|
166 | && (uEFlags & X86_EFL_ZF));
|
---|
167 | uSrc1AddrReg += cbIncr * off;
|
---|
168 | uSrc2AddrReg += cbIncr * off;
|
---|
169 | uCounterReg -= off;
|
---|
170 | }
|
---|
171 |
|
---|
172 | /* Update the registers before looping. */
|
---|
173 | pCtx->ADDR_rCX = uCounterReg;
|
---|
174 | pCtx->ADDR_rSI = uSrc1AddrReg;
|
---|
175 | pCtx->ADDR_rDI = uSrc2AddrReg;
|
---|
176 | pCtx->eflags.u = uEFlags;
|
---|
177 |
|
---|
178 | iemMemPageUnmap(pIemCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, puSrc1Mem, &PgLockSrc1Mem);
|
---|
179 | iemMemPageUnmap(pIemCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
180 | continue;
|
---|
181 | }
|
---|
182 | iemMemPageUnmap(pIemCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
183 | }
|
---|
184 | }
|
---|
185 |
|
---|
186 | /*
|
---|
187 | * Fallback - slow processing till the end of the current page.
|
---|
188 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
189 | * as 0, we execute one loop then.
|
---|
190 | */
|
---|
191 | do
|
---|
192 | {
|
---|
193 | OP_TYPE uValue1;
|
---|
194 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pIemCpu, &uValue1, iEffSeg, uSrc1AddrReg);
|
---|
195 | if (rcStrict != VINF_SUCCESS)
|
---|
196 | return rcStrict;
|
---|
197 | OP_TYPE uValue2;
|
---|
198 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pIemCpu, &uValue2, X86_SREG_ES, uSrc2AddrReg);
|
---|
199 | if (rcStrict != VINF_SUCCESS)
|
---|
200 | return rcStrict;
|
---|
201 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(&uValue1, uValue2, &uEFlags);
|
---|
202 |
|
---|
203 | pCtx->ADDR_rSI = uSrc1AddrReg += cbIncr;
|
---|
204 | pCtx->ADDR_rDI = uSrc2AddrReg += cbIncr;
|
---|
205 | pCtx->ADDR_rCX = --uCounterReg;
|
---|
206 | pCtx->eflags.u = uEFlags;
|
---|
207 | cLeftPage--;
|
---|
208 | } while ( (int32_t)cLeftPage > 0
|
---|
209 | && (uEFlags & X86_EFL_ZF));
|
---|
210 | } while ( uCounterReg != 0
|
---|
211 | && (uEFlags & X86_EFL_ZF));
|
---|
212 |
|
---|
213 | /*
|
---|
214 | * Done.
|
---|
215 | */
|
---|
216 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
217 | return VINF_SUCCESS;
|
---|
218 | }
|
---|
219 |
|
---|
220 |
|
---|
221 | /**
|
---|
222 | * Implements 'REPNE CMPS'.
|
---|
223 | */
|
---|
224 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_repne_cmps_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
225 | {
|
---|
226 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
227 |
|
---|
228 | /*
|
---|
229 | * Setup.
|
---|
230 | */
|
---|
231 | ADDR_TYPE uCounterReg = pCtx->ADDR_rCX;
|
---|
232 | if (uCounterReg == 0)
|
---|
233 | {
|
---|
234 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
235 | return VINF_SUCCESS;
|
---|
236 | }
|
---|
237 |
|
---|
238 | PCCPUMSELREGHID pSrc1Hid = iemSRegGetHid(pIemCpu, iEffSeg);
|
---|
239 | uint64_t uSrc1Base;
|
---|
240 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pIemCpu, pSrc1Hid, iEffSeg, &uSrc1Base);
|
---|
241 | if (rcStrict != VINF_SUCCESS)
|
---|
242 | return rcStrict;
|
---|
243 |
|
---|
244 | uint64_t uSrc2Base;
|
---|
245 | rcStrict = iemMemSegCheckReadAccessEx(pIemCpu, &pCtx->es, X86_SREG_ES, &uSrc2Base);
|
---|
246 | if (rcStrict != VINF_SUCCESS)
|
---|
247 | return rcStrict;
|
---|
248 |
|
---|
249 | int8_t const cbIncr = pCtx->eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
250 | ADDR_TYPE uSrc1AddrReg = pCtx->ADDR_rSI;
|
---|
251 | ADDR_TYPE uSrc2AddrReg = pCtx->ADDR_rDI;
|
---|
252 | uint32_t uEFlags = pCtx->eflags.u;
|
---|
253 |
|
---|
254 | /*
|
---|
255 | * The loop.
|
---|
256 | */
|
---|
257 | do
|
---|
258 | {
|
---|
259 | /*
|
---|
260 | * Do segmentation and virtual page stuff.
|
---|
261 | */
|
---|
262 | ADDR2_TYPE uVirtSrc1Addr = uSrc1AddrReg + (ADDR2_TYPE)uSrc1Base;
|
---|
263 | ADDR2_TYPE uVirtSrc2Addr = uSrc2AddrReg + (ADDR2_TYPE)uSrc2Base;
|
---|
264 | uint32_t cLeftSrc1Page = (PAGE_SIZE - (uVirtSrc1Addr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
265 | if (cLeftSrc1Page > uCounterReg)
|
---|
266 | cLeftSrc1Page = uCounterReg;
|
---|
267 | uint32_t cLeftSrc2Page = (PAGE_SIZE - (uVirtSrc2Addr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
268 | uint32_t cLeftPage = RT_MIN(cLeftSrc1Page, cLeftSrc2Page);
|
---|
269 |
|
---|
270 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
271 | && cbIncr > 0 /** @todo Optimize reverse direction string ops. */
|
---|
272 | && ( IS_64_BIT_CODE(pIemCpu)
|
---|
273 | || ( uSrc1AddrReg < pSrc1Hid->u32Limit
|
---|
274 | && uSrc1AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrc1Hid->u32Limit
|
---|
275 | && uSrc2AddrReg < pCtx->es.u32Limit
|
---|
276 | && uSrc2AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pCtx->es.u32Limit)
|
---|
277 | )
|
---|
278 | )
|
---|
279 | {
|
---|
280 | RTGCPHYS GCPhysSrc1Mem;
|
---|
281 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtSrc1Addr, IEM_ACCESS_DATA_R, &GCPhysSrc1Mem);
|
---|
282 | if (rcStrict != VINF_SUCCESS)
|
---|
283 | return rcStrict;
|
---|
284 |
|
---|
285 | RTGCPHYS GCPhysSrc2Mem;
|
---|
286 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtSrc2Addr, IEM_ACCESS_DATA_R, &GCPhysSrc2Mem);
|
---|
287 | if (rcStrict != VINF_SUCCESS)
|
---|
288 | return rcStrict;
|
---|
289 |
|
---|
290 | /*
|
---|
291 | * If we can map the page without trouble, do a block processing
|
---|
292 | * until the end of the current page.
|
---|
293 | */
|
---|
294 | OP_TYPE const *puSrc2Mem;
|
---|
295 | PGMPAGEMAPLOCK PgLockSrc2Mem;
|
---|
296 | rcStrict = iemMemPageMap(pIemCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, (void **)&puSrc2Mem, &PgLockSrc2Mem);
|
---|
297 | if (rcStrict == VINF_SUCCESS)
|
---|
298 | {
|
---|
299 | OP_TYPE const *puSrc1Mem;
|
---|
300 | PGMPAGEMAPLOCK PgLockSrc1Mem;
|
---|
301 | rcStrict = iemMemPageMap(pIemCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, (void **)&puSrc1Mem, &PgLockSrc1Mem);
|
---|
302 | if (rcStrict == VINF_SUCCESS)
|
---|
303 | {
|
---|
304 | if (memcmp(puSrc2Mem, puSrc1Mem, cLeftPage * (OP_SIZE / 8)))
|
---|
305 | {
|
---|
306 | /* All matches, only compare the last item to get the right eflags. */
|
---|
307 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[cLeftPage-1], puSrc2Mem[cLeftPage-1], &uEFlags);
|
---|
308 | uSrc1AddrReg += cLeftPage * cbIncr;
|
---|
309 | uSrc2AddrReg += cLeftPage * cbIncr;
|
---|
310 | uCounterReg -= cLeftPage;
|
---|
311 | }
|
---|
312 | else
|
---|
313 | {
|
---|
314 | /* Some mismatch, compare each item (and keep volatile
|
---|
315 | memory in mind). */
|
---|
316 | uint32_t off = 0;
|
---|
317 | do
|
---|
318 | {
|
---|
319 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[off], puSrc2Mem[off], &uEFlags);
|
---|
320 | off++;
|
---|
321 | } while ( off < cLeftPage
|
---|
322 | && !(uEFlags & X86_EFL_ZF));
|
---|
323 | uSrc1AddrReg += cbIncr * off;
|
---|
324 | uSrc2AddrReg += cbIncr * off;
|
---|
325 | uCounterReg -= off;
|
---|
326 | }
|
---|
327 |
|
---|
328 | /* Update the registers before looping. */
|
---|
329 | pCtx->ADDR_rCX = uCounterReg;
|
---|
330 | pCtx->ADDR_rSI = uSrc1AddrReg;
|
---|
331 | pCtx->ADDR_rDI = uSrc2AddrReg;
|
---|
332 | pCtx->eflags.u = uEFlags;
|
---|
333 |
|
---|
334 | iemMemPageUnmap(pIemCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, puSrc1Mem, &PgLockSrc1Mem);
|
---|
335 | iemMemPageUnmap(pIemCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
336 | continue;
|
---|
337 | }
|
---|
338 | iemMemPageUnmap(pIemCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
339 | }
|
---|
340 | }
|
---|
341 |
|
---|
342 | /*
|
---|
343 | * Fallback - slow processing till the end of the current page.
|
---|
344 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
345 | * as 0, we execute one loop then.
|
---|
346 | */
|
---|
347 | do
|
---|
348 | {
|
---|
349 | OP_TYPE uValue1;
|
---|
350 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pIemCpu, &uValue1, iEffSeg, uSrc1AddrReg);
|
---|
351 | if (rcStrict != VINF_SUCCESS)
|
---|
352 | return rcStrict;
|
---|
353 | OP_TYPE uValue2;
|
---|
354 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pIemCpu, &uValue2, X86_SREG_ES, uSrc2AddrReg);
|
---|
355 | if (rcStrict != VINF_SUCCESS)
|
---|
356 | return rcStrict;
|
---|
357 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(&uValue1, uValue2, &uEFlags);
|
---|
358 |
|
---|
359 | pCtx->ADDR_rSI = uSrc1AddrReg += cbIncr;
|
---|
360 | pCtx->ADDR_rDI = uSrc2AddrReg += cbIncr;
|
---|
361 | pCtx->ADDR_rCX = --uCounterReg;
|
---|
362 | pCtx->eflags.u = uEFlags;
|
---|
363 | cLeftPage--;
|
---|
364 | } while ( (int32_t)cLeftPage > 0
|
---|
365 | && !(uEFlags & X86_EFL_ZF));
|
---|
366 | } while ( uCounterReg != 0
|
---|
367 | && !(uEFlags & X86_EFL_ZF));
|
---|
368 |
|
---|
369 | /*
|
---|
370 | * Done.
|
---|
371 | */
|
---|
372 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
373 | return VINF_SUCCESS;
|
---|
374 | }
|
---|
375 |
|
---|
376 |
|
---|
377 | /**
|
---|
378 | * Implements 'REPE SCAS'.
|
---|
379 | */
|
---|
380 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_repe_scas_,OP_rAX,_m,ADDR_SIZE))
|
---|
381 | {
|
---|
382 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
383 |
|
---|
384 | /*
|
---|
385 | * Setup.
|
---|
386 | */
|
---|
387 | ADDR_TYPE uCounterReg = pCtx->ADDR_rCX;
|
---|
388 | if (uCounterReg == 0)
|
---|
389 | {
|
---|
390 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
391 | return VINF_SUCCESS;
|
---|
392 | }
|
---|
393 |
|
---|
394 | uint64_t uBaseAddr;
|
---|
395 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pIemCpu, &pCtx->es, X86_SREG_ES, &uBaseAddr);
|
---|
396 | if (rcStrict != VINF_SUCCESS)
|
---|
397 | return rcStrict;
|
---|
398 |
|
---|
399 | int8_t const cbIncr = pCtx->eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
400 | OP_TYPE const uValueReg = pCtx->OP_rAX;
|
---|
401 | ADDR_TYPE uAddrReg = pCtx->ADDR_rDI;
|
---|
402 | uint32_t uEFlags = pCtx->eflags.u;
|
---|
403 |
|
---|
404 | /*
|
---|
405 | * The loop.
|
---|
406 | */
|
---|
407 | do
|
---|
408 | {
|
---|
409 | /*
|
---|
410 | * Do segmentation and virtual page stuff.
|
---|
411 | */
|
---|
412 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
413 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
414 | if (cLeftPage > uCounterReg)
|
---|
415 | cLeftPage = uCounterReg;
|
---|
416 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
417 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
418 | && ( IS_64_BIT_CODE(pIemCpu)
|
---|
419 | || ( uAddrReg < pCtx->es.u32Limit
|
---|
420 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pCtx->es.u32Limit)
|
---|
421 | )
|
---|
422 | )
|
---|
423 | {
|
---|
424 | RTGCPHYS GCPhysMem;
|
---|
425 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
426 | if (rcStrict != VINF_SUCCESS)
|
---|
427 | return rcStrict;
|
---|
428 |
|
---|
429 | /*
|
---|
430 | * If we can map the page without trouble, do a block processing
|
---|
431 | * until the end of the current page.
|
---|
432 | */
|
---|
433 | PGMPAGEMAPLOCK PgLockMem;
|
---|
434 | OP_TYPE const *puMem;
|
---|
435 | rcStrict = iemMemPageMap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
436 | if (rcStrict == VINF_SUCCESS)
|
---|
437 | {
|
---|
438 | /* Search till we find a mismatching item. */
|
---|
439 | OP_TYPE uTmpValue;
|
---|
440 | bool fQuit;
|
---|
441 | uint32_t i = 0;
|
---|
442 | do
|
---|
443 | {
|
---|
444 | uTmpValue = puMem[i++];
|
---|
445 | fQuit = uTmpValue != uValueReg;
|
---|
446 | } while (i < cLeftPage && !fQuit);
|
---|
447 |
|
---|
448 | /* Update the regs. */
|
---|
449 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
450 | pCtx->ADDR_rCX = uCounterReg -= i;
|
---|
451 | pCtx->ADDR_rDI = uAddrReg += i * cbIncr;
|
---|
452 | pCtx->eflags.u = uEFlags;
|
---|
453 | Assert(!(uEFlags & X86_EFL_ZF) == fQuit);
|
---|
454 | iemMemPageUnmap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
455 | if (fQuit)
|
---|
456 | break;
|
---|
457 |
|
---|
458 |
|
---|
459 | /* If unaligned, we drop thru and do the page crossing access
|
---|
460 | below. Otherwise, do the next page. */
|
---|
461 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
462 | continue;
|
---|
463 | if (uCounterReg == 0)
|
---|
464 | break;
|
---|
465 | cLeftPage = 0;
|
---|
466 | }
|
---|
467 | }
|
---|
468 |
|
---|
469 | /*
|
---|
470 | * Fallback - slow processing till the end of the current page.
|
---|
471 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
472 | * as 0, we execute one loop then.
|
---|
473 | */
|
---|
474 | do
|
---|
475 | {
|
---|
476 | OP_TYPE uTmpValue;
|
---|
477 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pIemCpu, &uTmpValue, X86_SREG_ES, uAddrReg);
|
---|
478 | if (rcStrict != VINF_SUCCESS)
|
---|
479 | return rcStrict;
|
---|
480 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
481 |
|
---|
482 | pCtx->ADDR_rDI = uAddrReg += cbIncr;
|
---|
483 | pCtx->ADDR_rCX = --uCounterReg;
|
---|
484 | pCtx->eflags.u = uEFlags;
|
---|
485 | cLeftPage--;
|
---|
486 | } while ( (int32_t)cLeftPage > 0
|
---|
487 | && (uEFlags & X86_EFL_ZF));
|
---|
488 | } while ( uCounterReg != 0
|
---|
489 | && (uEFlags & X86_EFL_ZF));
|
---|
490 |
|
---|
491 | /*
|
---|
492 | * Done.
|
---|
493 | */
|
---|
494 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
495 | return VINF_SUCCESS;
|
---|
496 | }
|
---|
497 |
|
---|
498 |
|
---|
499 | /**
|
---|
500 | * Implements 'REPNE SCAS'.
|
---|
501 | */
|
---|
502 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_repne_scas_,OP_rAX,_m,ADDR_SIZE))
|
---|
503 | {
|
---|
504 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
505 |
|
---|
506 | /*
|
---|
507 | * Setup.
|
---|
508 | */
|
---|
509 | ADDR_TYPE uCounterReg = pCtx->ADDR_rCX;
|
---|
510 | if (uCounterReg == 0)
|
---|
511 | {
|
---|
512 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
513 | return VINF_SUCCESS;
|
---|
514 | }
|
---|
515 |
|
---|
516 | uint64_t uBaseAddr;
|
---|
517 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pIemCpu, &pCtx->es, X86_SREG_ES, &uBaseAddr);
|
---|
518 | if (rcStrict != VINF_SUCCESS)
|
---|
519 | return rcStrict;
|
---|
520 |
|
---|
521 | int8_t const cbIncr = pCtx->eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
522 | OP_TYPE const uValueReg = pCtx->OP_rAX;
|
---|
523 | ADDR_TYPE uAddrReg = pCtx->ADDR_rDI;
|
---|
524 | uint32_t uEFlags = pCtx->eflags.u;
|
---|
525 |
|
---|
526 | /*
|
---|
527 | * The loop.
|
---|
528 | */
|
---|
529 | do
|
---|
530 | {
|
---|
531 | /*
|
---|
532 | * Do segmentation and virtual page stuff.
|
---|
533 | */
|
---|
534 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
535 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
536 | if (cLeftPage > uCounterReg)
|
---|
537 | cLeftPage = uCounterReg;
|
---|
538 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
539 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
540 | && ( IS_64_BIT_CODE(pIemCpu)
|
---|
541 | || ( uAddrReg < pCtx->es.u32Limit
|
---|
542 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pCtx->es.u32Limit)
|
---|
543 | )
|
---|
544 | )
|
---|
545 | {
|
---|
546 | RTGCPHYS GCPhysMem;
|
---|
547 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
548 | if (rcStrict != VINF_SUCCESS)
|
---|
549 | return rcStrict;
|
---|
550 |
|
---|
551 | /*
|
---|
552 | * If we can map the page without trouble, do a block processing
|
---|
553 | * until the end of the current page.
|
---|
554 | */
|
---|
555 | PGMPAGEMAPLOCK PgLockMem;
|
---|
556 | OP_TYPE const *puMem;
|
---|
557 | rcStrict = iemMemPageMap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
558 | if (rcStrict == VINF_SUCCESS)
|
---|
559 | {
|
---|
560 | /* Search till we find a mismatching item. */
|
---|
561 | OP_TYPE uTmpValue;
|
---|
562 | bool fQuit;
|
---|
563 | uint32_t i = 0;
|
---|
564 | do
|
---|
565 | {
|
---|
566 | uTmpValue = puMem[i++];
|
---|
567 | fQuit = uTmpValue == uValueReg;
|
---|
568 | } while (i < cLeftPage && !fQuit);
|
---|
569 |
|
---|
570 | /* Update the regs. */
|
---|
571 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
572 | pCtx->ADDR_rCX = uCounterReg -= i;
|
---|
573 | pCtx->ADDR_rDI = uAddrReg += i * cbIncr;
|
---|
574 | pCtx->eflags.u = uEFlags;
|
---|
575 | Assert(!!(uEFlags & X86_EFL_ZF) == fQuit);
|
---|
576 | iemMemPageUnmap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
577 | if (fQuit)
|
---|
578 | break;
|
---|
579 |
|
---|
580 |
|
---|
581 | /* If unaligned, we drop thru and do the page crossing access
|
---|
582 | below. Otherwise, do the next page. */
|
---|
583 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
584 | continue;
|
---|
585 | if (uCounterReg == 0)
|
---|
586 | break;
|
---|
587 | cLeftPage = 0;
|
---|
588 | }
|
---|
589 | }
|
---|
590 |
|
---|
591 | /*
|
---|
592 | * Fallback - slow processing till the end of the current page.
|
---|
593 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
594 | * as 0, we execute one loop then.
|
---|
595 | */
|
---|
596 | do
|
---|
597 | {
|
---|
598 | OP_TYPE uTmpValue;
|
---|
599 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pIemCpu, &uTmpValue, X86_SREG_ES, uAddrReg);
|
---|
600 | if (rcStrict != VINF_SUCCESS)
|
---|
601 | return rcStrict;
|
---|
602 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
603 | pCtx->ADDR_rDI = uAddrReg += cbIncr;
|
---|
604 | pCtx->ADDR_rCX = --uCounterReg;
|
---|
605 | pCtx->eflags.u = uEFlags;
|
---|
606 | cLeftPage--;
|
---|
607 | } while ( (int32_t)cLeftPage > 0
|
---|
608 | && !(uEFlags & X86_EFL_ZF));
|
---|
609 | } while ( uCounterReg != 0
|
---|
610 | && !(uEFlags & X86_EFL_ZF));
|
---|
611 |
|
---|
612 | /*
|
---|
613 | * Done.
|
---|
614 | */
|
---|
615 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
616 | return VINF_SUCCESS;
|
---|
617 | }
|
---|
618 |
|
---|
619 |
|
---|
620 |
|
---|
621 |
|
---|
622 | /**
|
---|
623 | * Implements 'REP MOVS'.
|
---|
624 | */
|
---|
625 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_rep_movs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
626 | {
|
---|
627 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
628 |
|
---|
629 | /*
|
---|
630 | * Setup.
|
---|
631 | */
|
---|
632 | ADDR_TYPE uCounterReg = pCtx->ADDR_rCX;
|
---|
633 | if (uCounterReg == 0)
|
---|
634 | {
|
---|
635 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
636 | return VINF_SUCCESS;
|
---|
637 | }
|
---|
638 |
|
---|
639 | PCCPUMSELREGHID pSrcHid = iemSRegGetHid(pIemCpu, iEffSeg);
|
---|
640 | uint64_t uSrcBase;
|
---|
641 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pIemCpu, pSrcHid, iEffSeg, &uSrcBase);
|
---|
642 | if (rcStrict != VINF_SUCCESS)
|
---|
643 | return rcStrict;
|
---|
644 |
|
---|
645 | uint64_t uDstBase;
|
---|
646 | rcStrict = iemMemSegCheckWriteAccessEx(pIemCpu, &pCtx->es, X86_SREG_ES, &uDstBase);
|
---|
647 | if (rcStrict != VINF_SUCCESS)
|
---|
648 | return rcStrict;
|
---|
649 |
|
---|
650 | int8_t const cbIncr = pCtx->eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
651 | ADDR_TYPE uSrcAddrReg = pCtx->ADDR_rSI;
|
---|
652 | ADDR_TYPE uDstAddrReg = pCtx->ADDR_rDI;
|
---|
653 |
|
---|
654 | /*
|
---|
655 | * Be careful with handle bypassing.
|
---|
656 | */
|
---|
657 | if (pIemCpu->fBypassHandlers)
|
---|
658 | {
|
---|
659 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
660 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
661 | }
|
---|
662 |
|
---|
663 | /*
|
---|
664 | * If we're reading back what we write, we have to let the verfication code
|
---|
665 | * to prevent a false positive.
|
---|
666 | * Note! This doesn't take aliasing or wrapping into account - lazy bird.
|
---|
667 | */
|
---|
668 | #ifdef IEM_VERIFICATION_MODE_FULL
|
---|
669 | if ( IEM_VERIFICATION_ENABLED(pIemCpu)
|
---|
670 | && (cbIncr > 0
|
---|
671 | ? uSrcAddrReg <= uDstAddrReg
|
---|
672 | && uSrcAddrReg + cbIncr * uCounterReg > uDstAddrReg
|
---|
673 | : uDstAddrReg <= uSrcAddrReg
|
---|
674 | && uDstAddrReg + cbIncr * uCounterReg > uSrcAddrReg))
|
---|
675 | pIemCpu->fOverlappingMovs = true;
|
---|
676 | #endif
|
---|
677 |
|
---|
678 | /*
|
---|
679 | * The loop.
|
---|
680 | */
|
---|
681 | do
|
---|
682 | {
|
---|
683 | /*
|
---|
684 | * Do segmentation and virtual page stuff.
|
---|
685 | */
|
---|
686 | ADDR2_TYPE uVirtSrcAddr = uSrcAddrReg + (ADDR2_TYPE)uSrcBase;
|
---|
687 | ADDR2_TYPE uVirtDstAddr = uDstAddrReg + (ADDR2_TYPE)uDstBase;
|
---|
688 | uint32_t cLeftSrcPage = (PAGE_SIZE - (uVirtSrcAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
689 | if (cLeftSrcPage > uCounterReg)
|
---|
690 | cLeftSrcPage = uCounterReg;
|
---|
691 | uint32_t cLeftDstPage = (PAGE_SIZE - (uVirtDstAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
692 | uint32_t cLeftPage = RT_MIN(cLeftSrcPage, cLeftDstPage);
|
---|
693 |
|
---|
694 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
695 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
696 | && ( IS_64_BIT_CODE(pIemCpu)
|
---|
697 | || ( uSrcAddrReg < pSrcHid->u32Limit
|
---|
698 | && uSrcAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrcHid->u32Limit
|
---|
699 | && uDstAddrReg < pCtx->es.u32Limit
|
---|
700 | && uDstAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pCtx->es.u32Limit)
|
---|
701 | )
|
---|
702 | )
|
---|
703 | {
|
---|
704 | RTGCPHYS GCPhysSrcMem;
|
---|
705 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtSrcAddr, IEM_ACCESS_DATA_R, &GCPhysSrcMem);
|
---|
706 | if (rcStrict != VINF_SUCCESS)
|
---|
707 | return rcStrict;
|
---|
708 |
|
---|
709 | RTGCPHYS GCPhysDstMem;
|
---|
710 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtDstAddr, IEM_ACCESS_DATA_W, &GCPhysDstMem);
|
---|
711 | if (rcStrict != VINF_SUCCESS)
|
---|
712 | return rcStrict;
|
---|
713 |
|
---|
714 | /*
|
---|
715 | * If we can map the page without trouble, do a block processing
|
---|
716 | * until the end of the current page.
|
---|
717 | */
|
---|
718 | PGMPAGEMAPLOCK PgLockDstMem;
|
---|
719 | OP_TYPE *puDstMem;
|
---|
720 | rcStrict = iemMemPageMap(pIemCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, (void **)&puDstMem, &PgLockDstMem);
|
---|
721 | if (rcStrict == VINF_SUCCESS)
|
---|
722 | {
|
---|
723 | PGMPAGEMAPLOCK PgLockSrcMem;
|
---|
724 | OP_TYPE const *puSrcMem;
|
---|
725 | rcStrict = iemMemPageMap(pIemCpu, GCPhysSrcMem, IEM_ACCESS_DATA_R, (void **)&puSrcMem, &PgLockSrcMem);
|
---|
726 | if (rcStrict == VINF_SUCCESS)
|
---|
727 | {
|
---|
728 | Assert( (GCPhysSrcMem >> PAGE_SHIFT) != (GCPhysDstMem >> PAGE_SHIFT)
|
---|
729 | || ((uintptr_t)puSrcMem >> PAGE_SHIFT) == ((uintptr_t)puDstMem >> PAGE_SHIFT));
|
---|
730 |
|
---|
731 | /* Perform the operation exactly (don't use memcpy to avoid
|
---|
732 | having to consider how its implementation would affect
|
---|
733 | any overlapping source and destination area). */
|
---|
734 | OP_TYPE const *puSrcCur = puSrcMem;
|
---|
735 | OP_TYPE *puDstCur = puDstMem;
|
---|
736 | uint32_t cTodo = cLeftPage;
|
---|
737 | while (cTodo-- > 0)
|
---|
738 | *puDstCur++ = *puSrcCur++;
|
---|
739 |
|
---|
740 | /* Update the registers. */
|
---|
741 | pCtx->ADDR_rSI = uSrcAddrReg += cLeftPage * cbIncr;
|
---|
742 | pCtx->ADDR_rDI = uDstAddrReg += cLeftPage * cbIncr;
|
---|
743 | pCtx->ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
744 |
|
---|
745 | iemMemPageUnmap(pIemCpu, GCPhysSrcMem, IEM_ACCESS_DATA_R, puSrcMem, &PgLockSrcMem);
|
---|
746 | iemMemPageUnmap(pIemCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, puDstMem, &PgLockDstMem);
|
---|
747 | continue;
|
---|
748 | }
|
---|
749 | iemMemPageUnmap(pIemCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, puDstMem, &PgLockDstMem);
|
---|
750 | }
|
---|
751 | }
|
---|
752 |
|
---|
753 | /*
|
---|
754 | * Fallback - slow processing till the end of the current page.
|
---|
755 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
756 | * as 0, we execute one loop then.
|
---|
757 | */
|
---|
758 | do
|
---|
759 | {
|
---|
760 | OP_TYPE uValue;
|
---|
761 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pIemCpu, &uValue, iEffSeg, uSrcAddrReg);
|
---|
762 | if (rcStrict != VINF_SUCCESS)
|
---|
763 | return rcStrict;
|
---|
764 | rcStrict = RT_CONCAT(iemMemStoreDataU,OP_SIZE)(pIemCpu, X86_SREG_ES, uDstAddrReg, uValue);
|
---|
765 | if (rcStrict != VINF_SUCCESS)
|
---|
766 | return rcStrict;
|
---|
767 |
|
---|
768 | pCtx->ADDR_rSI = uSrcAddrReg += cbIncr;
|
---|
769 | pCtx->ADDR_rDI = uDstAddrReg += cbIncr;
|
---|
770 | pCtx->ADDR_rCX = --uCounterReg;
|
---|
771 | cLeftPage--;
|
---|
772 | } while ((int32_t)cLeftPage > 0);
|
---|
773 | } while (uCounterReg != 0);
|
---|
774 |
|
---|
775 | /*
|
---|
776 | * Done.
|
---|
777 | */
|
---|
778 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
779 | return VINF_SUCCESS;
|
---|
780 | }
|
---|
781 |
|
---|
782 |
|
---|
783 | /**
|
---|
784 | * Implements 'REP STOS'.
|
---|
785 | */
|
---|
786 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_stos_,OP_rAX,_m,ADDR_SIZE))
|
---|
787 | {
|
---|
788 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
789 |
|
---|
790 | /*
|
---|
791 | * Setup.
|
---|
792 | */
|
---|
793 | ADDR_TYPE uCounterReg = pCtx->ADDR_rCX;
|
---|
794 | if (uCounterReg == 0)
|
---|
795 | {
|
---|
796 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
797 | return VINF_SUCCESS;
|
---|
798 | }
|
---|
799 |
|
---|
800 | uint64_t uBaseAddr;
|
---|
801 | VBOXSTRICTRC rcStrict = iemMemSegCheckWriteAccessEx(pIemCpu, &pCtx->es, X86_SREG_ES, &uBaseAddr);
|
---|
802 | if (rcStrict != VINF_SUCCESS)
|
---|
803 | return rcStrict;
|
---|
804 |
|
---|
805 | int8_t const cbIncr = pCtx->eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
806 | OP_TYPE const uValue = pCtx->OP_rAX;
|
---|
807 | ADDR_TYPE uAddrReg = pCtx->ADDR_rDI;
|
---|
808 |
|
---|
809 | /*
|
---|
810 | * Be careful with handle bypassing.
|
---|
811 | */
|
---|
812 | /** @todo Permit doing a page if correctly aligned. */
|
---|
813 | if (pIemCpu->fBypassHandlers)
|
---|
814 | {
|
---|
815 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
816 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
817 | }
|
---|
818 |
|
---|
819 | /*
|
---|
820 | * The loop.
|
---|
821 | */
|
---|
822 | do
|
---|
823 | {
|
---|
824 | /*
|
---|
825 | * Do segmentation and virtual page stuff.
|
---|
826 | */
|
---|
827 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
828 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
829 | if (cLeftPage > uCounterReg)
|
---|
830 | cLeftPage = uCounterReg;
|
---|
831 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
832 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
833 | && ( IS_64_BIT_CODE(pIemCpu)
|
---|
834 | || ( uAddrReg < pCtx->es.u32Limit
|
---|
835 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pCtx->es.u32Limit)
|
---|
836 | )
|
---|
837 | )
|
---|
838 | {
|
---|
839 | RTGCPHYS GCPhysMem;
|
---|
840 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtAddr, IEM_ACCESS_DATA_W, &GCPhysMem);
|
---|
841 | if (rcStrict != VINF_SUCCESS)
|
---|
842 | return rcStrict;
|
---|
843 |
|
---|
844 | /*
|
---|
845 | * If we can map the page without trouble, do a block processing
|
---|
846 | * until the end of the current page.
|
---|
847 | */
|
---|
848 | PGMPAGEMAPLOCK PgLockMem;
|
---|
849 | OP_TYPE *puMem;
|
---|
850 | rcStrict = iemMemPageMap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_W, (void **)&puMem, &PgLockMem);
|
---|
851 | if (rcStrict == VINF_SUCCESS)
|
---|
852 | {
|
---|
853 | /* Update the regs first so we can loop on cLeftPage. */
|
---|
854 | pCtx->ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
855 | pCtx->ADDR_rDI = uAddrReg += cLeftPage * cbIncr;
|
---|
856 |
|
---|
857 | /* Do the memsetting. */
|
---|
858 | #if OP_SIZE == 8
|
---|
859 | memset(puMem, uValue, cLeftPage);
|
---|
860 | /*#elif OP_SIZE == 32
|
---|
861 | ASMMemFill32(puMem, cLeftPage * (OP_SIZE / 8), uValue);*/
|
---|
862 | #else
|
---|
863 | while (cLeftPage-- > 0)
|
---|
864 | *puMem++ = uValue;
|
---|
865 | #endif
|
---|
866 |
|
---|
867 | iemMemPageUnmap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_W, puMem, &PgLockMem);
|
---|
868 |
|
---|
869 | /* If unaligned, we drop thru and do the page crossing access
|
---|
870 | below. Otherwise, do the next page. */
|
---|
871 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
872 | continue;
|
---|
873 | if (uCounterReg == 0)
|
---|
874 | break;
|
---|
875 | cLeftPage = 0;
|
---|
876 | }
|
---|
877 | }
|
---|
878 |
|
---|
879 | /*
|
---|
880 | * Fallback - slow processing till the end of the current page.
|
---|
881 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
882 | * as 0, we execute one loop then.
|
---|
883 | */
|
---|
884 | do
|
---|
885 | {
|
---|
886 | rcStrict = RT_CONCAT(iemMemStoreDataU,OP_SIZE)(pIemCpu, X86_SREG_ES, uAddrReg, uValue);
|
---|
887 | if (rcStrict != VINF_SUCCESS)
|
---|
888 | return rcStrict;
|
---|
889 | pCtx->ADDR_rDI = uAddrReg += cbIncr;
|
---|
890 | pCtx->ADDR_rCX = --uCounterReg;
|
---|
891 | cLeftPage--;
|
---|
892 | } while ((int32_t)cLeftPage > 0);
|
---|
893 | } while (uCounterReg != 0);
|
---|
894 |
|
---|
895 | /*
|
---|
896 | * Done.
|
---|
897 | */
|
---|
898 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
899 | return VINF_SUCCESS;
|
---|
900 | }
|
---|
901 |
|
---|
902 |
|
---|
903 | /**
|
---|
904 | * Implements 'REP LODS'.
|
---|
905 | */
|
---|
906 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_lods_,OP_rAX,_m,ADDR_SIZE), int8_t, iEffSeg)
|
---|
907 | {
|
---|
908 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
909 |
|
---|
910 | /*
|
---|
911 | * Setup.
|
---|
912 | */
|
---|
913 | ADDR_TYPE uCounterReg = pCtx->ADDR_rCX;
|
---|
914 | if (uCounterReg == 0)
|
---|
915 | {
|
---|
916 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
917 | return VINF_SUCCESS;
|
---|
918 | }
|
---|
919 |
|
---|
920 | PCCPUMSELREGHID pSrcHid = iemSRegGetHid(pIemCpu, iEffSeg);
|
---|
921 | uint64_t uBaseAddr;
|
---|
922 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pIemCpu, pSrcHid, iEffSeg, &uBaseAddr);
|
---|
923 | if (rcStrict != VINF_SUCCESS)
|
---|
924 | return rcStrict;
|
---|
925 |
|
---|
926 | int8_t const cbIncr = pCtx->eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
927 | ADDR_TYPE uAddrReg = pCtx->ADDR_rSI;
|
---|
928 |
|
---|
929 | /*
|
---|
930 | * The loop.
|
---|
931 | */
|
---|
932 | do
|
---|
933 | {
|
---|
934 | /*
|
---|
935 | * Do segmentation and virtual page stuff.
|
---|
936 | */
|
---|
937 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
938 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
939 | if (cLeftPage > uCounterReg)
|
---|
940 | cLeftPage = uCounterReg;
|
---|
941 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
942 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
943 | && ( IS_64_BIT_CODE(pIemCpu)
|
---|
944 | || ( uAddrReg < pSrcHid->u32Limit
|
---|
945 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrcHid->u32Limit)
|
---|
946 | )
|
---|
947 | )
|
---|
948 | {
|
---|
949 | RTGCPHYS GCPhysMem;
|
---|
950 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
951 | if (rcStrict != VINF_SUCCESS)
|
---|
952 | return rcStrict;
|
---|
953 |
|
---|
954 | /*
|
---|
955 | * If we can map the page without trouble, we can get away with
|
---|
956 | * just reading the last value on the page.
|
---|
957 | */
|
---|
958 | PGMPAGEMAPLOCK PgLockMem;
|
---|
959 | OP_TYPE const *puMem;
|
---|
960 | rcStrict = iemMemPageMap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
961 | if (rcStrict == VINF_SUCCESS)
|
---|
962 | {
|
---|
963 | /* Only get the last byte, the rest doesn't matter in direct access mode. */
|
---|
964 | #if OP_SIZE == 32
|
---|
965 | pCtx->rax = puMem[cLeftPage - 1];
|
---|
966 | #else
|
---|
967 | pCtx->OP_rAX = puMem[cLeftPage - 1];
|
---|
968 | #endif
|
---|
969 | pCtx->ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
970 | pCtx->ADDR_rSI = uAddrReg += cLeftPage * cbIncr;
|
---|
971 | iemMemPageUnmap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
972 |
|
---|
973 | /* If unaligned, we drop thru and do the page crossing access
|
---|
974 | below. Otherwise, do the next page. */
|
---|
975 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
976 | continue;
|
---|
977 | if (uCounterReg == 0)
|
---|
978 | break;
|
---|
979 | cLeftPage = 0;
|
---|
980 | }
|
---|
981 | }
|
---|
982 |
|
---|
983 | /*
|
---|
984 | * Fallback - slow processing till the end of the current page.
|
---|
985 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
986 | * as 0, we execute one loop then.
|
---|
987 | */
|
---|
988 | do
|
---|
989 | {
|
---|
990 | OP_TYPE uTmpValue;
|
---|
991 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pIemCpu, &uTmpValue, iEffSeg, uAddrReg);
|
---|
992 | if (rcStrict != VINF_SUCCESS)
|
---|
993 | return rcStrict;
|
---|
994 | #if OP_SIZE == 32
|
---|
995 | pCtx->rax = uTmpValue;
|
---|
996 | #else
|
---|
997 | pCtx->OP_rAX = uTmpValue;
|
---|
998 | #endif
|
---|
999 | pCtx->ADDR_rSI = uAddrReg += cbIncr;
|
---|
1000 | pCtx->ADDR_rCX = --uCounterReg;
|
---|
1001 | cLeftPage--;
|
---|
1002 | } while ((int32_t)cLeftPage > 0);
|
---|
1003 | if (rcStrict != VINF_SUCCESS)
|
---|
1004 | break;
|
---|
1005 | } while (uCounterReg != 0);
|
---|
1006 |
|
---|
1007 | /*
|
---|
1008 | * Done.
|
---|
1009 | */
|
---|
1010 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
1011 | return VINF_SUCCESS;
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 |
|
---|
1015 | #if OP_SIZE != 64
|
---|
1016 |
|
---|
1017 | /**
|
---|
1018 | * Implements 'INS' (no rep)
|
---|
1019 | */
|
---|
1020 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_ins_op,OP_SIZE,_addr,ADDR_SIZE), bool, fIoChecked)
|
---|
1021 | {
|
---|
1022 | PVM pVM = IEMCPU_TO_VM(pIemCpu);
|
---|
1023 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1024 | VBOXSTRICTRC rcStrict;
|
---|
1025 |
|
---|
1026 | /*
|
---|
1027 | * Be careful with handle bypassing.
|
---|
1028 | */
|
---|
1029 | if (pIemCpu->fBypassHandlers)
|
---|
1030 | {
|
---|
1031 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
1032 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
1033 | }
|
---|
1034 |
|
---|
1035 | /*
|
---|
1036 | * ASSUMES the #GP for I/O permission is taken first, then any #GP for
|
---|
1037 | * segmentation and finally any #PF due to virtual address translation.
|
---|
1038 | * ASSUMES nothing is read from the I/O port before traps are taken.
|
---|
1039 | */
|
---|
1040 | if (!fIoChecked)
|
---|
1041 | {
|
---|
1042 | rcStrict = iemHlpCheckPortIOPermission(pIemCpu, pCtx, pCtx->dx, OP_SIZE / 8);
|
---|
1043 | if (rcStrict != VINF_SUCCESS)
|
---|
1044 | return rcStrict;
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 | OP_TYPE *puMem;
|
---|
1048 | rcStrict = iemMemMap(pIemCpu, (void **)&puMem, OP_SIZE / 8, X86_SREG_ES, pCtx->ADDR_rDI, IEM_ACCESS_DATA_W);
|
---|
1049 | if (rcStrict != VINF_SUCCESS)
|
---|
1050 | return rcStrict;
|
---|
1051 |
|
---|
1052 | uint32_t u32Value = 0;
|
---|
1053 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1054 | rcStrict = IOMIOPortRead(pVM, IEMCPU_TO_VMCPU(pIemCpu), pCtx->dx, &u32Value, OP_SIZE / 8);
|
---|
1055 | else
|
---|
1056 | rcStrict = iemVerifyFakeIOPortRead(pIemCpu, pCtx->dx, &u32Value, OP_SIZE / 8);
|
---|
1057 | if (IOM_SUCCESS(rcStrict))
|
---|
1058 | {
|
---|
1059 | *puMem = (OP_TYPE)u32Value;
|
---|
1060 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmap(pIemCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1061 | if (RT_LIKELY(rcStrict2 == VINF_SUCCESS))
|
---|
1062 | {
|
---|
1063 | if (!pCtx->eflags.Bits.u1DF)
|
---|
1064 | pCtx->ADDR_rDI += OP_SIZE / 8;
|
---|
1065 | else
|
---|
1066 | pCtx->ADDR_rDI -= OP_SIZE / 8;
|
---|
1067 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
1068 | }
|
---|
1069 | /* iemMemMap already checked permissions, so this may only be real errors
|
---|
1070 | or access handlers meddling. The access handler case is going to
|
---|
1071 | cause misbehavior if the instruction is re-interpreted or smth. So,
|
---|
1072 | we fail with an internal error here instead. */
|
---|
1073 | else
|
---|
1074 | AssertLogRelMsgFailedReturn(("rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)), VERR_IEM_IPE_1);
|
---|
1075 | }
|
---|
1076 | return rcStrict;
|
---|
1077 | }
|
---|
1078 |
|
---|
1079 |
|
---|
1080 | /**
|
---|
1081 | * Implements 'REP INS'.
|
---|
1082 | */
|
---|
1083 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_rep_ins_op,OP_SIZE,_addr,ADDR_SIZE), bool, fIoChecked)
|
---|
1084 | {
|
---|
1085 | PVM pVM = IEMCPU_TO_VM(pIemCpu);
|
---|
1086 | PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
|
---|
1087 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1088 |
|
---|
1089 | /*
|
---|
1090 | * Setup.
|
---|
1091 | */
|
---|
1092 | uint16_t const u16Port = pCtx->dx;
|
---|
1093 | VBOXSTRICTRC rcStrict;
|
---|
1094 | if (!fIoChecked)
|
---|
1095 | {
|
---|
1096 | rcStrict = iemHlpCheckPortIOPermission(pIemCpu, pCtx, u16Port, OP_SIZE / 8);
|
---|
1097 | if (rcStrict != VINF_SUCCESS)
|
---|
1098 | return rcStrict;
|
---|
1099 | }
|
---|
1100 |
|
---|
1101 | ADDR_TYPE uCounterReg = pCtx->ADDR_rCX;
|
---|
1102 | if (uCounterReg == 0)
|
---|
1103 | {
|
---|
1104 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
1105 | return VINF_SUCCESS;
|
---|
1106 | }
|
---|
1107 |
|
---|
1108 | uint64_t uBaseAddr;
|
---|
1109 | rcStrict = iemMemSegCheckWriteAccessEx(pIemCpu, &pCtx->es, X86_SREG_ES, &uBaseAddr);
|
---|
1110 | if (rcStrict != VINF_SUCCESS)
|
---|
1111 | return rcStrict;
|
---|
1112 |
|
---|
1113 | int8_t const cbIncr = pCtx->eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
1114 | ADDR_TYPE uAddrReg = pCtx->ADDR_rDI;
|
---|
1115 |
|
---|
1116 | /*
|
---|
1117 | * Be careful with handle bypassing.
|
---|
1118 | */
|
---|
1119 | if (pIemCpu->fBypassHandlers)
|
---|
1120 | {
|
---|
1121 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
1122 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
1123 | }
|
---|
1124 |
|
---|
1125 | /*
|
---|
1126 | * The loop.
|
---|
1127 | */
|
---|
1128 | do
|
---|
1129 | {
|
---|
1130 | /*
|
---|
1131 | * Do segmentation and virtual page stuff.
|
---|
1132 | */
|
---|
1133 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
1134 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
1135 | if (cLeftPage > uCounterReg)
|
---|
1136 | cLeftPage = uCounterReg;
|
---|
1137 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
1138 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
1139 | && ( IS_64_BIT_CODE(pIemCpu)
|
---|
1140 | || ( uAddrReg < pCtx->es.u32Limit
|
---|
1141 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pCtx->es.u32Limit)
|
---|
1142 | )
|
---|
1143 | )
|
---|
1144 | {
|
---|
1145 | RTGCPHYS GCPhysMem;
|
---|
1146 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtAddr, IEM_ACCESS_DATA_W, &GCPhysMem);
|
---|
1147 | if (rcStrict != VINF_SUCCESS)
|
---|
1148 | return rcStrict;
|
---|
1149 |
|
---|
1150 | /*
|
---|
1151 | * If we can map the page without trouble, we would've liked to use
|
---|
1152 | * an string I/O method to do the work, but the current IOM
|
---|
1153 | * interface doesn't match our current approach. So, do a regular
|
---|
1154 | * loop instead.
|
---|
1155 | */
|
---|
1156 | /** @todo Change the I/O manager interface to make use of
|
---|
1157 | * mapped buffers instead of leaving those bits to the
|
---|
1158 | * device implementation! */
|
---|
1159 | PGMPAGEMAPLOCK PgLockMem;
|
---|
1160 | OP_TYPE *puMem;
|
---|
1161 | rcStrict = iemMemPageMap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_W, (void **)&puMem, &PgLockMem);
|
---|
1162 | if (rcStrict == VINF_SUCCESS)
|
---|
1163 | {
|
---|
1164 | uint32_t off = 0;
|
---|
1165 | while (off < cLeftPage)
|
---|
1166 | {
|
---|
1167 | uint32_t u32Value;
|
---|
1168 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1169 | rcStrict = IOMIOPortRead(pVM, pVCpu, u16Port, &u32Value, OP_SIZE / 8);
|
---|
1170 | else
|
---|
1171 | rcStrict = iemVerifyFakeIOPortRead(pIemCpu, u16Port, &u32Value, OP_SIZE / 8);
|
---|
1172 | if (IOM_SUCCESS(rcStrict))
|
---|
1173 | {
|
---|
1174 | puMem[off] = (OP_TYPE)u32Value;
|
---|
1175 | pCtx->ADDR_rDI = uAddrReg += cbIncr;
|
---|
1176 | pCtx->ADDR_rCX = --uCounterReg;
|
---|
1177 | }
|
---|
1178 | if (rcStrict != VINF_SUCCESS)
|
---|
1179 | {
|
---|
1180 | if (IOM_SUCCESS(rcStrict))
|
---|
1181 | {
|
---|
1182 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
1183 | if (uCounterReg == 0)
|
---|
1184 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
1185 | }
|
---|
1186 | iemMemPageUnmap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_W, puMem, &PgLockMem);
|
---|
1187 | return rcStrict;
|
---|
1188 | }
|
---|
1189 | off++;
|
---|
1190 | }
|
---|
1191 | iemMemPageUnmap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_W, puMem, &PgLockMem);
|
---|
1192 |
|
---|
1193 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1194 | below. Otherwise, do the next page. */
|
---|
1195 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
1196 | continue;
|
---|
1197 | if (uCounterReg == 0)
|
---|
1198 | break;
|
---|
1199 | cLeftPage = 0;
|
---|
1200 | }
|
---|
1201 | }
|
---|
1202 |
|
---|
1203 | /*
|
---|
1204 | * Fallback - slow processing till the end of the current page.
|
---|
1205 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1206 | * as 0, we execute one loop then.
|
---|
1207 | *
|
---|
1208 | * Note! We ASSUME the CPU will raise #PF or #GP before access the
|
---|
1209 | * I/O port, otherwise it wouldn't really be restartable.
|
---|
1210 | */
|
---|
1211 | /** @todo investigate what the CPU actually does with \#PF/\#GP
|
---|
1212 | * during INS. */
|
---|
1213 | do
|
---|
1214 | {
|
---|
1215 | OP_TYPE *puMem;
|
---|
1216 | rcStrict = iemMemMap(pIemCpu, (void **)&puMem, OP_SIZE / 8, X86_SREG_ES, uAddrReg, IEM_ACCESS_DATA_W);
|
---|
1217 | if (rcStrict != VINF_SUCCESS)
|
---|
1218 | return rcStrict;
|
---|
1219 |
|
---|
1220 | uint32_t u32Value = 0;
|
---|
1221 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1222 | rcStrict = IOMIOPortRead(pVM, pVCpu, u16Port, &u32Value, OP_SIZE / 8);
|
---|
1223 | else
|
---|
1224 | rcStrict = iemVerifyFakeIOPortRead(pIemCpu, u16Port, &u32Value, OP_SIZE / 8);
|
---|
1225 | if (!IOM_SUCCESS(rcStrict))
|
---|
1226 | return rcStrict;
|
---|
1227 |
|
---|
1228 | *puMem = (OP_TYPE)u32Value;
|
---|
1229 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmap(pIemCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1230 | AssertLogRelMsgReturn(rcStrict2 == VINF_SUCCESS, ("rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
|
---|
1231 | VERR_IEM_IPE_1); /* See non-rep version. */
|
---|
1232 |
|
---|
1233 | pCtx->ADDR_rDI = uAddrReg += cbIncr;
|
---|
1234 | pCtx->ADDR_rCX = --uCounterReg;
|
---|
1235 |
|
---|
1236 | cLeftPage--;
|
---|
1237 | if (rcStrict != VINF_SUCCESS)
|
---|
1238 | {
|
---|
1239 | if (uCounterReg == 0)
|
---|
1240 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
1241 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
1242 | return rcStrict;
|
---|
1243 | }
|
---|
1244 | } while ((int32_t)cLeftPage > 0);
|
---|
1245 | } while (uCounterReg != 0);
|
---|
1246 |
|
---|
1247 | /*
|
---|
1248 | * Done.
|
---|
1249 | */
|
---|
1250 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
1251 | return VINF_SUCCESS;
|
---|
1252 | }
|
---|
1253 |
|
---|
1254 |
|
---|
1255 | /**
|
---|
1256 | * Implements 'OUTS' (no rep)
|
---|
1257 | */
|
---|
1258 | IEM_CIMPL_DEF_2(RT_CONCAT4(iemCImpl_outs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg, bool, fIoChecked)
|
---|
1259 | {
|
---|
1260 | PVM pVM = IEMCPU_TO_VM(pIemCpu);
|
---|
1261 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1262 | VBOXSTRICTRC rcStrict;
|
---|
1263 |
|
---|
1264 | /*
|
---|
1265 | * ASSUMES the #GP for I/O permission is taken first, then any #GP for
|
---|
1266 | * segmentation and finally any #PF due to virtual address translation.
|
---|
1267 | * ASSUMES nothing is read from the I/O port before traps are taken.
|
---|
1268 | */
|
---|
1269 | if (!fIoChecked)
|
---|
1270 | {
|
---|
1271 | rcStrict = iemHlpCheckPortIOPermission(pIemCpu, pCtx, pCtx->dx, OP_SIZE / 8);
|
---|
1272 | if (rcStrict != VINF_SUCCESS)
|
---|
1273 | return rcStrict;
|
---|
1274 | }
|
---|
1275 |
|
---|
1276 | OP_TYPE uValue;
|
---|
1277 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pIemCpu, &uValue, iEffSeg, pCtx->ADDR_rSI);
|
---|
1278 | if (rcStrict == VINF_SUCCESS)
|
---|
1279 | {
|
---|
1280 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1281 | rcStrict = IOMIOPortWrite(pVM, IEMCPU_TO_VMCPU(pIemCpu), pCtx->dx, uValue, OP_SIZE / 8);
|
---|
1282 | else
|
---|
1283 | rcStrict = iemVerifyFakeIOPortWrite(pIemCpu, pCtx->dx, uValue, OP_SIZE / 8);
|
---|
1284 | if (IOM_SUCCESS(rcStrict))
|
---|
1285 | {
|
---|
1286 | if (!pCtx->eflags.Bits.u1DF)
|
---|
1287 | pCtx->ADDR_rSI += OP_SIZE / 8;
|
---|
1288 | else
|
---|
1289 | pCtx->ADDR_rSI -= OP_SIZE / 8;
|
---|
1290 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
1291 | if (rcStrict != VINF_SUCCESS)
|
---|
1292 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
1293 | }
|
---|
1294 | }
|
---|
1295 | return rcStrict;
|
---|
1296 | }
|
---|
1297 |
|
---|
1298 |
|
---|
1299 | /**
|
---|
1300 | * Implements 'REP OUTS'.
|
---|
1301 | */
|
---|
1302 | IEM_CIMPL_DEF_2(RT_CONCAT4(iemCImpl_rep_outs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg, bool, fIoChecked)
|
---|
1303 | {
|
---|
1304 | PVM pVM = IEMCPU_TO_VM(pIemCpu);
|
---|
1305 | PVMCPU pVCpu = IEMCPU_TO_VMCPU(pIemCpu);
|
---|
1306 | PCPUMCTX pCtx = pIemCpu->CTX_SUFF(pCtx);
|
---|
1307 |
|
---|
1308 | /*
|
---|
1309 | * Setup.
|
---|
1310 | */
|
---|
1311 | uint16_t const u16Port = pCtx->dx;
|
---|
1312 | VBOXSTRICTRC rcStrict;
|
---|
1313 | if (!fIoChecked)
|
---|
1314 | {
|
---|
1315 | rcStrict = iemHlpCheckPortIOPermission(pIemCpu, pCtx, u16Port, OP_SIZE / 8);
|
---|
1316 | if (rcStrict != VINF_SUCCESS)
|
---|
1317 | return rcStrict;
|
---|
1318 | }
|
---|
1319 |
|
---|
1320 | ADDR_TYPE uCounterReg = pCtx->ADDR_rCX;
|
---|
1321 | if (uCounterReg == 0)
|
---|
1322 | {
|
---|
1323 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
1324 | return VINF_SUCCESS;
|
---|
1325 | }
|
---|
1326 |
|
---|
1327 | PCCPUMSELREGHID pHid = iemSRegGetHid(pIemCpu, iEffSeg);
|
---|
1328 | uint64_t uBaseAddr;
|
---|
1329 | rcStrict = iemMemSegCheckReadAccessEx(pIemCpu, pHid, iEffSeg, &uBaseAddr);
|
---|
1330 | if (rcStrict != VINF_SUCCESS)
|
---|
1331 | return rcStrict;
|
---|
1332 |
|
---|
1333 | int8_t const cbIncr = pCtx->eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
1334 | ADDR_TYPE uAddrReg = pCtx->ADDR_rSI;
|
---|
1335 |
|
---|
1336 | /*
|
---|
1337 | * The loop.
|
---|
1338 | */
|
---|
1339 | do
|
---|
1340 | {
|
---|
1341 | /*
|
---|
1342 | * Do segmentation and virtual page stuff.
|
---|
1343 | */
|
---|
1344 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
1345 | uint32_t cLeftPage = (PAGE_SIZE - (uVirtAddr & PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
1346 | if (cLeftPage > uCounterReg)
|
---|
1347 | cLeftPage = uCounterReg;
|
---|
1348 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
1349 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
1350 | && ( IS_64_BIT_CODE(pIemCpu)
|
---|
1351 | || ( uAddrReg < pHid->u32Limit
|
---|
1352 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pHid->u32Limit)
|
---|
1353 | )
|
---|
1354 | )
|
---|
1355 | {
|
---|
1356 | RTGCPHYS GCPhysMem;
|
---|
1357 | rcStrict = iemMemPageTranslateAndCheckAccess(pIemCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
1358 | if (rcStrict != VINF_SUCCESS)
|
---|
1359 | return rcStrict;
|
---|
1360 |
|
---|
1361 | /*
|
---|
1362 | * If we can map the page without trouble, we would've liked to use
|
---|
1363 | * an string I/O method to do the work, but the current IOM
|
---|
1364 | * interface doesn't match our current approach. So, do a regular
|
---|
1365 | * loop instead.
|
---|
1366 | */
|
---|
1367 | /** @todo Change the I/O manager interface to make use of
|
---|
1368 | * mapped buffers instead of leaving those bits to the
|
---|
1369 | * device implementation? */
|
---|
1370 | PGMPAGEMAPLOCK PgLockMem;
|
---|
1371 | OP_TYPE const *puMem;
|
---|
1372 | rcStrict = iemMemPageMap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
1373 | if (rcStrict == VINF_SUCCESS)
|
---|
1374 | {
|
---|
1375 | uint32_t off = 0;
|
---|
1376 | while (off < cLeftPage)
|
---|
1377 | {
|
---|
1378 | uint32_t u32Value = *puMem++;
|
---|
1379 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1380 | rcStrict = IOMIOPortWrite(pVM, pVCpu, u16Port, u32Value, OP_SIZE / 8);
|
---|
1381 | else
|
---|
1382 | rcStrict = iemVerifyFakeIOPortWrite(pIemCpu, u16Port, u32Value, OP_SIZE / 8);
|
---|
1383 | if (IOM_SUCCESS(rcStrict))
|
---|
1384 | {
|
---|
1385 | pCtx->ADDR_rSI = uAddrReg += cbIncr;
|
---|
1386 | pCtx->ADDR_rCX = --uCounterReg;
|
---|
1387 | }
|
---|
1388 | if (rcStrict != VINF_SUCCESS)
|
---|
1389 | {
|
---|
1390 | if (IOM_SUCCESS(rcStrict))
|
---|
1391 | {
|
---|
1392 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
1393 | if (uCounterReg == 0)
|
---|
1394 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
1395 | }
|
---|
1396 | iemMemPageUnmap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
1397 | return rcStrict;
|
---|
1398 | }
|
---|
1399 | off++;
|
---|
1400 | }
|
---|
1401 | iemMemPageUnmap(pIemCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
1402 |
|
---|
1403 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1404 | below. Otherwise, do the next page. */
|
---|
1405 | if (!(uVirtAddr & (OP_SIZE - 1)))
|
---|
1406 | continue;
|
---|
1407 | if (uCounterReg == 0)
|
---|
1408 | break;
|
---|
1409 | cLeftPage = 0;
|
---|
1410 | }
|
---|
1411 | }
|
---|
1412 |
|
---|
1413 | /*
|
---|
1414 | * Fallback - slow processing till the end of the current page.
|
---|
1415 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1416 | * as 0, we execute one loop then.
|
---|
1417 | *
|
---|
1418 | * Note! We ASSUME the CPU will raise #PF or #GP before access the
|
---|
1419 | * I/O port, otherwise it wouldn't really be restartable.
|
---|
1420 | */
|
---|
1421 | /** @todo investigate what the CPU actually does with \#PF/\#GP
|
---|
1422 | * during INS. */
|
---|
1423 | do
|
---|
1424 | {
|
---|
1425 | OP_TYPE uValue;
|
---|
1426 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pIemCpu, &uValue, iEffSeg, uAddrReg);
|
---|
1427 | if (rcStrict != VINF_SUCCESS)
|
---|
1428 | return rcStrict;
|
---|
1429 |
|
---|
1430 | if (!IEM_VERIFICATION_ENABLED(pIemCpu))
|
---|
1431 | rcStrict = IOMIOPortWrite(pVM, pVCpu, u16Port, uValue, OP_SIZE / 8);
|
---|
1432 | else
|
---|
1433 | rcStrict = iemVerifyFakeIOPortWrite(pIemCpu, u16Port, uValue, OP_SIZE / 8);
|
---|
1434 | if (IOM_SUCCESS(rcStrict))
|
---|
1435 | {
|
---|
1436 | pCtx->ADDR_rSI = uAddrReg += cbIncr;
|
---|
1437 | pCtx->ADDR_rCX = --uCounterReg;
|
---|
1438 | cLeftPage--;
|
---|
1439 | }
|
---|
1440 | if (rcStrict != VINF_SUCCESS)
|
---|
1441 | {
|
---|
1442 | if (IOM_SUCCESS(rcStrict))
|
---|
1443 | {
|
---|
1444 | if (uCounterReg == 0)
|
---|
1445 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
1446 | rcStrict = iemSetPassUpStatus(pIemCpu, rcStrict);
|
---|
1447 | }
|
---|
1448 | return rcStrict;
|
---|
1449 | }
|
---|
1450 | } while ((int32_t)cLeftPage > 0);
|
---|
1451 | } while (uCounterReg != 0);
|
---|
1452 |
|
---|
1453 | /*
|
---|
1454 | * Done.
|
---|
1455 | */
|
---|
1456 | iemRegAddToRipAndClearRF(pIemCpu, cbInstr);
|
---|
1457 | return VINF_SUCCESS;
|
---|
1458 | }
|
---|
1459 |
|
---|
1460 | #endif /* OP_SIZE != 64-bit */
|
---|
1461 |
|
---|
1462 |
|
---|
1463 | #undef OP_rAX
|
---|
1464 | #undef OP_SIZE
|
---|
1465 | #undef ADDR_SIZE
|
---|
1466 | #undef ADDR_rDI
|
---|
1467 | #undef ADDR_rSI
|
---|
1468 | #undef ADDR_rCX
|
---|
1469 | #undef ADDR_rIP
|
---|
1470 | #undef ADDR2_TYPE
|
---|
1471 | #undef ADDR_TYPE
|
---|
1472 | #undef ADDR2_TYPE
|
---|
1473 | #undef IS_64_BIT_CODE
|
---|