1 | /* $Id: IEMAllCImplStrInstr.cpp.h 96407 2022-08-22 17:43:14Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - String Instruction Implementation Code Template.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2022 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /*******************************************************************************
|
---|
30 | * Defined Constants And Macros *
|
---|
31 | *******************************************************************************/
|
---|
32 | #if OP_SIZE == 8
|
---|
33 | # define OP_rAX al
|
---|
34 | #elif OP_SIZE == 16
|
---|
35 | # define OP_rAX ax
|
---|
36 | #elif OP_SIZE == 32
|
---|
37 | # define OP_rAX eax
|
---|
38 | #elif OP_SIZE == 64
|
---|
39 | # define OP_rAX rax
|
---|
40 | #else
|
---|
41 | # error "Bad OP_SIZE."
|
---|
42 | #endif
|
---|
43 | #define OP_TYPE RT_CONCAT3(uint,OP_SIZE,_t)
|
---|
44 |
|
---|
45 | #if ADDR_SIZE == 16
|
---|
46 | # define ADDR_rDI di
|
---|
47 | # define ADDR_rSI si
|
---|
48 | # define ADDR_rCX cx
|
---|
49 | # define ADDR2_TYPE uint32_t
|
---|
50 | # define ADDR_VMXSTRIO 0
|
---|
51 | #elif ADDR_SIZE == 32
|
---|
52 | # define ADDR_rDI edi
|
---|
53 | # define ADDR_rSI esi
|
---|
54 | # define ADDR_rCX ecx
|
---|
55 | # define ADDR2_TYPE uint32_t
|
---|
56 | # define ADDR_VMXSTRIO 1
|
---|
57 | #elif ADDR_SIZE == 64
|
---|
58 | # define ADDR_rDI rdi
|
---|
59 | # define ADDR_rSI rsi
|
---|
60 | # define ADDR_rCX rcx
|
---|
61 | # define ADDR2_TYPE uint64_t
|
---|
62 | # define ADDR_VMXSTRIO 2
|
---|
63 | # define IS_64_BIT_CODE(a_pVCpu) (true)
|
---|
64 | #else
|
---|
65 | # error "Bad ADDR_SIZE."
|
---|
66 | #endif
|
---|
67 | #define ADDR_TYPE RT_CONCAT3(uint,ADDR_SIZE,_t)
|
---|
68 |
|
---|
69 | #if ADDR_SIZE == 64 || OP_SIZE == 64
|
---|
70 | # define IS_64_BIT_CODE(a_pVCpu) (true)
|
---|
71 | #elif ADDR_SIZE == 32
|
---|
72 | # define IS_64_BIT_CODE(a_pVCpu) ((a_pVCpu)->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
73 | #else
|
---|
74 | # define IS_64_BIT_CODE(a_pVCpu) (false)
|
---|
75 | #endif
|
---|
76 |
|
---|
77 | /** @def IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN
|
---|
78 | * Used in the outer (page-by-page) loop to check for reasons for returnning
|
---|
79 | * before completing the instruction. In raw-mode we temporarily enable
|
---|
80 | * interrupts to let the host interrupt us. We cannot let big string operations
|
---|
81 | * hog the CPU, especially not in raw-mode.
|
---|
82 | */
|
---|
83 | #define IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fEflags) \
|
---|
84 | do { \
|
---|
85 | if (RT_LIKELY( !VMCPU_FF_IS_ANY_SET(a_pVCpu, (a_fEflags) & X86_EFL_IF ? VMCPU_FF_YIELD_REPSTR_MASK \
|
---|
86 | : VMCPU_FF_YIELD_REPSTR_NOINT_MASK) \
|
---|
87 | && !VM_FF_IS_ANY_SET(a_pVM, VM_FF_YIELD_REPSTR_MASK) \
|
---|
88 | )) \
|
---|
89 | { /* probable */ } \
|
---|
90 | else \
|
---|
91 | { \
|
---|
92 | LogFlow(("%s: Leaving early (outer)! ffcpu=%#RX64 ffvm=%#x\n", \
|
---|
93 | __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
|
---|
94 | return VINF_SUCCESS; \
|
---|
95 | } \
|
---|
96 | } while (0)
|
---|
97 |
|
---|
98 | /** @def IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
99 | * This is used in some of the inner loops to make sure we respond immediately
|
---|
100 | * to VMCPU_FF_IOM as well as outside requests. Use this for expensive
|
---|
101 | * instructions. Use IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN for
|
---|
102 | * ones that are typically cheap. */
|
---|
103 | #define IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fExitExpr) \
|
---|
104 | do { \
|
---|
105 | if (RT_LIKELY( ( !VMCPU_FF_IS_ANY_SET(a_pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_REPSTR_MASK) \
|
---|
106 | && !VM_FF_IS_ANY_SET(a_pVM, VM_FF_HIGH_PRIORITY_POST_REPSTR_MASK)) \
|
---|
107 | || (a_fExitExpr) )) \
|
---|
108 | { /* very likely */ } \
|
---|
109 | else \
|
---|
110 | { \
|
---|
111 | LogFlow(("%s: Leaving early (inner)! ffcpu=%#RX64 ffvm=%#x\n", \
|
---|
112 | __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
|
---|
113 | return VINF_SUCCESS; \
|
---|
114 | } \
|
---|
115 | } while (0)
|
---|
116 |
|
---|
117 |
|
---|
118 | /** @def IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
119 | * This is used in the inner loops where
|
---|
120 | * IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN isn't used. It only
|
---|
121 | * checks the CPU FFs so that we respond immediately to the pending IOM FF
|
---|
122 | * (status code is hidden in IEMCPU::rcPassUp by IEM memory commit code).
|
---|
123 | */
|
---|
124 | #define IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(a_pVM, a_pVCpu, a_fExitExpr) \
|
---|
125 | do { \
|
---|
126 | if (RT_LIKELY( !VMCPU_FF_IS_ANY_SET(a_pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_REPSTR_MASK) \
|
---|
127 | || (a_fExitExpr) )) \
|
---|
128 | { /* very likely */ } \
|
---|
129 | else \
|
---|
130 | { \
|
---|
131 | LogFlow(("%s: Leaving early (inner)! ffcpu=%#RX64 (ffvm=%#x)\n", \
|
---|
132 | __FUNCTION__, (uint64_t)(a_pVCpu)->fLocalForcedActions, (a_pVM)->fGlobalForcedActions)); \
|
---|
133 | return VINF_SUCCESS; \
|
---|
134 | } \
|
---|
135 | } while (0)
|
---|
136 |
|
---|
137 |
|
---|
138 | /**
|
---|
139 | * Implements 'REPE CMPS'.
|
---|
140 | */
|
---|
141 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_repe_cmps_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
142 | {
|
---|
143 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
144 |
|
---|
145 | /*
|
---|
146 | * Setup.
|
---|
147 | */
|
---|
148 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
149 | if (uCounterReg == 0)
|
---|
150 | {
|
---|
151 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
152 | return VINF_SUCCESS;
|
---|
153 | }
|
---|
154 |
|
---|
155 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
|
---|
156 |
|
---|
157 | PCCPUMSELREGHID pSrc1Hid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
158 | uint64_t uSrc1Base = 0; /* gcc may not be used uninitialized */
|
---|
159 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrc1Hid, iEffSeg, &uSrc1Base);
|
---|
160 | if (rcStrict != VINF_SUCCESS)
|
---|
161 | return rcStrict;
|
---|
162 |
|
---|
163 | uint64_t uSrc2Base = 0; /* gcc may not be used uninitialized */
|
---|
164 | rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uSrc2Base);
|
---|
165 | if (rcStrict != VINF_SUCCESS)
|
---|
166 | return rcStrict;
|
---|
167 |
|
---|
168 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
169 | ADDR_TYPE uSrc1AddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
170 | ADDR_TYPE uSrc2AddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
171 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
172 |
|
---|
173 | /*
|
---|
174 | * The loop.
|
---|
175 | */
|
---|
176 | for (;;)
|
---|
177 | {
|
---|
178 | /*
|
---|
179 | * Do segmentation and virtual page stuff.
|
---|
180 | */
|
---|
181 | ADDR2_TYPE uVirtSrc1Addr = uSrc1AddrReg + (ADDR2_TYPE)uSrc1Base;
|
---|
182 | ADDR2_TYPE uVirtSrc2Addr = uSrc2AddrReg + (ADDR2_TYPE)uSrc2Base;
|
---|
183 | uint32_t cLeftSrc1Page = (GUEST_PAGE_SIZE - (uVirtSrc1Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
184 | if (cLeftSrc1Page > uCounterReg)
|
---|
185 | cLeftSrc1Page = uCounterReg;
|
---|
186 | uint32_t cLeftSrc2Page = (GUEST_PAGE_SIZE - (uVirtSrc2Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
187 | uint32_t cLeftPage = RT_MIN(cLeftSrc1Page, cLeftSrc2Page);
|
---|
188 |
|
---|
189 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
190 | && cbIncr > 0 /** @todo Optimize reverse direction string ops. */
|
---|
191 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
192 | || ( uSrc1AddrReg < pSrc1Hid->u32Limit
|
---|
193 | && uSrc1AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrc1Hid->u32Limit
|
---|
194 | && uSrc2AddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
195 | && uSrc2AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
196 | )
|
---|
197 | )
|
---|
198 | {
|
---|
199 | RTGCPHYS GCPhysSrc1Mem;
|
---|
200 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc1Addr, IEM_ACCESS_DATA_R, &GCPhysSrc1Mem);
|
---|
201 | if (rcStrict != VINF_SUCCESS)
|
---|
202 | return rcStrict;
|
---|
203 |
|
---|
204 | RTGCPHYS GCPhysSrc2Mem;
|
---|
205 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc2Addr, IEM_ACCESS_DATA_R, &GCPhysSrc2Mem);
|
---|
206 | if (rcStrict != VINF_SUCCESS)
|
---|
207 | return rcStrict;
|
---|
208 |
|
---|
209 | /*
|
---|
210 | * If we can map the page without trouble, do a block processing
|
---|
211 | * until the end of the current page.
|
---|
212 | */
|
---|
213 | PGMPAGEMAPLOCK PgLockSrc2Mem;
|
---|
214 | OP_TYPE const *puSrc2Mem;
|
---|
215 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, (void **)&puSrc2Mem, &PgLockSrc2Mem);
|
---|
216 | if (rcStrict == VINF_SUCCESS)
|
---|
217 | {
|
---|
218 | PGMPAGEMAPLOCK PgLockSrc1Mem;
|
---|
219 | OP_TYPE const *puSrc1Mem;
|
---|
220 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, (void **)&puSrc1Mem, &PgLockSrc1Mem);
|
---|
221 | if (rcStrict == VINF_SUCCESS)
|
---|
222 | {
|
---|
223 | if (!memcmp(puSrc2Mem, puSrc1Mem, cLeftPage * (OP_SIZE / 8)))
|
---|
224 | {
|
---|
225 | /* All matches, only compare the last itme to get the right eflags. */
|
---|
226 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[cLeftPage-1], puSrc2Mem[cLeftPage-1], &uEFlags);
|
---|
227 | uSrc1AddrReg += cLeftPage * cbIncr;
|
---|
228 | uSrc2AddrReg += cLeftPage * cbIncr;
|
---|
229 | uCounterReg -= cLeftPage;
|
---|
230 | }
|
---|
231 | else
|
---|
232 | {
|
---|
233 | /* Some mismatch, compare each item (and keep volatile
|
---|
234 | memory in mind). */
|
---|
235 | uint32_t off = 0;
|
---|
236 | do
|
---|
237 | {
|
---|
238 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[off], puSrc2Mem[off], &uEFlags);
|
---|
239 | off++;
|
---|
240 | } while ( off < cLeftPage
|
---|
241 | && (uEFlags & X86_EFL_ZF));
|
---|
242 | uSrc1AddrReg += cbIncr * off;
|
---|
243 | uSrc2AddrReg += cbIncr * off;
|
---|
244 | uCounterReg -= off;
|
---|
245 | }
|
---|
246 |
|
---|
247 | /* Update the registers before looping. */
|
---|
248 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg;
|
---|
249 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg;
|
---|
250 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg;
|
---|
251 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
252 |
|
---|
253 | iemMemPageUnmap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, puSrc1Mem, &PgLockSrc1Mem);
|
---|
254 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
255 | if ( uCounterReg == 0
|
---|
256 | || !(uEFlags & X86_EFL_ZF))
|
---|
257 | break;
|
---|
258 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
259 | continue;
|
---|
260 | }
|
---|
261 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
262 | }
|
---|
263 | }
|
---|
264 |
|
---|
265 | /*
|
---|
266 | * Fallback - slow processing till the end of the current page.
|
---|
267 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
268 | * as 0, we execute one loop then.
|
---|
269 | */
|
---|
270 | do
|
---|
271 | {
|
---|
272 | OP_TYPE uValue1;
|
---|
273 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue1, iEffSeg, uSrc1AddrReg);
|
---|
274 | if (rcStrict != VINF_SUCCESS)
|
---|
275 | return rcStrict;
|
---|
276 | OP_TYPE uValue2;
|
---|
277 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue2, X86_SREG_ES, uSrc2AddrReg);
|
---|
278 | if (rcStrict != VINF_SUCCESS)
|
---|
279 | return rcStrict;
|
---|
280 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(&uValue1, uValue2, &uEFlags);
|
---|
281 |
|
---|
282 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg += cbIncr;
|
---|
283 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg += cbIncr;
|
---|
284 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
285 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
286 | cLeftPage--;
|
---|
287 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || !(uEFlags & X86_EFL_ZF));
|
---|
288 | } while ( (int32_t)cLeftPage > 0
|
---|
289 | && (uEFlags & X86_EFL_ZF));
|
---|
290 |
|
---|
291 | /*
|
---|
292 | * Next page? Must check for interrupts and stuff here.
|
---|
293 | */
|
---|
294 | if ( uCounterReg == 0
|
---|
295 | || !(uEFlags & X86_EFL_ZF))
|
---|
296 | break;
|
---|
297 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
298 | }
|
---|
299 |
|
---|
300 | /*
|
---|
301 | * Done.
|
---|
302 | */
|
---|
303 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
304 | return VINF_SUCCESS;
|
---|
305 | }
|
---|
306 |
|
---|
307 |
|
---|
308 | /**
|
---|
309 | * Implements 'REPNE CMPS'.
|
---|
310 | */
|
---|
311 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_repne_cmps_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
312 | {
|
---|
313 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
314 |
|
---|
315 | /*
|
---|
316 | * Setup.
|
---|
317 | */
|
---|
318 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
319 | if (uCounterReg == 0)
|
---|
320 | {
|
---|
321 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
322 | return VINF_SUCCESS;
|
---|
323 | }
|
---|
324 |
|
---|
325 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
|
---|
326 |
|
---|
327 | PCCPUMSELREGHID pSrc1Hid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
328 | uint64_t uSrc1Base = 0; /* gcc may not be used uninitialized */;
|
---|
329 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrc1Hid, iEffSeg, &uSrc1Base);
|
---|
330 | if (rcStrict != VINF_SUCCESS)
|
---|
331 | return rcStrict;
|
---|
332 |
|
---|
333 | uint64_t uSrc2Base = 0; /* gcc may not be used uninitialized */
|
---|
334 | rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uSrc2Base);
|
---|
335 | if (rcStrict != VINF_SUCCESS)
|
---|
336 | return rcStrict;
|
---|
337 |
|
---|
338 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
339 | ADDR_TYPE uSrc1AddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
340 | ADDR_TYPE uSrc2AddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
341 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
342 |
|
---|
343 | /*
|
---|
344 | * The loop.
|
---|
345 | */
|
---|
346 | for (;;)
|
---|
347 | {
|
---|
348 | /*
|
---|
349 | * Do segmentation and virtual page stuff.
|
---|
350 | */
|
---|
351 | ADDR2_TYPE uVirtSrc1Addr = uSrc1AddrReg + (ADDR2_TYPE)uSrc1Base;
|
---|
352 | ADDR2_TYPE uVirtSrc2Addr = uSrc2AddrReg + (ADDR2_TYPE)uSrc2Base;
|
---|
353 | uint32_t cLeftSrc1Page = (GUEST_PAGE_SIZE - (uVirtSrc1Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
354 | if (cLeftSrc1Page > uCounterReg)
|
---|
355 | cLeftSrc1Page = uCounterReg;
|
---|
356 | uint32_t cLeftSrc2Page = (GUEST_PAGE_SIZE - (uVirtSrc2Addr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
357 | uint32_t cLeftPage = RT_MIN(cLeftSrc1Page, cLeftSrc2Page);
|
---|
358 |
|
---|
359 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
360 | && cbIncr > 0 /** @todo Optimize reverse direction string ops. */
|
---|
361 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
362 | || ( uSrc1AddrReg < pSrc1Hid->u32Limit
|
---|
363 | && uSrc1AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrc1Hid->u32Limit
|
---|
364 | && uSrc2AddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
365 | && uSrc2AddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
366 | )
|
---|
367 | )
|
---|
368 | {
|
---|
369 | RTGCPHYS GCPhysSrc1Mem;
|
---|
370 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc1Addr, IEM_ACCESS_DATA_R, &GCPhysSrc1Mem);
|
---|
371 | if (rcStrict != VINF_SUCCESS)
|
---|
372 | return rcStrict;
|
---|
373 |
|
---|
374 | RTGCPHYS GCPhysSrc2Mem;
|
---|
375 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrc2Addr, IEM_ACCESS_DATA_R, &GCPhysSrc2Mem);
|
---|
376 | if (rcStrict != VINF_SUCCESS)
|
---|
377 | return rcStrict;
|
---|
378 |
|
---|
379 | /*
|
---|
380 | * If we can map the page without trouble, do a block processing
|
---|
381 | * until the end of the current page.
|
---|
382 | */
|
---|
383 | OP_TYPE const *puSrc2Mem;
|
---|
384 | PGMPAGEMAPLOCK PgLockSrc2Mem;
|
---|
385 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, (void **)&puSrc2Mem, &PgLockSrc2Mem);
|
---|
386 | if (rcStrict == VINF_SUCCESS)
|
---|
387 | {
|
---|
388 | OP_TYPE const *puSrc1Mem;
|
---|
389 | PGMPAGEMAPLOCK PgLockSrc1Mem;
|
---|
390 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, (void **)&puSrc1Mem, &PgLockSrc1Mem);
|
---|
391 | if (rcStrict == VINF_SUCCESS)
|
---|
392 | {
|
---|
393 | if (memcmp(puSrc2Mem, puSrc1Mem, cLeftPage * (OP_SIZE / 8)))
|
---|
394 | {
|
---|
395 | /* All matches, only compare the last item to get the right eflags. */
|
---|
396 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[cLeftPage-1], puSrc2Mem[cLeftPage-1], &uEFlags);
|
---|
397 | uSrc1AddrReg += cLeftPage * cbIncr;
|
---|
398 | uSrc2AddrReg += cLeftPage * cbIncr;
|
---|
399 | uCounterReg -= cLeftPage;
|
---|
400 | }
|
---|
401 | else
|
---|
402 | {
|
---|
403 | /* Some mismatch, compare each item (and keep volatile
|
---|
404 | memory in mind). */
|
---|
405 | uint32_t off = 0;
|
---|
406 | do
|
---|
407 | {
|
---|
408 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&puSrc1Mem[off], puSrc2Mem[off], &uEFlags);
|
---|
409 | off++;
|
---|
410 | } while ( off < cLeftPage
|
---|
411 | && !(uEFlags & X86_EFL_ZF));
|
---|
412 | uSrc1AddrReg += cbIncr * off;
|
---|
413 | uSrc2AddrReg += cbIncr * off;
|
---|
414 | uCounterReg -= off;
|
---|
415 | }
|
---|
416 |
|
---|
417 | /* Update the registers before looping. */
|
---|
418 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg;
|
---|
419 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg;
|
---|
420 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg;
|
---|
421 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
422 |
|
---|
423 | iemMemPageUnmap(pVCpu, GCPhysSrc1Mem, IEM_ACCESS_DATA_R, puSrc1Mem, &PgLockSrc1Mem);
|
---|
424 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
425 | if ( uCounterReg == 0
|
---|
426 | || (uEFlags & X86_EFL_ZF))
|
---|
427 | break;
|
---|
428 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
429 | continue;
|
---|
430 | }
|
---|
431 | iemMemPageUnmap(pVCpu, GCPhysSrc2Mem, IEM_ACCESS_DATA_R, puSrc2Mem, &PgLockSrc2Mem);
|
---|
432 | }
|
---|
433 | }
|
---|
434 |
|
---|
435 | /*
|
---|
436 | * Fallback - slow processing till the end of the current page.
|
---|
437 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
438 | * as 0, we execute one loop then.
|
---|
439 | */
|
---|
440 | do
|
---|
441 | {
|
---|
442 | OP_TYPE uValue1;
|
---|
443 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue1, iEffSeg, uSrc1AddrReg);
|
---|
444 | if (rcStrict != VINF_SUCCESS)
|
---|
445 | return rcStrict;
|
---|
446 | OP_TYPE uValue2;
|
---|
447 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue2, X86_SREG_ES, uSrc2AddrReg);
|
---|
448 | if (rcStrict != VINF_SUCCESS)
|
---|
449 | return rcStrict;
|
---|
450 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)(&uValue1, uValue2, &uEFlags);
|
---|
451 |
|
---|
452 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrc1AddrReg += cbIncr;
|
---|
453 | pVCpu->cpum.GstCtx.ADDR_rDI = uSrc2AddrReg += cbIncr;
|
---|
454 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
455 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
456 | cLeftPage--;
|
---|
457 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || (uEFlags & X86_EFL_ZF));
|
---|
458 | } while ( (int32_t)cLeftPage > 0
|
---|
459 | && !(uEFlags & X86_EFL_ZF));
|
---|
460 |
|
---|
461 | /*
|
---|
462 | * Next page? Must check for interrupts and stuff here.
|
---|
463 | */
|
---|
464 | if ( uCounterReg == 0
|
---|
465 | || (uEFlags & X86_EFL_ZF))
|
---|
466 | break;
|
---|
467 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
468 | }
|
---|
469 |
|
---|
470 | /*
|
---|
471 | * Done.
|
---|
472 | */
|
---|
473 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
474 | return VINF_SUCCESS;
|
---|
475 | }
|
---|
476 |
|
---|
477 |
|
---|
478 | /**
|
---|
479 | * Implements 'REPE SCAS'.
|
---|
480 | */
|
---|
481 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_repe_scas_,OP_rAX,_m,ADDR_SIZE))
|
---|
482 | {
|
---|
483 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
484 |
|
---|
485 | /*
|
---|
486 | * Setup.
|
---|
487 | */
|
---|
488 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
489 | if (uCounterReg == 0)
|
---|
490 | {
|
---|
491 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
492 | return VINF_SUCCESS;
|
---|
493 | }
|
---|
494 |
|
---|
495 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
496 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
497 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
498 | if (rcStrict != VINF_SUCCESS)
|
---|
499 | return rcStrict;
|
---|
500 |
|
---|
501 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
502 | OP_TYPE const uValueReg = pVCpu->cpum.GstCtx.OP_rAX;
|
---|
503 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
504 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
505 |
|
---|
506 | /*
|
---|
507 | * The loop.
|
---|
508 | */
|
---|
509 | for (;;)
|
---|
510 | {
|
---|
511 | /*
|
---|
512 | * Do segmentation and virtual page stuff.
|
---|
513 | */
|
---|
514 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
515 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
516 | if (cLeftPage > uCounterReg)
|
---|
517 | cLeftPage = uCounterReg;
|
---|
518 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
519 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
520 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
521 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
522 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
523 | )
|
---|
524 | )
|
---|
525 | {
|
---|
526 | RTGCPHYS GCPhysMem;
|
---|
527 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
528 | if (rcStrict != VINF_SUCCESS)
|
---|
529 | return rcStrict;
|
---|
530 |
|
---|
531 | /*
|
---|
532 | * If we can map the page without trouble, do a block processing
|
---|
533 | * until the end of the current page.
|
---|
534 | */
|
---|
535 | PGMPAGEMAPLOCK PgLockMem;
|
---|
536 | OP_TYPE const *puMem;
|
---|
537 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
538 | if (rcStrict == VINF_SUCCESS)
|
---|
539 | {
|
---|
540 | /* Search till we find a mismatching item. */
|
---|
541 | OP_TYPE uTmpValue;
|
---|
542 | bool fQuit;
|
---|
543 | uint32_t i = 0;
|
---|
544 | do
|
---|
545 | {
|
---|
546 | uTmpValue = puMem[i++];
|
---|
547 | fQuit = uTmpValue != uValueReg;
|
---|
548 | } while (i < cLeftPage && !fQuit);
|
---|
549 |
|
---|
550 | /* Update the regs. */
|
---|
551 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
552 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= i;
|
---|
553 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += i * cbIncr;
|
---|
554 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
555 | Assert(!(uEFlags & X86_EFL_ZF) == fQuit);
|
---|
556 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
557 | if ( fQuit
|
---|
558 | || uCounterReg == 0)
|
---|
559 | break;
|
---|
560 |
|
---|
561 | /* If unaligned, we drop thru and do the page crossing access
|
---|
562 | below. Otherwise, do the next page. */
|
---|
563 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
564 | {
|
---|
565 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
566 | continue;
|
---|
567 | }
|
---|
568 | cLeftPage = 0;
|
---|
569 | }
|
---|
570 | }
|
---|
571 |
|
---|
572 | /*
|
---|
573 | * Fallback - slow processing till the end of the current page.
|
---|
574 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
575 | * as 0, we execute one loop then.
|
---|
576 | */
|
---|
577 | do
|
---|
578 | {
|
---|
579 | OP_TYPE uTmpValue;
|
---|
580 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, X86_SREG_ES, uAddrReg);
|
---|
581 | if (rcStrict != VINF_SUCCESS)
|
---|
582 | return rcStrict;
|
---|
583 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
584 |
|
---|
585 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
586 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
587 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
588 | cLeftPage--;
|
---|
589 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || !(uEFlags & X86_EFL_ZF));
|
---|
590 | } while ( (int32_t)cLeftPage > 0
|
---|
591 | && (uEFlags & X86_EFL_ZF));
|
---|
592 |
|
---|
593 | /*
|
---|
594 | * Next page? Must check for interrupts and stuff here.
|
---|
595 | */
|
---|
596 | if ( uCounterReg == 0
|
---|
597 | || !(uEFlags & X86_EFL_ZF))
|
---|
598 | break;
|
---|
599 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
600 | }
|
---|
601 |
|
---|
602 | /*
|
---|
603 | * Done.
|
---|
604 | */
|
---|
605 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
606 | return VINF_SUCCESS;
|
---|
607 | }
|
---|
608 |
|
---|
609 |
|
---|
610 | /**
|
---|
611 | * Implements 'REPNE SCAS'.
|
---|
612 | */
|
---|
613 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_repne_scas_,OP_rAX,_m,ADDR_SIZE))
|
---|
614 | {
|
---|
615 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
616 |
|
---|
617 | /*
|
---|
618 | * Setup.
|
---|
619 | */
|
---|
620 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
621 | if (uCounterReg == 0)
|
---|
622 | {
|
---|
623 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
624 | return VINF_SUCCESS;
|
---|
625 | }
|
---|
626 |
|
---|
627 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
628 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
629 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
630 | if (rcStrict != VINF_SUCCESS)
|
---|
631 | return rcStrict;
|
---|
632 |
|
---|
633 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
634 | OP_TYPE const uValueReg = pVCpu->cpum.GstCtx.OP_rAX;
|
---|
635 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
636 | uint32_t uEFlags = pVCpu->cpum.GstCtx.eflags.u;
|
---|
637 |
|
---|
638 | /*
|
---|
639 | * The loop.
|
---|
640 | */
|
---|
641 | for (;;)
|
---|
642 | {
|
---|
643 | /*
|
---|
644 | * Do segmentation and virtual page stuff.
|
---|
645 | */
|
---|
646 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
647 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
648 | if (cLeftPage > uCounterReg)
|
---|
649 | cLeftPage = uCounterReg;
|
---|
650 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
651 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
652 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
653 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
654 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
655 | )
|
---|
656 | )
|
---|
657 | {
|
---|
658 | RTGCPHYS GCPhysMem;
|
---|
659 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
660 | if (rcStrict != VINF_SUCCESS)
|
---|
661 | return rcStrict;
|
---|
662 |
|
---|
663 | /*
|
---|
664 | * If we can map the page without trouble, do a block processing
|
---|
665 | * until the end of the current page.
|
---|
666 | */
|
---|
667 | PGMPAGEMAPLOCK PgLockMem;
|
---|
668 | OP_TYPE const *puMem;
|
---|
669 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
670 | if (rcStrict == VINF_SUCCESS)
|
---|
671 | {
|
---|
672 | /* Search till we find a mismatching item. */
|
---|
673 | OP_TYPE uTmpValue;
|
---|
674 | bool fQuit;
|
---|
675 | uint32_t i = 0;
|
---|
676 | do
|
---|
677 | {
|
---|
678 | uTmpValue = puMem[i++];
|
---|
679 | fQuit = uTmpValue == uValueReg;
|
---|
680 | } while (i < cLeftPage && !fQuit);
|
---|
681 |
|
---|
682 | /* Update the regs. */
|
---|
683 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
684 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= i;
|
---|
685 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += i * cbIncr;
|
---|
686 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
687 | Assert(!!(uEFlags & X86_EFL_ZF) == fQuit);
|
---|
688 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
689 | if ( fQuit
|
---|
690 | || uCounterReg == 0)
|
---|
691 | break;
|
---|
692 |
|
---|
693 | /* If unaligned, we drop thru and do the page crossing access
|
---|
694 | below. Otherwise, do the next page. */
|
---|
695 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
696 | {
|
---|
697 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
698 | continue;
|
---|
699 | }
|
---|
700 | cLeftPage = 0;
|
---|
701 | }
|
---|
702 | }
|
---|
703 |
|
---|
704 | /*
|
---|
705 | * Fallback - slow processing till the end of the current page.
|
---|
706 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
707 | * as 0, we execute one loop then.
|
---|
708 | */
|
---|
709 | do
|
---|
710 | {
|
---|
711 | OP_TYPE uTmpValue;
|
---|
712 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, X86_SREG_ES, uAddrReg);
|
---|
713 | if (rcStrict != VINF_SUCCESS)
|
---|
714 | return rcStrict;
|
---|
715 | RT_CONCAT(iemAImpl_cmp_u,OP_SIZE)((OP_TYPE *)&uValueReg, uTmpValue, &uEFlags);
|
---|
716 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
717 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
718 | pVCpu->cpum.GstCtx.eflags.u = uEFlags;
|
---|
719 | cLeftPage--;
|
---|
720 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0 || (uEFlags & X86_EFL_ZF));
|
---|
721 | } while ( (int32_t)cLeftPage > 0
|
---|
722 | && !(uEFlags & X86_EFL_ZF));
|
---|
723 |
|
---|
724 | /*
|
---|
725 | * Next page? Must check for interrupts and stuff here.
|
---|
726 | */
|
---|
727 | if ( uCounterReg == 0
|
---|
728 | || (uEFlags & X86_EFL_ZF))
|
---|
729 | break;
|
---|
730 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, uEFlags);
|
---|
731 | }
|
---|
732 |
|
---|
733 | /*
|
---|
734 | * Done.
|
---|
735 | */
|
---|
736 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
737 | return VINF_SUCCESS;
|
---|
738 | }
|
---|
739 |
|
---|
740 |
|
---|
741 |
|
---|
742 |
|
---|
743 | /**
|
---|
744 | * Implements 'REP MOVS'.
|
---|
745 | */
|
---|
746 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_rep_movs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg)
|
---|
747 | {
|
---|
748 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
749 |
|
---|
750 | /*
|
---|
751 | * Setup.
|
---|
752 | */
|
---|
753 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
754 | if (uCounterReg == 0)
|
---|
755 | {
|
---|
756 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
757 | return VINF_SUCCESS;
|
---|
758 | }
|
---|
759 |
|
---|
760 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg) | CPUMCTX_EXTRN_ES);
|
---|
761 |
|
---|
762 | PCCPUMSELREGHID pSrcHid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
763 | uint64_t uSrcBase = 0; /* gcc may not be used uninitialized */
|
---|
764 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrcHid, iEffSeg, &uSrcBase);
|
---|
765 | if (rcStrict != VINF_SUCCESS)
|
---|
766 | return rcStrict;
|
---|
767 |
|
---|
768 | uint64_t uDstBase = 0; /* gcc may not be used uninitialized */
|
---|
769 | rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uDstBase);
|
---|
770 | if (rcStrict != VINF_SUCCESS)
|
---|
771 | return rcStrict;
|
---|
772 |
|
---|
773 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
774 | ADDR_TYPE uSrcAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
775 | ADDR_TYPE uDstAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
776 |
|
---|
777 | /*
|
---|
778 | * Be careful with handle bypassing.
|
---|
779 | */
|
---|
780 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
781 | {
|
---|
782 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
783 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
784 | }
|
---|
785 |
|
---|
786 | /*
|
---|
787 | * The loop.
|
---|
788 | */
|
---|
789 | for (;;)
|
---|
790 | {
|
---|
791 | /*
|
---|
792 | * Do segmentation and virtual page stuff.
|
---|
793 | */
|
---|
794 | ADDR2_TYPE uVirtSrcAddr = uSrcAddrReg + (ADDR2_TYPE)uSrcBase;
|
---|
795 | ADDR2_TYPE uVirtDstAddr = uDstAddrReg + (ADDR2_TYPE)uDstBase;
|
---|
796 | uint32_t cLeftSrcPage = (GUEST_PAGE_SIZE - (uVirtSrcAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
797 | if (cLeftSrcPage > uCounterReg)
|
---|
798 | cLeftSrcPage = uCounterReg;
|
---|
799 | uint32_t cLeftDstPage = (GUEST_PAGE_SIZE - (uVirtDstAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
800 | uint32_t cLeftPage = RT_MIN(cLeftSrcPage, cLeftDstPage);
|
---|
801 |
|
---|
802 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
803 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
804 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
805 | || ( uSrcAddrReg < pSrcHid->u32Limit
|
---|
806 | && uSrcAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrcHid->u32Limit
|
---|
807 | && uDstAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
808 | && uDstAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
809 | )
|
---|
810 | )
|
---|
811 | {
|
---|
812 | RTGCPHYS GCPhysSrcMem;
|
---|
813 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtSrcAddr, IEM_ACCESS_DATA_R, &GCPhysSrcMem);
|
---|
814 | if (rcStrict != VINF_SUCCESS)
|
---|
815 | return rcStrict;
|
---|
816 |
|
---|
817 | RTGCPHYS GCPhysDstMem;
|
---|
818 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtDstAddr, IEM_ACCESS_DATA_W, &GCPhysDstMem);
|
---|
819 | if (rcStrict != VINF_SUCCESS)
|
---|
820 | return rcStrict;
|
---|
821 |
|
---|
822 | /*
|
---|
823 | * If we can map the page without trouble, do a block processing
|
---|
824 | * until the end of the current page.
|
---|
825 | */
|
---|
826 | PGMPAGEMAPLOCK PgLockDstMem;
|
---|
827 | OP_TYPE *puDstMem;
|
---|
828 | rcStrict = iemMemPageMap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, (void **)&puDstMem, &PgLockDstMem);
|
---|
829 | if (rcStrict == VINF_SUCCESS)
|
---|
830 | {
|
---|
831 | PGMPAGEMAPLOCK PgLockSrcMem;
|
---|
832 | OP_TYPE const *puSrcMem;
|
---|
833 | rcStrict = iemMemPageMap(pVCpu, GCPhysSrcMem, IEM_ACCESS_DATA_R, (void **)&puSrcMem, &PgLockSrcMem);
|
---|
834 | if (rcStrict == VINF_SUCCESS)
|
---|
835 | {
|
---|
836 | Assert( (GCPhysSrcMem >> GUEST_PAGE_SHIFT) != (GCPhysDstMem >> GUEST_PAGE_SHIFT)
|
---|
837 | || ((uintptr_t)puSrcMem >> GUEST_PAGE_SHIFT) == ((uintptr_t)puDstMem >> GUEST_PAGE_SHIFT));
|
---|
838 |
|
---|
839 | /* Perform the operation exactly (don't use memcpy to avoid
|
---|
840 | having to consider how its implementation would affect
|
---|
841 | any overlapping source and destination area). */
|
---|
842 | OP_TYPE const *puSrcCur = puSrcMem;
|
---|
843 | OP_TYPE *puDstCur = puDstMem;
|
---|
844 | uint32_t cTodo = cLeftPage;
|
---|
845 | while (cTodo-- > 0)
|
---|
846 | *puDstCur++ = *puSrcCur++;
|
---|
847 |
|
---|
848 | /* Update the registers. */
|
---|
849 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrcAddrReg += cLeftPage * cbIncr;
|
---|
850 | pVCpu->cpum.GstCtx.ADDR_rDI = uDstAddrReg += cLeftPage * cbIncr;
|
---|
851 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
852 |
|
---|
853 | iemMemPageUnmap(pVCpu, GCPhysSrcMem, IEM_ACCESS_DATA_R, puSrcMem, &PgLockSrcMem);
|
---|
854 | iemMemPageUnmap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, puDstMem, &PgLockDstMem);
|
---|
855 |
|
---|
856 | if (uCounterReg == 0)
|
---|
857 | break;
|
---|
858 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
859 | continue;
|
---|
860 | }
|
---|
861 | iemMemPageUnmap(pVCpu, GCPhysDstMem, IEM_ACCESS_DATA_W, puDstMem, &PgLockDstMem);
|
---|
862 | }
|
---|
863 | }
|
---|
864 |
|
---|
865 | /*
|
---|
866 | * Fallback - slow processing till the end of the current page.
|
---|
867 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
868 | * as 0, we execute one loop then.
|
---|
869 | */
|
---|
870 | do
|
---|
871 | {
|
---|
872 | OP_TYPE uValue;
|
---|
873 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, uSrcAddrReg);
|
---|
874 | if (rcStrict != VINF_SUCCESS)
|
---|
875 | return rcStrict;
|
---|
876 | rcStrict = RT_CONCAT(iemMemStoreDataU,OP_SIZE)(pVCpu, X86_SREG_ES, uDstAddrReg, uValue);
|
---|
877 | if (rcStrict != VINF_SUCCESS)
|
---|
878 | return rcStrict;
|
---|
879 |
|
---|
880 | pVCpu->cpum.GstCtx.ADDR_rSI = uSrcAddrReg += cbIncr;
|
---|
881 | pVCpu->cpum.GstCtx.ADDR_rDI = uDstAddrReg += cbIncr;
|
---|
882 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
883 | cLeftPage--;
|
---|
884 | IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
885 | } while ((int32_t)cLeftPage > 0);
|
---|
886 |
|
---|
887 | /*
|
---|
888 | * Next page. Must check for interrupts and stuff here.
|
---|
889 | */
|
---|
890 | if (uCounterReg == 0)
|
---|
891 | break;
|
---|
892 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
893 | }
|
---|
894 |
|
---|
895 | /*
|
---|
896 | * Done.
|
---|
897 | */
|
---|
898 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
899 | return VINF_SUCCESS;
|
---|
900 | }
|
---|
901 |
|
---|
902 |
|
---|
903 | /**
|
---|
904 | * Implements 'REP STOS'.
|
---|
905 | */
|
---|
906 | IEM_CIMPL_DEF_0(RT_CONCAT4(iemCImpl_stos_,OP_rAX,_m,ADDR_SIZE))
|
---|
907 | {
|
---|
908 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
909 |
|
---|
910 | /*
|
---|
911 | * Setup.
|
---|
912 | */
|
---|
913 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
914 | if (uCounterReg == 0)
|
---|
915 | {
|
---|
916 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
917 | return VINF_SUCCESS;
|
---|
918 | }
|
---|
919 |
|
---|
920 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
921 |
|
---|
922 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
923 | VBOXSTRICTRC rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
924 | if (rcStrict != VINF_SUCCESS)
|
---|
925 | return rcStrict;
|
---|
926 |
|
---|
927 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
928 | OP_TYPE const uValue = pVCpu->cpum.GstCtx.OP_rAX;
|
---|
929 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
930 |
|
---|
931 | /*
|
---|
932 | * Be careful with handle bypassing.
|
---|
933 | */
|
---|
934 | /** @todo Permit doing a page if correctly aligned. */
|
---|
935 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
936 | {
|
---|
937 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
938 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
939 | }
|
---|
940 |
|
---|
941 | /*
|
---|
942 | * The loop.
|
---|
943 | */
|
---|
944 | for (;;)
|
---|
945 | {
|
---|
946 | /*
|
---|
947 | * Do segmentation and virtual page stuff.
|
---|
948 | */
|
---|
949 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
950 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
951 | if (cLeftPage > uCounterReg)
|
---|
952 | cLeftPage = uCounterReg;
|
---|
953 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
954 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
955 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
956 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
957 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
958 | )
|
---|
959 | )
|
---|
960 | {
|
---|
961 | RTGCPHYS GCPhysMem;
|
---|
962 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_W, &GCPhysMem);
|
---|
963 | if (rcStrict != VINF_SUCCESS)
|
---|
964 | return rcStrict;
|
---|
965 |
|
---|
966 | /*
|
---|
967 | * If we can map the page without trouble, do a block processing
|
---|
968 | * until the end of the current page.
|
---|
969 | */
|
---|
970 | PGMPAGEMAPLOCK PgLockMem;
|
---|
971 | OP_TYPE *puMem;
|
---|
972 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, (void **)&puMem, &PgLockMem);
|
---|
973 | if (rcStrict == VINF_SUCCESS)
|
---|
974 | {
|
---|
975 | /* Update the regs first so we can loop on cLeftPage. */
|
---|
976 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
977 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cLeftPage * cbIncr;
|
---|
978 |
|
---|
979 | /* Do the memsetting. */
|
---|
980 | #if OP_SIZE == 8
|
---|
981 | memset(puMem, uValue, cLeftPage);
|
---|
982 | /*#elif OP_SIZE == 32
|
---|
983 | ASMMemFill32(puMem, cLeftPage * (OP_SIZE / 8), uValue);*/
|
---|
984 | #else
|
---|
985 | while (cLeftPage-- > 0)
|
---|
986 | *puMem++ = uValue;
|
---|
987 | #endif
|
---|
988 |
|
---|
989 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, puMem, &PgLockMem);
|
---|
990 |
|
---|
991 | if (uCounterReg == 0)
|
---|
992 | break;
|
---|
993 |
|
---|
994 | /* If unaligned, we drop thru and do the page crossing access
|
---|
995 | below. Otherwise, do the next page. */
|
---|
996 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
997 | {
|
---|
998 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
999 | continue;
|
---|
1000 | }
|
---|
1001 | cLeftPage = 0;
|
---|
1002 | }
|
---|
1003 | /* If we got an invalid physical address in the page table, just skip
|
---|
1004 | ahead to the next page or the counter reaches zero. This crazy
|
---|
1005 | optimization is for a buggy EFI firmware that's driving me nuts. */
|
---|
1006 | else if (rcStrict == VERR_PGM_PHYS_TLB_UNASSIGNED)
|
---|
1007 | {
|
---|
1008 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
1009 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cLeftPage * cbIncr;
|
---|
1010 | if (uCounterReg == 0)
|
---|
1011 | break;
|
---|
1012 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
1013 | {
|
---|
1014 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1015 | continue;
|
---|
1016 | }
|
---|
1017 | }
|
---|
1018 | }
|
---|
1019 |
|
---|
1020 | /*
|
---|
1021 | * Fallback - slow processing till the end of the current page.
|
---|
1022 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1023 | * as 0, we execute one loop then.
|
---|
1024 | */
|
---|
1025 | do
|
---|
1026 | {
|
---|
1027 | rcStrict = RT_CONCAT(iemMemStoreDataU,OP_SIZE)(pVCpu, X86_SREG_ES, uAddrReg, uValue);
|
---|
1028 | if (rcStrict != VINF_SUCCESS)
|
---|
1029 | return rcStrict;
|
---|
1030 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
1031 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1032 | cLeftPage--;
|
---|
1033 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1034 | } while ((int32_t)cLeftPage > 0);
|
---|
1035 |
|
---|
1036 | /*
|
---|
1037 | * Next page. Must check for interrupts and stuff here.
|
---|
1038 | */
|
---|
1039 | if (uCounterReg == 0)
|
---|
1040 | break;
|
---|
1041 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 | /*
|
---|
1045 | * Done.
|
---|
1046 | */
|
---|
1047 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1048 | return VINF_SUCCESS;
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 |
|
---|
1052 | /**
|
---|
1053 | * Implements 'REP LODS'.
|
---|
1054 | */
|
---|
1055 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_lods_,OP_rAX,_m,ADDR_SIZE), int8_t, iEffSeg)
|
---|
1056 | {
|
---|
1057 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1058 |
|
---|
1059 | /*
|
---|
1060 | * Setup.
|
---|
1061 | */
|
---|
1062 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
1063 | if (uCounterReg == 0)
|
---|
1064 | {
|
---|
1065 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1066 | return VINF_SUCCESS;
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iEffSeg));
|
---|
1070 | PCCPUMSELREGHID pSrcHid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
1071 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
1072 | VBOXSTRICTRC rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pSrcHid, iEffSeg, &uBaseAddr);
|
---|
1073 | if (rcStrict != VINF_SUCCESS)
|
---|
1074 | return rcStrict;
|
---|
1075 |
|
---|
1076 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
1077 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
1078 |
|
---|
1079 | /*
|
---|
1080 | * The loop.
|
---|
1081 | */
|
---|
1082 | for (;;)
|
---|
1083 | {
|
---|
1084 | /*
|
---|
1085 | * Do segmentation and virtual page stuff.
|
---|
1086 | */
|
---|
1087 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
1088 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
1089 | if (cLeftPage > uCounterReg)
|
---|
1090 | cLeftPage = uCounterReg;
|
---|
1091 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
1092 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
1093 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
1094 | || ( uAddrReg < pSrcHid->u32Limit
|
---|
1095 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pSrcHid->u32Limit)
|
---|
1096 | )
|
---|
1097 | )
|
---|
1098 | {
|
---|
1099 | RTGCPHYS GCPhysMem;
|
---|
1100 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
1101 | if (rcStrict != VINF_SUCCESS)
|
---|
1102 | return rcStrict;
|
---|
1103 |
|
---|
1104 | /*
|
---|
1105 | * If we can map the page without trouble, we can get away with
|
---|
1106 | * just reading the last value on the page.
|
---|
1107 | */
|
---|
1108 | PGMPAGEMAPLOCK PgLockMem;
|
---|
1109 | OP_TYPE const *puMem;
|
---|
1110 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
1111 | if (rcStrict == VINF_SUCCESS)
|
---|
1112 | {
|
---|
1113 | /* Only get the last byte, the rest doesn't matter in direct access mode. */
|
---|
1114 | #if OP_SIZE == 32
|
---|
1115 | pVCpu->cpum.GstCtx.rax = puMem[cLeftPage - 1];
|
---|
1116 | #else
|
---|
1117 | pVCpu->cpum.GstCtx.OP_rAX = puMem[cLeftPage - 1];
|
---|
1118 | #endif
|
---|
1119 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cLeftPage;
|
---|
1120 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cLeftPage * cbIncr;
|
---|
1121 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
1122 |
|
---|
1123 | if (uCounterReg == 0)
|
---|
1124 | break;
|
---|
1125 |
|
---|
1126 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1127 | below. Otherwise, do the next page. */
|
---|
1128 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
1129 | {
|
---|
1130 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1131 | continue;
|
---|
1132 | }
|
---|
1133 | cLeftPage = 0;
|
---|
1134 | }
|
---|
1135 | }
|
---|
1136 |
|
---|
1137 | /*
|
---|
1138 | * Fallback - slow processing till the end of the current page.
|
---|
1139 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1140 | * as 0, we execute one loop then.
|
---|
1141 | */
|
---|
1142 | do
|
---|
1143 | {
|
---|
1144 | OP_TYPE uTmpValue;
|
---|
1145 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uTmpValue, iEffSeg, uAddrReg);
|
---|
1146 | if (rcStrict != VINF_SUCCESS)
|
---|
1147 | return rcStrict;
|
---|
1148 | #if OP_SIZE == 32
|
---|
1149 | pVCpu->cpum.GstCtx.rax = uTmpValue;
|
---|
1150 | #else
|
---|
1151 | pVCpu->cpum.GstCtx.OP_rAX = uTmpValue;
|
---|
1152 | #endif
|
---|
1153 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr;
|
---|
1154 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1155 | cLeftPage--;
|
---|
1156 | IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1157 | } while ((int32_t)cLeftPage > 0);
|
---|
1158 |
|
---|
1159 | if (rcStrict != VINF_SUCCESS)
|
---|
1160 | break;
|
---|
1161 |
|
---|
1162 | /*
|
---|
1163 | * Next page. Must check for interrupts and stuff here.
|
---|
1164 | */
|
---|
1165 | if (uCounterReg == 0)
|
---|
1166 | break;
|
---|
1167 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 | /*
|
---|
1171 | * Done.
|
---|
1172 | */
|
---|
1173 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1174 | return VINF_SUCCESS;
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 |
|
---|
1178 | #if OP_SIZE != 64
|
---|
1179 |
|
---|
1180 | /**
|
---|
1181 | * Implements 'INS' (no rep)
|
---|
1182 | */
|
---|
1183 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_ins_op,OP_SIZE,_addr,ADDR_SIZE), bool, fIoChecked)
|
---|
1184 | {
|
---|
1185 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1186 | VBOXSTRICTRC rcStrict;
|
---|
1187 |
|
---|
1188 | /*
|
---|
1189 | * Be careful with handle bypassing.
|
---|
1190 | */
|
---|
1191 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
1192 | {
|
---|
1193 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
1194 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
1195 | }
|
---|
1196 |
|
---|
1197 | /*
|
---|
1198 | * ASSUMES the #GP for I/O permission is taken first, then any #GP for
|
---|
1199 | * segmentation and finally any #PF due to virtual address translation.
|
---|
1200 | * ASSUMES nothing is read from the I/O port before traps are taken.
|
---|
1201 | */
|
---|
1202 | if (!fIoChecked)
|
---|
1203 | {
|
---|
1204 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8);
|
---|
1205 | if (rcStrict != VINF_SUCCESS)
|
---|
1206 | return rcStrict;
|
---|
1207 | }
|
---|
1208 |
|
---|
1209 | /*
|
---|
1210 | * Check nested-guest I/O intercepts.
|
---|
1211 | */
|
---|
1212 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1213 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1214 | {
|
---|
1215 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1216 | ExitInstrInfo.u = 0;
|
---|
1217 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1218 | ExitInstrInfo.StrIo.iSegReg = X86_SREG_ES;
|
---|
1219 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_INS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, false /* fRep */,
|
---|
1220 | ExitInstrInfo, cbInstr);
|
---|
1221 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1222 | return rcStrict;
|
---|
1223 | }
|
---|
1224 | #endif
|
---|
1225 |
|
---|
1226 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1227 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1228 | {
|
---|
1229 | rcStrict = iemSvmHandleIOIntercept(pVCpu, pVCpu->cpum.GstCtx.dx, SVMIOIOTYPE_IN, OP_SIZE / 8, ADDR_SIZE, X86_SREG_ES,
|
---|
1230 | false /* fRep */, true /* fStrIo */, cbInstr);
|
---|
1231 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1232 | return VINF_SUCCESS;
|
---|
1233 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1234 | {
|
---|
1235 | Log(("iemCImpl_ins_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", pVCpu->cpum.GstCtx.dx,
|
---|
1236 | OP_SIZE / 8, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1237 | return rcStrict;
|
---|
1238 | }
|
---|
1239 | }
|
---|
1240 | #endif
|
---|
1241 |
|
---|
1242 | OP_TYPE *puMem;
|
---|
1243 | rcStrict = iemMemMap(pVCpu, (void **)&puMem, OP_SIZE / 8, X86_SREG_ES, pVCpu->cpum.GstCtx.ADDR_rDI,
|
---|
1244 | IEM_ACCESS_DATA_W, OP_SIZE / 8 - 1);
|
---|
1245 | if (rcStrict != VINF_SUCCESS)
|
---|
1246 | return rcStrict;
|
---|
1247 |
|
---|
1248 | uint32_t u32Value = 0;
|
---|
1249 | rcStrict = IOMIOPortRead(pVM, pVCpu, pVCpu->cpum.GstCtx.dx, &u32Value, OP_SIZE / 8);
|
---|
1250 | if (IOM_SUCCESS(rcStrict))
|
---|
1251 | {
|
---|
1252 | *puMem = (OP_TYPE)u32Value;
|
---|
1253 | # ifdef IN_RING3
|
---|
1254 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmap(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1255 | # else
|
---|
1256 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmapPostponeTroubleToR3(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1257 | # endif
|
---|
1258 | if (RT_LIKELY(rcStrict2 == VINF_SUCCESS))
|
---|
1259 | {
|
---|
1260 | if (!pVCpu->cpum.GstCtx.eflags.Bits.u1DF)
|
---|
1261 | pVCpu->cpum.GstCtx.ADDR_rDI += OP_SIZE / 8;
|
---|
1262 | else
|
---|
1263 | pVCpu->cpum.GstCtx.ADDR_rDI -= OP_SIZE / 8;
|
---|
1264 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1265 | }
|
---|
1266 | else
|
---|
1267 | AssertLogRelMsgFailedReturn(("rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)), RT_FAILURE_NP(rcStrict2) ? rcStrict2 : VERR_IEM_IPE_1);
|
---|
1268 | }
|
---|
1269 | return rcStrict;
|
---|
1270 | }
|
---|
1271 |
|
---|
1272 |
|
---|
1273 | /**
|
---|
1274 | * Implements 'REP INS'.
|
---|
1275 | */
|
---|
1276 | IEM_CIMPL_DEF_1(RT_CONCAT4(iemCImpl_rep_ins_op,OP_SIZE,_addr,ADDR_SIZE), bool, fIoChecked)
|
---|
1277 | {
|
---|
1278 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1279 |
|
---|
1280 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ES | CPUMCTX_EXTRN_TR);
|
---|
1281 |
|
---|
1282 | /*
|
---|
1283 | * Setup.
|
---|
1284 | */
|
---|
1285 | uint16_t const u16Port = pVCpu->cpum.GstCtx.dx;
|
---|
1286 | VBOXSTRICTRC rcStrict;
|
---|
1287 | if (!fIoChecked)
|
---|
1288 | {
|
---|
1289 | /** @todo check if this is too early for ecx=0. */
|
---|
1290 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, OP_SIZE / 8);
|
---|
1291 | if (rcStrict != VINF_SUCCESS)
|
---|
1292 | return rcStrict;
|
---|
1293 | }
|
---|
1294 |
|
---|
1295 | /*
|
---|
1296 | * Check nested-guest I/O intercepts.
|
---|
1297 | */
|
---|
1298 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1299 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1300 | {
|
---|
1301 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1302 | ExitInstrInfo.u = 0;
|
---|
1303 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1304 | ExitInstrInfo.StrIo.iSegReg = X86_SREG_ES;
|
---|
1305 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_INS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, true /* fRep */,
|
---|
1306 | ExitInstrInfo, cbInstr);
|
---|
1307 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1308 | return rcStrict;
|
---|
1309 | }
|
---|
1310 | #endif
|
---|
1311 |
|
---|
1312 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1313 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1314 | {
|
---|
1315 | rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_IN, OP_SIZE / 8, ADDR_SIZE, X86_SREG_ES, true /* fRep */,
|
---|
1316 | true /* fStrIo */, cbInstr);
|
---|
1317 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1318 | return VINF_SUCCESS;
|
---|
1319 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1320 | {
|
---|
1321 | Log(("iemCImpl_rep_ins_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, OP_SIZE / 8,
|
---|
1322 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1323 | return rcStrict;
|
---|
1324 | }
|
---|
1325 | }
|
---|
1326 | #endif
|
---|
1327 |
|
---|
1328 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
1329 | if (uCounterReg == 0)
|
---|
1330 | {
|
---|
1331 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1332 | return VINF_SUCCESS;
|
---|
1333 | }
|
---|
1334 |
|
---|
1335 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
1336 | rcStrict = iemMemSegCheckWriteAccessEx(pVCpu, iemSRegUpdateHid(pVCpu, &pVCpu->cpum.GstCtx.es), X86_SREG_ES, &uBaseAddr);
|
---|
1337 | if (rcStrict != VINF_SUCCESS)
|
---|
1338 | return rcStrict;
|
---|
1339 |
|
---|
1340 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
1341 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rDI;
|
---|
1342 |
|
---|
1343 | /*
|
---|
1344 | * Be careful with handle bypassing.
|
---|
1345 | */
|
---|
1346 | if (pVCpu->iem.s.fBypassHandlers)
|
---|
1347 | {
|
---|
1348 | Log(("%s: declining because we're bypassing handlers\n", __FUNCTION__));
|
---|
1349 | return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
|
---|
1350 | }
|
---|
1351 |
|
---|
1352 | /*
|
---|
1353 | * The loop.
|
---|
1354 | */
|
---|
1355 | for (;;)
|
---|
1356 | {
|
---|
1357 | /*
|
---|
1358 | * Do segmentation and virtual page stuff.
|
---|
1359 | */
|
---|
1360 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
1361 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
1362 | if (cLeftPage > uCounterReg)
|
---|
1363 | cLeftPage = uCounterReg;
|
---|
1364 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
1365 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
1366 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
1367 | || ( uAddrReg < pVCpu->cpum.GstCtx.es.u32Limit
|
---|
1368 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pVCpu->cpum.GstCtx.es.u32Limit)
|
---|
1369 | )
|
---|
1370 | )
|
---|
1371 | {
|
---|
1372 | RTGCPHYS GCPhysMem;
|
---|
1373 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_W, &GCPhysMem);
|
---|
1374 | if (rcStrict != VINF_SUCCESS)
|
---|
1375 | return rcStrict;
|
---|
1376 |
|
---|
1377 | /*
|
---|
1378 | * If we can map the page without trouble, use the IOM
|
---|
1379 | * string I/O interface to do the work.
|
---|
1380 | */
|
---|
1381 | PGMPAGEMAPLOCK PgLockMem;
|
---|
1382 | OP_TYPE *puMem;
|
---|
1383 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, (void **)&puMem, &PgLockMem);
|
---|
1384 | if (rcStrict == VINF_SUCCESS)
|
---|
1385 | {
|
---|
1386 | uint32_t cTransfers = cLeftPage;
|
---|
1387 | rcStrict = IOMIOPortReadString(pVM, pVCpu, u16Port, puMem, &cTransfers, OP_SIZE / 8);
|
---|
1388 |
|
---|
1389 | uint32_t cActualTransfers = cLeftPage - cTransfers;
|
---|
1390 | Assert(cActualTransfers <= cLeftPage);
|
---|
1391 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr * cActualTransfers;
|
---|
1392 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cActualTransfers;
|
---|
1393 | puMem += cActualTransfers;
|
---|
1394 |
|
---|
1395 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_W, puMem, &PgLockMem);
|
---|
1396 |
|
---|
1397 | if (rcStrict != VINF_SUCCESS)
|
---|
1398 | {
|
---|
1399 | if (IOM_SUCCESS(rcStrict))
|
---|
1400 | {
|
---|
1401 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1402 | if (uCounterReg == 0)
|
---|
1403 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1404 | }
|
---|
1405 | return rcStrict;
|
---|
1406 | }
|
---|
1407 |
|
---|
1408 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1409 | below. Otherwise, do the next page. */
|
---|
1410 | if (uCounterReg == 0)
|
---|
1411 | break;
|
---|
1412 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
1413 | {
|
---|
1414 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1415 | continue;
|
---|
1416 | }
|
---|
1417 | cLeftPage = 0;
|
---|
1418 | }
|
---|
1419 | }
|
---|
1420 |
|
---|
1421 | /*
|
---|
1422 | * Fallback - slow processing till the end of the current page.
|
---|
1423 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1424 | * as 0, we execute one loop then.
|
---|
1425 | *
|
---|
1426 | * Note! We ASSUME the CPU will raise #PF or #GP before access the
|
---|
1427 | * I/O port, otherwise it wouldn't really be restartable.
|
---|
1428 | */
|
---|
1429 | /** @todo investigate what the CPU actually does with \#PF/\#GP
|
---|
1430 | * during INS. */
|
---|
1431 | do
|
---|
1432 | {
|
---|
1433 | OP_TYPE *puMem;
|
---|
1434 | rcStrict = iemMemMap(pVCpu, (void **)&puMem, OP_SIZE / 8, X86_SREG_ES, uAddrReg,
|
---|
1435 | IEM_ACCESS_DATA_W, OP_SIZE / 8 - 1);
|
---|
1436 | if (rcStrict != VINF_SUCCESS)
|
---|
1437 | return rcStrict;
|
---|
1438 |
|
---|
1439 | uint32_t u32Value = 0;
|
---|
1440 | rcStrict = IOMIOPortRead(pVM, pVCpu, u16Port, &u32Value, OP_SIZE / 8);
|
---|
1441 | if (!IOM_SUCCESS(rcStrict))
|
---|
1442 | {
|
---|
1443 | iemMemRollback(pVCpu);
|
---|
1444 | return rcStrict;
|
---|
1445 | }
|
---|
1446 |
|
---|
1447 | *puMem = (OP_TYPE)u32Value;
|
---|
1448 | # ifdef IN_RING3
|
---|
1449 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmap(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1450 | # else
|
---|
1451 | VBOXSTRICTRC rcStrict2 = iemMemCommitAndUnmapPostponeTroubleToR3(pVCpu, puMem, IEM_ACCESS_DATA_W);
|
---|
1452 | # endif
|
---|
1453 | if (rcStrict2 == VINF_SUCCESS)
|
---|
1454 | { /* likely */ }
|
---|
1455 | else
|
---|
1456 | AssertLogRelMsgFailedReturn(("rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
|
---|
1457 | RT_FAILURE(rcStrict2) ? rcStrict2 : VERR_IEM_IPE_1);
|
---|
1458 |
|
---|
1459 | pVCpu->cpum.GstCtx.ADDR_rDI = uAddrReg += cbIncr;
|
---|
1460 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1461 |
|
---|
1462 | cLeftPage--;
|
---|
1463 | if (rcStrict != VINF_SUCCESS)
|
---|
1464 | {
|
---|
1465 | if (uCounterReg == 0)
|
---|
1466 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1467 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1468 | return rcStrict;
|
---|
1469 | }
|
---|
1470 |
|
---|
1471 | IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1472 | } while ((int32_t)cLeftPage > 0);
|
---|
1473 |
|
---|
1474 |
|
---|
1475 | /*
|
---|
1476 | * Next page. Must check for interrupts and stuff here.
|
---|
1477 | */
|
---|
1478 | if (uCounterReg == 0)
|
---|
1479 | break;
|
---|
1480 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1481 | }
|
---|
1482 |
|
---|
1483 | /*
|
---|
1484 | * Done.
|
---|
1485 | */
|
---|
1486 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1487 | return VINF_SUCCESS;
|
---|
1488 | }
|
---|
1489 |
|
---|
1490 |
|
---|
1491 | /**
|
---|
1492 | * Implements 'OUTS' (no rep)
|
---|
1493 | */
|
---|
1494 | IEM_CIMPL_DEF_2(RT_CONCAT4(iemCImpl_outs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg, bool, fIoChecked)
|
---|
1495 | {
|
---|
1496 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1497 | VBOXSTRICTRC rcStrict;
|
---|
1498 |
|
---|
1499 | /*
|
---|
1500 | * ASSUMES the #GP for I/O permission is taken first, then any #GP for
|
---|
1501 | * segmentation and finally any #PF due to virtual address translation.
|
---|
1502 | * ASSUMES nothing is read from the I/O port before traps are taken.
|
---|
1503 | */
|
---|
1504 | if (!fIoChecked)
|
---|
1505 | {
|
---|
1506 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8);
|
---|
1507 | if (rcStrict != VINF_SUCCESS)
|
---|
1508 | return rcStrict;
|
---|
1509 | }
|
---|
1510 |
|
---|
1511 | /*
|
---|
1512 | * Check nested-guest I/O intercepts.
|
---|
1513 | */
|
---|
1514 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1515 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1516 | {
|
---|
1517 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1518 | ExitInstrInfo.u = 0;
|
---|
1519 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1520 | ExitInstrInfo.StrIo.iSegReg = iEffSeg;
|
---|
1521 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_OUTS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, false /* fRep */,
|
---|
1522 | ExitInstrInfo, cbInstr);
|
---|
1523 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1524 | return rcStrict;
|
---|
1525 | }
|
---|
1526 | #endif
|
---|
1527 |
|
---|
1528 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1529 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1530 | {
|
---|
1531 | rcStrict = iemSvmHandleIOIntercept(pVCpu, pVCpu->cpum.GstCtx.dx, SVMIOIOTYPE_OUT, OP_SIZE / 8, ADDR_SIZE, iEffSeg,
|
---|
1532 | false /* fRep */, true /* fStrIo */, cbInstr);
|
---|
1533 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1534 | return VINF_SUCCESS;
|
---|
1535 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1536 | {
|
---|
1537 | Log(("iemCImpl_outs_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", pVCpu->cpum.GstCtx.dx,
|
---|
1538 | OP_SIZE / 8, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1539 | return rcStrict;
|
---|
1540 | }
|
---|
1541 | }
|
---|
1542 | #endif
|
---|
1543 |
|
---|
1544 | OP_TYPE uValue;
|
---|
1545 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, pVCpu->cpum.GstCtx.ADDR_rSI);
|
---|
1546 | if (rcStrict == VINF_SUCCESS)
|
---|
1547 | {
|
---|
1548 | rcStrict = IOMIOPortWrite(pVM, pVCpu, pVCpu->cpum.GstCtx.dx, uValue, OP_SIZE / 8);
|
---|
1549 | if (IOM_SUCCESS(rcStrict))
|
---|
1550 | {
|
---|
1551 | if (!pVCpu->cpum.GstCtx.eflags.Bits.u1DF)
|
---|
1552 | pVCpu->cpum.GstCtx.ADDR_rSI += OP_SIZE / 8;
|
---|
1553 | else
|
---|
1554 | pVCpu->cpum.GstCtx.ADDR_rSI -= OP_SIZE / 8;
|
---|
1555 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1556 | if (rcStrict != VINF_SUCCESS)
|
---|
1557 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1558 | }
|
---|
1559 | }
|
---|
1560 | return rcStrict;
|
---|
1561 | }
|
---|
1562 |
|
---|
1563 |
|
---|
1564 | /**
|
---|
1565 | * Implements 'REP OUTS'.
|
---|
1566 | */
|
---|
1567 | IEM_CIMPL_DEF_2(RT_CONCAT4(iemCImpl_rep_outs_op,OP_SIZE,_addr,ADDR_SIZE), uint8_t, iEffSeg, bool, fIoChecked)
|
---|
1568 | {
|
---|
1569 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1570 |
|
---|
1571 | /*
|
---|
1572 | * Setup.
|
---|
1573 | */
|
---|
1574 | uint16_t const u16Port = pVCpu->cpum.GstCtx.dx;
|
---|
1575 | VBOXSTRICTRC rcStrict;
|
---|
1576 | if (!fIoChecked)
|
---|
1577 | {
|
---|
1578 | /** @todo check if this is too early for ecx=0. */
|
---|
1579 | rcStrict = iemHlpCheckPortIOPermission(pVCpu, u16Port, OP_SIZE / 8);
|
---|
1580 | if (rcStrict != VINF_SUCCESS)
|
---|
1581 | return rcStrict;
|
---|
1582 | }
|
---|
1583 |
|
---|
1584 | /*
|
---|
1585 | * Check nested-guest I/O intercepts.
|
---|
1586 | */
|
---|
1587 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1588 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
1589 | {
|
---|
1590 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1591 | ExitInstrInfo.u = 0;
|
---|
1592 | ExitInstrInfo.StrIo.u3AddrSize = ADDR_VMXSTRIO;
|
---|
1593 | ExitInstrInfo.StrIo.iSegReg = iEffSeg;
|
---|
1594 | rcStrict = iemVmxVmexitInstrStrIo(pVCpu, VMXINSTRID_IO_OUTS, pVCpu->cpum.GstCtx.dx, OP_SIZE / 8, true /* fRep */,
|
---|
1595 | ExitInstrInfo, cbInstr);
|
---|
1596 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
1597 | return rcStrict;
|
---|
1598 | }
|
---|
1599 | #endif
|
---|
1600 |
|
---|
1601 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
1602 | if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
1603 | {
|
---|
1604 | rcStrict = iemSvmHandleIOIntercept(pVCpu, u16Port, SVMIOIOTYPE_OUT, OP_SIZE / 8, ADDR_SIZE, iEffSeg, true /* fRep */,
|
---|
1605 | true /* fStrIo */, cbInstr);
|
---|
1606 | if (rcStrict == VINF_SVM_VMEXIT)
|
---|
1607 | return VINF_SUCCESS;
|
---|
1608 | if (rcStrict != VINF_SVM_INTERCEPT_NOT_ACTIVE)
|
---|
1609 | {
|
---|
1610 | Log(("iemCImpl_rep_outs_op: iemSvmHandleIOIntercept failed (u16Port=%#x, cbReg=%u) rc=%Rrc\n", u16Port, OP_SIZE / 8,
|
---|
1611 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1612 | return rcStrict;
|
---|
1613 | }
|
---|
1614 | }
|
---|
1615 | #endif
|
---|
1616 |
|
---|
1617 | ADDR_TYPE uCounterReg = pVCpu->cpum.GstCtx.ADDR_rCX;
|
---|
1618 | if (uCounterReg == 0)
|
---|
1619 | {
|
---|
1620 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1621 | return VINF_SUCCESS;
|
---|
1622 | }
|
---|
1623 |
|
---|
1624 | PCCPUMSELREGHID pHid = iemSRegGetHid(pVCpu, iEffSeg);
|
---|
1625 | uint64_t uBaseAddr = 0; /* gcc may not be used uninitialized */
|
---|
1626 | rcStrict = iemMemSegCheckReadAccessEx(pVCpu, pHid, iEffSeg, &uBaseAddr);
|
---|
1627 | if (rcStrict != VINF_SUCCESS)
|
---|
1628 | return rcStrict;
|
---|
1629 |
|
---|
1630 | int8_t const cbIncr = pVCpu->cpum.GstCtx.eflags.Bits.u1DF ? -(OP_SIZE / 8) : (OP_SIZE / 8);
|
---|
1631 | ADDR_TYPE uAddrReg = pVCpu->cpum.GstCtx.ADDR_rSI;
|
---|
1632 |
|
---|
1633 | /*
|
---|
1634 | * The loop.
|
---|
1635 | */
|
---|
1636 | for (;;)
|
---|
1637 | {
|
---|
1638 | /*
|
---|
1639 | * Do segmentation and virtual page stuff.
|
---|
1640 | */
|
---|
1641 | ADDR2_TYPE uVirtAddr = uAddrReg + (ADDR2_TYPE)uBaseAddr;
|
---|
1642 | uint32_t cLeftPage = (GUEST_PAGE_SIZE - (uVirtAddr & GUEST_PAGE_OFFSET_MASK)) / (OP_SIZE / 8);
|
---|
1643 | if (cLeftPage > uCounterReg)
|
---|
1644 | cLeftPage = uCounterReg;
|
---|
1645 | if ( cLeftPage > 0 /* can be null if unaligned, do one fallback round. */
|
---|
1646 | && cbIncr > 0 /** @todo Implement reverse direction string ops. */
|
---|
1647 | && ( IS_64_BIT_CODE(pVCpu)
|
---|
1648 | || ( uAddrReg < pHid->u32Limit
|
---|
1649 | && uAddrReg + (cLeftPage * (OP_SIZE / 8)) <= pHid->u32Limit)
|
---|
1650 | )
|
---|
1651 | )
|
---|
1652 | {
|
---|
1653 | RTGCPHYS GCPhysMem;
|
---|
1654 | rcStrict = iemMemPageTranslateAndCheckAccess(pVCpu, uVirtAddr, IEM_ACCESS_DATA_R, &GCPhysMem);
|
---|
1655 | if (rcStrict != VINF_SUCCESS)
|
---|
1656 | return rcStrict;
|
---|
1657 |
|
---|
1658 | /*
|
---|
1659 | * If we can map the page without trouble, we use the IOM
|
---|
1660 | * string I/O interface to do the job.
|
---|
1661 | */
|
---|
1662 | PGMPAGEMAPLOCK PgLockMem;
|
---|
1663 | OP_TYPE const *puMem;
|
---|
1664 | rcStrict = iemMemPageMap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, (void **)&puMem, &PgLockMem);
|
---|
1665 | if (rcStrict == VINF_SUCCESS)
|
---|
1666 | {
|
---|
1667 | uint32_t cTransfers = cLeftPage;
|
---|
1668 | rcStrict = IOMIOPortWriteString(pVM, pVCpu, u16Port, puMem, &cTransfers, OP_SIZE / 8);
|
---|
1669 |
|
---|
1670 | uint32_t cActualTransfers = cLeftPage - cTransfers;
|
---|
1671 | Assert(cActualTransfers <= cLeftPage);
|
---|
1672 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr * cActualTransfers;
|
---|
1673 | pVCpu->cpum.GstCtx.ADDR_rCX = uCounterReg -= cActualTransfers;
|
---|
1674 | puMem += cActualTransfers;
|
---|
1675 |
|
---|
1676 | iemMemPageUnmap(pVCpu, GCPhysMem, IEM_ACCESS_DATA_R, puMem, &PgLockMem);
|
---|
1677 |
|
---|
1678 | if (rcStrict != VINF_SUCCESS)
|
---|
1679 | {
|
---|
1680 | if (IOM_SUCCESS(rcStrict))
|
---|
1681 | {
|
---|
1682 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1683 | if (uCounterReg == 0)
|
---|
1684 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1685 | }
|
---|
1686 | return rcStrict;
|
---|
1687 | }
|
---|
1688 |
|
---|
1689 | if (uCounterReg == 0)
|
---|
1690 | break;
|
---|
1691 |
|
---|
1692 | /* If unaligned, we drop thru and do the page crossing access
|
---|
1693 | below. Otherwise, do the next page. */
|
---|
1694 | if (!(uVirtAddr & (OP_SIZE / 8 - 1)))
|
---|
1695 | {
|
---|
1696 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1697 | continue;
|
---|
1698 | }
|
---|
1699 | cLeftPage = 0;
|
---|
1700 | }
|
---|
1701 | }
|
---|
1702 |
|
---|
1703 | /*
|
---|
1704 | * Fallback - slow processing till the end of the current page.
|
---|
1705 | * In the cross page boundrary case we will end up here with cLeftPage
|
---|
1706 | * as 0, we execute one loop then.
|
---|
1707 | *
|
---|
1708 | * Note! We ASSUME the CPU will raise #PF or #GP before access the
|
---|
1709 | * I/O port, otherwise it wouldn't really be restartable.
|
---|
1710 | */
|
---|
1711 | /** @todo investigate what the CPU actually does with \#PF/\#GP
|
---|
1712 | * during INS. */
|
---|
1713 | do
|
---|
1714 | {
|
---|
1715 | OP_TYPE uValue;
|
---|
1716 | rcStrict = RT_CONCAT(iemMemFetchDataU,OP_SIZE)(pVCpu, &uValue, iEffSeg, uAddrReg);
|
---|
1717 | if (rcStrict != VINF_SUCCESS)
|
---|
1718 | return rcStrict;
|
---|
1719 |
|
---|
1720 | rcStrict = IOMIOPortWrite(pVM, pVCpu, u16Port, uValue, OP_SIZE / 8);
|
---|
1721 | if (IOM_SUCCESS(rcStrict))
|
---|
1722 | {
|
---|
1723 | pVCpu->cpum.GstCtx.ADDR_rSI = uAddrReg += cbIncr;
|
---|
1724 | pVCpu->cpum.GstCtx.ADDR_rCX = --uCounterReg;
|
---|
1725 | cLeftPage--;
|
---|
1726 | }
|
---|
1727 | if (rcStrict != VINF_SUCCESS)
|
---|
1728 | {
|
---|
1729 | if (IOM_SUCCESS(rcStrict))
|
---|
1730 | {
|
---|
1731 | if (uCounterReg == 0)
|
---|
1732 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1733 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
1734 | }
|
---|
1735 | return rcStrict;
|
---|
1736 | }
|
---|
1737 | IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN(pVM, pVCpu, uCounterReg == 0);
|
---|
1738 | } while ((int32_t)cLeftPage > 0);
|
---|
1739 |
|
---|
1740 |
|
---|
1741 | /*
|
---|
1742 | * Next page. Must check for interrupts and stuff here.
|
---|
1743 | */
|
---|
1744 | if (uCounterReg == 0)
|
---|
1745 | break;
|
---|
1746 | IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN(pVM, pVCpu, pVCpu->cpum.GstCtx.eflags.u);
|
---|
1747 | }
|
---|
1748 |
|
---|
1749 | /*
|
---|
1750 | * Done.
|
---|
1751 | */
|
---|
1752 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1753 | return VINF_SUCCESS;
|
---|
1754 | }
|
---|
1755 |
|
---|
1756 | #endif /* OP_SIZE != 64-bit */
|
---|
1757 |
|
---|
1758 |
|
---|
1759 | #undef OP_rAX
|
---|
1760 | #undef OP_SIZE
|
---|
1761 | #undef ADDR_SIZE
|
---|
1762 | #undef ADDR_rDI
|
---|
1763 | #undef ADDR_rSI
|
---|
1764 | #undef ADDR_rCX
|
---|
1765 | #undef ADDR_rIP
|
---|
1766 | #undef ADDR2_TYPE
|
---|
1767 | #undef ADDR_TYPE
|
---|
1768 | #undef ADDR2_TYPE
|
---|
1769 | #undef ADDR_VMXSTRIO
|
---|
1770 | #undef IS_64_BIT_CODE
|
---|
1771 | #undef IEM_CHECK_FF_YIELD_REPSTR_MAYBE_RETURN
|
---|
1772 | #undef IEM_CHECK_FF_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
1773 | #undef IEM_CHECK_FF_CPU_HIGH_PRIORITY_POST_REPSTR_MAYBE_RETURN
|
---|
1774 |
|
---|