VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h@ 71683

Last change on this file since 71683 was 71530, checked in by vboxsync, 7 years ago

VMM/IEM: Nested hw.virt: MSRPM bit access assertion, fix.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 61.0 KB
Line 
1/* $Id: IEMAllCImplSvmInstr.cpp.h 71530 2018-03-28 06:33:19Z vboxsync $ */
2/** @file
3 * IEM - AMD-V (Secure Virtual Machine) instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/**
20 * Converts an IEM exception event type to an SVM event type.
21 *
22 * @returns The SVM event type.
23 * @retval UINT8_MAX if the specified type of event isn't among the set
24 * of recognized IEM event types.
25 *
26 * @param uVector The vector of the event.
27 * @param fIemXcptFlags The IEM exception / interrupt flags.
28 */
29IEM_STATIC uint8_t iemGetSvmEventType(uint32_t uVector, uint32_t fIemXcptFlags)
30{
31 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
32 {
33 if (uVector != X86_XCPT_NMI)
34 return SVM_EVENT_EXCEPTION;
35 return SVM_EVENT_NMI;
36 }
37
38 /* See AMD spec. Table 15-1. "Guest Exception or Interrupt Types". */
39 if (fIemXcptFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
40 return SVM_EVENT_EXCEPTION;
41
42 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_EXT_INT)
43 return SVM_EVENT_EXTERNAL_IRQ;
44
45 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
46 return SVM_EVENT_SOFTWARE_INT;
47
48 AssertMsgFailed(("iemGetSvmEventType: Invalid IEM xcpt/int. type %#x, uVector=%#x\n", fIemXcptFlags, uVector));
49 return UINT8_MAX;
50}
51
52
53/**
54 * Performs an SVM world-switch (VMRUN, \#VMEXIT) updating PGM and IEM internals.
55 *
56 * @returns Strict VBox status code.
57 * @param pVCpu The cross context virtual CPU structure.
58 * @param pCtx The guest-CPU context.
59 */
60DECLINLINE(VBOXSTRICTRC) iemSvmWorldSwitch(PVMCPU pVCpu, PCPUMCTX pCtx)
61{
62 /*
63 * Inform PGM about paging mode changes.
64 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
65 * see comment in iemMemPageTranslateAndCheckAccess().
66 */
67 int rc = PGMChangeMode(pVCpu, pCtx->cr0 | X86_CR0_PE, pCtx->cr4, pCtx->msrEFER);
68#ifdef IN_RING3
69 Assert(rc != VINF_PGM_CHANGE_MODE);
70#endif
71 AssertRCReturn(rc, rc);
72
73 /* Inform CPUM (recompiler), can later be removed. */
74 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
75
76 /*
77 * Flush the TLB with new CR3. This is required in case the PGM mode change
78 * above doesn't actually change anything.
79 */
80 if (rc == VINF_SUCCESS)
81 {
82 rc = PGMFlushTLB(pVCpu, pCtx->cr3, true);
83 AssertRCReturn(rc, rc);
84 }
85
86 /* Re-initialize IEM cache/state after the drastic mode switch. */
87 iemReInitExec(pVCpu);
88 return rc;
89}
90
91
92/**
93 * SVM \#VMEXIT handler.
94 *
95 * @returns Strict VBox status code.
96 * @retval VINF_SVM_VMEXIT when the \#VMEXIT is successful.
97 * @retval VERR_SVM_VMEXIT_FAILED when the \#VMEXIT failed restoring the guest's
98 * "host state" and a shutdown is required.
99 *
100 * @param pVCpu The cross context virtual CPU structure.
101 * @param pCtx The guest-CPU context.
102 * @param uExitCode The exit code.
103 * @param uExitInfo1 The exit info. 1 field.
104 * @param uExitInfo2 The exit info. 2 field.
105 */
106IEM_STATIC VBOXSTRICTRC iemSvmVmexit(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2)
107{
108 VBOXSTRICTRC rcStrict;
109 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
110 || uExitCode == SVM_EXIT_INVALID)
111 {
112 LogFlow(("iemSvmVmexit: CS:RIP=%04x:%08RX64 uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pCtx->cs.Sel,
113 pCtx->rip, uExitCode, uExitInfo1, uExitInfo2));
114
115 /*
116 * Disable the global interrupt flag to prevent interrupts during the 'atomic' world switch.
117 */
118 pCtx->hwvirt.fGif = false;
119
120 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->es));
121 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs));
122 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
123 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ds));
124
125 /*
126 * Save the nested-guest state into the VMCB state-save area.
127 */
128 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
129 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
130 PSVMVMCBSTATESAVE pVmcbNstGstState = &pVmcbNstGst->guest;
131
132 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, ES, es);
133 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, CS, cs);
134 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, SS, ss);
135 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, DS, ds);
136 pVmcbNstGstState->GDTR.u32Limit = pCtx->gdtr.cbGdt;
137 pVmcbNstGstState->GDTR.u64Base = pCtx->gdtr.pGdt;
138 pVmcbNstGstState->IDTR.u32Limit = pCtx->idtr.cbIdt;
139 pVmcbNstGstState->IDTR.u64Base = pCtx->idtr.pIdt;
140 pVmcbNstGstState->u64EFER = pCtx->msrEFER;
141 pVmcbNstGstState->u64CR4 = pCtx->cr4;
142 pVmcbNstGstState->u64CR3 = pCtx->cr3;
143 pVmcbNstGstState->u64CR2 = pCtx->cr2;
144 pVmcbNstGstState->u64CR0 = pCtx->cr0;
145 /** @todo Nested paging. */
146 pVmcbNstGstState->u64RFlags = pCtx->rflags.u64;
147 pVmcbNstGstState->u64RIP = pCtx->rip;
148 pVmcbNstGstState->u64RSP = pCtx->rsp;
149 pVmcbNstGstState->u64RAX = pCtx->rax;
150 pVmcbNstGstState->u64DR7 = pCtx->dr[7];
151 pVmcbNstGstState->u64DR6 = pCtx->dr[6];
152 pVmcbNstGstState->u8CPL = pCtx->ss.Attr.n.u2Dpl; /* See comment in CPUMGetGuestCPL(). */
153 Assert(CPUMGetGuestCPL(pVCpu) == pCtx->ss.Attr.n.u2Dpl);
154
155 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
156
157 /*
158 * Save additional state and intercept information.
159 *
160 * - Interrupt shadow: Tracked using VMCPU_FF_INHIBIT_INTERRUPTS and RIP.
161 * - V_TPR: Already updated by iemCImpl_load_CrX or by the physical CPU for
162 * hardware-assisted SVM execution.
163 * - V_IRQ: Tracked using VMCPU_FF_INTERRUPT_NESTED_GUEST force-flag and updated below.
164 */
165 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
166 && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip)
167 {
168 pVmcbCtrl->IntShadow.n.u1IntShadow = 1;
169
170 /* Clear the inhibit-interrupt force-flag so as to not affect the outer guest. */
171 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
172 LogFlow(("iemSvmVmexit: Interrupt shadow till %#RX64\n", pCtx->rip));
173 }
174
175 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
176 {
177 Assert(pVmcbCtrl->IntCtrl.n.u1VIrqPending);
178 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
179 }
180 else
181 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
182
183 /** @todo NRIP. */
184
185 /* Save exit information. */
186 pVmcbCtrl->u64ExitCode = uExitCode;
187 pVmcbCtrl->u64ExitInfo1 = uExitInfo1;
188 pVmcbCtrl->u64ExitInfo2 = uExitInfo2;
189
190 /*
191 * Update the exit interrupt-information field if this #VMEXIT happened as a result
192 * of delivering an event through IEM.
193 *
194 * Don't update the exit interrupt-information field if the event wasn't being injected
195 * through IEM, as it may have been updated by real hardware if the nested-guest was
196 * executed using hardware-assisted SVM.
197 */
198 {
199 uint8_t uExitIntVector;
200 uint32_t uExitIntErr;
201 uint32_t fExitIntFlags;
202 bool const fRaisingEvent = IEMGetCurrentXcpt(pVCpu, &uExitIntVector, &fExitIntFlags, &uExitIntErr,
203 NULL /* uExitIntCr2 */);
204 if (fRaisingEvent)
205 {
206 pVmcbCtrl->ExitIntInfo.n.u1Valid = 1;
207 pVmcbCtrl->ExitIntInfo.n.u8Vector = uExitIntVector;
208 pVmcbCtrl->ExitIntInfo.n.u3Type = iemGetSvmEventType(uExitIntVector, fExitIntFlags);
209 if (fExitIntFlags & IEM_XCPT_FLAGS_ERR)
210 {
211 pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid = true;
212 pVmcbCtrl->ExitIntInfo.n.u32ErrorCode = uExitIntErr;
213 }
214 }
215 }
216
217 /*
218 * Clear event injection in the VMCB.
219 */
220 pVmcbCtrl->EventInject.n.u1Valid = 0;
221
222 /*
223 * Notify HM in case the nested-guest was executed using hardware-assisted SVM (which
224 * would have modified some VMCB state) that need to be restored on #VMEXIT before
225 * writing the VMCB back to guest memory.
226 */
227 HMSvmNstGstVmExitNotify(pVCpu, pCtx);
228
229 /*
230 * Write back the nested-guest's VMCB to its guest physical memory location.
231 */
232 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->hwvirt.svm.GCPhysVmcb, pVmcbNstGst, sizeof(*pVmcbNstGst));
233
234 /*
235 * Prepare for guest's "host mode" by clearing internal processor state bits.
236 *
237 * We don't need to zero out the state-save area, just the controls should be
238 * sufficient because it has the critical bit of indicating whether we're inside
239 * the nested-guest or not.
240 */
241 memset(pVmcbNstGstCtrl, 0, sizeof(*pVmcbNstGstCtrl));
242 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
243
244 /*
245 * Restore the subset of force-flags that were preserved.
246 */
247 if (pCtx->hwvirt.fLocalForcedActions)
248 {
249 VMCPU_FF_SET(pVCpu, pCtx->hwvirt.fLocalForcedActions);
250 pCtx->hwvirt.fLocalForcedActions = 0;
251 }
252
253 if (RT_SUCCESS(rcStrict))
254 {
255 /** @todo Nested paging. */
256 /** @todo ASID. */
257
258 /*
259 * Reload the guest's "host state".
260 */
261 CPUMSvmVmExitRestoreHostState(pVCpu, pCtx);
262
263 /*
264 * Update PGM, IEM and others of a world-switch.
265 */
266 rcStrict = iemSvmWorldSwitch(pVCpu, pCtx);
267 if (rcStrict == VINF_SUCCESS)
268 rcStrict = VINF_SVM_VMEXIT;
269 else if (RT_SUCCESS(rcStrict))
270 {
271 LogFlow(("iemSvmVmexit: Setting passup status from iemSvmWorldSwitch %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
272 iemSetPassUpStatus(pVCpu, rcStrict);
273 rcStrict = VINF_SVM_VMEXIT;
274 }
275 else
276 LogFlow(("iemSvmVmexit: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
277 }
278 else
279 {
280 LogFlow(("iemSvmVmexit: Writing VMCB at %#RGp failed. rc=%Rrc\n", pCtx->hwvirt.svm.GCPhysVmcb,
281 VBOXSTRICTRC_VAL(rcStrict)));
282 rcStrict = VERR_SVM_VMEXIT_FAILED;
283 }
284 }
285 else
286 {
287 Log(("iemSvmVmexit: Not in SVM guest mode! uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitCode,
288 uExitInfo1, uExitInfo2));
289 AssertMsgFailed(("iemSvmVmexit: Unexpected SVM-exit failure uExitCode=%#RX64\n", uExitCode));
290 rcStrict = VERR_SVM_IPE_3;
291 }
292
293# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
294 /* CLGI/STGI may not have been intercepted and thus not executed in IEM. */
295 if (HMSvmIsVGifActive(pVCpu->CTX_SUFF(pVM)))
296 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
297# endif
298 return rcStrict;
299}
300
301
302/**
303 * Performs the operations necessary that are part of the vmrun instruction
304 * execution in the guest.
305 *
306 * @returns Strict VBox status code (i.e. informational status codes too).
307 * @retval VINF_SUCCESS successully executed VMRUN and entered nested-guest
308 * code execution.
309 * @retval VINF_SVM_VMEXIT when executing VMRUN causes a \#VMEXIT
310 * (SVM_EXIT_INVALID most likely).
311 *
312 * @param pVCpu The cross context virtual CPU structure.
313 * @param pCtx Pointer to the guest-CPU context.
314 * @param cbInstr The length of the VMRUN instruction.
315 * @param GCPhysVmcb Guest physical address of the VMCB to run.
316 */
317IEM_STATIC VBOXSTRICTRC iemSvmVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbInstr, RTGCPHYS GCPhysVmcb)
318{
319 LogFlow(("iemSvmVmrun\n"));
320
321#ifdef IN_RING0
322 /*
323 * Until PGM can handle switching the guest paging mode in ring-0,
324 * there's no point in trying to emulate VMRUN in ring-0 as we have
325 * to go back to ring-3 anyway, see @bugref{7243#c48}.
326 */
327 RT_NOREF(pVCpu, pCtx, cbInstr, GCPhysVmcb);
328 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
329#else
330
331 /*
332 * Cache the physical address of the VMCB for #VMEXIT exceptions.
333 */
334 pCtx->hwvirt.svm.GCPhysVmcb = GCPhysVmcb;
335
336 /*
337 * Save the host state.
338 */
339 CPUMSvmVmRunSaveHostState(pCtx, cbInstr);
340
341 /*
342 * Read the guest VMCB state.
343 */
344 PVM pVM = pVCpu->CTX_SUFF(pVM);
345 int rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pVmcb), GCPhysVmcb, sizeof(SVMVMCB));
346 if (RT_SUCCESS(rc))
347 {
348 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
349 PSVMVMCBSTATESAVE pVmcbNstGst = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->guest;
350
351 /*
352 * Validate guest-state and controls.
353 */
354 /* VMRUN must always be intercepted. */
355 if (!CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
356 {
357 Log(("iemSvmVmrun: VMRUN instruction not intercepted -> #VMEXIT\n"));
358 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
359 }
360
361 /* Nested paging. */
362 if ( pVmcbCtrl->NestedPaging.n.u1NestedPaging
363 && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging)
364 {
365 Log(("iemSvmVmrun: Nested paging not supported -> #VMEXIT\n"));
366 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
367 }
368
369 /* AVIC. */
370 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
371 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
372 {
373 Log(("iemSvmVmrun: AVIC not supported -> #VMEXIT\n"));
374 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
375 }
376
377 /* Last branch record (LBR) virtualization. */
378 if ( pVmcbCtrl->LbrVirt.n.u1LbrVirt
379 && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt)
380 {
381 Log(("iemSvmVmrun: LBR virtualization not supported -> #VMEXIT\n"));
382 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
383 }
384
385 /* Virtualized VMSAVE/VMLOAD. */
386 if ( pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload
387 && !pVM->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
388 {
389 Log(("iemSvmVmrun: Virtualized VMSAVE/VMLOAD not supported -> #VMEXIT\n"));
390 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
391 }
392
393 /* Virtual GIF. */
394 if ( pVmcbCtrl->IntCtrl.n.u1VGifEnable
395 && !pVM->cpum.ro.GuestFeatures.fSvmVGif)
396 {
397 Log(("iemSvmVmrun: Virtual GIF not supported -> #VMEXIT\n"));
398 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
399 }
400
401 /* Guest ASID. */
402 if (!pVmcbCtrl->TLBCtrl.n.u32ASID)
403 {
404 Log(("iemSvmVmrun: Guest ASID is invalid -> #VMEXIT\n"));
405 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
406 }
407
408 /* Flush by ASID. */
409 if ( !pVM->cpum.ro.GuestFeatures.fSvmFlusbByAsid
410 && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_NOTHING
411 && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_ENTIRE)
412 {
413 Log(("iemSvmVmrun: Flush-by-ASID not supported -> #VMEXIT\n"));
414 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
415 }
416
417 /* IO permission bitmap. */
418 RTGCPHYS const GCPhysIOBitmap = pVmcbCtrl->u64IOPMPhysAddr;
419 if ( (GCPhysIOBitmap & X86_PAGE_4K_OFFSET_MASK)
420 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap)
421 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + X86_PAGE_4K_SIZE)
422 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + (X86_PAGE_4K_SIZE << 1)))
423 {
424 Log(("iemSvmVmrun: IO bitmap physaddr invalid. GCPhysIOBitmap=%#RX64 -> #VMEXIT\n", GCPhysIOBitmap));
425 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
426 }
427
428 /* MSR permission bitmap. */
429 RTGCPHYS const GCPhysMsrBitmap = pVmcbCtrl->u64MSRPMPhysAddr;
430 if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
431 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap)
432 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap + X86_PAGE_4K_SIZE))
433 {
434 Log(("iemSvmVmrun: MSR bitmap physaddr invalid. GCPhysMsrBitmap=%#RX64 -> #VMEXIT\n", GCPhysMsrBitmap));
435 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
436 }
437
438 /* CR0. */
439 if ( !(pVmcbNstGst->u64CR0 & X86_CR0_CD)
440 && (pVmcbNstGst->u64CR0 & X86_CR0_NW))
441 {
442 Log(("iemSvmVmrun: CR0 no-write through with cache disabled. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
443 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
444 }
445 if (pVmcbNstGst->u64CR0 >> 32)
446 {
447 Log(("iemSvmVmrun: CR0 reserved bits set. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
448 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
449 }
450 /** @todo Implement all reserved bits/illegal combinations for CR3, CR4. */
451
452 /* DR6 and DR7. */
453 if ( pVmcbNstGst->u64DR6 >> 32
454 || pVmcbNstGst->u64DR7 >> 32)
455 {
456 Log(("iemSvmVmrun: DR6 and/or DR7 reserved bits set. DR6=%#RX64 DR7=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64DR6,
457 pVmcbNstGst->u64DR6));
458 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
459 }
460
461 /** @todo gPAT MSR validation? */
462
463 /*
464 * Copy the IO permission bitmap into the cache.
465 */
466 Assert(pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap));
467 rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap), GCPhysIOBitmap,
468 SVM_IOPM_PAGES * X86_PAGE_4K_SIZE);
469 if (RT_FAILURE(rc))
470 {
471 Log(("iemSvmVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc));
472 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
473 }
474
475 /*
476 * Copy the MSR permission bitmap into the cache.
477 */
478 Assert(pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap));
479 rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap), GCPhysMsrBitmap,
480 SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE);
481 if (RT_FAILURE(rc))
482 {
483 Log(("iemSvmVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc));
484 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
485 }
486
487 /*
488 * Copy segments from nested-guest VMCB state to the guest-CPU state.
489 *
490 * We do this here as we need to use the CS attributes and it's easier this way
491 * then using the VMCB format selectors. It doesn't really matter where we copy
492 * the state, we restore the guest-CPU context state on the \#VMEXIT anyway.
493 */
494 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, ES, es);
495 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, CS, cs);
496 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, SS, ss);
497 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, DS, ds);
498
499 /** @todo Segment attribute overrides by VMRUN. */
500
501 /*
502 * CPL adjustments and overrides.
503 *
504 * SS.DPL is apparently the CPU's CPL, see comment in CPUMGetGuestCPL().
505 * We shall thus adjust both CS.DPL and SS.DPL here.
506 */
507 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = pVmcbNstGst->u8CPL;
508 if (CPUMIsGuestInV86ModeEx(pCtx))
509 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 3;
510 if (CPUMIsGuestInRealModeEx(pCtx))
511 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 0;
512 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
513
514 /*
515 * Continue validating guest-state and controls.
516 *
517 * We pass CR0 as 0 to CPUMQueryValidatedGuestEfer below to skip the illegal
518 * EFER.LME bit transition check. We pass the nested-guest's EFER as both the
519 * old and new EFER value to not have any guest EFER bits influence the new
520 * nested-guest EFER.
521 */
522 uint64_t uValidEfer;
523 rc = CPUMQueryValidatedGuestEfer(pVM, 0 /* CR0 */, pVmcbNstGst->u64EFER, pVmcbNstGst->u64EFER, &uValidEfer);
524 if (RT_FAILURE(rc))
525 {
526 Log(("iemSvmVmrun: EFER invalid uOldEfer=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64EFER));
527 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
528 }
529
530 /* Validate paging and CPU mode bits. */
531 bool const fSvm = RT_BOOL(uValidEfer & MSR_K6_EFER_SVME);
532 bool const fLongModeSupported = RT_BOOL(pVM->cpum.ro.GuestFeatures.fLongMode);
533 bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME);
534 bool const fPaging = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PG);
535 bool const fPae = RT_BOOL(pVmcbNstGst->u64CR4 & X86_CR4_PAE);
536 bool const fProtMode = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PE);
537 bool const fLongModeWithPaging = fLongModeEnabled && fPaging;
538 bool const fLongModeConformCS = pCtx->cs.Attr.n.u1Long && pCtx->cs.Attr.n.u1DefBig;
539 /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0). */
540 if (fLongModeWithPaging)
541 uValidEfer |= MSR_K6_EFER_LMA;
542 bool const fLongModeActiveOrEnabled = RT_BOOL(uValidEfer & (MSR_K6_EFER_LME | MSR_K6_EFER_LMA));
543 if ( !fSvm
544 || (!fLongModeSupported && fLongModeActiveOrEnabled)
545 || (fLongModeWithPaging && !fPae)
546 || (fLongModeWithPaging && !fProtMode)
547 || ( fLongModeEnabled
548 && fPaging
549 && fPae
550 && fLongModeConformCS))
551 {
552 Log(("iemSvmVmrun: EFER invalid. uValidEfer=%#RX64 -> #VMEXIT\n", uValidEfer));
553 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
554 }
555
556 /*
557 * Preserve the required force-flags.
558 *
559 * We only preserve the force-flags that would affect the execution of the
560 * nested-guest (or the guest).
561 *
562 * - VMCPU_FF_INHIBIT_INTERRUPTS need -not- be preserved as it's for a single
563 * instruction which is this VMRUN instruction itself.
564 *
565 * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the
566 * execution of a subsequent IRET instruction in the guest.
567 *
568 * - The remaining FFs (e.g. timers) can stay in place so that we will be
569 * able to generate interrupts that should cause #VMEXITs for the
570 * nested-guest.
571 */
572 pCtx->hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
573 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
574
575 /*
576 * Interrupt shadow.
577 */
578 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
579 {
580 LogFlow(("iemSvmVmrun: setting interrupt shadow. inhibit PC=%#RX64\n", pVmcbNstGst->u64RIP));
581 /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */
582 EMSetInhibitInterruptsPC(pVCpu, pVmcbNstGst->u64RIP);
583 }
584
585 /*
586 * TLB flush control.
587 * Currently disabled since it's redundant as we unconditionally flush the TLB
588 * in iemSvmWorldSwitch() below.
589 */
590#if 0
591 /** @todo @bugref{7243}: ASID based PGM TLB flushes. */
592 if ( pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE
593 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
594 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
595 PGMFlushTLB(pVCpu, pVmcbNstGst->u64CR3, true /* fGlobal */);
596#endif
597
598 /*
599 * Copy the remaining guest state from the VMCB to the guest-CPU context.
600 */
601 pCtx->gdtr.cbGdt = pVmcbNstGst->GDTR.u32Limit;
602 pCtx->gdtr.pGdt = pVmcbNstGst->GDTR.u64Base;
603 pCtx->idtr.cbIdt = pVmcbNstGst->IDTR.u32Limit;
604 pCtx->idtr.pIdt = pVmcbNstGst->IDTR.u64Base;
605 CPUMSetGuestCR0(pVCpu, pVmcbNstGst->u64CR0);
606 CPUMSetGuestCR4(pVCpu, pVmcbNstGst->u64CR4);
607 pCtx->cr3 = pVmcbNstGst->u64CR3;
608 pCtx->cr2 = pVmcbNstGst->u64CR2;
609 pCtx->dr[6] = pVmcbNstGst->u64DR6;
610 pCtx->dr[7] = pVmcbNstGst->u64DR7;
611 pCtx->rflags.u64 = pVmcbNstGst->u64RFlags;
612 pCtx->rax = pVmcbNstGst->u64RAX;
613 pCtx->rsp = pVmcbNstGst->u64RSP;
614 pCtx->rip = pVmcbNstGst->u64RIP;
615 CPUMSetGuestMsrEferNoCheck(pVCpu, pCtx->msrEFER, uValidEfer);
616
617 /* Mask DR6, DR7 bits mandatory set/clear bits. */
618 pCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
619 pCtx->dr[6] |= X86_DR6_RA1_MASK;
620 pCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
621 pCtx->dr[7] |= X86_DR7_RA1_MASK;
622
623 /*
624 * Check for pending virtual interrupts.
625 */
626 if (pVmcbCtrl->IntCtrl.n.u1VIrqPending)
627 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
628 else
629 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST));
630
631 /*
632 * Update PGM, IEM and others of a world-switch.
633 */
634 VBOXSTRICTRC rcStrict = iemSvmWorldSwitch(pVCpu, pCtx);
635 if (rcStrict == VINF_SUCCESS)
636 { /* likely */ }
637 else if (RT_SUCCESS(rcStrict))
638 {
639 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch returned %Rrc, setting passup status\n", VBOXSTRICTRC_VAL(rcStrict)));
640 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
641 }
642 else
643 {
644 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
645 return rcStrict;
646 }
647
648 /*
649 * Clear global interrupt flags to allow interrupts in the guest.
650 */
651 pCtx->hwvirt.fGif = true;
652
653 /*
654 * Event injection.
655 */
656 PCSVMEVENT pEventInject = &pVmcbCtrl->EventInject;
657 pCtx->hwvirt.svm.fInterceptEvents = !pEventInject->n.u1Valid;
658 if (pEventInject->n.u1Valid)
659 {
660 uint8_t const uVector = pEventInject->n.u8Vector;
661 TRPMEVENT const enmType = HMSvmEventToTrpmEventType(pEventInject);
662 uint16_t const uErrorCode = pEventInject->n.u1ErrorCodeValid ? pEventInject->n.u32ErrorCode : 0;
663
664 /* Validate vectors for hardware exceptions, see AMD spec. 15.20 "Event Injection". */
665 if (RT_UNLIKELY(enmType == TRPM_32BIT_HACK))
666 {
667 Log(("iemSvmVmrun: Invalid event type =%#x -> #VMEXIT\n", (uint8_t)pEventInject->n.u3Type));
668 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
669 }
670 if (pEventInject->n.u3Type == SVM_EVENT_EXCEPTION)
671 {
672 if ( uVector == X86_XCPT_NMI
673 || uVector > X86_XCPT_LAST)
674 {
675 Log(("iemSvmVmrun: Invalid vector for hardware exception. uVector=%#x -> #VMEXIT\n", uVector));
676 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
677 }
678 if ( uVector == X86_XCPT_BR
679 && CPUMIsGuestInLongModeEx(pCtx))
680 {
681 Log(("iemSvmVmrun: Cannot inject #BR when not in long mode -> #VMEXIT\n"));
682 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
683 }
684 /** @todo any others? */
685 }
686
687 /*
688 * Invalidate the exit interrupt-information field here. This field is fully updated
689 * on #VMEXIT as events other than the one below can also cause intercepts during
690 * their injection (e.g. exceptions).
691 */
692 pVmcbCtrl->ExitIntInfo.n.u1Valid = 0;
693
694 /*
695 * Clear the event injection valid bit here. While the AMD spec. mentions that the CPU
696 * clears this bit from the VMCB unconditionally on #VMEXIT, internally the CPU could be
697 * clearing it at any time, most likely before/after injecting the event. Since VirtualBox
698 * doesn't have any virtual-CPU internal representation of this bit, we clear/update the
699 * VMCB here. This also has the added benefit that we avoid the risk of injecting the event
700 * twice if we fallback to executing the nested-guest using hardware-assisted SVM after
701 * injecting the event through IEM here.
702 */
703 pVmcbCtrl->EventInject.n.u1Valid = 0;
704
705 /** @todo NRIP: Software interrupts can only be pushed properly if we support
706 * NRIP for the nested-guest to calculate the instruction length
707 * below. */
708 LogFlow(("iemSvmVmrun: Injecting event: %04x:%08RX64 vec=%#x type=%d uErr=%u cr2=%#RX64 cr3=%#RX64 efer=%#RX64\n",
709 pCtx->cs.Sel, pCtx->rip, uVector, enmType, uErrorCode, pCtx->cr2, pCtx->cr3, pCtx->msrEFER));
710#if 0
711 rcStrict = IEMInjectTrap(pVCpu, uVector, enmType, uErrorCode, pCtx->cr2, 0 /* cbInstr */);
712#else
713 TRPMAssertTrap(pVCpu, uVector, enmType);
714 if (pEventInject->n.u1ErrorCodeValid)
715 TRPMSetErrorCode(pVCpu, uErrorCode);
716 if ( enmType == TRPM_TRAP
717 && uVector == X86_XCPT_PF)
718 TRPMSetFaultAddress(pVCpu, pCtx->cr2);
719#endif
720 }
721 else
722 LogFlow(("iemSvmVmrun: Entering nested-guest: %04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 efer=%#RX64 efl=%#x\n",
723 pCtx->cs.Sel, pCtx->rip, pCtx->cr0, pCtx->cr3, pCtx->cr4, pCtx->msrEFER, pCtx->rflags.u64));
724
725 LogFlow(("iemSvmVmrun: returns %d\n", VBOXSTRICTRC_VAL(rcStrict)));
726
727# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
728 /* If CLGI/STGI isn't intercepted we force IEM-only nested-guest execution here. */
729 if (HMSvmIsVGifActive(pVM))
730 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
731# endif
732
733 return rcStrict;
734 }
735
736 /* Shouldn't really happen as the caller should've validated the physical address already. */
737 Log(("iemSvmVmrun: Failed to read nested-guest VMCB at %#RGp (rc=%Rrc) -> #VMEXIT\n", GCPhysVmcb, rc));
738 return rc;
739#endif
740}
741
742
743#if 0
744/**
745 * Handles nested-guest SVM control intercepts and performs the \#VMEXIT if the
746 * intercept is active.
747 *
748 * @returns Strict VBox status code.
749 * @retval VINF_SVM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
750 * we're not executing a nested-guest.
751 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
752 * successfully.
753 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
754 * failed and a shutdown needs to be initiated for the geust.
755 *
756 * @param pVCpu The cross context virtual CPU structure.
757 * @param pCtx The guest-CPU context.
758 * @param uExitCode The SVM exit code (see SVM_EXIT_XXX).
759 * @param uExitInfo1 The exit info. 1 field.
760 * @param uExitInfo2 The exit info. 2 field.
761 */
762VMM_INT_DECL(VBOXSTRICTRC) HMSvmNstGstHandleCtrlIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uExitCode, uint64_t uExitInfo1,
763 uint64_t uExitInfo2)
764{
765#define HMSVM_CTRL_INTERCEPT_VMEXIT(a_Intercept) \
766 do { \
767 if (CPUMIsGuestSvmCtrlInterceptSet(pCtx, (a_Intercept))) \
768 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2); \
769 break; \
770 } while (0)
771
772 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
773 return VINF_HM_INTERCEPT_NOT_ACTIVE;
774
775 switch (uExitCode)
776 {
777 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
778 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
779 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11:
780 case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13: case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15:
781 case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
782 case SVM_EXIT_EXCEPTION_20: case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22: case SVM_EXIT_EXCEPTION_23:
783 case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25: case SVM_EXIT_EXCEPTION_26: case SVM_EXIT_EXCEPTION_27:
784 case SVM_EXIT_EXCEPTION_28: case SVM_EXIT_EXCEPTION_29: case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
785 {
786 if (CPUMIsGuestSvmXcptInterceptSet(pCtx, (X86XCPT)(uExitCode - SVM_EXIT_EXCEPTION_0)))
787 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
788 break;
789 }
790
791 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
792 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
793 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
794 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
795 {
796 if (CPUMIsGuestSvmWriteCRxInterceptSet(pCtx, uExitCode - SVM_EXIT_WRITE_CR0))
797 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
798 break;
799 }
800
801 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
802 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
803 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
804 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
805 {
806 if (CPUMIsGuestSvmReadCRxInterceptSet(pCtx, uExitCode - SVM_EXIT_READ_CR0))
807 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
808 break;
809 }
810
811 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
812 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
813 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
814 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
815 {
816 if (CPUMIsGuestSvmReadDRxInterceptSet(pCtx, uExitCode - SVM_EXIT_READ_DR0))
817 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
818 break;
819 }
820
821 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
822 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
823 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
824 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
825 {
826 if (CPUMIsGuestSvmWriteDRxInterceptSet(pCtx, uExitCode - SVM_EXIT_WRITE_DR0))
827 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
828 break;
829 }
830
831 case SVM_EXIT_INTR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INTR);
832 case SVM_EXIT_NMI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_NMI);
833 case SVM_EXIT_SMI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SMI);
834 case SVM_EXIT_INIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INIT);
835 case SVM_EXIT_VINTR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VINTR);
836 case SVM_EXIT_CR0_SEL_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CR0_SEL_WRITES);
837 case SVM_EXIT_IDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IDTR_READS);
838 case SVM_EXIT_GDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_GDTR_READS);
839 case SVM_EXIT_LDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_LDTR_READS);
840 case SVM_EXIT_TR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TR_READS);
841 case SVM_EXIT_IDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IDTR_WRITES);
842 case SVM_EXIT_GDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_GDTR_WRITES);
843 case SVM_EXIT_LDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_LDTR_WRITES);
844 case SVM_EXIT_TR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TR_WRITES);
845 case SVM_EXIT_RDTSC: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDTSC);
846 case SVM_EXIT_RDPMC: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDPMC);
847 case SVM_EXIT_PUSHF: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_PUSHF);
848 case SVM_EXIT_POPF: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_POPF);
849 case SVM_EXIT_CPUID: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CPUID);
850 case SVM_EXIT_RSM: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RSM);
851 case SVM_EXIT_IRET: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IRET);
852 case SVM_EXIT_SWINT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INTN);
853 case SVM_EXIT_INVD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVD);
854 case SVM_EXIT_PAUSE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_PAUSE);
855 case SVM_EXIT_HLT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_HLT);
856 case SVM_EXIT_INVLPG: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVLPG);
857 case SVM_EXIT_INVLPGA: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVLPGA);
858 case SVM_EXIT_TASK_SWITCH: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TASK_SWITCH);
859 case SVM_EXIT_FERR_FREEZE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_FERR_FREEZE);
860 case SVM_EXIT_SHUTDOWN: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SHUTDOWN);
861 case SVM_EXIT_VMRUN: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMRUN);
862 case SVM_EXIT_VMMCALL: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMMCALL);
863 case SVM_EXIT_VMLOAD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMLOAD);
864 case SVM_EXIT_VMSAVE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMSAVE);
865 case SVM_EXIT_STGI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_STGI);
866 case SVM_EXIT_CLGI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CLGI);
867 case SVM_EXIT_SKINIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SKINIT);
868 case SVM_EXIT_RDTSCP: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDTSCP);
869 case SVM_EXIT_ICEBP: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_ICEBP);
870 case SVM_EXIT_WBINVD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_WBINVD);
871 case SVM_EXIT_MONITOR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MONITOR);
872 case SVM_EXIT_MWAIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MWAIT);
873 case SVM_EXIT_MWAIT_ARMED: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MWAIT_ARMED);
874 case SVM_EXIT_XSETBV: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_XSETBV);
875
876 case SVM_EXIT_IOIO:
877 AssertMsgFailed(("Use HMSvmNstGstHandleMsrIntercept!\n"));
878 return VERR_SVM_IPE_1;
879
880 case SVM_EXIT_MSR:
881 AssertMsgFailed(("Use HMSvmNstGstHandleMsrIntercept!\n"));
882 return VERR_SVM_IPE_1;
883
884 case SVM_EXIT_NPF:
885 case SVM_EXIT_AVIC_INCOMPLETE_IPI:
886 case SVM_EXIT_AVIC_NOACCEL:
887 AssertMsgFailed(("Todo Implement.\n"));
888 return VERR_SVM_IPE_1;
889
890 default:
891 AssertMsgFailed(("Unsupported SVM exit code %#RX64\n", uExitCode));
892 return VERR_SVM_IPE_1;
893 }
894
895 return VINF_HM_INTERCEPT_NOT_ACTIVE;
896
897#undef HMSVM_CTRL_INTERCEPT_VMEXIT
898}
899#endif
900
901
902/**
903 * Checks if the event intercepts and performs the \#VMEXIT if the corresponding
904 * intercept is active.
905 *
906 * @returns Strict VBox status code.
907 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
908 * we're not executing a nested-guest.
909 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
910 * successfully.
911 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
912 * failed and a shutdown needs to be initiated for the geust.
913 *
914 * @returns VBox strict status code.
915 * @param pVCpu The cross context virtual CPU structure of the calling thread.
916 * @param u16Port The IO port being accessed.
917 * @param enmIoType The type of IO access.
918 * @param cbReg The IO operand size in bytes.
919 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
920 * @param iEffSeg The effective segment number.
921 * @param fRep Whether this is a repeating IO instruction (REP prefix).
922 * @param fStrIo Whether this is a string IO instruction.
923 */
924IEM_STATIC VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr,
925 uint64_t uCr2)
926{
927 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
928
929 /*
930 * Handle SVM exception and software interrupt intercepts, see AMD spec. 15.12 "Exception Intercepts".
931 *
932 * - NMI intercepts have their own exit code and do not cause SVM_EXIT_EXCEPTION_2 #VMEXITs.
933 * - External interrupts and software interrupts (INTn instruction) do not check the exception intercepts
934 * even when they use a vector in the range 0 to 31.
935 * - ICEBP should not trigger #DB intercept, but its own intercept.
936 * - For #PF exceptions, its intercept is checked before CR2 is written by the exception.
937 */
938 /* Check NMI intercept */
939 if ( u8Vector == X86_XCPT_NMI
940 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
941 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_NMI))
942 {
943 Log2(("iemHandleSvmNstGstEventIntercept: NMI intercept -> #VMEXIT\n"));
944 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_NMI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
945 }
946
947 /* Check ICEBP intercept. */
948 if ( (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
949 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_ICEBP))
950 {
951 Log2(("iemHandleSvmNstGstEventIntercept: ICEBP intercept -> #VMEXIT\n"));
952 IEM_SVM_UPDATE_NRIP(pVCpu);
953 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_ICEBP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
954 }
955
956 /* Check CPU exception intercepts. */
957 if ( (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
958 && IEM_IS_SVM_XCPT_INTERCEPT_SET(pVCpu, u8Vector))
959 {
960 Assert(u8Vector <= X86_XCPT_LAST);
961 uint64_t const uExitInfo1 = fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0;
962 uint64_t const uExitInfo2 = fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0;
963 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists
964 && u8Vector == X86_XCPT_PF
965 && !(uErr & X86_TRAP_PF_ID))
966 {
967 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
968#ifdef IEM_WITH_CODE_TLB
969 uint8_t const *pbInstrBuf = pVCpu->iem.s.pbInstrBuf;
970 uint8_t const cbInstrBuf = pVCpu->iem.s.cbInstrBuf;
971 pVmcbCtrl->cbInstrFetched = RT_MIN(cbInstrBuf, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
972 if ( pbInstrBuf
973 && cbInstrBuf > 0)
974 memcpy(&pVmcbCtrl->abInstr[0], pbInstrBuf, pVmcbCtrl->cbInstrFetched);
975#else
976 uint8_t const cbOpcode = pVCpu->iem.s.cbOpcode;
977 pVmcbCtrl->cbInstrFetched = RT_MIN(cbOpcode, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
978 if (cbOpcode > 0)
979 memcpy(&pVmcbCtrl->abInstr[0], &pVCpu->iem.s.abOpcode[0], pVmcbCtrl->cbInstrFetched);
980#endif
981 }
982 if (u8Vector == X86_XCPT_BR)
983 IEM_SVM_UPDATE_NRIP(pVCpu);
984 Log2(("iemHandleSvmNstGstEventIntercept: Xcpt intercept u32InterceptXcpt=%#RX32 u8Vector=%#x "
985 "uExitInfo1=%#RX64 uExitInfo2=%#RX64 -> #VMEXIT\n", pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl.u32InterceptXcpt,
986 u8Vector, uExitInfo1, uExitInfo2));
987 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_EXCEPTION_0 + u8Vector, uExitInfo1, uExitInfo2);
988 }
989
990 /* Check software interrupt (INTn) intercepts. */
991 if ( (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT
992 | IEM_XCPT_FLAGS_BP_INSTR
993 | IEM_XCPT_FLAGS_ICEBP_INSTR
994 | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
995 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INTN))
996 {
997 uint64_t const uExitInfo1 = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? u8Vector : 0;
998 Log2(("iemHandleSvmNstGstEventIntercept: Software INT intercept (u8Vector=%#x) -> #VMEXIT\n", u8Vector));
999 IEM_SVM_UPDATE_NRIP(pVCpu);
1000 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SWINT, uExitInfo1, 0 /* uExitInfo2 */);
1001 }
1002
1003 return VINF_HM_INTERCEPT_NOT_ACTIVE;
1004}
1005
1006
1007/**
1008 * Checks the SVM IO permission bitmap and performs the \#VMEXIT if the
1009 * corresponding intercept is active.
1010 *
1011 * @returns Strict VBox status code.
1012 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
1013 * we're not executing a nested-guest.
1014 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
1015 * successfully.
1016 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
1017 * failed and a shutdown needs to be initiated for the geust.
1018 *
1019 * @returns VBox strict status code.
1020 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1021 * @param u16Port The IO port being accessed.
1022 * @param enmIoType The type of IO access.
1023 * @param cbReg The IO operand size in bytes.
1024 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
1025 * @param iEffSeg The effective segment number.
1026 * @param fRep Whether this is a repeating IO instruction (REP prefix).
1027 * @param fStrIo Whether this is a string IO instruction.
1028 * @param cbInstr The length of the IO instruction in bytes.
1029 */
1030IEM_STATIC VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPU pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
1031 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr)
1032{
1033 Assert(IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT));
1034 Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
1035 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
1036
1037 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u)\n", u16Port, u16Port));
1038
1039 SVMIOIOEXITINFO IoExitInfo;
1040 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1041 void *pvIoBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap);
1042 bool const fIntercept = HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
1043 &IoExitInfo);
1044 if (fIntercept)
1045 {
1046 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u) -> #VMEXIT\n", u16Port, u16Port));
1047 IEM_SVM_UPDATE_NRIP(pVCpu);
1048 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_IOIO, IoExitInfo.u, pCtx->rip + cbInstr);
1049 }
1050
1051 /** @todo remove later (for debugging as VirtualBox always traps all IO
1052 * intercepts). */
1053 AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n"));
1054 return VINF_HM_INTERCEPT_NOT_ACTIVE;
1055}
1056
1057
1058/**
1059 * Checks the SVM MSR permission bitmap and performs the \#VMEXIT if the
1060 * corresponding intercept is active.
1061 *
1062 * @returns Strict VBox status code.
1063 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the MSR permission bitmap does not
1064 * specify interception of the accessed MSR @a idMsr.
1065 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
1066 * successfully.
1067 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
1068 * failed and a shutdown needs to be initiated for the geust.
1069 *
1070 * @param pVCpu The cross context virtual CPU structure.
1071 * @param pCtx The guest-CPU context.
1072 * @param idMsr The MSR being accessed in the nested-guest.
1073 * @param fWrite Whether this is an MSR write access, @c false implies an
1074 * MSR read.
1075 * @param cbInstr The length of the MSR read/write instruction in bytes.
1076 */
1077IEM_STATIC VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t idMsr, bool fWrite)
1078{
1079 /*
1080 * Check if any MSRs are being intercepted.
1081 */
1082 Assert(CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT));
1083 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
1084
1085 uint64_t const uExitInfo1 = fWrite ? SVM_EXIT1_MSR_WRITE : SVM_EXIT1_MSR_READ;
1086
1087 /*
1088 * Get the byte and bit offset of the permission bits corresponding to the MSR.
1089 */
1090 uint16_t offMsrpm;
1091 uint8_t uMsrpmBit;
1092 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
1093 if (RT_SUCCESS(rc))
1094 {
1095 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
1096 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1097 if (fWrite)
1098 ++uMsrpmBit;
1099
1100 /*
1101 * Check if the bit is set, if so, trigger a #VMEXIT.
1102 */
1103 uint8_t *pbMsrpm = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
1104 pbMsrpm += offMsrpm;
1105 if (ASMBitTest(pbMsrpm, uMsrpmBit))
1106 {
1107 IEM_SVM_UPDATE_NRIP(pVCpu);
1108 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1109 }
1110 }
1111 else
1112 {
1113 /*
1114 * This shouldn't happen, but if it does, cause a #VMEXIT and let the "host" (guest hypervisor) deal with it.
1115 */
1116 Log(("iemSvmHandleMsrIntercept: Invalid/out-of-range MSR %#RX32 fWrite=%RTbool -> #VMEXIT\n", idMsr, fWrite));
1117 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1118 }
1119 return VINF_HM_INTERCEPT_NOT_ACTIVE;
1120}
1121
1122
1123
1124/**
1125 * Implements 'VMRUN'.
1126 */
1127IEM_CIMPL_DEF_0(iemCImpl_vmrun)
1128{
1129#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1130 RT_NOREF2(pVCpu, cbInstr);
1131 return VINF_EM_RAW_EMULATE_INSTR;
1132#else
1133 LogFlow(("iemCImpl_vmrun\n"));
1134 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1135 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmrun);
1136
1137 /** @todo Check effective address size using address size prefix. */
1138 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1139 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1140 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1141 {
1142 Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1143 return iemRaiseGeneralProtectionFault0(pVCpu);
1144 }
1145
1146 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
1147 {
1148 Log(("vmrun: Guest intercept -> #VMEXIT\n"));
1149 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1150 }
1151
1152 VBOXSTRICTRC rcStrict = iemSvmVmrun(pVCpu, pCtx, cbInstr, GCPhysVmcb);
1153 if (rcStrict == VERR_SVM_VMEXIT_FAILED)
1154 {
1155 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
1156 rcStrict = VINF_EM_TRIPLE_FAULT;
1157 }
1158 return rcStrict;
1159#endif
1160}
1161
1162
1163/**
1164 * Implements 'VMMCALL'.
1165 */
1166IEM_CIMPL_DEF_0(iemCImpl_vmmcall)
1167{
1168 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1169 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
1170 {
1171 Log(("vmmcall: Guest intercept -> #VMEXIT\n"));
1172 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1173 }
1174
1175 bool fUpdatedRipAndRF;
1176 VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fUpdatedRipAndRF);
1177 if (RT_SUCCESS(rcStrict))
1178 {
1179 if (!fUpdatedRipAndRF)
1180 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1181 return rcStrict;
1182 }
1183
1184 return iemRaiseUndefinedOpcode(pVCpu);
1185}
1186
1187
1188/**
1189 * Implements 'VMLOAD'.
1190 */
1191IEM_CIMPL_DEF_0(iemCImpl_vmload)
1192{
1193#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1194 RT_NOREF2(pVCpu, cbInstr);
1195 return VINF_EM_RAW_EMULATE_INSTR;
1196#else
1197 LogFlow(("iemCImpl_vmload\n"));
1198 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1199 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload);
1200
1201 /** @todo Check effective address size using address size prefix. */
1202 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1203 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1204 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1205 {
1206 Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1207 return iemRaiseGeneralProtectionFault0(pVCpu);
1208 }
1209
1210 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
1211 {
1212 Log(("vmload: Guest intercept -> #VMEXIT\n"));
1213 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1214 }
1215
1216 SVMVMCBSTATESAVE VmcbNstGst;
1217 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest),
1218 sizeof(SVMVMCBSTATESAVE));
1219 if (rcStrict == VINF_SUCCESS)
1220 {
1221 LogFlow(("vmload: Loading VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1222 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, FS, fs);
1223 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, GS, gs);
1224 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, TR, tr);
1225 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr);
1226
1227 pCtx->msrKERNELGSBASE = VmcbNstGst.u64KernelGSBase;
1228 pCtx->msrSTAR = VmcbNstGst.u64STAR;
1229 pCtx->msrLSTAR = VmcbNstGst.u64LSTAR;
1230 pCtx->msrCSTAR = VmcbNstGst.u64CSTAR;
1231 pCtx->msrSFMASK = VmcbNstGst.u64SFMASK;
1232
1233 pCtx->SysEnter.cs = VmcbNstGst.u64SysEnterCS;
1234 pCtx->SysEnter.esp = VmcbNstGst.u64SysEnterESP;
1235 pCtx->SysEnter.eip = VmcbNstGst.u64SysEnterEIP;
1236
1237 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1238 }
1239 return rcStrict;
1240#endif
1241}
1242
1243
1244/**
1245 * Implements 'VMSAVE'.
1246 */
1247IEM_CIMPL_DEF_0(iemCImpl_vmsave)
1248{
1249#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1250 RT_NOREF2(pVCpu, cbInstr);
1251 return VINF_EM_RAW_EMULATE_INSTR;
1252#else
1253 LogFlow(("iemCImpl_vmsave\n"));
1254 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1255 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave);
1256
1257 /** @todo Check effective address size using address size prefix. */
1258 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1259 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1260 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1261 {
1262 Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1263 return iemRaiseGeneralProtectionFault0(pVCpu);
1264 }
1265
1266 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
1267 {
1268 Log(("vmsave: Guest intercept -> #VMEXIT\n"));
1269 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1270 }
1271
1272 SVMVMCBSTATESAVE VmcbNstGst;
1273 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest),
1274 sizeof(SVMVMCBSTATESAVE));
1275 if (rcStrict == VINF_SUCCESS)
1276 {
1277 LogFlow(("vmsave: Saving VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1278 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, FS, fs);
1279 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, GS, gs);
1280 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, TR, tr);
1281 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr);
1282
1283 VmcbNstGst.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1284 VmcbNstGst.u64STAR = pCtx->msrSTAR;
1285 VmcbNstGst.u64LSTAR = pCtx->msrLSTAR;
1286 VmcbNstGst.u64CSTAR = pCtx->msrCSTAR;
1287 VmcbNstGst.u64SFMASK = pCtx->msrSFMASK;
1288
1289 VmcbNstGst.u64SysEnterCS = pCtx->SysEnter.cs;
1290 VmcbNstGst.u64SysEnterESP = pCtx->SysEnter.esp;
1291 VmcbNstGst.u64SysEnterEIP = pCtx->SysEnter.eip;
1292
1293 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest), &VmcbNstGst,
1294 sizeof(SVMVMCBSTATESAVE));
1295 if (rcStrict == VINF_SUCCESS)
1296 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1297 }
1298 return rcStrict;
1299#endif
1300}
1301
1302
1303/**
1304 * Implements 'CLGI'.
1305 */
1306IEM_CIMPL_DEF_0(iemCImpl_clgi)
1307{
1308#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1309 RT_NOREF2(pVCpu, cbInstr);
1310 return VINF_EM_RAW_EMULATE_INSTR;
1311#else
1312 LogFlow(("iemCImpl_clgi\n"));
1313 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1314 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi);
1315 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
1316 {
1317 Log(("clgi: Guest intercept -> #VMEXIT\n"));
1318 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1319 }
1320
1321 pCtx->hwvirt.fGif = false;
1322 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1323
1324# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1325 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
1326# else
1327 return VINF_SUCCESS;
1328# endif
1329#endif
1330}
1331
1332
1333/**
1334 * Implements 'STGI'.
1335 */
1336IEM_CIMPL_DEF_0(iemCImpl_stgi)
1337{
1338#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1339 RT_NOREF2(pVCpu, cbInstr);
1340 return VINF_EM_RAW_EMULATE_INSTR;
1341#else
1342 LogFlow(("iemCImpl_stgi\n"));
1343 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1344 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi);
1345 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI))
1346 {
1347 Log2(("stgi: Guest intercept -> #VMEXIT\n"));
1348 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1349 }
1350
1351 pCtx->hwvirt.fGif = true;
1352 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1353
1354# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1355 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
1356# else
1357 return VINF_SUCCESS;
1358# endif
1359#endif
1360}
1361
1362
1363/**
1364 * Implements 'INVLPGA'.
1365 */
1366IEM_CIMPL_DEF_0(iemCImpl_invlpga)
1367{
1368 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1369 /** @todo Check effective address size using address size prefix. */
1370 RTGCPTR const GCPtrPage = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1371 /** @todo PGM needs virtual ASID support. */
1372#if 0
1373 uint32_t const uAsid = pCtx->ecx;
1374#endif
1375
1376 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1377 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
1378 {
1379 Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
1380 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1381 }
1382
1383 PGMInvalidatePage(pVCpu, GCPtrPage);
1384 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1385 return VINF_SUCCESS;
1386}
1387
1388
1389/**
1390 * Implements 'SKINIT'.
1391 */
1392IEM_CIMPL_DEF_0(iemCImpl_skinit)
1393{
1394 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1395
1396 uint32_t uIgnore;
1397 uint32_t fFeaturesECX;
1398 CPUMGetGuestCpuId(pVCpu, 0x80000001, 0 /* iSubLeaf */, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore);
1399 if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT))
1400 return iemRaiseUndefinedOpcode(pVCpu);
1401
1402 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
1403 {
1404 Log2(("skinit: Guest intercept -> #VMEXIT\n"));
1405 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1406 }
1407
1408 RT_NOREF(cbInstr);
1409 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
1410}
1411
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette