VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h@ 67925

Last change on this file since 67925 was 67925, checked in by vboxsync, 8 years ago

VMM/IEM: Nested Hw.virt: Fixes for dynamically allocated nested-guest VMCB.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 60.8 KB
Line 
1/* $Id: IEMAllCImplSvmInstr.cpp.h 67925 2017-07-12 11:13:08Z vboxsync $ */
2/** @file
3 * IEM - AMD-V (Secure Virtual Machine) instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/**
20 * Converts an IEM exception event type to an SVM event type.
21 *
22 * @returns The SVM event type.
23 * @retval UINT8_MAX if the specified type of event isn't among the set
24 * of recognized IEM event types.
25 *
26 * @param uVector The vector of the event.
27 * @param fIemXcptFlags The IEM exception / interrupt flags.
28 */
29IEM_STATIC uint8_t iemGetSvmEventType(uint32_t uVector, uint32_t fIemXcptFlags)
30{
31 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
32 {
33 if (uVector != X86_XCPT_NMI)
34 return SVM_EVENT_EXCEPTION;
35 return SVM_EVENT_NMI;
36 }
37
38 /* See AMD spec. Table 15-1. "Guest Exception or Interrupt Types". */
39 if (fIemXcptFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
40 return SVM_EVENT_EXCEPTION;
41
42 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_EXT_INT)
43 return SVM_EVENT_EXTERNAL_IRQ;
44
45 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
46 return SVM_EVENT_SOFTWARE_INT;
47
48 AssertMsgFailed(("iemGetSvmEventType: Invalid IEM xcpt/int. type %#x, uVector=%#x\n", fIemXcptFlags, uVector));
49 return UINT8_MAX;
50}
51
52
53/**
54 * Helper for handling a SVM world-switch (VMRUN, \#VMEXIT).
55 *
56 * @returns Strict VBox status code.
57 * @param pVCpu The cross context virtual CPU structure.
58 * @param uOldEfer EFER MSR prior to the world-switch.
59 * @param uOldCr0 CR0 prior to the world-switch.
60 */
61DECLINLINE(VBOXSTRICTRC) iemSvmHandleWorldSwitch(PVMCPU pVCpu, uint64_t uOldEfer, uint64_t uOldCr0)
62{
63 RT_NOREF(uOldEfer); RT_NOREF(uOldCr0);
64
65 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
66
67 /*
68 * Inform PGM.
69 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
70 * see comment in iemMemPageTranslateAndCheckAccess().
71 */
72 PGMFlushTLB(pVCpu, pCtx->cr3, true);
73 int rc = PGMChangeMode(pVCpu, pCtx->cr0 | X86_CR0_PE, pCtx->cr4, pCtx->msrEFER);
74 AssertRCReturn(rc, rc);
75
76 /* Inform CPUM (recompiler). */
77 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
78
79 /* Re-initialize IEM cache/state after the drastic mode switch. */
80 iemReInitExec(pVCpu);
81 return rc;
82}
83
84
85/**
86 * SVM \#VMEXIT handler.
87 *
88 * @returns Strict VBox status code.
89 * @retval VINF_SVM_VMEXIT when the \#VMEXIT is successful.
90 * @retval VERR_SVM_VMEXIT_FAILED when the \#VMEXIT failed restoring the guest's
91 * "host state" and a shutdown is required.
92 *
93 * @param pVCpu The cross context virtual CPU structure.
94 * @param pCtx The guest-CPU context.
95 * @param uExitCode The exit code.
96 * @param uExitInfo1 The exit info. 1 field.
97 * @param uExitInfo2 The exit info. 2 field.
98 */
99IEM_STATIC VBOXSTRICTRC iemSvmVmexit(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2)
100{
101#ifndef IN_RING3
102 AssertMsgFailed(("iemSvmVmexit: Bad context\n"));
103 return VERR_INTERNAL_ERROR_5;
104#endif
105
106 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
107 || uExitCode == SVM_EXIT_INVALID)
108 {
109 LogFlow(("iemSvmVmexit: CS:RIP=%04x:%08RX64 uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pCtx->cs.Sel,
110 pCtx->rip, uExitCode, uExitInfo1, uExitInfo2));
111
112 /*
113 * Disable the global interrupt flag to prevent interrupts during the 'atomic' world switch.
114 */
115 pCtx->hwvirt.svm.fGif = 0;
116
117 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->es));
118 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs));
119 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
120 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ds));
121
122 /*
123 * Save the nested-guest state into the VMCB state-save area.
124 */
125 SVMVMCBSTATESAVE VmcbNstGst;
126 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, ES, es);
127 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, CS, cs);
128 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, SS, ss);
129 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, DS, ds);
130 VmcbNstGst.GDTR.u32Limit = pCtx->gdtr.cbGdt;
131 VmcbNstGst.GDTR.u64Base = pCtx->gdtr.pGdt;
132 VmcbNstGst.IDTR.u32Limit = pCtx->idtr.cbIdt;
133 VmcbNstGst.IDTR.u64Base = pCtx->idtr.pIdt;
134 VmcbNstGst.u64EFER = pCtx->msrEFER;
135 VmcbNstGst.u64CR4 = pCtx->cr4;
136 VmcbNstGst.u64CR3 = pCtx->cr3;
137 VmcbNstGst.u64CR2 = pCtx->cr2;
138 VmcbNstGst.u64CR0 = pCtx->cr0;
139 /** @todo Nested paging. */
140 VmcbNstGst.u64RFlags = pCtx->rflags.u64;
141 VmcbNstGst.u64RIP = pCtx->rip;
142 VmcbNstGst.u64RSP = pCtx->rsp;
143 VmcbNstGst.u64RAX = pCtx->rax;
144 VmcbNstGst.u64DR7 = pCtx->dr[6];
145 VmcbNstGst.u64DR6 = pCtx->dr[7];
146 VmcbNstGst.u8CPL = pCtx->ss.Attr.n.u2Dpl; /* See comment in CPUMGetGuestCPL(). */
147 Assert(CPUMGetGuestCPL(pVCpu) == pCtx->ss.Attr.n.u2Dpl);
148
149 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
150 /* Save interrupt shadow of the nested-guest instruction if any. */
151 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
152 && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip)
153 {
154 LogFlow(("iemSvmVmexit: Interrupt shadow till %#RX64\n", pCtx->rip));
155 pVmcbCtrl->u64IntShadow |= SVM_INTERRUPT_SHADOW_ACTIVE;
156 }
157
158 /*
159 * Save additional state and intercept information.
160 */
161 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
162 {
163 Assert(pVmcbCtrl->IntCtrl.n.u1VIrqPending);
164 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
165 }
166 else
167 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
168
169 /** @todo Save V_TPR, V_IRQ. */
170 /** @todo NRIP. */
171
172 /* Save exit information. */
173 pVmcbCtrl->u64ExitCode = uExitCode;
174 pVmcbCtrl->u64ExitInfo1 = uExitInfo1;
175 pVmcbCtrl->u64ExitInfo2 = uExitInfo2;
176
177 /*
178 * Update the exit interrupt information field if this #VMEXIT happened as a result
179 * of delivering an event.
180 */
181 {
182 uint8_t uExitIntVector;
183 uint32_t uExitIntErr;
184 uint32_t fExitIntFlags;
185 bool const fRaisingEvent = IEMGetCurrentXcpt(pVCpu, &uExitIntVector, &fExitIntFlags, &uExitIntErr,
186 NULL /* uExitIntCr2 */);
187 pVmcbCtrl->ExitIntInfo.n.u1Valid = fRaisingEvent;
188 if (fRaisingEvent)
189 {
190 pVmcbCtrl->ExitIntInfo.n.u8Vector = uExitIntVector;
191 pVmcbCtrl->ExitIntInfo.n.u3Type = iemGetSvmEventType(uExitIntVector, fExitIntFlags);
192 if (fExitIntFlags & IEM_XCPT_FLAGS_ERR)
193 {
194 pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid = true;
195 pVmcbCtrl->ExitIntInfo.n.u32ErrorCode = uExitIntErr;
196 }
197 }
198 }
199
200 /*
201 * Clear event injection in the VMCB.
202 */
203 pVmcbCtrl->EventInject.n.u1Valid = 0;
204
205 /*
206 * Write back the VMCB controls to the guest VMCB in guest physical memory.
207 */
208 VBOXSTRICTRC rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->hwvirt.svm.GCPhysVmcb, pVmcbCtrl,
209 sizeof(*pVmcbCtrl));
210 /*
211 * Prepare for guest's "host mode" by clearing internal processor state bits.
212 *
213 * Some of these like TSC offset can then be used unconditionally in our TM code
214 * but the offset in the guest's VMCB will remain as it should as we've written
215 * back the VMCB controls above.
216 */
217 memset(pVmcbCtrl, 0, sizeof(*pVmcbCtrl));
218
219 if (RT_SUCCESS(rcStrict))
220 {
221 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->hwvirt.svm.GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest),
222 &VmcbNstGst, sizeof(VmcbNstGst));
223 if (RT_SUCCESS(rcStrict))
224 {
225 /** @todo Nested paging. */
226 /** @todo ASID. */
227
228 uint64_t const uOldCr0 = pCtx->cr0;
229 uint64_t const uOldEfer = pCtx->msrEFER;
230
231 /*
232 * Reload the guest's "host state".
233 */
234 PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
235 pCtx->es = pHostState->es;
236 pCtx->cs = pHostState->cs;
237 pCtx->ss = pHostState->ss;
238 pCtx->ds = pHostState->ds;
239 pCtx->gdtr = pHostState->gdtr;
240 pCtx->idtr = pHostState->idtr;
241 pCtx->msrEFER = pHostState->uEferMsr;
242 pCtx->cr0 = pHostState->uCr0 | X86_CR0_PE;
243 pCtx->cr3 = pHostState->uCr3;
244 pCtx->cr4 = pHostState->uCr4;
245 pCtx->rflags = pHostState->rflags;
246 pCtx->rflags.Bits.u1VM = 0;
247 pCtx->rip = pHostState->uRip;
248 pCtx->rsp = pHostState->uRsp;
249 pCtx->rax = pHostState->uRax;
250 pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
251 pCtx->dr[7] |= X86_DR7_RA1_MASK;
252
253 /** @todo if RIP is not canonical or outside the CS segment limit, we need to
254 * raise \#GP(0) in the guest. */
255
256 /** @todo check the loaded host-state for consistency. Figure out what
257 * exactly this involves? */
258
259 /* Restore guest's force-flags. */
260 if (pCtx->hwvirt.fLocalForcedActions)
261 VMCPU_FF_SET(pVCpu, pCtx->hwvirt.fLocalForcedActions);
262
263 /*
264 * Inform PGM and others of the world-switch.
265 */
266 rcStrict = iemSvmHandleWorldSwitch(pVCpu, uOldEfer, uOldCr0);
267 if (rcStrict == VINF_SUCCESS)
268 return VINF_SVM_VMEXIT;
269
270 if (RT_SUCCESS(rcStrict))
271 {
272 LogFlow(("iemSvmVmexit: Setting passup status from iemSvmHandleWorldSwitch %Rrc\n", rcStrict));
273 iemSetPassUpStatus(pVCpu, rcStrict);
274 return VINF_SVM_VMEXIT;
275 }
276
277 LogFlow(("iemSvmVmexit: iemSvmHandleWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
278 }
279 else
280 LogFlow(("iemSvmVmexit: Writing VMCB guest-state at %#RGp failed. rc=%Rrc\n", pCtx->hwvirt.svm.GCPhysVmcb,
281 VBOXSTRICTRC_VAL(rcStrict)));
282 }
283 else
284 LogFlow(("iemSvmVmexit: Writing VMCB guest-controls at %#RGp failed. rc=%Rrc\n", pCtx->hwvirt.svm.GCPhysVmcb,
285 VBOXSTRICTRC_VAL(rcStrict)));
286
287 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
288 return VERR_SVM_VMEXIT_FAILED;
289 }
290
291 Log(("iemSvmVmexit: Not in SVM guest mode! uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitCode,
292 uExitInfo1, uExitInfo2));
293 AssertMsgFailed(("iemSvmVmexit: Unexpected SVM-exit failure uExitCode=%#RX64\n", uExitCode));
294 return VERR_SVM_IPE_5;
295}
296
297
298/**
299 * Performs the operations necessary that are part of the vmrun instruction
300 * execution in the guest.
301 *
302 * @returns Strict VBox status code (i.e. informational status codes too).
303 * @retval VINF_SUCCESS successully executed VMRUN and entered nested-guest
304 * code execution.
305 * @retval VINF_SVM_VMEXIT when executing VMRUN causes a \#VMEXIT
306 * (SVM_EXIT_INVALID most likely).
307 *
308 * @param pVCpu The cross context virtual CPU structure.
309 * @param pCtx Pointer to the guest-CPU context.
310 * @param cbInstr The length of the VMRUN instruction.
311 * @param GCPhysVmcb Guest physical address of the VMCB to run.
312 */
313IEM_STATIC VBOXSTRICTRC iemSvmVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbInstr, RTGCPHYS GCPhysVmcb)
314{
315#ifndef IN_RING3
316 return VINF_EM_RESCHEDULE_REM;
317#endif
318
319 Assert(pVCpu);
320 Assert(pCtx);
321
322 PVM pVM = pVCpu->CTX_SUFF(pVM);
323 LogFlow(("iemSvmVmrun\n"));
324
325 /*
326 * Cache the physical address of the VMCB for #VMEXIT exceptions.
327 */
328 pCtx->hwvirt.svm.GCPhysVmcb = GCPhysVmcb;
329
330 /*
331 * Read the guest VMCB state.
332 */
333 SVMVMCBSTATESAVE VmcbNstGst;
334 int rc = PGMPhysSimpleReadGCPhys(pVM, &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest), sizeof(SVMVMCBSTATESAVE));
335 if (RT_SUCCESS(rc))
336 {
337 /*
338 * Save the host state.
339 */
340 PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
341 pHostState->es = pCtx->es;
342 pHostState->cs = pCtx->cs;
343 pHostState->ss = pCtx->ss;
344 pHostState->ds = pCtx->ds;
345 pHostState->gdtr = pCtx->gdtr;
346 pHostState->idtr = pCtx->idtr;
347 pHostState->uEferMsr = pCtx->msrEFER;
348 pHostState->uCr0 = pCtx->cr0;
349 pHostState->uCr3 = pCtx->cr3;
350 pHostState->uCr4 = pCtx->cr4;
351 pHostState->rflags = pCtx->rflags;
352 pHostState->uRip = pCtx->rip + cbInstr;
353 pHostState->uRsp = pCtx->rsp;
354 pHostState->uRax = pCtx->rax;
355
356 /*
357 * Read the guest VMCB controls.
358 */
359 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
360 rc = PGMPhysSimpleReadGCPhys(pVM, pVmcbCtrl, GCPhysVmcb, sizeof(*pVmcbCtrl));
361 if (RT_SUCCESS(rc))
362 {
363 /*
364 * Validate guest-state and controls.
365 */
366 /* VMRUN must always be iHMSntercepted. */
367 if (!CPUMIsGuestSvmCtrlInterceptSet(pCtx, SVM_CTRL_INTERCEPT_VMRUN))
368 {
369 Log(("iemSvmVmrun: VMRUN instruction not intercepted -> #VMEXIT\n"));
370 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
371 }
372
373 /* Nested paging. */
374 if ( pVmcbCtrl->NestedPaging.n.u1NestedPaging
375 && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging)
376 {
377 Log(("iemSvmVmrun: Nested paging not supported -> #VMEXIT\n"));
378 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
379 }
380
381 /* AVIC. */
382 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
383 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
384 {
385 Log(("iemSvmVmrun: AVIC not supported -> #VMEXIT\n"));
386 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
387 }
388
389 /* Last branch record (LBR) virtualization. */
390 if ( (pVmcbCtrl->u64LBRVirt & SVM_LBR_VIRT_ENABLE)
391 && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt)
392 {
393 Log(("iemSvmVmrun: LBR virtualization not supported -> #VMEXIT\n"));
394 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
395 }
396
397 /* Guest ASID. */
398 if (!pVmcbCtrl->TLBCtrl.n.u32ASID)
399 {
400 Log(("iemSvmVmrun: Guest ASID is invalid -> #VMEXIT\n"));
401 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
402 }
403
404 /* IO permission bitmap. */
405 RTGCPHYS const GCPhysIOBitmap = pVmcbCtrl->u64IOPMPhysAddr;
406 if ( (GCPhysIOBitmap & X86_PAGE_4K_OFFSET_MASK)
407 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap)
408 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + X86_PAGE_4K_SIZE)
409 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + (X86_PAGE_4K_SIZE << 1)))
410 {
411 Log(("iemSvmVmrun: IO bitmap physaddr invalid. GCPhysIOBitmap=%#RX64 -> #VMEXIT\n", GCPhysIOBitmap));
412 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
413 }
414
415 /* MSR permission bitmap. */
416 RTGCPHYS const GCPhysMsrBitmap = pVmcbCtrl->u64MSRPMPhysAddr;
417 if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
418 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap)
419 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap + X86_PAGE_4K_SIZE))
420 {
421 Log(("iemSvmVmrun: MSR bitmap physaddr invalid. GCPhysMsrBitmap=%#RX64 -> #VMEXIT\n", GCPhysMsrBitmap));
422 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
423 }
424
425 /* CR0. */
426 if ( !(VmcbNstGst.u64CR0 & X86_CR0_CD)
427 && (VmcbNstGst.u64CR0 & X86_CR0_NW))
428 {
429 Log(("iemSvmVmrun: CR0 no-write through with cache disabled. CR0=%#RX64 -> #VMEXIT\n", VmcbNstGst.u64CR0));
430 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
431 }
432 if (VmcbNstGst.u64CR0 >> 32)
433 {
434 Log(("iemSvmVmrun: CR0 reserved bits set. CR0=%#RX64 -> #VMEXIT\n", VmcbNstGst.u64CR0));
435 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
436 }
437 /** @todo Implement all reserved bits/illegal combinations for CR3, CR4. */
438
439 /* DR6 and DR7. */
440 if ( VmcbNstGst.u64DR6 >> 32
441 || VmcbNstGst.u64DR7 >> 32)
442 {
443 Log(("iemSvmVmrun: DR6 and/or DR7 reserved bits set. DR6=%#RX64 DR7=%#RX64 -> #VMEXIT\n", VmcbNstGst.u64DR6,
444 VmcbNstGst.u64DR6));
445 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
446 }
447
448 /** @todo gPAT MSR validation? */
449
450 /*
451 * Copy the IO permission bitmap into the cache.
452 */
453 Assert(pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap));
454 rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap), GCPhysIOBitmap,
455 SVM_IOPM_PAGES * X86_PAGE_4K_SIZE);
456 if (RT_FAILURE(rc))
457 {
458 Log(("iemSvmVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc));
459 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
460 }
461
462 /*
463 * Copy the MSR permission bitmap into the cache.
464 */
465 Assert(pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap));
466 rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap), GCPhysMsrBitmap,
467 SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE);
468 if (RT_FAILURE(rc))
469 {
470 Log(("iemSvmVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc));
471 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
472 }
473
474 /*
475 * Copy segments from nested-guest VMCB state to the guest-CPU state.
476 *
477 * We do this here as we need to use the CS attributes and it's easier this way
478 * then using the VMCB format selectors. It doesn't really matter where we copy
479 * the state, we restore the guest-CPU context state on the \#VMEXIT anyway.
480 */
481 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, ES, es);
482 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, CS, cs);
483 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, SS, ss);
484 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, DS, ds);
485
486 /** @todo Segment attribute overrides by VMRUN. */
487
488 /*
489 * CPL adjustments and overrides.
490 *
491 * SS.DPL is apparently the CPU's CPL, see comment in CPUMGetGuestCPL().
492 * We shall thus adjust both CS.DPL and SS.DPL here.
493 */
494 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = VmcbNstGst.u8CPL;
495 if (CPUMIsGuestInV86ModeEx(pCtx))
496 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 3;
497 if (CPUMIsGuestInRealModeEx(pCtx))
498 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 0;
499
500 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
501
502 /*
503 * Continue validating guest-state and controls.
504 */
505 /* EFER, CR0 and CR4. */
506 uint64_t uValidEfer;
507 rc = CPUMQueryValidatedGuestEfer(pVM, VmcbNstGst.u64CR0, VmcbNstGst.u64EFER, VmcbNstGst.u64EFER, &uValidEfer);
508 if (RT_FAILURE(rc))
509 {
510 Log(("iemSvmVmrun: EFER invalid uOldEfer=%#RX64 -> #VMEXIT\n", VmcbNstGst.u64EFER));
511 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
512 }
513 bool const fSvm = RT_BOOL(uValidEfer & MSR_K6_EFER_SVME);
514 bool const fLongModeSupported = RT_BOOL(pVM->cpum.ro.GuestFeatures.fLongMode);
515 bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME);
516 bool const fPaging = RT_BOOL(VmcbNstGst.u64CR0 & X86_CR0_PG);
517 bool const fPae = RT_BOOL(VmcbNstGst.u64CR4 & X86_CR4_PAE);
518 bool const fProtMode = RT_BOOL(VmcbNstGst.u64CR0 & X86_CR0_PE);
519 bool const fLongModeWithPaging = fLongModeEnabled && fPaging;
520 bool const fLongModeConformCS = pCtx->cs.Attr.n.u1Long && pCtx->cs.Attr.n.u1DefBig;
521 /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0). */
522 if (fLongModeWithPaging)
523 uValidEfer |= MSR_K6_EFER_LMA;
524 bool const fLongModeActiveOrEnabled = RT_BOOL(uValidEfer & (MSR_K6_EFER_LME | MSR_K6_EFER_LMA));
525 if ( !fSvm
526 || (!fLongModeSupported && fLongModeActiveOrEnabled)
527 || (fLongModeWithPaging && !fPae)
528 || (fLongModeWithPaging && !fProtMode)
529 || ( fLongModeEnabled
530 && fPaging
531 && fPae
532 && fLongModeConformCS))
533 {
534 Log(("iemSvmVmrun: EFER invalid. uValidEfer=%#RX64 -> #VMEXIT\n", uValidEfer));
535 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
536 }
537
538 /*
539 * Preserve the required force-flags.
540 *
541 * We only preserve the force-flags that would affect the execution of the
542 * nested-guest (or the guest).
543 *
544 * - VMCPU_FF_INHIBIT_INTERRUPTS need -not- be preserved as it's for a single
545 * instruction which is this VMRUN instruction itself.
546 *
547 * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the
548 * execution of a subsequent IRET instruction in the guest.
549 *
550 * - The remaining FFs (e.g. timers) can stay in place so that we will be
551 * able to generate interrupts that should cause #VMEXITs for the
552 * nested-guest.
553 */
554 pCtx->hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
555
556 /*
557 * Interrupt shadow.
558 */
559 if (pVmcbCtrl->u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
560 {
561 LogFlow(("iemSvmVmrun: setting inerrupt shadow. inhibit PC=%#RX64\n", VmcbNstGst.u64RIP));
562 /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */
563 EMSetInhibitInterruptsPC(pVCpu, VmcbNstGst.u64RIP);
564 }
565
566 /*
567 * TLB flush control.
568 * Currently disabled since it's redundant as we unconditionally flush the TLB
569 * in iemSvmHandleWorldSwitch() below.
570 */
571#if 0
572 /** @todo @bugref{7243}: ASID based PGM TLB flushes. */
573 if ( pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE
574 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
575 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
576 PGMFlushTLB(pVCpu, VmcbNstGst.u64CR3, true /* fGlobal */);
577#endif
578
579 /** @todo @bugref{7243}: SVM TSC offset, see tmCpuTickGetInternal. */
580
581 uint64_t const uOldEfer = pCtx->msrEFER;
582 uint64_t const uOldCr0 = pCtx->cr0;
583
584 /*
585 * Copy the remaining guest state from the VMCB to the guest-CPU context.
586 */
587 pCtx->gdtr.cbGdt = VmcbNstGst.GDTR.u32Limit;
588 pCtx->gdtr.pGdt = VmcbNstGst.GDTR.u64Base;
589 pCtx->idtr.cbIdt = VmcbNstGst.IDTR.u32Limit;
590 pCtx->idtr.pIdt = VmcbNstGst.IDTR.u64Base;
591 pCtx->cr0 = VmcbNstGst.u64CR0; /** @todo What about informing PGM about CR0.WP? */
592 pCtx->cr4 = VmcbNstGst.u64CR4;
593 pCtx->cr3 = VmcbNstGst.u64CR3;
594 pCtx->cr2 = VmcbNstGst.u64CR2;
595 pCtx->dr[6] = VmcbNstGst.u64DR6;
596 pCtx->dr[7] = VmcbNstGst.u64DR7;
597 pCtx->rflags.u64 = VmcbNstGst.u64RFlags;
598 pCtx->rax = VmcbNstGst.u64RAX;
599 pCtx->rsp = VmcbNstGst.u64RSP;
600 pCtx->rip = VmcbNstGst.u64RIP;
601 pCtx->msrEFER = uValidEfer;
602
603 /* Mask DR6, DR7 bits mandatory set/clear bits. */
604 pCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
605 pCtx->dr[6] |= X86_DR6_RA1_MASK;
606 pCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
607 pCtx->dr[7] |= X86_DR7_RA1_MASK;
608
609 /*
610 * Check for pending virtual interrupts.
611 */
612 if (pVmcbCtrl->IntCtrl.n.u1VIrqPending)
613 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
614 else
615 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST));
616
617 /*
618 * Clear global interrupt flags to allow interrupts in the guest.
619 */
620 pCtx->hwvirt.svm.fGif = 1;
621
622 /*
623 * Inform PGM and others of the world-switch.
624 */
625 VBOXSTRICTRC rcStrict = iemSvmHandleWorldSwitch(pVCpu, uOldEfer, uOldCr0);
626 if (rcStrict == VINF_SUCCESS)
627 { /* likely */ }
628 else if (RT_SUCCESS(rcStrict))
629 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
630 else
631 {
632 LogFlow(("iemSvmVmrun: iemSvmHandleWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
633 return rcStrict;
634 }
635
636 /*
637 * Event injection.
638 */
639 PCSVMEVENT pEventInject = &pVmcbCtrl->EventInject;
640 pCtx->hwvirt.svm.fInterceptEvents = !pEventInject->n.u1Valid;
641 if (pEventInject->n.u1Valid)
642 {
643 uint8_t const uVector = pEventInject->n.u8Vector;
644 TRPMEVENT const enmType = HMSvmEventToTrpmEventType(pEventInject);
645 uint16_t const uErrorCode = pEventInject->n.u1ErrorCodeValid ? pEventInject->n.u32ErrorCode : 0;
646
647 /* Validate vectors for hardware exceptions, see AMD spec. 15.20 "Event Injection". */
648 if (enmType == TRPM_32BIT_HACK)
649 {
650 Log(("iemSvmVmrun: Invalid event type =%#x -> #VMEXIT\n", (uint8_t)pEventInject->n.u3Type));
651 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
652 }
653 if (pEventInject->n.u3Type == SVM_EVENT_EXCEPTION)
654 {
655 if ( uVector == X86_XCPT_NMI
656 || uVector > X86_XCPT_LAST)
657 {
658 Log(("iemSvmVmrun: Invalid vector for hardware exception. uVector=%#x -> #VMEXIT\n", uVector));
659 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
660 }
661 if ( uVector == X86_XCPT_BR
662 && CPUMIsGuestInLongModeEx(pCtx))
663 {
664 Log(("iemSvmVmrun: Cannot inject #BR when not in long mode -> #VMEXIT\n"));
665 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
666 }
667 /** @todo any others? */
668 }
669
670 /*
671 * Update the exit interruption info field so that if an exception occurs
672 * while delivering the event causing a #VMEXIT, we only need to update
673 * the valid bit while the rest is already in place.
674 */
675 pVmcbCtrl->ExitIntInfo.u = pVmcbCtrl->EventInject.u;
676 pVmcbCtrl->ExitIntInfo.n.u1Valid = 0;
677
678 /** @todo NRIP: Software interrupts can only be pushed properly if we support
679 * NRIP for the nested-guest to calculate the instruction length
680 * below. */
681 LogFlow(("iemSvmVmrun: Injecting event: %04x:%08RX64 uVector=%#x enmType=%d uErrorCode=%u cr2=%#RX64\n",
682 pCtx->cs.Sel, pCtx->rip, uVector, enmType,uErrorCode, pCtx->cr2));
683 rcStrict = IEMInjectTrap(pVCpu, uVector, enmType, uErrorCode, pCtx->cr2, 0 /* cbInstr */);
684 }
685 else
686 LogFlow(("iemSvmVmrun: Entered nested-guest: %04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 efer=%#RX64 efl=%#x\n",
687 pCtx->cs.Sel, pCtx->rip, pCtx->cr0, pCtx->cr3, pCtx->cr4, pCtx->msrEFER, pCtx->rflags.u64));
688
689 return rcStrict;
690 }
691
692 /* Shouldn't really happen as the caller should've validated the physical address already. */
693 Log(("iemSvmVmrun: Failed to read nested-guest VMCB control area at %#RGp -> #VMEXIT\n",
694 GCPhysVmcb));
695 return VERR_SVM_IPE_4;
696 }
697
698 /* Shouldn't really happen as the caller should've validated the physical address already. */
699 Log(("iemSvmVmrun: Failed to read nested-guest VMCB save-state area at %#RGp -> #VMEXIT\n",
700 GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest)));
701 return VERR_IEM_IPE_1;
702}
703
704
705#if 0
706/**
707 * Handles nested-guest SVM control intercepts and performs the \#VMEXIT if the
708 * intercept is active.
709 *
710 * @returns Strict VBox status code.
711 * @retval VINF_SVM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
712 * we're not executing a nested-guest.
713 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
714 * successfully.
715 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
716 * failed and a shutdown needs to be initiated for the geust.
717 *
718 * @param pVCpu The cross context virtual CPU structure.
719 * @param pCtx The guest-CPU context.
720 * @param uExitCode The SVM exit code (see SVM_EXIT_XXX).
721 * @param uExitInfo1 The exit info. 1 field.
722 * @param uExitInfo2 The exit info. 2 field.
723 */
724VMM_INT_DECL(VBOXSTRICTRC) HMSvmNstGstHandleCtrlIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uExitCode, uint64_t uExitInfo1,
725 uint64_t uExitInfo2)
726{
727#define HMSVM_CTRL_INTERCEPT_VMEXIT(a_Intercept) \
728 do { \
729 if (CPUMIsGuestSvmCtrlInterceptSet(pCtx, (a_Intercept))) \
730 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2); \
731 break; \
732 } while (0)
733
734 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
735 return VINF_HM_INTERCEPT_NOT_ACTIVE;
736
737 switch (uExitCode)
738 {
739 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
740 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
741 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11:
742 case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13: case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15:
743 case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
744 case SVM_EXIT_EXCEPTION_20: case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22: case SVM_EXIT_EXCEPTION_23:
745 case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25: case SVM_EXIT_EXCEPTION_26: case SVM_EXIT_EXCEPTION_27:
746 case SVM_EXIT_EXCEPTION_28: case SVM_EXIT_EXCEPTION_29: case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
747 {
748 if (CPUMIsGuestSvmXcptInterceptSet(pCtx, (X86XCPT)(uExitCode - SVM_EXIT_EXCEPTION_0)))
749 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
750 break;
751 }
752
753 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
754 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
755 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
756 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
757 {
758 if (CPUMIsGuestSvmWriteCRxInterceptSet(pCtx, uExitCode - SVM_EXIT_WRITE_CR0))
759 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
760 break;
761 }
762
763 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
764 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
765 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
766 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
767 {
768 if (CPUMIsGuestSvmReadCRxInterceptSet(pCtx, uExitCode - SVM_EXIT_READ_CR0))
769 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
770 break;
771 }
772
773 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
774 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
775 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
776 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
777 {
778 if (CPUMIsGuestSvmReadDRxInterceptSet(pCtx, uExitCode - SVM_EXIT_READ_DR0))
779 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
780 break;
781 }
782
783 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
784 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
785 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
786 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
787 {
788 if (CPUMIsGuestSvmWriteDRxInterceptSet(pCtx, uExitCode - SVM_EXIT_WRITE_DR0))
789 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
790 break;
791 }
792
793 case SVM_EXIT_INTR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INTR);
794 case SVM_EXIT_NMI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_NMI);
795 case SVM_EXIT_SMI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SMI);
796 case SVM_EXIT_INIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INIT);
797 case SVM_EXIT_VINTR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VINTR);
798 case SVM_EXIT_CR0_SEL_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CR0_SEL_WRITES);
799 case SVM_EXIT_IDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IDTR_READS);
800 case SVM_EXIT_GDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_GDTR_READS);
801 case SVM_EXIT_LDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_LDTR_READS);
802 case SVM_EXIT_TR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TR_READS);
803 case SVM_EXIT_IDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IDTR_WRITES);
804 case SVM_EXIT_GDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_GDTR_WRITES);
805 case SVM_EXIT_LDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_LDTR_WRITES);
806 case SVM_EXIT_TR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TR_WRITES);
807 case SVM_EXIT_RDTSC: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDTSC);
808 case SVM_EXIT_RDPMC: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDPMC);
809 case SVM_EXIT_PUSHF: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_PUSHF);
810 case SVM_EXIT_POPF: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_POPF);
811 case SVM_EXIT_CPUID: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CPUID);
812 case SVM_EXIT_RSM: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RSM);
813 case SVM_EXIT_IRET: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IRET);
814 case SVM_EXIT_SWINT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INTN);
815 case SVM_EXIT_INVD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVD);
816 case SVM_EXIT_PAUSE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_PAUSE);
817 case SVM_EXIT_HLT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_HLT);
818 case SVM_EXIT_INVLPG: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVLPG);
819 case SVM_EXIT_INVLPGA: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVLPGA);
820 case SVM_EXIT_TASK_SWITCH: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TASK_SWITCH);
821 case SVM_EXIT_FERR_FREEZE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_FERR_FREEZE);
822 case SVM_EXIT_SHUTDOWN: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SHUTDOWN);
823 case SVM_EXIT_VMRUN: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMRUN);
824 case SVM_EXIT_VMMCALL: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMMCALL);
825 case SVM_EXIT_VMLOAD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMLOAD);
826 case SVM_EXIT_VMSAVE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMSAVE);
827 case SVM_EXIT_STGI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_STGI);
828 case SVM_EXIT_CLGI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CLGI);
829 case SVM_EXIT_SKINIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SKINIT);
830 case SVM_EXIT_RDTSCP: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDTSCP);
831 case SVM_EXIT_ICEBP: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_ICEBP);
832 case SVM_EXIT_WBINVD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_WBINVD);
833 case SVM_EXIT_MONITOR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MONITOR);
834 case SVM_EXIT_MWAIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MWAIT);
835 case SVM_EXIT_MWAIT_ARMED: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MWAIT_ARMED);
836 case SVM_EXIT_XSETBV: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_XSETBV);
837
838 case SVM_EXIT_IOIO:
839 AssertMsgFailed(("Use HMSvmNstGstHandleMsrIntercept!\n"));
840 return VERR_SVM_IPE_1;
841
842 case SVM_EXIT_MSR:
843 AssertMsgFailed(("Use HMSvmNstGstHandleMsrIntercept!\n"));
844 return VERR_SVM_IPE_1;
845
846 case SVM_EXIT_NPF:
847 case SVM_EXIT_AVIC_INCOMPLETE_IPI:
848 case SVM_EXIT_AVIC_NOACCEL:
849 AssertMsgFailed(("Todo Implement.\n"));
850 return VERR_SVM_IPE_1;
851
852 default:
853 AssertMsgFailed(("Unsupported SVM exit code %#RX64\n", uExitCode));
854 return VERR_SVM_IPE_1;
855 }
856
857 return VINF_HM_INTERCEPT_NOT_ACTIVE;
858
859#undef HMSVM_CTRL_INTERCEPT_VMEXIT
860}
861#endif
862
863
864/**
865 * Checks if the event intercepts and performs the \#VMEXIT if the corresponding
866 * intercept is active.
867 *
868 * @returns Strict VBox status code.
869 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
870 * we're not executing a nested-guest.
871 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
872 * successfully.
873 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
874 * failed and a shutdown needs to be initiated for the geust.
875 *
876 * @returns VBox strict status code.
877 * @param pVCpu The cross context virtual CPU structure of the calling thread.
878 * @param u16Port The IO port being accessed.
879 * @param enmIoType The type of IO access.
880 * @param cbReg The IO operand size in bytes.
881 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
882 * @param iEffSeg The effective segment number.
883 * @param fRep Whether this is a repeating IO instruction (REP prefix).
884 * @param fStrIo Whether this is a string IO instruction.
885 * @param cbInstr The length of the IO instruction in bytes.
886 */
887IEM_STATIC VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr,
888 uint64_t uCr2)
889{
890 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
891
892 /*
893 * Handle SVM exception and software interrupt intercepts, see AMD spec. 15.12 "Exception Intercepts".
894 *
895 * - NMI intercepts have their own exit code and do not cause SVM_EXIT_EXCEPTION_2 #VMEXITs.
896 * - External interrupts and software interrupts (INTn instruction) do not check the exception intercepts
897 * even when they use a vector in the range 0 to 31.
898 * - ICEBP should not trigger #DB intercept, but its own intercept.
899 * - For #PF exceptions, its intercept is checked before CR2 is written by the exception.
900 */
901 /* Check NMI intercept */
902 if ( u8Vector == X86_XCPT_NMI
903 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
904 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_NMI))
905 {
906 Log2(("iemHandleSvmNstGstEventIntercept: NMI intercept -> #VMEXIT\n"));
907 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_NMI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
908 }
909
910 /* Check ICEBP intercept. */
911 if ( (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
912 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_ICEBP))
913 {
914 Log2(("iemHandleSvmNstGstEventIntercept: ICEBP intercept -> #VMEXIT\n"));
915 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_ICEBP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
916 }
917
918 /* Check CPU exception intercepts. */
919 if ( (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
920 && IEM_IS_SVM_XCPT_INTERCEPT_SET(pVCpu, u8Vector))
921 {
922 Assert(u8Vector <= X86_XCPT_LAST);
923 uint64_t const uExitInfo1 = fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0;
924 uint64_t const uExitInfo2 = fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0;
925 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssist
926 && u8Vector == X86_XCPT_PF
927 && !(uErr & X86_TRAP_PF_ID))
928 {
929 /** @todo Nested-guest SVM - figure out fetching op-code bytes from IEM. */
930#ifdef IEM_WITH_CODE_TLB
931 AssertReleaseFailedReturn(VERR_IEM_IPE_5);
932#else
933 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
934 uint8_t const offOpCode = pVCpu->iem.s.offOpcode;
935 uint8_t const cbCurrent = pVCpu->iem.s.cbOpcode - pVCpu->iem.s.offOpcode;
936 if ( cbCurrent > 0
937 && cbCurrent < sizeof(pVmcbCtrl->abInstr))
938 {
939 Assert(cbCurrent <= sizeof(pVCpu->iem.s.abOpcode));
940 memcpy(&pVmcbCtrl->abInstr[0], &pVCpu->iem.s.abOpcode[offOpCode], cbCurrent);
941 }
942#endif
943 }
944 Log2(("iemHandleSvmNstGstEventIntercept: Xcpt intercept u32InterceptXcpt=%#RX32 u8Vector=%#x "
945 "uExitInfo1=%#RX64 uExitInfo2=%#RX64 -> #VMEXIT\n", pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl.u32InterceptXcpt,
946 u8Vector, uExitInfo1, uExitInfo2));
947 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_EXCEPTION_0 + u8Vector, uExitInfo1, uExitInfo2);
948 }
949
950 /* Check software interrupt (INTn) intercepts. */
951 if ( (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT
952 | IEM_XCPT_FLAGS_BP_INSTR
953 | IEM_XCPT_FLAGS_ICEBP_INSTR
954 | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
955 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INTN))
956 {
957 uint64_t const uExitInfo1 = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssist ? u8Vector : 0;
958 Log2(("iemHandleSvmNstGstEventIntercept: Software INT intercept (u8Vector=%#x) -> #VMEXIT\n", u8Vector));
959 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SWINT, uExitInfo1, 0 /* uExitInfo2 */);
960 }
961
962 return VINF_HM_INTERCEPT_NOT_ACTIVE;
963}
964
965
966/**
967 * Checks the SVM IO permission bitmap and performs the \#VMEXIT if the
968 * corresponding intercept is active.
969 *
970 * @returns Strict VBox status code.
971 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
972 * we're not executing a nested-guest.
973 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
974 * successfully.
975 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
976 * failed and a shutdown needs to be initiated for the geust.
977 *
978 * @returns VBox strict status code.
979 * @param pVCpu The cross context virtual CPU structure of the calling thread.
980 * @param u16Port The IO port being accessed.
981 * @param enmIoType The type of IO access.
982 * @param cbReg The IO operand size in bytes.
983 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
984 * @param iEffSeg The effective segment number.
985 * @param fRep Whether this is a repeating IO instruction (REP prefix).
986 * @param fStrIo Whether this is a string IO instruction.
987 * @param cbInstr The length of the IO instruction in bytes.
988 */
989IEM_STATIC VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPU pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
990 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr)
991{
992 Assert(IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT));
993 Assert(cAddrSizeBits == 0 || cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
994 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
995
996 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u)\n", u16Port, u16Port));
997
998 /*
999 * The IOPM layout:
1000 * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or
1001 * two 4K pages.
1002 *
1003 * For IO instructions that access more than a single byte, the permission bits
1004 * for all bytes are checked; if any bit is set to 1, the IO access is intercepted.
1005 *
1006 * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes),
1007 * we need 3 extra bits beyond the second 4K page.
1008 */
1009 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1010 static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 };
1011
1012 uint16_t const offIopm = u16Port >> 3;
1013 uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7];
1014 uint8_t const cShift = u16Port - (offIopm << 3);
1015 uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift);
1016
1017 uint8_t const *pbIopm = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap);
1018 Assert(pbIopm);
1019 pbIopm += offIopm;
1020 uint16_t const u16Iopm = *(uint16_t *)pbIopm;
1021 if (u16Iopm & fIopmMask)
1022 {
1023 static const uint32_t s_auIoOpSize[] =
1024 { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 };
1025
1026 static const uint32_t s_auIoAddrSize[] =
1027 { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 };
1028
1029 SVMIOIOEXITINFO IoExitInfo;
1030 IoExitInfo.u = s_auIoOpSize[cbReg & 7];
1031 IoExitInfo.u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7];
1032 IoExitInfo.n.u1STR = fStrIo;
1033 IoExitInfo.n.u1REP = fRep;
1034 IoExitInfo.n.u3SEG = iEffSeg & 7;
1035 IoExitInfo.n.u1Type = enmIoType;
1036 IoExitInfo.n.u16Port = u16Port;
1037
1038 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u) offIoPm=%u fSizeMask=%#x cShift=%u fIopmMask=%#x -> #VMEXIT\n",
1039 u16Port, u16Port, offIopm, fSizeMask, cShift, fIopmMask));
1040 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_IOIO, IoExitInfo.u, pCtx->rip + cbInstr);
1041 }
1042
1043 /** @todo remove later (for debugging as VirtualBox always traps all IO
1044 * intercepts). */
1045 AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n"));
1046 return VINF_HM_INTERCEPT_NOT_ACTIVE;
1047}
1048
1049
1050/**
1051 * Checks the SVM MSR permission bitmap and performs the \#VMEXIT if the
1052 * corresponding intercept is active.
1053 *
1054 * @returns Strict VBox status code.
1055 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the MSR permission bitmap does not
1056 * specify interception of the accessed MSR @a idMsr.
1057 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
1058 * successfully.
1059 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
1060 * failed and a shutdown needs to be initiated for the geust.
1061 *
1062 * @param pVCpu The cross context virtual CPU structure.
1063 * @param pCtx The guest-CPU context.
1064 * @param idMsr The MSR being accessed in the nested-guest.
1065 * @param fWrite Whether this is an MSR write access, @c false implies an
1066 * MSR read.
1067 */
1068IEM_STATIC VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t idMsr, bool fWrite)
1069{
1070 /*
1071 * Check if any MSRs are being intercepted.
1072 */
1073 Assert(CPUMIsGuestSvmCtrlInterceptSet(pCtx, SVM_CTRL_INTERCEPT_MSR_PROT));
1074 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
1075
1076 uint64_t const uExitInfo1 = fWrite ? SVM_EXIT1_MSR_WRITE : SVM_EXIT1_MSR_READ;
1077
1078 /*
1079 * Get the byte and bit offset of the permission bits corresponding to the MSR.
1080 */
1081 uint16_t offMsrpm;
1082 uint32_t uMsrpmBit;
1083 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
1084 if (RT_SUCCESS(rc))
1085 {
1086 Assert(uMsrpmBit < 0x3fff);
1087 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1088 if (fWrite)
1089 ++uMsrpmBit;
1090
1091 /*
1092 * Check if the bit is set, if so, trigger a #VMEXIT.
1093 */
1094 uint8_t *pbMsrpm = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
1095 pbMsrpm += offMsrpm;
1096 if (ASMBitTest(pbMsrpm, uMsrpmBit))
1097 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1098 }
1099 else
1100 {
1101 /*
1102 * This shouldn't happen, but if it does, cause a #VMEXIT and let the "host" (guest hypervisor) deal with it.
1103 */
1104 Log(("iemSvmHandleMsrIntercept: Invalid/out-of-range MSR %#RX32 fWrite=%RTbool -> #VMEXIT\n", idMsr, fWrite));
1105 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1106 }
1107 return VINF_HM_INTERCEPT_NOT_ACTIVE;
1108}
1109
1110
1111
1112/**
1113 * Implements 'VMRUN'.
1114 */
1115IEM_CIMPL_DEF_0(iemCImpl_vmrun)
1116{
1117#ifndef IN_RING3
1118 return VINF_EM_RESCHEDULE_REM;
1119#endif
1120
1121 LogFlow(("iemCImpl_vmrun\n"));
1122 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1123 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmrun);
1124
1125 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1126 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1127 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1128 {
1129 Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1130 return iemRaiseGeneralProtectionFault0(pVCpu);
1131 }
1132
1133 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
1134 {
1135 Log(("vmrun: Guest intercept -> #VMEXIT\n"));
1136 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1137 }
1138
1139 VBOXSTRICTRC rcStrict = iemSvmVmrun(pVCpu, pCtx, cbInstr, GCPhysVmcb);
1140 if (rcStrict == VERR_SVM_VMEXIT_FAILED)
1141 {
1142 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
1143 rcStrict = iemInitiateCpuShutdown(pVCpu);
1144 }
1145 return rcStrict;
1146}
1147
1148
1149/**
1150 * Implements 'VMMCALL'.
1151 */
1152IEM_CIMPL_DEF_0(iemCImpl_vmmcall)
1153{
1154 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1155 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
1156 {
1157 Log(("vmmcall: Guest intercept -> #VMEXIT\n"));
1158 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1159 }
1160
1161 bool fUpdatedRipAndRF;
1162 VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fUpdatedRipAndRF);
1163 if (RT_SUCCESS(rcStrict))
1164 {
1165 if (!fUpdatedRipAndRF)
1166 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1167 return rcStrict;
1168 }
1169
1170 return iemRaiseUndefinedOpcode(pVCpu);
1171}
1172
1173
1174/**
1175 * Implements 'VMLOAD'.
1176 */
1177IEM_CIMPL_DEF_0(iemCImpl_vmload)
1178{
1179#ifndef IN_RING3
1180 return VINF_EM_RAW_EMULATE_INSTR;
1181#endif
1182
1183 LogFlow(("iemCImpl_vmload\n"));
1184 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1185 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload);
1186
1187 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1188 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1189 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1190 {
1191 Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1192 return iemRaiseGeneralProtectionFault0(pVCpu);
1193 }
1194
1195 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
1196 {
1197 Log(("vmload: Guest intercept -> #VMEXIT\n"));
1198 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1199 }
1200
1201 SVMVMCBSTATESAVE VmcbNstGst;
1202 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest),
1203 sizeof(SVMVMCBSTATESAVE));
1204 if (rcStrict == VINF_SUCCESS)
1205 {
1206 LogFlow(("vmload: Loading VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1207 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, FS, fs);
1208 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, GS, gs);
1209 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, TR, tr);
1210 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr);
1211
1212 pCtx->msrKERNELGSBASE = VmcbNstGst.u64KernelGSBase;
1213 pCtx->msrSTAR = VmcbNstGst.u64STAR;
1214 pCtx->msrLSTAR = VmcbNstGst.u64LSTAR;
1215 pCtx->msrCSTAR = VmcbNstGst.u64CSTAR;
1216 pCtx->msrSFMASK = VmcbNstGst.u64SFMASK;
1217
1218 pCtx->SysEnter.cs = VmcbNstGst.u64SysEnterCS;
1219 pCtx->SysEnter.esp = VmcbNstGst.u64SysEnterESP;
1220 pCtx->SysEnter.eip = VmcbNstGst.u64SysEnterEIP;
1221
1222 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1223 }
1224 return rcStrict;
1225}
1226
1227
1228/**
1229 * Implements 'VMSAVE'.
1230 */
1231IEM_CIMPL_DEF_0(iemCImpl_vmsave)
1232{
1233#ifndef IN_RING3
1234 return VINF_EM_RAW_EMULATE_INSTR;
1235#endif
1236
1237 LogFlow(("iemCImpl_vmsave\n"));
1238 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1239 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave);
1240
1241 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1242 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1243 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1244 {
1245 Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1246 return iemRaiseGeneralProtectionFault0(pVCpu);
1247 }
1248
1249 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
1250 {
1251 Log(("vmsave: Guest intercept -> #VMEXIT\n"));
1252 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1253 }
1254
1255 SVMVMCBSTATESAVE VmcbNstGst;
1256 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest),
1257 sizeof(SVMVMCBSTATESAVE));
1258 if (rcStrict == VINF_SUCCESS)
1259 {
1260 LogFlow(("vmsave: Saving VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1261 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, FS, fs);
1262 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, GS, gs);
1263 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, TR, tr);
1264 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr);
1265
1266 VmcbNstGst.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1267 VmcbNstGst.u64STAR = pCtx->msrSTAR;
1268 VmcbNstGst.u64LSTAR = pCtx->msrLSTAR;
1269 VmcbNstGst.u64CSTAR = pCtx->msrCSTAR;
1270 VmcbNstGst.u64SFMASK = pCtx->msrSFMASK;
1271
1272 VmcbNstGst.u64SysEnterCS = pCtx->SysEnter.cs;
1273 VmcbNstGst.u64SysEnterESP = pCtx->SysEnter.esp;
1274 VmcbNstGst.u64SysEnterEIP = pCtx->SysEnter.eip;
1275
1276 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest), &VmcbNstGst,
1277 sizeof(SVMVMCBSTATESAVE));
1278 if (rcStrict == VINF_SUCCESS)
1279 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1280 }
1281 return rcStrict;
1282}
1283
1284
1285/**
1286 * Implements 'CLGI'.
1287 */
1288IEM_CIMPL_DEF_0(iemCImpl_clgi)
1289{
1290#ifndef IN_RING3
1291 return VINF_EM_RESCHEDULE_REM;
1292#endif
1293
1294 LogFlow(("iemCImpl_clgi\n"));
1295 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1296 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi);
1297 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
1298 {
1299 Log(("clgi: Guest intercept -> #VMEXIT\n"));
1300 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1301 }
1302
1303 pCtx->hwvirt.svm.fGif = 0;
1304 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1305#if defined(VBOX_WITH_NESTED_HWVIRT) && defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1306 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
1307#endif
1308 return VINF_SUCCESS;
1309}
1310
1311
1312/**
1313 * Implements 'STGI'.
1314 */
1315IEM_CIMPL_DEF_0(iemCImpl_stgi)
1316{
1317#ifndef IN_RING3
1318 return VINF_EM_RESCHEDULE_REM;
1319#endif
1320
1321 LogFlow(("iemCImpl_stgi\n"));
1322 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1323 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi);
1324 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI))
1325 {
1326 Log2(("stgi: Guest intercept -> #VMEXIT\n"));
1327 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1328 }
1329
1330 pCtx->hwvirt.svm.fGif = 1;
1331 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1332#if defined(VBOX_WITH_NESTED_HWVIRT) && defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1333 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
1334#else
1335 return VINF_SUCCESS;
1336#endif
1337}
1338
1339
1340/**
1341 * Implements 'INVLPGA'.
1342 */
1343IEM_CIMPL_DEF_0(iemCImpl_invlpga)
1344{
1345 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1346 RTGCPTR const GCPtrPage = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1347 /** @todo PGM needs virtual ASID support. */
1348#if 0
1349 uint32_t const uAsid = pCtx->ecx;
1350#endif
1351
1352 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1353 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
1354 {
1355 Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
1356 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1357 }
1358
1359 PGMInvalidatePage(pVCpu, GCPtrPage);
1360 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1361 return VINF_SUCCESS;
1362}
1363
1364
1365/**
1366 * Implements 'SKINIT'.
1367 */
1368IEM_CIMPL_DEF_0(iemCImpl_skinit)
1369{
1370 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1371
1372 uint32_t uIgnore;
1373 uint32_t fFeaturesECX;
1374 CPUMGetGuestCpuId(pVCpu, 0x80000001, 0 /* iSubLeaf */, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore);
1375 if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT))
1376 return iemRaiseUndefinedOpcode(pVCpu);
1377
1378 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
1379 {
1380 Log2(("skinit: Guest intercept -> #VMEXIT\n"));
1381 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1382 }
1383
1384 RT_NOREF(cbInstr);
1385 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
1386}
1387
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette