VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h@ 70948

Last change on this file since 70948 was 70900, checked in by vboxsync, 7 years ago

VMM/IEM: Nested Hw.virt: Don't ignore result of PGMFlushTLB.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 60.1 KB
Line 
1/* $Id: IEMAllCImplSvmInstr.cpp.h 70900 2018-02-08 09:40:29Z vboxsync $ */
2/** @file
3 * IEM - AMD-V (Secure Virtual Machine) instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/**
20 * Converts an IEM exception event type to an SVM event type.
21 *
22 * @returns The SVM event type.
23 * @retval UINT8_MAX if the specified type of event isn't among the set
24 * of recognized IEM event types.
25 *
26 * @param uVector The vector of the event.
27 * @param fIemXcptFlags The IEM exception / interrupt flags.
28 */
29IEM_STATIC uint8_t iemGetSvmEventType(uint32_t uVector, uint32_t fIemXcptFlags)
30{
31 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
32 {
33 if (uVector != X86_XCPT_NMI)
34 return SVM_EVENT_EXCEPTION;
35 return SVM_EVENT_NMI;
36 }
37
38 /* See AMD spec. Table 15-1. "Guest Exception or Interrupt Types". */
39 if (fIemXcptFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
40 return SVM_EVENT_EXCEPTION;
41
42 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_EXT_INT)
43 return SVM_EVENT_EXTERNAL_IRQ;
44
45 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
46 return SVM_EVENT_SOFTWARE_INT;
47
48 AssertMsgFailed(("iemGetSvmEventType: Invalid IEM xcpt/int. type %#x, uVector=%#x\n", fIemXcptFlags, uVector));
49 return UINT8_MAX;
50}
51
52
53/**
54 * Performs an SVM world-switch (VMRUN, \#VMEXIT) updating PGM and IEM internals.
55 *
56 * @returns Strict VBox status code.
57 * @param pVCpu The cross context virtual CPU structure.
58 * @param pCtx The guest-CPU context.
59 */
60DECLINLINE(VBOXSTRICTRC) iemSvmWorldSwitch(PVMCPU pVCpu, PCPUMCTX pCtx)
61{
62 /*
63 * Flush the TLB with new CR3. This is required in case the PGM mode change
64 * below doesn't actually change anything.
65 */
66 int rc = PGMFlushTLB(pVCpu, pCtx->cr3, true);
67 if (RT_SUCCESS(rc))
68 {
69 /*
70 * Inform PGM about paging mode changes.
71 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
72 * see comment in iemMemPageTranslateAndCheckAccess().
73 */
74 rc = PGMChangeMode(pVCpu, pCtx->cr0 | X86_CR0_PE, pCtx->cr4, pCtx->msrEFER);
75#ifdef IN_RING3
76 Assert(rc != VINF_PGM_CHANGE_MODE);
77#endif
78 AssertRCReturn(rc, rc);
79
80 /* Inform CPUM (recompiler), can later be removed. */
81 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
82
83 /* Re-initialize IEM cache/state after the drastic mode switch. */
84 iemReInitExec(pVCpu);
85 }
86 return rc;
87}
88
89
90/**
91 * SVM \#VMEXIT handler.
92 *
93 * @returns Strict VBox status code.
94 * @retval VINF_SVM_VMEXIT when the \#VMEXIT is successful.
95 * @retval VERR_SVM_VMEXIT_FAILED when the \#VMEXIT failed restoring the guest's
96 * "host state" and a shutdown is required.
97 *
98 * @param pVCpu The cross context virtual CPU structure.
99 * @param pCtx The guest-CPU context.
100 * @param uExitCode The exit code.
101 * @param uExitInfo1 The exit info. 1 field.
102 * @param uExitInfo2 The exit info. 2 field.
103 */
104IEM_STATIC VBOXSTRICTRC iemSvmVmexit(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2)
105{
106 VBOXSTRICTRC rcStrict;
107 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
108 || uExitCode == SVM_EXIT_INVALID)
109 {
110 LogFlow(("iemSvmVmexit: CS:RIP=%04x:%08RX64 uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pCtx->cs.Sel,
111 pCtx->rip, uExitCode, uExitInfo1, uExitInfo2));
112
113 /*
114 * Disable the global interrupt flag to prevent interrupts during the 'atomic' world switch.
115 */
116 pCtx->hwvirt.fGif = false;
117
118 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->es));
119 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs));
120 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
121 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ds));
122
123 /*
124 * Save the nested-guest state into the VMCB state-save area.
125 */
126 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
127 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
128 PSVMVMCBSTATESAVE pVmcbNstGstState = &pVmcbNstGst->guest;
129
130 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, ES, es);
131 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, CS, cs);
132 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, SS, ss);
133 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, DS, ds);
134 pVmcbNstGstState->GDTR.u32Limit = pCtx->gdtr.cbGdt;
135 pVmcbNstGstState->GDTR.u64Base = pCtx->gdtr.pGdt;
136 pVmcbNstGstState->IDTR.u32Limit = pCtx->idtr.cbIdt;
137 pVmcbNstGstState->IDTR.u64Base = pCtx->idtr.pIdt;
138 pVmcbNstGstState->u64EFER = pCtx->msrEFER;
139 pVmcbNstGstState->u64CR4 = pCtx->cr4;
140 pVmcbNstGstState->u64CR3 = pCtx->cr3;
141 pVmcbNstGstState->u64CR2 = pCtx->cr2;
142 pVmcbNstGstState->u64CR0 = pCtx->cr0;
143 /** @todo Nested paging. */
144 pVmcbNstGstState->u64RFlags = pCtx->rflags.u64;
145 pVmcbNstGstState->u64RIP = pCtx->rip;
146 pVmcbNstGstState->u64RSP = pCtx->rsp;
147 pVmcbNstGstState->u64RAX = pCtx->rax;
148 pVmcbNstGstState->u64DR7 = pCtx->dr[7];
149 pVmcbNstGstState->u64DR6 = pCtx->dr[6];
150 pVmcbNstGstState->u8CPL = pCtx->ss.Attr.n.u2Dpl; /* See comment in CPUMGetGuestCPL(). */
151 Assert(CPUMGetGuestCPL(pVCpu) == pCtx->ss.Attr.n.u2Dpl);
152
153 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
154 /* Record any interrupt shadow of the nested-guest instruction into the nested-guest VMCB. */
155 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
156 && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip)
157 {
158 pVmcbCtrl->IntShadow.n.u1IntShadow = 1;
159
160 /* Clear the inhibit-interrupt force-flag so as to not affect the outer guest. */
161 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
162 LogFlow(("iemSvmVmexit: Interrupt shadow till %#RX64\n", pCtx->rip));
163 }
164
165 /*
166 * Save additional state and intercept information.
167 */
168 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
169 {
170 Assert(pVmcbCtrl->IntCtrl.n.u1VIrqPending);
171 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
172 }
173 else
174 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
175
176 /** @todo Save V_TPR, V_IRQ. */
177 /** @todo NRIP. */
178
179 /* Save exit information. */
180 pVmcbCtrl->u64ExitCode = uExitCode;
181 pVmcbCtrl->u64ExitInfo1 = uExitInfo1;
182 pVmcbCtrl->u64ExitInfo2 = uExitInfo2;
183
184 /*
185 * Update the exit interrupt-information field if this #VMEXIT happened as a result
186 * of delivering an event through IEM.
187 *
188 * Don't update the exit interrupt-information field if the event wasn't being injected
189 * through IEM, as it may have been updated by real hardware if the nested-guest was
190 * executed using hardware-assisted SVM.
191 */
192 {
193 uint8_t uExitIntVector;
194 uint32_t uExitIntErr;
195 uint32_t fExitIntFlags;
196 bool const fRaisingEvent = IEMGetCurrentXcpt(pVCpu, &uExitIntVector, &fExitIntFlags, &uExitIntErr,
197 NULL /* uExitIntCr2 */);
198 if (fRaisingEvent)
199 {
200 pVmcbCtrl->ExitIntInfo.n.u1Valid = 1;
201 pVmcbCtrl->ExitIntInfo.n.u8Vector = uExitIntVector;
202 pVmcbCtrl->ExitIntInfo.n.u3Type = iemGetSvmEventType(uExitIntVector, fExitIntFlags);
203 if (fExitIntFlags & IEM_XCPT_FLAGS_ERR)
204 {
205 pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid = true;
206 pVmcbCtrl->ExitIntInfo.n.u32ErrorCode = uExitIntErr;
207 }
208 }
209 }
210
211 /*
212 * Clear event injection in the VMCB.
213 */
214 pVmcbCtrl->EventInject.n.u1Valid = 0;
215
216 /*
217 * Notify HM in case the nested-guest was executed using hardware-assisted SVM (which
218 * would have modified some VMCB state) that need to be restored on #VMEXIT before
219 * writing the VMCB back to guest memory.
220 */
221 HMSvmNstGstVmExitNotify(pVCpu, pCtx);
222
223 /*
224 * Write back the nested-guest's VMCB to its guest physical memory location.
225 */
226 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->hwvirt.svm.GCPhysVmcb, pVmcbNstGst, sizeof(*pVmcbNstGst));
227
228 /*
229 * Prepare for guest's "host mode" by clearing internal processor state bits.
230 *
231 * We don't need to zero out the state-save area, just the controls should be
232 * sufficient because it has the critical bit of indicating whether we're inside
233 * the nested-guest or not.
234 */
235 memset(pVmcbNstGstCtrl, 0, sizeof(*pVmcbNstGstCtrl));
236 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
237
238 /*
239 * Restore the subset of force-flags that were preserved.
240 */
241 if (pCtx->hwvirt.fLocalForcedActions)
242 {
243 VMCPU_FF_SET(pVCpu, pCtx->hwvirt.fLocalForcedActions);
244 pCtx->hwvirt.fLocalForcedActions = 0;
245 }
246
247 if (RT_SUCCESS(rcStrict))
248 {
249 /** @todo Nested paging. */
250 /** @todo ASID. */
251
252 /*
253 * Reload the guest's "host state".
254 */
255 CPUMSvmVmExitRestoreHostState(pVCpu, pCtx);
256
257 /*
258 * Update PGM, IEM and others of a world-switch.
259 */
260 rcStrict = iemSvmWorldSwitch(pVCpu, pCtx);
261 if (rcStrict == VINF_SUCCESS)
262 rcStrict = VINF_SVM_VMEXIT;
263 else if (RT_SUCCESS(rcStrict))
264 {
265 LogFlow(("iemSvmVmexit: Setting passup status from iemSvmWorldSwitch %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
266 iemSetPassUpStatus(pVCpu, rcStrict);
267 rcStrict = VINF_SVM_VMEXIT;
268 }
269 else
270 LogFlow(("iemSvmVmexit: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
271 }
272 else
273 {
274 LogFlow(("iemSvmVmexit: Writing VMCB at %#RGp failed. rc=%Rrc\n", pCtx->hwvirt.svm.GCPhysVmcb,
275 VBOXSTRICTRC_VAL(rcStrict)));
276 rcStrict = VERR_SVM_VMEXIT_FAILED;
277 }
278 }
279 else
280 {
281 Log(("iemSvmVmexit: Not in SVM guest mode! uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitCode,
282 uExitInfo1, uExitInfo2));
283 AssertMsgFailed(("iemSvmVmexit: Unexpected SVM-exit failure uExitCode=%#RX64\n", uExitCode));
284 rcStrict = VERR_SVM_IPE_5;
285 }
286
287# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
288 /* CLGI/STGI may not have been intercepted and thus not executed in IEM. */
289 if (HMSvmIsVGifActive(pVCpu->CTX_SUFF(pVM)))
290 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
291# endif
292 return rcStrict;
293}
294
295
296/**
297 * Performs the operations necessary that are part of the vmrun instruction
298 * execution in the guest.
299 *
300 * @returns Strict VBox status code (i.e. informational status codes too).
301 * @retval VINF_SUCCESS successully executed VMRUN and entered nested-guest
302 * code execution.
303 * @retval VINF_SVM_VMEXIT when executing VMRUN causes a \#VMEXIT
304 * (SVM_EXIT_INVALID most likely).
305 *
306 * @param pVCpu The cross context virtual CPU structure.
307 * @param pCtx Pointer to the guest-CPU context.
308 * @param cbInstr The length of the VMRUN instruction.
309 * @param GCPhysVmcb Guest physical address of the VMCB to run.
310 */
311IEM_STATIC VBOXSTRICTRC iemSvmVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbInstr, RTGCPHYS GCPhysVmcb)
312{
313 LogFlow(("iemSvmVmrun\n"));
314
315#ifdef IN_RING0
316 /*
317 * Until PGM can handle switching the guest paging mode in ring-0,
318 * there's no point in trying to emulate VMRUN in ring-0 as we have
319 * to go back to ring-3 anyway, see @bugref{7243#c48}.
320 */
321 RT_NOREF(pVCpu, pCtx, cbInstr, GCPhysVmcb);
322 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
323#else
324
325 /*
326 * Cache the physical address of the VMCB for #VMEXIT exceptions.
327 */
328 pCtx->hwvirt.svm.GCPhysVmcb = GCPhysVmcb;
329
330 /*
331 * Save the host state.
332 */
333 CPUMSvmVmRunSaveHostState(pCtx, cbInstr);
334
335 /*
336 * Read the guest VMCB state.
337 */
338 PVM pVM = pVCpu->CTX_SUFF(pVM);
339 int rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pVmcb), GCPhysVmcb, sizeof(SVMVMCB));
340 if (RT_SUCCESS(rc))
341 {
342 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
343 PSVMVMCBSTATESAVE pVmcbNstGst = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->guest;
344
345 /*
346 * Validate guest-state and controls.
347 */
348 /* VMRUN must always be intercepted. */
349 if (!CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
350 {
351 Log(("iemSvmVmrun: VMRUN instruction not intercepted -> #VMEXIT\n"));
352 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
353 }
354
355 /* Nested paging. */
356 if ( pVmcbCtrl->NestedPaging.n.u1NestedPaging
357 && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging)
358 {
359 Log(("iemSvmVmrun: Nested paging not supported -> #VMEXIT\n"));
360 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
361 }
362
363 /* AVIC. */
364 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
365 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
366 {
367 Log(("iemSvmVmrun: AVIC not supported -> #VMEXIT\n"));
368 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
369 }
370
371 /* Last branch record (LBR) virtualization. */
372 if ( pVmcbCtrl->LbrVirt.n.u1LbrVirt
373 && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt)
374 {
375 Log(("iemSvmVmrun: LBR virtualization not supported -> #VMEXIT\n"));
376 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
377 }
378
379 /* Virtualized VMSAVE/VMLOAD. */
380 if ( pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload
381 && !pVM->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
382 {
383 Log(("iemSvmVmrun: Virtualized VMSAVE/VMLOAD not supported -> #VMEXIT\n"));
384 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
385 }
386
387 /* Virtual GIF. */
388 if ( pVmcbCtrl->IntCtrl.n.u1VGifEnable
389 && !pVM->cpum.ro.GuestFeatures.fSvmVGif)
390 {
391 Log(("iemSvmVmrun: Virtual GIF not supported -> #VMEXIT\n"));
392 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
393 }
394
395 /* Guest ASID. */
396 if (!pVmcbCtrl->TLBCtrl.n.u32ASID)
397 {
398 Log(("iemSvmVmrun: Guest ASID is invalid -> #VMEXIT\n"));
399 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
400 }
401
402 /* IO permission bitmap. */
403 RTGCPHYS const GCPhysIOBitmap = pVmcbCtrl->u64IOPMPhysAddr;
404 if ( (GCPhysIOBitmap & X86_PAGE_4K_OFFSET_MASK)
405 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap)
406 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + X86_PAGE_4K_SIZE)
407 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + (X86_PAGE_4K_SIZE << 1)))
408 {
409 Log(("iemSvmVmrun: IO bitmap physaddr invalid. GCPhysIOBitmap=%#RX64 -> #VMEXIT\n", GCPhysIOBitmap));
410 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
411 }
412
413 /* MSR permission bitmap. */
414 RTGCPHYS const GCPhysMsrBitmap = pVmcbCtrl->u64MSRPMPhysAddr;
415 if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
416 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap)
417 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap + X86_PAGE_4K_SIZE))
418 {
419 Log(("iemSvmVmrun: MSR bitmap physaddr invalid. GCPhysMsrBitmap=%#RX64 -> #VMEXIT\n", GCPhysMsrBitmap));
420 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
421 }
422
423 /* CR0. */
424 if ( !(pVmcbNstGst->u64CR0 & X86_CR0_CD)
425 && (pVmcbNstGst->u64CR0 & X86_CR0_NW))
426 {
427 Log(("iemSvmVmrun: CR0 no-write through with cache disabled. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
428 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
429 }
430 if (pVmcbNstGst->u64CR0 >> 32)
431 {
432 Log(("iemSvmVmrun: CR0 reserved bits set. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
433 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
434 }
435 /** @todo Implement all reserved bits/illegal combinations for CR3, CR4. */
436
437 /* DR6 and DR7. */
438 if ( pVmcbNstGst->u64DR6 >> 32
439 || pVmcbNstGst->u64DR7 >> 32)
440 {
441 Log(("iemSvmVmrun: DR6 and/or DR7 reserved bits set. DR6=%#RX64 DR7=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64DR6,
442 pVmcbNstGst->u64DR6));
443 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
444 }
445
446 /** @todo gPAT MSR validation? */
447
448 /*
449 * Copy the IO permission bitmap into the cache.
450 */
451 Assert(pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap));
452 rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap), GCPhysIOBitmap,
453 SVM_IOPM_PAGES * X86_PAGE_4K_SIZE);
454 if (RT_FAILURE(rc))
455 {
456 Log(("iemSvmVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc));
457 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
458 }
459
460 /*
461 * Copy the MSR permission bitmap into the cache.
462 */
463 Assert(pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap));
464 rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap), GCPhysMsrBitmap,
465 SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE);
466 if (RT_FAILURE(rc))
467 {
468 Log(("iemSvmVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc));
469 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
470 }
471
472 /*
473 * Copy segments from nested-guest VMCB state to the guest-CPU state.
474 *
475 * We do this here as we need to use the CS attributes and it's easier this way
476 * then using the VMCB format selectors. It doesn't really matter where we copy
477 * the state, we restore the guest-CPU context state on the \#VMEXIT anyway.
478 */
479 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, ES, es);
480 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, CS, cs);
481 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, SS, ss);
482 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, DS, ds);
483
484 /** @todo Segment attribute overrides by VMRUN. */
485
486 /*
487 * CPL adjustments and overrides.
488 *
489 * SS.DPL is apparently the CPU's CPL, see comment in CPUMGetGuestCPL().
490 * We shall thus adjust both CS.DPL and SS.DPL here.
491 */
492 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = pVmcbNstGst->u8CPL;
493 if (CPUMIsGuestInV86ModeEx(pCtx))
494 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 3;
495 if (CPUMIsGuestInRealModeEx(pCtx))
496 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 0;
497 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
498
499 /*
500 * Continue validating guest-state and controls.
501 *
502 * We pass CR0 as 0 to CPUMQueryValidatedGuestEfer below to skip the illegal
503 * EFER.LME bit transition check. We pass the nested-guest's EFER as both the
504 * old and new EFER value to not have any guest EFER bits influence the new
505 * nested-guest EFER.
506 */
507 uint64_t uValidEfer;
508 rc = CPUMQueryValidatedGuestEfer(pVM, 0 /* CR0 */, pVmcbNstGst->u64EFER, pVmcbNstGst->u64EFER, &uValidEfer);
509 if (RT_FAILURE(rc))
510 {
511 Log(("iemSvmVmrun: EFER invalid uOldEfer=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64EFER));
512 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
513 }
514
515 /* Validate paging and CPU mode bits. */
516 bool const fSvm = RT_BOOL(uValidEfer & MSR_K6_EFER_SVME);
517 bool const fLongModeSupported = RT_BOOL(pVM->cpum.ro.GuestFeatures.fLongMode);
518 bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME);
519 bool const fPaging = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PG);
520 bool const fPae = RT_BOOL(pVmcbNstGst->u64CR4 & X86_CR4_PAE);
521 bool const fProtMode = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PE);
522 bool const fLongModeWithPaging = fLongModeEnabled && fPaging;
523 bool const fLongModeConformCS = pCtx->cs.Attr.n.u1Long && pCtx->cs.Attr.n.u1DefBig;
524 /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0). */
525 if (fLongModeWithPaging)
526 uValidEfer |= MSR_K6_EFER_LMA;
527 bool const fLongModeActiveOrEnabled = RT_BOOL(uValidEfer & (MSR_K6_EFER_LME | MSR_K6_EFER_LMA));
528 if ( !fSvm
529 || (!fLongModeSupported && fLongModeActiveOrEnabled)
530 || (fLongModeWithPaging && !fPae)
531 || (fLongModeWithPaging && !fProtMode)
532 || ( fLongModeEnabled
533 && fPaging
534 && fPae
535 && fLongModeConformCS))
536 {
537 Log(("iemSvmVmrun: EFER invalid. uValidEfer=%#RX64 -> #VMEXIT\n", uValidEfer));
538 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
539 }
540
541 /*
542 * Preserve the required force-flags.
543 *
544 * We only preserve the force-flags that would affect the execution of the
545 * nested-guest (or the guest).
546 *
547 * - VMCPU_FF_INHIBIT_INTERRUPTS need -not- be preserved as it's for a single
548 * instruction which is this VMRUN instruction itself.
549 *
550 * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the
551 * execution of a subsequent IRET instruction in the guest.
552 *
553 * - The remaining FFs (e.g. timers) can stay in place so that we will be
554 * able to generate interrupts that should cause #VMEXITs for the
555 * nested-guest.
556 */
557 pCtx->hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
558 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
559
560 /*
561 * Interrupt shadow.
562 */
563 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
564 {
565 LogFlow(("iemSvmVmrun: setting interrupt shadow. inhibit PC=%#RX64\n", pVmcbNstGst->u64RIP));
566 /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */
567 EMSetInhibitInterruptsPC(pVCpu, pVmcbNstGst->u64RIP);
568 }
569
570 /*
571 * TLB flush control.
572 * Currently disabled since it's redundant as we unconditionally flush the TLB
573 * in iemSvmWorldSwitch() below.
574 */
575#if 0
576 /** @todo @bugref{7243}: ASID based PGM TLB flushes. */
577 if ( pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE
578 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
579 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
580 PGMFlushTLB(pVCpu, pVmcbNstGst->u64CR3, true /* fGlobal */);
581#endif
582
583 /*
584 * Copy the remaining guest state from the VMCB to the guest-CPU context.
585 */
586 pCtx->gdtr.cbGdt = pVmcbNstGst->GDTR.u32Limit;
587 pCtx->gdtr.pGdt = pVmcbNstGst->GDTR.u64Base;
588 pCtx->idtr.cbIdt = pVmcbNstGst->IDTR.u32Limit;
589 pCtx->idtr.pIdt = pVmcbNstGst->IDTR.u64Base;
590 CPUMSetGuestCR0(pVCpu, pVmcbNstGst->u64CR0);
591 CPUMSetGuestCR4(pVCpu, pVmcbNstGst->u64CR4);
592 pCtx->cr3 = pVmcbNstGst->u64CR3;
593 pCtx->cr2 = pVmcbNstGst->u64CR2;
594 pCtx->dr[6] = pVmcbNstGst->u64DR6;
595 pCtx->dr[7] = pVmcbNstGst->u64DR7;
596 pCtx->rflags.u64 = pVmcbNstGst->u64RFlags;
597 pCtx->rax = pVmcbNstGst->u64RAX;
598 pCtx->rsp = pVmcbNstGst->u64RSP;
599 pCtx->rip = pVmcbNstGst->u64RIP;
600 CPUMSetGuestMsrEferNoCheck(pVCpu, pCtx->msrEFER, uValidEfer);
601
602 /* Mask DR6, DR7 bits mandatory set/clear bits. */
603 pCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
604 pCtx->dr[6] |= X86_DR6_RA1_MASK;
605 pCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
606 pCtx->dr[7] |= X86_DR7_RA1_MASK;
607
608 /*
609 * Check for pending virtual interrupts.
610 */
611 if (pVmcbCtrl->IntCtrl.n.u1VIrqPending)
612 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
613 else
614 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST));
615
616 /*
617 * Update PGM, IEM and others of a world-switch.
618 */
619 VBOXSTRICTRC rcStrict = iemSvmWorldSwitch(pVCpu, pCtx);
620 if (rcStrict == VINF_SUCCESS)
621 { /* likely */ }
622 else if (RT_SUCCESS(rcStrict))
623 {
624 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch returned %Rrc, setting passup status\n", VBOXSTRICTRC_VAL(rcStrict)));
625 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
626 }
627 else
628 {
629 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
630 return rcStrict;
631 }
632
633 /*
634 * Clear global interrupt flags to allow interrupts in the guest.
635 */
636 pCtx->hwvirt.fGif = true;
637
638 /*
639 * Event injection.
640 */
641 PCSVMEVENT pEventInject = &pVmcbCtrl->EventInject;
642 pCtx->hwvirt.svm.fInterceptEvents = !pEventInject->n.u1Valid;
643 if (pEventInject->n.u1Valid)
644 {
645 uint8_t const uVector = pEventInject->n.u8Vector;
646 TRPMEVENT const enmType = HMSvmEventToTrpmEventType(pEventInject);
647 uint16_t const uErrorCode = pEventInject->n.u1ErrorCodeValid ? pEventInject->n.u32ErrorCode : 0;
648
649 /* Validate vectors for hardware exceptions, see AMD spec. 15.20 "Event Injection". */
650 if (RT_UNLIKELY(enmType == TRPM_32BIT_HACK))
651 {
652 Log(("iemSvmVmrun: Invalid event type =%#x -> #VMEXIT\n", (uint8_t)pEventInject->n.u3Type));
653 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
654 }
655 if (pEventInject->n.u3Type == SVM_EVENT_EXCEPTION)
656 {
657 if ( uVector == X86_XCPT_NMI
658 || uVector > X86_XCPT_LAST)
659 {
660 Log(("iemSvmVmrun: Invalid vector for hardware exception. uVector=%#x -> #VMEXIT\n", uVector));
661 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
662 }
663 if ( uVector == X86_XCPT_BR
664 && CPUMIsGuestInLongModeEx(pCtx))
665 {
666 Log(("iemSvmVmrun: Cannot inject #BR when not in long mode -> #VMEXIT\n"));
667 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
668 }
669 /** @todo any others? */
670 }
671
672 /*
673 * Invalidate the exit interrupt-information field here. This field is fully updated
674 * on #VMEXIT as events other than the one below can also cause intercepts during
675 * their injection (e.g. exceptions).
676 */
677 pVmcbCtrl->ExitIntInfo.n.u1Valid = 0;
678
679 /*
680 * Clear the event injection valid bit here. While the AMD spec. mentions that the CPU
681 * clears this bit from the VMCB unconditionally on #VMEXIT, internally the CPU could be
682 * clearing it at any time, most likely before/after injecting the event. Since VirtualBox
683 * doesn't have any virtual-CPU internal representation of this bit, we clear/update the
684 * VMCB here. This also has the added benefit that we avoid the risk of injecting the event
685 * twice if we fallback to executing the nested-guest using hardware-assisted SVM after
686 * injecting the event through IEM here.
687 */
688 pVmcbCtrl->EventInject.n.u1Valid = 0;
689
690 /** @todo NRIP: Software interrupts can only be pushed properly if we support
691 * NRIP for the nested-guest to calculate the instruction length
692 * below. */
693 LogFlow(("iemSvmVmrun: Injecting event: %04x:%08RX64 vec=%#x type=%d uErr=%u cr2=%#RX64 cr3=%#RX64 efer=%#RX64\n",
694 pCtx->cs.Sel, pCtx->rip, uVector, enmType, uErrorCode, pCtx->cr2, pCtx->cr3, pCtx->msrEFER));
695#if 0
696 rcStrict = IEMInjectTrap(pVCpu, uVector, enmType, uErrorCode, pCtx->cr2, 0 /* cbInstr */);
697#else
698 TRPMAssertTrap(pVCpu, uVector, enmType);
699 if (pEventInject->n.u1ErrorCodeValid)
700 TRPMSetErrorCode(pVCpu, uErrorCode);
701 if ( enmType == TRPM_TRAP
702 && uVector == X86_XCPT_PF)
703 TRPMSetFaultAddress(pVCpu, pCtx->cr2);
704#endif
705 }
706 else
707 LogFlow(("iemSvmVmrun: Entering nested-guest: %04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 efer=%#RX64 efl=%#x\n",
708 pCtx->cs.Sel, pCtx->rip, pCtx->cr0, pCtx->cr3, pCtx->cr4, pCtx->msrEFER, pCtx->rflags.u64));
709
710 LogFlow(("iemSvmVmrun: returns %d\n", VBOXSTRICTRC_VAL(rcStrict)));
711
712# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
713 /* If CLGI/STGI isn't intercepted we force IEM-only nested-guest execution here. */
714 if (HMSvmIsVGifActive(pVM))
715 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
716# endif
717
718 return rcStrict;
719 }
720
721 /* Shouldn't really happen as the caller should've validated the physical address already. */
722 Log(("iemSvmVmrun: Failed to read nested-guest VMCB at %#RGp (rc=%Rrc) -> #VMEXIT\n", GCPhysVmcb, rc));
723 return rc;
724#endif
725}
726
727
728#if 0
729/**
730 * Handles nested-guest SVM control intercepts and performs the \#VMEXIT if the
731 * intercept is active.
732 *
733 * @returns Strict VBox status code.
734 * @retval VINF_SVM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
735 * we're not executing a nested-guest.
736 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
737 * successfully.
738 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
739 * failed and a shutdown needs to be initiated for the geust.
740 *
741 * @param pVCpu The cross context virtual CPU structure.
742 * @param pCtx The guest-CPU context.
743 * @param uExitCode The SVM exit code (see SVM_EXIT_XXX).
744 * @param uExitInfo1 The exit info. 1 field.
745 * @param uExitInfo2 The exit info. 2 field.
746 */
747VMM_INT_DECL(VBOXSTRICTRC) HMSvmNstGstHandleCtrlIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uExitCode, uint64_t uExitInfo1,
748 uint64_t uExitInfo2)
749{
750#define HMSVM_CTRL_INTERCEPT_VMEXIT(a_Intercept) \
751 do { \
752 if (CPUMIsGuestSvmCtrlInterceptSet(pCtx, (a_Intercept))) \
753 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2); \
754 break; \
755 } while (0)
756
757 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
758 return VINF_HM_INTERCEPT_NOT_ACTIVE;
759
760 switch (uExitCode)
761 {
762 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
763 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
764 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11:
765 case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13: case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15:
766 case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
767 case SVM_EXIT_EXCEPTION_20: case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22: case SVM_EXIT_EXCEPTION_23:
768 case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25: case SVM_EXIT_EXCEPTION_26: case SVM_EXIT_EXCEPTION_27:
769 case SVM_EXIT_EXCEPTION_28: case SVM_EXIT_EXCEPTION_29: case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
770 {
771 if (CPUMIsGuestSvmXcptInterceptSet(pCtx, (X86XCPT)(uExitCode - SVM_EXIT_EXCEPTION_0)))
772 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
773 break;
774 }
775
776 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
777 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
778 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
779 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
780 {
781 if (CPUMIsGuestSvmWriteCRxInterceptSet(pCtx, uExitCode - SVM_EXIT_WRITE_CR0))
782 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
783 break;
784 }
785
786 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
787 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
788 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
789 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
790 {
791 if (CPUMIsGuestSvmReadCRxInterceptSet(pCtx, uExitCode - SVM_EXIT_READ_CR0))
792 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
793 break;
794 }
795
796 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
797 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
798 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
799 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
800 {
801 if (CPUMIsGuestSvmReadDRxInterceptSet(pCtx, uExitCode - SVM_EXIT_READ_DR0))
802 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
803 break;
804 }
805
806 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
807 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
808 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
809 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
810 {
811 if (CPUMIsGuestSvmWriteDRxInterceptSet(pCtx, uExitCode - SVM_EXIT_WRITE_DR0))
812 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
813 break;
814 }
815
816 case SVM_EXIT_INTR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INTR);
817 case SVM_EXIT_NMI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_NMI);
818 case SVM_EXIT_SMI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SMI);
819 case SVM_EXIT_INIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INIT);
820 case SVM_EXIT_VINTR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VINTR);
821 case SVM_EXIT_CR0_SEL_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CR0_SEL_WRITES);
822 case SVM_EXIT_IDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IDTR_READS);
823 case SVM_EXIT_GDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_GDTR_READS);
824 case SVM_EXIT_LDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_LDTR_READS);
825 case SVM_EXIT_TR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TR_READS);
826 case SVM_EXIT_IDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IDTR_WRITES);
827 case SVM_EXIT_GDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_GDTR_WRITES);
828 case SVM_EXIT_LDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_LDTR_WRITES);
829 case SVM_EXIT_TR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TR_WRITES);
830 case SVM_EXIT_RDTSC: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDTSC);
831 case SVM_EXIT_RDPMC: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDPMC);
832 case SVM_EXIT_PUSHF: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_PUSHF);
833 case SVM_EXIT_POPF: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_POPF);
834 case SVM_EXIT_CPUID: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CPUID);
835 case SVM_EXIT_RSM: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RSM);
836 case SVM_EXIT_IRET: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IRET);
837 case SVM_EXIT_SWINT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INTN);
838 case SVM_EXIT_INVD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVD);
839 case SVM_EXIT_PAUSE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_PAUSE);
840 case SVM_EXIT_HLT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_HLT);
841 case SVM_EXIT_INVLPG: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVLPG);
842 case SVM_EXIT_INVLPGA: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVLPGA);
843 case SVM_EXIT_TASK_SWITCH: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TASK_SWITCH);
844 case SVM_EXIT_FERR_FREEZE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_FERR_FREEZE);
845 case SVM_EXIT_SHUTDOWN: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SHUTDOWN);
846 case SVM_EXIT_VMRUN: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMRUN);
847 case SVM_EXIT_VMMCALL: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMMCALL);
848 case SVM_EXIT_VMLOAD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMLOAD);
849 case SVM_EXIT_VMSAVE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMSAVE);
850 case SVM_EXIT_STGI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_STGI);
851 case SVM_EXIT_CLGI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CLGI);
852 case SVM_EXIT_SKINIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SKINIT);
853 case SVM_EXIT_RDTSCP: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDTSCP);
854 case SVM_EXIT_ICEBP: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_ICEBP);
855 case SVM_EXIT_WBINVD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_WBINVD);
856 case SVM_EXIT_MONITOR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MONITOR);
857 case SVM_EXIT_MWAIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MWAIT);
858 case SVM_EXIT_MWAIT_ARMED: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MWAIT_ARMED);
859 case SVM_EXIT_XSETBV: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_XSETBV);
860
861 case SVM_EXIT_IOIO:
862 AssertMsgFailed(("Use HMSvmNstGstHandleMsrIntercept!\n"));
863 return VERR_SVM_IPE_1;
864
865 case SVM_EXIT_MSR:
866 AssertMsgFailed(("Use HMSvmNstGstHandleMsrIntercept!\n"));
867 return VERR_SVM_IPE_1;
868
869 case SVM_EXIT_NPF:
870 case SVM_EXIT_AVIC_INCOMPLETE_IPI:
871 case SVM_EXIT_AVIC_NOACCEL:
872 AssertMsgFailed(("Todo Implement.\n"));
873 return VERR_SVM_IPE_1;
874
875 default:
876 AssertMsgFailed(("Unsupported SVM exit code %#RX64\n", uExitCode));
877 return VERR_SVM_IPE_1;
878 }
879
880 return VINF_HM_INTERCEPT_NOT_ACTIVE;
881
882#undef HMSVM_CTRL_INTERCEPT_VMEXIT
883}
884#endif
885
886
887/**
888 * Checks if the event intercepts and performs the \#VMEXIT if the corresponding
889 * intercept is active.
890 *
891 * @returns Strict VBox status code.
892 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
893 * we're not executing a nested-guest.
894 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
895 * successfully.
896 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
897 * failed and a shutdown needs to be initiated for the geust.
898 *
899 * @returns VBox strict status code.
900 * @param pVCpu The cross context virtual CPU structure of the calling thread.
901 * @param u16Port The IO port being accessed.
902 * @param enmIoType The type of IO access.
903 * @param cbReg The IO operand size in bytes.
904 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
905 * @param iEffSeg The effective segment number.
906 * @param fRep Whether this is a repeating IO instruction (REP prefix).
907 * @param fStrIo Whether this is a string IO instruction.
908 * @param cbInstr The length of the IO instruction in bytes.
909 */
910IEM_STATIC VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr,
911 uint64_t uCr2)
912{
913 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
914
915 /*
916 * Handle SVM exception and software interrupt intercepts, see AMD spec. 15.12 "Exception Intercepts".
917 *
918 * - NMI intercepts have their own exit code and do not cause SVM_EXIT_EXCEPTION_2 #VMEXITs.
919 * - External interrupts and software interrupts (INTn instruction) do not check the exception intercepts
920 * even when they use a vector in the range 0 to 31.
921 * - ICEBP should not trigger #DB intercept, but its own intercept.
922 * - For #PF exceptions, its intercept is checked before CR2 is written by the exception.
923 */
924 /* Check NMI intercept */
925 if ( u8Vector == X86_XCPT_NMI
926 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
927 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_NMI))
928 {
929 Log2(("iemHandleSvmNstGstEventIntercept: NMI intercept -> #VMEXIT\n"));
930 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_NMI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
931 }
932
933 /* Check ICEBP intercept. */
934 if ( (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
935 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_ICEBP))
936 {
937 Log2(("iemHandleSvmNstGstEventIntercept: ICEBP intercept -> #VMEXIT\n"));
938 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_ICEBP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
939 }
940
941 /* Check CPU exception intercepts. */
942 if ( (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
943 && IEM_IS_SVM_XCPT_INTERCEPT_SET(pVCpu, u8Vector))
944 {
945 Assert(u8Vector <= X86_XCPT_LAST);
946 uint64_t const uExitInfo1 = fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0;
947 uint64_t const uExitInfo2 = fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0;
948 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists
949 && u8Vector == X86_XCPT_PF
950 && !(uErr & X86_TRAP_PF_ID))
951 {
952 /** @todo Nested-guest SVM - figure out fetching op-code bytes from IEM. */
953#ifdef IEM_WITH_CODE_TLB
954 AssertReleaseFailedReturn(VERR_IEM_IPE_5);
955#else
956 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
957 uint8_t const offOpCode = pVCpu->iem.s.offOpcode;
958 uint8_t const cbCurrent = pVCpu->iem.s.cbOpcode - pVCpu->iem.s.offOpcode;
959 if ( cbCurrent > 0
960 && cbCurrent < sizeof(pVmcbCtrl->abInstr))
961 {
962 Assert(cbCurrent <= sizeof(pVCpu->iem.s.abOpcode));
963 memcpy(&pVmcbCtrl->abInstr[0], &pVCpu->iem.s.abOpcode[offOpCode], cbCurrent);
964 }
965#endif
966 }
967 Log2(("iemHandleSvmNstGstEventIntercept: Xcpt intercept u32InterceptXcpt=%#RX32 u8Vector=%#x "
968 "uExitInfo1=%#RX64 uExitInfo2=%#RX64 -> #VMEXIT\n", pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl.u32InterceptXcpt,
969 u8Vector, uExitInfo1, uExitInfo2));
970 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_EXCEPTION_0 + u8Vector, uExitInfo1, uExitInfo2);
971 }
972
973 /* Check software interrupt (INTn) intercepts. */
974 if ( (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT
975 | IEM_XCPT_FLAGS_BP_INSTR
976 | IEM_XCPT_FLAGS_ICEBP_INSTR
977 | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
978 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INTN))
979 {
980 uint64_t const uExitInfo1 = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? u8Vector : 0;
981 Log2(("iemHandleSvmNstGstEventIntercept: Software INT intercept (u8Vector=%#x) -> #VMEXIT\n", u8Vector));
982 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SWINT, uExitInfo1, 0 /* uExitInfo2 */);
983 }
984
985 return VINF_HM_INTERCEPT_NOT_ACTIVE;
986}
987
988
989/**
990 * Checks the SVM IO permission bitmap and performs the \#VMEXIT if the
991 * corresponding intercept is active.
992 *
993 * @returns Strict VBox status code.
994 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
995 * we're not executing a nested-guest.
996 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
997 * successfully.
998 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
999 * failed and a shutdown needs to be initiated for the geust.
1000 *
1001 * @returns VBox strict status code.
1002 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1003 * @param u16Port The IO port being accessed.
1004 * @param enmIoType The type of IO access.
1005 * @param cbReg The IO operand size in bytes.
1006 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
1007 * @param iEffSeg The effective segment number.
1008 * @param fRep Whether this is a repeating IO instruction (REP prefix).
1009 * @param fStrIo Whether this is a string IO instruction.
1010 * @param cbInstr The length of the IO instruction in bytes.
1011 */
1012IEM_STATIC VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPU pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
1013 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr)
1014{
1015 Assert(IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT));
1016 Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
1017 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
1018
1019 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u)\n", u16Port, u16Port));
1020
1021 SVMIOIOEXITINFO IoExitInfo;
1022 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1023 void *pvIoBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap);
1024 bool const fIntercept = HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
1025 &IoExitInfo);
1026 if (fIntercept)
1027 {
1028 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u) -> #VMEXIT\n", u16Port, u16Port));
1029 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_IOIO, IoExitInfo.u, pCtx->rip + cbInstr);
1030 }
1031
1032 /** @todo remove later (for debugging as VirtualBox always traps all IO
1033 * intercepts). */
1034 AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n"));
1035 return VINF_HM_INTERCEPT_NOT_ACTIVE;
1036}
1037
1038
1039/**
1040 * Checks the SVM MSR permission bitmap and performs the \#VMEXIT if the
1041 * corresponding intercept is active.
1042 *
1043 * @returns Strict VBox status code.
1044 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the MSR permission bitmap does not
1045 * specify interception of the accessed MSR @a idMsr.
1046 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
1047 * successfully.
1048 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
1049 * failed and a shutdown needs to be initiated for the geust.
1050 *
1051 * @param pVCpu The cross context virtual CPU structure.
1052 * @param pCtx The guest-CPU context.
1053 * @param idMsr The MSR being accessed in the nested-guest.
1054 * @param fWrite Whether this is an MSR write access, @c false implies an
1055 * MSR read.
1056 */
1057IEM_STATIC VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t idMsr, bool fWrite)
1058{
1059 /*
1060 * Check if any MSRs are being intercepted.
1061 */
1062 Assert(CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT));
1063 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
1064
1065 uint64_t const uExitInfo1 = fWrite ? SVM_EXIT1_MSR_WRITE : SVM_EXIT1_MSR_READ;
1066
1067 /*
1068 * Get the byte and bit offset of the permission bits corresponding to the MSR.
1069 */
1070 uint16_t offMsrpm;
1071 uint32_t uMsrpmBit;
1072 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
1073 if (RT_SUCCESS(rc))
1074 {
1075 Assert(uMsrpmBit < 0x3fff);
1076 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1077 if (fWrite)
1078 ++uMsrpmBit;
1079
1080 /*
1081 * Check if the bit is set, if so, trigger a #VMEXIT.
1082 */
1083 uint8_t *pbMsrpm = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
1084 pbMsrpm += offMsrpm;
1085 if (ASMBitTest(pbMsrpm, uMsrpmBit))
1086 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1087 }
1088 else
1089 {
1090 /*
1091 * This shouldn't happen, but if it does, cause a #VMEXIT and let the "host" (guest hypervisor) deal with it.
1092 */
1093 Log(("iemSvmHandleMsrIntercept: Invalid/out-of-range MSR %#RX32 fWrite=%RTbool -> #VMEXIT\n", idMsr, fWrite));
1094 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1095 }
1096 return VINF_HM_INTERCEPT_NOT_ACTIVE;
1097}
1098
1099
1100
1101/**
1102 * Implements 'VMRUN'.
1103 */
1104IEM_CIMPL_DEF_0(iemCImpl_vmrun)
1105{
1106#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1107 RT_NOREF2(pVCpu, cbInstr);
1108 return VINF_EM_RAW_EMULATE_INSTR;
1109#else
1110 LogFlow(("iemCImpl_vmrun\n"));
1111 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1112 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmrun);
1113
1114 /** @todo Check effective address size using address size prefix. */
1115 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1116 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1117 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1118 {
1119 Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1120 return iemRaiseGeneralProtectionFault0(pVCpu);
1121 }
1122
1123 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
1124 {
1125 Log(("vmrun: Guest intercept -> #VMEXIT\n"));
1126 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1127 }
1128
1129 VBOXSTRICTRC rcStrict = iemSvmVmrun(pVCpu, pCtx, cbInstr, GCPhysVmcb);
1130 if (rcStrict == VERR_SVM_VMEXIT_FAILED)
1131 {
1132 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
1133 rcStrict = VINF_EM_TRIPLE_FAULT;
1134 }
1135 return rcStrict;
1136#endif
1137}
1138
1139
1140/**
1141 * Implements 'VMMCALL'.
1142 */
1143IEM_CIMPL_DEF_0(iemCImpl_vmmcall)
1144{
1145 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1146 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
1147 {
1148 Log(("vmmcall: Guest intercept -> #VMEXIT\n"));
1149 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1150 }
1151
1152 bool fUpdatedRipAndRF;
1153 VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fUpdatedRipAndRF);
1154 if (RT_SUCCESS(rcStrict))
1155 {
1156 if (!fUpdatedRipAndRF)
1157 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1158 return rcStrict;
1159 }
1160
1161 return iemRaiseUndefinedOpcode(pVCpu);
1162}
1163
1164
1165/**
1166 * Implements 'VMLOAD'.
1167 */
1168IEM_CIMPL_DEF_0(iemCImpl_vmload)
1169{
1170#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1171 RT_NOREF2(pVCpu, cbInstr);
1172 return VINF_EM_RAW_EMULATE_INSTR;
1173#else
1174 LogFlow(("iemCImpl_vmload\n"));
1175 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1176 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload);
1177
1178 /** @todo Check effective address size using address size prefix. */
1179 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1180 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1181 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1182 {
1183 Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1184 return iemRaiseGeneralProtectionFault0(pVCpu);
1185 }
1186
1187 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
1188 {
1189 Log(("vmload: Guest intercept -> #VMEXIT\n"));
1190 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1191 }
1192
1193 SVMVMCBSTATESAVE VmcbNstGst;
1194 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest),
1195 sizeof(SVMVMCBSTATESAVE));
1196 if (rcStrict == VINF_SUCCESS)
1197 {
1198 LogFlow(("vmload: Loading VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1199 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, FS, fs);
1200 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, GS, gs);
1201 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, TR, tr);
1202 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr);
1203
1204 pCtx->msrKERNELGSBASE = VmcbNstGst.u64KernelGSBase;
1205 pCtx->msrSTAR = VmcbNstGst.u64STAR;
1206 pCtx->msrLSTAR = VmcbNstGst.u64LSTAR;
1207 pCtx->msrCSTAR = VmcbNstGst.u64CSTAR;
1208 pCtx->msrSFMASK = VmcbNstGst.u64SFMASK;
1209
1210 pCtx->SysEnter.cs = VmcbNstGst.u64SysEnterCS;
1211 pCtx->SysEnter.esp = VmcbNstGst.u64SysEnterESP;
1212 pCtx->SysEnter.eip = VmcbNstGst.u64SysEnterEIP;
1213
1214 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1215 }
1216 return rcStrict;
1217#endif
1218}
1219
1220
1221/**
1222 * Implements 'VMSAVE'.
1223 */
1224IEM_CIMPL_DEF_0(iemCImpl_vmsave)
1225{
1226#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1227 RT_NOREF2(pVCpu, cbInstr);
1228 return VINF_EM_RAW_EMULATE_INSTR;
1229#else
1230 LogFlow(("iemCImpl_vmsave\n"));
1231 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1232 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave);
1233
1234 /** @todo Check effective address size using address size prefix. */
1235 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1236 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1237 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1238 {
1239 Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1240 return iemRaiseGeneralProtectionFault0(pVCpu);
1241 }
1242
1243 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
1244 {
1245 Log(("vmsave: Guest intercept -> #VMEXIT\n"));
1246 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1247 }
1248
1249 SVMVMCBSTATESAVE VmcbNstGst;
1250 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest),
1251 sizeof(SVMVMCBSTATESAVE));
1252 if (rcStrict == VINF_SUCCESS)
1253 {
1254 LogFlow(("vmsave: Saving VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1255 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, FS, fs);
1256 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, GS, gs);
1257 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, TR, tr);
1258 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr);
1259
1260 VmcbNstGst.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1261 VmcbNstGst.u64STAR = pCtx->msrSTAR;
1262 VmcbNstGst.u64LSTAR = pCtx->msrLSTAR;
1263 VmcbNstGst.u64CSTAR = pCtx->msrCSTAR;
1264 VmcbNstGst.u64SFMASK = pCtx->msrSFMASK;
1265
1266 VmcbNstGst.u64SysEnterCS = pCtx->SysEnter.cs;
1267 VmcbNstGst.u64SysEnterESP = pCtx->SysEnter.esp;
1268 VmcbNstGst.u64SysEnterEIP = pCtx->SysEnter.eip;
1269
1270 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest), &VmcbNstGst,
1271 sizeof(SVMVMCBSTATESAVE));
1272 if (rcStrict == VINF_SUCCESS)
1273 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1274 }
1275 return rcStrict;
1276#endif
1277}
1278
1279
1280/**
1281 * Implements 'CLGI'.
1282 */
1283IEM_CIMPL_DEF_0(iemCImpl_clgi)
1284{
1285#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1286 RT_NOREF2(pVCpu, cbInstr);
1287 return VINF_EM_RAW_EMULATE_INSTR;
1288#else
1289 LogFlow(("iemCImpl_clgi\n"));
1290 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1291 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi);
1292 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
1293 {
1294 Log(("clgi: Guest intercept -> #VMEXIT\n"));
1295 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1296 }
1297
1298 pCtx->hwvirt.fGif = false;
1299 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1300
1301# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1302 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
1303# else
1304 return VINF_SUCCESS;
1305# endif
1306#endif
1307}
1308
1309
1310/**
1311 * Implements 'STGI'.
1312 */
1313IEM_CIMPL_DEF_0(iemCImpl_stgi)
1314{
1315#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1316 RT_NOREF2(pVCpu, cbInstr);
1317 return VINF_EM_RAW_EMULATE_INSTR;
1318#else
1319 LogFlow(("iemCImpl_stgi\n"));
1320 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1321 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi);
1322 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI))
1323 {
1324 Log2(("stgi: Guest intercept -> #VMEXIT\n"));
1325 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1326 }
1327
1328 pCtx->hwvirt.fGif = true;
1329 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1330
1331# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1332 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
1333# else
1334 return VINF_SUCCESS;
1335# endif
1336#endif
1337}
1338
1339
1340/**
1341 * Implements 'INVLPGA'.
1342 */
1343IEM_CIMPL_DEF_0(iemCImpl_invlpga)
1344{
1345 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1346 /** @todo Check effective address size using address size prefix. */
1347 RTGCPTR const GCPtrPage = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1348 /** @todo PGM needs virtual ASID support. */
1349#if 0
1350 uint32_t const uAsid = pCtx->ecx;
1351#endif
1352
1353 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1354 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
1355 {
1356 Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
1357 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1358 }
1359
1360 PGMInvalidatePage(pVCpu, GCPtrPage);
1361 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1362 return VINF_SUCCESS;
1363}
1364
1365
1366/**
1367 * Implements 'SKINIT'.
1368 */
1369IEM_CIMPL_DEF_0(iemCImpl_skinit)
1370{
1371 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1372
1373 uint32_t uIgnore;
1374 uint32_t fFeaturesECX;
1375 CPUMGetGuestCpuId(pVCpu, 0x80000001, 0 /* iSubLeaf */, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore);
1376 if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT))
1377 return iemRaiseUndefinedOpcode(pVCpu);
1378
1379 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
1380 {
1381 Log2(("skinit: Guest intercept -> #VMEXIT\n"));
1382 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1383 }
1384
1385 RT_NOREF(cbInstr);
1386 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
1387}
1388
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette