VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h@ 71078

Last change on this file since 71078 was 71069, checked in by vboxsync, 7 years ago

VMM/IEM: Nested Hw.virt: Update number of bytes fetched for SVM decode assist on intercepted #PFs. Still todo/WIP when fewer
than 15 bytes are present in the opcode cache.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 60.8 KB
Line 
1/* $Id: IEMAllCImplSvmInstr.cpp.h 71069 2018-02-20 10:53:58Z vboxsync $ */
2/** @file
3 * IEM - AMD-V (Secure Virtual Machine) instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/**
20 * Converts an IEM exception event type to an SVM event type.
21 *
22 * @returns The SVM event type.
23 * @retval UINT8_MAX if the specified type of event isn't among the set
24 * of recognized IEM event types.
25 *
26 * @param uVector The vector of the event.
27 * @param fIemXcptFlags The IEM exception / interrupt flags.
28 */
29IEM_STATIC uint8_t iemGetSvmEventType(uint32_t uVector, uint32_t fIemXcptFlags)
30{
31 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
32 {
33 if (uVector != X86_XCPT_NMI)
34 return SVM_EVENT_EXCEPTION;
35 return SVM_EVENT_NMI;
36 }
37
38 /* See AMD spec. Table 15-1. "Guest Exception or Interrupt Types". */
39 if (fIemXcptFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
40 return SVM_EVENT_EXCEPTION;
41
42 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_EXT_INT)
43 return SVM_EVENT_EXTERNAL_IRQ;
44
45 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
46 return SVM_EVENT_SOFTWARE_INT;
47
48 AssertMsgFailed(("iemGetSvmEventType: Invalid IEM xcpt/int. type %#x, uVector=%#x\n", fIemXcptFlags, uVector));
49 return UINT8_MAX;
50}
51
52
53/**
54 * Performs an SVM world-switch (VMRUN, \#VMEXIT) updating PGM and IEM internals.
55 *
56 * @returns Strict VBox status code.
57 * @param pVCpu The cross context virtual CPU structure.
58 * @param pCtx The guest-CPU context.
59 */
60DECLINLINE(VBOXSTRICTRC) iemSvmWorldSwitch(PVMCPU pVCpu, PCPUMCTX pCtx)
61{
62 /*
63 * Inform PGM about paging mode changes.
64 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
65 * see comment in iemMemPageTranslateAndCheckAccess().
66 */
67 int rc = PGMChangeMode(pVCpu, pCtx->cr0 | X86_CR0_PE, pCtx->cr4, pCtx->msrEFER);
68#ifdef IN_RING3
69 Assert(rc != VINF_PGM_CHANGE_MODE);
70#endif
71 AssertRCReturn(rc, rc);
72
73 /* Inform CPUM (recompiler), can later be removed. */
74 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
75
76 /*
77 * Flush the TLB with new CR3. This is required in case the PGM mode change
78 * above doesn't actually change anything.
79 */
80 if (rc == VINF_SUCCESS)
81 {
82 rc = PGMFlushTLB(pVCpu, pCtx->cr3, true);
83 AssertRCReturn(rc, rc);
84 }
85
86 /* Re-initialize IEM cache/state after the drastic mode switch. */
87 iemReInitExec(pVCpu);
88 return rc;
89}
90
91
92/**
93 * SVM \#VMEXIT handler.
94 *
95 * @returns Strict VBox status code.
96 * @retval VINF_SVM_VMEXIT when the \#VMEXIT is successful.
97 * @retval VERR_SVM_VMEXIT_FAILED when the \#VMEXIT failed restoring the guest's
98 * "host state" and a shutdown is required.
99 *
100 * @param pVCpu The cross context virtual CPU structure.
101 * @param pCtx The guest-CPU context.
102 * @param uExitCode The exit code.
103 * @param uExitInfo1 The exit info. 1 field.
104 * @param uExitInfo2 The exit info. 2 field.
105 */
106IEM_STATIC VBOXSTRICTRC iemSvmVmexit(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2)
107{
108 VBOXSTRICTRC rcStrict;
109 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
110 || uExitCode == SVM_EXIT_INVALID)
111 {
112 LogFlow(("iemSvmVmexit: CS:RIP=%04x:%08RX64 uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pCtx->cs.Sel,
113 pCtx->rip, uExitCode, uExitInfo1, uExitInfo2));
114
115 /*
116 * Disable the global interrupt flag to prevent interrupts during the 'atomic' world switch.
117 */
118 pCtx->hwvirt.fGif = false;
119
120 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->es));
121 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs));
122 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
123 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ds));
124
125 /*
126 * Save the nested-guest state into the VMCB state-save area.
127 */
128 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
129 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
130 PSVMVMCBSTATESAVE pVmcbNstGstState = &pVmcbNstGst->guest;
131
132 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, ES, es);
133 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, CS, cs);
134 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, SS, ss);
135 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbNstGstState, DS, ds);
136 pVmcbNstGstState->GDTR.u32Limit = pCtx->gdtr.cbGdt;
137 pVmcbNstGstState->GDTR.u64Base = pCtx->gdtr.pGdt;
138 pVmcbNstGstState->IDTR.u32Limit = pCtx->idtr.cbIdt;
139 pVmcbNstGstState->IDTR.u64Base = pCtx->idtr.pIdt;
140 pVmcbNstGstState->u64EFER = pCtx->msrEFER;
141 pVmcbNstGstState->u64CR4 = pCtx->cr4;
142 pVmcbNstGstState->u64CR3 = pCtx->cr3;
143 pVmcbNstGstState->u64CR2 = pCtx->cr2;
144 pVmcbNstGstState->u64CR0 = pCtx->cr0;
145 /** @todo Nested paging. */
146 pVmcbNstGstState->u64RFlags = pCtx->rflags.u64;
147 pVmcbNstGstState->u64RIP = pCtx->rip;
148 pVmcbNstGstState->u64RSP = pCtx->rsp;
149 pVmcbNstGstState->u64RAX = pCtx->rax;
150 pVmcbNstGstState->u64DR7 = pCtx->dr[7];
151 pVmcbNstGstState->u64DR6 = pCtx->dr[6];
152 pVmcbNstGstState->u8CPL = pCtx->ss.Attr.n.u2Dpl; /* See comment in CPUMGetGuestCPL(). */
153 Assert(CPUMGetGuestCPL(pVCpu) == pCtx->ss.Attr.n.u2Dpl);
154
155 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
156
157 /*
158 * Save additional state and intercept information.
159 *
160 * - Interrupt shadow: Tracked using VMCPU_FF_INHIBIT_INTERRUPTS and RIP.
161 * - V_TPR: Already updated by iemCImpl_load_CrX or by the physical CPU for
162 * hardware-assisted SVM execution.
163 * - V_IRQ: Tracked using VMCPU_FF_INTERRUPT_NESTED_GUEST force-flag and updated below.
164 */
165 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
166 && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip)
167 {
168 pVmcbCtrl->IntShadow.n.u1IntShadow = 1;
169
170 /* Clear the inhibit-interrupt force-flag so as to not affect the outer guest. */
171 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
172 LogFlow(("iemSvmVmexit: Interrupt shadow till %#RX64\n", pCtx->rip));
173 }
174
175 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
176 {
177 Assert(pVmcbCtrl->IntCtrl.n.u1VIrqPending);
178 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
179 }
180 else
181 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
182
183 /** @todo NRIP. */
184
185 /* Save exit information. */
186 pVmcbCtrl->u64ExitCode = uExitCode;
187 pVmcbCtrl->u64ExitInfo1 = uExitInfo1;
188 pVmcbCtrl->u64ExitInfo2 = uExitInfo2;
189
190 /*
191 * Update the exit interrupt-information field if this #VMEXIT happened as a result
192 * of delivering an event through IEM.
193 *
194 * Don't update the exit interrupt-information field if the event wasn't being injected
195 * through IEM, as it may have been updated by real hardware if the nested-guest was
196 * executed using hardware-assisted SVM.
197 */
198 {
199 uint8_t uExitIntVector;
200 uint32_t uExitIntErr;
201 uint32_t fExitIntFlags;
202 bool const fRaisingEvent = IEMGetCurrentXcpt(pVCpu, &uExitIntVector, &fExitIntFlags, &uExitIntErr,
203 NULL /* uExitIntCr2 */);
204 if (fRaisingEvent)
205 {
206 pVmcbCtrl->ExitIntInfo.n.u1Valid = 1;
207 pVmcbCtrl->ExitIntInfo.n.u8Vector = uExitIntVector;
208 pVmcbCtrl->ExitIntInfo.n.u3Type = iemGetSvmEventType(uExitIntVector, fExitIntFlags);
209 if (fExitIntFlags & IEM_XCPT_FLAGS_ERR)
210 {
211 pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid = true;
212 pVmcbCtrl->ExitIntInfo.n.u32ErrorCode = uExitIntErr;
213 }
214 }
215 }
216
217 /*
218 * Clear event injection in the VMCB.
219 */
220 pVmcbCtrl->EventInject.n.u1Valid = 0;
221
222 /*
223 * Notify HM in case the nested-guest was executed using hardware-assisted SVM (which
224 * would have modified some VMCB state) that need to be restored on #VMEXIT before
225 * writing the VMCB back to guest memory.
226 */
227 HMSvmNstGstVmExitNotify(pVCpu, pCtx);
228
229 /*
230 * Write back the nested-guest's VMCB to its guest physical memory location.
231 */
232 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->hwvirt.svm.GCPhysVmcb, pVmcbNstGst, sizeof(*pVmcbNstGst));
233
234 /*
235 * Prepare for guest's "host mode" by clearing internal processor state bits.
236 *
237 * We don't need to zero out the state-save area, just the controls should be
238 * sufficient because it has the critical bit of indicating whether we're inside
239 * the nested-guest or not.
240 */
241 memset(pVmcbNstGstCtrl, 0, sizeof(*pVmcbNstGstCtrl));
242 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
243
244 /*
245 * Restore the subset of force-flags that were preserved.
246 */
247 if (pCtx->hwvirt.fLocalForcedActions)
248 {
249 VMCPU_FF_SET(pVCpu, pCtx->hwvirt.fLocalForcedActions);
250 pCtx->hwvirt.fLocalForcedActions = 0;
251 }
252
253 if (RT_SUCCESS(rcStrict))
254 {
255 /** @todo Nested paging. */
256 /** @todo ASID. */
257
258 /*
259 * Reload the guest's "host state".
260 */
261 CPUMSvmVmExitRestoreHostState(pVCpu, pCtx);
262
263 /*
264 * Update PGM, IEM and others of a world-switch.
265 */
266 rcStrict = iemSvmWorldSwitch(pVCpu, pCtx);
267 if (rcStrict == VINF_SUCCESS)
268 rcStrict = VINF_SVM_VMEXIT;
269 else if (RT_SUCCESS(rcStrict))
270 {
271 LogFlow(("iemSvmVmexit: Setting passup status from iemSvmWorldSwitch %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
272 iemSetPassUpStatus(pVCpu, rcStrict);
273 rcStrict = VINF_SVM_VMEXIT;
274 }
275 else
276 LogFlow(("iemSvmVmexit: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
277 }
278 else
279 {
280 LogFlow(("iemSvmVmexit: Writing VMCB at %#RGp failed. rc=%Rrc\n", pCtx->hwvirt.svm.GCPhysVmcb,
281 VBOXSTRICTRC_VAL(rcStrict)));
282 rcStrict = VERR_SVM_VMEXIT_FAILED;
283 }
284 }
285 else
286 {
287 Log(("iemSvmVmexit: Not in SVM guest mode! uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitCode,
288 uExitInfo1, uExitInfo2));
289 AssertMsgFailed(("iemSvmVmexit: Unexpected SVM-exit failure uExitCode=%#RX64\n", uExitCode));
290 rcStrict = VERR_SVM_IPE_5;
291 }
292
293# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
294 /* CLGI/STGI may not have been intercepted and thus not executed in IEM. */
295 if (HMSvmIsVGifActive(pVCpu->CTX_SUFF(pVM)))
296 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
297# endif
298 return rcStrict;
299}
300
301
302/**
303 * Performs the operations necessary that are part of the vmrun instruction
304 * execution in the guest.
305 *
306 * @returns Strict VBox status code (i.e. informational status codes too).
307 * @retval VINF_SUCCESS successully executed VMRUN and entered nested-guest
308 * code execution.
309 * @retval VINF_SVM_VMEXIT when executing VMRUN causes a \#VMEXIT
310 * (SVM_EXIT_INVALID most likely).
311 *
312 * @param pVCpu The cross context virtual CPU structure.
313 * @param pCtx Pointer to the guest-CPU context.
314 * @param cbInstr The length of the VMRUN instruction.
315 * @param GCPhysVmcb Guest physical address of the VMCB to run.
316 */
317IEM_STATIC VBOXSTRICTRC iemSvmVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbInstr, RTGCPHYS GCPhysVmcb)
318{
319 LogFlow(("iemSvmVmrun\n"));
320
321#ifdef IN_RING0
322 /*
323 * Until PGM can handle switching the guest paging mode in ring-0,
324 * there's no point in trying to emulate VMRUN in ring-0 as we have
325 * to go back to ring-3 anyway, see @bugref{7243#c48}.
326 */
327 RT_NOREF(pVCpu, pCtx, cbInstr, GCPhysVmcb);
328 return VERR_IEM_ASPECT_NOT_IMPLEMENTED;
329#else
330
331 /*
332 * Cache the physical address of the VMCB for #VMEXIT exceptions.
333 */
334 pCtx->hwvirt.svm.GCPhysVmcb = GCPhysVmcb;
335
336 /*
337 * Save the host state.
338 */
339 CPUMSvmVmRunSaveHostState(pCtx, cbInstr);
340
341 /*
342 * Read the guest VMCB state.
343 */
344 PVM pVM = pVCpu->CTX_SUFF(pVM);
345 int rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pVmcb), GCPhysVmcb, sizeof(SVMVMCB));
346 if (RT_SUCCESS(rc))
347 {
348 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
349 PSVMVMCBSTATESAVE pVmcbNstGst = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->guest;
350
351 /*
352 * Validate guest-state and controls.
353 */
354 /* VMRUN must always be intercepted. */
355 if (!CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
356 {
357 Log(("iemSvmVmrun: VMRUN instruction not intercepted -> #VMEXIT\n"));
358 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
359 }
360
361 /* Nested paging. */
362 if ( pVmcbCtrl->NestedPaging.n.u1NestedPaging
363 && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging)
364 {
365 Log(("iemSvmVmrun: Nested paging not supported -> #VMEXIT\n"));
366 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
367 }
368
369 /* AVIC. */
370 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
371 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
372 {
373 Log(("iemSvmVmrun: AVIC not supported -> #VMEXIT\n"));
374 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
375 }
376
377 /* Last branch record (LBR) virtualization. */
378 if ( pVmcbCtrl->LbrVirt.n.u1LbrVirt
379 && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt)
380 {
381 Log(("iemSvmVmrun: LBR virtualization not supported -> #VMEXIT\n"));
382 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
383 }
384
385 /* Virtualized VMSAVE/VMLOAD. */
386 if ( pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload
387 && !pVM->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
388 {
389 Log(("iemSvmVmrun: Virtualized VMSAVE/VMLOAD not supported -> #VMEXIT\n"));
390 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
391 }
392
393 /* Virtual GIF. */
394 if ( pVmcbCtrl->IntCtrl.n.u1VGifEnable
395 && !pVM->cpum.ro.GuestFeatures.fSvmVGif)
396 {
397 Log(("iemSvmVmrun: Virtual GIF not supported -> #VMEXIT\n"));
398 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
399 }
400
401 /* Guest ASID. */
402 if (!pVmcbCtrl->TLBCtrl.n.u32ASID)
403 {
404 Log(("iemSvmVmrun: Guest ASID is invalid -> #VMEXIT\n"));
405 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
406 }
407
408 /* IO permission bitmap. */
409 RTGCPHYS const GCPhysIOBitmap = pVmcbCtrl->u64IOPMPhysAddr;
410 if ( (GCPhysIOBitmap & X86_PAGE_4K_OFFSET_MASK)
411 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap)
412 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + X86_PAGE_4K_SIZE)
413 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + (X86_PAGE_4K_SIZE << 1)))
414 {
415 Log(("iemSvmVmrun: IO bitmap physaddr invalid. GCPhysIOBitmap=%#RX64 -> #VMEXIT\n", GCPhysIOBitmap));
416 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
417 }
418
419 /* MSR permission bitmap. */
420 RTGCPHYS const GCPhysMsrBitmap = pVmcbCtrl->u64MSRPMPhysAddr;
421 if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
422 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap)
423 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap + X86_PAGE_4K_SIZE))
424 {
425 Log(("iemSvmVmrun: MSR bitmap physaddr invalid. GCPhysMsrBitmap=%#RX64 -> #VMEXIT\n", GCPhysMsrBitmap));
426 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
427 }
428
429 /* CR0. */
430 if ( !(pVmcbNstGst->u64CR0 & X86_CR0_CD)
431 && (pVmcbNstGst->u64CR0 & X86_CR0_NW))
432 {
433 Log(("iemSvmVmrun: CR0 no-write through with cache disabled. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
434 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
435 }
436 if (pVmcbNstGst->u64CR0 >> 32)
437 {
438 Log(("iemSvmVmrun: CR0 reserved bits set. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
439 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
440 }
441 /** @todo Implement all reserved bits/illegal combinations for CR3, CR4. */
442
443 /* DR6 and DR7. */
444 if ( pVmcbNstGst->u64DR6 >> 32
445 || pVmcbNstGst->u64DR7 >> 32)
446 {
447 Log(("iemSvmVmrun: DR6 and/or DR7 reserved bits set. DR6=%#RX64 DR7=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64DR6,
448 pVmcbNstGst->u64DR6));
449 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
450 }
451
452 /** @todo gPAT MSR validation? */
453
454 /*
455 * Copy the IO permission bitmap into the cache.
456 */
457 Assert(pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap));
458 rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap), GCPhysIOBitmap,
459 SVM_IOPM_PAGES * X86_PAGE_4K_SIZE);
460 if (RT_FAILURE(rc))
461 {
462 Log(("iemSvmVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc));
463 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
464 }
465
466 /*
467 * Copy the MSR permission bitmap into the cache.
468 */
469 Assert(pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap));
470 rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap), GCPhysMsrBitmap,
471 SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE);
472 if (RT_FAILURE(rc))
473 {
474 Log(("iemSvmVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc));
475 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
476 }
477
478 /*
479 * Copy segments from nested-guest VMCB state to the guest-CPU state.
480 *
481 * We do this here as we need to use the CS attributes and it's easier this way
482 * then using the VMCB format selectors. It doesn't really matter where we copy
483 * the state, we restore the guest-CPU context state on the \#VMEXIT anyway.
484 */
485 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, ES, es);
486 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, CS, cs);
487 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, SS, ss);
488 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, DS, ds);
489
490 /** @todo Segment attribute overrides by VMRUN. */
491
492 /*
493 * CPL adjustments and overrides.
494 *
495 * SS.DPL is apparently the CPU's CPL, see comment in CPUMGetGuestCPL().
496 * We shall thus adjust both CS.DPL and SS.DPL here.
497 */
498 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = pVmcbNstGst->u8CPL;
499 if (CPUMIsGuestInV86ModeEx(pCtx))
500 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 3;
501 if (CPUMIsGuestInRealModeEx(pCtx))
502 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 0;
503 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
504
505 /*
506 * Continue validating guest-state and controls.
507 *
508 * We pass CR0 as 0 to CPUMQueryValidatedGuestEfer below to skip the illegal
509 * EFER.LME bit transition check. We pass the nested-guest's EFER as both the
510 * old and new EFER value to not have any guest EFER bits influence the new
511 * nested-guest EFER.
512 */
513 uint64_t uValidEfer;
514 rc = CPUMQueryValidatedGuestEfer(pVM, 0 /* CR0 */, pVmcbNstGst->u64EFER, pVmcbNstGst->u64EFER, &uValidEfer);
515 if (RT_FAILURE(rc))
516 {
517 Log(("iemSvmVmrun: EFER invalid uOldEfer=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64EFER));
518 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
519 }
520
521 /* Validate paging and CPU mode bits. */
522 bool const fSvm = RT_BOOL(uValidEfer & MSR_K6_EFER_SVME);
523 bool const fLongModeSupported = RT_BOOL(pVM->cpum.ro.GuestFeatures.fLongMode);
524 bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME);
525 bool const fPaging = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PG);
526 bool const fPae = RT_BOOL(pVmcbNstGst->u64CR4 & X86_CR4_PAE);
527 bool const fProtMode = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PE);
528 bool const fLongModeWithPaging = fLongModeEnabled && fPaging;
529 bool const fLongModeConformCS = pCtx->cs.Attr.n.u1Long && pCtx->cs.Attr.n.u1DefBig;
530 /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0). */
531 if (fLongModeWithPaging)
532 uValidEfer |= MSR_K6_EFER_LMA;
533 bool const fLongModeActiveOrEnabled = RT_BOOL(uValidEfer & (MSR_K6_EFER_LME | MSR_K6_EFER_LMA));
534 if ( !fSvm
535 || (!fLongModeSupported && fLongModeActiveOrEnabled)
536 || (fLongModeWithPaging && !fPae)
537 || (fLongModeWithPaging && !fProtMode)
538 || ( fLongModeEnabled
539 && fPaging
540 && fPae
541 && fLongModeConformCS))
542 {
543 Log(("iemSvmVmrun: EFER invalid. uValidEfer=%#RX64 -> #VMEXIT\n", uValidEfer));
544 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
545 }
546
547 /*
548 * Preserve the required force-flags.
549 *
550 * We only preserve the force-flags that would affect the execution of the
551 * nested-guest (or the guest).
552 *
553 * - VMCPU_FF_INHIBIT_INTERRUPTS need -not- be preserved as it's for a single
554 * instruction which is this VMRUN instruction itself.
555 *
556 * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the
557 * execution of a subsequent IRET instruction in the guest.
558 *
559 * - The remaining FFs (e.g. timers) can stay in place so that we will be
560 * able to generate interrupts that should cause #VMEXITs for the
561 * nested-guest.
562 */
563 pCtx->hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
564 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
565
566 /*
567 * Interrupt shadow.
568 */
569 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
570 {
571 LogFlow(("iemSvmVmrun: setting interrupt shadow. inhibit PC=%#RX64\n", pVmcbNstGst->u64RIP));
572 /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */
573 EMSetInhibitInterruptsPC(pVCpu, pVmcbNstGst->u64RIP);
574 }
575
576 /*
577 * TLB flush control.
578 * Currently disabled since it's redundant as we unconditionally flush the TLB
579 * in iemSvmWorldSwitch() below.
580 */
581#if 0
582 /** @todo @bugref{7243}: ASID based PGM TLB flushes. */
583 if ( pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE
584 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
585 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
586 PGMFlushTLB(pVCpu, pVmcbNstGst->u64CR3, true /* fGlobal */);
587#endif
588
589 /*
590 * Copy the remaining guest state from the VMCB to the guest-CPU context.
591 */
592 pCtx->gdtr.cbGdt = pVmcbNstGst->GDTR.u32Limit;
593 pCtx->gdtr.pGdt = pVmcbNstGst->GDTR.u64Base;
594 pCtx->idtr.cbIdt = pVmcbNstGst->IDTR.u32Limit;
595 pCtx->idtr.pIdt = pVmcbNstGst->IDTR.u64Base;
596 CPUMSetGuestCR0(pVCpu, pVmcbNstGst->u64CR0);
597 CPUMSetGuestCR4(pVCpu, pVmcbNstGst->u64CR4);
598 pCtx->cr3 = pVmcbNstGst->u64CR3;
599 pCtx->cr2 = pVmcbNstGst->u64CR2;
600 pCtx->dr[6] = pVmcbNstGst->u64DR6;
601 pCtx->dr[7] = pVmcbNstGst->u64DR7;
602 pCtx->rflags.u64 = pVmcbNstGst->u64RFlags;
603 pCtx->rax = pVmcbNstGst->u64RAX;
604 pCtx->rsp = pVmcbNstGst->u64RSP;
605 pCtx->rip = pVmcbNstGst->u64RIP;
606 CPUMSetGuestMsrEferNoCheck(pVCpu, pCtx->msrEFER, uValidEfer);
607
608 /* Mask DR6, DR7 bits mandatory set/clear bits. */
609 pCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
610 pCtx->dr[6] |= X86_DR6_RA1_MASK;
611 pCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
612 pCtx->dr[7] |= X86_DR7_RA1_MASK;
613
614 /*
615 * Check for pending virtual interrupts.
616 */
617 if (pVmcbCtrl->IntCtrl.n.u1VIrqPending)
618 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
619 else
620 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST));
621
622 /*
623 * Update PGM, IEM and others of a world-switch.
624 */
625 VBOXSTRICTRC rcStrict = iemSvmWorldSwitch(pVCpu, pCtx);
626 if (rcStrict == VINF_SUCCESS)
627 { /* likely */ }
628 else if (RT_SUCCESS(rcStrict))
629 {
630 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch returned %Rrc, setting passup status\n", VBOXSTRICTRC_VAL(rcStrict)));
631 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
632 }
633 else
634 {
635 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
636 return rcStrict;
637 }
638
639 /*
640 * Clear global interrupt flags to allow interrupts in the guest.
641 */
642 pCtx->hwvirt.fGif = true;
643
644 /*
645 * Event injection.
646 */
647 PCSVMEVENT pEventInject = &pVmcbCtrl->EventInject;
648 pCtx->hwvirt.svm.fInterceptEvents = !pEventInject->n.u1Valid;
649 if (pEventInject->n.u1Valid)
650 {
651 uint8_t const uVector = pEventInject->n.u8Vector;
652 TRPMEVENT const enmType = HMSvmEventToTrpmEventType(pEventInject);
653 uint16_t const uErrorCode = pEventInject->n.u1ErrorCodeValid ? pEventInject->n.u32ErrorCode : 0;
654
655 /* Validate vectors for hardware exceptions, see AMD spec. 15.20 "Event Injection". */
656 if (RT_UNLIKELY(enmType == TRPM_32BIT_HACK))
657 {
658 Log(("iemSvmVmrun: Invalid event type =%#x -> #VMEXIT\n", (uint8_t)pEventInject->n.u3Type));
659 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
660 }
661 if (pEventInject->n.u3Type == SVM_EVENT_EXCEPTION)
662 {
663 if ( uVector == X86_XCPT_NMI
664 || uVector > X86_XCPT_LAST)
665 {
666 Log(("iemSvmVmrun: Invalid vector for hardware exception. uVector=%#x -> #VMEXIT\n", uVector));
667 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
668 }
669 if ( uVector == X86_XCPT_BR
670 && CPUMIsGuestInLongModeEx(pCtx))
671 {
672 Log(("iemSvmVmrun: Cannot inject #BR when not in long mode -> #VMEXIT\n"));
673 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
674 }
675 /** @todo any others? */
676 }
677
678 /*
679 * Invalidate the exit interrupt-information field here. This field is fully updated
680 * on #VMEXIT as events other than the one below can also cause intercepts during
681 * their injection (e.g. exceptions).
682 */
683 pVmcbCtrl->ExitIntInfo.n.u1Valid = 0;
684
685 /*
686 * Clear the event injection valid bit here. While the AMD spec. mentions that the CPU
687 * clears this bit from the VMCB unconditionally on #VMEXIT, internally the CPU could be
688 * clearing it at any time, most likely before/after injecting the event. Since VirtualBox
689 * doesn't have any virtual-CPU internal representation of this bit, we clear/update the
690 * VMCB here. This also has the added benefit that we avoid the risk of injecting the event
691 * twice if we fallback to executing the nested-guest using hardware-assisted SVM after
692 * injecting the event through IEM here.
693 */
694 pVmcbCtrl->EventInject.n.u1Valid = 0;
695
696 /** @todo NRIP: Software interrupts can only be pushed properly if we support
697 * NRIP for the nested-guest to calculate the instruction length
698 * below. */
699 LogFlow(("iemSvmVmrun: Injecting event: %04x:%08RX64 vec=%#x type=%d uErr=%u cr2=%#RX64 cr3=%#RX64 efer=%#RX64\n",
700 pCtx->cs.Sel, pCtx->rip, uVector, enmType, uErrorCode, pCtx->cr2, pCtx->cr3, pCtx->msrEFER));
701#if 0
702 rcStrict = IEMInjectTrap(pVCpu, uVector, enmType, uErrorCode, pCtx->cr2, 0 /* cbInstr */);
703#else
704 TRPMAssertTrap(pVCpu, uVector, enmType);
705 if (pEventInject->n.u1ErrorCodeValid)
706 TRPMSetErrorCode(pVCpu, uErrorCode);
707 if ( enmType == TRPM_TRAP
708 && uVector == X86_XCPT_PF)
709 TRPMSetFaultAddress(pVCpu, pCtx->cr2);
710#endif
711 }
712 else
713 LogFlow(("iemSvmVmrun: Entering nested-guest: %04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 efer=%#RX64 efl=%#x\n",
714 pCtx->cs.Sel, pCtx->rip, pCtx->cr0, pCtx->cr3, pCtx->cr4, pCtx->msrEFER, pCtx->rflags.u64));
715
716 LogFlow(("iemSvmVmrun: returns %d\n", VBOXSTRICTRC_VAL(rcStrict)));
717
718# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
719 /* If CLGI/STGI isn't intercepted we force IEM-only nested-guest execution here. */
720 if (HMSvmIsVGifActive(pVM))
721 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
722# endif
723
724 return rcStrict;
725 }
726
727 /* Shouldn't really happen as the caller should've validated the physical address already. */
728 Log(("iemSvmVmrun: Failed to read nested-guest VMCB at %#RGp (rc=%Rrc) -> #VMEXIT\n", GCPhysVmcb, rc));
729 return rc;
730#endif
731}
732
733
734#if 0
735/**
736 * Handles nested-guest SVM control intercepts and performs the \#VMEXIT if the
737 * intercept is active.
738 *
739 * @returns Strict VBox status code.
740 * @retval VINF_SVM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
741 * we're not executing a nested-guest.
742 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
743 * successfully.
744 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
745 * failed and a shutdown needs to be initiated for the geust.
746 *
747 * @param pVCpu The cross context virtual CPU structure.
748 * @param pCtx The guest-CPU context.
749 * @param uExitCode The SVM exit code (see SVM_EXIT_XXX).
750 * @param uExitInfo1 The exit info. 1 field.
751 * @param uExitInfo2 The exit info. 2 field.
752 */
753VMM_INT_DECL(VBOXSTRICTRC) HMSvmNstGstHandleCtrlIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uExitCode, uint64_t uExitInfo1,
754 uint64_t uExitInfo2)
755{
756#define HMSVM_CTRL_INTERCEPT_VMEXIT(a_Intercept) \
757 do { \
758 if (CPUMIsGuestSvmCtrlInterceptSet(pCtx, (a_Intercept))) \
759 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2); \
760 break; \
761 } while (0)
762
763 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
764 return VINF_HM_INTERCEPT_NOT_ACTIVE;
765
766 switch (uExitCode)
767 {
768 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
769 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
770 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11:
771 case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13: case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15:
772 case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
773 case SVM_EXIT_EXCEPTION_20: case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22: case SVM_EXIT_EXCEPTION_23:
774 case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25: case SVM_EXIT_EXCEPTION_26: case SVM_EXIT_EXCEPTION_27:
775 case SVM_EXIT_EXCEPTION_28: case SVM_EXIT_EXCEPTION_29: case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
776 {
777 if (CPUMIsGuestSvmXcptInterceptSet(pCtx, (X86XCPT)(uExitCode - SVM_EXIT_EXCEPTION_0)))
778 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
779 break;
780 }
781
782 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
783 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
784 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
785 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
786 {
787 if (CPUMIsGuestSvmWriteCRxInterceptSet(pCtx, uExitCode - SVM_EXIT_WRITE_CR0))
788 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
789 break;
790 }
791
792 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
793 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
794 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
795 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
796 {
797 if (CPUMIsGuestSvmReadCRxInterceptSet(pCtx, uExitCode - SVM_EXIT_READ_CR0))
798 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
799 break;
800 }
801
802 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
803 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
804 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
805 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
806 {
807 if (CPUMIsGuestSvmReadDRxInterceptSet(pCtx, uExitCode - SVM_EXIT_READ_DR0))
808 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
809 break;
810 }
811
812 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
813 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
814 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
815 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
816 {
817 if (CPUMIsGuestSvmWriteDRxInterceptSet(pCtx, uExitCode - SVM_EXIT_WRITE_DR0))
818 return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2);
819 break;
820 }
821
822 case SVM_EXIT_INTR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INTR);
823 case SVM_EXIT_NMI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_NMI);
824 case SVM_EXIT_SMI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SMI);
825 case SVM_EXIT_INIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INIT);
826 case SVM_EXIT_VINTR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VINTR);
827 case SVM_EXIT_CR0_SEL_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CR0_SEL_WRITES);
828 case SVM_EXIT_IDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IDTR_READS);
829 case SVM_EXIT_GDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_GDTR_READS);
830 case SVM_EXIT_LDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_LDTR_READS);
831 case SVM_EXIT_TR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TR_READS);
832 case SVM_EXIT_IDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IDTR_WRITES);
833 case SVM_EXIT_GDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_GDTR_WRITES);
834 case SVM_EXIT_LDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_LDTR_WRITES);
835 case SVM_EXIT_TR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TR_WRITES);
836 case SVM_EXIT_RDTSC: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDTSC);
837 case SVM_EXIT_RDPMC: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDPMC);
838 case SVM_EXIT_PUSHF: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_PUSHF);
839 case SVM_EXIT_POPF: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_POPF);
840 case SVM_EXIT_CPUID: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CPUID);
841 case SVM_EXIT_RSM: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RSM);
842 case SVM_EXIT_IRET: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IRET);
843 case SVM_EXIT_SWINT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INTN);
844 case SVM_EXIT_INVD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVD);
845 case SVM_EXIT_PAUSE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_PAUSE);
846 case SVM_EXIT_HLT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_HLT);
847 case SVM_EXIT_INVLPG: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVLPG);
848 case SVM_EXIT_INVLPGA: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVLPGA);
849 case SVM_EXIT_TASK_SWITCH: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TASK_SWITCH);
850 case SVM_EXIT_FERR_FREEZE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_FERR_FREEZE);
851 case SVM_EXIT_SHUTDOWN: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SHUTDOWN);
852 case SVM_EXIT_VMRUN: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMRUN);
853 case SVM_EXIT_VMMCALL: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMMCALL);
854 case SVM_EXIT_VMLOAD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMLOAD);
855 case SVM_EXIT_VMSAVE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMSAVE);
856 case SVM_EXIT_STGI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_STGI);
857 case SVM_EXIT_CLGI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CLGI);
858 case SVM_EXIT_SKINIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SKINIT);
859 case SVM_EXIT_RDTSCP: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDTSCP);
860 case SVM_EXIT_ICEBP: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_ICEBP);
861 case SVM_EXIT_WBINVD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_WBINVD);
862 case SVM_EXIT_MONITOR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MONITOR);
863 case SVM_EXIT_MWAIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MWAIT);
864 case SVM_EXIT_MWAIT_ARMED: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MWAIT_ARMED);
865 case SVM_EXIT_XSETBV: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_XSETBV);
866
867 case SVM_EXIT_IOIO:
868 AssertMsgFailed(("Use HMSvmNstGstHandleMsrIntercept!\n"));
869 return VERR_SVM_IPE_1;
870
871 case SVM_EXIT_MSR:
872 AssertMsgFailed(("Use HMSvmNstGstHandleMsrIntercept!\n"));
873 return VERR_SVM_IPE_1;
874
875 case SVM_EXIT_NPF:
876 case SVM_EXIT_AVIC_INCOMPLETE_IPI:
877 case SVM_EXIT_AVIC_NOACCEL:
878 AssertMsgFailed(("Todo Implement.\n"));
879 return VERR_SVM_IPE_1;
880
881 default:
882 AssertMsgFailed(("Unsupported SVM exit code %#RX64\n", uExitCode));
883 return VERR_SVM_IPE_1;
884 }
885
886 return VINF_HM_INTERCEPT_NOT_ACTIVE;
887
888#undef HMSVM_CTRL_INTERCEPT_VMEXIT
889}
890#endif
891
892
893/**
894 * Checks if the event intercepts and performs the \#VMEXIT if the corresponding
895 * intercept is active.
896 *
897 * @returns Strict VBox status code.
898 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
899 * we're not executing a nested-guest.
900 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
901 * successfully.
902 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
903 * failed and a shutdown needs to be initiated for the geust.
904 *
905 * @returns VBox strict status code.
906 * @param pVCpu The cross context virtual CPU structure of the calling thread.
907 * @param u16Port The IO port being accessed.
908 * @param enmIoType The type of IO access.
909 * @param cbReg The IO operand size in bytes.
910 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
911 * @param iEffSeg The effective segment number.
912 * @param fRep Whether this is a repeating IO instruction (REP prefix).
913 * @param fStrIo Whether this is a string IO instruction.
914 * @param cbInstr The length of the IO instruction in bytes.
915 */
916IEM_STATIC VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr,
917 uint64_t uCr2)
918{
919 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
920
921 /*
922 * Handle SVM exception and software interrupt intercepts, see AMD spec. 15.12 "Exception Intercepts".
923 *
924 * - NMI intercepts have their own exit code and do not cause SVM_EXIT_EXCEPTION_2 #VMEXITs.
925 * - External interrupts and software interrupts (INTn instruction) do not check the exception intercepts
926 * even when they use a vector in the range 0 to 31.
927 * - ICEBP should not trigger #DB intercept, but its own intercept.
928 * - For #PF exceptions, its intercept is checked before CR2 is written by the exception.
929 */
930 /* Check NMI intercept */
931 if ( u8Vector == X86_XCPT_NMI
932 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
933 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_NMI))
934 {
935 Log2(("iemHandleSvmNstGstEventIntercept: NMI intercept -> #VMEXIT\n"));
936 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_NMI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
937 }
938
939 /* Check ICEBP intercept. */
940 if ( (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
941 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_ICEBP))
942 {
943 Log2(("iemHandleSvmNstGstEventIntercept: ICEBP intercept -> #VMEXIT\n"));
944 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_ICEBP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
945 }
946
947 /* Check CPU exception intercepts. */
948 if ( (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
949 && IEM_IS_SVM_XCPT_INTERCEPT_SET(pVCpu, u8Vector))
950 {
951 Assert(u8Vector <= X86_XCPT_LAST);
952 uint64_t const uExitInfo1 = fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0;
953 uint64_t const uExitInfo2 = fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0;
954 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists
955 && u8Vector == X86_XCPT_PF
956 && !(uErr & X86_TRAP_PF_ID))
957 {
958 /** @todo Nested-guest SVM - figure out fetching op-code bytes from IEM. */
959 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
960#ifdef IEM_WITH_CODE_TLB
961 uint8_t const cbCurrent = pVCpu->iem.s.cbInstrBuf;
962 uint8_t const *pbInstrBuf = pVCpu->iem.s.pbInstrBuf;
963 if ( pbInstrBuf
964 && cbCurrent >= SVM_CTRL_GUEST_INSTR_BYTES_MAX)
965 {
966 pVmcbCtrl->cbInstrFetched = SVM_CTRL_GUEST_INSTR_BYTES_MAX;
967 memcpy(&pVmcbCtrl->abInstr[0], pbInstrBuf, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
968 }
969 else
970 { AssertReleaseFailedReturn(VERR_IEM_IPE_5); /** @todo */ }
971#else
972 uint8_t const offOpCode = pVCpu->iem.s.offOpcode;
973 uint8_t const cbCurrent = pVCpu->iem.s.cbOpcode - offOpCode;
974 if (cbCurrent >= SVM_CTRL_GUEST_INSTR_BYTES_MAX)
975 {
976 pVmcbCtrl->cbInstrFetched = SVM_CTRL_GUEST_INSTR_BYTES_MAX;
977 memcpy(&pVmcbCtrl->abInstr[0], &pVCpu->iem.s.abOpcode[offOpCode], SVM_CTRL_GUEST_INSTR_BYTES_MAX);
978 }
979 else
980 { AssertReleaseFailedReturn(VERR_IEM_IPE_5); /** @todo */ }
981#endif
982 }
983 Log2(("iemHandleSvmNstGstEventIntercept: Xcpt intercept u32InterceptXcpt=%#RX32 u8Vector=%#x "
984 "uExitInfo1=%#RX64 uExitInfo2=%#RX64 -> #VMEXIT\n", pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl.u32InterceptXcpt,
985 u8Vector, uExitInfo1, uExitInfo2));
986 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_EXCEPTION_0 + u8Vector, uExitInfo1, uExitInfo2);
987 }
988
989 /* Check software interrupt (INTn) intercepts. */
990 if ( (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT
991 | IEM_XCPT_FLAGS_BP_INSTR
992 | IEM_XCPT_FLAGS_ICEBP_INSTR
993 | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
994 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INTN))
995 {
996 uint64_t const uExitInfo1 = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? u8Vector : 0;
997 Log2(("iemHandleSvmNstGstEventIntercept: Software INT intercept (u8Vector=%#x) -> #VMEXIT\n", u8Vector));
998 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SWINT, uExitInfo1, 0 /* uExitInfo2 */);
999 }
1000
1001 return VINF_HM_INTERCEPT_NOT_ACTIVE;
1002}
1003
1004
1005/**
1006 * Checks the SVM IO permission bitmap and performs the \#VMEXIT if the
1007 * corresponding intercept is active.
1008 *
1009 * @returns Strict VBox status code.
1010 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
1011 * we're not executing a nested-guest.
1012 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
1013 * successfully.
1014 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
1015 * failed and a shutdown needs to be initiated for the geust.
1016 *
1017 * @returns VBox strict status code.
1018 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1019 * @param u16Port The IO port being accessed.
1020 * @param enmIoType The type of IO access.
1021 * @param cbReg The IO operand size in bytes.
1022 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
1023 * @param iEffSeg The effective segment number.
1024 * @param fRep Whether this is a repeating IO instruction (REP prefix).
1025 * @param fStrIo Whether this is a string IO instruction.
1026 * @param cbInstr The length of the IO instruction in bytes.
1027 */
1028IEM_STATIC VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPU pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
1029 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr)
1030{
1031 Assert(IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT));
1032 Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
1033 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
1034
1035 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u)\n", u16Port, u16Port));
1036
1037 SVMIOIOEXITINFO IoExitInfo;
1038 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1039 void *pvIoBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap);
1040 bool const fIntercept = HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
1041 &IoExitInfo);
1042 if (fIntercept)
1043 {
1044 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u) -> #VMEXIT\n", u16Port, u16Port));
1045 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_IOIO, IoExitInfo.u, pCtx->rip + cbInstr);
1046 }
1047
1048 /** @todo remove later (for debugging as VirtualBox always traps all IO
1049 * intercepts). */
1050 AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n"));
1051 return VINF_HM_INTERCEPT_NOT_ACTIVE;
1052}
1053
1054
1055/**
1056 * Checks the SVM MSR permission bitmap and performs the \#VMEXIT if the
1057 * corresponding intercept is active.
1058 *
1059 * @returns Strict VBox status code.
1060 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the MSR permission bitmap does not
1061 * specify interception of the accessed MSR @a idMsr.
1062 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
1063 * successfully.
1064 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
1065 * failed and a shutdown needs to be initiated for the geust.
1066 *
1067 * @param pVCpu The cross context virtual CPU structure.
1068 * @param pCtx The guest-CPU context.
1069 * @param idMsr The MSR being accessed in the nested-guest.
1070 * @param fWrite Whether this is an MSR write access, @c false implies an
1071 * MSR read.
1072 */
1073IEM_STATIC VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t idMsr, bool fWrite)
1074{
1075 /*
1076 * Check if any MSRs are being intercepted.
1077 */
1078 Assert(CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT));
1079 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
1080
1081 uint64_t const uExitInfo1 = fWrite ? SVM_EXIT1_MSR_WRITE : SVM_EXIT1_MSR_READ;
1082
1083 /*
1084 * Get the byte and bit offset of the permission bits corresponding to the MSR.
1085 */
1086 uint16_t offMsrpm;
1087 uint32_t uMsrpmBit;
1088 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
1089 if (RT_SUCCESS(rc))
1090 {
1091 Assert(uMsrpmBit < 0x3fff);
1092 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1093 if (fWrite)
1094 ++uMsrpmBit;
1095
1096 /*
1097 * Check if the bit is set, if so, trigger a #VMEXIT.
1098 */
1099 uint8_t *pbMsrpm = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
1100 pbMsrpm += offMsrpm;
1101 if (ASMBitTest(pbMsrpm, uMsrpmBit))
1102 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1103 }
1104 else
1105 {
1106 /*
1107 * This shouldn't happen, but if it does, cause a #VMEXIT and let the "host" (guest hypervisor) deal with it.
1108 */
1109 Log(("iemSvmHandleMsrIntercept: Invalid/out-of-range MSR %#RX32 fWrite=%RTbool -> #VMEXIT\n", idMsr, fWrite));
1110 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1111 }
1112 return VINF_HM_INTERCEPT_NOT_ACTIVE;
1113}
1114
1115
1116
1117/**
1118 * Implements 'VMRUN'.
1119 */
1120IEM_CIMPL_DEF_0(iemCImpl_vmrun)
1121{
1122#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1123 RT_NOREF2(pVCpu, cbInstr);
1124 return VINF_EM_RAW_EMULATE_INSTR;
1125#else
1126 LogFlow(("iemCImpl_vmrun\n"));
1127 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1128 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmrun);
1129
1130 /** @todo Check effective address size using address size prefix. */
1131 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1132 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1133 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1134 {
1135 Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1136 return iemRaiseGeneralProtectionFault0(pVCpu);
1137 }
1138
1139 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
1140 {
1141 Log(("vmrun: Guest intercept -> #VMEXIT\n"));
1142 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1143 }
1144
1145 VBOXSTRICTRC rcStrict = iemSvmVmrun(pVCpu, pCtx, cbInstr, GCPhysVmcb);
1146 if (rcStrict == VERR_SVM_VMEXIT_FAILED)
1147 {
1148 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
1149 rcStrict = VINF_EM_TRIPLE_FAULT;
1150 }
1151 return rcStrict;
1152#endif
1153}
1154
1155
1156/**
1157 * Implements 'VMMCALL'.
1158 */
1159IEM_CIMPL_DEF_0(iemCImpl_vmmcall)
1160{
1161 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1162 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
1163 {
1164 Log(("vmmcall: Guest intercept -> #VMEXIT\n"));
1165 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1166 }
1167
1168 bool fUpdatedRipAndRF;
1169 VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fUpdatedRipAndRF);
1170 if (RT_SUCCESS(rcStrict))
1171 {
1172 if (!fUpdatedRipAndRF)
1173 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1174 return rcStrict;
1175 }
1176
1177 return iemRaiseUndefinedOpcode(pVCpu);
1178}
1179
1180
1181/**
1182 * Implements 'VMLOAD'.
1183 */
1184IEM_CIMPL_DEF_0(iemCImpl_vmload)
1185{
1186#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1187 RT_NOREF2(pVCpu, cbInstr);
1188 return VINF_EM_RAW_EMULATE_INSTR;
1189#else
1190 LogFlow(("iemCImpl_vmload\n"));
1191 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1192 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload);
1193
1194 /** @todo Check effective address size using address size prefix. */
1195 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1196 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1197 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1198 {
1199 Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1200 return iemRaiseGeneralProtectionFault0(pVCpu);
1201 }
1202
1203 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
1204 {
1205 Log(("vmload: Guest intercept -> #VMEXIT\n"));
1206 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1207 }
1208
1209 SVMVMCBSTATESAVE VmcbNstGst;
1210 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest),
1211 sizeof(SVMVMCBSTATESAVE));
1212 if (rcStrict == VINF_SUCCESS)
1213 {
1214 LogFlow(("vmload: Loading VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1215 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, FS, fs);
1216 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, GS, gs);
1217 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, TR, tr);
1218 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr);
1219
1220 pCtx->msrKERNELGSBASE = VmcbNstGst.u64KernelGSBase;
1221 pCtx->msrSTAR = VmcbNstGst.u64STAR;
1222 pCtx->msrLSTAR = VmcbNstGst.u64LSTAR;
1223 pCtx->msrCSTAR = VmcbNstGst.u64CSTAR;
1224 pCtx->msrSFMASK = VmcbNstGst.u64SFMASK;
1225
1226 pCtx->SysEnter.cs = VmcbNstGst.u64SysEnterCS;
1227 pCtx->SysEnter.esp = VmcbNstGst.u64SysEnterESP;
1228 pCtx->SysEnter.eip = VmcbNstGst.u64SysEnterEIP;
1229
1230 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1231 }
1232 return rcStrict;
1233#endif
1234}
1235
1236
1237/**
1238 * Implements 'VMSAVE'.
1239 */
1240IEM_CIMPL_DEF_0(iemCImpl_vmsave)
1241{
1242#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1243 RT_NOREF2(pVCpu, cbInstr);
1244 return VINF_EM_RAW_EMULATE_INSTR;
1245#else
1246 LogFlow(("iemCImpl_vmsave\n"));
1247 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1248 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave);
1249
1250 /** @todo Check effective address size using address size prefix. */
1251 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1252 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1253 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1254 {
1255 Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1256 return iemRaiseGeneralProtectionFault0(pVCpu);
1257 }
1258
1259 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
1260 {
1261 Log(("vmsave: Guest intercept -> #VMEXIT\n"));
1262 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1263 }
1264
1265 SVMVMCBSTATESAVE VmcbNstGst;
1266 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest),
1267 sizeof(SVMVMCBSTATESAVE));
1268 if (rcStrict == VINF_SUCCESS)
1269 {
1270 LogFlow(("vmsave: Saving VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1271 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, FS, fs);
1272 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, GS, gs);
1273 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, TR, tr);
1274 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr);
1275
1276 VmcbNstGst.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1277 VmcbNstGst.u64STAR = pCtx->msrSTAR;
1278 VmcbNstGst.u64LSTAR = pCtx->msrLSTAR;
1279 VmcbNstGst.u64CSTAR = pCtx->msrCSTAR;
1280 VmcbNstGst.u64SFMASK = pCtx->msrSFMASK;
1281
1282 VmcbNstGst.u64SysEnterCS = pCtx->SysEnter.cs;
1283 VmcbNstGst.u64SysEnterESP = pCtx->SysEnter.esp;
1284 VmcbNstGst.u64SysEnterEIP = pCtx->SysEnter.eip;
1285
1286 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest), &VmcbNstGst,
1287 sizeof(SVMVMCBSTATESAVE));
1288 if (rcStrict == VINF_SUCCESS)
1289 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1290 }
1291 return rcStrict;
1292#endif
1293}
1294
1295
1296/**
1297 * Implements 'CLGI'.
1298 */
1299IEM_CIMPL_DEF_0(iemCImpl_clgi)
1300{
1301#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1302 RT_NOREF2(pVCpu, cbInstr);
1303 return VINF_EM_RAW_EMULATE_INSTR;
1304#else
1305 LogFlow(("iemCImpl_clgi\n"));
1306 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1307 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi);
1308 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
1309 {
1310 Log(("clgi: Guest intercept -> #VMEXIT\n"));
1311 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1312 }
1313
1314 pCtx->hwvirt.fGif = false;
1315 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1316
1317# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1318 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
1319# else
1320 return VINF_SUCCESS;
1321# endif
1322#endif
1323}
1324
1325
1326/**
1327 * Implements 'STGI'.
1328 */
1329IEM_CIMPL_DEF_0(iemCImpl_stgi)
1330{
1331#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1332 RT_NOREF2(pVCpu, cbInstr);
1333 return VINF_EM_RAW_EMULATE_INSTR;
1334#else
1335 LogFlow(("iemCImpl_stgi\n"));
1336 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1337 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi);
1338 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI))
1339 {
1340 Log2(("stgi: Guest intercept -> #VMEXIT\n"));
1341 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1342 }
1343
1344 pCtx->hwvirt.fGif = true;
1345 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1346
1347# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1348 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
1349# else
1350 return VINF_SUCCESS;
1351# endif
1352#endif
1353}
1354
1355
1356/**
1357 * Implements 'INVLPGA'.
1358 */
1359IEM_CIMPL_DEF_0(iemCImpl_invlpga)
1360{
1361 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1362 /** @todo Check effective address size using address size prefix. */
1363 RTGCPTR const GCPtrPage = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1364 /** @todo PGM needs virtual ASID support. */
1365#if 0
1366 uint32_t const uAsid = pCtx->ecx;
1367#endif
1368
1369 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1370 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
1371 {
1372 Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
1373 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1374 }
1375
1376 PGMInvalidatePage(pVCpu, GCPtrPage);
1377 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1378 return VINF_SUCCESS;
1379}
1380
1381
1382/**
1383 * Implements 'SKINIT'.
1384 */
1385IEM_CIMPL_DEF_0(iemCImpl_skinit)
1386{
1387 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1388
1389 uint32_t uIgnore;
1390 uint32_t fFeaturesECX;
1391 CPUMGetGuestCpuId(pVCpu, 0x80000001, 0 /* iSubLeaf */, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore);
1392 if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT))
1393 return iemRaiseUndefinedOpcode(pVCpu);
1394
1395 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
1396 {
1397 Log2(("skinit: Guest intercept -> #VMEXIT\n"));
1398 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1399 }
1400
1401 RT_NOREF(cbInstr);
1402 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
1403}
1404
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette