VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h@ 72079

Last change on this file since 72079 was 72065, checked in by vboxsync, 7 years ago

VMM/SVM: Interrupt injection fixes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 55.4 KB
Line 
1/* $Id: IEMAllCImplSvmInstr.cpp.h 72065 2018-04-30 06:27:34Z vboxsync $ */
2/** @file
3 * IEM - AMD-V (Secure Virtual Machine) instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/**
20 * Converts an IEM exception event type to an SVM event type.
21 *
22 * @returns The SVM event type.
23 * @retval UINT8_MAX if the specified type of event isn't among the set
24 * of recognized IEM event types.
25 *
26 * @param uVector The vector of the event.
27 * @param fIemXcptFlags The IEM exception / interrupt flags.
28 */
29IEM_STATIC uint8_t iemGetSvmEventType(uint32_t uVector, uint32_t fIemXcptFlags)
30{
31 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
32 {
33 if (uVector != X86_XCPT_NMI)
34 return SVM_EVENT_EXCEPTION;
35 return SVM_EVENT_NMI;
36 }
37
38 /* See AMD spec. Table 15-1. "Guest Exception or Interrupt Types". */
39 if (fIemXcptFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
40 return SVM_EVENT_EXCEPTION;
41
42 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_EXT_INT)
43 return SVM_EVENT_EXTERNAL_IRQ;
44
45 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
46 return SVM_EVENT_SOFTWARE_INT;
47
48 AssertMsgFailed(("iemGetSvmEventType: Invalid IEM xcpt/int. type %#x, uVector=%#x\n", fIemXcptFlags, uVector));
49 return UINT8_MAX;
50}
51
52
53/**
54 * Performs an SVM world-switch (VMRUN, \#VMEXIT) updating PGM and IEM internals.
55 *
56 * @returns Strict VBox status code.
57 * @param pVCpu The cross context virtual CPU structure.
58 * @param pCtx The guest-CPU context.
59 */
60DECLINLINE(VBOXSTRICTRC) iemSvmWorldSwitch(PVMCPU pVCpu, PCPUMCTX pCtx)
61{
62 /*
63 * Inform PGM about paging mode changes.
64 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
65 * see comment in iemMemPageTranslateAndCheckAccess().
66 */
67 int rc = PGMChangeMode(pVCpu, pCtx->cr0 | X86_CR0_PE, pCtx->cr4, pCtx->msrEFER);
68#ifdef IN_RING3
69 Assert(rc != VINF_PGM_CHANGE_MODE);
70#endif
71 AssertRCReturn(rc, rc);
72
73 /* Inform CPUM (recompiler), can later be removed. */
74 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
75
76 /*
77 * Flush the TLB with new CR3. This is required in case the PGM mode change
78 * above doesn't actually change anything.
79 */
80 if (rc == VINF_SUCCESS)
81 {
82 rc = PGMFlushTLB(pVCpu, pCtx->cr3, true);
83 AssertRCReturn(rc, rc);
84 }
85
86 /* Re-initialize IEM cache/state after the drastic mode switch. */
87 iemReInitExec(pVCpu);
88 return rc;
89}
90
91
92/**
93 * SVM \#VMEXIT handler.
94 *
95 * @returns Strict VBox status code.
96 * @retval VINF_SVM_VMEXIT when the \#VMEXIT is successful.
97 * @retval VERR_SVM_VMEXIT_FAILED when the \#VMEXIT failed restoring the guest's
98 * "host state" and a shutdown is required.
99 *
100 * @param pVCpu The cross context virtual CPU structure.
101 * @param pCtx The guest-CPU context.
102 * @param uExitCode The exit code.
103 * @param uExitInfo1 The exit info. 1 field.
104 * @param uExitInfo2 The exit info. 2 field.
105 */
106IEM_STATIC VBOXSTRICTRC iemSvmVmexit(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2)
107{
108 VBOXSTRICTRC rcStrict;
109 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
110 || uExitCode == SVM_EXIT_INVALID)
111 {
112 LogFlow(("iemSvmVmexit: CS:RIP=%04x:%08RX64 uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pCtx->cs.Sel,
113 pCtx->rip, uExitCode, uExitInfo1, uExitInfo2));
114
115 /*
116 * Disable the global interrupt flag to prevent interrupts during the 'atomic' world switch.
117 */
118 pCtx->hwvirt.fGif = false;
119
120 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->es));
121 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs));
122 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
123 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ds));
124
125 /*
126 * Map the nested-guest VMCB from its location in guest memory.
127 * Write exactly what the CPU does on #VMEXIT thereby preserving most other bits in the
128 * guest's VMCB in memory, see @bugref{7243#c113} and related comment on iemSvmVmrun().
129 */
130 PSVMVMCB pVmcbMem;
131 PGMPAGEMAPLOCK PgLockMem;
132 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
133 rcStrict = iemMemPageMap(pVCpu, pCtx->hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, (void **)&pVmcbMem, &PgLockMem);
134 if (rcStrict == VINF_SUCCESS)
135 {
136 /*
137 * Notify HM in case the nested-guest was executed using hardware-assisted SVM (which
138 * would have modified some VMCB state) that might need to be restored on #VMEXIT before
139 * writing the VMCB back to guest memory.
140 */
141 HMSvmNstGstVmExitNotify(pVCpu, pCtx);
142
143 /*
144 * Save the nested-guest state into the VMCB state-save area.
145 */
146 PSVMVMCBSTATESAVE pVmcbMemState = &pVmcbMem->guest;
147 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbMemState, ES, es);
148 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbMemState, CS, cs);
149 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbMemState, SS, ss);
150 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcbMemState, DS, ds);
151 pVmcbMemState->GDTR.u32Limit = pCtx->gdtr.cbGdt;
152 pVmcbMemState->GDTR.u64Base = pCtx->gdtr.pGdt;
153 pVmcbMemState->IDTR.u32Limit = pCtx->idtr.cbIdt;
154 pVmcbMemState->IDTR.u64Base = pCtx->idtr.pIdt;
155 pVmcbMemState->u64EFER = pCtx->msrEFER;
156 pVmcbMemState->u64CR4 = pCtx->cr4;
157 pVmcbMemState->u64CR3 = pCtx->cr3;
158 pVmcbMemState->u64CR2 = pCtx->cr2;
159 pVmcbMemState->u64CR0 = pCtx->cr0;
160 /** @todo Nested paging. */
161 pVmcbMemState->u64RFlags = pCtx->rflags.u64;
162 pVmcbMemState->u64RIP = pCtx->rip;
163 pVmcbMemState->u64RSP = pCtx->rsp;
164 pVmcbMemState->u64RAX = pCtx->rax;
165 pVmcbMemState->u64DR7 = pCtx->dr[7];
166 pVmcbMemState->u64DR6 = pCtx->dr[6];
167 pVmcbMemState->u8CPL = pCtx->ss.Attr.n.u2Dpl; /* See comment in CPUMGetGuestCPL(). */
168 Assert(CPUMGetGuestCPL(pVCpu) == pCtx->ss.Attr.n.u2Dpl);
169 if (CPUMIsGuestSvmNestedPagingEnabled(pVCpu, pCtx))
170 pVmcbMemState->u64PAT = pCtx->msrPAT;
171
172 /*
173 * Save additional state and intercept information.
174 *
175 * - V_IRQ: Tracked using VMCPU_FF_INTERRUPT_NESTED_GUEST force-flag and updated below.
176 * - V_TPR: Updated by iemCImpl_load_CrX or by the physical CPU for hardware-assisted
177 * SVM execution.
178 * - Interrupt shadow: Tracked using VMCPU_FF_INHIBIT_INTERRUPTS and RIP.
179 */
180 PSVMVMCBCTRL pVmcbMemCtrl = &pVmcbMem->ctrl;
181 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)) /* V_IRQ. */
182 pVmcbMemCtrl->IntCtrl.n.u1VIrqPending = 0;
183 else
184 {
185 Assert(pVmcbCtrl->IntCtrl.n.u1VIrqPending);
186 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
187 }
188
189 pVmcbMemCtrl->IntCtrl.n.u8VTPR = pVmcbCtrl->IntCtrl.n.u8VTPR; /* V_TPR. */
190
191 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) /* Interrupt shadow. */
192 && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip)
193 {
194 pVmcbMemCtrl->IntShadow.n.u1IntShadow = 1;
195 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
196 LogFlow(("iemSvmVmexit: Interrupt shadow till %#RX64\n", pCtx->rip));
197 }
198 else
199 pVmcbMemCtrl->IntShadow.n.u1IntShadow = 0;
200
201 /*
202 * Save nRIP, instruction length and byte fields.
203 */
204 pVmcbMemCtrl->u64NextRIP = pVmcbCtrl->u64NextRIP;
205 pVmcbMemCtrl->cbInstrFetched = pVmcbCtrl->cbInstrFetched;
206 memcpy(&pVmcbMemCtrl->abInstr[0], &pVmcbCtrl->abInstr[0], sizeof(pVmcbMemCtrl->abInstr));
207
208 /*
209 * Save exit information.
210 */
211 pVmcbMemCtrl->u64ExitCode = uExitCode;
212 pVmcbMemCtrl->u64ExitInfo1 = uExitInfo1;
213 pVmcbMemCtrl->u64ExitInfo2 = uExitInfo2;
214
215 /*
216 * Update the exit interrupt-information field if this #VMEXIT happened as a result
217 * of delivering an event through IEM.
218 *
219 * Don't update the exit interrupt-information field if the event wasn't being injected
220 * through IEM, as it would have been updated by real hardware if the nested-guest was
221 * executed using hardware-assisted SVM.
222 */
223 {
224 uint8_t uExitIntVector;
225 uint32_t uExitIntErr;
226 uint32_t fExitIntFlags;
227 bool const fRaisingEvent = IEMGetCurrentXcpt(pVCpu, &uExitIntVector, &fExitIntFlags, &uExitIntErr,
228 NULL /* uExitIntCr2 */);
229 if (fRaisingEvent)
230 {
231 pVmcbCtrl->ExitIntInfo.n.u1Valid = 1;
232 pVmcbCtrl->ExitIntInfo.n.u8Vector = uExitIntVector;
233 pVmcbCtrl->ExitIntInfo.n.u3Type = iemGetSvmEventType(uExitIntVector, fExitIntFlags);
234 if (fExitIntFlags & IEM_XCPT_FLAGS_ERR)
235 {
236 pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid = true;
237 pVmcbCtrl->ExitIntInfo.n.u32ErrorCode = uExitIntErr;
238 }
239 }
240 }
241
242 /*
243 * Save the exit interrupt-information field.
244 *
245 * We write the whole field including overwriting reserved bits as it was observed on an
246 * AMD Ryzen 5 Pro 1500 that the CPU does not preserve reserved bits in EXITINTINFO.
247 */
248 pVmcbMemCtrl->ExitIntInfo = pVmcbCtrl->ExitIntInfo;
249
250 /*
251 * Clear event injection.
252 */
253 pVmcbMemCtrl->EventInject.n.u1Valid = 0;
254
255 iemMemPageUnmap(pVCpu, pCtx->hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, pVmcbMem, &PgLockMem);
256 }
257
258 /*
259 * Prepare for guest's "host mode" by clearing internal processor state bits.
260 *
261 * We don't need to zero out the state-save area, just the controls should be
262 * sufficient because it has the critical bit of indicating whether we're inside
263 * the nested-guest or not.
264 */
265 memset(pVmcbCtrl, 0, sizeof(*pVmcbCtrl));
266 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
267
268 /*
269 * Restore the subset of force-flags that were preserved.
270 */
271 if (pCtx->hwvirt.fLocalForcedActions)
272 {
273 VMCPU_FF_SET(pVCpu, pCtx->hwvirt.fLocalForcedActions);
274 pCtx->hwvirt.fLocalForcedActions = 0;
275 }
276
277 if (rcStrict == VINF_SUCCESS)
278 {
279 /** @todo Nested paging. */
280 /** @todo ASID. */
281
282 /*
283 * Reload the guest's "host state".
284 */
285 CPUMSvmVmExitRestoreHostState(pVCpu, pCtx);
286
287 /*
288 * Update PGM, IEM and others of a world-switch.
289 */
290 rcStrict = iemSvmWorldSwitch(pVCpu, pCtx);
291 if (rcStrict == VINF_SUCCESS)
292 rcStrict = VINF_SVM_VMEXIT;
293 else if (RT_SUCCESS(rcStrict))
294 {
295 LogFlow(("iemSvmVmexit: Setting passup status from iemSvmWorldSwitch %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
296 iemSetPassUpStatus(pVCpu, rcStrict);
297 rcStrict = VINF_SVM_VMEXIT;
298 }
299 else
300 LogFlow(("iemSvmVmexit: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
301 }
302 else
303 {
304 LogFlow(("iemSvmVmexit: Mapping VMCB at %#RGp failed. rc=%Rrc\n", pCtx->hwvirt.svm.GCPhysVmcb, VBOXSTRICTRC_VAL(rcStrict)));
305 rcStrict = VERR_SVM_VMEXIT_FAILED;
306 }
307 }
308 else
309 {
310 Log(("iemSvmVmexit: Not in SVM guest mode! uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitCode,
311 uExitInfo1, uExitInfo2));
312 AssertMsgFailed(("iemSvmVmexit: Unexpected SVM-exit failure uExitCode=%#RX64\n", uExitCode));
313 rcStrict = VERR_SVM_IPE_3;
314 }
315
316# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
317 /* CLGI/STGI may not have been intercepted and thus not executed in IEM. */
318 if (HMSvmIsVGifActive(pVCpu->CTX_SUFF(pVM)))
319 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
320# endif
321 return rcStrict;
322}
323
324
325/**
326 * Performs the operations necessary that are part of the vmrun instruction
327 * execution in the guest.
328 *
329 * @returns Strict VBox status code (i.e. informational status codes too).
330 * @retval VINF_SUCCESS successully executed VMRUN and entered nested-guest
331 * code execution.
332 * @retval VINF_SVM_VMEXIT when executing VMRUN causes a \#VMEXIT
333 * (SVM_EXIT_INVALID most likely).
334 *
335 * @param pVCpu The cross context virtual CPU structure.
336 * @param pCtx Pointer to the guest-CPU context.
337 * @param cbInstr The length of the VMRUN instruction.
338 * @param GCPhysVmcb Guest physical address of the VMCB to run.
339 */
340IEM_STATIC VBOXSTRICTRC iemSvmVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbInstr, RTGCPHYS GCPhysVmcb)
341{
342 LogFlow(("iemSvmVmrun\n"));
343
344 /*
345 * Cache the physical address of the VMCB for #VMEXIT exceptions.
346 */
347 pCtx->hwvirt.svm.GCPhysVmcb = GCPhysVmcb;
348
349 /*
350 * Save the host state.
351 */
352 CPUMSvmVmRunSaveHostState(pCtx, cbInstr);
353
354 /*
355 * Read the guest VMCB.
356 */
357 PVM pVM = pVCpu->CTX_SUFF(pVM);
358 int rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pVmcb), GCPhysVmcb, sizeof(SVMVMCB));
359 if (RT_SUCCESS(rc))
360 {
361 /*
362 * AMD-V seems to preserve reserved fields and only writes back selected, recognized
363 * fields on #VMEXIT. However, not all reserved bits are preserved (e.g, EXITINTINFO)
364 * but in our implementation we try to preserve as much as we possibly can.
365 *
366 * We could read the entire page here and only write back the relevant fields on
367 * #VMEXIT but since our internal VMCB is also being used by HM during hardware-assisted
368 * SVM execution, it creates a potential for a nested-hypervisor to set bits that are
369 * currently reserved but may be recognized as features bits in future CPUs causing
370 * unexpected & undesired results. Hence, we zero out unrecognized fields here as we
371 * typically enter hardware-assisted SVM soon anyway, see @bugref{7243#c113}.
372 */
373 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
374 PSVMVMCBSTATESAVE pVmcbNstGst = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->guest;
375
376 RT_ZERO(pVmcbCtrl->u8Reserved0);
377 RT_ZERO(pVmcbCtrl->u8Reserved1);
378 RT_ZERO(pVmcbCtrl->u8Reserved2);
379 RT_ZERO(pVmcbNstGst->u8Reserved0);
380 RT_ZERO(pVmcbNstGst->u8Reserved1);
381 RT_ZERO(pVmcbNstGst->u8Reserved2);
382 RT_ZERO(pVmcbNstGst->u8Reserved3);
383 RT_ZERO(pVmcbNstGst->u8Reserved4);
384 RT_ZERO(pVmcbNstGst->u8Reserved5);
385 pVmcbCtrl->u32Reserved0 = 0;
386 pVmcbCtrl->TLBCtrl.n.u24Reserved = 0;
387 pVmcbCtrl->IntCtrl.n.u6Reserved = 0;
388 pVmcbCtrl->IntCtrl.n.u3Reserved = 0;
389 pVmcbCtrl->IntCtrl.n.u5Reserved = 0;
390 pVmcbCtrl->IntCtrl.n.u24Reserved = 0;
391 pVmcbCtrl->IntShadow.n.u30Reserved = 0;
392 pVmcbCtrl->ExitIntInfo.n.u19Reserved = 0;
393 pVmcbCtrl->NestedPagingCtrl.n.u29Reserved = 0;
394 pVmcbCtrl->EventInject.n.u19Reserved = 0;
395 pVmcbCtrl->LbrVirt.n.u30Reserved = 0;
396
397 /*
398 * Validate guest-state and controls.
399 */
400 /* VMRUN must always be intercepted. */
401 if (!CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
402 {
403 Log(("iemSvmVmrun: VMRUN instruction not intercepted -> #VMEXIT\n"));
404 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
405 }
406
407 /* Nested paging. */
408 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
409 && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging)
410 {
411 Log(("iemSvmVmrun: Nested paging not supported -> Disabling\n"));
412 pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = 0;
413 }
414
415 /* AVIC. */
416 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
417 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
418 {
419 Log(("iemSvmVmrun: AVIC not supported -> Disabling\n"));
420 pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0;
421 }
422
423 /* Last branch record (LBR) virtualization. */
424 if ( pVmcbCtrl->LbrVirt.n.u1LbrVirt
425 && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt)
426 {
427 Log(("iemSvmVmrun: LBR virtualization not supported -> Disabling\n"));
428 pVmcbCtrl->LbrVirt.n.u1LbrVirt = 0;
429 }
430
431 /* Virtualized VMSAVE/VMLOAD. */
432 if ( pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload
433 && !pVM->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
434 {
435 Log(("iemSvmVmrun: Virtualized VMSAVE/VMLOAD not supported -> Disabling\n"));
436 pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = 0;
437 }
438
439 /* Virtual GIF. */
440 if ( pVmcbCtrl->IntCtrl.n.u1VGifEnable
441 && !pVM->cpum.ro.GuestFeatures.fSvmVGif)
442 {
443 Log(("iemSvmVmrun: Virtual GIF not supported -> Disabling\n"));
444 pVmcbCtrl->IntCtrl.n.u1VGifEnable = 0;
445 }
446
447 /* Guest ASID. */
448 if (!pVmcbCtrl->TLBCtrl.n.u32ASID)
449 {
450 Log(("iemSvmVmrun: Guest ASID is invalid -> #VMEXIT\n"));
451 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
452 }
453
454 /* Guest AVIC. */
455 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
456 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
457 {
458 Log(("iemSvmVmrun: AVIC not supported -> Disabling\n"));
459 pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0;
460 }
461
462 /* Guest Secure Encrypted Virtualization. */
463 if ( ( pVmcbCtrl->NestedPagingCtrl.n.u1Sev
464 || pVmcbCtrl->NestedPagingCtrl.n.u1SevEs)
465 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
466 {
467 Log(("iemSvmVmrun: SEV not supported -> Disabling\n"));
468 pVmcbCtrl->NestedPagingCtrl.n.u1Sev = 0;
469 pVmcbCtrl->NestedPagingCtrl.n.u1SevEs = 0;
470 }
471
472 /* Flush by ASID. */
473 if ( !pVM->cpum.ro.GuestFeatures.fSvmFlusbByAsid
474 && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_NOTHING
475 && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_ENTIRE)
476 {
477 Log(("iemSvmVmrun: Flush-by-ASID not supported -> #VMEXIT\n"));
478 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
479 }
480
481 /* IO permission bitmap. */
482 RTGCPHYS const GCPhysIOBitmap = pVmcbCtrl->u64IOPMPhysAddr;
483 if ( (GCPhysIOBitmap & X86_PAGE_4K_OFFSET_MASK)
484 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap)
485 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + X86_PAGE_4K_SIZE)
486 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + (X86_PAGE_4K_SIZE << 1)))
487 {
488 Log(("iemSvmVmrun: IO bitmap physaddr invalid. GCPhysIOBitmap=%#RX64 -> #VMEXIT\n", GCPhysIOBitmap));
489 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
490 }
491
492 /* MSR permission bitmap. */
493 RTGCPHYS const GCPhysMsrBitmap = pVmcbCtrl->u64MSRPMPhysAddr;
494 if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
495 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap)
496 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap + X86_PAGE_4K_SIZE))
497 {
498 Log(("iemSvmVmrun: MSR bitmap physaddr invalid. GCPhysMsrBitmap=%#RX64 -> #VMEXIT\n", GCPhysMsrBitmap));
499 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
500 }
501
502 /* CR0. */
503 if ( !(pVmcbNstGst->u64CR0 & X86_CR0_CD)
504 && (pVmcbNstGst->u64CR0 & X86_CR0_NW))
505 {
506 Log(("iemSvmVmrun: CR0 no-write through with cache disabled. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
507 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
508 }
509 if (pVmcbNstGst->u64CR0 >> 32)
510 {
511 Log(("iemSvmVmrun: CR0 reserved bits set. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
512 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
513 }
514 /** @todo Implement all reserved bits/illegal combinations for CR3, CR4. */
515
516 /* DR6 and DR7. */
517 if ( pVmcbNstGst->u64DR6 >> 32
518 || pVmcbNstGst->u64DR7 >> 32)
519 {
520 Log(("iemSvmVmrun: DR6 and/or DR7 reserved bits set. DR6=%#RX64 DR7=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64DR6,
521 pVmcbNstGst->u64DR6));
522 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
523 }
524
525 /*
526 * PAT (Page Attribute Table) MSR.
527 *
528 * The CPU only validates and loads it when nested-paging is enabled.
529 * See AMD spec. "15.25.4 Nested Paging and VMRUN/#VMEXIT".
530 */
531 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
532 && !CPUMIsPatMsrValid(pVmcbNstGst->u64PAT))
533 {
534 Log(("iemSvmVmrun: PAT invalid. u64PAT=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64PAT));
535 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
536 }
537
538 /*
539 * Copy the IO permission bitmap into the cache.
540 */
541 Assert(pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap));
542 rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap), GCPhysIOBitmap,
543 SVM_IOPM_PAGES * X86_PAGE_4K_SIZE);
544 if (RT_FAILURE(rc))
545 {
546 Log(("iemSvmVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc));
547 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
548 }
549
550 /*
551 * Copy the MSR permission bitmap into the cache.
552 */
553 Assert(pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap));
554 rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap), GCPhysMsrBitmap,
555 SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE);
556 if (RT_FAILURE(rc))
557 {
558 Log(("iemSvmVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc));
559 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
560 }
561
562 /*
563 * Copy segments from nested-guest VMCB state to the guest-CPU state.
564 *
565 * We do this here as we need to use the CS attributes and it's easier this way
566 * then using the VMCB format selectors. It doesn't really matter where we copy
567 * the state, we restore the guest-CPU context state on the \#VMEXIT anyway.
568 */
569 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, ES, es);
570 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, CS, cs);
571 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, SS, ss);
572 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGst, DS, ds);
573
574 /** @todo Segment attribute overrides by VMRUN. */
575
576 /*
577 * CPL adjustments and overrides.
578 *
579 * SS.DPL is apparently the CPU's CPL, see comment in CPUMGetGuestCPL().
580 * We shall thus adjust both CS.DPL and SS.DPL here.
581 */
582 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = pVmcbNstGst->u8CPL;
583 if (CPUMIsGuestInV86ModeEx(pCtx))
584 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 3;
585 if (CPUMIsGuestInRealModeEx(pCtx))
586 pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 0;
587 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss));
588
589 /*
590 * Continue validating guest-state and controls.
591 *
592 * We pass CR0 as 0 to CPUMQueryValidatedGuestEfer below to skip the illegal
593 * EFER.LME bit transition check. We pass the nested-guest's EFER as both the
594 * old and new EFER value to not have any guest EFER bits influence the new
595 * nested-guest EFER.
596 */
597 uint64_t uValidEfer;
598 rc = CPUMQueryValidatedGuestEfer(pVM, 0 /* CR0 */, pVmcbNstGst->u64EFER, pVmcbNstGst->u64EFER, &uValidEfer);
599 if (RT_FAILURE(rc))
600 {
601 Log(("iemSvmVmrun: EFER invalid uOldEfer=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64EFER));
602 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
603 }
604
605 /* Validate paging and CPU mode bits. */
606 bool const fSvm = RT_BOOL(uValidEfer & MSR_K6_EFER_SVME);
607 bool const fLongModeSupported = RT_BOOL(pVM->cpum.ro.GuestFeatures.fLongMode);
608 bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME);
609 bool const fPaging = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PG);
610 bool const fPae = RT_BOOL(pVmcbNstGst->u64CR4 & X86_CR4_PAE);
611 bool const fProtMode = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PE);
612 bool const fLongModeWithPaging = fLongModeEnabled && fPaging;
613 bool const fLongModeConformCS = pCtx->cs.Attr.n.u1Long && pCtx->cs.Attr.n.u1DefBig;
614 /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0). */
615 if (fLongModeWithPaging)
616 uValidEfer |= MSR_K6_EFER_LMA;
617 bool const fLongModeActiveOrEnabled = RT_BOOL(uValidEfer & (MSR_K6_EFER_LME | MSR_K6_EFER_LMA));
618 if ( !fSvm
619 || (!fLongModeSupported && fLongModeActiveOrEnabled)
620 || (fLongModeWithPaging && !fPae)
621 || (fLongModeWithPaging && !fProtMode)
622 || ( fLongModeEnabled
623 && fPaging
624 && fPae
625 && fLongModeConformCS))
626 {
627 Log(("iemSvmVmrun: EFER invalid. uValidEfer=%#RX64 -> #VMEXIT\n", uValidEfer));
628 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
629 }
630
631 /*
632 * Preserve the required force-flags.
633 *
634 * We only preserve the force-flags that would affect the execution of the
635 * nested-guest (or the guest).
636 *
637 * - VMCPU_FF_INHIBIT_INTERRUPTS need -not- be preserved as it's for a single
638 * instruction which is this VMRUN instruction itself.
639 *
640 * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the
641 * execution of a subsequent IRET instruction in the guest.
642 *
643 * - The remaining FFs (e.g. timers) can stay in place so that we will be
644 * able to generate interrupts that should cause #VMEXITs for the
645 * nested-guest.
646 */
647 pCtx->hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
648 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
649
650 /*
651 * Pause filter.
652 */
653 if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilter)
654 {
655 pCtx->hwvirt.svm.cPauseFilter = pVmcbCtrl->u16PauseFilterCount;
656 if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilterThreshold)
657 pCtx->hwvirt.svm.cPauseFilterThreshold = pVmcbCtrl->u16PauseFilterCount;
658 }
659
660 /*
661 * Interrupt shadow.
662 */
663 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
664 {
665 LogFlow(("iemSvmVmrun: setting interrupt shadow. inhibit PC=%#RX64\n", pVmcbNstGst->u64RIP));
666 /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */
667 EMSetInhibitInterruptsPC(pVCpu, pVmcbNstGst->u64RIP);
668 }
669
670 /*
671 * TLB flush control.
672 * Currently disabled since it's redundant as we unconditionally flush the TLB
673 * in iemSvmWorldSwitch() below.
674 */
675#if 0
676 /** @todo @bugref{7243}: ASID based PGM TLB flushes. */
677 if ( pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE
678 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
679 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
680 PGMFlushTLB(pVCpu, pVmcbNstGst->u64CR3, true /* fGlobal */);
681#endif
682
683 /*
684 * Copy the remaining guest state from the VMCB to the guest-CPU context.
685 */
686 pCtx->gdtr.cbGdt = pVmcbNstGst->GDTR.u32Limit;
687 pCtx->gdtr.pGdt = pVmcbNstGst->GDTR.u64Base;
688 pCtx->idtr.cbIdt = pVmcbNstGst->IDTR.u32Limit;
689 pCtx->idtr.pIdt = pVmcbNstGst->IDTR.u64Base;
690 CPUMSetGuestCR0(pVCpu, pVmcbNstGst->u64CR0);
691 CPUMSetGuestCR4(pVCpu, pVmcbNstGst->u64CR4);
692 pCtx->cr3 = pVmcbNstGst->u64CR3;
693 pCtx->cr2 = pVmcbNstGst->u64CR2;
694 pCtx->dr[6] = pVmcbNstGst->u64DR6;
695 pCtx->dr[7] = pVmcbNstGst->u64DR7;
696 pCtx->rflags.u64 = pVmcbNstGst->u64RFlags;
697 pCtx->rax = pVmcbNstGst->u64RAX;
698 pCtx->rsp = pVmcbNstGst->u64RSP;
699 pCtx->rip = pVmcbNstGst->u64RIP;
700 CPUMSetGuestMsrEferNoCheck(pVCpu, pCtx->msrEFER, uValidEfer);
701 if (pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging)
702 pCtx->msrPAT = pVmcbNstGst->u64PAT;
703
704 /* Mask DR6, DR7 bits mandatory set/clear bits. */
705 pCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
706 pCtx->dr[6] |= X86_DR6_RA1_MASK;
707 pCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
708 pCtx->dr[7] |= X86_DR7_RA1_MASK;
709
710 /*
711 * Check for pending virtual interrupts.
712 */
713 if (pVmcbCtrl->IntCtrl.n.u1VIrqPending)
714 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
715 else
716 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST));
717
718 /*
719 * Update PGM, IEM and others of a world-switch.
720 */
721 VBOXSTRICTRC rcStrict = iemSvmWorldSwitch(pVCpu, pCtx);
722 if (rcStrict == VINF_SUCCESS)
723 { /* likely */ }
724 else if (RT_SUCCESS(rcStrict))
725 {
726 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch returned %Rrc, setting passup status\n", VBOXSTRICTRC_VAL(rcStrict)));
727 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
728 }
729 else
730 {
731 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
732 return rcStrict;
733 }
734
735 /*
736 * Clear global interrupt flags to allow interrupts in the guest.
737 */
738 pCtx->hwvirt.fGif = true;
739
740 /*
741 * Event injection.
742 */
743 PCSVMEVENT pEventInject = &pVmcbCtrl->EventInject;
744 pCtx->hwvirt.svm.fInterceptEvents = !pEventInject->n.u1Valid;
745 if (pEventInject->n.u1Valid)
746 {
747 uint8_t const uVector = pEventInject->n.u8Vector;
748 TRPMEVENT const enmType = HMSvmEventToTrpmEventType(pEventInject);
749 uint16_t const uErrorCode = pEventInject->n.u1ErrorCodeValid ? pEventInject->n.u32ErrorCode : 0;
750
751 /* Validate vectors for hardware exceptions, see AMD spec. 15.20 "Event Injection". */
752 if (RT_UNLIKELY(enmType == TRPM_32BIT_HACK))
753 {
754 Log(("iemSvmVmrun: Invalid event type =%#x -> #VMEXIT\n", (uint8_t)pEventInject->n.u3Type));
755 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
756 }
757 if (pEventInject->n.u3Type == SVM_EVENT_EXCEPTION)
758 {
759 if ( uVector == X86_XCPT_NMI
760 || uVector > X86_XCPT_LAST)
761 {
762 Log(("iemSvmVmrun: Invalid vector for hardware exception. uVector=%#x -> #VMEXIT\n", uVector));
763 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
764 }
765 if ( uVector == X86_XCPT_BR
766 && CPUMIsGuestInLongModeEx(pCtx))
767 {
768 Log(("iemSvmVmrun: Cannot inject #BR when not in long mode -> #VMEXIT\n"));
769 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
770 }
771 /** @todo any others? */
772 }
773
774 /*
775 * Invalidate the exit interrupt-information field here. This field is fully updated
776 * on #VMEXIT as events other than the one below can also cause intercepts during
777 * their injection (e.g. exceptions).
778 */
779 pVmcbCtrl->ExitIntInfo.n.u1Valid = 0;
780
781 /*
782 * Clear the event injection valid bit here. While the AMD spec. mentions that the CPU
783 * clears this bit from the VMCB unconditionally on #VMEXIT, internally the CPU could be
784 * clearing it at any time, most likely before/after injecting the event. Since VirtualBox
785 * doesn't have any virtual-CPU internal representation of this bit, we clear/update the
786 * VMCB here. This also has the added benefit that we avoid the risk of injecting the event
787 * twice if we fallback to executing the nested-guest using hardware-assisted SVM after
788 * injecting the event through IEM here.
789 */
790 pVmcbCtrl->EventInject.n.u1Valid = 0;
791
792 /** @todo NRIP: Software interrupts can only be pushed properly if we support
793 * NRIP for the nested-guest to calculate the instruction length
794 * below. */
795 LogFlow(("iemSvmVmrun: Injecting event: %04x:%08RX64 vec=%#x type=%d uErr=%u cr2=%#RX64 cr3=%#RX64 efer=%#RX64\n",
796 pCtx->cs.Sel, pCtx->rip, uVector, enmType, uErrorCode, pCtx->cr2, pCtx->cr3, pCtx->msrEFER));
797#if 0
798 rcStrict = IEMInjectTrap(pVCpu, uVector, enmType, uErrorCode, pCtx->cr2, 0 /* cbInstr */);
799#else
800 TRPMAssertTrap(pVCpu, uVector, enmType);
801 if (pEventInject->n.u1ErrorCodeValid)
802 TRPMSetErrorCode(pVCpu, uErrorCode);
803 if ( enmType == TRPM_TRAP
804 && uVector == X86_XCPT_PF)
805 TRPMSetFaultAddress(pVCpu, pCtx->cr2);
806#endif
807 }
808 else
809 LogFlow(("iemSvmVmrun: Entering nested-guest: %04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 efer=%#RX64 efl=%#x\n",
810 pCtx->cs.Sel, pCtx->rip, pCtx->cr0, pCtx->cr3, pCtx->cr4, pCtx->msrEFER, pCtx->rflags.u64));
811
812 LogFlow(("iemSvmVmrun: returns %d\n", VBOXSTRICTRC_VAL(rcStrict)));
813
814# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
815 /* If CLGI/STGI isn't intercepted we force IEM-only nested-guest execution here. */
816 if (HMSvmIsVGifActive(pVM))
817 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
818# endif
819
820 return rcStrict;
821 }
822
823 /* Shouldn't really happen as the caller should've validated the physical address already. */
824 Log(("iemSvmVmrun: Failed to read nested-guest VMCB at %#RGp (rc=%Rrc) -> #VMEXIT\n", GCPhysVmcb, rc));
825 return rc;
826}
827
828
829/**
830 * Checks if the event intercepts and performs the \#VMEXIT if the corresponding
831 * intercept is active.
832 *
833 * @returns Strict VBox status code.
834 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
835 * we're not executing a nested-guest.
836 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
837 * successfully.
838 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
839 * failed and a shutdown needs to be initiated for the geust.
840 *
841 * @returns VBox strict status code.
842 * @param pVCpu The cross context virtual CPU structure of the calling thread.
843 * @param u16Port The IO port being accessed.
844 * @param enmIoType The type of IO access.
845 * @param cbReg The IO operand size in bytes.
846 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
847 * @param iEffSeg The effective segment number.
848 * @param fRep Whether this is a repeating IO instruction (REP prefix).
849 * @param fStrIo Whether this is a string IO instruction.
850 */
851IEM_STATIC VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr,
852 uint64_t uCr2)
853{
854 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
855
856 /*
857 * Handle SVM exception and software interrupt intercepts, see AMD spec. 15.12 "Exception Intercepts".
858 *
859 * - NMI intercepts have their own exit code and do not cause SVM_EXIT_XCPT_2 #VMEXITs.
860 * - External interrupts and software interrupts (INTn instruction) do not check the exception intercepts
861 * even when they use a vector in the range 0 to 31.
862 * - ICEBP should not trigger #DB intercept, but its own intercept.
863 * - For #PF exceptions, its intercept is checked before CR2 is written by the exception.
864 */
865 /* Check NMI intercept */
866 if ( u8Vector == X86_XCPT_NMI
867 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
868 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_NMI))
869 {
870 Log2(("iemHandleSvmNstGstEventIntercept: NMI intercept -> #VMEXIT\n"));
871 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_NMI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
872 }
873
874 /* Check ICEBP intercept. */
875 if ( (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
876 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_ICEBP))
877 {
878 Log2(("iemHandleSvmNstGstEventIntercept: ICEBP intercept -> #VMEXIT\n"));
879 IEM_SVM_UPDATE_NRIP(pVCpu);
880 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_ICEBP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
881 }
882
883 /* Check CPU exception intercepts. */
884 if ( (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
885 && IEM_IS_SVM_XCPT_INTERCEPT_SET(pVCpu, u8Vector))
886 {
887 Assert(u8Vector <= X86_XCPT_LAST);
888 uint64_t const uExitInfo1 = fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0;
889 uint64_t const uExitInfo2 = fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0;
890 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists
891 && u8Vector == X86_XCPT_PF
892 && !(uErr & X86_TRAP_PF_ID))
893 {
894 PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
895#ifdef IEM_WITH_CODE_TLB
896 uint8_t const *pbInstrBuf = pVCpu->iem.s.pbInstrBuf;
897 uint8_t const cbInstrBuf = pVCpu->iem.s.cbInstrBuf;
898 pVmcbCtrl->cbInstrFetched = RT_MIN(cbInstrBuf, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
899 if ( pbInstrBuf
900 && cbInstrBuf > 0)
901 memcpy(&pVmcbCtrl->abInstr[0], pbInstrBuf, pVmcbCtrl->cbInstrFetched);
902#else
903 uint8_t const cbOpcode = pVCpu->iem.s.cbOpcode;
904 pVmcbCtrl->cbInstrFetched = RT_MIN(cbOpcode, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
905 if (cbOpcode > 0)
906 memcpy(&pVmcbCtrl->abInstr[0], &pVCpu->iem.s.abOpcode[0], pVmcbCtrl->cbInstrFetched);
907#endif
908 }
909 if (u8Vector == X86_XCPT_BR)
910 IEM_SVM_UPDATE_NRIP(pVCpu);
911 Log2(("iemHandleSvmNstGstEventIntercept: Xcpt intercept u32InterceptXcpt=%#RX32 u8Vector=%#x "
912 "uExitInfo1=%#RX64 uExitInfo2=%#RX64 -> #VMEXIT\n", pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl.u32InterceptXcpt,
913 u8Vector, uExitInfo1, uExitInfo2));
914 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_XCPT_0 + u8Vector, uExitInfo1, uExitInfo2);
915 }
916
917 /* Check software interrupt (INTn) intercepts. */
918 if ( (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT
919 | IEM_XCPT_FLAGS_BP_INSTR
920 | IEM_XCPT_FLAGS_ICEBP_INSTR
921 | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
922 && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INTN))
923 {
924 uint64_t const uExitInfo1 = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? u8Vector : 0;
925 Log2(("iemHandleSvmNstGstEventIntercept: Software INT intercept (u8Vector=%#x) -> #VMEXIT\n", u8Vector));
926 IEM_SVM_UPDATE_NRIP(pVCpu);
927 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SWINT, uExitInfo1, 0 /* uExitInfo2 */);
928 }
929
930 return VINF_HM_INTERCEPT_NOT_ACTIVE;
931}
932
933
934/**
935 * Checks the SVM IO permission bitmap and performs the \#VMEXIT if the
936 * corresponding intercept is active.
937 *
938 * @returns Strict VBox status code.
939 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
940 * we're not executing a nested-guest.
941 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
942 * successfully.
943 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
944 * failed and a shutdown needs to be initiated for the geust.
945 *
946 * @returns VBox strict status code.
947 * @param pVCpu The cross context virtual CPU structure of the calling thread.
948 * @param u16Port The IO port being accessed.
949 * @param enmIoType The type of IO access.
950 * @param cbReg The IO operand size in bytes.
951 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
952 * @param iEffSeg The effective segment number.
953 * @param fRep Whether this is a repeating IO instruction (REP prefix).
954 * @param fStrIo Whether this is a string IO instruction.
955 * @param cbInstr The length of the IO instruction in bytes.
956 */
957IEM_STATIC VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPU pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
958 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr)
959{
960 Assert(IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT));
961 Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
962 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
963
964 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u)\n", u16Port, u16Port));
965
966 SVMIOIOEXITINFO IoExitInfo;
967 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
968 void *pvIoBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap);
969 bool const fIntercept = HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
970 &IoExitInfo);
971 if (fIntercept)
972 {
973 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u) -> #VMEXIT\n", u16Port, u16Port));
974 IEM_SVM_UPDATE_NRIP(pVCpu);
975 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_IOIO, IoExitInfo.u, pCtx->rip + cbInstr);
976 }
977
978 /** @todo remove later (for debugging as VirtualBox always traps all IO
979 * intercepts). */
980 AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n"));
981 return VINF_HM_INTERCEPT_NOT_ACTIVE;
982}
983
984
985/**
986 * Checks the SVM MSR permission bitmap and performs the \#VMEXIT if the
987 * corresponding intercept is active.
988 *
989 * @returns Strict VBox status code.
990 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the MSR permission bitmap does not
991 * specify interception of the accessed MSR @a idMsr.
992 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
993 * successfully.
994 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
995 * failed and a shutdown needs to be initiated for the geust.
996 *
997 * @param pVCpu The cross context virtual CPU structure.
998 * @param pCtx The guest-CPU context.
999 * @param idMsr The MSR being accessed in the nested-guest.
1000 * @param fWrite Whether this is an MSR write access, @c false implies an
1001 * MSR read.
1002 * @param cbInstr The length of the MSR read/write instruction in bytes.
1003 */
1004IEM_STATIC VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t idMsr, bool fWrite)
1005{
1006 /*
1007 * Check if any MSRs are being intercepted.
1008 */
1009 Assert(CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT));
1010 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
1011
1012 uint64_t const uExitInfo1 = fWrite ? SVM_EXIT1_MSR_WRITE : SVM_EXIT1_MSR_READ;
1013
1014 /*
1015 * Get the byte and bit offset of the permission bits corresponding to the MSR.
1016 */
1017 uint16_t offMsrpm;
1018 uint8_t uMsrpmBit;
1019 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
1020 if (RT_SUCCESS(rc))
1021 {
1022 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
1023 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1024 if (fWrite)
1025 ++uMsrpmBit;
1026
1027 /*
1028 * Check if the bit is set, if so, trigger a #VMEXIT.
1029 */
1030 uint8_t *pbMsrpm = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
1031 pbMsrpm += offMsrpm;
1032 if (*pbMsrpm & RT_BIT(uMsrpmBit))
1033 {
1034 IEM_SVM_UPDATE_NRIP(pVCpu);
1035 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1036 }
1037 }
1038 else
1039 {
1040 /*
1041 * This shouldn't happen, but if it does, cause a #VMEXIT and let the "host" (guest hypervisor) deal with it.
1042 */
1043 Log(("iemSvmHandleMsrIntercept: Invalid/out-of-range MSR %#RX32 fWrite=%RTbool -> #VMEXIT\n", idMsr, fWrite));
1044 return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1045 }
1046 return VINF_HM_INTERCEPT_NOT_ACTIVE;
1047}
1048
1049
1050
1051/**
1052 * Implements 'VMRUN'.
1053 */
1054IEM_CIMPL_DEF_0(iemCImpl_vmrun)
1055{
1056#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1057 RT_NOREF2(pVCpu, cbInstr);
1058 return VINF_EM_RAW_EMULATE_INSTR;
1059#else
1060 LogFlow(("iemCImpl_vmrun\n"));
1061 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1062 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmrun);
1063
1064 /** @todo Check effective address size using address size prefix. */
1065 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1066 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1067 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1068 {
1069 Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1070 return iemRaiseGeneralProtectionFault0(pVCpu);
1071 }
1072
1073 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
1074 {
1075 Log(("vmrun: Guest intercept -> #VMEXIT\n"));
1076 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1077 }
1078
1079 VBOXSTRICTRC rcStrict = iemSvmVmrun(pVCpu, pCtx, cbInstr, GCPhysVmcb);
1080 if (rcStrict == VERR_SVM_VMEXIT_FAILED)
1081 {
1082 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
1083 rcStrict = VINF_EM_TRIPLE_FAULT;
1084 }
1085 return rcStrict;
1086#endif
1087}
1088
1089
1090/**
1091 * Implements 'VMMCALL'.
1092 */
1093IEM_CIMPL_DEF_0(iemCImpl_vmmcall)
1094{
1095 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1096 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
1097 {
1098 Log(("vmmcall: Guest intercept -> #VMEXIT\n"));
1099 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1100 }
1101
1102 bool fUpdatedRipAndRF;
1103 VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fUpdatedRipAndRF);
1104 if (RT_SUCCESS(rcStrict))
1105 {
1106 if (!fUpdatedRipAndRF)
1107 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1108 return rcStrict;
1109 }
1110
1111 return iemRaiseUndefinedOpcode(pVCpu);
1112}
1113
1114
1115/**
1116 * Implements 'VMLOAD'.
1117 */
1118IEM_CIMPL_DEF_0(iemCImpl_vmload)
1119{
1120#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1121 RT_NOREF2(pVCpu, cbInstr);
1122 return VINF_EM_RAW_EMULATE_INSTR;
1123#else
1124 LogFlow(("iemCImpl_vmload\n"));
1125 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1126 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload);
1127
1128 /** @todo Check effective address size using address size prefix. */
1129 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1130 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1131 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1132 {
1133 Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1134 return iemRaiseGeneralProtectionFault0(pVCpu);
1135 }
1136
1137 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
1138 {
1139 Log(("vmload: Guest intercept -> #VMEXIT\n"));
1140 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1141 }
1142
1143 SVMVMCBSTATESAVE VmcbNstGst;
1144 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest),
1145 sizeof(SVMVMCBSTATESAVE));
1146 if (rcStrict == VINF_SUCCESS)
1147 {
1148 LogFlow(("vmload: Loading VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1149 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, FS, fs);
1150 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, GS, gs);
1151 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, TR, tr);
1152 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr);
1153
1154 pCtx->msrKERNELGSBASE = VmcbNstGst.u64KernelGSBase;
1155 pCtx->msrSTAR = VmcbNstGst.u64STAR;
1156 pCtx->msrLSTAR = VmcbNstGst.u64LSTAR;
1157 pCtx->msrCSTAR = VmcbNstGst.u64CSTAR;
1158 pCtx->msrSFMASK = VmcbNstGst.u64SFMASK;
1159
1160 pCtx->SysEnter.cs = VmcbNstGst.u64SysEnterCS;
1161 pCtx->SysEnter.esp = VmcbNstGst.u64SysEnterESP;
1162 pCtx->SysEnter.eip = VmcbNstGst.u64SysEnterEIP;
1163
1164 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1165 }
1166 return rcStrict;
1167#endif
1168}
1169
1170
1171/**
1172 * Implements 'VMSAVE'.
1173 */
1174IEM_CIMPL_DEF_0(iemCImpl_vmsave)
1175{
1176#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1177 RT_NOREF2(pVCpu, cbInstr);
1178 return VINF_EM_RAW_EMULATE_INSTR;
1179#else
1180 LogFlow(("iemCImpl_vmsave\n"));
1181 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1182 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave);
1183
1184 /** @todo Check effective address size using address size prefix. */
1185 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1186 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1187 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1188 {
1189 Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1190 return iemRaiseGeneralProtectionFault0(pVCpu);
1191 }
1192
1193 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
1194 {
1195 Log(("vmsave: Guest intercept -> #VMEXIT\n"));
1196 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1197 }
1198
1199 SVMVMCBSTATESAVE VmcbNstGst;
1200 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest),
1201 sizeof(SVMVMCBSTATESAVE));
1202 if (rcStrict == VINF_SUCCESS)
1203 {
1204 LogFlow(("vmsave: Saving VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1205 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, FS, fs);
1206 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, GS, gs);
1207 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, TR, tr);
1208 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr);
1209
1210 VmcbNstGst.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1211 VmcbNstGst.u64STAR = pCtx->msrSTAR;
1212 VmcbNstGst.u64LSTAR = pCtx->msrLSTAR;
1213 VmcbNstGst.u64CSTAR = pCtx->msrCSTAR;
1214 VmcbNstGst.u64SFMASK = pCtx->msrSFMASK;
1215
1216 VmcbNstGst.u64SysEnterCS = pCtx->SysEnter.cs;
1217 VmcbNstGst.u64SysEnterESP = pCtx->SysEnter.esp;
1218 VmcbNstGst.u64SysEnterEIP = pCtx->SysEnter.eip;
1219
1220 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest), &VmcbNstGst,
1221 sizeof(SVMVMCBSTATESAVE));
1222 if (rcStrict == VINF_SUCCESS)
1223 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1224 }
1225 return rcStrict;
1226#endif
1227}
1228
1229
1230/**
1231 * Implements 'CLGI'.
1232 */
1233IEM_CIMPL_DEF_0(iemCImpl_clgi)
1234{
1235#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1236 RT_NOREF2(pVCpu, cbInstr);
1237 return VINF_EM_RAW_EMULATE_INSTR;
1238#else
1239 LogFlow(("iemCImpl_clgi\n"));
1240 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1241 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi);
1242 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
1243 {
1244 Log(("clgi: Guest intercept -> #VMEXIT\n"));
1245 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1246 }
1247
1248 pCtx->hwvirt.fGif = false;
1249 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1250
1251# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1252 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
1253# else
1254 return VINF_SUCCESS;
1255# endif
1256#endif
1257}
1258
1259
1260/**
1261 * Implements 'STGI'.
1262 */
1263IEM_CIMPL_DEF_0(iemCImpl_stgi)
1264{
1265#if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1266 RT_NOREF2(pVCpu, cbInstr);
1267 return VINF_EM_RAW_EMULATE_INSTR;
1268#else
1269 LogFlow(("iemCImpl_stgi\n"));
1270 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1271 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi);
1272 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI))
1273 {
1274 Log2(("stgi: Guest intercept -> #VMEXIT\n"));
1275 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1276 }
1277
1278 pCtx->hwvirt.fGif = true;
1279 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1280
1281# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1282 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
1283# else
1284 return VINF_SUCCESS;
1285# endif
1286#endif
1287}
1288
1289
1290/**
1291 * Implements 'INVLPGA'.
1292 */
1293IEM_CIMPL_DEF_0(iemCImpl_invlpga)
1294{
1295 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
1296 /** @todo Check effective address size using address size prefix. */
1297 RTGCPTR const GCPtrPage = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax;
1298 /** @todo PGM needs virtual ASID support. */
1299#if 0
1300 uint32_t const uAsid = pCtx->ecx;
1301#endif
1302
1303 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1304 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
1305 {
1306 Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
1307 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1308 }
1309
1310 PGMInvalidatePage(pVCpu, GCPtrPage);
1311 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1312 return VINF_SUCCESS;
1313}
1314
1315
1316/**
1317 * Implements 'SKINIT'.
1318 */
1319IEM_CIMPL_DEF_0(iemCImpl_skinit)
1320{
1321 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1322
1323 uint32_t uIgnore;
1324 uint32_t fFeaturesECX;
1325 CPUMGetGuestCpuId(pVCpu, 0x80000001, 0 /* iSubLeaf */, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore);
1326 if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT))
1327 return iemRaiseUndefinedOpcode(pVCpu);
1328
1329 if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
1330 {
1331 Log2(("skinit: Guest intercept -> #VMEXIT\n"));
1332 IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1333 }
1334
1335 RT_NOREF(cbInstr);
1336 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
1337}
1338
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette