VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplSvmInstr.cpp.h@ 74603

Last change on this file since 74603 was 74603, checked in by vboxsync, 6 years ago

VMM/IEM, HM: Nested VMX: bugref:9180 VM-exit bits; LMSW intercept. Separated VINF_HM_INTERCEPT_NOT_ACTIVE into VMX and SVM
specific codes. Adjusted IEMExecDecodedLmsw to supply the additional memory operand parameter from the VMCS guest-linear address
field.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 60.3 KB
Line 
1/* $Id: IEMAllCImplSvmInstr.cpp.h 74603 2018-10-04 06:07:20Z vboxsync $ */
2/** @file
3 * IEM - AMD-V (Secure Virtual Machine) instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
20/**
21 * Check the common SVM instruction preconditions.
22 */
23# define IEM_SVM_INSTR_COMMON_CHECKS(a_pVCpu, a_Instr) \
24 do { \
25 if (!CPUMIsGuestSvmEnabled(IEM_GET_CTX(a_pVCpu))) \
26 { \
27 Log((RT_STR(a_Instr) ": EFER.SVME not enabled -> #UD\n")); \
28 return iemRaiseUndefinedOpcode(a_pVCpu); \
29 } \
30 if (IEM_IS_REAL_OR_V86_MODE(a_pVCpu)) \
31 { \
32 Log((RT_STR(a_Instr) ": Real or v8086 mode -> #UD\n")); \
33 return iemRaiseUndefinedOpcode(a_pVCpu); \
34 } \
35 if ((a_pVCpu)->iem.s.uCpl != 0) \
36 { \
37 Log((RT_STR(a_Instr) ": CPL != 0 -> #GP(0)\n")); \
38 return iemRaiseGeneralProtectionFault0(a_pVCpu); \
39 } \
40 } while (0)
41
42
43/**
44 * Converts an IEM exception event type to an SVM event type.
45 *
46 * @returns The SVM event type.
47 * @retval UINT8_MAX if the specified type of event isn't among the set
48 * of recognized IEM event types.
49 *
50 * @param uVector The vector of the event.
51 * @param fIemXcptFlags The IEM exception / interrupt flags.
52 */
53IEM_STATIC uint8_t iemGetSvmEventType(uint32_t uVector, uint32_t fIemXcptFlags)
54{
55 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
56 {
57 if (uVector != X86_XCPT_NMI)
58 return SVM_EVENT_EXCEPTION;
59 return SVM_EVENT_NMI;
60 }
61
62 /* See AMD spec. Table 15-1. "Guest Exception or Interrupt Types". */
63 if (fIemXcptFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
64 return SVM_EVENT_EXCEPTION;
65
66 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_EXT_INT)
67 return SVM_EVENT_EXTERNAL_IRQ;
68
69 if (fIemXcptFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
70 return SVM_EVENT_SOFTWARE_INT;
71
72 AssertMsgFailed(("iemGetSvmEventType: Invalid IEM xcpt/int. type %#x, uVector=%#x\n", fIemXcptFlags, uVector));
73 return UINT8_MAX;
74}
75
76
77/**
78 * Performs an SVM world-switch (VMRUN, \#VMEXIT) updating PGM and IEM internals.
79 *
80 * @returns Strict VBox status code.
81 * @param pVCpu The cross context virtual CPU structure.
82 */
83DECLINLINE(VBOXSTRICTRC) iemSvmWorldSwitch(PVMCPU pVCpu)
84{
85 /*
86 * Inform PGM about paging mode changes.
87 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
88 * see comment in iemMemPageTranslateAndCheckAccess().
89 */
90 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
91# ifdef IN_RING3
92 Assert(rc != VINF_PGM_CHANGE_MODE);
93# endif
94 AssertRCReturn(rc, rc);
95
96 /* Inform CPUM (recompiler), can later be removed. */
97 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
98
99 /*
100 * Flush the TLB with new CR3. This is required in case the PGM mode change
101 * above doesn't actually change anything.
102 */
103 if (rc == VINF_SUCCESS)
104 {
105 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true);
106 AssertRCReturn(rc, rc);
107 }
108
109 /* Re-initialize IEM cache/state after the drastic mode switch. */
110 iemReInitExec(pVCpu);
111 return rc;
112}
113
114
115/**
116 * SVM \#VMEXIT handler.
117 *
118 * @returns Strict VBox status code.
119 * @retval VINF_SVM_VMEXIT when the \#VMEXIT is successful.
120 * @retval VERR_SVM_VMEXIT_FAILED when the \#VMEXIT failed restoring the guest's
121 * "host state" and a shutdown is required.
122 *
123 * @param pVCpu The cross context virtual CPU structure.
124 * @param uExitCode The exit code.
125 * @param uExitInfo1 The exit info. 1 field.
126 * @param uExitInfo2 The exit info. 2 field.
127 */
128IEM_STATIC VBOXSTRICTRC iemSvmVmexit(PVMCPU pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2)
129{
130 VBOXSTRICTRC rcStrict;
131 if ( CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))
132 || uExitCode == SVM_EXIT_INVALID)
133 {
134 LogFlow(("iemSvmVmexit: CS:RIP=%04x:%08RX64 uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n",
135 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uExitCode, uExitInfo1, uExitInfo2));
136
137 /*
138 * Disable the global interrupt flag to prevent interrupts during the 'atomic' world switch.
139 */
140 pVCpu->cpum.GstCtx.hwvirt.fGif = false;
141
142 /*
143 * Map the nested-guest VMCB from its location in guest memory.
144 * Write exactly what the CPU does on #VMEXIT thereby preserving most other bits in the
145 * guest's VMCB in memory, see @bugref{7243#c113} and related comment on iemSvmVmrun().
146 */
147 PSVMVMCB pVmcbMem;
148 PGMPAGEMAPLOCK PgLockMem;
149 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
150 rcStrict = iemMemPageMap(pVCpu, pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, (void **)&pVmcbMem,
151 &PgLockMem);
152 if (rcStrict == VINF_SUCCESS)
153 {
154 /*
155 * Notify HM in case the nested-guest was executed using hardware-assisted SVM (which
156 * would have modified some VMCB state) that might need to be restored on #VMEXIT before
157 * writing the VMCB back to guest memory.
158 */
159 HMSvmNstGstVmExitNotify(pVCpu, IEM_GET_CTX(pVCpu));
160
161 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
162 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
163 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
164 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
165
166 /*
167 * Save the nested-guest state into the VMCB state-save area.
168 */
169 PSVMVMCBSTATESAVE pVmcbMemState = &pVmcbMem->guest;
170 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, ES, es);
171 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, CS, cs);
172 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, SS, ss);
173 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, DS, ds);
174 pVmcbMemState->GDTR.u32Limit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
175 pVmcbMemState->GDTR.u64Base = pVCpu->cpum.GstCtx.gdtr.pGdt;
176 pVmcbMemState->IDTR.u32Limit = pVCpu->cpum.GstCtx.idtr.cbIdt;
177 pVmcbMemState->IDTR.u64Base = pVCpu->cpum.GstCtx.idtr.pIdt;
178 pVmcbMemState->u64EFER = pVCpu->cpum.GstCtx.msrEFER;
179 pVmcbMemState->u64CR4 = pVCpu->cpum.GstCtx.cr4;
180 pVmcbMemState->u64CR3 = pVCpu->cpum.GstCtx.cr3;
181 pVmcbMemState->u64CR2 = pVCpu->cpum.GstCtx.cr2;
182 pVmcbMemState->u64CR0 = pVCpu->cpum.GstCtx.cr0;
183 /** @todo Nested paging. */
184 pVmcbMemState->u64RFlags = pVCpu->cpum.GstCtx.rflags.u64;
185 pVmcbMemState->u64RIP = pVCpu->cpum.GstCtx.rip;
186 pVmcbMemState->u64RSP = pVCpu->cpum.GstCtx.rsp;
187 pVmcbMemState->u64RAX = pVCpu->cpum.GstCtx.rax;
188 pVmcbMemState->u64DR7 = pVCpu->cpum.GstCtx.dr[7];
189 pVmcbMemState->u64DR6 = pVCpu->cpum.GstCtx.dr[6];
190 pVmcbMemState->u8CPL = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl; /* See comment in CPUMGetGuestCPL(). */
191 Assert(CPUMGetGuestCPL(pVCpu) == pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl);
192 if (CPUMIsGuestSvmNestedPagingEnabled(pVCpu, IEM_GET_CTX(pVCpu)))
193 pVmcbMemState->u64PAT = pVCpu->cpum.GstCtx.msrPAT;
194
195 /*
196 * Save additional state and intercept information.
197 *
198 * - V_IRQ: Tracked using VMCPU_FF_INTERRUPT_NESTED_GUEST force-flag and updated below.
199 * - V_TPR: Updated by iemCImpl_load_CrX or by the physical CPU for hardware-assisted
200 * SVM execution.
201 * - Interrupt shadow: Tracked using VMCPU_FF_INHIBIT_INTERRUPTS and RIP.
202 */
203 PSVMVMCBCTRL pVmcbMemCtrl = &pVmcbMem->ctrl;
204 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)) /* V_IRQ. */
205 pVmcbMemCtrl->IntCtrl.n.u1VIrqPending = 0;
206 else
207 {
208 Assert(pVmcbCtrl->IntCtrl.n.u1VIrqPending);
209 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
210 }
211
212 pVmcbMemCtrl->IntCtrl.n.u8VTPR = pVmcbCtrl->IntCtrl.n.u8VTPR; /* V_TPR. */
213
214 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) /* Interrupt shadow. */
215 && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip)
216 {
217 pVmcbMemCtrl->IntShadow.n.u1IntShadow = 1;
218 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
219 LogFlow(("iemSvmVmexit: Interrupt shadow till %#RX64\n", pVCpu->cpum.GstCtx.rip));
220 }
221 else
222 pVmcbMemCtrl->IntShadow.n.u1IntShadow = 0;
223
224 /*
225 * Save nRIP, instruction length and byte fields.
226 */
227 pVmcbMemCtrl->u64NextRIP = pVmcbCtrl->u64NextRIP;
228 pVmcbMemCtrl->cbInstrFetched = pVmcbCtrl->cbInstrFetched;
229 memcpy(&pVmcbMemCtrl->abInstr[0], &pVmcbCtrl->abInstr[0], sizeof(pVmcbMemCtrl->abInstr));
230
231 /*
232 * Save exit information.
233 */
234 pVmcbMemCtrl->u64ExitCode = uExitCode;
235 pVmcbMemCtrl->u64ExitInfo1 = uExitInfo1;
236 pVmcbMemCtrl->u64ExitInfo2 = uExitInfo2;
237
238 /*
239 * Update the exit interrupt-information field if this #VMEXIT happened as a result
240 * of delivering an event through IEM.
241 *
242 * Don't update the exit interrupt-information field if the event wasn't being injected
243 * through IEM, as it would have been updated by real hardware if the nested-guest was
244 * executed using hardware-assisted SVM.
245 */
246 {
247 uint8_t uExitIntVector;
248 uint32_t uExitIntErr;
249 uint32_t fExitIntFlags;
250 bool const fRaisingEvent = IEMGetCurrentXcpt(pVCpu, &uExitIntVector, &fExitIntFlags, &uExitIntErr,
251 NULL /* uExitIntCr2 */);
252 if (fRaisingEvent)
253 {
254 pVmcbCtrl->ExitIntInfo.n.u1Valid = 1;
255 pVmcbCtrl->ExitIntInfo.n.u8Vector = uExitIntVector;
256 pVmcbCtrl->ExitIntInfo.n.u3Type = iemGetSvmEventType(uExitIntVector, fExitIntFlags);
257 if (fExitIntFlags & IEM_XCPT_FLAGS_ERR)
258 {
259 pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid = true;
260 pVmcbCtrl->ExitIntInfo.n.u32ErrorCode = uExitIntErr;
261 }
262 }
263 }
264
265 /*
266 * Save the exit interrupt-information field.
267 *
268 * We write the whole field including overwriting reserved bits as it was observed on an
269 * AMD Ryzen 5 Pro 1500 that the CPU does not preserve reserved bits in EXITINTINFO.
270 */
271 pVmcbMemCtrl->ExitIntInfo = pVmcbCtrl->ExitIntInfo;
272
273 /*
274 * Clear event injection.
275 */
276 pVmcbMemCtrl->EventInject.n.u1Valid = 0;
277
278 iemMemPageUnmap(pVCpu, pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, pVmcbMem, &PgLockMem);
279 }
280
281 /*
282 * Prepare for guest's "host mode" by clearing internal processor state bits.
283 *
284 * We don't need to zero out the state-save area, just the controls should be
285 * sufficient because it has the critical bit of indicating whether we're inside
286 * the nested-guest or not.
287 */
288 memset(pVmcbCtrl, 0, sizeof(*pVmcbCtrl));
289 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
290
291 /*
292 * Restore the subset of force-flags that were preserved.
293 */
294 if (pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions)
295 {
296 VMCPU_FF_SET(pVCpu, pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions);
297 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = 0;
298 }
299
300 if (rcStrict == VINF_SUCCESS)
301 {
302 /** @todo Nested paging. */
303 /** @todo ASID. */
304
305 /*
306 * Reload the guest's "host state".
307 */
308 CPUMSvmVmExitRestoreHostState(pVCpu, IEM_GET_CTX(pVCpu));
309
310 /*
311 * Update PGM, IEM and others of a world-switch.
312 */
313 rcStrict = iemSvmWorldSwitch(pVCpu);
314 if (rcStrict == VINF_SUCCESS)
315 rcStrict = VINF_SVM_VMEXIT;
316 else if (RT_SUCCESS(rcStrict))
317 {
318 LogFlow(("iemSvmVmexit: Setting passup status from iemSvmWorldSwitch %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
319 iemSetPassUpStatus(pVCpu, rcStrict);
320 rcStrict = VINF_SVM_VMEXIT;
321 }
322 else
323 LogFlow(("iemSvmVmexit: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
324 }
325 else
326 {
327 AssertMsgFailed(("iemSvmVmexit: Mapping VMCB at %#RGp failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, VBOXSTRICTRC_VAL(rcStrict)));
328 rcStrict = VERR_SVM_VMEXIT_FAILED;
329 }
330 }
331 else
332 {
333 AssertMsgFailed(("iemSvmVmexit: Not in SVM guest mode! uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitCode, uExitInfo1, uExitInfo2));
334 rcStrict = VERR_SVM_IPE_3;
335 }
336
337# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
338 /* CLGI/STGI may not have been intercepted and thus not executed in IEM. */
339 if (HMSvmIsVGifActive(pVCpu->CTX_SUFF(pVM)))
340 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
341# endif
342 return rcStrict;
343}
344
345
346/**
347 * Performs the operations necessary that are part of the vmrun instruction
348 * execution in the guest.
349 *
350 * @returns Strict VBox status code (i.e. informational status codes too).
351 * @retval VINF_SUCCESS successully executed VMRUN and entered nested-guest
352 * code execution.
353 * @retval VINF_SVM_VMEXIT when executing VMRUN causes a \#VMEXIT
354 * (SVM_EXIT_INVALID most likely).
355 *
356 * @param pVCpu The cross context virtual CPU structure.
357 * @param cbInstr The length of the VMRUN instruction.
358 * @param GCPhysVmcb Guest physical address of the VMCB to run.
359 */
360IEM_STATIC VBOXSTRICTRC iemSvmVmrun(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPhysVmcb)
361{
362 LogFlow(("iemSvmVmrun\n"));
363
364 /*
365 * Cache the physical address of the VMCB for #VMEXIT exceptions.
366 */
367 pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb = GCPhysVmcb;
368
369 /*
370 * Save the host state.
371 */
372 CPUMSvmVmRunSaveHostState(IEM_GET_CTX(pVCpu), cbInstr);
373
374 /*
375 * Read the guest VMCB.
376 */
377 PVM pVM = pVCpu->CTX_SUFF(pVM);
378 int rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb), GCPhysVmcb, sizeof(SVMVMCB));
379 if (RT_SUCCESS(rc))
380 {
381 /*
382 * AMD-V seems to preserve reserved fields and only writes back selected, recognized
383 * fields on #VMEXIT. However, not all reserved bits are preserved (e.g, EXITINTINFO)
384 * but in our implementation we try to preserve as much as we possibly can.
385 *
386 * We could read the entire page here and only write back the relevant fields on
387 * #VMEXIT but since our internal VMCB is also being used by HM during hardware-assisted
388 * SVM execution, it creates a potential for a nested-hypervisor to set bits that are
389 * currently reserved but may be recognized as features bits in future CPUs causing
390 * unexpected & undesired results. Hence, we zero out unrecognized fields here as we
391 * typically enter hardware-assisted SVM soon anyway, see @bugref{7243#c113}.
392 */
393 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
394 PSVMVMCBSTATESAVE pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->guest;
395
396 RT_ZERO(pVmcbCtrl->u8Reserved0);
397 RT_ZERO(pVmcbCtrl->u8Reserved1);
398 RT_ZERO(pVmcbCtrl->u8Reserved2);
399 RT_ZERO(pVmcbNstGst->u8Reserved0);
400 RT_ZERO(pVmcbNstGst->u8Reserved1);
401 RT_ZERO(pVmcbNstGst->u8Reserved2);
402 RT_ZERO(pVmcbNstGst->u8Reserved3);
403 RT_ZERO(pVmcbNstGst->u8Reserved4);
404 RT_ZERO(pVmcbNstGst->u8Reserved5);
405 pVmcbCtrl->u32Reserved0 = 0;
406 pVmcbCtrl->TLBCtrl.n.u24Reserved = 0;
407 pVmcbCtrl->IntCtrl.n.u6Reserved = 0;
408 pVmcbCtrl->IntCtrl.n.u3Reserved = 0;
409 pVmcbCtrl->IntCtrl.n.u5Reserved = 0;
410 pVmcbCtrl->IntCtrl.n.u24Reserved = 0;
411 pVmcbCtrl->IntShadow.n.u30Reserved = 0;
412 pVmcbCtrl->ExitIntInfo.n.u19Reserved = 0;
413 pVmcbCtrl->NestedPagingCtrl.n.u29Reserved = 0;
414 pVmcbCtrl->EventInject.n.u19Reserved = 0;
415 pVmcbCtrl->LbrVirt.n.u30Reserved = 0;
416
417 /*
418 * Validate guest-state and controls.
419 */
420 /* VMRUN must always be intercepted. */
421 if (!CPUMIsGuestSvmCtrlInterceptSet(pVCpu, IEM_GET_CTX(pVCpu), SVM_CTRL_INTERCEPT_VMRUN))
422 {
423 Log(("iemSvmVmrun: VMRUN instruction not intercepted -> #VMEXIT\n"));
424 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
425 }
426
427 /* Nested paging. */
428 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
429 && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging)
430 {
431 Log(("iemSvmVmrun: Nested paging not supported -> Disabling\n"));
432 pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = 0;
433 }
434
435 /* AVIC. */
436 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
437 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
438 {
439 Log(("iemSvmVmrun: AVIC not supported -> Disabling\n"));
440 pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0;
441 }
442
443 /* Last branch record (LBR) virtualization. */
444 if ( pVmcbCtrl->LbrVirt.n.u1LbrVirt
445 && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt)
446 {
447 Log(("iemSvmVmrun: LBR virtualization not supported -> Disabling\n"));
448 pVmcbCtrl->LbrVirt.n.u1LbrVirt = 0;
449 }
450
451 /* Virtualized VMSAVE/VMLOAD. */
452 if ( pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload
453 && !pVM->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
454 {
455 Log(("iemSvmVmrun: Virtualized VMSAVE/VMLOAD not supported -> Disabling\n"));
456 pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = 0;
457 }
458
459 /* Virtual GIF. */
460 if ( pVmcbCtrl->IntCtrl.n.u1VGifEnable
461 && !pVM->cpum.ro.GuestFeatures.fSvmVGif)
462 {
463 Log(("iemSvmVmrun: Virtual GIF not supported -> Disabling\n"));
464 pVmcbCtrl->IntCtrl.n.u1VGifEnable = 0;
465 }
466
467 /* Guest ASID. */
468 if (!pVmcbCtrl->TLBCtrl.n.u32ASID)
469 {
470 Log(("iemSvmVmrun: Guest ASID is invalid -> #VMEXIT\n"));
471 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
472 }
473
474 /* Guest AVIC. */
475 if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable
476 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
477 {
478 Log(("iemSvmVmrun: AVIC not supported -> Disabling\n"));
479 pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0;
480 }
481
482 /* Guest Secure Encrypted Virtualization. */
483 if ( ( pVmcbCtrl->NestedPagingCtrl.n.u1Sev
484 || pVmcbCtrl->NestedPagingCtrl.n.u1SevEs)
485 && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
486 {
487 Log(("iemSvmVmrun: SEV not supported -> Disabling\n"));
488 pVmcbCtrl->NestedPagingCtrl.n.u1Sev = 0;
489 pVmcbCtrl->NestedPagingCtrl.n.u1SevEs = 0;
490 }
491
492 /* Flush by ASID. */
493 if ( !pVM->cpum.ro.GuestFeatures.fSvmFlusbByAsid
494 && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_NOTHING
495 && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_ENTIRE)
496 {
497 Log(("iemSvmVmrun: Flush-by-ASID not supported -> #VMEXIT\n"));
498 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
499 }
500
501 /* IO permission bitmap. */
502 RTGCPHYS const GCPhysIOBitmap = pVmcbCtrl->u64IOPMPhysAddr;
503 if ( (GCPhysIOBitmap & X86_PAGE_4K_OFFSET_MASK)
504 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap)
505 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + X86_PAGE_4K_SIZE)
506 || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + (X86_PAGE_4K_SIZE << 1)))
507 {
508 Log(("iemSvmVmrun: IO bitmap physaddr invalid. GCPhysIOBitmap=%#RX64 -> #VMEXIT\n", GCPhysIOBitmap));
509 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
510 }
511
512 /* MSR permission bitmap. */
513 RTGCPHYS const GCPhysMsrBitmap = pVmcbCtrl->u64MSRPMPhysAddr;
514 if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
515 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap)
516 || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap + X86_PAGE_4K_SIZE))
517 {
518 Log(("iemSvmVmrun: MSR bitmap physaddr invalid. GCPhysMsrBitmap=%#RX64 -> #VMEXIT\n", GCPhysMsrBitmap));
519 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
520 }
521
522 /* CR0. */
523 if ( !(pVmcbNstGst->u64CR0 & X86_CR0_CD)
524 && (pVmcbNstGst->u64CR0 & X86_CR0_NW))
525 {
526 Log(("iemSvmVmrun: CR0 no-write through with cache disabled. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
527 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
528 }
529 if (pVmcbNstGst->u64CR0 >> 32)
530 {
531 Log(("iemSvmVmrun: CR0 reserved bits set. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0));
532 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
533 }
534 /** @todo Implement all reserved bits/illegal combinations for CR3, CR4. */
535
536 /* DR6 and DR7. */
537 if ( pVmcbNstGst->u64DR6 >> 32
538 || pVmcbNstGst->u64DR7 >> 32)
539 {
540 Log(("iemSvmVmrun: DR6 and/or DR7 reserved bits set. DR6=%#RX64 DR7=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64DR6,
541 pVmcbNstGst->u64DR6));
542 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
543 }
544
545 /*
546 * PAT (Page Attribute Table) MSR.
547 *
548 * The CPU only validates and loads it when nested-paging is enabled.
549 * See AMD spec. "15.25.4 Nested Paging and VMRUN/#VMEXIT".
550 */
551 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
552 && !CPUMIsPatMsrValid(pVmcbNstGst->u64PAT))
553 {
554 Log(("iemSvmVmrun: PAT invalid. u64PAT=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64PAT));
555 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
556 }
557
558 /*
559 * Copy the IO permission bitmap into the cache.
560 */
561 Assert(pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap));
562 rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap), GCPhysIOBitmap,
563 SVM_IOPM_PAGES * X86_PAGE_4K_SIZE);
564 if (RT_FAILURE(rc))
565 {
566 Log(("iemSvmVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc));
567 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
568 }
569
570 /*
571 * Copy the MSR permission bitmap into the cache.
572 */
573 Assert(pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap));
574 rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap), GCPhysMsrBitmap,
575 SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE);
576 if (RT_FAILURE(rc))
577 {
578 Log(("iemSvmVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc));
579 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
580 }
581
582 /*
583 * Copy segments from nested-guest VMCB state to the guest-CPU state.
584 *
585 * We do this here as we need to use the CS attributes and it's easier this way
586 * then using the VMCB format selectors. It doesn't really matter where we copy
587 * the state, we restore the guest-CPU context state on the \#VMEXIT anyway.
588 */
589 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, ES, es);
590 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, CS, cs);
591 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, SS, ss);
592 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, DS, ds);
593
594 /** @todo Segment attribute overrides by VMRUN. */
595
596 /*
597 * CPL adjustments and overrides.
598 *
599 * SS.DPL is apparently the CPU's CPL, see comment in CPUMGetGuestCPL().
600 * We shall thus adjust both CS.DPL and SS.DPL here.
601 */
602 pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = pVmcbNstGst->u8CPL;
603 if (CPUMIsGuestInV86ModeEx(IEM_GET_CTX(pVCpu)))
604 pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = 3;
605 if (CPUMIsGuestInRealModeEx(IEM_GET_CTX(pVCpu)))
606 pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = 0;
607 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
608
609 /*
610 * Continue validating guest-state and controls.
611 *
612 * We pass CR0 as 0 to CPUMIsGuestEferMsrWriteValid() below to skip the illegal
613 * EFER.LME bit transition check. We pass the nested-guest's EFER as both the
614 * old and new EFER value to not have any guest EFER bits influence the new
615 * nested-guest EFER.
616 */
617 uint64_t uValidEfer;
618 rc = CPUMIsGuestEferMsrWriteValid(pVM, 0 /* CR0 */, pVmcbNstGst->u64EFER, pVmcbNstGst->u64EFER, &uValidEfer);
619 if (RT_FAILURE(rc))
620 {
621 Log(("iemSvmVmrun: EFER invalid uOldEfer=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64EFER));
622 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
623 }
624
625 /* Validate paging and CPU mode bits. */
626 bool const fSvm = RT_BOOL(uValidEfer & MSR_K6_EFER_SVME);
627 bool const fLongModeSupported = RT_BOOL(pVM->cpum.ro.GuestFeatures.fLongMode);
628 bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME);
629 bool const fPaging = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PG);
630 bool const fPae = RT_BOOL(pVmcbNstGst->u64CR4 & X86_CR4_PAE);
631 bool const fProtMode = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PE);
632 bool const fLongModeWithPaging = fLongModeEnabled && fPaging;
633 bool const fLongModeConformCS = pVCpu->cpum.GstCtx.cs.Attr.n.u1Long && pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig;
634 /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0). */
635 if (fLongModeWithPaging)
636 uValidEfer |= MSR_K6_EFER_LMA;
637 bool const fLongModeActiveOrEnabled = RT_BOOL(uValidEfer & (MSR_K6_EFER_LME | MSR_K6_EFER_LMA));
638 if ( !fSvm
639 || (!fLongModeSupported && fLongModeActiveOrEnabled)
640 || (fLongModeWithPaging && !fPae)
641 || (fLongModeWithPaging && !fProtMode)
642 || ( fLongModeEnabled
643 && fPaging
644 && fPae
645 && fLongModeConformCS))
646 {
647 Log(("iemSvmVmrun: EFER invalid. uValidEfer=%#RX64 -> #VMEXIT\n", uValidEfer));
648 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
649 }
650
651 /*
652 * Preserve the required force-flags.
653 *
654 * We only preserve the force-flags that would affect the execution of the
655 * nested-guest (or the guest).
656 *
657 * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the
658 * execution of a subsequent IRET instruction in the guest.
659 *
660 * The remaining FFs (e.g. timers) can stay in place so that we will be able to
661 * generate interrupts that should cause #VMEXITs for the nested-guest.
662 *
663 * VMRUN has implicit GIF (Global Interrupt Flag) handling, we don't need to
664 * preserve VMCPU_FF_INHIBIT_INTERRUPTS.
665 */
666 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
667 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
668
669 /*
670 * Pause filter.
671 */
672 if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilter)
673 {
674 pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter = pVmcbCtrl->u16PauseFilterCount;
675 if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilterThreshold)
676 pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold = pVmcbCtrl->u16PauseFilterCount;
677 }
678
679 /*
680 * Interrupt shadow.
681 */
682 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
683 {
684 LogFlow(("iemSvmVmrun: setting interrupt shadow. inhibit PC=%#RX64\n", pVmcbNstGst->u64RIP));
685 /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */
686 EMSetInhibitInterruptsPC(pVCpu, pVmcbNstGst->u64RIP);
687 }
688
689 /*
690 * TLB flush control.
691 * Currently disabled since it's redundant as we unconditionally flush the TLB
692 * in iemSvmWorldSwitch() below.
693 */
694# if 0
695 /** @todo @bugref{7243}: ASID based PGM TLB flushes. */
696 if ( pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE
697 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
698 || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
699 PGMFlushTLB(pVCpu, pVmcbNstGst->u64CR3, true /* fGlobal */);
700# endif
701
702 /*
703 * Copy the remaining guest state from the VMCB to the guest-CPU context.
704 */
705 pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcbNstGst->GDTR.u32Limit;
706 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcbNstGst->GDTR.u64Base;
707 pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcbNstGst->IDTR.u32Limit;
708 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcbNstGst->IDTR.u64Base;
709 CPUMSetGuestCR0(pVCpu, pVmcbNstGst->u64CR0);
710 CPUMSetGuestCR4(pVCpu, pVmcbNstGst->u64CR4);
711 pVCpu->cpum.GstCtx.cr3 = pVmcbNstGst->u64CR3;
712 pVCpu->cpum.GstCtx.cr2 = pVmcbNstGst->u64CR2;
713 pVCpu->cpum.GstCtx.dr[6] = pVmcbNstGst->u64DR6;
714 pVCpu->cpum.GstCtx.dr[7] = pVmcbNstGst->u64DR7;
715 pVCpu->cpum.GstCtx.rflags.u64 = pVmcbNstGst->u64RFlags;
716 pVCpu->cpum.GstCtx.rax = pVmcbNstGst->u64RAX;
717 pVCpu->cpum.GstCtx.rsp = pVmcbNstGst->u64RSP;
718 pVCpu->cpum.GstCtx.rip = pVmcbNstGst->u64RIP;
719 CPUMSetGuestEferMsrNoChecks(pVCpu, pVCpu->cpum.GstCtx.msrEFER, uValidEfer);
720 if (pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging)
721 pVCpu->cpum.GstCtx.msrPAT = pVmcbNstGst->u64PAT;
722
723 /* Mask DR6, DR7 bits mandatory set/clear bits. */
724 pVCpu->cpum.GstCtx.dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
725 pVCpu->cpum.GstCtx.dr[6] |= X86_DR6_RA1_MASK;
726 pVCpu->cpum.GstCtx.dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
727 pVCpu->cpum.GstCtx.dr[7] |= X86_DR7_RA1_MASK;
728
729 /*
730 * Check for pending virtual interrupts.
731 */
732 if (pVmcbCtrl->IntCtrl.n.u1VIrqPending)
733 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
734 else
735 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST));
736
737 /*
738 * Update PGM, IEM and others of a world-switch.
739 */
740 VBOXSTRICTRC rcStrict = iemSvmWorldSwitch(pVCpu);
741 if (rcStrict == VINF_SUCCESS)
742 { /* likely */ }
743 else if (RT_SUCCESS(rcStrict))
744 {
745 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch returned %Rrc, setting passup status\n", VBOXSTRICTRC_VAL(rcStrict)));
746 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
747 }
748 else
749 {
750 LogFlow(("iemSvmVmrun: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
751 return rcStrict;
752 }
753
754 /*
755 * Clear global interrupt flags to allow interrupts in the guest.
756 */
757 pVCpu->cpum.GstCtx.hwvirt.fGif = true;
758
759 /*
760 * Event injection.
761 */
762 PCSVMEVENT pEventInject = &pVmcbCtrl->EventInject;
763 pVCpu->cpum.GstCtx.hwvirt.svm.fInterceptEvents = !pEventInject->n.u1Valid;
764 if (pEventInject->n.u1Valid)
765 {
766 uint8_t const uVector = pEventInject->n.u8Vector;
767 TRPMEVENT const enmType = HMSvmEventToTrpmEventType(pEventInject);
768 uint16_t const uErrorCode = pEventInject->n.u1ErrorCodeValid ? pEventInject->n.u32ErrorCode : 0;
769
770 /* Validate vectors for hardware exceptions, see AMD spec. 15.20 "Event Injection". */
771 if (RT_UNLIKELY(enmType == TRPM_32BIT_HACK))
772 {
773 Log(("iemSvmVmrun: Invalid event type =%#x -> #VMEXIT\n", (uint8_t)pEventInject->n.u3Type));
774 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
775 }
776 if (pEventInject->n.u3Type == SVM_EVENT_EXCEPTION)
777 {
778 if ( uVector == X86_XCPT_NMI
779 || uVector > X86_XCPT_LAST)
780 {
781 Log(("iemSvmVmrun: Invalid vector for hardware exception. uVector=%#x -> #VMEXIT\n", uVector));
782 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
783 }
784 if ( uVector == X86_XCPT_BR
785 && CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)))
786 {
787 Log(("iemSvmVmrun: Cannot inject #BR when not in long mode -> #VMEXIT\n"));
788 return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
789 }
790 /** @todo any others? */
791 }
792
793 /*
794 * Invalidate the exit interrupt-information field here. This field is fully updated
795 * on #VMEXIT as events other than the one below can also cause intercepts during
796 * their injection (e.g. exceptions).
797 */
798 pVmcbCtrl->ExitIntInfo.n.u1Valid = 0;
799
800 /*
801 * Clear the event injection valid bit here. While the AMD spec. mentions that the CPU
802 * clears this bit from the VMCB unconditionally on #VMEXIT, internally the CPU could be
803 * clearing it at any time, most likely before/after injecting the event. Since VirtualBox
804 * doesn't have any virtual-CPU internal representation of this bit, we clear/update the
805 * VMCB here. This also has the added benefit that we avoid the risk of injecting the event
806 * twice if we fallback to executing the nested-guest using hardware-assisted SVM after
807 * injecting the event through IEM here.
808 */
809 pVmcbCtrl->EventInject.n.u1Valid = 0;
810
811 /** @todo NRIP: Software interrupts can only be pushed properly if we support
812 * NRIP for the nested-guest to calculate the instruction length
813 * below. */
814 LogFlow(("iemSvmVmrun: Injecting event: %04x:%08RX64 vec=%#x type=%d uErr=%u cr2=%#RX64 cr3=%#RX64 efer=%#RX64\n",
815 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uVector, enmType, uErrorCode, pVCpu->cpum.GstCtx.cr2,
816 pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.msrEFER));
817
818 /*
819 * We shall not inject the event here right away. There may be paging mode related updates
820 * as a result of the world-switch above that are yet to be honored. Instead flag the event
821 * as pending for injection.
822 */
823 TRPMAssertTrap(pVCpu, uVector, enmType);
824 if (pEventInject->n.u1ErrorCodeValid)
825 TRPMSetErrorCode(pVCpu, uErrorCode);
826 if ( enmType == TRPM_TRAP
827 && uVector == X86_XCPT_PF)
828 TRPMSetFaultAddress(pVCpu, pVCpu->cpum.GstCtx.cr2);
829 }
830 else
831 LogFlow(("iemSvmVmrun: Entering nested-guest: %04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 efer=%#RX64 efl=%#x\n",
832 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3,
833 pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER, pVCpu->cpum.GstCtx.rflags.u64));
834
835 LogFlow(("iemSvmVmrun: returns %d\n", VBOXSTRICTRC_VAL(rcStrict)));
836
837# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
838 /* If CLGI/STGI isn't intercepted we force IEM-only nested-guest execution here. */
839 if (HMSvmIsVGifActive(pVM))
840 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
841# endif
842
843 return rcStrict;
844 }
845
846 /* Shouldn't really happen as the caller should've validated the physical address already. */
847 Log(("iemSvmVmrun: Failed to read nested-guest VMCB at %#RGp (rc=%Rrc) -> #VMEXIT\n", GCPhysVmcb, rc));
848 return rc;
849}
850
851
852/**
853 * Checks if the event intercepts and performs the \#VMEXIT if the corresponding
854 * intercept is active.
855 *
856 * @returns Strict VBox status code.
857 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
858 * we're not executing a nested-guest.
859 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
860 * successfully.
861 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
862 * failed and a shutdown needs to be initiated for the geust.
863 *
864 * @returns VBox strict status code.
865 * @param pVCpu The cross context virtual CPU structure of the calling thread.
866 * @param u8Vector The interrupt or exception vector.
867 * @param fFlags The exception flags (see IEM_XCPT_FLAGS_XXX).
868 * @param uErr The error-code associated with the exception.
869 * @param uCr2 The CR2 value in case of a \#PF exception.
870 */
871IEM_STATIC VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPU pVCpu, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2)
872{
873 Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
874
875 /*
876 * Handle SVM exception and software interrupt intercepts, see AMD spec. 15.12 "Exception Intercepts".
877 *
878 * - NMI intercepts have their own exit code and do not cause SVM_EXIT_XCPT_2 #VMEXITs.
879 * - External interrupts and software interrupts (INTn instruction) do not check the exception intercepts
880 * even when they use a vector in the range 0 to 31.
881 * - ICEBP should not trigger #DB intercept, but its own intercept.
882 * - For #PF exceptions, its intercept is checked before CR2 is written by the exception.
883 */
884 /* Check NMI intercept */
885 if ( u8Vector == X86_XCPT_NMI
886 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
887 && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_NMI))
888 {
889 Log2(("iemHandleSvmNstGstEventIntercept: NMI intercept -> #VMEXIT\n"));
890 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_NMI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
891 }
892
893 /* Check ICEBP intercept. */
894 if ( (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
895 && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_ICEBP))
896 {
897 Log2(("iemHandleSvmNstGstEventIntercept: ICEBP intercept -> #VMEXIT\n"));
898 IEM_SVM_UPDATE_NRIP(pVCpu);
899 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_ICEBP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
900 }
901
902 /* Check CPU exception intercepts. */
903 if ( (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
904 && IEM_SVM_IS_XCPT_INTERCEPT_SET(pVCpu, u8Vector))
905 {
906 Assert(u8Vector <= X86_XCPT_LAST);
907 uint64_t const uExitInfo1 = fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0;
908 uint64_t const uExitInfo2 = fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0;
909 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists
910 && u8Vector == X86_XCPT_PF
911 && !(uErr & X86_TRAP_PF_ID))
912 {
913 PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
914# ifdef IEM_WITH_CODE_TLB
915 uint8_t const *pbInstrBuf = pVCpu->iem.s.pbInstrBuf;
916 uint8_t const cbInstrBuf = pVCpu->iem.s.cbInstrBuf;
917 pVmcbCtrl->cbInstrFetched = RT_MIN(cbInstrBuf, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
918 if ( pbInstrBuf
919 && cbInstrBuf > 0)
920 memcpy(&pVmcbCtrl->abInstr[0], pbInstrBuf, pVmcbCtrl->cbInstrFetched);
921# else
922 uint8_t const cbOpcode = pVCpu->iem.s.cbOpcode;
923 pVmcbCtrl->cbInstrFetched = RT_MIN(cbOpcode, SVM_CTRL_GUEST_INSTR_BYTES_MAX);
924 if (cbOpcode > 0)
925 memcpy(&pVmcbCtrl->abInstr[0], &pVCpu->iem.s.abOpcode[0], pVmcbCtrl->cbInstrFetched);
926# endif
927 }
928 if (u8Vector == X86_XCPT_BR)
929 IEM_SVM_UPDATE_NRIP(pVCpu);
930 Log2(("iemHandleSvmNstGstEventIntercept: Xcpt intercept u32InterceptXcpt=%#RX32 u8Vector=%#x "
931 "uExitInfo1=%#RX64 uExitInfo2=%#RX64 -> #VMEXIT\n", pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb)->ctrl.u32InterceptXcpt,
932 u8Vector, uExitInfo1, uExitInfo2));
933 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XCPT_0 + u8Vector, uExitInfo1, uExitInfo2);
934 }
935
936 /* Check software interrupt (INTn) intercepts. */
937 if ( (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT
938 | IEM_XCPT_FLAGS_BP_INSTR
939 | IEM_XCPT_FLAGS_ICEBP_INSTR
940 | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT
941 && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INTN))
942 {
943 uint64_t const uExitInfo1 = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? u8Vector : 0;
944 Log2(("iemHandleSvmNstGstEventIntercept: Software INT intercept (u8Vector=%#x) -> #VMEXIT\n", u8Vector));
945 IEM_SVM_UPDATE_NRIP(pVCpu);
946 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SWINT, uExitInfo1, 0 /* uExitInfo2 */);
947 }
948
949 return VINF_SVM_INTERCEPT_NOT_ACTIVE;
950}
951
952
953/**
954 * Checks the SVM IO permission bitmap and performs the \#VMEXIT if the
955 * corresponding intercept is active.
956 *
957 * @returns Strict VBox status code.
958 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or
959 * we're not executing a nested-guest.
960 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
961 * successfully.
962 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
963 * failed and a shutdown needs to be initiated for the geust.
964 *
965 * @returns VBox strict status code.
966 * @param pVCpu The cross context virtual CPU structure of the calling thread.
967 * @param u16Port The IO port being accessed.
968 * @param enmIoType The type of IO access.
969 * @param cbReg The IO operand size in bytes.
970 * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
971 * @param iEffSeg The effective segment number.
972 * @param fRep Whether this is a repeating IO instruction (REP prefix).
973 * @param fStrIo Whether this is a string IO instruction.
974 * @param cbInstr The length of the IO instruction in bytes.
975 */
976IEM_STATIC VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPU pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
977 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr)
978{
979 Assert(IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT));
980 Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
981 Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
982
983 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u)\n", u16Port, u16Port));
984
985 SVMIOIOEXITINFO IoExitInfo;
986 void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
987 bool const fIntercept = HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
988 &IoExitInfo);
989 if (fIntercept)
990 {
991 Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u) -> #VMEXIT\n", u16Port, u16Port));
992 IEM_SVM_UPDATE_NRIP(pVCpu);
993 return iemSvmVmexit(pVCpu, SVM_EXIT_IOIO, IoExitInfo.u, pVCpu->cpum.GstCtx.rip + cbInstr);
994 }
995
996 /** @todo remove later (for debugging as VirtualBox always traps all IO
997 * intercepts). */
998 AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n"));
999 return VINF_SVM_INTERCEPT_NOT_ACTIVE;
1000}
1001
1002
1003/**
1004 * Checks the SVM MSR permission bitmap and performs the \#VMEXIT if the
1005 * corresponding intercept is active.
1006 *
1007 * @returns Strict VBox status code.
1008 * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the MSR permission bitmap does not
1009 * specify interception of the accessed MSR @a idMsr.
1010 * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred
1011 * successfully.
1012 * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT
1013 * failed and a shutdown needs to be initiated for the geust.
1014 *
1015 * @param pVCpu The cross context virtual CPU structure.
1016 * @param idMsr The MSR being accessed in the nested-guest.
1017 * @param fWrite Whether this is an MSR write access, @c false implies an
1018 * MSR read.
1019 * @param cbInstr The length of the MSR read/write instruction in bytes.
1020 */
1021IEM_STATIC VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPU pVCpu, uint32_t idMsr, bool fWrite)
1022{
1023 /*
1024 * Check if any MSRs are being intercepted.
1025 */
1026 Assert(CPUMIsGuestSvmCtrlInterceptSet(pVCpu, IEM_GET_CTX(pVCpu), SVM_CTRL_INTERCEPT_MSR_PROT));
1027 Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
1028
1029 uint64_t const uExitInfo1 = fWrite ? SVM_EXIT1_MSR_WRITE : SVM_EXIT1_MSR_READ;
1030
1031 /*
1032 * Get the byte and bit offset of the permission bits corresponding to the MSR.
1033 */
1034 uint16_t offMsrpm;
1035 uint8_t uMsrpmBit;
1036 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
1037 if (RT_SUCCESS(rc))
1038 {
1039 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
1040 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1041 if (fWrite)
1042 ++uMsrpmBit;
1043
1044 /*
1045 * Check if the bit is set, if so, trigger a #VMEXIT.
1046 */
1047 uint8_t *pbMsrpm = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
1048 pbMsrpm += offMsrpm;
1049 if (*pbMsrpm & RT_BIT(uMsrpmBit))
1050 {
1051 IEM_SVM_UPDATE_NRIP(pVCpu);
1052 return iemSvmVmexit(pVCpu, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1053 }
1054 }
1055 else
1056 {
1057 /*
1058 * This shouldn't happen, but if it does, cause a #VMEXIT and let the "host" (guest hypervisor) deal with it.
1059 */
1060 Log(("iemSvmHandleMsrIntercept: Invalid/out-of-range MSR %#RX32 fWrite=%RTbool -> #VMEXIT\n", idMsr, fWrite));
1061 return iemSvmVmexit(pVCpu, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */);
1062 }
1063 return VINF_SVM_INTERCEPT_NOT_ACTIVE;
1064}
1065
1066
1067
1068/**
1069 * Implements 'VMRUN'.
1070 */
1071IEM_CIMPL_DEF_0(iemCImpl_vmrun)
1072{
1073# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1074 RT_NOREF2(pVCpu, cbInstr);
1075 return VINF_EM_RAW_EMULATE_INSTR;
1076# else
1077 LogFlow(("iemCImpl_vmrun\n"));
1078 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmrun);
1079
1080 /** @todo Check effective address size using address size prefix. */
1081 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1082 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1083 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1084 {
1085 Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1086 return iemRaiseGeneralProtectionFault0(pVCpu);
1087 }
1088
1089 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
1090 {
1091 Log(("vmrun: Guest intercept -> #VMEXIT\n"));
1092 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1093 }
1094
1095 VBOXSTRICTRC rcStrict = iemSvmVmrun(pVCpu, cbInstr, GCPhysVmcb);
1096 if (rcStrict == VERR_SVM_VMEXIT_FAILED)
1097 {
1098 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)));
1099 rcStrict = VINF_EM_TRIPLE_FAULT;
1100 }
1101 return rcStrict;
1102# endif
1103}
1104
1105
1106/**
1107 * Implements 'VMLOAD'.
1108 */
1109IEM_CIMPL_DEF_0(iemCImpl_vmload)
1110{
1111# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1112 RT_NOREF2(pVCpu, cbInstr);
1113 return VINF_EM_RAW_EMULATE_INSTR;
1114# else
1115 LogFlow(("iemCImpl_vmload\n"));
1116 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload);
1117
1118 /** @todo Check effective address size using address size prefix. */
1119 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1120 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1121 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1122 {
1123 Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1124 return iemRaiseGeneralProtectionFault0(pVCpu);
1125 }
1126
1127 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
1128 {
1129 Log(("vmload: Guest intercept -> #VMEXIT\n"));
1130 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1131 }
1132
1133 SVMVMCBSTATESAVE VmcbNstGst;
1134 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest),
1135 sizeof(SVMVMCBSTATESAVE));
1136 if (rcStrict == VINF_SUCCESS)
1137 {
1138 LogFlow(("vmload: Loading VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1139 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, FS, fs);
1140 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, GS, gs);
1141 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, TR, tr);
1142 HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, LDTR, ldtr);
1143
1144 pVCpu->cpum.GstCtx.msrKERNELGSBASE = VmcbNstGst.u64KernelGSBase;
1145 pVCpu->cpum.GstCtx.msrSTAR = VmcbNstGst.u64STAR;
1146 pVCpu->cpum.GstCtx.msrLSTAR = VmcbNstGst.u64LSTAR;
1147 pVCpu->cpum.GstCtx.msrCSTAR = VmcbNstGst.u64CSTAR;
1148 pVCpu->cpum.GstCtx.msrSFMASK = VmcbNstGst.u64SFMASK;
1149
1150 pVCpu->cpum.GstCtx.SysEnter.cs = VmcbNstGst.u64SysEnterCS;
1151 pVCpu->cpum.GstCtx.SysEnter.esp = VmcbNstGst.u64SysEnterESP;
1152 pVCpu->cpum.GstCtx.SysEnter.eip = VmcbNstGst.u64SysEnterEIP;
1153
1154 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1155 }
1156 return rcStrict;
1157# endif
1158}
1159
1160
1161/**
1162 * Implements 'VMSAVE'.
1163 */
1164IEM_CIMPL_DEF_0(iemCImpl_vmsave)
1165{
1166# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1167 RT_NOREF2(pVCpu, cbInstr);
1168 return VINF_EM_RAW_EMULATE_INSTR;
1169# else
1170 LogFlow(("iemCImpl_vmsave\n"));
1171 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave);
1172
1173 /** @todo Check effective address size using address size prefix. */
1174 RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1175 if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK)
1176 || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb))
1177 {
1178 Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb));
1179 return iemRaiseGeneralProtectionFault0(pVCpu);
1180 }
1181
1182 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
1183 {
1184 Log(("vmsave: Guest intercept -> #VMEXIT\n"));
1185 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1186 }
1187
1188 SVMVMCBSTATESAVE VmcbNstGst;
1189 VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest),
1190 sizeof(SVMVMCBSTATESAVE));
1191 if (rcStrict == VINF_SUCCESS)
1192 {
1193 LogFlow(("vmsave: Saving VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode));
1194 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR
1195 | CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS);
1196
1197 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, FS, fs);
1198 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, GS, gs);
1199 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, TR, tr);
1200 HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, LDTR, ldtr);
1201
1202 VmcbNstGst.u64KernelGSBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE;
1203 VmcbNstGst.u64STAR = pVCpu->cpum.GstCtx.msrSTAR;
1204 VmcbNstGst.u64LSTAR = pVCpu->cpum.GstCtx.msrLSTAR;
1205 VmcbNstGst.u64CSTAR = pVCpu->cpum.GstCtx.msrCSTAR;
1206 VmcbNstGst.u64SFMASK = pVCpu->cpum.GstCtx.msrSFMASK;
1207
1208 VmcbNstGst.u64SysEnterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
1209 VmcbNstGst.u64SysEnterESP = pVCpu->cpum.GstCtx.SysEnter.esp;
1210 VmcbNstGst.u64SysEnterEIP = pVCpu->cpum.GstCtx.SysEnter.eip;
1211
1212 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest), &VmcbNstGst,
1213 sizeof(SVMVMCBSTATESAVE));
1214 if (rcStrict == VINF_SUCCESS)
1215 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1216 }
1217 return rcStrict;
1218# endif
1219}
1220
1221
1222/**
1223 * Implements 'CLGI'.
1224 */
1225IEM_CIMPL_DEF_0(iemCImpl_clgi)
1226{
1227# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1228 RT_NOREF2(pVCpu, cbInstr);
1229 return VINF_EM_RAW_EMULATE_INSTR;
1230# else
1231 LogFlow(("iemCImpl_clgi\n"));
1232 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi);
1233 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
1234 {
1235 Log(("clgi: Guest intercept -> #VMEXIT\n"));
1236 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1237 }
1238
1239 pVCpu->cpum.GstCtx.hwvirt.fGif = false;
1240 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1241
1242# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1243 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
1244# else
1245 return VINF_SUCCESS;
1246# endif
1247# endif
1248}
1249
1250
1251/**
1252 * Implements 'STGI'.
1253 */
1254IEM_CIMPL_DEF_0(iemCImpl_stgi)
1255{
1256# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
1257 RT_NOREF2(pVCpu, cbInstr);
1258 return VINF_EM_RAW_EMULATE_INSTR;
1259# else
1260 LogFlow(("iemCImpl_stgi\n"));
1261 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi);
1262 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI))
1263 {
1264 Log2(("stgi: Guest intercept -> #VMEXIT\n"));
1265 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1266 }
1267
1268 pVCpu->cpum.GstCtx.hwvirt.fGif = true;
1269 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1270
1271# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
1272 return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
1273# else
1274 return VINF_SUCCESS;
1275# endif
1276# endif
1277}
1278
1279
1280/**
1281 * Implements 'INVLPGA'.
1282 */
1283IEM_CIMPL_DEF_0(iemCImpl_invlpga)
1284{
1285 /** @todo Check effective address size using address size prefix. */
1286 RTGCPTR const GCPtrPage = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax;
1287 /** @todo PGM needs virtual ASID support. */
1288# if 0
1289 uint32_t const uAsid = pVCpu->cpum.GstCtx.ecx;
1290# endif
1291
1292 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1293 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
1294 {
1295 Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage));
1296 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1297 }
1298
1299 PGMInvalidatePage(pVCpu, GCPtrPage);
1300 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1301 return VINF_SUCCESS;
1302}
1303
1304
1305/**
1306 * Implements 'SKINIT'.
1307 */
1308IEM_CIMPL_DEF_0(iemCImpl_skinit)
1309{
1310 IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga);
1311
1312 uint32_t uIgnore;
1313 uint32_t fFeaturesECX;
1314 CPUMGetGuestCpuId(pVCpu, 0x80000001, 0 /* iSubLeaf */, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore);
1315 if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT))
1316 return iemRaiseUndefinedOpcode(pVCpu);
1317
1318 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
1319 {
1320 Log2(("skinit: Guest intercept -> #VMEXIT\n"));
1321 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1322 }
1323
1324 RT_NOREF(cbInstr);
1325 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
1326}
1327
1328
1329/**
1330 * Implements SVM's implementation of PAUSE.
1331 */
1332IEM_CIMPL_DEF_0(iemCImpl_svm_pause)
1333{
1334 bool fCheckIntercept = true;
1335 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmPauseFilter)
1336 {
1337 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
1338
1339 /* TSC based pause-filter thresholding. */
1340 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmPauseFilterThreshold
1341 && pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold > 0)
1342 {
1343 uint64_t const uTick = TMCpuTickGet(pVCpu);
1344 if (uTick - pVCpu->cpum.GstCtx.hwvirt.svm.uPrevPauseTick > pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold)
1345 pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter = CPUMGetGuestSvmPauseFilterCount(pVCpu, IEM_GET_CTX(pVCpu));
1346 pVCpu->cpum.GstCtx.hwvirt.svm.uPrevPauseTick = uTick;
1347 }
1348
1349 /* Simple pause-filter counter. */
1350 if (pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter > 0)
1351 {
1352 --pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter;
1353 fCheckIntercept = false;
1354 }
1355 }
1356
1357 if (fCheckIntercept)
1358 IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_PAUSE, SVM_EXIT_PAUSE, 0, 0);
1359
1360 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1361 return VINF_SUCCESS;
1362}
1363
1364#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
1365
1366/**
1367 * Common code for iemCImpl_vmmcall and iemCImpl_vmcall (latter in IEMAllCImplVmxInstr.cpp.h).
1368 */
1369IEM_CIMPL_DEF_1(iemCImpl_Hypercall, uint16_t, uDisOpcode)
1370{
1371 if (EMAreHypercallInstructionsEnabled(pVCpu))
1372 {
1373 NOREF(uDisOpcode);
1374 VBOXSTRICTRC rcStrict = GIMHypercallEx(pVCpu, IEM_GET_CTX(pVCpu), uDisOpcode, cbInstr);
1375 if (RT_SUCCESS(rcStrict))
1376 {
1377 if (rcStrict == VINF_SUCCESS)
1378 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1379 if ( rcStrict == VINF_SUCCESS
1380 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
1381 return VINF_SUCCESS;
1382 AssertMsgReturn(rcStrict == VINF_GIM_R3_HYPERCALL, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IEM_IPE_4);
1383 return rcStrict;
1384 }
1385 AssertMsgReturn( rcStrict == VERR_GIM_HYPERCALL_ACCESS_DENIED
1386 || rcStrict == VERR_GIM_HYPERCALLS_NOT_AVAILABLE
1387 || rcStrict == VERR_GIM_NOT_ENABLED
1388 || rcStrict == VERR_GIM_HYPERCALL_MEMORY_READ_FAILED
1389 || rcStrict == VERR_GIM_HYPERCALL_MEMORY_WRITE_FAILED,
1390 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IEM_IPE_4);
1391
1392 /* Raise #UD on all failures. */
1393 }
1394 return iemRaiseUndefinedOpcode(pVCpu);
1395}
1396
1397
1398/**
1399 * Implements 'VMMCALL'.
1400 */
1401IEM_CIMPL_DEF_0(iemCImpl_vmmcall)
1402{
1403 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
1404 {
1405 Log(("vmmcall: Guest intercept -> #VMEXIT\n"));
1406 IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */);
1407 }
1408
1409#ifndef IN_RC
1410 /* This is a little bit more complicated than the VT-x version because HM/SVM may
1411 patch MOV CR8 instructions to speed up APIC.TPR access for 32-bit windows guests. */
1412 if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
1413 {
1414 int rc = HMHCSvmMaybeMovTprHypercall(pVCpu);
1415 if (RT_SUCCESS(rc))
1416 {
1417 Log(("vmmcall: MovTrp\n"));
1418 return VINF_SUCCESS;
1419 }
1420 }
1421#endif
1422
1423 /* Join forces with vmcall. */
1424 return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMMCALL);
1425}
1426
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette