1 | /* $Id: IEMAllCImplVmxInstr.cpp.h 73756 2018-08-18 05:13:26Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - VT-x instruction implementation.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2018 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /**
|
---|
20 | * Implements 'VMCALL'.
|
---|
21 | */
|
---|
22 | IEM_CIMPL_DEF_0(iemCImpl_vmcall)
|
---|
23 | {
|
---|
24 | /** @todo NSTVMX: intercept. */
|
---|
25 |
|
---|
26 | /* Join forces with vmmcall. */
|
---|
27 | return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
|
---|
28 | }
|
---|
29 |
|
---|
30 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
|
---|
34 | * relative offsets.
|
---|
35 | */
|
---|
36 | # ifdef IEM_WITH_CODE_TLB
|
---|
37 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { } while (0)
|
---|
38 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { } while (0)
|
---|
39 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
40 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
41 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
42 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
43 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
44 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
45 | # error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
|
---|
46 | # else /* !IEM_WITH_CODE_TLB */
|
---|
47 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
|
---|
48 | do \
|
---|
49 | { \
|
---|
50 | Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
51 | (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
|
---|
52 | } while (0)
|
---|
53 |
|
---|
54 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
|
---|
55 |
|
---|
56 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
57 | do \
|
---|
58 | { \
|
---|
59 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
60 | uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
61 | uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
62 | (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
|
---|
63 | } while (0)
|
---|
64 |
|
---|
65 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
66 | do \
|
---|
67 | { \
|
---|
68 | Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
69 | (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
70 | } while (0)
|
---|
71 |
|
---|
72 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
73 | do \
|
---|
74 | { \
|
---|
75 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
76 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
77 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
78 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
79 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
80 | (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
81 | } while (0)
|
---|
82 |
|
---|
83 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
84 | do \
|
---|
85 | { \
|
---|
86 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
87 | (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
88 | } while (0)
|
---|
89 |
|
---|
90 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
91 | do \
|
---|
92 | { \
|
---|
93 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
94 | (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
95 | } while (0)
|
---|
96 |
|
---|
97 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
98 | do \
|
---|
99 | { \
|
---|
100 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
101 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
102 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
103 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
104 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
105 | (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
106 | } while (0)
|
---|
107 | # endif /* !IEM_WITH_CODE_TLB */
|
---|
108 |
|
---|
109 | /**
|
---|
110 | * Gets VM-exit instruction information along with any displacement for an
|
---|
111 | * instruction VM-exit.
|
---|
112 | *
|
---|
113 | * @returns The VM-exit instruction information.
|
---|
114 | * @param pVCpu The cross context virtual CPU structure.
|
---|
115 | * @param uExitReason The VM-exit reason.
|
---|
116 | * @param InstrId The VM-exit instruction identity (VMX_INSTR_ID_XXX) if
|
---|
117 | * any. Pass VMX_INSTR_ID_NONE otherwise.
|
---|
118 | * @param pGCPtrDisp Where to store the displacement field. Optional, can be
|
---|
119 | * NULL.
|
---|
120 | */
|
---|
121 | IEM_STATIC uint32_t iemVmxGetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID InstrId, PRTGCPTR pGCPtrDisp)
|
---|
122 | {
|
---|
123 | RTGCPTR GCPtrDisp;
|
---|
124 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
125 | ExitInstrInfo.u = 0;
|
---|
126 |
|
---|
127 | /*
|
---|
128 | * Get and parse the ModR/M byte from our decoded opcodes.
|
---|
129 | */
|
---|
130 | uint8_t bRm;
|
---|
131 | uint8_t const offModRm = pVCpu->iem.s.offModRm;
|
---|
132 | IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
|
---|
133 | if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
|
---|
134 | {
|
---|
135 | /*
|
---|
136 | * ModR/M indicates register addressing.
|
---|
137 | */
|
---|
138 | ExitInstrInfo.All.u2Scaling = 0;
|
---|
139 | ExitInstrInfo.All.iReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
|
---|
140 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
141 | ExitInstrInfo.All.fIsRegOperand = 1;
|
---|
142 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
143 | ExitInstrInfo.All.iSegReg = 0;
|
---|
144 | ExitInstrInfo.All.iIdxReg = 0;
|
---|
145 | ExitInstrInfo.All.fIdxRegInvalid = 1;
|
---|
146 | ExitInstrInfo.All.iBaseReg = 0;
|
---|
147 | ExitInstrInfo.All.fBaseRegInvalid = 1;
|
---|
148 | ExitInstrInfo.All.iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
149 |
|
---|
150 | /* Displacement not applicable for register addressing. */
|
---|
151 | GCPtrDisp = 0;
|
---|
152 | }
|
---|
153 | else
|
---|
154 | {
|
---|
155 | /*
|
---|
156 | * ModR/M indicates memory addressing.
|
---|
157 | */
|
---|
158 | uint8_t uScale = 0;
|
---|
159 | bool fBaseRegValid = false;
|
---|
160 | bool fIdxRegValid = false;
|
---|
161 | uint8_t iBaseReg = 0;
|
---|
162 | uint8_t iIdxReg = 0;
|
---|
163 | uint8_t iReg2 = 0;
|
---|
164 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
165 | {
|
---|
166 | /*
|
---|
167 | * Parse the ModR/M, displacement for 16-bit addressing mode.
|
---|
168 | * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
|
---|
169 | */
|
---|
170 | uint16_t u16Disp = 0;
|
---|
171 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
172 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
173 | {
|
---|
174 | /* Displacement without any registers. */
|
---|
175 | IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
|
---|
176 | }
|
---|
177 | else
|
---|
178 | {
|
---|
179 | /* Register (index and base). */
|
---|
180 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
181 | {
|
---|
182 | case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
183 | case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
184 | case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
185 | case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
186 | case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
187 | case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
188 | case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
|
---|
189 | case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
|
---|
190 | }
|
---|
191 |
|
---|
192 | /* Register + displacement. */
|
---|
193 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
194 | {
|
---|
195 | case 0: break;
|
---|
196 | case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
|
---|
197 | case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
|
---|
198 | default:
|
---|
199 | {
|
---|
200 | /* Register addressing, handled at the beginning. */
|
---|
201 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
202 | break;
|
---|
203 | }
|
---|
204 | }
|
---|
205 | }
|
---|
206 |
|
---|
207 | Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
|
---|
208 | GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
|
---|
209 | iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
|
---|
210 | }
|
---|
211 | else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
212 | {
|
---|
213 | /*
|
---|
214 | * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
|
---|
215 | * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
|
---|
216 | */
|
---|
217 | uint32_t u32Disp = 0;
|
---|
218 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
219 | {
|
---|
220 | /* Displacement without any registers. */
|
---|
221 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
222 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
223 | }
|
---|
224 | else
|
---|
225 | {
|
---|
226 | /* Register (and perhaps scale, index and base). */
|
---|
227 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
228 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
229 | if (iBaseReg == 4)
|
---|
230 | {
|
---|
231 | /* An SIB byte follows the ModR/M byte, parse it. */
|
---|
232 | uint8_t bSib;
|
---|
233 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
234 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
235 |
|
---|
236 | /* A displacement may follow SIB, update its offset. */
|
---|
237 | offDisp += sizeof(bSib);
|
---|
238 |
|
---|
239 | /* Get the scale. */
|
---|
240 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
241 |
|
---|
242 | /* Get the index register. */
|
---|
243 | iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
|
---|
244 | fIdxRegValid = RT_BOOL(iIdxReg != 4);
|
---|
245 |
|
---|
246 | /* Get the base register. */
|
---|
247 | iBaseReg = bSib & X86_SIB_BASE_MASK;
|
---|
248 | fBaseRegValid = true;
|
---|
249 | if (iBaseReg == 5)
|
---|
250 | {
|
---|
251 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
252 | {
|
---|
253 | /* Mod is 0 implies a 32-bit displacement with no base. */
|
---|
254 | fBaseRegValid = false;
|
---|
255 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
256 | }
|
---|
257 | else
|
---|
258 | {
|
---|
259 | /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
|
---|
260 | iBaseReg = X86_GREG_xBP;
|
---|
261 | }
|
---|
262 | }
|
---|
263 | }
|
---|
264 |
|
---|
265 | /* Register + displacement. */
|
---|
266 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
267 | {
|
---|
268 | case 0: /* Handled above */ break;
|
---|
269 | case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
|
---|
270 | case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
|
---|
271 | default:
|
---|
272 | {
|
---|
273 | /* Register addressing, handled at the beginning. */
|
---|
274 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
275 | break;
|
---|
276 | }
|
---|
277 | }
|
---|
278 | }
|
---|
279 |
|
---|
280 | GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
|
---|
281 | iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
|
---|
282 | }
|
---|
283 | else
|
---|
284 | {
|
---|
285 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
|
---|
286 |
|
---|
287 | /*
|
---|
288 | * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
|
---|
289 | * See Intel instruction spec. 2.2 "IA-32e Mode".
|
---|
290 | */
|
---|
291 | uint64_t u64Disp = 0;
|
---|
292 | bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
|
---|
293 | if (fRipRelativeAddr)
|
---|
294 | {
|
---|
295 | /*
|
---|
296 | * RIP-relative addressing mode.
|
---|
297 | *
|
---|
298 | * The displacment is 32-bit signed implying an offset range of +/-2G.
|
---|
299 | * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
|
---|
300 | */
|
---|
301 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
302 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
303 | }
|
---|
304 | else
|
---|
305 | {
|
---|
306 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
307 |
|
---|
308 | /*
|
---|
309 | * Register (and perhaps scale, index and base).
|
---|
310 | *
|
---|
311 | * REX.B extends the most-significant bit of the base register. However, REX.B
|
---|
312 | * is ignored while determining whether an SIB follows the opcode. Hence, we
|
---|
313 | * shall OR any REX.B bit -after- inspecting for an SIB byte below.
|
---|
314 | *
|
---|
315 | * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
|
---|
316 | */
|
---|
317 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
318 | if (iBaseReg == 4)
|
---|
319 | {
|
---|
320 | /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
|
---|
321 | uint8_t bSib;
|
---|
322 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
323 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
324 |
|
---|
325 | /* Displacement may follow SIB, update its offset. */
|
---|
326 | offDisp += sizeof(bSib);
|
---|
327 |
|
---|
328 | /* Get the scale. */
|
---|
329 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
330 |
|
---|
331 | /* Get the index. */
|
---|
332 | iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
|
---|
333 | fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
|
---|
334 |
|
---|
335 | /* Get the base. */
|
---|
336 | iBaseReg = (bSib & X86_SIB_BASE_MASK);
|
---|
337 | fBaseRegValid = true;
|
---|
338 | if (iBaseReg == 5)
|
---|
339 | {
|
---|
340 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
341 | {
|
---|
342 | /* Mod is 0 implies a signed 32-bit displacement with no base. */
|
---|
343 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
344 | }
|
---|
345 | else
|
---|
346 | {
|
---|
347 | /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
|
---|
348 | iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
|
---|
349 | }
|
---|
350 | }
|
---|
351 | }
|
---|
352 | iBaseReg |= pVCpu->iem.s.uRexB;
|
---|
353 |
|
---|
354 | /* Register + displacement. */
|
---|
355 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
356 | {
|
---|
357 | case 0: /* Handled above */ break;
|
---|
358 | case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
359 | case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
360 | default:
|
---|
361 | {
|
---|
362 | /* Register addressing, handled at the beginning. */
|
---|
363 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
364 | break;
|
---|
365 | }
|
---|
366 | }
|
---|
367 | }
|
---|
368 |
|
---|
369 | GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
|
---|
370 | iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
371 | }
|
---|
372 |
|
---|
373 | ExitInstrInfo.All.u2Scaling = uScale;
|
---|
374 | ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory instructions. */
|
---|
375 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
376 | ExitInstrInfo.All.fIsRegOperand = 0;
|
---|
377 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
378 | ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
|
---|
379 | ExitInstrInfo.All.iIdxReg = iIdxReg;
|
---|
380 | ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
|
---|
381 | ExitInstrInfo.All.iBaseReg = iBaseReg;
|
---|
382 | ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
|
---|
383 | ExitInstrInfo.All.iReg2 = iReg2;
|
---|
384 | }
|
---|
385 |
|
---|
386 | /*
|
---|
387 | * Handle exceptions for certain instructions.
|
---|
388 | * (e.g. some instructions convey an instruction identity).
|
---|
389 | */
|
---|
390 | switch (uExitReason)
|
---|
391 | {
|
---|
392 | case VMX_EXIT_XDTR_ACCESS:
|
---|
393 | {
|
---|
394 | Assert(VMX_INSTR_ID_IS_VALID(InstrId));
|
---|
395 | ExitInstrInfo.GdtIdt.u2InstrId = VMX_INSTR_ID_GET_ID(InstrId);
|
---|
396 | ExitInstrInfo.GdtIdt.u2Undef0 = 0;
|
---|
397 | break;
|
---|
398 | }
|
---|
399 |
|
---|
400 | case VMX_EXIT_TR_ACCESS:
|
---|
401 | {
|
---|
402 | Assert(VMX_INSTR_ID_IS_VALID(InstrId));
|
---|
403 | ExitInstrInfo.LdtTr.u2InstrId = VMX_INSTR_ID_GET_ID(InstrId);
|
---|
404 | ExitInstrInfo.LdtTr.u2Undef0 = 0;
|
---|
405 | break;
|
---|
406 | }
|
---|
407 |
|
---|
408 | case VMX_EXIT_RDRAND:
|
---|
409 | case VMX_EXIT_RDSEED:
|
---|
410 | {
|
---|
411 | Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
|
---|
412 | break;
|
---|
413 | }
|
---|
414 | }
|
---|
415 |
|
---|
416 | /* Update displacement and return the constructed VM-exit instruction information field. */
|
---|
417 | if (pGCPtrDisp)
|
---|
418 | *pGCPtrDisp = GCPtrDisp;
|
---|
419 | return ExitInstrInfo.u;
|
---|
420 | }
|
---|
421 |
|
---|
422 |
|
---|
423 | /**
|
---|
424 | * Implements VMSucceed for VMX instruction success.
|
---|
425 | *
|
---|
426 | * @param pVCpu The cross context virtual CPU structure.
|
---|
427 | */
|
---|
428 | DECLINLINE(void) iemVmxVmSucceed(PVMCPU pVCpu)
|
---|
429 | {
|
---|
430 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
431 | }
|
---|
432 |
|
---|
433 |
|
---|
434 | /**
|
---|
435 | * Implements VMFailInvalid for VMX instruction failure.
|
---|
436 | *
|
---|
437 | * @param pVCpu The cross context virtual CPU structure.
|
---|
438 | */
|
---|
439 | DECLINLINE(void) iemVmxVmFailInvalid(PVMCPU pVCpu)
|
---|
440 | {
|
---|
441 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
442 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_CF;
|
---|
443 | }
|
---|
444 |
|
---|
445 |
|
---|
446 | /**
|
---|
447 | * Implements VMFailValid for VMX instruction failure.
|
---|
448 | *
|
---|
449 | * @param pVCpu The cross context virtual CPU structure.
|
---|
450 | * @param enmInsErr The VM instruction error.
|
---|
451 | */
|
---|
452 | DECLINLINE(void) iemVmxVmFailValid(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
|
---|
453 | {
|
---|
454 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs != NIL_RTGCPHYS)
|
---|
455 | {
|
---|
456 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
457 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_ZF;
|
---|
458 | /** @todo NSTVMX: VMWrite enmInsErr to VM-instruction error field. */
|
---|
459 | RT_NOREF(enmInsErr);
|
---|
460 | }
|
---|
461 | }
|
---|
462 |
|
---|
463 |
|
---|
464 | /**
|
---|
465 | * Implements VMFail for VMX instruction failure.
|
---|
466 | *
|
---|
467 | * @param pVCpu The cross context virtual CPU structure.
|
---|
468 | * @param enmInsErr The VM instruction error.
|
---|
469 | */
|
---|
470 | DECLINLINE(void) iemVmxVmFail(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
|
---|
471 | {
|
---|
472 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs != NIL_RTGCPHYS)
|
---|
473 | {
|
---|
474 | iemVmxVmFailValid(pVCpu, enmInsErr);
|
---|
475 | /** @todo Set VM-instruction error field in the current virtual-VMCS. */
|
---|
476 | }
|
---|
477 | else
|
---|
478 | iemVmxVmFailInvalid(pVCpu);
|
---|
479 | }
|
---|
480 |
|
---|
481 |
|
---|
482 | /**
|
---|
483 | * VMCLEAR instruction execution worker.
|
---|
484 | *
|
---|
485 | * @param pVCpu The cross context virtual CPU structure.
|
---|
486 | * @param cbInstr The instruction length.
|
---|
487 | * @param GCPtrVmcs The linear address of the VMCS pointer.
|
---|
488 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
489 | * @param GCPtrDisp The displacement field for @a GCPtrVmcs if any.
|
---|
490 | *
|
---|
491 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
492 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
493 | */
|
---|
494 | IEM_STATIC VBOXSTRICTRC iemVmxVmclear(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmcs, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
495 | RTGCPTR GCPtrDisp)
|
---|
496 | {
|
---|
497 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
498 | {
|
---|
499 | RT_NOREF(GCPtrDisp);
|
---|
500 | /** @todo NSTVMX: intercept. */
|
---|
501 | }
|
---|
502 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
503 |
|
---|
504 | /* CPL. */
|
---|
505 | if (CPUMGetGuestCPL(pVCpu) > 0)
|
---|
506 | {
|
---|
507 | Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
508 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_Cpl;
|
---|
509 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
510 | }
|
---|
511 |
|
---|
512 | /** @todo NSTVMX: VMCLEAR impl. */
|
---|
513 | RT_NOREF(GCPtrVmcs); RT_NOREF(pExitInstrInfo); RT_NOREF(cbInstr);
|
---|
514 | return VINF_SUCCESS;
|
---|
515 | }
|
---|
516 |
|
---|
517 |
|
---|
518 | /**
|
---|
519 | * VMPTRST instruction execution worker.
|
---|
520 | *
|
---|
521 | * @param pVCpu The cross context virtual CPU structure.
|
---|
522 | * @param cbInstr The instruction length.
|
---|
523 | * @param GCPtrVmcs The linear address of where to store the current VMCS
|
---|
524 | * pointer.
|
---|
525 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
526 | * @param GCPtrDisp The displacement field for @a GCPtrVmcs if any.
|
---|
527 | *
|
---|
528 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
529 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
530 | */
|
---|
531 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrst(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmcs, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
532 | RTGCPTR GCPtrDisp)
|
---|
533 | {
|
---|
534 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
535 | {
|
---|
536 | RT_NOREF(GCPtrDisp);
|
---|
537 | /** @todo NSTVMX: intercept. */
|
---|
538 | }
|
---|
539 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
540 |
|
---|
541 | /* CPL. */
|
---|
542 | if (CPUMGetGuestCPL(pVCpu) > 0)
|
---|
543 | {
|
---|
544 | Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
545 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrst_Cpl;
|
---|
546 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
547 | }
|
---|
548 |
|
---|
549 | /* Set the VMCS pointer to the location specified by the destination memory operand. */
|
---|
550 | Assert(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
|
---|
551 | VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, pExitInstrInfo->VmxXsave.iSegReg, GCPtrVmcs,
|
---|
552 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs);
|
---|
553 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
554 | {
|
---|
555 | iemVmxVmSucceed(pVCpu);
|
---|
556 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
557 | return rcStrict;
|
---|
558 | }
|
---|
559 |
|
---|
560 | Log(("vmptrld: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
561 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrst_PtrMap;
|
---|
562 | return rcStrict;
|
---|
563 | }
|
---|
564 |
|
---|
565 |
|
---|
566 | /**
|
---|
567 | * VMPTRLD instruction execution worker.
|
---|
568 | *
|
---|
569 | * @param pVCpu The cross context virtual CPU structure.
|
---|
570 | * @param cbInstr The instruction length.
|
---|
571 | * @param GCPtrVmcs The linear address of the current VMCS pointer.
|
---|
572 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
573 | * @param GCPtrDisp The displacement field for @a GCPtrVmcs if any.
|
---|
574 | *
|
---|
575 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
576 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
577 | */
|
---|
578 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrld(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmcs, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
579 | RTGCPTR GCPtrDisp)
|
---|
580 | {
|
---|
581 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
582 | {
|
---|
583 | RT_NOREF(GCPtrDisp);
|
---|
584 | /** @todo NSTVMX: intercept. */
|
---|
585 | }
|
---|
586 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
587 |
|
---|
588 | /* CPL. */
|
---|
589 | if (CPUMGetGuestCPL(pVCpu) > 0)
|
---|
590 | {
|
---|
591 | Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
592 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_Cpl;
|
---|
593 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
594 | }
|
---|
595 |
|
---|
596 | /* Get the VMCS pointer from the location specified by the source memory operand. */
|
---|
597 | RTGCPHYS GCPhysVmcs;
|
---|
598 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, pExitInstrInfo->VmxXsave.iSegReg, GCPtrVmcs);
|
---|
599 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
600 | {
|
---|
601 | Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
602 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrMap;
|
---|
603 | return rcStrict;
|
---|
604 | }
|
---|
605 |
|
---|
606 | /* VMCS pointer alignment. */
|
---|
607 | if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK)
|
---|
608 | {
|
---|
609 | Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
|
---|
610 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrAlign;
|
---|
611 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
612 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
613 | return VINF_SUCCESS;
|
---|
614 | }
|
---|
615 |
|
---|
616 | /* VMCS physical-address width limits. */
|
---|
617 | Assert(!VMX_V_VMCS_PHYSADDR_4G_LIMIT);
|
---|
618 | if (GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
|
---|
619 | {
|
---|
620 | Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
|
---|
621 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrWidth;
|
---|
622 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
623 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
624 | return VINF_SUCCESS;
|
---|
625 | }
|
---|
626 |
|
---|
627 | /* VMCS is not the VMXON region. */
|
---|
628 | if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
629 | {
|
---|
630 | Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
|
---|
631 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrVmxon;
|
---|
632 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
|
---|
633 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
634 | return VINF_SUCCESS;
|
---|
635 | }
|
---|
636 |
|
---|
637 | /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
638 | restriction imposed by our implementation. */
|
---|
639 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
|
---|
640 | {
|
---|
641 | Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
|
---|
642 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrAbnormal;
|
---|
643 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
644 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
645 | return VINF_SUCCESS;
|
---|
646 | }
|
---|
647 |
|
---|
648 | /* Read the VMCS revision ID from the VMCS. */
|
---|
649 | VMXVMCSREVID VmcsRevId;
|
---|
650 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
|
---|
651 | if (RT_FAILURE(rc))
|
---|
652 | {
|
---|
653 | Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
|
---|
654 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrReadPhys;
|
---|
655 | return rc;
|
---|
656 | }
|
---|
657 |
|
---|
658 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest,
|
---|
659 | also check VMCS shadowing feature. */
|
---|
660 | if ( VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID
|
---|
661 | || ( VmcsRevId.n.fIsShadowVmcs
|
---|
662 | && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
|
---|
663 | {
|
---|
664 | if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
|
---|
665 | {
|
---|
666 | Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFail()\n", VMX_V_VMCS_REVISION_ID,
|
---|
667 | VmcsRevId.n.u31RevisionId));
|
---|
668 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_VmcsRevId;
|
---|
669 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
670 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
671 | return VINF_SUCCESS;
|
---|
672 | }
|
---|
673 |
|
---|
674 | Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
|
---|
675 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_ShadowVmcs;
|
---|
676 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
677 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
678 | return VINF_SUCCESS;
|
---|
679 | }
|
---|
680 |
|
---|
681 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = GCPhysVmcs;
|
---|
682 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_Success;
|
---|
683 | iemVmxVmSucceed(pVCpu);
|
---|
684 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
685 | return VINF_SUCCESS;
|
---|
686 | }
|
---|
687 |
|
---|
688 |
|
---|
689 | /**
|
---|
690 | * VMXON instruction execution worker.
|
---|
691 | *
|
---|
692 | * @param pVCpu The cross context virtual CPU structure.
|
---|
693 | * @param cbInstr The instruction length.
|
---|
694 | * @param GCPtrVmxon The linear address of the VMXON pointer.
|
---|
695 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
696 | * @param GCPtrDisp The displacement field for @a GCPtrVmxon if any.
|
---|
697 | *
|
---|
698 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
699 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
700 | */
|
---|
701 | IEM_STATIC VBOXSTRICTRC iemVmxVmxon(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmxon, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
702 | RTGCPTR GCPtrDisp)
|
---|
703 | {
|
---|
704 | #if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
705 | RT_NOREF5(pVCpu, cbInstr, GCPtrVmxon, pExitInstrInfo, GCPtrDisp);
|
---|
706 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
707 | #else
|
---|
708 | if (!IEM_IS_VMX_ROOT_MODE(pVCpu))
|
---|
709 | {
|
---|
710 | /* CPL. */
|
---|
711 | if (pVCpu->iem.s.uCpl > 0)
|
---|
712 | {
|
---|
713 | Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
714 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cpl;
|
---|
715 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
716 | }
|
---|
717 |
|
---|
718 | /* A20M (A20 Masked) mode. */
|
---|
719 | if (!PGMPhysIsA20Enabled(pVCpu))
|
---|
720 | {
|
---|
721 | Log(("vmxon: A20M mode -> #GP(0)\n"));
|
---|
722 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_A20M;
|
---|
723 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
724 | }
|
---|
725 |
|
---|
726 | /* CR0 fixed bits. */
|
---|
727 | bool const fUnrestrictedGuest = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxUnrestrictedGuest;
|
---|
728 | uint64_t const uCr0Fixed0 = fUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX : VMX_V_CR0_FIXED0;
|
---|
729 | if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) != uCr0Fixed0)
|
---|
730 | {
|
---|
731 | Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
|
---|
732 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cr0Fixed0;
|
---|
733 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
734 | }
|
---|
735 |
|
---|
736 | /* CR4 fixed bits. */
|
---|
737 | if ((pVCpu->cpum.GstCtx.cr4 & VMX_V_CR4_FIXED0) != VMX_V_CR4_FIXED0)
|
---|
738 | {
|
---|
739 | Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
|
---|
740 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cr4Fixed0;
|
---|
741 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
742 | }
|
---|
743 |
|
---|
744 | /* Feature control MSR's LOCK and VMXON bits. */
|
---|
745 | uint64_t const uMsrFeatCtl = CPUMGetGuestIa32FeatureControl(pVCpu);
|
---|
746 | if (!(uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON)))
|
---|
747 | {
|
---|
748 | Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
|
---|
749 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_MsrFeatCtl;
|
---|
750 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
751 | }
|
---|
752 |
|
---|
753 | /* Get the VMXON pointer from the location specified by the source memory operand. */
|
---|
754 | RTGCPHYS GCPhysVmxon;
|
---|
755 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, pExitInstrInfo->VmxXsave.iSegReg, GCPtrVmxon);
|
---|
756 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
757 | {
|
---|
758 | Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
759 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrMap;
|
---|
760 | return rcStrict;
|
---|
761 | }
|
---|
762 |
|
---|
763 | /* VMXON region pointer alignment. */
|
---|
764 | if (GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK)
|
---|
765 | {
|
---|
766 | Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
|
---|
767 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrAlign;
|
---|
768 | iemVmxVmFailInvalid(pVCpu);
|
---|
769 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
770 | return VINF_SUCCESS;
|
---|
771 | }
|
---|
772 |
|
---|
773 | /* VMXON physical-address width limits. */
|
---|
774 | Assert(!VMX_V_VMCS_PHYSADDR_4G_LIMIT);
|
---|
775 | if (GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
|
---|
776 | {
|
---|
777 | Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
|
---|
778 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrWidth;
|
---|
779 | iemVmxVmFailInvalid(pVCpu);
|
---|
780 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
781 | return VINF_SUCCESS;
|
---|
782 | }
|
---|
783 |
|
---|
784 | /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
785 | restriction imposed by our implementation. */
|
---|
786 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
|
---|
787 | {
|
---|
788 | Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
|
---|
789 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrAbnormal;
|
---|
790 | iemVmxVmFailInvalid(pVCpu);
|
---|
791 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
792 | return VINF_SUCCESS;
|
---|
793 | }
|
---|
794 |
|
---|
795 | /* Read the VMCS revision ID from the VMXON region. */
|
---|
796 | VMXVMCSREVID VmcsRevId;
|
---|
797 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
|
---|
798 | if (RT_FAILURE(rc))
|
---|
799 | {
|
---|
800 | Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
|
---|
801 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrReadPhys;
|
---|
802 | return rc;
|
---|
803 | }
|
---|
804 |
|
---|
805 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
|
---|
806 | if (RT_UNLIKELY(VmcsRevId.u != VMX_V_VMCS_REVISION_ID))
|
---|
807 | {
|
---|
808 | /* Revision ID mismatch. */
|
---|
809 | if (!VmcsRevId.n.fIsShadowVmcs)
|
---|
810 | {
|
---|
811 | Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
|
---|
812 | VmcsRevId.n.u31RevisionId));
|
---|
813 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmcsRevId;
|
---|
814 | iemVmxVmFailInvalid(pVCpu);
|
---|
815 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
816 | return VINF_SUCCESS;
|
---|
817 | }
|
---|
818 |
|
---|
819 | /* Shadow VMCS disallowed. */
|
---|
820 | Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
|
---|
821 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_ShadowVmcs;
|
---|
822 | iemVmxVmFailInvalid(pVCpu);
|
---|
823 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
824 | return VINF_SUCCESS;
|
---|
825 | }
|
---|
826 |
|
---|
827 | /*
|
---|
828 | * Record that we're in VMX operation, block INIT, block and disable A20M.
|
---|
829 | */
|
---|
830 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
|
---|
831 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS;
|
---|
832 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
|
---|
833 | /** @todo NSTVMX: clear address-range monitoring. */
|
---|
834 | /** @todo NSTVMX: Intel PT. */
|
---|
835 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Success;
|
---|
836 | iemVmxVmSucceed(pVCpu);
|
---|
837 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
838 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
839 | return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
|
---|
840 | # else
|
---|
841 | return VINF_SUCCESS;
|
---|
842 | # endif
|
---|
843 | }
|
---|
844 | else if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
845 | {
|
---|
846 | RT_NOREF(GCPtrDisp);
|
---|
847 | /** @todo NSTVMX: intercept. */
|
---|
848 | }
|
---|
849 |
|
---|
850 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
851 |
|
---|
852 | /* CPL. */
|
---|
853 | if (pVCpu->iem.s.uCpl > 0)
|
---|
854 | {
|
---|
855 | Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
856 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmxRootCpl;
|
---|
857 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
858 | }
|
---|
859 |
|
---|
860 | /* VMXON when already in VMX root mode. */
|
---|
861 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
|
---|
862 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmxRoot;
|
---|
863 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
864 | return VINF_SUCCESS;
|
---|
865 | #endif
|
---|
866 | }
|
---|
867 |
|
---|
868 |
|
---|
869 | /**
|
---|
870 | * Implements 'VMXON'.
|
---|
871 | */
|
---|
872 | IEM_CIMPL_DEF_1(iemCImpl_vmxon, RTGCPTR, GCPtrVmxon)
|
---|
873 | {
|
---|
874 | RTGCPTR GCPtrDisp;
|
---|
875 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
876 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMXON, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
877 | return iemVmxVmxon(pVCpu, cbInstr, GCPtrVmxon, &ExitInstrInfo, GCPtrDisp);
|
---|
878 | }
|
---|
879 |
|
---|
880 |
|
---|
881 | /**
|
---|
882 | * Implements 'VMXOFF'.
|
---|
883 | */
|
---|
884 | IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
|
---|
885 | {
|
---|
886 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
887 | RT_NOREF2(pVCpu, cbInstr);
|
---|
888 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
889 | # else
|
---|
890 | IEM_VMX_INSTR_COMMON_CHECKS(pVCpu, "vmxoff", kVmxVInstrDiag_Vmxoff);
|
---|
891 | if (!IEM_IS_VMX_ROOT_MODE(pVCpu))
|
---|
892 | {
|
---|
893 | Log(("vmxoff: Not in VMX root mode -> #GP(0)\n"));
|
---|
894 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxoff_VmxRoot;
|
---|
895 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
896 | }
|
---|
897 |
|
---|
898 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
899 | {
|
---|
900 | /** @todo NSTVMX: intercept. */
|
---|
901 | }
|
---|
902 |
|
---|
903 | /* CPL. */
|
---|
904 | if (pVCpu->iem.s.uCpl > 0)
|
---|
905 | {
|
---|
906 | Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
907 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxoff_Cpl;
|
---|
908 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
909 | }
|
---|
910 |
|
---|
911 | /* Dual monitor treatment of SMIs and SMM. */
|
---|
912 | uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
|
---|
913 | if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID)
|
---|
914 | {
|
---|
915 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
|
---|
916 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
917 | return VINF_SUCCESS;
|
---|
918 | }
|
---|
919 |
|
---|
920 | /*
|
---|
921 | * Record that we're no longer in VMX root operation, block INIT, block and disable A20M.
|
---|
922 | */
|
---|
923 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
|
---|
924 | Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
|
---|
925 |
|
---|
926 | if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
|
---|
927 | { /** @todo NSTVMX: Unblock SMI. */ }
|
---|
928 | /** @todo NSTVMX: Unblock and enable A20M. */
|
---|
929 | /** @todo NSTVMX: Clear address-range monitoring. */
|
---|
930 |
|
---|
931 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxoff_Success;
|
---|
932 | iemVmxVmSucceed(pVCpu);
|
---|
933 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
934 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
935 | return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
|
---|
936 | # else
|
---|
937 | return VINF_SUCCESS;
|
---|
938 | # endif
|
---|
939 | # endif
|
---|
940 | }
|
---|
941 |
|
---|
942 |
|
---|
943 | /**
|
---|
944 | * Implements 'VMPTRLD'.
|
---|
945 | */
|
---|
946 | IEM_CIMPL_DEF_1(iemCImpl_vmptrld, RTGCPTR, GCPtrVmcs)
|
---|
947 | {
|
---|
948 | RTGCPTR GCPtrDisp;
|
---|
949 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
950 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMPTRLD, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
951 | return iemVmxVmptrld(pVCpu, cbInstr, GCPtrVmcs, &ExitInstrInfo, GCPtrDisp);
|
---|
952 | }
|
---|
953 |
|
---|
954 |
|
---|
955 | /**
|
---|
956 | * Implements 'VMPTRST'.
|
---|
957 | */
|
---|
958 | IEM_CIMPL_DEF_1(iemCImpl_vmptrst, RTGCPTR, GCPtrVmcs)
|
---|
959 | {
|
---|
960 | RTGCPTR GCPtrDisp;
|
---|
961 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
962 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMPTRST, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
963 | return iemVmxVmptrst(pVCpu, cbInstr, GCPtrVmcs, &ExitInstrInfo, GCPtrDisp);
|
---|
964 | }
|
---|
965 |
|
---|
966 |
|
---|
967 | /**
|
---|
968 | * Implements 'VMCLEAR'.
|
---|
969 | */
|
---|
970 | IEM_CIMPL_DEF_1(iemCImpl_vmclear, RTGCPTR, GCPtrVmcs)
|
---|
971 | {
|
---|
972 | RTGCPTR GCPtrDisp;
|
---|
973 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
974 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMCLEAR, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
975 | return iemVmxVmclear(pVCpu, cbInstr, GCPtrVmcs, &ExitInstrInfo, GCPtrDisp);
|
---|
976 | }
|
---|
977 |
|
---|
978 | #endif
|
---|
979 |
|
---|