1 | /* $Id: IEMAllCImplVmxInstr.cpp.h 73937 2018-08-29 06:12:35Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - VT-x instruction implementation.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2018 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /**
|
---|
20 | * Implements 'VMCALL'.
|
---|
21 | */
|
---|
22 | IEM_CIMPL_DEF_0(iemCImpl_vmcall)
|
---|
23 | {
|
---|
24 | /** @todo NSTVMX: intercept. */
|
---|
25 |
|
---|
26 | /* Join forces with vmmcall. */
|
---|
27 | return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
|
---|
28 | }
|
---|
29 |
|
---|
30 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
31 | /**
|
---|
32 | * Map of VMCS field encodings to their virtual-VMCS structure offsets.
|
---|
33 | *
|
---|
34 | * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
|
---|
35 | * second dimension is the Index, see VMXVMCSFIELDENC.
|
---|
36 | */
|
---|
37 | uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
|
---|
38 | {
|
---|
39 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
40 | {
|
---|
41 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u16Vpid),
|
---|
42 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
|
---|
43 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u16EptpIndex),
|
---|
44 | /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
45 | /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
46 | /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
47 | },
|
---|
48 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
49 | {
|
---|
50 | /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
51 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
52 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
53 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
54 | },
|
---|
55 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
56 | {
|
---|
57 | /* 0 */ RT_OFFSETOF(VMXVVMCS, GuestEs),
|
---|
58 | /* 1 */ RT_OFFSETOF(VMXVVMCS, GuestCs),
|
---|
59 | /* 2 */ RT_OFFSETOF(VMXVVMCS, GuestSs),
|
---|
60 | /* 3 */ RT_OFFSETOF(VMXVVMCS, GuestDs),
|
---|
61 | /* 4 */ RT_OFFSETOF(VMXVVMCS, GuestFs),
|
---|
62 | /* 5 */ RT_OFFSETOF(VMXVVMCS, GuestGs),
|
---|
63 | /* 6 */ RT_OFFSETOF(VMXVVMCS, GuestLdtr),
|
---|
64 | /* 7 */ RT_OFFSETOF(VMXVVMCS, GuestTr),
|
---|
65 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u16GuestIntStatus),
|
---|
66 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u16PmlIndex),
|
---|
67 | /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
68 | /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
69 | },
|
---|
70 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
71 | {
|
---|
72 | /* 0 */ RT_OFFSETOF(VMXVVMCS, HostEs),
|
---|
73 | /* 1 */ RT_OFFSETOF(VMXVVMCS, HostCs),
|
---|
74 | /* 2 */ RT_OFFSETOF(VMXVVMCS, HostSs),
|
---|
75 | /* 3 */ RT_OFFSETOF(VMXVVMCS, HostDs),
|
---|
76 | /* 4 */ RT_OFFSETOF(VMXVVMCS, HostFs),
|
---|
77 | /* 5 */ RT_OFFSETOF(VMXVVMCS, HostGs),
|
---|
78 | /* 6 */ RT_OFFSETOF(VMXVVMCS, HostTr),
|
---|
79 | /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
80 | /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
81 | /* 23-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
82 | },
|
---|
83 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
84 | {
|
---|
85 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
|
---|
86 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
|
---|
87 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
|
---|
88 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64AddrVmExitMsrStore),
|
---|
89 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64AddrVmExitMsrLoad),
|
---|
90 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64AddrVmEntryMsrLoad),
|
---|
91 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
|
---|
92 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64AddrPml),
|
---|
93 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64TscOffset),
|
---|
94 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64AddrVirtApic),
|
---|
95 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u64AddrApicAccess),
|
---|
96 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
|
---|
97 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u64VmFuncCtls),
|
---|
98 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u64EptpPtr),
|
---|
99 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
|
---|
100 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
|
---|
101 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
|
---|
102 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
|
---|
103 | /* 18 */ RT_OFFSETOF(VMXVVMCS, u64AddrEptpList),
|
---|
104 | /* 19 */ RT_OFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
|
---|
105 | /* 20 */ RT_OFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
|
---|
106 | /* 21 */ RT_OFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
|
---|
107 | /* 22 */ RT_OFFSETOF(VMXVVMCS, u64AddrXssBitmap),
|
---|
108 | /* 23 */ RT_OFFSETOF(VMXVVMCS, u64AddrEnclsBitmap),
|
---|
109 | /* 24 */ UINT16_MAX,
|
---|
110 | /* 25 */ RT_OFFSETOF(VMXVVMCS, u64TscMultiplier)
|
---|
111 | },
|
---|
112 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
113 | {
|
---|
114 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64GuestPhysAddr),
|
---|
115 | /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
116 | /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
117 | /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
118 | /* 25 */ UINT16_MAX
|
---|
119 | },
|
---|
120 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
121 | {
|
---|
122 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
|
---|
123 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
|
---|
124 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64GuestPatMsr),
|
---|
125 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64GuestEferMsr),
|
---|
126 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
|
---|
127 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte0),
|
---|
128 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte1),
|
---|
129 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte2),
|
---|
130 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte3),
|
---|
131 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
|
---|
132 | /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
133 | /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
134 | },
|
---|
135 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
136 | {
|
---|
137 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64HostPatMsr),
|
---|
138 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64HostEferMsr),
|
---|
139 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
|
---|
140 | /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
141 | /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
142 | /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
143 | },
|
---|
144 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
145 | {
|
---|
146 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32PinCtls),
|
---|
147 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u32ProcCtls),
|
---|
148 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u32XcptBitmap),
|
---|
149 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u32XcptPFMask),
|
---|
150 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u32XcptPFMatch),
|
---|
151 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u32Cr3TargetCount),
|
---|
152 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u32ExitCtls),
|
---|
153 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
|
---|
154 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
|
---|
155 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u32EntryCtls),
|
---|
156 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
|
---|
157 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u32EntryIntInfo),
|
---|
158 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
|
---|
159 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u32EntryInstrLen),
|
---|
160 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u32TprTreshold),
|
---|
161 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u32ProcCtls2),
|
---|
162 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u32PleGap),
|
---|
163 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u32PleWindow),
|
---|
164 | /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
165 | },
|
---|
166 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
167 | {
|
---|
168 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32RoVmInstrError),
|
---|
169 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u32RoVmExitReason),
|
---|
170 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u32RoVmExitIntInfo),
|
---|
171 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u32RoVmExitErrCode),
|
---|
172 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
|
---|
173 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
|
---|
174 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u32RoVmExitInstrLen),
|
---|
175 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u32RoVmExitInstrInfo),
|
---|
176 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
177 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
178 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
179 | },
|
---|
180 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
181 | {
|
---|
182 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32GuestEsLimit),
|
---|
183 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u32GuestCsLimit),
|
---|
184 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u32GuestSsLimit),
|
---|
185 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u32GuestDsLimit),
|
---|
186 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u32GuestEsLimit),
|
---|
187 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u32GuestFsLimit),
|
---|
188 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u32GuestGsLimit),
|
---|
189 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
|
---|
190 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u32GuestTrLimit),
|
---|
191 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
|
---|
192 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
|
---|
193 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u32GuestEsAttr),
|
---|
194 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u32GuestCsAttr),
|
---|
195 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u32GuestSsAttr),
|
---|
196 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u32GuestDsAttr),
|
---|
197 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u32GuestFsAttr),
|
---|
198 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u32GuestGsAttr),
|
---|
199 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
|
---|
200 | /* 18 */ RT_OFFSETOF(VMXVVMCS, u32GuestTrAttr),
|
---|
201 | /* 19 */ RT_OFFSETOF(VMXVVMCS, u32GuestIntrState),
|
---|
202 | /* 20 */ RT_OFFSETOF(VMXVVMCS, u32GuestActivityState),
|
---|
203 | /* 21 */ RT_OFFSETOF(VMXVVMCS, u32GuestSmBase),
|
---|
204 | /* 22 */ RT_OFFSETOF(VMXVVMCS, u32GuestSysenterCS),
|
---|
205 | /* 23 */ RT_OFFSETOF(VMXVVMCS, u32PreemptTimer),
|
---|
206 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
207 | },
|
---|
208 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
209 | {
|
---|
210 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32HostSysenterCs),
|
---|
211 | /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
212 | /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
213 | /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
214 | /* 25 */ UINT16_MAX
|
---|
215 | },
|
---|
216 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
217 | {
|
---|
218 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64Cr0Mask),
|
---|
219 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64Cr4Mask),
|
---|
220 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
|
---|
221 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
|
---|
222 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target0),
|
---|
223 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target1),
|
---|
224 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target2),
|
---|
225 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target3),
|
---|
226 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
227 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
228 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
229 | },
|
---|
230 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
231 | {
|
---|
232 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64ExitQual),
|
---|
233 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64IoRcx),
|
---|
234 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64IoRsi),
|
---|
235 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64IoRdi),
|
---|
236 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64IoRip),
|
---|
237 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64GuestLinearAddr),
|
---|
238 | /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
239 | /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
240 | /* 22-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
241 | },
|
---|
242 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
243 | {
|
---|
244 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64GuestCr0),
|
---|
245 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64GuestCr3),
|
---|
246 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64GuestCr4),
|
---|
247 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64GuestEsBase),
|
---|
248 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64GuestCsBase),
|
---|
249 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64GuestSsBase),
|
---|
250 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64GuestDsBase),
|
---|
251 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64GuestFsBase),
|
---|
252 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64GuestGsBase),
|
---|
253 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64GuestLdtrBase),
|
---|
254 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u64GuestTrBase),
|
---|
255 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u64GuestGdtrBase),
|
---|
256 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u64GuestIdtrBase),
|
---|
257 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u64GuestDr7),
|
---|
258 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u64GuestRsp),
|
---|
259 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u64GuestRip),
|
---|
260 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u64GuestRFlags),
|
---|
261 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpt),
|
---|
262 | /* 18 */ RT_OFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
|
---|
263 | /* 19 */ RT_OFFSETOF(VMXVVMCS, u64GuestSysenterEip),
|
---|
264 | /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
265 | },
|
---|
266 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
267 | {
|
---|
268 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64HostCr0),
|
---|
269 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64HostCr3),
|
---|
270 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64HostCr4),
|
---|
271 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64HostFsBase),
|
---|
272 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64HostGsBase),
|
---|
273 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64HostTrBase),
|
---|
274 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64HostGdtrBase),
|
---|
275 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64HostIdtrBase),
|
---|
276 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64HostSysenterEsp),
|
---|
277 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64HostSysenterEip),
|
---|
278 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u64HostRsp),
|
---|
279 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u64HostRip),
|
---|
280 | /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
281 | /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
282 | }
|
---|
283 | };
|
---|
284 |
|
---|
285 |
|
---|
286 | /**
|
---|
287 | * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
|
---|
288 | * relative offsets.
|
---|
289 | */
|
---|
290 | # ifdef IEM_WITH_CODE_TLB
|
---|
291 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { } while (0)
|
---|
292 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { } while (0)
|
---|
293 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
294 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
295 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
296 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
297 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
298 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
299 | # error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
|
---|
300 | # else /* !IEM_WITH_CODE_TLB */
|
---|
301 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
|
---|
302 | do \
|
---|
303 | { \
|
---|
304 | Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
305 | (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
|
---|
306 | } while (0)
|
---|
307 |
|
---|
308 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
|
---|
309 |
|
---|
310 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
311 | do \
|
---|
312 | { \
|
---|
313 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
314 | uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
315 | uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
316 | (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
|
---|
317 | } while (0)
|
---|
318 |
|
---|
319 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
320 | do \
|
---|
321 | { \
|
---|
322 | Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
323 | (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
324 | } while (0)
|
---|
325 |
|
---|
326 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
327 | do \
|
---|
328 | { \
|
---|
329 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
330 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
331 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
332 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
333 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
334 | (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
335 | } while (0)
|
---|
336 |
|
---|
337 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
338 | do \
|
---|
339 | { \
|
---|
340 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
341 | (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
342 | } while (0)
|
---|
343 |
|
---|
344 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
345 | do \
|
---|
346 | { \
|
---|
347 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
348 | (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
349 | } while (0)
|
---|
350 |
|
---|
351 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
352 | do \
|
---|
353 | { \
|
---|
354 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
355 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
356 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
357 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
358 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
359 | (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
360 | } while (0)
|
---|
361 | # endif /* !IEM_WITH_CODE_TLB */
|
---|
362 |
|
---|
363 | /** Whether a shadow VMCS is present for the given VCPU. */
|
---|
364 | #define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
|
---|
365 |
|
---|
366 | /** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
|
---|
367 | #define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->u64VmcsLinkPtr.u)
|
---|
368 |
|
---|
369 | /** Whether a current VMCS is present for the given VCPU. */
|
---|
370 | #define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
|
---|
371 |
|
---|
372 | /** Gets the guest-physical address of the current VMCS for the given VCPU. */
|
---|
373 | #define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
|
---|
374 |
|
---|
375 | /** Assigns the guest-physical address of the current VMCS for the given VCPU. */
|
---|
376 | #define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
|
---|
377 | do \
|
---|
378 | { \
|
---|
379 | Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
|
---|
380 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
|
---|
381 | } while (0)
|
---|
382 |
|
---|
383 | /** Clears any current VMCS for the given VCPU. */
|
---|
384 | #define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
|
---|
385 | do \
|
---|
386 | { \
|
---|
387 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
|
---|
388 | } while (0)
|
---|
389 |
|
---|
390 |
|
---|
391 | /**
|
---|
392 | * Returns whether the given VMCS field is valid and supported by our emulation.
|
---|
393 | *
|
---|
394 | * @param pVCpu The cross context virtual CPU structure.
|
---|
395 | * @param uFieldEnc The VMCS field encoding.
|
---|
396 | *
|
---|
397 | * @remarks This takes into account the CPU features exposed to the guest.
|
---|
398 | */
|
---|
399 | IEM_STATIC bool iemVmxIsVmcsFieldValid(PVMCPU pVCpu, uint32_t uFieldEnc)
|
---|
400 | {
|
---|
401 | PCCPUMFEATURES pFeat = IEM_GET_GUEST_CPU_FEATURES(pVCpu);
|
---|
402 | switch (uFieldEnc)
|
---|
403 | {
|
---|
404 | /*
|
---|
405 | * 16-bit fields.
|
---|
406 | */
|
---|
407 | /* Control fields. */
|
---|
408 | case VMX_VMCS16_VPID: return pFeat->fVmxVpid;
|
---|
409 | case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt;
|
---|
410 | case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe;
|
---|
411 |
|
---|
412 | /* Guest-state fields. */
|
---|
413 | case VMX_VMCS16_GUEST_ES_SEL:
|
---|
414 | case VMX_VMCS16_GUEST_CS_SEL:
|
---|
415 | case VMX_VMCS16_GUEST_SS_SEL:
|
---|
416 | case VMX_VMCS16_GUEST_DS_SEL:
|
---|
417 | case VMX_VMCS16_GUEST_FS_SEL:
|
---|
418 | case VMX_VMCS16_GUEST_GS_SEL:
|
---|
419 | case VMX_VMCS16_GUEST_LDTR_SEL:
|
---|
420 | case VMX_VMCS16_GUEST_TR_SEL:
|
---|
421 | case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery;
|
---|
422 | case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml;
|
---|
423 |
|
---|
424 | /* Host-state fields. */
|
---|
425 | case VMX_VMCS16_HOST_ES_SEL:
|
---|
426 | case VMX_VMCS16_HOST_CS_SEL:
|
---|
427 | case VMX_VMCS16_HOST_SS_SEL:
|
---|
428 | case VMX_VMCS16_HOST_DS_SEL:
|
---|
429 | case VMX_VMCS16_HOST_FS_SEL:
|
---|
430 | case VMX_VMCS16_HOST_GS_SEL:
|
---|
431 | case VMX_VMCS16_HOST_TR_SEL: return true;
|
---|
432 |
|
---|
433 | /*
|
---|
434 | * 64-bit fields.
|
---|
435 | */
|
---|
436 | /* Control fields. */
|
---|
437 | case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
|
---|
438 | case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH:
|
---|
439 | case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
|
---|
440 | case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps;
|
---|
441 | case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
|
---|
442 | case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps;
|
---|
443 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
|
---|
444 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH:
|
---|
445 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
|
---|
446 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH:
|
---|
447 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
|
---|
448 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH:
|
---|
449 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
|
---|
450 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true;
|
---|
451 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL:
|
---|
452 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml;
|
---|
453 | case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
|
---|
454 | case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true;
|
---|
455 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
|
---|
456 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow;
|
---|
457 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
|
---|
458 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess;
|
---|
459 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL:
|
---|
460 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt;
|
---|
461 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
|
---|
462 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc;
|
---|
463 | case VMX_VMCS64_CTRL_EPTP_FULL:
|
---|
464 | case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt;
|
---|
465 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL:
|
---|
466 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH:
|
---|
467 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL:
|
---|
468 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH:
|
---|
469 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL:
|
---|
470 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH:
|
---|
471 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL:
|
---|
472 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery;
|
---|
473 | case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
|
---|
474 | case VMX_VMCS64_CTRL_EPTP_LIST_HIGH:
|
---|
475 | {
|
---|
476 | uint64_t const uVmFuncMsr = CPUMGetGuestIa32VmxVmFunc(pVCpu);
|
---|
477 | return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING));
|
---|
478 | }
|
---|
479 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL:
|
---|
480 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH:
|
---|
481 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL:
|
---|
482 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing;
|
---|
483 | case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL:
|
---|
484 | case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe;
|
---|
485 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL:
|
---|
486 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors;
|
---|
487 | case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL:
|
---|
488 | case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH: return false;
|
---|
489 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL:
|
---|
490 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling;
|
---|
491 |
|
---|
492 | /* Read-only data fields. */
|
---|
493 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL:
|
---|
494 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt;
|
---|
495 |
|
---|
496 | /* Guest-state fields. */
|
---|
497 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
|
---|
498 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH:
|
---|
499 | case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
|
---|
500 | case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true;
|
---|
501 | case VMX_VMCS64_GUEST_PAT_FULL:
|
---|
502 | case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr;
|
---|
503 | case VMX_VMCS64_GUEST_EFER_FULL:
|
---|
504 | case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr;
|
---|
505 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
|
---|
506 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH: return false;
|
---|
507 | case VMX_VMCS64_GUEST_PDPTE0_FULL:
|
---|
508 | case VMX_VMCS64_GUEST_PDPTE0_HIGH:
|
---|
509 | case VMX_VMCS64_GUEST_PDPTE1_FULL:
|
---|
510 | case VMX_VMCS64_GUEST_PDPTE1_HIGH:
|
---|
511 | case VMX_VMCS64_GUEST_PDPTE2_FULL:
|
---|
512 | case VMX_VMCS64_GUEST_PDPTE2_HIGH:
|
---|
513 | case VMX_VMCS64_GUEST_PDPTE3_FULL:
|
---|
514 | case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt;
|
---|
515 | case VMX_VMCS64_GUEST_BNDCFGS_FULL:
|
---|
516 | case VMX_VMCS64_GUEST_BNDCFGS_HIGH: return false;
|
---|
517 |
|
---|
518 | /* Host-state fields. */
|
---|
519 | case VMX_VMCS64_HOST_PAT_FULL:
|
---|
520 | case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr;
|
---|
521 | case VMX_VMCS64_HOST_EFER_FULL:
|
---|
522 | case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr;
|
---|
523 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
|
---|
524 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH: return false;
|
---|
525 |
|
---|
526 | /*
|
---|
527 | * 32-bit fields.
|
---|
528 | */
|
---|
529 | /* Control fields. */
|
---|
530 | case VMX_VMCS32_CTRL_PIN_EXEC:
|
---|
531 | case VMX_VMCS32_CTRL_PROC_EXEC:
|
---|
532 | case VMX_VMCS32_CTRL_EXCEPTION_BITMAP:
|
---|
533 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK:
|
---|
534 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH:
|
---|
535 | case VMX_VMCS32_CTRL_CR3_TARGET_COUNT:
|
---|
536 | case VMX_VMCS32_CTRL_EXIT:
|
---|
537 | case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT:
|
---|
538 | case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT:
|
---|
539 | case VMX_VMCS32_CTRL_ENTRY:
|
---|
540 | case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT:
|
---|
541 | case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO:
|
---|
542 | case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE:
|
---|
543 | case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true;
|
---|
544 | case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow;
|
---|
545 | case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls;
|
---|
546 | case VMX_VMCS32_CTRL_PLE_GAP:
|
---|
547 | case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit;
|
---|
548 |
|
---|
549 | /* Read-only data fields. */
|
---|
550 | case VMX_VMCS32_RO_VM_INSTR_ERROR:
|
---|
551 | case VMX_VMCS32_RO_EXIT_REASON:
|
---|
552 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
|
---|
553 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
|
---|
554 | case VMX_VMCS32_RO_IDT_VECTORING_INFO:
|
---|
555 | case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE:
|
---|
556 | case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
|
---|
557 | case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true;
|
---|
558 |
|
---|
559 | /* Guest-state fields. */
|
---|
560 | case VMX_VMCS32_GUEST_ES_LIMIT:
|
---|
561 | case VMX_VMCS32_GUEST_CS_LIMIT:
|
---|
562 | case VMX_VMCS32_GUEST_SS_LIMIT:
|
---|
563 | case VMX_VMCS32_GUEST_DS_LIMIT:
|
---|
564 | case VMX_VMCS32_GUEST_FS_LIMIT:
|
---|
565 | case VMX_VMCS32_GUEST_GS_LIMIT:
|
---|
566 | case VMX_VMCS32_GUEST_LDTR_LIMIT:
|
---|
567 | case VMX_VMCS32_GUEST_TR_LIMIT:
|
---|
568 | case VMX_VMCS32_GUEST_GDTR_LIMIT:
|
---|
569 | case VMX_VMCS32_GUEST_IDTR_LIMIT:
|
---|
570 | case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
|
---|
571 | case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
|
---|
572 | case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
|
---|
573 | case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
|
---|
574 | case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
|
---|
575 | case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
|
---|
576 | case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
|
---|
577 | case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
|
---|
578 | case VMX_VMCS32_GUEST_INT_STATE:
|
---|
579 | case VMX_VMCS32_GUEST_ACTIVITY_STATE:
|
---|
580 | case VMX_VMCS32_GUEST_SMBASE:
|
---|
581 | case VMX_VMCS32_GUEST_SYSENTER_CS: return true;
|
---|
582 | case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer;
|
---|
583 |
|
---|
584 | /* Host-state fields. */
|
---|
585 | case VMX_VMCS32_HOST_SYSENTER_CS: return true;
|
---|
586 |
|
---|
587 | /*
|
---|
588 | * Natural-width fields.
|
---|
589 | */
|
---|
590 | /* Control fields. */
|
---|
591 | case VMX_VMCS_CTRL_CR0_MASK:
|
---|
592 | case VMX_VMCS_CTRL_CR4_MASK:
|
---|
593 | case VMX_VMCS_CTRL_CR0_READ_SHADOW:
|
---|
594 | case VMX_VMCS_CTRL_CR4_READ_SHADOW:
|
---|
595 | case VMX_VMCS_CTRL_CR3_TARGET_VAL0:
|
---|
596 | case VMX_VMCS_CTRL_CR3_TARGET_VAL1:
|
---|
597 | case VMX_VMCS_CTRL_CR3_TARGET_VAL2:
|
---|
598 | case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true;
|
---|
599 |
|
---|
600 | /* Read-only data fields. */
|
---|
601 | case VMX_VMCS_RO_EXIT_QUALIFICATION:
|
---|
602 | case VMX_VMCS_RO_IO_RCX:
|
---|
603 | case VMX_VMCS_RO_IO_RSX:
|
---|
604 | case VMX_VMCS_RO_IO_RDI:
|
---|
605 | case VMX_VMCS_RO_IO_RIP:
|
---|
606 | case VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR: return true;
|
---|
607 |
|
---|
608 | /* Guest-state fields. */
|
---|
609 | case VMX_VMCS_GUEST_CR0:
|
---|
610 | case VMX_VMCS_GUEST_CR3:
|
---|
611 | case VMX_VMCS_GUEST_CR4:
|
---|
612 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
613 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
614 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
615 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
616 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
617 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
618 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
619 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
620 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
621 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
622 | case VMX_VMCS_GUEST_DR7:
|
---|
623 | case VMX_VMCS_GUEST_RSP:
|
---|
624 | case VMX_VMCS_GUEST_RIP:
|
---|
625 | case VMX_VMCS_GUEST_RFLAGS:
|
---|
626 | case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS:
|
---|
627 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
628 | case VMX_VMCS_GUEST_SYSENTER_EIP: return true;
|
---|
629 |
|
---|
630 | /* Host-state fields. */
|
---|
631 | case VMX_VMCS_HOST_CR0:
|
---|
632 | case VMX_VMCS_HOST_CR3:
|
---|
633 | case VMX_VMCS_HOST_CR4:
|
---|
634 | case VMX_VMCS_HOST_FS_BASE:
|
---|
635 | case VMX_VMCS_HOST_GS_BASE:
|
---|
636 | case VMX_VMCS_HOST_TR_BASE:
|
---|
637 | case VMX_VMCS_HOST_GDTR_BASE:
|
---|
638 | case VMX_VMCS_HOST_IDTR_BASE:
|
---|
639 | case VMX_VMCS_HOST_SYSENTER_ESP:
|
---|
640 | case VMX_VMCS_HOST_SYSENTER_EIP:
|
---|
641 | case VMX_VMCS_HOST_RSP:
|
---|
642 | case VMX_VMCS_HOST_RIP: return true;
|
---|
643 | }
|
---|
644 |
|
---|
645 | return false;
|
---|
646 | }
|
---|
647 |
|
---|
648 |
|
---|
649 | /**
|
---|
650 | * Gets VM-exit instruction information along with any displacement for an
|
---|
651 | * instruction VM-exit.
|
---|
652 | *
|
---|
653 | * @returns The VM-exit instruction information.
|
---|
654 | * @param pVCpu The cross context virtual CPU structure.
|
---|
655 | * @param uExitReason The VM-exit reason.
|
---|
656 | * @param InstrId The VM-exit instruction identity (VMX_INSTR_ID_XXX) if
|
---|
657 | * any. Pass VMX_INSTR_ID_NONE otherwise.
|
---|
658 | * @param pGCPtrDisp Where to store the displacement field. Optional, can be
|
---|
659 | * NULL.
|
---|
660 | */
|
---|
661 | IEM_STATIC uint32_t iemVmxGetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID InstrId, PRTGCPTR pGCPtrDisp)
|
---|
662 | {
|
---|
663 | RTGCPTR GCPtrDisp;
|
---|
664 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
665 | ExitInstrInfo.u = 0;
|
---|
666 |
|
---|
667 | /*
|
---|
668 | * Get and parse the ModR/M byte from our decoded opcodes.
|
---|
669 | */
|
---|
670 | uint8_t bRm;
|
---|
671 | uint8_t const offModRm = pVCpu->iem.s.offModRm;
|
---|
672 | IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
|
---|
673 | if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
|
---|
674 | {
|
---|
675 | /*
|
---|
676 | * ModR/M indicates register addressing.
|
---|
677 | */
|
---|
678 | ExitInstrInfo.All.u2Scaling = 0;
|
---|
679 | ExitInstrInfo.All.iReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
|
---|
680 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
681 | ExitInstrInfo.All.fIsRegOperand = 1;
|
---|
682 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
683 | ExitInstrInfo.All.iSegReg = 0;
|
---|
684 | ExitInstrInfo.All.iIdxReg = 0;
|
---|
685 | ExitInstrInfo.All.fIdxRegInvalid = 1;
|
---|
686 | ExitInstrInfo.All.iBaseReg = 0;
|
---|
687 | ExitInstrInfo.All.fBaseRegInvalid = 1;
|
---|
688 | ExitInstrInfo.All.iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
689 |
|
---|
690 | /* Displacement not applicable for register addressing. */
|
---|
691 | GCPtrDisp = 0;
|
---|
692 | }
|
---|
693 | else
|
---|
694 | {
|
---|
695 | /*
|
---|
696 | * ModR/M indicates memory addressing.
|
---|
697 | */
|
---|
698 | uint8_t uScale = 0;
|
---|
699 | bool fBaseRegValid = false;
|
---|
700 | bool fIdxRegValid = false;
|
---|
701 | uint8_t iBaseReg = 0;
|
---|
702 | uint8_t iIdxReg = 0;
|
---|
703 | uint8_t iReg2 = 0;
|
---|
704 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
705 | {
|
---|
706 | /*
|
---|
707 | * Parse the ModR/M, displacement for 16-bit addressing mode.
|
---|
708 | * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
|
---|
709 | */
|
---|
710 | uint16_t u16Disp = 0;
|
---|
711 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
712 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
713 | {
|
---|
714 | /* Displacement without any registers. */
|
---|
715 | IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
|
---|
716 | }
|
---|
717 | else
|
---|
718 | {
|
---|
719 | /* Register (index and base). */
|
---|
720 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
721 | {
|
---|
722 | case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
723 | case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
724 | case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
725 | case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
726 | case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
727 | case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
728 | case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
|
---|
729 | case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
|
---|
730 | }
|
---|
731 |
|
---|
732 | /* Register + displacement. */
|
---|
733 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
734 | {
|
---|
735 | case 0: break;
|
---|
736 | case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
|
---|
737 | case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
|
---|
738 | default:
|
---|
739 | {
|
---|
740 | /* Register addressing, handled at the beginning. */
|
---|
741 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
742 | break;
|
---|
743 | }
|
---|
744 | }
|
---|
745 | }
|
---|
746 |
|
---|
747 | Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
|
---|
748 | GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
|
---|
749 | iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
|
---|
750 | }
|
---|
751 | else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
752 | {
|
---|
753 | /*
|
---|
754 | * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
|
---|
755 | * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
|
---|
756 | */
|
---|
757 | uint32_t u32Disp = 0;
|
---|
758 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
759 | {
|
---|
760 | /* Displacement without any registers. */
|
---|
761 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
762 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
763 | }
|
---|
764 | else
|
---|
765 | {
|
---|
766 | /* Register (and perhaps scale, index and base). */
|
---|
767 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
768 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
769 | if (iBaseReg == 4)
|
---|
770 | {
|
---|
771 | /* An SIB byte follows the ModR/M byte, parse it. */
|
---|
772 | uint8_t bSib;
|
---|
773 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
774 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
775 |
|
---|
776 | /* A displacement may follow SIB, update its offset. */
|
---|
777 | offDisp += sizeof(bSib);
|
---|
778 |
|
---|
779 | /* Get the scale. */
|
---|
780 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
781 |
|
---|
782 | /* Get the index register. */
|
---|
783 | iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
|
---|
784 | fIdxRegValid = RT_BOOL(iIdxReg != 4);
|
---|
785 |
|
---|
786 | /* Get the base register. */
|
---|
787 | iBaseReg = bSib & X86_SIB_BASE_MASK;
|
---|
788 | fBaseRegValid = true;
|
---|
789 | if (iBaseReg == 5)
|
---|
790 | {
|
---|
791 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
792 | {
|
---|
793 | /* Mod is 0 implies a 32-bit displacement with no base. */
|
---|
794 | fBaseRegValid = false;
|
---|
795 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
796 | }
|
---|
797 | else
|
---|
798 | {
|
---|
799 | /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
|
---|
800 | iBaseReg = X86_GREG_xBP;
|
---|
801 | }
|
---|
802 | }
|
---|
803 | }
|
---|
804 |
|
---|
805 | /* Register + displacement. */
|
---|
806 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
807 | {
|
---|
808 | case 0: /* Handled above */ break;
|
---|
809 | case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
|
---|
810 | case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
|
---|
811 | default:
|
---|
812 | {
|
---|
813 | /* Register addressing, handled at the beginning. */
|
---|
814 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
815 | break;
|
---|
816 | }
|
---|
817 | }
|
---|
818 | }
|
---|
819 |
|
---|
820 | GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
|
---|
821 | iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
|
---|
822 | }
|
---|
823 | else
|
---|
824 | {
|
---|
825 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
|
---|
826 |
|
---|
827 | /*
|
---|
828 | * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
|
---|
829 | * See Intel instruction spec. 2.2 "IA-32e Mode".
|
---|
830 | */
|
---|
831 | uint64_t u64Disp = 0;
|
---|
832 | bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
|
---|
833 | if (fRipRelativeAddr)
|
---|
834 | {
|
---|
835 | /*
|
---|
836 | * RIP-relative addressing mode.
|
---|
837 | *
|
---|
838 | * The displacment is 32-bit signed implying an offset range of +/-2G.
|
---|
839 | * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
|
---|
840 | */
|
---|
841 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
842 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
843 | }
|
---|
844 | else
|
---|
845 | {
|
---|
846 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
847 |
|
---|
848 | /*
|
---|
849 | * Register (and perhaps scale, index and base).
|
---|
850 | *
|
---|
851 | * REX.B extends the most-significant bit of the base register. However, REX.B
|
---|
852 | * is ignored while determining whether an SIB follows the opcode. Hence, we
|
---|
853 | * shall OR any REX.B bit -after- inspecting for an SIB byte below.
|
---|
854 | *
|
---|
855 | * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
|
---|
856 | */
|
---|
857 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
858 | if (iBaseReg == 4)
|
---|
859 | {
|
---|
860 | /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
|
---|
861 | uint8_t bSib;
|
---|
862 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
863 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
864 |
|
---|
865 | /* Displacement may follow SIB, update its offset. */
|
---|
866 | offDisp += sizeof(bSib);
|
---|
867 |
|
---|
868 | /* Get the scale. */
|
---|
869 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
870 |
|
---|
871 | /* Get the index. */
|
---|
872 | iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
|
---|
873 | fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
|
---|
874 |
|
---|
875 | /* Get the base. */
|
---|
876 | iBaseReg = (bSib & X86_SIB_BASE_MASK);
|
---|
877 | fBaseRegValid = true;
|
---|
878 | if (iBaseReg == 5)
|
---|
879 | {
|
---|
880 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
881 | {
|
---|
882 | /* Mod is 0 implies a signed 32-bit displacement with no base. */
|
---|
883 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
884 | }
|
---|
885 | else
|
---|
886 | {
|
---|
887 | /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
|
---|
888 | iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
|
---|
889 | }
|
---|
890 | }
|
---|
891 | }
|
---|
892 | iBaseReg |= pVCpu->iem.s.uRexB;
|
---|
893 |
|
---|
894 | /* Register + displacement. */
|
---|
895 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
896 | {
|
---|
897 | case 0: /* Handled above */ break;
|
---|
898 | case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
899 | case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
900 | default:
|
---|
901 | {
|
---|
902 | /* Register addressing, handled at the beginning. */
|
---|
903 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
904 | break;
|
---|
905 | }
|
---|
906 | }
|
---|
907 | }
|
---|
908 |
|
---|
909 | GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
|
---|
910 | iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
911 | }
|
---|
912 |
|
---|
913 | ExitInstrInfo.All.u2Scaling = uScale;
|
---|
914 | ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory instructions. */
|
---|
915 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
916 | ExitInstrInfo.All.fIsRegOperand = 0;
|
---|
917 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
918 | ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
|
---|
919 | ExitInstrInfo.All.iIdxReg = iIdxReg;
|
---|
920 | ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
|
---|
921 | ExitInstrInfo.All.iBaseReg = iBaseReg;
|
---|
922 | ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
|
---|
923 | ExitInstrInfo.All.iReg2 = iReg2;
|
---|
924 | }
|
---|
925 |
|
---|
926 | /*
|
---|
927 | * Handle exceptions for certain instructions.
|
---|
928 | * (e.g. some instructions convey an instruction identity).
|
---|
929 | */
|
---|
930 | switch (uExitReason)
|
---|
931 | {
|
---|
932 | case VMX_EXIT_XDTR_ACCESS:
|
---|
933 | {
|
---|
934 | Assert(VMX_INSTR_ID_IS_VALID(InstrId));
|
---|
935 | ExitInstrInfo.GdtIdt.u2InstrId = VMX_INSTR_ID_GET_ID(InstrId);
|
---|
936 | ExitInstrInfo.GdtIdt.u2Undef0 = 0;
|
---|
937 | break;
|
---|
938 | }
|
---|
939 |
|
---|
940 | case VMX_EXIT_TR_ACCESS:
|
---|
941 | {
|
---|
942 | Assert(VMX_INSTR_ID_IS_VALID(InstrId));
|
---|
943 | ExitInstrInfo.LdtTr.u2InstrId = VMX_INSTR_ID_GET_ID(InstrId);
|
---|
944 | ExitInstrInfo.LdtTr.u2Undef0 = 0;
|
---|
945 | break;
|
---|
946 | }
|
---|
947 |
|
---|
948 | case VMX_EXIT_RDRAND:
|
---|
949 | case VMX_EXIT_RDSEED:
|
---|
950 | {
|
---|
951 | Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
|
---|
952 | break;
|
---|
953 | }
|
---|
954 | }
|
---|
955 |
|
---|
956 | /* Update displacement and return the constructed VM-exit instruction information field. */
|
---|
957 | if (pGCPtrDisp)
|
---|
958 | *pGCPtrDisp = GCPtrDisp;
|
---|
959 | return ExitInstrInfo.u;
|
---|
960 | }
|
---|
961 |
|
---|
962 |
|
---|
963 | /**
|
---|
964 | * Implements VMSucceed for VMX instruction success.
|
---|
965 | *
|
---|
966 | * @param pVCpu The cross context virtual CPU structure.
|
---|
967 | */
|
---|
968 | DECLINLINE(void) iemVmxVmSucceed(PVMCPU pVCpu)
|
---|
969 | {
|
---|
970 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
971 | }
|
---|
972 |
|
---|
973 |
|
---|
974 | /**
|
---|
975 | * Implements VMFailInvalid for VMX instruction failure.
|
---|
976 | *
|
---|
977 | * @param pVCpu The cross context virtual CPU structure.
|
---|
978 | */
|
---|
979 | DECLINLINE(void) iemVmxVmFailInvalid(PVMCPU pVCpu)
|
---|
980 | {
|
---|
981 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
982 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_CF;
|
---|
983 | }
|
---|
984 |
|
---|
985 |
|
---|
986 | /**
|
---|
987 | * Implements VMFailValid for VMX instruction failure.
|
---|
988 | *
|
---|
989 | * @param pVCpu The cross context virtual CPU structure.
|
---|
990 | * @param enmInsErr The VM instruction error.
|
---|
991 | */
|
---|
992 | DECLINLINE(void) iemVmxVmFailValid(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
|
---|
993 | {
|
---|
994 | if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
995 | {
|
---|
996 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
997 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_ZF;
|
---|
998 | /** @todo NSTVMX: VMWrite enmInsErr to VM-instruction error field. */
|
---|
999 | RT_NOREF(enmInsErr);
|
---|
1000 | }
|
---|
1001 | }
|
---|
1002 |
|
---|
1003 |
|
---|
1004 | /**
|
---|
1005 | * Implements VMFail for VMX instruction failure.
|
---|
1006 | *
|
---|
1007 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1008 | * @param enmInsErr The VM instruction error.
|
---|
1009 | */
|
---|
1010 | DECLINLINE(void) iemVmxVmFail(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
|
---|
1011 | {
|
---|
1012 | if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
1013 | {
|
---|
1014 | iemVmxVmFailValid(pVCpu, enmInsErr);
|
---|
1015 | /** @todo Set VM-instruction error field in the current virtual-VMCS. */
|
---|
1016 | }
|
---|
1017 | else
|
---|
1018 | iemVmxVmFailInvalid(pVCpu);
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 |
|
---|
1022 | /**
|
---|
1023 | * Flushes the current VMCS contents back to guest memory.
|
---|
1024 | *
|
---|
1025 | * @returns VBox status code.
|
---|
1026 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1027 | */
|
---|
1028 | DECLINLINE(int) iemVmxCommitCurrentVmcsToMemory(PVMCPU pVCpu)
|
---|
1029 | {
|
---|
1030 | Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
|
---|
1031 | int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
|
---|
1032 | pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs), sizeof(VMXVVMCS));
|
---|
1033 | IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
|
---|
1034 | return rc;
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 |
|
---|
1038 | /**
|
---|
1039 | * VMWRITE instruction execution worker.
|
---|
1040 | *
|
---|
1041 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1042 | * @param cbInstr The instruction length.
|
---|
1043 | * @param uFieldEnc The VMCS field encoding.
|
---|
1044 | * @param u64Val The value to write (or guest linear address to the
|
---|
1045 | * value), @a pExitInstrInfo will indicate whether it's a
|
---|
1046 | * memory or register operand.
|
---|
1047 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
1048 | * @param GCPtrDisp The displacement field for @a GCPtrVmcs if any.
|
---|
1049 | */
|
---|
1050 | IEM_STATIC VBOXSTRICTRC iemVmxVmwrite(PVMCPU pVCpu, uint8_t cbInstr, uint32_t uFieldEnc, uint64_t u64Val,
|
---|
1051 | PCVMXEXITINSTRINFO pExitInstrInfo, RTGCPTR GCPtrDisp)
|
---|
1052 | {
|
---|
1053 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1054 | {
|
---|
1055 | RT_NOREF(GCPtrDisp);
|
---|
1056 | /** @todo NSTVMX: intercept. */
|
---|
1057 | /** @todo NSTVMX: VMCS shadowing intercept (VMREAD/VMWRITE bitmap). */
|
---|
1058 | }
|
---|
1059 |
|
---|
1060 | /* CPL. */
|
---|
1061 | if (CPUMGetGuestCPL(pVCpu) > 0)
|
---|
1062 | {
|
---|
1063 | Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1064 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_Cpl;
|
---|
1065 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | /* VMCS pointer in root mode. */
|
---|
1069 | if ( IEM_IS_VMX_ROOT_MODE(pVCpu)
|
---|
1070 | && !IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
1071 | {
|
---|
1072 | Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
|
---|
1073 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_PtrInvalid;
|
---|
1074 | iemVmxVmFailInvalid(pVCpu);
|
---|
1075 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1076 | return VINF_SUCCESS;
|
---|
1077 | }
|
---|
1078 |
|
---|
1079 | /* VMCS-link pointer in non-root mode. */
|
---|
1080 | if ( IEM_IS_VMX_NON_ROOT_MODE(pVCpu)
|
---|
1081 | && !IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
|
---|
1082 | {
|
---|
1083 | Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
|
---|
1084 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_PtrInvalid;
|
---|
1085 | iemVmxVmFailInvalid(pVCpu);
|
---|
1086 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1087 | return VINF_SUCCESS;
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 | /* If the VMWRITE instruction references memory, access the specified in memory operand. */
|
---|
1091 | if (!pExitInstrInfo->VmreadVmwrite.fIsRegOperand)
|
---|
1092 | {
|
---|
1093 | uint8_t const uAddrSize = pExitInstrInfo->VmreadVmwrite.u3AddrSize;
|
---|
1094 | static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff), 0 };
|
---|
1095 | AssertRCReturn(uAddrSize != 3, VERR_IEM_IPE_1);
|
---|
1096 | RTGCPTR const GCPtrVal = u64Val & s_auAddrSizeMasks[uAddrSize];
|
---|
1097 |
|
---|
1098 | /* Read the value from the specified guest memory location. */
|
---|
1099 | VBOXSTRICTRC rcStrict;
|
---|
1100 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1101 | rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, pExitInstrInfo->VmreadVmwrite.iSegReg, GCPtrVal);
|
---|
1102 | else
|
---|
1103 | {
|
---|
1104 | uint32_t u32Val;
|
---|
1105 | rcStrict = iemMemFetchDataU32(pVCpu, &u32Val, pExitInstrInfo->VmreadVmwrite.iSegReg, GCPtrVal);
|
---|
1106 | u64Val = u32Val;
|
---|
1107 | }
|
---|
1108 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
1109 | {
|
---|
1110 | Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1111 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_PtrMap;
|
---|
1112 | return rcStrict;
|
---|
1113 | }
|
---|
1114 | }
|
---|
1115 |
|
---|
1116 | /* Supported VMCS field. */
|
---|
1117 | if (!iemVmxIsVmcsFieldValid(pVCpu, uFieldEnc))
|
---|
1118 | {
|
---|
1119 | Log(("vmwrite: VMCS field %#x invalid -> VMFail\n", uFieldEnc));
|
---|
1120 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_FieldInvalid;
|
---|
1121 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
|
---|
1122 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1123 | return VINF_SUCCESS;
|
---|
1124 | }
|
---|
1125 |
|
---|
1126 | /* Read-only VMCS field. */
|
---|
1127 | bool const fReadOnlyField = HMVmxIsVmcsFieldReadOnly(uFieldEnc);
|
---|
1128 | if ( fReadOnlyField
|
---|
1129 | && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
|
---|
1130 | {
|
---|
1131 | Log(("vmwrite: Write to read-only VMCS component -> VMFail\n", uFieldEnc));
|
---|
1132 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_FieldRo;
|
---|
1133 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
|
---|
1134 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1135 | return VINF_SUCCESS;
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 | /*
|
---|
1139 | * Setup writing to the current or shadow VMCS.
|
---|
1140 | */
|
---|
1141 | uint8_t *pbVmcs;
|
---|
1142 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1143 | pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs);
|
---|
1144 | else
|
---|
1145 | pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1146 | Assert(pbVmcs);
|
---|
1147 |
|
---|
1148 | PCVMXVMCSFIELDENC pFieldEnc = (PCVMXVMCSFIELDENC)&uFieldEnc;
|
---|
1149 | uint8_t const uWidth = pFieldEnc->n.u2Width;
|
---|
1150 | uint8_t const uType = pFieldEnc->n.u2Type;
|
---|
1151 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
1152 | uint8_t const uIndex = pFieldEnc->n.u8Index;
|
---|
1153 | AssertRCReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_2);
|
---|
1154 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
1155 |
|
---|
1156 | /*
|
---|
1157 | * Write the VMCS component based on the field's effective width.
|
---|
1158 | *
|
---|
1159 | * The effective width is 64-bit fields adjusted to 32-bits if the access-type
|
---|
1160 | * indicates high bits (little endian).
|
---|
1161 | */
|
---|
1162 | uint8_t *pbField = pbVmcs + offField;
|
---|
1163 | uint8_t const uEffWidth = HMVmxGetVmcsFieldWidthEff(uFieldEnc);
|
---|
1164 | switch (uEffWidth)
|
---|
1165 | {
|
---|
1166 | case VMX_VMCS_ENC_WIDTH_64BIT:
|
---|
1167 | case VMX_VMCS_ENC_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
|
---|
1168 | case VMX_VMCS_ENC_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
|
---|
1169 | case VMX_VMCS_ENC_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
|
---|
1170 | }
|
---|
1171 |
|
---|
1172 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_Success;
|
---|
1173 | iemVmxVmSucceed(pVCpu);
|
---|
1174 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1175 | return VINF_SUCCESS;
|
---|
1176 | }
|
---|
1177 |
|
---|
1178 |
|
---|
1179 | /**
|
---|
1180 | * VMCLEAR instruction execution worker.
|
---|
1181 | *
|
---|
1182 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1183 | * @param cbInstr The instruction length.
|
---|
1184 | * @param GCPtrVmcs The linear address of the VMCS pointer.
|
---|
1185 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
1186 | * @param GCPtrDisp The displacement field for @a GCPtrVmcs if any.
|
---|
1187 | *
|
---|
1188 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
1189 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
1190 | */
|
---|
1191 | IEM_STATIC VBOXSTRICTRC iemVmxVmclear(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmcs, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
1192 | RTGCPTR GCPtrDisp)
|
---|
1193 | {
|
---|
1194 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1195 | {
|
---|
1196 | RT_NOREF(GCPtrDisp);
|
---|
1197 | /** @todo NSTVMX: intercept. */
|
---|
1198 | }
|
---|
1199 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
1200 |
|
---|
1201 | /* CPL. */
|
---|
1202 | if (CPUMGetGuestCPL(pVCpu) > 0)
|
---|
1203 | {
|
---|
1204 | Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1205 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_Cpl;
|
---|
1206 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1207 | }
|
---|
1208 |
|
---|
1209 | /* Get the VMCS pointer from the location specified by the source memory operand. */
|
---|
1210 | RTGCPHYS GCPhysVmcs;
|
---|
1211 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, pExitInstrInfo->VmxXsave.iSegReg, GCPtrVmcs);
|
---|
1212 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
1213 | {
|
---|
1214 | Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1215 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_PtrMap;
|
---|
1216 | return rcStrict;
|
---|
1217 | }
|
---|
1218 |
|
---|
1219 | /* VMCS pointer alignment. */
|
---|
1220 | if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK)
|
---|
1221 | {
|
---|
1222 | Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
|
---|
1223 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_PtrAlign;
|
---|
1224 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
1225 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1226 | return VINF_SUCCESS;
|
---|
1227 | }
|
---|
1228 |
|
---|
1229 | /* VMCS physical-address width limits. */
|
---|
1230 | Assert(!VMX_V_VMCS_PHYSADDR_4G_LIMIT);
|
---|
1231 | if (GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
|
---|
1232 | {
|
---|
1233 | Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
|
---|
1234 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_PtrWidth;
|
---|
1235 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
1236 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1237 | return VINF_SUCCESS;
|
---|
1238 | }
|
---|
1239 |
|
---|
1240 | /* VMCS is not the VMXON region. */
|
---|
1241 | if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
1242 | {
|
---|
1243 | Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
|
---|
1244 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_PtrVmxon;
|
---|
1245 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
|
---|
1246 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1247 | return VINF_SUCCESS;
|
---|
1248 | }
|
---|
1249 |
|
---|
1250 | /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
1251 | restriction imposed by our implementation. */
|
---|
1252 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
|
---|
1253 | {
|
---|
1254 | Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
|
---|
1255 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_PtrAbnormal;
|
---|
1256 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
1257 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1258 | return VINF_SUCCESS;
|
---|
1259 | }
|
---|
1260 |
|
---|
1261 | /*
|
---|
1262 | * VMCLEAR allows committing and clearing any valid VMCS pointer.
|
---|
1263 | *
|
---|
1264 | * If the current VMCS is the one being cleared, set its state to 'clear' and commit
|
---|
1265 | * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
|
---|
1266 | * to 'clear'.
|
---|
1267 | */
|
---|
1268 | uint8_t const fVmcsStateClear = VMX_V_VMCS_STATE_CLEAR;
|
---|
1269 | if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
|
---|
1270 | {
|
---|
1271 | Assert(GCPhysVmcs != NIL_RTGCPHYS); /* Paranoia. */
|
---|
1272 | pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState = fVmcsStateClear;
|
---|
1273 | iemVmxCommitCurrentVmcsToMemory(pVCpu);
|
---|
1274 | Assert(!IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
|
---|
1275 | }
|
---|
1276 | else
|
---|
1277 | {
|
---|
1278 | rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPtrVmcs + RT_OFFSETOF(VMXVVMCS, fVmcsState),
|
---|
1279 | (const void *)&fVmcsStateClear, sizeof(fVmcsStateClear));
|
---|
1280 | }
|
---|
1281 |
|
---|
1282 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_Success;
|
---|
1283 | iemVmxVmSucceed(pVCpu);
|
---|
1284 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1285 | return rcStrict;
|
---|
1286 | }
|
---|
1287 |
|
---|
1288 |
|
---|
1289 | /**
|
---|
1290 | * VMPTRST instruction execution worker.
|
---|
1291 | *
|
---|
1292 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1293 | * @param cbInstr The instruction length.
|
---|
1294 | * @param GCPtrVmcs The linear address of where to store the current VMCS
|
---|
1295 | * pointer.
|
---|
1296 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
1297 | * @param GCPtrDisp The displacement field for @a GCPtrVmcs if any.
|
---|
1298 | *
|
---|
1299 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
1300 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
1301 | */
|
---|
1302 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrst(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmcs, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
1303 | RTGCPTR GCPtrDisp)
|
---|
1304 | {
|
---|
1305 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1306 | {
|
---|
1307 | RT_NOREF(GCPtrDisp);
|
---|
1308 | /** @todo NSTVMX: intercept. */
|
---|
1309 | }
|
---|
1310 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
1311 |
|
---|
1312 | /* CPL. */
|
---|
1313 | if (CPUMGetGuestCPL(pVCpu) > 0)
|
---|
1314 | {
|
---|
1315 | Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1316 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrst_Cpl;
|
---|
1317 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1318 | }
|
---|
1319 |
|
---|
1320 | /* Set the VMCS pointer to the location specified by the destination memory operand. */
|
---|
1321 | AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
|
---|
1322 | VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, pExitInstrInfo->VmxXsave.iSegReg, GCPtrVmcs,
|
---|
1323 | IEM_VMX_GET_CURRENT_VMCS(pVCpu));
|
---|
1324 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1325 | {
|
---|
1326 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrst_Success;
|
---|
1327 | iemVmxVmSucceed(pVCpu);
|
---|
1328 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1329 | return rcStrict;
|
---|
1330 | }
|
---|
1331 |
|
---|
1332 | Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1333 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrst_PtrMap;
|
---|
1334 | return rcStrict;
|
---|
1335 | }
|
---|
1336 |
|
---|
1337 |
|
---|
1338 | /**
|
---|
1339 | * VMPTRLD instruction execution worker.
|
---|
1340 | *
|
---|
1341 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1342 | * @param cbInstr The instruction length.
|
---|
1343 | * @param GCPtrVmcs The linear address of the current VMCS pointer.
|
---|
1344 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
1345 | * @param GCPtrDisp The displacement field for @a GCPtrVmcs if any.
|
---|
1346 | *
|
---|
1347 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
1348 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
1349 | */
|
---|
1350 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrld(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmcs, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
1351 | RTGCPTR GCPtrDisp)
|
---|
1352 | {
|
---|
1353 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1354 | {
|
---|
1355 | RT_NOREF(GCPtrDisp);
|
---|
1356 | /** @todo NSTVMX: intercept. */
|
---|
1357 | }
|
---|
1358 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
1359 |
|
---|
1360 | /* CPL. */
|
---|
1361 | if (CPUMGetGuestCPL(pVCpu) > 0)
|
---|
1362 | {
|
---|
1363 | Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1364 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_Cpl;
|
---|
1365 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1366 | }
|
---|
1367 |
|
---|
1368 | /* Get the VMCS pointer from the location specified by the source memory operand. */
|
---|
1369 | RTGCPHYS GCPhysVmcs;
|
---|
1370 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, pExitInstrInfo->VmxXsave.iSegReg, GCPtrVmcs);
|
---|
1371 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
1372 | {
|
---|
1373 | Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1374 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrMap;
|
---|
1375 | return rcStrict;
|
---|
1376 | }
|
---|
1377 |
|
---|
1378 | /* VMCS pointer alignment. */
|
---|
1379 | if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK)
|
---|
1380 | {
|
---|
1381 | Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
|
---|
1382 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrAlign;
|
---|
1383 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
1384 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1385 | return VINF_SUCCESS;
|
---|
1386 | }
|
---|
1387 |
|
---|
1388 | /* VMCS physical-address width limits. */
|
---|
1389 | Assert(!VMX_V_VMCS_PHYSADDR_4G_LIMIT);
|
---|
1390 | if (GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
|
---|
1391 | {
|
---|
1392 | Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
|
---|
1393 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrWidth;
|
---|
1394 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
1395 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1396 | return VINF_SUCCESS;
|
---|
1397 | }
|
---|
1398 |
|
---|
1399 | /* VMCS is not the VMXON region. */
|
---|
1400 | if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
1401 | {
|
---|
1402 | Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
|
---|
1403 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrVmxon;
|
---|
1404 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
|
---|
1405 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1406 | return VINF_SUCCESS;
|
---|
1407 | }
|
---|
1408 |
|
---|
1409 | /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
1410 | restriction imposed by our implementation. */
|
---|
1411 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
|
---|
1412 | {
|
---|
1413 | Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
|
---|
1414 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrAbnormal;
|
---|
1415 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
1416 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1417 | return VINF_SUCCESS;
|
---|
1418 | }
|
---|
1419 |
|
---|
1420 | /* Read the VMCS revision ID from the VMCS. */
|
---|
1421 | VMXVMCSREVID VmcsRevId;
|
---|
1422 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
|
---|
1423 | if (RT_FAILURE(rc))
|
---|
1424 | {
|
---|
1425 | Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
|
---|
1426 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrReadPhys;
|
---|
1427 | return rc;
|
---|
1428 | }
|
---|
1429 |
|
---|
1430 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest,
|
---|
1431 | also check VMCS shadowing feature. */
|
---|
1432 | if ( VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID
|
---|
1433 | || ( VmcsRevId.n.fIsShadowVmcs
|
---|
1434 | && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
|
---|
1435 | {
|
---|
1436 | if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
|
---|
1437 | {
|
---|
1438 | Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFail()\n", VMX_V_VMCS_REVISION_ID,
|
---|
1439 | VmcsRevId.n.u31RevisionId));
|
---|
1440 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_VmcsRevId;
|
---|
1441 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
1442 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1443 | return VINF_SUCCESS;
|
---|
1444 | }
|
---|
1445 |
|
---|
1446 | Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
|
---|
1447 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_ShadowVmcs;
|
---|
1448 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
1449 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1450 | return VINF_SUCCESS;
|
---|
1451 | }
|
---|
1452 |
|
---|
1453 | /*
|
---|
1454 | * We only maintain only the current VMCS in our virtual CPU context (CPUMCTX). Therefore,
|
---|
1455 | * VMPTRLD shall always flush any existing current VMCS back to guest memory before loading
|
---|
1456 | * a new VMCS as current.
|
---|
1457 | */
|
---|
1458 | if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
|
---|
1459 | {
|
---|
1460 | iemVmxCommitCurrentVmcsToMemory(pVCpu);
|
---|
1461 | IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
|
---|
1462 | }
|
---|
1463 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_Success;
|
---|
1464 | iemVmxVmSucceed(pVCpu);
|
---|
1465 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1466 | return VINF_SUCCESS;
|
---|
1467 | }
|
---|
1468 |
|
---|
1469 |
|
---|
1470 | /**
|
---|
1471 | * VMXON instruction execution worker.
|
---|
1472 | *
|
---|
1473 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1474 | * @param cbInstr The instruction length.
|
---|
1475 | * @param GCPtrVmxon The linear address of the VMXON pointer.
|
---|
1476 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
1477 | * @param GCPtrDisp The displacement field for @a GCPtrVmxon if any.
|
---|
1478 | *
|
---|
1479 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
1480 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
1481 | */
|
---|
1482 | IEM_STATIC VBOXSTRICTRC iemVmxVmxon(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmxon, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
1483 | RTGCPTR GCPtrDisp)
|
---|
1484 | {
|
---|
1485 | #if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
1486 | RT_NOREF5(pVCpu, cbInstr, GCPtrVmxon, pExitInstrInfo, GCPtrDisp);
|
---|
1487 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
1488 | #else
|
---|
1489 | if (!IEM_IS_VMX_ROOT_MODE(pVCpu))
|
---|
1490 | {
|
---|
1491 | /* CPL. */
|
---|
1492 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1493 | {
|
---|
1494 | Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1495 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cpl;
|
---|
1496 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1497 | }
|
---|
1498 |
|
---|
1499 | /* A20M (A20 Masked) mode. */
|
---|
1500 | if (!PGMPhysIsA20Enabled(pVCpu))
|
---|
1501 | {
|
---|
1502 | Log(("vmxon: A20M mode -> #GP(0)\n"));
|
---|
1503 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_A20M;
|
---|
1504 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1505 | }
|
---|
1506 |
|
---|
1507 | /* CR0 fixed bits. */
|
---|
1508 | bool const fUnrestrictedGuest = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxUnrestrictedGuest;
|
---|
1509 | uint64_t const uCr0Fixed0 = fUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX : VMX_V_CR0_FIXED0;
|
---|
1510 | if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) != uCr0Fixed0)
|
---|
1511 | {
|
---|
1512 | Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
|
---|
1513 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cr0Fixed0;
|
---|
1514 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1515 | }
|
---|
1516 |
|
---|
1517 | /* CR4 fixed bits. */
|
---|
1518 | if ((pVCpu->cpum.GstCtx.cr4 & VMX_V_CR4_FIXED0) != VMX_V_CR4_FIXED0)
|
---|
1519 | {
|
---|
1520 | Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
|
---|
1521 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cr4Fixed0;
|
---|
1522 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1523 | }
|
---|
1524 |
|
---|
1525 | /* Feature control MSR's LOCK and VMXON bits. */
|
---|
1526 | uint64_t const uMsrFeatCtl = CPUMGetGuestIa32FeatureControl(pVCpu);
|
---|
1527 | if (!(uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON)))
|
---|
1528 | {
|
---|
1529 | Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
|
---|
1530 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_MsrFeatCtl;
|
---|
1531 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1532 | }
|
---|
1533 |
|
---|
1534 | /* Get the VMXON pointer from the location specified by the source memory operand. */
|
---|
1535 | RTGCPHYS GCPhysVmxon;
|
---|
1536 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, pExitInstrInfo->VmxXsave.iSegReg, GCPtrVmxon);
|
---|
1537 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
1538 | {
|
---|
1539 | Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1540 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrMap;
|
---|
1541 | return rcStrict;
|
---|
1542 | }
|
---|
1543 |
|
---|
1544 | /* VMXON region pointer alignment. */
|
---|
1545 | if (GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK)
|
---|
1546 | {
|
---|
1547 | Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
|
---|
1548 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrAlign;
|
---|
1549 | iemVmxVmFailInvalid(pVCpu);
|
---|
1550 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1551 | return VINF_SUCCESS;
|
---|
1552 | }
|
---|
1553 |
|
---|
1554 | /* VMXON physical-address width limits. */
|
---|
1555 | Assert(!VMX_V_VMCS_PHYSADDR_4G_LIMIT);
|
---|
1556 | if (GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
|
---|
1557 | {
|
---|
1558 | Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
|
---|
1559 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrWidth;
|
---|
1560 | iemVmxVmFailInvalid(pVCpu);
|
---|
1561 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1562 | return VINF_SUCCESS;
|
---|
1563 | }
|
---|
1564 |
|
---|
1565 | /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
1566 | restriction imposed by our implementation. */
|
---|
1567 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
|
---|
1568 | {
|
---|
1569 | Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
|
---|
1570 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrAbnormal;
|
---|
1571 | iemVmxVmFailInvalid(pVCpu);
|
---|
1572 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1573 | return VINF_SUCCESS;
|
---|
1574 | }
|
---|
1575 |
|
---|
1576 | /* Read the VMCS revision ID from the VMXON region. */
|
---|
1577 | VMXVMCSREVID VmcsRevId;
|
---|
1578 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
|
---|
1579 | if (RT_FAILURE(rc))
|
---|
1580 | {
|
---|
1581 | Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
|
---|
1582 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrReadPhys;
|
---|
1583 | return rc;
|
---|
1584 | }
|
---|
1585 |
|
---|
1586 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
|
---|
1587 | if (RT_UNLIKELY(VmcsRevId.u != VMX_V_VMCS_REVISION_ID))
|
---|
1588 | {
|
---|
1589 | /* Revision ID mismatch. */
|
---|
1590 | if (!VmcsRevId.n.fIsShadowVmcs)
|
---|
1591 | {
|
---|
1592 | Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
|
---|
1593 | VmcsRevId.n.u31RevisionId));
|
---|
1594 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmcsRevId;
|
---|
1595 | iemVmxVmFailInvalid(pVCpu);
|
---|
1596 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1597 | return VINF_SUCCESS;
|
---|
1598 | }
|
---|
1599 |
|
---|
1600 | /* Shadow VMCS disallowed. */
|
---|
1601 | Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
|
---|
1602 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_ShadowVmcs;
|
---|
1603 | iemVmxVmFailInvalid(pVCpu);
|
---|
1604 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1605 | return VINF_SUCCESS;
|
---|
1606 | }
|
---|
1607 |
|
---|
1608 | /*
|
---|
1609 | * Record that we're in VMX operation, block INIT, block and disable A20M.
|
---|
1610 | */
|
---|
1611 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
|
---|
1612 | IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
|
---|
1613 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
|
---|
1614 | /** @todo NSTVMX: clear address-range monitoring. */
|
---|
1615 | /** @todo NSTVMX: Intel PT. */
|
---|
1616 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Success;
|
---|
1617 | iemVmxVmSucceed(pVCpu);
|
---|
1618 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1619 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
1620 | return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
|
---|
1621 | # else
|
---|
1622 | return VINF_SUCCESS;
|
---|
1623 | # endif
|
---|
1624 | }
|
---|
1625 | else if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1626 | {
|
---|
1627 | RT_NOREF(GCPtrDisp);
|
---|
1628 | /** @todo NSTVMX: intercept. */
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
1632 |
|
---|
1633 | /* CPL. */
|
---|
1634 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1635 | {
|
---|
1636 | Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1637 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmxRootCpl;
|
---|
1638 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1639 | }
|
---|
1640 |
|
---|
1641 | /* VMXON when already in VMX root mode. */
|
---|
1642 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
|
---|
1643 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmxRoot;
|
---|
1644 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1645 | return VINF_SUCCESS;
|
---|
1646 | #endif
|
---|
1647 | }
|
---|
1648 |
|
---|
1649 |
|
---|
1650 | /**
|
---|
1651 | * Implements 'VMXON'.
|
---|
1652 | */
|
---|
1653 | IEM_CIMPL_DEF_1(iemCImpl_vmxon, RTGCPTR, GCPtrVmxon)
|
---|
1654 | {
|
---|
1655 | RTGCPTR GCPtrDisp;
|
---|
1656 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1657 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMXON, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
1658 | return iemVmxVmxon(pVCpu, cbInstr, GCPtrVmxon, &ExitInstrInfo, GCPtrDisp);
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 |
|
---|
1662 | /**
|
---|
1663 | * Implements 'VMXOFF'.
|
---|
1664 | */
|
---|
1665 | IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
|
---|
1666 | {
|
---|
1667 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
1668 | RT_NOREF2(pVCpu, cbInstr);
|
---|
1669 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
1670 | # else
|
---|
1671 | IEM_VMX_INSTR_COMMON_CHECKS(pVCpu, "vmxoff", kVmxVInstrDiag_Vmxoff);
|
---|
1672 | if (!IEM_IS_VMX_ROOT_MODE(pVCpu))
|
---|
1673 | {
|
---|
1674 | Log(("vmxoff: Not in VMX root mode -> #GP(0)\n"));
|
---|
1675 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxoff_VmxRoot;
|
---|
1676 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
1677 | }
|
---|
1678 |
|
---|
1679 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1680 | {
|
---|
1681 | /** @todo NSTVMX: intercept. */
|
---|
1682 | }
|
---|
1683 |
|
---|
1684 | /* CPL. */
|
---|
1685 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1686 | {
|
---|
1687 | Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1688 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxoff_Cpl;
|
---|
1689 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1690 | }
|
---|
1691 |
|
---|
1692 | /* Dual monitor treatment of SMIs and SMM. */
|
---|
1693 | uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
|
---|
1694 | if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID)
|
---|
1695 | {
|
---|
1696 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
|
---|
1697 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1698 | return VINF_SUCCESS;
|
---|
1699 | }
|
---|
1700 |
|
---|
1701 | /*
|
---|
1702 | * Record that we're no longer in VMX root operation, block INIT, block and disable A20M.
|
---|
1703 | */
|
---|
1704 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
|
---|
1705 | Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
|
---|
1706 |
|
---|
1707 | if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
|
---|
1708 | { /** @todo NSTVMX: Unblock SMI. */ }
|
---|
1709 | /** @todo NSTVMX: Unblock and enable A20M. */
|
---|
1710 | /** @todo NSTVMX: Clear address-range monitoring. */
|
---|
1711 |
|
---|
1712 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxoff_Success;
|
---|
1713 | iemVmxVmSucceed(pVCpu);
|
---|
1714 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1715 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
1716 | return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
|
---|
1717 | # else
|
---|
1718 | return VINF_SUCCESS;
|
---|
1719 | # endif
|
---|
1720 | # endif
|
---|
1721 | }
|
---|
1722 |
|
---|
1723 |
|
---|
1724 | /**
|
---|
1725 | * Implements 'VMPTRLD'.
|
---|
1726 | */
|
---|
1727 | IEM_CIMPL_DEF_1(iemCImpl_vmptrld, RTGCPTR, GCPtrVmcs)
|
---|
1728 | {
|
---|
1729 | RTGCPTR GCPtrDisp;
|
---|
1730 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1731 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMPTRLD, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
1732 | return iemVmxVmptrld(pVCpu, cbInstr, GCPtrVmcs, &ExitInstrInfo, GCPtrDisp);
|
---|
1733 | }
|
---|
1734 |
|
---|
1735 |
|
---|
1736 | /**
|
---|
1737 | * Implements 'VMPTRST'.
|
---|
1738 | */
|
---|
1739 | IEM_CIMPL_DEF_1(iemCImpl_vmptrst, RTGCPTR, GCPtrVmcs)
|
---|
1740 | {
|
---|
1741 | RTGCPTR GCPtrDisp;
|
---|
1742 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1743 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMPTRST, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
1744 | return iemVmxVmptrst(pVCpu, cbInstr, GCPtrVmcs, &ExitInstrInfo, GCPtrDisp);
|
---|
1745 | }
|
---|
1746 |
|
---|
1747 |
|
---|
1748 | /**
|
---|
1749 | * Implements 'VMCLEAR'.
|
---|
1750 | */
|
---|
1751 | IEM_CIMPL_DEF_1(iemCImpl_vmclear, RTGCPTR, GCPtrVmcs)
|
---|
1752 | {
|
---|
1753 | RTGCPTR GCPtrDisp;
|
---|
1754 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1755 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMCLEAR, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
1756 | return iemVmxVmclear(pVCpu, cbInstr, GCPtrVmcs, &ExitInstrInfo, GCPtrDisp);
|
---|
1757 | }
|
---|
1758 |
|
---|
1759 |
|
---|
1760 | /**
|
---|
1761 | * Implements 'VMWRITE' register.
|
---|
1762 | */
|
---|
1763 | IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint32_t, u32VmcsFieldEnc, uint64_t, u64Val)
|
---|
1764 | {
|
---|
1765 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1766 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMWRITE, VMX_INSTR_ID_NONE, NULL /* pGCPtrDisp */);
|
---|
1767 | return iemVmxVmwrite(pVCpu, cbInstr, u32VmcsFieldEnc, u64Val, &ExitInstrInfo, 0 /* GCPtrDisp */);
|
---|
1768 | }
|
---|
1769 |
|
---|
1770 |
|
---|
1771 | /**
|
---|
1772 | * Implements 'VMWRITE' memory.
|
---|
1773 | */
|
---|
1774 | IEM_CIMPL_DEF_2(iemCImpl_vmwrite_mem, uint32_t, u32VmcsFieldEnc, RTGCUINTPTR64, GCPtrVal)
|
---|
1775 | {
|
---|
1776 | RTGCPTR GCPtrDisp;
|
---|
1777 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1778 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMWRITE, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
1779 | return iemVmxVmwrite(pVCpu, cbInstr, u32VmcsFieldEnc, GCPtrVal, &ExitInstrInfo, GCPtrDisp);
|
---|
1780 | }
|
---|
1781 |
|
---|
1782 | #endif
|
---|
1783 |
|
---|